THE EXPERT'S VOICE®

MapServer

Open Source GIS Development

Bil Kropla

Apress

Beginning MapServer
Open Source GIS Development

Bill Kropla

Apress:

Beginning MapServer: Open Source GIS Development
Copyright © 2005 by Bill Kropla

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-490-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewers: Howard Butler and Stephen Lime

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Managers: Tracy Brown-Collins and Beckie Stones

Copy Edit Manager: Nicole LeClerc

Copy Editor: Damon Larson

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Susan Glinert

Proofreader: Linda Seifert

Indexer: Carol Burbo

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

For my children.

Contents at a Glance

BB ... e xiii
About the AULNOT e XV
About the Technical ReVIBWEISot e xvii
ACKNOWIBAgMENTS ... e e i e Xix
INtrOdUCHION e xxi
CHAPTER 1 Building MapServer. ... 1
CHAPTER 2 Simple MapServer Examplescociiiia.L. 15
CHAPTER 3 Creating the Mapping Application 31
CHAPTER4 Modifying a Map’s Lookand Feel 55
CHAPTERS5 UsingQueryModecccoiiiiiiiii i 103
CHAPTER6 Using Perl MapScript i, 167
CHAPTER 7 Using Python MapScriptcoiiiiiiiints. 187
CHAPTER8 Using PHP/MapScript ...t 207
CHAPTER9 Extending the Capabilities of MapScript with MySQL 231
CHAPTER 10 Utility Programs ..ot 291
CHAPTER 11 MapServerReference ...t 309
APPENDIX 369

Contents

0] £ (o xiii
Aboutthe AUTNOr o e XV
About the Technical REVIBWETSo vttt e e i Xvii
ACKNOWIBAgMENTS ...t e e e Xix
IMErOAUCTION Lttt e XXi
CHAPTER 1 Building MapServerccoiiiiiiiiiii... 1
Planning the Installation i, 1

Selecting Supporting Librariesc.oviiiiiiiiiiiea, 1

Gettingthe Softwareccoi i 4

Building and Installing the Softwarel. 5

Building and Installing zlib.............. ... i il 6

Building and Installing libpng ..., 7

Building and Installing ibJPEGcoviiiieinnn... 7

Building and Installing FreeType...........cooviiiiiiiat. 8

Buildingand InstallingGD ..., 9

Building and Installing Proj.4. ..., 9

Building and Installing GDALc.oii i 9

Building and Installing shapelib 10

Building and Installing MapServercccviiiiiiiiienn.. 11

Configuring MapServer and Apache................ccovvvnnnn, 12

Onling RESOUICES .. 'vvt ittt i it it ee e e 13

QUMM .ottt i i et e i e 14

CHAPTER 2 Simple MapServer Examples 15
BasiC CONCEPES ..o e 15

Building a “Hello World” Applicationco..t. 16

Creatingthe Mapfile.......... ... oo 16

Creating the Initialization File and HTML Template 20

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Buildingthe FirstMap ... 23
Creating the first.map Mapfile...................t 24
Building the HTML Template for the FirstMap 28

SUMMAIY .. i e et i e 30

Creating the Mapping Application........................ 31

Mapfile Concepts ... e 31
The Structure of the Mapfile ...t 32
The LAYERObject. ... 33
The CLASS Object.coovi e 34

Mapfile Syntaxcoviii e 34

The Mapfile ... e 35
Layer 1:Urban Areasooeeviii i 37
Layer 2: Water Features.coviiiiiii i, 39
Layer 3: State Boundariescooiiiiii 4
Layer 4: Road Network.ccoviieiiii e 41

The HTMLTemplate ..ot 43
The Initialization File.o i 43
The TemplateFile...........ooiiiii 44

SUMMANY ..ttt e e e e e 50

Code Listings ... cvvvie i e e 51

Modifying a Map’s Look and Feel 55

The Graphic Design of Maps ..., 61

Labeling for Clarityccvviiiiiii i 66
FONES . e 66
0] 67
Orientation. 67

Using Scale to Reduce Clutter ..o, 71

Classifying Featuresc.oiiiiiiii i 74
Using Expressions to Define Classescoovvvvvennnn. 74
USING ClaSSES « . oottt i i it cie i 76
Using SYmbolscoeii 79

Using Annotation Layersc.coviiiiriiiiiiiieennnnn. 81

Creating Scale Barsoviiiiiii i, 83

Creating Legendsccovieiiiiiiii i 85

Using Reference Mapsc.oveivii it 87

QUMM .ot i i e i e i e 88

The COOe ..ottt e 88

CHAPTER 5

CONTENTS
UsingQueryModecccvviiiinnnnnns, 103
How MapServer Processesa Querycccovivvieennnnnn. 103
QUENY TYPBS vttt 104
Query Templates.c.oieii e 105
Maintaining State in QueryModel 107
QUENYMAPS . ..ottt 107
Map-Only Query Modes.coiiiiiii i iieann 107
QueryExamples ...t 108
QUery MOES ..ot 129
0 1o 130
NQUERY MOE. . ..o o 130
ITEMQUERY Mode.ovieii e 131
ITEMNQUERY Mode ..o 131
FEATUREQUERY MOGEo v it 131
FEATURENQUERY Mode. ..o 132
ITEMFEATUREQUERY Mode........ccoviiii it 132
ITEMFEATURENQUERY Mode.covvivei i 133
INDEXQUERY Mode€. o et 133
Query Templatescooeii i e 133
Map-Level Query Templates.................ccoviiini... 133
Layer-Level Query Templates...............covivieennn... 134
Class-Level Query Templatesccoevvieiinnnn... 135
The QUERYMAP ObjeCto 135
The JOINODjeCt ..o e i 136
Substitution Strings and CGI Variables 137
Query Substitution Strings. ... 137
Query CGlI Variables ..o 138
A Query Application ... 139
The Mapfileooevi e 139
The Initialization File.ccoiii i 145
The HTML Template. ... 146
The Query Templates. ... 150
QUMM .t i i e i e e 155

Code Listings ... cvvve i e 156

ix

CONTENTS

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

Using Perl MapScript 167
Building and Installing Perl MapScriptot 168

BuildingPerlo 168

Building Perl MapScript. ..ot 169
The Perl MapScript “Hello World” Application 169
A Practical Perl MapScript Applicationc.ovvaet. 172
QUMM ..t e i e i e i e 181
Code Listings . ..o vvv vt e 181
Using Python MapScript 187
Building and Installing Python MapScript 187

BuildingPython............o i 187

Building Python MapScript. 188
The Python MapScript “Hello World” Application 189
A Practical Python MapScript Application 191
QUMM ..t e i e i e i e 200
Code Listings ..o ovv i e 200
Using PHP/MapScript 207
Building and Installing PHP/MapScript ...ttt 207

BuildingPHP 208

Building PHP/MapScript.covii i 209
The PHP/MapScript “Hello World” Application 210
A Practical PHP/MapScript Application 212
SUMMANY ..ot i i e e e e 222
Code Listings ..o ovv it 222

Extending the Capabilities of MapScript with MySQL .. 231

Describing Application Requirementso.. 232
Addressing Some Design ISSUESoovvevieiii i, 233
Mozillavs. IEo e e 233
Creating the MySQL Databaseoout 234
Creating the Application User Account....................... 237
Installing the JavaScript Tool TipCode 238

Patching PHP MapScriptoviiii i 238

CHAPTER 10

CONTENTS
Building the Application o 239
The ApplicationinAction...............coiiiii ... 239
Creatingthe Mapfile.......... ... it 247
The PHP Script ..o e 251
SUMMANY ..t i i e i e 265
Code Listingsovv e 265
Utility Programs ... 291
MDD IV ..t i e e 291
SNP2IMg. e 291
BOENd ..o e e 292
SCAlEDAr. ...t e e 292
SOMSNP . .ot e e 292
SYM2IMG ettt i it e e 293
SNPIrEE. . o e 293
ShPLreeviS ... 294
HledmS. . 296
shapelib ... e e 297
dbfcreate 297
dbfadd ... 297
Abfdump .. e e 297
Shpereate.o 298
shpadd. ... 298
SNPAUMD e e 298
shprewindo 299
dbfcat. ... 299
dbfinfo ... 300
Shpcat ... 300
ShPINTO. .o 300
shpcentrd. 301
ShPOXE L e 301
SHPPIO. oo 301
GDAL/OGR ... e e 301
OQNNTO L. 302
(00| 70 304
0grtindeX e 307

SUMMANY ..ot i i e e e e 307

Xi

Xii CONTENTS

CHAPTER 11

APPENDIX

MapServer Referencecoooiiil. 309
Mapfile Keywordsccoiiiii i e 310
Map ObjeCt ...t e 310
CLASS Object ..o 315
FEATURE ObjECt . ..o 320
GRIDObJECt vt e e 320
JOINODJECt . .o e 321
LABEL ObjECt ..ot 323
LAYERObject ... 327
LEGEND Objectoi i 334
OUTPUTFORMAT Objectovviii i 336
PROJECTION ObjeCtoviee e 340
QUERYMAP Object ..o 341
Reference Map Object ..., 342
SCALEBAR ObjECtevviie e 344
STYLEObject ... 347
WEBObject . ..o 348
CGlVariables ... 350
Substitution Strings ... 357
.. 369
The Shapefile Specificationt 369
File Structure. ..o e e 370
Shapefile Data Structuresccoviiiiiiii . 371
Cartographic Projectionscoiiiiiiiiiii i 373
Projection Categories..........c.ovviiiiiiii i, 373
Creating and Using Symbolsccovviviiiiiiiiennn.n. 381
Symbol Definition Reference................. ...l 381
Creating Vector Symbols oot 383
FONTSET EXampleSvvieiii it it it eiaennes 385
HTML Legendsc.oiuiiiiiii it i i e 386
.. 391

Foreword

Maybe it’s just me, but when someone decides it's worth the effort and expense to actually
write a book about something like MapServer, it’s a big deal—sort of a watershed moment. So
needless to say, I was very excited when I first heard about this book. At long last, I have some-
thing to show to my wife—tangible evidence that I was really doing something during those
long nights in the basement (strangely enough, C code just makes her eyes glaze over—go figure).

First, a bit of history: MapServer arose out of necessity, since in the mid-nineties there were
few, if any, decent commercial alternatives. Initial work centered on web-based front ends to
commercial GIS software. This worked well, but was painfully slow—and I endured constant
complaints from graduate students about licenses for our expensive GIS being used by the
public to make maps online. There had to be a better way.

Mercifully, I found shapelib—which, when paired with the GD graphics library, brought
MapServer to life (and stopped the complaints). Add a few best-of-breed open source packages
(e.g., GDAL, Proj.4, PostGIS, and FreeType) and a number of talented developers—and here we
sit 10 years later with a pretty powerful piece of software.

At its essence, MapServer is conceptually very simple, but unless you share the thought
processes of the core developers, the learning curve can be a bit steep. For many open source
projects, documentation is a weak point, and MapServer is no exception. Actually, there’s a
huge amount of MapServer documentation, but it’s scattered loosely across mailing lists,
sample applications, and websites. That’s why this book is so valuable—especially to someone
new to MapServer.

Bill has brought together all of the information for someone getting started with MapServer
in one place—from installation to MapScript, it’s all here. I appreciate the fact that he read any
existing documentation and actually put it to the test, often finding syntactical inaccuracies
and undocumented features. Fortunately, we all benefit from his pain and suffering.

Bill's work is more than a MapServer reference manual (see Chapter 11 and the Appendix
for that stuff). It’s full of numerous detailed examples—mapfiles, templates, and scripts that
make learning this stuff far easier. When writing about a technical subject, perspective is every-
thing. As a developer, I often find myself glossing over important details, such as installing the
software—in the case of MapServer, however, these details are crucial.

I continue to enjoy working with this software everyday—either building applications with
it or doing core development. I hope that this book will help users get up to speed quickly so
they can move on to the fun part!

Stephen Lime
MapServer/MapScript Creator

xiii

About the Author

BILL KROPLA has almost 20 years of experience working in information
technology, and has spent the last several years deeply involved in the
wireless industry developing wireless mapping solutions for tracking
shipping vehicles. Bill holds a B.Sc. in Physics from the University of
Manitoba and an M.Sc. in Electrical Engineering and Applied Mathe-
matics, also from the University of Manitoba. He also holds an omnibus

patent for methods, hardware, and software used in the wireless industry.

Xv

About the
Technical Reviewers

HOWARD BUTLER is a GIS software developer at the Center for Survey Statistics and Method-
ology at Iowa State University in Ames, Iowa. He also participates in the GDAL (www.gdal.org),
ZCO (http://zmapserver.sourceforge.net), and MapServer (http://mapserver.gis.umn.edu)
projects, taking on roles of developer, documenter, and advocate, depending on the situation.
His spare time is spent helping out on the farm he grew up on; spending time with Rhonda, his
wife-to-be; attempting to train his mentally challenged cat Deuce; and keeping his old house
standing. He maintains a weblog on the intersection of open source GIS and Python at http://
hobu.biz.

STEPHEN LIME is the original author of MapServer and MapScript, and is still one of the leaders
of the MapServer development team. He has a B.A. in Mathematics from the University of
Minnesota Duluth and an M.S. in Forestry from the University of Minnesota. His real job is as
the Applications Development Manager for the Minnesota Department of Natural Resources.

The bulk of his spare time is spent with his wife and daughters (or trying to sneak off to play golf).

Xvii

Acknowledgments

I am indebted to Jason Gilmore, my editor. Without his input, this would be a much thinner
(and less useful) volume. His stylistic suggestions were always on the money, and his technical
expertise saved me from some embarrassing oversights. Thanks, Jason.

Thanks also for the advice of technical reviewer Howard Butler, who kept me honest. Every
piece of software can be understood in one of three ways: the way the documentation says it
works, the way the user thinks it works, and the way the developer knows it works. Howard
provided that last piece, and his insights and suggestions were invaluable. His kind words
about one of the maps in the book were very encouraging.

Steve Lime showed me, very gently, that I knew a lotless than I thoughtI did about queries.
The pointers he gave me helped to remedy that problem. I am grateful for the assistance. Of
course, there’s a larger debt, since without Steve there would be no MapServer and no need for
this book.

Having been a project manager, I know it’s a thankless task. Beckie Stones chided me (with
good humor) throughout the process, making sure I didn’t fall too far behind, pointing out that
figures really ought to have captions, and finding people who evidently had learned how not to
be seen. Thanks Beckie.

There are several others who contributed to this effort, but with whom I had less contact:
Damon Larson (who enforces the serial comma laws), Tracy Brown-Collins, Tina Nielsen, Kelly
Winquist, and Julie Miller. Thank you all, it’s been a pleasure working with you.

I'would also like to thank John Fairall and John Brock for their assistance in finding a suitable
image of the Catalhdyiik map.

Although this book could not have been written without the participation of these and
many others I have never met (people who have worked very hard to keep me from making
mistakes, stupid and otherwise), any errors or omissions are my responsibility.

Finally and most importantly, I want to thank my mother, Pat, and my children Alex and
Elizabeth for their encouragement. You three make it worthwhile.

Xix

Introduction

M aps have played a prominent role in human activity for thousands of years. One of the
earliest known maps was uncovered during the course of an archaeological excavation in Turkey
in 1961. The Catalhoytik site is a neolithic settlement dating from approximately 6500 BC. The
map consists of a partially preserved, painted plaster representation of the community in plan
view, with a smoking volcano in the background. While not drawn to scale, the map does seem
to preserve the relative orientation of the structures represented. Figure 1 is a modern rendering
of a portion of the original wall fragment.

Figure 1. Town plan of Catalhéyiik (circa 6500 BC), showing an active volcano in the background
© John Brock, Measure & Map magazine, 2001

A date of 6500 BC means that people began drawing maps 3,000 years before they learned
to write. The utility of maps, implied by this great age, is the result of a map’s ability to present
an enormous amount of information very clearly and compactly.

From the beginning, maps have been used to show where things are, but it’s important to
remember that the map isn’t the territory. The world consists of things that have geographical
(i.e., spatial) relationships with one another, and though a map can be a precise replica of the
world, it’s generally not. A map is a model that contains representations of the things in the
world, but these representations aren’t required to resemble the things they represent or even
to possess the same spatial relationships. The real world is the domain of geographers and
geography. Geographers live on the surface of a large, approximately oblate spheroid with
topography—that is, in a three-dimensional space. The map is where the cartographer lives—
it’s small and flat. The process of representing real-world things on this flat surface is cartography.

The golden age of maps and cartography corresponds to the exploration age. Maps were
the keys to great wealth, and you had to have a copy to get there—wherever there might be. The
tools that fueled the last golden age were the compass, the sextant, and accurate clocks. Digital
maps, geographic information systems (GISs), and location-based services represent the next
golden age of maps and cartography. The tools fueling this age are computers, the Internet, and
the Global Positioning System (GPS).

XXi

XXii

INTRODUCTION

In the modern world, communicating information clearly and forcefully is critical in busi-
ness, science, and politics. Whether the information to be communicated is demographic data,
polling results, or environmental data, it possesses a geographic distribution. Just as graphs
present numerical information in an easy-to-understand way, maps can show more clearly
than any tabular format how the information relates to location, enabling the user to review
this information in terms of its spatial orientation. While this distribution information is implicit in
a table of numbers, it can be difficult or impossible to see.

Historically, accurate maps have been difficult to make, hard to maintain, and static. In the
absence of any competing technology, these factors have limited the utility of paper maps. It’s
only very recently (when compared to the age of the Catalhdyiik map) that this has become
clear. Road maps provide a good example of how limited maps have been. We all have them in
our automobiles—and they’re always out of date. They're difficult to read without squinting,
and the street we're looking for is always just around the fold. And if we don’t want to see streets,
but rather the locations of Chinese restaurants in town, we have to buy a different kind of map.
In other words, maps have tended to be dense, single-purpose documents that act as archives
of past locations.

Digital maps ensure the convenient and efficient rendering of graphical images. Because
of this, they can also be dynamic—showing current information in real time. But the hard
cartographic work has always been (and still remains) the collection and maintenance of the
underlying information. In fact, the dynamic nature of digital maps exacerbates the maintenance
effort since performance and data requirements are so great.

The development of digital maps was driven by the needs of industry (e.g., mining), natural
resource managers, and researchers, for a management tool. Yet, with the rise of the Internet
and the commoditization of hardware, digital maps have become ubiquitous—weather maps
displayed on the morning weather report, driving instructions obtained from GPS-enabled
automobile navigation systems, and Internet sites that provide street maps on demand are just
a few of today’s commonplace digital mapping applications.

Nevertheless, most of these applications don’t address the needs of the mobile user. For
example, a GPS-enabled automobile navigation system can determine your present position
and tell you how to get somewhere else, but since it has access to onboard data only (at best), it
can’t provide services that require real-time information. Such services would include optimum
routing with congestion avoidance and real-time location-based services (e.g., the lowest fuel
price within five miles).

However, applications are being developed that are network-aware and smart (i.e., they’re
wireless and GPS enabled). Some examples are management tools for GPS-enabled garbage
pickup, systems to provide driving instructions to emergency vehicles, and systems that allow
shippers to locate shipments in transit. Mobile technologies like WiFi, and 2.5 and 3G cellular,
will bring new possibilities.

When wireless technology becomes ubiquitous and bandwidth is cheap, what will the
killer app be? Prior to the existence of the Internet, no one would have predicted the popularity
and profitability of a company like Google—a catalog of the contents of tens of millions of
computers on the Internet, available free of charge for anyone to use. This particular applica-
tion was the invention of two college students with a good idea and access to cheap technology.
While I won’t attempt to predict what the killer mobile application will be, the fact that it will be
mobile suggests that mapping capabilities will be a necessary adjunct.

But the problem is, if some bright college student wants to put together the killer app and
getrich, it could cost thousands of dollars to purchase the data and/or services required just

INTRODUCTION

to getinto the game. Proprietary technology, while powerful, is very expensive. Whether it’s the
outright purchase of proprietary software, subscription purchase of spatial information, or
complete application outsourcing, the production of quality mapping applications with commer-
cial software is costly. If you have a stable set of system requirements, some money in the bank,
and a market opportunity that falls right on top of you, the proprietary options can be a good
choice. Likewise, if you prefer to make development and maintenance headaches someone
else’s problem, or if your projected traffic volumes require heavy iron, then you’ll probably
want to go with the proprietary product.

But if your entrance into the market is more tentative, with a dynamic set of system
requirements (or none at all); or if you're short on cash or just experimenting with the technology,
you should investigate MapServer (http://mapserver.gis.umn.edu), which is the topic of this
book. MapServer is a map-rendering engine that works in a web environment as a CGI script or
as a stand-alone application via an API accessible from several programming languages. To
quote from the MapServer home page, “MapServer is an OpenSource development environ-
ment for building spatially enabled Internet-web applications.” Developed at the University of
Minnesota with help from NASA and the Minnesota Department of Natural Resources, MapServer
is now maintained by close to 20 developers from around the world.

There are a number of reasons you might consider using MapServer: maybe your boss
balked at the price of a commercial product for putting maps into his pet project, and told you
to find something on the Internet; maybe you have a data set that incorporates some spatial
information and you want to share it in a graphical way on the Web; perhaps you'd like to expand
your own pet project and you feel that providing online maps will have a lot of impact; or maybe
you just have a fondness for maps and the thought of making beautiful maps from digital sources
fills you with delight. But before looking at MapServer to see if it’s what you need, you have to be
aware of what it isn’t. MapServer is a tool for rendering geographic data to the Web—it’s not a
full-featured GIS (although it could be used to build one). If you know what a GIS is, skip the
next section and go directly to the discussion of MapServer’s capabilities. If you don’t know
what a GIS is, read the next section so you can determine whether your project requires a GIS,
or whether a map-rendering system such as MapServer will suffice.

Geographical Information Systems

While the concept of a GIS is an interesting topic in its own right, this book focuses on producing
maps with MapServer. GIS concepts and vocabulary overlap a good deal with cartography, and
throughout the book I explain new concepts as necessary. This section is intended to describe
the basic features of a GIS so that you can determine whether you need that kind of power or not.

The first matter that comes to mind when considering the use of a GIS is the map that it
produces. However, this kind of graphical output is actually the result of a chain of activities not
often considered by those unfamiliar with the process. In fact, the map may not be the most
important output of a GIS. The goal of any GIS is to allow the user to query and analyze spatial
information, which can be useful for assisting in public policy development, in scientific research,
and for making private sector business decisions (to name just a few areas of application). The
information provided by a GIS can do this by producing maps that present the information of
interest in a graphical way—but in many cases, the output may simply consist of tabular data
that relates quantitative information to geographical location.

While there are many definitions of what constitutes a GIS, there are four capabilities that
every GIS must have. These capabilities are discussed in the following section.

xXxiii

XXiv

INTRODUCTION

Data Manipulation

Data manipulation capabilities include the usual database management tools for maintaining
and querying databases (extended to include spatial data), but also the ability to import or
translate foreign data formats, integrate data from multiple sources into a spatial database,
correct attribute or spatial data, and remove spatial data from a database (a process called
thinning). Since your data is often collected from external sources and hasn’t been specifically
compiled to answer your questions, there are no guarantees that it will be in a format readable
by your GIS. You'll need the ability to translate these files to a format your GIS can use. You may
have several databases that contain the information you wish to use, but it may be inconvenient
or impossible to work with all of them at the same time.

Note Real-world objects such as towns, roads, and lakes that are represented in a spatial database as
geometrical objects—Iike points, lines, and polygons—are called features. The information (such as town
names, road types, or areas of lakes) constitute the attributes of the features.

For example, you may have a spatially aware database that contains spatial information for
the road network in some area. In another database, you store county land-use information.
You'll probably want the ability to import the land-use information into the spatially aware
database so that it becomes available for GIS use. Of course, no data source is perfect and no
data set is completely clean—attribute information may contain factual errors and spelling
mistakes, and spatial information can have gaps and bogus features. These mistakes must be
corrected before the data is used in any analysis, so you’ll need some means of seeking them
out and fixing them. Spatial databases are large—sometimes so large that even optimized hard-
ware and software may bog down when asked to render highly detailed maps or search large
databases. If some features are of no interest to you and just take up space and time, an effective
way of improving response is to thin the data by removing these features. A GIS should provide
the functionality to do this.

Analytical Capabilities

Analysis is the real bread and butter of a GIS. The whole point of a GIS is to give the user the
ability to ask questions about geographic relationships between data elements. The data
elements consist of features (and their locations) and the attributes associated with those
features. While a GIS can perform the usual sort of nonspatial queries (like how many lakes
have areas greater than 10 square miles), the power of a GIS is really judged by how well (i.e., how
easily) it provides answers to questions like:

¢ What feature is found at a specific location?

* Where are certain types of features located?

* What are the attributes of features in the neighborhood of a location?
¢ What is the spatial distribution of an attribute?

» Has the distribution changed over time?

INTRODUCTION

¢ How does the distribution of one attribute relate to another?

* What happens if some attributes are changed?

Spatial Referencing of Attribute Information

Spatial referencing (or georeferencing) is the process of assigning real-world coordinates to
features. Features derived from scanned maps or aerial photographs contain various kinds of
distortion. Tools are required to scale, rotate, and translate images to remove this distortion
and, once the images have been appropriately modified, assign coordinates to significant features.
This is sometimes referred to as geocoding, but this term is also commonly used to signify the
assigning of street addresses to spatial coordinates.

Note A spatial reference is the location information (essentially the latitude and longitude) associated with
the geometrical objects (like points, lines, and polygons) that constitute features.

Graphical Input and Output Capability

It’s often helpful to use a georeferenced image and build a map on top of it. For example, an
aerial or satellite photo showing forested areas in some region may be overlaid with proposed
road construction to assist in an environmental assessment. In order to do this, a GIS must be
able to import and display these georeferenced images. At the other end of the process, there
are two types of output that a GIS must provide: tabular and graphical. The tabular output
consists of attribute information that has been selected and associated with other information
based on some spatial relationship that exists between elements. It’s quantitative. The graph-
ical output from a GIS consists of the maps that it generates based on a selection of attributes.
The graphical data is qualitative, but it helps to concretize the tabular data, to make the tabular
data easier to understand, and to encourage sharper questions.

In summary, a GIS is a system of software components that provides the ability to maintain
a spatially aware database; it provides analytical tools that enable spatial queries of the data-
base; it allows the association of locations with imported graphical data; and it provides graphical
and tabular output.

MapServer

MapServer creates map images from spatial information stored in digital format. It can handle
both vector and raster data. MapServer can render over 20 different vector data formats, including
shapefiles, PostGIS and ArcSDE geometries, OPeNDAP, Arc/Info coverages, and Census
TIGER files.

Not all the information displayed on a map needs to be in vector format. For example,
aerial or satellite photos of a region can be displayed behind rendered vector data to provide a
clearer picture of how those vector elements relate to real-world features. MapServer reads two
raster formats natively: GeoTIFF and EPPL7, but can read over 20 formats (including Windows
bitmaps, GIFs, and JPEGs) via the GDAL package. However, although MapServer understands
and can render these raster types, it has no way of tagging images with spatial information.

XXV

XXvi

INTRODUCTION

Note A significant distinction should be made between vector data and raster data since each is used and
stored differently. A vector representation of a geometrical object essentially consists of a list of the coordi-
nates of the points that define the object. A raster object, on the other hand, consists of a string of values that
represent a digital image. A vector object contains explicit spatial references by definition; a raster object,
since it’s just an image, requires tags that allow it to be properly positioned, oriented, and scaled.

MapServer can operate in two different modes: CGI and MapScript. In CGI mode, MapServer
functions in a web server environment as a CGI script. This is easy to set up and produces a fast,
straightforward application. In MapScript mode, the MapServer API is accessible from Perl,
Python, or PHP. The MapScript interface allows for a flexible, feature-rich application that can
still take advantage of MapServer’s templating facilities.

MapServer is template based. When first executed in response to a web request, it reads a
configuration file (called the mapfile) that describes the layers and other components of the
map. It then draws and saves the map. Next, it reads one or more HTML template files that are
identified in the mapfile. Each template consists of conventional HTML markup tags and special
MapServer substitution strings. These strings are used, for example, to specify the paths to the
map image that MapServer has created, to identify which layers are to be rendered, and to
specify zoom level and direction. MapServer substitutes current values for these strings and
then sends the data stream to the web server, which then forwards it to the browser. When a
requester changes any form elements on the page (by changing zoom direction or zoom value,
for example) and clicks the submit button, MapServer receives a request from the web server
with these new values. Then the cycle starts again.

MapServer automatically performs several tasks when generating a map. It labels features
and prevents collisions between neighboring labels. It provides for the use of both bitmapped
and TrueType fonts. Label sizes can be fixed or configured to scale with the scale of the map.
The option to not print labels for specified map scale ranges is also provided.

MapServer creates legends and scale bars (configurable in the mapfile) and generates
reference maps. A reference map shows the context of the currently displayed map. For example, if
the region of interest is North Dakota, the reference map would show a small map of North
Dakota, with the extent of the current map outlined within it. Zooming and panning are under
user control.

MapServer builds maps by stacking layers on top of one another. As each is rendered, it’s
placed on the top of the stack. Every layer displays features selected from a single data set.
Features to be displayed can be selected by using Unix regular expressions, string comparisons,
and logical expressions. Because of the similarity of data and the similarity of the styling
parameters (like scale, colors, and labels), you can think of a layer as a theme. The display of
layers is under interactive control, allowing the user to select which layers are to be rendered.
While layers can’t be generated on the fly, empty layers can be populated with dynamic data
and manipulated via URLs. MapServer has powerful and sophisticated query capabilities, but
in CGI mode it lacks the tools that allow the kind of analysis provided by a true GIS.

This overview has described some of the features of MapServer and shown why it’s not a
full-featured GIS: it provides no integrated DBMS (database management system) tools, its
analytical abilities are limited, and it has no tools for georeferencing.

INTRODUCTION XXvii

Since MapServer’s functions can be accessed via an API from various programming
languages (such as PHP, Perl, and Python), it can serve as the foundation of a powerful spatially
aware application that has many of the analytical and reporting functions of a true GIS. In addition,
while there are no integrated tools for manipulating spatial data, there are third-party tool sets
that perform many (although not all) of these functions.

When run as CGI in a web environment, MapServer can render maps, display attribute
data, and perform rudimentary spatial queries. When accessed via the AP, the application
becomes significantly more powerful. In this environment, MapServer can perform the same
tasks it would as CGI, but it also has access to external databases via program control, as well as
more complex logic and a larger repertoire of possible behaviors.

Applying MapServer

What follows is a brief description of three kinds of applications that can be developed with the
MapServer APIL. (They could also be done via CGI, but that process is slow, cumbersome, and
ugly.) With the addition of a MySQL database and a programming language like PHP, these
applications can provide considerable functionality without a huge development effort, because
the difficult, spatially aware piece is done by MapServer. None of these are particularly innova-
tive, but they do demonstrate the sort of tasks that can be accomplished.

Real Estate Sales Tool

By adding lat/long coordinates for each sale property to an MLS (multiple listing service) or
similar service, you can create a spatially aware catalog providing the functionality that users
have come to expect from graphical interfaces (such as click-and-drag spatial queries and
informational boxes that pop up when mousing over hot spots).

Real-Time Track and Trace

By collecting GPS locations in real time and forwarding them back to a host via 2.5 and 3G
cellular technology, MapServer can help you construct a customer-facing application that
shows the actual location of a load in real time. A MySQL database would serve very well for
storing this kind of data.

Real-Time Traffic Advisories and Congestion Avoidance

By collecting traffic levels electronically—or via manual entry of GPS coordinates, street addresses,
or intersections—MapServer could display traffic levels in real time, make them available over
the Web, and suggest alternate routes.

How This Book Is Organized

This book is an in-depth treatment of elementary MapServer. Using MapServer in CGI mode is
the focus of the first five chapters.

Chapter 1 begins with a detailed description of the installation process; it identifies supporting
software, shows you where to get it, and discusses options for both supporting software
and MapServer. Configuration of MapServer and the Apache web server is also discussed.

XXviii

INTRODUCTION

Chapter 2 provides a line-by-line description of two simple examples that will help you
become familiar with MapServer and its operation.

Chapter 3 introduces a more complex mapping application that you'll work through and
complete by the end of Chapter 4. You'll also become familiar with the more common
mapfile keywords, HTML templates, and ways to create multiple classes in a layer. The use
of zoom, pan, and layer selection will also be discussed.

Chapter 4 addresses look-and-feel issues. You'll learn about labels and annotation layers,
classes and regular expressions, and ways to add scale bars, legends, and reference maps.

Chapter 5 describes MapServer’s native query ability. You'll learn the details of MapServer’s
numerous query modes by building an application that uses them all.

Chapter 6 introduces the MapServer API available in Perl, which you'll use to build a demo
application using Perl.

Chapter 7 introduces the MapServer API available in Python, with which you’ll build an
equivalent demo application.

Chapter 8 introduces the MapServer API available in PHP. You'll use this to build a similar
demo application.

Chapter 9 describes a complete mapping application using PHP/MapScript in conjunction
with MySQL.

Chapter 10 describes the various utilities for manipulating shapefiles that are available
both in the MapServer distribution and elsewhere.

Chapter 11 is a compact descriptive reference list of all MapServer keywords, HTML
substitution strings, and CGI variables.

The Appendix provides more detailed coverage of several topics: the shapefile specification,
cartographic projections, creating MapServer symbols, FONTSET examples, and HTML
legends.

Prerequisites

MapServer can run in most Unix and Unix-like environments. The Unix version is a source
distribution and must be compiled and installed before use. While detailed instructions will be
provided to assist you, be aware that all systems are configured differently, so if something goes
wrong with the compile or the install, it helps to know something about the process. If you
haven’t done this sort of thing before, talk to someone who has. Installing software for the first
time can be tricky, but we’ve all had to do it.

MapServer is also available as an executable binary for Windows. The binaries were compiled
on Windows 2000, but they’re known to run on Windows NT and Windows 9x. If you have the
tools, you might try to compile from source, but I wouldn’t recommend it. Life is short.

Since MapServer is a web application, it will also be helpful to have a clear understanding
of the Apache web server (http://httpd.apache.org). Although MapServer should be able to
run in any compliant CGI environment, my own preference is to run it under Apache, and as

INTRODUCTION

such, all the examples and code in the book assume you're using Apache. In a Microsoft envi-
ronment, you're on your own, although Apache 2.0 should serve as at least an adequate testing
environment if you're using Windows. That said, if you understand your web server and its
configuration, then MapServer should operate as described in this book. Of course, you need
the appropriate system access and permissions to configure your web server and create direc-
tories where needed.

Accessing MapServer functionality via its API requires the installation of one or more
versions of MapScript. This book covers PHP/MapScript for PHP access (www.php.net), and
SWIGMapScript for access from Perl (waw.perl.com) and Python (www.python.org). You'll build
an identical application in each language. It’s assumed that you already possess some knowl-
edge of these languages, since a primer is out of the scope of this book. I'd like to recommend
the following books should you be seeking comprehensive guides for any of these languages:

* Beginning PHP 5 and MySQL: From Novice to Professional, by W. Jason Gilmore
(Apress, 2004)

* Practical Python, by Magnus Lie Hetland (Apress, 2002)
* Beginning Perl, Second Edition, by James Lee (Apress, 2004)

The MapScript application will also access a MySQL database (www.mysql.com). Although
instructions for setting up the database will be provided, you'll have to know how to install and
configure MySQL, and you’ll also need appropriate permissions for creating files and making
them available to the application. Check out The Definitive Guide to MySQL, Second Edition, by

Michael Kofler (Apress, 2003), for a comprehensive introduction to the MySQL database server.

Downloading the Code

The code for this book is available for download from the Apress website, located at www.apress. com.

XXix

CHAPTER 1

Building MapServer

In this chapter, you'lllearn how to build MapServer. Since much of its functionality is supported
by external libraries, I'll briefly discuss the capabilities of each, and which libraries are needed to
provide a basic MapServer environment. I'll present download sites for the software, and I'll
also describe the build and install processes in some detail. The builds are highly automated
and will usually produce a binary executable, even if you’ve left something out. You'll only
notice that you've left something out when MapServer does something you don’t expect. Since
you'll probably ask the question “Is it me or is it MapServer?” many times before you gain a
clear understanding of how MapServer works, getting the build right will greatly reduce your
frustration level. After you've installed the libraries and built MapServer, I'll describe the
configuration of the Apache web server, but only as it relates to the MapServer environment.
Finally, I'll present some pointers to some online resources. It’s assumed that you're familiar
with the shell environment, that you understand directory structures, and that you have the
authority to make library and web server changes.

You should have some familiarity with the build tools Autoconf and Make, as well as the
general configuration of Apache (or know someone who does). But if this is your first time,
don’t despair—you have an interesting journey ahead.

Planning the Installation

Building MapServer for the first time can be a challenging experience for someone unfamiliar
with Unix build environments. There are many interdependencies between the libraries, and
the sequence in which the supporting libraries are created is very important. Follow the build
order described in this chapter to avoid problems.

Selecting Supporting Libraries

Table 1-1 lists the external libraries used by MapServer. Minimum release level is noted if it’s
an issue; also noted is whether the library is mandatory or optional. Most of these libraries are
optional and won'’t be required for an introduction to MapServer. They provide access to spatial
information stored in proprietary databases, and they also provide support for WMS (web
mapping service) and output formats other than PNG, JPEG, and GIF. Following the table is a
brief description of each of the libraries. Later in this chapter, I'll show you how to install several
of the most important libraries, followed by instructions regarding the installation of MapServer.

2 CHAPTER 1

Table 1-1. External Libraries

BUILDING MAPSERVER

Library Minimum Mandatory/Optional To Be Notes
Release Installed?
GD 2.0.12 Mandatory Y
FreeType 2X Optional
libJPEG Optional Y
libpng 1.2.7 Mandatory Y
zlib 1.0.4 Mandatory Y
GDAL 1.1.8 Optional Y
OGR Optional Y
Proj.4 443 Optional Y Required for WMS
shapelib Optional Y
libcurl 7.10 Optional N Required for WMS
SDE Client libraries Optional N
PostgreSQL Optional N
Client libraries
Oracle Spatial Client Optional N
libraries
Ming 0.2a Optional N
LibTIFF Optional N
LibGeoTIFF Optional N
PDFLib 4.0.3 Optional N License required

GD

GD is alibrary of graphics routines. Since MapServer uses GD to render images, it's mandatory
to install it. Note that GD has its own list of dependencies that include zlib, libpng, FreeType
2.x, and libJPEG. These provide GD with the ability to do image compression (for those formats
that support it), to render PNG (Portable Network Graphics) images, to use TrueType fonts,
and to render JPEG (Joint Photographic Experts Group) images. Since the major patent under-
lying the GIF (Graphics Interchange Format) image format has lapsed, GIF support has been
restored to GD (as of release 2.0.28)—it’s available at www.boutell.com/gd.

FreeType

FreeType is a font-rendering engine. It’s not referenced directly by MapServer, but rather used
by GD for rendering fonts. Since TrueType fonts are more attractive than the bitmapped fonts
that MapServer provides, it’s worthwhile to include this library, available at waww. freetype.org.

CHAPTER 1 BUILDING MAPSERVER

libJPEG

libJPEG is used by MapServer to render JPEG images. A new version hasn’t been released
since 2001. Any reasonably current release of your operating system likely has a usable version
already installed. If that’s not the case, it’s available at www.ijg.org/files.

libpng
libpng provides a library of routines for rendering PNG images. It’s not referenced directly by

MapServer, but rather used by GD. libpng also requires zlib. It’s available at www.1ibpng.org/
pub/png.

zlib

zlib is a data-compression library used by GD. It’s available at www.gzip.org/z1lib.

GDAL

GDAL (Geospatial Data Abstraction Library) is a translator library for raster data. It provides
the ability to import and project georeferenced raster images. You won'’t use that functionality
within the context of this book, but the library is required for a basic MapServer install since it
also contains the OGR library.

OGR

The OGR Simple Features Library provides access to reading and some writing of a variety of
vector formats. While useful in a more sophisticated MapServer environment, in the book
you'll use OGR for several utilities that it provides. GDAL (including OGR) is available at http://
gdal.maptools.org.

Proj.4

Proj.4 is a library of cartographic projection routines. It can be accessed on the fly by MapServer
or in stand-alone mode to perform projection on an entire data set. It’s available at http://
proj.maptools.org.

shapelib

shapelib is a library of C routines for creating and manipulating shapefiles. You won’t be writing
any C code, but you'll take advantage of several utilities that are provided in the distribution.
These utilities provide the ability to create shapefiles (which include DBF files), dump the contents
of shapefiles and DBF files, and change the projection of shapefiles. Some of the utilities depend on
Proj.4. The shapelib library can be found at http://shapelib.maptools.org.

libcurl

libcurl is a client-side URL-transfer library that supports FTP, FTPS, HTTP, HTTPS, GOPHER,
TELNET, DICT, FILE, and LDAP. It’s required if you wish to provide WMS support. The WMS
protocolis used to move map images and text data across networks. In order to keep the MapServer
environment simple, you won’t be installing it.

CHAPTER 1 BUILDING MAPSERVER

SDE Client Libraries

SDE client libraries are part of the ESRI’s Spatial Data Warehouse. If you wanted to give
MapServer access to this, you would compile against these libraries. But this is outside the
scope of this book, so you won't need to install it.

PostgreSQL Client Libraries

PostgreSQL client libraries are required for giving MapServer access to PostGIS data. They
provide functionality similar to the ESRI product, but they’re open source. This is, however,
outside the scope of this book, so you won’t be installing it.

Oracle Spatial Client Libraries

Oracle Spatial client libraries are required for giving MapServer access to the Oracle Spatial
Data Warehouse. They provide functionality similar to the ESRI product. This is also outside
the scope of the book, so you won’t install it.

Ming
Ming provides MapServer with the power to create SWF (Shockwave Flash) movies. While it

suggests some interesting applications, it’s also outside the scope of this book, so you won’t be
installing Ming either.

PDFLib

PDFLib provides MapServer with the ability to produce output as PDFs (Portable Document
Format)—also useful, but also outside the scope of this book. In addition to that, it's not open
source.

By limiting installation of these libraries, you'll reduce functionality slightly, but greatly
simplify the install process. Although the MapServer environment you create will be a basic
one, it will still be capable of supporting some powerful applications. After becoming more
familiar with MapServer, you can download the other libraries and rebuild with the additional
support. Pointers to extensive documentation for these libraries are available on the MapServer
website (http://mapserver.gis.umn.edu).

Getting the Software

Table 1-2 lists all the software required to build MapServer. It’s all freely available for down-
load, and it’s all open source. Although licensing requirements differ, only one package—
FreeType—uses the GPL (GNU General Public License) explicitly. The websites (or FTP sites)
specified should always have the latest versions and bug fixes available. Download the source
distributions identified in Table 1-2 and put them somewhere convenient.

CHAPTER 1 BUILDING MAPSERVER

Table 1-2. Where to Find the Software

Package Location

MapServer http://mapserver.gis.umn.edu/dload.html
GD www.boutell.com/gd

FreeType www. freetype.org

libJPEG www.ijg.org/files

libpng www. 1ibpng.org/pub/png

zlib www.gzip.org/z1lib

GDAL http://gdal.maptools.org

Proj.4 http://proj.maptools.org

shapelib http://shapelib.maptools.org

Building and Installing the Software

This section presents a detailed description of the installation process for MapServer and all
the supporting libraries. The Autoconf utility will eliminate most of the tedious work by config-
uring each build automatically. But keep in mind that some installations may already have
installed these libraries. In these cases, if the installed version has an appropriate release level,
you might not have to build and install it yourself, but just give the configuration the appropriate
path. Be aware that although the release level might be right, the configuration options of any
pre-installed library might not comply with the requirements of MapServer. If that’s the case,
then you’ll have to reinstall.

The development environment for the examples in this book is the Slackware 9.0 distribu-
tion of Linux with kernel release 2.4.20. It runs right out of the box with gcc (version 3.2.2), GNU
Make (version 3.80), and GNU Autoconf (version 2.57). You'll be creating MapServer version 4.4.1,
although later versions will build in the same fashion. The configuration options chosen for
each build will be the defaults whenever possible. When there are no defaults or the defaults
aren’t appropriate, it will be noted and the correct values for the development environment
used. This should make the build descriptions more or less portable to other Unix-like environ-
ments. It’s important, however, to understand that the canonical installation documents are
the README, INSTALL, and Makefile files supplied in the source distribution of each library. This
book isn’t a substitute for them, so be sure that you read them.

Each installation will be different, and the README and other documents discuss many
environment-specific issues that are too lengthy to cover here. Most of the libraries are configure-
based distributions that use the Autoconf utility, which makes the build process highly automated,
but there still remain decisions concerning what options are available, which ones are appropriate,
and what values they should have. In the event that configure doesn’t work, you’ll have to read
the documents supplied with the distribution and hunt down the error.

Note that GNU Make is an absolute requirement for building FreeType—there are no substi-
tutions allowed. If your environment doesn’t contain GNU Make, install it before proceeding.

The description given here assumes you have root privileges. If you don’t have root privileges,
read the installation documents for alternatives.

CHAPTER 1 BUILDING MAPSERVER

The configuration process should be able to identify any incompatibilities and missing
capabilities. The downloaded tarballs will be untarred into directories in /usr/local/src/. The
procedure descriptions that follow assume that all the libraries will be installed from scratch to
default install paths specified in their respective configuration files.

Assuming that your environment isn’t unusual in some way, building each of the libraries
will involve the same steps:

1. Untar the distribution tarball into /usr/local/sxc/.

Change directory to the directory just created in /usr/local/src/.
Read the README and INSTALL files (or their equivalents).

Run configure, with command-line options if required.

Run make.

Run make check if available.

Run make install if necessary.

e N o a ~ «w b

Run ldconfig so your OS can locate the new libraries.

If there are no problems with missing libraries, inappropriate compilers, or permissions,
this is almost all there is to do. Some libraries may require one or more command-line options,
and I'll note them when necessary. But—always read the README and INSTALL files for details
first. If they don’t exist, go to the website or FTP site from which you downloaded the source
tarball and look for documentation there. If you’d like to know what options are available to
configure, run

./configure --help=short

In order to ensure that the dependencies of each library are met, the build sequence will
be in the following order: zlib, libpng, lib]PEG, FreeType, GD, Proj.4, GDAL, and finally MapServer.

Building and Installing zlib

Untar the zlib tarball as follows:
tar -xvjf zlib-1.2.1.tar.bz2 -C /usr/local/src/

Then change directory to /usr/local/src/z1ib-1.2.1/. After reading the README file and the
comments at the top of the Makefile, you’ll find that the only configuration option you have to
specify is whether you want to build zlib as a shared library. Since you do, run configure with
the command-line option -s. The default install destinations, /usr/local/lib/1libz.* and
/usr/local/include/z1ib.h, are acceptable, so you don’t need to specify a path. Since your
environment might differ, check first. Execute the following lines to configure, build, test, and
install zlib:

./configure -s
make test
make install

CHAPTER 1 BUILDING MAPSERVER

This should execute cleanly and leave you with libraries installed in /usr/local/lib/. If not,
you may have the wrong version of Make or the wrong compiler, or you don’t have permissions
set correctly.

Building and Installing libpng
Untar the libpng tarball as follows:
tar -xvjf libpng-1.2.7.tar.bz2 -C /usr/local/src/

Then change directory to /usr/local/src/1ibpng-1.2.7/. The README file indicates that zlib 1.04
or later is required, but zlib 0.95 may work. Since you've just installed zlib 1.2.1, you should
have no version problems. The INSTALL file will tell you that you must have zlib at the same
level as libpng in /usr/local/src/ in order for configure to find the compiled libraries and
headers (i.e., you need the zlib source directory to be in /usr/local/sxrc/). Since that’s where
you just put it, no changes are required.

The libpng build isn’t configuration based. The scripts subdirectory contains makefiles
for a variety of environments. You have to select the appropriate one and copy it to the libpng
root. If you're running Linux, choose makefile.linuxand cp scripts/makefile.linux ./Makefile.

INSTALL tells you to read the Makefile and pngconf.h files for any changes. Do so, but there
should be no changes required. Next, run

make
make test

This should give you the message libpng passes test. Check for 9782 zero samples in the
output and confirm that files pngtest.png and pngout. png are the same size. This indicates that
libpng was built correctly. If you like, you can run another test:

./pngtest pngnow.png

This should also tell you libpng passes test. Check for 289 zero samples in the output. If the
build completes normally and the tests indicate no errors, you can now install, by running

make install
Test the install by running the following (some makefiles won’t contain a target to do this):
make test-install

You should see libpng passes test.libpng is now installed. If all went smoothly, you can go
on to the next step. If it didn’t go well, you may have the wrong version of Make or the wrong
compiler, or you don’t have permissions set correctly.

Building and Installing libJPEG
Untar the libJPEG tarball as follows:

tar -xvzf jpegsrc.véb.tar.gz -C /usr/local/src/

Then change directory to /usr/local/src/jpeg-6b/. After reading install.doc (there’s no
README file), you'll find that the only configuration option you have to specify is whether you

CHAPTER 1 BUILDING MAPSERVER

want to build libJPEG as a shared library. Since you do, invoke configure with the command-
line option --enable-shared, as follows:

./configure --enable-shared
make
make test

If the test is clean, run
make -n install

Specifying the -n switch will cause configure to display the location where make will install the
files, but it won’t perform the actual install. If the default is correct for your environment,
continue with the install. If not, add - -prefix=PATH to the configure command line, where PATH
is the appropriate path to libraries and includes; then rerun configure and make. When the install
path is correct, run

make install

This should be all there is to it, but if not, you may have the wrong version of Make, the wrong
compiler, or incorrectly set permissions.

Building and Installing FreeType

Untar the FreeType tarball as follows:
tar -xvjf freetype-2.1.9.tar.bz2 -C /usr/local/src/

Then change directoryto /usr/local/src/freetype-2.1.9/. The README file should point you to
docs/INSTALL and docs/UPGRADE . UNX. The UPGRADE . UNX file should tell you that if you're upgrading
from FreeType version 2.05 or earlier, you may have some issues that must be resolved. These
issues are as follows:

¢ Isthe TrueType bytecode interpreter going to be used?
¢ Has the correct install path been determined?
¢ Has GNU Make been installed?

The default is to not use the bytecode interpreter. So go with the default (remember, you
want to keep the install as generic as possible) and you therefore don’t need to specify an option.
Earlier versions of FreeType defaulted to /usr/local/ as the install directory, but because later
versions are being placed in /usr/ more frequently, you need to determine the correct install
path. You can do this with the utility freetype-config, by running

freetype-config --prefix

This returns the proper path (in my case, the directory /usr/). The UPGRADE . UNX file also notes
that GNU Make is required. No other will do. If you haven’t got it, get it and install it. Next, run

./configure --prefix=PATH
make
make install

CHAPTER 1 BUILDING MAPSERVER

If you have the wrong version of Make or the wrong compiler, or you don’t have permissions
set correctly, you'll have to fix things.

Building and Installing GD

Untar the GD tarball as follows:
tar -xvzf gd-2.0.33.tar.gz -C /usr/local/src/

Change directory to /usr/local/src/gd-2.0.33/. GD requires zlib, libpng, FreeType 2.x, and
libJPEG. You should have already installed these libraries in /usr/local/. You can run configure
without any options and it should find all the libraries. If your environment has preexisting
copies of any of these libraries and you chose not to install new ones, configure should still find
them. If it doesn’t, read the document README . TXT. You must provide paths to the preexisting
libraries. For example, if you're using a preexisting install of FreeType 2.x, use the configure
option --with-freetype=DIR, where DIR is the path to the directory containing the FreeType
library and header files. In my case, I would use --with-freetype=/usr/local/. This causes
configure tolookin /usr/local/include/ for headers and /usr/local/lib/ for libraries. Assuming
that you're making a fresh install of everything and using the path /usr/local/, you don’t need
any options. Then run

./configure
make
make install

If this completes without errors, you're done. If not, go back to README . TXT.

Building and Installing Proj.4
Untar the Proj.4 tarball as follows:
tar -xvzf proj-4.4.9.tar.gz -C /usr/local/src/

and change directory to /usr/local/src/proj-4.4.9/. The install will default to subdirectories
bin, include, 1ib, man/man1, and man/man3, under /usr/local/. If your environment is different,
you’ll have to tell configure where to install things with the option --prefix=DIR, where DIR is
the install path. Since the default is fine for most environments, you can just run

./configure
make
make install

As always, if it fails, you've got the wrong version of Make or the wrong version of the compiler,
or you don’t have permissions set properly. Of course, the further you get in this process, the
greater the likelihood that one of your previous library builds was bad.

Building and Installing GDAL
Untar the GDAL tarball with

tar -xvzf gdal-1.2.3.tar.gz -C /usr/local/src/

10

CHAPTER 1 BUILDING MAPSERVER

and change directory to /usr/local/src/gdal-1.2.3/. The install directory provides no README
file, but there’s a detailed install document at http://gdal.maptools.org/gdal building.html.
A default configuration should work—if not, you can run ./configure --help=short to get
some idea of the options available. If external libraries are causing problems, GDAL can use
internal versions of zlib, LibTIFF, LibGeoTIFF, libpng, and libJPEG. These are specified as, for
example, --with-png=internal or --with-zlib=internal. If that’s no help, then go to the website.
Building GDAL is just a matter of running

./configure
make
make install

and you're done.

Building and Installing shapelib
Untar the shapelib tarball with
tar -xvzf shapelib-1.2.10.tar.gz -C /usr/local/src/

and change directory to /usr/local/src/shapelib-1.2.10/. The shapelib build isn’t configura-
tion based. In addition, there are two builds required: building the libraries and utilities, and
building the contents of the contrib directory. Editing the Makefile to specify compiler and
compiler flags might be necessary, but the default should be fine for most environments. Assuming
that the defaults are OK, type the following commands:

make
make test

to build and test that the utilities were created successfully. This will produce the following
binaries: dbfadd, dbfcreate, dbfdump, shpadd, shpcreate, shpdump, shprewind, and shptest. Copy
these to someplace useful, like /usr/local/bin/.

You don’t need to actually install the library to use the utilities, but if you wish to, type

make 1ib
make 1ib_install

The defaults will put the libraries in /usr/local/1ib/. The contrib directory contains several
useful utilities. Change directory to tests/ and type

make

The make target, check, will test the build, but there appears to be a syntax error in the script
tests/shpproj.sh. Load this script into a text editor and look for the line

dbfcreate test -s 30 fd

This line should instead read

dbfcreate test -s fd 30

Make the change and save it, and then run

make check

CHAPTER 1 BUILDING MAPSERVER

You'll see the following error message, complaining about a nonexistent file:
m: cannot remove 'Test*': No such file or directory

You can just ignore it. The last line should read

success. ..

This will produce the following binaries: dbfcat, dbfinfo, shpcat, shpcentrd, shpdata, shpdxf,
shpfix, shpinfo, shpproj, and shpwkb. Copy these to /usr/local/bin/ to complete the installation of
shapelib.

At this point, all required libraries should be built and installed, and you can now go on to
build MapServer itself.

Building and Installing MapServer

MapServer has many configuration options. The default for many options is: if it’s not specifi-
cally requested, don’t do it. That means that the MapServer build will be more complicated
than the libraries, in which the defaults were usually sufficient. Several libraries won’t be
detected by default, so you'll have to specify paths with command-line options. configure
should find the locations of these libraries, but if it doesn’t, you’ll have to append the location
to each option. The options are

--with-proj[=/usr/local/lib]
--with-ogr[=/usr/local/lib]
--with-gdal[=/usr/local/lib]

where the appended paths are appropriate for my environment (and of course yours may be
different). In order to build MapServer with these three libraries linked, do the following:

./configure --with-proj --with-gdal --with-ogr

Then look at the file config. log to see if the libraries were found. If not, add the paths and run
configure again. When you’ve confirmed that the libraries have been found, run

make

This will produce an executable named mapserv in the source directory. If all has gone well,
executing mapserv from the command line . /mapserv should produce the following output:

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

This indicates that your build configuration didn’t have any gross problems that prevented the
compilation of a valid executable. The MapServer executable must now be made accessible to
Apache, so copy it to the script directory as follows:

cp mapserv /var/www/cgi-bin/

11

12

CHAPTER 1 BUILDING MAPSERVER

MapServer should now be installed. However, in order to confirm that the configuration has
linked in the appropriate libraries, you'll have to produce a map. Before you can do that, though,
the MapServer environment and the Apache web server must be configured.

