

GeoServer Cookbook

Boost your map server's performance using the power and
flexibility of GeoServer

Stefano Iacovella

BIRMINGHAM - MUMBAI

GeoServer Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1201114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-961-5

www.packtpub.com

Credits

Author
Stefano Iacovella

Reviewers
Dan Blundell

Daniela Cristiana Docan

Antonio Santiago

Commissioning Editor
Usha Iyer

Acquisition Editor
Subho Gupta

Content Development Editor
Vaibhav Pawar

Technical Editor
Pooja Nair

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexers
Mariammal Chettiyar

Tejal Soni

Production Coordinators
Kyle Albuquerque

Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Stefano Iacovella is a long-time GIS developer and consultant living in Rome, Italy. He also
works as a GIS instructor.

He has a PhD in Geology. Being a very curious person, he developed a deep knowledge of IT
technologies, mainly focusing on GIS software and related standards.

Starting his career as an ESRI employee, he was exposed to and became confident in
proprietary GIS software, mainly the ESRI suite of products.

In the last 14 years, he has been involved with open source software, integrating it with
proprietary software. He loves the open source approach, and really trusts in collaboration
and sharing knowledge. He strongly believes in the open source idea and constantly manages
to spread it, not only in the GIS sector but also in others.

He has been using GeoServer since the release of Version 1.5, configuring, deploying, and
hacking it in several projects. Some of the other GFOSS projects he mainly uses and likes
are GDAL/OGR, PostGIS, QGIS, and OpenLayers.

Prior to this cookbook, Stefano worked on GeoServer Beginner's Guide, which covers the
basics of GeoServer.

When not playing with maps and geometric shapes, he loves reading about science
(mainly physics and math), riding his bike, and having fun with his wife and two daughters,
Alice and Luisa. You can contact him at stefano.iacovella@gmail.com or follow him
on Twitter at @iacovellas.

Acknowledgments

I would like to thank all those people who helped me make this book a real thing.

A special mention for GeoServer's developers; they are the wonderful engine without which
this software, and hence, this book too, would not exist.

I would like to thank all the people at Packt Publishing who worked on this book. They helped
me a lot and were very patient and encouraging when I had difficulties meeting deadlines.

A special thanks to my technical reviewers; they constantly checked for my errors and
omissions. This book has become better thanks to all their hard work.

Last but not least, I want to express my gratitude to Alessandra, Alice, and Luisa for their
support and patience when I was working on this book.

About the Reviewers

Dan Blundell is a designer and developer with over 10 years of experience. He has worked
in both the public and private sector, from the government to creative agencies. With clients
ranging from district authorities and local businesses to international brands, Dan not only
has a breadth of experience, but also a reputation for delivery. Today, he is working towards
making the government more open, creative, and collaborative.

Daniela Cristiana Docan is a survey engineer. She works as a lecturer for the Faculty of
Geodesy, Technical University of Civil Engineering Bucharest, Romania.

Formerly, she worked for ESRI Romania and ANCPI (National Agency for Cadastre and Land
Registration).

While working for ESRI Romania, Daniela trained teams from different private or state
companies as an authorized instructor in ArcGIS by Environmental Systems Research
Institute, Inc., USA.

In 2009, she created the logical and physical data model of the National Topographic Dataset
for ANCPI on a large scale (TOPRO5). She was also a member of different workgroups that
elaborated on technical specifications and country reports for INSPIRE (Infrastructure for
Spatial Information in the European Community) in 2010.

Antonio Santiago is a Computer Science graduate with more than 10 years of experience
in designing and implementing systems.

Since the beginning of his professional life, his experience has always been related to
the world of meteorology, working for different companies dealing with meteorology as an
employee or a freelance programmer. He has experience in developing systems to collect,
store, transform, analyze, and visualize data. He is interested in and actively pursues any
GIS-related technology, with preference for data visualization.

As a restless person, which is what one mainly experiences while working in the Java
ecosystem, he has also been actively involved with many web-related technologies,
always looking to improve the client side of web applications.

As a firm believer of software engineering practices, he is an enthusiast of Agile
methodologies involving customers as the main key for a project's success.

Antonio is also the author of OpenLayers Cookbook, Packt Publishing.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Working with Vectors 7

Introduction 7
Using different WFS versions in OpenLayers 8
Using WFS nonspatial filters 16
Using WFS spatial filters 20
Using WFS vendor parameters 23
Filtering data with CQL 25
Filtering data with CQL spatial operators 28
Creating a SQL view 32
Creating a parametric view 36
Improving performance with pregeneralized features 39

Chapter 2: Working with Rasters 45
Introduction 45
Getting coverages in different formats 46
Using WCS vendor parameters 51
Publishing a mosaic 53
Using pyramids 62
Adding GDAL formats 66
Adding a PostGIS raster data source 70

Chapter 3: Advanced Styling 77
Introduction 77
Installing the CSS module 78
Creating a simple polygon style with CSS 81
Adding filters to your style 85
Adding labels with CSS 89
Creating scale-dependent rules 91

ii

Table of Contents

Rendering transformations for raster data 96
Creating a dot density chart 99

Chapter 4: Geoprocessing 103
Introduction 103
Installing the WPS module 104
Using the WPS process builder 106
Chaining process – selecting features contained in a polygon 112
Chaining process – building your own task 116

Chapter 5: Advanced Configurations 121
Introduction 121
Upgrading GeoServer 122
Creating a script for automatic startup 124
Optimizing Java 127
Setting up a JNDI connection pool 129
Working with CRS 132
Using the reprojection console 135
Overriding an official EPSG code 140
Setting up GeoWebCache – how to make pre-rendered
tiles for high availability 143
Storing configurations in an RDBMS 145

Chapter 6: Automating GeoServer Configurations 151
Introduction 151
Managing workspaces with REST 153
Creating and editing data stores with REST 160
Managing layers with REST 166
Uploading and updating styles with REST 172
Managing layers with the GWC REST API 174
Managing cache tiles with the GWC REST API 179

Chapter 7: Advanced Visualizations 183
Introduction 183
Adding time to WMS maps 184
Using the WMS animator 190
Keyhole Markup Language styling 194
Using z-order creatively 201
Using transparency creatively 203
Using symbology encoding 207

iii

Table of Contents

Chapter 8: Monitoring and Tuning 213
Introduction 213
Installing the control flow module 214
Setting a per-user limit 215
Setting a per-request limit 219
Installing the monitoring extension 225
Configuring the monitoring extension 229
Creating reports from the monitoring database 234
Limiting the GeoWebCache disk use 240

Appendix: OGC for ESRI Professionals 245
Introduction 245
ArcGIS versus GeoServer 246
Understanding standards 247
WMS versus the mapping service 248
WFS versus feature access 251
Publishing raster data with WCS 254

Index 259

Preface
Until a decade ago, spatial data and the art of map building were considered tricky and
complex—almost reserved for highly skilled and specialized professionals.

The advent of web mapping has changed the way geography is perceived by people. This
has been largely powered by a few types of open source software that made it possible for
everyone to collect, manage, and publish spatial data on the Internet.

GeoServer is one of these precious gems. Along with open JavaScript frameworks such as
OpenLayers and Leaflet, it gives everyone the tools they need to create a powerful map server
and lightweight applications that run in modern browsers. This allows users to show data
visualizations, create online data editors, and do much more.

GeoServer is a complete and powerful type of server software that can publish data to a
web mapping application. In recent releases, support for geoprocessing operations has
been added, which lets you use GeoServer as a data processor.

Since the beginning, GeoServer has support to standards from Open Geospatial Consortium
(OGC), which is kept compatible with its recent most relevant releases (for more information
on OGC, have a look at http://www.opengeospatial.org).

This book will guide you through the details of configuring data for publication, creating
geoprocessing tasks, and optimizing your server for optimal performance.

What this book covers
Chapter 1, Working with Vectors, discusses vector data publication with WFS. It covers how
to use the data with a JavaScript client. It also explores how to use parametric SQL views and
how to enhance performance with feature generalization.

Chapter 2, Working with Rasters, explores the different raster data types you can publish with
GeoServer. It also covers the mosaic data creation and adding support for more formats that
integrates GDAL libraries in your server.

Preface

2

Chapter 3, Advanced Styling, deals with the art of representing data on a map. Using the CSS
module, you will explore how to create symbols for vector data and how to build a renderer for
raster data.

Chapter 4, Geoprocessing, teaches you how to create data processing tasks on GeoServer.
By following the recipes, you'll understand how you can use GeoServer to create complex
server-side functions and use them in your client.

Chapter 5, Advanced Configurations, deals with some advanced configuration tasks. You'll
explore database connection optimization, configuring the cache to improve performance,
and Spatial Reference System (SRS) optimization.

Chapter 6, Automating GeoServer Configurations, explores the GeoServer REST interface.
Using the operation published in that interface, you will discover how to create automatic
tasks to update your site's configuration.

Chapter 7, Advanced Visualizations, focuses on some visualization techniques. You will explore
how to add time support in WMS, create animated maps, and export data to Google Earth.

Chapter 8, Monitoring and Tuning, teaches you the use of the control flow and how to
monitor extensions for GeoServer. With the tools provided, you can control how the requests
are filtered and queued to your server. You will learn how to save information about users'
requests and analyze them to build reports.

Appendix, OGC for ESRI Professionals, discusses a brief comparison between GeoServer and
ArcGIS for Server, a map server created by ESRI. The importance of adopting OGC standards
when building a geographical information system is stressed. You will learn how OGC standards
lets you create a system where different pieces of software cooperate with each other.

What you need for this book
You will need a working instance of the following types of software:

 f Tomcat

 f GeoServer

 f PostGIS

The recipes work both with Linux and Windows operating systems, so you may select the one
you prefer.

Preface

3

All the software used in this book is freely available, mostly as open source projects.
Hardware requirements for development purposes are not very high. A relatively modern
laptop or desktop will be enough to run the examples. Source code and data used in this
book are freely available on the Packt Publishing site.

Who this book is for
If you are a developer or an analyst familiar with GIS, WMS, WFS, and spatial data, and you
wish to get the most out of GeoServer, then this book is for you.

You can use it as a desktop quick reference guide to solve the common issues you find in your
day-to-day job.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it…, How it works…, There's more…, and See also).

To give you clear instructions on how to complete a recipe, we use these sections:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any type of
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

4

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Save the file
in a folder published on your server, such as TOMCAT_HOME/webapps/ROOT, and point your
browser to it."

A block of code is set as follows:

<layer>
 <defaultStyle>
 <name>simple_roads</name>
 </defaultStyle>
 <enabled>true</enabled>
</layer>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<layer>
 <defaultStyle>
 <name>simple_roads</name>
 </defaultStyle>
 <enabled>true</enabled>
</layer>

Any command-line input or output is written as follows:

$ curl -u admin:geoserver -XDELETE -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/workspaces/MyOrganization

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Move to the bottom of the
screen and select the Guess Geometry type and srid checkbox and click on Refresh."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/9615OS_coloredimages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata is
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

6

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1
Working with Vectors

In this chapter, we will cover the following recipes:

 f Using different WFS versions in OpenLayers

 f Using WFS nonspatial filters

 f Using WFS spatial filters

 f Using WFS vendor parameters

 f Filtering data with CQL

 f Filtering data with CQL spatial operators

 f Creating a SQL view

 f Creating a parametric view

 f Improving performance with pregeneralized features

Introduction
Vector data is probably the main source of spatial information that is used inside GeoServer
to build maps. You may use the data both to render maps on the server side, that is, using
the Web Map Service (WMS) standard, or have the client get the shapes and manipulate or
render them in a map, that is, using the Web Feature Service (WFS) standard.

In this chapter, we will use both these standards, and we will focus on how to filter data and
optimize configuration for better performance. We assume that you're already comfortable
with the standard WMS and WFS requests and you know how to configure a data store and
a layer with the GeoServer web interface.

Working with Vectors

8

The recipes in this chapter use a few datasets. Configuring and publishing them is quite easy,
so we are not covering these steps in detail. We will use publicly available data from NASA
Earth Observatory (http://neo.sci.gsfc.nasa.gov) and Natural Earth (http://www.
naturalearthdata.com). Configuration and publication of datasets is straightforward, and
hence not covered in detail.

You should download the Blue Marble dataset from NASA Earth Observatory. In the home page,
you can find it by navigating to the LAND section. Use the GeoTiff format with 0.1 degrees
resolution to match the exercises provided in this book. You should publish this dataset as
NaturalEarth:blueMarble for use with exercises that require a map that looks like the
one in this book.

You also need a couple of datasets from Natural Earth: the datasets for countries and
populated places in the 1:10,000,000 scale. Go to http://www.naturalearthdata.
com/downloads/10m-cultural-vectors/ and download the datasets for
countries and populated places in the shapefile format. Publish the countries'
data as NaturalEarth:countries.

We will be using the populated places dataset to create a SQL view. To be able to create it,
you should load the data in a spatial RDBMS. Our choice is PostGIS, as it is a very good option;
it is powerful, easy to deploy, and free.

We won't cover how to install and configure a PostGIS installation. In fact,
PostGIS is not an RDBMS, but a spatial plugin for PostgreSQL. So, you
should first install the latter and then add the former. If this sounds new
and somehow complicated for you, there are a lot of nice guides on the
Internet that you can use for a quick start.
The procedure to install on Linux can be found at:
http://trac.osgeo.org/postgis/wiki/UsersWikiInstall

For Windows, a good choice is downloading the binary packaged by
Enterprise DB:
http://www.enterprisedb.com/products-services-
training/pgdownload#windows

Using different WFS versions in OpenLayers
You are probably comfortable with WMS and including WMS layers in a web application. When
you need more control over your data, it's time to switch to WFS.

Unlike WMS, a WFS request brings you the actual raw data in the form of features. By working
with the features directly, you are no more dealing with a static rendering of features, that is, a
map; you can take fine control of the shapes by setting drawing rules on the client side.

Chapter 1

9

WFS comes in several different flavors or, more precisely, in different protocol versions.
GeoServer supports 1.0.0, 1.1.0, and 2.0.0. Each version differs in the formats supported
and the query capabilities supported. For example, WFS 2.0.0 supports the use of temporal
queries and joins.

If you are curious about the details of WFS and GML, check out the
reference documents for WFS and GML in the OGC repository at
http://www.opengeospatial.org/standards/is. Here,
look for the following files:

 f OpenGIS® Geography Markup Language Encoding
Standard (GML)

 f OpenGIS® Web Feature Service (WFS)
Implementation Specification

The following screenshot shows the map you're aiming for:

We will build the code step by step. For your reference, check out the
code bundle provided with the book and have a look at the ch01_
wfsVersion.html and ch01_wfsVersion101.html files.

Working with Vectors

10

How to do it…
1. Create an HTML file and insert the following code snippet:

<html>
 <head>
 <title>Dealing with WFS version</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <body onload="init()">
 <div id="myMap"></div>
 </body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

2. Create a style for the map, defining the size and aspect:
 <style type="text/css">
 #myMap {
 clear: both;
 position: relative;
 width: 750px;
 height: 450px;
 border: 1px solid black;
 }
 </style>

3. Insert a reference to the OpenLayers library:
 <script type="text/javascript"
 src="http://openlayers.org/api/2.13.1/OpenLayers.js"
 ></script>

4. Now start coding in JavaScript and add new map objects:
 <script type="text/javascript">
 function init() {
 map = new OpenLayers.Map({
 div: "myMap",
 //We don't want any layers as base map
 allOverlays: true,

Chapter 1

11

5. Add the Blue Marble layer, which is a standard WMS layer:
 layers: [
 new OpenLayers.Layer.WMS("Blue Marble",
 "http://localhost/geoserver/wms",
 {layers: "NaturalEarth:blueMarble", format:
 "image/png", transparent: false}
),

6. Now, add a vector layer using the WFS protocol:
 new OpenLayers.Layer.Vector("countries", {
 strategies: [new OpenLayers.Strategy.BBOX()],
 protocol: new OpenLayers.Protocol.WFS({
 url: "http://localhost/geoserver/wfs",
 featureType: "countries",
 featureNS:
 "http://www.naturalearthdata.com/",
 // Mind the geometry column name
 geometryName: "geom"
 }),

7. Insert a style to render the vector features:
 styleMap: new OpenLayers.StyleMap({
 strokeWidth: 3,
 strokeColor: "#FF0000",
 strokeWidth: 1,
 fillColor: "#ee9900",
 fillOpacity: 0.3
 }),
 })
],

8. Zoom in to the map and center it on Europe:
 center: [12.48, 42.60],
 zoom: 4
 });
 map.addControl(new
 OpenLayers.Control.LayerSwitcher());
 }
 </script>
 </head>

9. Save the file in a folder published on your server, such as TOMCAT_HOME/webapps/
ROOT, and point your browser to it. You should get a map that looks like the one
shown in the introduction to this recipe.

Working with Vectors

12

10. Now, switch the request to another version. We will use v1.1.0 and the JSON format:
 new OpenLayers.Layer.Vector("countries", {
 strategies: [new OpenLayers.Strategy.BBOX()],
 protocol: new
 OpenLayers.Protocol.WFS.v1_1_0({
 url: "http://localhost:8080/geoserver/wfs",
 featureType: "countries",
 featureNS:
 "http://www.naturalearthdata.com/",
 geometryName: "geom",
 outputFormat: "JSON",
 }),

11. Reload your document inside the browser and check that your map looks the same.

How it works…
We are using a JavaScript application to perform a WFS query on GeoServer. This is a
common use case in the era of web mapping, besides using the OpenLayers framework
to assist you in building a complicated request.

The HTML and CSS part of the script is quite easy. As you must have noticed, the core of this
little program is the init() function, which is called at page loading.

We first create a map object and set the allOverlays variable to true. The default value
of false makes it mandatory for a layer to be basemap; in this recipe, we don't want to have
basemap, which is a layer that is always turned on in the map:

 allOverlays: true,

Then, we start to add data on the map. First, we use the raster data from the NASA Blue
Marble dataset. We use the OpenLayers.Layer.WMS class; you just need to set a name
and URL for the WMS service. The format and transparent parameters are optional,
but they let you control the file produced by GeoServer. The code is as follows:

 layers: [
 new OpenLayers.Layer.WMS("Blue Marble",
 "http://localhost/geoserver/wms",
 {layers: "NaturalEarth:blueMarble", format:
 "image/png", transparent: false}
),

While we are using a raster dataset in this request, you can,
of course, use vector data in the WMS request

Chapter 1

13

Then we create a new layer using the OpenLayers.Layer.Vector class, and this layer can
use a different source data format:

 new OpenLayers.Layer.Vector("countries", {

We add a strategy, BBOX, to let OpenLayers query the server for data intersecting the current
map extent:

 strategies: [new OpenLayers.Strategy.BBOX()],

With the protocol parameter, we set the data format. Of course, we use WFS, and this class
defaults to the 1.0.0 version of the standard:

 protocol: new OpenLayers.Protocol.WFS({

We need to set some mandatory parameters when invoking the constructor for the WFS class.
The geometryName parameter is optional, but it defaults to the_geom value. So, you need to
set it to the actual name of the geometry column in your data. The code is as follows:

 url: "http://localhost/geoserver/wfs",
 featureType: "countries",
 featureNS: "http://www.naturalearthdata.com/",
 geometryName: "geom"

WFS returns raw data, not an image map like WMS. So, you need to draw each feature
yourself; you have to set some rules for feature drawing. Inside the StyleMap class, you set
the color, line width, and other rendering parameters that will be used to represent features in
the map, as shown in the following code:

 styleMap: new OpenLayers.StyleMap({
 strokeWidth: 3,
 strokeColor: "#FF0000",
 strokeWidth: 1,
 fillColor: "#ee9900",
 fillOpacity: 0.3

What happens when you load this app in your browser? You can use a browser extension to
check the actual request sent to GeoServer.

Firebug is a powerful extension for FireFox, and with Chrome,
you can use the developer console.

Working with Vectors

14

Using FireFox with Firebug, you should see a few requests upon loading the ch01_
wfsVersion.html file. OpenLayers executes the POST WFS request with our parameters;
you can see that the version is 1.0.0, the operation is GetFeature, and there is a bounding
box filter defined in GML 2:

Now, try to load the ch01_wfsVersion110.html file; the request is a little bit different.
Of course, now the version is 1.1.0, but the filter looks different as well:

<ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:BBOX>
 <ogc:PropertyName>geom</ogc:PropertyName>
 <gml:Envelope xmlns:gml="http://www.opengis.net/gml"
 srsName="EPSG:4326">
 <gml:lowerCorner>-53.43796875 3.04921875</gml:lowerCorner>
 <gml:upperCorner>78.39796875 82.15078125</gml:upperCorner>
 </gml:Envelope>
 </ogc:BBOX>
</ogc:Filter>

You need to be aware that WFS 1.1.0 uses GML 3, which uses a different representation of
geometry. In this case, OpenLayers hides the complexity of creating the correct geometry filter.

There's more…
You probably noted when downloading the Blue Marble dataset that the GeoTIFF file is quite a
big file. To render this file, GeoServer must navigate the file contents and read blocks of pixels
off the disk. To optimize data storage and enhance rendering speed, you can use GDAL tools
to restructure the contents of the file for faster access.

Chapter 1

15

If you have GDAL tools at your fingertips, you can check the metadata of the file:

:$ gdalinfo BlueMarbleNG-TB_2004-12-01_rgb_3600x1800.TIFF

…

Metadata:

 AREA_OR_POINT=Area

 TIFFTAG_RESOLUTIONUNIT=1 (unitless)

 TIFFTAG_XRESOLUTION=1

 TIFFTAG_YRESOLUTION=1

Image Structure Metadata:

 INTERLEAVE=PIXEL

…

Now, let's transform the file using a compression method to reduce the file size and tile the
dataset for faster access:

:$ gdal_translate -of GTiff -co COMPRESS=DEFLATE -co TILED=YES
 BlueMarbleNG-TB_2004-12-01_rgb_3600x1800.TIFF blueMarble.tiff

Tiling organizes the file contents on disk into tiles, ideally locating blocks of pixels next to each
other on disk. This optimization helps in performance when GeoServer is zoomed in to a small
area of interest.

Then, we will add an overview to further hasten the data extraction:

:$ gdaladdo -r cubic -ro blueMarble.tiff 2 4 8 16 32 64

An overview creates a small summary image, which can be used by GeoServer when zoomed
out. By drawing using the overview, GeoServer can read fewer pixels off disk and avoid having
to sample through the entire file.

By executing the gdalinfo tool again, you can check that these have actually been
applied successfully:

…

Metadata:

 AREA_OR_POINT=Area

 TIFFTAG_RESOLUTIONUNIT=1 (unitless)

 TIFFTAG_XRESOLUTION=1

 TIFFTAG_YRESOLUTION=1

Image Structure Metadata:

 COMPRESSION=DEFLATE

 INTERLEAVE=PIXEL

Working with Vectors

16

…

Band 1 Block=256x256 Type=Byte, ColorInterp=Red

 Overviews: 1800x900, 900x450, 450x225, 225x113, 113x57, 57x29

Band 2 Block=256x256 Type=Byte, ColorInterp=Green

 Overviews: 1800x900, 900x450, 450x225, 225x113, 113x57, 57x29

Band 3 Block=256x256 Type=Byte, ColorInterp=Blue

 Overviews: 1800x900, 900x450, 450x225, 225x113, 113x57, 57x29

Using WFS nonspatial filters
In the previous recipe, we just specified a layer to get features from. The OpenLayers strategy,
BBOX, created a spatial filter to get only features intersecting the map extent. For common use,
you may want to create filters yourself in order to extract specific sets of features from GeoServer.

In this recipe, we will build a map with four layers, each one containing countries according to
their mean income. The data source for each layer is the countries' feature type, and we will
apply different filters on them.

The resulting map looks like this:

Chapter 1

17

You can find the full source code for this recipe in the
ch01_wfsFilter.html file.

How to do it…
1. Use the ch01_wfsVersion.html file of the previous recipe; rename it as

wfsFilter.html in the same folder. Then, edit the JavaScript part as shown
in the following code:
<script type="text/javascript">
 function init() {
 map = new OpenLayers.Map({
 div: "myMap",
 allOverlays: true,

2. Remove the Blue Marble layer; we will have only WFS layers here:
 layers: [
 new OpenLayers.Layer.Vector("Low income Countries",
 {
 strategies: [new OpenLayers.Strategy.BBOX()],
 protocol: new OpenLayers.Protocol.WFS({
 url: "http://localhost/geoserver/wfs",
 featureType: "countries",
 featureNS: "http://www.naturalearthdata.com/",
 geometryName: "geom"
 }),

3. Change the style for the first request; the features will be drawn with a pale brown fill
and a dark outline:
 styleMap: new OpenLayers.StyleMap({
 strokeWidth: 3,
 strokeColor: "#000000",
 strokeWidth: 1,
 fillColor: "#ffffcc",
 fillOpacity: 1
 }),

4. Now, add a filter to only have low income countries in this layer:
 filter: new OpenLayers.Filter.Logical({
 type: OpenLayers.Filter.Logical.AND,
 filters: [
 new OpenLayers.Filter.Comparison({
 type:
 OpenLayers.Filter.Comparison.EQUAL_TO,

Working with Vectors

18

 property: "income_grp",
 value: "5. Low income"
 }),
]
 })
 }),

5. We will repeat the previous steps for three other layers. Name the first as Lower
middle income Countries:
 new OpenLayers.Layer.Vector("Lower middle income
 Countries", {

6. The source of the layer is obviously the same; change the style with a fill as shown in
the following line of code:
 fillColor: "#c2e699",

7. Then, change the filter to extract countries with a proper value:
 new OpenLayers.Filter.Comparison({
 type:
 OpenLayers.Filter.Comparison.EQUAL_TO,
 property: "income_grp",
 value: "4. Lower middle income"
 }),

8. Now, add a new layer for the upper-middle income countries; the only modified line of
code is shown here:
 new OpenLayers.Layer.Vector("Upper middle income
 Countries", {
…
 fillColor: "#78c679",
…
 new OpenLayers.Filter.Comparison({
 type:
 OpenLayers.Filter.Comparison.EQUAL_TO,
 property: "income_grp",
 value: "3. Upper middle income"
 }),

9. Eventually, add a last layer for high income countries:
 new OpenLayers.Layer.Vector("High income
 Countries", {
…
 fillColor: "#238443",

Chapter 1

19

10. The Filter is a bit more complex as we have two different values for high
income countries:
 filter: new OpenLayers.Filter.Logical({
 type: OpenLayers.Filter.Logical.OR,
 filters: [
 new OpenLayers.Filter.Comparison({
 type:
 OpenLayers.Filter.Comparison.EQUAL_TO,
 property: "income_grp",
 value: " 1. High income: OECD"
 }),
 new OpenLayers.Filter.Comparison({
 type:
 OpenLayers.Filter.Comparison.EQUAL_TO,
 property: "income_grp",
 value: " 2. High income: nonOECD"
 })
]
 })

11. Save the file and point your browser to it. You should get a map that looks like the one
shown in the introduction to this recipe.

How it works…
The first part of the script is quite similar to that used in the previous recipe. We create a
Map object and start adding layers to it.

To have the first layer containing only low income countries, we need to set a filter:

filter: new OpenLayers.Filter.Logical({

The filter might contain more criteria, so we need to specify a logical operator to join more
criteria. This is required only with a single-criteria filter, as shown in the following code:

 type: OpenLayers.Filter.Logical.AND,

Then, we set the filter type. In this case, an equality type, that is, only records with the value
we specify, will be selected:

 filters: [
 new OpenLayers.Filter.Comparison({
 type: OpenLayers.Filter.Comparison.EQUAL_TO,

Working with Vectors

20

Eventually, we need to set the attributes on which the filter will be applied and the value to
use for filtering records:

 property: "income_grp",
 value: "5. Low income"
 }),
]
})

To create the other three layers, we clone the same filter by setting a different value.
We create four different layers from the same feature type.

Of course, we need to set a different style for each layer to have a proper distinct representation.

Using WFS spatial filters
Filtering alphanumerical attributes is quite a common task. However, in a GIS application,
you may also want to filter features according to geometric properties.

WFS includes a few spatial relationships that you can use to create a spatial filter. From
a general point of view, you need an input shape, a relationship to be checked, and some
target shapes to be filtered.

In this recipe, we use the DWITHIN spatial relationship to filter countries that are within a
circular buffer.

Chapter 1

21

You can find the full source code for this recipe in the code
bundle available from the Packt site for this book. Look for
the ch01_wfsSpatialFilter.html file.

How to do it…
1. Copy the file used in the first recipe to the wfsSpatialFilter.html file in the

same folder. Then, alter the JavaScript part as shown in the following code:
<script type="text/javascript">
 function init() {
 map = new OpenLayers.Map({
 div: "myMap",
 allOverlays: true,
 layers: [
 new OpenLayers.Layer.Vector("Filtered Countries", {
 strategies: [new OpenLayers.Strategy.Fixed()],
 protocol: new OpenLayers.Protocol.WFS({
 url: "http://localhost/geoserver/wfs",
 featureType: "countries",
 featureNS: "http://www.naturalearthdata.com/",
 geometryName: "geom"
 }),
 styleMap: new OpenLayers.StyleMap({
 strokeWidth: 3,
 strokeColor: "#000000",
 strokeWidth: 1,
 fillColor: "#78c679",
 fillOpacity: 1
 }),

2. Insert a spatial filter, as shown in the following code:
 filter: new OpenLayers.Filter.Logical({
 type: OpenLayers.Filter.Logical.AND,
 filters: [
 new OpenLayers.Filter.Spatial({
 type: OpenLayers.Filter.Spatial.DWITHIN,
 value: new OpenLayers.Geometry.Point(12,
 42),
 distance: 8
 })
]
 })
 })

Working with Vectors

22

],
 center: [12.48, 42.60],
 zoom: 4
 });
 map.addControl(new OpenLayers.Control.LayerSwitcher());
 }
</script>

3. Save the file and point your browser to it. You should get a map that looks like the one
shown in the introduction to this recipe.

How it works…
Not surprisingly, the code contained in the file is not so different from that used in the
previous recipe. Indeed, we are performing the same task, which is filtering data, but
now we want to use a different filter: a spatial filter.

You set a logical filter with an AND logical join:

 filter: new OpenLayers.Filter.Logical({
 type: OpenLayers.Filter.Logical.AND,

Then, you add a Filter.Spatial class. This is the magic of this recipe. The value parameter
lets you choose the spatial relationship; in this case, we use DWITHIN, that is, all features within
a specific distance from the source geometry will be selected:

 filters: [
 new OpenLayers.Filter.Spatial({
 type: OpenLayers.Filter.Spatial.DWITHIN,

The source geometry is a point feature created with an OpenLayers class and specifies the
latitude and longitude values:

 value: new OpenLayers.Geometry.Point(12, 42),

Then, you have to set a distance. Please note that you can also set zero as a distance value; in
this case, if you have a polygon geometry, only the feature that is contained in the polygon will
be selected:

 distance: 8
 })
]
 })

Chapter 1

23

GeoServer lets you use a few spatial filters: Disjoint, Equals,
DWithin, Beyond, Intersect, Touches, Crosses, Within,
Contains, Overlaps, and BBOX. For more details about them, point
to http://www.opengeospatial.org/standards/filter.

Using WFS vendor parameters
The previous recipes used standard WFS requests. GeoServer also supports a few optional
parameters that you can include in your requests. In this recipe, we will see how to ask
GeoServer, which is reprojecting the data from the native SRS to another SRS, to use a
vendor parameter.

Reprojection of data is a part of WFS 1.1.0 and 2.0.0, and GeoServer has provided support
since 1.0.0 so that you can use it with any WFS version. The following screenshot is what
we're targeting in this recipe:

You can find the full source code for this recipe in the code
bundle available from the Packt site for this book; look for
the ch01_wfsReprojection.html file.

Working with Vectors

24

How to do it…
1. Copy the file used in the first recipe to the wfsReprojection.html file in the same

folder. Insert a new parameter for the Map object:
 projection: "EPSG:3857",

2. Then, alter the JavaScript part when creating the WFS layer:
 new OpenLayers.Layer.Vector("countries", {
 strategies: [new OpenLayers.Strategy.BBOX()],
 protocol: new OpenLayers.Protocol.WFS({
 url: "http://localhost/geoserver/wfs",
 featureType: "countries",
 featureNS: "http://www.naturalearthdata.com/",
 geometryName: "geom",

3. Add a parameter to request data reprojection:
 srsName: new OpenLayers.Projection("EPSG:3857"),
 srsNameInQuery: true
 }),

4. Save the file and point your browser to it. You should get a map that looks like the one
shown in the introduction to this recipe.

How it works…
Using a vendor parameter is really straightforward; you just add it to your request. In our
recipe, we want to use the countries' data that is stored in the EPSG:4326 projection,
which is the geographical coordinates, and in EPSG:3857, which is the planar coordinates.
First of all, we set the spatial reference system for the map:

 map = new OpenLayers.Map({
 div: "myMap",
 allOverlays: true,
 projection: "EPSG:3857",

Then, we create the WFS request for data by inserting the srsName parameter and
assigning it the same projected coordinate system used for the map. The Boolean parameter
srsNameInQuery is really important, as it defaults to false. If you don't set it, OpenLayers will
not ask for reprojection when using WFS 1.0.0:

 srsName: new OpenLayers.Projection("EPSG:3857"),
 srsNameInQuery: true

Chapter 1

25

Let's see what happens when you load the page in your browser and the OpenLayers
framework creates the WFS request. Use Firebug to capture the XML code sent to GeoServer
with the GetFeature request. The Query element contains the srsName parameter that
forces GeoServer to project data:

<wfs:Query typeName="feature:countries_1" srsName="EPSG:3857"
 xmlns:feature="http://www.naturalearthdata.com/">
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:BBOX>
 <ogc:PropertyName>geom</ogc:PropertyName>
 <gml:Box xmlns:gml="http://www.opengis.net/gml"
 srsName="EPSG:3857">
 <gml:coordinates decimal="." cs="," ts=" ">-
 13325909.428711,-3545545.6572266
 16025909.428711,14065545.657227</gml:coordinates>
 </gml:Box>
 </ogc:BBOX>
 </ogc:Filter>
</wfs:Query>

Filtering data with CQL
Another vendor parameter is cql_filter. It allows users to add filters to requests using
Extended Common Query Language (ECQL).

In the previous recipes, you created filters using the OGC filter XML standard. ECQL lets
you create filters in an easier text format and in a much more compact way. A CQL filter
is a list of phrases similar to the where clauses in SQL, each separated by the combiner
words AND or OR.

CQL was originally used for catalog systems. GeoServer uses an extension
for CQL, allowing the full representation of OGC filters in the text form.
This extension is called ECQL.
ECQL lets you use several operators and functions. For more information,
you can read the documents available at the following URLs:

 f http://docs.geoserver.org/stable/en/user/
filter/ecql_reference.html#filter-ecql-
reference

 f http://docs.codehaus.org/display/GEOTOOLS/
ECQL+Parser+Design

Working with Vectors

26

In this recipe, we will create a map with a filter on income_grp, which is very similar to the
previous one. Your result should look like the following screenshot:

You can find the full source code for this recipe in the
ch01_wmsCQLFilter.html file.

How to do it…
1. Copy the file used in the first recipe to a new file and name it wfsCQLFilter.html

in the same folder. Insert a new sld variable and populate it as shown in the
following lines:
 <script type="text/javascript"
 src="http://openlayers.org/api/2.13.1/OpenLayers.js">
 </script>
 <script type="text/javascript">
 function init() {
 var sld = '<StyledLayerDescriptor version="1.0.0">';
 sld+= '<NamedLayer>';
 sld+= '<Name>NaturalEarth:countries</Name>';
 sld+= '<UserStyle>';
 sld+= '<IsDefault>1</IsDefault>';
 sld+= '<FeatureTypeStyle>';

Chapter 1

27

 sld+= '<Rule>';
 sld+= '<PolygonSymbolizer>';
 sld+= '<Stroke>';
 sld+= '<CssParameter
 name="stroke">#000000</CssParameter>';
 sld+= '<CssParameter name="stroke-
 width">1</CssParameter>';
 sld+= '</Stroke>';
 sld+= '<Fill>';
 sld+= '<CssParameter name="fill">#FFFFCC</CssParameter>';
 sld+= '<CssParameter name="fill-
 opacity">0.65</CssParameter>';
 sld+= '</Fill>';
 sld+= '</PolygonSymbolizer>';
 sld+= '</Rule>';
 sld+= '</FeatureTypeStyle>';
 sld+= '</UserStyle>';
 sld+= '</NamedLayer>';
 sld+= '</StyledLayerDescriptor>';

2. After the Blue Marble layer, add a new WMS layer:
 new OpenLayers.Layer.WMS("countries",
 "http://localhost/geoserver/wms",{
 layers: "NaturalEarth:countries",
 format: "image/png",
 transparent: true,
 CQL_FILTER: "income_grp = '1. High income: OECD'
 OR income_grp ='2. High income: nonOECD'",
 sld_body: sld
 })

3. Save the file and point your browser to it. You should get a map that looks like the one
shown in the introduction to this recipe.

How it works…
As with the vendor parameter for reprojection, the use of CQL filters is really easy. You can add
one when you create the Layer object and insert the textual representation of the filter, that
is, a string. In this filter, we want to select high income countries; two different values match
the condition, so we use the logical operator OR to join them:

CQL_FILTER: "income_grp = '1. High income: OECD' OR income_grp
 ='2. High income: nonOECD'",

Working with Vectors

28

Then, we add an sld_body parameter and assign the content of the variable sld to it.
This is not a filter requirement; we just want to override the default style for the countries'
layers, so we use the WMS option to send a Styled Layer Descriptor (SLD) description of
drawing rules to GeoServer:

sld_body: sld

Of course, we need to create an actual SLD document and insert it into the sld variable
before creating the countries layer. We do this by adding a well-formed XML code line by line
to the sld variable. You will note that we're creating exactly the same symbology used in the
Using WFS spatial filters recipe:

var sld = '<StyledLayerDescriptor version="1.0.0">';
…
sld+= '<PolygonSymbolizer>';
sld+= '<Stroke>';
sld+= '<CssParameter name="stroke">#000000</CssParameter>';
sld+= '<CssParameter name="stroke-width">1</CssParameter>';
sld+= '</Stroke>';
sld+= '<Fill>';
sld+= '<CssParameter name="fill">#FFFFCC</CssParameter>';
sld+= '<CssParameter name="fill-opacity">0.65</CssParameter>';
sld+= '</Fill>';
sld+= '</PolygonSymbolizer>';
…

This is just a small peek at SLD. If you are curious about the standard, you can find the
official papers for SLD at http://portal.opengeospatial.org/files/?artifact_
id=22364 and the XSD schemas at http://schemas.opengis.net/sld/.

Filtering data with CQL spatial operators
ECQL does not only let you create readable and powerful filters on feature attributes;
obviously, it also lets you filter out geometric properties.

There are a few spatial operators that you can use in a CQL filter: EQUALS, DISJOINT,
INTERSECTS, TOUCHES, CROSSES, WITHIN, CONTAINS, OVERLAPS, RELATE, DWITHIN,
and BEYOND. With all these operators at your fingertips, you can really build complex filters.