Configuring MapServer and Apache

MapServer reads and writes files. It must know where these files are, and the permissions must
be set appropriately. These files are as follows:

¢ fontset. This file tells MapServer where to find a font. Each line of the file consists of a
font alias and a path to the font file. The alias is separated from the path by white space.
The alias is the name by which MapServer identifies a font, but you can choose any alias
you like. For example, if you wanted to use boldfaced Arial in map labels, you could refer
to the alias arialbd. The fontset file would contain a line like

arialbd /usr/X11R6/1ib/fonts/ttf/arialbd.ttf

Of course, you'll probably want more than a single font to use in your maps. You'll have
to construct your own font set, since different environments will have different require-
ments, different locations, and different available fonts. Create a file named fontset. txt
in Apache’s DocumentRoot, containing lines similar to the aforementioned, but with your
own fonts and aliases.

* symbolset. MapServer has the ability to create symbols on the fly. Each symbol is defined
as a sequence of coordinate pairs (using a syntax I'll describe later) in the main MapServer
configuration file (called a mapfile). But symbols can also be collected into a symbol file.
The syntax is the same, but the symbols are now available to maps based on different
mapfiles. A symbol file symbols/example.symis provided with the source distribution.
Copy this file to DocumentRoot and rename it symbols. sym.

* shapes. The basic MapServer environment gets its spatial data from ESRI shapefiles
(discussed in the Appendix). These files must be accessible to MapServer. Create a directory
named mapdata in the directory /home/, which will serve to store shapefiles. Make the
directory readable and executable by the webserver user (usually nobody), as follows:

mkdir /home/mapdata
chown nobody :nobody /home/mapdata
chmod u+rx /home/mapdata

You'll be putting some shapefiles in this directory later.

» images. Whenever MapServer creates a map, it saves the image (or images) to a file. This
file must be accessible to MapServer and the Apache server. To enable this, create a
directory named tmp in the Apache DocumentRoot. Make it readable and writable by the
Apache server, as follows:

mkdir /var/www/htdocs/tmp
chown nobody:nobody /var/www/htdocs/tmp
chmod u+rx /var/www/htdocs/tmp

CHAPTER 1 BUILDING MAPSERVER

The configuration is as simple as that. Of course, a publicly accessible web server would
require more than this. You might, for example, keep your files outside the Apache tree and just
create symlinks to them. In a production environment, you'd also want to pay a lot more attention
to permissions—but this is an experimental environment, so you can get away with the slack
security.

Note In the example environment, the Apache DocumentRoot is /var/www/htdocs/.

You now have a functioning MapServer executable, you've created the appropriate direc-
tories to put shapes and images in, you know where the fonts are, and you have a set of symbols.
Make sure that the program mapserv is copied to /var/www/cgi-bin/, and then start or restart
your web server with

apachectl start
or
apachectl restart

and you're done.

Online Resources

The following is a list of online resources to help you with various aspects of MapServer builds,
installation, and usage.

* The MapServer website at http://mapserver.gis.umn.edu/ is a trove of useful docu-
ments describing MapServer and how to use it. The document page at http://
mapserver.gis.umn.edu/doc.html contains the documentation describing the installa-
tion of MapServer.

* Other useful resources are the MapServer wiki at http://mapserver.gis.umn.edu/cgi-bin/
wiki.pl and the mapserver-users mailing list. For instructions on how to subscribe
to the latter, go to the MapServer support page at http://mapserver.gis.umn.edu/
support.html.

* The Boutell site’s GD page at www.boutell.com/gd tells you everything you’ll want to
know about GD: how to install it, how to use it, etc.

* The FreeType site at www. freetype.org (based in France), has a couple of mirrors: http://
freetype.sourceforge.net in the United States and http://freetype.fis.uniroma2.it
in Italy. They provide downloads and documentation.

* Thelibpng site at www.1ibpng.org/pub/png provides documentation, downloads, a FAQ,
and an interesting history of PNG.

* The Independent JPEG Group site at www.1jg.org is very sparse—it has a nearly empty
home page and a directory list: www.1jg.org/files.

13

14

CHAPTER 1 BUILDING MAPSERVER

e The Proj.4 site at http://proj.maptools.org provides downloads and documentation.
Particularly interesting are the documents that present the details of the various projections:
proj.4.3.pdf and proj.4.3.I2.pdf.

* The zlib site at www.gzip.org/z1ib provides documents, downloads, and definitive
answers for all questions about zlib.

e The GDAL s site at http://gdal.maptools.org provides downloads and documents.
Instructions for building GDAL are found here.

* The shapelib site at http://shapelib.maptools.org provides downloads and docu-
ments. Instructions for using shapelib are found here.

Summary

A MapServer implementation depends on numerous supporting libraries to perform its func-
tions. Selecting which libraries to install requires that some thought be given to the capabilities
you want your MapServer installation to have. The goal here hasn’t been to create the most
powerful and complex version of MapServer, but to provide a detailed guide to a useful imple-
mentation. If you require MapServer to do more, use the process presented here as a model
and select your own set of libraries. These libraries have many interdependencies, and building
them can be a complicated task, so paying attention to the details is the key to a successful
outcome. (If something doesn’t seem to work the way it should, the first thing you should do is
determine whether it was properly installed.) Once the libraries have been created, the process
of building MapServer itself is pretty straightforward—a quick configure and a make and it’s done.

In the next chapter, you'll produce two simple MapServer applications, starting with a very
simple “Hello World” example. It requires no spatial data and takes just a few lines of code, but
provides a simple test of MapServer’s configuration. The other produces a real map, but it’s
neither interactive nor, as a map, very useful. It does, however, provide an elementary intro-
duction to several important MapServer concepts.

CHAPTER 2

Simple MapServer Examples

In the previous chapter, you built and installed MapServer, but you've yet to test it. In this
chapter, you'll create two simple applications that will demonstrate that your MapServer
installation is functioning correctly, as well as provide a clear understanding of the procedural
flow of a MapServer application. These applications won’t do very much—in fact, the first
won'’t even produce a map—but by beginning with the simplest configurations possible, you’ll
avoid confusing details and focus on how the several pieces of a MapServer application work
together.

Basic Concepts

Your initial goal is to produce maps in a CGI environment, in which a user accesses an Apache
web server from a web browser. In this environment, Apache invokes MapServer, passing
along any form variables from the browser. Using this information, MapServer generates
images and a web page, which Apache forwards back to the browser. Of course, MapServer
needs more than just values from the browser to create a map. In fact, a CGI MapServer web
application has four components: the mapfile, the HTML initialization form, one or more
HTML template files, and a spatial database.

Note A web application can serve static pages with fixed content or it can provide dynamic content by
using scripts to respond to web forms, query databases, and provide other functionality. The standard that
determines how such scripts interact with the web server is known as the Common Gateway Interface and is
always identified by its acronym, CGl. Detailed information on CGl scripts can be found at www.w3.org/CGI.

Each of these four components will be described in this chapter. It will be assumed that
the user’s web browser already displays the initialization file.

MapServer, like all web applications, is based on a stateless protocol—that is, at each invo-
cation, it only knows what the browser has just told it. Statelessness precludes the use of
applications that need to do more than answer the last question asked. However, some clever
coding can offer a stateful server environment and give web applications the ability to perform

15

16

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

more complex tasks. For example, state can be maintained between invocations by storing
state information in hidden form variables, in the URL, or in cookies. But some method is
needed to bootstrap the application so that it has the information it requires at its first invoca-
tion. In a MapServer context, this is accomplished by the initialization file. In a CGI MapServer
application, the initialization file is a conventional HTML form with the initialization informa-
tion hard-coded into form variables. Almost any value that MapServer uses can be set in the
initialization file.

When MapServer is first invoked by Apache from the HTML initialization form, a form
variable is used to specify the name of the mapfile (usually with a .map extension). It then reads
the mapfile to locate fonts, symbols, templates, and spatial data. The mapfile also specifies the
size of the resulting map, its geographical extent, and whether it’s in GIF, JPEG, or PNG format.
Having read the mapfile, MapServer then renders one or more images: the map itself, the
legend and scale bar images, and perhaps a reference map. It saves these images to a location
specified in the mapfile.

In order to present its results, MapServer needs to format the map and associated elements
as aweb page. The program itself does not create the HTML—rather, it scans an HTML template
for substitution strings. Substitution strings can be file references, details of map geometry,
layer specifications, or zoom factors, for example. They can also be current values of CGI variables
such as image size, mapfile name, map extent, etc. MapServer replaces the substitution strings
with the appropriate values and returns the modified HTML to the requesting browser.

In this chapter, you'll build a mapping application that demonstrates the ease of use of
MapServer and shows you how the pieces fit together. Subsequent chapters will deal with
some of the subtler features of MapServer (projections, tile indexes, symbols, queries, etc.) that
will make its power evident.

Building a “Hello World” Application

As mentioned previously, the first mapping application won’t actually produce a map—it will
produce a rectangular image with a tiny dot at its center, bracketed by the words “Hello World.”
The application will be very simple so that any configuration problems or errors will be easy
to identify.

This application doesn’t make use of many resources—it uses no spatial data, symbols,
or fonts. It does, however, need a place to put its images. You'll see how to specify the images
directory to MapServer and confirm that Apache can find and access this directory.

Creating the Mapfile

The mapfile defines a collection of mapping objects that together determine the appearance
and behavior of the map as displayed in the web browser. It’s similar in function to the Apache
httpd.conf configuration file. Based on the same underlying geographic data, mapping appli-
cations that use different mapfiles can display maps with different features that respond
differently to user actions. Although it might seem that a static configuration file would have
limited functionality, the design of MapServer and the format of the mapfile allow the develop-
ment of very powerful applications.

Blu & Gabri
Evidenziato

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES 17

A mapfile is hierarchical. Each mapfile defines a number of other objects. These objects
include scale bars, legends, map colors, map names, map layers, etc. There are many more
objects defined, which will be described more fully in the next several chapters. In addition,
Chapter 11 contains a comprehensive reference for MapServer keywords. The first application
uses a simple mapfile, and each object will be explained as it’s used.

Mapfile definitions consist of keyword-value pairs. Some values are lists of items separated by
white space, and these lists must be enclosed in quotes. Single quotes and double quotes are
both acceptable. Keyword values with embedded blanks must be quoted, butit’s good practice
to quote all strings. Also note that MapServer keywords are not case sensitive, but some data-
base access methods are.

I'll present a line-by-line description of the mapfile for the “Hello World” application
so you can step through the details with a minimum of confusion. Using any text editor, open
a file named hello.map. In the development environment, this path will be /home/mapdata/
hello.map. Then type the following lines:

01 # This is our "Hello World" mapfile
02 NAME "Hello World"

Note Don't type the line numbers—they’re included for reference purposes only.

Line 01 is a comment—you can use # to insert comments since MapServer ignores any text
that follows a #. The keyword NAME defines the string that will be prefixed to the names of the
images that MapServer creates. The longer the NAME string, the more unwieldy the directory
listings will be—so, when naming your own mapfiles in the future, remember to keep them
short. Also, keep in mind any operating system limitations on file names that might exist.

Add the following lines to hello.map:

03 SIZE 400 300

04 IMAGECOLOR 249 245 186

05 IMAGETYPE png

06 EXTENT -1.00 -1.00 1.00 1.00

The keyword SIZE in Line 03 specifies the dimensions (in pixels) of the final map image.
IMAGECOLOR defines the background color for the map image, and the keyword IMAGETYPE specifies
the format of the map image. In this case, it's a PNG image. The geographic extent (the rectangular
area covered by the map) is defined by the keyword EXTENT. The rectangular area is specified by
the coordinates of the opposite corners (the lower left and the upper right).

Add the following lines to hello.map:

07 WEB

08 TEMPLATE “/var/www/htdocs/hello.html”
09 IMAGEPATH "/var/www/htdocs/tmp/"

10 IMAGEURL "/tmp/"

11 END

18

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

Note While these paths are appropriate for the development environment used throughout this book, your
paths may differ.

In order to display the map created by MapServer, you need to embed it in a web page.
This is done most conveniently by creating a template that contains all the HTML tags required
to display the image, provide map controls, and present other information generated by
MapServer. Aweb object defines the name of this template file and its location. When MapServer
is invoked, it reads the mapfile and renders the map. It then reads the template file and inserts
its own information into places in the template specified by substitution strings delimited by
square brackets. MapServer then sends the HTML to the browser. A web object is introduced
by the keyword WEB and closed by the keyword END.

The TEMPLATE keyword specifies the name of the HTML template, using either the relative
path from the mapfile or an absolute path. The IMAGEPATH keyword tells MapServer where to
put the map images it creates. The IMAGEURL keyword specifies a URL that tells the browser
where to look to retrieve the image. MapServer will embed the URL in the page before sending
it back to the browser. Note that the IMAGEPATH string is an absolute path on the local host,
while IMAGEURL specifies the location with respect to the web server’s DocumentRoot.

MapServer now knows what kind of image to produce, what size and background color to
give it, and how to display the map it creates in a web page. It doesn’t yet know what to draw
and how to draw it—these tasks are governed by LAYER objects.

A layer references a single data set and contains a set of elements that will be rendered
together at a particular scale using a particular projection (projections will be covered later in
the book). A layer is introduced by the keyword LAYER and closed by the keyword END.

Add the following lines to the file hello.map:

12 LAYER
13 STATUS default
14 TYPE point

The value of the keyword STATUS determines whether the layer will be rendered. Specifying
the value default means that the layer will always be rendered.

Each layer has a geometrical type associated with it. In this example, the feature is a point
(a pair of coordinates), which you’re choosing in this case for simplicity. The value of the
keyword TYPE has been set to point. (Layer types will be discussed in more detail later in the
next chapter.)

In order to create a map, MapServer must have some spatial data. Rather than clutter the
“Hello World” map with complicated real-world data, an artificial point will be constructed
with coordinates (0.0,0.0).

Add the following lines to hello.map:

15 FEATURE
16 POINTS 0.0 0.0 END
17 TEXT "Hello World"

18 END

Blu & Gabri
Evidenziato

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES 19

The FEATURE keyword specifies an inline geographical feature. Instead of reading records
from a spatial database, FEATURE allows the creation of “features” on the fly. The FEATURE keyword
can only be used inside a LAYER object, and must be terminated by the keyword END. A feature
is specified by the list of its coordinates.

The POINTS keyword describes this list of coordinate pairs. The values are separated by
white space. Obviously, there has to be an even number of individual values. This list can
represent a single point (if it contains only a single coordinate pair), or it can represent a line
(ifit contains more than one). If the first coordinate pair is the same as the last pair, then the list
can represent a polygon (since equating the first and last points closes the figure). The list is
terminated by the keyword END.

The TEXT keyword specifies the text string that will be used to label this feature. Again, if it
contains spaces, it must be put inside quotation marks.

Add the following lines to hello.map:

19 CLASS

20 STYLE

21 COLOR 255 0 O
22 END

Within each layer, one or more classes are defined. A default class with no specified selection
criteria will select every element in the data set for rendering. If selection criteria are specified,
then only items that meet the criteria will be rendered for that class. The labels, line styles,
marker types, and color used to render a feature are all defined at the class level.

The STYLE object defines the characteristics of the symbol used to draw features in this
class. For simplicity, only a color is defined in this case. The STYLE object is terminated by the
keyword END.

The COLOR keyword determines the color in which the feature is drawn by specifying its
RGB components. These are integer values in the range of 0 to 255. Here, the feature has been
rendered as a red dot with the default size of 1 pixel.

A class can also contain a LABEL object. The LABEL object is rendered with the class, and
specifies the font type, size, and color of the label. Labels can be more complex than this, and
they’ll be discussed in more detail later in the book. A label is introduced by the keyword LABEL
and closed by the keyword END.

Add the following lines to hello.map:

23 LABEL
24 TYPE bitmap
25 END

The keyword TYPE determines the type of font used to render the label. There are two possibilities:
bitmapped and TrueType. Bitmapped fonts are generated internally and don’t need outside
references. TrueType fonts must be installed and identified by an alias found in the file specified
by the FONTSET keyword. For simplicity, this example uses bitmapped fonts. Note that the default
color of the label is black—it can of course be drawn in a different color, but for now the
default is simpler.

Add the following lines to hello.map to terminate the class, the layer, and the mapfile itself:

20

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

26 END # end class
27 END # end layer
28 END # end mapfile

The complete mapfile hello.map should look like this:

01 # This is our "Hello World" mapfile
02 NAME "Hello World"

03 SIZE 400 300

04 IMAGECOLOR 249 245 186

05 IMAGETYPE png

06 EXTENT -1.00 -1.00 1.00 1.00
07 WEB

08 TEMPLATE "/var/www/htdocs/hello.html"
09 IMAGEPATH "/var/www/htdocs/tmp/"
10 IMAGEURL "/tmp/"

11 END

12 LAYER

13 STATUS default

14 TYPE point

15 FEATURE

16 POINTS 0.0 0.0 END
17 TEXT "Hello World"
18 END # end feature

19 CLASS

20 STYLE

21 COLOR 255 0 O
22 END

23 LABEL

24 TYPE bitmap
25 END

26 END

27 END

28 END

The structure of the mapfile just shown is very simple, and the map that it creates isn’t
really a map at all. But it should render a image with alabel and display it on a web page. Before
that can be done, however, the initialization and template files need to be created.

Creating the Initialization File and HTML Template

In order to interact with a user via the web interface, MapServer requires some straightforward
HTML. This HTML serves three purposes:

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

1. Itinitializes the MapServer application when first invoked.
2. It formats the map and associated information in an effective manner.

3. It maintains state by saving parameters in input fields.

While the initialization task can be performed by a stand-alone web page, it’s simpler in
many cases to embed initial values in the template file and update these values in subsequent
invocations. In keeping with the goal of absolute simplicity in this chapter, the initial values are
embedded in the template file.

Using a text editor, open the file named hello.html in /var/www/htdocs/ (or whichever
directory is specified as DocumentRoot). Then type the following lines:

01 <html>

02 <head><title>MapServer Hello World</title></head>

03 <body>

04 <form method=POST action="/cgi-bin/mapserv">

05 <input type="submit" value="Click Me">

06 <input type="hidden" name="map" value="/home/mapdata/hello.map">

07 <input type="hidden" name="map_web imagepath"
value="/var/www/htdocs/tmp/">

08 </form>

09

10 </body>

11 </html>

Load the page by typing its URL into your browser:
http://localhost/hello.html
and press Enter. If you get the following error (or something similar):

An error occured while loading http://localhost/hello.html:
Could not connect to host localhost

you've forgotten to start your Apache server. To start it, type
apachectl start

Apache retrieves the page (without invoking MapServer) and forwards it to the browser for
rendering. A submit button displaying the words “Click Me” should appear, along with a
broken image icon, as shown in Figure 2-1. Notice the IMG tag in Line 09. It identifies the image
source as "[img]". This is not a legitimate image URL—when the browser tries to render the
image (pictured in Figure 2-1), it chokes on the broken tag.

21

22

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

Click Me |

Figure 2-1. A broken image

Click the submit button. This time, Apache invokes the MapServer executable and passes
it the form variables from Lines 06 and 07. The variable names map and map_web_imagepath are
meaningful to MapServer. They identify the mapfile and image path to use on the server.

MapServer now reads the mapfile hello.map that was created previously. MapServer checks
to see if the feature defined in the mapfile is within the defined extent. Since it is, it renders the
point and produces an image. MapServer creates the name of the image by concatenating the
name specified in the mapfile (i.e., Hello World), a system-generated number, and the image-type
extension. Since the path to the image is given by the value map_web_imagepath, the image file that
MapServer saves looks something like

"/var/www/htdocs/tmp/Hello World11008505275638.png"

Next, MapServer reads the template file. In this case, it’s the same as the initialization file:
hello.html. The string [img] is recognized as a substitution string that should expand to the
URL of the image. MapServer knows the base URL is given by the value of IMAGEURL specified in
the mapfile, so it substitutes /tmp/Hello World11008505275638.png for the string [img].

After substitution, Line 09 looks like

09 <IMG SRC="/tmp/Hello World11008505275638.png"
width=400 height=300 border=0>

After scanning and replacing any substitution strings (there’s only one in this example),
MapServer sends the contents of the template file (including a modified Line 09) to Apache for
forwarding back to the browser. The browser receives the string and parses and renders it. The
image is retrieved from the specified URL and displayed. The web page still shows a submit
button, but instead of a broken image icon, the image is displayed. If everything is configured
and typed correctly, you'll see a colored rectangle, 400 pixels wide by 300 pixels high, with a
tiny red dot at its center. The dot is bracketed by the words “Hello” and “World.” It should look
like the image in Figure 2-2.

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

Click Ee |

Hello ‘Horld

Figure 2-2. The “Hello World” image

Common errors at this stage could involve incorrectly set permissions on the directories
created earlier, typos in the mapfile or template file, or forgotten libraries for rendering PNG
images. Be aware that the geographical extent specified is strictly observed by MapServer. If the
feature at location (0.0,0.0) isn’t within the extent, then the point won’t be rendered. In this
case, the extent is bounded by the rectangular area (-1.00,-1.00), (1.00,1.00), so the point is
within the extent and will be drawn.

Building the First Map

The mapping application you'll be creating in this section is more complex than the previous
and will produce an actual map. Most of the elements used in the “Hello World” application
will be used, along with a few new ones that are required for using actual spatial data. The
application will still be fairly simple since too much detail can be overwhelming at this stage.
If you got the “Hello World” application to function correctly, you can assume that Apache
knows where to find map images and has the permissions to read and write them. The next
step is to put some spatial data into the data directory and see if MapServer can find it. This
will also give you some more practice with the concepts of initialization files, mapfiles, and
template files.

The spatial data used for the examples in this chapter comes from http://nationalatlas.
gov/atlasftp.html. The data consists of five data sets, which are, in brief:

1. Cities and towns in the United States, Puerto Rico, and the US Virgin Islands (citiesx020.
tar.gz).

2. Major roads in the United States, Puerto Rico, and the US Virgin Islands (roadtr1020.
tar.gz).

3. State boundaries of the United States, Puerto Rico, and the US Virgin Islands (statesp020.
tar.gz).

23

24

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

4, Polygon and line water features of the United States, Puerto Rico, and the US Virgin
Islands (hydrogm020.tar.gz).

5. Urban areas of the United States, Puerto Rico, and the US Virgin Islands (urbanap020.
tar.gz).

Download these tarballs from http://nationalatlas.gov/atlasftp.html to a convenient
location on your computer. These data sets are all in ESRI shapefile format (shapefiles are
discussed in more detail in the Appendix). For this example, you'll use only the third data
set, state boundaries—however, go ahead and untar them all to the data directory. Run the
following commands:

tar -xvzf citiesx020.tar.gz -C /home/mapdata
tar -xvzf roadtrlo20.tar.gz -C /home/mapdata
tar -xvzf statesp020.tar.gz -C /home/mapdata
tar -xvzf hydrogmo20.tar.gz -C /home/mapdata
tar -xvzf urbanap020.tar.gz -C /home/mapdata

There should be several files named statesp020.* These constitute the shapefile that contains
the spatial information and attributes of the states.

Note The term shapefile is something of a misnomer since a shapefile actually consists of three files that
share the same base name and are distinguished by file extension. One component contains spatial information.
Each geographical feature in the data set is represented by a single record in this file that specifies the
geographical coordinates of the feature. This file has an extension of . shp. An index file with an extension
of . shx is used to access this file. For each feature in the . shp file, there’s a record in the index file that
contains the byte offset of the start of the feature. Finally, a file with extension . dbf stores the attribute infor-
mation associated with each spatial feature, with one record per feature. This file is in dBase Il format. Of
course, there’s more to shapefiles than stated here, but these details are addressed in the Appendix.

Creating the first.map Mapfile

Using a text editor, open the file named first.map. Then type the following lines:

01 # This is our first mapfile
02 NAME "First"

Again, the mapfile begins with a comment, which is ignored by MapServer. The NAME that will
form the base for all the image files created by this mapfile is “First.”
Add the following lines to the file first.map:

03 SIZE 400 300
04 IMAGECOLOR 255 255 255
05 IMAGETYPE JPEG

These lines specify the image size, background color, and image type. The JPEG image
format has been selected, but other possible values are GIF, PNG, and WBMP (wireless bitmap).
Add the following lines to the file first.map:

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

06 SHAPEPATH "/home/mapdata/"
07 EXTENT -125.00 20.00 -65.00 50.00

The SHAPEPATH keyword in Line 06 tells MapServer where to find the directory containing
the shapefiles required to render the map. This directory may also contain subdirectories. The
geographic extent of the map is specified here with the keyword EXTENT. The geographic extent
stretches from 125° west, 20° north to 65° west, 50° north.

Add the following lines to the file first.map:

08 WEB

09 TEMPLATE '/var/www/htdocs/first.html'
10 IMAGEPATH '/var/www/htdocs/tmp'

11 IMAGEURL '/tmp/'

12 END

As before, MapServer needs to know the template file, the image path, and the image URL.

You now have to tell MapServer what to render, which you do with the LAYER object. This
layer is no more complex than the one from “Hello World,” since you're just substituting a
reference to a shapefile for a FEATURE object.

Add the following lines to the file first.map:

13 LAYER

14 NAME "US States"
15 STATUS default

16 TYPE line

17 DATA "statesp020"
18 LABELITEM "STATE"

The NAME keyword specifies the name of the layer. This provides the link between the layer and
the web page. By embedding the layer name in an CGI form input field, it’s possible to interac-
tively specify which layers to display. This is discussed in more detail in the next chapter. The
NAME is limited to 20 characters.

The DATA keyword identifies the base name (i.e., without the extension .shp) of the shape-
file to be rendered in this layer. The value associated with keyword DATA is actually the relative
path from the SHAPEPATH noted previously.

The STATUS of a layer can assume one of three values: OFF, ON, or DEFAULT. If a layer’s STATUS
is ON, the layer will be rendered; if it’s OFF, then the layer won’t be rendered. If STATUS is either
OFF or ON, it can be changed to its opposite by the appropriate response from the web form.
However, a STATUS of DEFAULT is permanently on—it can’t be turned off.

Each layer has an associated type that is specified by the keyword TYPE. The layer type
determines how MapServer interprets the spatial data associated with the layer. The values
associated with the keyword TYPE are explained in the following list:

* point. A point layer is used to render spatial data as isolated points—for example, the
location of a city or other point of interest. Each feature in a point layer is rendered as a
single symbol with a specific size and color.

* line.Alinelayer is used to render a series of points as a connected sequence—for example,
aroad or river. Successive points are joined with a line of a particular size and color.

25

26

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

* polygon. A polygon layer is used to render a series of points as an area-enclosing figure.
It’s distinguished from a line in that its first and last vertices must be the same. Since a
POLYGON encloses an area, it has a fill color.

e annotation. An annotation layer is used to label features but not render them. That is, it
processes the shapefile that determines where labels will go—it renders the label, but
does not render the point, line, or polygon.

e raster.Arasterlayer renders a georeferenced image and gives the map maker the ability
to embed vector data in a real-world context. This might be an aerial or satellite photo-
graph, or an image that indicates color-coded elevation. In fact, any geographically
distributed information can be used to create a tagged image that’s rendered as a
raster layer.

* query. A query layer is used to associate a mouse click on the map image with a specified
data set. A query layer is not drawn, but its attributes can be queried. It can be used, for
example, to reduce the amount of detail drawn on a map but still provide the user with
the ability to query the map based on the underlying attributes of the spatial data set.

Note The layer type need not correspond with the type of the shapefile, but it must be compatible with it.
Remember that a point is a single pair of coordinates, a line is a list of coordinate pairs, and a polygon is a list
of coordinate pairs with the first pair the same as the last. As such, a polygon and a line can both be rendered
as a series of disconnected points, and a polygon can also be rendered as a line that intersects itself. However, it's
impossible to render a point as a line (or a polygon), since you need two points to define a line (and four to
define a polygon).

The shapefile used in this example is a polygon. However, the layer will be defined as aline
type in order to render only the state boundaries. This will cause the labels to be located at the
edge of each state (one remedy for this involves using an annotation layer, which will be presented
in Chapter 4).

Associated with a shapefile is a database file. Each feature in a shapefile has a corresponding
record in the database. This record contains descriptive information associated with the feature.
Each column of this database has a name. By specifying a column name as the value for LABELITEM,
the contents of that column will be associated with the labels drawn for each feature of that layer.

It’s unlikely that every feature in a shapefile will have the same significance. For example,
graphically distinguishing major highways from residential streets will enhance the visual
appearance and utility of your map. In order to accomplish this, classes are defined for the
features in a shapefile. However, for simplicity’s sake, there’s only one class in first.map.
Later, others will be added to show the utility of classes. A class is introduced by the keyword
CLASS and closed by the keyword END.

Add the following lines to the file first.map:

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

19 CLASS

20 STYLE

21 COLOR 0 0 O
22 END

This default class will cause MapServer to select every feature for rendering. The STYLE
object contains the parameters that describe the way in which the symbol for this class will be
drawn. It begins with the keyword STYLE and is terminated by the keyword END. In the present
case, you'll use the default symbol (a 1-pixel-wide line) and color it black.

A class can also contain a LABEL object. The LABEL object is rendered with the class and
specifies the font type, size, and color of the label. Labels can of course be more complex than
this, which is a topic that will be discussed later. Alabel is introduced by the keyword LABEL and
closed by the keyword END.

Add the following lines to the file first.map:

23 LABEL

24 COLOR 0 0 O
25 SIZE SMALL
26 END

The label will be rendered in the color specified by the keyword COLOR, and in the default font,
at a size specified by the keyword SIZE (in this case, SMALL).
Add the following lines to the file first.map:

27 END
28 END
29 END

The complete mapfile first.map should look like this:

01 # This is our first mapfile
02 NAME "First"

03 SIZE 400 300

04 IMAGECOLOR 255 255 255

05 IMAGETYPE JPEG

06 SHAPEPATH "/home/mapdata/"

07 EXTENT -125.00 20.00 -65.00 50.00

08 WEB

09 TEMPLATE '/var/www/htdocs/first.html’
10 IMAGEPATH '/var/www/htdocs/tmp'

11 IMAGEURL '/data/tmp/'

12 END

13 LAYER

14 NAME "US States"

15 STATUS default

16 TYPE line

27

28

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

17 DATA "statesp020"

18 LABELITEM "STATE"

19 CLASS

20 STYLE

21 COLOR 0 0 O
22 END

23 LABEL

24 COLOR 0 0 O
25 SIZE SMALL
26 END

27 END

28 END

29 END

The structure of this mapfile isn’t much different from the first example, and the map that
it creates has some significant limitations (for example, it renders only state outlines and labels,
and all the outlines are rendered the same way—as a 1-pixel-wide black line), but it demon-
strates how little is needed to produce a map from real data.

Building the HTML Template for the First Map

The new template file is as simple as the “Hello World” template, and this second attempt
won'’t push the boundaries of MapServer’s capabilities.
Using a text editor, open the file named first.html. Then type the following lines:

01 <html>

02 <head><title>MapServer First Map</title></head>

03 <body>

04 <form method=POST action="/cgi-bin/mapserv">

05 <input type="submit" value="Click Me">

06 <input type="hidden" name="map" value="/home/mapdata/first.map">

07 <input type="hidden" name="map_web_imagepath"
value="/var/www/htdocs/tmp/">

08 </form>

09

10 </body>

11 </html>

The only differences from hello.html are the title text and the name of the mapfile. The operation
of this application is also very similar.
Load the page by typing its URL into your browser:

http://localhost/first.html

and press Enter.

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

Apache retrieves the page (again, without invoking MapServer) and forwards it to the
browser for rendering. A submit button labeled “Click Me” will be displayed, along with a
broken image icon (see Figure 2-3).

Click Me |

5.
]

Figure 2-3. The combined HTML initialization and template file for the first map, the broken
image icon indicating that MapServer hasn’t created a map image yet

The IMG tag in Line 09 is still broken because MapServer hasn’t made any substitutions in
this file yet. Click the submit button and Apache will invoke MapServer and pass it the form
variables from Lines 06 and 07. This time, the map values point to a different mapfile. Reading
the mapfile first.map, MapServer retrieves the shapefile statesp020 and renders all the features
that lie within the extent specified (that is, between 125° west, 20° north and 65° west, 50° north).
At the same time, it checks the column in the database with heading STATE and renders the
contents as the label for each feature. It saves the map image it creates in a file with a name
similar to the following: /var/www/htdocs/tmp/First11078305275638. jpg.

Next, MapServer reads the template file (in this case, it's the same as the initialization file
first.html) and substitutes the URL to the image for the [img] substitution string. The value
for IMAGEURL in the mapfile is /tmp/, so it substitutes /tmp/Hello Wor1d11008505275638. jpg for
the string [img].

After substitution, Line 09 of first.html now looks like

09

MapServer then sends the contents of the template file to Apache for forwarding back to
the browser. The browser receives the string, parses it, and renders it. The image is retrieved
from the specified URL and displayed. The web page now shows a submit button and a map of
the United States, with the states labeled with their names (shown in Figure 2-4). Since the
layer was rendered as a line layer, the labels are located close to the line. If this had been made
a polygon layer, the labels would have been located at the center of each polygon.

29

30

CHAPTER 2 SIMPLE MAPSERVER EXAMPLES

Click Me |

Hamei i

Puerte Rico

Figure 2-4. The image that replaces the broken image icon

If you don’t see an image similar to that in Figure 2-4, check for the following errors:
missing or incorrectly named shapefiles, typos in the mapfile or template file, or forgotten
libraries for rendering JPEG images.

Summary

In this chapter, you've created two MapServer applications. While neither was very useful as
maps, they allowed you to confirm that MapServer was properly installed. There are two issues
here. The first concerns whether you've built a functioning MapServer binary. This is, of course,
only the first hurdle. After building MapServer, you have to tell it where everything is located
and make sure all the permissions are set correctly. Since a more useful MapServer application
can easily be 20 times the size of those you've just created (in terms of lines of code), and can
access a dozen HTML templates, keeping the application simple makes for an easier debug
when something goes wrong.

You've also been introduced to the basic MapServer operations (in a CGI context) and
seen how the pieces fit together. By limiting complexity, the entire application and all its details
can be understood at once, which produces a much shallower learning curve.

In the next chapter, you'll construct a more interesting mapping application. It will be much
more sophisticated and demonstrate some of the power of MapServer as a map-rendering
engine. You'll see how to use layers and classes to display information more effectively. The
application will be interactive and allow users to zoom and pan the map image. You'll see how
to create scale bars and legends, and how to embed useful information (like the scale of the
map and mouse-click coordinates) in the HTML output. In other words, you'll be creating your
first “real” mapping application.

CHAPTER 3

Creating the Mapping
Application

In the previous chapter, you built a MapServer application that displayed a map of the United
States, showing the outline of each state and using state names as labels. That map had limited
utility—it showed no cities, highways, rivers, or lakes. There was no way to change the scale of
the map or display different regions (no zoom or pan). Some states lacked labels, and when
states werelabeled, the labels were all located along the southern boundary of the state, which
was confusing. Some of these deficiencies will be addressed in the mapping application that
you'll build in this chapter, and the rest will be resolved in the next as new concepts are
introduced.

In order to produce a more useful (and visually pleasing) map, you’ll have to increase the
complexity of both the mapfile and the HTML template. Fortunately, you'll achieve a great
increase in usability from changes that will require the introduction of just a few new concepts.
At the end of this chapter, you'll be able to create a mapping application that contains a signif-
icant amount of information—and the display of this information will be under interactive
control. The map will show urban areas, major roads, rivers, and lakes; you'll create zoom and
pan controls, and controls to select which layers to render. You’ll learn to render labels more
effectively and use color to differentiate between things like interstate highways and major roads.

In the previous chapter, you learned the fundamental concepts involved in rendering
maps to the screen. The pace was pretty fast, but the intent was to help get you up and running
quickly. Consequently, some topics were only glossed over, and the linear presentation didn’t
allow for a broad discussion of MapServer syntax and usage. Since the application described in
this chapter is a bit more complex than the first map and requires a somewhat longer mapfile,
the manner of presentation in this chapter will change slightly. Instead of plunging directly
into a line-by-line analysis of the mapfile and template, I'll take a more conceptual approach.
Once the general ideas have been presented, you'll begin a detailed investigation of the code.
To aid you in this, a comprehensive description of mapfile keywords, HTML template substitution
strings, and CGI variables can be found in Chapter 11.

Mapfile Concepts

The mapfile is the object that MapServer uses to define a CGI-based mapping application. It
determines not only the look and feel of the map, but also how MapServer behaves when invoked

31

32

CHAPTER 3 CREATING THE MAPPING APPLICATION

by the web server. In order to function properly, MapServer must understand how to handle
dozens of mapfile keywords, CGI form variables, and substitution strings. The complexity can
be overwhelming the first time you try to build a real application, but the logical structure

of the mapfile and MapServer’s straightforward processing will help you to overcome this
impediment. This section introduces the mapfile. In subsequent sections, form variables and
substitution strings will be discussed.

The Structure of the Mapfile

The mapfile consists of a hierarchy of objects. At the top of the hierarchy is the map object (i.e.,
the mapfile itself). The map object contains both simple and structured items. The simple items
consist of keyword-value pairs, and the structured items contain other items, each of which
can be either simple or structured. You've already seen examples of both types of mapfile
constructs—for example, the file first.map, discussed in Chapter 2, contains the following lines:

NAME "First"
EXTENT -125.00 20.00 -65.00 50.00

Each of these lines contains simple mapfile objects. You'll also notice that each of these
keywords specifies a value that only makes sense for the map as a whole. For example, the keyword
NAME sets the name of the map to First. This keyword is used at the map level to specify the
string that identifies all output files generated by MapServer in the course of producing a map
from this mapfile. Note, however, that the same NAME keyword can be used at other levels as
well—its function depends on where it’s used. Similarly, the keyword EXTENT sets the extent for
the whole map, so it must also be defined at the map level of the hierarchy. But like NAME, it too
can be used at a lower level.

Note If you’re new to MapServer, the use of the same keyword (like NAME, TEMPLATE, or COLOR) at
different levels in the mapfile can be confusing. When you become familiar with mapfile concepts, this won’t
present a problem, and you’ll in fact be grateful that the developers chose not to define a different keyword
for a similar concept at each different level.

The file first.map also contains the following lines:

WEB
TEMPLATE '/var/www/htdocs/first.html’
IMAGEPATH '/var/www/htdocs/tmp'
IMAGEURL '/tmp/'

END

This is an example of a structured object. The WEB object determines which HTML templates
MapServer will use, and where the templates are located. The WEB object is generally used to
determine how MapServer responds to web requests, and can contain more keywords than
shown here. Since the WEB object defines things used to display the entire map, it makes sense
thatit’s specified at the map level. Again, however, the keyword TEMPLATE can be used at alower
level, where its function is very different. (I'll show you how different in Chapter 5.) There are

CHAPTER 3 CREATING THE MAPPING APPLICATION

several more MapServer objects defined at the map level, but for now I'll introduce just one—
the LAYER object.

The LAYER Object

The notion of a layer is crucial to all digital mapping processes. In brief, a layer is a selection of
features that comes from a single spatial data set, all drawn at the same scale. Let’s break this
definition down into its components to see what it means in practice.

Most (though not all) effective maps are scaled representations of the real world. The scale
of the map might be 1:1,000,000, which means that 1 inch (or mile or meter) on the map is
equal to 1,000,000 inches (or miles or meters) on the ground. With these sorts of maps, all
features are rendered at the same scale in order to maintain relative sizes and distances.

Note An excellent example of a map that’s not a scaled representation is the Tube Map of London,
England (see www.tfl.gov.uk/tube/images/desktop 1024x768.jpg). This schematic representa-
tion of the London subway system has no associated scale and doesn’t need one, since the sequence of
subway stations is more important than the precise distance between them.

Every spatial feature has a type, which determines how the elements of the feature are
stored, retrieved, and rendered. The types recognized by MapServer are POINT, LINE, and POLYGON.
Fundamentally, the only property a point possesses is location. This location can be represented
on the map by a symbol with a specific size and color. A line feature (consisting of an ordered
sequence of points) can be represented by a line with a particular size (i.e., width) and color,
but a line can also possess a style (dashed, for example). A polygon (an ordered sequence of
points that encloses an area) can make use of all of these, but since it encloses an area, a
polygon can have a fill color as well. Because of these differences in structure and rendering
requirements, a layer can contain only one feature type.

Finally, consider a spatial data set that contains many features (all of the same type) that
differ in significance depending on the scale of the map (bicycle paths versus interstate high-
ways, for example) or the needs of the user. In some cases, it would be appropriate to render
some features but not others (interstates but not bicycle paths), and in other cases, the selection
might be reversed. The use of layers makes the task of generating maps more flexible by allowing
the components of the map to be assembled in different ways to meet different needs.

Asyou've already seen, MapServer defines its layers by means of the structured LAYER object.
This object specifies the data set to be rendered, the layer type, and the layer status (i.e., whether
the layer should be rendered or not). Other optional layer characteristics (such as layer name,
maximum or minimum scales at which the layer should be rendered, and labeling information)
can also be supplied.

MapServer renders its layers in sequence, starting at the first layer specified in the mapfile.
The map image isn’t created by combining a separate image from each layer—rather, each
layer is rendered on top of its predecessor until the last specified layer is drawn. This means
that features rendered from layers defined higher (closer to the beginning) in the mapfile can
be overwritten by features defined further down.

33

34

CHAPTER 3 CREATING THE MAPPING APPLICATION

Every mapfile requires at least one layer. The LAYER object tells MapServer what to render,
but another structured object, the CLASS object, contains the instructions that tell MapServer
how to render features in a layer.

The CLASS Object

All the features in a spatial data set that are rendered in a layer must be of the same geometrical
type. However, not every point, line, or polygon in a data set needs to have the same signifi-
cance in a cartographic sense—a map ought to distinguish roads from bicycle paths to avoid
(perhaps catastrophic) confusion, for example. In other words, features are classified according to
specific criteria, and features that fall into one class should be drawn differently from features
that fall into a different class. In order to accomplish this goal, MapServer uses the CLASS object
to select the features to be rendered and to specify the way they’re rendered.

Everylayer requires at least one class, and selection criteria need not be specified. If they're not
specified, all features in the data set will be included in the class by default. MapServer uses the
CLASS-level keyword EXPRESSION to specify the selection criteria. This can be done in several
ways, which are described below. A class’s STYLE object contains the rendering information
(such as symbol size and color) for the class. Multiple classes can be defined in a layer, and
each feature of a class can be drawn in a different style. In addition to rendering features, the
CLASS object is also responsible for labeling features. It performs this task by means of the LABEL
object, which contains such information as font, color, and size.

Mapfile Syntax

As you've seen, the syntax of the mapfile is relatively straightforward. Generally speaking,
MapServer keywords and values aren’t case sensitive. In this book, however, keywords are
always displayed in capitals, and values in lowercase. This practice is observed simply for
clarity, and isn’t required. However, you should note that case may be important when you're
interacting with spatial data sets. For instance, the attribute names in the underlying database
might be case sensitive, and therefore expressions containing references to attributes would
also be case sensitive.

Note Version 4.4.1 of MapServer appears not to be case sensitive as far as attribute names in shapefiles
are concerned, despite the statement to the contrary in the “MapFile Reference - MapServer 4.4” document
(http://mapserver.gis.umn.edu/doc44/mapfile-reference.html). Butit's still good practice to
assume that they’re case sensitive (and of course, attribute values are still case sensitive).

Strings that contain embedded blanks must be quoted. Single or double quotes are both
acceptable, but they must be used in pairs—you can’t quote a string using two different quote
characters.

CHAPTER 3 CREATING THE MAPPING APPLICATION

The Mapfile

At this point, the fundamental ideas of map, layer, and class should be clear, and you should

understand how the pieces of a mapfile fit together. You've constructed two working mapfiles

(hello.map and first.map), and you're now ready to proceed to an application that actually

does something. The application you build will provide full pan and zoom capabilities, as well

as the ability to turn layers on and off. Figure 3-1 shows what this map will look like.

() Second Map - Netscape

=

Fille Edit “iew Go Bookmarks Took ‘Window Help

35

[51x]

Back Farward Reload Stop

2 . o . A B |3;hnpf;\nca\hnsvcgi—hinxmapsew?zmmdim&zmmmze=2&|aye.=urha» Jake:shl, Iaper=roadsbingiy=320+ 240k imgert=28.7: 7 @

e

Mun@elein
d Hills

US Rogte 12
L3

US Rolte 45

tersville

Fefresh

Zoom

ZoomTn ®

FPan ©

o0 Chicago Metro Area

Zoom Cut © | Stze |2

 Urban Areas

¥ Lakes

[State Boundaries
¥ Roads

U Route 12, LS RE})te 20, US Route 45

Bolinghrook

Romeauille *

OakyForest
Jaliet

Tinlgy Park Homewood

6 Z | Dane

Figure 3-1. The second map, with navigation controls and layer selection

In the downloadable code for the book, the mapfile for this application is named second.map.
The code in that file (with line numbers added) is shown in Listing 3-1, at the end of the chapter.
If you haven’t downloaded the code, open a file with any text editor, enter the code from the
listing, and save it as second.map. The name of this file is important; MapServer manages its
various mapfiles and template files by knowing their names.

In the code snippet that follows, Lines 001 through 009 set up the basic map image parameters.
The keyword NAME defines the base name of any images created. Every time MapServer is invoked,
it creates a unique identifier by concatenating the system time (i.e., the number of seconds

36

CHAPTER 3 CREATING THE MAPPING APPLICATION

since 00:00:00 January 1, 1970) and the process ID. This unique identifier is appended to the
base name to form the file name. A two- or three-character extension (which depends on the
file type) is then appended. In some cases, MapServer will insert another string after the base
name to differentiate a reference map image or legend image from the map image itself. The
keyword SIZE specifies the pixel dimensions (width by height) of the map image. IMAGECOLOR
sets the background color of the image to white (recall that colors are chosen in MapServer by
specifying the three integer-valued RGB components between 0 and 255, with white being
255,255,255). IMAGETYPE is set to GIF. In the previous mapfiles, you used PNG and JPEG images.
GIF is being chosen here just to give the software a workout. The base directory in which MapServer
will look for the spatial data sets is specified as /home/mapdata/ in Line 007. The initial extent of
the map is determined by specifying the coordinates of the southwest and the northeast corners in
Line 008. Finally, the file that contains the mapping between font alias and font location is
specified by the keyword FONTSET in Line 009.

001 # This is our second map file

002 NAME "second"

003 UNITS dd

004 SIZE 640 480

005 IMAGECOLOR 255 255 255

006 IMAGETYPE gif

007 SHAPEPATH "/home/mapdata/"

008 EXTENT -180.00 0.00 -60.00 90.00

009 FONTSET "/var/www/htdocs/fontset.txt"

In the following code snippet, Lines 010 through 014 define the parameters of the WEB
object. It begins with the keyword WEB and is terminated by the keyword END. The WEB object
tells MapServer the name of the HTML template files (in this case there’s only one, named
second.html), the path to the images created, and the URL that points to those images. As before,
IMAGEPATH specifies the path to the images created by MapServer. In this case, you're using an
absolute path, but you could have used the relative path from the location of the mapfile. Note
that you can’t delete the initial or final / from the IMAGEURL. The string defined by IMAGEURL is
appended to the base URL (i.e., http://localhost) to generate URLs for the images presented
on the page.

Note If you're not sure why the / is important, or what the Apache directive DocumentRoot means, look
itup athttp://httpd.apache.org/docs/mod/core.html#documentroot.

010 WEB

011 TEMPLATE "/var/www/htdocs/second.html"”
012 IMAGEPATH "/var/www/htdocs/tmp/"

013 IMAGEURL "/tmp/"

014 END

It’s important to remember that MapServer renders layers in the order in which they're
specified in the mapfile. The last layer in the mapfile is the top layer of the map—each is laid

CHAPTER 3 CREATING THE MAPPING APPLICATION

over the previous layer to build the map image. This means that details presented earlier in the
mapfile (that is, lower layers in the map image) may be obscured. This is most important when
rendering polygon layers, because polygons can be filled with a specified color. If MapServer
renders a point layer (representing, for example, the locations of cities) and then renders a
polygon layer representing states, the cities won’t be visible unless the color specified for the
polygon layer is transparent. This problem is easily remedied by laying down the polygon layer
first. It’s also possible to render a polygon as a series of lines (i.e., as a TYPE line layer). Since a
line is one dimensional, there’s no area to be filled, so the detail from the layers below is still
visible. Specifying COLOR -1 -1 -1, for which no fill color is used, also accomplishes transparency.

Layer 1: Urban Areas

Lines 015 through 032, which follow, define the first layer of the map. The data set contains
selected urban areas in the United States, which can be downloaded from http://nationalatlas.
gov/atlasftp.html. The feature attributes are AREA, PERIMETER, NAME, STATE, and STATE_FIPS.
These attributes are described in the text file containing the metadata (urbanap020. txt), which
includes the following definitions:

* AREAis the size of the shape in coverage units. The minimum area is 0 and the maximum
is 0.298 coverage units.

e PERIMETER is the perimeter of the shape in coverage units. The minimum perimeter is 0
and the maximum is 6.774.

¢ NAME is the name of the urban area.

e STATE is the two-character FIPS code for the state (i.e., the usual two-letter postal abbre-
viation, such as ME for Maine).

e STATE_FIPS is the two-digit FIPS code for the state. The STATE_FIPS code is derived from
the sequence number of an alphabetically sorted list of states names, Washington DC,
and associated territories. When an urban area falls in more than one state, the state
codes are listed, separated by dashes.

Note To quote from the US Census Bureau website (www. census . gov/geo/www/fips/fips.html),
“Federal information processing standards codes (FIPS codes) are a standardized set of numeric or alphabetic
codes issued by the National Institute of Standards and Technology (NIST) to ensure uniform identification of
geographic entities through all federal government agencies. The entities include: states and statistically
equivalent entities, counties and statistically equivalent entities, named populated and related location entities
(such as, places and county subdivisions), and American Indian and Alaska Native areas.”

The layer begins with the keyword LAYER and is terminated with the keyword END at Line 032.
This polygon layer renders urban areas across the United States from spatial data in the shapefile
urbanap020.shp. The NAME keyword specifies a name for the layer. The name itself is optional,
but if you use one, it must be no longer than 20 characters. The layer name is used as a CGI

37

38

CHAPTER 3 CREATING THE MAPPING APPLICATION

reference to the layer from within the HTML template. Since you want to be able to turn layers
on and off interactively from an HTML form, you must assign a name in this case.

The STATUS keyword determines whether a layer will be rendered or not, and whether its
status can be changed. A layer with STATUS default is always rendered, while STATUS on or
STATUS off can be toggled.

In order to label each urban area with the NAME attribute found in the shapefile, you need
to identify NAME as the value of keyword LABELITEM. Whenever an urban area feature is rendered,
the value of the NAME attribute for that feature will then be used to create the label.

Note There are several methods available if you want to look inside a shapefile. You can see feature
attribute values by opening the associated DBF file in Excel or another spreadsheet program that can read
DBF files. If you just want to find out the names of attributes, you can use the utility program dbfinfo, which
is part of the shapelib library. Also, the utility program ogrinfo provides geographic information as well as
feature values. See Chapter 10 for details.

Lines 022 through 031 specify the parameters of the only CLASS object in this layer. A CLASS
object begins with the keyword CLASS and is terminated by the keyword END (on Line 031). Although
this application will use classes more extensively than the previous map, for this layer you only
need to specify a single default class that will include every feature in the shapefile. The NAME of
aclass is thelabel that will appear in the legend associated with the map. If a class has no name,
it will still be rendered, but it won’t appear in the legend. The keyword COLOR in the STYLE object
specifies the color in which the feature will be drawn. Because this layer is a polygon, it will be
filled with the color specified. If it were a line layer, the value of COLOR would specify the line color.

Each urban area will be labeled, and Lines 027 through 030 specify the label parameters. A
LABEL object begins with the keyword LABEL and is terminated by the keyword END (on Line 030).
In the LAYER object, the value of LABELITEMis set to 'NAME'. This selects the attribute NAME as the
source of the label text. Each label will be drawn in black, and its size will be small. Instead of
small, you could have chosen tiny, medium, large, or giant.

015 LAYER

016 NAME "urbanareas"

017 DATA "urbanap020"

018 STATUS on

019 TYPE polygon

020 LABELCACHE on

021 LABELITEM 'NAME'

022 CLASS

023 NAME "Urban Areas"
024 STYLE

025 COLOR 212 192 100
026 END

027 LABEL

028 COLOR 0 0 O

029 SIZE small

CHAPTER 3 CREATING THE MAPPING APPLICATION

030 END # label
031 END # class Urban Areas
032 END # layer urbanareas

Layer 2: Water Features

Lines 033 through 055 define the second layer of the map. The data set contains polygon water
features in the United States, Puerto Rico, and the US Virgin Islands. The feature attributes are
AREA, PERIMETER, FEATURE, NAME, STATE, and STATE_FIPS.

This layer is more complex than the previous and demonstrates the use of some keywords
that you haven’t encountered yet. It has been assigned the name "lakes", and the spatial data
comes from the shapefile named hydrogp020—it’s a polygon layer. You'll use the NAME attribute
to label each feature. Layer STATUS is set to on, so you can turn it off and on from the browser.

In the "urbanareas" layer, a single class was used. Because no selection criteria were specified,
every feature in the spatial data set was rendered. But since this new data set contains features
other than lakes, you need some method of selecting only those features that you wish to render
(i.e., lakes). You can do this by identifying to MapServer the attribute on which you’ll base your
selection. You can use the keyword CLASSITEM to accomplish this. In Line 040, CLASSITEM tells
MapServer that FEATURE is the name of the attribute that will be used by this layer to define classes.

Since rendering a feature takes time, it might be too time-consuming to render every
feature in a large data set. On the other hand, you don’t want to ignore an entire class. MapServer
provides a way to limit the number of features that are rendered. The keyword MAXFEATURES
in Line 041 sets that limit to 100 for this layer. This means that no more than 100 lakes will be
rendered, regardless of the extent of the map. If the map shows the entire continental United
States, there will still be only 100 lakes shown. Limiting the number of rendered features this way
can substantially reduce response time in cases in which a data set contains many features, but
the technique is used most effectively if the spatial data set is sorted into some useful sequence—
for example, lake area. In such a case, MapServer would render only the 100 largest lakes.
Chapter 10 describes how to use the sortshp utility program to accomplish this.

The CLASS named "Lakes" uses the keyword EXPRESSION. The value associated with EXPRESSION
can take one of three forms: a quoted string, a regular expression, or a logical expression. They
work like this:

e If the value of EXPRESSION consists of a quoted string, then for every feature in the data
set, MapServer compares the value of the attribute specified by CLASSITEM with the value
of the quoted string. If the two are equal, that feature is included in the class.

e Ifthe value of EXPRESSION consists of a regular expression, delimited by forward slashes,
then for every feature in the data set, MapServer compares the value of the attribute
specified by CLASSITEM with the regular expression. If a match is found, that feature is
included in the class.

e Ifthe value of EXPRESSION consists of a logical expression delimited by parentheses, then
for every record in the data set, MapServer evaluates the logical expression. If it evalu-
ates to true, that feature is included in the class. In addition to the various comparison
operators, MapServer also supports a length function that returns the length (in charac-
ters) of its string valued argument. Logical expressions will be discussed in more detail
in the next chapter.

39

40

CHAPTER 3 CREATING THE MAPPING APPLICATION

In this case, you'll use a string comparison. In Line 044, the keyword EXPRESSION tells
MapServer that for every feature in the data set, the attribute FEATURE is to be compared with
the string 'Lake'. If they're equal, that feature is a member of the class "Lakes" and will be
rendered.

Caution Remember, while MapServer mapfile keywords aren’t case sensitive, attribute names and
values can be. For example, specifying ' Lake" will not match the value ' Lake'. No match will occur, so no
feature will ever be included in this class and no lakes will be rendered. There will be no error message either
because it’s not really an error. However, as noted previously, it appears that attribute names aren’t case
sensitive, since setting CLASSITEM to "Feature" will still work.

The features of this class will be rendered in blue (they're water features after all), and
since the layer is a polygon, that will be the fill color. Labels will be small and black. The keyword
MINFEATURESIZE allows you to set the size below which features will not be labeled. The size is
specified in pixels. For lines, it represents the length of the line, and for polygons, it represents
the smallest dimension of the bounding box. Setting MINFEATURESIZE to auto results in MapServer
labeling only those features that are larger than their labels. Lines 053 through 055 terminate
the LABEL, CLASS, and LAYER objects.

033 LAYER

034 NAME "lakes"

035 DATA "hydrogp020"
036 STATUS on

037 TYPE polygon

038 LABELCACHE on

039 LABELITEM "NAME"

040 CLASSITEM "FEATURE"
041 MAXFEATURES 100

042 CLASS

043 NAME "Lakes"

044 EXPRESSION 'Lake'’
045 STYLE

046 SIZE 1

047 COLOR 0 0 255
048 END

049 LABEL

050 MINFEATURESIZE auto
051 COLOR 0 0 O
052 SIZE small
053 END # label

054 END # class Lakes

055 END # layer lakes

CHAPTER 3 CREATING THE MAPPING APPLICATION 4

Note It's important to remember that an attribute that contains either a single quote (') or a double quote
(") character can confuse MapServer. For example, EXPRESSION ('[NAME]' eq 'O'Doyle') won't
select the feature with attribute [NAME] equal to 0' Doy1le, because the quoted value will appear to MapServer as
an invalid string due to the three single quote marks. Thus, the expression will never evaluate to true. To fix
this, you can replace the delimiter in the expression with double quotes, like this: EXPRESSION ("[NAME]"
eq "0'Doyle"). The other option is to change the data set and replace every occurrence of a single quote
with a double quote. You might have to do this anyway, since some shapefiles contain attributes that use both
single and double quotes.

Layer 3: State Boundaries

Lines 056 through 067 define the third layer of your map. The data set contains polygon state
boundaries in the United States, Puerto Rico, and the US Virgin Islands. The feature attributes
are AREA, PERIMETER, STATE, and STATE_FIPS.

State labels have been omitted since the map is already very busy, and you want to keep
things simple. The layer TYPE is polygon—therefore, if the color is set in the usual manner, it will
fill the polygon and overlay the urban areas and lakes already rendered. However, by omitting the
keyword COLOR and instead using the keyword OUTLINECOLOR, the polygon won’t be filled, and
the previous layers will remain visible. Again, STATUS is on, so you can control it.

056 LAYER

057 NAME "states"
058 DATA "statesp020"
059 STATUS on

060 TYPE polygon

061 LABELCACHE on

062 CLASS

063 STYLE

064 OUTLINECOLOR 0 0 O
065 END

066 END # class

067 END # layer states

Layer 4: Road Network

Lines 068 through 088 define the fourth layer of your map. The data set contains major roads in
the United States, Puerto Rico, and the US Virgin Islands. The feature attributes include LENGTH,
FEATURE, NAME, STATE, and STATE_FIPS. (Look in the file roadtrl020.txt to see a comprehensive
list of attributes and attribute values.) As before, the value of the attribute FEATURE is the road
type associated with each feature.

This layer of the map will show the principal highways of the United States. The spatial
data is contained in the shapefile named roadtr1020. STATUS is on and the layer type is line.
LABELITEMis set to "NAME" in order that each road is labeled with the contents of the NAME attribute.
(Later, you'll see that this leads to aesthetic problems, but I'll address this in the next chapter.)

42

CHAPTER 3 CREATING THE MAPPING APPLICATION

To select only principal highways, you'll select features based on the contents of the FEATURE
attribute. This time, however, you'll use a regular expression rather than a string comparison.

Note If you're interested in seeing the range of features in this file, you can scan through the file
roadtrl020.txt that comes with the shapefile. This file contains metadata (i.e., data about the spatial
data). Its format is straightforward but difficult to read. If you feel comfortable with Unix command-line operations,
you can execute the command grep Enumerated Domain Value: roadtrl020.txt to display the
values for the attribute FEATURE.

As before, an expression is introduced by the keyword EXPRESSION. In the case of regular
expressions, however, strings are delimited by forward slashes (/), and they’re not quoted. The
attribute FEATURE in this data set can contain any one of 29 different strings. The ones you're
interested in (Principal Highway, Principal Highway Alternate Route, Principal Highway
Business Route, etc.) all begin with the text Principal Highway. The regular expression that will
match these strings is /Principal Highway*/. The asterisk tells MapServer that any feature with a
FEATURE attribute that begins with the string Principal Highway will be accepted and rendered.

Finally, the map object is terminated in Line 089 by the keyword END.

068 LAYER

069 NAME "roads"

070 DATA "roadtrlo20"

071 STATUS on

072 TYPE line

073 LABELCACHE on

074 LABELITEM "NAME"

075 CLASSITEM "FEATURE"

076 CLASS

077 NAME "Principal Highway"
078 EXPRESSION /Principal Highway*/
079 STYLE

080 SIZE 1

081 COLOR 0 0 O

082 END

083 LABEL

084 COLOR 0 0 O

085 SIZE small

086 END # label

087 END # class Principal Highway

088 END # layer roads
089 END # mapfile

CHAPTER 3 CREATING THE MAPPING APPLICATION

Note Regular expressions are a common feature of most Unix and Unix-like operating systems. A regular
expression (or regex) is a string of characters that represent string patterns. Similar to (but much more extensive
than) the wildcard characters ? and * of DOS and Windows, regular expressions are used to find matching
patterns in strings. MapServer’s regular expressions (running under Linux) are POSIX compliant, so the capa-
bilities are portable to Windows. The syntax of regular expressions is beyond the scope of this book. Consult
any standard Unix user’s guide or one of the numerous online resources devoted to this topic.

The HTML Template

Since this mapping application is more complex than the previous applications, a separate
HTML initialization file will be employed in addition to the HTML template. This file will specify
the name of the CGI program to run, the name of the mapfile to use, the original extent of the
map, the initial zoom factor, and the layers to be displayed on first invocation.

Note You might think that because MapServer is invoked by the initialization page, it would know the
program to use in the HTML template file. But some thought should show you that this isn’t the case. When
MapServer is invoked by the initialization page, it doesn’t know it has been invoked—it’s not self-aware. It
could assume that the program name to insert in the template file is its own name, but there will be times that
you don’t want that to happen. You need to tell MapServer what program the template file should invoke the
next time the form is submitted. The CGl variable that MapServer interprets as the program name is program,
and its associated substitution string is [program].

The Initialization File

The code for the initialization file is in second_i.html and can be found in the book’s code
download. The contents of this file (with line numbers added) are shown in Listing 3-2. If you
haven’t downloaded the code, open a file with any text editor, enter the code from the listing,
and then save it as second_i.html.

Lines 004 through 011 (shown in the following code block) produce a form that passes the
CGl variables in Lines 006 through 010 to the MapServer executable, /cgi-bin/mapserv. Line
006 tells MapServer that the CGI form variable program contains the string that’s to be substituted
for the string [program] when it reads the HTML template file. In this case, it’s the same as the
action specified in Line 004. Line 007 indicates that MapServer should get its configuration
information from the mapfile specified by the value of the form variable map—in this case
/home/mapdata/second.map.

43

44

CHAPTER 3 CREATING THE MAPPING APPLICATION

004 <form method=POST action="/cgi-bin/mapserv">

005 <input type="submit" value="Click to initialize">

006 <input type="hidden" name="program" value="/cgi-bin/mapserv">

007 <input type="hidden" name="map" value="/home/mapdata/second.map">
008 <input type="hidden" name=zoomsize size=2 value=2>

009 <input type="hidden" name="layers"

010 value="urbanareas lakes states roads capitals">

011 </form>

The variable zoomsize is given the value 2 in Line 008. MapServer will place this value into
a form variable when it scans the template file. It specifies the rate at which MapServer will
zoom in and out when the map is refreshed. Lines 009 and 010 set the value of the form variable
layers to a space-delimited list of layer names. MapServer will render every layer on this list,
setting the status of each to on. These layer names must match the layer names specified in the
mapfile by the keyword NAME in each of the layer objects. If they don’t match, the layer name
will be ignored and the layer will fail to render.

Note MapServer understands the name of every CGl variable used in this file. This is how it communicates
between the HTML form and the mapfile—thus, spelling is important, but case isn't.

The Template File

We come now to the HTML template. It's more complex than the template for the “Hello World”
application or the first map, since it must be capable of doing more. Some of the complexity
arises because the layout of more elements on the screen will require more code. In addition to
this, there are several substitution strings that allow you to manipulate the map from the browser.

In the downloadable code for the book, the code for this template file is named second. html.
The contents of this file (with line numbers added) is shown in Listing 3-3. If you didn’t down-
load the code, open a file with any text editor, enter the code from the listing, and save it as
second.html.

Lines 001 through 003 are the usual HTML preamble.

001 <html>
002 <head><title>Second Map</title></head>
003 <body>

Lines 004 through 052 produce the form that lets a user interact with MapServer by changing
the values of CGI variables contained in the form. The first substitution string is [program] in
Line 004. The initialization file sets this to /cgi-bin/mapserv. Recall that when MapServer is
invoked, it reads the mapfile specified during initialization, creates the map image specified,
scans the specified template file, and makes any substitutions in the substitution strings it
recognizes (and for which it knows the values). So when MapServer scans second. html, it
substitutes the string /cgi-bin/mapserv wherever it finds [program].

CHAPTER 3 CREATING THE MAPPING APPLICATION

004 <form name="the_form" method=CET action="[program]">

005 <table width="100%">
006 <tr>
007 <td width="60%">

Line 008 contains the substitution string [img]. MapServer replaces this string with the
name of the map image it has created, along with the URL that points to that image. Every invo-
cation will produce a different name, but it should look something like the following:
second110254987124367.gif. Notice that the tag containing [img] is an input field. This allows
point-and-click navigation of the map. If the user clicks the image, the coordinates of that click
are sent back to MapServer. MapServer then puts the clicked point at the center of the map
(effectively, panning across the image), and (if the zoom size and direction are set) changes the
scale and extent of the map (zooming in or out). Line 013 provides a submit button to refresh
the map.

008 <input name="img" type="image" src="[img]"

009 width=640 height=480 border=2></td>

010 <td width="40%" align="left">

011 <table border="1" width="300">

012 <tr><td align="center" colspan="3">

013 <input type="submit" value="Refresh"></td></tr>

Lines 014 through 030 provide zoom controls for the map. The form variable zoomdir deter-
mines the zoom direction. Setting zoomdir to 1 means that when the map is refreshed (by a
click of the Refresh button or the map image), the next view will be zoomed in by the current
value of zoomsize. Setting zoomdir to -1 means that the next view will be zoomed out by the
value of zoomsize. Setting zoomdir to 0 means that the next view will be at the same scale as the
last. The value of zoomdir is specified by one of the three radio buttons in Lines 016, 019, or 025.
Checking one radio button in a group unchecks the others so that the zoom direction is passed,
unambiguously, to MapServer from one invocation to the next.

Also note the substitution string [zoomdir 1_check] in Line 017. This represents the selec-
tion state of the radio button associated with a zoomdir value of 1. If the radio button with value 1
had been checked prior to this invocation, MapServer would replace [zoomdir 1 check] with
the string checked. Similarly, if the button with value -1 had been checked, MapServer would
replace [zoomdir -1 check] with checked. If a radio button is unchecked, then its substitution
string will be replaced withanull ' '".

Line 022 contains the form variable zoomsize, with its value set to the substitution string
[zoomsize]. When MapServer scans the template, it replaces this with the current value of
zoomsize.

014 <tr><td align="center" colspan="3">Zoom</td></tr>
015 <tr><td align="right" width="100">Zoom In

016 <input type=radio name=zoomdir value=1

017 [zoomdir 1 check]></td>

018 <td align="right" width="100">Zoom Out

019 <input type=radio name=zoomdir value=-1

020 [zoomdir -1 check]></td>

021 <td align="right" width="100">Size

022 <input type=text name=zoomsize size=2

45

46

CHAPTER 3 CREATING THE MAPPING APPLICATION

023 value=[zoomsize]></td></tr>

024 <tr><td align="center" colspan="3">Pan

025 <input type=radio name=zoomdir

026 value=0 [zoomdir 0 check]></td></tr>
027 </table>

028 <hr size="1">

029 <table>

030 <tr><td colspan="3">

Lines 031 through 041 define four checkboxes for a form variable named layer. The value
of each is the name of one of the layers in the mapfile. If a layer is to be rendered, then the
checkbox associated with that layer (the checkbox that has a value equal to the name of the
layer) must be checked. Lines 031 and 032 show how MapServer indicates that a layer has been
checked. Every layer in the mapfile will have a substitution string associated with it—the name
of which is constructed by appending an underscore character () to the layer name, and
then adding the word check. For example, Line 031 shows that the string associated with the
"urbanareas” layer is named [urbanareas_check]. These strings can have two values: checked

or"" (null), just as in the case of radio buttons. When MapServer scans the template, it replaces
the checkbox substitution strings with the appropriate values.

031 <input type="checkbox" name="layer" value="urbanareas"
032 [urbanareas_check]>Urban Areas</td></tr>
033 <tr><td colspan="3"><input type="checkbox"

034 name="layer" value="lakes"

035 [lakes check]>Lakes</td></tr>

036 <tr><td colspan="3"><input type="checkbox"

037 name="layer" value="states"

038 [states _check]>State Boundaries</td></tr>
039 <tr><td colspan="3"><input type="checkbox"

040 name="layer" value="roads"

041 [roads_check]>Roads</td></tr>

042 </table>

043 </td>

044 </tr>

045 </table>

Line 046 provides for a virtual mouse click on the center of the image. Recall that Line 008
isan inputimage field. If the user doesn’t use the mouse to click the image, but clicks the Refresh
button instead, MapServer won’t know what the center of the new image should be. The CGI
variable imgxy returns to MapServer the location (in image coordinates) of the mouse click. If
you set imgxy to the coordinates of the center of the image, then MapServer won’t change the
center of the extent if the user clicks Refresh rather than the image.

Finally, the form variables and substitution strings in Lines 047 through 049 allow MapServer
to maintain the state of the application. Line 047 causes the value of the image extent to be set
to the current value of the map extent (i.e., the coordinates of the lower-left and upper-right
corners of its bounding box). This allows MapServer to track the current value as the user zooms
and pans. As with the initialization file, MapServer must know which mapfile to read. It remembers
this by storing it as a hidden form variable when it finds the substitution string ([map], on

CHAPTER 3 CREATING THE MAPPING APPLICATION

Line 048) during its scan. The substitution string [program] in Line 049 is used by MapServer to
store the name of the program to invoke when the form is submitted.

046 <input type="hidden" name="imgxy" value="320 240">
047 <input type="hidden" name="imgext" value="[mapext]">
048 <input type="hidden" name="map" value="[map]">

049 <input type="hidden" name="program" value="[program]">

050 </form>
051 </body>
052 </html>

Once you've saved the mapfile in /home/mapdata/ and entered and saved the initialization
file and HTML template in the DocumentRoot (/var/www/htdocs/ on the development system),
display the initialization file in your browser:

//http://localhost/second_i.html

This will display a page (shown in Figure 3-2) that’s almost identical to the previous initializa-
tion pages (except for the absence of the broken image icon). Click Click to initialize, and
you should see a map similar to the one shown in Figure 3-3. You can select and deselect layers
for rendering by clicking the checkboxes. Clicking the radio buttons Zoom In,Zoom Out, and Pan
will allow you to move around in the map and explore all its features. Depending on where you
click and what zoom factor you’ve set, MapServer should respond with images similar to those
in Figures 3-4 and 3-5. It’s very easy to use.

E‘EIJ MapServer Second Map - Netscape =] E3

File Edit “iew Go Bookmarks Toolz ‘Window Help
=16

< .=« .3

Back Forward Feload Stop

Click to initialize |

I é& http: #flocalhost/second_i.html

Done |

=l

Figure 3-2. The initialization page for the second map

47

48 CHAPTER 3 CREATING THE MAPPING APPLICATION

_[5]x]

) Second Map - Nelscape

;| File Edt Miew Go Bookmarks Tools ‘window Help
19

i - @“ - \3 ‘{§§r Iggéhllp./flD:alhuslfcg\-bln/mapsew

Back Forward Reload Stop

Fefresh

Zoom

ZoomTn © |Zoom Tt © | Size |2
Pan @

I Utban Areas

¥ Lakes

¥l State Boundaries
I Roads

State Fbufe 55
State Fute 11
ake Foute StateFaute

o=l

Done

Figure 3-3. Initial display of the second map at full extent

@) Second Map - Netscape

Fle Edit “iew Go Bookmaks Tools ‘Window Help

CHAPTER 3 CREATING THE MAPPING APPLICATION 49

4 e 3

§§ I % hittp:/Alocalhost/ cgi-bin/mapsery Yimg, x=3364img.v=265%z00mdir=1%zoomsize=8%ayer=urban
Back Fomward Reload Stop

State Rgute 1

e 140

[1:3 ke 95
U Rodte 93

Corcoran-US Route 395

poute 135

5, RO
93 us Rouke 2§
\:{ge a9
. pari
5, Ro
us R
Refresh
% Route 1 —I
,j_fﬂ k.o Zootm
Route
s RO{E)::. ZoomIn ® | Zoom Cut O | Size [8
2] US Roite 89
US RoutZ™0,3US Route 159 Pan ©
[Utban Areas
e Lakes
I State Boundaries
I Roads
o \ Hlter’?a & 3 £
E 15 pofte o " astate Bhel

Done

Figure 3-4. The coast of northern California as rendered by the second mapping application

50 CHAPTER 3 CREATING THE MAPPING APPLICATION

@ Second Map - Netscape _[&x
File Edt Yiew Go Bookmatks Tools ‘Window Help

{ - &' i \a §§ I%http#./‘\oca\hosl."cgirb\n.fmapsew?img.x=259&\mg.y=288&200mdir=1&zoomsize=2&Iayer=u|bana|eas&Iayer=\akes&layer=states&\mgxy=320+240&\m;j @
Back Forward Reload Stop

FemRTE

Cando

Leipzig
Fessenden hronen Hlbmng
Bizmarck Seant __
Fergys Falls Ir"u X t
Ipswich Rhinelander) BTV

Dauwson Ea éhton
Pierre Huron -
City AMBErLON pocpe st =
vi ——3 " Ticon Eeifresh
inner memna Budaln
Baszett k - Ttk Albar 7,
et B te il
lnlir:eh WorFalk .’ Wellsboro Dover
|0shkost Saint Paul Onaha " Meficer: Miltari Sy * Size |2
Lmperial Geneva Raarmg Spmng Pennyington
Snith Center -saint@loseph Snpy 1 i Pan ©
urlirgton TR _

Hays Salina Dlathe

Girden City Mewton Calan -
pshland Winpield " |20 JadTsonii e W Urban Areas

HEp=ho P - % -
Hernessey asane Pocahontis o e ELRLR Elizaked, City ¥ Lakes

Shamrpck. . Norman Dardanelle Coufngton el Sy Farin] b, W State Boundaries

Sulphur ot Springs e i M Reoads

ales
1dad
S15ton Hollid Deporty Canden

Bhe Robis Irving fyertille
Fobert Lee Corsicana

Big Lake Temple Growveton 7
thon Junctiong i Valler
San AAtONio Teyas
EagleyPass Port Lesta

lay

Berea

Hart ley

o
1ty Hcald

Riihe Ca
Ll

Dore ‘ @E 4

Figure 3-5. The Midwest and eastern United States as rendered by the second mapping application

If the first two applications executed correctly, the only possible sources of error are typos
in the mapfile, HTML template, or initialization file—or perhaps a compilation error. If you
haven’t configured MapServer build to produce GIF images, it will fail.

In the next chapter, I'll address some of the shortcomings of this map, and show you ways
to make it more useful and attractive. The changes, however warranted, will be mostly cosmetic—
the hard work of getting a functioning, interactive map up and running has been done.

Summary

In this chapter, you've explored the mapfile in some detail and built an application that can
actually convey geographic information. You've learned how to classify features using string
comparisons and regular expressions. You've also learned to label features with attribute infor-
mation using the keyword LABELITEM. But perhaps what’s most important is that you’ve learned
how to build an interactive mapping application. This is a big step. Static digital maps in various
formats are available that can be used for the presentation of geographic information (for example,
Microsoft Map, which comes packaged with Microsoft Office)—but however elegant or easy-to-
use these maps are, the important applications (now and in the future) are all interactive.

CHAPTER 3 CREATING THE MAPPING APPLICATION

Having climbed the hill, it's now time to climb the mountain. The next chapter explores the
aesthetic judgments you must make and the methods MapServer provides for you to implement
those judgments. Some new concepts will be introduced, but you’ll mainly gain experience at
manipulating color, shape, and size to produce pleasing images. This hardly seems like map
making at all, but then again, many of the difficult problems with map making (within the
limits of available technology) are aesthetic.

The image of cartographer as surveyor—with transit over his shoulder and trusty rod man
at his side taking the measure of the earth—is focused on the conceptually simple task of data
gathering. Of course, this has always been time consuming, expensive, and arduous—freezing
in the winter, eaten alive by flies (or worse) in the summer. But this job, however unpleasant, is
bounded. A position is a position, and once you have it, you're done. The map maker, on the
other hand, is always tempted to wring the next quantum of aesthetic value out of the current
data, to change this line or that color. Creating beautiful maps is addictive, and MapServer
makes it very easy to practice this addiction.

Code Listings

In the previous sections of this chapter, the code for this application was presented in fragments.
While this is a convenient format for performing a line-by-line analysis, it's cumbersome if
you're trying to type the code (or even read it). The mapfile, initialization file, and HTML
template are presented here, without interruption.

Listing 3-1. The mapfile second.map

001 # This is our second map file

002 NAME "second"

003 UNITS dd

004 SIZE 640 480

005 IMAGECOLOR 255 255 255

006 IMAGETYPE gif

007 SHAPEPATH "/home/mapdata/"

008 EXTENT -180.00 0.00 -60.00 90.00

009 FONTSET "/var/www/htdocs/fontset.txt"

010 WEB

011 TEMPLATE "/var/www/htdocs/second.html"”
012 IMAGEPATH "/var/www/htdocs/tmp/"
013 IMAGEURL "/tmp/"

014 END

015 LAYER

016 NAME "urbanareas"

017 DATA "urbanap020"

018 STATUS on

019 TYPE polygon

020 LABELCACHE on

021 LABELITEM 'NAME'

51

52

CHAPTER 3

022
023
024
025
026
027
028
029
030
031
032

033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055

056
057
058
059
060
061
062
063
064
065
066

CLASS
NAME "Urban Areas"
STYLE
COLOR 212 192 100
END
LABEL
COLOR 0 0 O
SIZE small
END # label
END # class Urban Areas
END # layer urbanareas

LAYER
NAME "lakes"
DATA "hydrogp020"
STATUS on
TYPE polygon
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "FEATURE"
MAXFEATURES 100
CLASS
NAME "Lakes"
EXPRESSION 'Lake'
STYLE
SIZE 1
COLOR 0 0 255
END
LABEL
MINFEATURESIZE auto
COLOR 0 0 O
SIZE small
END # label
END # class Lakes
END # layer lakes

LAYER
NAME "states"
DATA "statesp020"
STATUS on
TYPE polygon
LABELCACHE on
CLASS
STYLE
OUTLINECOLOR 000
END
END # class

CREATING THE MAPPING APPLICATION

067

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089

CHAPTER 3 CREATING THE MAPPING APPLICATION

END # layer states

LAYER
NAME "roads"
DATA "roadtrlo20"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "FEATURE"
CLASS
NAME "Principal Highway"
EXPRESSION /Principal Highway*/
STYLE
SIZE 1
COLOR 00 O
END
LABEL
COLOR 00 O
SIZE small
END # label
END # class Principal Highway
END # layer roads
END # mapfile

Listing 3-2. The HTML initialization file second_i.html

001
002
003
004
005
006
007
008
009
010
011
012
013

<html>
<head> <title>MapServer Second Map</title></head>
<body>
<form method=POST action="/cgi-bin/mapserv">
<input type="submit" value="Click to initialize">
<input type="hidden" name="program" value="/cgi-bin/mapserv">
<input type="hidden" name="map" value="/home/mapdata/second.map">
<input type="hidden" name=zoomsize size=2 value=2>
<input type="hidden" name="layers"
value="urbanareas lakes states roads capitals">
</form>
</body>
</html>

Listing 3-3. The HTML template second.html

001
002
003
004
005

<html>
<head><title>Second Map</title></head>
<body>
<form name="the_ form" method=GET action="[program]">
<table width="100%">

53

54

CHAPTER 3 CREATING THE MAPPING APPLICATION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

<tr>
<td width="60%">
<input name="img" type="image" src="[img]"
width=640 height=480 border=2></td>
<td width="40%" align="left">
<table border="1" width="300">
<tr><td align="center" colspan="3">
<input type="submit" value="Refresh"></td></tr>
<tr><td align="center" colspan="3">Zoom</td></tr>
<tr><td align="right" width="100">Zoom In
<input type=radio name=zoomdir value=1
[zoomdir 1 _check]></td>
<td align="right" width="100">Zoom Out
<input type=radio name=zoomdir value=-1
[zoomdir -1 check]></td>
<td align="right" width="100">Size
<input type=text name=zoomsize size=2
value=[zoomsize]></td></tr>
<tr><td align="center" colspan="3">Pan
<input type=radio name=zoomdir
value=0 [zoomdir 0 check]></td></tr>
</table>
<hr size="1">
<table>
<tr><td colspan="3">

<input type="checkbox" name="layer" value="urbanareas

[urbanareas check]>Urban Areas</td></tr>
<tr><td colspan="3"><input type="checkbox"
name="layer" value="lakes"
[lakes check]>Lakes</td></tr>
<tr><td colspan="3"><input type="checkbox"
name="layer" value="states"
[states check]>State Boundaries</td></tr>
<tr><td colspan="3"><input type="checkbox"
name="layer" value="roads"
[roads check]>Roads</td></tr>
</table>
</td>
</tr>
</table>
<input type="hidden" name="imgxy" value="320 240">
<input type="hidden" name="imgext" value="[mapext]">
<input type="hidden" name="map" value="[map]">
<input type="hidden" name="program" value="[program]">
</form>
</body>
</html>

CHAPTER 4

Modifying a Map’s
Look and Feel

Since amap’s primary purpose is, after all, to present information effectively, a map should
be visually attractive. Despite the presence of interactive features like zoom, pan, and layer
selection, the map you created in Chapter 3 has a number of serious defects. The major
problem is the amount of information crammed into that one image. Huge amounts of spatial
information can be compressed into any map, but beyond a certain point, that information is
no longer retrievable because the map is too busy. On the other hand, a very sparse map is
unwieldy because displaying a low information density requires increasing the physical size of
the map. As a creator of maps and a user of MapServer, your goal will be to present enough
information on a map so that the viewer is neither inconvenienced nor confused.

Figure 4-1 shows the initial view of the second map. The first thing you’ll notice is that all
its features and labels are rendered in the same font and color. There are vague indications of
state boundaries beneath the rat’s nest of overlapping highways and labels, but the density of
graphic detail is so high in the east that no individual features can be discerned at all.

55

56 CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

@ Second Map - Netscape _[&lx ‘
¥ File Edit “iew Go Bookmarks Tools ‘Window Help
L N B | T Eyreeere— b @
Back Forvward Reload Stop I 4 J

G |

Refrach |

Zoom

ZoomIn € ‘Zoom Ot O ‘ Size |2
Pan
dglte 1
Stat
[Urban Areas
State
¥ Lakes
US Route &0, TE%E
§ ¥l State Boundaries
Us Rotte za1 US Ribe 27 ¥ Roads
State Fowfe 56
State Fute 11 ——

e ~2 | Done FE'E y

Figure 4-1. The second mapping application produces a very busy map.

Reduce the detail by deselecting the Roads layer (uncheck the check box labeled Roads and
click Refresh). A faint dusting of urban areas should appear, as shown in Figure 4-2—however,
identification is impossible, since the names, being so much larger than the areas they label,
are difficult to associate with those areas. Notice also that although the Lakes layer is still being
rendered, there don’t appear to be any lakes located in the entire continental United States.
You might, however, depending on the resolution of your computer monitor, see what appears
to be a lake somewhere close to Puerto Rico.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL 57

) Second Map - Netscape S S .
v Ele Edit %ew Go Boockmaks Tools ‘Window Help
i - & - \3 ‘§§ |& http.f.f\ucalhuslfcg\-bln/mapssrv?zUUmslze:Z&ZDDmdlr:El&\aysr:ulbanaleas&\aysr:\akes&\ayer:sIaIes&\mgxy:320+24tl&\mgsxlz-'\SU.UUUUUU+U.U[j @
Back Forward Reload Stop
fye|
Refresh |
Zoom
ZoomIn € |Zoom Out © | Size |2
Pan @
¥ Urban Areas
¥ Lakes
¥ State Boundaries
[Foads
Hafictwlu
R o
S 2 | Done | i

Figure 4-2. The map without the road network is more readable, but its utility is reduced.

Reselect all layers and zoom in by a factor of two. Pan across so that Chicago is roughly in
the center of the screen. You can see that the confusion still isn’t reduced, as shown in Figure 4-3.
Zoom in several more times and lakes begin to appear. The map should look better, as it does
in Figure 4-4—however, you should also notice that the labels on the Road layer are littered
about, obstructing your view of urban areas and lakes. So far, the road, city, and lake labels all
look the same—in the mass of detail, it’s almost impossible to draw any conclusions about the
geographic relationships between the rendered features.

58 CHAPTER 4

MODIFYING A MAP’S LOOK AND FEEL

File Edit “iew Go Bookmarks Toolz ‘window Help

M E|

2. .3

Back Farward Reload

Stop

‘gg I % hitp: Alocalhost/ogi-bin/mapsery timg. x=4908img.y=257 kzaomdir=1&z0omsize=28laper=urban. |ak ek

oadshingup=

Business US Rout®

e

v

‘E{l:

Pefresh |

Zootn

ZoomIn @

Size |2

Zoom Out © |

Pan 7

F Urban Areas

[Lakes

¥ State Boundaries
¥ Roads

sHe \ Done

Figure 4-3. Increasing the map scale by a factor of two does little to improve readability.

) Second Map - Netscape

Edit Go window

B File View Bookmarks Took Help

CHAPTER 4

MODIFYING A MAP’S LOOK AND FEEL 59

CE

i - ’Qﬁ = \3 ‘§§ I é http: ¢ Alocalhost/cgi-bin/mapsery Yimg.x=613&img.y=17 2kzoomsize=2kzoomdir=08 aper=urban,

oadskimgey=: j @

Back Foreard Reload Stop
&
pie T STatE FE T3 s ove s 10 [Us Rt 9
[tate Route 9o e Bhute 19 oo Tond)
tate Route & a Roufie 151 USSR
gtate Route 35 s US, Redigy 41
b 1#55Us Route 61 L Strebgugan
Us Rombe 151 State RH
US Rogte 12 “8tateRoute 26
i . State Rbute
- Business'¢#
Stter.s? 1 Sfate Rpute
Statg Rhute 32 ROUTE 2L gelte phute B —
bepgfite T % ey
L Statd Faute 4o Howel
i m\ 3 tate Rhute 37 M50 Zoom
. DLEE 45 o | - | ;
US Rohbe 505 \ ZoomIn Zoom Out Size |2
StafeReoute S @
e Pan
o v Ssencs E’ F Urban Areas
i U3 R ¥ Lakes
stafe dpige I State Boundaries
ps
i M Roads
.
Us Rol Stake]
Statd Phuie U5 Raute 150, /5
State Roifile ek R
ate Routl 106 - . X w
at s Raut = s
us Rojte &7 & eden State Hopkd
5 Royte B1 Staive Rite 27 snfte Rjute 130
ul = Rodte =1 Lo Db, AT
| Fo=la

5 2 | Done

Figure 4-4. Further scale increases reduce feature density, but make identification difficult due to

the abundance of undifferentiated labels.

If you continue to zoom in, you'll reach a point at which the map becomes less confusing:
features are well separated—both from one another and from labels—and it’s possible to see
both the roads and the cities. However, there are still a number of problems. For example, if
you look at Figure 4-5, you can see how to get from Meadville to Hamilton, but you can’t tell
where Meadyville and Hamilton are located in relation to the rest of the country. While local
references are clearer, continental references (the signposts that allow you to relate one place
with another over large distances) are no longer visible. At both ends of the scale youlose—the
small-scale map is too confusing to use and the large-scale map is so sparse that you lose context.

Also, label orientation problems make it difficult to see which labels refer to which roads.
For example, although Meadville and Hamilton are both on US Route 36, they could easily be

mistaken for being on US Route 65.

60 CHAPTER 4

File Edit View Go Bookmarks

MODIFYING A MAP’S LOOK AND FEEL

Toolz Window Help

=[5

) Second Map - Netscape

Back Fomnward Relnad

i - @“ A \3 ‘gg){ hitp: #Alocathost/cgi-bin/mapsery ?img. x=236%mg. y=23%zoomsize=28zoomdir=0& aper=urban: |
< &
top

oadshimgey= j @

|

Gallatin
Mayswille

US Raopte 63

Lathrop

ExcelsiorSprings

Richmond
Likerty

tone D

LSRons

Us Rogte 65
Trentgn

Jamesport.
Uz Rogte 63

v
Brabmer US Rogte 65 '

US_Route 24, US Route 63

Hardin
Slater

LS Bojte £5

Glazgow

Ethel

Fayette

Refresh |

Zoom

ZoomIn © |Zoom Cut O |

Pan

Size |2

F Urban Areas
7l Lakes

¥ State Boundaties

M Roads

i \ Done

Figure 4-5. Reduced feature density at large scales removes context and leads to confusion.

=l

The optimum information density for any map depends on several factors: the type of
information you're trying to represent, the spatial distribution of this information, and the
graphical design of the map. You have little, if any, control over information type and distribution—
whether you need to create a road map or want to show monthly precipitation over an extended
area, you're stuck with the spatial data sets that you have. Each type of map possesses different
design requirements and constraints. Nevertheless, effective graphic design (over which you
have major control) is critical in creating a useful map, no matter what the map represents.

The process of creating a map, whether digital or paper, is not quantitative. You must
guide your progress by eye and make your own determinations. Nonetheless, making maps is
more craft than art. An eye for graphic design is useful but not an absolute requirement—maps
are working documents that have a job to do—so a technical understanding of the underlying
spatial data is the most important qualification.

In this chapter, I'll demonstrate the features of MapServer that allow you to craft beautiful
maps. There are a lot of these features, and the mapfile you'll create will be much larger than
the previous ones. Consequently, this chapter is longer than its predecessors.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

Because of this, the format of this chapter will be somewhat different. The line-by-line
discussion of the code (also available at the Apress website, www.apress.com) will be preceded
by a brief description of MapServer syntax for methods addressing the issues mentioned previ-
ously. Once I've introduced the syntax, I'll move through most of the mapfile in sequence,
skimming quickly or omitting material that has already been covered, but focusing on new
keywords (and new uses for old ones). This chapter isn’t intended to provide encyclopedic
coverage of MapServer. Refer to Chapter 11 for a detailed presentation of mapfile vocabulary
and syntax.

The mapfile for this example is third.map. Some of the features have been presented
before, so I won’t spend much time on those. However, there are many new keywords and
objects that you haven’t yet seen, which will be the focus.

Note Donald Knuth, author of The TeXbook (Addison Wesley, 1986), was perhaps the first computer scientist to
introduce computer technology into the daily graphical design of documents. The markup language he
invented (TeX) allowed anyone with sufficient patience to create “beautiful documents.” These documents
could be books, articles, letters, or even grocery lists, (yes, many years of otherwise productive time have
been spent on the design of beautiful grocery lists). Likewise, with the computer doing the heavy lifting, you
may find that you become consumed by the creation of beautiful maps.

The Graphic Design of Maps

Having described the defects of the second map in some detail, I'll now explain how these
defects relate to the features available in MapServer.

The first issues mentioned in the previous section were the lack of color and the amount
of detail displayed. Second, urban areas were displayed, but their names were unidentifiable;
likewise, although lakes were rendered, they still weren’t visible. Also, there were still too many
labels obscuring features. After zooming in repeatedly, an uncluttered scale was finally reached,
but the displayed extent couldn’t be located in the larger context. Additionally, highway labels
weren't aligned with the features, making it difficult to identify road names. These defects can
be categorized in the following way:

Inappropriate labels. By rendering labels in different colors and fonts, you can give the
viewer some cues to help distinguish, for example, labels for highways from labels for
towns. By orienting labels appropriately for specific features (e.g., highway names drawn
parallel to the road), you provide further cues for understanding which labels are associ-
ated with which features. Figure 4-6 shows the region around Kansas City as produced by
the mapping application from Chapter 3. Figure 4-7 shows what the same region looks like
when rendered by the application in this chapter. In the new map, the label for each class
differs from the labels of the other classes. As you can see, urban areas have been given
more prominent labels than small cities, and interstate highway labels are more prominent
than those for other highways and roads. Notice also that the labels for urban areas and
small cities look different from the labels for road features.

61

62 CHAPTER 4

MODIFYING A MAP’S LOOK AND FEEL

File Edit Miew Go Bookmarks Tools ‘window Help
i - ’Q" = \3 '§§v I Jif}. hitp: #localhostcgibin/mapsery fimg. x=320%img y=2468z00msize=2zoomdi=0%layer=ubary J |ak |
Back Forward Reload Stop

Mound: City

US Rogte 71

US Rogte 71

U5 Rogte 71

US Rouke 169

Lathrop

US Rouke 189
US Route 169 ExcelsioP-Springs

Likerty

Gallatin

Richmond

Oclezsa

James)

Eraty

Hardlil

e 24

Refresh |

Zoom

ZoomnTn O ‘Zoom Tt O ‘

Size |2

Fan @

¥ Urban Areas

¥ Lakes

¥ State Boundaries
M Roads

S o2 | Done \

=l

Figure 4-6. The failure to use easily distinguishable class labels endows all features with the same graphical
importance.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL 63
@) Third Map - Netscape MmEE|
v_ File Edt “iew Go Bookmarks Tools ‘window Help
P d‘ < ';' \a § hitp://localhost/cgi-bin/mapsery Timg, x=3224img.y=2588z00mdir=08zoomsize=28aper=urban lak esd oadsimguy= | ¥ N
i Back Fomward Reload Stop I& P g P d v ¥ s J Q
=

city

§
10

G

k3 " s,
-

0 4 8 12 168 20 mi

Map scale: 1:.922799 671875

Click xy 94551759, 39 477537

Mlap Extent: -D5 480230 38 774412 03 614250 40 120662

Legend Navigation Layers

* Small Cities & Pan I Urban Areas
NThmugh Hwy C ZoomIn | Lakes
Principal Hwy C Zoomout | State
M |nterstate Hwy IQ—SIZE Eoundaties

A state Line Befresh | ¥ Roads

g | Done

[-l

Figure 4-7. Effective labeling makes clear the relative importance of different features.

Inappropriate detail. At some scales, some information doesn’t matter. For instance,
rendering every urban area and highway when displaying the entire country is pointless.
The urban areas would be unidentifiable and the highways so tightly packed together that
they couldn’t be distinguished from another. By selectively displaying different layers at
different map scales, the clutter can be reduced and only information relevant to that scale
presented. Figure 4-8 presents a smaller-scale view of the area around Kansas City. The
map is dominated by roads and road labels. Rendering the roads while suppressing most
of the labels (as shown in Figure 4-9) greatly enhances the readability of the map.

64

CHAPTER 4

Second Map - Netscape

MODIFYING A MAP’S LOOK AND FEEL

US Route &1

aﬁ{&biﬁﬁ

|
= Edit “iew Go Bookmarks Took 'Window Help
i - %“ - \3 ‘ggv I %. hitp: /flacalhost/cgirbin/mapseryimg. =1 40%img. y=22dkzoomdir=1kzoomsize=2klaper=urban: | |akeshl; oadsking: u:j @
Back Forward Reload Stop
IS Koo
Raufte & Ug Rofté 75 1S Rofte 59 US Rouke 169 C‘U)f,:ax 1S Podts 23 R T
Us Royte &1 US Rogte 59, U3 Rouke 1651

£ (163

Us Royte 65 ° s Rodte 53

IS Rojte 55 US Ro w F
U5 Rpete34 DERoIEE 74

State Rod
.
Rotte 24 Us Rodte 54 US Rogtey
US Royte &5
FIE Rakke &
Us Rob
i
4 Uashingt|
U5 RobE—50
Us Ronte—&
US Royte 83
Us Ropte 63
ess LS Route 60
Us Rofte & HS” Rl

Fiefresh |

Zoom

ZoomIn @

Zoom Cut © |

Pan ©

Size IE

[Urban Areas

[Lakes

¥ State Boundaries
[# Roads

5% 2 | Done

| -

Figure 4-8. Sometimes less really is more. A comprehensive document can impede the transfer of informa-
tion by obscuring the distinctions that form its basis.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL 65
& rd Map - Hetscape 5] x ,
| Ele Edit ¥ew Go Bookmarks Tools MWindow Help
i hd ’&“ o \a f@ Z%. httpe/localhost/cgi-bing 7 dir=-14% =2blayer=urh I lakest | st = 3204240k t=-96.4| = @
= - el S I& p://localhost/cgi-bin/mapsery ?zoomdir=-1&zoomsize=24layer=urban oadskimgsy: I+ imge:! J
bz |
—~— = i, 7]
[==
Dés Moines_i-s ‘!— == o
Omara L] 3 a s »‘?I\
[P — :
P Nebraska o -
e — Lincolne==r . L e =
|
L _—— i) -
I | llinoi
. -
"\;ﬁ F'F—a?& e Mlap scale: 1:3691198 627500
Tope kagp=Oxverand:Pa fide pendence Clickxy: -D4551759, 30477537
) 0 - Mlap Extent: -98 301759 36 665037 -90 801759 42 200037
i
- K Missouri 4)
S ansa Stai 7 i‘ JeflersomGity Legend Navigation Layers
Lake of ks
* Cities
T o ; C Pan ¥ Urban Areas
’1_| %5 Sb ki Lake P EEDEEAED © Zoomln | W Lakes
- |y = NMEJGIT Cities & ZoomOu |F State
| ! L - Springfield Principal Hwy |2 Size Bemmdtes
S A = \merma.leHwy Refresh ¥ Roads
~ / J{(E)_klahlI:!r,!‘Ii!L‘:g._a ¥ 0 18 36 54 72 90 mi State Line
S S | Done WE 4

Figure 4-9. Suppressing detail can enhance the information content.

Absence of graphical distinction between features. While a road may be a road, not all high-
ways are the same. Different types of roadways should be distinguished from one another.
In fact, features whose attributes differ in any significant way should be distinguished
graphically. Figures 4-8 and 4-9 (just shown) also demonstrate the effectiveness of using
different symbols to render different classes of features.

Absence of signposts. It’s important that viewers know where they are no matter what the
scale of the map—but if you include too much large-scale information in your map, clarity
will be reduced. Giving the viewer a reference outside the map can provide this large-scale
detail without cluttering the map itself. Notice the reference map in Figure 4-9. This clearly
places the displayed extent of the main map within a continental context.

Fixing the first three defects takes judgment and an eye for simplicity. Providing signposts

requires only the knowledge of the techniques used to create legends, scale bars, and reference
maps. These elements can increase the utility of a good map, but they can’t fix one that’s too
busy or too sparse.

These things are as true for paper maps as they are for digital ones. However, the constraints

on paper maps are of a different nature. A paper map’s size can be made large to accommodate
more detail—that is, the map maker can decide that the physical size of the paper must be
increased. A road map, for instance, will contain roads, cities, and water features for an extended

66

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

area. Features must be labeled, of course, and a legend provided to define the various symbols
used. Since an important concern of any road map user is distance, a scale bar is required to
allow estimation of distances. Each of these elements takes up space. In addition, space must
be inserted between graphical elements to maintain readability. So the paper map maker is
faced with deciding between increasing the paper size (making the map more unwieldy) and
reducing the size (making the map more difficult to read).

Note For some maps, cartographers don’t have the luxury of limiting detail. Maps of this type must be
unwieldy to be usable. Aeronautical charts are an example of this kind of map—opilots need the detail not only
to plot a course home, but also to avoid obstacles and identify landmarks. Of course, this requires that every
pilot learn the art of map folding while controlling a hurtling piece of machinery thousands of feet above
the ground.

On the other hand, the size of a digital map (viewed on a computer screen) is fixed by the
size of the screen. This means that the map maker must work to provide the appropriate amount of
detail at every scale, so that users aren’t overwhelmed as they zoom in and out. Selecting which
features to render will always be a concern of the digital map maker since there’s always more
information than there is space to draw it.

The rest of this chapter will be spent looking at ways to address the balance between too
much and too little, using the tools provided by MapServer. I'll also cover the use of scale bars,
legends, and reference maps.

In the downloadable distribution from the Apress site, the code for this chapter can be
found in three files: third.map, third_i.html, and third.html.If you haven’t downloaded these
files, it would be a good idea to do it now, because they’re considerably longer that the previous
code examples. However, for purposes of reference, code listings for these three files are provided
at the end of the chapter.

Labeling for Clarity

A LABEL object begins with the keyword LABEL and is terminated by the keyword END. It’s contained
ina CLASS object and it labels the features in that class. (A LABEL object can also be contained in
a LEGEND object or a SCALEBAR object. The syntax is almost the same, but I'll discuss this separately
when we get to signposts.) A label has several characteristics, including font, color, orientation,
position, and size.

Fonts

You can choose to use TrueType fonts or MapServer’s built-in bitmapped fonts. The bitmapped
fonts are always available and need no external resources, but they limit the use of some other
features. TrueType fonts require external resources but allow you to manipulate the label in
several useful ways. A comparison of bitmapped and TrueType fonts is shown in Figure 4-10.
You must identify to MapServer whether you're using bitmapped or TrueType fonts, which is
done with the keyword TYPE. Setting TYPE bitmap selects bitmapped fonts and TYPE truetype

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

selects TrueType fonts. If you omit the TYPE keyword, MapServer will default to bitmapped
fonts. If you choose to use TrueType fonts, then it's necessary to identify the actual font that
will be used (in this book’s examples, they’re all variations of Arial). By setting the keyword FONT
to arial, you let MapServer know that the font pointed to by the string "arial" in the FONTSET
file is to be used for this label. Font size is specified differently for bitmapped fonts than for
TrueType fonts. When the TYPE is truetype, the numerical values assigned to the keyword SIZE
represent point size. Bitmapped fonts set SIZE to one of five values: tiny, small, medium, large,
or giant.

Bitmapped ting
Bitmapped =mall
Bitnapped nediun
Bitmapped large
Bitmapped giant

T R e T O Bial
Truetype 12pt arial
Truetype 14pt arial
Truetype 16pt arial

Truety pe 8pt arial bold
Truetype 10pt arial bold
Truetype 12pt arial bold
Truetype 14pt arial bold
Truetype 16pt arial bold

Figure 4-10. Bitmapped fonts are always available but have limited range; TrueType fonts are site
dependent but provide much more flexibility.

Color

MapsServer provides several keywords relating to the color of a label. The value of the keyword
COLOR determines the RGB color of the label text itself. However, a 1-pixel-wide outline can be
drawn around the text with the value OUTLINECOLOR. This makes the label easier to read against
a busy background.

Orientation

In the maps generated by the application developed in Chapter 3, all labels had the same
orientation—they were parallel to the bottom of the map. This is fine for features like lakes
and urban areas, but for roads and rivers (or any other linear feature), it’s preferable for the
labels to run along the features they describe. This requires the use of TrueType fonts, since it
isn’t possible to change the orientation of labels created with bitmapped fonts. The keyword
ANGLE can be used to specify the angle at which all the labels in a class are drawn (see Figure 4-11).
A positive angle rotates the label the specified number of degrees counterclockwise, while a
negative angle rotates it clockwise. For line layers only, the value auto is also available. If auto

67

68 CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

is specified, then MapServer will calculate the correct angle to make the label run along the line
feature.

Sg .16\
" Ay, ‘,;G\g'
M"‘r‘g{ (081 TSNV e ﬂﬁt'r\

E“«?s; git”

(081 T1oNY) EuczUoy Horizontal (ANGLE auto)
=
3 i
S 5 0%
& 8 :
< = Y
= = L=
¥ & o)
¥ ue S
& 2 %,
[=]

Figure 4-11. Specifying label orientation directly is sometimes useful, but letting MapServer
choose based on feature geometry is usually more effective.

Positioning Labels

The placement of a label with respect to the feature that it labels is governed by the value of the
keyword POSITION. Figure 4-12 shows the valid label positions and the associated keyword
values. Across the upper part of the square, there are three positions: left, center, and right.
Down the side of the square there are also three positions: upper, center, and lower. Each
combination of vertical and horizontal position is labeled with the appropriate letters: ul for
upper-left, cc for center-center (at the middle of the square), 1r for lower-right, etc. Labels for
aline layer can only be positioned at 1c or uc, while point and polygon layers can take any of
the eight outside locations on the square. MapServer can also be directed to select a position
automatically, so that the label doesn’t interfere with others. Not surprisingly, the value for this
option is auto.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

ul uc ur
cl cc cr
Il Ic Ir

Figure 4-12. Explicit label positioning is another capability that can be useful in some circum-
stances, but it’s usually better left to MapServer.

Although MapServer determines where labels are drawn, it possesses no aesthetic sense.
It will draw as many labels as it can find room for. This can lead to situations in which a single
feature with a large extent (like a highway) may have multiple labels. If the labels are sufficiently
far apart, this doesn’t lead to problems. When they’re too close together, however, you’'ll want
to limit the number of labels that are drawn for the same feature. To do this, you can use the
keyword MINDISTANCE to specify the number of pixels between duplicate labels.

On the other hand, some features may be so small (such as a small lake at large scale) that
the size of the label will dwarf the feature. The keyword MINFEATURESIZE sets the size (in pixels)
of the smallest feature that will be labeled.

Assigning Font Attributes to Labels

Lines 180 through 190 define a LABEL object for alayer that renderslakes. In Line 181, the keyword
TYPE is assigned the value truetype. This indicates to MapServer that the label text is to be rendered
using TrueType fonts. In Line 182, the keyword FONT is assigned the value arial. This font will
be used to draw the text. Recall that "arial" is an alias for the actual path to the appropriate
font file. The file FONTSET. txt defines the mapping from alias to font file. Previously, TYPE bitmap
was specified. Bitmapped fonts are simpler to use than TrueType fonts, but lack some of the
aesthetic possibilities. Bitmapped fonts have fixed sizes while TrueType fonts can be scaled to
any font size (specified in “points”). Thus, in Line 183, the size of the label is set to 8 points. In
addition, TrueType fonts can be rotated. This means that ifaroad, for example, is heading from
the southeast to the northwest, a TrueType label can be aligned parallel to the road. This is a
much neater look than the bitmapped option, in which labels can only be drawn parallel to the
bottom of the map.

69

70

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

180 LABEL

181 TYPE truetype

182 FONT "arial"

183 SIZE 8

184 OUTLINECOLOR 255 255 255
185 COLOR 0 0 O

186 MINDISTANCE 100

187 POSITION 1r

188 MINFEATURESIZE auto
189 WRAP '

190 END

Line 184 specifies an OUTLINECOLOR value of 255 255 255 (white). This value is used as the
color to draw a 1-pixel-wide border around the text. This is useful for making the label stand
out against a busy background. The keyword COLOR specifies the color with which the label
itself is to be drawn.

Line 186 specifies the minimum distance in pixels between duplicate labels (i.e., labels for
the same feature). By setting the keyword MINDISTANCE to a larger value, more space is provided
between labels, making the map easier to read.

Positioning Labels

The keyword POSITION in Line 187 determines where the label will be placed with respect to
the feature being labeled. If the value is set to auto, then MapServer draws the label where it
won’t interfere with other labels. Usually, a label is drawn only if a position can be found that
doesn’t interfere with other labels. However, if the keyword FORCE is set to true, then the label
is drawn regardless of other labels. If the keyword MINFEATURESIZE is set to auto, MapServer
will only draw labels that are smaller than their features (but any integer value can be specified to
override this behavior).

Wrapping Labels

The keyword WRAP specifies a character that will cause the label text to wrap to a new line. In
this case, a space has been specified. This is done to produce multiline labels, which can be
useful if the label text is long.

Caching Labels

The label cache is an important capability. By default, MapServer caches the labels for all the
layers and renders them once all the layers have been drawn.

The keyword LABELCACHE in Line 170 isn’t part of the label itself—it tells MapServer to cache
all the labels for layers that specify LABELCACHE on, and to render all the labels at the same time.
This allows MapServer to ensure that labels don’t interfere with one another, and also to select
an appropriate position for them. Label caching can be turned off for a particular layer by
specifying LABELCACHE off. Also note that POSITION auto and MINFEATURESIZE auto are only
available for cached labels.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

Adding Label Text

The actual label text is usually found in the attribute table associated with the shapefile. The
attribute to use is specified using the keyword LABELITEM. The value associated with LABELITEM
must be the attribute name. In this case, the attribute name is "NAME". It’s also possible to
define a text string at the class level that will be used as a label. I'll discuss this feature later in
the section.

Labels for the layer interstate1 are defined in Lines 215 through 225. Line 223 contains the
keyword ANGLE. The value of ANGLE, given in degrees, is the angle that the label will make with the
bottom edge of the map. For example, ANGLE 45 would draw labels that are rotated 45 degrees
counterclockwise. Setting ANGLE auto lets MapServer choose the orientation (for line features,
this is parallel to the feature).

215 LABEL

216 TYPE truetype

217 FONT "arial"

218 SIZE 8

219 OUTLINECOLOR 255 255 255
220 COLOR 0 0 O

221 MINDISTANCE 200
222 POSITION auto

223 ANGLE auto

224 MINFEATURESIZE 50
225 END

Sometimes you need more flexibility in the selection of label text than the LABELITEM keyword
provides. The keyword TEXT provides this flexibility by allowing label text to be taken from multiple
sources, including constant strings and multiple attribute values. The values associated with
TEXT can be of two types. The first is a quote- or parenthesis-delimited string constant. This
string constant is used to label every feature in the class. The second type is more complicated—
the value is delimited by parentheses, but instead of containing merely a string constant, the
parentheses contain references to attribute names as well. The attribute names are delimited
by square brackets, and the string constants are inserted between the delimited attribute names.

Line 253 contains the class-level keyword TEXT. It's commented so that MapServer ignores
it, but it can be useful for exploring the contents of an attribute. In this case, the label text will
be taken from the attributes specified. The attribute values for each feature will be concatenated,
along with any string constants, and used to label the feature. The keyword WRAP can be used
with these kinds of labels in exactly the same way as noted previously.

253 # TEXT ([FEATURE], [NAME])

There are anumber of other LABEL keywords that haven’t been discussed yet, but they’ll be
explained in detail in Chapter 11.

Using Scale to Reduce Clutter

On a paper map, features must be rendered without regard to scale. However, with digital
maps, you have the flexibility of rendering maps based on scale. At large scales, most maps
suppress features that the cartographer considers insignificant. These features might include

!

72

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

villages, local roads, or small lakes. At small scales, it usually doesn’t make sense to omit features—
a major highway between A and B is likely to be important whether the map scale is large or
small. In addition to including or omitting features based on map scale, you can change the
symbols used for drawing particular features, change the size and color of the symbols, and
even omit or substitute entire layers.

The layer-level keyword MAXSCALE sets the maximum scale at which a layer will be rendered.
Similarly, the keyword LABELMAXSCALE sets the maximum scale at which labels will be rendered.
The values of these two keywords don’t have to be the same, and probably shouldn’t be. To
understand why, consider what happens as the scale of a map increases. A viewer might like to
see highway names at small scale, but beyond a certain point, the names become too large and
merely clutter the map. However, you'll still want to draw the highways at a large scale, since
they show how different places are connected (which is more significant than their names).

Corresponding to the maximum scale keywords are the minimum scale keywords MINSCALE
and LABELMINSCALE.

Note Scale plays such an important role in the aesthetic development of a mapping application that you
should always print the map scale (using the substitution string [scale]) on the web page. This allows you
to tune the scale break points to fit the data you have. If the numerical scale isn’t a technical requirement of
the application, it can always be omitted when the application goes into production. Map scale is displayed
on the map shown in Figure 4-9.

MAXSCALE and MINSCALE are used at several points in the mapfile. In the layer named
urbanareas, MAXSCALE is set to 1999999. Towards the end of the mapfile, in the largecities layer,
MINSCALE is set to 2000000. When the map is rendered at a large scale, cities will then be rendered
as points. At smaller scales, when the representative fraction drops below 1:2,000,000, urban
area polygons will be drawn instead.