Chapter 1

29

In this recipe, we will use the BEYOND operator that is the inverse of DWITHIN, which we used in
the recipe Using WFS spatial filters. With the filter, we will select the populated places located at
least 1,000 km away from Rome, Italy. The result is shown in the following screenshot:

You can find the full source code for this recipe in the
ch01_wmsCQLSpatialFilter.html file.

How to do it…
1. Create a projected table with populated places in PostGIS:

gisdata=> CREATE TABLE populatedplaceswm AS SELECT name,
 ST_Transform(geom,3857) AS geom FROM populatedplaces;

gisdata=> CREATE INDEX populatedplaceswm_0_geom_gist ON
 populatedplaceswm USING gist(geom);

Working with Vectors

30

2. Have a look at the latitude and longitude values for Rome using the following lines
of code:
gisdata=> select ST_AsText(geom) from populatedplaces where
 name = 'Rome';

 POINT(12.481312562874 41.8979014850989)

3. Copy wmsCQLFilter.html to wmsCQLSpatialFilter.html and edit the
JavaScript code. Change sld to PointSymbolizer with a red fill for points
outside the buffer:
sld+= '<PointSymbolizer>';
sld+= '<Graphic>';
sld+= '<Mark>';
sld+= '<WellKnownName>circle</WellKnownName>';
sld+= '<Fill>';
sld+= '<CssParameter name="fill">#FF0000</CssParameter>';
sld+= '</Fill>';
sld+= '</Mark>';
sld+= '<Size>3</Size>';
sld+= '</Graphic>';
sld+= '</PointSymbolizer>';

4. Add an sld2 variable that holds drawing rules for points contained in the buffer area.
You can reuse the code for the sld variable, changing the fill color to green:
sld2+= '<PointSymbolizer>';
sld2+= '<Graphic>';
sld2+= '<Mark>';
sld2+= '<WellKnownName>circle</WellKnownName>';
sld2+= '<Fill>';
sld2+= '<CssParameter name="fill">#00FF00</CssParameter>';
sld2+= '</Fill>';
sld2+= '</Mark>';
sld2+= '<Size>3</Size>';
sld2+= '</Graphic>';
sld2+= '</PointSymbolizer>';

5. Set the SRS for the map to EPSG:3857:
map = new OpenLayers.Map({
 div: "myMap",
 allOverlays: true,
 projection: "EPSG:3857",
 maxExtent: new OpenLayers.Bounds(-20037508, -20037508,
 20037508, 20037508.34),
 maxResolution: 156543.0339,
 units: 'm',

Chapter 1

31

6. Add a layer with a cql filter for points located outside a 1,000-kilometre circular
buffer from Rome:
new OpenLayers.Layer.WMS("Far away places",
 "http://localhost/geoserver/wms",{
 layers: "NaturalEarth:populatedplaceswm",
 format: "image/png",
 transparent: true,
 cql_filter: "BEYOND(geom,POINT(1389413
 5145697),1000000,meters)",
 sld_body: sld,

7. Add a layer with a cql filter for points located inside a 1,000-kilometre circular buffer
from Rome:
new OpenLayers.Layer.WMS("Near places",
 "http://localhost/geoserver/wms",{
 layers: "NaturalEarth:populatedplaceswm",
 format: "image/png",
 transparent: true,
 cql_filter: "DWITHIN(geom,POINT(1389413
 5145697),1000000,meters)",
 sld_body: sld2,

8. Save the file and point your browser to it. Your map will show a set of green points
around Rome. As shown in the previous image, Rome is surrounded by red points.

How it works…
Using spatial operators in cql_filter is not really different than filtering other attributes.
We used a map in a planar coordinate, in this case, the Web Mercator projection, because
of an issue within GeoServer. Although you can define units that will be used to calculate
distance in the BEYOND and DWITHIN operators, the interpretation depends on the data
store (see http://jira.codehaus.org/browse/GEOS-937 for a detailed discussion).
In PostGIS, the distance is evaluated according to the default units for the native spatial
reference system of the data.

A spatial reference system (SRS) is a coordinate-based local,
regional, or global system used to locate geographical entities.
SRS defines a specific map projection as well as transformations
between different SRS.

Working with Vectors

32

We need to create a new table with points projected in a planar coordinate. Then, we create
an OpenLayers map object and set it to EPSG:3857. When using a projected SRS, we also
need to set the map extent, resolution, and units:

projection: "EPSG:3857",
maxExtent: new OpenLayers.Bounds(-20037508, -20037508, 20037508,
 20037508.34),
maxResolution: 156543.0339,
units: 'm',

We then add two layers pointing to the same feature type, populatedplaceswm, and using
two different spatial filters. The first one uses the BEYOND operator, passing it the coordinates
of Rome expressed in meters, a 1000-kilometer distance, and the units:

cql_filter: "BEYOND(geom,POINT(1389413 5145697),1000000,meters)",

Although the units are not evaluated when filtering features, the
parameter is mandatory. Hence, you have to insert it, but you
need to be aware of the native SRS of the data and calculate a
proper value for the distance

To override the default rendering of features, we set sld_body for the request to the SLD
created in the JavaScript code:

sld_body: sld,

To represent features inside the buffer, we create a similar layer, filtering features with the
DWITHIN operator. The syntax is pretty similar to BEYOND; please ensure that you set the
same point and distance to build the buffer area:

cql_filter: "DWITHIN(geom,POINT(1389413 5145697),1000000,meters)",

Then, we set a different sld_body value to represent features with a different symbol:

sld_body: sld2,

Creating a SQL view
You probably know how to create a SQL view. Using views lets you represent data in different
ways, extracting and transforming the data and avoiding data duplication.

With RDBMS, you can store views inside the database. In this case, a view is just a feature
type for GeoServer, just like for a table.

You can also use a different approach with GeoServer, storing the SQL code inside your
GeoServer configuration. This way, SQL views allow the execution of a custom SQL query on
each request to the layer. This avoids the need to create a database view for complex queries.

Chapter 1

33

We use PostGIS in this book. While it is one of the most powerful spatial
databases available, not to mention that it is free to use, you may need
to use other databases. GeoServer also supports Oracle, SQL Server,
and MySQL with extension modules. You can use the recipes in this book
with any of them; you only need to be careful with the SQL code. Code
inserted in this book uses the ST_* functions that may have different
syntax or be unavailable in other databases than PostGIS.

How to do it…
1. We will build a view that contains only European countries. Open your GeoServer web

interface and switch to Layers:

2. Select Add a new resource, and from the dropdown list, select the data store pointing
to your RDBMS, PostGIS in our case. Instead of selecting a table from the list, select
the Configure new SQL view… link:

3. In the form, insert EuropeanCountries as View Name and the following code as
the SQL statement:
SELECT
 ADMIN,
 ST_UNION(COUNTRIES_EXP.GEOM) AS GEOM
FROM
 (SELECT
 ADMIN,
 (ST_DUMP(GEOM)).geom as geom
 FROM
 COUNTRIES
 WHERE
 REGION_UN = 'Europe') COUNTRIES_EXP

Working with Vectors

34

WHERE
 ST_Intersects(COUNTRIES_EXP.GEOM,
 ST_GeomFromText('POLYGON((-11 37.40, -11 73.83, 27.28
 73.83, 27.28 37.40, -11 37.40))',4326)) = TRUE
GROUP BY ADMIN

4. Move to the bottom of the screen and select the Guess Geometry type and srid
checkbox and click on Refresh. The 4326 EPSG code is properly detected, but you have
to manually select MultiPolygon to avoid detecting the value of the polygon instead:

5. Click on Save, and you will be brought to the publish layer form. Click on the button
to calculate the native data extent and click on Publish. Move to Layer Preview and
select the EuropeanCountries layer; your map should look like this one:

Chapter 1

35

How it works…
Creating a SQL view in GeoServer is not different from creating one in an RDBMS. You just
have to build proper SQL code to filter and transform the feature.

It is not mandatory that source tables for your view are already published in GeoServer. You
only need to have a data store properly configured to an RDBMS; you can't use a SQL view
against a shapefile or other file-based stores.

As you can see in the SQL code for this recipe, you can use any combination of the standard
SQL and vendor extension. GeoServer does not evaluate the code, but it demands parsing
and evaluation to the RDBMS.

You can use the aggregation and transformation function as we did. You need to return
at least a proper geometrical field so that GeoServer can evaluate it and use it to configure
a layer.

There's more…
The view created from GeoServer is not stored inside your RDBMS. This may sound odd if
you're used to creating views in a database. Indeed, GeoServer views are a sort of virtual
table. You can check this inside the data directory. Look for the workspace and find the
featuretype definition, which is in the featuretype.xml file. You will find that your
SQL query is just stored inside it:

 <metadata>
 <entry key="JDBC_VIRTUAL_TABLE">
 <virtualTable>
 <name>EuropeanCountries</name>
 <sql>SELECT 
 ADMIN,
 ST_UNION(COUNTRIES_EXP.GEOM) AS GEOM
FROM 
 (SELECT 
 ADMIN, 
 (ST_DUMP(GEOM)).geom as geom
 FROM 
 COUNTRIES 
 WHERE 
 REGION_UN = 'Europe') COUNTRIES_EXP 
WHERE 
 ST_Intersects(COUNTRIES_EXP.GEOM,
 ST_GeomFromText('POLYGON((-11 37.40, -11 73.83, 27.28
 73.83, 27.28 37.40, -11 37.40))',4326)) = TRUE 
GROUP BY ADMIN</sql>

Working with Vectors

36

 <escapeSql>false</escapeSql>
 <geometry>
 <name>geom</name>
 <type>MultiPolygon</type>
 <srid>4326</srid>
 </geometry>
 </virtualTable>
 </entry>
 </metadata>

Creating a parametric view
A parametric SQL view is based on a SQL query containing the named parameters with values
provided dynamically in WMS and WFS requests.

How to do it…
1. We will now create a new view by extending the code of the previous step. What if you

want to have a dynamic view that works for each continent? You need to start the
same way as we did previously: select Add a new resource from the Layer menu.

2. Select the data store pointing to PostGIS or your preferred RDBMS. Instead of
selecting a table from the list, select the Configure new SQL view… link:

3. In the form, insert ContinentView as View Name and the following code as the
SQL statement:
SELECT
 ADMIN,
 GEOM
FROM
 COUNTRIES
WHERE
 CONTINENT = '%continent%'

4. Go to the SQL view parameters section and click on the Guess parameters from SQL
link. Insert Africa as the default value.

Chapter 1

37

5. At the bottom of the page, select the Guess Geometry type and srid checkbox and
click on Refresh. The 4326 EPSG code is properly detected, but you have to manually
select MultiPolygon instead of the detect value of Polygon.

6. Click on Save, and you'll be taken to the publish the layer form. Click on the button to
calculate the native data extent, and then click on Publish. Move to Layer Preview
and select the ContinentView layer. Your map now looks like this one:

Working with Vectors

38

7. The preview map shows you the result of filtering with default values. Add
&viewparams=continent:Europe to your request URL and reload the
map. You should now see a different map:

How it works…
A parametric view lets you define one or more filtering parameters at request time. In this
recipe, instead of building five different views (one for each continent), we have a single view,
and the calling app can define which continent is relevant in the request.

Building a parametric view is not different from a standard SQL view. You can start creating
the code without any parameters to check that you have no syntax or logical errors.

Once you are done with the code, you can select which field should become a parameter.
To let GeoServer recognize the parameters, you simply enclose them within % characters,
as shown in the following code:

WHERE CONTINENT = '%continent%'

GeoServer recognizes the parameters and lets you set an optional default value. Please
note that if you don't set a default value, you always need to set a value for parameters
when sending a request to GeoServer.

At run time, you set values for each parameter, adding the viewparams option to your
request. As per the value of the option, you insert a set of params-value couples.

Chapter 1

39

Improving performance with pregeneralized
features

The feature type may contain a lot of coordinates. Also, if it's not a really big data, the simple
vector datasets we use in this recipe contain a large number of vertices:

gisdata=> select sum(ST_NPoints(geom)) from countries;

sum

548604

When you're creating a small-scale map, that is, a continent view, it does not make sense to
have the GeoServer process all this data to output a really simplified rendering of the shapes.
You are just wasting CPU time and degrading the performance of your server.

Having a simplified version of your data for general representation would be more practical,
but you also want to have a detailed version of the data when your map goes to middle or
large scale.

The idea behind the pregeneralized features module is to combine more versions of a feature
type so that users of GeoServer can choose the one that is the best for each scale, while the
user continues to use it as if it was a single feature type.

Pregeneralized features are supported by an extension module.
If you want to use this feature, you need to download the optional
module. Please note that any extension module will follow the
version of GeoServer. Installation is quite easy. Download the
archive from http://geoserver.org/release/stable/
and extract the two JAR files into the WEB-INF/lib directory of
the GeoServer installation.

How to do it…
1. Start creating three generalized versions of countries for use in this recipe.

The following instructions work for PostGIS:
gisdata=> create table countries_0 as select admin, geom from
 countries;

gisdata=> CREATE INDEX countries_0_geom_gist ON countries_0
 USING gist(geom);

gisdata=> create table countries_01 as select admin,
 ST_SimplifyPreserveTopology(geom,0.01) as geom from
 countries;

Working with Vectors

40

gisdata=> CREATE INDEX countries_01_geom_gist ON countries_01
 USING gist(geom);

gisdata=> create table countries_05 as select admin,
 ST_SimplifyPreserveTopology(geom,0.05) as geom from
 countries;

gisdata=>CREATE INDEX countries_05_geom_gist ON countries_05
 USING gist(geom);

gisdata=>create table countries_1 as select admin,
 ST_SimplifyPreserveTopology(geom,0.1) as geom from
 countries;

gisdata=>CREATE INDEX countries_1_geom_gist ON countries_1
 USING gist(geom);

2. Create a new XML file, insert the following code snippet, and save it as
geninfo_postgis.xml:
<?xml version="1.0" encoding="UTF-8"?>

<GeneralizationInfos version="1.0">

 <GeneralizationInfo dataSourceNameSpace="NaturalEarth"
 dataSourceName="PostGISLocal"
 featureName="GeneralizedCountries"
 baseFeatureName="countries_0" geomPropertyName="geom">

 <Generalization dataSourceNameSpace="NaturalEarth"
 dataSourceName="PostGISLocal" distance="1"
 featureName="countries_01" geomPropertyName="geom"/>

 <Generalization dataSourceNameSpace="NaturalEarth"
 dataSourceName="PostGISLocal" distance="5"
 featureName="countries_05" geomPropertyName="geom"/>

 <Generalization dataSourceNameSpace="NaturalEarth"
 dataSourceName="PostGISLocal" distance="10"
 featureName="countries_1" geomPropertyName="geom"/>

 </GeneralizationInfo>

</GeneralizationInfos>

Chapter 1

41

3. Go to the data store section of the GeoServer web interface, click on Add new data
store, and then select Generalizing data store:

4. Input GeneralizedCountries as the name for the data store, and then point to
the location of the geninfo_postgis.xml file. Change the org.geotools string
to org.geoserver in the two textboxes and click on Save:

5. You can now see the feature type you defined in the XML file and click on the Publish
button. You are now done. Switch to the layer's preview to check whether GeoServer
is properly visualizing the data.

How it works…
If you look at the layer preview, you will not see any difference from the countries' layers. You
will observe a faster rendering; this is because GeoServer is indeed extracting geometries
form the simplified table. Let's check what is happening behind the scenes.

Working with Vectors

42

Set the log detail in GeoServer to GEOTOOLS_DEVELOPER_LOGGING, and then open your
GeoServer log with the tail command:

$: tail -f /opt/Tomcat7042/webapps/geoserver/data/logs/geoserver.log

Now open the preview for GeneralizedCountries. After the map is shown, you should see
some rows that state GeoServer first evaluates the geometry distance from the map's
scale. Select the table that is more appropriate to extract the features from:

INFO [org.geotools.data.gen] - Hint geometry distance:
 0.5681250333785898

INFO [org.geotools.data.gen] - Hint geometry distance:
 0.5681250333785898

INFO [org.geotools.data.gen] - Using generalizsation: PostGISLocal
 countries_1 geom 0.1

In the log, the actual query that is performed on the database is present, and you can
check whether it is created on a simplified version of the countries. As you can see, it is
indeed created on a simplified version of the countries. Actually, the version with a higher
generalization degree, which contains the more simplified features, is used:

DEBUG [org.geotools.jdbc] - CREATE CONNECTION

DEBUG [org.geotools.jdbc] - SELECT
 encode(ST_AsBinary(ST_Force_2D("geom")),'base64') as "geom" FROM
 "public"."countries_1" WHERE "geom" && ST_G

eomFromText('POLYGON ((-244.29375672340652 -121.77904978394649, -
 244.29375672340652 115.41315165161649, 244.29377198219652
 115.41315165161649, 244.29377198219652 -121.7

7904978394649, -244.29375672340652 -121.77904978394649))', 4326)

 [org.geotools.jdbc] - CLOSE CONNECTION

From the database, you can check the total number of features in this table:

gisdata=> select sum(ST_NPoints(geom)) from countries_1;

 sum

44085

Now, zoom in to your map and check what GeoServer writes in the log. When your map is
centered on Europe, the map scale triggers GeoServer to use another table. If you inspect
the log, you can indeed observe that now GeoServer is using the table countries_05:

INFO [org.geotools.data.gen] - Using generalizsation: PostGISLocal
 countries_05 geom 0.05

Chapter 1

43

Check the database again; the total number of features is higher. However, you are using a
fraction of them, as only a portion of the Earth is represented on the map, so you get finer
detail without a slow rendering. This is attained using the following lines of code:

gisdata=> select sum(ST_NPoints(geom)) from countries_05;

 sum

 66042

Continue to zoom in until you see in the log that GeoServer is using the original table,
countries_0. You are now using the entire detailed geometries, but in a relatively small area:

DEBUG [org.geotools.jdbc] - SELECT
 encode(ST_AsBinary(ST_Force_2D("geom")),'base64') as "geom" FROM
 "public"."countries_0" WHERE "geom" && ST_G

eomFromText('POLYGON ((6.016917772920612 4.379043245570911,
 6.016917772920612 5.305575282428689, 7.925462806926788
 5.305575282428689, 7.925462806926788 4.37904324557091

1, 6.016917772920612 4.379043245570911))', 4326)

2
Working with Rasters

In this chapter, we will cover the following recipes:

 f Getting coverages in different formats

 f Using WCS vendor parameters

 f Publishing a mosaic

 f Using pyramids

 f Adding GDAL formats

 f Adding a PostGIS raster data source

Introduction
Working with raster data is a fundamental requirement when you are requested to build a
spatial data infrastructure, which is a commonly used term today to define an information
system using spatial data.

You are probably already skilled at using a simple raster format such as Geotiff. Configuring
raster formats on GeoServer and querying the resulting layers with the WMS protocol is a
common and pretty way to use them as base maps in your application.

In this chapter, we will focus on more advanced topics such as using raster in their
native formats, not just as a map, and storing them in different ways. As usual, you are
not requested to have any special prior knowledge, but a sound understanding of the
difference between vector and raster data and how the latter is represented will help
your journey through the recipes.

Working with Rasters

46

Getting coverages in different formats
WMS requests let you add vector and raster data to a map. This is very useful when your main
purpose is data visualization. All the rendering work is on the server side, which means that
it is performed by GeoServer, and your client application just has to properly show the final
output to the users.

This model fails when your users want to manage the data represented on the map, for
instance, to change a style or create derivative data with a processing tool.

In this case, the original data is needed. Web Coverage Service (WCS) is the equivalent
of WFS to deliver original data. It is intended to get a raster dataset, or a subset of it, in its
original form, without any rendering or other processing.

WCS is of OGC standard, currently at Version 2.0.1; GeoServer supports
versions ranging from 1.0.0 to the latest one.
For a detailed reference, you can consult the official documentation at
http://www.opengeospatial.org/standards/wcs.

In this recipe, we will use QGIS as a WMS and WCS client. It is a powerful and open source
tool. You can download it from http://qgis.org/en/site/.

How to do it…
1. Open the QGIS Desktop. From the toolbar, select the Layer menu and then click on

the Add WCS Layer… voice:

Chapter 2

47

2. A connection window is shown. In the upper part, click on the New button to add a
reference to your GeoServer instance:

3. Insert localhost as the connection name and http://localhost:8080/
geoserver/ows?service=WCS&version=2.0.1&request=GetCapabilities
as the URL.

4. Click on OK to save the new connection. In the add layer window, click on the
Connect button, after which a list of the available layers will be shown.

5. Select the sf:dem layer and go with the default values for all the other parameters.
Then, click on Add. The coverage is downloaded and added to your map canvas.

6. Now repeat the procedure to add the same layer using the WMS protocol. From the
toolbar, select the Layer menu and then click on the Add WMS/WMTS Layer… voice.

7. You need to add a connection to the server in a very similar way as you did previously
for WCS. Use the following URL:
http://localhost:8080/geoserver/ows?service=wms&version=1.3.0&requ
est=GetCapabilities

Working with Rasters

48

8. After connecting to the localhost, select the sf:dem layer again. The default CRS
is EPSG:4326. To avoid your client performing a reprojection of data, click on the
Change button and select EPSG:26713:

9. Click on the Add button and your layer will be loaded on the map on top of the
previous layer.

How it works…
In this recipe, you added the same layer twice on the map. What is the purpose and what is
the difference between them?

Also, if the original data is the same, what your client received from GeoServer is quite different
in the two operations. The first hint may come from a look at the table of contents in QGIS:

The layer on top is the result of the WMS request, while the other is a result of the WCS
request. The first difference is in the symbology used to represent them. In a WMS request,
the data is represented with a default style or a style provided within the request. So the data
is transformed and represented as a picture.

WCS has no concept of style. It always delivers the original data, and a symbology is then
applied from the client. In this case, QGIS uses a black to white color ramp stretched to the
minimum/maximum range. If you open the layer properties window, you can see that style is
not modifiable for the WMS layer while you can change it in the WCS layer.

Exporting the layer could help you better understand what you received. In the table of
contents, right-click on the layer loaded with WMS and select the Save As… item.

Chapter 2

49

Set the parameters as shown in the following screenshot and click on the OK button:

Repeat the process to save the layer obtained by the WCS request. Save the export in a file
called WCS.tiff.

The first look at the file size shows a big difference, as the output from the WCS layer is way
bigger than that from the WMS layer:

$ ls -lh

total 1.2M

-rw-r--r-- 1 root root 1.2M Jul 18 12:15 WCS.tiff

-rw-r--r-- 1 root root 22K Jul 18 12:15 WMS.tiff

Looking at the details with the gdalinfo utility shows a huge difference in the size and
value contained:

$ gdalinfo -stats WCS.tiff

Driver: GTiff/GeoTIFF

Files: WCS.tiff

Size is 634, 477

...

Band 1 Block=634x3 Type=Float32, ColorInterp=Gray

 Minimum=1066.000, Maximum=1840.000, Mean=1353.669, StdDev=177.041

 NoData Value=-9.99999993381581251e+36

...

$ gdalinfo -stats WMS.tiff

Driver: GTiff/GeoTIFF

Files: WMS.tiff

Size is 100, 54

...

Working with Rasters

50

Band 1 Block=100x20 Type=Byte, ColorInterp=Red

 Minimum=0.000, Maximum=255.000, Mean=206.119, StdDev=67.776

...

Band 2 Block=100x20 Type=Byte, ColorInterp=Green

 Minimum=0.000, Maximum=255.000, Mean=171.005, StdDev=74.023

...

Band 3 Block=100x20 Type=Byte, ColorInterp=Blue

 Minimum=0.000, Maximum=63.000, Mean=13.006, StdDev=20.915

...

Band 4 Block=100x20 Type=Byte, ColorInterp=Alpha

 Minimum=0.000, Maximum=255.000, Mean=237.669, StdDev=64.179

...

As it is stated in the result, the output from the WCS layer is a single-band raster file with
values ranging from 1,066 to 1,840, which are the elevation values of the area represented
in dem. The output of the WMS file is an image with four bands whose values range from 0 to
255, which are indeed the expected values for an RGB-encoded picture. So if you're going to
use the result of the WCS in QGIS, you might want to be sure that it is equivalent to using the
original data.

A powerful option of WCS is the possibility to have the data in several different formats. If you
connect again to GeoServer, you may see that in the window, QGIS lets you select what format
you want to download the data in.

The nature and number of formats available depends on the server. QGIS merely shows you
what GeoServer returns at its WCS DescribeCoverage request. You can check for yourself
by inserting this URL in your browser:

http://localhost:8080/geoserver/wcs?service=WCS&version=1.0.0&request
=DescribeCoverage&Coverage=sf:sfdem

Chapter 2

51

If your check the XML code, you will find the following supported formats:

<wcs:supportedFormats nativeFormat="GeoTIFF">
 <wcs:formats>ARCGRID</wcs:formats>
 <wcs:formats>GeoTIFF</wcs:formats>
 <wcs:formats>GIF</wcs:formats>
 <wcs:formats>GTOPO30</wcs:formats>
 <wcs:formats>IMAGEMOSAIC</wcs:formats>
 <wcs:formats>JPEG</wcs:formats>
 <wcs:formats>PNG</wcs:formats>
 <wcs:formats>TIFF</wcs:formats>
</wcs:supportedFormats>

You can control which formats are allowed on a per layer base. From the GeoServer web
interface, open the Layer setting and go to the Publishing tab. There is a Formats section
where you can choose which formats will be available for that layer.

Using WCS vendor parameters
As with WFS, WMS, or WPS, vendors have the option of extending WCS capabilities with
custom parameters. This way some extra functions can be delivered to users to help them
manage their coverages.

In the case of WCS, GeoServer offers a basic customization; you can use a vendor parameter
to filter out results according to a namespace.

Working with Rasters

52

How to do it…
1. Create a request for the WCS capabilities with cURL:

$ curl -u admin:geoserver -XGET -H 'Accept: text/xml' -G
 http://localhost:8080/geoserver/wcs \

 -d service=WCS \

 -d version=1.0.0 \

 -d request=GetCapabilities \

 -d namespace=NaturalEarth \

 -o coverages.xml

2. Now open the file that stores the results and check that only the coverages from the
NaturalEarth namespace are listed:
…

<wcs:CoverageSummary>

 <ows:Title>blueMarble</ows:Title>

 <ows:Abstract>Generated from GeoTIFF</ows:Abstract>

 <ows:Keywords>

 <ows:Keyword>WCS</ows:Keyword>

 <ows:Keyword>GeoTIFF</ows:Keyword>

 <ows:Keyword>blueMarble</ows:Keyword>

 </ows:Keywords>

 <ows:WGS84BoundingBox>

 <ows:LowerCorner>-180.0 -90.0</ows:LowerCorner>

 <ows:UpperCorner>180.0 90.0</ows:UpperCorner>

 </ows:WGS84BoundingBox>

 <wcs:Identifier>blueMarble</wcs:Identifier>

</wcs:CoverageSummary>

…

<wcs:CoverageSummary>

 <ows:Title>colourRelief</ows:Title>

 <ows:Abstract>Generated from GeoTIFF</ows:Abstract>

 <ows:Keywords>

 <ows:Keyword>WCS</ows:Keyword>

 <ows:Keyword>GeoTIFF</ows:Keyword>

 <ows:Keyword>colourRelief</ows:Keyword>

 </ows:Keywords>

Chapter 2

53

 <ows:WGS84BoundingBox>

 <ows:LowerCorner>12.06486111111111
 42.033750000000005</ows:LowerCorner>

 <ows:UpperCorner>12.88375
 42.508472222222224</ows:UpperCorner>

 </ows:WGS84BoundingBox>

 <wcs:Identifier>colourRelief</wcs:Identifier>

</wcs:CoverageSummary>

…

How it works…
Unsurprisingly, the option is very easy to use. When adding the namespace parameter to
the request, the coverages list is filtered. Using this option, you can split your data into logical
groups. Be aware that using an incorrect namespace, one that doesn't exist in your GeoServer,
does not return any error; you will simply obtain an empty list.

Publishing a mosaic
In the previous recipes, you used a single raster dataset. This is a common case when the
datasets are not of a huge size. When your data covers a really big area or its resolution is
high, that is, it contains a highly detailed representation of the measured parameter, a single
dataset is not the best option, and in some cases is not an option at all.

The best approach is to create a mosaic of raster datasets. A mosaic is a collection of raster
datasets that are virtually merged together to be used as a single dataset.

The virtual merging operation produces an index file that contains information on the extent of
each raster dataset. Using this index file, GeoServer compares the area of each request and
retrieves the granules of the mosaic that intersects it.

You may build this index file, which is actually a shapefile, with an external tool. GeoServer has
a built-in plugin to create a new mosaic, which is the index file, and it works really well, making
it the best option.

The plugin works with every raster format supported by GeoServer, such as Geotiffs, PNG,
JPW with a world file, and so on.

Working with Rasters

54

There are some constraints that you should be aware of:

 f All raster datasets in the mosaic must have the same coordinate reference system;
no reprojection is performed

 f All raster datasets must have the same ColorModel and SampleModel

 f If you are going to use overviews to enhance performances of the raster dataset,
all of them must have the same resolution

Getting ready
For this as well as the remaining recipes, we need a set of raster data. We will use data from
an authoritative and open source agency, the United States Geological Survey (USGS).
It offers a huge set of open data. We will select the global elevation data from Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

ASTER is an instrument aboard of the satellite launched by NASA. NASA
freely distributes ASTER data for public usage. For an introduction to it,
take a look at:
http://en.wikipedia.org/wiki/Advanced_Spaceborne_
Thermal_Emission_and_Reflection_Radiometer

We also want to stress the fact that ASTER GDEM is a product of METI
and NASA; if you plan to use it in your work, carefully read the license
agreement and the citation constraint.

USGS offers several ways to search and download its data; a convenient and friendly tool is
EarthExplorer. You will use it to download the data used in this recipe.

1. Using your preferred browser, open http://earthexplorer.usgs.gov/.

2. You may search the data anonymously, but in order to download it, you have to log in.
If you already own an USGS account, click on the Login link and use it; otherwise, you
should click on the Register button. The process is really simple and straightforward.
After you receive the confirmation e-mail, you can log in.

3. Zoom into the map to locate the Italy peninsular area. Then, create a selection area
like the one represented in the following screenshot. You can create the polygon by
double-clicking on the map for each vertex:

Chapter 2

55

4. Click on the Data Sets button. A list of the available datasets is shown. Browse for
ASTER GLOBAL DEM and check the box to the left of it:

5. You may skip Additional Criteria and click on the Results button. A list of data is
presented. You may use the footprint icon to see what the actual area is covered
by each:

Working with Rasters

56

6. Check the box to the right of Add All Results from Current Page to Bulk Download.
This prevents you from having to select the items individually, but will make you
download items that cover a really small percentage of your selection area.

7. Click on the View Item Basket button.

8. Now click on the Proceed to Checkout button. Don't worry you will not be requested
to use a credit card!

9. Click on the Submit Order button and then accept the End User License Agreement.
A confirmation e-mail will be sent to you. The message contains links that you can
use to download all the selected items.

10. You should end up with 10 ZIP files. Each ZIP file contains two TIFF files and a
readme.pdf file. You only need the _dem.tiff files; extract them all in the
same folder.

How to do it...
1. Locate the folder where you downloaded all the ZIP archives. Then, unzip them using

the following command:
$ for f in *.zip; do unzip $f '*dem.tif'; done

2. Open your browser and point to the GeoServer web interface.

3. From the left panel, select the Stores item in the Data section.

4. Click on the Add new Store link and you will find the list of Raster and Vector data
sources supported. Find Image Mosaic in the Raster list and click on it.

5. Insert the values in the Data Source Name and Description fields, click on the
Browse… link to the left of the textbox at the bottom of the screen, and locate the
folder where you saved the ASTER TIFF files.

Chapter 2

57

6. Click on the Save button and you will be prompted with the option to publish the
mosaic. Click on the Publish link.

7. We can go with the default setting for now. Click on the Save button to publish
the layer.

8. Take the ch02_aster.sld file from the code bundle accompanying this book and
copy its content. Then, select Styles from the left panel of GeoServer web interface.
Click on the Add a new style link. In the textbox, paste the content of the file previously
copied and set Name to Aster_terrain. Click on the Submit button to save the
new style.

Working with Rasters

58

9. Now, open the configuration for the NaturalEarth:ASTER_DATA layer and switch
to the Publishing panel. Scroll down to the WMS Setting and select the previously
created style. Then, click on the Save button.

10. Go to the Layers preview section and open the OpenLayers preview for the
NaturalEarth:ASTER_DATA layer.

Chapter 2

59

How it works…
You downloaded several TIFF files that are a part of the same layer and in fact, you published
them as a single layer. This is quite a common situation when dealing with the raster data.

With vector data, you will have datasets covering a very wide area and containing features
with high geometrical details that don't need to be split. In that case, you often store the
vector data in an RDBMS, which is an efficient tool to store and retrieve huge amounts of
data. We will see later that this approach could also be applied to raster data, but usually
storing them in files is a more common and efficient approach.

How big can a file containing raster data be before it becomes unpractical to handle?

It depends on the binary format, the compression algorithm applied to the raster data, and
also on the tools used to read them. With GeoServer and the TIFF format, the most used
binary format; with it, you may have optimal performance up to a limit of 2 GB per file.

As you may have noted, the size of each file in this recipe is way less than the limit. This is due
to a design choice by the provider USGS, because splitting the Earth's surface in tiles that are
too big constrains users to download a lot of unnecessary data. However, you also have to
remember that the size to consider is that of the uncompressed raster data. Take a file from
those downloaded and transform it into a compressed flat TIFF file:

$ ls -l ASTGTM2_N40E013_dem.tif

-rw-r--r-- 1 stefano stefano 25963722 Mar 15 2011
 ASTGTM2_N40E013_dem.tif

$ gdal_translate -of GTiff -co COMPRESS=DEFLATE
 ASTGTM2_N40E013_dem.tif ASTGTM2_N40E013.tif

Input file size is 3601, 3601

0...10...20...30...40...50...60...70...80...90...100 - done.

$ ls -l ASTGTM2_N40E013.tif

-rw-rw-r-- 1 stefano stefano 249663 Jul 27 22:03 ASTGTM2_N40E013.tif

As you can see in this case, from 25 MB we compressed it to a 244 KB file!

This huge compression is because of the kind of data stored inside; this piece of the DEM
is full of no data values as it mostly covers an offshore area.

To summarize, you should try to rearrange your data in the biggest tile you can handle and
only then use a mosaic.

Working with Rasters

60

In this recipe, we used the automatic mode, made available by the Image Mosaic plugin,
to produce the mosaic. Let's explore the folder where you stored your TIFF files to see what
happened to them. Check the content of the folder where you stored the TIFF files:

$ ls -lh

total 248M

drwxr-xr-x 2 root root 4.0K Jul 27 22:28 ./

drwxr-xr-x 5 root root 4.0K Jul 27 22:25 ../

-rw-r--r-- 1 root root 2.6K Jul 27 22:28 ASTER_DATA.dbf

-rw-r--r-- 1 root root 133 Jul 27 22:28 ASTER_DATA.fix

-rw-r--r-- 1 root root 335 Jul 27 22:28 ASTER_DATA.prj

-rw-r--r-- 1 root root 294 Jul 27 22:28 ASTER_DATA.properties

-rw-r--r-- 1 root root 100 Jul 27 22:28 ASTER_DATA.qix

-rw-r--r-- 1 root root 1.5K Jul 27 22:28 ASTER_DATA.shp

-rw-r--r-- 1 root root 180 Jul 27 22:28 ASTER_DATA.shx

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N40E013_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N40E014_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N40E015_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N41E012_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N41E013_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N41E014_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N41E015_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N41E016_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N42E014_dem.tif

-rw-r--r-- 1 root root 25M Mar 15 2011 ASTGTM2_N42E015_dem.tif

-rw-r--r-- 1 root root 1.8K Jul 27 22:28 sample_image

Some new files have been created. More specifically, you can see a shapefile, a properties file,
and a PRJ file. What are they for?

The shapefile is used as an index to retrieve the raster that covers a specific area. It contains
polygons that represent the spatial extents of each granule in the mosaic. Each feature
contains an attribute that provides the location of the granule's file on the host filesystem. The
location can be expressed either relative to the index file or as an absolute reference. Check
the content with the ogrinfo utility as follows:

$ ogrinfo -al -ro ASTER_DATA.shp | more

INFO: Open of `ASTER_DATA.shp'

Chapter 2

61

 using driver `ESRI Shapefile' successful.

Layer name: ASTER_DATA

Geometry: Polygon

Feature Count: 10

Extent: (11.999861, 39.999861) - (17.000139, 43.000139)

Layer SRS WKT:

GEOGCS["WGS 84",

 DATUM["World Geodetic System 1984",

 SPHEROID["WGS 84",6378137.0,298.257223563,

 AUTHORITY["EPSG","7030"]],

 AUTHORITY["EPSG","6326"]],

 PRIMEM["Greenwich",0.0,

 AUTHORITY["EPSG","8901"]],

 UNIT["degree",0.017453292519943295],

 AXIS["Geodetic longitude",EAST],

 AXIS["Geodetic latitude",NORTH],

 AUTHORITY["EPSG","4326"]]

location: String (254.0)

OGRFeature(ASTER_DATA):0

 location (String) = ASTGTM2_N42E015_dem.tif

 POLYGON ((14.999861111111111 41.999861111111116,14.999861111111111
 43.000138888888891,16.000138888888888
 43.000138888888891,16.000138888888888
 41.999861111111116,14.999861111111111 41.999861111111116))

…

The projection file (.prj) provides the Coordinate Reference System (CRS) information for
the mosaic. As you can see from the previous run of the ogrinfo utility, the CRS is obviously
the same for all the TIFF files. This information is used by GeoServer when you publish a layer
based on the mosaic and used as a native CRS.

The properties file (.properties) is the configuration file that provides information about
the mosaic, such as the x and y cell size, and whether the file location attribute is absolute
or relative:

$ cat ASTER_DATA.properties

#-Automagically created from GeoTools-

#Sun Jul 27 22:28:41 CEST 2014

Levels=2.777777777777778E-4,2.777777777777778E-4

Working with Rasters

62

Heterogeneous=false

AbsolutePath=false

Name=ASTER_DATA

TypeName=ASTER_DATA

Caching=false

ExpandToRGB=false

LocationAttribute=location

CheckAuxiliaryMetadata=false

LevelsNum=1

Each property has a specific meaning as is summarized in the following table:

Property Description
Levels This represents the resolutions for the various levels of the granules

of the mosaic.
Heterogeneous This determines whether the granules are all identical or not. If set

to false, then the resolutions are not checked when creating the
granules' index.

AbsolutePath If set to false, then the value contained in the location attribute is
evaluated as relative to the index path.

Name This is the name of the mosaic that will be used.
Caching If set to false, GeoServer will not cache the mosaic content.
ExpandToRGB This determines whether to expand the color model from indexed

to RGBA. There is a performance penalty using RGBA, so if all your
granules are indexed color, then set this to false.