460 LAYER

461 NAME "largecities”

462 DATA "citiesx020"

463 STATUS default

464 TYPE point

465 LABELCACHE on

466 LABELITEM "NAME"

467 MINSCALE 2000000

468 CLASS

469 EXPRESSION(([Pop_2000]>100000)and([Pop_2000]<=1000000))
470 NAME "Cities"

471 STYLE

472 SYMBOL "Circle"

473 SIZE 4

474 COLOR 255 0 0

475 BACKGROUNDCOLOR 255 0 0

476 END

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

477 LABEL

478 TYPE truetype

479 FONT "arialbd"

480 SIZE 8

481 POSITION auto

482 OUTLINECOLOR 255 255 255
483 COLOR 0 0 O

484 END

485 END

486 END

This technique is used again when interstate highways are rendered. There are two inter-
state layers, named interstatel and interstate2. The first is drawn when the scale exceeds
1:7,500,000, as defined in Lines 197 through 227 (a fragment of which is shown in the following
code snippet):

206 MINSCALE 7500001

207 CLASS

208 NAME "Interstate Hwy"

209 EXPRESSION /Limited Access*/
210 STYLE

211 SYMBOL "BiglLine"

212 SIZE 1

213 COLOR 0 0 O

214 END

The second, as described in Lines 232 through 267, is drawn at smaller scales, with the
relevant section shown in the following code:

241 MAXSCALE 7500000

242 CLASS

243 NAME "Interstate Hwy"

244 EXPRESSION /Limited Access*/
245 STYLE

246 SYMBOL "BiglLine"

247 SIZE 3

248 COLOR 0 0 O

249 END

250 OVERLAYSYMBOL "DashedLine"
251 OVERLAYSIZE 1

252 OVERLAYCOLOR 255 255 255

The large-scale rendering uses a 1-pixel-wide black line to render highway segments—
keeping the lines thin when the whole country is displayed reduces clutter. At smaller scales,
however, a more complicated, fatter symbol is used, which employs overlay symbols to render
the interstates so that they’re more distinguishable from the smaller roads that are drawn at
this scale.

Similarly, principal highways are rendered below 1:4,000,000, thru highways below
1:1,000,000, and other roads below 1:500,000. However, keep in mind that these scale values

73

74

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

aren’t magic numbers. They may work well for this application when displayed at a screen
resolution of 1024x768, but they’re not necessarily optimum.

Classifying Features

To MapServer, a layer consists of a group of features, derived from the same data set, that will
be rendered together at the same scale. However, you may not want to draw all the features
contained in a given data set, or you may not wish to draw all the features the same way. For
example, rendering every feature in a data set that contains the entire road network of the
United States would take a considerable amount of time and produce a map that’s too cluttered too
be useful. Similarly, rendering a dirt road with the same symbol used to render interstate high-
ways produces a map that fails to distinguish graphically between features that are, in the real
world, very distinct.

Classes allow you to differentiate between features based on attributes and render features
based on class. The previous maps used classes, since every layer must have at least one class.
The simplest, default class includes every feature in the data set. In this case, the layer has a
single class and every feature in this class is rendered the same way.

However, you'll usually want to avoid using just the default class, and instead choose to
classify your features, for the two reasons mentioned previously: first, you may not wish to
render every feature; and second, you may want to render features that differ in some attribute
with different symbols, colors, or sizes.

Using Expressions to Define Classes

The simplest (and fastest) way to determine class inclusion with MapServer is to use a string
comparison. You use the layer-level keyword CLASSITEM to identify the name of the attribute
that will be used to classify the features. Then, using the class-level keyword EXPRESSION, you
specify the comparison string. It’s good practice to quote the string to ensure that characters
are correctly interpreted. This is shown in the code snippet that follows. The CLASSITEM attribute
of every feature in the data set will be compared with the value of the EXPRESSION string. If the
EXPRESSION string matches the CLASSITEM value identically, that feature will be included in the
class. Although fast and easy to use, this method isn’t very powerful, since the string specified
by EXPRESSION must match the value of the attribute identified by CLASSITEM exactly.

CLASSITEM "NAME"

CLASS
NAME "City"
EXPRESSION "Seattle"

END

If you wish to select features based on more complicated matching criteria (but still use
only the value contained in the feature specified by CLASSITEM), you must use regular expressions.
This, however, is an involved topic and is beyond the scope of this book. Refer to any standard
Unix text or guide (or consult the man pages at www.rt.com/man) for a description of regular
expression syntax. Regular expressions must be delimited by forward slashes (/). As with string

comparisons, the regular expressions specified by the keyword EXPRESSION are compared to the
value of the CLASSITEM attribute, and included in the class if a match is found. The specification

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

of matching criteria by means of regular expressions is very flexible, but it’s still limited to
matching the value of a single attribute. For example, the following code

CLASSITEM "Feature"

CLASS
NAME "interstates"
EXPRESSION /~Limited Access/

END

will select from a data set those features for which the value of the TYPE attribute begins with
the string Limited Access. The need to do this might arise, for example, if road types that are
part of an interstate highway system are identified by strings like Limited Access Highway,
Limited Access Highway Alternate Route, or Limited Access Highway Business Route.
(Remember that the metadata associated with spatial data sets is designed to be readable by
humans, and therefore attribute values are often more complicated than simple alphanumeric
codes.)

Logical expressions allow for more complex classification of features that are based on the
values of one or more attributes. No CLASSITEM need be specified (and in fact, will be ignored if
present). The keyword EXPRESSION introduces the logical expression, which is delimited by
parentheses. The syntax is straightforward: a logical expression consists of an attribute name
enclosed in square brackets, a comparison operator, and a value. Table 4-1 shows the compar-
ison operators available. For example, the following code compares the value of the numeric
attribute POPULATION with the numeric value 100000:

EXPRESSION ([POPULATION] < 100000)

It will include a feature only if the value of its POPULATION attribute is less than 100,000. Like C
and Perl, MapServer uses different operators to compare strings than it does to compare
numbers, and you must take care to observe the difference. If an attribute is string valued, then
its reference must be enclosed in quotes, as must the comparison value. Single or double will
do, as long as they’re properly balanced. Consider the following code:

EXPRESSION ('[STATE_FIPS]' eq 'MN')

This will include a feature only if the value of attribute STATE_FIPS is equal to the string MN.
Logical expressions can be combined using the conjunction and disjunction operators and and
or. Consider also the following example:

EXPRESSION (([POPULATION] < 100000) and ('[STATE_FIPS]' eq 'MN'))

This will match features for which POPULATION is less than 100000 and STATE_FIPS is equal to MN.

Caution Major confusion can arise if a string-valued attribute contains number strings (e.g., "123").Ifa
numeric comparison is made with a string-valued attribute, there will never be a match (123 will never be
equal to "123"), nor will there be an error. Know the data types of your features.

75

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

Gaution The MapServer mapfile reference document has a typographical error—the numeric “not equal”
operator, !=, doesn’t show the bang (!).

Table 4-1. Logical Expression Comparison Operators

Operator Data Type
1= Numeric
= Numeric
> Numeric
< Numeric
>= Numeric
<= Numeric
and Logical
or Logical
eq String

ge String

gt String

le String

1t String

ne String

Note Although a single method must be used to define a class, each class in a layer can use a different
method.

Using Classes

Now that you know how to define a class, let’s look at what this flexibility can do for you in
terms of graphical clarity. First, a layer can contain many classes. Recall that a layer is a
MapServer object that references a single spatial data set and renders that data set at a specific
scale. This means that all the features in a layer will be of the same type (point, line, or polygon,
for example).

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL 77

However, although all the features are the same type, there are still obvious differences—
an interstate highway isn’t the same as a local unpaved road, and a state capital isn’t the same
as village. By classifying the features, you can make MapServer distinguish these features
graphically. For example, interstate highways can be rendered with a fat line and other high-
ways with thinner lines. Or state capitals might be rendered with a large red dot while other
towns are drawn with smaller black dots of sizes that vary according to population. Figure 4-13
shows what happens when you do this. In this example, highways have been rendered four
different ways based on highway type. Figure 4-14 shows a large region of the Midwestern
United States at a larger scale. In this figure, cities are differentiated based on two criteria:
population and whether the city is a state capital. Larger cities are denoted by larger dots and
state capitals by green dots.

&) Third Map - Netscape &= ‘
File Edit “ew Go Bockmaks Tools ‘Window Help
- - ",,é ttp: localhost/cgi-bin/mapsery?zoomdir=-14z00mzize=2 ayer=urban. I oadskimguy=320+, imgext=-34.7 = A
B“k FQQ p F\\Iad Egig % hitpeocalhost/ogibin Pzoomdir=-14; 24 b |k st 320+ 24084 34
__ acl orwar eloa op

b

mwarth Farrehview

Maywood | P Y
‘ !
Ay i,
3]
\ "%f Map scale: 1:307399 200625
Edvwardsvills 1§§§ Clckny: -04572267, 39102537
Lak vl 5 i
Hakdiy Loy (o g e S | Wesinosd s . Mg Extent: -54 834767 33 363162 -04 230767 39336912
| '“f". 2 Wission Wood s
; e Faway” o § S, b Legend Navigation Layers
ontical “Zaran ieVillage q - N
— Loawood \\‘?@9 Ar NI C Pan ¥ Utban Areas
e @l lFiyg C ZoomIn | Lakes
% NTh_mlj'gh Hwy | @ zoomout | Stats
g Principal Hwy 5™ 5y, Bcundanies

4 N
‘&33 Grandview, A Imerma.IeHwy Refresh | ¥ Roads
1 01234 5mi State Line

“ie S | Done | WE 4

Figure 4-13. Using classes to distinguish features of the same type allows the map maker to indicate
graphically things that are perfectly obvious on the ground.

78 CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

() Third Map - Netscape M= E3 ‘
M File Edt Wiew Go Bookmarks Tools “Window Help
i - &“ - \3 ‘gg I % hitp: #/localhastfeai-bindnapsery 7img «=320%ima.v=2524zaomdir=0% z0omsize=Jhlaper=urban I |k I oadsbimgay=: j @
Back Forward Reload Stop
v
s . L ‘ = Tetroit Erie,
lllinois - higan -
Al Southy n\% L 2 - Tole
. Joliet?” - = i B —— | T Clveland
| iGary e T u
. . FortWayne =] ARSI = = =
i - Pennsylva :
l 3 - == = a & e Y o
) e i ‘{! v PriEbumh =t
o = -
it Colum bus‘oh I“% . = =
Indianapoljs; IDayton. Co.lumbus: = &
£ bl .
b= il (Y = i
o Gincinnati e T 5
. . - = E West Virgifiia
- .
g Lo uisvill: Frankforl = Gha'ﬂe!.!n;_ne
P g Map soale: 14983112.228125
L ae';,I_(ent cky™, yomREES Clickxy: 84452930, 32 596875
) b b =3 ha ap Extent: -89 515430 34.800000 -79.390430 42393750
T Virdini] PR
3 IRging Legend Nawvigation Layers
bsouri -~ : a g 2 f
Clatsvilets e % k-]
“f Mas hvill Qe;-f,.r T f * Cities ® Pan ¥ Urban Areas
Knoxvilk by State Capitals C ZoomIn | Lakes
Jennesse i Ndrth-Eatd ® \jajor Ciies © ZoomOut | State
d;ﬁm o LS K Interstate Hwy IE Size Boundanies
nooga - W 1 fu— m— S N F R d
S b S - b : State Line Refresh ocads
iSSiSSIPPI: a Georaiat D 2346 69 %2 1O ml | e |
6 ~Z | Done [Lol

Figure 4-14. Large-scale maps shouldn'’t be cluttered with details that obscure the relationships between
distant places.

In addition to using classes to make graphical distinctions, you might use them to restrict
features to be rendered only at specific scales. For example, instead of rendering all the roads
in a data set, you could specify that at a scale of 1:7,500,001 and above, only interstate highways
will be rendered; and at smaller scales, all roads will be rendered, regardless of type. By creating
two layers, one with MINSCALE set to 7500001 and the other with MAXSCALE set to 7500000, you can
select only interstate features for rendering when the scale is greater than 1:7,500,000, and
ignore the second layer. When the scale is less than 1:7,500,000, the first layer is ignored and
only the second layer (which includes all roads) is rendered. Scale-dependent rendering can
also be done at the class level using the keywords MAXSCALE and MINSCALE within a CLASS object.

In this chapter’s mapping application, the majorcities layer renders two classes of city:
state capitals and cities with large populations. The first class, State Capitals, is defined in
Lines 421 through 437. CLASSITEM "FEATURE" (on Line 419) tells MapServer to examine the
contents of the FEATURE attribute when evaluating the regular expression on Line 323. If the
value of FEATURE contains the text STATE followed by zero or more characters, then that city will
be included in the class.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

The other class, "Major Cities",is defined by the logical expression on Line 439. If the
value contained in the numeric attribute Pop_2000 is greater than 1,000,000, then the city is
included in this class. Since the attribute is numeric, its name is delimited by square brackets
only, and the comparison value isn’t delimited at all. If the attribute had been string-valued,
both the square-bracketed attribute name and the comparison value would need to be quoted.

Note Sometimes the documentation that accompanies spatial data can be wrong. In the present case, the
metadata associated with the shapefile citiesx020 identifies the population field as POP_2000, while the
actual attribute name is Pop_2000. However, as noted previously, MapServer doesn’t appear to be case
sensitive when dealing with attribute names in shapefiles.

The next two layers each contain a single class defined by a logical expression. The
largecities layer (Lines 460 through 486) defines a class that contains cites with populations
between 100,000 and 1,000,000. The smallcities layer defines a class of cities with populations
less than 100,000. Although both classes are drawn from the same data set, two layers are used
in order to render the two classes at different scales (recall that all the classes in a layer are
rendered at the same scale). At the larger scale, the larger cities are drawn and the smaller ones
omitted. When the scale moves below 1:1,000,000, both classes are rendered. You want to
reduce the amount of detail on the displayed extent of the map to a manageable level—as such,
you draw classes that might contain a lot of features when the scale is small because the
number actually drawn in the smaller extent is small.

An important point regarding the syntax of logical expressions is shown in the following
code:

468 CLASS
469 EXPRESSION(([Pop_2000]>100000)and([Pop_2000]<=1000000))
470 NAME "Cities"

It has already been stated that logical expressions must be enclosed in parentheses, but
parentheses can also be used to group elements of compound expressions. However, this isn’t
strictly necessary in the example shown.

Using Symbols

In the previous chapter, you saw how to use the class-level keyword COLOR to color features.
However, MapServer has no way of changing the size of default lines—they’re always 1 pixel
wide. But by using scalable symbols, you can use the class-level keyword SIZE to set the size (in
pixels) of the symbol.

A symbol is defined at the map level and is therefore available to all classes in all layers.
A symbol starts with the keyword SYMBOL and is terminated with the keyword END. The keyword
NAME is used to assign a name to the symbol. The name is used to reference the symbol when it’s
used. There are several types of symbols: vector, ellipse, pixmap, and truetype.

79

80

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

A vector symbol consists of a series of points that describe the outline of the symbol. The
points are defined by using the keyword POINTS, followed by coordinate pairs, and terminated
by the keyword END.

An ellipse symbol uses the same syntax as a vector symbol, but the interpretation is
different. The keyword POINTS contains only one coordinate pair, and these numbers are inter-
preted as the relative length (in the x and y directions) of the major and minor axes of the
ellipse. If both coordinates are equal, then the ellipse is a circle.

A pixmap symbol uses a GIF or PNG image as a symbol. The file containing this image is
identified by the value of the keyword IMAGE.

A truetype symbol uses characters from a TrueType font as symbols. The font is identified
by the keyword FONT, and its value is the alias of a font specified in the FONTSET. The particular
character is specified by the keyword CHARACTER. If the symbol TYPE is truetype, then the keyword
ANTIALIAS can be set to true or false to turn antialiasing on or off for the symbol.

A dash pattern or style can be set with the keyword STYLE. The value associated with style
is asequence of integers. The first integer specifies the number of pixels drawn (also referred to
as “pixels on”), the next integer specifies the number of pixels of space, the following specifies
the number of pixels on, etc.

A symbol can be rendered as an outline or a filled polygon. Setting the keyword FILLED to
true will cause the symbol to be filled with the color specified by the class that uses it.

Although all the symbol definitions can be placed in an external file (identified to MapServer
by the value of the keyword SYMBOLSET), I've chosen to keep things simple by placing them in
the mapfile. Three symbols are defined, all of TYPE ellipse.

The symbol BigLine (Lines 014 through 018) is used for drawing roads. Since the coordi-
nate values of the keyword POINTS are equal, using BiglLine to render a point will draw a circle.
Since the default value of FILLED is false, the circle won’t be filled. However, when drawing a
line feature with Bigline, successive open circles overlap, effectively filling the symbol. The
default value for STYLE will produce a continuous line.

014 SYMBOL

015 NAME "Bigline"
016 TYPE ELLIPSE
017 POINTS 1 1 END
018 END

The next symbol, DashedLine, differs from BiglLine only in STYLE. Setting STYLE 10 10 END
produces a dashed line alternating between 10 pixels on and 10 pixels off.

023 SYMBOL

024 NAME "DashedLine"
025 TYPE ELLIPSE

026 POINTS 1 1 END
027 STYLE 10 10 END
028 END

When used together, Bigline and DashedLine produce some interesting effects that serve
to distinguish major roadways from other line features. The small-scale highway segments of
layer interstate2 are drawn as 3-pixel-wide black lines (Lines 232 through 267). On top of
these lines MapServer draws intermittent, 1-pixel-wide white lines (representing white lane
separators). The OVERLAY keywords specify the characteristics of the overlaid symbols. Similarly,

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

principal roads are drawn as brown, 3-pixel-wide Bigline symbols, overlaid with white, inter-
mittent, 1-pixel-wide DashedlLine symbols. The keywords OVERLAYSYMBOL, OVERLAYSIZE, and
OVERLAYCOLOR work the same way as SYMBOL, SIZE, and COLOR.

245 STYLE

246 SYMBOL "BiglLine"

247 SIZE 3

248 COLOR 0 0 O

249 END

250 OVERLAYSYMBOL "DashedLine"
251 OVERLAYSIZE 1

252 OVERLAYCOLOR 255 255 255

As shown in the following code snippet, the symbol Circle is used to draw a point feature.
The default FILL is empty, therefore FILLED true hasbeen specified so that a solid-colored spot
will be drawn.

033 SYMBOL

034 NAME "Circle"
035 FILLED true
036 TYPE ellipse
037 POINTS 1 1 END
038 END

Using Annotation Layers

In some situations, you may only want to render the labels in a layer, rather than the features.
This can be for a number of reasons. You may want to display a raster image (e.g., an aerial
photograph or something like it), and you want to avoid rendering a labeled polygon layer on
top of it, which would obscure the raster layer. Alternatively, you may be required to render a
layer multiple times, but only need to render the labels once. A layer in which only the labels
are drawn is called an annotation layer.

In the present case, there are three layers devoted to the state boundary data set. The first
layer (Lines 101 through 113) renders the state outlines. Since this is a polygon layer, the color
specified by the keyword COLOR is the fill color for each of the individual state polygons. There
is no border drawn. In order to better see the states, you could use the keyword OUTLINECOLOR
to set the color of a 1-pixel-wide line that would outline these polygons, but a 1-pixel-wide line
isn’t very distinctive, so a wider line was chosen.

101 LAYER

102 NAME "states"
103 DATA "statesp020"
104 STATUS on

105 TYPE polygon

106 LABELCACHE on

107 LABELITEM "STATE"

81

82

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

108 CLASS

109 STYLE

110 COLOR 255 246 189
111 END

112 END

113 END

In order to create a wider line to outline the states, you can create another layer (Lines 118
through 133) that references the same data set but is defined as a line layer. The color specified
for aline layer is the color of the line, not the fill color for the area that the line encloses (if it is
closed). Furthermore, you can specify a symbol to use for the line and make this symbol as wide as
you like. Note here that in Line 128, you're using the BigLine symbol defined in the SYMBOL object
in Lines 014 through 018. Line 129 sets the symbol SIZE to 2 pixels wide and Line 130 sets the
COLOR to black.

118 LAYER

119 NAME "states"

120 DATA "statesp020"

121 STATUS on

122 TYPE line

123 LABELCACHE on

124 LABELITEM "STATE"

125 CLASS

126 NAME "State Line"
127 STYLE

128 SYMBOL "Bigline"
129 SIZE 2

130 COLOR 0 0 O
131 END

132 END

133 END

These two layers will produce a polygon in the shape of the United States, with a light-brown
fill color and state boundaries marked by a fat, black line. If you try to label the line layer, the
labels (in this case, the state names) will be lined up along the lower or upper borders of each
state. Recall that the label associated with a line feature can only assume the uc or 1c position.
However, you want your labels to lie inside each state’s boundary. To accomplish this, you
define an annotation layer (Lines 521 through 540). The keyword TYPE is set to annotation in
Line 525. The rest of the keywords in the layer should be familiar to you, except for LABELMINSCALE
in Line 528. LABELMINSCALE allows you to specify the minimum scale at which a label will be
rendered. This is important because at small scales, the labels of features with large extents can
be intrusive. For example, if you're looking at downtown Des Moines at a scale of 1:20,000, you
don’t need to see the word “Iowa.” But when looking at the entire continental United States at
ascale of 1:10,000,000, knowing that the postage stamp-sized state at the center is Iowa can be
useful. This problem is solved by using LABELMINSCALE, which is employed on Line 528.

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL 83

521 LAYER

522 NAME “states"

523 DATA "statesp020"

524 STATUS on

525 TYPE annotation

526 LABELCACHE on

527 LABELITEM "STATE"

528 LABELMINSCALE 2000000

529 CLASS

530 LABEL

531 TYPE truetype

532 FONT "arialbd"
533 SIZE 14

534 OUTLINECOLOR 255 255 255
535 COLOR 0 0 O

536 MINDISTANCE 200
537 MINFEATURESIZE 10
538 END

539 END

540 END

Creating Scale Bars

The SCALEBAR object is MapServer’s method of creating scale bars (i.e., graphic images that
indicate how distances on the map relate to distances on the ground). These images can either
stand alone within their own HTML tags defined in the template file, or they can be embedded
in the map image itself. The size of the stand-alone image can’t be determined before the
image is created, so avoid specifying image size in the HTML image tag (). The SCALEBAR
object begins with the keyword SCALEBAR, is terminated by the keyword END, and contains keywords
that control the appearance and location of the bar. Figure 4-13 displays a scale bar at the
lower-right corner of the map image.

For this application, the scale bar is defined in Lines 064 through 081. Inside the scale bar,
a LABEL object is defined in order to specify the font size and color of the text associated with
the scale. Note that the label in a scale bar can’t use TrueType fonts, but otherwise works as I've
described previously.

064 SCALEBAR

065 LABEL

066 COLOR 0 0 O
067 ANTIALIAS true
068 SIZE small

069 END

84

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

070 POSITION 1r

071 INTERVALS 5

072 STATUS embed

073 SIZE 144 5

074 STYLE 0

075 UNITS miles

076 BACKGROUNDCOLOR 255 0 0
077 IMAGECOLOR 255 255 255
078 COLOR 128 128 128

079 OUTLINECOLOR 0 O 255
080 TRANSPARENT off

081 END

The keyword STATUS can take three values: on, off, or embed. As with layers, STATUS on indi-
cates that a separate scale bar image will be created and STATUS off indicates that no image will
be created. Keep in mind that although MapServer can create a scale bar image, the image
won'’t display if you don’t reference it via the [scalebar] substitution string in the HTML template.
If you prefer to embed the scale bar in the map itself instead of creating a separate image, set
STATUS to embed.

An embedded scale bar can be located in one of six positions. The position is indicated by
setting the value of the keyword POSITION to one of the following two-letter codes: ul, uc, ur, 11,
lc, or 1r (“upper-left,” “upper-center,” etc.—these values have the same meanings in this
context as when they’re used to specify label positions, as shown in Figure 4-12).

The keyword SIZE is assigned a pair of integer values that represent the width and height
(in pixels) of the scale bar image. The value assigned to the keyword INTERVAL specifies the
number of intervals into which the bar is broken. The keyword STYLE can take the values 0 or 1.
STYLE 0 produces asolid bar while STYLE 1 produces a tick-marked line. The keyword UNITS can
take the values feet, inches, kilometers, meters, and miles. Based on the value selected, MapServer
will calculate the length of the scale bar intervals and label them appropriately. The scale bar
shown on the map in Figure 4-15 uses STYLE 1. Compare this with STYLE 0 in Figure 4-13.

There are several color-related keywords used in the SCALEBAR object, and their names
don’t always indicate their functions. The keyword IMAGECOLOR specifies the background color
of the scale bar image, which includes the bar itself and any text labels. (If the keyword
TRANSPARENT is set to on, then the IMAGECOLOR will be transparent.) The keyword BACKGROUNDCOLOR
sets the background color of the bar—not the text labels. The keyword COLOR is used to set the
foreground color of the scale bar. If more than a single interval is specified, then the COLOR and
BACKGROUNDCOLOR will alternate along the length of the bar. Finally, the keyword OUTLINECOLOR
specifies the color of the 1-pixel-wide border around the bar (not including any label text).

g o Creigh

Westwood Hills|

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL 85
@) Third Map - Netscape (&= ‘
v_ File Edt “iew Go Bookmarks Tools ‘window Help
H i - - \a : i A hittp: #Alocalhost!cgi-bindmapseryPzoomdir=04zoo 42 urban lakesk oadsbimgay=320+240&mgext=-34.0 | = @
i Back Forward Reload Stop I - J
=
rwarth % Féfraview
Farley',
\ Weatherby Lake
L, Platte Wood o} L3® 5
Parkville Hedston Lak
Walcott - %
“ Riversigess) -
Pomeroy’ . or
. Ty, 5 =
biper [Beverly Hills | < Randalph -

Mlap scale:

1307599 B00A25

Clhickzy:

94573267, 39102537

Shaw nnwﬂwwd
= B
-

I [Wap Extent: -04.854767 38 368162 -04.250767 39336012

s o Mizson Woods
e Faiway o il Legend Navigation Layers
Village
Leawood | @?f ; A ENEIENE Pan ¥ Urban Areas
.'- SR © ZoomIn | Lakes
= % = ¢ J Through Hwy ZoomOw |F State
yi 6«39‘# Lee= s"m\ Summit hrinspa ey |4_ Size Boundaries
A Grandvisifl T ———T intersiacHny Fefresh | ¥ Roads
1] 01234 5 State Line
e w2 | Done ‘ Fo=l

Figure 4-15. A STYLE 1 scale bar presents with a gracile simplicity absent from its more robust
STYLE 0 counterpart.

Creating Legends

While scale bars provide a way of relating map features to real-world features, legends present
a graphical reminder of what the different map symbols mean. In MapServer, the only symbols
that will be shown in the legend are the symbols that are used by named classes. Recall that a
class doesn’t need to be named in order to be rendered—it must, however, have a name in
order to be included in the legend. As with scale bar images, legend images can stand alone or
they can be embedded in the map image. Also like scale bar images, the size of the stand-alone
legend image can’t be determined before the image is created, so you should avoid specifying
image size in the HTML tag. A legend begins with the keyword LEGEND and is terminated
by the keyword END. Figure 4-16 shows an embedded legend. If you look back at previous exam-
ples, you'll see that they’ve all been external legends.

86 CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

rd Map - Metscape

File Edit “iew Go Bookmarks Tools ‘Window Help

i - &r - \3 “§§ I i http Mocalhost/egi-bin/mapsery?zoomdi=Oizoomsize=4ilayer=urban. layer=lak | oadshimgay=320+240kimgest=-34. 3‘j @
Back Fornward Reload Stop
b
o |
mwarth K Fifratview | ,§; \gg\ﬁ Moy ™™
0= Pry
Farlayly - “?ig
. G a5 TE Y
5 \,)
ji : y .
Weath erby Lake Ay IEI;?erly Missouri Cey _ .
Valdren) Platte Wood =}, Loke e sani VA = =
. Gladst n
Walgott Paricalle Fiison Lot |78, = \
3 Riverside=aly 1 ousl) River Bend
il T EsstKansas Gty , Couliy o\
biper [3 Beverly Hils i : Randaiph . -
Maywood gﬁh Kangas Ci Recte o1
7_ i < ug s Creek

Wap scale: 1:307599 800625

Click xy -94.572267, 39.102537

S neet Westwod || wastwood bils
L L iz o Wood's IMap Extent: -54.884767 38863162 -04.250767 35336012
el L ™Y "Mission Hills S
e Tzarah ieilage > J Legend | Navigation Layers
* Small Cit e
v m ies Loawood fg—f) € Pan
Other Hwy i - W Urban Areas
N LA Zoom In
Through Hwy = oo I Lakes
o) \ g A © ZaomOut
Principal Hwy gtackmans 3/ A Al ! 2 |4— . | State Boundaries
" 1T
Interstate Hwy B I ,‘r;“é‘p Grandviswif P Refrash ¥ Roads
State Line] | 1 01234 5m _IE 185!
S 2 || Dome [Fo=lef

Figure 4-16. An embedded legend is an artifact from the pre-digital past, when cartographers were compelled
by the technical limitations of paper to obscure features with useful but graphically extraneous elements.
External legends are preferred.

In this application, the legend is defined in Lines 086 through 096. The value of the keyword
STATUS is on so that MapServer will produce a stand-alone legend image. If STATUS were off, no
image would be created, and if STATUS were set to embed, then the legend would be embedded
in the map image.

Legends can use TrueType fonts, and in this way, the LABEL objects in a legend work the
same way as labels in classes. The background color of the legend image is set with the keyword

BACKGROUNDCOLOR.

086 LEGEND

087 STATUS on

088 IMAGECOLOR 230 230 230
089 LABEL

090 TYPE truetype
091 FONT "arial"

092 COLOR 0 0 O

093 SIZE 10

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

094 ANTIALIAS true
095 END
096 END

Using Reference Maps

One of the problems noted with the second map was that at small scales, it was difficult to place the
displayed map extent into a larger context. MapServer solves this problem by allowing the use
of a reference map, which displays the entire initial extent of the map at all times while indi-
cating the currently displayed extent by outlining it with a rectangular box. (At scales that are so
small that the box would be invisible, MapServer uses a crosshair to show the location of the
extent.) The reference map may be any size you like, but it’s usually best to keep it small.
Figure 4-14 shows an example of a reference map with the reference box outlined in red,
while Figure 4-15 shows the crosshair.

A reference map begins with the keyword REFERENCE and is terminated by the keyword END.
A reference map needs an image to use as the map. This image is identified by the keyword
IMAGE, and its value is the path (absolute or relative to the location of the mapfile) to the refer-
ence image. The reference image must be a GIF. The size of the image (in pixels) is specified by
the keyword SIZE, and the extent of the image is set using the keyword EXTENT, in the same way
that the extent is set for the map itself.

If a reference map is to be generated, then the value of the keyword STATUS is set to on; if
not, it’s set to off. The color of the reference box is set by the keyword COLOR. The box will be
filled with this color unless one of the components of the color is set to -1, in which case the box
will be transparent. The OUTLINECOLOR keyword sets the color of the reference box.

The reference map for this application is defined in Lines 052 through 059. The reference
image is usaref.gif (this file is included in the source code distribution)—it’s 300 pixels wide
by 225 pixels high. Since at least one of the components of the keyword COLOR is set to -1, the fill
color of the reference box is transparent. The OUTLINECOLOR of the box is red.

052 REFERENCE

053 IMAGE "/var/www/htdocs/third usaref.gif"
054 SIZE 300 225

055 EXTENT -180.00 0.00 -60.00 90.00

056 STATUS ON

057 COLOR -1 -1 -1

058 OUTLINECOLOR 255 0 O

059 END

Note MapServer itself can be used to create the reference image. By specifying the image size and limited
details in a mapfile, MapServer can render a map with appropriate extent and image size. In a later chapter,
you’ll see how to do this with the utility program shp2img, which comes with the MapServer distribution.

87

88

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

Summary

This chapter has led you through the intricacies of designing effective and visually pleasing
maps through the manipulation of their graphical elements. When you've mastered the contents
of this chapter, you'll be able to create interactive, web-based mapping applications that can
display all sorts of data that possesses spatial distribution. Although these maps are useful, you
haven’t yet wrung all the utility from MapServer’s CGI interface.

Up to this point, the applications you've created have produced images and allowed you
to explore those images at any scale. You haven’t yet been able to query the spatial data sets,
however, and gain access to the wealth of information stored in them. The next chapter provides
adetailed description of the MapServer query facility and takes you through the steps required
to build an application that will give you access to all of MapServer’s query power.

The Code

This application uses a lot more of MapServer’s capabilities and therefore the mapfile is much
longer. However, both the HTML initialization file and the template file are substantially the
same as those of the previous application. The mapfile is named third.map. The initialization
and template files are named third i.html and third.html, respectively. The listings are as follows:

Listing 4-1. The mapfile third.map

001 # This is our third map file

002 NAME "third"

003 UNITS DD

004 EXTENT -180.00 0.00 -60.00 90.00

005 SIZE 640 480

006 IMAGECOLOR 189 202 222

007 IMAGETYPE PNG

008 SHAPEPATH "/home/mapdata”

009 FONTSET "/var/www/htdocs/fontset.txt"
010

011 HHHHHHHHHHHEHHHHH
012 # Symbol for drawing fat lines

013 #

014 SYMBOL

015 NAME "Bigline"
016 TYPE ELLIPSE
017 POINTS 1 1 END
018 END

019

020 HHHHHHHEHHHHHHHHHHHHE
021 # Symbol for drawing dashed lines

022 #
023 SYMBOL
024 NAME "DashedLine"

025 TYPE ELLIPSE

026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072

CHAPTER 4

POINTS 1 1 END
STYLE 10 10 END
END

B R R S B S S S
Symbol for drawing spots
#
SYMBOL
NAME "Circle"
FILLED true
TYPE ellipse
POINTS 1 1 END
END

R R

Web object

#

WEB
TEMPLATE "/var/www/htdocs/third.html"
IMAGEPATH "/var/www/htdocs/tmp/"
IMAGEURL "/tmp/"

END

A
Reference map
#
REFERENCE
IMAGE "/var/www/htdocs/third usaref.gif"
SIZE 300 225
EXTENT -180.00 0.00 -60.00 90.00
STATUS ON
COLOR -1 -1 -1
OUTLINECOLOR 255 0 0
END

HHH R e

Scalebar
#
SCALEBAR
LABEL
COLOR 0 0 O
ANTIALIAS true
SIZE small
END
POSITION 1r
INTERVALS 5

STATUS embed

MODIFYING A MAP’S LOOK AND FEEL

89

90

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

SIZE 144 5
STYLE 0
UNITS miles
BACKGROUNDCOLOR 255 0 0
IMAGECOLOR 255 255 255
COLOR 128 128 128
OUTLINECOLOR 0 O 255
TRANSPARENT off

END

HHE R R R
Legend
#
LEGEND
STATUS on
IMAGECOLOR 230 230 230
LABEL
TYPE truetype
FONT "arial"
COLOR 0 0 O
SIZE 10
ANTIALIAS true
END
END

FHHEHHHEHHH
State boundaries layer - polygon used for shading
#
LAYER
NAME "states"
DATA "statesp020"
STATUS on
TYPE polygon
LABELCACHE on
LABELITEM "STATE"
CLASS
STYLE
COLOR 255 246 189
END
END
END

FHHEHHHEHHH
State boundaries layer - line makes a fat boundary
#
LAYER
NAME "states"

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

CHAPTER 4

DATA "statesp020"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "STATE"
CLASS
NAME "State Line"
STYLE
SYMBOL "Bigline"
SIZE 2
COLOR 0 0 O
END
END
END

S
Urban areas layer

#
LAYER
NAME "urbanareas"
DATA "urbanap020"
STATUS on
TYPE polygon
LABELCACHE on
LABELITEM "NAME"
MAXSCALE 1999999
CLASS
STYLE
COLOR 212 192 100
OUTLINECOLOR 0 0 O
END
LABEL
TYPE truetype
FONT "arialbd"
SIZE 10
OUTLINECOLOR 255 255 255
COLOR 0 0 O
POSITION auto
END
END
END

R
hydrographic layer - lakes
#
LAYER
NAME "lakes"

MODIFYING A MAP’S LOOK AND FEEL

91

92

CHAPTER 4

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

END

HHHH
Roa
#

LAYER

MODIFYING A MAP’S LOOK AND FEEL

DATA "hydrogp020"
STATUS on
TYPE polygon
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "FEATURE"
CLASS
EXPRESSION ('[FEATURE]' eq 'Lake')
STYLE
SIZE 1
COLOR 189 202 222
OUTLINECOLOR 0 0 O
END
LABEL
TYPE truetype
FONT "arial”
SIZE 8
OUTLINECOLOR 255 255 255
COLOR 00 O
MINDISTANCE 100
POSITION 1r
MINFEATURESIZE auto
WRAP ' '
END
END

T

d layer - interstates only at large scale

NAME "interstate1"”
GROUP "roads"
DATA "roadtrlo20"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "FEATURE"
MINSCALE 7500001
CLASS
NAME "Interstate Hwy"
EXPRESSION /Limited Access*/
STYLE
SYMBOL "Bigline"
SIZE 1
COLOR 00 O

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

CHAPTER 4

END

LABEL
TYPE truetype
FONT "arial"
SIZE 8
OUTLINECOLOR 255 255 255
COLOR 0 0 O
MINDISTANCE 200
POSITION auto
ANGLE auto
MINFEATURESIZE 50

END

END
END

R
Road layer - interstates only
#
LAYER
NAME "interstate2"
GROUP "roads"
DATA "roadtrlo20"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "Feature"
MAXSCALE 7500000
CLASS
NAME "Interstate Hwy"
EXPRESSION /Limited Access*/
STYLE
SYMBOL "Bigline"
SIZE 3
COLOR 0 0 O
END
OVERLAYSYMBOL "DashedLine"
OVERLAYSIZE 1
OVERLAYCOLOR 255 255 255
TEXT ([FEATURE], [NAME])
LABEL
TYPE truetype
FONT "arial"
SIZE 8
OUTLINECOLOR 255 255 255
COLOR 0 0 O
MINDISTANCE 200

MODIFYING A MAP’S LOOK AND FEEL

93

94

CHAPTER 4

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

END

MODIFYING A MAP’S LOOK AND FEEL

POSITION auto
ANGLE auto
MINFEATURESIZE 50
WRAP ' '
END
END

FHHEHHHEHHH
Road layer - principal highways

#

LAYER

END

NAME "principal”
GROUP "roads"
DATA "roadtrlo20"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "Feature"
MAXSCALE 4000000
CLASS
NAME "Principal Hwy"
EXPRESSION /Principal Highway*/
STYLE
SYMBOL "Bigline"
SIZE 3
COLOR 197 129 65
END
OVERLAYSYMBOL "DashedLine"
OVERLAYSIZE 1
OVERLAYCOLOR 255 255 255
TEXT ([FEATURE], [NAME])
LABEL
TYPE truetype
FONT "arial"
ANGLE auto # requires ttfonts
MINFEATURESIZE 50
MINDISTANCE 100
ANGLE auto
COLOR 00 O
SIZE 8
END
END

307 HHHHHHHEHHHHE

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

CHAPTER 4

Road layer - other through highways
#
LAYER
NAME "thru"
GROUP "roads"
DATA "roadtrlo20"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "NAME"
CLASSITEM "Feature"
MAXSCALE 1000000
CLASS
NAME "Through Hwy"
EXPRESSION /Other Through*/
STYLE
SYMBOL "BiglLine"
SIZE 3
COLOR 197 129 65
END
OVERLAYSYMBOL "DashedLine"
OVERLAYSIZE 1
OVERLAYCOLOR 0 255 0
LABEL
TYPE truetype
FONT "arial”
ANGLE auto # requires ttfonts
MINFEATURESIZE 100
MINDISTANCE 100
ANGLE auto
COLOR 0 0 O
SIZE 8
END
END
END

R
Road layer - other highways
#
LAYER

NAME "other"

GROUP "roads"

DATA "roadtrlo20"

STATUS on

TYPE line

LABELCACHE on

LABELITEM "NAME"

MODIFYING A MAP’S LOOK AND FEEL

95

96

CHAPTER 4

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

END

MODIFYING A MAP’S LOOK AND FEEL

CLASSITEM "FEATURE"
MAXSCALE 500000

CLASS

END

NAME
EXPRE
STYLE

END
LABEL

END

"Other Hwy"
SSION /Other Highway*/

SYMBOL "Bigline"
SIZE 2
COLOR 197 129 65

TYPE truetype

FONT "arial"

ANGLE auto # requires ttfonts
MINFEATURESIZE 100

MINDISTANCE 100

ANGLE auto

COLOR 0 0 0

SIZE 6

HHEH e
Hydrographic layer - streams & rivers

#
LAYER

NAME "rivers"
DATA "hydroglo20"
STATUS DEFAULT

TYPE

line

LABELCACHE on
LABELITEM "NAME"
CLASSITEM "FEATURE"
MAXSCALE 1000000

CLASS

EXPRE
STYLE

END
LABEL

SSION ('[FEATURE]' eq 'Stream')

SYMBOL "BiglLine"
SIZE 1
COLOR 156 182 205

TYPE truetype
FONT "arial"
COLOR 00 O
ANGLE auto

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

CHAPTER 4

SIZE 7
ANTIALIAS true
END
END
END

B R R e S T S

MODIFYING A MAP’S LOOK AND FEEL

Cities layer - State capitals and cities pop. > 1000000

#
LAYER
NAME "majorcities"”
DATA "citiesx020"
STATUS default
TYPE point
LABELITEM "NAME"
LABELCACHE on
LABELMAXSCALE 15000000
CLASSITEM "FEATURE"
MINSCALE 2000000
CLASS
NAME "State Capitals”
EXPRESSION /State*/
STYLE
SYMBOL "Circle"
SIZE 6
COLOR 0 255 0
END
LABEL
TYPE truetype
FONT "arialbd"
SIZE 9
POSITION auto
OUTLINECOLOR 255 255 255
COLOR 0 0 0
END
END
CLASS
EXPRESSION ([Pop_2000] > 1000000)
NAME "Major Cities"
STYLE
SYMBOL "Circle"
SIZE 10
COLOR 255 0 O
END
LABEL
TYPE truetype
FONT "arialbd"

97

98

CHAPTER 4

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

END

HHH
Cit
#

LAYER

END

HHH
Cit
LAYER

MODIFYING A MAP’S LOOK AND FEEL

SIZE 10
OUTLINECOLOR 255 255 255
COLOR 00 O
POSITION auto
END
END

T
ies layer - Large cities, pop. < 1000000

NAME "largecities"
DATA "citiesx020"
STATUS default
TYPE point
LABELCACHE on
LABELITEM "NAME"
MINSCALE 2000000
CLASS
EXPRESSION(([Pop_2000]>100000)and([Pop_2000]<=1000000))
NAME "Cities"
STYLE
SYMBOL "Circle"
SIZE 4
COLOR 255 0 0
BACKGROUNDCOLOR 255 0 0O
END
LABEL
TYPE truetype
FONT "arialbd"
SIZE 8
POSITION auto
OUTLINECOLOR 255 255 255
COLOR 0 0 O
END
END

T
y layer - Cities

NAME “"cities"
DATA "citiesx020"
STATUS default
TYPE point
LABELCACHE on

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

496 LABELITEM "NAME"

497 LABELMAXSCALE 500000

498 MAXSCALE 2000000

499 CLASS

500 NAME "Small Cities"
501 EXPRESSION ([Pop_2000] < 100000)
502 STYLE

503 SYMBOL "Circle"
504 SIZE 3

505 COLOR 255 0 O
506 END

507 LABEL

508 TYPE truetype
509 FONT "arialbd"
510 SIZE 7

511 POSITION auto
512 OUTLINECOLOR 255 255 255
513 COLOR 0 0 O

514 END

515 END

516 END

517

518 HHHHHHHHHHHH
519 # State boundaries layer - annotation (for labels)

520 #

521 LAYER

522 NAME "states"

523 DATA "statesp020"

524 STATUS on

525 TYPE annotation

526 LABELCACHE on

527 LABELITEM "STATE"

528 LABELMINSCALE 2000000

529 CLASS

530 LABEL

531 TYPE truetype
532 FONT "arialbd"
533 SIZE 14

534 OUTLINECOLOR 255 255 255
535 COLOR 0 0 O

536 MINDISTANCE 200
537 MINFEATURESIZE 10
538 END

539 END

540 END

541 END # mapfile

99

100

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

Listing 4-2. The HTML initialization file third_i.htm

001
002
003
004
005
006
007
008
009
010
011
012
013
014

<html>
<head> <title>MapServer Third Map</title></head>
<body>
<form method=POST action="/cgi-bin/mapserv">
<input type="submit" value="Click to initialize">
<input type="hidden" name="program" value="mapserv">
<input type="hidden" name="map" value="/home/mapdata/third.map">
<input type="hidden" name="mapext" value="-180.00 0.00 -60.00 90.00">
<input type="hidden" name=zoomsize size=2 value=2>
<input type="hidden" name="layers"
value="urbanareas lakes states roads capitals">
</form>
</body>
</html>

Listing 4-3. The HTML template third.html

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

<html>
<head><title>Third Map</title></head>
<body bgcolor="H#EGEGE6">
<form name="the_ form" method=CGET action="[program]">
<table width="100%" border="1">
<tr><td width="60%" rowspan="6">
<input name="img" type="image" src="[img]"
width=640 height=480 border=2>
</td>
<td width="40%" align="center" colspan="3">

</td>
</tr>
<tr><td align="left" colspan="3">
Map scale:8nbsp 1:[scale]</td></tr>
<tr><td align="left" colspan="3">
Click x,y:8nbsp [mapx], [mapy]</td></tr>
<tr><td align="left" colspan="3">
Map Extent:8nbsp [mapext]</td></tr>
<tr><td><center>Legend</center></td>
<td><center>Navigation</center></td>
<td><center>Layers</center></td></tr>
<tr><td rowspan="2"></td>
<td align="left">
<input type=radio name=zoomdir value=0 [zoomdir 0 check]>
Pan

<input type=radio name=zoomdir value=1 [zoomdir 1 check]>
Zoom In

<input type=radio name=zoomdir value=-1 [zoomdir -1 check]>

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

CHAPTER 4 MODIFYING A MAP’S LOOK AND FEEL

Zoom Out

<input type=text name=zoomsize size=1 value=[zoomsize]>
Size

<center><input type="submit" value="Refresh"></center>

</td>

<td align="top">

<input type="checkbox" name="layer" value="urbanareas"
[urbanareas_check]>
Urban Areas

<input type="checkbox" name="layer" value="lakes" [lakes check]>
Lakes

<input type="checkbox" name="layer" value="states" [states_check]>
State Boundaries

<input type="checkbox" name="layer" value="roads" [roads check]>
Roads

</td>

</tr>

</tab
<inp
<inp
<inp
<inp
</form
</body>
</html>

le>

ut type="hidden" name="imgxy" value="320 240">

ut type="hidden" name="imgext" value="[mapext]">
ut type="hidden" name="map" value="[map]">

ut type="hidden" name="program" value="[program]">
>

101

CHAPTER 5

Using Query Mode

In addition to its rendering capabilities, MapServer provides a powerful query facility, supporting
both spatial queries (which select features based on location) and attribute queries (which
select features based on attribute values). To accomplish this without programmatic support,
MapServer makes extensive use of templates in building queries and presenting the results.
This leads to some complicated interactions between the mapfile, the templates, and the
MapServer program. Added to this is the large number of different query modes, which employ
templates in different ways. For these reasons, the query facility is probably the most confusing
aspect of MapServer.

In this chapter, you'll explore MapServer’s query capabilities and become familiar with its
mapfile and template requirements. To gain knowledge of these capabilities, you’ll build a
query application that uses most of MapServer’s query muscle. Because this topic can be so
confusing, I'll present the various components of a query first, and then explain them in some
detail. Then I'll lead you through the application line-by-line and provide additional details.

How MapServer Processes a Query

Until now, the maps you've created have all been generated in Browse mode. In this mode, when
the user clicks the map image, the browser notes the location of the click, the zoom size, and
the direction (among other things). This information is sent back to the server, which then
forwards it on to MapServer. Based on this response from the browser, MapServer renders the
map image, scans the template for substitution strings, and sends this information back to the
browser. So, although MapServer has access to the underlying spatial and attribute data, this
data is hidden from the user. However, the user can gain access to this information using
MapServer’s query facility, which can present results in both tabular form and graphically, as
amap.

The following sections explain the concepts necessary for an operational understanding of
the MapServer query process. While detailed usage and syntax is described when warranted,
this section functions primarily as an overview of the main components. A more detailed treat-
ment of some of these topics will be presented later in this chapter, including a more detailed
analysis of the code.

103

104

CHAPTER 5 USING QUERY MODE

Query Types

Browse mode is MapServer’s default mode—as such, none of the maps you've created previously
have made explicit mode references. But MapServer has numerous modes, 18 of which are
query modes of one sort or another. In these modes, users can define the query selection
criteria in one of the following ways:

¢ By selecting a point or region on the map image with the mouse
* By entering the coordinates of a point or region

¢ By entering an expression specifying attribute criteria

¢ By entering the shape index (i.e., sequence number) of a feature

In the query modes, the browser sends the coordinates or expression and other form vari-
ables back to MapServer, but instead of rendering the map image as it would in Browse mode,
MapServer searches one or more layers and populates template files with information derived
from features or attributes that match the query parameters. MapServer can perform both
spatial queries (based on coordinates) and attribute queries (based on attribute values).

When performing the simplest type of spatial query, MapServer notes the location of a
mouse click and selects matching features based on proximity to the click point. But MapServer
isn’t restricted to point queries—supplying a spatial extent (or even an arbitrary shape) instead
of a point will return features that are within or close to the specified extent (or shape).

In the attribute query modes, MapServer searches the attribute table for features that match
a user-specified expression. This expression employs the same syntax used by the class-level
keyword EXPRESSION and the layer-level keyword FILTER. MapServer also supports staged queries,
in which spatial queries are performed on the result set returned by an attribute search.

In order for MapServer to perform a query, the mapfile must contain at least one queriable
layer. A layer qualifies as queriable if it’s active (i.e., its STATUS is on or default) and it contains
a template reference (specified at either the layer level or the class level by the keyword TEMPLATE).
If a queriable layer exists, MapServer searches the data set feature-by-feature for those that
meet the specified spatial or attribute criteria. If a template exists to present a matching feature, the
feature is incorporated into the result set—otherwise it’s dropped. The existence of a layer-
level template guarantees that every feature in the layer that meets the search criteria will be
selected. On the other hand, if a layer template hasn’t been specified, classes without templates
will return no results.

Caution It’s possible to define query criteria that should produce a match but don’t. For example, a layer
that contains multiple classes but specifies a query template for only one class will be queriable (if it's active).
However, it will return results only for members of the class with the template. Features that match the spatial
or attribute criteria, but for which there’s no query template, will be dropped.

CHAPTER 5 USING QUERY MODE

Some modes search only a single layer and return a single result—the modes QUERY and
ITEMQUERY, for example. Others, such as NQUERY and ITEMNQUERY, search all queriable layers and
return all results (these types all include NQUERY in their names). These searches can be limited
to a single layer by setting the value of the form variable qlayer (i.e., the query layer) to the
name of the layer to be queried—if this isn’t done, MapServer will search all queriable layers.
Layers are searched in the sequence in which they’re specified in the mapfile. In addition to
this, the feature query modes use a select layer (which must be of TYPE polygon) specified by
the form variable slayer. A spatial query is performed on the select layer and returns one or
more polygon features. Subsequently, other queriable layers are searched, and any features
that are found within (or close to) the selected polygon are returned as well.

Query Templates

As query results are returned, MapServer inserts them into one or more HTML template files
and forwards them back to the browser. MapServer doesn’t know in advance what the result
set of any query might be—and since query modes will return either the first match or all
matches depending on the mode, MapServer must structure its output in a manner that’s suffi-
ciently general to handle both cases. It does this by specifying a hierarchy of query templates.

Query templates can be defined at the map level, the layer level, the class level, and the
join level. The level at which a template is specified affects how and when MapServer will use
it. The structure of the query template hierarchy is shown in Figure 5-1. At the map level, a
query template is used to present a summary of the entire query, (e.g., information like the
total number of matches and the number of layers with matches). Query templates perform a
similar function when specified at the layer level, but in this case they give layer-specific summary
information. Templates defined at the class level are used to present individual feature attributes
(e.g., a state’s location, population, and state flower) for elements of the result set. (Alternatively,
instead of specifying multiple class-level templates, you can specify a layer-level template that’s
used to report detail results for all classes in the layer.) Finally, if you define a one-to-many join
between the spatial data set and an external table, the result for each matching element of the
join will be reported using the join-level template.

Joins are a new topic, and a more extensive treatment is provided later in this chapter.
However, a brief description is warranted here since joins are discussed in the description of
the application. Simply put, a join is a way of attaching the records in an external dBase file to
attribute table records in a shapefile. The keyword FROM identifies the attribute name in the
shapefile, and the keyword TO specifies the attribute name in the joined file. If a join has been
defined for a layer, then for every selected feature, the joined file is scanned for records with TO
item values that match the FROM item values in the shapefile.

105

106 CHAPTER 5 USING QUERY MODE

Open HTML tags

<HTML>

Web/HEADER <HEAD><TITLE>QUERY</TITLE></HEAD>
<BODY>

Global summary information

Display layer summary & set up table headings
Layer/HEADER <TABLE>
<TR><TH>ltem1</TH><TH>ltem2</TH>...</TR>

Display attribute details for each match in all classes
Layer/TEMPLATE <TR><TD>[Item1]</TD><TD>[ltem2]</TD>...</TR>

Display attribute details for each match in a single class
Class/TEMPLATE <TR><TD>[ltem1]</TD><TD>[Item2]</TD>...</TR>

q Display details for each result of a 1-to-many join
Join/TEMPLATE vart]lvarz]

Close the table opened in Layer/HEADER
Layer/FOOTER ~/TABLE>

Close the tags opened in Web/HEADER
Web/FOOTER </BODY></HTML>

Create complete page reporting no results
<HTML>
Web/EMPTY <HEAD><TITLE>EMPTY</TITLE></HEAD>
<BODY>
Query returned no results
</BODY></HTML>

Figure 5-1. Query templates are HTML fragments that must be assembled to provide a complete
web page.

Regardless of the level at which a template is used, MapServer employs the same substitu-
tion string method to populate query templates as it uses to populate the main application
template. In the case of query templates, the set of substitution strings consists of attribute
column names enclosed in square brackets and strings representing summary information
generated by MapServer itself. For example, if the attribute names specified in the data set are
CITY, STATE, and POPULATION, they're referenced in the layer- or class-level detail template by
the substitution strings [CITY], [STATE], and [POPULATION].

Sometimes a query may return no results (i.e., no features or attributes match the query
parameters). In such cases, MapServer displays an unformatted message in the browser
similar to the following:

msQueryByPoint(): Search returned no results. No matching record(s) found.

Since this message isn’t very aesthetically pleasing, MapServer provides a mechanism to
substitute a formatted web page that informs the user of the null result, by way of the WEB-level
keyword EMPTY. This page doesn’t necessarily have to stand alone, either—it can be structured
as a form that allows the user to reformulate the query, or it can even be structured as a frame,
pop-up window, or tool tip that merely reports the result while displaying the original query
page again.

CHAPTER 5 USING QUERY MODE

Maintaining State in Query Mode

In Browse mode, various form variables and substitution strings can be used to maintain the
state of the application (e.g., zoomdir and [zoomdir 1 check]). Matters become a little more
complicated when using one of the query modes. The most important thing to note is the
absence of substitution strings (like [nquery check] or [browse_check]) to accompany the form
variable mode. Although references to this set of mode-state substitution strings can still be
found, the current release of MapServer doesn’t support them. You as the developer must now
keep track of mode from one invocation to the next. This is most easily accomplished with a
simple JavaScript embedded in the application template. This script is included in the code
distribution.

Querymaps

A querymap is a map that presents the results of a query by highlighting features that match the
selection criteria. Querymaps aren’t generated by default—they must be specified in the
mapfile by the QUERYMAP object. If you don’t specify a QUERYMAP object in the mapfile, queries
can still be performed, but only tabular results will be available.

Since querymaps are referenced in the template in the same way as ordinary map images,
they allow the use of pan and zoom controls. The only visible difference between querymaps
and ordinary map images is the presence of highlighted features in the querymap image. From
a developer’s point of view, however, a mapping application that allows the user to navigate a
querymap image is more complicated than one that doesn’t. In order to use a querymap, query
results must be saved in a queryfile, which is created during one session and used in subsequent
sessions. Note that if MapServer can’t find the correct queryfile, it displays an unformatted
error message on the screen, like the following:

ms LoadQuery(): Unable to access file.(/var/www/htdocs/tmp/Fourth111935397822411.qy)

You can save query parameters by specifying savequery as the form variable
<input type=hidden name=savequery value=true> while in a query mode. The parameters are
saved in a file that has the same base name as the map image, but with a file extension of qy.

If you set the value of a hidden form variable named queryfile equal to the substitution
string [queryfile] (i.e., <input type=hidden name=queryfile value=[queryfile]>), thelocation of
the queryfile will be embedded in the web page passed to the user. The next time MapServer is
invoked by the form, it will find the variable queryfile and load it before performing any other
processes. This causes the query parameters to be used to generate a map image with the
selected features highlighted. This map image is embedded in the template and forwarded
back to the user, who can then use the usual pan and zoom navigation controls.

Map-Only Query Modes

Since the default behavior of query modes produces only tabular results, it’s not surprising to
learn that there’s a set of query modes that produce maps but no tabular output—these are
called map-only modes. For each query mode that produces tabular output is a corresponding
map-only mode, and each of these modes is identified in the same manner: the map-only
mode associated with the mode nquery is nquerymap; the map-only mode associated with the
mode itemquery is itemquerymap, etc.

107

108

CHAPTER 5 USING QUERY MODE

Map-only modes not only forego the presentation of tabular attribute data—in these
modes, MapServer doesn’t even scan a template and return the page to the user with the map
embedded in it. It returns only the image. This is useful, for example, when an image must be
loaded by a URL in an image tag. For example, if the image tag in the following code snippet is
embedded in a query template, MapServer will replace the substitution strings with appropriate
values to create a valid URL that will cause the browser to load a map image.

<image src="[host]/cgi-bin/[program]?
mode=indexquerymap&

map=[map]8&

shapeindex=[shpidx]&

mapext=shaped

shpext=[shpext_esc]">

This is an interesting use for map-only modes, but I won'’t go into details here. Modes are
described in greater detail in the next section, and the substitution strings and form variables
will be described in Chapter 11, “MapServer Reference.”

You should now have a rough idea of what MapServer queries can do. All the major pieces
have been described and put into context. However, effectively using MapServer’s query capability
requires a clear understanding of the modes, substitution strings, and CGI variables specific
to queries.

Since queries are complex and often misunderstood, I'm going to change the usual presenta-
tion sequence at this point. Instead of a more extensive discussion of query modes, form variables,
and substitution strings, I'll proceed directly to the installation of this chapter’s application.
Then I'll step through some examples to give you an understanding of each query mode.

You can retrieve all the code used in this book from the Downloads area of the Apress website
(www.apress.com). The spatial data set is also available from the same location. The files for this
application can be found in the archive fourth.zip.

Query Examples

Using MapServer queries requires more than an understanding of mapfile and template syntax.
Before reviewing the code, it will be useful to spend some time working through the various
query modes to gain an understanding of what each does. This section will provide you with a
structured approach that uses a lot of examples and illustrations. Each example will be introduced
with a brief note that describes the query parameters and the results. A number of screenshots
will be presented to show you what you should be seeing. The examples will follow the sequence of
modes in the drop-down box on the main page of the fourth application. The main features of
each query mode are summarized in Table 5-1.

Table 5-1. Query Modes

CHAPTER 5 USING QUERY MODE

Mode Type Returns

QUERY Spatial Closest feature within tolerance

NQUERY Spatial All features within tolerance

ITEMQUERY Attribute First matching attribute

ITEMNQUERY Attribute All matching attributes

FEATUREQUERY Spatial First matching polygon in slayer plus all
features within tolerance of match

FEATURENQUERY Spatial All matching polygons in slayer plus all
features within tolerance of matches

ITEMFEATUREQUERY Attribute/spatial First attribute match in slayer plus all
features within tolerance of match

ITEMFEATURENQUERY Attribute/spatial All attribute matches in slayer plus all
features within tolerance of matches

INDEXQUERY Index The feature with the specified shape index

The spatial data set in the fourth application consists of a polygon shapefile describing
countries of the world and a point shapefile that contains city information. In order to demon-
strate the use of joins, another dBase file is used—it contains population information relating
to some of the cities. The map has two searchable layers: the first for countries and the second

for cities.

QUERY Mode

Type the URL of the initialization page (http://localhost/fourth_i.html) into the address bar
of your browser and press Enter. The initialization screen shown in Figure 5-2 will be displayed.
Click the Click Me button to proceed to the main query page, shown in Figure 5-3.

109

110 CHAPTER 5 " USING QUERY MODE

() MapServer Fourth Application - Netscape

S R | .

Figure 5-2. The query initialization page

CHAPTER 5 USING QUERY MODE 11

MapServer Fourth Application - Netscape

i Ele Edit ¥iew Go PBookmarks Tools Window Help
| i Q’ - \3 “§§ I%;hllp:.fr’IDcalhosl."cgirbinf’mapsarv?program=mapsElv&map="/°2Fhome"/°2Fmapdala"/°2Flourthmap&zoomsize=2&map_Cities_lolarance=1DD&map_Cj @
Back Farward Reload Stop
|
Query Definition
No me
jeutian Is
sy ;
mmccﬂmsyn’ Jran
Libya Qatar
. Maunmma/ i) s
Ho nolulu Daka Chad Suu!gemen Goa g
\IT?W - '%wna}ia SriLanka gn, .
o Sio Tome Vv : ..
o Guayaquil -yt £ 10 Tanzania K st Timior 2 Map scale: 1:177177537 000000
am oa Limal s ehrai PR Darwin % Vanua
ez Ceras Zimbabwe T .. Nenanuat | | Cfickxy. -1000000, 1000000
m@r Dapan . MJRLE;’ Map Extent: -120.000000 -90.000000 180000000 90 000000
Los Lages v -
" - Kerguelen Hotart N!”‘m Navigation Layers
South Georgia
5 & Pan
S g] m © ZoomIn W Cities
- = e .
' Zoom Dut | Countries
Refresh 2 Size
Query
Map Mode: | Browse - Query layer I imgbox coords I
Cruery ttem: I mmgshape coords I
Query stning: I mapshape coords: I
Cities Tolerance: [100 tiles Shape index: I
Countries Tolerance: 100 tiles Feature cuety select layer: Couniries
%% 2 || Dene F

Figure 5-3. Initial display of the query definition page

Select Query from the Map Mode drop-down box. Notice that the TOLERANCE for both the
Cities layer and the Countries layer is already set to 100 miles. The values in these two fields
are used to set the TOLERANCE for their respective layers. But in this example, the only TOLERANCE
that matters is the one associated with the Cities layer. Make sure that this value is set to 100 miles.

Next, click somewhere within the state of Texas. (Texas is used because it’s large enough to
see at the initial map scale of 1:177,000,000, and also has several cities.) If your mouse click is
within 100 miles of a city, you'll be presented with a page that looks like Figure 5-4 (this will
vary depending on which city is closest to the mouse click). This page presents the map- and
layer-level query information: search extent, click point, and number of query results. Following
this is a single line containing information about the city: name, state, latitude and longitude,
and perhaps population (which is taken from the joined file).

112 CHAPTER 5

USING QUERY MODE

) MapServer - Fourth Application - Netscape

File

Back

Edit

Wiew

Fonward

Go

Bookmarks

I |

v

Reload

Tools

1)

Stop

Window Help

Query Results

I ég hitp: #/localhost/ogi-bin/mapsery Fimg.#=145%mg.p=1 El?&zuum\:hl:U&zUumslze:2&Iayer:Cmes&Iayel:Euuntr|es&mDde:qusry&q\aysr:&lmgbux:&qwlej @
Search extent:

Click Point:

-120.000000 -30.000000 180.000000 $0.000000

145, 107 {Image coordinates)
-98.437500, 29.812500 Map coordinates)

Cuety Eesults

Layer: cities

Layers with results=1

Total mimber of results=1

i

shpidx
201

CITY |STATE

San Antonio

Tex.

COUNTRY | LAT

Eeturn to Oue:

Definttion

Us

LONG POPULATIONfrom join)

2538 -88.55

e e

| Done

=l

Figure 5-4. Result page for QUERY mode displaying a single city

If the mouse click isn’t within 100 miles of a city, a page similar to Figure 5-5 will be
displayed. Summary results are presented first, then a querymap image, and finally a single
line showing the attributes of the state of Texas. Notice that the querymap has rendered the
polygon representing Texas in yellow.

CHAPTER 5 USING QUERY MODE 113

I) MapServer - Fourth Application - Netscape

File Edit WView Go Bookmarks Toolz Window Help

i - ’&“ - \a ‘§§v I % hitp: /localhos/cgi-bin/mapsery Pimg.x=141 &\mg.y=1U3&zoomdir=U&zoomsize=2&Iayer:Cit\es&Iayer:CountriEs&mode:query&q\ayer:&imgbox:&qitej @
Back Fonward Reload Stop

v
Query Results
Search extent: |-180.000000 -30.000000 180.000000 50000000

. [141, 103 (Image coordinates)
Chick Poitit: |) 10 657500, 32,062500 (Map coordinates)
Layers with results=1
Total number of results=1

Query Results

Layer: countries

(Juery map Reference map

sgeines N
% Antamncafv_‘uﬁxz_
B shpidx (COUNTRY [STATE REGION CONTINENT
[1[568 [Tezas [South-Central U.S A NORTH AMERICA

Eeturn to Cuery Definition

S 2 | Do

2
Figure 5-5. Result page for QUERY mode showing a single state

This mode returns only a single result—it will return the city result if a match is found
because the Cities layer, having been rendered after the Countries layer, is searched first. If the
sequence in which the layers were specified in the mapfile were reversed, then the Countries layer
would be searched first and would return a match.

In all query modes in this application, the state name is a link that uses the INDEXQUERYMAP

mode to produce a map of the feature. Click on Texas in the STATE column and MapServer
should display a map resembling Figure 5-6.

114 CHAPTER 5 USING QUERY MODE

&) mapserv [GIF Image. 320x160 pixels) - Netscape - |=2] x |
Eile Edt ¥ew Go Bookmarks Tools ‘Window Help

<. > .3 8|

Back Farward Reload Stop

& nitp:Alocalnostfogibin/mapsers mode=inderquerymapbalayer-Counticskshapeinden =568k shpeit=3:2D1 063 2E 664153+ 5% 2E 833443720 5: [| @

WSSOI g

Tennes
=

Arkansas

rizona New Mexico

Mssissip,
Sonera) Chihuahua

- P
¢ Sinalka Durango} Tamautipas

S | Done 5@ 7

Figure 5-6. INDEXQUERYMAP mode produces only the map image.

NQUERY Mode

From the main query page, select NQUERY mode. Set the TOLERANCE to 300 for the Cities layer
and 0 for the Countries layer. Click on Texas again. This time, MapServer should return all
matches (see Figure 5-7). Several cities are returned (those within 300 miles of the mouse click),
but only one state is returned (Texas, the only state that matches the query). Since this is a
spatial query and Texas is a polygon, a click anywhere inside the state will produce a match, but
a point outside the state boundary won’t match because TOLERANCE is set to 0.

CHAPTER 5 USING QUERY MODE 115

[) MapServer - Fourth Apphication - Nelscape MEE|

File Edit View Go Bookmaks Tools Window Help

i - ’Q“ - \3 ‘§§ I% hltp.NlucalhDsﬂ.r‘cgi-bin/mausew?img.k:W41&img.yﬂ03&ZUUmdir:U&zuUmsize:2&|ayer:C\Iiss&laysr:Cuunlﬂes&mude:nuuery&qlayer:&imgbux:&qwlj @
Back Forward Reload Stop

e
Search extent: -180.000000 -30.000000 180.000000 0000000 B

141, 103 (Image coordinates)
-100.687500, 32.062500 (Map coordinates)

Layers with results=2

Click Peint:

Qe Wy Total number of results=7

Layer: cities

[[shpidx[CITY [STATE|COUNTRY [LAT [LONG [POPULATION(from join)
1[5 Amadle [Tex. |US 35.18[-101.83 [0

2[13 [Austn Tex. [U3 30279773 [o

3la6 [Carsbad M [US 32.43[-104.25[0

M2 [Dallas Tex. (U3 3277|2677 [0

5[20 [Fort Worth [Tex. [US 3272[97.32

6201 [San Anronio [Tex. [US 25.32[-98.55

Layer: countries

Cuery map Reference map

a Amarchcaﬁ
B shpidx (COUNTRY |STATE REGION CONTINENT —
[1[se2 [Us Texas (Seuth-Central U5 A NORTH AMERICA =
i ‘ Done | @E 4

Figure 5-7. NQUERY mode produces multiple results and displays both states and cities.

Change the Countries-layer TOLERANCE to 200 miles and repeat the query by clicking on
Texas. If you clicked the same spot on the map, then the same cities should be returned as
before, but this time you should find (depending on where the mouse click was made) that
Oklahoma, New Mexico, and even a Mexican state will be returned (see Figure 5-8). The larger
TOLERANCE value specifies a larger search area—the Countries-layer search is no longer cut off
at the border of Texas; it now extends 200 miles beyond the border to include other states.

116 CHAPTER 5 USING QUERY MODE

) MapServer - Fourth Application - Netscape mE ES ‘
File Edit “iew Go Bookmarks Toolz Window Help

i - & v \3 ‘§§ I % http: £lacahost/egi-bin/mapseryimg. x=1 44&img_l,l=1D4&znnmdir=D&zﬂnmsize=2&layer=Eities&layer=Enunlrias&mnde=nquery&q\ayar=&imghnx=&qitj @
Back Farward Reload Stop

TEEEOE T g0 000000, 31.500000 (ap coordinates) =]

Query Rese o e
Layer: cities

" [shpidx| ©ITY [STATE [COUNTRY [LAT LONG [POPULATION (from join)

113 [Austin Tex |US 30279773 [0

2le2 [Dallas Tex. [U% 22779677 [0

380 [FortWorth [Tex [US 3272|9732

4los [Houston Tex. [US 29.75[-95.35 [0

5169 [Oklahoma City (0K [US 3543 [-97.47

6[201 [San Antonio [Tex. [US 29.38[-98.55

Layer: countries
Query map Reference map

.;mmnc,"f‘—v—““‘;?;_
[shpidx | COUNTRY | STATE REGION CONTINENT
T 358 WG Coahula (Mexco HNORTH AMERICA
2[se1 [us Oldahoma |Worth-Central .34 (NCRTH AMERICA -
z[se8 [Us Tezas South-Central 1.3 A [MORTH AMERICA B
% 2 | Done o

Figure 5-8. In NQUERY mode, a higher layer TOLERANCE returns more matches.

The critical change here is the change in TOLERANCE. Both QUERY and NQUERY are point queries
in the current context. That is, a circle with radius equal to the TOLERANCE is drawn about the
click point, and any feature falling within that circle will match. However, some queries don’t
use the TOLERANCE in this way—another use of TOLERANCE will be reviewed in more detail later,
in the discussion of feature queries.

ITEMQUERY Mode

Select ITEMQUERY mode from the main query page. Set TOLERANCE to O for both layers. This mode
selects features based on matching attribute values—as such, no distance measure is used. Set
Query layer to Cities and Query itemto COUNTRY. (Don’t confuse the layer names Cities and

CHAPTER 5 USING QUERY MODE 117

Countries with the attribute names CITY and COUNTRY.) For Query string, use the regular expression
/US/. Click Refresh (or click anywhere on the map), and a page similar to Figure 5-9 will be

returned. The matching criterion is that COUNTRY is equal to /US/, so the first match will be the
first city in the attribute table with COUNTRY equal to US. This turns out to be Albany, New York.

(&) MapServer - Fourth Application - Netscape

Fle Edit View Go Bookmarks Tools ‘Window Help

i - ’@" - \3 '§v§~ Ig};hltpf.f‘luca\hUsﬂ.r'cgi-b\nfmapserv"zUumdir:U&zuumsize:2&\a_l,lsl:Cilies&\aysl:Cuuntﬂes&mude:itsmquEly&uIayEI:Cit\es&imgbux:&qitem:CDUNTH‘j @
Back Fomwmard Reload Stop

el
Query Results
Seatch extent: |-180.000000 -30.000000 120.000000 $0.000000

[img =), [img 7] (Image coordinates)
Chiele Point 0 000000, 0.000000 (Map coerdinates)

Layers with results=1

ey el Total number of results=1

Layer: cities

B shpidx | CITY [STATE |COUNTRY |LAT LONG POPULATION(from join)
[1[2 Albany .Y, [US [4267[72.75 o
Eeturn to Query Definttion

e S | Dane | '@E p

Figure 5-9. ITEMQUERY MODE selects a feature based on an attribute value and returns the first match
feature from the Cities layer.

ITEMNQUERY Mode

Next, leave the other query parameters the same, select ITEMNQUERY mode, and click Refresh or
the map. Figure 5-10 shows a portion of the result set. If you scroll through the list of cities,
you'll notice that population results are returned for both Washington DC and San Jose, California.

118 CHAPTER 5 USING QUERY MODE

) MapServer - Fourth Application - Netscape

File Edit View Go Bookmarks Tools Window Help

i - @“ - \3 i’gg |$ hitp. /./‘\Uca\hUsﬂ/’cg\-blnfmapsslv?zDum\:hr:U&zUUms\ze:2&Iayerztllt\es&Iayer:CUuntl|es&mDde:ltEmnuuery&qlayer:C|t\es&lmgbux:&qltam:CElUNTFj @
Back Forward Reload Stop

|

83 [125 [Portland Ore. [US 45521226280 =l
%1 [187 [Providence [RI [US 1837140 [0

85 129 [Raleigh weo [us 35777865 [0

&6 [191 [Rene Nev. [US 32.50[119820

87 (193 [Richfield Utah [US 38.77[-112.08[0

B8 [194 [Richmond [Va [US 37.55[-77.48 o

89 [196 [Roancks Va [US 37.28[-79.95 [o

90 [198 [Sacramento [Calf [US [38.58[-121.50[0

1 [199 [SaliLake City [Ttah [U3 40,77 F111 50

92 (201 [SanAntonio [Tex |US 20,38 [0855

93 [202 [SanDiego |Calf [U3 227011717

94 (203 [SanTFrancisco |[Calf |US 37.78[-122.43

95 204 [SanJose calf [Us 37.33[-121 82 315008
96 (205 [SanJuan PE [US 18.50[-66.17

97 [206 [SantaFe NI [US [35.68[-105.95

98 208 [Savamnah Ga |US 32.02[-21.08 [

99 210 [Seatle Wash, [0S 47.62[-122.33[n
Mo0[212 [Swevepert [La [US 22479270 [0
101214 [SlowxFalls [8D. |US 43,55 [-96.73

102[215 [Stka Alaska [US 57.17[-135.25[n
103217 [spokane Wash |US 4767117430
104218 [Sprngfield |m Us 2980 -79.63 [0
105219 [Sprngfield |[Mass. |[US 4z 107257 [o

i;}r \EA | D;ne — = = = : | WE A

Figure 5-10. ITEMNQUERY selects features based on attribute values and returns all matches from the
Cities layer.

The San Jose population number, which is derived from a (faulty) join, is completely bogus—
this points out a limitation of the join capabilities of MapServer. Recall that a join specifies a FROM
and a TO item. If the value of the TO item in a row of a joined table has the same values as the
FROM item in an attribute table, the JOIN row will be appended (joined) to the row in the attribute
table. This means that if multiple records in the attribute table have the same FROM values, the
same TO record will be appended to each. It’s not possible to use multiple FROM items to link to
an external table based on a match of multiple TO items. In the present case, San Jose, California
(which doesn’t have population data stored in the table) was linked to San Jose, Costa Rica
(which does).

Change qlayer from Cities to Countries and click Refresh. This time, MapServer searches
the Countries layer, returns all the states in the United States, and displays a querymap with
the states highlighted in yellow, as shown in Figure 5-11.

() MapServer - Fourth Application - Netscape

CHAPTER 5

USING QUERY MODE

119

Search extent

-180.000000 -20.000000 150.000000 20.000000

Click Point:

[img.x], [img v] (Image coordinates)
0.000000, 0.000000 (ap coordmnates)

Cuery Results:

Layers with results=1

Total mmber of results=52

v§E\|e Edt “iew Go Bookmaks Took ‘window Help
i - &“ v \3 ‘gg I‘%httpH.v‘\ocalhosdu’cgi-him’mapserv?zoomdir=U&zoomsize=2&layer=C\lies&layer=Counllies&mude:itemnquery&qIayer:Countries&imghox:&qitem:CDUj @
| Back Forweard Reload Stop
>
a
Query Results —

Juery map

Layer: countries

Reference map

,;lmarcnca"__v—h‘#\z_

B shpidx (COUNTRY STATE REGION CONTINENT

1 [25 [s Alabama Southeastern U3 A, [NORTH AMERICA

o 26 [Aleutian Is Subarctic America [NORTH AMERICA

z [527 [us Atirona Southwestern 1.5 A (WORTH AMEEICA

4 28 [s Arlcansas Southeastern U5 A, [NORTH AMERICA

5 [522 [us Alaska Subarctic America [NORTH AMERICA

6 [30 [Us California Southwestern 1.5 A [NORTH AMERICA

7 31 [Us Connecticut Wortheastern .5 A [WORTH AMEEICA

B 32 [Us Colorado Worthwestern 1.3, 4 |NORTH AMEEICA =
g | Done '@E p

Figure 5-11. ITEMNQUERY results when searching only the Countries layer

FEATUREQUERY Mode

Select FEATUREQUERY mode and set the Cities-layer TOLERANCE to 0 and the Countries-layer
TOLERANCE to 100 miles. Clear Query layer, Query item, and Query string. This mode performs
a spatial search within a single selected polygon. Regardless of the magnitude of TOLERANCE for
the selection layer, only the first match will be returned for further processing. Click Texas, and
MapServer will return the following results: attributes of cities that it found in Texas and the
attributes of the state itself. The selection polygon is highlighted in yellow on the querymap.
This is shown in Figure 5-12. Because the TOLERANCE for the Cities layer is set to 0, only those
cities inside the Texas boundary are returned. If it had been set to some non-zero value, then
cities outside of Texas (but within the TOLERANCE of the boundary) would also have been returned.

120

CHAPT

ER 5

USING QUERY MODE

I) MapServer - Fourth Application - Netscape
Ele Edit “ew Go Bookmaks Took Window Help
B?c:k - F;ﬁ;rd - F\\a%ad :Sgé;% I % hitp: ¢ lacalhastcgibin/mapsery Pima. x=1434img.v=1 D4&zoomdir:U&zooms\ze=2&Iayel:Eities&\ayer:Counl|ies&mode=leaturequew&q\aper:&imghoj @
]
. =
Click Point 143, 104 (Image coordinates)
CCEUE | 99 562500, 31.500000 (Map coordinates)
[Layers with results=2
ity Total number of results=8
Layer: cities
shpidx| CITY |STATE COUNTRY |LAT [LONG POPULATION(from join)

T 5 Arnarile Tex. us 35.18|-101.83 0

[2[13 Austin Tex. Us 20.27|-87.72 0

3[62 Dallas Texz. s 3277-86.77 |0

476 ElPaso Texz. s 31.77-106.48

[5[20 Fort Worth |Tez. s 3272|-87.32

e Houston Tex us 29.75]-8535 |0

? 201 San Antenio Tez. us 29.38(-88.55

Layer: countries

(Juery map Reference map

Antarctica B ETE |

B shpidx COUNTRY |STATE REGION CONTINENT —

T 568 [US Tezas |South-Central U.5 A [NORTH AMERICA =
e ne- | Done [-l

Figure 5-12. FEATUREQUERY mode returns a single polygon feature from the selection layer, as well as all

features from other layers that are close to or inside the selected polygon.

FEATURENQUERY Mode

Select FEATURENQUERY mode, change the Countries layer TOLERANCE to 200 miles, and leave the
other parameters blank. Click Texas again. This time, MapServer returns all of the matches
from the selection layer. The result set will depend on where the mouse was clicked, but any
polygon in the selection layer with an extent that overlaps a circle of radius equal to the TOLERANCE
will match, and so be used for querying the Cities layer. Clicking in northern Texas will return
(in addition to Texas itself) New Mexico and Oklahoma, but clicking in southern Texas will
return the Mexican states of Coahuila, Nuevo Le6n, and Tamaulipas. The cities returned will be
those falling inside the boundaries of the selected states, as shown in Figure 5-13.

CHAPTER 5 USING QUERY MODE 121

MapServer - Fourth Application - Metscape

File Edit Wiew Go Bookmarks Tool: ‘Window Help

< . 2 . D

Back Forward Reload Siop

I % hllp:.v‘flucalhosd#cgl-hlnfmapsew'?lmg.x:‘\45&|mg.p=1UEI&zoomdlr:U&zoomslze=2&Iayer:Elt\es&Iayer:Eounl||es&mode:featurenquery&qlayer:&lmgbj @

>}::liyer: cities =]
[[shpidx[CITY [STATE |[COUNTRY |[LAT [LONG [POPULATION(from join)
1[5 Amarille Tex |US 35.18[-101.83 [0
213 [Auvstin Tex |[US 30.27[-773 o
362 [Dalas Tex |US 32772677 o
[z [ElPase [Tex [US 21.77[-106.48
5[g0 [FortWorth [Tex. [US [32.72[97.32
609 [Houston [Tex [US [29.75[-95.35 [o
7201 [San Antonio Tex. [US [20.38[-08.55

Layer: countries

uery map Reference map

Antarcticat T EST T |

B shpidx [COUNTRY | STATE REGION CONTINENT

T 358 WG Coahuila Mexico NOETH AMERICA

2363 Mx Muevo Ledn Mesco NORTH AMERICA

3366 [z Tamaulipas Mezico MORTH AMERICA

bses [Us Texas South-Central U5 A, [NORTH AMERICA

Eeturn to Query Definition zl
S £ | Done | Rl

Figure 5-13. FEATURENQUERY mode returns all matching polygon features in the selection layer and all
features from other layers that are close to or inside the selected polygon.

The interaction of tolerances in this mode is complicated. Set the TOLERANCE to 300 miles
for Cities and 0 for Countries. This time, clicking on Texas will return cities within 300 miles of
the Texas border and within the state of Texas itself (see Figure 5-14). So, when the selection-
layer TOLERANCE is set to 0, the FEATURENQUERY mode is functionally equivalent to the FEATUREQUERY
mode. Table 5-2 shows how the two modes differ.

122

File Edit

CHAPTER 5

“Wiew Go Bookmarks

USING QUERY MODE

MapServer - Fourth Application - Netscape

Tools Window Help

=]

i - & - \3 ‘§§ I % hitp: Mlocalhostcgibin/mapsery Timg.u=143%img y=10Bteoomdir=0t zoomsize=28aper=Citestlaper=Courtrisstmode:

=featulenquely&qlayer=&\mghj @

Back Fonward Reload Stop
i 9‘ B0 [Fort Worth [Tex. UG 32.72]-97.32 =
10[e8 [HotSprings |Are US 3452 [-93.05
11[09 [Houston Tex |US Re75[e535 o
1z[104 [Tackson Miss U8 22.33[90.20 [0
13[139 [Memphis Tenn. |US 35159005 [o
Ma[162 [Mew Odeans [La [US [29.95[-90.07
15[169 [Oldahoma City[Okla U3 35439747
16201 [San Antonic [Tex. |US [20.38[-08.55
17206 [SantaFe NI (U3 [35.68[-105.95
18212 [shreveport [La US 22479370 [o
19220 [Springficld Mo, |US 77229328 [0
20[234 [Tulsa Okla (U8 26.15[9598 [o
21[245 [Wichita Kan |US [37.72[97.28 o
Layer: countries
Query map Reference map
akaeslya o
£ Sakhalin
n’u‘a
: Welind
. .:Qn!arcﬁca-'_ﬁ_‘yd—ﬂ‘—\z
" [shpidx [COUNIRY [STATE| REGION CONTINENT -
1[s6g [Us Texas |South-Central U5 4 [NORTH AMERICA B
<6 Z | Done | o=l

Figure 5-14. FEATURENQUERY mode with selection layer tolerance set to zero functions the same way as
FEATUREQUERY mode

Table 5-2. Comparison of Feature Query Modes

CHAPTER 5

USING QUERY MODE

Mode Selection-Layer

TOLERANCE

Search-Layer
TOLERANCE

Returns

FEATUREQUERY

0-infinity

O-infinity

FEATURENQUERY

0

O-infinity
0

First matching polygon in the
select layer and all features
(from other queriable layers)
found within the selected

polygon

First matching polygon in the
select layer, all features found
within the selected polygon,
and all features within distance
X of selected polygon

Same as FEATUREQUERY mode

All polygons in the select layer
within distance Y of the click
point, and all features within
selected polygons

All polygons in the select layer
within distance Y of the click
point, all features within
selected polygons, and all
features within distance X of
selected polygons

ITEMFEATUREQUERY Mode

Select ITEMFEATUREQUERY and set Query itemto STATE and Query stringto Texas. Setthe TOLERANCE
for the Cities layer to 0 and the Countries layer to 200 miles, and click Refresh. MapServer
performs an attribute query and searches for a STATE equal to Texas. The 200 mile TOLERANCE is
irrelevant since no spatial search is being done on the slayer. Then, because the TOLERANCE of the
Cities layer is set to 0, only features within the selected state will be returned. If the TOLERANCE had
been set to some non-zero value, then features within that distance of the Texas border would
have also been returned (see Figure 5-15).

123

124

CHAPTER 5 USING QUERY MODE

MapServer - Fourth Application - Netscape

File Edt ¥ew Go Bookmarks Tools ‘Window Help

2 . = . A & - Hlaper-Citesilayer-Counestmodes ‘Q

e P Pobed cion I i httpefocalhost/coi-bin/mapsery Yzoomdi=0% 200msize=24laper=Citiestlaper=Countrisstmode=itemieaturequenybalayer=timghox=3gitem: STATE&J [

o
Click Point|122]: [ime.y] (Image coordinates) Bl
0.000000, 0.000000 (MMap coordinates)
Layers with results=2

Qe Bioge Total number of results=3

Layer: cities
shpidx| CITY |STATE|COUNTRY |LAT |LONG POPULATION(from join)

lfs Amarnlle Tex. s 35.18|-101.83 [0

2[13 | Austin Tex. s 30.27|-97.73 [0
3[62 Diallas Tex. s 3277 |-9677 [0
4[76 El Paso Tex. s 31.77|-106.48
5[20 Fort Worth |Tex. s 32.72|-87.32

6 [09 Houston Tex. s 29.75|-85.35 [0

7[201 [San Anronio Tex. s 29.38|-98.55
Layer: countries

Query map Reference map

” Antarc!maﬁ

[shpidx (COUNTRY [STATE REGION CONTINENT

1568 [Us Texas |South-Certral U.S A [NORTE AMERICA :I
6 & | Done | -l

Figure 5-15. ITEMFEATUREQUERY mode selects a single polygon feature from the selection layer based on
the attribute value and returns all matching features found within or close to the selected polygon.

ITEMFEATURENQUERY Mode

Although this is the most complex mode, you should know what to expect by now. Set Query
item to COUNTRY and Query string to US, leave the TOLERANCE values unchanged, and click
Refresh. MapServer should return something like the fragment shown in Figure 5-16. The layer
upon which the attribute search is performed is specified by the value of slayer. MapServer
will return all features in that layer with the attribute specified by qitem (the query item) equal
to the string specified by qstring (the query string). The result set consists of all Countries-layer
features for which the COUNTRY attribute is equal to US, and all the cities within those features.

CHAPTER 5

USING QUERY MODE

I) MapServer - Fourth Application - Netscape |

125

i Elle Edt Yew Go Bookmaks Took indow Help
: Bﬁ-k - Fﬁm - H\E%d 5% {4 it/ ocalhosticghbinimapsen zoamdr=Dizaomsize= 2baper=Cilissaper-Countiestmode=i renquenybalayer=tingbar=tatem=COLUNT 7 @
[100[196 [Reanoke Va |US 57287995 [0 B
(101240 |Virgiia Beach [Va |US (26,85 [-75 97

102120 [Lewiston ldaho |US l46.40[-117.03 [0

103210 [Seatle Wash |US 47 62[-122330

104217 [Spokane Wash |US l47.67[117.43 0

105143 Miwavkee |Wi. |US l43.03[-27.92 o

[106/45 [Chorleston |W. Va. [US 32.35[-8163 [0

10751 [Cheyenne [Wye. |US 41,15 -104.87 0

Layer: countries

Juery map Reference map

[[shpidx [COUNTRY STATE REGION CONTINENT

1_ 525 |US Alabama Southeastern 7.5 A [NORTH AMEERICA

2_ 526 |US Aleutian Ts Subarctic America NOETH AMERTCA

z [s27 [us Atirona Southwestern 1.5 A (WORTH AMEEICA

4_ 528 |US Arkansas Southeastern 7.5 A |NORTH AMERICA

5 [522 [us Alaska Subzrctic America [NORTH AMERICA

= e e — B [T e =
% 2 | Done E

Figure 5-16. ITEMFEATURENQUERY mode selects all matching polygon features from the selection layer
based on the attribute value and returns all matching features found within or close to the selected

polygons.

Next, try increasing the TOLERANCE of the Cities layer to 200 miles and repeating the query.
As Figure 5-17 shows, the list of selected states should be unchanged. However, cities in Canada
and Mexico, which were absent from the previous result set, are now returned, since these
cities all lie within 200 miles of a US state boundary.

126 CHAPTER 5

I) MapServer - Fourth Application - Netscape

USING QUERY MODE

File Edit “iew Go Bookmarks Toolz MWindow Help
< . » - 3 8 [T : e— ETI——— pe— -sater-coun =] S

1 Back - Sl Shom I A hitp, Hlocalhostcgi-bin/mapsery?zoomdir=0% zoomsize=24ayer=C ountieskmod ngueryigl gbox=tgitem: EUUNTJ I
":xl 3 TTaw e TIC. o, T U Tt = :I

122 (80 Fort Worth |Tez. Us 3272)-97.32

[123[185 [Portland o [US 4552[-122 68 [0

[124[210 [Seatte Wash [US 47.62[-12233[0

[125[238 [Victoria EC |can 43 42[-123 35[311902

126[13 [Austin Tez [US 3027[-97.73 [0

[127[52 [Chibwatua Medico [28.62 -106.08[0

[122[201 [San Atonio [Tez. TS 29,38 [-98 55

(129[235 [Vancowver [B.C. |Can. 49.22[-123.10[1986965
Layer: countries

(Juery map Reference map

£ Antsrcncsfv_‘%xz

B shpidx |(COUNTRY STATE REGION CONTINENT

[t [525 [us (Alabama Southeastern .5 A, [WORTH AMERICA

2 [525 [uUs WAleutian Ts. Subarctic Amenica [NORTH AMERICA

3 [s27 [Us lAnzona Southwestern 7.5 4 (NORTH AMERICA

l4 [s28 [us \Arlcansas Southeastern U S A (WNORTH AMERICA

5 [s29 [us \Alaskea Subarctic America |[WORTH AMERICA B
e a2 | Done ol

Figure 5-17. ITEMFEATURENQUERY mode results with larger TOLERANCE for the Cities layer

INDEXQUERY Mode

An index query returns a feature identified by its shape index. Set Query layer to Countries and
Shape index to 568. Click Refresh, and MapServer will display the result shown in Figure 5-18.

CHAPTER 5 USING QUERY MODE

&I MapServer - Fourth Application - Metscape

]|

File Edit “iew Go Bookmaks Tools ‘Window Help

127

Stop
v

3 i - @“ - \3 ‘§§ Ig};hllp/f\ucalhusl/cgi-b\n./‘mapselv"zuumd\l:U&zuumsize:Z&Iayer:C\Iies&layer:CUuntﬂes&muds:\ndexquery&qIayer:CUuntHes&imgbux:&uilem:&img:j @
| Back Forward Reload

Query Results
Search extent: |-180.000000 -90.000000 180.000000 50.000000

. [img =], [tng.¥] (Image coordinates)
GlhelcRont -1.000000, -1.000000 (Map coordmates)
Layers with results=1
Total number of results=1

Cuery Eesults

Layer: countries

(Juery map Reference map

" VakutSkiya 7 Pacg
LS akhaiin

Magelianes . | “Kerguelen muﬁ
- Arl!amuca”__v—h‘#\z_
B shpidx |COUNTRY [STATE REGION CONTINENT
168 [us Tezas |South-Central 7.5, A, [MORTH AMWMERICA

Eeturn to Cuery Definition

S | Daone |

Figure 5-18. INDEXQUERY mode returns a single feature based on shape index. In this case, the shape
index of Texas is 568.

NQUERY Mode with Polygon Search Region

This final topic uses a mode that you've seen before—but instead of a point query, you'll specify
a polygon region in map coordinates. Set the TOLERANCE values for both layers to 0. Then, in
Browse mode, zoom in a couple of times on the central United States (map scale should be
about 1:44,000,000). Enter the following string of coordinates into mapshape coords:

-120 50 -70 50 -70 30 -120 30 -120 50

(An easy way to do this is to type the values into a text editor and then cut and paste them into
the form.) Notice that the first and last coordinate pairs are equal. Click anywhere on the map
and MapServer will produce a map that looks something like Figure 5-19.

=l

128 CHAPTER 5

MapServer - Fourth Application - Netscape
File Edit “iew Go Bookmarks Toolz Window Help

USING QUERY MODE

=]

i - & - \3 ‘§§ I % hitp: #localhost cgi-bin/mapsers Zimg #=304%img p=145tz00mdir=1tzoomsize=2ayer=Citiestlaper=Countriestmode=nquertolayer=Countieshim j @
Back Fonward Reload Stop

Query Res

ults 0

Search extent: |-144.562500 20.521250 -54. 562500 65.521250

Click Pont:

304, 145 (Image cootrdinates)
-101.8312500, 45.140625 (Map coordinates)

Cuery Besults:

Layers with results=1
Total number of results=62

(Juery map

Layer: countries

Reference map

jritish Ca lumbi
REL:

@ Saskatchewan Manitoba

| i Que|

AW _Winnipeg
|

~Roan
Texas Alahama %

[shpidx COUNTRY STATE REGION CONTINENT

1 [103 [ca Alberta Western Canada MNORTH AWERICA

2 (104 [ca EBritish Columbia Western Canada NORTH AMEEICA

R Ianitoba Western Canada NOERTH AMERICA

4 10 [ca MNunawut Subarctic America (NORTH AMERICA

5 111 [ca Northwest Territories |Subarctic America |[WNORTH AMERICA

6_ 112 |[CA Ontario Eastern Canada NORTH AWERICA

7 114 Jea Quebec Eastern Canada MNORTH AMERICA

B 115 [ca Saslatchewan “Western Canada NORTH AMEERICA =
ik Z | Done | -l

Figure 5-19. An NQUERY mode spatial search using a polygon search region instead of a point

Without changing anything else, add the following coordinates to the end of the list you've
already entered:

-110 45 -110 35 -80 35 -80 45 -110 45

MapServer traverses this additional figure in a counterclockwise direction, so it forms a hole in
the middle of the previous shape. Click the map and MapServer will return a map similar to
Figure 5-20.

The next section describes each of the query modes and explains how they work. Following
that, querymaps, joins, substitution strings, and CGI variables will be described.

CHAPTER 5 USING QUERY MODE 129

B} MapServer - Fourth Application - Netscape |

v§E\|e Edt “iew Go Boockmaks Took ‘indow Help
i - & W \3 ‘gg I‘%httpH.v‘\ocalhoschi-hin#mapserv?img.x=31U&img.y=174&zoomdir=1&zooms\ze=2&Iayer:Cities&Iayer:Countries&mode=nquery&q\ayer:tuuntries&\mj @
il Back Forweard Reload Stop
=

a
Query Results Tl

-144.562500 20.531250 -54.562500 65.531250

310, 174 (Inage coordinates)
-100.968750, 41.062500 (Map coordmnates)

Search extent

Click Point:

Layers with results=1

(g ea Total mmber of results=53

Layer: countries

Juery map

Reference map

Figure 5-20. An NQUERY mode spatial search using a doughnut-shaped search region.

Query Modes

MapServer keeps track of the current mode with the CGI variable mode, but has no corresponding
substitution string ([mode] to maintain state. There are more than two dozen modes. Some
produce maps, scale bars, and legends, while others change the mode to Browse and set the
zoom direction. This chapter however, is devoted to MapServer’s query modes. There are 18 of
them: nine that can produce both maps and tabular results, and another nine map-only modes
that present only the spatial results of queries. The discussion that follows omits the map-only
modes since they were described in the previous section.

Tip Don’t panic. Although the plethora of modes can be confusing at first, the application that you’ll build
in this chapter will allow you to experiment with each query mode and see what it does. Once you have the
basics, seeing a query in action is a good way to cement your understanding.

[shpidx (COUNTRY STATE REGION CONTINENT

1 10z [ca Alberta Western Canada NCOETH AMERICA

2[4 [ca British Columbia Western Canada NORTH AMERICA

3 [0 [ca Manitoba Western Canada NORTH AMERICA

4 [0 fca MNunavut Subarctic America | NORTH AMERICA

5 i1 [ca Nerthwest Ternitories |Subarctic America | NORTH AMERICA

& [112 [ca Ontaric Eastern Canada NOETH AMERICA

7 e [ca Cuéber Eastern Canada NORTH AMERICA

B 115 [ca Saskatchewan Western Canada NORTH AMERICA =
g W | Done | '@E p

130

CHAPTER 5 USING QUERY MODE

QUERY Mode

QUERY mode performs the simplest spatial query: a point query. The image coordinates (in
pixels) of a mouse click on the map image are returned to MapServer as the values of the CGI
form variables img.x and img.y. (This means that the HTML tag that contains the map image
<input type="image" name="img" src"..."> must be named img). These coordinates are used
to search one layer after another until MapServer finds the feature nearest to the click (within
a specified TOLERANCE) and returns a single result: the attributes of that feature. If no matching
feature is found within the distance specified by the layer-level keyword TOLERANCE, then MapServer
looks for the URL specified by the keyword EMPTY and sends that page back to the browser. If
there’s no EMPTY page, then MapServer will simply report the null result of the query with an
unformatted message to the browser.

Note The maximum distance between the map click and a feature that MapServer will accept as a match
in a spatial query is specified by the mapfile layer—level keyword TOLERANCE—its units are determined by
the keyword TOLERANCEUNITS. The default TOLERANCE is 3 pixels, but TOLERANCEUNITS can take any one
of the following values: pixels, feet, inches, kilometers, meters, miles, or dd (decimal degrees).

NQUERY Mode

NQUERY works the same way QUERY does, except that it can perform area searches in addition to
point queries, which adds significant power to MapServer’s query capabilities. You can specify
rectangular search extents, or you can even specify arbitrary shapes and define multiple
connected extents—that is, extents with holes. NQUERY mode uses the same method for point
queries as QUERY mode: form variables img.x and img.y are returned and MapServer returns
matches within the TOLERANCE distance of the mouse click.

Searching an extent is only slightly more complicated because the search region returned
to MapServer possesses more coordinates. To search a rectangular extent, the CGI form variable
imgbox is used to return the space-delimited image coordinates (i.e., pixels) of the top-left and
bottom-right corners of the rectangle (this is the reverse of a geographical extent because the
pixel count in an image increases from top to bottom). An arbitrary search region is specified
in image coordinates by the form variables imgshape or, in world coordinates, mapshape. For
area searches, all matches within the TOLERANCE distance of the boundary of the search extent
are returned.

As discussed in the Appendix, polygons in shapefiles are described by a sequence of vertices,
with the first and last vertices being equal. Further, the inside of a polygon is defined to be the
area on the right as the vertices are traversed in sequence. MapServer expects the list of coor-
dinate pairs contained in the form variables imgshape or mapshape to observe this standard.

Defining two non-intersecting regions is as simple as specifying their vertex coordinates in
sequence. In order to create a hole in the interior of a polygon, specify the list of vertex coordi-
nates of the interior shape in reverse order.

Making MapServer aware of the coordinates of the search region can be done in a couple
of ways. One method would be to use a Java application to capture drag box coordinates or
mouse-click sequences that define the vertices of polygons. However, since Java programming

CHAPTER 5 USING QUERY MODE

is out of the scope of this book, I'll show you how to use a simpler method: assigning strings
that represent coordinate values to the variables imgshape and mapshape.

ITEMQUERY Mode

This mode performs the simplest attribute search—looking for matching text in attribute tables
and returning the first match. Specifying a TOLERANCE here doesn’t make sense—TOLERANCE
values are ignored during attribute searches.

The search expression is specified with the CGI variable gstring. The search expression
assigned to gqstring will depend on the underlying data source. The syntax is the same as the
layer-level keyword FILTER. For shapefiles or OGR data sources, this is the same as the MapServer
expression (string comparison, regular expression, or logical expression) used by the class-level
keyword EXPRESSION. However, in the case of SDE, OracleSpatial, or PostGIS, the search expression
is a native SQL WHERE clause.

It’s possible to specify an attribute name to limit the search to a single column by means
of the CGI variable qitem. If no gitemis specified, then all attributes are searched.

If no query layer is specified (by means of the CGI variable qlayer), all layers are searched.
The HTML substitution strings [gstring], [qitem], and [glayer] correspond to the CGI variables
gstring, gitem, and glayer.

As an example, consider a mapfile containing two layers—a polygon layer named Countries
and a point layer named Cities. The user might search the Cities layer for the first record, in
which the STATE equals Texas. This can be accomplished by setting gstring to /Tex./, qitemto
STATE, and glayer to Cities. (These particular values will work with the data set supplied with
the application code.) MapServer will return the first matching feature, which in this case
happens to be the record associated with the city of Amarillo.

ITEMNQUERY Mode

This is the same as ITEMQUERY, except in this case all matches are returned. If you repeat the last
example but select ITEMNQUERY instead, MapServer will return all the cities in the database for
which STATE equals Tex.

FEATUREQUERY Mode

FEATUREQUERY mode performs a spatial query that uses a feature from one layer to query another
layer. Only the first matching feature from the selection layer is selected for use in the subse-
quent spatial search. However, all the features found within that selected feature will be returned.
The selection layer is defined by the CGI variable slayer and must be of polygon type. The variable
slayer has a corresponding substitution string, [slayer], used to maintain state.

Since FEATUREQUERY is a spatial query, the TOLERANCE value assigned to the searchable layers
is important. If the TOLERANCE of a searchable layer is 0, then only those features contained
within the selected polygon will match. If the TOLERANCE is set to some non-zero value, then
features outside of the selected polygon but within the TOLERANCE distance of the boundary of
the polygon will also match. The TOLERANCE value of the slayer isn’t relevant in this mode since
only the first polygon (i.e., the polygon in which the mouse click occurred) is used.

Continuing the previous example, if the user selects FEATUREQUERY and clicks the polygon
representing the state of Texas, a query is performed that searches the Cities layer, returning
all the cities in Texas that are contained in the database. If TOLERANCE in the Cities layer is set

131

132

CHAPTER 5 USING QUERY MODE

to 0, only cities within the boundary of Texas will be returned. If TOLERANCE is set to 100 miles,
then cities within 100 miles of the Texas border will be returned as well. But remember, if you
click inside the boundary of Texas, only Texas is returned from the selection layer. If you click
in some other state (or any polygon), only that state will be returned from the selection layer
and used to find cities within (or close to) it.

Note In this chapter’s application, the value of slayer is Countries, and this is hard-coded into the
form. Since Countries is the only polygon layer in this map, it’s the only possible choice for slayer.

FEATURENQUERY Mode

This mode is similar to FEATUREQUERY, but returns all matching features from the selection layer.
In this mode, the TOLERANCE value specified for the selection layer is important. In this case, not
only is the polygon that received the mouse click returned, but all polygons within the TOLERANCE
distance of the click point are returned too. The subsequent query of the searchable layers then
looks for features contained within any of the selected polygons, or within the TOLERANCE distance
from the border of the selected polygons. It’s important to note that if the TOLERANCE of the
selection layer is set to 0, then FEATURENQUERY is functionally equivalent to FEATUREQUERY because
then only the polygon containing the click point matches.

For example, let’s say the Countries-layer TOLERANCE is set to 300 miles and the Cities-layer
TOLERANCE is set to 100 miles. If a user selects FEATURENQUERY and clicks on Texas, then Texas,
New Mexico, Oklahoma, and the Mexican states of Coahuila, Nuevo Le6n, Chihuahua, and
Tamaulipas will be selected. And in addition to cities within these states, cities outside the
selected states but within 100 miles of the border (like Tulsa, Oklahoma and Springfield, Missouri)
will also match.

ITEMFEATUREQUERY Mode

This mode combines an attribute search with a spatial search and returns the first match. It’s
similar to FEATUREQUERY, but instead of using a mouse click and TOLERANCE values to determine
the selection layer matches, an attribute search is done on the selection layer. In this case,
slayer must be a polygon layer. The slayer parameter determines which layer will be used for
the attribute search. The parameter qstring contains the search expression. The first feature
matched by the attribute search is then used to do a spatial query on the searchable layers,
selecting features contained within the polygon feature. All matches are returned.

In the context of the data set supplied with the code, if the user selects ITEMFEATUREQUERY
and sets the search expression to (('[STATE]' eq 'Texas') or ('[STATE]' eq 'Kansas')), the
polygon features representing both Texas and Kansas will match the search expression, but
only Kansas will be returned because it’s found first. A spatial query is then performed on the
Cities layer, returning all the cities in Kansas, because the Kansas record comes before Texas
in the table.

CHAPTER 5 USING QUERY MODE

ITEMFEATURENQUERY Mode

This mode is similar to ITEMFEATUREQUERY, but instead of returning only the first matching
feature in slayer, it returns them all. If the user selects ITEMFEATURENQUERY with the same search
string as before, the Cities layer is searched for cities in both states since both Texas and
Kansas are matches.

INDEXQUERY Mode

An INDEXQUERY retrieves a single feature based in the shape index of the feature contained in the
CGI form variable shapeindex. The shape index is available as the substitution string [shpidx].
Typically, INDEXQUERY is used in conjunction with a list containing summary information,
including the shape index for each feature. A summary item will be formatted within anchor
tags , where URL represents a request for MapServer to create and return a map.
Clicking on the summary item will submit an INDEXQUERY to MapServer, which retrieves the
feature associated with the shape index of that item. This chapter’s application contains an
example of this use of the INDEXQUERY mode.

After having defined the various query modes, it’s time to see just how the results of a
particular query are presented. The next section covers templates. Following that, querymaps
and joins will be covered. Querymaps allow you to present the spatial selections made by a
query, and joins allow you to access attributes from external dBase files.

Query Templates

The templates that are used to present the results of a query aren’t complicated. But the fact
that there can be several of them, referred to at different levels of the mapfile and used for
different purposes, is the second biggest obstacle to overcome (after query modes) if you wish
to take advantage of MapServer’s query capabilities.

Recall that the main application HTML template specified in the WEB object is an almost
complete web page with substitution strings that MapServer will replace with appropriate
values. It has <html>, <head>, and <body> tags, and can be rendered by a browser even without
string substitution. Query templates, however, aren’t like this—they’re HTML fragments that
must be properly assembled to create a complete, renderable web page.

Query templates are specified in the mapfile. They can be specified at four levels: in the WEB
object, in the LAYER object, in the CLASS object, and in the JOIN object. The role that a template
plays depends on where it’s defined.

Map-Level Query Templates

The WEB object provides three keywords that specify query templates: HEADER, FOOTER, and
EMPTY. HEADER and FOOTER are used for multi-result queries. (Most query modes can return
multiple results.) The EMPTY template is used for queries that return no results.

In order to display results of a multi-result query properly, MapServer needs to create a
complete web page. Since it doesn’t know beforehand how many results the query will return,
it breaks the task into three steps:

133

134

CHAPTER 5 USING QUERY MODE

1. Producing a header that contains the correct HTML preamble tags (like <html> and
<body>), any other tags that might be required (Java, JavaScript, etc.), and any summary
information available

2. Using appropriate layer and class templates to display the results for each match

3. Producing a footer that contains the HTML tags to close any open tags after the processing
is done

The keyword HEADER specifies the path (absolute or relative to the mapfile) to the template
file, which is processed before everything else when a multi-result query is performed (Step 1
in the previous list). The keyword FOOTER identifies the template file that’s processed after every-
thing else has been done (Step 3 in the previous list). Both the HEADER and FOOTER templates can
contain substitution strings, and even forms and CGI variables. The same string substitution is
performed on them as is performed on the WEB template file.

The keyword EMPTY specifies the URL of the file that’s used if a query returns no results. It’s
important to note that this isn’t a path on a local file system, but a URL relative to the Apache
DocumentRoot. This file isn’t an HTML fragment, but a complete web page that informs the user
of the null result, and may offer some advice or a link back to the previous page. If absent, a
standard MapServer error message is displayed.

Layer-Level Query Templates

There are only three keywords related to query templates at the LAYER level. Unfortunately,
they have the same names as the WEB-level templates: HEADER and FOOTER, and the class-level
template: TEMPLATE—which can lead to some confusion. As before, these query templates
are only useful for multi-result queries.

At the LAYER level, you can assume that the HEADER template defined in the WEB object has
already set up the initial HTML. But since the number of results for a particular layer isn’t yet
known, MapServer must prepare the HTML that will be used to present summary data for the
current layer or graphics such as querymaps (discussed later), or to set up tables that will be
used to present query detail. After the detailed results have been presented by means of a class-
or layer-level template, you have to clean up and close any open HTML tags and perhaps
display some summary information.

The keyword HEADER specifies the path (absolute or relative to the mapfile) to the file that
will be processed before any results from the layer have been presented. The keyword FOOTER
identifies the path to the file that will be processed after all the results for the layer have been sent.
The keyword TEMPLATE specifies the path to the template that’s used to present detailed results.

This approach provides a layer-level alternative to the class-level query template. Instead
of defining the same template in every class of a layer that contains many classes, you can specify
the template once at the layer level. The presence of a layer-level query template indicates to
MapServer that a layer is searchable.

Note that you can put anything you want into these templates. There’s no reason that layer
summary information or graphics must be put in the HEADER. If you want something to appear
after the detailed results have been displayed, just put the tags and substitution strings in the
FOOTER template. But note that individual query results will be placed in the class- or layer-level
query template.

CHAPTER 5 USING QUERY MODE

Class-Level Query Templates

At the class level, there’s only one query-related keyword. The keyword TEMPLATE specifies the
path to the file that will be sent for each query result. You can think of this as a single line in a
tabular report, but it need not be so simple. The template could, for example, include a map
image for every result along with any text attribute information. But it's important to remember
that every result will make use of this template, so a query that might return a thousand results
is probably not a good candidate for the inclusion of an image for every match. In addition to
its role in formatting and presenting query results, the presence of a class-level template is also
a flag that indicates to MapServer that the layer is searchable.

So, to summarize what you've learned about query templates: detailed query results are
formatted and presented by means of class-level templates (unless a layer-level template has
been defined). Layer-level templates present layer summary data and set up the initial HTML
structures (e.g., tables) that are used by the class-level templates. Map-level templates summa-
rize results across all layers and set up the most basic HTML structures required by a web page
(like <html> and <body>). The functions are fairly distinct—if you can keep the names straight,
query templates are pretty easy to use.

The QUERYMAP Object

When querying a spatial database, it makes sense that you should be able to see the spatial
results of your query—that is, matches should be highlighted on the map image in some way
so that, for example, their spatial distribution will be visible. MapServer accomplishes this with
the QUERYMAP object, which specifies the parameters that determine how matching features are
rendered in a map image. For the map-only query modes, a map image is produced but tabular
results aren’t. For the others, a map image is by default not created. If you want to render a map
in these modes, you must define a QUERYMAP object.

Note The image created by using a QUERYMAP object is retrieved by using the substitution string [img].
This is the same string used to retrieve a normal map image. This shouldn’t present a problem because the
querymap image will be displayed on a different page. However, it's possible to use a querymap as the main
map image, which allows the performance of the usual interactive tasks such as panning and zooming, as
well as making spatial queries.

A QUERYMAP objectbegins with the keyword QUERYMAP and is terminated by the keyword END.
The keyword COLOR specifies the RGB components of the color used to highlight matching
features. If omitted, COLOR defaults to yellow (255 255 0). The keyword SIZE specifies the width
and height (in pixels) of the map image that’s created. If omitted, the size defaults to the size
specified in the mapfile. The keyword STATUS determines whether the querymap will be drawn.
If the value is on, the map will be drawn; if off, it won’t.