LocationAttribute This is the name of the attribute that holds the location of a granule.
LevelsNum This shows the number of reduced resolution layers available for

each granule as an overview in GeoTIFF.

If you need to set custom properties for a mosaic, you can edit this file.

Using pyramids
Pyramids are a way to create overviews of your raster data. Overviews are really useful to
enhance performance, especially when you have to serve a large amount of data. In this
recipe, we will see how the plugin works and have a discussion about how GeoServer
handles overviews.

Chapter 2

63

How to do it…
1. GeoServer needs an extension plugin to be able to handle pyramids; hence, the first

step is to download and install the plugin. As usual, you need to visit the download
page and download the zip archive. Visit the following URL:

http://geoserver.org/release/stable/

2. Get the archive by clicking on the Image Pyramid link in the Coverage Formats
section, as shown in the following screenshot:

Be sure to download the matching version of the plugin. If you're not
using the latest stable release, instead of the previous URL, use the
following URL and browse for your version folder:
http://geoserver.org/download/

3. Extract the .jar files contained within the archive into the WEB-INF/lib folder of
your GeoServer installation as follows:
$ unzip geoserver-2.5.1- -pyramid-plugin.zip *.jar –d
 /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib/

4. Now, merge the TIFF files into a single one:
$ gdalbuildvrt aster.vrt *.tif

$ gdal_translate -of GTiff -co COMPRESS=NONE aster.vrt
 ../pyramid_aster/aster.tif

Input file size is 18001, 10801

0...10...20...30...40...50...60...70...80...90...100 - done.

$ ls -lh ../pyramid_aster/aster.tif

-rw-r--r-- 1 root root 371M Jul 27 23:15
 ../pyramid_aster/aster.tif

Please note that the output folder for the TIFF file is a different one. This will
avoid issues since the single TIFF files are yet to be published as a mosaic.

Working with Rasters

64

5. You can now build pyramids for the new TIFF as follows:
$ sudo mkdir pyramids

$ gdal_retile.py -r near -levels 6 -ps 2048 2048 -co TILED=YES
 -co COMPRESS=NONE -targetDir pyramids aster.tif

6. Now start GeoServer. On completion, open the web interface. On the left panel, locate
Stores and click on it. Then, click on the Add a new store link. Now in the Raster
Data Sources section, you may find a new format for image pyramids. Click on it.

7. Many more formats are available, as shown in the following screenshot:

8. When requested, click on Publish. You will be presented with the usual form to
define the layer properties. Use the same style you created in the Publishing a
mosaic recipe. When you open the preview layer, you should see exactly the same
data as shown in the screenshot in this recipe.

How it works…
When you add a new data store such as image pyramids, GeoServer creates some files on
your filesystem:

$ ls pyramids/

0 1 2 3 4 5 6 pyramids.prj pyramids.properties

Chapter 2

65

The pyramids.prj file contains the CRS for your raster data and as in the previous recipes,
this is EPSG:4326.

The pyramids.properties file describes the properties of the pyramid levels:

$ cat pyramids.properties

#Automatically generated

#Sun Jul 27 23:23:43 CEST 2014

Name=pyramids

Levels=2.777777777777778E-4,2.777777777777778E-4 5.555555555555556E-
 4,5.555555555555556E-4 0.0011111111111111111,0.0011111111111111111
 0.0022222222222222222,0.0022222222222222222
 0.0044444444444444444,0.0044444444444444444
 0.008888888888888889,0.008888888888888889
 0.017777777777777778,0.017777777777777778

LevelsNum=7

Envelope2D=11.999861,39.99986122222222 17.000138777777778,43.000139

LevelsDirs=0 1 2 3 4 5 6

It is quite similar to the properties file we saw when creating a mosaic. Levels contain the
resolutions for x and y for each pyramid level.

You might know that overviews can also be created without the need for any GeoServer
extension. Geotiff files support internal and external overviews and use standard tools
such as gdaladdo provided by GDAL. You may create them very easily:

$ gdaladdo -r nearest -ro aster.tif 2 4 8 16 32 64

0...10...20...30...40...50...60...70...80...90...100 - done.

$ ls -alh aster*

-rw-r--r-- 1 root root 371M Jul 27 23:15 aster.tif

-rw-r--r-- 1 root root 129M Jul 27 23:40 aster.tif.ovr

These overviews can only be used by GeoServer when the Geotiff file size is less than 2 GB.
So this plugin comes in need when you have to publish very large datasets.

Working with Rasters

66

Adding GDAL formats
GeoServer has a built-in support for several raster formats as you can check in the web
interface section:

Although Geotiff is one of the best formats to publish raster data, you may need to have
GeoServer using more formats. You may, for instance, want to avoid converting data to Geotiff.

In order to do this, we will install GDAL libraries on our server and then a specific GeoServer
extension to include GDAL supported formats in GeoServer.

Getting ready
There are several ways to have GDAL libraries installed on your server. If the primary goal
is to use them along with GeoServer, we recommend you use the binary archives from
GeoSolutions, an Italian company that employs many core GeoServer developers. Using
these artifacts, you can be sure to avoid compatibility issues among the GDAL version and
the ImageIO plugin with Java bindings for the GDAL libraries. Installing GDAL is an easy task
that we're going to execute with the following procedure:

1. Point your browser to the following URL:
http://demo.geo-solutions.it/share/github/imageio-ext/
releases/1.1.X/1.1.10/native/gdal/

2. Download the gdal-data.zip file and decompress it in a local folder on your server.

3. Now browse one of the two folders according to the operating system of your server
and select a proper archive. If you are using Windows, one of the following should be
a good choice:

Chapter 2

67

You just need the gdal-1.9.2-MSVC20010.zip or gdal-1.9.2-
MSVC2010-x64.zip file to enable most of the GDAL formats. If you
also need support for ECW and MrSID, you should get the additional
.msi files. Be aware that both formats are proprietary and using them
on a server requires a proper license to be acquired.

4. On Linux, select a proper file according to your architecture (32 bit or 64 bit) and
Linux flavor.

Working with Rasters

68

5. Decompress the archive on a folder on your server. Now, you can open a
command-line window to check whether the installation was successful.
Change the current directory to the folder where you decompressed the
GDAL archive and write the following command:
$ gdalinfo --formats

Supported Formats:

 VRT (rw+v): Virtual Raster

 GTiff (rw+v): GeoTIFF

 NITF (rw+v): National Imagery Transmission Format

 RPFTOC (rov): Raster Product Format TOC format

 ECRGTOC (rov): ECRG TOC format

 HFA (rw+v): Erdas Imagine Images (.img)

 AIG (rov): Arc/Info Binary Grid

 AAIGrid (rwv): Arc/Info ASCII Grid

…

How to do it…
1. Now that you have GDAL installed and configured on your system, we can get the

GeoServer plugin to complete the installation.

2. As usual, you need to visit the download page and download the zip archive. Visit the
following URL:

http://geoserver.org/release/stable/

3. Get the archive by clicking on the GDAL link in the Coverage Formats section,
as shown in the following screenshot:

Be sure to download the matching version of the plugin. If you're not
using the latest stable release, instead of the previous URL, use the
following URL and browse for your version folder:
http://geoserver.org/download/

Chapter 2

69

4. Extract the .jar files contained within the archive into the WEB-INF/lib folder of
your GeoServer installation as follows:
$ unzip geoserver-2.5.1-gdal-plugin.zip *.jar –d
 /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib/

5. Edit the startup file for your tomcat, probably something similar to /etc/init.d/
tomcat, to add two new environmental variables pointing to the libraries and the
data you installed previously:
export GDAL_DATA=/opt/gdal192/gdal-data
export LD_LIBRARY_PATH=/opt/gdal192

6. Now start GeoServer, then open the web interface. On the left panel, locate
Stores and click on it. Then, click on the Add a new store link. Now in the
Raster Data Sources section, you may find a lot more formats available
as shown in the following screenshot:

How it works...
GDAL is a powerful set of tools and libraries to manage raster data. Using them, you can open
several different formats, convert them, and also process transformation on raster data.

If you compare the output of the gdalinfo --formats tool with the list showed by
GeoServer, you may note that just a subset is available.

Working with Rasters

70

In fact, in order for a format to be available in GeoServer, the plugin should contain specific
code to use it and make it accessible to the core modules. Developers concentrated on the
formats mostly used and for which there is a need to publish them in the native format.

If your raster data is not available among those listed by GeoServer, you can always use the
standard GDAL tool to convert them in a suitable format, for instance, the widely used and
eclectic Geotiff.

Adding a PostGIS raster data source
In an earlier recipe, we served the raster data as a mosaic with pyramids. Another GeoServer
extension offers the option to store all the tiles in an RDBMS. In this recipe, we will use
PostgreSQL as a repository and will publish them on GeoServer.

How to do it…
1. In order to enable GeoServer to access tiles stored in PostgreSQL, you need an

extension. As usual, you need to visit the download page and download the zip
archive. Visit the following URL:

http://geoserver.org/release/stable/

2. Get the archive by clicking on the JDBC Image Mosaic link in the Coverage
Formats section.

Be sure to download the matching version of the plugin. If you are not
using the latest stable release, instead of the previous URL, use the
following URL and browse for your version folder:
http://geoserver.org/download/

3. Extract the .jar files contained within the archive into the WEB-INF/lib folder of
your GeoServer installation:
$ unzip geoserver-2.5.1-imagemosaic-jdbc-plugin.zip *.jar –d
 /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib/

4. Open a command-line session on your server and locate the folder where you
stored the ASTER dem file. Then, merge them in a virtual mosaic using the
GDAL utility gdalbuildvrt:
$ gdalbuildvrt aster.vrt *.tif

Chapter 2

71

5. Now, we will create tiles and pyramids for the mosaic using another GDAL utility,
gdal_retile.py. You first need to create the destination folder for the tiles:
$ mkdir tiles

$ gdal_retile.py -co TFW=YES -r near -ps 256 256 -of GTiff -
 levels 6 -targetDir tiles aster.vrt

6. Create a new file, call it aster.postgis.xml, insert the following code snippet,
and then save it in the <GEOSERVER_DATA_DIR>/coverages folder:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE ImageMosaicJDBCConfig [
 <!ENTITY mapping PUBLIC "mapping"
 "mapping.postgis.xml.inc">
 <!ENTITY connect PUBLIC "connect"
 "connect.postgis.xml.inc">
]>
<config version="1.0">
 <coverageName name="aster"/>
 <coordsys name="EPSG:4326"/>
 <scaleop interpolation="1"/>
 <verify cardinality="false"/>
 &mapping;
 &connect;
</config>

7. Create a new file, call it connect.postgis.xml, insert the following code snippet,
and then save it in the <GEOSERVER_DATA_DIR>/coverages folder:
<connect>
 <dstype value="DBCP"/>
 <username value="gisuser"/>
 <password value="gisuser"/>
 <jdbcUrl value="jdbc:postgresql:
 //localhost:5432/gisdata"/>
 <driverClassName value="org.postgresql.Driver"/>
 <maxActive value="10"/>
 <maxIdle value="0"/>
</connect>

Working with Rasters

72

8. Create a new file, call it mapping.postgis.xml, insert the following code snippet,
and then save it in the <GEOSERVER_DATA_DIR>/coverages folder:
<spatialExtension name="postgis"/>
<mapping>
 <masterTable name="mosaic" >
 <coverageNameAttribute name="name"/>
 <maxXAttribute name="maxx"/>
 <maxYAttribute name="maxy"/>
 <minXAttribute name="minx"/>
 <minYAttribute name="miny"/>
 <resXAttribute name="resx"/>
 <resYAttribute name="resy"/>
 <tileTableNameAtribute name="tiletable" />
 <spatialTableNameAtribute name="spatialtable" />
 </masterTable>
 <tileTable>
 <blobAttributeName name="data" />
 <keyAttributeName name="location" />
 </tileTable>
 <spatialTable>
 <keyAttributeName name="location" />
 <geomAttributeName name="geom" />
 <tileMaxXAttribute name="maxx"/>
 <tileMaxYAttribute name="maxy"/>
 <tileMinXAttribute name="minx"/>
 <tileMinYAttribute name="minx"/>
 </spatialTable>
</mapping>

9. Execute the following command to create a SQL DDL script:
$ java -jar /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib/gt-
 imagemosaic-jdbc-11.1.jar ddl -config
 /opt/data_dir_geoserver/coverages/aster.postgis.xml -
 spatialTNPrefix aster -pyramids 6 -statementDelim ";" -srs
 4326 -targetDir sqlscripts

23-Jul-2014 16:00:21 org.geotools.gce.
 imagemosaic.jdbc.DDLGenerator writeCreateMeta

INFO: createmeta.sql generated

23-Jul-2014 16:00:21 org.geotools.gce.imagemosaic.
 jdbc.DDLGenerator writeDropMeta

INFO: dropmeta.sql generated

23-Jul-2014 16:00:21
 org.geotools.gce.imagemosaic.jdbc.DDLGenerator generate

Chapter 2

73

INFO: sqlscripts/add_aster.sql generated

23-Jul-2014 16:00:21
 org.geotools.gce.imagemosaic.jdbc.DDLGenerator generate

INFO: sqlscripts/remove_aster.sql generated

10. Four scripts are created. Connect to the database and execute two of them to create
the metadata and spatial tables:
$ psql -U gisuser -d gisdata -f createmeta.sql

$ psql -U gisuser -d gisdata -f add_aster.sql

11. Copy the jdbc JAR file to connect to PostgresSQL from the GeoServer folder to the
JRE folder:
$ cp /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib/
postgresql-8.4-701.jdbc3.jar /usr/lib/jvm/jre1.6.0_37/lib/ext/

12. Connect to the database with the postgres account, or whatever username you
used during installation, and execute the following command:

If you used a packaged binary to install PostgreSQL, your
instance owner is postgres; if you installed by compiling
from source, it is the owner of the installation folder.

$ psql -U postgres -d gisdata -f createmeta.sql

gisdata=# ALTER DATABASE gisdata SET bytea_output TO 'escape';

ALTER DATABASE

gisdata=#

13. Execute the following command to import the tiles into PostGIS:
$ java -jar /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib/gt-
 imagemosaic-jdbc-11.1.jar import -config /opt/
 data_dir_geoserver/coverages/aster.postgis.xml -
 spatialTNPrefix aster -tileTNPrefix aster -dir
 tiles -ext tif

…

INFO: FINISHED

14. The execution will take some time. After it shows you the last message, all of your
tiles are loaded into PostGIS.

Working with Rasters

74

15. Open the GeoServer web interface, go to Stores, and click on the Add new Store
link. From the Raster Data Source list, select ImageMosaicJDBC. Then, insert the
following properties:

16. Click on the Save button and publish the mosaic as you did in the Publishing
a mosaic recipe, choosing the same style. When you open the preview layer,
you should see exactly the same data as shown in the screenshot in that recipe.

How it works…
As you may have noted, the process of preparing the data was very similar to what we did
when using the Image pyramid plugin. We again used the gdal_retile.py command:

$ gdal_retile.py -co TFW=YES -r near -ps 256 256 -of GTiff -levels 6
 -targetDir tiles aster.vrt

Chapter 2

75

Also, the output tiles are very similar. The big difference is that in this case, we are going to
store the tiles inside a database, so we need some additional configuration files. The three
XML files contain this information.

The aster.postgis.xml file contains information about the CRS and the interpolation
algorithm to be used when resampling the tiles. The two links &mapping and &connect are
references to the other two files. The following syntax forces the XML parser to include the
external content:

<config version="1.0">
 <coverageName name="aster"/>
 <coordsys name="EPSG:4326"/>
 <!-- interpolation 1 = nearest neighbour, 2 = bipolar, 3 =
 bicubic -->
 <scaleop interpolation="1"/>
 <verify cardinality="false"/>
 <!-- axisOrder ignore="false"/-->
 &mapping;
 &connect;
</config>

The connect.postgis.xml.inc file describes parameters mandatory to create a
connection to the database.

The other file, mapping.postgis.xml.inc, describes where the metadata is restored
inside the database. GeoServer uses this information as an index to retrieve the tiles
necessary to compose the map on each request.

We could go with just a single file, but the information contained in the two that we gave the
.inc extension is common to any coverage you want to store in the database. We created three
files because you can avoid redundancy of the common configuration parameters.

3
Advanced Styling

In this chapter, we cover the following recipes:

 f Installing the CSS module

 f Creating a simple polygon style with CSS

 f Adding filters to your style

 f Adding labels with CSS

 f Creating scale-dependent rules

 f Rendering transformations for raster data

 f Creating a dot density chart

Introduction
Maps are a powerful representation of data. To produce a beautiful map, very often, you need
to use a lot of symbols. For instance, dashing lines for roads under construction, lines with
hatching for railroads, appropriate filling for swamps, and points for caves and mines. A map
can contain dozens of different symbols; it's your way of expressing your idea of a part of the
world to other people.

A standard way to produce maps with GeoServer is using WMS configured with appropriate styles.

WMS lets you define styles with Styled Layer Descriptor (SLD); see
http://en.wikipedia.org/wiki/Styled_Layer_Descriptor.

While SLD is a powerful tool and enables you to create complex and pretty rendering of data,
it is also famous for being quite hard to write and understand for humans.

Advanced Styling

78

Cascading Style Sheets (CSS) (see http://en.wikipedia.org/wiki/CSS) is a
convenient and easier replacement alternative to long SLD documents. When using CSS,
you must be aware that this is GeoServer specific.

While SLD is a standard approach that can be reused with other WMS implementations or
a desktop application such as QGIS, CSS is a GeoServer-specific module. For instance, you
can't use the CSS syntax with MapServer, but you can, of course, reuse the styles on another
GeoServer WMS server, assuming that layers with similar details are published on them.

MapServer, not to be confused with the general term map server,
is an open source software pretty similar to GeoServer. It lets you
publish spatial data with OGC standards like WMS.
You will find more information on this at the following URL:
http://mapserver.org/

Indeed, the CSS module does not really replace SLD. The CSS syntax is used to generate the
SLD styles and these are saved in that format in the GeoServer data directory. When a map is
produced, GeoServer uses the SLD files to render maps, not the CSS ones.

The CSS module basically lets you use a simple human-readable syntax to quickly create
drawing rules, taking care of translating your ideas into the XML format according to the
SLD standard.

CSS styles can easily be read by humans and are easy to use and modify with a simple text
editor. SLD styles are generated for use by the WMS rendering engine.

Installing the CSS module
The CSS module started as a community module, that is, an unofficial set of features that are
not fully supported by the official releases and may or may not work. The CSS extension is an
example of a successful community module that grew fast and has recently graduated as a
formal extension.

Extensions are an optional GeoServer functionality that are held to the
same quality control and documentation standards as WMS and WFS.

Chapter 3

79

The GeoServer download page offers several extensions. Some focus on data access,
providing support for the new format for feature and raster data; others add new functionality.
The CSS extension is listed under the Miscellaneous category in the GeoServer download
page (http://geoserver.org/release/stable/). Please ensure that you download
a version of the extension that exactly matches the GeoServer version you are using.

How to do it…
1. Download the ZIP archive. Please verify that the version number in the filename is

the same as the GeoServer WAR file you installed.

If you don't remember your GeoServer release, you can look for
it in the web admin interface. Go to http://localhost/
geoserver/web/?wicket:bookmarkablePage=:org.
geoserver.web.AboutGeoServerPage.

Advanced Styling

80

2. Stop your GeoServer instance and extract the contents of the ZIP archive into the
/WEB-INF/lib/ directory in the GeoServer web app. For example, if you have
deployed the GeoServer WAR file, you should place the CSS extension's JAR files in
CATALINA_HOME/webapps/geoserver/WEB-INF/lib/.

3. After extracting the extension, restart GeoServer in order for the changes to take
effect. Your module is installed and running and you may check that a new item is
now shown on the left pane of the admin interface.

How it works…
Enabling the CSS module is a really easy task. The developer team packed it into a couple of
JAR files that contain all the code for the logic and the user interface. From a user's point of
view, you get a new form on the web interface where you can create rendering rules with the
CSS syntax, try them out, and eventually generate them as SLD styles to be stored in your
GeoServer configuration.

In the upper part of the interface, you can see a text line informing you what styles you are
editing and which layer you're using to preview the style. Just under the line, you can find four
links that let you change the style and/or the layer to work with. You can also create a totally
new style.

There is a textbox under these options. This is the place where you write the CSS code that
will build your style. This is a dynamic textbox; as you insert the code, the module performs a
syntax check and will highlight any errors. When you are happy with the CSS code, you can click
on the Submit button and the module will translate your CSS code in to an XML SLD style.

Chapter 3

81

The bottom part of the page contains a tabbed form with four sections. The first section lets
you preview the XML code generated. The tab named Map is obviously a quick preview of your
data represented with the rules you are coding.

The Data tab contains a list of fields in your layer, such as a field name, data type, and a
sample value (as shown in the following screenshot). You may also calculate the maximum
and minimum values by pressing the link in the Compute stats column. This will prove quite
useful when you're creating a thematic map and need to define class breaks or discrete
values to render.

The last tab points to the online help for the CSS module. You may find a brief tutorial there
and also an almost complete reference for CSS coding.

Creating a simple polygon style with CSS
We're assuming that you already know how to make WMS GetMap requests to GeoServer and
you have already played with simple SLD styles. Now, you'll start creating your first simple style
using the CSS syntax. For this recipe, you'll use the countries feature type you published in
Chapter 1, Working with Vectors.

The entire CSS style for the recipe is located in the
GeneralizedCountries.css file.

Advanced Styling

82

How to do it…
1. Open the CSS Style section from the GeoServer web interface. Then,

select the link Choose a different layer. From the list of layers, select
PostGISLocal:GeneralizedCountries.

2. Select the Create a new style link. In the form, select the NaturalEarth
workspace and insert the style name, as shown in the following screenshot:

3. GeoServer inserts a short template for you:
* { fill: lightgrey; }

4. Replace the code in the textbox with the following rules:
* {
 fill: #8FBC8F;
 fill-opacity: 0.7;
}
* {
 stroke: #000000;
 stroke-opacity: 0.7;
}

5. Press the Submit button and scroll down to the Map preview. You should see
that the new rules are applied to your data.

Chapter 3

83

How it works…
The style you created is very simple. It is just composed of two rules: one used for the fill and
the other for the outline. Let's see how the CSS code works.

On the first line, you have the * character. This is a reference to the feature to which the rule
will be applied. The * character stands for all features; in this simple recipe, we're applying the
same symbol to all countries.

The first element, which can be a reference to just a set of features, is called a selector.
After that, you inserted two lines to define the properties used to draw the selected features
of the filling:

* {
 fill: #8FBC8F;
 fill-opacity: 0.7;
}

The key property fill defines the color to be used for drawing polygon features. In this case,
it is expressed as a hexadecimal value. You can also define colors using RGB decimal values
or well-known names.

For a full list of well-known names, you can take a look at http://
www.w3.org/TR/SVG/types.html#ColorKeywords.

Indeed, all the following lines are equivalent ways to define the same color:

 f fill: #8FBC8F

 f fill: rgb(143, 188, 143)

 f fill: darkseagreen

The property fill-opacity sets the transparency for the filling. This is quite useful if you
need to compose more layers in your map. The value ranges from 0 (totally transparent) to
1 (solid fill).

The key property fill is mandatory to render polygons; the property fill-opacity used on
its own will have no effect.

Advanced Styling

84

What happens to your code when you press the Submit button? The CSS module takes
this simple text code and translates it into a standard SLD style. The generated XML file
is compliant to SLD schemas. For the simple rule you inserted, here is the result:

<?xml version="1.0" encoding="UTF-8"?>
<sld:UserStyle xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml">
 <sld:Name>Default Styler</sld:Name>
 <sld:FeatureTypeStyle>
 <sld:Name>name</sld:Name>
 <sld:Rule>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#8FBC8F</sld:CssParameter>
 <sld:CssParameter name="fill-
 opacity">0.699999988079071</sld:CssParameter>
 </sld:Fill>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
</sld:UserStyle>

It looks a bit more complicated than the code you inserted, doesn't it? However, if you look at
it, the properties and values you typed are there, just in a different syntax.

To have the outline drawn on your polygons, you insert another rule.

The selector * is used to apply the properties to all features. The properties used are quite
similar to the ones used for the filling and for setting the color and transparency. The key
property stroke is used to indicate that we want an outline. The property stroke-opacity
provides additional information on how we want the outline drawn.

When you translate the code to XML, note that LineSymbolizer is generated with our
transparency parameter. This is because black is the default value for the Stroke color. Even
though black is the default color for SLD, we still need to use the key property stroke:black
in our CSS to request the generation of LineSymbolizer, as shown in the following code:

…
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke-
 opacity">0.699999988079071</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
…

Chapter 3

85

As per our two rules, use the same selector; they can be combined and will produce exactly
the same SLD document. Try this yourself:

* {
 fill: #8FBC8F;
 fill-opacity: 0.7;
 stroke: #000000;
 stroke-opacity: 0.7;
}

This rule uses the * selector and is applied to all features. The two key properties fill and
stroke generate a PolygonSymbolizer and LineSymbolizer XML, respectively. The
properties fill-opacity and stroke-opacity are used to fine-tune the appearance.

Adding filters to your style
Having a map with a single symbol (that is, the same appearance for all features) is not very
common. This approach is useful, and it can be used when building an index map to provide
a reference showing you which part of the world is represented in the main map.

The real power of styling comes from the representation of features according to their
properties, geometrical or nongeometrical. A map created to show attribute values is
a thematic map. To create a thematic map, we will need to use filters to select content
based on an attribute value.

In this recipe, you will build a map of countries grouped according to the continent they belong.

The full CSS style for the recipe is located in the
continent.css file.

How to do it…
1. Open the CSS Style section from the GeoServer web interface. Then, select the

Choose a different layer link. From the list of layers, select PostGISLocal:Countries.

2. Select the Create a new style link. In the form, select the NaturalEarth workspace
and insert Continents as the style name.

Advanced Styling

86

3. Replace the code in the textbox with the following snippet:
/* @title outline */
* {
 stroke: #000000;
 stroke-width: 0.1;
 }

/* @title North America */
[continent = 'North America']
* { fill: #66C2A5;}

4. Press the Submit button and look at your map. It should show all countries with a
thin black outline and the North American countries with a color fill.

5. Add filling for other continents, as shown in the following code snippet:
/* @title Europe */
[continent = 'Europe']
* { fill: #8DA0CB; }

/* @title Oceania */
[continent = 'Oceania']
* { fill: #E78AC3; }

/* @title Asia */
[continent = 'Asia']
* { fill: #A6D854; }

/* @title Africa */
[continent = 'Africa']
* { fill: #FFD92F; }

/* @title Antartica */
[continent = 'Antarctica']
* { fill: #E5C494; }

/* @title South America */
[continent = 'South America']
* { fill: #FC8D62; }

Chapter 3

87

6. Press the Submit button. Your map should look like the following screenshot:

How it works…
This time, you created a style with a few more rules. You may have noted in the previous
screenshot that the CSS module creates a simple table of contents (TOC) for you with
elements describing symbols used in the style and a label for each symbol.

You gave directions to GeoServer with the @title marker:

* @title outline */

In this case, you are defining the symbol for the outline. So, you typed the word outline
after the marker. The label is free text, so you can insert anything and use more than a word.
You must have guessed from the * selector that the outline is applied to all features.

We use the key property stroke to generate a line and stroke-width for a thin black line:

* {
 stroke: #000000;
 stroke-width: 0.1;
 }

Next, you create a filter for countries belonging to North America. To group them, we use the
continent field attribute, that is, an attribute of the countries layer, and of course, we define
a very simple filter that selects just features that hold the North America value in that field:

/* @title North America */
[continent = 'North America']
* { fill: #66C2A5;}

We use the key property fill to ask these features to be drawn as a polygon.

Advanced Styling

88

We use the @title marker again to define a label. Please note that when more than one rule
applies to a feature, the corresponding label is the merger of all the strings:

We then inserted similar filters for all remaining continents. The code is very easy; just copy
and paste and change the color codes, labels, and filter values.

When we submit our code that is just 26 lines, including labels, the resulting XML is a bit
more complex. It is translated into 194 lines of XML code. If you're curious about it, you can
switch to the Generated SLD tab in the CSS panel. This shows you the XML code formatted
according to the SLD syntax.

Here is a fragment that is the corresponding code for the North America filter
shown previously:

<sld:Rule>
 <sld:Title>North America with Outline</sld:Title>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>continent</ogc:PropertyName>
 <ogc:Literal>North America</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#66C2A5</sld:CssParameter>
 </sld:Fill>
 </sld:PolygonSymbolizer>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke-width">0.1</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
</sld:Rule>
<sld:Rule>

Isn't the CSS syntax far more simple and readable?

Chapter 3

89

Adding labels with CSS
As you probably already guessed, CSS can also handle properties for label placement and
rendering. Labels are quite useful in maps. They are there to help you understand what places
you're looking at, or just to identify the place you were searching for hours! Yes, I know what
you're thinking—this must've been before the age of smartphones!

To work with labels, we will use an expression to access the feature attribute values. This
results in a dynamic style that changes for each feature!

To practice with labels, you'll use the populated place layers created in Chapter 1, Working
with Vectors. The target is to create a map of capitals.

A full CSS style for the recipe is located in the
Capitals.css file.

How to do it…
1. Open the CSS Style section from the GeoServer web interface. Then,

select the link Choose a different layer. From the list of layers, select
PostGISLocal:PopulatedPlaces.

2. Select the link Create a new style. In the form, select the NaturalEarth
workspace and insert Capitals as the style name.

3. Replace the code in the textbox with the following code snippet:
[megacity = 1] {
 mark: symbol(square);
 mark-size: 4px;
 label: [name];
 font-fill: black;
 font-family: DejaVu
 font-style: bold;
 font-size: 10;
 label-anchor: 0.5 0;
 label-offset: 0 3;
 }

 :mark {
 fill: #2CA25F;
 stroke: black;
 stroke-width: 1px;
 }

Advanced Styling

90

4. Press the Submit button, switch to the map preview, and zoom in on West Europe.
Your map should look like the following screenshot:

How it works…
The first part of the CSS code defines the rule for selecting features containing 1 in the
megacity field. This is not really an equivalent of Capitals, that is, the place that is the
center of government of a country as formally defined. However, let's filter out most of the
points from the map and produce a representation of the most important cities.

We use the key property mark to draw each location as a square. The property mark-size is
used to provide a symbol size in pixels.

The key property label is used to generate labels. This also shows the use of an expression
to access feature attributes. You select a simple marker, a square, and a symbol size. You also
set the field, name in this case, where GeoServer should search for text values to print as a
label near each marker:

[megacity = 1] {
 mark: symbol(square);
 mark-size: 4px;
 label: [name];

Chapter 3

91

Then you set the printing properties; black for the text and the DejaVu font. Please note that
you can use any font available on your system (or in the GeoServer styles folder). The DejaVu
font may not be available on Windows machines. If this is your case, please change this recipe
according to a font available on your system. After selecting a font size, you set the distance
and the bearing of a label placement:

 font-fill: black;
 font-family: DejaVu;
 font-size: 10;
 label-anchor: 0.5 0;
 label-offset: 0 3;

Did you note that nothing about the color for the marker was included in the previous lines
of code?

Indeed, we now use a reference to the marker and set the color and stroke for it:

:mark {
 fill: #2CA25F;
 stroke: black;
 stroke-width: 1px;
 }

Creating scale-dependent rules
Most maps contain more than one layer—each one styled with one or more symbols according
to its complexity and the map purpose.

When you browse interactive maps with many layers, you can see that the map changes its
style according to the zoom level. When your view on the data is a portrait of the entire world,
symbols are simple and there are a few features drawn on the map. As you get closer, you can
see more labels, major roads change their symbols, and minor roads appear.

This approach lets you insert a large quantity of information on a web map while avoiding
producing an almost unreadable jumble of labels and symbols.

How can you do a similar map with CSS code? It's again a matter of creating filters. This time,
you should not only create filters that apply symbols according to the features' attributes, but
you should also insert a constraint on the map scale to have GeoServer select the features
that have to be drawn.

In this recipe, you will use the global roads dataset—again from the Natural Earth collection of
open data.

Advanced Styling

92

Just go to http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
and download the roads dataset. Then, load it in PostGIS and publish it with the road's name in
the NaturalEarth workspace. Isn't it as simple as ready, steady, go?

The entire CSS style for the recipe is located in the
WorldRoad.css file.

How to do it…
1. Open the CSS Style section from the GeoServer web interface. Then, select the link

Choose a different layer. From the list of layers, select PostGISLocal:Roads.

2. Select the link Create a new style. In the form, select the NaturalEarth workspace
and insert WorldRoads as the style name.

3. Replace the code in the textbox with the following snippet:
[@scale < 5000000]
{
 label: [label];
 font-fill: black;
}
/* @title Road */
[type = 'Road'] [@scale < 5000000]
{
 stroke: #000000, #FFFF00;
 stroke-width: 4, 2;
 z-index: 0, 1;
}
/* @title Major Highway */
[type = 'Major Highway'] [@scale > 10000000]
{
 stroke: red;
 stroke-width: 1;
 }
/* @title Major Highway */
[type = 'Major Highway'] [@scale < 10000000]
{
 stroke: black, red, black;
 stroke-width: 7, 3, 1;
 z-index: 0, 1, 2;
 }
/* @title Secondary Highway */
[type = 'Secondary Highway'] [@scale < 5000000]
{

Chapter 3

93

 stroke: #808080, #FF7F00;
 stroke-width: 4, 2;
 z-index: 0, 1;
}
/* @title Ferry Route */
[type = 'Ferry Route'] [@scale < 5000000]
{
 stroke: #6699CD;
 stroke-width: 1;
 stroke-dasharray: 6 2;
}
/* @title Track */
[type = 'Track'] [@scale < 5000000]
{
 stroke: #808080;
 stroke-width: 2;
 stroke-dasharray: 15 10;
}
/* @title Ferry, seasonal */
[type = 'Ferry, seasonal'] [@scale < 5000000]
{
 stroke: blue;
 stroke-width: 1;
 stroke-dasharray: 6 2;
}

4. Press the Submit button, switch to the map preview, and zoom in on West Europe.
Your map should look like the following screenshot.

Advanced Styling

94

5. Now zoom in to have a closer look at the area containing London and the channel.
You can see that other items appear in the TOC and the way the roads are drawn on
the map is quite more complex.

How it works…
You probably noticed a new element inside the code. On the very first line of the CSS file, there
is the @scale selector, which is used to define a rule that only applies when the map scale
fits the constraint you inserted. In this case, you just want GeoServer to draw labels when
the map scale is lower than 5 million. The rule properties just set the field expression used to
access text, where it can be found, and the color for its labels:

[@scale < 5000000]
{
 label: [label];
 font-fill: black;
}

As you probably guessed, the first rule applies to all features, as there is no selector apart
from the map scale.

When you first open the map, there is only one symbol for all roads drawn; if you look for it in
the code, you can find that the following lines set the filter for the maps with a scale higher
than 10 million:

/* @title Major Highway */
[type = 'Major Highway'] [@scale > 10000000]
{
 stroke: red;
 stroke-width: 1;
 }

Chapter 3

95

At that scale, you just want GeoServer to show major highways, so you set a filter on the type
field and create a very simple red thin line symbol for them.

What happens for a scale under 10 million? Again, you have the same set of roads drawn,
but you use a complex ticker symbol. It is in fact composed of three overlaid lines: a black
one (which is 7-pixels thick), a red one (3-pixels wide), and eventually a black thin line with
a width of just 1 pixel:

/* @title Major Highway */
[type = 'Major Highway'] [@scale < 10000000]
{
 stroke: black, red, black;
 stroke-width: 7, 3, 1;
 z-index: 0, 1, 2;
 }

The result is shown in the following screenshot:

Until your map's scale goes under 5 million, you don't see anything else; then suddenly,
all other roads are drawn. So, in the code snippet, you set four other filters for secondary
highways, roads, tracks, and ferry routes. The logic is always the same. Let's have a look at
how it works for secondary highways:

/* @title Secondary Highway */
[type = 'Secondary Highway'] [@scale < 5000000]
{
 stroke: #808080, #FF7F00;
 stroke-width: 4, 2;
 z-index: 0, 1;
}

Advanced Styling

96

Obviously, your filter uses the type attribute to select a different value to be searched and sets
the scale. This symbol is composed of two overlapping lines; the stroke element accepts two
colors for the two lines and so does stroke-width. Pay attention to the z-index element
where you set the drawing order of the lines. While the sequence 0,1, … n is probably more
clear and understandable, you can set it in whatever order you need.

Rendering transformations for raster data
Since the first recipe of the chapter, we've been working with vector data; of course,
GeoServer is also there to serve raster data. Moreover, while you may think that raster data
doesn't need a style, this is only true for a small set of them. Most people think of raster data
as aerial imagery, where the surface of the Earth is represented with true colors. In fact, this
paradigm has been greatly enforced by the huge popularity web mapping applications have
gained in the last decade.

However, there is a great variety of different raster data containing data about any parameter
a sensor can measure, from elevation to temperature to satellite radar scenes and so on.
Visualization of all this data makes more sense when you classify them and choose a set of
colors. You will apply this technique to elevation data in this recipe.

For this recipe, we need a Digital Elevation Model (DEM). As usual, we will use freely
available open source data. Go to https://lpdaac.usgs.gov/products/aster_
products_table/astgtm, the main page for an archive of high resolution DEMs provided
by United States Geological Survey (USGS). Here, you will find a lot of data. For this recipe,
you will need just a small portion of the data, which is provided to you with the code bundle of
this book. At http://reverb.echo.nasa.gov/reverb, you will find an interactive map
where the area was selected and downloaded. After signing in, you can search for data in
other areas and experiment yourself with GeoServer, as shown in the following screenshot:

Chapter 3

97

The entire CSS style for the recipe is located in the
Dem.css file.

How to do it…
1. Open the CSS Style section in the GeoServer web interface. Then, select the

link Choose a different layer. From the list of layers, select the DEM file you
loaded previously.

2. Select the link Create a new style. In the form, select the NaturalEarth workspace
and insert Dem as the style name.

3. Replace the code in the textbox with the following snippet:
* {
 raster-channels: auto;
 raster-color-map:
 color-map-entry(#2E9A58, 9)
 color-map-entry(#AAFF7F, 180)
 color-map-entry(#FDFF7F, 350)
 color-map-entry(#FFAA00, 500)
 color-map-entry(#F47221, 600)
 color-map-entry(#C83737, 1100)
 color-map-entry(#D7F4F4, 1300)
 }

4. Press the Submit button and switch to the map preview. Your map should look like
the following screenshot:

Advanced Styling

98

How it works…
The CSS code in this recipe is fairly simple. In the first line, you find the * selector as
the classification that will apply to all the data. To display raster data, the key property
raster-channels is used. The following lines select the band we want to be represented.
The value auto lets GeoServer select the appropriate band.