The keyword STYLE determines the highlighting behavior of the querymap. If set to normal,
all features will be drawn as specified by layer setting (i.e., no highlighting is done). The value

135

136

CHAPTER 5 USING QUERY MODE

hilite will cause the matching feature to be drawn in the COLOR specified (or in yellow if it’s
omitted), while non-matching features will be drawn without highlighting. If the value is selected,
then only the matching features (in that layer) will be drawn—the rest won’t be rendered. Note
that layers not queried are always drawn without highlighting.

The JOIN Object

Associated with each shapefile is an attribute table stored in a dBase file. Because this is a very
common format, there’s often additional data in external dBase files. MapServer has the ability to
join rows in the external files with rows in the attribute table. A join is defined at the layer level—
which makes sense, since the JOIN object assumes that the attribute table for the layer is the
FROM table.

Note Only dBase (i.e., DBF) files can be joined.

MapServer makes a join by specifying a FROMitem in the attribute table and a T0 item in the
external table. When MapServer performs a query, it scans the attribute table and matches
records based on the selection criteria specified (spatial or attribute). For each matching record,
it compares the value of the FROM item with values of the TO item in all the records of the external
table. If the TO item in the external record equals the FROM item in the selected feature, the items
contained in the external record are appended to the attribute table record of the matching
feature. This assumes that there’s only a single record in the external table that has a TO value
equal to the FROM value. If this is the case, then the join is one-to-one and will produce a single
result for each matching feature. If there’s more than one external record for an attribute record,
then the join is one-to-many. A one-to-many join behaves as if there are separate (but identical)
matching features for each external record that’s joined.

Note In order to display attributes from the joined table in a query template, MapServer uses substitution
strings with a particular syntax. This syntax is similar to the syntax for accessing ordinary attributes. Both will
be described in the following section, “Substitution Strings and CGl Variables.”

A JOIN object begins with the keyword JOIN and is terminated by the keyword END. Joins
must have a unique name in order to be referenced in a template. The value of the keyword
NAME identifies the JOIN object. The absolute path to the table that’s to be joined is specified by
the keyword TABLE. The keyword FROM specifies the item in the shapefile that’s used to define
one side of the join. The keyword TO specifies the item in the external table that defines the
other side of the join. The default join type is one-to-one, but the keyword TYPE can be used to
specifymultiple (one-to-many) or single (one-to-one).

If a join is one-to-many, MapServer needs to know what to do with the multiple joined
records. The keyword TEMPLATE identifies a template file that’s processed once for each record

CHAPTER 5 USING QUERY MODE

in the join. This template can only contain substitution strings for attributes in the joined table.
A one-to-one join doesn’t require this step—it uses the class-level query template defined in
the mapfile. (See Chapter 11 for a description of the JOIN-level template.)

Note Attributes in the joined table are available for display, but they can’t be queried.

Substitution Strings and CGI Variables

There are a great many substitution strings and CGI variables available to MapServer query
applications. Some have been mentioned already and more will be described here. Some will
be left to Chapter 11, “MapServer Reference.”

Query Substitution Strings

The general syntax of query substitution strings is the same as that already discussed—a name
delimited by square brackets. This section will only describe substitution strings that will be
used in this chapter’s application. Note that they're available only when processing the results
of queries.

[itemname], [itemname_esc], and [itemname_raw]

To access an item in a shapefile attribute table, use the item name delimited by square brackets. In
other words, attribute names are treated the same way as CGI variables. In addition to the value of
the item, escaped versions are available for use in URLs, as well as for raw values. For URLs,
_esc is appended to the item name, and for raw values, raw is appended to the item name.

Note When MapServer replaces a substitution string with a value, it doesn’t know how that value is going
to be used. By default, MapServer replaces some characters (such as < and >) with strings that won’t be
confused with HTML syntactic elements (such as &1t ; and > ;). The replacements always begin with & and
end with a semicolon.

Similarly, the blank space, /, and & are syntactically meaningful constituents of URLs. MapServer can replace
the blank space by substituting a +, and it can replace the other characters by concatenating a % symbol and
the character’s hexadecimal code. For example, the escaped version of the string /this is a URL& s
%2Fthis+is+a+URL%26. If neither of these options is appropriate, then unescaped, raw values are also
available.

[joinname_itemname], [joinname_itemname_esc], and [joinname_itemname_raw]

To access an item in a joined table, append an underscore character and the item name to the
join name specified in the mapfile, and enclose the string in square brackets. There are also
escaped and raw versions of the joined items.

137

138

CHAPTER 5 USING QUERY MODE

[nr], [nl], and [nir]

These substitution strings all present summary data about the query. [nr] represents the total
number of results, [n1] is the number of layers that are returning results, and [nlr] is the total
number of results in the current layer.

[rn] and [Irn]

[rn] is the result number (i.e., a sequence number starting at 1 and counting all results regardless
oflayer). [1rn] is the result number (starting at 1) within the current layer.

[cl]

[c1] is the current layer name.

lid]

This last string isn’t specifically query related, but it’s used in retrieving saved queries, so I'm
including it here. Every time MapServer is invoked, it generates a (more or less) unique session
ID number from the system time and the process ID. This number is appended to the base map
name defined in the mapfile, and used to identify the various components created in a single
invocation (such as image names, queryfile names, etc.). This substitution string makes that
session ID available for retrieving, for example, saved queryfiles.

Query CGI Variables

The following section describes some of the CGI variables available to MapServer query
applications.

img, img.x, and img.y

When used as a substitution string ([img]) and embedded in a form, this variable contains the
name of the map image to retrieve. However, as a CGI variable, it’s used to return the image
coordinates (in pixels) of a mouse click. The actual variables returned are img.x and img.y.

imgext [minx] [miny] [maxx] [maxy]

imgext contains the extent of the image that MapServer has already created and that’s pointed
to by the substitution string [img]. It consists of a space-delimited string of coordinates for the
lower-left and top-right corners of the extent.

imgxy [x] [y]
imgxy specifies the image coordinates (in pixels) of a mouse click. This is used in the main

application template to produce a “synthetic” click point at the center of the map image when
the user clicks the Refresh button instead of the map image.

CHAPTER 5 USING QUERY MODE

glayer [name]

The value assigned to qlayer is the name (as used in the mapfile) of the layer to query. If omitted, all
layers are queried in sequence.

gitem [name]

The value assigned to qitemis the name of the attribute to be queried. If omitted, all attributes
are queried.

gstring

The value assigned to gstring is the expression used in attribute queries. This can be a simple
text string, a regular expression, or a logical expression. The syntax is the same as the class
EXPRESSION syntax in the mapfile.

queryfile [filename]

The value assigned to queryfile is the path to the queryfile that’s loaded before any processing.
This file is created if savequery is set to true.

savequery [true] [false]

When set to true, savequery causes MapServer to save query results in a file. This file is stored
in the location pointed to by the map-level keyword IMAGEPATH in the mapfile. The name consists of
the process ID appended to the map name (as defined in the mapfile), and an extension of qy.

slayer

slayer specifies the layer to select when performing a FEATUREQUERY or ITEMFEATUREQUERY. This
layer must be a polygon layer.

A Query Application

Having reviewed aspects of MapServer that relate to queries, I'll now turn to a detailed analysis
of a complete application. It will demonstrate the use of all the query modes described previously,
but will be limited to a fairly simple map. The spatial data set consists of a polygon shapefile
describing countries of the world and a point shapefile that contains city information. In order
to demonstrate the use of joins, another dBase file is used that contains population informa-
tion relating to some of the cities. The map has two searchable layers: the first for countries and
the second for cities. You can retrieve all the code used in this book from the download area of
the Apress website (www.apress.com). The spatial data set is also available from the same loca-
tion. The files for this application can be found in the archive fourth.zip.

The Mapfile

The mapfile for this application is named fourth.map. The code in this file (with line numbers
added) is shown in Listing 5-1. If you haven’t downloaded the code, open a file with any text
editor and enter the code from the listing, and then save it as fourth.map.

139

140

CHAPTER 5 USING QUERY MODE

Lines 008 through 015 in the following code snippet should be familiar. The map name has
been set to Fourth in Line 008. Map units are decimal degrees. The size of the map is 640 pixels
by 320 pixels, and the background color of the image is set to blue in Line 012. The image type
is GIF. The location of the spatial data sets is specified by SHAPEPATH in Line 014. The font set is
identified in Line 015.

008 NAME "Fourth"

009 UNITS dd

010 EXTENT -180.0 -85.0 180.0 85.0

011 SIZE 640 320

012 IMAGECOLOR 200 225 255

013 IMAGETYPE gif

014 SHAPEPATH "/home/mapdata/"

015 FONTSET "/var/www/htdocs/fontset.txt"

used as base image name

units are decimal degrees
map extent

map image size in pixels
background color

image type jpeg/gif/png

path to data directory

pointers to fonts

The WEB object in Lines 020 through 029 is very similar to the WEB objects defined in the
previous applications. It defines the template file, the image path, and the image URL for this
application. Remember that the template specified by the keyword TEMPLATE in the WEB object
is the main template for the application—it’s not a query template.

The WEB object contains three new keywords that are used by a MapServer query applica-
tion. HEADER specifies the name of the top-level query template that’s processed before
anything else. FOOTER specifies the name of the top-level template that’s processed after every-
thing else has been sent. Recall that both of these files are just HTML fragments. They need to
be assembled with other fragments to form a complete web page. On the other hand, the file
specified by EMPTY is a complete web page that’s sent if a query has no results. (I'll discuss the
contents of all the template files used by this application in the next section, “The HTML
Template.”

019 WEB

020 # A header/footer defined in a web object is displayed
021 # before/after any individual query response is made.
022 # It is displayed only once.

023 #

024 HEADER "/var/www/htdocs/fourth_web header.html"

025 FOOTER "/var/www/htdocs/fourth web_footer.html"

026 EMPTY "/fourth empty.html" # URL

027 TEMPLATE "/var/www/htdocs/fourth.html"

028 IMAGEPATH "/var/www/htdocs/tmp/"

029 IMAGEURL "/tmp/" # URL

030 END

Following the WEB object is the reference map defined in Lines 034 through 041. The refer-
ence image used is fourth_worldref.gif (included in the source distribution) and its size is 320
pixels by 160 pixels. Setting at least one COLOR component to -1 means that that the fill color of
the reference box is transparent. Finally, the OUTLINECOLOR of the box is red.

CHAPTER 5 USING QUERY MODE

034 REFERENCE

035 IMAGE "/var/www/htdocs/fourth worldref.gif"
036 SIZE 320 160

037 EXTENT -180.0 -85.0 180.0 85.0

038 STATUS ON

039 COLOR -1 -1 -1

040 OUTLINECOLOR 255 0 O

041 END

Next is the QUERYMAP object defined in Lines 045 through 050. Setting STATUS on means that
the amap image will be rendered. STYLE hilite means that the selected feature will be highlighted
in the COLOR yellow, while unselected features will be rendered according to the parameters
specified in the layer objects. The size of the image is 320 pixels by 160 pixels.

045 QUERYMAP

046 STATUS on # draw query map

047 STYLE hilite # highlight selected feature
048 COLOR 255 255 0 # in yellow

049 SIZE 320 160

050 END

Note A querymap image will only be created if a QUERYMAP object is defined, but the image won’t be
displayed unless the appropriate syntax is inserted into one of the query templates.

A polygon layer named Countries is specified in Lines 054 through 078. It retrieves its
spatial data from a shapefile named countries.

054 LAYER

055 NAME "Countries"
056 STATUS on

057 TYPE polygon
058 DATA "countries"

The keyword HEADER in Line 062 identifies the template that will be processed before any
results are returned from this layer. The keyword FOOTER identifies the template that will be
processed after all results from this layer have been returned.

062 HEADER "/var/www/htdocs/fourth countries header.html"
063 FOOTER "/var/www/htdocs/fourth countries footer.html"

When a mouse click occurs on a map image while MapServer is in a spatial query mode,
the program looks for features that are nearby—if they’re close enough, MapServer counts
them as matches. The keyword TOLERANCE sets the numerical limit of “close enough,” and

141

142

CHAPTER 5 USING QUERY MODE

TOLERANCEUNITS defines the units of TOLERANCE. As noted previously, the default TOLERANCE is 3
and the default TOLERANCEUNITS is pixels, but TOLERANCEUNITS can take any one of the following
values: pixels, feet, inches, kilometers, meters, miles, or dd.

064 TOLERANCE 1 # must be within 1 tolerance unit
065 TOLERANCEUNITS miles # units for tolerance values is miles

An unnamed CLASS is defined in Lines 66 through 77. There’s no class EXPRESSION, so
MapServer defaults to selecting all features in the data set, and each feature is rendered in the
gray COLOR specified. There’s a new class-level keyword, TEMPLATE. This specifies the query
template that will be used to present each matching record whenever this layer is queried.
Recall that this query template is merely an HTML fragment and must be assembled with other
fragments to build a complete web page. Since this layer isn't used to label features—that will
be done in an ANNOTATION layer—no LABEL object is defined.

066 CLASS

067 # A template defined at the class level is used to

068 # display the results for each reponse to a query. If a
069 # query results in N hits, then the template will be used
070 # N times. To be queriable a layer must specify a CLASS
071 # level template.

072 #

073 TEMPLATE "/var/www/htdocs/fourth_countries_query.html"
074 STYLE

075 COLOR 199 199 199

076 END

077 END # end class

078 END # end layer

A point layer named Cities is defined in Lines 082 through 127. It uses the shapefile cities.
The CITY item in the data set will be used to label the features. LABELCACHE is set to on, which
allows labels to be placed without interfering with other labels.

082 LAYER

083 NAME "Cities"

084 STATUS on

085 TYPE point

086 DATA "cities"

087 LABELITEM "CITY" # labels use value in column "CITY"
088 LABELCACHE on

Query HEADER and FOOTER templates are specified for this layer in Lines 092 and 093 to
presentlayer summary information. TOLERANCE and TOLERANCEUNITS are specified to define how
close a mouse click has to be to a feature for a match to be accepted.

092 HEADER "/var/www/htdocs/fourth_cities_header.html"
093 FOOTER "/var/www/htdocs/fourth cities footer.html"
094 TOLERANCE 1 # must be within 1 tolerance unit

095 TOLERANCEUNITS miles # units for tolerance values is miles

CHAPTER 5 USING QUERY MODE

An unnamed CLASS is specified in Lines 096 through 115. Since no EXPRESSION is used to
classify the data, each feature in the data set will be rendered as a single black pixel. The keyword
TEMPLATE specifies the class-level query template that will be used to present each result.

096 CLASS

101 TEMPLATE "/var/www/htdocs/fourth _cities query.html"
102 STYLE

103 COLOR 0 0 0 # symbol color is black

104 END

A LABEL is defined in Lines 105 through 114. It renders labels in bold, red, 8-point Arial. The
label text is antialiased and centered below the feature it labels. Each label is drawn with a
white BACKGROUNDCOLOR. Labels for the same feature must be at least 50 pixels apart.

105 LABEL

106 TYPE truetype # use truetype font

107 FONT "arialbd" # use arial bold

108 SIZE 8 # use 8 point size

109 COLOR 255 0 0 # color text red

110 BACKGROUNDCOLOR 255 255 255 # render text on white bg
111 MINDISTANCE 50 # labels > 50 pixels apart
112 POSITION 1c # center labels below feature
113 ANTIALIAS true # antialias the text

114 END # end label

115 END # end class

Ajoin is defined in Lines 121 through 126. The external table to which the join is made is
specified by the keyword TABLE. Joins are only possible between dBase tables. The join is given
a NAME so that it can be referenced in the query template. Next, the two items that are used to
link a record in the shapefile to arecord in the external table are given by the keywords FROM and
TO. FROM identifies an item in the shapefile attribute table, and TO identifies the corresponding item
in the external table. In this case, the items have the same name, but this isn’t a requirement.
The layer is terminated in Line 127.

121 JOIN

122 TABLE "/var/www/htdocs/fourth join.dbf"
123 NAME "test-join"

124 FROM "CITY"

125 TO "CITY"

126 END

127 END # end layer

Aline layer is defined in Lines 131 through 141. It’s based on the same data set as that used
for the Countries layer. As in previous applications, line layers are used to draw the boundaries
of polygon layers. Recall that only a polygon can have a fill color, but a polygon border can only
be rendered as a 1-pixel-wide line. In order to draw a wider border around a filled polygon, it’s
necessary to render it in two steps—in the first step, the area is filled but no border is specified;
in the second step, the border is drawn. In the present case, the default symbol, which is a one-
pixel-wide black line, is used. Because of this, you could actually omit this layer by instead

143

144

CHAPTER 5 USING QUERY MODE

specifying an OUTLINECOLOR in the default class in the Countries layer. This would also create a
1-pixel-wide line.

131 LAYER

132 NAME "Boundaries"
133 STATUS default

134 TYPE line

135 DATA "countries"
136 CLASS

137 STYLE

138 COLOR 0 0 O
139 END

140 END # end class

141 END # end layer

Finally, an ANNOTATION layer for the Countries layer is specified in Lines 144 through 165.
The label is rendered as italic, 8-point Arial on a white background. The text is antialiased and
labels are centered on the polygon. Labels for the same feature must be at least 50 pixels apart.

144 LAYER

145 STATUS DEFAULT # this layer is always rendered
146 TYPE annotation

147 DATA "countries"

148 LABELITEM "STATE" # labels use value in column "STATE"
149 LABELCACHE on

150 CLASS # class renders line & label
151 STYLE

152 COLOR 0 0 O # line color is black

153 END

154 LABEL

155 TYPE truetype # use truetype font

156 FONT "arialbi" # use arial bold

157 SIZE 8 # use 8 point szie

158 COLOR 0 0 O # color text black

159 BACKGROUNDCOLOR 255 255 255 # render text on white bg
160 MINDISTANCE 50 # labels > 50 pixels apart

161 POSITION cc # labels in center of feature
162 ANTIALIAS true # antialias the text

163 END # end label

164 END # end class

165 END # end layer
166 END # end of map file

Surprisingly, this mapfile contains only a few new keywords. Nevertheless, these few additions
allow you to produce an interactive spatial query application that’s quite elegant. Of course,
you'll need to provide some query templates to display results, but these are very simple HTML
fragments. In fact, the most complicated HTML will be the main application template, but this
is really no more complicated than in previous applications. This is examined in the next section.

CHAPTER 5 USING QUERY MODE

The Initialization File

This application uses a separate HTML initialization file, as did the previous one. The code for
the initialization file is contained in the file fourth_i.html, and the contents (with added line
numbers) are shown in Listing 5-2. This initialization file differs little from those created in
Chapters 3 and 4—it identifies the name of the program and mapfile to use, it sets the value of
zoomsize, and it specifies that both layers (Countries and Cities) should be drawn.

001 <html>

002 <head><title>MapServer Fourth Application</title></head>
003 <body>

004 <form method=GET action="/cgi-bin/mapserv">
005 <input type="submit" value="Click Me">
006 <input type="hidden" name="program"

007 value="mapserv">

008 <input type="hidden" name="map"

009 value="/home/mapdata/fourth.map">
010 <input type="hidden" name=zoomsize

011 size=2 value=2>

Lines 012 through 015 show the first instance of MapServer’s ability to set mapfile parameters
based on CGI form variables. A CGI reference to a mapfile parameter consists of the sequence
of named mapfile hierarchy objects leading to the parameter, separated by the underscore
character. In this case, the keyword TOLERANCE is found in the Cities layer, which is contained
in the mapfile. So the name used to reference this value ismap_Cities tolerance. Here, it has
been assigned a value of 100 units. The value of keyword TOLERANCEUNITS in that layer of the
mapfile determines whether the TOLERANCE is measured in pixels, meters, miles, or one of the
other possible units. This process is repeated to set the TOLERANCE for the Countries layer. Lines 018
and 019 specify the selection layer (slayer), which is set to Countries. The Countries layeris the
only searchable polygon layer in the mapfile, so no other value makes sense. It can’t be changed
from the template file.

012 <input type="hidden" name=map Cities tolerance
013 size=4 value=100>

014 <input type="hidden" name=map Countries tolerance
015 size=4 value=100>

016 <input type="hidden" name="layers"

017 value="Cities Countries">

018 <input type="hidden" name="slayer"

019 value="Countries">

Lines 020 through 027 initialize the values of several query-related CGI variables to nulls.
These variables can later be set interactively in the template file.

The form variable mapshape contains the list of vertex coordinates (in map units) that define
the shape of the query region. The first coordinate pair must be the same as the last pair. imgshape
is used in the same way as mapshape, but the coordinates are expressed in image (pixel) coordi-
nates. The variable imgbox contains the top-left and bottom-right coordinates (in image units)
of arectangular region that will be used as a query region. This is the reverse of the usual extent
since image coordinates increase downward.

145

146

CHAPTER 5 USING QUERY MODE

020 <input type="hidden" name="mapshape" value="">
021 <input type="hidden" name="imgshape" value="">
022 <input type="hidden" name="1imgbox" value="">

Lines 023 through 027 initialize the query expression (qstring), the query layer (qlayer),
the query item (qitem), the shape index (shapeindex), and savequery. The variable shapeindex
will be used later to select features based on the shape index. Lines 029 and 030 close the open tags.

023 <input type="hidden" name="gstring" value="">
024 <input type="hidden" name="qlayer" value="">
025 <input type="hidden" name="gitem" value="">
026 <input type="hidden" name="shapeindex" value="">
027 <input type="hidden" name="savequery" value="">
028 </form>

029 </body>
030 </html>

The HTML Template

The template file for this application is fourth.html. The code is shown in Listing 5-3. Lines 003
through 018 of the file are new. Since MapServer has no HTML mechanism for remembering
its previous state, the short JavaScript function setMode() is used to reset the select state to
reflect the value of the hidden variable previousmode, which is a text string that contains the
mode name. It does this by scanning the array containing the elements of the mode check box
until it finds a match. It then sets the variable selectedIndex to the sequence number of the
matching mode. In Line 018, the onload event is used to trigger the execution of setMode().

001 <html><!-- fourth.html -->

002 <head><title>MapServer Fourth Application</title>

003 <script language="JavaScript" type="text/javascript">
004 <!--

005 function setMode()

006 // set map mode to the previous mode

007 { document.the map.mode.selectedIndex=0;

008 for (i=0;i<document.the _map.mode.length;i++){
009 if (document.the map.mode[i].value ==

010 document.the map.previousmode.value){
011 document.the_map.mode.selectedIndex=i;
012 }

013 }

014 };

015 // -->

016 </script>
017 </head>
018 <body bgcolor="#E6E6E6" onload="setMode()">

Lines 019 through 047 should be familiar from previous templates. They present the map
and reference images, display some map information, and set up the navigation controls for
pan and zoom.

019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047

CHAPTER 5 USING QUERY MODE

<form name="the map" method=CET action="[program]">
Query Definition
<table width="100%" border="1">
<tr><td width="60%" rowspan="6" align="center">
<input name="img" type="image" src="[img]
width=640 height=320 border=2>
<input type="submit" value="Refresh"></td>
<td width="40%" align="center" colspan="3">

</td></tr>
<tr><td align="left" colspan="2">
Map scale: 8nbsp 1:[scale]
</td></tr>
<tr><td align="left" colspan="2">
Click x,y:8nbsp 8nbsp [mapx], [mapy]
</td></tr>
<tr><td align="left" colspan="2">
Map Extent:8nbsp [mapext]</td></tr>
<tr><td align="center">Navigation</td>
<td align="center">Layers</td></tr>
<tr><td align="left">
<input type=radio name=zoomdir
value=0 [zoomdir 0 check]> Pan

<input type=radio name=zoomdir
value=1 [zoomdir 1 check]> Zoom In

<input type=radio name=zoomdir
value=-1 [zoomdir -1 check]> Zoom Out

<input type=text name=zoomsize
size=3 value=[zoomsize]> Size </td>

n

Lines 048 through 054 set the binary check box values for the layer variable that returns a

list of layers to be rendered. Similar to the select variables associated with an option value, the
CGl variable Cities_check represents the state of the check box associated with the Cities
value of the variable layer. If the check box is checked, then MapServer sets the value of
Cities_check to Checked. If not, it’s set to null. MapServer substitutes current values for these
bracketed substitution strings when the template is scanned before sending back to the user.

048
049
050
051
052
053
054

<td align="left">
<input type="checkbox" name="layer"
value="Cities" [Cities check]>
Cities

<input type="checkbox" name="layer"
value="Countries" [Countries check]>
Countries</td></tr>

Some new material is shown in Lines 059 through 081, which contains a list of modes that

the user can now select. This list of modes includes all of MapServer’s query modes except for
the map-only modes. Recall that the map-only modes produce a map but no tabular output.

147

148

CHAPTER 5 USING QUERY MODE

059 <td rowspan=1 valign="top" align="left">
060 <select name="mode">

061 <option value="browse">

062 Browse</option>

063 <option value="query">

064 Query</option>

065 <option value="nquery">

066 Nquery</option>

067 <option value="itemquery">

068 Itemquery</option>

069 <option value="itemnquery">
070 Itemnquery</option>

071 <option value="featurequery">
072 Featurequery</option>

073 <option value="featurenquery">
074 Featurenquery</option>

075 <option value="itemfeaturequery">
076 Itemfeaturequery</option>

077 <option value="itemfeaturenquery">
078 Itemfeaturenquery</option>

079 <option value="indexquery">
080 Indexquery</option>

081 </select></td>

Following are several blocks that allow the user to change the values of query-related variables
interactively. Lines 082 through 086 set the query layer.

082 <td align="right">

083 Query layer:</td>

084 <td align="left">

085 <input type=text name="glayer" size=10
086 value="[glayer]"></td>

Lines 087 through 091 set the imgbox coordinates.

087 <td align="right">

088 imgbox coords:</td>

089 <td align="left">

090 <input type=text name=imgbox size=25
091 value=[imgbox]></td></tr>

Lines 095 through 099 set the query item.

095 <td align="right">

096 Query item:</td>

097 <td align="left">

098 <input type=text name="gitem" size=10

099 value="[gitem]"></td>

100
101
102
103
104

108
109
110
111
112

113
114
115
116
117

121
122
123
124
125
126
127

128
129
130
131
132

136
137
138
139
140
141
142

CHAPTER 5 USING QUERY MODE

Lines 100 through 104 set the imgshape coordinates.

<td align="right">
imgshape coords:</td>
<td align="left">
<input type=text name="imgshape" size=25
value="[imgshape]"></td></tr>

Lines 108 through 112 set the query string.

<td align="right">
Query string:</td>
<td align="left">
<input type=text name=qstring size=25
value=[qgstring]></td>

Lines 113 through 117 set the mapshape coordinates.

<td align="right">
mapshape coords:</td>
<td align="left">
<input type=text name="mapshape" size=25
value="[mapshape]"></td></tr>

Lines 121 through 127 set the TOLERANCE value for the Cities layer.

<td align="right">
Cities Tolerance:</td>
<td align="left">
<input type=text
name=map_Cities tolerance size=4
value=[map _Cities tolerance]>
miles</td>

Lines 128 through 132 set the shapeindex.

<td align="right">
Shape index:</td>
<td align="left">
<input type=text name=shapeindex size=10
value=[shapeindex]></td></tr>

Lines 136 through 142 set the TOLERANCE value for the Countries layer.

<td align="right">
Countries Tolerance:</td>
<td align="left">
<input type=text
name=map_Countries tolerance size=4
value=[map_Countries tolerance]>
miles</td>

149

150

CHAPTER 5 USING QUERY MODE

Finally, Lines 149 through 155 set the current values of the hidden form variables that are
initialized to nulls in the initialization file. These are used to maintain state. The value of imgxy
represents a sort of synthetic mouse click. If the user selects a spatial query mode and clicks
Refresh rather than the map image, MapServer will need a mouse click location to search. In
this case, it’s set to the center of the image. imgext and [mapext] are used to track changes to the
map image as the user zooms and pans. The value of imgext for the next invocation is set to the
mapext of the previous invocation. Lines 151 and 152 store the name of the mapfile and the
name of the program to use. The variable slayer is set permanently to Countries since there’s
no other searchable polygon layer defined in the mapfile. The previous mode is saved, and
savequery is set to true.

149 <input type="hidden" name="imgxy" value="320 160">

150 <input type="hidden" name="imgext" value="[mapext]">

151 <input type="hidden" name="map" value="[map]">

152 <input type="hidden" name="program" value="[program]">

153 <input type="hidden" name="slayer" value="Countries">

154 <input type="hidden" name="previousmode" value="[previousmode]">
155 <input type="hidden" name="savequery" value="true">

Lines 156 through 157 close the open tags.

156 </form>
157 </body>

The Query Templates

The query templates provide MapServer the means to present query results. (Indirectly, they
also tell MapServer which layers are searchable, since a layer without a class- or layer-level
template can’t be searched.) Query templates are HTML fragments that MapServer glues
together to create a web page that displays the results of a query. Although it might seem to be
a complicated way of accomplishing that result, MapServer really has no choice. It doesn’t
know in advance which layers may have query results, and it doesn’t know how many results
each layer might have. As such, the job of formatting has to be broken up into chunks. This
application uses eight query templates. Several are trivial and all are short.

Map-Level Templates

Map-level query templates are defined within the WEB object. There are two templates: a HEADER
and a FOOTER, and a complete web page for reporting a query that returns no results.

The WEB HEADER Template

The map-level query template fourth web_header.html is specified by the keyword HEADER (on
Line 024 of the mapfile) and shown in Listing 5-4. The template is used by MapServer to display
information that summarizes the result set as a whole. Note that it begins with the HTML tags
that start every web page: <html>, <head>, and <body>. General but useful information, such as
the geographical extent of the displayed map image and the point at which the mouse click

occurred, is given in Lines 007 through 011. (You might want to know this since a spatial search
won'’t find a match with any feature located outside the viewable extent of the map image.)

CHAPTER 5 USING QUERY MODE

Note that the click point is given in both image coordinates (number of pixels from the left-
hand side and top of the image) and map coordinates (degrees of latitude and longitude if the
map projection is geographic; meters, kilometers, or miles if it’s not).

001 <html>

002 <head><title>MapServer - Fourth Application</title></head>
003 <body bgcolor="#E6E6E6">

004 Query Results

005 <table border="1">

006 <tr><td>Search extent:</td>

007 <td>[imgext]
</td></tr>

008 <tr>

009 <td>Click Point:</td>

010 <td>[img.x], [img.y] (Image coordinates)

011 [mapx], [mapy] (Map coordinates)</td>

Query summary results are reported in Lines 015 and 016 using the query-specific substi-
tution strings [nl] and [nr], which represent the number of layers with results and the total
number of results, respectively.

012 </tr>

013 <tr>

014 <td>Query Results:</td>

015 <td>Layers with results=[nl]

016 Total number of results=[nr]</td>
017 </tr>

018 </table>

These results are formatted in a table that’s contained entirely within the HEADER template.
The table is terminated at Line 018.

The WEB FOOTER Template

The code for the template fourth web_footer.html, defined on Line 025 of the mapfile by the
keyword FOOTER, is shown in Listing 5-5. Lines 001 through 017 define a URL template that
saves the current state of the application. It contains substitution strings and is embedded in
an anchor tag. When the user clicks the link, MapServer reloads the original application template
with the saved values. It’s a cleaner interface than one that would require the user to click the
Back button to return to the previous page.

001 <a href="http://localhost/cgi-bin/mapserv?

002 program=mapserv@map=%2Fvar%2Fwww%2Fhtdocs%2Ffourth.map&
003 zoomsize=[zoomsize]&

004 map_Cities tolerance=[map_Cities tolerance]&

005 map_Countries tolerance=[map_Countries tolerance]&

006 layers=[layers esc]&

007 slayer=Countries&

008 mapshape=[mapshape_esc]8

009 imgshape=[imgshape esc]&

010 imgbox=[imgbox esc]&

151

152

CHAPTER 5 USING QUERY MODE

011 qgstring=[qstring]&

012 qlayer=[qlayer]&

013 qitem=[qitem]&

014 shapeindex=[shapeindex]&
015 savequery=[savequery]&
016 previousmode=[mode]&

017 mode=browse">

Because this is a URL, spaces aren’t allowed, so escaped versions of the substitution strings
[layers_esc], [mapshape_esc], [imgshape_esc], and [imgbox_esc] are used. The string must
also be formatted on a single line (which won't fit the page width of this book) or on multiple
lines with no intervening spaces.

Line 018 identifies the link to the user, and Lines 019 and 020 close the open tags and
terminate the web page.

018 Return to Query Definition
019 </body>
020 </html>

The EMPTY Page

The web page specified by the keyword EMPTY on Line 026 of the mapfile is shown in Listing 5-6.
Lines 004 through 006 indicate an empty result set and tell the user what to do. Although the
code shown here is very simple, a more usable interface that leads the user back to the query
page would probably be warranted in a production environment.

004 <h3> The query returned no results.</h3>
005 <h3> Click on the Back button on your browser to return
006 to the previous page.</h3>

The Countries-Layer Templates

The Countries layer contains three templates: a HEADER and FOOTER at the layer level, and a
TEMPLATE contained in the default class.

The Layer-Level HEADER Template

The code for the layer-level query HEADER for the Countries layer is found in the file
fourth_countries_header.html (specified by the keyword HEADER on Line 062 of the mapfile)
and shown in Listing 6-7. Note that is doesn’t begin with opening HTML tags—this is a frag-
ment, not a complete web page. It formats some text, sets up a couple of tables, and refers to
two images with the substitution strings [img] and [ref].

001 <HR>

002 lLayer: countries

003 <table>

004 <tr><th align="left">Query map</th>

005 <th align="left">Reference map</th></tr>
006 <tr><td></td>
007 <td></td></tr>

008 </table>

CHAPTER 5 USING QUERY MODE

There’s more to this image than might first appear. The [img] string is usually replaced by
an image of the map that’s created based on mapfile parameters. But since this HTML will be
processed in a query mode only, the image displayed will be the querymap image described in
the QUERYMAP object of the mapfile. Recall that a querymap highlights the selected features. In
this application, the QUERYMAP object specifies that the map size should be 320x160 pixels, and
the selected feature should be highlighted in yellow (COLOR 255 255 0).

Note The querymap will have the same extent as the main map from which the query was initiated. Most
of the formatting will be the same as well. The QUERYMAP object usually defaults to the main map parameters
defined in the mapfile.

The table that begins with the <table> tag in Line 009 specifies a row of headings that’s
terminated by the </tr> tag in Line 016. This isn’t a valid termination for a web page, and it
indicates that there’s more to come.

009 <table border=1>
010 <tr bgcolor=#CCCCCC>

011 <td bgcolor=#ffffff> </td>
012 <th>shpidx</th>

013 <th>COUNTRY</th>

014 <th>STATE</th>

015 <th>REGION</th>

016 <th>CONTINENT</th></tr>

The Class-Level Template

In order to display tabular query results from the Countries layer, MapServer uses a class-level
query template (specified by the keyword TEMPLATE on Line 082 of the mapfile) that’s processed
once for each matching feature. The code for this template is found in
fourth_countries_query.html and shown in Listing 5-8. This template consists of a single row
added to the table that’s opened in the fourth_countries_header.html template.

Every result in a layer is assigned a sequence number, starting at 1. This layer result number is
referenced by the substitution string [1rn] in Line 001 and causes the layer result number to be
displayed for every result.

Line 002 displays the shape index of this feature. Line 003 and Lines 012 through 015 are
table elements that contain an item name from the data set underlying the layer. These item
names are delimited by square brackets so that MapServer recognizes them as substitution
strings. Each substitution string is then replaced by its attribute value from the matching feature.

001 <tr><td>[lrn]</td>

002 <td>[shpidx]</td>
003 <td>[COUNTRY]</td>
004 <td>

012 [STATE]

153

154

CHAPTER 5 USING QUERY MODE

013 </td>

014 <td>[REGION]</td>
015 <td>[CONTINENT]</td>
016 </tr>

Lines 005 through 011 present another example of URL templates. In this case, the shape
index for every matching feature is embedded in a link attached to the STATE. When this link is
clicked, MapServer performs a query with mode set to indexquerymap. A querymap image is
created with the specified feature highlighted. The shape extent substitution string [shpext_esc]
uses the escaped form because it contains embedded blanks. Specifying mapext=shape means
the extent of the map that’s created will be just a little larger than the extent of the feature.

005 <a href="http://[host]/cgi-bin/[program]?
006 mode=indexquerymap&

007 qlayer=Countries&

008 shapeindex=[shpidx]&

009 shpext=[shpext_esc]&

010 mapext=shaped

011 map=[map]">

The Layer-Level FOOTER Template

When MapServer has finished processing all matching features in this layer, it sends the
FOOTER template specified for this layer (specified by the keyword FOOTER on Line 063 of

the mapfile) back to the browser. The code for this FOOTER template can be found in
fourth_countries footer.html and is shown in Listing 5-9. This code consists of a single line
that closes the table opened in fourth _countries header.html.

The Cities-Layer Templates

The Cities layer also contains three templates: HEADER and FOOTER (defined at the layer level),
and TEMPLATE (defined at the class level).

The Layer-Level HEADER Template

The code for the layer-level query HEADER template for the Cities layer is found in the file
fourth _cities header.html (specified by the keyword HEADER on Line 092 of the mapfile) and
shown in Listing 5-10. Again, this is a code fragment, not a complete page. Some formatting is
done, a table is opened, and a row of table headings is produced. The template ends with the
row termination tag </tr> in Line 010.

001 layer: cities

002 <table border=1>

003 <tr bgcolor=#CCCCCC><td bgcolor=#ffffff> </td>
004 <th>shpidx</th>

005 <th>CITY</th>

006 <th>STATE</th>

007 <th>COUNTRY</th>

008 <th>LAT</th>

009 <th>LONG</th>

010 <th>POPULATION(from join)</th></tr>

CHAPTER 5 USING QUERY MODE

The Class-Level Template

The code for the class-level query template for the Cities layer is found in

fourth_cities query.html and shown in Listing 5-11. Its name is specified by the keyword
TEMPLATE on Line 101 of the mapfile. This template presents attributes from the selected Cities
feature as a single table row. Lines 003 through 007 are substitution strings that consist of
attribute names from the spatial database enclosed in square brackets. Line 001 displays the
layer result number for every result.

001 <tr><td>[lrn]</td>

002 <td>[shpidx]</td>

003 <td>[CITY]</td>

004 <td>[STATE]</td>

005 <td>[COUNTRY]</td>

006 <td>[LAT]</td>

007 <td>[LONG]</td>

008 <td>[test-join POP]</td></tr>

In the Cities layer of the mapfile, a join is defined that joins the cities dBase attribute
table with an external table based on the CITY attribute. The external table contains only three
fields: the city name, the country name, and the population. The field named CITY is used as
the TO value when the join is defined. The field named POP contains a number that represents
the approximate population of the city. To reference the value of POP from a template, an
underscore character and the name of the field are appended to the name of the join (in this
case, test-join) and enclosed in square brackets (i.e., [test-join POP]), as shown in Line 011.
This template will be processed once for every matching feature in the Cities layer.

The Layer-Level FOOTER Template

After all the results from this layer have been processed, the FOOTER template for the Cities
layer will be processed. This template is named fourth _cities footer.html (specified by the
keyword FOOTER on Line 093 of the mapfile) and shown in Listing 5-12. It contains a single line
that closes the table opened in the HEADER template fourth _cities header.html.

Summary

The last several chapters have demonstrated the use of MapServer’s CGI interface, and have
made clear that applications of real utility can be built with CGI. You should take a moment to
consider the elegance of an application that can do so much and be so flexible without the
necessity of program writing. However, applications that need a more sophisticated user inter-
face, or that have more complex query capabilities, will require other tools. Server-side scripts
and real database management systems are two examples of how the functionality of MapServer
might be increased.

The next three chapters will introduce a more powerful way to access MapServer’s capabilities:
MapScript. MapScript is an API (application program interface) that allows applications written in
several language to make calls to MapServer functions and then use the results in whatever way

155

156

CHAPTER 5 USING QUERY MODE

the developer wishes. MapScript frees the developer from the limitations of the web-based
user interface and provides access to other tools (such as DBMSs) so that very powerful appli-
cations can be constructed. Such applications can provide map-rendering and spatial-query
capabilities as part of a suite of tools.

Three flavors of MapScript will be described: Perl MapScript, Python MapScript, and PHP
MapScript. You'll use each to build applications that provide a nearly identical look, feel, and
functionality, in order for you to gain a clear understanding of their similarities and
differences.

Code Listings

The code for this chapter is presented here without interruption.

Listing 5-1. The mapfile fourth.map

001 HHHHHHHHEHHHHE
002 #

003 # MapServer Fourth application

004 #

005 HHHHHHHHEHHHHE
006 # Map object

007 #

008 NAME "Fourth"

009 UNITS dd

010 EXTENT -180.0 -85.0 180.0 85.0

011 SIZE 640 320

012 IMAGECOLOR 200 225 255

013 IMAGETYPE gif

014 SHAPEPATH "/home/mapdata/"

015 FONTSET "/var/www/htdocs/fontset.txt"
016 #HHHHHHIHHHEHHHH
017 # Web object

used as base image name
units are decimal degrees
map extent

map image size in pixels
background color

image type jpeg/gif/png
path to data directory

#
#
#
#
#
#
#
pointers to fonts

018 #

019 WEB

020 # A header/footer defined in a web object is displayed
021 # before/after any individual query response is made.
022 # It is displayed only once.

023 #

024 HEADER "/var/www/htdocs/fourth web header.html"

025 FOOTER "/var/www/htdocs/fourth web footer.html"

026 EMPTY "/fourth empty.html" # URL

027 TEMPLATE "/var/www/htdocs/fourth.html"

028 IMAGEPATH "/var/www/htdocs/tmp/"

029 IMAGEURL "/tmp/" # URL

030 END

CHAPTER 5 USING QUERY MODE 157

031 HHHHHHHHHHEHHE
032 # Reference map

033 #

034 REFERENCE

035 IMAGE "/var/www/htdocs/fourth worldref.gif"
036 SIZE 320 160

037 EXTENT -180.0 -85.0 180.0 85.0

038 STATUS ON

039 COLOR -1 -1 -1

040 OUTLINECOLOR 255 0 O

041 END

042 HHEHHHEHHHHEHHEHHHE
043 # Querymap object

044 #
045 QUERYMAP

046 STATUS on # draw query map

047 STYLE hilite # highlight selected feature
048 COLOR 255 255 0 # in yellow

049 SIZE 320 160

050 END

051 HHHHHHIHHHHHHHHEH
052 # Country layer

053 #

054 LAYER

055 NAME "Countries"

056 STATUS on

057 TYPE polygon

058 DATA "countries"

059 # A header or footer defined at the layer level is displayed
060 # if that layer is a query layer. It is displayed only once.
061 #

062 HEADER "/var/www/htdocs/fourth _countries header.html"

063 FOOTER "/var/www/htdocs/fourth_countries footer.html"

064 TOLERANCE 1 # must be within 1 tolerance unit
065 TOLERANCEUNITS miles # units for tolerance values is miles
066 CLASS

067 # A template defined at the class level is used to

068 # display the results for each reponse to a query. If a
069 # query results in N hits, then the template will be used
070 # N times. To be queriable a layer must specify a CLASS
071 # level template.

072 #

073 TEMPLATE "/var/www/htdocs/fourth_countries query.html"
074 STYLE

075 COLOR 199 199 199

076 END

158

CHAPTER 5

077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

USING QUERY MODE

END # end class
END # end layer
FHHEHHHE
Cities layer

#
LAYER
NAME "Cities"
STATUS on
TYPE point
DATA "cities"
LABELITEM "CITY" # labels use value in column "CITY"
LABELCACHE on
A header or footer defined at the layer level is displayed
if that layer is a query layer. It is displayed only once.
#
HEADER "/var/www/htdocs/fourth cities header.html"
FOOTER "/var/www/htdocs/fourth cities footer.html"
TOLERANCE 1 # must be within 1 tolerance unit
TOLERANCEUNITS miles # units for tolerance values is miles
CLASS
A template defined at the class level is used to display
the results for each reponse to a query. If a result set
contains N, then the template will be used N times.
#
TEMPLATE "/var/www/htdocs/fourth cities query.html"
STYLE
COLOR 0 0 0 # symbol color is black
END
LABEL
TYPE truetype # use truetype font
FONT "arialbd" # use arial bold
SIZE 8 # use 8 point size
COLOR 255 0 0 # color text red
BACKGROUNDCOLOR 255 255 255 # render text on white bg
MINDISTANCE 50 # labels > 50 pixels apart
POSITION lc # center labels below feature
ANTIALIAS true # antialias the text
END # end label
END # end class
To use information stored in a DBF file external to a shape
file requires a JOIN. You must identify the external file
with the keyword TABLE. The NAME is the reference to use in
the template file. To link the shape to the external DBF,
FROM and TO specify the fields that must match.

CHAPTER 5 USING QUERY MODE 159

121 JOIN

122 TABLE "/var/www/htdocs/fourth join.dbf"
123 NAME "test-join"

124 FROM "CITY"

125 TO "CITY"

126 END

127 END # end layer
128 HHHHHHHHHHHE
129 # Line layer for Country boundaries

130 #

131 LAYER

132 NAME "Boundaries"
133 STATUS default
134 TYPE line

135 DATA "countries"
136 CLASS

137 STYLE

138 COLOR 00 O
139 END

140 END # end class

141 END # end layer
142 HHHHHHHEHHE
143 # Annotation layer for Countries

144 LAYER

145 STATUS DEFAULT # this layer is always rendered
146 TYPE annotation

147 DATA "countries"

148 LABELITEM "STATE" # labels use value in column "STATE"
149 LABELCACHE on

150 CLASS # class renders line & label
151 STYLE

152 COLOR 0 0 O # line color is black

153 END

154 LABEL

155 TYPE truetype # use truetype font

156 FONT "arialbi" # use arial bold

157 SIZE 8 # use 8 point szie

158 COLOR 0 0 O # color text black

159 BACKGROUNDCOLOR 255 255 255 # render text on white bg
160 MINDISTANCE 50 # labels > 50 pixels apart

161 POSITION cc # labels in center of feature
162 ANTIALIAS true # antialias the text

163 END # end label

164 END # end class

165 END # end layer
166 END # end of map file

160 CHAPTER 5 USING QUERY MODE

Listing 5-2. The HTML initialization file fourth_i.html

001 <html>

002 <head><title>MapServer Fourth Application</title></head>
003 <body>

004 <form method=GET action="/cgi-bin/mapserv">

005 <input type="submit" value="Click Me">

006 <input type="hidden" name="program"

007 value="mapserv">

008 <input type="hidden" name="map"

009 value="/home/mapdata/fourth.map">

010 <input type="hidden" name=zoomsize

011 size=2 value=2>

012 <input type="hidden" name=map Cities tolerance
013 size=4 value=100>

014 <input type="hidden" name=map_Countries tolerance
015 size=4 value=100>

016 <input type="hidden" name="layers"

017 value="Cities Countries">

018 <input type="hidden" name="slayer"

019 value="Countries">

020 <input type="hidden" name="mapshape" value="">
021 <input type="hidden" name="imgshape" value="">
022 <input type="hidden" name="imgbox" value="">
023 <input type="hidden" name="gstring" value="">
024 <input type="hidden" name="gqlayer" value="">
025 <input type="hidden" name="qitem" value="">
026 <input type="hidden" name="shapeindex" value="">
027 <input type="hidden" name="savequery" value="">
028 </form>

029 </body>
030 </html>

Listing 5-3. The template file fourth.html

001 <html><!-- fourth.html -->

002 <head><title>MapServer Fourth Application</title>

003 <script language="JavaScript" type="text/javascript">
004 <!--

005 function setMode()

006 // set map mode to the previous mode

007 { document.the_map.mode.selectedIndex=0;

008 for (i=0;i<document.the map.mode.length;i++){

009 if (document.the map.mode[i].value ==

010 document.the_map.previousmode.value){
011 document.the_map.mode.selectedIndex=i;

012 }

013 }

014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060

CHAPTER 5 USING QUERY MODE

};
/1 -=>
</script>
</head>
<body bgcolor="#E6E6E6" onload="setMode()">
<form name="the map" method=CET action="[program]">
Query Definition
<table width="100%" border="1">
<tr><td width="60%" rowspan="6" align="center">
<input name="img" type="image" src="[img]
width=640 height=320 border=2>
<input type="submit" value="Refresh"></td>
<td width="40%" align="center" colspan="3">

</td></tr>
<tr><td align="left" colspan="2">
Map scale: 8nbsp 1:[scale]
</td></tr>
<tr><td align="left" colspan="2">
Click x,y:8nbsp 8nbsp [mapx], [mapy]
</td></tr>
<tr><td align="left" colspan="2">
Map Extent:8nbsp [mapext]</td></tr>
<tr><td align="center">Navigation</td>
<td align="center">Layers</td></tr>
<tr><td align="left">
<input type=radio name=zoomdir
value=0 [zoomdir 0 check]> Pan

<input type=radio name=zoomdir
value=1 [zoomdir 1 check]> Zoom In

<input type=radio name=zoomdir
value=-1 [zoomdir -1 check]> Zoom Out

<input type=text name=zoomsize
size=3 value=[zoomsize]> Size </td>
<td align="left">
<input type="checkbox" name="layer"
value="Cities" [Cities check]>
Cities

<input type="checkbox" name="layer"
value="Countries" [Countries check]>
Countries</td></tr>
<tr><td colspan="3" align="center">Query</td></tr>
<tr><td colspan="3" align="center">
<table><tr><td rowspan=1 valign="top">
Map Mode:</td>
<td rowspan=1 valign="top" align="left">
<select name="mode">

n

161

162 CHAPTER 5 USING QUERY MODE

061 <option value="browse">

062 Browse</option>

063 <option value="query">

064 Query</option>

065 <option value="nquery">

066 Nquery</option>

067 <option value="itemquery">

068 Itemquery</option>

069 <option value="itemnquery">

070 Itemnquery</option>

071 <option value="featurequery">
072 Featurequery</option>

073 <option value="featurenquery">
074 Featurenquery</option>

075 <option value="itemfeaturequery">
076 Itemfeaturequery</option>

077 <option value="itemfeaturenquery">
078 Itemfeaturenquery</option>

079 <option value="indexquery">

080 Indexquery</option>

081 </select></td>

082 <td align="right">

083 Query layer:</td>

084 <td align="left">

085 <input type=text name="glayer" size=10
086 value="[glayer]"></td>

087 <td align="right">

088 imgbox coords:</td>

089 <td align="left">

090 <input type=text name=imgbox size=25
091 value=[imgbox]></td></tr>

092 <tr>

093 <td></td>

094 <td></td>

095 <td align="right">

096 Query item:</td>

097 <td align="left">

098 <input type=text name="gitem" size=10
099 value="[gitem]"></td>

100 <td align="right">

101 imgshape coords:</td>

102 <td align="left">

103 <input type=text name="imgshape" size=25
104 value="[imgshape]"></td></tr>
105 <tr>

106 <td></td>

107 <td></td>

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

<td

<td

<td

<td

<tr>

CHAPTER 5 USING QUERY MODE

align="right">

Query string:</td>

align="left">

<input type=text name=qstring size=25
value=[qgstring]></td>

align="right">

mapshape coords:</td>

align="left">

<input type=text name="mapshape" size=25
value="[mapshape]"></td></tr>

<td></td>
<td></td>

<td

<td

<td

<td

<tr>

align="right">

Cities Tolerance:</td>

align="left">

<input type=text
name=map_Cities tolerance size=4
value=[map Cities tolerance]>
miles</td>

align="right">

Shape index:</td>

align="left">

<input type=text name=shapeindex size=10
value=[shapeindex]></td></tr>

<td></td>
<td></td>

<td

<td

<td

</table>

</td></tr>
</table>
<input type="hidden"
<input type="hidden"
<input type="hidden"
<input type="hidden"
<input type="hidden"
<input type="hidden"

align="right">

Countries Tolerance:</td>

align="left">

<input type=text
name=map_Countries tolerance size=4
value=[map_Countries tolerance]>
miles</td>

align="center" colspan=2 bgcolor="#F5A5A5">

Feature query select layer:

Countries</td></tr>

name="1imgxy" value="320 160">

name="imgext" value="[mapext]">

name="map" value="[map]">

name="program" value="[program]">
name="slayer" value="Countries">
name="previousmode" value="[previousmode]">

163

164 CHAPTER 5 USING QUERY MODE

155 <input type="hidden" name="savequery" value="true">
156 </form>
157 </body>
158 </html>

Listing 5-4. The map-level query template fourth_web_header.html

001 <html>

002 <head><title>MapServer - Fourth Application</title></head>
003 <body bgcolor="#E6EGE6">

004 Query Results

005 <table border="1">

006 <tr><td>Search extent:</td>

007 <td>[imgext]
</td></tr>

008 <tr>

009 <td>Click Point:</td>

010 <td>[img.x], [img.y] (Image coordinates)

011 [mapx], [mapy] (Map coordinates)</td>
012 </tr>

013 <tr>

014 <td>Query Results:</td>

015 <td>Layers with results=[nl]

016 Total number of results=[nr]</td>

017 </tr>

018 </table>

Listing 5-5. The map-level query template fourth_web_footer.html

001 <a href="http://localhost/cgi-bin/mapserv?

002 program=mapserv8map=%2Fvark2Fwwwib2Fhtdocs%2Ffourth.map&
003 zoomsize=[zoomsize]&

004 map_Cities tolerance=[map_Cities tolerance]&

005 map_Countries tolerance=[map_Countries tolerance]&
006 layers=[layers esc]&

007 slayer=Countries&

008 mapshape=[mapshape_esc]8&

009 imgshape=[imgshape esc]&

010 imgbox=[imgbox esc]&

011 gstring=[qstring]&

012 qlayer=[qlayer]&

013 qitem=[qitem]&

014 shapeindex=[shapeindex]&

015 savequery=[savequery]&

016 previousmode=[mode]&

017 mode=browse">

018 Return to Query Definition

019 </body>

020 </html>

CHAPTER 5 USING QUERY MODE

Listing 5-6. The map-level “no results” web page fourth_empty.html

001
002
003
004
005
006
007
008
009

<head><title>MapServer - Fourth Application</title></head>
<body bgcolor="#E6GE6E6">
<center>
<h3> The query returned no results.</h3>
<h3> Click on the Back button on your browser to return
to the previous page.</h3>
</center>
</body>
</html>

Listing 5-7. The layer-level query template fourth_countries_header.html

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016

<HR>
Layer: countries
<table>
<tr><th align="left">Query map</th>
<th align="left">Reference map</th></tr>

<tr><td></td>
src="[ref]"></td></tr>

nan

<td><img border="1

</table>

<table border=1>

<tr bgcolor=#CCCCCC>

<td bgcolor=#ffffff> </td>
<th>shpidx</th>
<th>COUNTRY</th>
<th>STATE</th>
<th>REGION</th>
<th>CONTINENT</th></tr>

Listing 5-8. The class-level query template fourth_countries_query.html

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016

<tr><td>[1lrn]</td>
<td>[shpidx]</td>
<td>[COUNTRY]</td>
<td>
<a href="http://[host]/cgi-bin/[program]?
mode=indexquerymap&
glayer=Countriesd&
shapeindex=[shpidx]&
shpext=[shpext_esc]&
mapext=shaped
map=[map]">
[STATE]
<Jax</td>
<td>[REGION]</td>
<td>[CONTINENT]</td>
</tr>

165

166 CHAPTER 5 USING QUERY MODE

Listing 5-9. The layer-level query template fourth_countries_ footer.html

</table>

Listing 5-10. The layer-level query template fourth_cities_header.html

001 layer: cities

002 <table border=1>

003 <tr bgcolor=#CCCCCC><td bgcolor=#ffffff> </td>
004 <th>shpidx</th>

005 <th>CITY</th>

006 <th>STATE</th>

007 <th>COUNTRY</th>

008 <th>LAT</th>

009 <th>LONG</th>

010 <th>POPULATION(from join)</th></tr>

Listing 5-11. The class-level query template fourth_cities_query.html

001 <tr><td>[lrn]</td>

002 <td>[shpidx]</td>

003 <td>[CITY]</td>

004 <td>[STATE]</td>

005 <td>[COUNTRY]</td>

006 <tds[LAT]</td>

007 <td>[LONG]</td>

008 <td>[test-join POP]</td></tr>

Listing 5-12. The layer-level query template fourth_cities_footer.html

</table>

CHAPTER 6

Using Perl MapScript

Thus far, all the mapping applications you've considered have been based on MapServer
operating in CGI mode. While these examples have demonstrated some of MapServer’s powerful
features, they’ve been limited to displaying or querying only information that could be found
in its spatial datasets. If you wanted to query an external database based on the result of some
spatial query, you were out of luck—MapServer won’t do that. In addition, the web-based user
interface precludes the creation of smart applications that can respond more flexibly to user
inputs than the click, process click, draw map sequence of operations that constitutes MapServer’s
repertoire. MapServer responses are limited to presenting maps and displaying query results
by means of templates.