In this case, we're working with a raster with just one band, so GeoServer has an easy job of
finding the proper one to represent. In scientific datasets, some rasters may contain tens of
bands, so you need to manually select which ones you want to represent in the map. This is
shown in the following lines of code:

* {
 raster-channels: auto;

Then, you use the color-map element to create a color ramp to render the data. To build
it, you enter several color-map-entry elements—each one with two values. The first one
is the color, defined as a hexadecimal value or by well-known color names, and the second
element represents the value of your data to which the color applies. GeoServer automatically
creates a continuous ramp among two different entries in the ramp. The code is as follows:

 raster-color-map:
 color-map-entry(#2E9A58, 9)
 color-map-entry(#AAFF7F, 180)
 color-map-entry(#FDFF7F, 350)
 color-map-entry(#FFAA00, 500)
 color-map-entry(#F47221, 600)
 color-map-entry(#C83737, 1100)
 color-map-entry(#D7F4F4, 1300)
 }

There are several resources that will help you select nice color ramps.
One popular resource is http://colorbrewer2.org/, which was
created by Cynthia Brewer of Penn State University. You may use it with
the example data or also upload your data. Then, select the number of
classes you need and the color ramp.

There is also a third optional value that you can set. It's the transparency value, which is by
default equal to 1, that is, totally opaque. The result, shown in the previous screenshot, is
quite nice. Compare it with the default representation of the data when you don't set any
style, as shown in the following screenshot:

Chapter 3

99

Creating a dot density chart
In the Using WFS spatial filters recipe, Chapter 1, Working with Vectors, you created a
thematic map by classifying the features contained in the countries layer according to
the continent they belong. You used an opaque fill for this map.

However, when dealing with statistical data, it is more appropriate to use a dot density chart.

A dot density chart is an often used way to represent data on a map.
For a general introduction, have a look at http://en.wikipedia.
org/wiki/Dot_distribution_map.

You will again use the countries layer and will classify features according to population.

The entire CSS style for this recipe is located in the
DotDensity.css file.

Advanced Styling

100

How to do it…
1. Open the CSS Style section from the GeoServer web interface. Then, select the

Choose a different layer link. From the list of layers, select the countries layer.

2. Select the link Create a new style. In the form, select the NaturalEarth workspace
and insert DotDensity as the style name.

3. Replace the code in the textbox with the following snippet:
* {
 fill: symbol("circle");
 stroke: black;
 -gt-fill-random: grid;
 -gt-fill-random-tile-size: 100;
}

:fill {
 size: 2;
 fill: brown;
}

[pop_est < 10E7] {
 -gt-fill-random-symbol-count: 50;
}

[pop_est >= 10E7] [pop_est < 10E8] {
 -gt-fill-random-symbol-count: 350;
}

[pop_est >= 10E8] [pop_est < 50E8] {
 -gt-fill-random-symbol-count: 700;
}

[pop_est >= 50E8] {
 -gt-fill-random-symbol-count: 1000;
}

4. Press the Submit button and switch to the map preview. Your map should look like
the following screenshot:

Chapter 3

101

How it works…
The first part of the CSS code uses the * selector to select all features and set a filling with a
common marker, the circle. If you set the color of the outline to black, then two new element
properties to discuss appear.

The -gt-fill-random property defines the distribution of the circles inside the polygons. The
possible values are none, free, and grid. None disables random distribution, free generates
a completely random distribution, and grid generates a regular grid of positions to a grid.

The -gt-fill-random-tile-size property defines the tile size for the texture of the
filling, as shown in the following code:

* {
 fill: symbol("circle");
 stroke: black;
 -gt-fill-random: grid;
 -gt-fill-random-tile-size: 100;
}

These two properties are vendor-specific parameters that are available only in the GeoServer
rendering engine. Vendor-specific parameters start with -gt-, allowing easy identification of
special effects that are not available in other systems.

Then, you set the size and color for the circles that will be drawn inside the polygons:

:fill {
 size: 2;
 fill: brown;
}

Advanced Styling

102

After this, you start defining the classes for your map. For the first one, you select the
countries with a population lower than 10 million. The number of circles to be drawn
in a tile, in this case, is 50. The code is as follows:

[pop_est < 10E7] {
 -gt-fill-random-symbol-count: 50;
}

For the next class, you select countries with a population among 10 and 100 million.
For them, you want 350 circles to be drawn in each tile. The code is as follows:

[pop_est >= 10E7] [pop_est < 10E8] {
 -gt-fill-random-symbol-count: 350;
}

Similarly, the other two classes are also composed. To fully understand the tile-size concept,
try to zoom in on your map as in this screenshot:

Look at countries like Spain or Ireland, which had just one circle inside their boundaries in
the previous screenshot. As the scale changes, the portion of the tile occupied by a country is
higher and it has the opportunity to reach its limit. By playing with the tile-size value, you can
reach the desired representation.

The code in this recipe uses vendor options only available since the
GeoServer 2.4.2 release. If things on your side do not work, check the
version before anything else.

4
Geoprocessing

In this chapter, we will cover the following recipes:

 f Installing the WPS module

 f Using the WPS process builder

 f Chaining process – selecting features contained in a polygon

 f Chaining process – building your own task

Introduction
Apart from requesting map and data, GeoServer has another great feature: it can be used as
a geoprocessing server. Geoprocessing lets the user perform operations on data, transform
them, and also produce new datasets. The general concept is that the user creates a task by
selecting the input data and operations to be performed on them.

Geoprocessing is a traditional concept in desktop GIS; in fact, this type of software is created
to process spatial data. Later, geoprocessing was migrated to the server side; there are now
several ways a user can ask a server to process a task on data. As with producing maps
and delivering data, GeoServer implements geoprocessing referring to a standard, the WPS
standard defined by OGC.

The OpenGIS® Web Processing Service (WPS) interface standard provides rules to
standardize how inputs and outputs (requests and responses) for geospatial processing
services, such as polygon overlay. The WPS standard also defines how a client can request
the execution of a process and how the output from the process is handled. WPS defines an
interface that facilitates the publishing of geospatial processes and clients' discovery and
binding to those processes. The data required by the WPS can be delivered across a network
or they can be referenced to data already available on the server.

Geoprocessing

104

WPS is a rather detailed standard. If you are curious about it and want to
learn more, have a look at the official documentation:
http://www.opengeospatial.org/standards/wps

In practice, WPS is similar to Simple Object Access Protocol (SOAP) or
XML Remote Procedure Call (XMLRPC). The key benefit of WPS is the
ability to respect spatial data types such as GML and handle the large
data volumes associated with spatial data.
Refer to the 1.0.0 release, which is the current standard and the version
supported by GeoServer.

Installing the WPS module
Unlike the WFS, WMS, and WCS connectors, WPS is not available with the base installation
of GeoServer. You have to download and install it. So, as in the first recipe, you will set up our
GeoServer instance with the WPS module. Please ensure that you download a version of the
extension that exactly matches the GeoServer version you are using.

How to do it…
1. Point your browser to the download page (http://geoserver.org/release/

stable/) and get the archive. Please verify that the version number in the filename
is the same as the GeoServer WAR you installed.

In case you don't remember your GeoServer's release, you
can look for it in the web admin interface. Go to http://
localhost/geoserver/web/?wicket:bookmarkableP
age=:org.geoserver.web.AboutGeoServerPage.

Chapter 4

105

2. Stop your GeoServer instance and extract the contents of the ZIP archive into the
/WEB-INF/lib/ directory in the GeoServer webapp. For example, if you have
deployed the GeoServer WAR file, you should place the WPS extension's JAR files
in CATALINA_HOME/webapps/geoserver/WEB-INF/lib/.

3. After extracting the extension, restart GeoServer in order for the changes to take
effect. Your module is now installed. You can check that a new item is now shown
in the Service Capabilities list in the right-hand side pane:

Geoprocessing

106

How it works…
As with the CSS module in the previous chapter, the installation of WPS is really easy. Do you
wonder what changes were applied to your GeoServer? Apart from the capabilities list, which
is now showing the new operations supported, there is also another important change in
the GeoServer user interface. If you go to the Demos section, you will find a new item: WPS
request builder.

The request builder is a very useful tool to practice and debug WPS requests; we will use it
extensively in this chapter.

Using the WPS process builder
In the previous recipe, you installed the WPS module. It's now time to have a look at what it
offers you and what can be done with its operations. As it is the easiest way, we will use the
WPS request builder to explore geoprocessing operations.

Chapter 4

107

How to do it…
1. Open the GeoServer administrative interface and open the WPS process builder page.

2. The first control in the page is a list containing all processes published by the WPS to
you. If you open it and scroll down, you will see that it is a very long list and there are
several different process grouped in categories.

3. Select the JTS:buffer item. The page loads some controls where you can input
the operation's parameters. The first one is about the geometry on which you
want to apply the buffer operation. Leave the TEXT type in the first list and select the
application/wkt in the other list. This will allow you to insert geometry in a simple and
well readable format. Insert a point geometry, as shown in the following screenshot:

Geoprocessing

108

4. Now switch to distance and insert 0.01. As stated by the Help option, the units have
to be the same you used when specifying the geometry. In this example, you're using
decimal degrees.

5. Leave the other parameters unchanged, scroll down to the bottom of the page, and
press the Execute Process button. GeoServer will show you the result in a new panel.

Chapter 4

109

How it works…
The WPS process builder is an easy way to use geoprocessing operations. It builds the XML
requests for you. This is very useful not only to learn but also to build requests that you may
use in another application.

How does the process builder work? It parses the WPS capabilities and renders the
information contained in it to a form human-readable. Point your browser to http://
localhost/geoserver/ows?service=wps&version=1.0.0&request=GetCapabi
lities, and you will see a long XML containing all the operations supported. The following
fragment shows the basic operations and the info for JTS:buffer:

<ows:OperationsMetadata>
 <ows:Operation name="GetCapabilities">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://localhost/geoserver/wps"/>
 <ows:Post xlink:href="http://localhost/geoserver/wps"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="DescribeProcess">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://localhost/geoserver/wps"/>
 <ows:Post xlink:href="http://localhost/geoserver/wps"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="Execute">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://localhost/geoserver/wps"/>
 <ows:Post xlink:href="http://localhost/geoserver/wps"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
</ows:OperationsMetadata>
…
<wps:Process wps:processVersion="1.0.0">
 <ows:Identifier>JTS:buffer</ows:Identifier>
 <ows:Title>Buffer</ows:Title>
 <ows:Abstract>Returns a polygonal geometry representing the
 input geometry enlarged by a given distance around its
 exterior.</ows:Abstract>
</wps:Process>
…

Geoprocessing

110

So when you select JTS:buffer from the list, a DescribeProcess request is created and
forwarded to GeoServer:

http://localhost/geoserver/ows?service=wps&version=1.0.0&request=Desc
ribeProcess&Identifier=JTS:buffer

The WPS process builder receive an XML like the following and it parses it to build the
interface to populate processing parameters:

…
<ows:Identifier>JTS:buffer</ows:Identifier>
 <ows:Title>Buffer</ows:Title>
 <ows:Abstract>Returns a polygonal geometry representing the
 input geometry enlarged by a given distance around its
 exterior.</ows:Abstract>
 <DataInputs>
 <Input maxOccurs="1" minOccurs="1">
 <ows:Identifier>geom</ows:Identifier>
 <ows:Title>geom</ows:Title>
 <ows:Abstract>Input geometry</ows:Abstract>
 <ComplexData>
 <Default>
 <Format>
 <MimeType>text/xml; subtype=gml/3.1.1</MimeType>
 </Format>
 </Default>
 <Supported>
 <Format>
 <MimeType>text/xml; subtype=gml/3.1.1</MimeType>
 </Format>
 <Format>
 <MimeType>text/xml; subtype=gml/2.1.2</MimeType>
 </Format>
 <Format>
 <MimeType>application/wkt</MimeType>
 </Format>
 <Format>
 <MimeType>application/gml-3.1.1</MimeType>
 </Format>
 <Format>
 <MimeType>application/gml-2.1.2</MimeType>
 </Format>
 </Supported>
 </ComplexData>
…

Chapter 4

111

The described process response contains all information needed to build a proper Process
request. If your input is correct, when you press the Execute Process button, the WPS process
builder sends a POST request with a body similar to this one:

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opengis.net/wps/1.0.0"
 xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:wps="http://www.opengis.net/wps/1.0.0"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:wcs="http://www.opengis.net/wcs/1.1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
 http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
 <ows:Identifier>JTS:buffer</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 <ows:Identifier>geom</ows:Identifier>
 <wps:Data>
 <wps:ComplexData mimeType="application/wkt">
 <![CDATA[POINT(12.33 42.24)]]>
 </wps:ComplexData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>distance</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>0.01</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:RawDataOutput mimeType="text/xml; subtype=gml/3.1.1">
 <ows:Identifier>result</ows:Identifier>
 </wps:RawDataOutput>
 </wps:ResponseForm>
</wps:Execute>

The result of this operation is the XML showed in the previous screenshot.

Geoprocessing

112

Chaining process – selecting features
contained in a polygon

In the previous recipe, you started working with geoprocessing requests. Looking at
the supported operations, you see that it is a very long one. There are several different
operations you can perform on the data. Most of these operations are quite simple, while
in a real-world use case, you often need more complex ones. So, how can you translate
a real-world use case into a task that GeoServer is able to execute? The elegant and
efficient answer is chaining processes.

WPS lets you use the result of an operation as an input to another operation. While this
may seem very simple, it offers you an incredible flexibility and power. By using the built-in
operations as building blocks, you can create very complex geoprocessing tasks. The WPS
process builder will let us try out this powerful idea.

In this recipe, your target is to find all populated places located inside Switzerland.

How to do it…
1. Open the GeoServer administrative interface and open the WPS process builder page.

2. Select gs:Clip from the processes' list. The Input feature collection is the layer from
where we want to extract the data, so select NaturalEarth:populatedplaces.

3. Scroll down to the section where you have to define the clipping geometry. This time,
you won't input a geometry. You're going to use the result from another operation.
To build the chain, select SUBPROCESS from the list.

Chapter 4

113

4. Press the Define/Edit link; a new panel shows up where you can define the parameters
for the new process that will be executed. Select the gs:CollectGeometries operation
and again choose SUBPROCESS as the input for you operation.

5. You're at the last step of this geoprocessing task. Select Define/Edit and select
gs:Query task. The input for this query is the NaturalEarth.EuropeCountries layer.
In the filter section, you can choose the CQL syntax, which is easier to type. You will
then apply filter on the admin field.

CQL was originally used for catalog systems, GeoServer
uses an extension to CQL allowing the full representation of
OGC filters in text form. This extension is called Extended
Common Query Language (ECQL).

Geoprocessing

114

6. Now, press the Apply button to return to the previous operation. You will need to press
it once more in order to apply all the chained operations. Eventually, you will land on the
WPS process builder page with a huge XML code in the clip geometry textbox.

7. Press the Execute Process button, a new panel shows and after a while, it is populated
with the GML code for the populated places list. Your extraction was successful!

Chapter 4

115

How it works…
You created a relatively complex task by using three simple operations exposed by WPS.

Your target is to select all point features inside an area, that is, Switzerland. The first step is to
set the geometry of Switzerland. You can input it by typing a WKT description, of course, but
this may work only for a really simple and small geometry. In a real-world scenario, you'll have
to type hundreds or thousands of vertices, which is also error-prone and time-consuming.

We already have a detailed representation of Switzerland boundaries in the EuropeCountries
layer, so the first step is to filter it with the gs:Query operation.

The query made use of a CQL filter to select Switzerland and resulted in an XML document
containing the description of the extracted feature. The XML included the values of
geometrical and alphanumerical attributes.

You only need the geometry part and in a form suitable to work as an input for a gs:Clip
operation. This transformation is what gs:CollectGeometries performs.

You can try to build a simpler task by just using the gs:Query and gs:CollectGeometries
operations. The result is an XML fragment shown in the following snippet:

<gml:MultiPolygon
 srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:polygonMember>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>8.617437378000076,
 47.757318624000085
 8.62983972100005,47.76279632600007
 …
 8.607618856000105,47.76225372300012
 8.617437378000076,47.757318624000085
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gml:polygonMember>
</gml:MultiPolygon>

This is exactly the input that gs:Clip expects as clip geometry.

You can chain many different processes to fit your requirements. Of course, you can interact
with WPS from an external app as we are going to see in the next recipe.

Geoprocessing

116

Chaining process – building your own task
You have seen how to send WPS request with the process builder, but what if you want to
incorporate WPS capabilities in an external program?

In this recipe, you will create requests with XML and send them to GeoServer using the
Python programming language and a shell utility cURL. Python is a programming language
known for its simplicity and code readability, and is therefore very easy to use when creating
small programs.

The cURL project is a library and a command-line tool that can easily be incorporated in
simple shell scripts (it can also be used as a library by developers).

Both tools allow users to concentrate on what the program should do, rather than be
distracted by a complex syntax.

In this chapter, it is assumed that you have a working installation of
Python and cURL. If you are using a Linux box, it is quite probable you have
both already installed and configured, or you can rely on your distribution
package system to install a recent release.
For Windows, you can get Python from the project site at
http://python.org/.
cURL is available as a source for those who are brave or as a binary
packages from http://curl.haxx.se/download.html.

In order to make your experience with Python more smooth, you will use the Requests library.
It is a powerful HTTP protocol library and you can use it inside any Python program, leveraging
on its powerful objects to interact with the HTTP protocol.

Requests is an open source project started by Kenneth Reitz. You can
download and use it in a very liberal way; it is released under the Internet
Software Consortium (ISC) license used by OpenBSD. You can also fork
Requests on GitHub if you wish to add features.
http://docs.python-requests.org/en/latest/

Chapter 4

117

How to do it…
1. In the WPS request builder page, create a process to extract the road M11 data from

the layer NaturalEarth:roads.

2. Now, instead of executing the request, press the button Generate XML from process
input/output. A panel containing XML code for the request appears. Select the entire
code snippet and save it in a file called query.xml.

3. Open a shell and go to the folder where you saved the query.xml file. Use cURL to
send this request to GeoServer and save the result in an XML file called results.xml.
$ curl -XPOST -H 'Content-type: text/xml' -d @query.xml
 http://localhost/geoserver/wps -o results.xml

4. After a while, the operation terminates. Open the results.xml file with an editor
and look at its content. It should be a GML containing a line feature for the M11
highway, as shown in the following fragment:
<feature:geom><gml:MultiLineString
 srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:lineStringMember><gml:LineString><gml:coordinates>
 0.129189167383835,51.70460802098098
 0.14964133470251184,51.75797266063622
 0.16842512784744912,51.85780385442065
 0.17149353629286423,51.86688366002006
 0.19242696539243198,51.904635000808085
 0.1941740914939558,51.909010107907065

Geoprocessing

118

 0.19534662019648152,51.91370313945523
 0.19576663047798348,51.918463255978914
 0.1954574562429876,51.92808265812053
 0.19491494296271483,51.93195316953409
 0.19387075073509408,51.93577117966247
 0.17697408711884677,51.98231648571944
 0.16511754688062297,52.04905728614528
 0.16157954360658522,52.06182093192203
 0.15678734296417218,52.07415581720307
 0.15397560746856342,52.079397195507646
 0.14318367662442455,52.09364837769804</gml:coordinates>
 </gml:LineString></gml:lineStringMember>
 </gml:MultiLineString></feature:geom>

5. Now, you will do the same with Python. Launch the Python interpreter and load the
requests library, as shown in the following code:
$ python
Python 2.7.3 (default, Sep 26 2013, 20:03:06)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more
 information.
>>> import requests
>>>
>>> myUrl = 'http://localhost/geoserver/wps'
>>> file = open('query.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml'}
>>> resp = requests.post(myUrl, auth=('',''), data=payload,
 headers=headers)
>>> resp.status_code
200

6. Nice! It succeeded, but what if you would like to extract the response body to list it
or to save it in a file? The response.text method is what you are looking for, let's
save the result in a file. The code is as follows:
>>> file = open('results.xml','w')
>>> file.write(resp.text)
>>> file.close()

7. Open the file and check whether the result is the same as with the cURL request.

Chapter 4

119

How it works…
You have seen two examples on how to interact with WPS from an external application. For the
sake of simplicity, we choose Python and cURL, but, of course, you can perform the same task
from any programming or scripting language.

You always need to build an XML request, send it via HTTP to GeoServer, and then parse the
result, which is usually again an XML file.

Some times, it is more useful to return the result in a different form, such
as JSON for web development. Try, for instance, to execute a gs:Query
operation and change the process output type to application/zip.
You will be delivered a ZIP compressed archive containing a shapefile with
the features extracted by your filter.

There is more…
You're not limited in the number of process that can be chained, so let's try a more complex task.

You want to find which features from the populated places layer that are within a 10-km
distance from the M11 highway in England.

We already performed a similar process; this time we need to create a buffer geometry,
which we'll use to select features within a distance from the specified road.

Let's start with it. You need to create a new XML file for the request. You will use again the
process builder. What are the operations required?

The first one is gs:Clip, which extracts features from the NaturalEarth:populatedplaces
layer. So, set the clip geometry to SUBPROCESS and select JTS:Buffer.

The input geometry for the buffer operation is gs:CollectGeometries.

The final operation is gs:Query, which will perform the extraction from the
NaturalEarth:roads layer with the following where clause:

routeraw = 'M11'

Don't forget to set the distance for the buffer operation, both layers contain the LAT-LONG
geometries, so set the distance to 0.3 degrees.

Geoprocessing

120

When you're done, you will have an XML file chaining all processes.

If you need to check your result, the XML code for this operation is
contained in the buffer.xml file in the code bundle of the book.

Save it in the buffer.xml file and execute the process using the following command:

$ curl -XPOST -H 'Content-type: text/xml' -d @buffer.xml http://
localhost/geoserver/wps -o results.xml

If you are successful, your result.xml file should contain several features in a form that
looks like the following snippet:

<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:feature="http://www.naturalearthdata.com/"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml">
 <gml:boundedBy>
 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.
 xml#4326">
 <gml:coord>
 <gml:X>-0.118667702475932</gml:X>
 <gml:Y>51.5019405883275</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>0.11662308615098</gml:X>
 <gml:Y>52.2003912547825</gml:Y>
 </gml:coord>
 </gml:Box>
 </gml:boundedBy>
 <gml:featureMember>
…
 <feature:geom>
 <gml:Point>
 <gml:coord>
 <gml:X>0.11662308615098027</gml:X>
 <gml:Y>52.20039125478246</gml:Y>
 </gml:coord>
 </gml:Point>
 </feature:geom>
 </feature:populatedplaces>
 </gml:featureMember>
 <gml:featureMember>
…
</wfs:FeatureCollection>

5
Advanced

Configurations

In this chapter, we'll cover the following recipes:

 f Upgrading GeoServer

 f Creating a script for automatic startup

 f Optimizing Java

 f Setting up a JNDI connection pool

 f Working with CRS

 f Using the reprojection console

 f Overriding an official EPSG code

 f Setting up GeoWebCache—how to make pre-rendered tiles for high availability

 f Storing configurations in an RDBMS

Introduction
This chapter will introduce some less known features of GeoServer. When you have to deploy
your server in production, a proper configuration is a crucial topic and sound knowledge of
all features makes the difference between a sloppy map server and a fast and reliable one.
Another crucial point is data optimization. In this chapter, we will explore recipes covering
application server configuration and data handling.

For the first item, we will see how to properly configure database connections in an enterprise
environment and how to plan a standard upgrade procedure for our GeoServer installation.
Then, you will learn how to use cache to improve GeoServer capacity. GeoWebCache is a
huge topic and we will explore its configuration in depth in the next chapter.

Advanced Configurations

122

For data handling, we will focus on CRS. I hope you know what they are! However, in my years of
GIS consulting, I am always asked about basic topics when the subject is Coordinate reference
system (CRS). GeoServer uses a standard approach and lets you use and transform data from
any standard CRS or also create a custom one. You just need to learn how to control this power.

Upgrading GeoServer
At the time of writing this book, GeoServer is at its 2.5.0 release, and it's definitely a stable
and mature project. It has a well-defined release schedule with major and minor versions
released at regular intervals.

For detailed and up-to-date information about the next
releases, have a look at http://blog.geoserver.
org/2014/02/26/extended-release-schedule/.

Upgrading frequently is a good thing; with any new release, you get many bugs fixed and new
features included. Some experimental module, often from the community, may be included
in the stable release. If you are running GeoServer in a production site, you have to choose
between the benefits of upgrading it frequently and policies that your customer and/or system
administrators may have enforced.

In any case, you need to fully understand what upgrading GeoServer means and its
consequences on the following:

 f Your service and data

 f Establishing a standard procedure to upgrade your GeoServer installation

In this recipe, you will perform the simple steps required for upgrading.

Please note that in the following steps, I am assuming you are using GeoServer inside a
Tomcat container, which is the most commonly used configuration for a production site.

How to do it…
1. Create a backup copy of your data folder. This is very important for an easy restore if

something goes wrong with updating:
$ sudo tar cvfz /opt/data_dir_geoserver.tar.gz
 /opt/data_dir_geoserver/*

2. Stop the GeoServer instance:
$ sudo service tomcat stop

Chapter 5

123

3. Create a backup copy of your Tomcat installation:
$ sudo tar cvfz /opt/Tomcat7042.tar.gz /opt/Tomcat7042/*

4. Restart GeoServer and undeploy GeoServer from Tomcat using the web interface:
$ sudo service tomcat start

5. Now, you can deploy your new GeoServer to Tomcat:
$ sudo mv /download/geoserver.war /opt/tomcat7042/webapps/.

6. Check whether GeoServer is deployed safely by looking at the log and the web
interface. If there is no critical error, you now have a standard installation pointing
at the sample dataset. Stop Tomcat and edit the web.xml file to point it again to
your custom data directory location:
$ sudo vi /opt/tomcat7042/webapps/geoserver/WEB-INF/web.xml

7. Find the section with the data directory configuration, uncomment it, and edit it
according to your settings:
<context-param>
 <param-name>GEOSERVER_DATA_DIR</param-name>
 <param-value>/opt/data_dir_geoserver/</param-value>
</context-param>

8. Then download, unpack, and install any other plugin and community module you had
in your old installation.

9. Now, you can start your GeoServer again. Check the log and the web interface for
any error.

How it works…
If you followed the previous steps, you can guess that upgrading GeoServer is an easy task.
In fact, it is usually a straightforward and simple operation.

Some problems may arise if you don't follow a regular upgrade process or you jump from a
very old release to the latest one.

Advanced Configurations

124

Detailed information about major changes in the data directory structure that
you should be aware of are usually listed at http://docs.geoserver.
org/stable/en/user/datadirectory/migrating.html.

GeoServer is quite a complex piece of software and sharing the same servlet container with
other applications may result in out-of-memory issues or library conflicts.

The best option is to use a dedicated Tomcat for GeoServer. In some cases, you're not in
control of the deployment environment, and you need to deploy it on the servlet container
where other Java applications are hosted.

Also, for these complex configurations, you may follow the previous steps, but you need to
modify them in order to avoid problems to other applications.

Also, consider that it is impossible to upgrade without an interruption of the service. So, we
should accurately plan for the upgrade operation.

See also
 f The Storing configurations in an RDBMS recipe

Creating a script for automatic startup
On a production server, we need to configure Tomcat as the system service, that is, a program
running at boot without any users' action. If you install Tomcat on Windows, the installer
creates the service for you and sets it for an automatic startup.

Are you wondering how to do it on Linux? In this recipe, we are going to configure your Linux
box for automatic start of services. We will create a script and learn how it works.

How to do it…
1. Open your preferred editor and enter the following lines. Be sure to launch the editor

with sudo, as we are going to create a file in a system folder:
#!/bin/sh
BEGIN INIT INFO
Provides: tomcat
Required-Start: $local_fs $remote_fs $network $syslog
Required-Stop: $local_fs $remote_fs $network $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start/Stop Tomcat v7.0.42
END INIT INFO

Chapter 5

125

#
/etc/init.d/tomcat
#
export JAVA_HOME=/usr/lib/jvm/jre1.6.0_37
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_HOME=/opt/tomcat7042
export JAVA_OPTS="-Djava.awt.headless=true"

case $1 in
 start)
 sh $CATALINA_HOME/bin/startup.sh
 ;;
 stop)
 sh $CATALINA_HOME/bin/shutdown.sh
 ;;
 restart)
 sh $CATALINA_HOME/bin/shutdown.sh
 sh $CATALINA_HOME/bin/startup.sh
 ;;
 *)
 echo "Usage: /etc/init.d/tomcat
 {start|stop|restart}"
 exit 1
 ;;
esac

exit 0

2. The preceding script is simple and contains all of the basic elements you will need to
get going. Pay attention to the path; you should adjust your script according to your
system settings.

3. Call the new file called tomcat and save it in the /etc/init.d folder.

4. Now, set the permissions for your script to make it executable:
$ sudo chmod a+x /etc/init.d/tomcat

5. Let's try to call it and look for any problems:
$ sudo service tomcat

Usage: /etc/init.d/tomcat {start|stop|restart}

6. Try starting Tomcat with the following command:
$ sudo service tomcat start

Advanced Configurations

126

7. Using the following command lines, check whether Tomcat is running:
$ ps -ef | grep java

root 2813 1 99 19:06 pts/0 00:00:24 /usr/bin/java
 -Djava.util.logging.config.file=/opt/Tomcat7042/conf/
 logging.properties -Djava.util.logging.manager=org.apache.
 juli.ClassLoaderLogManager -Djava.endorsed.dirs=/opt/
 Tomcat7042/endorsed -classpath /opt/Tomcat7042/bin/
 bootstrap.jar:/opt/Tomcat7042/bin/tomcat-juli.jar -
 Dcatalina.base=/opt/Tomcat7042 -Dcatalina.home=/opt/
 Tomcat7042 -Djava.io.tmpdir=/opt/Tomcat7042/temp
 org.apache.catalina.startup.Bootstrap start

8. Now we will use the script to stop Tomcat:
$ sudo service tomcat stop

9. Now that you have a working script, the last step is adding to configured services;
we will use update-rc as follows:
$ sudo update-rc.d tomcat defaults

 Adding system startup for /etc/init.d/tomcat ...

 /etc/rc0.d/K20tomcat -> ../init.d/tomcat

 /etc/rc1.d/K20tomcat -> ../init.d/tomcat

 /etc/rc6.d/K20tomcat -> ../init.d/tomcat

 /etc/rc2.d/S20tomcat -> ../init.d/tomcat

 /etc/rc3.d/S20tomcat -> ../init.d/tomcat

 /etc/rc4.d/S20tomcat -> ../init.d/tomcat

 /etc/rc5.d/S20tomcat -> ../init.d/tomcat

10. Reboot your system and check whether Tomcat is running.

How it works…
We created a shell script to start Apache Tomcat. Now, as you boot your Linux machine, Tomcat
will be initialized and all the web application contained will be available for user requests. If
you prefer to manually start and stop Tomcat, the script could be useful for you. Just create it
as described and avoid the last step. You will use the script to start or stop Tomcat from the
command line, that is, sudo service tomcat start or sudo service tomcat stop.

Chapter 5

127

Optimizing Java
A crucial point to properly configure optimal performance is the GeoServer container, Tomcat,
and its JVM setting. Tomcat's default startup script is configured for booting quickly, but, of
course, it can't match all applications' requirements. Tuning your Java runtime parameters
can greatly increase performance. There are many runtime parameters you can set at the JVM
startup. In this recipe, you will set the most effective one on GeoServer performances. Note
that values may vary according to the hardware configuration on your site.

Unfortunately, there is no way to cut corners on the path of tuning
parameters for a Java application. While the options presented in this
chapter have been widely tested on GeoServer and are recommended
by core developers, you should note that best options may vary
depending on your scenario. A value resource to understand how each
parameter works is http://www.oracle.com/technetwork/
java/javase/tech/vmoptions-jsp-140102.html.

How to do it…
In the previous recipe, we created a startup script for the automated startup of GeoServer
on Linux. Now, you will edit the script with proper values for Java runtime parameters. Each
parameter will be briefly described in the following steps:

1. Open the startup file we created in the previous recipe:
$ sudo vi /etc/init.d/tomcat

vi is one the most famous editor on Linux. System administrators and
developers often love it for its flexibility and power. On the other hand, it has
a steep learning curve and newcomers may find its command mode / insert
mode dual nature uncomfortable. On Debian distributions, such as Ubuntu
or Mint, you may find nano a more user-friendly console editor. It goes
without saying that you can use a powerful IDE such as gedit or jEdit if you
can access a desktop environment.

2. Locate the following code line. If you didn't modify the script, it should be line
number 15:
export CATALINA_HOME=/opt/Tomcat7042

3. Insert the following lines of code after it:
HEAP="-Xms2048m -Xmx2048m"

NEW="-XX:NewSize=128m -XX:MaxNewSize=128m"

Advanced Configurations

128

RMIGC="-Dsun.rmi.dgc.client.gcInterval=600000 -
 Dsun.rmi.dgc.server.gcInterval=600000"

PGC="-XX:+UseParallelGC"

PERM="-XX:PermSize=128m -XX:MaxPermSize=128m"

DEBUG="-verbose:gc -XX:+PrintTenuringDistribution"

DUMP="-XX:+HeapDumpOnOutOfMemoryError"

SERVER="-server"

4. Now go to the line, just after the ones you just inserted. We need to add all values you
set in the JAVA_OPTS variable. JVM will read it at startup and use your values:
export JAVA_OPTS="-Djava.awt.headless=true $HEAP $NEW
 $RMIGC $PGC $PERM $DEBUG $DUMP $SERVER"

5. Save the file and restart your Tomcat server.

How it works…
We inserted a few extra parameters to the script. This tunes the JVM environment and helps
to increase your server's performance. Let's explore what we added and why it is important:

 f HEAP: This parameter lets you reserve enough memory for GeoServer. It really
depends on the memory availability on your system. 2 GB, as indicated, is a good
figure. You may want to decrease it if you are hosting on a tiny cloud machine, where
total memory size is limited:
HEAP="-Xms2048m -Xmx2048m"

 f NEWSIZE: This parameter lets you are reserve space for new objects created
by GeoServer. This values shouldn't be more that a fourth of heap; reduce it
proportionally if you need to reduce your heap:
NEW="-XX:NewSize=128m -XX:MaxNewSize=128m"

 f GARBAGE COLLECTOR: This parameter sets the frequency at which the Java
garbage collector, which is used to destroy unused objects, should be run.
Once every 10 minutes, as suggested in the recipe, should be more than enough:
RMIGC="-Dsun.rmi.dgc.client.gcInterval=600000 -
 Dsun.rmi.dgc.server.gcInterval=600000"

 f PGC: You should also add a line to use the parallel garbage collector, which enables
multithreaded garbage collection. This improves performance if more than two cores
are present:
PGC="-XX:+UseParallelGC"

Chapter 5

129

 f PERM: This lets you increase the maximum size of permanent generation (or permgen)
allocated to GeoServer. This is the heap portion where the class bytecode is stored.
GeoServer uses lots of classes and it may exhaust that space quickly leading to out
of memory errors. The code that let's you increase the size of permgen is as follows:
PERM="-XX:PermSize=256m -XX:MaxPermSize=256m"

 f DEBUG: This parameter enables Java to perform tracing. This may greatly help if
things go astray. The code for it is as follows:
DEBUG="-verbose:gc -XX:+PrintTenuringDistribution"

 f DUMP: This parameter sets Java to create a dump of the memory state when your
server ends in an out of memory case (OOM). It does not cost anything unless
triggered, and may be useful to debug tricky bugs. The code that let's you achieve
that is as follows:
DUMP="-XX:+HeapDumpOnOutOfMemoryError"

 f SERVER: This parameter is used for forcing the server JVM. On most Linux systems,
it is there by default. However, having it explicitly set doesn't harm. The code for it is
as follows:
SERVER="-server"

Setting up a JNDI connection pool
Several recipes of this book use data stored in an RDBMS, in fact PostgreSQL, with the
PostGIS spatial extension.

Configuring spatial data from a RDBMS in your GeoServer requires you to create a connection
setting for several parameters from the admin web interface. Whatever database you are
using, it may be useful to configure the connection using the Java Naming and Directory
Interface (JNDI) standard.

For more information about JNDI, refer to the following websites:
 f http://en.wikipedia.org/wiki/Java_Naming_and_

Directory_Interface

 f http://tomcat.apache.org/tomcat-7.0-doc/jndi-
resources-howto.html

 f http://docs.oracle.com/javase/jndi/tutorial/

Advanced Configurations

130

How to do it…
1. Stop your Tomcat using the following command:

$ sudo service tomcat stop

2. Move the JDBC PostgreSQL driver in the lib folder of Tomcat:
$ cd /opt/Tomcat7042/webapps/geoserver/WEB-INF/lib

$ sudo mv postgresql-8.4-701.jdbc3.jar /opt/Tomcat7042/lib/.

3. Now, edit the Tomcat configuration file in order to set up the connection pool:
$ sudo vi /opt/Tomcat7042/conf/context.xml

4. Insert a new resource inside the <Context> tag:
<Context>
 <Resource
 name="jdbc/postgis"
 auth="Container"
 type="javax.sql.DataSource"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://127.0.0.1:5432/gisdata"
 username="gisuser"
 password="gisuser"
 maxActive="20"
 maxIdle="10"
 maxWait="-1"/>
</Context>

5. Now edit the GeoServer web.xml file:
$ sudo vi /opt/tomcat7042/webapps/geoserver/WEB-INF/web.xml

6. Insert a new reference into the JNDI resource, paste the following code snippet at the
end of the file inside the <web-app> tag, and then save and close the web.xml file:
<web-app>
 ...
 <resource-ref>
 <description>PostGIS Datasource</description>
 <res-ref-name>jdbc/postgis</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

Chapter 5

131

7. Start Tomcat.

8. Log in to the GeoServer web interface and create a new data store, select the
PostGIS (JNDI) type, and populate the parameters according to following screenshot:

Advanced Configurations

132

9. Leave the other parameters unchanged and then press the Save button. You will
be presented with a list of spatial tables stored in the database for publishing them
on GeoServer:

How it works…
JNDI allows GeoServer and any Java application in general to access data just using a
predefined name.

In this recipe, you used JNDI to retrieve information about a JDBC data source from the
servlet container.

Using JNDI you can store all configuration information in the container and also the connections
are not replicated. This can prove very useful when you have multiple instances on GeoServer
in the same container, or when GeoServer is deployed along to other applications that need to
access the database. In this case, all the database connections are instantiated and managed
by Tomcat to avoid having any component allocating resources to connect to the data.

Working with CRS
When working with spatial data, you should be aware of its features in order to avoid errors in
its manipulation and representation. Among spatial data characteristics, a very important one
is the Coordinate Reference System (CRS) that was originally used to define the data.

In this recipe, you will learn basic concepts about CRS and how to properly define them
in GeoServer.

Chapter 5

133

How to do it…
1. You need a new dataset for this recipe. We will use Texas counties' boundaries, freely

available from U.S. Census Bureau. Go to http://www.census.gov/cgi-bin/
geo/shapefiles2013/main, the main site to download the data from. Select the
counties and click on the submit button.

2. From the states' list, select Texas and click on the Download button. When prompted,
select a proper location on the filesystem to save the archive.

3. Unzip the archive. You'll find five files; have a look at the tl_2013_48_cousub.prj
file. It contains a Well Known Text (WKT) representation of CRS for the data:
GEOGCS["GCS_North_American_1983",DATA["D_North_American_19
 83",SPHEROID["GRS_1980",6378137,298.257222101]],
 PRIMEM["Greenwich",0],UNIT["Degree",
 0.017453292519943295]]

4. Now, create a new data store in GeoServer for the folder where you extracted the
shapefile, then published it following the usual procedure.

5. In the publishing page, you can see that GeoServer marks the native CRS as unknown.

6. Type EPSG:4269 in the Declared SRS textbox and leave the SRS handling option to
Force declared. Compute the bounding boxes and then publish the layer.

Advanced Configurations

134

How it works…
Coordinate systems build a frame of reference to place objects on earth's surface. There are
two types of coordinate systems:

 f Projected coordinate systems

 f Geographic coordinate systems

Geographic coordinate systems use latitude and longitude as angles measured from the
earth's center. A geographic coordinate system is substantially defined by the ellipsoid used
to model the Earth, and the position of the ellipsoid positioned relatively to the center of the
Earth (called data).

A projected coordinate system is defined on a flat two-dimensional surface. A projected
coordinate system is always based on a geographic coordinate system. Hence, it uses an
ellipsoid and its orientation, which is data.

Projected coordinate systems include a projection method to project coordinates from the
Earth's spherical surface onto a two-dimensional Cartesian coordinate plane.

If you get back to the WKT definition, you can guess what type of CRS you're looking at:

GEOGCS["GCS_North_American_1983",DATA["D_North_American_1983",SPH
 EROID["GRS_1980",6378137,298.257222101]],
 PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]

In fact, it is a geographic coordinate system and uses the North American data of 1983. So
why does GeoServer complain about it being an unknown CRS?

A lot of different CRS exist and in order to properly identify them, standard codes and
representation were established.

When you wrote EPSG:4269, you were using a Spatial Reference System Identifier (SRID).
It is a code to easily reference a CRS. Another, more wordy, way of defining a CRS is a string
containing parameters about projection, ellipsoid, and data. It can be defined using the OGC
WKT representation. The CRS for the geographic NAD83 reference system is as follows:

GEOGCS["NAD83",
 DATA["North_American_Data_1983",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 AUTHORITY["EPSG","6269"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.01745329251994328,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4269"]

Chapter 5

135

The last line contains 4269, the SRID uniquely identifying this CRS. The long form should
also contain the authority, that is, EPSG:4269, but you will often find it indicated only by
the number.

As you may have guessed, this string is a little bit different from the string contained in the
.prj file. That is because the projection file uses a syntax from ESRI, which while widely
adopted, does not strictly follow the standard rules.

While GeoServer manages to identify the CRS, in this case, and properly publish the data,
some issues may arise when you need to convert the data to another CRS; for example,
when you need to visualize data from different CRS in the same map. Whenever GeoServer
fails to identify the CRS, you should always identify the standard code for your data and set
it as Declared CRS.

European Petroleum Survey Group (EPSG) was founded in 1986
by several European oil companies to collect and maintain geodetic
information. In 2005, EPSG was absorbed by OGP (an international forum
of oil and gas producers) that formed the OGP Geomatics Committee.
This committee maintains the registry and publishes it as a public web
interface or a downloadable database. You can find its online reference
at http://epsg-registry.org/.
An easier and accessible source of information can be found at
http://spatialreference.org/.

See also
 f The Using the reprojection console recipe

 f The Overriding an official EPSG code recipe

Using the reprojection console
In the previous recipe, you learned that many CRS exist and data can be converted from one
form to another.

In some cases, CRS, even if they are different, are really very similar. So, for general mapping
purposes, you can consider them identical.

In this recipe, you'll discover a simple, yet very useful, tool that ships with GeoServer: the
reprojection console. It lets you have a look at how coordinates change when you move
data from an SRS to another one.

Advanced Configurations

136

How to do it…
1. From the GeoServer Web admin interface, select the Demos link on the left panel.

2. From the list, select Reprojection console. A new interface is displayed.

3. Insert EPSG:4326 in Source CRS and EPSG:4269 in Target CRS. Then, insert
POINT(-98.5795 39.828175) in Geometry of Source CRS. Click on the Forward
Transformation link; GeoServer calculates the new coordinates for you and fills the
Geometry of Target CRS textbox.

Chapter 5

137

You may be wondering how I chose the coordinates; well, they were
not randomly selected. This point is known as the geometrical center
of contiguous USA; for more information, have a look at http://
en.wikipedia.org/wiki/Geographic_center_of_the_
contiguous_United_States.

4. You may be surprised with values substantially equivalent after transformation, but
there is a valid reason. I will explain what's happening in the How it works… section.

Advanced Configurations

138

5. Now replace the value inside Target CRS with EPSG:4230 and insert
POINT(12.492269 41.890169) in the Geometry of Source CRS textbox. Again
click on the Forward Transformation link and look at the result of the transformation:

How it works…
Controls inside the Reprojection console are quite self-explanatory. Basically, you have to set
two CRS and geometry, and then you can transform the geometry from a CRS to another. As
you may have guessed, the function is reversible and almost all transformations do not have
a direction, so you can operate them both ways, for example, converting from WGS84 to ED50
or vice versa.

When you converted the value from WGS84 to NAD83, the values were
not changed, so was it GeoServer's fault?
In fact, the latitude value was very slightly different from the source, but
this was not really due to conversion. It was just a matter of the internal
representation of numbers.

Chapter 5

139

To answer this question, you should understand how GeoServer transforms coordinates from
a CRS to another. In the Reprojection Console, click on the link just to the right of the Target
CRS textbox.

As the pop up suggests, a new window opens with the full description of the CRS.

Focus on the TOWGS84 row. It contains the parameters to be used in transformation among
WGS84 and NAD83. There are different types of transformations and according to the type,
this could require from a minimum of three to seven parameters. Anyway, in this case, all
parameters are equal to zero. So, GeoServer considers NAD83 and WGS84 identical and no
transformation is applied.

From a geodetic point of view, this isn't always correct; you may need more information about
the data. Indeed, the first definition of WGS84 and NAD83 was fairly identical and differences
among the two ellipsoids were under the meter accuracy, which is far less than the error
introduced by transformations. If you are not going to deal with very accurate geodetic data,
you can go with this simplification without any issue.

Now, check the same parameters for the WGS84 to ED50 transformation.

As you see, in this case, all seven parameters are populated and as you may expect, the
transformation result is quite different.

Advanced Configurations

140

Overriding an official EPSG code
In the previous recipe, you learned how to convert from one CRS to another. This transformation
is also called a data shift operation, as the main difference among the two CRS is the data.

Performing a coordinate transformation is not always as simple as it was in the previous recipe.
Let's dive into this new recipe to discover how things can quickly get far more complicated.

How to do it…
1. Open Reprojection console and insert EPSG:32632 for Source CRS and

EPSG:3003 for Target CRS. Then, insert POINT(510071 4340827) in Source
Geometry and click on the Forward Transformation link. The result is as follows:

2. Take note of these values and open a console. Locate your data directory folder
and switch to the user_projections directory. Create a new file and call it
epsg_overrides.properties:
$ cd /opt/data_dir_geoserver/
$ cd user_projections/
$ sudo vi epsg_overrides.properties

3. Insert the following code inside epsg_overrides.properties and then save it:
3003=PROJCS["Monte Mario / Italy zone 1", GEOGCS["Monte
 Mario", DATA["Monte Mario", SPHEROID["International
 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
 TOWGS84[-168.6, -34, -38.6, -0.374, -0.679, -1.379, -
 9.48],AUTHORITY["EPSG","6265"]], PRIMEM["Greenwich", 0.0,
 AUTHORITY["EPSG","8901"]], UNIT["degree",
 0.017453292519943295], AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH]],
 PROJECTION["Transverse_Mercator",
 AUTHORITY["EPSG","9807"]], PARAMETER["central_meridian",

Chapter 5

141

 9.0], PARAMETER["latitude_of_origin", 0.0],
 PARAMETER["scale_factor", 0.9996],
 PARAMETER["false_easting", 1500000.0],
 PARAMETER["false_northing", 0.0], UNIT["m", 1.0],
 AXIS["Easting", EAST], AXIS["Northing", NORTH],
 AUTHORITY["EPSG","3003"]]

4. Restart GeoServer, go to Reprojection console, and insert the same values from
step 1. Look at the result of the transformation:

How it works…
As you saw, there was a sensible distance between the two points. If you want to calculate
it exactly, you can use the WPS Request builder, which was discussed in Chapter 4,
Geoprocessing. The actual distance between the two points is around 59 meters, which is
not acceptable in a simple map. What went wrong with one of the two transformations and
what did you do to get the new one?

In fact, in many cases, there are several transformations among the two data and you have to
select the proper one to use according to the area of the earth where your data is located.

In this recipe, you're transforming a point located in the area of Cagliari, Italy. The source
coordinates are in the WGS84 data, while the target CRS is the Monte Mario, a local data
widely used in Italy.

Advanced Configurations

142

If you go to the official EPSG database, you will find that among WGS84 and Monte Mario,
there are several different transformations. GeoServer alone, of course, cannot decide which
transformation is the better one for any case. Hence, it always uses a default one. You should
instead, as we're going to do, select the proper transformation according to the area where
your data is located.

As you can see from the information in the preceding screenshot for Sardinia, a major
Italian island where Cagliari is located, the best accuracy is delivered with a different
set of parameters.

To force GeoServer, using these parameters, you can create a custom EPSG code or override
an existing one.

In this recipe, we override the 3003 official EPSG code. To do this, we created a custom
WKT definition and inserted them in the epsg_overrides.properties file. GeoServer
checks whether this file exists at the start and gets any valid EPSG code that is there inside it,
overriding the WKT to the one contained in the EPSG database.

You can insert the code you need here; just ensure that you delete the EPSG code inside the
WKT for the element you are going to customize.

If you compare the original WKT for 3003 and the one you inserted in the overrides
file, there are two differences: the TOWGS84 parameters and the absence of the
AUTHORITY["EPSG","4265"] identification for the geographic CRS Monte Mario.

If you want to add a custom code, you need to insert the same code in the epsg.
properties file in the same folder. In this case, you can't use the 3003 code, but you
have to define a custom code, for instance 103003. Then, you can use your custom code
in GeoServer as the official one.

Chapter 5

143

Setting up GeoWebCache – how to make
pre-rendered tiles for high availability

One of the main uses of GeoServer is that it acts as a map server. It gets your data, applies
styles and other transformations, and outputs pretty maps.

Every time a client requests a map to visualize, GeoServer has to perform a complex set of
operations, load data, apply styles, render the result to a bitmap, and push it back to the
client who performed the request. As your web application gains popularity, more and more
concurrent requests will add and you could run out of resource to satisfy them all.

Having to build the map from scratch every time seems like nonsense, especially if your web
application does not offer the user the possibility to modify styles for layers. In many cases,
the styles are defined once and never, or very rarely, updated. So, your GeoServer instance will
render lots of identical maps.

Indeed, when you are requesting a map to GeoServer, the chances are that the same map
was produced before. We need a procedure to store maps and to retrieve them when required
and match them for equality. This is a more general problem and is not specifically linked to
GeoServer. Several systems to implement map caching exist. Earlier, GeoServer releases didn't
include any caching mechanism and you had to set a software in front of GeoServer intercepting
map requests and forward only those that can't get a hit from the cache to GeoServer.

In this recipe, you will learn how to use the included GeoWebCache.

How to do it…
1. Locate your webapps folder inside the Apache Tomcat installation folder:

$ cd /opt/Tomcat7042/webapps/

2. Go to the geoserver/WEB-INF folder:
$ cd geoserver/WEB-INF/

3. Open the web.xml file and locate the line that contains the following code:
<display-name>GeoServer</display-name>

Advanced Configurations

144

4. There are several other parameters already defined. We will insert a new one to set
the GeoWebCache folder location. You may enter the following code just after the
previous line. The param-value is valorized with a folder path valid on Linux
(use the appropriate syntax on Windows):
<!-- Setting GeoWebCache folder -->
 <context-param>
 <param-name>GEOWEBCACHE_CACHE_DIR</param-name>
 <param-value>/opt/gwc</param-value>
 </context-param>

5. Save the file and close it. Now, go to the Tomcat manager application to reload
GeoServer. All the parameters you changed from the web administration interface
don't need to be reloaded to be effective. Instead, GeoServer reads the web.xml file
on startup, so any change inside it is effective only after an application reload or a
servlet container restarts.

6. Open your browser and go to http://localhost:8080/manager/html/list.
Locate GeoServer in the application list and click on the Reload button on the left.

7. After a while, depending on the complexity of your configuration, a success
message appears.

8. Now, go to the Tile Layers section on the Administration interface of GeoServer and
browse the list to find the NaturalEarth:populatedplaces layer. From the drop-down
list, select a combination of SRS and image format, for example, EPSG:4326/jpeg.
A new map preview will show up in the browser window.

Chapter 5

145

9. Navigate the map by panning and zooming. Each operation will request tiles to
GeoWebCache; since this is the first time you use it, they have to be requested to
GeoServer and stored for use in the future. Now, close the map and click on the
Tile Layers link in the administration interface. When you go to the row showing the
information for the layer, you can see that now there is a number showing the disk
storage used by tiles.

How it works…
You configured the storage location for your tiles. By default, GeoWebCache stores them in
the temp folder located inside the Tomcat installation location. For the production site, it is a
good idea to use a folder on a different device. Also, try to avoid storing tiles on the same disk
where the data is stored.

As map requests reach GeoServer, the size of the cache may grow very fast and can also
fill your disk if you are caching a lot of layers. You may want to set a disk quota to avoid
filesystem corruption.

You may also want to override the default setting of GeoServer that sets all layers to be
cached. Cache is very useful with static data; if you have layers with data source updating very
frequently, having them cached is a waste of time and may produce maps that do not reflect
the actual state of the data.

There are several configuration parameters for GeoWebCache. We will explore them in detail
in Chapter 6, Automating GeoServer Configurations.

Storing configurations in an RDBMS
Since the first few releases, GeoServer stores configuration data in a folder. This is the default
way to persist information and is also the most used method. It allows you to configure a cluster
configuration, with more than one GeoServer instance pointing at the same directory. In order to
avoid data corruption, you just have to disable the integrated GeoWebCache and carefully avoid
editing configuration from more than one GeoServer admin interface at the same time.

For more information about how to configure GeoServer to run multiple
instances in parallel, refer to my previous book, GeoServer's Beginners
Guide, Packt Publishing.

Advanced Configurations

146

Are you wondering whether there is a way to store configuration data in an RDBMS? Indeed,
there is one option—a community module that you may add to your installation.

The JDBCConfig module lets you use a relational database, such as PostgreSQL, to store
GeoServer configurations.

How to do it…
1. First of all, you need to download the JDBCConfig community module to enable

GeoServer to store configurations in a database. Since it is not a released extension,
you won't find it in the stable branch download page at http://geoserver.org/
release/maintain/.

2. In fact, you have to go to the nightly build page at http://ares.boundlessgeo.
com/geoserver/ and select the branch for your version, 2.5.x for instance. Here,
you will be pointed to a repository with the last builds.

3. Select the community-latest folder and download the geoserver-2.5-
SNAPSHOT-jdbcconfig-plugin.zip file.

4. After unpacking the archive, you'll find that it contains a .jar file. Move it to the
<GEOSERVER_HOME>/WEB-INF/lib folder.

Chapter 5

147

5. Now, restart your servlet container. After it restarts, you can find a new folder in the
GeoServer data directory; it is called jdbcconfig and it contains three files:
-rw-r--r-- 1 root root 506 jdbcconfig.properties

-rw-r--r-- 1 root root 1.5K jdbcconfig.properties.h2

-rw-r--r-- 1 root root 2.2K jdbcconfig.properties.postgres

drwxr-xr-x 2 root root 4.0K scripts/

6. Stop Tomcat and open the jdbcconfig.properties.postgres file. Inside, there
are a lot of comments. You only need to set connection parameters according to your
PostgreSQL instance:
enabled=true
initdb=true
initScript=${GEOSERVER_DATA_DIR}/jdbcconfig/scripts/initdb.
 postgres.sql
import=true
jdbcUrl=jdbc\:postgresql\://localhost\:5432/gscatalog
driverClassName=org.postgresql.Driver
username=postgres
password=postgres

7. Save the file and substitute it with the configuration file read by GeoServer:
$ mv jdbcconfig.properties jdbcconfig.properties.bck

$ mv jdbcconfig.properties.postgres jdbcconfig.properties

8. Restart GeoServer. It will now create the database structure and import
configurations into it.

9. Now, check whether the jdbcconfig.properties file was changed by GeoServer.
As GeoServer terminated, the import of your configuration changed the initdb and
import parameters to false so that the database configuration won't be overwritten
at the next restart:
enabled=true
initdb=false
import=false

Advanced Configurations

148

10. You can also check whether all went well by logging in to the GeoServer admin interface
and pointing at the main page. You should see a message similar to this one:

How it works…
You may be already familiar with the GeoServer data directory. It contains a structured set of
XML files, grouped in folders, where all information about GeoServer configuration is stored.

When you installed the JDBCConfig module, the initdb was set to true. So GeoServer
created a set of objects in the database, which are places for the configuration data to be
stored inside. If you use a PostgreSQL client, such as pgAdmin, you may have a look at what
was created inside the database.

pgAdmin is the most famous GUI interface to administer PostgreSQL. It
is released under the open source license and you may find binaries for
the main OS or source code to compile and build for yourself. Consult
http://www.pgadmin.org/ for more information.
If it seems an overkill to install a full admin client just to have a look at
simple data, you may go with psql, the command-line client. It is shipped
with PostgreSQL, so you can use it to avoid any extra installation.

Chapter 5

149

There are three tables where the data is really stored and 16 views that filter data according
to homogeneous categories; layer view, for instance, lets you browse what layers are
configured on your GeoServer:

$ psql -U postgres -d gscatalog

gscatalog=# select name, type, enabled, default_style from layer
 limit 3;

 name | type | enabled | default_style

----------------------+--------+---------+---------------

 GeneralizedCountries | VECTOR | true | 27

 roads | VECTOR | true | 21

 countries | VECTOR | true | 27

Try to change the default style or enabled property of some layers and check how the data
gets updated in the database.

Advanced Configurations

150

What does the value inside the default style field mean? Run another query:

gscatalog=# select name, filename from style where oid = 27;

 name | filename

---------+---------------------

 polygon | default_polygon.sld

So, it is pointing yet to a file that is not stored inside the database.

In fact, the module is at an early stage and while it lets you import a part of your configuration
data, it will not leverage you by using the data directory folder where all information not stored
in the database is actually stored.

6
Automating GeoServer

Configurations

In this chapter, we will cover the following recipes:

 f Managing workspaces with REST

 f Creating and editing data stores with REST

 f Managing layers with REST

 f Uploading and updating styles with REST

 f Managing layers with the GWC REST API

 f Managing cache tiles with the GWC REST API

Introduction
So what is REST? The acronym stands for Representational State Transfer, which defines
client-server interaction in terms of state transition. Each request from the client is a
transition to a new state. The response sent by a server represents the application state
after the transition.

Does it sound too complicated? If you are used to a stateful client server interaction, you
will find REST unconventional. REST is stateless; once you get the general idea, you will
discover it is very simple. A very important thing that you have to keep in mind is that
each request is self-contained and you are never constrained to execute an operations
chain or to open a session before making requests. That being said, it is always possible
to create a complex workflow where several requests are chained to perform a task.

Automating GeoServer Configurations

152

Although REST is commonly considered as a web interface, it is
much more. The term REST was defined by Roy T. Fielding, one of the
main people behind HTTP protocol design, in his PhD thesis. REST
describes how clients and servers interact and do it abstracting from
any communication protocol. You could also develop a REST interface
without HTTP.
You can read the original work of Roy T. Fielding at http://www.ics.
uci.edu/~fielding/pubs/dissertation/top.htm.
A more lightweight approach on REST can be found at http://
en.wikipedia.org/wiki/Representational_State_
Transfer.

The GeoServer REST interface uses HTTP and defines a set of operations and resources.
Operations are derived from HTTP so you can perform the GET, POST, PUT, and DELETE
operations. Resources are the building blocks of GeoServer configuration: workspaces,
data stores, layers, and so on.

In the recipes of this chapter, we will use both cURL and Python to
perform the same operations. Examples are showed in a Linux shell
but cURL and Python syntax are identical in Windows shell.

REST defines a set of operations defined from the HTTP protocol, so how can you interact
with it? Using a browser can be a common way to send HTTP requests to a server; you do
it almost every day when you browse the Internet and you do it with the GeoServer web
interface! However, using a browser is not a simple way to automate tasks; it requires human
interaction. On the contrary, we need something that enables us to build small programs.

There are a lot of different tools that let you interact with REST. You can use programming
languages such as Java or PHP or script languages such as PowerShell in Windows or any Linux
shell. In this chapter, we will see examples in a programming language, Python, and with cURL.
Python is a programming language that leverages on simplicity and code readability, and hence
it is very easy to create small programs with it. cURL is a library and a command-line tool that
can easily be incorporated in simple shell scripts. Both tools allow users to concentrate on what
the program should do without being distracted by a complex syntax.

Chapter 6

153

In this chapter, it is assumed that you have a working installation of Python
and cURL. If you are using a Linux box, it is quite probable you have both
already installed and configured, or you can rely on your distribution package
system to install a recent release.
For Windows, you can get Python from the project site at
http://python.org/.
cURL is available as a source, for the brave, or as binary packages from
http://curl.haxx.se/download.html.

Managing workspaces with REST
Now that you are familiar with REST, it is time to get your hands on GeoServer and have a look
at how its REST interface works.

Basically, it exposes operations to you so that you can manage all configurations' objects.
You will find the same items, for example, layers and styles, which you are used to creating
from the web interface.

In this first recipe, you will start with workspaces and namespaces, which are the logical
groups that contain all other configuration's items.

Getting ready
We stated before that Python's main aims are simplicity and code readability; unfortunately,
this is not always the case. Interacting with REST using standard Python libraries may be
painful and very verbose. Luckily, there is an open source project that solves this problem. The
project produced a library called Requests and I have to say, it is a really appropriate name.

Requests is an open source project started by Kenneth Reitz. You can
download and use it liberally; it is released under the ISC license. You
can also fork it on GitHub and add features. Refer to http://docs.
python-requests.org/en/latest/.

Let's install it!

1. As the first step, you need to download the ZIP or TAR archive containing the
library code:
$ wget https://github.com/kennethreitz/requests/tarball/master
 -O master.tar.gz

 $ ls -al

drwxrwxr-x 2 stefano stefano 4096 Oct 15 08:01 ./

Automating GeoServer Configurations

154

drwxr-xr-x 9 stefano stefano 4096 Oct 15 07:41 ../

-rw-rw-r-- 1 stefano stefano 720204 Oct 15 08:02 master.tar.gz

2. Now extract the archive's content:
$ tar xvfz master.tar.gz

…

3. Enter the new folder and install it in your site packages easily using the following
command lines:
$ cd kennethreitz-requests-07f9a7e

$ sudo python setup.py install

4. The installation is now complete; check it by opening Python and importing the
new library:
$ python

Python 2.7.3 (default, Feb 27 2014, 19:58:35)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more
 information.

>>> import requests

>>> resp = requests.get
 ('http://geoserver.org/display/GEOS/License')

>>> resp.text

u'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
 transitional.dtd"> \n<html
 xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">\n<head>\n <title>License - GeoServer</title> …

You just installed the Requests library as a site package inside your Python installation.
Furthermore, by asking for the license page on the GeoServer site, you also had your first
taste of its power and simplicity. You can now use it inside any Python program, leveraging
on its powerful objects to interact with the HTTP protocol.

Please note that REST operations require authentication, so you need
to supply the user ID and password for the GeoServer administrator
or a user you defined and granted the admin role to. In these recipes,
the default admin/geoserver values are used; replace them with
proper values for your system.

Chapter 6

155

How to do it…
1. Let's start by looking at which workspaces are defined in your GeoServer instance.

This requires a GET operation. The following code snippet shows you the syntax:
$ curl -u admin:geoserver -v -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/workspaces -o
 workspaces.xml

2. As you specified the verbose -v parameter on the command line, a lot of information
is displayed. Note the line reporting the status code of operation to check whether it
was successful:
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0
 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3

> Host: localhost:8080

> Accept: text/xml

>

< HTTP/1.1 200 OK

3. As you can easily see, a new file was created in your local folder and named
workspace.xml; check that its length is not equal to zero. The code is as follows:
$ ll

total 12K

drwxrwxr-x 2 stefano stefano 4.0K May 1 16:10 ./

drwxr-xr-x 20 stefano stefano 4.0K May 1 16:10 ../

-rw-rw-r-- 1 stefano stefano 254 May 1 16:15 workspaces.xml

4. Before actually looking at what is inside it, we'll perform the analog operation
using Python:
$ python

Python 2.7.3 (default, Feb 27 2014, 19:58:35)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more
 information.

>>> import requests

>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces'

>>> headers = {'Accept': 'text/xml'}

>>> resp = requests.get(myUrl,auth=('admin','geoserver'),
 headers=headers)

>>> resp.status_code

200

Automating GeoServer Configurations

156

5. Also, your Python code successfully retrieved information. Now, save it in a file so that
you can compare it with that retrieved by cURL:
>>> file = open('workspaces_py.xml','w')

>>> file.write(resp.text)

>>> file.close()

6. Before opening the files and looking at the XML code, check whether there is any
difference among them:
$ diff workspaces.xml workspaces_py.xml

$

7. As you probably guessed, the two files are identical. Now, open one of them and
examine its content:
<workspaces>
 <workspace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080
 /geoserver/rest/workspaces/NaturalEarth.xml"
 type="application/xml"/>
 </workspace>
</workspaces>

8. Now retrieve details about the workspace with a new request using cURL:
$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/namespaces/NaturalEarth
 -o NaturalEarth.xml

9. To do the same with Python, you can reuse the previous code by just changing the
URL to be requested and the file where the response will be saved:
…

>>> myUrl = 'http://localhost:8080/
 geoserver/rest/namespaces/NaturalEarth'

…

file = open('NaturalEarth_py.xml','w')

…

10. After examining the content, you will find the same information displayed in the
web interface:
<namespace>
 <prefix>NaturalEarth</prefix>
 <uri>http://www.naturalearthdata.com/</uri>
 <featureTypes>

Chapter 6

157

 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/geoserver
 /rest/workspaces/NaturalEarth/featuretypes.xml"
 type="application/xml"/>
 </featureTypes>
</namespace>

11. You are now going to create a new workspace and define a URI for it. You need
to create an XML file with the same structure as the previous response, as in
this example:
<namespace>
 <prefix>MyOrganization</prefix>
 <uri>http://www.someone.org/</uri>
</namespace>

12. Now send the data to GeoServer using cURL:
$ curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -
 d @MyOrganization.xml http://localhost:8080/
 geoserver/rest/namespaces

13. You can do the same with Python; however, change the workspace to be created or
you will receive an HTTP 500 for an internal server error. Indeed you can't create a
duplicated namespace. The code is follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/namespaces'

>>> file = open('MyOrganization.xml','r')

>>> payload = file.read()

>>> headers = {'Content-type': 'text/xml'}

>>> resp = requests.post(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

201

How it works…
In this recipe, you learned how to manage workspaces and namespaces. In GeoServer, a
workspace is a logical object that you can use to group together data stores, feature types,
coverages, and styles.

What's the difference between a workspace and a namespace? You first queried GeoServer
for the NaturalEarth workspace and obtained its properties, which is basically a name:

 <name>NaturalEarth</name>

Automating GeoServer Configurations

158

A namespace associated with a workspace that is in the form of a Uniform Resource
Identifier (URI) and typically a URL always exists. Although you can insert any URL,
it is usually a good choice to select something that is associated with your project.

Workspaces and namespace are very similar and, in fact, you created both by calling the
namespace operation, perhaps with an added trailing identifier indicating the workspace.

The GeoServer REST interface exposes resources for each one of them; there are two
resources that you can use to access these elements:

 f /workspaces

 f /namespaces

On both the resources, GET, POST, PUT, and DELETE operations are defined. This allows you
to view, create, update, and delete workspaces and namespaces.

You have to use GET when you just want to retrieve information. If you want to create a new
object, POST comes in handy. PUT is used to change properties of an existing item, while
DELETE lets you remove items.

As GeoServer REST interface uses the HTTP protocol, you should always look for the return
code. This lets you know whether your request was successfully implemented by the server
or some errors arose.

For a detailed list of operations supported and the HTTP status code
expected, refer to the online GeoServer manual at http://docs.
geoserver.org/stable/en/user/rest/api/index.html.

There's more…
If you changed your mind about the URI assigned to a namespace, you don't need to delete it.
You can change it with a PUT request like this:

$ curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -H
 'Accept: text/xml' -d '<namespace><prefix>MyOrganization</prefix>
 <uri>http://about.me/geoserver</uri></namespace>'
 http://localhost:8080/geoserver/rest/namespaces/MyOrganization

Note that this time we didn't create a static file to submit information. In fact, the -d cURL
parameter accepts the data on the command line as well. While this may be useful for less
data, when your XML code grows, a file is a more appropriate approach.

Chapter 6

159

Going to the web interface, you can see that the URI was actually changed.

The following Python code lets you perform the same operation:

>>> myUrl = 'http://localhost:8080/geoserver/rest/
 namespaces/MyOrganization'

>>> payload = '<namespace><prefix>MyOrganization</prefix>
 <uri>http://about.me/geoserver</uri></namespace>'

>>> headers = {'Content-type': 'text/xml'}

>>> resp = requests.put(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

200

To finish our tour of workspaces operations, we have to try the DELETE option. Let's remove
the MyOrganization workspace:

$ curl -u admin:geoserver -XDELETE -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/workspaces/MyOrganization

Here is the command to do so in Python:

>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
MyOrganization'

>>> headers = {'Accept': 'text/xml'}

>>> resp = requests.delete(myUrl, auth=('admin','geoserver'),
 headers=headers)

>>> resp.status_code

404

Can you guess why we got a 404 error?

404 stands for Not Found error (http://en.wikipedia.org/wiki/HTTP_404). You
probably wondering whether the Python code contains an error.

This is not the case; it is just that we removed the workspace using cURL and obviously, you
can't remove a nonexisting workspace. So, GeoServer complains when we try to remove it.

Automating GeoServer Configurations

160

Creating and editing data stores with REST
Data stores connect GeoServer to your data. You can't use data that is not supported by
GeoServer without a built-in connector or a plugin. Of course, the REST interface supports
all operations on data stores. If you plan to automate GeoServer configurations, it is very
important to understand how data stores can be created and edited.

The resource exposed is in the following form:

/workspaces/<ws>/datastores

Here, ws stands for the workspace on which the data store is linked.

How to do it…
1. As usual, you can use the GET operation to retrieve information about which data

stores are available in the configuration for a specific workspace. Let's retrieve
information in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/
 workspaces/NaturalEarth/datastores'

>>> headers = {'Accept': 'text/xml'}

>>> resp = requests.get(myUrl,auth=('admin','geoserver'),
 headers=headers)

2. Now do the same with cURL:
$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/workspaces/
 NaturalEarth/datastores -o naturalEarthDataStores.xml

3. Let's look at the file content:
<dataStores>
 <dataStore>
 <name>ShapeData</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/rest/workspaces/NaturalEarth/
 datastores/ShapeData.xml" type="application/xml"/>
 </dataStore>
 <dataStore>
 <name>GeneralizedCountries</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080
 /geoserver/rest/workspaces/NaturalEarth/
 datastores/GeneralizedCountries.xml"
 type="application/xml"/>

Chapter 6

161

 </dataStore>
 <dataStore>
 <name>PostGISLocal</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/rest/workspaces/NaturalEarth/
 datastores/PostGISLocal.xml"
 type="application/xml"/>
 </dataStore>
</dataStores>

4. There are three data stores. Now, retrieve information about the PostGIS data source
using cURL:
$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/
 workspaces/NaturalEarth/datastores/PostGISLocal -o
 PostGISLocal.xml

5. Next, retrieve information using Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/
 workspaces/NaturalEarth/datastores/PostGISLocal'

>>> headers = {'Accept': 'text/xml'}

>>> resp = requests.get(myUrl,auth=('admin','geoserver'),
 headers=headers)

>>> file = open(PostGISLocal_py.xml','w')

>>> file.write(resp.text)

>>> file.close()

6. Examine the content:
<dataStore>
 <name>PostGISLocal</name>
 <type>PostGIS</type>
 <enabled>true</enabled>
 <workspace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080
 /geoserver/rest/workspaces/NaturalEarth.xml"
 type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="Connection timeout">20</entry>
 <entry key="port">5432</entry>
 <entry key="passwd">crypt1:
 xbeWyWda+hqHCf456TK0Gg==</entry>

Automating GeoServer Configurations

162

 <entry key="dbtype">postgis</entry>
 <entry key="host">localhost</entry>
 <entry key="validate connections">true</entry>
 <entry key="encode functions">false</entry>
 <entry key="max connections">10</entry>
 <entry key="database">gisdata</entry>
 <entry key="namespace">http://www.naturalearthdata.com/
 </entry>
 <entry key="schema">public</entry>
 <entry key="Loose bbox">true</entry>
 <entry key="Expose primary keys">false</entry>
 <entry key="Max open prepared statements">50</entry>
 <entry key="fetch size">1000</entry>
 <entry key="preparedStatements">false</entry>
 <entry key="Estimated extends">true</entry>
 <entry key="user">gisuser</entry>
 <entry key="min connections">1</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/rest/workspaces/NaturalEarth/datastores/
 PostGISLocal/featuretypes.xml"
 type="application/xml"/>
 </featureTypes>
</dataStore>

7. Prepare an XML file to create a new data store pointing to PostGIS in the new
workspace created in the previous recipe:
<dataStore>
 <name>myPostGIS</name>
 <description>PostGIS local instance</description>
 <type>PostGIS</type>
 <enabled>true</enabled>
 <connectionParameters>
 <entry key="host">localhost</entry>
 <entry key="port">5432</entry>
 <entry key="database"> gisdata</entry>
 <entry key="schema">public</entry>
 <entry key="user">gisuser</entry>
 <entry key="passwd"> gisuser </entry>
 <entry key="dbtype">postgis</entry>
 <entry key="validate connections">true</entry>
 <entry key="Connection timeout">20</entry>

Chapter 6

163

 <entry key="min connections">1</entry>
 <entry key="max connections">10</entry>
 <entry key="Loose bbox">true</entry>
 <entry key="fetch size">1000</entry>
 <entry key="Max open prepared statements">50</entry>
 <entry key="Estimated extends">true</entry>
 </connectionParameters>
 <__default>false</__default>
</dataStore>

8. Now use a cURL call to create your new PostGIS source:
$ curl -u admin:geoserver -XPOST -d @postgis.xml -H 'Content-
 type: text/xml' -H 'Accept: text/xml' http://localhost:8080
 /geoserver/rest/workspaces/MyOrganization/datastores

9. Go to the web interface and you will find the new data store.

10. You can do the same using Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest
 /workspaces/MyOrganization/datastores'

>>> file = open('postgis.xml','r')

>>> payload = file.read()

>>> headers = {'Content-type': 'text/xml','Accept':
 'text/xml'}

>>> resp = requests.post(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

201

How it works…
The REST syntax is not different from that used in the previous recipe. What's changed is that
the objects that you're using and data stores are more complicated objects than workspaces,
so you found a lot of information in the XML file.

Automating GeoServer Configurations

164

If you're wondering which request will get you a list of all data
stores configured on GeoServer, I am sorry to tell you it does not
exist. You have to query each workspace. You can request the
workspace's list and iterate on items to retrieve all data stores.

You have to remember that data stores are heterogeneous. The connection parameter
tag may contain very different elements, depending on the data store type, for example,
a shapefile data store won't have a user ID, password, TCP port, and similar properties
that only make sense when connecting to a database.

Try to query the BlueMarble data store we created in Chapter 1, Working with Vectors:

$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/workspaces
 /NaturalEarth/coveragestores/BlueMarble -o BlueMarble.xml

Please note that in the URL, we send the request to coveragestores and not datastores;
the latter is only for vector data. The raster data stored in the filesystem is included in the
coveragestores collection.

Examining the result, you can note that there is a reference to the actual raster file and
its location:

<coverageStore>
 <name>BlueMarble</name>
 <type>GeoTIFF</type>
 <enabled>true</enabled>
 <workspace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/geoserver/
 rest/workspaces/NaturalEarth.xml" type="application/xml"/>
 </workspace>
 <__default>false</__default>
 <url>file:data/blueMarble/blueMarble.tiff</url>
 <coverages>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/rest/workspaces/NaturalEarth
 /coveragestores/BlueMarble/coverages.xml"
 type="application/xml"/>
 </coverages>
</coverageStore>

Chapter 6

165

There's more…
In this recipe, you created a data store for a PostGIS database; of course, you can also create
it for a simple shapefile. In this case, you can also deliver the data with a REST operation.

We will use the coastline shapefile from the Natural Earth site; locate it at http://www.
naturalearthdata.com/downloads/110m-physical-vectors/, save the ZIP file
on your filesystem, and then execute the following Python code:

>>> myUrl = 'http://localhost:8080/geoserver/
 rest/workspaces/NaturalEarth/datastores/Coastline/file.shp'

>>> file = open('ne_110m_coastline.zip','rb')

>>> payload = file.read()

>>> headers = {'Content-type': 'application/zip'}

>>> resp = requests.put(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

201

You loaded the file and sent it to GeoServer, creating a new data store for it. Now look at the
web interface and list the data stores; there is a new one.

Of course, a new layer is listed.

Automating GeoServer Configurations

166

Data stores that work with multiple files, such as the shapefile store,
must be sent as a ZIP archive. When uploading a standalone file, set
Content-type appropriately based on the file type. If you are loading
a ZIP archive, set Content-type to application/zip.

Managing layers with REST
In the previous recipe, you loaded a shapefile with REST. A data store and a layer were created
and your data is now published on WMS. If you go to the layer preview page and select the
ne_110m_coastline layer layer, you should see a map like this:

A style is applied to the data and all mandatory layer parameters were compiled by GeoServer
when you issued the data store creation request.

While this is enough to get data properly configured on your server, in a real-world case your
automation workflow should provide more control over data publication. The GeoServer REST
interface gives you control over the layer item. In this recipe, you will see how to create a new
layer and edit an existing one.