However, there’s another, more powerful way to use MapServer. This method is called
MapScript. MapScript provides access to all of MapServer’s underlying functionality, making it
available as a convenient API (application program interface). This is just a fancy way of saying
that all the procedures and function calls that the MapServer executable makes to its supporting
libraries are also available to other programs.

MapsScript lives in the object-oriented world, so the API is more properly characterized as
a collection of classes with methods and attributes. And since different languages have different
structures and syntax, the API exhibits some language-specific differences. In addition to this,
there are two parallel maintenance efforts. PHP MapScript is maintained manually, while the
Perl and Python versions make use of a software interface generator to automate the process.

Note If you're unfamiliar with Perl’s object-oriented features, consider picking up a copy of Beginning
Perl, Second Edition, by James Lee and Simon Cozens. (Apress, 2004).

There are three versions of the API that you'll be looking at in this book. This chapter covers
Perl MapScript, while the next two chapters will cover Python MapScript and PHP/MapScript,
respectively. The material presented here won’t be an exhaustive review of MapScript—that
topic alone is worthy of an entire book. However, you'll be given the tools to build some working
MapScript applications—and with those demonstrations under your belt, you’ll have the back-
ground to dig into the details of the API and broaden your understanding of MapScript.

Perlis a programming language created by Larry Wall in the late 1980s. It was initially used
to automate system administration tasks. An interpreted language with powerful string-handling

167

168

CHAPTER 6 USING PERL MAPSCRIPT

functions, Perl provides an excellent environment for performing these tasks. It has become,
however, more than a simple scripting language for parsinglog files and generating reports. It’s
widely used in the online environment to support interactive websites (via CGI) and build
custom network applications. Modules exist that provide database interfaces to Oracle, DB2,
and MySQL, and there are modules that provide numerical analysis routines and even the
ability to manipulate MP3 files. Perl is open source and freely available for download and use.

Building and Installing Perl MapScript

Although the Perl MapScript code is supplied with the MapServer distribution, it's not compiled
by default when MapServer is built. Building MapScript is easy—but before proceeding to that
step, I'll provide a brief description of the Perl installation procedure (in the unlikely event that
you don’t have a functioning Perl interpreter).

Building Perl

Perl is available in a source code distribution and a variety of platform-specific precompiled
binaries. The installation described here will compile and install from the source distribution.
If you prefer (or are compelled) to use one of the binary distributions, consult the documenta-
tion provided with the download for installation instructions. There are many configuration
options available (e.g., support for threads and large files, 64-bit support, etc.)—if you need this
kind of functionality, read the INSTALL document. The installation described here will use the
default options, which in most cases will suffice.

Retrieve the source distribution from www.perl.com and untar it into /usr/local/src/.
Then execute the following command:

cd /usr/local/src/perl-5.8.X

5.8.X represents the version number of the distribution you downloaded. Execute the
following commands:

./Configure -de
make
make test

The configuration option -de causes configuration defaults to be used for all options. Note
that unlike previous configuration script names, this one begins with an uppercase C. You can
see a list of available options by running . /Configure -h. Some platform-specific scripts can be
found in the hints/ directory—but read the file README . hints. If the contents mean nothing to
you, stick with the defaults. If make test completes successfully and displays the message A1l
tests successful, execute the following commands:

make install
perl -V

This installs libraries and displays some detailed information about your configuration. The
last step isn’t required, but will show you where everything is installed. With a functioning Perl
interpreter, you can go on to build Perl MapScript.

CHAPTER 6 USING PERL MAPSCRIPT

Building Perl MapScript

Change directories to the root of the MapServer source tree (/usr/local/src/ in the develop-
ment environment), then execute the following commands:

cd mapscript/perl
perl Makefile.PL
make

make install

That’s all there is to the installation process. Assuming all has gone well, proceed to the
next section.

The Perl MapScript “Hello World” Application

The first MapScript application will be kept as simple as possible. It will replicate the function-
ality (if you can call it that) of the “Hello World” MapServer application. This accomplishes two
goals: it tests the MapScript build and it demonstrates the key steps in creating an image and
displaying it in a browser. The functionality will be duplicated by means of a simple trick—
instead of building a map from scratch, you’ll use all the specifications in the hello.map file.

Note The previous applications have all used MapServer operating in CGl mode. In this chapter, you'll
create a CGl script (written in Perl) to provide the same functionality via the Perl MapScript API. However,
MapScript isn’t required to run in CGl mode, and it can be used for far more than Web-enabled mapping
applications.

When MapScript is instructed to create a map object by reading a mapfile, all the map
parameters, layers, classes, and attributes are translated into MapScript objects. Default values
are chosen for attributes that are left unspecified. If the mapfile produces a map as part of a CGI
application, then the MapScript version will produce the same map. In addition, all the MapScript
objects can be modified programmatically. By building an application this way, you can focus
attention on the new MapScript functions without getting bogged down in mapfile details.

The code for this section is contained in the file perlms_hello.pl in the code distribution
available from the Apress website, and is reproduced in Listing 6-1. The first two lines should
be familiar to any Perl programmer—they invoke the Perl interpreter (the path to Perl might
differ in your environment) and keep you honest by using the strict package. The strict
package requires, among other things, that all variable names be given a scope using the
function my (). Perl will choke at compilation time if you try to use a variable without a scope
while using strict.

001 #!/usx/bin/perl
002 use strict;

169

170

CHAPTER 6 USING PERL MAPSCRIPT

Line 003 makes the MapScript module available to the script, and Line 004 makes the CGI
module available. The CGI module provides several functions that are useful in a web application,
such as access to form variables and creation of HTML tags. Here, it’s the latter functionality you’'ll
make use of. Although it’s overkill in this application, it will be invaluable in the next. Invoking
CGI with ":cgi" forces the use of more object-oriented syntax and provides a small increment
in performance by limiting the number of named objects passed to the script when CGI is first
loaded. Line 005 creates a new CGI object referenced by $resp.

003 use mapscript;
004 use CGI ":cgi";
005 my $resp = new CGI;

Line 008 creates a unique file name for the map image by concatenating the string
perlms_hello, a six-character string of random digits, and the image file extension .png. For
instance, this might produce the name perlms_hello135246.png.

008 my $image name = sprintf("ms-hello%0.6d",rand(1000000)).".png";

Line 011 creates a reference to a new map object, $map, by importing map specifications
from the mapfile hello.map in /home/mapdata/. $map now possesses all the characteristics of the
map specified in the mapfile, but there’s not yet an image to display. Line 014 uses one of the
constructor methods associated with the imageObj class to create the image, and returns a
reference to it in $img. Line 015 uses the imageObj method save() to write the image to the
appropriate place on disk.

011 my $map = new mapscript::mapObj("/home/mapdata/hello.map");
014 my $img = $map->draw();
015 $img->save("/var/www/htdocs/tmp/".$image name);

Lines 018 through 025 generate the HTML tags needed to display your map image. Lines 018
and 019 write the header (i.e., the content type and a blank line) and opening HTML tags
(<html>, <header>, <title>, and <body>) via the CGI methods header () and start_html().A
here-document is used to generate a form starting at Line 020. Line 021 opens a <form> tag,
which identifies the action as this script. Line 022 creates an input field of the image type, with
src pointing to the image just created. It’s an input field, so you can click on it to execute the
script again. Line 023 closes the <form> tag. Line 024 contains the string that terminates the
here-document. Line 025, which makes use of the CGI method end_htm1(), closes all the tags
opened by start_html().

018 print $resp->header();

019 print $resp->start html(-title=>'MapScript Hello World ');
020 print <<END_OF HTML;

021 <form name="pointmap" action="perlms hello.pl" method="POST">
022 <input type="image" name="img" src="/tmp/$image_name">

023 </form>

024 END_OF HTML

025 print $resp->end html();

CHAPTER 6 USING PERL MAPSCRIPT m

All the HTML generated is sent to the browser, where the “Hello World” image is displayed
with a tiny red dot between the words “Hello” and “World.” That'’s all there is to it. Load the
URL of this script (http://localhost/cgi-bin/perlms_hello.pl in the development environ-
ment) and execute it. You should see the same yellowish rectangle (with the words “Hello
World” printed at the center) as you saw when you loaded hello.html. See Figure 6-1.

@) MapS cript Hello Woild - Netscape

E HEIE |
v Ele Edit View Go Bookmarks Tools Window Help
i - &' > \a ‘§§ At/ iocalhost/cgibin/perlms_hello = @
| Back Farward Reload Stop Ié‘ = = J
v

Hello -Horld
e 52 | Done Fo-ler 4

Figure 6-1. The Perl MapScript version of the “Hello World” application

If the expected outcome doesn’t occur, start the troubleshooting process by checking the
Apache error log to determine the cause of the failure. An error message like

[Sat Jan 1 01:00:00 2005] [error] [client localhost]
file permissions deny server execution: /var/www/cgi-bin/perlms hello.pl

indicates that the script can’t be executed because it doesn’t have the correct permissions
(usually, the permission should be set to 755 for Unix-like operating systems). The following
error message occurs when the script can’t find the mapfile:

172

CHAPTER 6 USING PERL MAPSCRIPT

Can't call method "draw" without a package or object reference at
/var/www/cgi-bin/perlms_hello.pl line 14.

[Fri Jun 3 02:33:36 2005] [error] [client 142.161.105.145]
Premature end of script headers: /var/www/cgi-bin/perlms hello.pl

Next, check the script for typos—saving a map image under one name (or directory) and trying
to access it under another name will surely fail. The MapScript environment isn’t the same as
the MapServer environment. Finally, try rebuilding MapScript and watching the build closely
for any error messages.

Listing 6-1. The Perl MapScript “Hello World” application

001 #!/usr/bin/perl

002 use strict;

003 use mapscript;

004 use CGI ":cgi";

005 my $resp = new CGI;

006 # Create a unique image name every time through

007 #

008 my $image name = sprintf("ms-hello%0.6d",rand(1000000)).".png";
009 # Create a new instance of a map object

010 #

011 my $map = new mapscript::mapObj("/home/mapdata/hello.map");
012 # Create an image of the map and save it to disk

013 #

014 my $img = $map->draw();

015 $img->save("/var/www/htdocs/tmp/".$image name);

016 # Output the HTML form and map image

017 #

018 print $resp->header();

019 print $resp->start html(-title=>'MapScript Hello World ');
020 print <<END_OF HTML;

021 <form name="pointmap" action="perlms hello.pl" method="POST">
022 <input type="image" name="img" src="/tmp/$image_name">

023 </form>

024 END_OF HTML

025 print $resp->end html();

A Practical Perl MapScript Application

The application in the previous section confirms that MapScript was built properly and
demonstrates some fundamental MapScript functions, but it doesn’t provide a very useful or
interesting map. In this section, you'll explore MapScript functionality in greater depth and
produce an interactive map. You'll employ the same method as last time—that is, the initial
definition of map parameters will be taken from a mapfile, but subsequently you'll make changes
to some of these parameters so that the application behaves the same way as its CGI-based
counterpart. The output of the script is shown in Figure 6-2.

CHAPTER 6 USING PERL MAPSCRIPT 173

8 Perl Mapscript Third Map - Metscape

File Edit Wiew Go Bookmarks Tools ‘wWindow Help

i - ’Q« \3 :gg & http: /o alhost/cgi-bin/perms_third. pl &~ @
| Back Fowad Reload Siop |& = [
]

Miihe
SERE i
Virg infa Beach MMap scale: 1 50058179
Erayetteville Click x3: 0.000000, 0.000000
Map Extent: -180.000000 0.000000 -60 000000 90 000000

Hari Legend INavigation Layers
Ho nolulu
3 * Cities & Pan ¥ Utban Areas
State Capitals C Zaomin | Lakes
® \iajor Ciies © ZoomOut || State
A interstatetwy |2 | Size [Boundaries
jum— s
o 270 540 10tos0aso ni| 7Y Stete Line MI R Roads
g w2 | Dane | e

Figure 6-2. The Perl MapScript version of the third application, perlms_third.pl

The mapfile used will be third.map. The code for this example is found in the file
perlms third.pl and is available in the source distribution downloadable from the Apress
website. The code is shown in Listing 6-2.

This script begins the same way as the previous example—that is, with the strict, MapScript,
and CGI modules loaded. Then there’s a section that sets up some variables and objects with
default values. The web page generated by this script will invoke the script—it’s identified in
Line 007 so you don't lose track of what’s executing through perlms_third.pl. Next, Lines 009
through 011 identify the path to the mapfile, the mapfile itself, and the path to any images
created by this script.

001 #!/usr/bin/perl

002 use strict;

003 use mapscript;

004 use CGI ":cgi";

007 my $script name = "/cgi-bin/perlms_third.pl";
009 my $map_path = "/home/mapdata/";

010 my $map_file = "third.map";

011 my $img_path = "/var/www/htdocs/tmp/";

174

CHAPTER 6 USING PERL MAPSCRIPT

Initially, the script is invoked from the Location bar of the browser. This means that a form
to pass CGI parameter values to the script doesn’t yet exist. You have to set default values for
these parameters so that MapScript knows what to do the first time the script is invoked. This
is done in Lines 016 through 033.

The navigation defaults in Lines 013 through 016 set the initial zoomsize and the values of
the select variables $pan, $zoomin, and $zoomout. Recall that an input variable of type RADIO can
have several values associated with it. Only one of these can be selected at a time. If the state of
a value is CHECKED, then that value is returned. You initialize the navigation radio buttons so
that the first time the user sees the web page containing the map, the map will be in Pan mode.
The other values are set to empty strings.

013 my $zoomsize=2;
014 my $pan="CHECKED";

015 my $zoomout="";

nn

016 my $zoomin="";

Lines 018 through 021 set the CHECKED state for several layers. HTML will be generated that
will allow the user to select which layers should be displayed. In this case, the variable will be
of type CHECKBOX—which is similar to a radio button, except it allows either none, some, or all
of the layers to be selected.

018 my $urbanareas = "CHECKED";
019 my $lakes = "CHECKED";
020 my $states = "CHECKED";
021 my $roads = "CHECKED";

When the user clicks some point in the map image, the pixel coordinates of that mouse
click are returned to the script. However, should the user click the submit button to refresh the
image, a virtual click point needs to be created so that MapScript has some point of reference
when it zooms in or out when refreshed. Lines 022 and 023 place this point at the center of the
image. (Recall from the mapfile third.map that the image is 640 pixels wide by 480 pixels high.)

022 my $clickx = 320;
023 my $clicky = 240;

Next, Lines 024 and 025 define two MapScript objects. One is point0Ob3j(), which contains
a pair of coordinates—a new pointObj() is created with the reference $clkpoint. You'll use this
object to refer to the click point (real or virtual) and assign values to its coordinates later. The
other object is a rectangle object, rectObj(). A rectangle object consists of two coordinate
pairs: the coordinates of the lower-left and upper-right corners of the rectangle. A rect0bj()
object is MapScript’s way of referencing a map extent. $old_extent refers to the extent of the
map that has already been displayed in the browser (or in the case of the first invocation, it
refers to the default extent).

024 my $clkpoint = new mapscript::pointObj();
025 my $old extent = new mapscript::rectObj();

Line 026 defines the default extent as an array. The values of the array elements are the extent
coordinates specified in the mapfile. On first invocation, this extent will be saved on the web page
as a hidden variable. Subsequent invocations will assign current values to the coordinates.

CHAPTER 6 USING PERL MAPSCRIPT

Line 027 defines the maximum extent of the map. The MapScript zoomPoint() method
(employed in the following code snippet) won’t zoom out farther than this. This extent should
also equal the extent specified in the mapfile, or else strange behavior occurs.

026 my @extent = (-180, 0, -60, 90);
027 my $max_extent = new mapscript::rectObj(-180, 0, -60, 90);

Line 030 creates a CGI object referenced by $parms. As mentioned, loading the CGI module
with the modifier ":cgi" requires you to use formal object-oriented syntax when using any CGI
objects.

Line 033 creates a new mapObj based on the contents of the mapfile specified previously
(i.e., third.map). The extent of this map is the extent specified in the mapfile, and the layers
rendered are those for which the STATUS is on or default.

030 my $parms = new CGI;
033 my $map = new mapscript::mapObj($map_path.$map file);

Line 036 determines whether the script has been invoked by a form or not. All the code up
to this point is executed every time the script runs, and default values have been assigned to
most variables. If the script has been invoked by the form, then the CGI method param() will
return a hash of form variable names and values so the block of code following the if statement
will be executed. Otherwise, a null value will be returned and execution will drop through to
Line 125 without executing any conditional code.

036 if ($parms->param()) {

Assume that this is the first invocation so that the execution will drop through. Line 125
creates a unique identifier for the various images associated with this map by formatting a
random number as a six-digit string. Lines 125 through 131 define file names and URLs for the
map image, the reference map image, and the legend image.

125 my $map_id = sprintf("%0.6d",rand(1000000));
126 my $image name = "third".$map id.".png";

127 my $image url="/tmp/".$image name;

128 my $ref name = "thirdref".$map_id.".gif";
129 my $ref url="/tmp/".$ref name;

130 my $leg name = "thirdleg".$map_id.".png";
131 my $leg url="/tmp/".$leg name;

Line 134 uses the imageObj() constructor draw() to create the map image. Line 135 draws
any cached labels on top of this image with the mapObj method drawLabelCache(). Finally, the
map image is saved using the imageObj method save(). Lines 139 through 144 perform similar
steps to create and save reference map and legend images to disk.

134 my $image=$map->draw();

135 $map->drawLabelCache($image);

136 $image->save($img_path.$image name);
139 my $ref = $map->drawReferenceMap();
140 $ref->save($img_path.$ref name);

143 my $leg = $map->drawLegend();

144 $leg->save($img_path.$leg name);

175

176

CHAPTER 6 USING PERL MAPSCRIPT

The next step is superfluous the first time the script is executed. Line 147 retrieves the
extent of the map just saved to disk and converts it to a space-delimited list of coordinates. The
first time through, this extent is the same as the default extent defined previously. Subsequent
invocations, however (after zooming and panning), will have different extents.

147 my $new_extent = sprintf("%3.6f",$map->{extent}->{minx})." "

148 .sprintf("%3.6f", $map->{extent}->{miny})." "
149 .sprintf("%3.6f", $map->{extent}->{maxx})." "
150 .sprintf("%3.6f", $map->{extent}->{maxy});

The mapObj possesses an extent. Here, you want to access each of the four coordinates
of the extent individually, so you use the chain of references ($map->{extent}->{minx}, for
example). However, if you had wished to retrieve the extent as an instance of rectObj, you
would have used the following syntax:

my $some_extent = new mapscript::rectObj();
my $some_extent = $map{extent};

Line 153 retrieves the map scale from the map object. Lines 156 through 159 invoke the
function img2map() to convert the mouse-click point from image coordinates to map coordi-
nates (which in the present case are measured in decimal degrees).

153 my $scale = sprintf("%10d",$map->{scale});

156 my ($mx,$my) = img2map($map->{width},$map->{height},
157 $clkpoint,$old extent);

158 my $mx_str = sprintf("%3.6f",$mx);

159 my $my str = sprintf("%3.6f",$my);

You've created and saved the three images that are required (map, reference map, and
legend), and you've calculated the scale and the new extent, so you're now ready to generate
the web page. For header and initial HTML, you'll use the facilities provided by the CGI module:
header() and start_html() on Lines 162 and 163.

162 print $parms->header();
163 print $parms->start html(-title=>'Perl Mapscript Third Map');

Since the web page had already been formatted as a template for the CGI-based MapServer
application, it was easy to import that file directly into a here-document. Substitution strings
in the template code were then replaced with the appropriate variable names. (Here, you're
performing the same tasks manually that MapServer would perform every time it scanned the
template file.) In Line 168, the string [program] is replaced with the variable $script_name.In
Line 171, [img] is replaced with the variable $image url.In Line 175, [ref] is replaced with
$ref _url. Similar replacements occur for [legend] and [scale]. The new extent of the map—
the string $new_extent—is stored as the value of the hidden variable extent in Line 184 and
displayed in Line 185.

CHAPTER 6 USING PERL MAPSCRIPT

167 <body bgcolor="H#E6E6E6">
168 <FORM METHOD=POST ACTION="$script name">

171 <input name="img" type="image" src="$image url"

175

179 Map scale: 1:$scale</td></tr>

181 Click x,y:8nbsp 8nbsp $mx_str, $my str
184 <input type="hidden" name="extent" value="$new extent">
185 Map Extent: $new_extent</td></tr>

189 <tr><td rowspan="2"></td>

The values of the navigation defaults are inserted in Lines 191 through 197.

191 <INPUT TYPE=RADIO NAME="zoom" VALUE=0 $pan>

192 Pan

193 <INPUT TYPE=RADIO NAME="zoom" VALUE=1 $zoomin>

194 Zoom In

195 <INPUT TYPE=RADIO NAME="zoom" VALUE=-1 $zoomout>

196 Zoom Out

197 <INPUT TYPE=TEXT NAME="zsize" VALUE="$zoomsize" SIZE=2>

The layer selection check boxes are set up in Lines 203 through 215.

203 <td align="top">

204 <input type="checkbox" name="layer"
205 value="urbanareas" $urbanareas >
206 Urban Areas

207 <input type="checkbox" name="layer"
208 value="lakes" $lakes >

209 Lakes

210 <input type="checkbox" name="layer"
211 value="states" $states >

212 State Boundaries

213 <input type="checkbox" name="layer"
214 value="roads" $roads >

215 Roads

The web page is now sent back to the browser via the Apache web server, and the user will
see a page that’s almost identical to the page displayed by the CGI-based MapServer application.

Now, let’s assume that the user looks at the map, changes the zoom state from Pan to Zoom
In, and clicks somewhere on the map image. The Apache server then receives the request from
the browser and executes the script. The first 36 lines of the script are executed just as before,
but now, when execution reaches the if statement on Line 036, the function param() returns a
non-null value—a hash of form variable names and values. So, execution of the if block proceeds
to Line 039.

177

178

CHAPTER 6 USING PERL MAPSCRIPT

If the user had clicked Refresh, then param(' refresh') would return a non-null reference—
but in this case, the user clicks on the map, so the image coordinates of the click point are
returned. Since the name of the input field containing the map image is img, these coordinates
are returned as the values of form variables img.x and img.y. Lines 045 through 046 save these
values in the two variables $clickx and $clicky. You previously created an instance of pointObj
and $clkpoint—now you use the pointObj method setXY() in Line 050 to set its coordinate
values to $clickx and $clicky.

039 if ($parms->param('refresh')) {

040 $clickx = 320;

041 $clicky = 240;

042 } else {

045 $clickx = $parms->param('img.x");
046 $clicky = $parms->param('img.y"');
047 }

050 $clkpoint->setXY($clickx,$clicky);

Line 053 retrieves the list of layers that the user chose to display by clicking the appropriate
check boxes. The string variable $1ayers will contain a space-delimited list of layer names. In
Line 055, the Perl string-matching function is used to search for the name urbanareas in the list.
Ifit’s found, then the variable $urbanareas is set to CHECKED. Remember, if you want this layer
to be checked when you generate the web page again, you must set the value of $urbanareas.
Next, the mapObj method getLayerByName() is used to retrieve a pointer ($this layer) to the
layer named urbanareas. This pointer is then used to access the status of the urbanareas layer
and set it to on by assigning the value 1 to layer status. On the other hand, if the name urbanareas
isn’t found, then $urbanareas is set to the empty string and the layer status is set to off by
assigning the value 0. This is repeated for the other layers.

non

053 my $layers = join(
054 my $this layer = 0;
055 if ($layers =~ /urbanareas/){

,$parms->param('layer'));

056 $urbanareas = "CHECKED";

057 $this layer = $map->getLayerByName('urbanareas');
058 $this_layer->{status} = 1;

059 } else {

060 $urbanareas = "";

061 $this layer = $map->getLayerByName('urbanareas');
062 $this_layer->{status} = 0;

063 }

In Line 084, the form variable extent is retrieved and its four components split into the
array @extent. The elements of @extent are then used by the mapObj method setExtent() to set
the extent of the map. Recall that when the script is executed, the extent of the map is set to the
default value specified in the mapfile. It isn’t until this point that the extent saved in the form
on the previous invocation as the variable extent is parsed and used to set the extent to its
previous value.

CHAPTER 6 USING PERL MAPSCRIPT

084 if ($parms->param('extent')) {

085 @extent = split(" ", $parms->param(‘extent'));

086 }

089 $map->setExtent($extent[0], $extent[1],$extent[2], $extent[3]);

A rectObj() object containing the current extent is required by the zoomPoint() method
used in the following code. So, the elements of @extent are used to set the values of the compo-
nents of the rectObj $old_extent in Lines 092 through 095.

092 $old extent->{minx} = $extent
093 $old extent->{miny} = $extent
094 $old extent->{maxx} = $extent
095 $old extent->{maxy} = $extent

0];
1];
].
]

)

2
3

)

— e e

Line 102 calculates the zoom factor to pass to the zoomPoint() method. The variable
$zoom_factor is the product of the form variables zoom and zsize. Recall that zoom is set to 0 if
$pan equals "CHECKED", -1 if $zoomout equals "CHECKED", and 1 if $zoomin equals "CHECKED". Lines
103 through 116 then set the values of the navigation variables that are to be saved in the form.
There are a couple of things to note. Line 104 sets $zoom factor to 1 if $zoom_factor equals 0,
since the zoomPoint () method can’t accept a zoom factor of 0. Line 117 sets $zoomsize to the
absolute value of form variable zsize, just in case a user should enter a negative value. While
this won'’t break the script, it will make it behave in the opposite manner—that is, a negative
zoom size will result in a zoom-in if Zoom Out is selected, and a zoom-out if Zoom In is selected.
Finally, Line 120 employs the zoomPoint() method to center the map on the click point and
then zoom in or out according to the value of $zoom factor.

102 my $zoom factor = $parms->param("zoom")*$parms->param(“zsize");
103 if ($zoom factor == 0) {

104 $zoom_factor = 1;

105 $pan = "CHECKED";

106 $zoomout = "";

107 $zoomin = "";

108 } elsif ($zoom factor < 0) {
109 $pan = "";

110 $zoomout = "CHECKED";
111 $zoomin = "";

112 } else {

113 $pan = "";

114 $zoomout = "";

115 $zoomin = "CHECKED";
116 }

117 $zoomsize = abs($parms->param('zsize'));

120 $map->zoomPoint($zoom factor,$clkpoint,$map->{width},
121 $map->{height},$old extent,$max_extent);
122}

179

180

CHAPTER 6 USING PERL MAPSCRIPT

You've now created the map, zoomed or panned, and changed its extent. At this point, you
drop out of the block conditional on the presence of form variables, and prepare to both draw
the images and generate the HTML that’s to be forwarded to the browser.

The only part of this code you haven’t looked at is the function img2map() in Lines 226
through 242. When you click on the map, the coordinates are returned in image coordinates.
The click point coordinates required by the zoomPoint () method are image coordinates. But
when viewing the map, you probably want to know the position of the click point in terms of
map coordinates. There’s no MapScript method to perform this calculation, so you're required
to write one out.

The method is simple—the width (and height) of the map is known in both pixels ($width
and $height) and map coordinates (from the extent $ext). Lines 229 through 232 separate the
coordinates of the extent into the maximum and minimum values that are used to calculate the
width and height of the extent in map units.

229 my $minx = $ext->{minx};
230 my $miny = $ext->{miny};
231 my $maxx = $ext->{maxx};
232 my $maxy = $ext->{maxy};

Line 233 ensures that you have a valid click point before proceeding with the calculation.
Lines 234 and 235 retrieve the coordinates of the click point from pointObj, and Lines 236 and
237 calculate the number of map units per pixel.

233 if ($point->{x} &8 $point->{y}){

234 $x = $point->{x};
235 $y = $point->{y};
236 $dpp x = ($maxx-$minx)/$width;
237 $dpp_y = ($maxy-$miny)/$height;

Note Map coordinates aren’t restricted to decimal degrees. If you project your spatial data (which I'll
discuss further later), then map coordinates will be actual distances like miles, kilometers, or feet—not
angular measures.

Now, if a point is $x pixels from the left edge of the image, you obtain its longitude by
multiplying $x by the number of degrees per pixel, and adding this to the longitude of the west
(or left) side of the extent, as in Line 238. You do something similar for the height-to-latitude
conversion, but keep in mind that row count increases downward for image coordinates, so
you must calculate the degrees of latitude per pixel, multiply by the number of pixels from the
top of the image, and subtract that number from the maximum extent (as in Line 239). Finally,
the map coordinates are returned to the calling routine in Line 241.

238 $x = $minx + dpp_x*x;
239 $y = $maxy - dpp_y*y;
240 }

241 return ($x, $y);

CHAPTER 6 USING PERL MAPSCRIPT

Summary

In this chapter, you've examined some basic methods of Perl MapScript and created an appli-
cation that duplicates the functionality of a MapServer CGI application. You've seen how to
create a map object from a mapfile and manipulate some of its internal attributes and objects by
means of MapScript methods. You've also learned how to draw and save the map and display it in
an interactive web page. You haven’t exhausted MapScript’s capabilities, but you've created a
firm foundation upon which you can build larger, more complicated applications that exercise
more of MapScript’s talents.

The next chapter will be devoted to creating the same application based on Python rather
than Perl. If you're familiar with Python, this parallel development will allow you to compare
and contrast the expression of the API in the two languages, and perhaps gain a clearer under-
standing of both. If you don’t know Python, the next chapter might encourage you to learn it.

Code Listings

Code fragments were used during the code analysis so you wouldn’t have to flip between code
and discussion too often. The code listings, complete and uninterrupted, are presented here.

Listing 6-2. Perl MapScript version of the third application, perlms_third.pl

001 #!/usx/bin/perl

002 use strict;

003 use mapscript;

004 use CGI ":cgi";

005 # Default values

006 #

007 my $script_name = "/cgi-bin/perlms_third.pl";
008 # path defaults

009 my $map_path = "/home/mapdata/";

010 my $map_file = "third.map";

011 my $img_path = "/var/www/htdocs/tmp/";
012 # Navigation defaults

013 my $zoomsize=2;

014 my $pan="CHECKED";

nn

015 my $zoomout="";

016 my $zoomin="";

017 # Displayed layer defaults

018 my $urbanareas = "CHECKED";

019 my $lakes = "CHECKED";

020 my $states = "CHECKED";

021 my $roads = "CHECKED";

022 my $clickx = 320;

023 my $clicky = 240;

024 my $clkpoint = new mapscript::pointObj();
025 my $old extent = new mapscript::rectObj();
026 my @extent = (-180, 0, -60, 90);

181

182

CHAPTER 6 USING PERL MAPSCRIPT

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072

my $max_extent = new mapscript::rectObj(-180, 0, -60, 90);
Get CGI parms
#
my $parms = new CGI;
Retrieve mapfile and create a map from it
#
my $map = new mapscript::mapObj($map_path.$map file);
We've been invoked by the form, use form variables
#
if ($parms->param()) {
If Refresh button clicked fake the map click
#
if ($parms->param('refresh')) {
$clickx = 320;
$clicky = 240;
} else {
map was clicked, get the real coordinates
#
$clickx = $parms->param('img.x");
$clicky = $parms->param('img.y');
}
Set the mouse click location (we need it to zoom)
#
$clkpoint->setXY($clickx,$clicky);
Selected layers may have changed, set HTML 'checks'
#
my $layers = join(
my $this layer = 0;
if ($layers =~ /urbanareas/){
$urbanareas = "CHECKED";
$this layer = $map->getLayerByName('urbanareas');
$this layer->{status} = 1;
} else {
$urbanareas = "";
$this layer = $map->getLayerByName('urbanareas');
$this layer->{status} = 0;

non

,$parms->param('layer'));

}

if ($layers =~ /lakes/){
$lakes = "CHECKED";
$this layer = $map->getLayerByName('lakes');
$this_layer->{status} = 1;

} else {
$lakes = "";
$this_layer = $map->getLayerByName('lakes');
$this_layer->{status} = 0;

CHAPTER 6 USING PERL MAPSCRIPT 183

073 if ($layers =~ /states/){

074 $states = "CHECKED",

075 $this layer = $map->getLayerByName('states');
076 $this layer->{status} = 1;

077 } else {

078 $states = "";

079 $this layer = $map->getLayerByName('states');
080 $this layer->{status} = 0;

081 }

082 # invoked by form - retrieve extent

083 #

084 if ($parms->param('extent')) {

085 @extent = split(" ", $parms->param('extent'));
086 }

087 # Set the map to the extent retrieved from the form
088 #

089 $map->setExtent($extent[0], $extent[1],$extent[2], $extent[3]);
090 # Save this extent as a rectObj, we need it to zoom.

091 #

092 $old extent->{minx} = $extent[0];

093 $old extent->{miny} = $extent[1];

094 $old extent->{maxx} = $extent[2];

095 $old extent->{maxy} = $extent[3];

096 # Calculate the zoom factor to pass to zoomPoint method

097 # and setup the variables for web page

098 #

099 # zoomfactor = +/- N

100 # if N> 0 zooms in - N < 0 zoom out - N = 0 pan

101 #

102 my $zoom factor = $parms->param("zoom")*$parms->param(“zsize");
103 if ($zoom factor == 0) {

104 $zoom factor = 1;

105 $pan = "CHECKED";

106 $zoomout = "";

107 $zoomin = "";

108 } elsif ($zoom factor < 0) {
109 $pan = "";

110 $zoomout = "CHECKED";
111 $zoomin = "";

112 } else {

113 $pan = "";

114 $zoomout = "";

115 $zoomin = "CHECKED";
116 }

117 $zoomsize = abs($parms->param('zsize'));
118 # Zoom in (or out) to clkpoint

184

CHAPTER 6 USING PERL MAPSCRIPT

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

H -

#
#

#
$map->zoomPoint($zoom factor,$clkpoint,$map->{width},
$map->{height},$old extent, $max_extent);

Set unique image names for map, reference and legend

my $map_id = sprintf("%0.6d",rand(1000000));
my $image name = "third".$map id.".png";

my $image url="/tmp/".$image name;

my $ref name = "thirdref".$map id.".gif";

my $ref url="/tmp/".$ref name;

my $leg name = "thirdleg".$map_id.".png";

my $leg url="/tmp/".$leg name;

Draw and save map image

my $image=$map->draw();
$map->drawLabelCache($image);
$image->save($img_path.$image name);
Draw and save reference image

my $ref = $map->drawReferenceMap();
$ref->save($img path.$ref name);
Draw and save legend image

my $leg = $map->drawLegend();
$leg->save($img path.$leg name);
Get new extent of map (we'll save it in a form variable)

my $new_extent = sprintf("%3.6f",$map->{extent}->{minx})." "
.sprintf("%3.6f", $map->{extent}->{miny})."
.sprintf("%3.6f", $map->{extent}->{maxx})."
.sprintf("%3.6f", $map->{extent}->{maxy});
get the scale of the image to display on the web page

my $scale = sprintf("%10d",$map->{scale});
Convert mouse click from image coordinates to map coordinates

my ($mx,$my) = img2map($map->{width},$map->{height},
$clkpoint,$old extent);

my $mx_str = sprintf("%3.6f",$mx);

my $my str = sprintf("%3.6f",$my);

We're done, output the HTML form

print $parms->header();

print $parms->start _html(-title=>'Perl Mapscript Third Map');
print <<EOF;

<html>

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

CHAPTER 6 USING PERL MAPSCRIPT

<head><title>MapScript Third Map</title></head>
<body bgcolor="#EGE6E6">
<FORM METHOD=POST ACTION="$script name">
<table width="100%" border="1">
<tr><td width="60%" rowspan="6">
<input name="img" type="image" src="$image url"
width=640 height=480 border=2>
</td>
<td width="40%" align="center" colspan="3">

</td>
</tr>
<tr><td align="left" colspan="3">
Map scale: 1:$scale</td></tr>
<tr><td align="left" colspan="3">
Click x,y:8nbsp 8nbsp $mx_str, $my str
</td></tr>
<tr><td align="left" colspan="3">
<input type="hidden" name="extent" value="$new extent">
Map Extent: $new_extent</td></tr>
<tr><td><center>lLegend</center></td>
<td><center>Navigation</center></td>
<td><center>layers</center></td></tr>
<tr><td rowspan="2"></td>
<td align="left">
<INPUT TYPE=RADIO NAME="zoom" VALUE=0 $pan>
Pan

<INPUT TYPE=RADIO NAME="zoom" VALUE=1 $zoomin>
Zoom In

<INPUT TYPE=RADIO NAME="zoom" VALUE=-1 $zoomout>
Zoom Out

<INPUT TYPE=TEXT NAME="zsize" VALUE="$zoomsize" SIZE=2>
Size

<center>
<INPUT TYPE=SUBMIT NAME="refresh" VALUE="Refresh">
</center>
</td>
<td align="top">
<input type="checkbox" name="layer"
value="urbanareas" $urbanareas >
Urban Areas

<input type="checkbox" name="layer"
value="lakes" $lakes >
Lakes

<input type="checkbox" name="layer"
value="states" $states >
State Boundaries

185

186

CHAPTER 6 USING PERL MAPSCRIPT

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

<input type="checkbox" name="layer"
value="roads" $roads >
Roads

</td>
</tr>
</table>
</form>
</body>
</html>
EOF
HHHHEH
Convert coordinates image to map
#
sub img2map {
my ($width, $height, $point, $ext) = @_;
my ($x, $y, $dpp_x, $dpp_y) = (0,0,0,0);
my $minx = $ext->{minx};
my $miny = $ext->{miny};
my $maxx = $ext->{maxx};
my $maxy = $ext->{maxy};
if ($point->{x} &8 $point->{y}){
$x = $point->{x};
$y = $point->{y};
$dpp_x = ($maxx-$minx)/$width;
$dpp_y = ($maxy-$miny)/$height;
$x = $minx + $dpp x*$x;
$y = $maxy - dpp_y*y;

}
return ($x, $y);

CHAPTER 7

Using Python MapScript

As noted in the introduction to Chapter 6, “Using Perl MapScript,” the mapping applications
described in the first five chapters have all used the MapServer executable as a CGI script. I also
described the limitations of this strategy (including lack of flexibility and extensibility) and the
benefits of using MapScript (including a richer user interface and access to external function-
ality like MySQL). The MapScript interface has been ported to several languages, one of which
is Python. In this chapter, I'll describe some of the features of Python MapScript and how to
use them.

Python is an interpreted scripting language, often used for the same purposes as Perl, such
as system administration and CGI web development. Python provides excellent object-oriented
(O0) support and has a clean, elegant syntax that produces very readable code. Python code is
portable, and Python interpreters exist for most platforms.

Python MapScript makes full use of object-oriented syntax and constructs, so a familiarity
with the concepts is crucial.

Note If you're not familiar with Python’s object-oriented features, consider picking up a copy of Beginning
Python: From Novice to Professional, by Magnus Lie Hetland (Apress, 2005).

The material presented here isn’t an exhaustive review of Python MapScript, but the examples
described will provide a solid foundation for further learning.

Building and Installing Python MapScript

The Python MapScript module supplied with the MapServer distribution isn’t automatically
compiled when MapServer is built. The build process is straightforward—however, I'll describe the

Python installation first, in case your environment doesn’t include a working Python interpreter.

Building Python

There are several platform-specific binary distributions of Python. If you prefer not to (or can’t)
build Python from source, choose one of these and consult the documentation that accompa-
nies it for installation instructions. The description provided here is devoted to installing from

187

188

CHAPTER 7 USING PYTHON MAPSCRIPT

the source distribution. Although there are numerous configuration options available that
allow you to determine the installation path, whether to include thread support, and other
environment-specific details, I'll describe the default installation. A complete description of
the options is given in the README file.

Download the source distribution from www. python.org/download, untar it into /usr/
local/src/, and execute the following command:

cd /usr/local/src/Python-2.4.X

2.4 X is the version number of the distribution. If you've previously configured the build of this
distribution using different options, execute the following command to remove those results:

m -f configure.sh Policy.sh
Execute the following commands to configure and build the Python library:

./configure
make
make test

If no configuration options are specified, default options will be chosen for the build. You
can display a list of options by specifying ./configure '-"hor ./configure '-"help=recursive
(the latter provides more detail). It’s normal for the test script to skip tests that aren’t relevant
to a particular environment. If make test terminates with the following messages:

257 tests OK.
33 tests skipped.

Those skips are all appropriate on environment

then the build was successful. (Keep in mind that the number of tests and skips may differ in
your environment.)
Execute the following commands:

make install
python -V

This installs the Python libraries under /usr/local/. The last step merely displays the
version number in order to confirm that the install placed the libraries in the expected location.
You can now proceed to install Python MapScript.

Building Python MapScript

There are two methods for building Python MapScript—one is easy, the other not so easy. Since
the guiding philosophy of this book is to keep things simple, the easy method is described here.

Change directory to the root of the Python MapScript source tree (/usr/src/local/
mapserver-4.x.y/mapscript/python/ in the development environment). If you're using a version of
Python earlier than 2.2, omit the next step; otherwise execute the following commands:

cp modern/mapscript.py ./
cp modern/mapscript wrap.c ./

CHAPTER 7 USING PYTHON MAPSCRIPT

This overwrites the old files with the more modern versions. Then execute the following to
create the module:

python setup.py build

The Python MapScript distribution contains a test suite in the directory mapserver-4.x.y/
mapscript/python/tests/. It’s wise to run the test before installing the MapScript module.
You do this by executing the following commands from the Python build directory:

cd tests/cases
python runalltests.py -V

If the test script terminates with an 0K, you're ready to install the module.
The installation is as easy as the build and test—just execute the following command:

python setup.py install

The Python MapScript “Hello World” Application

The first MapScript application will be kept as simple as possible, simply replicating the func-
tionality of the “Hello World” MapServer application. This will do two things: it will test the
MapScript build just completed, and it will demonstrate the key steps in creating an image and
displaying it in a browser. The functionality will be duplicated by means of a simple trick—
instead of building a map from scratch, you’ll use the specifications in the hello.map file.

When MapScript is instructed to create a map object by reading a mapfile, all the map
parameters, layers, classes, and attributes are translated into MapScript objects. Default values
are chosen for attributes that are left unspecified. If the mapfile produces a map as part of a CGI
application, the MapScript version will produce the same map. In addition to this, all the
MapScript objects can be modified programmatically. By building an application this way, you
can focus your attention on the new MapScript functions without getting mired in mapfile details.

The code for this section is contained in the file pythonms_hello.py in the code distribution
available from the Apress website. It’s shown in Listing 7-1. In the code snippet that follows,
Line 002 loads the Python MapScript module and Line 003 loads the random module.

001 #!/usxr/bin/python
002 import mapscript
003 import random

Lines 006 and 007 define the path to the mapfile.

006 map_path = "/home/mapdata/"
007 map _file = "hello.map"

In Lines 010 through 012, one of the methods of the random module (randrange()) is used
to generate a unique image file name every time that the CGI script is invoked. This is accom-
plished by concatenating the string pythonms_hello with a six-digit, zero-filled random integer
and the string . png. In creating this image name, you could have given it any file extension—
however, the mapfile will create a PNG image, and if the extension doesn’t conform with the
image format, the browser might become confused.

189

190

CHAPTER 7 USING PYTHON MAPSCRIPT

010 image name = "pythonms_hello" \
011 + str(random.randrange(999999)).zfill(6) \
012 + ".png"

Line 015 uses the MapScript constructor method mapObj() to create a new map object,
referenced by the variable map, by importing the map specifications from the hello.map mapfile
found under the directory specified by map_path. map now possesses all the characteristics of
the map specified in the mapfile, but there isn’t yet an image to display. Line 018 uses one of
the constructor methods associated with imageObj to create the image, and returns a reference
to it in img. Finally, Line 019 uses the imageObj method save() to write the image to the appro-
priate place on disk.

015 map = mapscript.mapObj(map_path+map file)
018 img=map.draw()
019 img.save("/var/www/htdocs/tmp/" + image name)

Lines 022 through 033 generate the HTML tags needed to display your map image. Lines 022
through 026 write the header (i.e., the content type and a blank line) and the opening HTML
tags (<html>, <header>, <title>, and <body>). Lines 027 through 031 define a multiline string
(like a here-document in Perl) that produces an HTML form. Line 028 opens a <form> tag, which
identifies the action as this script. Line 029 creates an input field of type image, with src pointing
to the conversion specifier (%s) that will contain the name of the image you just created. It’s an
input field, so you can click on it to execute the script again. Line 030 closes the form tag. Line
031 terminates the multiline string and supplies the image name to the conversion specifier
from Line 029. Lines 032 and 033 close the tags that were opened earlier.

022 print "Content-type: text/html"

023 print

024 print "<html>"

025 print "<header><title>Python Mapscript Hello World</title></header>"
026 print "<body>"

027 print """

028 <form name="hello" action="pythonms hello.py" method="POST">
029 <input type="image" name="img" src="/tmp/%s">

030 </form»

031 """ % image name

032 print "</body>"

033 print "</html>"

All the HTML generated is sent to the browser, in which the “Hello World” image will be
displayed with a tiny red dot between the words “Hello” and “World.” That’s all there is to it.
Load the URL of this script (http://localhost/cgi-bin/pythonms_hello.py in the development
environment) and execute it. This should display the image shown in Figure 7-1, in which you
should see the same yellowish rectangle (with the words “Hello World” printed at the center)
as you saw when you loaded hello.html.

CHAPTER 7 USING PYTHON MAPSCRIPT

I'-"EU Python Mapscript Hello World - Netscape

gngiIe Edit Wiew Go Bookmarks Tools ‘wWindow Help

i i - 3&“ - a :’%% I % http: /flocalhost/cagi-bin/puthonms_hello, pu

Back Faonward Feload Stop

b

Hello ‘Horld

Figure 7-1. The Python MapScript version of the “Hello World” application

A Practical Python MapScript Application

The application in the previous section confirmed that MapScript was built properly and
demonstrated some fundamental MapScript functions, but it didn’t provide a very useful or
interesting map. In this section, you'll explore MapScript functionality more deeply and produce
an interactive map. You'll employ the same method as last time—that is, the initial definition
of map parameters will be taken from a mapfile—but subsequently, you’ll make changes to
some of these parameters so that the application behaves the same way as its CGI-based parent.
The mapfile used will be third.map. The code for this example is found in the file pythonms_third.py
and is available in the source distribution downloadable from the Apress website. The code is
shown in Listing 7-2.

This script begins the same way as the previous one—that is, the modules mapscript and
random are loaded. In addition, the cgi module isloaded, the methods of which give convenient
access to CGI form variables.

In the next section, Lines 010 through 027 convert the image coordinates of a point (in
pixels) to geographic coordinates (these can take several forms, the most common of which are
degrees and meters).

Initially, the script is invoked from the Location bar of the browser. This means that a form
doesn’t yet exist to pass CGI parameter values to the script. You have to set default values for
these parameters so that MapScript knows what to do the first time the script is invoked. This
is done in Lines 032 through 059. The relevant code is shown in the following code snippet.

191

192

CHAPTER 7 USING PYTHON MAPSCRIPT

The web page generated by this script will invoke itself—it’s identified in Line 026 so you
don’t lose track of what’s executing—pythonms_third.py. Lines 028 through 030 identify the
path to the mapfile, the mapfile itself, and the path to images created by this script.

026 script name = "/cgi-bin/pythonms_third.py"
028 map_path = "/home/mapdata/"

029 map_file = "third.map"

030 1img path = "/var/www/htdocs/tmp/"

The navigation defaults in Lines 040 through 043 set the initial zoomsize and the values of
the select variables pan, zoomin, and zoomout. Recall that an input variable of type radio can
have several values associated with it. Only one of these can be selected at a time. If the state of
a value is CHECKED, then the value that’s CHECKED is returned. You initialize the navigation radio
buttons so that the map will be in Pan mode the first time the user sees the web page containing
the map. The other values are set to empty strings.

032 zoomsize=2
033 pan="CHECKED"
034 zoomout=""
035 zoomin=""

Lines 037 through 040 set the CHECKED state for several layers. HTML will be generated that
allows the user to select which layers should be displayed. In this case, the input variable will
be of type CHECKBOX, which is similar to a radio button, except that it allows either none, some,
or all the layers to be selected.

036 # Displayed layer defaults
037 urbanareas = "CHECKED"
038 lakes = "CHECKED"

039 states = "CHECKED"

040 roads = "CHECKED"

When the user clicks on some point in the map image, the pixel coordinates of that mouse
click are returned to the script. However, should the user use the submit button to refresh the
image, a virtual click point needs to be created so that MapScript has some point of reference
when it zooms in or out when refreshed. Lines 042 and 043 place this point at the center of the
image. (Recall from the mapfile third.map that the image is 640 pixels wide by 480 pixels high.)

042 clickx = 320
043 clicky = 240

Next, Line 044 defines a MapScript pointOb7j() object. A pointObj() object contains a pair
of coordinates. You'll use this object to refer to the click point (real or virtual) and assign values
to its coordinates later.

044 clkpoint = mapscript.pointObj()

In Line 046, a rectangle object, rectObj(), is created. A rectangle object consists of two
coordinate pairs: the coordinates of the lower-left and upper-right corners of the rectangle.
rectObj() is MapScript’s way of referencing a map extent. old_extent refers to the extent of the

CHAPTER 7 USING PYTHON MAPSCRIPT

map that has already been displayed in the browser. (If this is the first invocation, it will refer to
the default extent.)

046 old extent = mapscript.rectObj()

Line 047 defines the default extent as an array. The values of the array elements are the
extent coordinates specified in the mapfile. On first invocation, this is the extent that will be
saved on the web page as a hidden variable. Subsequent invocations will assign current values
to the coordinates. Line 048 defines the maximum extent of the map—the MapScript zoomPoint ()
method employed in the following code won’t zoom out farther than this. This extent should
also equal the extent specified in the mapfile, or else strange behavior will occur.

047 extent = (-180.0, 0.0, -60.0, 90.0)
048 max_extent = mapscript.rectObj(-180.0, 0.0, -60.0, 90.0)

Line 051 creates a CGI object referenced by parms. As mentioned previously, the CGI
method FieldStorage() is used to retrieve form values.

051 parms = cgi.FieldStorage()

Line 054 creates a new mapObj map based on the contents of the mapfile specified previously
(i.e., third.map). The extent of this map is the extent specified in the mapfile, and the layers
rendered are those for which the STATUS is on or default.

054 map = mapscript.mapObj(map_path+map file)

Lines 057 and 058 determine whether the script has been invoked by a form or not. All the
code up to this point is executed every time the script runs, and default values have been
assigned to most variables. If the script has been invoked by the form, then the CGI method
parms.getfirst() will return the value of its argument string. The block of code following the
if statement will then be executed.

057 if (parms.getfirst('img.x"') and parms.getfirst('img.y')) \
058 or parms.getfirst('refresh'):

If the script hasn’t been invoked by a form, the if conditional will evaluate to False and
execution will drop through to Line 142 without executing any conditional code. Let’s assume
that this is the first invocation so that execution falls through.

Line 142 creates a unique identifier for the various images associated with this map by
formatting a random number as a six-digit string. Lines 143 through 148 define file names and
URLs for the map image, the reference map image, and the legend image.

142 map_id = str(random.randrange(999999)).zfill(6)
143 image_name = "pythird" + map_id + ".png"

144 image_url="/tmp/" + image_name

145 ref name = "pythirdref" + map_id +
146 ref url="/tmp/" + ref_name

147 leg name = "pythirdleg" + map_id + ".png"
148 leg url="/tmp/" + leg name

N

".gif"

193

194 CHAPTER 7 USING PYTHON MAPSCRIPT

Note Reference map image types can only be in GD-based formats: GIF, PNG, and JPEG. Furthermore, the
image type of the output image must be the same as the input image type specified in the REFERENCE object.
Reference maps also ignore the image type specified in the IMAGEFORMAT object.

Line 151 uses the draw() method to create the map image. Finally, the map image is saved
by the imageObj method save(). Lines 155 through 160 perform similar steps for creating and
saving the reference map and legend images.

151 image=map.draw()

152 image.save(img_path + image name)
155 ref = map.drawReferenceMap()

156 ref.save(img path + ref name)

159 leg = map.drawLegend()

160 leg.save(img path + leg name)

The next step is superfluous the first time the script is executed. Lines 164 through 166
retrieve the extent of the map just saved to disk as a string with spaces separating the coordi-
nates. The first time through, this extent is the same as the default extent defined previously.
On subsequent invocations, however, the map will have different extents after the user zooms
and pans. A mapObj possesses an extent, which consists of four coordinates. Here, you want to
access each of the coordinates individually, so you use the chain of references
(map.extent.minx, for example).

164 new_extent = str(map.extent.minx)+" "+str(map.extent.miny) \
165 + " "+ str(map.extent.maxx) \
166 + " " + str(map.extent.maxy)

Line 169 retrieves the map scale from the map object. Lines 172 through 175 invoke the
function img2map() to convert the mouse-click point from image coordinates to map coordi-
nates (which in the present case are measured in decimal degrees).

169 scale = map.scale

172 clkgeo = img2map(map.width,map.height, \

173 clkpoint.x,clkpoint.y,o0ld extent)
174 x_geo = clkgeo[0]

175 y_geo = clkgeo[1]

You've created and saved the three images that are required (map, reference map, and
legend), and you'’ve calculated the scale and the new extent, so you're now ready to generate
the web page. Lines 176 through 180 move several variables to an array to allow the use of
meaningful labels in the multiline string that’s used to format the web page.

176 Mapvars= {'image url':image url,'ref url':ref url, 'scale':scale, \

177 'x_geo':x_geo, 'y geo':y geo, 'new_extent':new_extent, \
178 'leg url':leg url, 'pan':pan, 'zoomin':zoomin, \
179 'zoomout' :zoomout, 'zoomsize':zoomsize, 'lakes':lakes, \

180 'states':states, 'roads':roads, 'urbanareas':urbanareas}

CHAPTER 7 USING PYTHON MAPSCRIPT

<head>, and <body>).

183
184
185
186
187

print "Content-type: text/html"

print

print "<html>"

print "<header><title>Python Mapscript Third Map</title></header>"
print "<body bgcolor=\"H#EGE6E6\">"

Lines 183 through 187 print the preamble and opening tags for the web page (<html>,

Since the web page had already been formatted as a template for the CGI-based MapServer

application, it was easy to import that file directly into a multiline string. In order to populate
this string with appropriate values, format codes are inserted where a value should be. The
values can be form variables or any piece of information you’d like to place in front of the
viewer. When this string is processed for output to the browser, MapScript scans it and searches for
format codes. When it finds one, it replaces it with a value from the array specified on Line 243.

The web page is now sent back to the browser via the Apache web server, and the user sees

a page that is almost identical to the page displayed by the CGI-based MapServer application
(as shown in Figure 7-2).

N) Python Mapscript Third Map - Netscape

File Edit “iew Go Bookmarks Took ‘window Help

195

i - @W - \3 ‘{§§f Ie%;hllp../‘/IDcathsﬂ/’cgl-hln/uylhunms_thud.py

i Back

Forward Reload Stop

Map seale: 1 5P050179 scale

Click xy. 0.000000, 0.000000

Mlap Extent: -180.000-60090.0

Figure 7-2. The Python MapScript version of the third application, pythonms_third.py

Legend Navigation Layers

Hooluly iy & Pan ¥ Utban

prs Cities R

P EEREELAD || @) goom ¥ Lakes

by Major Cities Crat ¥ State
i Interstate Hwy |2 S | Bemdbis

ju— m— — i
0 270 540 H1010801350 ni SiteLing Fefresh | | ¥ Roads
& & | Done \ @E 4

196

CHAPTER 7 USING PYTHON MAPSCRIPT

Now, let’s assume that the user changes the zoom state from Pan to Zoom Inand clicks some-
where on the map image. When this happens, the Apache server receives the request from the
browser and executes the script. The first part of the script (up to Line 057) is executed just as
before, but now, when execution reaches the if statement, the method parms.getfirst()
returns a true value, since the form variables img.x, img.y, or refresh will have been returned
from the browser. Therefore, execution of the if block proceeds to Line 059.