Chapter 6

167

How to do it…
1. Let's retrieve information from the ne_110m_coastline layer:

$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/
 layers/ne_110m_coastline -o ne_110m_coastline.xml

2. Now let's perform the same operation using Python:
>>> myUrl = 'http://localhost:8080/geoserver
 /rest/layers/ne_110m_coastline'

>>> headers = {'Accept': 'text/xml'}

>>> resp = requests.get(myUrl, auth=('admin','geoserver'),
 headers=headers)

3. Open the XML file containing details about the layer:
<layer>
 <name>ne_110m_coastline</name>
 <type>VECTOR</type>
 <defaultStyle>
 <name>line</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/rest/styles/line.xml"
 type="application/xml"/>
 </defaultStyle>
 <resource class="featureType">
 <name>ne_110m_coastline</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/rest/workspaces/NaturalEarth/
 datastores/Coastline/featuretypes/
 ne_110m_coastline.xml" type="application/xml"/>
 </resource>
 <attribution>
 <logoWidth>0</logoWidth>
 <logoHeight>0</logoHeight>
 </attribution>
</layer>

Automating GeoServer Configurations

168

4. There is a link to the feature type used by this layer; retrieve information about it
using cURL:
$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/rest/workspaces
 /NaturalEarth/datastores/Coastline/featuretypes/
 ne_110m_coastline.xml -o ne_110m_coastline_ft.xml

5. As usual, you can do the same operation using the Python code:
>>> myUrl = 'http://localhost:8080/geoserver/rest
 /workspaces/NaturalEarth/datastores/
 Coastline/featuretypes/ne_110m_coastline.xml'

>>> headers = {'Accept': 'text/xml'}

>>> resp = requests.get(myUrl, auth=('admin','geoserver'),
 headers=headers)

6. The XML file contains a lot more information than that of the corresponding layer.
Here, we have an extract; look at the file you extracted for a full view:
<featureType>
 <name>ne_110m_coastline</name>
 <nativeName>ne_110m_coastline</nativeName>
 <namespace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/geoserver
 /rest/namespaces/NaturalEarth.xml"
 type="application/xml"/>
 </namespace>
 <title>ne_110m_coastline</title>
 <keywords>
 <string>ne_110m_coastline</string>
 <string>features</string>
 </keywords>
 <nativeCRS>
…
</nativeCRS>
 <srs>EPSG:4326</srs>
 <nativeBoundingBox>
 <minx>-180.0</minx>
 <maxx>180.00000044181039</maxx>
 <miny>-85.60903777459774</miny>
 <maxy>83.64513</maxy>
 <crs>
…
 </crs>
 </nativeBoundingBox>

Chapter 6

169

 <latLonBoundingBox>
…
 </latLonBoundingBox>
 <projectionPolicy>NONE</projectionPolicy>
 <enabled>true</enabled>
 <store class="dataStore">
 <name>Coastline</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/geoserver
 /rest/workspaces/NaturalEarth/datastores
 /Coastline.xml" type="application/xml"/>
 </store>
 <maxFeatures>0</maxFeatures>
 <numDecimals>0</numDecimals>
 <attributes>
 <attribute>
 <name>the_geom</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>com.vividsolutions.jts.geom.
 MultiLineString</binding>
 </attribute>
…
 </attributes>
</featureType>

7. Now you should change the layer, using different styles to render coastline features.
Prepare an XML file containing the following code and name it changeStyle.xml:
<layer>
 <defaultStyle>
 <name>simple_roads</name>
 </defaultStyle>
 <enabled>true</enabled>
</layer>

8. Then, make a PUT request to change configuration for the layer:
$ curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -d
 @changeStyle.xml http://localhost:8080/geoserver
 /rest/layers/ne_110m_coastline

Automating GeoServer Configurations

170

9. To perform the same action with Python, use the following code snippet:
>>> myUrl = 'http://localhost:8080/geoserver/
 rest/layers/ne_110m_coastline'

>>> file = open('changeStyle.zip','r')

>>> payload = file.read()

>>> headers = {'Content-type': 'application/zip'}

>>> resp = requests.put(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

200

10. Now, go to the web interface and check the publishing properties for the
coastline layer.

How it works…
Layers and feature types are strictly linked and some users get confused about them. If you
check the Layer properties in the GeoServer web interface, you'll find a lot of information.
However, when you retrieved the information for the coastline layer, the response contained
only a few of the properties. Most of the missing information was in the response to your
request for feature type:

$ curl -u admin:geoserver -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/
Coastline/featuretypes/ne_110m_coastline.xml -o ne_110m_coastline_ft.xml

A feature type is a vector dataset configured on GeoServer, while a layer is its representation.
The former contains most of the details about the data.

You may have more layers pointing to the same feature type if you want to represent them in
different ways, for instance using different styles.

Chapter 6

171

There's more…
As most of the vector datasets are contained in the feature type, you need to send a request
to it if you want to update layer properties.

You can change the keyword and layer name and description by issuing a PUT request.

First of all, you need to prepare an XML file with the desired changes. You will again use the
coastline layer, giving it a more concise name and a proper description:

<featureType>
 <name>Coastline</name>
 <nativeName>ne_110m_coastline</nativeName>
 <title>Coastline</title>
 <keywords>
 <string>Coastline</string>
 <string>Natural Earth Data</string>
 </keywords>
 <abstract>Ocean coastline, including major islands. Coastline is
 matched to land and water polygons. Courtesy of Natural Earth
 project</abstract>
 <enabled>true</enabled>
</featureType>

Then, you will send it to GeoServer:

$ curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -d
 @coastline.xml http://localhost:8080/geoserver/rest/
 workspaces/NaturalEarth/datastores/Coastline
 /featuretypes/ne_110m_coastline

Alternatively, the same using Python:

>>> myUrl = 'http://localhost:8080/geoserver/rest/
 workspaces/NaturalEarth/datastores/
 Coastline/featuretypes/ne_110m_coastline'

>>> file = open('coastline.xml','r')

>>> payload = file.read()

>>> headers = {'Content-type': 'application/zip'}

>>> resp = requests.put(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

200

Automating GeoServer Configurations

172

If your data is not static, the bounding boxes should be recalculated. If you add new features
that are put of the bounding box that was calculated when you first added the layer on
GeoServer, you can't see them in the map until you inform GeoServer of the extent.

Again you need a PUT request, a very simple one, as in this case you don't need to send any
XML code:

$ curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -d
 @coastline.xml http://localhost:8080/geoserver/rest/
 workspaces/NaturalEarth/datastores/Coastline/
 featuretypes/ne_110m_coastline&recalculate=nativebbox,latlonbbox

Uploading and updating styles with REST
In Chapter 3, Advanced Styling, you learned a lot about styles and SLD. You used a very powerful
extension, the CSS module, to create styles avoiding the complexity of SLD syntax. There are
many options to create SLD, and some users prefer using external tools to manage them.

Whatever you prefer to use to create and edit your styles in order to configure a proper
visualization, you should upload them on GeoServer and publish them.

REST offers you two resources to manage styles:

 f /styles

 f /workspaces/<ws>/styles

The former points to styles not associated to a workspace while the latter contains the
workspaces with associated styles.

Adding a new style is a routine task if you are going to publish data with REST. We will retrieve
an existing style from GeoServer, update it, and then upload it to GeoServer as a new one.

How to do it…
1. We will use the Capitals style as the template for our new style. Send a request to

GeoServer to retrieve it and save to the CapitalsBlue.xml file:
$ curl -u admin:geoserver -XGET -H 'Accept:
 application/vnd.ogc.sld+xml' http://localhost:8080/
 geoserver/rest/styles/Capitals -o CapitalsBlue.xml

2. You can also use the following commands in Python:
>>> myUrl = 'http://localhost:8080/geoserver
 /rest/styles/Capitals'

>>> headers = {'Accept':'application/vnd.ogc.sld+xml'}

Chapter 6

173

>>> resp = requests.get(myUrl, auth=('admin','geoserver'),
 headers=headers)

>>> file = open('CapitalsBlue.xml','w')

>>> file.write(resp.text)

>>> file.close()

3. Now open the CapitalsBlue.xml file. Unless you use an editor that can format
XML in a more readable way, you will see just one line containing all the code.
Locate this code fragment:
</sld:LabelPlacement>
<sld:Fill>
 <sld:CssParameter name="fill">#ffffff</sld:CssParameter>
</sld:Fill>
</sld:TextSymbolizer>

4. Then, edit the font and fill parameters to change the font color from black
to blue:
<sld:Fill>
 <sld:CssParameter name="fill">#0000ff</sld:CssParameter>
</sld:Fill>

5. Go to the beginning of the code and replace the old name with this new one:
 <sld:Name>CapitalsBlue</sld:Name>

6. Save the file and close it. Now, we will create a new style with this file. Send a POST
request to create CapitalsBlue style:
$ curl -u admin:geoserver -XPOST -H 'Content-type:
 application/vnd.ogc.sld+xml' -d @CapitalsBlue.xml
 http://localhost:8080/geoserver/rest/styles

7. Alternatively, do the same operation in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/styles'

>>> file = open('CapitalsBlue.xml','r')

>>> payload = file.read()

>>> headers = {'Content-type':
 'application/vnd.ogc.sld+xml','Accept': 'text/xml'}

>>> resp = requests.post(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

201

Automating GeoServer Configurations

174

How it works…
You are now quite used to the REST syntax, so nothing seems too strange in the execution
steps. You are probably wondering why we used a different header:

$ curl -u admin:geoserver -XGET -H 'Accept:
 application/vnd.ogc.sld+xml'

This format is to tell GeoServer we actually want the SLD format. If you specify text/xml, as
in the previous recipes, you will get only a description of what the SLD is and not the rendering
rules. Send the request modified as shown here:

$ curl -u admin:geoserver -XGET -H 'Accept:
 text/xml'http://localhost:8080/geoserver/rest/styles/Capitals -o
 CapitalsBlue.xml

Then, open the CapitalsBlue.xml file:

<style>
 <name>Capitals</name>
 <sldVersion>
 <version>1.0.0</version>
 </sldVersion>
 <filename>Capitals.sld</filename>
</style>

This is not really what you need to inspect drawing rules and then edit them!

Managing layers with the GWC REST API
You were already in contact with cached layers in Chapter 5, Advanced Configurations.
You had a quick tour of GeoWebCache (http://geowebcache.org/), which is a Java
open source project. Like any caching system, it acts as a proxy between the clients and the
map server. There is a standalone version that works with any map server being compliant
with the WMS standard.

Indeed, GeoWebCache uses the WMS syntax to retrieve tiles from the map server. It exposes
the tiles in several ways, with the GeoServer integrated version you can use:

 f Web Map Service (WMS)

 f WMS Tiling Client Recommendation (WMS-C)

 f Web Map Tiling Service (WMTS)

 f Tile Map Service (TMS)

Chapter 6

175

You used the integrated version of GeoWebCache and it is a good choice as there are many
advantages in using the internal one. You can use a single interface to administer both
GeoServer and GeoWebCache, and you don't have to use a custom URL or a special endpoint.
Also, all the layers you publish on GeoServer are automatically configured as cached. You just
have to set the caching properties on layers and layer groups.

Of course, you can use REST operations to control GeoWebCache settings and behavior.

How to do it …
1. First of all, have a look at what layers are cached in your GeoServer. As usual,

we start with cURL:
$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/gwc/rest/layers -o
 gwc_layers.xml

2. Then perform the same operation with Python:
>>> myUrl = 'http://localhost:8080/geoserver/gwc/rest/layers'

>>> headers = {'Accept':'text/xml'}

>>> resp = requests.get(myUrl, auth=('admin','geoserver'),
 headers=headers)

>>> file = open('gwc_layers_py.xml','w')

>>> file.write(resp.text)

>>> file.close()

3. Now examine the result:
<layers>
 <layer>
 <name>NaturalEarth:Coastline</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="alternate" href="http://localhost:8080/
 geoserver/gwc/rest/layers/Natur
 alEarth%3ACoastline.xml" type="text/xml"/>
 </layer>
…
</layers>

4. Now, retrieve the information of a single layer:
$ curl -u admin:geoserver -XGET -H 'Accept: text/xml'
 http://localhost:8080/geoserver/gwc/
 rest/layers/NaturalEarth:Coastline.xml -o gwc_coastline.xml

Automating GeoServer Configurations

176

5. Again, do the same with Python:
>>> myUrl = 'http://localhost:8080/geoserver/gwc/
 rest/layers/NaturalEarth:Coastline.xml'

>>> headers = {'Accept':'text/xml'}

>>> resp = requests.get(myUrl, auth=('admin','geoserver'),
 headers=headers)

>>> file = open('gwc_coastline_py.xml','w')

>>> file.write(resp.text)

>>> file.close()

6. Open the XML file retrieved. There is a lot of information:
<?xml version="1.0" encoding="UTF-8"?>
<GeoServerLayer>
 <id>LayerInfoImpl--5b67a624:145e68c7cdc:-7ffc</id>
 <enabled>true</enabled>
 <name>NaturalEarth:Coastline</name>
 <mimeFormats>
 <string>image/jpeg</string>
 <string>image/png</string>
 </mimeFormats>
 <gridSubsets>
 <gridSubset>
 <gridSetName>EPSG:900913</gridSetName>
 <extent>
 <coords>
 <double>-2.003750834E7</double>
 <double>-2.003750834E7</double>
 <double>2.003750834E7</double>
 <double>1.8440002895114224E7</double>
 </coords>
 </extent>
 </gridSubset>
 <gridSubset>
 <gridSetName>EPSG:4326</gridSetName>
 <extent>
 <coords>
 <double>-180.0</double>
 <double>-85.60903777459774</double>
 <double>180.0</double>
 <double>83.64513</double>
 </coords>
 </extent>
 </gridSubset>

Chapter 6

177

 </gridSubsets>
 <metaWidthHeight>
 <int>4</int>
 <int>4</int>
 </metaWidthHeight>
 <expireCache>0</expireCache>
 <expireClients>0</expireClients>
 <parameterFilters>
 <styleParameterFilter>
 <key>STYLES</key>
 <defaultValue></defaultValue>
 </styleParameterFilter>
 </parameterFilters>
 <gutter>0</gutter>
</GeoServerLayer>

7. Now you will modify the layer, removing the grid set in CRS EPSG:900913. From the
XML file saved, remove the following lines:
 <gridSubset>
 <gridSetName>EPSG:900913</gridSetName>
 <extent>
 <coords>
 <double>-2.003750834E7</double>
 <double>-2.003750834E7</double>
 <double>2.003750834E7</double>
 <double>1.8440002895114224E7</double>
 </coords>
 </extent>
 </gridSubset>

8. Save the file and send this request to update the layer configuration:
$ curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -
 d @gwc_coastline.xml http://localhost:8080/geoserver/
 gwc/rest/layers/NaturalEarth:Coastline.xml

9. Again, do the same with the following Python code:
>>> myUrl = 'http://localhost:8080/geoserver/
 gwc/rest/layers/NaturalEarth:Coastline.xml'

>>> file = open('gwc_coastline.xml','r')

>>> payload = file.read()

>>> headers = {'Content-type': 'text/xml','Accept':
 'text/xml'}

Automating GeoServer Configurations

178

>>> resp = requests.post(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

200

10. Check the configuration on the web interface.

How it works …
Configuring cached layers is really similar to performing operations on GeoServer layers. In the
web interface, the configuration is indeed perfectly integrated and only on the REST interface
you have a different entry point for your operations.

Please note that, by default, when you add a new layer on GeoServer, it is also automatically
added to the GeoWebCache configuration.

In the first request of this recipe, you retrieved the layers' list and it should contain all layers
unless you changed the GeoServer's default behavior.

However, any action you perform on a layer from the GWC REST interface does work on the
uncached layer. Let's see, for instance, what happens when we delete the coastline layer
using the GWC REST interface.

As usual, we firstly used cURL to do it:

$ curl -u admin:geoserver -XDELETE -H 'Content-type: text/xml'
 http://localhost:8080/geoserver/gwc/rest/
 layers/NaturalEarth:Coastline.xml

Then switched to Python code:

>>> myUrl = 'http://localhost:8080/geoserver/gwc/
 rest/layers/NaturalEarth:Coastline.xml'

>>> headers = {'Content-type': 'text/xml'}

>>> resp = requests.delete(myUrl, auth=('admin','geoserver'),
 headers=headers)

>>> resp.status_code

200

Chapter 6

179

If you now open the layer configuration and go to the Tile Caching tab, you can see it's empty.

Managing cache tiles with the GWC
REST API

Managing the cache is a more complex task than just managing the layer configuration. Cache
is composed of map tiles that you may create at once by seeding the layer or waiting for the
users to issue GetMap requests that have gone through the GeoWebCache and are stored as
maps tile in the GeoWebCache repository.

The GWC REST interface supports the seeding, truncating, and managing tiles of cached layers.

How to do it…
1. Create a new XML file, insert the following code, and save it as seedCoastline.xml:

<seedRequest>
 <name>NaturalEarth.Coastline</name>
 <srs>
 <number>4326</number>
 </srs>
 <zoomStart>1</zoomStart>
 <zoomStop>8</zoomStop>
 <format>image/png</format>
 <type>seed</type>
 <threadCount>4</threadCount>
</seedRequest>

Automating GeoServer Configurations

180

2. Send a cURL request to start seeding for the NaturalEarth:Coastline layer:
$ curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -
 d @seedCoastline.xml http://localhost:8080/geoserver/
 gwc/rest/seed/NaturalEarth:Coastline.xml

3. Alternatively, do the same operation in Python:
>>> myUrl = 'http://localhost:8080/geoserver/
 gwc/rest/seed/NaturalEarth:Coastline.xml'

>>> file = open('seedCoastline.xml','r')

>>> payload = file.read()

>>> headers = {'Content-type': 'text/xml','Accept':
 'text/xml'}

>>> resp = requests.post(myUrl, auth=('admin','geoserver'),
 data=payload, headers=headers)

>>> resp.status_code

200

4. Now, go to the tile layers list and press the Seed/Truncate link for the
NaturalEarth:Coastline layer. You should see four listed processes that
are calculating tiles for you, as shown in the following screenshot:

How it works…
Map tiles need to be created and then saved on filesystems, and sometimes may require a lot
of disk space and a lot of time.

Chapter 6

181

To check the status of the seed operation, you can use the web interface as in the previous
screenshot, but we prefer to leverage on REST. The code is as follows:

$ curl -u admin:geoserver -XGET
 http://localhost:8080/geoserver/gwc/rest
 /seed/NaturalEarth:Coastline.json -o seedingProcesses.json

This returns a list of running process for a specific layer:

{"long-array-array":[[3072,167596,581,7,1],
 [4592,167596,374,8,1],[5840,167596,290,9,1],
 [2640,167596,684,10,1]]}

The JSON file contains an array of arrays. Each array corresponds to a single seeding/truncating
task. The meaning of each long value in each thread array is shown as follows:

[tiles processed, total number of tiles to process, estimated
 number of second to end, Task ID, Task status]

The task status value returned will be one of the following:

 f -1 = ABORTED

 f 0 = PENDING

 f 1 = RUNNING

 f 2 = DONE

So, in our case, we have something like this:

Tiles processed Total tiles to process Seconds to the end Task ID Task status
3072 167596 581 7 RUNNING

4592 167596 374 8 RUNNING

5840 167596 290 9 RUNNING

2640 167596 684 10 RUNNING

Of course, it is always possible to totally halt the seeding process with a simple GET request. It
can be issued to a single layer, as shown in the following code snippet. This halts all processes
running for the NaturalEarth.Coastline layer:

$ curl -u admin:geoserver -XGET -d 'kill_all=all'
 http://localhost:8080/geoserver/gwc/rest/
 seed/NaturalEarth:Coastline

Automating GeoServer Configurations

182

You have several processes that are creating tiles for many layers. If you need to stop them all,
the REST interface gives you an operation to stop them all. Regardless of the layer, you shall
use /gwc/rest/seed as the entry point. The following line of code halts all seeding and
truncating processes on the server:

$ curl -u admin:geoserver -XGET -d 'kill_all=all'
 http://localhost:8080/geoserver/gwc/rest/seed

You can also erase all tiles for a layer; this may be useful when your data needs to be updated
and the cache is no more useful. Just prepare an XML file similar to that previously prepared for
the seeding and insert truncate as the operation type, as shown in the following example:

<seedRequest>
 <name>NaturalEarth.Coastline</name>
 <srs>
 <number>4326</number>
 </srs>
 <zoomStart>1</zoomStart>
 <zoomStop>8</zoomStop>
 <format>image/png</format>
 <type>truncate</type>
 <threadCount>4</threadCount>
</seedRequest>

Then, send it to GeoServer and all processes will be halted:

$ curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -d
 @seedStopCoastline.xml http://localhost:8080/geoserver/gwc
 /rest/seed/NaturalEarth:Coastline.xml

7
Advanced

Visualizations

In this chapter, we'll cover the following recipes:

 f Adding time to WMS maps

 f Using the WMS animator

 f Keyhole Markup Language styling

 f Using z-order creatively

 f Using transparency creatively

 f Using symbology encoding

Introduction
Advanced Visualization is a key factor in producing beautiful maps. Here, beautiful maps
are intended not just as the art of producing something that other people consider nice to
look at. Maps are your way to communicate your interpretation of data to others.

Spatial data are not objective by nature; all data behaves the same with regards to this
aspect. Maps are not a specular representation of the real world. They're propositions,
models of the world, and the clearer and readable you design your model, the more
understandable it'll appear to other people.

We already had a tour of how to style data in Chapter 3, Advanced Styling. This chapter follows
the work you started there and shows you other topics relevant to representing your spatial
data, as usual using GeoServer.

Advanced Visualizations

184

Adding time to WMS maps
Most users are comfortable with static 2D data, where a shape is represented on a surface
and is invariant throughout time.

While most maps are built with this type of data, GeoServer offers you the possibility to
explore even the third spatial dimension, which is elevation.

Besides, GeoServer can also publish data that changes over time. In this recipe, we'll see
how to use data that changes over time using a set of points mimicking the path of a vehicle
on a highway.

Getting ready
For this recipe, we need some new data. We will create a new dataset on PostGIS with data
simulating a vehicle tracking path. It contains a set of points using timestamp.

First, we need to create a repository for the data. Execute the following SQL code to create
a table:

CREATE TABLE vehicletrack (
 gid integer NOT NULL,
 "time" timestamp without time zone,
 geom geometry(Point,32633)
);

CREATE SEQUENCE vehicletrack_gid_seq
 START WITH 1
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1;

ALTER SEQUENCE vehicletrack_gid_seq OWNED BY vehicletrack.gid;

ALTER TABLE ONLY vehicletrack ALTER COLUMN gid SET DEFAULT
 nextval('vehicletrack_gid_seq'::regclass);

ALTER TABLE ONLY vehicletrack
 ADD CONSTRAINT vehicletrack_pkey PRIMARY KEY (gid);

CREATE INDEX vehicletrack_geom_gist ON vehicletrack USING gist
 (geom);

Chapter 7

185

You can find the preceding code in the ch07_vehicleTable.sql
file in the code bundle.

Now, we can insert the data. Use the ch07_vehiclePoints.sql file, which you can
download from this book's site and execute it, as shown in the following statement:

$ psql -U gissuser -d gisdata

psql (9.3.1)

Type "help" for help.

gisdata=> \i ch07_vehiclePoints.sql

Now, we need to publish the layer on GeoServer. The publication workflow follows the
ordinary flow. Please note the Dimensions tab. The Time flag is enabled, as shown in
the following screenshot:

GeoServer has a proper attribute, so it gives you an option to use it to enable the time for
the layer. After you flag it, three more controls appear. From the Attribute list, select time.
We have no End Attribute value; this is the case when you have a period, that is, a range
of validity time for each feature. In the Presentation list, select the List value.

Advanced Visualizations

186

How to do it…
1. Take the three files with the .html extension and place them in the ROOT folder

under <CATALINA_HOME>/webapps on your Tomcat.

2. Open your browser and point it to the following URL to send GeoServer a request for a
map containing an OpenStreetMap basemap and your new layer:
http://localhost:8080/ch07_timeWMS.html

3. You should see a map that looks like the following screenshot:

4. The vehicletrack layer is shown in the layers list but no features are represented
on the map. Now try the following URL:
http://localhost:8080/ch07_timeWMSALL.html

Chapter 7

187

5. This time you can see the sample points tracking the position of the vehicle on the
trip, as shown in the following screenshot:

6. Load the following URL in your browser: http://localhost:8080/ch07_
timeWMSRange.htm. Now you can see that just a subset of positions are
shown on the map:

Advanced Visualizations

188

How it works…
After you enabled the time dimension for the layer, you can use an additional parameter in
your request to GeoServer: time. In fact, the simple OpenLayers app you used in this recipe
uses it. Let's see how the code works in detail.

First of all, you need to get the OpenLayers package. In the script, an absolute reference to the
OpenLayers official site is used. When building a real application, you may want to incorporate
the package in your app and so you will be using a relative path:

<script type="text/javascript"
 src="http://openlayers.org/api/2.13.1/OpenLayers.js"></script>

Just after it, there is the JavaScript snippet that creates the map and loads two layers. We
create a map object, which will be the canvas that shows the result of the GetMap request
to GeoServer. Note that you need to explicitly set the projection to EPSG:3857, the standard
code for the Web Mercator CRS. In fact, we'll use OpenStreetMap tiles as the basemap and
these are only available in this CRS:

 <script type="text/javascript">
 var map, layer;
 function init(){
 map = new OpenLayers.Map(
 {div: 'myMap',
 projection: 'EPSG:3857'}
);

We now have the vehicletrack layer, which you created in this recipe. We set it as
transparent, to avoid it hiding the underlying basemap. We also set the isBaseLayer
property to False to avoid OpenLayers from loading it as an alternative basemap:

 var demolayer = new OpenLayers.Layer.WMS(
 'NaturalEarth:vehicletrack','../geoserver/
 NaturalEarth/wms',
 {layers: 'NaturalEarth:vehicletrack',
 format: 'image/png',
 transparent: true
 },
 {singleTile: 'True',
 isBaseLayer: false}
);
 map.addLayer(demolayer);

Chapter 7

189

Then, we add the OpenStreetMap layer. This is really straightforward. Using the OSM class, we
just need to provide a name for it, which will be used in the layerSwitcher control. The OSM
class points, by default, to the following:

 var layer = new OpenLayers.Layer.OSM("OSM");
 map.addLayer(layer);

The final step is to center the map on an area containing the vehicle data, and add the control
to switch the layer visibility on or off:

 map.setCenter(
 new OpenLayers.LonLat(12.0,42.0).transform(
 new OpenLayers.Projection("EPSG:4326"),
 map.getProjectionObject()
), 9
);
 map.addControl(new OpenLayers.Control.LayerSwitcher({
 ascending: false
 }));
 }
 </script>

Although you add the layer, the vehicletrack layer in this case, it doesn't show on the map.
The layer name is listed in the LayerSwitcher control, so there is no error in the script. It is
just that you did not specify the time parameter, so no point is returned by GeoServer.

If you inspect the code contained in the ch07_timeWMSALL.html file, you will see that the
only difference is in the creation of the vehicletrack layer:

 var demolayer = new OpenLayers.Layer.WMS(
 'NaturalEarth:vehicletrack','../geoserver/
 NaturalEarth/wms',
 {layers: 'NaturalEarth:vehicletrack',
 format: 'image/png',
 transparent: true,
 time: '2014-05-26'
 },
 {singleTile: 'True',
 isBaseLayer: false}
);

Now you have the value 2014-05-26 for the time parameter and all the points have a
timestamp in that day, so all points are shown.

Advanced Visualizations

190

You can define the time value using the yyyy-MM-ddThh:mm:ss.SSSZ format and you can
also specify a range; in this case, you set the start and end date using the same format and
separate them with the / character.

In the ch07_timeWMSRange.html file, a two-hour range is specified and just a subset of
points is displayed on the map:

time: '2014-05-26T11:00:00.0Z/2014-05-26T12:00:00.0Z'

Using the WMS animator
You've been using WMS since the start of this book. You are an expert with GetMap requests,
so it's perfectly clear to you that such a request can only produce a static map, that is, a
representation of your data according to the styles and other parameters you submitted
with the query.

Sometimes it may be useful to produce a dynamic map, something more similar to an
animation. In fact, an animation is composed of an ordered sequence of pictures, so
a map animation only requires you to produce an ordered sequence of maps.

A common use case is a map changing its extent to simulate a move over the data. In this
recipe, you will learn how to produce a small animation, which shows a map moving toward
the east.

How to do it…
1. Start your GeoServer instance and go to the web interface.

2. On the left panel, select the Layer option and then check that the following layers are
listed among the available layers:

 � NaturalEarth:populatedplaces

 � NaturalEarth:GeneralizedCountries

3. We created them in the Improving performance with pregeneralized features recipe,
Chapter 1, Working with Vectors. In case you skipped it, you should at least load the
data and publish them in GeoServer.

4. Now open your browser and point it to the following URL:
http://localhost:8080/geoserver/wms/animate?layers=NaturalEa
rth:populatedplaces,NaturalEarth:GeneralizedCountries&width=6
00&aparam=bbox&avalues=-7\,40\,0\,47,-6.5\,40\,0.5\,47,-6\,4-
0\,1\,47,-5.5\,40\,1.5\,47,-5\,40\,2\,47,-4.5\,40\,2.5\,47,-
4\,40\,3\,47,-3.5\,40\,3.5\,47,-3\,40\,4\,47,-
2.5\,40\,4.5\,47,-2\,40\,5\,47,-1.5\,40\,5.5\,47,-1\,40\,6\,47

Chapter 7

191

5. Wait for GeoServer to elaborate on your request. A map will then appear in the
browser showing a short animation, which will display a map shifting from Spain
to France. The map should look like the following screenshot:

How it works…
The small animation you requested GeoServer to create for you is stored inside an animated
GIF. You can check it if you right-click on the picture and use the Save image function. If you
check the GIF properties, you will see that it contains 13 pictures or frames.

Each frame is a static map with a different extent. You can produce it with 13 GetMap
requests, and then use an external tool to merge all 13 pictures in an animation. GeoServer
does it all for you. The small, but fundamental, difference in the request of an ordinary
GetMap is in the path.

Advanced Visualizations

192

For a simple GetMap request, you could use the http://localhost:8080/geoserver/
wms path. In this case, you shall use the http://localhost:8080/geoserver/wms/
animate path. So your request is recognized as an animation request and extra parameters,
such as the animator parameter, are allowed.

You need to forward some more information to instruct GeoServer on how to produce the
animation. Basically, you have to set the aparam and avalue parameters:

 f aparam: This parameter specifies the name of the parameter that will change in
the frames. In this recipe, we used the bbox parameter, so GeoServer will expect
different bounding boxes for each frame.

 f avalue: This parameter specifies the actual value that should be used for each
frame. In this recipe, we listed a set of bounding boxes, each containing four
numbers, for the top, bottom, left, and right.

Please note that we used the escape character \ for some commas.
In fact, commas are recognized by GeoServer as the separator for
different values, but in this case, each value is composed of numbers
separated by commas.

The other parameters are the same you would use in a standard GetMap request. Please note
that the animator parameter has default values for almost all GetMap parameters; the only one
you need to explicitly set is layers to indicate what data should be represented in the map.

The previous requests, in fact, do not contain the format, as they defaults to image/
gif;subtype=animated. In fact, with GeoServer 2.5.x release, the animated GIF
is the only supported format for animation.

There's more…
The GeoServer animator gives you options of speed and looping for your animation. To set
them, you can use the following two custom parameters:

 f gif_loop_continuosly: This parameter controls whether the animation will
run just once or loop continuously. The default value is false and, in fact, in this
recipe, the animation just plays once. Try to run it again adding &gif_loop_
continuosly=true at the end of the URL.

 f gif_frames_delay: This parameter specifies the frame delay in milliseconds. The
default is 1,000 milliseconds, which is the value used in the previous request. Add
&gif_frame_delay=500 at the end of the URL and run it again.

Chapter 7

193

We'll explore the preceding two parameters using data from the previous recipe. We'll create
an animation showing the path of the vehicle. In fact, you just have to specify time as the
animation parameter, as shown in the following request:

http://localhost:8080/geoserver/wms/animate?layers=NaturalEarth:vehi
cletrack&width=200&aparam=time&avalues=2014-05-26T11:00:00.0Z/2014-
05-26T11:05:00.0Z,2014-05-26T11:05:00.0Z/2014-05-26T11:10:00.0Z,2014-
05-26T11:10:00.0Z/2014-05-26T11:15:00.0Z,2014-05-26T11:15:00.0Z/2014-
05-26T11:20:00.0Z,2014-05-26T11:20:00.0Z/2014-05-26T11:25:-
00.0Z,2014-05-26T11:25:00.0Z/2014-05-26T11:30:00.0Z,2014-05-
26T11:30:00.0Z/2014-05-26T11:35:00.0Z,2014-05-26T11:35:00.0Z/2014-05-
26T11:40:00.0Z,2014-05-26T11:40:00.0Z/2014-05-26T11:45:00.0Z,2014-05-
26T11:45:00.0Z/2014-05-26T11:50:00.0Z,2014-05-26T11:50:00.0Z/2014-05-
26T11:55:00.0Z,2014-05-26T11:55:00.0Z/2014-05-26T12:00:00.0Z,2014-
05-26T12:00:00.0Z/2014-05-26T12:05:00.0Z,2014-05-26T12:05:00.0Z/2014-
05-26T12:10:00.0Z,2014-05-26T12:10:00.0Z/2014-05-26T12:15:00.0Z,2014-
05-26T12:15:00.0Z/2014-05-26T12:20:00.0Z,2014-05-26T12:20:00.0Z/2014-
05-26T12:25:00.0Z,2014-05-26T12:25:00.0Z/2014-05-26T12:30:00.0Z&gif_
loop_continuosly=true&gif_frame_delay=500

The avalues parameter contains a set of ranges, and each one spans over a five-minute
interval; the resulting screenshot shows you the path of the vehicle in that period. You can
also control some animator parameters globally.

In the GeoServer web interface, locate the WMS setting in the left pane, as shown:

Advanced Visualizations

194

Scroll down until you reach the WMS-Animator Options section, as shown in the
following screenshot:

You'll find the two previous custom parameters, and from here, you can change the default
behavior. For instance, you may want GeoServer to loop the animation continuously by default.
The first option lets you set the maximum number of frames allowed in a single animation,
which as you can see is a very high value by default. You may want to reduce it to avoid a huge
load on your server triggered by some user. The other two values let you set the maximum time
GeoServer should work on an animation before discarding it and also, the maximum animation
size. Again, these values let you protect your server from dangerous requests.

Keyhole Markup Language styling
Keyhole Markup Language (KML) is an XML-based language built by Google™ and is mainly
used in its desktop mapping product, Google Earth™. It allows the user to virtually view, pan,
and fly around the imagery of the Earth.

Playing with imagery can be really nice; if you haven't yet, you should try just wandering on
remote areas of the planet and explore areas where once the Here be Dragons label were the
most common among labels: (http://en.wikipedia.org/wiki/Here_be_dragons).

However, the program is way more than a videogame and if you add it to your data, it becomes
a very powerful and accessible tool for 3D visualization.

Chapter 7

195

How do you make GeoServer and Google Earth™ interoperate? It is here that KML comes to
your rescue. Google Earth™ can read and visualize data formatted in KML; on the other hand,
GeoServer is capable of responding to your requests on formatting data in KML. Then, every
layer published on GeoServer can easily be used in Google Earth.

Getting ready
To complete this recipe, you need to have a working installation of Google Earth™ on your
workstation. Installing it is really simple; just point your browser to the following download page:

http://www.google.co.uk/intl/en_uk/earth/download/ge/agree.html

Please read the license agreement carefully. The software can be used freely for
noncommercial use. If you plan to use it in your company, you should check whether
the intended use violates the license agreement.

There are binaries for Windows, Mac OS X, and Linux, both 32-bit and 64-bit editions. Just after
you click on the Agree and Download button, the proper installer for your OS is downloaded
and the browser will prompt you to save it in a local folder; now run it, after which installation
will be executed in minutes.

Apart from the size of the download, you should be aware that using Google Earth™ requires
you to have access to a good Internet connection. All the imagery shown in the software is
downloaded as you move around the globe.

How to do it…
1. Start your GeoServer instance and go to the web interface.

2. On the left panel, select the Layer option and then check that the
NaturalEarth:EuropeCountries layer is listed among the available layers. We created
it in the Creating a SQL view recipe, Chapter 1, Working with Vectors; in case you
skipped it, you should at least load the data and publish it in GeoServer.

3. You can see that in the Common Formats column, a link named KML is shown.
Click on it.

4. The browser will prompt you to select an action for the file. Select the radio button,
Open with, click on the button to its right, and select Google Earth™ as the program
to process the downloaded data.

Advanced Visualizations

196

5. Click on the OK button and Google Earth ™ will open. It could take a while for it
to show you the exact location of your data; eventually, you should look at a map
similar to the following screenshot:

6. Quite an ordinary map but you got your data inside Google Earth. Now you will try
something more complex.

7. Download the ch07_KMLEurope.sld file from http://www.packtpub.com/
geoserver-cookbook/book in the Support section and save it on your filesystem.

8. From the left panel of the GeoServer interface, select the Styles item.

Chapter 7

197

9. Click on the Add a new Style button, as shown in the following screenshot:

10. Insert KMLEurope as the name for the new style, and then click on the Browse
button and locate the file you previously saved on the filesystem. Click on the Submit
button to save the style in the GeoServer configuration.

11. Now, on your browser, insert the following URL:
http://localhost:8080/geoserver/NaturalEarth/wms/kml?layers=Nat
uralEarth:EuropeCountries&styles=KMLEurope

12. When you are prompted for an action on the file, select Google Earth ™ as you did
before. Once the program completes loading your data, you should have a map that
looks like the following screenshot:

Advanced Visualizations

198

How it works…
When you clicked on the KML link in the Layers preview page, you probably noticed the
following URL:

http://localhost:8080/geoserver/NaturalEarth/wms/kml?layers=NaturalEa
rth:EuropeCountries

As you can see, this link is really shorter and simpler than a standard GetMap WMS request.
In fact, you can have GeoServer outputting KML in response to your request by changing the
format of the response to format=application/vnd.google-earth.kml+XML. Using
the short form is possible because of the KML reflector.

It is a facility that uses default values for almost all the parameters; you just have to explicitly
set the layers parameter. The default values are shown as follows:

Key Value
request GetMap

service Wms

version 1.1.1

srs EPSG:4326

format applcation/vnd.google-earth.kmz+xml

width 2048

height 2048

bbox <layer bounds>

kmattr True

kmplacemark false

kmscore 40

styles Uses the default style for the layer

Of course, you can override the default style, as you did in the second request. The first
map used the default style for the EuropeCountries layer, and then you inserted the
&styles=KMLEurope value.

You can override almost all parameters; for instance, you may want to change the size of the
image by setting different values for width and height. The parameter that has the greatest
impact on the map and what we will focus on is styles. Using it, you can control how the
features will be rendered.

Chapter 7

199

You can also add vendor parameters, such as cql_filter, provided by GeoServer to easily
filter features in the GetMap request. The following URL sends a request for features, which is
contained in four countries of the populatedplaces layer:

http://localhost:8080/geoserver/NaturalEarth/wms/kml?layers=NaturalEa
rth:populatedplaces&styles=Capitals&cql_filter=adm0name%20in%20('Spai
n','Greece','France','Italy')

The resulting map is as shown in the following screenshot:

There's more…
When adding GeoServer data to Google Earth, you don't need to start from the Layers preview
page. We did it just for the sake of understanding, but now that you've learned how it works, it
is simpler to add a reference to the data in the Google Earth ™ configuration.

Advanced Visualizations

200

You can add a reference to GeoServer by opening the Add menu in Google Earth and selecting
the Network Link item. In the dialog box, you have to specify a name for the resource and a
URL pointing to your GeoServer, as shown in the following screenshot:

This way, your link will be saved in the Places library under the Temporary Places category,
as shown in the following screenshot. Using the checkbox, you can turn it on or off and make
it visible on the globe.

Chapter 7

201

Using z-order creatively
In the Creating scale-dependent rules recipe, Chapter 3, Advanced Styling, we already used a
complex symbol produced by merging simple symbols. In this recipe, we will now focus on the
concept of z-order, that is, the order that GeoServer uses to draw symbols on the map.

Understanding this lets you use features and symbols in the proper way, along with producing
some advanced symbology.

How to do it…
1. In this recipe, we will use the NaturalEarth:populatedplaces layer, which you

configured in Chapter 3, Advanced Styling. If you missed that chapter, please
read through the instructions on how to download and configure the dataset
and install the CSS module.

2. Download the code for the chapter from the Packt site and extract the
ch07_Places.css file.

3. Open the GeoServer web interface and from the left panel, select CSS Styles.

4. Choose Create a new Style and insert places as the name.

5. Choose NaturalEarth:populatedplaces as layers to preview the style.

6. Now copy the content of the ch07_Places.css file and paste it in the editor window.

7. Click on the submit button and open the map preview; your map should look like the
following screenshot:

Advanced Visualizations

202

How it works…
Let's inspect the CSS file to understand the z-order logic. In the beginning, you define a
category to classify features that hold two values, which is Admin-1 capital and Admin-0
capital, in their fields. For this category, you select three mark symbols, all of the circle
type, as follows:

[featurecla = 'Admin-1 capital'] ,[featurecla = 'Admin-0 capital']
 {
 mark: symbol('circle'), symbol('circle'), symbol('circle');
}

Then, you define size, fill, and the stroke color for the first of these symbols, that is,
placed on bottom of the drawing order. In fact GeoServer first draws a red circle with with
an orange fill:

[featurecla = 'Admin-1 capital'] ,[featurecla = 'Admin-0 capital']
 :nth-mark(1) {
 size: 10px;
 fill: orange;
 stroke: red;
}

Repeat the same step to define the size and color for the other two symbols as follows:

[featurecla = 'Admin-1 capital'] ,[featurecla = 'Admin-0 capital']
 :nth-mark(2) {
 size: 6px;
 fill: brown;
}
[featurecla = 'Admin-1 capital'], [featurecla = 'Admin-0 capital']
 :nth-mark(3) {
 size: 2px;
 fill: black;
}

According to your instructions, GeoServer draws a smaller brown circle, then a tiny black circle.

The resulting symbol is a complex one produced from the overlay of the three. Of course, you
have to carefully select sizes, with the symbol getting smaller as you scale up the z-order.

Chapter 7

203

Using transparency creatively
A common task in producing maps is to mix different layers in a single output. This causes
some masking of the overlapping objects, as we explored in the previous recipe. When you
work with the raster data, of course, masking is an issue as the top raster layer could totally
hide the bottom layers.

In this recipe, we'll explore how to use transparency to avoid masking and merge several
raster layers in a single map.

Getting ready
In the Rendering transformations for raster data recipe of Chapter 3, Advanced Styling,
we downloaded a dataset from USGS to explore how rendering works for raster data.
We will now use the same dataset, producing a complementary dataset.

If you didn't read Chapter 3, Advanced Styling, you should at least
download and publish the DEM following the instructions given in
the Rendering transformations for raster data recipe in Chapter 3.

We will use the gdaldem tool, available among the GDAL command utilities, to create a
shaded relief representation from the digital elevation model.

We already introduced GDAL/OGR in the Using different WFS versions
in OpenLayers recipe in Chapter 1, Working with Vectors, to process
the blueMarble dataset. GDAL/OGR is a powerful open library to
process raster and vector dataset.
You can find a lot of detailed information from the main site at
http://www.gdal.org/.
Many different formats are supported; look at the following link for
raster's formats:
http://www.gdal.org/formats_list.html

Also, look at the following link for vector data formats:
http://www.gdal.org/ogr_formats.html

Open a command shell and insert the following code:

$ gdaldem hillshade dem.tiff shadedRelief.tiff -z 5 -s 111120 -az 90
 -of GTiff -co COMPRESS=DEFLATE -co TILED=YES

We will now produce another derived dataset; it is a colored representation of the DEM and
we'll again use the gdaldem utility to produce it.

Advanced Visualizations

204

First of all, we need to create a set of colors to transform dem.tiff from a grey scale picture
to a full RGB one. Using a text editor, create a new file called colours.txt and insert the
following text lines inside it; be careful not to add extra lines or other characters:

65535 255 255 255
1400 254 254 254
1000 121 117 10
700 151 106 47
350 127 166 122
175 213 213 149
1 218 179 122

For your interest, the color palette used in this recipe is publicly available
at http://www.colourlovers.com/palette/1374547/
Landcarpet_Europe.
COLOURLovers is a nice place where you can find many more hints on how
to create a beautiful output from your data.

After saving the file in the same folder that contains the dem.tiff file, open the command
shell and execute the following command:

$ gdaldem color-relief dem.tiff colours.txt colourRelief.tiff -of
 GTiff -co COMPRESS=DEFLATE -co TILED=YES

Now that two new datasets are created, go to the GeoServer interface and publish them
as layers. You can call them NaturalEarth:shadedRelief and NaturalEarth:colourRelief
to use the same names contained in the following steps, or modify the steps according
to your choice.

How to do it…
1. Log on to the GeoServer web interface. From the left panel, select the Stores option

and click on the Add new store button.

2. Select GeoTIFF as the datastore type, insert a name, and then point it to the
shadedRelief.tiff file you created previously.

3. Click on Save and publish the file.

4. Repeat the previous steps for the colourReflief.tiff file.

5. Take the ch07_transparencyWMS.html file and place it in the ROOT folder under
<CATALINA_HOME>/webapps on your Tomcat.

6. Open your browser and point it to the following URL:
http://localhost:8080/ch07_transparencyWMS.html

Chapter 7

205

7. Your map should look like the following screenshot:

How it works…
If you look at the datasets you produced, in the layers preview section of GeoServer, you will
find that they are quite different from the original DEM. The shadedRelief dataset uses a
well-known technique among cartographers to produce a map that uses shadows to give
the user a realistic representation of relief.

Hill-shading is a well known technique among cartographers. It was widely
used before digital cartography was invented. At that time, cartography
was quite related to the art of painting. If you are curious about it, you
can take a look at http://en.wikipedia.org/wiki/Shaded_
relief#Shaded_relief.
A brief and nice summary about how the technique developed can also be
found in an article by Karen A. Mulcahy at http://www.geo.hunter.
cuny.edu/terrain/ter_hist.html.

Advanced Visualizations

206

The following screenshot shows the shaded relief output:

To produce a map with better representation, we then created a color representation of the
DEM. When you define the color palette, each row contains an elevation value in the first
column, and the red, green, and blue values that define the color to be used for that elevation.

The gdaldem utility then produces a smoothing transition among the classes you define and
the final output is a map like the following screenshot:

Chapter 7

207

To produce the final output, the OpenLayers application makes two WMS GetMap requests
and GeoServer produces two pictures that are then overlaid in the browser. The magic is in
the following setting:

var colourRelief = new OpenLayers.Layer.WMS(
 'NaturalEarth:colourRelief','../geoserver/NaturalEarth/wms',
 {layers: 'NaturalEarth:colourRelief',
 format: 'image/png',
 transparent: true
 },
 {singleTile: 'True',
 opacity: 0.65,
 isBaseLayer: false}
);

If you set the opacity of the second layer to a value lower than one, it is visually merged with
the underlying picture and the resulting visual effect is that of a single layer.

Using symbology encoding
Thematic mapping is one of the more common uses of spatial data, and the most used
thematic maps are the choropleth maps that we already used in several recipes in this book.

Take a look at the following Wikipedia page for more information about
choropleth maps:
http://en.wikipedia.org/wiki/Choropleth_map

Until now, the examples showed you how to produce a thematic map with fixed values in
the attributes. SLD specifications define some functions that let you classify your data using
related attributes in a dynamic way.

In this recipe, we will explore how to apply symbology encoding to GeoServer layers.

Symbology encoding is a standard defined by OGC; you can read the
official paper at the following URL:
http://www.opengeospatial.org/standards/symbol

Advanced Visualizations

208

How to do it…
1. Log on to the GeoServer web interface. From the left panel, select the Styles option

and click on the Add a new Style button.

2. In the Styles editor, insert InterpolatePop as the new name, and then select
polygon as the default style to copy from, as shown in the following screenshot:

3. The XML code is loaded in the editor window. Search for the rule to draw the grey
polygon and select it using the following code snippet:
<PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">
 <ogc:Function name="Interpolate">
 <ogc:PropertyName>pop_est</ogc:PropertyName>

 <ogc:Literal>0</ogc:Literal>
 <ogc:Literal>#A1A690</ogc:Literal>

 <ogc:Literal>1000000</ogc:Literal>
 <ogc:Literal>#299BCD</ogc:Literal>

 <ogc:Literal>50000000</ogc:Literal>
 <ogc:Literal>#0AAA50</ogc:Literal>

 <ogc:Literal>500000000</ogc:Literal>
 <ogc:Literal>#EE1C25</ogc:Literal>

 <ogc:Literal>1500000000</ogc:Literal>

Chapter 7

209

 <ogc:Literal>#EB0C8B</ogc:Literal>

 <ogc:Literal>color</ogc:Literal>

 </ogc:Function>
 </CssParameter>
 </Fill>
</PolygonSymbolizer>

4. Click on the Validate button, check that no errors are reported, and then click on the
Submit button.

5. Now open the Layers section from the left panel of the GeoServer interface and click
on the NaturalEarth:countries layer.

6. Switch to the Publishing panel and add the InterpolatePop style to the layer
configuration, as shown in the following screenshot:

Advanced Visualizations

210

7. Now open the Layer preview for the NaturalEarth:countries layer and the options
toolbar, and select InterpolatePop as the style; your map should look like the
following screenshot:

How it works…
You have now created a thematic map where the color applied to features is determined by
an interpolation curve. In a simpler thematic map, you create a set of rules, where you set a
specific color in each class that applies to all the matching features.

Using the interpolate function, you just need to create a single rule that defines
the interpolation curve that will transform a continuous-valued attribute into another
continuous range of values.

In this case, the valued attribute is pop_est, which contains the population value for each
country, and the range of these values is the RGB colors. The transformation is defined by
a set of (input/output) control points chosen along a desired mapping curve. Piecewise
interpolation along the curve is used to compute an output value for any input value.

You set the following five control points to define your curve:

 <ogc:Literal>0</ogc:Literal>
 <ogc:Literal>#A1A690</ogc:Literal>

 <ogc:Literal>1000000</ogc:Literal>
 <ogc:Literal>#299BCD</ogc:Literal>

 <ogc:Literal>50000000</ogc:Literal>

Chapter 7

211

 <ogc:Literal>#0AAA50</ogc:Literal>

 <ogc:Literal>500000000</ogc:Literal>
 <ogc:Literal>#EE1C25</ogc:Literal>

 <ogc:Literal>1500000000</ogc:Literal>
 <ogc:Literal>#EB0C8B</ogc:Literal>

The last line defines the interpolation method, color in this case, as we want to output
RGB values:

 <ogc:Literal>color</ogc:Literal>

8
Monitoring and Tuning

In this chapter, we'll cover the following recipes:

 f Installing the control flow module

 f Setting a per-user limit

 f Setting a per-request limit

 f Installing the monitoring extension

 f Configuring the monitoring extension

 f Creating reports from the monitoring database

 f Limiting the GeoWebCache disk use

Introduction
Among the main features that can make your web service a successful one, there is reliability
and speed. Almost every user hates slow applications and broken sessions. One of the most
frustrating experiences is to stare at your browser waiting for the page to load completely, and
unless you are a network engineer, checking whether the services are broken is not all that fun.

So, monitoring your services is a crucial point to assure your users that they will have a fast and
reliable response. There are many specialized tools to monitor a task; as an example, a general
purpose tool such as Nagios (http://www.nagios.org/) is a valid open source option.

GeoServer offers a specialized extension to collect data about incoming requests. This data
can quickly be visualized in a few ready-to-use reports. We'll also explore how to use them for
service analysis to create custom reports. Also, to avoid your instance from collapsing under
too much load, the control flow module extension is a very nice option. It allows you to properly
limit the requests' flow, creating a queue when in peak time.

Monitoring and Tuning

214

Installing the control flow module
The control flow module is an official GeoServer extension. Installation, as usual, is quite easy.
You may find the package listed among the other extension downloads on the GeoServer
download page (http://geoserver.org/download/). In order to avoid compatibility
issues, please ensure that you download a version of the extension exactly matching the
GeoServer version you are using.

How to do it…
1. Download the ZIP archive. Please verify that the version number in the filename is

the same as the GeoServer WAR file you installed. For the 2.5.2 release, the link
is as follows:
http://sourceforge.net/projects/geoserver/files/
GeoServer/2.5.2/extensions/geoserver-2.5.2-control-flow-plugin.
zip

If you don't remember your GeoServer's release, you may look
for it in the web admin interface at http://localhost/
geoserver/web/?wicket:bookmarkablePage=:o
rg.geoserver.web.AboutGeoServerPage.

2. Stop your GeoServer instance and then extract the contents of the ZIP archive into
the /WEB-INF/lib/ directory in the GeoServer webapp. For example, if you have
deployed the GeoServer WAR file, you should place the control flow module's JAR file
in CATALINA_HOME/webapps/geoserver/WEB-INF/lib/.

3. After extracting the extension, restart GeoServer in order for the changes to take
effect. In this case, the installation does not cause any change on the web interface
that you can look for to check whether the installation was successful.

4. Open your favorite text editor, create a new file, and insert following line:
ip.blacklist=127.0.0.1

5. Now save the file with the name controlflow.properties inside the
<GEOSERVER_DATA_DIR> folder.

6. Restart GeoServer to have your configuration reloaded.

7. Point your browser to the following URL:
http://localhost:8080/geoserver/web

Chapter 8

215

8. You should see an error page similar to the one shown in the following screenshot:

How it works…
The control flow module, as its name clearly explains, controls the flow of requests to your
GeoServer. That is, every request coming to GeoServer is filtered by the module and then
submitted, queued, or rejected.

In this recipe, you inserted the loopback address of your machine in the blacklist, so you can
no longer use GeoServer. Of course, this is a very unlikely situation; just useful to demonstrate
that the module is working properly.

A more common use of the extension is to limit the concurrent requests from the same user
or a service to avoid an overwhelming amount of load that can block your GeoServer.

Setting a per-user limit
GeoServer usually serves data to several users. According to the size of your organization,
the actual number may range from a few to several hundred concurrent requests.

As with any other shared resource, we will ensure that none can exceed a certain amount of
processing power, leaving others waiting for what remains.

This is handled by the control flow module, which uses a per user limit setting. We will
implement it in this recipe.

How to do it…
1. Using your favorite text editor, open the previously created controlflow.

properties file and modify its contents as follows:
#ip.blacklist=127.0.0.10
Maximum number of concurrent requests per user
user=2

2. Now save the file and close it.

3. Open your browser and point it to the GeoServer Layer preview page.

Monitoring and Tuning

216

4. Click on the OpenLayers preview for the NaturalEarth:blueMarble layer. A new tab
will open with the usual simple app to browse the data.

5. Now, open the Firebug console and switch to the Net panel. Click on the Activate
firebug for the current website button. An empty list of requests will be shown in
the window, as shown in the following screenshot:

In the preceding steps, we use Firefox and its debug extension Firebug.
Firebug is not available by default in the browser but you can easily add
it from the add-in page.
If you are more comfortable with Chrome, you may follow the
instructions using the Developers tools' console; it opens when you
press Ctrl + Shift + I.

6. In the OpenLayers preview page for NaturalEarth:blueMarble, open the options
toolbar, and from the Tiling combo, select the Tiled option, as shown in the
following screenshot:

Chapter 8

217

7. Now, when you switch to the Firebug console window, you should see a few
concurrent requests sent to GeoServer, as shown in the following screenshot:

How it works…
In the previous steps, you set a limit of two concurrent requests per user. This is a very small
number and you may want to increase it during a production installation.

When calculating the proper number to insert, you have to consider not only the GeoServer
capacity to stand against user requests, but also if your users use a web application, consider
that browser's limit by default as the concurrent requests you may send to the same host.

With Firefox, you may check its limit and also change it by opening
the about:config URL and searching for the network.http.
max-persistent-connections-per-server parameter
(defaulting to six limits for the current release).

To check how this works, you open the layer preview page. The simple OpenLayers application
contained sends a GetMap request to GeoServer, but a single request will not trigger the limit.
So how can you test whether it is really working?

Using the Tiled mode does the magic! Of course, when selecting it, the application, instead of
sending a single request upon your map actions, sends requests for tiles that compose your
map. It uses a regular tessellation and you can check it by having a look at the parameters for
each GetMap request.

Monitoring and Tuning

218

Using Firebug, inspect the details for the requests sent; you can control all GetMap requests
to have a 256 x 256 size as follows:

Using tiles lets you produce many concurrent requests, as shown in one of the earlier screenshots.

To check how GeoServer handles them and to be sure that the control flow module is properly
working, open the log file. You should see something similar to the following:

2014-06-16 17:28:01,902 DEBUG [org.geoserver.ows] - Getting layers
 and styles from LAYERS and STYLES
2014-06-16 17:28:01,902 DEBUG [org.geoserver.ows] - establishing
 raster style for NaturalEarth:blueMarble
2014-06-16 17:28:01,902 DEBUG [org.geoserver.ows] - Getting layers
 and styles from LAYERS and STYLES
2014-06-16 17:28:01,902 DEBUG [org.geoserver.ows] - establishing
 raster style for NaturalEarth:blueMarble
2014-06-16 17:28:01,902 DEBUG [org.geoserver.flow] -
 UserFlowController(4,GS_CFLOW_-2cd39e64:146a546eaa8:-8000) queue
 size 2
2014-06-16 17:28:01,902 DEBUG [org.geoserver.flow] -
 UserFlowController(4,GS_CFLOW_-2cd39e64:146a546eaa8:-8000) queue
 size 2
2014-06-16 17:28:01,902 DEBUG [org.geoserver.flow] -
 UserFlowController(4,GS_CFLOW_-2cd39e64:146a546eaa8:-8000) total
 queues 1
2014-06-16 17:28:01,902 DEBUG [org.geoserver.flow] -
 UserFlowController(4,GS_CFLOW_-2cd39e64:146a546eaa8:-8000) total
 queues 1
2014-06-16 17:28:01,902 DEBUG [org.geoserver.flow] -
 UserFlowController(4) purged 0 stale queues

As you can see, the module properly handles your requests, queuing them, and avoiding your
GeoServer instance from getting overwhelmed by too many concurrent requests.

Chapter 8

219

GeoServer logging has several profiles. To find information
about the control flow module processing requests, select the
GEOSERVER_DEVELOPER_LOGGING profile.

Setting a per-request limit
Setting the per user limit is nice, but you may want to have a more fine-grained control on how
requests are processed by GeoServer. For instance, you may want to have some service, for
example, WMS, be given priority over WFS or WCS.

The control flow module lets you set specific limits for each service and you can also configure
limits at the request-type level, as we will do in this recipe.

Getting ready
In this recipe, we need to test the control flow module against a higher number of concurrent
requests. Unless you're running this recipe on a GeoServer production site, where several real
users run ten or more requests each second, you may find it difficult to send many requests by
your browser just interactively.

Hence, I want to introduce you to an open-source tool that can help you in creating a stress
test. Although there are many similar tools available, JMeter is the most famous and probably
the simplest one to use.

JMeter is an open source project from the Apache foundation (http://jmeter.apache.
org/). The installation is really easy; it being a Java ™ application, you just need to have a
JDK or JRE installed on the same machine. If you're going to use the same machine that hosts
GeoServer, that is a nice idea; you of course have already installed a Java ™ environment.

So download a recently released archive, at the time of writing Version 2.11 is the latest, from
http://jmeter.apache.org/download_jmeter.cgi. Then, extract the files to a folder
and you are done.

JMeter is a desktop application with a clean and powerful interface. In this
recipe, you will be only asked to use a test suite we created for you, but you
may be interested in exploring its features. If this is the case, we want to
point you to two extremely useful sources of information:
First of all, the official project documentation that you may find online at
http://jmeter.apache.org/usermanual/index.html.
Secondly, if you are more comfortable with books, you can refer to
Performance Testing with JMeter 2.9, Packt Publishing.

Monitoring and Tuning

220

How to do it…
1. Using your favorite text editor, open the previously created controlflow.

properties file and modify its content according to the following snippet:
Maximum number of concurrent requests to all services
ows.global=30
Maximum number of concurrent WMS GetMap requests
ows.wms=20
Maximum number of concurrent WCS GetCoverage requests
ows.wcs=4
Maximum number of concurrent WFS GetFeature requests
ows.wfs=6
Maximum number of concurrent requests per user
user=6

2. Now save the file, close it, and then restart GeoServer.

3. From the Packt site for this book (https://www.packtpub.com/hardware-and-
creative/geoserver-cookbook), download the ch08_workflowTest.jmx file
and save it to a folder on the same machine where you installed JMeter.

4. Launch JMeter using the jmeter.bat or jmeter.sh script according to your
operating system.

5. From the File menu, select Open, and browse for the folder where you saved the JMX
file. You should see a test suite loaded in JMeter, as shown in the following screenshot:

Chapter 8

221

6. Start the test suite by selecting the item Run, and then click on Start from the
JMeter menu.

7. Open the geoserver.log file. If the control flow is running properly, you should see
many rows similar to the following:
2014-06-18 23:11:11,577 INFO [geoserver.flow] - Running
 requests: 9, processing through flow controllers: 0
2014-06-18 23:11:11,862 INFO [geoserver.flow] - Running
 requests: 7, processing through flow controllers: 0
2014-06-18 23:11:11,683 INFO [geoserver.flow] - Running
 requests: 8, processing through flow controllers: 0
2014-06-18 23:11:12,216 INFO [geoserver.flow] - Running
 requests: 6, processing through flow controllers: 0
2014-06-18 23:11:12,268 INFO [geoserver.flow] - Running
 requests: 5, processing through flow controllers: 0
2014-06-18 23:11:12,439 INFO [geoserver.wms] -
Request: getServiceInfo

How it works…
When you run the test suite, especially if JMeter is on the same machine where GeoServer is
installed, you would have surely seen a lot of CPU activity. In fact, this test runs many requests
on GeoServer.

In the test suite, there is an element called Thread Group; if you click on it in the tree view, the
right panel shows its content, as shown in the following screenshot:

Monitoring and Tuning

222

The Number of Threads (users) field is where you set the number of concurrent users you
want to run in the test suite, 10 in this case. The Ramp-Up Period (in seconds) field is the
time JMeter takes to reach the full number of concurrent users. You may set a longer time
duration if you experience problems with your machine, as starting many concurrent threads
is very challenging for your system.

The Loop count field is the number of times the test suite has to be repeated; this may prove
useful when you want to test the reliability of a system in the long run.

In our test, we simulate 10 users sending all the requests 10 times. In fact, as the
test starts, you may control how many users are running from the JMeter toolbar; to
its right end, there is a control that shows you the running / total number of users,
as shown in the following screenshot:

Just under the Thread Group item, there is another element, the User Defined Variables item. It
is a place where you can set values common to all the requests inside your test; it is a convenient
way to change them easily according to your needs, as shown in the following screenshot:

Chapter 8

223

We use two variables: one for the hostname of the server where GeoServer is installed and
one for the TCP port. You may want to change them if, for instance, you're running JMeter from
a different machine.

Then, there are a set of HTTP Request items, each named with a string referring to what the
request is designed for.

The first one is WMS-World, which unsurprisingly send a WMS GetMap request asking for a
full extent view of the NaturalEarth:blueMarble layer.

In the preceding screenshot, we can see the two variables defined before, for hostname
and port, and a path for the request. Then, a set of parameters define exactly what we
want GeoServer to represent in this map.

You may browse the other requests to check the differences.

Monitoring and Tuning

224

The bottom element, called View Results Tree, is a fundamental one to control if all is okay
with your test. As requests are fulfilled by GeoServer, the results are listed in this control, with
a green icon for the successful entries and a red one for the errors.

When you click on an item in the right panel, you can see all the details about the request
performed, the response from GeoServer, and also the data itself, for example, a map for
a WMS request or GML code for a WFS request.

I hope this brief tour raised your curiosity about this wonderful tool. When you're in need of
performing a functional or performance test on a web service, JMeter is your friend!

In fact, JMeter is not useful just for web services. Although an
illustration is out of the scope of this book, you'd probably be
interested to know that it can also run tests against databases,
filesystems, and LDAP.

Chapter 8

225

Installing the monitoring extension
In the previous recipe, you learned how to control the requests flow your users send to
GeoServer. You may also become interested in monitoring them, for instance, in order
to check what the most used services and datasets are.

A low-level approach, and it is the only possible one, is to analyze the GeoServer logs and the
web server logs. All requests are in some way tracked there, so it's just a matter of how to find
a convenient way to extract and organize them in a structured data model.

Getting ready
Analyzing the logs may be quite challenging. Besides, according to the detail level, you may
find too much information or totally miss the piece you are looking for.

Luckily, GeoServer developers have been working on a clever extension that helps
you to analyze what requests GeoServer has been receiving. Unsurprisingly, it is
called Monitor Extension.

You can find the package listed among the other extension downloads on the GeoServer
download page (http://geoserver.org/download/).

Note that in this case, the extension is packaged in two downloads; you need to download
both the core and hibernate archive.

Monitoring and Tuning

226

How to do it…
1. Download the two ZIP archives. Please verify that the version number in the filenames

is the same as the GeoServer WAR file you installed.

If you don't remember your GeoServer's release, you can look
for it in the web admin interface at http://localhost/
geoserver/web/?wicket:bookmarkablePage=:o
rg.geoserver.web.AboutGeoServerPage.

2. Stop your GeoServer instance, and then extract the contents of the ZIP archives into
the /WEB-INF/lib/ directory in the GeoServer webapp. For example, if you have
deployed the GeoServer WAR file, you should place the control flow module's JAR file
in CATALINA_HOME/webapps/geoserver/WEB-INF/lib/.

3. After extracting the extension, restart GeoServer in order for the changes to take
effect. Open the GeoServer web interface and log in as the administrator. On the
left panel, you will see a new section, as shown in the following screenshot:

4. The installation also modified your GeoServer data directory. It now contains a folder
called monitoring:
$ ls –ag /opt/geoserver_data_dir/monitoring

-rw-r--r-- 1 root 521 Jun 20 10:59 db.properties

-rw-r--r-- 1 root 396 Jun 20 10:59 filter.properties

-rw-r--r-- 1 root 370 Jun 20 10:59 hibernate.properties

-rw-r--r-- 1 root 131072 Jun 20 10:59 monitoring.1.log.db

-rw-r--r-- 1 root 131120 Jun 20 10:59 monitoring.data.db

-rw-r--r-- 1 root 131120 Jun 20 10:59 monitoring.index.db

-rw-r--r-- 1 root 100 Jun 20 10:59 monitoring.lock.db

-rw-r--r-- 1 root 9352 Jun 20 10:59 monitoring.trace.db

-rw-r--r-- 1 root 1232 Jun 20 10:59 monitor.properties

5. Open the GeoServer web interface and go to the Layer preview section. Open the
OpenLayers preview for some of the configured layers and browse the maps by
panning and zooming.

Chapter 8

227

6. After a while, turn back to the GeoServer web interface and go to the Monitor
section. Open the Activity link, click on the Daily tab, and you should see a
graph of requests, as shown in the following screenshot:

How it works…
The monitoring extension adds a few controllers to your GeoServer.

These objects check each incoming request and save some details for further reference.
In fact, you might have noted that the timestamp of the request is saved, and you can
produce a graph plotting the number of requests over time.

Besides the timestamp, other details persist and you can, for instance, see a quick view of
which service is the most requested.

From the GeoServer web interface, go to the Monitor section on the left panel and click on
the Reports link.

Monitoring and Tuning

228

This is a simple tool to create quick pie charts with statistics about the GeoServer activity:

Click on the OWS Request Summary link to open the preconfigured charts and go to the
WMS tab. Here, you will find a chart that represents a proportion of each WMS operation,
as shown in the following screenshot:

Chapter 8

229

These simple reports are built using the information persisted; indeed, the service and
operation are among the saved details.

A full reference of the captured information is available in the GeoServer official
documentation (http://docs.geoserver.org/stable/en/user/extensions/
monitoring/reference.html).

This is a good starting point if you plan to analyze the monitoring data using external tools and
build your own stats and charts.

However, before considering how to integrate external tools, we need to explore where the
information is actually persisted.

Configuring the monitoring extension
In the previous recipe, we started to explore the monitoring extension. You managed to store
information for some requests and created a chart showing the proportion of each operation
for WMS.

We haven discussed yet where the information is stored. After viewing the chart, try to restart
GeoServer and then open the reports section again. You'll be surprised that this time no data
is shown; all the information previously collected is gone.

This happens because, by default, the monitoring extension uses the memory as a data
repository, so information vanishes each time you restart GeoServer.

In this recipe, we'll configure a more robust approach for information storage, which is
especially helpful if you need to save information over a wide range of time.

Getting ready
In this recipe, we're going to store information in an RDBMS. The monitoring extension
supports different software, such as H2, PostgreSQL, or Oracle ™.

We'll use PostgreSQL, a powerful and open source software, which, with its extension PostGIS,
is the most famous open spatial database. The installation is very easy; for Linux distro, the
easiest way is to use binary packages from the official repository. On Debian-like distributions,
you can use the apt package manager:

$ sudo apt-get install postgresql-9.1

This way you'll have the recent release up and running in a few seconds.

For Windows, a good choice is to download the binary package by Enterprise DB:

http://www.enterprisedb.com/products-services-training/
pgdownload#windows

Monitoring and Tuning

230

How to do it…
1. Stop GeoServer.

2. Open the db.properties file with a text editor and change its content. Comment
the section for H2 and uncomment the PostgreSQL configuration. Please verify your
settings and change the properties accordingly:
driver=org.postgresql.Driver
url=jdbc:postgresql://localhost:5432/gisdata
username=gisuser
password=gisuser
defaultAutoCommit=false

3. Save the file and open the hibernate.properties file located in the same folder.
You need to change only the following two properties:
PostgreSQL dialect
databasePlatform=org.hibernate.dialect.PostgreSQLDialect
database=POSTGRESQL

4. Open the monitor.properties file and change the storage settings to include the
extension using the DB:
storage=hibernate

5. Restart GeoServer to have your configuration reloaded. After it starts, you can check
that inside the PostgreSQL database, there are two new tables:
$ psql –U gisuser –d gisdata

gisdata=> \dt req*

 List of relations

 Schema | Name | Type | Owner

--------+-------------------+-------+---------

 public | request | table | gisuser

 public | request_resources | table | gisuser

6. Open the GeoServer web interface and go to the Layer preview section. Open the
OpenLayers preview for some of the configured layers and browse the maps by
panning and zooming.

7. After a while, turn back to the GeoServer web interface and go to the Monitor
section. Open the Activity link, click on the Daily tab and you should see a graph
showing the request number over time, as shown in the How to do it… section of
the previous recipe.

Chapter 8

231

8. Connect to the database and check for records stored in the two new tables:
gisdata=> select count(*) from request;

 count

 45

gisdata=> select status, http_method, service, operation from
 request limit 5;

 status | http_method | service | operation

----------+-------------+---------+-----------

 FINISHED | GET | WMS | GetMap

 FINISHED | GET | WMS | GetMap

 FINISHED | GET | WMS | GetMap

 FINISHED | GET | WMS | GetMap

 FINISHED | GET | WMS | GetMap

How it works…
Using an RDBMS is a robust way to persist information safely. An RDBMS is also a very flexible
tool to retrieve information and elaborate it in order to prepare usage reports.

The monitoring extension configuration is based on four properties files. The one called
monitor.properties holds the general settings.

The mode parameter sets how the information is collected and updated. By default, it is in the
history mode, that is, information is stored after the request completion. The live mode
makes GeoServer collect information in real time. In this mode, you can also use a real-time
monitor from the GeoServer web interface.

The storage property controls where the monitoring information is stored. It can assume two
values: memory, which is the default value, and hibernate.

We selected the hibernate mode, and hence GeoServer will search for a database acting as
a repository. To connect to the database, more parameters are required. They are contained
in the hibernate.properties and db.properties files. GeoServer reads them and uses
the contained information to connect to the RDBMS and store information inside it.

Hibernate is a Java ™ library to map objects contained in a relational
database, such as PostgreSQL or Oracle, to an object-oriented model
such as the one used by GeoServer internally.
It is widely used and you may find a lot of detailed information about it.
A good starting point is http://hibernate.org/.

Monitoring and Tuning

232

In the first file, we instruct hibernate on what kind of database we're using, shown as follows:

hibernate dialect
databasePlatform=org.hibernate.dialect.PostgreSQLDialect
database=POSTGRESQL

In the latter, we insert the connection parameters as follows:

sample configuration for postgres
driver=org.postgresql.Driver
url=jdbc:postgresql://localhost:5432/gisdata
username=gisuser
password=gisuser
defaultAutoCommit=false

We changed the default H2 database to PostgreSQL; you're already using it as a spatial
repository for your data and it is a very powerful piece of software. It is also very interoperable
with many reporting tools.

If your organization uses Oracle, you may as well be use it to monitor information storage.
In hibernate.properties, insert the following code snippet:

hibernate dialect
databasePlatform=org.hibernate.dialect.OracleDialect
database=ORACLE

Then, insert the following code snippet in the db.properties file:

driver=oracle.jdbc.driver.OracleDriver
url=jdbc:oracle:thin:@localhost:1521\:ORCL
username=gisuser
password=gisuser

Obviously, whatever RDBMS flavor you're using, the information stored is the same.
You probably noted the crs field in the request table. Along with the minx, miny, maxx,
and maxy fields, it records the envelope for each request:

gisdata=> select crs, round(minx::numeric,2) as minx,
 round(miny::numeric,2) as miny, round(maxx::numeric,2) as maxx,
 round(maxy::numeric,2) as maxy from request where crs is not null;

 crs | minx | miny | maxx | maxy

-----------+-------------+------------+------------+------------

 EPSG:4326 | -180.00 | -90.00 | 180.00 | 90.00

 EPSG:4326 | -17.84 | 28.48 | 40.17 | 57.48

 EPSG:4326 | -4.09 | 36.12 | 24.92 | 50.63

 EPSG:4326 | 2.79 | 39.95 | 17.29 | 47.20

Chapter 8

233

In the monitor.properties file, you can set the CRS used to log the envelopes, by default,
WGS84 Lat Long, which is EPSG:4326. You may change it to another one, of course, being
careful to select one that makes sense to all your data extent.

This is the output of requests to the NaturalEarth:blueMarble layer after changing the setting
to EPSG:3857 in the monitor.properties file:

gisdata=> select crs, round(minx::numeric,2) as minx,
 round(miny::numeric,2) as miny, round(maxx::numeric,2) as maxx,
 round(maxy::numeric,2) as maxy from request where crs is not null;

 crs | minx | miny | maxx | maxy

-----------+-------------+------------+------------+-------------

 EPSG:3857 | -5126784.36 | 1967710.95 | 7788015.94 | 13111054.46

 EPSG:3857 | -1966571.86 | 3704742.20 | 4490828.29 | 8524724.33

 EPSG:3857 | -381573.65 | 4668514.96 | 2847126.43 | 7007058.96

 EPSG:3857 | -381573.65 | 4668514.96 | 2847126.43 | 7007058.96

The last configuration file, filter.properties, controls what requests are monitored.
By default, it contains some filters to avoid monitoring some requests:

/rest/monitor/**
/web
/web/**

All requests forwarded to the GeoServer web interface and the Monitor REST API are not
collected. According to your needs, you can add more filters.

The syntax is quite simple to manage; you have to specify the complete URL after
/geoserver and before the key pair values.

For instance, if you want to filter out all requests to a namespace, you can use a filter such as
the following one:

NaturalEarth/ows

Now, WMS, WCS, and WFS requests such as the following will be ignored by the monitoring
module, but obviously they will be processed by GeoServer:

http://localhost/geoserver/NaturalEarth/ows?service=WCS&version=1.
 0.0&request=DescribeCoverage&coverage=NaturalEarth:dem
http://localhost/geoserver/NaturalEarth/ows?service=WCS&version=1.
 0.0&request=GetCoverage&coverage=NaturalEarth:dem&crs=
 EPSG:4326&bbox=12.06,42.03,12.88,42.50&bands=1
http://localhost/geoserver/NaturalEarth/ows?service=WFS&version=1.
 0.0&request=GetFeature&typeName=
 NaturalEarth:populatedplaces&bbox=-157.1484375,13.88671875,-
 41.1328125,71.89453125

Monitoring and Tuning

234

Creating reports from the monitoring
database

The collected monitoring data can be very useful, but you probably want to use it in a more
flexible way than just staring at the custom report included in the GeoServer interface.

Reports can be designed to show usage stats or check the safety state of your server. You
can group them in several ways, as with any other source of alphanumerical data. There
are several different tools you can use for this, most of them coming from the business
intelligence, data warehousing, and analytics branches of Information Technology.

In this recipe, we want to focus again on the spatial component of the data. You may wonder
what the most queried area of your datasets is, for example, and want analyze whether there
are some preferential areas where your user browses for data. This may prove useful in order
to tune your GeoServer for better performance, and it'll be more useful if a wider extent is
covered by your data.

We'll create a point layer from the request by taking the centroid of envelopes, and then
render it as Heatmap.

How to do it…
1. Open a shell console and connect to the database where GeoServer stores the

monitoring information, as follows:
$ psql -U gisuser -d gisdata

2. Execute the following script to create a new table from the existing information:
create table heatmap as
select
 name,
 crs,
 service,
 operation,
 ST_Centroid(ST_GeomFromText('POLYGON
 ((' || minx || ' ' || maxy || ',' || maxx || ' ' || maxy ||
 ',' || maxx || ' ' || miny || ',' || minx || ' ' || miny ||
 ',' || minx || ' ' || maxy || '))', 4326)) as geom
from
 request join request_resources on (request_id = id)
where
 crs is not null;

Chapter 8

235

3. Execute the following SQL statement to create a spatial index on the new table:
CREATE INDEX heatmap_geom_gist ON public.heatmap USING
gist(geom);

4. Now open the GeoServer interface and publish the table as a new layer. Then, go
to the Layer preview and check what your map shows. It shows many points, each
corresponding to a request, as shown in the following screenshot:

5. Now take the ch08_heatmap.sld file from the code accompanying this chapter
and create a new GeoServer style with it. Then, change the configuration for the
Heatmap layer, assigning the new style as its default.

6. Take the ch08_heatmapWMS.html file and save it in the <CATALINA_HOME>/
webapps/ROOT folder, and then point your browser to the following URL:
http://localhost:8080/ch08_heatmapWMS.html

Monitoring and Tuning

236

7. Now the map shows you the area where concentrated requests are in blue and
turn to light green as the density of the requests decreases, as shown in the
following screenshot:

How it works…
In this recipe, we simulated a very minimalistic data warehouse. We selected a set of
information, transformed it, and created a new dataset. This is usually done with an ETL
procedure, and our SQL query may be considered a very simple Extract, Transform, and
Load (ETL) procedure.

ETL is used to process data from a data source to another. If this is totally
new to you, a good starting point might be here:
http://en.wikipedia.org/wiki/Extract,_transform,_load

General purpose ETL tools are not usually spatially aware, but in the last
few years, a few robust solutions have been developed. Among proprietary
solutions, the champion is Feature Manipulation Engine (FME) by Safe,
which is available at http://www.safe.com/fme/.
An open source solution is GeoKettle, which is available at http://www.
spatialytics.org/projects/geokettle/.

Chapter 8

237

The key transformation we did to the data is to create its geometry from the numeric
description of bounding boxes:

ST_Centroid(ST_GeomFromText('POLYGON
 ((' || minx || ' ' || maxy || ',' || maxx || ' ' || maxy ||
 ',' || maxx || ' ' || miny || ',' || minx || ' ' || miny ||
 ',' || minx || ' ' || maxy || '))', 4326)) as geom

Concatenating the minx, miny, maxx, and maxy values properly, we build a polygon, actually
a rectangular shape, and then we ask PostGIS to calculate its barycenter and set this as the
geometric property of the request. For instance, have a look at the following request:

 minx | miny | maxx | maxy | crs |
-181.80000 | -90.868171 | 181.800013 | 84.5022735 | EPSG:4326

The preceding request produces the following polygon:

POLYGON((-181.800003051758 84.5022735595703,181.800018310547 84.5
022735595703,181.800018310547 -90.8681716918945,-181.800003051758
-90.8681716918945,-181.800003051758 84.5022735595703))

Polygon's barycenter is shown as follows:

POINT(7.6293944864863e-06 -3.1829490661621)

The other transformation on the data is on the rendering side.

In fact, we used the rendering transformation capability of GeoServer to transform a vector
data, the point layer, in a raster map. The transformation is inside the style:

…
 <Abstract>A heatmap for monitoring data</Abstract>
 <FeatureTypeStyle>
 <Transformation>
 <ogc:Function name="gs:Heatmap">
 <ogc:Function name="parameter">
 <ogc:Literal>data</ogc:Literal>
 </ogc:Function>
…

Here, we refer to the gs:Heatmap process, which is a function delivered by the WPS extension,
which creates the raster data according to the point density. We used the WPS extension in
Chapter 4, Geoprocessing; consult it for instructions about its installation and configuration.

Monitoring and Tuning

238

The other core information delivered by the style is the color ramp used to represent the point
density. We use a RasterSymbolizer element where you can customize a set of classes
with color and the associated quantity, as follows:

…
 <RasterSymbolizer>
 <Geometry>
 <ogc:PropertyName>geom</ogc:PropertyName>
 </Geometry>
 <Opacity>0.6</Opacity>
 <ColorMap type="ramp" >
 <ColorMapEntry color="#FFFFFF" quantity="0"
 label="nodata" opacity="0" />
 <ColorMapEntry color="#44FF44" quantity=".05"
 label="nodata" />
 <ColorMapEntry color="#00FFAA" quantity=".45"
 label="values" />
 <ColorMapEntry color="#0000FF" quantity="1.0"
 label="values" />
 </ColorMap>
 </RasterSymbolizer>
…

You can read about the details of rendering transformations available in
GeoServer from the official documentation available at http://docs.
geoserver.org/stable/en/user/styling/sld-extensions/
rendering-transform.html.

There's more…
You learned how to use the default reports to display the monitoring information, and how to
create a custom report by directly accessing the database.

GeoServer also offers you a simple HTTP API to retrieve the monitoring information.
This will prove very useful if you have to integrate reports in an external application that
may not be comfortable accessing the database, for instance, a web application running
on a remote system.

The basic form of the request is shown as follows:

http://<host>:<port>/geoserver/rest/monitor/requests.<format>

Chapter 8

239

The basic request lets you get all the information formatted according to your choice.
The options available for the format parameters are:

 f HTML

 f ZIP

 f CSV

 f XLS

For instance, if you send an HTTP GET request to obtain all the requests formatted in HTML,
the right syntax is as follows:

$ curl –XGET http://localhost:8080/geoserver/
 rest/monitor/requests.html -O requests.html

The requests.html file will contain all the requests collected since GeoServer started.
When you open the file in a browser, you'll have a list of data sources, as shown in the
following screenshot:

As you can see, not all fields are returned. Be aware that the previous request will return all
the records in the monitoring repository, so the resulting output can be very huge.

A few options help to filter and sort the output according to your needs. You can display the
output by using the count and offset parameters, if you send the following request:

$ curl –XGET http://localhost:8080/
 geoserver/rest/monitor/requests.html?count=10&offset=13 –O
 requests.html

Monitoring and Tuning

240

Now, you'll obtain a short list of 10 items starting from the 14th ID, as shown in the
following screenshot:

Another option to filter the resulting set is to send a time range. There are two available
parameters, from and to, and both require a timestamp, as shown in the following example,
where all requests for the 24th of June are requested:

$ curl –XGET http://localhost:8080/geoserver/
 rest/monitor/requests.html?from=2014-06-26T00:00:00&to=2014-06-
 26T24:00:00 –O requests.html

If you need more information about a single request, you can send a specific request using
the internal identifier, that is, use the ID as a filter:

$ curl –XGET http://localhost:8080/
 geoserver/rest/monitor/requests/13.html –O requests.html

Limiting the GeoWebCache disk use
We already explored GeoWebcache in the earlier chapters. In the Setting up GeoWebCache
recipe of Chapter 5, Advanced Configurations, you configured it properly to store your tiles.
In fact, you changed the default folder, that is, Temp under the Tomcat installation path,
to a custom location.

The cache size may grow very large and fill your filesystem. Luckily, among its features, there
is one feature that enables you to fine-tune the amount of space occupied by cache tiles on
the disks.

Chapter 8

241

How to do it…
1. From the GeoServer administration interface, go to the Tile Caching section on the

left panel, as shown in the following screenshot:

2. Click on the Disk Quota link to open the panel to customize settings:

Monitoring and Tuning

242

3. By default, there is an upper limit for the cache size, that is, 500 MB; however, the
Enable disk quota flag is unchecked. Check it and click on the Submit button.

4. Now select Tile Layers link from the Tile Caching section on the left panel.

5. A list of layers is shown. Locate the NaturalEarth:GeneralizedCountries layer and
open the preview for it by selecting the EPSG:4326/jpeg gridset, as shown in the
following screenshot:

Gridsets are caching schemas. When you decide to store tiles for a layer,
you have to define the common properties for the tiles set. The logical
entities where you store these properties are the gridsets.
The properties you can configure in a gridset are the CRS, the tile sizes
(in pixels), the number and scale of zoom levels, and the bounds of the
gridset. Once you define a gridset and bind it to a layer, your client requests
must conform to the caching schema, that is, the gridset, or GeoWebCache
will be unable to fulfill your request.

6. An OpenLayers-based app will be opened. Browse the map by panning and zooming
for a little.

7. Get back to the Tile Layers list and check what it shows now.

8. Open again, go to the Disk Quota panel and change the Maximum tile cache size
value to 5 MiB, and then click on the Submit button.

Chapter 8

243

9. Wait for 10 seconds and then open the the Disk Quota panel again. You can now see
that GeoWebCache has enforced the limit, reducing the cache size.

How it works…
The GeoWebCache disk quota feature is quite simple to use but very effective in controlling
your storage occupation.

Apart from the basic settings explained in the previous steps, an important setting is the block
size used by the filesystem where you store tiles. The provided default, that is, 4096 bytes,
is quite common. If you feel unsure, you can check it; for example, on Linux, you may use the
dumpe2fs utility:

$ dumpe2fs -h /dev/mapper/ubuntu1204x64vm-root | grep 'Block size'

dumpe2fs 1.42 (29-Nov-2011)

Block size: 4096

In this case, we can safely go with the default value; in case your result is different, insert a
proper value in the Disk block size textbox as follows:

Another important setting is the time interval for GeoWebCache to perform the check on the
cache size. The default time of 10 seconds is a good trade off, but you may insert a higher
value. A very low value will degrade the performance.

The most important setting is the upper limit for your cache size. There is no magic rule here.
It depends on how many layers you have to cache and of course how much space is available.

Monitoring and Tuning

244

If you're using a non-dedicated filesystem for your tiles, consider that there may be other
processes creating temporary objects on the filesystem and select a conservative value that
leaves at least 20 percent of the filesystem always free. On the other hand, if you have a
dedicated filesystem for your cache, you can insert a value near to 99 percent of the total size.
Avoid setting it to a value equal to your filesystem size; filling it completely can produce weird
errors and corruption.

You may wonder what happens to tiles when the upper limit is hit. You have two options
for the criteria used to select the tiles to be deleted. The default option selects lesser used
tiles, which is usually a good choice as long as your site contains a static set of layers. If you
frequently add new layers, there are chances that older ones are used less, so select the
Least frequently used option as shown in the following screenshot:

OGC for ESRI
Professionals

In this appendix, we will cover the following topics:

 f ArcGIS versus GeoServer

 f Understanding standards

 f WMS versus the mapping service

 f WFS versus feature access

 f Publishing raster data with WCS

Introduction
This is the final part of this book; if you're still reading, you weren't scared by the term
Appendix. Appendices are often seen as something with minor importance or somehow
collateral to the main topics of the book. Also, its location at the end of the book doesn't
help much to attract readers.

Anyway, because you are the kind of reader that starts from page number one and goes on
through each chapter or just because you read the introduction and recognized yourself as
a member of the ESRI community, we're going to have explore in the borderline land that
crosses the proprietary and open source software.

ArcGIS for Server is not available without a proper license. You need
to request your local distributor for an evaluation code if you want to
try out the examples described in this appendix.

OGC for ESRI Professionals

246

ArcGIS versus GeoServer
As an ESRI professional, you obviously know the server product from this vendor that can be
compared to GeoServer well. It is called ArcGIS for Server and in many ways it can play the
same role as that of GeoServer, and the opposite is true as well, of course.

Undoubtedly, the big question for you is: why should I use GeoServer and not stand safely
on the vendor side, leveraging on integration with the other software members of the big
ArcGIS family?

Listening to colleagues, asking to experts, and browsing on the Internet, you'll find a lot of
different answers to this question, often supported by strong arguments and somehow by
a religious and fanatic approach.

There are a few benchmarks available on the Internet that compare performances of
GeoServer and other open source map servers versus ArcGIS for Server. Although they're not
definitely authoritative, a reasonably objective advantage of GeoServer and its OS cousins on
ArcGIS for Server is recognizable.

Anyway, I don't think that your choice should overestimate the importance of its performance.
I'm sorry but my answer to your original question is another question: why should you choose
a particular piece of software?

This may sound puzzling, so let me elaborate a bit on the topic. Let's say you are an IT
architect and a customer asked you to design a solution for a GIS portal. Of course, in that
specific case, you have to give him or her a detailed response, containing specific software
that'll be used for data publication. Also, as a professional, you'll arrive to the solution by
accurately considering all requirements and constraints that can be inferred from the talks
and surveying what is already up and running at the customer site.

Then, a specific answer to what the software best suited for the task is should exist in
any specific case. However, if you consider the question from a more general point of view,
you should be aware that a map server, which is the best choice for any specific case, does
not exist.

You may find that the licensing costs a limit in some case or the performances in some other
cases will lead you to a different choice. Also, as in any other job, the best tool is often the one
you know better, and this is quite true when you are in a hurry and your customer can't wait to
have the site up and running.

So the right approach, although a little bit generic, is to keep your mind open and try to pick
the right tool for any scenario.

However, a general answer does exist. It's not about the vendor or the name of the piece of
software you're going to use; it's about the way the components or your system communicate
among them and with external systems. It's about standard protocol.

Appendix

247

This is a crucial consideration for any GIS architect or developer; nevertheless, if you're going
to use an ESRI suite of products or open source tools, you should create your system with
special care to expose data with open standards.

Understanding standards
Let's take a closer look at what standards are and why they're so important when you are
designing your GIS solution.

The term standard as mentioned in Wikipedia (http://en.wikipedia.org/wiki/
Technical_standard) may be explained as follows:

"An established norm or requirement in regard to technical systems. It is usually
a formal document that establishes uniform engineering or technical criteria,
methods, processes and practices. In contrast, a custom, convention, company
product, corporate standard, etc. that becomes generally accepted and dominant is
often called a de facto standard."

Obviously, a lot of standards exist if you consider the Information Technology domain.
Standards are usually formalized by standards organization, which usually involves several
members from different areas, such as government agencies, private companies, education,
and so on.

In the GIS world, an authoritative organization is the Open Geospatial Consortium (OGC),
which you may find often cited in this book in many links to the reference information.

In recent years, OGC has been publishing several standards that cover the interaction
of the GIS system and details on how data is transferred from one software to another.
We'll focus on three of them that are widely used and particularly important for GeoServer
and ArcGIS for Server:

 f WMS: This is the acronym for Web Mapping Service. This standard describes how
a server should publish data for mapping purposes, which is a static representation
of data.

 f WFS: This is the acronym for Web Feature Service. This standard describes the
details of publishing data for feature streaming to a client.

 f WCS: This is the acronym for Web Coverage Service. This standard describes the
details of publishing data for raster data streaming to a client. It's the equivalent
of WFS applied to raster data.

Now let's dive into these three standards. We'll explore the similarities and differences among
GeoServer and ArcGIS for Server.

OGC for ESRI Professionals

248

WMS versus the mapping service
As an ESRI user, you surely know how to publish some data in a map service. This lets you
create a web service that can be used by a client who wants to show the map and data.
This is the proprietary equivalent of exposing data through a WMS service.

With WMS, you can inquire the server for its capabilities with an HTTP request:

$ curl -XGET -H 'Accept: text/xml'
 'http://localhost:8080/geoserver/wms?service=WMS
 &version=1.1.1&request=GetCapabilities' -o capabilitiesWMS.xml

Browsing through the XML document, you'll know which data is published and how this can
be represented.

If you're using the proprietary way of exposing map services with ESRI, you can perform a
similar query that starts from the root:

$ curl -XGET 'http://localhost/arcgis/rest/services?f=pjson' -o
 capabilitiesArcGIS.json

The output, in this case formatted as a JSON file, is a text file containing the first of the
services and folders available to an anonymous user. It looks like the following code snippet:

{
 "currentVersion": 10.22,
 "folders": [
 "Geology",
 "Cultural data",
…
 "Hydrography"
],
 "services": [
 {
 "name": "SampleWorldCities",
 "type": "MapServer"
 }
]
}

At a glance, you can recognize two big differences here. Firstly, there are logical items, which
are the folders that work only as a container for services. Secondly, there is no complete
definition of items, just a list of elements contained at a certain level of a publishing tree.

Appendix

249

To obtain specific information about an element, you can perform another request pointing to
the item:

$ curl -XGET 'http://localhost/arcgis/rest/
 services/SampleWorldCities/MapServer?f=pjson' -o
 SampleWorldCities.json

Setting up an ArcGIS site is out of the scope of this book; besides,
this appendix assumes that you are familiar with the software and
its terminology. Anyway, all the examples use the SampleWorldCities
service, which is a default service created by the standard installation.

In the new JSON file, you'll find a lot of information about the specific service:

{
 "currentVersion": 10.22,
 "serviceDescription": "A sample service just for demonstation.",
 "mapName": "World Cities Population",
 "description": "",
 "copyrightText": "",
 "supportsDynamicLayers": false,
 "layers": [
 {
 "id": 0,
 "name": "Cities",
 "parentLayerId": -1,
 "defaultVisibility": true,
 "subLayerIds": null,
 "minScale": 0,
 "maxScale": 0
 },
…
"supportedImageFormatTypes":
 "PNG32,PNG24,PNG,JPG,DIB,TIFF,EMF,PS,PDF,GIF,SVG,SVGZ,BMP",
…
"capabilities": "Map,Query,Data",
 "supportedQueryFormats": "JSON, AMF",
 "exportTilesAllowed": false,
 "maxRecordCount": 1000,
 "maxImageHeight": 4096,
 "maxImageWidth": 4096,
 "supportedExtensions": "KmlServer"
}

OGC for ESRI Professionals

250

Please note the information about the image format supported. We're, in fact, dealing with a
map service. As for the operation supported, this one shows three different operations: Map,
Query, and Data. For the first two, you can probably recognize the equivalent of the GetMap
and GetFeatureinfo operations of WMS, while the third one is little bit more mysterious. In
fact, it is not relevant to map services and we'll explore it in the next paragraph.

If you're familiar with the GeoServer REST interface, you can see the similarities in the way you
can retrieve information.

We don't want to explore the ArcGIS for Server interface in detail and how to handle it. What is
important to understand is the huge difference with the standard WMS capabilities document.
If you're going to create a client to interact with maps produced by a mix of ArcGIS for Server
and GeoServer, you should create different interfaces for both. In one case, you can interact
with the proprietary REST interface and use the standard WMS for GeoServer.

However, there is good news for you. ESRI also supports standards. If you go to the map
service parameters page, you can change the way the data is published.

The situation shown in the previous screenshot is the default capabilities configuration. As you
can see, there are options for WMS, WFS, and WCS, so you can expose your data with ArcGIS
for Server according to the OGC standards.

If you enable the WMS option, you can now perform this query:

$ curl -XGET 'http://localhost/arcgis/
 services/SampleWorldCities/MapServer/
 WMSServer?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities'
 -o capabilitiesArcGISWMS.xml

Appendix

251

The information contained is very similar to that of the GeoServer capabilities. A point of
attention is about fundamental differences in data publishing with the two software. In ArcGIS
for Server, you always start from a map project. A map project is a collection of datasets,
containing vector or raster data, with a drawing order, a coordinate reference system, and
rules to draw.

It is, in fact, very similar to a map project you can prepare with a GIS desktop application.
Actually, in the ESRI world, you should use ArcGIS for desktop to prepare the map project and
then publish it on the server.

In GeoServer, the map concept doesn't exist. You publish data, setting several parameters,
and the map composition is totally demanded to the client. You can only mimic a map, server
side, using the group layer for a logical merge of several layers in a single entity.

In ArcGIS for Server, the map is central to the publication process; also, if you just want to
publish a single dataset, you have to create a map project, containing just that dataset, and
publish it.

Always remember this different approach; when using WMS, you can use the same operation
on both servers. A GetMap request on the previous map service will look like this:

$ curl -XGET 'http://localhost/arcgis/services/
 SampleWorldCities/MapServer/WMSServer?service=
 WMS&version=1.1.0&request=GetMap&layers=fields&styles
 =&bbox=47.130647,8.931116,48.604188,29.54223&srs=
 EPSG:4326&height=445&width=1073&format=img/png' -o map.png

Please note that you can filter what layers will be drawn in the map. By default, all the layers
contained in the map service definition will be drawn.

WFS versus feature access
If you open the capabilities panel for the ArcGIS service again, you will note that there is an
option called feature access. This lets you enable the feature streaming to a client.

OGC for ESRI Professionals

252

With this option enabled, your clients can acquire features and symbology information to
ArcGIS and render them directly on the client side. In fact, feature access can also be used to
edit features, that is, you can modify the features on the client and then post the changes on
the server.

When you check the Feature Access option, many specific settings appear. In particular, you'll
note that by default, the Update operation is enabled, but the Geometry Updates is disabled,
so you can't edit the shape of each feature.

Appendix

253

If you want to stream features using a standard approach, you should instead turn on the WFS
option. ArcGIS for Server supports versions 1.1 and 1.0 of WFS. Moreover, the transactional
option, also known as WFS-T, is fully supported.

As you can see in the previous screenshot, when you check the WFS option, several more
options appear. In the lower part of the panel, you'll find the option to enable the transaction,
which is the editing feature. In this case, there is no separate option for geometry and
attributes; you can only decide to enable editing on any part of your features.

After you enable the WFS, you can access the capabilities from this address:

$ curl -XGET 'http://localhost/arcgis/services/
 SampleWorldCities/MapServer/WFSServer?SERVICE=WFS&VERSION=1.1.
 0&REQUEST=GetCapabilities' -o capabilitiesArcGISWFS.xml

Also, a request for features is shown as follows:

$ curl -XGET "http://localhost/arcgis/services/SampleWorldCities
 /MapServer/WFSServer?service=wfs&version=1.1.0
 &request=GetFeature&TypeName=SampleWorldCities:
 cities&maxFeatures=1" -o getFeatureArcGIS.xml

This will output a GML code as a result of your request. As with WMS, the syntax is the same.
You only need to pay attention to the difference between the service and the contained layers:

<wfs:FeatureCollection xsi:schemaLocation
 ="http://localhost/arcgis/services/SampleWorldCities/
 MapServer/WFSServer http://localhost/arcgis/services/
 SampleWorldCities/MapServer/WFSServer?request
 =DescribeFeatureType%26version=1.1.0%26typename=cities
 http://www.opengis.net/wfs http://schemas.opengis.net
 /wfs/1.1.0/wfs.xsd">
 <gml:boundedBy>

OGC for ESRI Professionals

254

 <gml:Envelope srsName="urn:ogc:def:crs:EPSG:6.9:4326">
 <gml:lowerCorner>-54.7919921875 -
 176.1514892578125</gml:lowerCorner>
 <gml:upperCorner>78.2000732421875
 179.221923828125</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:featureMember>
 <SampleWorldCities:cities gml:id="F4__1">
 <SampleWorldCities:OBJECTID>1</SampleWorldCities:OBJECTID>
 <SampleWorldCities:Shape>
 <gml:Point>
 <gml:pos>-15.614990234375 -
 56.093017578125</gml:pos>
 </gml:Point>
 </SampleWorldCities:Shape>
 <SampleWorldCities:CITY_NAME>Cuiaba</
SampleWorldCities:CITY_NAME>
 <SampleWorldCities:POP>521934</SampleWorldCities:POP>
 <SampleWorldCities:POP_RANK>3</SampleWorldCities:POP_RANK>
 <SampleWorldCities:POP_CLASS>500,000 to
 999,999</SampleWorldCities:POP_CLASS>
 <SampleWorldCities:LABEL_FLAG>0</SampleWorldCities:LABEL_
FLAG>
 </SampleWorldCities:cities>
 </gml:featureMember>
</wfs:FeatureCollection>

Publishing raster data with WCS
The WCS option is always present in the panel to configure services. As we already noted, WCS
is used to publish raster data, so this may sound odd to you. Indeed, ArcGIS for Server lets you
enable the WCS option, only if the map project for the service contains one of the following:

 f A map containing raster or mosaic layers

 f A raster or mosaic dataset

 f A layer file referencing a raster or mosaic dataset

 f A geodatabase that contains raster data

Appendix

255

If you try to enable the WCS option on SampleWorldCities, you won't get an error. Then, try to
ask for the capabilities:

$ curl -XGET "http://localhost/arcgis/services
 /SampleWorldCities/MapServer/
 WCSServer?SERVICE=WCS&VERSION=1.1.1&REQUEST=GetCapabilities" -o
 capabilitiesArcGISWCS.xml

You'll get a proper document, compliant to the standard and well formatted, but containing no
reference to any dataset. Indeed, the sample service does not contain any raster data:

<Capabilities xsi:schemaLocation="http://www.opengis.net/wcs/1.1.1
 http://schemas.opengis.net/wcs/1.1/wcsGetCapabilities.xsd
 http://www.opengis.net/ows/1.1/
 http://schemas.opengis.net/ows/1.1.0/owsAll.xsd"
 version="1.1.1">
 <ows:ServiceIdentification>
 <ows:Title>WCS</ows:Title>
 <ows:ServiceType>WCS</ows:ServiceType>
 <ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>
 <ows:ServiceTypeVersion>1.1.0</ows:ServiceTypeVersion>
 <ows:ServiceTypeVersion>1.1.1</ows:ServiceTypeVersion>
 <ows:ServiceTypeVersion>1.1.2</ows:ServiceTypeVersion>
 <ows:Fees>NONE</ows:Fees>
 <ows:AccessConstraints>None</ows:AccessConstraints>
 </ows:ServiceIdentification>
...
 <Contents>
 <SupportedCRS>urn:ogc:def:crs:EPSG::4326</SupportedCRS>
 <SupportedFormat>image/GeoTIFF</SupportedFormat>
 <SupportedFormat>image/NITF</SupportedFormat>
 <SupportedFormat>image/JPEG</SupportedFormat>
 <SupportedFormat>image/PNG</SupportedFormat>
 <SupportedFormat>image/JPEG2000</SupportedFormat>
 <SupportedFormat>image/HDF</SupportedFormat>
 </Contents>
</Capabilities>

If you want to try out WCS, other than the GetCapabilities operation, you need
to publish a service with raster data; or, you may take a look at the sample service
from ESRI arcgisonline™.

OGC for ESRI Professionals

256

Try the following request:

$ curl -XGET "http://sampleserver3.arcgisonline.com/
 ArcGIS/services/World/Temperature/ImageServer/
 WCSServer?SERVICE=WCS&VERSION=1.1.0&REQUEST=GETCAPABILITIES" -o
 capabilitiesArcGISWCS.xml

Parsing the XML file, you'll find that the contents section now contains coverage, raster data
that you can retrieve from that server:

…
<Contents>
 <CoverageSummary>
 <ows:Title>Temperature1950To2100_1</ows:Title>
 <ows:Abstract>Temperature1950To2100</ows:Abstract>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-179.99999999999994 -55.5</ows:LowerCorner>
 <ows:UpperCorner>180.00000000000006 83.5</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 <Identifier>1</Identifier>
 </CoverageSummary>
 <SupportedCRS>urn:ogc:def:crs:EPSG::4326</SupportedCRS>
 <SupportedFormat>image/GeoTIFF</SupportedFormat>
 <SupportedFormat>image/NITF</SupportedFormat>
 <SupportedFormat>image/JPEG</SupportedFormat>
 <SupportedFormat>image/PNG</SupportedFormat>
 <SupportedFormat>image/JPEG2000</SupportedFormat>
 <SupportedFormat>image/HDF</SupportedFormat>
</Contents>

You can, of course, use all the operations supported by standard. The following request will
return a full description of one or more coverages within the service in the GML format.

An example of the URL is shown as follows:

$ curl -XGET "http://sampleserver3.arcgisonline.com/
 ArcGIS/services/World/Temperature/ImageServer/
 WCSServer?SERVICE=WCS&VERSION=1.1.0&REQUEST=DescribeCoverage&
 COVERAGE=1" -o describeCoverageArcGISWCS.xml

Appendix

257

Also, you can obviously request for data, and use requests that will return coverage in one of
the supported formats, namely GeoTIFF, NITF, HDF, JPEG, JPEG2000, and PNG:

Another URL example is shown as follows:

$ curl -XGET "http://sampleserver3.arcgisonline.com/
 ArcGIS/services/World/Temperature/ImageServer/
 WCSServer?SERVICE=WCS&VERSION=1.0.0
 &REQUEST=GetCoverage&COVERAGE=1&CRS=EPSG:4326
 &RESPONSE_CRS=EPSG:4326&BBOX=-158.203125,-
 105.46875,158.203125,105.46875&WIDTH=500&HEIGHT=500&FORMAT=jpeg" -o
 coverage.jpeg

Index
Symbols
404 error

about 159
reference link 159

-gt-fill-random property 101
-gt-fill-random-tile-size property 101

A
AbsolutePath property 62
Advanced Spaceborne Thermal Emission and

Reflection Radiometer. See ASTER
Advanced Visualization 183
ArcGIS for Server

about 245
versus GeoServer 246, 247

ASTER
about 54
URL 54

automatic startup, Apache Tomcat
script, creating 124-126

B
binary package, Enterprise DB

URL, for downloading 229

C
cache tiles

managing, with GWC REST API 179-182
Caching property 62
cartography

about 205
reference link 205

Cascading Style Sheets. See CSS
chaining process

custom task, building 116-119
WPS process builder used 112-115

choropleth maps
reference link 207

ColorBrewer2
URL 98

color keywords
URL 83

COLOURLovers
about 204
URL 204

configuration, GeoServer
storing, in RDBMS 145-149

configuration, monitoring extension 229
control flow module

installing 214, 215
coordinate reference system. See CRS
coordinate systems

geographic coordinate systems 134
projected coordinate systems 134

coverages
obtaining, in different formats 46-51

CQL
about 25
data, filtering with 25-28

CQL spatial operators
data, filtering with 28-32

CRS
about 61, 122, 132
working with 132-134

CSS
labels, adding with 89-91

260

polygon style, creating with 81-85
URL 78

CSS module
about 78
installing 79-81

cURL
about 116, 152
URL 116, 153

D
data

filtering, with CQL 25-28
filtering, with CQL spatial operators 28-32

data stores
about 160
creating, with REST 160-166
editing, with REST 160-166

DEBUG parameter 129
Digital Elevation Model (DEM) 96
dot density chart

creating 99-102
URL 99

DUMP parameter 129

E
EarthExplorer

URL 54
ECQL

about 25, 113
references 25

Enterprise DB
URL 8

European Petroleum Survey Group (EPSG)
about 135
URL 135

ExpandToRGB property 62
Extended Common Query Language. See

ECQL
Extract, Transform, and Load (ETL)

about 236
reference link 236

F
feature access

versus WFS 251-253
Feature Manipulation Engine (FME)

about 236
URL 236

file
metadata, checking of 15

fill property 83
filters

adding, to style 85-88
Firebug 13

G
GARBAGE COLLECTOR parameter 128
gdaldem tool

using 203
GDAL formats

adding 66-69
GDAL/OGR

about 203
URL 203

gedit 127
GeoKettle

URL 236
geometrical center of contiguous USA

about 137
URL 137

geoprocessing
about 103
WPS process builder, using 106-111

GeoServer
about 103
installing 104
upgrading 122-124
URL 39
versus ArcGIS for Server 246, 247

GeoServer extension
URL, for downloading 214

GeoServer views 35
GeoWebCache

about 174

261

disk usage, limiting 240-244
setting up 143-145
URL 174

GML
URL 9

Google Earth™
about 195
URL, for installing 195

GWC REST API
used, for managing cache tiles 179-182
used, for managing layers 174-178

H
HEAP parameter 128
Here be Dragons label

reference link 194
Heterogeneous property 62
hibernate

about 231
URL 231

Hill-shading 205
HTTP status code

reference link 158

I
ImageIO plugin

URL 66
installation, control flow module 214, 215
installation, CSS module 79-81
installation, monitoring extension 225-229
installation, WPS module 104-106
Internet Software Consortium (ISC)

license 116

J
Java

optimizing 127-129
Java Naming and Directory Interface. See JNDI
JDBCConfig community module

reference link 146
jEdit 127

JMeter
URL 219
URL, for documentation 219

JNDI
about 129
URL 129

JNDI connection pool
setting 129-132

K
Keyhole Markup Language (KML)

about 194
using 194-200

L
labels

adding, with CSS 89-91
layers

managing, with GWC REST API 174-178
managing, with REST 166-172

LevelsNum property 62
Levels property 62
LocationAttribute property 62

M
mapping service

versus WMS 248-251
maps 77
MapServer

about 78
URL 78

metadata
checking, of file 15

monitoring database
reports, creating 234-240

monitoring extension
configuring 229-233
installing 225-229
URL, for documentation 229
URL, for downloading 225

mosaic
publishing 53-62

262

N
Nagios

URL 213
Name property 62
NASA Earth Observatory

URL 8
Natural Earth

URL 8
NaturalEarth workspace 92
NEWSIZE parameter 128
nonspatial filters, WFS

using 16-19

O
official EPSG code

overriding 140-142
Open Geospatial Consortium (OGC) 247
OpenGIS® Web Processing Service. See WPS
OpenLayers

dealing, with WFS version 8-14
out of memory case (OOM) 129

P
parametric view

creating 36-38
PERM parameter 129
per request limit

setting 219-224
per user limit

setting 215-218
pgAdmin

about 148
URL 148

PGC parameter 128
polygon style

creating, with CSS 81-85
PostGIS installation, on Linux

URL 8
PostGIS raster data source

adding 70-75
pregeneralized features

performances, improving with 39-43

pyramids
using 62-65

Python
about 116, 152
URL 116, 153

Q
QGIS

URL 46

R
raster data

publishing, with WCS 254-257
transformations, rendering for 96-98

raster data source, PostGIS
adding 70-75

RDBMS
GeoServer configuration, storing 145-149

rendering transformations, GeoServer
URL, for documentation 238

reports
creating, from monitoring database 234-240

Representational State Transfer. See REST
Reprojection console

using 135-139
Requests library

about 116, 153
URL 116, 153

REST
about 151, 152
data stores, creating 160-166
data stores, editing 160-166
reference link 152
used, for managing layers 166-172
used, for updating styles 172-174
used, for uploading styles 172-174
workspaces, managing with 153-159

S
scale

creating 91-95

263

script
creating, for automatic startup of Apache

Tomcat 124-126
SERVER parameter 129
Simple Object Access Protocol (SOAP) 104
spatial filters, WFS

URL 23
using 20-22

Spatial Reference System
Identifier (SRID) 134

spatial reference system (SRS) 31
SQL view

creating 32-35
standards

overview 247
reference link 247

Styled Layer Descriptor (SLD)
about 28, 77
URL 77
URL, for official papers 28

styles
filters, adding to 85-88
updating, with REST 172-174
uploading, with REST 172-174

symbology encoding
about 207
URL 207
using 207-210

T
table of contents (TOC) 87
Tile Map Service (TMS) 175
time

adding, to WMS maps 184-189
transformations

rendering, for raster data 96-98
transparency

using 203-207

U
Uniform Resource Identifier (URI) 158
United States Geological

Survey (USGS) 54, 96

V
vendor parameters, WCS

using 51-53
vendor parameters, WFS

using 23, 24
vi 127

W
WCS

about 46, 247
URL, for official documentation 46
used, for publishing raster data 254-257

WCS vendor parameters
using 51-53

Web Coverage Service. See WCS
Web Feature Service. See WFS
Web Map Service. See WMS
Web Map Tiling Service (WMTS) 175
Well Known Text (WKT) 133
WFS

about 7, 247
URL 9
versus feature access 251-253

WFS nonspatial filters
using 16-19

WFS spatial filters
using 20-22

WFS vendor parameters
using 23, 24

WFS version
dealing with 8-14

WMS
about 7, 174, 247
versus mapping service 248-251

WMS animator
using 190-194

WMS maps
time, adding 184-189

WMS Tiling Client
Recommendation (WMS-C) 175

workspaces
managing, with REST 153-159

264

WPS
about 103, 104
benefits 104
URL, for documentation 104

WPS module
installing 104-106

WPS process builder (WPS request builder)
about 106
used, for chaining process 112-115
using 106-111

X
XML Remote Procedure Call (XMLRPC) 104
XSD schemas

URL 28

Z
z-order

about 201
using 201, 202

Thank you for buying

GeoServer Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Geospatial Development
Second Edition
ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications from
scratch using Python tools for geospatial development

1. Build your own complete and sophisticated
mapping applications in Python.

2. Walks you through the process of building
your own online system for viewing and editing
geospatial data.

3. Practical, hands-on tutorial that teaches you all
about geospatial development in Python.

GeoServer Beginner's Guide
ISBN: 978-1-84951-668-6 Paperback: 350 pages

Share and edit geospatial data with this open source
software server

1. Learn free and open source geospatial mapping
without prior GIS experience.

2. Share real-time maps quickly.

3. Learn step-by-step with ample amounts of
illustrations and usable code/list.

Please check www.PacktPub.com for information on our titles

PostGIS Cookbook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial data in
a PostGIS database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS
and WFS using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data,
and routing data into usable forms.

3. Visualize data from the PostGIS database
using a desktop GIS program such as QGIS
and OpenJUMP.

4. Easy-to-use recipes with advanced analyses
of spatial data and practical applications.

Google Maps JavaScript API
Cookbook
ISBN: 978-1-84969-882-5 Paperback: 316 pages

Over 50 recipes to help you create web maps and GIS
web applications using the Google Maps JavaScript API

1. Add to your website's functionality by utilizing
Google Maps' power.

2. Full of code examples and screenshots for
practical and efficient learning.

3. Empowers you to build your own mapping
application from the ground up.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with Vectors
	Introduction
	Using different WFS versions in OpenLayers
	Using WFS nonspatial filters
	Using WFS spatial filters
	Using WFS vendor parameters
	Filtering data with CQL
	Filtering data with CQL spatial operators
	Creating a SQL view
	Creating a parametric view
	Improving performance with pregeneralized features

	Chapter 2: Working with Rasters
	Introduction
	Getting coverages in different formats
	Using WCS vendor parameters
	Publishing a mosaic
	Using pyramids
	Adding GDAL formats
	Adding a PostGIS raster data source

	Chapter 3: Advanced Styling
	Introduction
	Installing the CSS module
	Creating a simple polygon style with CSS
	Adding filters to your style
	Adding labels with CSS
	Creating scale-dependant rules
	Rendering transformations for raster data
	Creating a dot density chart

	Chapter 4: Geoprocessing
	Introduction
	Installing the WPS module
	Using the WPS process builder
	Chaining process – selecting features contained in a polygon
	Chaining process – building your own task

	Chapter 5: Advanced Configurations
	Introduction
	Upgrading GeoServer
	Creating a script for automatic startup
	Optimizing Java
	Setting up a JNDI connection pool
	Working with CRS
	Using the reprojection console
	Overriding an official EPSG code
	Setting up GeoWebCache – how to make
pre-rendered tiles for high availability
	Storing configurations in an RDBMS

	Chapter 6: Automating GeoServer Configurations
	Introduction
	Managing workspaces with REST
	Creating and editing data stores with REST
	Managing layers with REST
	Uploading and updating styles with REST
	Managing layers with the GWC REST API
	Managing cache tiles with the GWC REST API

	Chapter 7: Advanced Visualizations
	Introduction
	Adding time to WMS maps
	Using the WMS animator
	Keyhole Markup Language styling
	Using z-order creatively
	Using transparency creatively
	Using symbology encoding

	Chapter 8: Monitoring and Tuning
	Introduction
	Installing the control flow module
	Setting a per-user limit
	Setting a per-request limit
	Installing the monitoring extension
	Configuring the monitoring extension
	Creating reports from the monitoring database
	Limiting the GeoWebCache disk use

	Appendix: OGC for ESRI professionals
	Introduction
	ArcGIS versus GeoServer
	Understanding standards
	WMS versus the mapping service
	WFS versus feature access
	Publishing raster data with WCS

	Index