057 if (parms.getfirst('img.x') and parms.getfirst('img.y')) \

058 or parms.getfirst('refresh'):

059 if parms.getfirst('refresh'):# refresh, fake the coordinates
060 clickx = 320

061 clicky = 240

062 else: # map click, use real coordinates
063 clickx = int(parms.getfirst('img.x'))

064 clicky = int(parms.getfirst('img.y'))

If the user had clicked Refresh, then parms.getfirst('refresh') would returna true value
and the code in Lines 060 and 061 would assign fake image coordinates (at the center of the
image) to the variables clickx and clicky.

But in this case, you're assuming that the coordinates of the click point are returned
because the user clicks on the map. Since the name of the input field containing the map image
is img, the coordinates are returned as the values of form variables img.x and img.y. Lines 063
and 064 then save these values in clickx and clicky. The pointObj, clkpoint, was created in
Line 044. Its coordinate values are now set to clickx and clicky in Lines 067 and 068.

067 clkpoint.x = clickx
068 clkpoint.y = clicky

Line 071 retrieves a list of layers that the user has chosen to display by clicking the appro-
priate check boxes. These layer names are concatenated into the space-delimited string,
layers, in Line 072.

071 layerlist = parms.getlist('layer")
072 layers = " ".join(layerlist)

In Line 073, the Python string-comparison method find() is used to search for the string
"urbanareas’ in layers. Ifit’s found, then the variable urbanareas is set to CHECKED. Remember,
if you want this layer to be checked when you generate the web page again, you must set the
value of urbanareas. Next, the mapObj method getLayerByName() is used to retrieve a pointer
(this_layer) to the layer named urbanareas. The pointer is then used to access the status of the
layer and set it to on by assigning the value 1 to layer status. On the other hand, if the string
"urbanareas' isn’t found, this means that the user has unchecked the urbanareas check box.
In this case, the variable urbanareas is set to the empty string, and the layer status is set to off
by assigning it the value 0. This is repeated for the other layers.

073 if layers.find('urbanareas') > -1:

074 urbanareas = "CHECKED"

075 this_layer = map.getlayerByName('urbanareas"')
076 this_layer.status = 1

077 else:

CHAPTER 7 USING PYTHON MAPSCRIPT

078 urbanareas = ""
079 this_layer = map.getlLayerByName('urbanareas")
080 this_layer.status = 0

In Line 099, the form variable 'extent' is retrieved and its four components split into array
extent. The elements of extent are then used by the mapObj method setExtent() to set the
extent of the map. Recall that when this script is executed, the extent of the map is initially set
to the default value specified in the mapfile. Of course, on the previous invocation, it likely had
some other value. This value would have been saved as a space-delimited string in the hidden
variable extent. It’s not until this point in the script that the value of this variable is retrieved,
parsed, and used to set the extent to its previous value in Lines 103 and 104.

099 if parms.getfirst('extent'):

100 extent = parms.getfirst('extent').split(' ")
103 map.setExtent(float(extent[0]),float(extent[1]), \
104 float(extent[2]),float(extent[3]))

A rectObj() object containing the current extent is required by the zoomPoint() method
used in the following code—therefore, the elements of the extent array are used to set the
values of the components of the rectObj old_extent in Lines 107 through 110.

107 old extent.minx = float(extent[0])
108 old extent.miny = float(extent[1])
109 old extent.maxx = float(extent[2])
110 old extent.maxy = float(extent[3])

Lines 117 and 118 calculate the zoom factor to pass to the zoomPoint ()method. zoom factor is
the product of the form variables zoom and zsize. Recall that zoom s set to 0 if pan equals "CHECKED",
-1l ifzoomout equals "CHECKED", and 1 if zoomin equals "CHECKED". Lines 119 through 132 then set
the values of the navigation variables that are to be saved in the form. There are a couple of
things to note. Line 121 sets zoom factor to 1 if zoom factor equals 0 since the zoomPoint ()
method can’t accept a zoom factor of 0. Line 119 sets zoomsize to the absolute value of the form
variable zsize, justin case a user should enter a negative value. (A negative zsize would reverse
the meaning of the Zoom Inand Zoom Out radio buttons.)

117 zoom _factor = int(parms.getfirst('zoom")) \
118 * int(parms.getfirst('zsize'))
119 zoomsize = str(abs(int(parms.getfirst('zsize'))))
120 if zoom_factor ==

121 zoom_factor = 1

122 pan = "CHECKED"

123 zoomout = ""

124 zoomin = ""

125 elif zoom factor < 0:

126 pan = ""

127 zoomout = "CHECKED"

128 zoomin = ""

129 else:

130 pan = ""

131 zoomout = ""

132 zoomin = "CHECKED"

197

198

CHAPTER 7 USING PYTHON MAPSCRIPT

Finally, Lines 135 and 136 employ the zoomPoint () method to center the map on the click
point, and then zoom in or out according to the value of zoom factor.

135 map.zoomPoint(zoom factor,clkpoint,map.width, \
136 map.height,old extent,max_extent)

You’ve now created the map, zoomed or panned, and changed its extent. At this point,
execution drops out of the block conditioned on the presence of form variables, and prepare to
both draw the images and generate the HTML that’s to be forwarded to the browser. You can
skip this step since you’'ve been through this part of the code before.

The only part of this code you haven’t looked at is the function img2map() in Lines 008
through 022. When you click on the map, the coordinates are returned in image coordinates.
The zoomPoint () method requires the coordinates of the click point to be supplied in image
coordinates too. But when viewing the map, you probably want to know the position of the
click point in terms of map coordinates. There’s no MapScript method to perform this calculation,
so you're required to write your own. Lines 009 through 012 set the initial values of some variables.

008 def img2map (width, height, x, y, ext):

009 x =0
010 y=0
011 dpp x = 0
012 dppy =0

Since the width (and height) of the map is known in both pixels (width and height) and
map coordinates (from the function parameter passed to ext), and you know the click point
coordinates in pixels, you can convert pixels to map coordinates using proportions. Lines 013
through 016 extract the maximum and minimum map coordinates from ext. Lines 017 and 018
determine the number of map units per pixel (e.g., degrees per pixel or meters per pixel).

013 minx = ext.minx

014 miny = ext.miny

015 maxx = ext.maxx

016 maxy = ext.maxy

017 dpp_x = (maxx-minx)/width # degrees per pixel
018 dpp_y = (maxy-miny)/height

Note Map coordinates aren’t restricted to decimal degrees. If you project your spatial data (which I'll
discuss further in the Appendix), then map coordinates will be actual distances like miles, kilometers, or
feet—not angular measures.

Now, if a point is x pixels from the left edge of the image, you obtain its longitude by multi-
plying x by the number of degrees per pixel, and adding this to the longitude of the west (or left)
side of the extent, as in Line 019. You do something similar for the height-to-latitude conver-
sion, but keep in mind that pixel row count increases downward, so you must calculate the
degrees of latitude per pixel, multiply by the number of pixels from the top of the image, and

CHAPTER 7 USING PYTHON MAPSCRIPT

subtract that number from the maximum extent (as in Line 020). Finally, the map coordinates
are returned to the calling routine in Line 022.

019 X = minx + dpp_x*x # degrees from left
020 y = maxy - dpp_y*y # degrees from top because
022 return (x, y)

Enter the URL http://localhost/cgi-bin/pythonms_third.py into the address bar of your
browser and display the resulting web page. It should resemble Figure 7-2.

This application will mimic (for the most part) the operation of its CGI-based cousin. However,
there’s one significant difference, which you can demonstrate by deselecting the roads layer
and clicking Refresh. When the map is displayed again, the roads are still there and the check
box is now checked. See Figure 7-3—you’ll notice that the map’s appearance is very different
when all the selectable layers are turned off (except for the roads, which don’t go away). What

happened?

&) Python Mapscript Third Map - Netscape
File Edit Miew Go Bookmarks Toolk ‘window Help

199

i - %' - \a :’gg I@%hltp'.ff’lncalhnsﬂ."cgi—hin.z‘pythnnms_thudp_l,l

i Back Fonsard Reload Stop

1&.‘ g unu Roland WeCallsburg
E:3
3
@

Gilbert ‘;’ 0 .
i

Fernald

Ames’

Jordan
=i -
\ Us

ndidae Rougs Nevada _

Figure 7-3. MapScript lacks a *getLayersByGroupName() method, which makes setting layer
status for a group cumbersome.

You'll notice that the mapfile third.map contains several road layers that contain the
keyword-value pair GROUP roads. By specifying a GROUP name for several layers in a mapfile, the
CGI-based application can use the group name instead of the layer name to set the STATUS of

K J
% = Map seale: 1 230600 scale
g. Shipley 5 oo Click xy: 93862793, 42063721
(=)
-] ‘-.Gd\ Mlap Extent: -93 B1824TA563 41 830073125
Kallsy.) e’\ -93.3500976563 42 121640625
Legend Navigation Layers
‘"’sr%
e * Smallciies | Pan [Urban
ridge
Hioter], e Maxwell A other Hwy C Zoomln Areas
Slater NThmugh Hwy ' Zoom [Lakes
Sheldahl i Principal Hwy |C5 [T State
o ikl A 7 S :
o %" B § Interstate Hwy Boundaries
9‘. “a, @ o1 2 3 4 sm |’ staelLine Fefresh | | Roads
% & | Done

200

CHAPTER 7 USING PYTHON MAPSCRIPT

each layer in the group. In this application, you used the getLayerByName () method to retrieve
areference to alayer. Using that reference, you could then set the status of the layer. MapScript,
however, doesn’t possess a *getLayersByGroupName () method. In order to use the group name,
you would have to retrieve layers with the getLayer () method (which uses the layer number as
areference) by searching through all layers and selecting those with the appropriate GROUP
name. In order to keep the application simple, this wasn’t done in the present case. If you
require it in your own applications, however, it’s a straightforward application of techniques
already described.

Summary

In this chapter, you've examined some basic methods of Python MapScript and created an
application that duplicates the functionality of a MapServer CGI application. You've seen how
to create a map object from a mapfile and manipulate some of its internal attributes and
objects by means of MapScript methods. You've also learned how to draw and save the map,
and display it in an interactive web page. You haven’t exhausted MapScript’s capabilities, but
you've created a firm foundation upon which you can build larger, more complicated applica-
tions that exercise more of MapScript’s talents.

The next chapter will be devoted to creating the same application based on PHP. If you're
familiar with PHP, this parallel development will allow you to compare and contrast the expres-
sion of the API in the three languages, and perhaps gain a clearer understanding of them all. If
you don’t know PHP, the next chapter might encourage you to learn it.

Code Listings

Listing 7-1. The Python MapScript version of the “Hello World” application, pythonms_hello.py

001 #!/usx/bin/python

002 import mapscript

003 import random

004 # path defaults

005 #

006 map_path = "/home/mapdata/"

007 map_file = "hello.map"

008 # Create a unique image name every time through

009 #

010 image name = "pythonms_hello" \

011 + str(random.randrange(999999)).zfill(6) \
012 + ".png"

013 # Create a new instance of a map object

014 #

015 map = mapscript.mapObj(map_path+map file)

016 # Create an image of the map and save it to disk
017 #

018 img=map.draw()

019 img.save("/var/www/htdocs/tmp/" + image name)

CHAPTER 7 USING PYTHON MAPSCRIPT

020 # Output the HTML form and map image

021 #

022 print "Content-type: text/html"

023 print

024 print "<html>"

025 print "<header><title>Python Mapscript Hello World</title></header>"
026 print "<body>"

027 print """

028 <form name="hello" action="pythonms_hello.py" method="POST">
029 <input type="image" name="img" src="/tmp/%s">

030 </form>

031 """ % image_name

032 print "</body>"

033 print "</html>"

Listing 7-2. The Python MapScript version of the third application, pythonms_third.py

001 #!/usx/bin/python

002 import mapscript

003 import cgi

004 import random

005 HHHEHHHHEHHEHU S
006 # Convert image coordinates to map coordinates

007 #

008 def img2map (width, height, x, y, ext):

009 X =0

010 y=0

011 dpp_x = 0

012 dpp_y = 0

013 minx = ext.minx

014 miny = ext.miny

015 maxx = ext.maxx

016 maxy = ext.maxy

017 dpp_x = (maxx-minx)/width # degrees per pixel

018 dpp_y = (maxy-miny)/height

019 X = minx + dpp x*x # degrees from left

020 y = maxy - dpp_y*y # degrees from top because
021 # pixels count down from top
022 return (x, y)

023 #HHFHHHH e e
024 # Default values

025 #

026 script name = "/cgi-bin/pythonms_third.py"

027 # path defaults

028 map_path = "/home/mapdata/"

029 map file = "third.map"

030 img path = "/var/www/htdocs/tmp/"

201

202

CHAPTER 7

031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076

Nav
zooms
pan="
Zoomo
zoomi
Dis
urban

lakes =

state
roads
map
click
click
clkpo
ext
old e
exten
max_e
Get
#

parms
Ret
#

map =
We'
#

if (p

USING PYTHON MAPSCRIPT

igation defaults
ize=2

CHECKED"

ut=""

-

played layer defaults

areas = "CHECKED"
"CHECKED"
s = "CHECKED"
= "CHECKED"
click defaults
X = 320
y = 240

int = mapscript.pointObj()

ent defaults

xtent = mapscript.rectObj()

t = (-180.0, 0.0, -60.0, 90.0)

xtent = mapscript.rectObj(-180.0, 0.0, -60.0, 90.0)
CGI parms

= cgi.FieldStorage()
rieve mapfile and create a map from it

mapscript.mapObj(map_path+map file)
ve been invoked by the form, use form variables

arms.getfirst('img.x") and parms.getfirst('img.y')) \
or parms.getfirst('refresh'):
if parms.getfirst('refresh'):# refresh, fake the coordinates
clickx = 320
clicky = 240
else: # map click, use real coordinates
clickx = int(parms.getfirst('img.x"))
clicky = int(parms.getfirst('img.y"))
Set mouse click location in pointObj (we need it to zoom)
#
clkpoint.x = clickx
clkpoint.y = clicky
Selected layers may have changed, set HTML 'checks'
#
layerlist = parms.getlist('layer')
layers = " ".join(layerlist)
if layers.find('urbanareas') > -1:
urbanareas = "CHECKED"
this layer = map.getLayerByName('urbanareas')
this layer.status = 1

077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

CHAPTER 7 USING PYTHON MAPSCRIPT

else:
urbanareas =
this layer = map.getlayerByName('urbanareas")
this_layer.status = 0

if layers.find('lakes') > -1:
lakes = "CHECKED"
this layer = map.getlLayerByName('lakes")
this_layer.status = 1

else:
lakes =
this layer = map.getlLayerByName('lakes")
this_layer.status = 0

if layers.find('states') > -1:
states = "CHECKED"
this layer = map.getlLayerByName('states")
this_layer.status = 1

else:
states =
this layer = map.getlLayerByName('states"')
this_layer.status = 0

retrieve extent of displayed map

#

if parms.getfirst('extent'):
extent = parms.getfirst('extent').split(' ")

Set the new map to the extent retrieved from the form

#

map.setExtent(float(extent[0]),float(extent[1]), \
float(extent[2]),float(extent[3]))

Save this extent as a rectObj (we need it to zoom)

#

old extent.minx = float(extent[0])
old extent.miny = float(extent[1])
old extent.maxx = float(extent[2])
old extent.maxy = float(extent[3])

Calculate the zoom factor to pass to zoomPoint method
and setup the variables for web page
#
zoomfactor = +/- N
1if N> 0 zooms in - N < 0 zoom out - N = 0 pan
#
zoom_factor = int(parms.getfirst('zoom")) \
* int(parms.getfirst('zsize'))

zoomsize = str(abs(int(parms.getfirst('zsize'))))
if zoom factor == 0:

zoom_factor = 1

pan = "CHECKED"

zoomout = ""

zoomin =

nn

203

204

CHAPTER 7 USING PYTHON MAPSCRIPT

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

elif zoom factor < O:
pan = ""
zoomout = "CHECKED"
zoomin = ""
else:
pan =
zoomout =
zoomin = "CHECKED"
Zoom in (or out) to clkpoint
#
map.zoomPoint(zoom factor,clkpoint,map.width, \
map.height,old extent,max_extent)
We've dropped thru because the script was invoked directly
or we've finished panning, zooming and setting layers on or off
#
Set unique image names for map, reference and legend
#
map_id = str(random.randrange(999999)).zfill(6)
image name = "pythird" + map_id + ".png"
image url="/tmp/" + image_name
ref name = "pythirdref" + map_id +
ref url="/tmp/" + ref name
leg name = "pythirdleg" + map_id + ".png"
leg url="/tmp/" + leg_name
Draw and save map image
#
image=map.draw()
image.save(img_path + image name)
Draw and save reference image
#
ref = map.drawReferenceMap()
ref.save(img_path + ref name)
Draw and save legend image
#
leg = map.drawLegend()
leg.save(img path + leg name)
Get extent of map after any zooming or panning
(we'll save it in a form variable)
#
new_extent = str(map.extent.minx)+" "+str(map.extent.miny) \
+ " "+ str(map.extent.maxx) \
+ " "+ str(map.extent.maxy)
get the scale of the image to display on the web page
#
scale = map.scale
Convert mouse click from image coordinates to map coordinates
#

".gif"

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

CHAPTER 7 USING PYTHON MAPSCRIPT

clkgeo = img2map(map.width,map.height, \
clkpoint.x,clkpoint.y,o0ld extent)
x_geo = clkgeo[0]
y_geo = clkgeo[1]
Mapvars= {'image url':image url,'ref url':ref url, 'scale':scale, \
'x_geo':x_geo, 'y geo':y geo, 'new_extent':new_extent, \
'leg url':leg url, 'pan':pan, 'zoomin':zoomin, \
'zoomout':zoomout, 'zoomsize':zoomsize, 'lakes':lakes, \
'states':states, 'roads':roads, 'urbanareas':urbanareas}
We're done, output the HTML form
#
print "Content-type: text/html"
print
print "<html>"
print "<header><title>Python Mapscript Third Map</title></header>"
print "<body bgcolor=\"#EGE6E6\">"
print """
<form method=post action="/cgi-bin/pythonms third.py">
<table width="100" border="1">
<tr><td width="60" rowspan="6">
<input name="img" type="image" src=
width=640 height=480 border=2>
</td>
<td width="40" align="center" colspan="3">

</td>
</tr>
<tr><td align="left" colspan="3">
Map scale:8nbsp 1:%(scale)1od scale
</td></tr>
<tr><td align="left" colspan="3">
Click x,y:8nbsp 8nbsp %(x _geo)6.6F, %(y geo)6.6f
</td></tr>
<tr><td align="left" colspan="3">
<input type="hidden" name="extent" value="%(new_extent)s">
Map Extent: %(new_extent)s
</td></tr>
<tr><td><center>Legend</center></td>
<td><center>Navigation</center></td>
<td><center>layers</center></td></tr>
<tr><td rowspan="2"></td>
<td align="left">
<input type=radio name="zoom" value=0 %(pan)s>
Pan

<input type=radio name="zoom" value=1 %(zoomin)s>
Zoom In

<input type=radio name="zoom" value=-1 %(zoomout)s>

no,

5(image url)s"

205

206

CHAPTER 7 USING PYTHON MAPSCRIPT

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Zoom Out

<input type=text name="zsize" value=
Size

<center>
<input type=submit name="refresh" value="Refresh">
</center>
</td>
<td align="top">
<input type="checkbox" name="layer"
value="urbanareas" %(urbanareas)s >
Urban Areas

<input type="checkbox" name="layer"
value="lakes" %(lakes)s >
Lakes

<input type="checkbox" name="layer"
value="states" %(states)s >
State Boundaries

<input type="checkbox" name="layer"
value="roads" %(roads)s >
Roads

</td>
</tr>
</table>
</form>
""" % Mapvars
print "</body>"
print "</html>"

no,

s(zoomsize)s" size=2>

CHAPTER 8

Using PHP/MapScript

As previously noted, MapServer’s role as a CGI script, while powerful, is limited to a simple
web user interface, and it can’t be extended with external libraries that provide additional
functionality. MapScript is an interface that allows access to MapServer’s underlying function-
ality from a variety of programming environments. In earlier chapters, this interface was
described for Perl and Python MapScript. Both of these derive from the same code base and
are therefore very similar. In fact, there’s an entire family of such MapScripts (which include,
in addition to the two mentioned previously, Java, Tcl, and Ruby MapScripts) that share similar
functionality. PHP/MapScript is distinguished not only orthographically from the rest, but also
by its code, which is maintained independently. Therefore, its functionality may not corre-
spond exactly with the other versions of MapScript.

This chapter will provide an introduction to PHP/MapScript that’s more a primer than a
comprehensive reference. But, while only a fraction of MapScript’s capabilities are described,
the fundamentals presented will enable you to build your own applications. PHP/MapScript’s
object-oriented interface is defined in terms of classes and methods, and some understanding
of these techniques is required to use it effectively.

Note If you're unfamiliar with PHP or its object-oriented features, consider picking up a copy of Beginning
PHP 5 and MySQL: From Novice to Professional, by W. Jason Gilmore (Apress, 2004).

Building and Installing PHP/MapScript

The source code for the PHP/MapScript module is supplied with the MapServer distribution,
but the module isn’t created along with MapServer unless you specifically request it when you
configure the MapServer build. Also, since PHP 5 is sufficiently recent that you may not have it
installed, I'll briefly describe the PHP build process before proceeding to PHP/MapScript.

In some environments, PHP 5 and MapScript don’t work well together. In order to avoid
problems later, a couple of issues need to be resolved. The first concerns how PHP itself inter-
acts with the Apache server. The default PHP build creates an executable that’s intended to
function in a CGI environment—that is, it’s loaded every time Apache is called upon to execute
aPHP script. On the other hand, if PHP is compiled as a DSO (dynamic shared object), it becomes
part of Apache and no longer needs to be reloaded for every request. The DSO option is faster,

207

208

CHAPTER 8 USING PHP/MAPSCRIPT

but since MapScript is supported only as a CGI, not a DSO, this can sometimes lead to problems. In
the build described, you'll create PHP as a CGI. The Apache configuration changes described
will allow you to run PHP and PHP/MapScript as a CGI even if your current environment
supports PHP as a DSO.

The other issue is related to an incompatibility between PHP’s built-in regular expression
library and the system library. Apache and MapScript use the system library, but the default
PHP build uses the bundled library, which can lead to problems. However, there are two
possible solutions: you can recompile Apache and MapScript using PHP’s library, or you can
go with the simpler alternative and specify that the build use the system regex library. To keep
things simple, the build described here will do the latter.

Building PHP

There are numerous configuration options available when building PHP, and your installation
will probably have requirements beyond those needed to use the application code described in this
book. However, for simplicity’s sake, you’ll perform a build that specifies only the functionality
you need.

Download the PHP distribution (available at waw.php.net) and untar it into /usr/src/.
Then, change to the PHP source directory and run configure, make, and make install by
executing the following commands:

cd /usr/src/php-5.0.2

./configure --with-regex=system --with-mysql=/usr/include
make

make install

The first configuration option specifies the regular expression library to use—in this case,
the system library. The second option identifies the location of the header files that are required
to provide MySQL support. When the build has completed, execute the following command
from the PHP source directory to place the php binary in Apache’s script directory:

cp sapi/cgi/php /var/www/cgi-bin/

Next, check that the Apache configuration file httpd. conf (in the development environment,
this is found in /etc/apache/) contains the following lines:

LoadModule php5_module libexec/1ibphp5.so
AddType application/x-httpd-php .php .html .phtml

If it does, then PHP is a loadable module and Apache will parse all documents with extensions
php, html, or phtml, and execute any embedded PHP code. If it doesn’t, then Apache hasn’t
been configured to load PHP as a DSO. In either case, you want Apache to load the CGI version
of PHP when it handles PHP/MapScript requests. In order to force Apache to load the CGI
version of PHP, you must define a handler for documents with a specific extension and an
action to perform when such a document is loaded. Add the following lines to the Document
types section of httpd.conf:

AddHandler php-script .php
Action php-script /cgi-bin/php

Delete the reference to . php from the AddType line (if it exists), so it looks like this:

CHAPTER 8 USING PHP/MAPSCRIPT

AddType application/x-httpd-php .html .phtml

By removing . php from the AddType directive, files with this extension will use the CGI version
of PHP even if the environment contains a DSO version. If you don’t remove the reference,
then Apache will continue to use the DSO version of PHP to handle documents of type php.

The PHP distribution contains a default configuration, php.ini-dist, that’s suitable only
for development (because of security concerns). Copy this configuration file to its default
location.

cp php.ini-dist /usr/local/lib/php.ini

Open php.iniin a text editor and look for the directive extension_dir. The directory
assigned is the location where the PHP interpreter will look for loadable modules (such as
the MapScript module). In the development environment, this line is

extension _dir = "/usr/lib/php/extensions”

The directory specified in your environment might be different. Note the location, however,
because you’ll need it in the next section when you install MapScript. Finally, restart the
Apache server

apachectl restart

and proceed to the PHP/MapScript build.

Building PHP/MapScript

If you had been reading ahead, this step wouldn’t be required, but overloading the initial
MapServer build with yet another configuration option would have complicated the process.
It may even have stalled it if Apache and the PHP environment required changes. Now, however,
with a functioning MapServer CGI application and some experience with the build process,
you can proceed to a fairly simple recompile that will produce PHP/MapScript.

Recall that when you configured the build in Chapter 1, you used the following command:

./configure --with-proj --with-gdal --with-ogr

This provided support for the Proj.4, GDAL, and OGR libraries. In order to build the
PHP/MapScript module php_mapscript.so, you just have to indicate the location of the
PHP install directory. You do this in the development environment with the configure option
--with-php=/usr/local/include/php. As noted in Chapter 1, the default library locations used
by make may not be appropriate for your environment. In the present case, configure requires
that you specify the location of the PHP install directory explicitly. (Also keep in mind that your
location might be different).

You rebuild MapServer and build MapScript by typing the following:

make clean
./configure --with-proj --with-gdal --with-ogr --with-php=/usr/local/include/php
make

This will create the module php_mapscript.soin ./mapscript/php3/. Copy this to the PHP
extensions directory that you noted in the previous section (in the development environment,
thisis /usr/1ib/php/extensions/), and ensure that all directories along the path to the module

209

210

CHAPTER 8 USING PHP/MAPSCRIPT

are readable and executable by the Apache user. PHP needs to know that it must load this
module when a script is executed. In order for this to happen, you must insert a directive in the
php.ini file. You can place it after the extension_dir directive. It should read

extension = "php _mapscript.so”

You're now ready to proceed to the next section and create a PHP MapScript “Hello World”
application.

The PHP/MapScript “Hello World” Application

The first MapScript application will be kept as simple as possible, merely replicating the function-
ality of the “Hello World” MapServer application. This will do two things: it will test the MapScript
build just completed and it will demonstrate the key steps in creating an image and displaying
it in a browser. The functionality will be duplicated by means of a simple trick—instead of
building a map from scratch, you'll use all the specifications in the hello.map file.

When MapScript is instructed to create a map object by reading a mapfile, all the map
parameters, layers, classes, and attributes are translated into MapScript objects. Default values
are chosen for attributes that are left unspecified, and if the mapfile (when part of a CGI appli-
cation) produces a map, the MapScript version will produce the same map. In addition to this,
of course, all the MapScript objects can be modified programmatically. By building an application
this way, you can focus your attention on the new MapScript functions without getting mired
in mapfile details.

The code for this section is contained in the file phpms_hello.php in the code distribution
available from the Apress website. It's shown in Listing 8-1.

As shown in the code snippet that follows, Line 001 opens the PHP script. A unique name
is required for images each time the script is invoked, and this is accomplished in Line 003 by
concatenating the string phpms_hello; a six-digit, zero-filled, random integer; and the string
.png. In creating this image name, you could have given it any file extension—however, the
mapfile will create a PNG image, and if the extension doesn’t conform to the image format, the
browser might become confused.

001 <?php
003 $image name = sprintf("phpms-hello%0.6d",rand(0,999999)).".png";

Line 005 uses the MapScript constructor method newMapObj() to create a map object
(referenced by the variable $map) by importing map specifications from the hello.map mapfile
found under /home/mapdata/. $map now possesses all the characteristics of the map specified in
the mapfile, but there isn’t yet an image to display. Line 007 uses the imageObj method draw()
to create the image, and returns a reference to it in $image. Line 008 uses the imageObj method
saveImage() to write the image to the appropriate place on disk. Finally, Line 009 closes the
block containing the PHP script.

005 $map = ms_newMapOb7j("/home/mapdata/hello.map");

006 // Create an image of the map and save it to disk

007 $image=$map->draw();

008 $image->saveImage("/var/www/htdocs/tmp/".$image _name);
009 ?>

CHAPTER 8 USING PHP/MAPSCRIPT 211

Lines 010 through 018 generate the HTML tags needed to display the map image. Lines 010
through 012 write the opening HTML tags (<html>, <head>, <title>, and <body>). Lines 013 through
016 produce an HTML form. Line 013 opens a <form> tag, identifying the action as this script.
Lines 014 and 015 create an input field of type image, with src pointing to the map image created
previously. The URL to this image is inserted into the tag by the inline php echo command. Line 016
closes the form tag. Lines 017 and 018 close the tags that were opened earlier.

010 <html>

011 <head><title>PHP MapScript Hello World</title></head>
012 <body>

013 <form action="phpms_hello.php" method="POST">

014 <input type="image" name="img"

015 src="/tmp/<?php echo $image_name; ?>">

016 </form>
017 </body>
018 </html>

All the HTML generated is sent to the browser where the “Hello World” image is displayed
with a tiny red dot between the words “Hello” and “World.” That’s all there is to it. Load the
URL of this script (http://localhost/phpms_hello.php in the development environment) and
execute it. This should display the image shown in Figure 8-1, in which you should see the
same yellowish rectangle (with the words “Hello World” printed at the center) as you saw when
you loaded hello.html.

EEU PHF Map5cript Hello World - Netscape

gngiIe Edit Wiew Go Bookmarks Tooks ‘window Help

e . e . A B T
Back o A Stﬁp I% hitp: #Alocalhostphpms_hello.php

b

Hello ‘Horld

Figure 8-1. The PHP/MapScript version of the “Hello World” application

At the first presentation of the original CGI-based “Hello World” HTML file (hello.html),
a broken image icon was displayed because Apache loaded the page as static HTML. Apache
didn’t load MapServer at all because no form had been defined—therefore, no action was

212

CHAPTER 8 USING PHP/MAPSCRIPT

specified. It was only when the user clicked the submit key that Apache invoked MapServer,
which built the map image, replaced the substitution strings, and sent the HTML page (this
time with a valid image) back to Apache for forwarding to the browser. However, this isn’t how
the MapScript application works.

Since the PHP scriptis contained within the web page itself, the first time Apache loads the
HTML file (phpms_hello.php), it parses the file and searches for PHP commands to execute. (It
does this because of the AddType directive that you inserted into httpd.conf.) The PHP MapScript
commands create the map image and save it. Then, the PHP echo commands insert appropriate
values into the HTML portion of the file. The page is complete before it gets sent to the browser,
so no initialization file is required and no broken image icon is displayed.

A Practical PHP/MapScript Application

The application in the previous section confirmed that PHP MapScript was built properly, and
demonstrated some fundamental MapScript functions, but it didn’t provide a very useful or
interesting map. In this section, you'll explore MapScript functionality in greater depth and
produce an interactive map. You'll employ the same method as last time—that is, the initial
definition of map parameters will be taken from a mapfile. However, this time, changes will be
made to some of these parameters interactively, so that the application will behave the same
way as its CGI-based counterpart. The mapfile used will be third.map. The code for this example
can be found in the file phpms_third.php, and is available in the source distribution download-
able from the Apress website. The code is shown in Listing 8-2.

The script opens at Line 001. Lines 004 through 020 define the function img2map(). When
you click on the map, the coordinates are returned in image coordinates. The zoomPoint ()
method requires the coordinates of the click point to be supplied in image coordinates as well.
But when viewing the map, you'd probably like to know the position of the click point in terms
of map or world coordinates (for example, latitude and longitude). There’s no MapScript
method to perform this calculation, so you're required to write your own.

The method is very simple. The width (and height) of the map is known in both pixels ($width
and $height) and map coordinates (from the function parameter $ext). You know the click point
coordinates in pixels, so you can use proportions to convert pixels to map coordinates. Lines 005
through 008 extract the maximum and minimum map coordinates from $ext. Lines 012 and 013
determine the number of map units per pixel (e.g., degrees per pixel or meters per pixel).

Note Map coordinates aren’t restricted to decimal degrees. If you project your spatial data (more about
that later), map coordinates will be actual distances like miles, kilometers, or feet—not angular measures.

Now, if a point is x pixels from the left edge of the image, you can obtain its longitude by
multiplying x by the number of degrees per pixel and adding this to the longitude of the west
(or left) side of the extent, as in Line 014. You do something similar for the height-to-latitude
conversion, but keep in mind that pixel row count increases downward, so you must calculate
the degrees of latitude per pixel, multiply by the number of pixels from the top of the image,
and subtract that number from the maximum extent (as in Line 015). Lines 017 and 018 save
the two coordinate values in an array in order to return them in Line 019.

CHAPTER 8 USING PHP/MAPSCRIPT

001 <?php
002 // === m e
003 // Convert from image to map coordinates

004 function img2map($width,$height, $point,$ext) {

005 $minx = $ext->minx;

006 $miny = $ext->miny;

007 $maxx = $ext->maxx;

008 $maxy = $ext->maxy;

009 if ($point->x && $point->y){

010 $x = $point->x;

011 $y = $point->y;

012 $dpp_x = ($maxx-$minx)/$width;
013 $dpp_y = ($maxy-$miny)/$height;
014 $x = $minx + dpp_x*x;

015 $y = $maxy - dpp_y*y;

016 }

017 $pt[o] = $x;

018 $ptl1] = $y;

019 return $pt;

020 }

Initially, this script (phpms_third.phtml) is invoked from the Location bar of the browser.
This means that a form doesn’t yet exist to pass CGI parameter values to the script. Default
values have to be set for these parameters so that MapScript knows what to do the first time the
script is invoked. This is done in Lines 023 through 046.

The HTML form generated by this script will invoke itself. It’s identified in Line 023
(phpms_third.php) so that the name can be inserted into a form tag as the action. Next, Lines
025 through 027 identify the path to the mapfile, the mapfile itself, and the path to images
created by this script.

023 $script_name = "phpms_third.php";
025 $map_path = "/home/mapdata/";

026 $map_file = "third.map";

027 $img path = "/var/www/htdocs/tmp/";

The navigation defaults in Lines 029 through 032 set the initial zoomsize and the values of
the select variables $pan, $zoomin, and $zoomout. Recall that an input variable of type radio can
have several values associated with it. Only one of these can be selected at a time. If the state of
a value is CHECKED, then the value that’s CHECKED is returned. The navigation radio buttons are
initialized so that the first time the user sees the web page containing the map, the map will be
in Pan mode. The other values are set to empty strings.

029 $zoomsize=2;
030 $pan="CHECKED";
031 $zoomout="";

nn

032 $zoomin="";

213

214

CHAPTER 8 USING PHP/MAPSCRIPT

Lines 034 through 037 set the CHECKED state for several layers. HTML will be generated that
will allow the user to select which layers should be displayed. In this case, the input variable
will be of type CHECKBOX, which is similar to a radio button, except it allows either none, some,
or all of the layers to be selected.

034 $urbanareas = "CHECKED";
035 $lakes = "CHECKED";
036 $states = "CHECKED";
037 $roads = "CHECKED";

When the user clicks on some point in the map image, the pixel coordinates of that mouse
click are returned to the script. However, should the user click the submit button to refresh the
image, a virtual click point needs to be created so that MapScript has some point of reference
when it zooms in or out when refreshed. Lines 039 and 040 place this point at the center of the
image. (Recall from the mapfile third.map that the image is 640 pixels wide by 480 pixels high.)

039 $clickx = 320;
040 $clicky = 240;

Next, Line 041 defines a MapScript PointObj(), and returns a reference in $clkpoint. You'll
use this object to refer to the click point (real or virtual) and assign values to its coordinates
later.

041 $clkpoint = ms_newPointObj();

A rectangle object, rectObj() is created in Line 042. A rectangle object consists of two
coordinate pairs: the coordinates of the lower-left and upper-right corners of the rectangle.
ARectObj() is MapScript’s way of referencing a map extent. $old_extent refers to the extent of
the map that has already been displayed in the browser (in the case of the first invocation, it
refers to the default extent).

042 $old extent = ms_newRectObj();

Line 044 defines the default extent as an array. The values of the array elements are the
extent coordinates specified in the mapfile. On first invocation, this is the extent that will be
saved on the web page as a hidden variable. Subsequent invocations will assign current values
to the coordinates. Lines 045 and 046 create another RectObj() and set it to the default extent.
The MapScript zoomPoint () method employed in the following code won’t zoom out farther
than this. This extent should also equal the extent specified in the mapfile, or else strange
behavior occurs.

044 $extent = array(-180, 0, -60, 90);
045 $max_extent = ms_newRectObj();
046 $max_extent->setextent(-180, 0, -60, 90);

Line 048 creates a new mapObj based on the contents of the mapfile specified previously
(i.e., third.map). The extent of this map is the extent defined in the mapfile, and the layers
rendered are those for which the STATUS is on or default.

048 $map = ms_newMapObj($map_path.$map_file);

CHAPTER 8 USING PHP/MAPSCRIPT

Lines 051 and 052 determine whether the script has been invoked by a form. All the code
up to this point is executed every time the script runs, and default values have been assigned
to most variables. If the script is invoked by the form, then the form variables retrieved by
$_POST[] will be defined, and the block of code following the if statement will be executed.

051 if (($_POST['img x'] and $ POST['img y'])
052 or $ POST['refresh']) {

If the scriptisn’t invoked by the form, then a value of false will be returned, and execution
will drop through to Line 134 without executing any conditional code. Assume that this is the
first invocation so that execution falls through.

Line 134 creates a unique identifier for the various images associated with this map by
formatting a random number as a six-digit string. Lines 135 through 140 define file names and
URLs for the map image, the reference map image, and the legend image.

134 $map_id = sprintf("%0.6d",rand(0,999999));
135 $image _name = "third".$map_id.".png";

136 $image url="/tmp/".$image_name;

137 $ref name = "thirdref".$map_id.".gif";

138 $ref url="/tmp/".$ref name;

139 $leg name = "thirdleg".$map_id.".png";

140 $leg url="/tmp/".$leg name;

Line 142 uses the draw() method to create the map image. Next, the map image is saved
using the imageObj method saveImage(). Lines 145 through 149 perform similar steps to create
and save reference map and legend images.

142 $image=$map->draw();

143 $image->saveImage($img_path.$image name);
145 $ref = $map->drawReferenceMap();

146 $ref->savelmage($img path.$ref name);

148 $leg = $map->drawLegend();

149 $leg->saveImage($img path.$leg name);

The next step is superfluous the first time the script is executed. Lines 152 through 155
retrieve the extent of the map just saved to disk and convert it to a space-delimited string. The
first time through, this extent is the same as the default extent defined previously. Subsequent
invocations, however (after zooming and panning), will produce different extents. This value
will be saved in a hidden form variable and retrieved in the next invocation in order to specify
the current extent of the map.

A mapObj possesses an extent. In order to access each of the four coordinates of the extent
individually, a chain of references is used (map->extent->minx, for example).

non

152 $new extent = sprintf("%3.6f",$map->extent->minx).
153 .sprintf("%3.6f", $map->extent->miny)." "
154 .sprintf("%3.6f", $map->extent->maxx)." "
155 .sprintf("%3.6f", $map->extent->maxy);

215

216

CHAPTER 8 USING PHP/MAPSCRIPT

Line 157 retrieves the map scale from the map object and formats it for output. Lines 159
through 161 invoke the function img2map() to convert the mouse-click point from image coor-
dinates to map coordinates (which in the present case are measured in decimal degrees), and
format the returned values so they can be displayed in the web page. The script is closed in
Line 163.

157 $scale = sprintf("%10d",$map->scale);

159 list($x,$y) = img2map($map->width,$map->height,$clkpoint,$old extent);
160 $x_str = sprintf("%3.6f",$x);

161 $y str = sprintf("%3.6f",%y);

163 7>

The three required images (map, reference map, and legend) have been created and saved,
and the scale and the new extent have been calculated, so you're now ready to generate the
web page. Lines 164 through 166 print the preamble and opening tags for the web page (<html>,
<head>, <title>, and <body>).

164 <html>
165 <head><title>MapScript Third Map</title></head>
166 <body bgcolor="H#E6E6E6">

Note Since the web page had already been formatted as a template for the CGl-based MapServer appli-
cation, it was imported directly into this script, and the substitution strings were replaced by PHP commands
that insert appropriate values.

Aformis opened in Line 167 with the action specified by the variable $script_name, which
was set to phpms_third.php in Line 023.

167 <form method=post action="<?php echo $script name;?>">

A table is opened to format the output in Line 168. Following this, the values of several
script variables are inserted into the page.

168 <table width="100%" border="1">

Lines 170 and 171 specify the element containing the map image, and the reference image
is inserted in Lines 173 and 174.

170 <input name="img" type="image" src="<?php echo $image url;?>"
171 width=640 height=480 border=2></td>

173 <img SRC="<?php echo $ref url;?>"

174 width=300 height=225 border=1></td></tr>

The map scale, the click point coordinates, and the map extent are inserted in Lines 176
through 184.

CHAPTER 8 USING PHP/MAPSCRIPT

176 Map scale: 1:<?php echo $scale;?>

179 Click x,y:8nbsp; 8

180 <?php echo $x_str;?>,<?php echo $y_str;?></td></tr>
181 <tr><td align="left" colspan="3">

182 <input type="hidden" name="extent"

183 value="<?php echo $new_extent;?>">Map Extent:8nbsp;

184 <?php echo $new_extent;?></td></tr>

Line 188 inserts the legend image. In Lines 189 through 197, the navigation variables $pan,
$zoomin, $zoomout, and $zoomsize are displayed. The submit button is defined in Line 198.

188 <tr><td rowspan="2"><img src="<?php echo $leg url;?>"></td>
189 <td align="left">

190 <input type=radio name="zoom" VALUE=0

191 <?php echo $pan;?>> Pan

192 <input type=radio name="zoom" VALUE=1

193 <?php echo $zoomin;?>> Zoom In

194 <input type=radio name="zoom"

195 VALUE=-1 <?php echo $zoomout;?>> Zoom Out

196 <input type=text name="zsize"

197 VALUE="<?php echo $zoomsize;?>" SIZE=2> Size

198 <input type=SUBMIT name="refresh" VALUE="Refresh"></td>

The layer selection controls are specified in Lines 199 through 207. The input variable
layer will generally contain several values (i.e., the names of the selected layers). In order that
these values are returned in a form that PHP understands, the name is specified as layer[],
with the square brackets indicating an array of values.

199 <td align="top">

200 <input type="checkbox" name="layer[]" value="urbanareas"
201 <?php echo $urbanareas;?> >Urban Areas

202 <input type="checkbox" name="layer[]" value="lakes"

203 <?php echo $lakes;?> >Lakes

204 <input type="checkbox" name="layer[]" value="states"

205 <?php echo $states;?> >State Boundaries

206 <input type="checkbox" name="layer[]" value="roads"

207 <?php echo $roads;?> >Roads
</td></tr>

The <table>, <form>, and other open tags are closed in Lines 208 through 211. The web
page is now sent back to the browser via the Apache web server, and the user sees a page that’s
almost identical to the page displayed by the CGI-based MapServer application (as shown in
Figure 8-2).

208 </table>
209 </form>
210 </body>
211 </html>

217

218 CHAPTER 8 USING PHP/MAPSCRIPT

&) MapScript Third Map - Netscape

Fle Edt “iew Go Bookmarks Tools ‘Window Help

e . » - A & 2 gx)
e T e |4 nitp tiocalhostiphpms_thid php = 8

fye|

MMap scale: 1: 59059179
Clickxy: 0.000000,0.000000
Iap Extent: -180.000000 0.000000 -60.000000 $0.000000

Legend Navigation Layers

Honelulu

Vs e @ p

etz ~ Zan . I Urban Areas
oom ln

State Capitals Lakes

T C ZoomOut :
Y Major Cities So W State Boundaries
Interstate Hwy Z Size

——— M Roads
:
0 270 540 81010804350 mi A state Line Fiefresh

S a2 | Done | Fo=le|

Figure 8-2. The PHP/MapScript version of the third application, phpms_third.php

Now, let’s assume that the user looks at the map and changes the zoom state from Pan to
Zoom Inand clicks somewhere on the map image. The Apache server then receives the request
from the browser and executes the script. The first part of the script (up to Line 051) is executed
just as before—but now, when execution reaches the if statement, the values $_POST['img x']
and $_POST['img_y'] will be defined, since the form variables img_x and img_y will have been
returned from the browser. Therefore, execution proceeds to Line 053.

053 if ($_POST['refresh']) { // Refresh, fake the coordinates

054 $clickx = 320;

055 $clicky = 240;

056 } else { // map click, use real coordinates
057 $clickx = $_POST['img x'];

058 $clicky = $_POST['img y'];

059 }

If the user had clicked Refresh, then $_POST['refresh'] would return a true value, and the
code in Lines 054 and 055 would assign fake image coordinates (at the center of the image) to
the variables $clickx and $clicky.

CHAPTER 8 USING PHP/MAPSCRIPT

But assuming that the user clicked on the map, the image coordinates of the click point are
returned. Since the name of the input field containing the map image is img, these coordinates
are returned as the values of form variables img_x and img_y. Lines 057 and 058 then save these
values in $clickx and $clicky. Previously, an instance of PointObj, $clkpoint, was created—
now the PointObj method setXY is used to set its coordinate values to $clickx and $clicky in
Line 061.

061 $clkpoint->setXY($clickx,$clicky);

Lines 063 through 067 retrieve a list of layers that the user chose to display (by clicking the
appropriate check boxes), and concatenate the list into the space-delimited list $1ayers. If no
layers have been selected, the value of the variable $1layers is set to an empty string, since an
error is produced if you try to join an empty list. (Note the syntax in Line 200, which is used to
return an array of values to a PHP script.)

063 if ($_POST['layer']) { // any layers selected?
064 $layers = join(" ",$_POST['layer']); // yes

065 } else {

066 $layers = ""; // no

067 }

In Line 069, the PHP Perl regular expression function fpreg_match() is used to search for
the string 'urbanareas' in $layers. Ifit’s found, then the variable $urbanareas is set to CHECKED.
Remember, if you want this layer to be checked when you generate the web page again, you
must set the value of $urbanareas. Next, the mapObj method getLayerByName() is used to retrieve
a pointer ($this_layer) to the layer named urbanareas. The pointer is then used to access the
status of the layer and set it to on by assigning the value MS_ON to layer status. On the other
hand, if the string 'urbanareas' isn’t found, it means that the user has unchecked the urbanareas
check box. Therefore, the variable $urbanareas is set to the empty string, and the layer status
is set to of f by assigning it the value MS_OFF. This is repeated for the other layers.

069 if (preg_match("/urbanareas/", $layers)){

070 $urbanareas = "CHECKED";

071 $this_layer = $map->getLayerByName('urbanareas');
072 $this_layer->set('status', MS_ON);

073 } else {

074 $urbanareas = "";

075 $this_layer = $map->getLayerByName('urbanareas');
076 $this_layer->set('status', MS_OFF);

077 }

In Lines 097 through 101, the form variable extent is retrieved, and its four components
are split into array $extent. The elements of $extent are then used by the mapObj method
setExtent() to set the extent of the map. Recall that whenever this script is executed, the extent
of the map is set initially to the default value specified in the mapfile. Of course, on the previous
invocation, itlikely had some other value. This value would have been saved as a space-delimited
string in the hidden variable $extent. It isn’t until this point in the script that the value of this
variable is retrieved, parsed, and used to set the map extent to what is was previously.

219

220

CHAPTER 8 USING PHP/MAPSCRIPT

097 if ($_POST['extent']) {

098 $extent = split(" ", $_POST['extent']);

099 }

101 $map->setExtent($extent[0],$extent[1], $extent[2], $extent[3]);

A rectObj() containing the current extent is required by the zoomPoint() method used in
Lines 128 and 129, so the elements of the $extent array are used to set the values of the compo-
nents of the rectObj $old_extent in Lines 103 and 104.

103 $old extent->setextent(
104 $extent[0], $extent[1],$extent[2], $extent[3]);

Line 110 calculates the zoom factor that’s passed to zoomPoint (). $zoom_factor is the
product of the form variables zoom and zsize. Recall that zoom is set to 0 if $pan equals CHECKED,
-1 if $zoomout equals CHECKED, and 1 if $zoomin equals CHECKED. Lines 112 through 126 then set
the values of the navigation variables that are to be saved in the form. There are a couple of
things to note. Line 113 sets $zoom_factor to 1 if $zoom factor equals 0 since zoomPoint() can’t
accept a zoom factor of 0. Line 126 sets $zoomsize to the absolute value of form variable zsize,
justin case a user should enter a negative value. (If a negative $zoomsize were allowed, the
meanings of Zoom Inand Zoom Out would be reversed.)

110 $zoom factor = $ POST['zoom']*$ POST['zsize'];

112 if ($zoom factor == 0) {

113 $zoom_factor = 1;

114 $pan = "CHECKED";

115 $zoomout = "";

116 $zoomin = "";

117 } elseif ($zoom factor < 0) {
118 $pan = "";

119 $zoomout = "CHECKED";

120 $zoomin = "";

121 } else {

122 $pan = "";

123 $zoomout = "";

124 $zoomin = "CHECKED";

125 }

126 $zoomsize = abs($ POST['zsize']);

Finally, Line 128 employs the zoomPoint () method to center the map on the click point and
then zoom in or out according to the value of $zoom_factor.

128 $map->zoomPoint($zoom factor,$clkpoint,$map->width,
129 $map->height, $old extent,$max_extent);

The map has now been created, and its extent has been changed by whatever zoom and
pan factors the user entered. At this point, execution of the block conditioned on the presence
of form variables ends. The next step is to draw the images and generate the HTML that will be
forwarded to the browser. Since you've been through that part of the code before, you're now
ready to see the script in action.

CHAPTER

8 USING PHP/MAPSCRIPT

221

Enter the URL http://localhost/phpms_third.phtml into the address bar of your browser

to display the resulting web page. It should resemble Figure 8-2.

This application will mimic (for the most part) the operation of its CGI-based cousin.
However, there’s one significant difference, which you can demonstrate by deselecting the
roads layer and clicking Refresh. When the map is displayed again, the roads are still there and
the check box is now checked. See Figure 8-3—you’ll notice that the map’s appearance is very
different when all the selectable layers are turned off (except for the roads, which refuse to go

away). What happened?

) MapScript Third Map - Netscape

ile Edt “iew Go Bookmaks Tools Window Help

i o & < \3 §§ Ig%;http#Incalhnsﬂ/phpms_thwdphp

i Back Farward Reload Stop

e

Wis€onsinA g

T‘ Green Bay
&L

Grand Ripids ff
Milwa dkee s

il

R e , Chicagg’ [
bes Moines. m'-'l-%\-"a lCedar Rapids . —Alr L 45 SouthBeng,
,.—I‘ STMGines’ f e = f

BIENGIY Fort Wayne |
T b 73

4| .z

=G0 Gimbus -r*“* i
g
s estvirginig

JeffersonT Flankforl el

‘Charlesio

R KeRflick § - B Fayetie
B e
- _Nifdis

Map scale: 1: TI82I0T

ih Click x.37:

-27.656250,41 FA5625

IMap Extent: -95.136250 36.140625 -80.156250 47 390625

% 0 33 66 99 132 165 mi

Legend Navigation Layers
. & p
Sl o Zm " [Urhan Areas
i ootk [t
a State Cﬁ.l;.]llﬂl‘j O oo M Lakes
AF plaimietics [State Boundaries
Interstate Hwy 2 Size
¥ Roads
A state Line MI

2 | Done

-

Figure 8-3. MapScript lacks a *getLayersByGroupName() method, which makes setting layer status for a

group cumbersome.

You'll notice that the mapfile third.map contains several road layers that contain the
keyword-value pair GROUP roads. By specifying a GROUP name for several layers in a mapfile, the
CGI-based application can use the group name instead of the layer name to set the STATUS of
each layer in the group. In this application, you used the getLayerByName() method to retrieve
areference to alayer. Using that reference, you could then set the status of the layer. MapScript,
however, doesn’t possess a *getLayersByGroupName () method. In order to use the group name,
you would have to retrieve layers with the getLayer() method (which uses the layer number as
reference) by searching through all layers and selecting those with the appropriate GROUP name.

222

CHAPTER 8 USING PHP/MAPSCRIPT

In order to keep the application simple, this wasn’t done in the present case. If you require it in
your own applications, however, it’s a straightforward application of techniques already described.

Summary

In this chapter, you've examined some basic methods of PHP/MapScript and created an appli-
cation that duplicates the functionality of a MapServer CGI application. You've seen how to
create a map object from a mapfile and manipulate some of its internal attributes and objects
by means of MapScript methods. You've also learned how to draw and save the map image,
and display it in an interactive web page. You haven’t exhausted MapScript’s capabilities, but
you have created a firm foundation upon which you can build larger, more complicated appli-
cations that exercise more of MapScript’s talents.

In Chapter 9, you'll build upon the skills acquired in this chapter to create a PHP applica-
tion using both MySQL and MapScript. This application will be complete and demonstrate
functionality that you’ll be able to incorporate easily into your own applications to make them
spatially aware.

Code Listings

The code for this chapter is presented here, complete and uninterrupted.

Listing 8-1. The PHP/MapScript version of the “Hello World” application, phpms_hello.php

001 <?php

002 // Create a unique image name every time through

003 $image name = sprintf("phpms-hello%0.6d",rand(0,999999)).".jpg";
004 // Create a new instance of a map object

005 $map = ms_newMapOb7j("/home/mapdata/hello.map");

006 // Create an image of the map and save it to disk

007 $image=$map->draw();

008 $image->saveImage("/var/www/htdocs/tmp/".$image name);

009 7>

010 <html>

011 <head><title>PHP MapScript Hello World</title></head>
012 <body>

013 <form action="phpms_hello.php" method="POST">

014 <input type="image" name="img"

015 src="/tmp/<?php echo $image name; ?>">

016 </form>
017 </body>
018 </html>

CHAPTER 8 USING PHP/MAPSCRIPT 223

Listing 8-2. The PHP/MapScript version of the third application, phpms_third.php

001 <?php
002 // === m e
003 // Convert from image to map coordinates

004 function img2map($width, $height,$point,$ext) {

005 $minx = $ext->minx;
006 $miny = $ext->miny;
007 $maxx = $ext->maxx;
008 $maxy = $ext->maxy;

009 if ($point->x && $point->y){

010 $x = $point->x;

011 $y = $point->y;

012 $dpp_x = ($maxx-$minx)/$width;
013 $dpp_y = ($maxy-$miny)/$height;
014 $x = $minx + dpp_x*x;

015 $y = $maxy - dpp_y*y;

016 }

017 $pt[o] = $x;

018 $ptl1] = $y;

019 return $pt;

020 }

021 //mmmm

022 // Default values

023 $script_name = "phpms_third.php";
024 // path defaults

025 $map_path = "/home/mapdata/";

026 $map_file = "third.map";
027 $img _path = "/var/www/htdocs/tmp/";

028 // Navigation defaults

029 $zoomsize=2;
030 $pan="CHECKED";
031 $zoomout="";
032 $zoomin="";

033 // Displayed layer defaults

224

CHAPTER 8 USING PHP/MAPSCRIPT

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

049
050

051
052

053
054
055
056
057
058
059
060
061

062

063
064

$urbanareas = "CHECKED";
$lakes = "CHECKED";

$states = "CHECKED";

$roads = "CHECKED";

// Default click point
$clickx = 320;

$clicky = 240;

$clkpoint = ms_newPointObj();
$old extent = ms_newRectObj();
// Default extent

$extent = array(-180, 0, -60, 90);
$max_extent = ms_newRectObj();
$max_extent->setextent(-180, 0, -60, 90);

// Retrieve mapfile and create a map from it

$map = ms_newMapObj($map_path.$map file);

// If we've been invoked by the form, use form variables
// else drop through and create first map

if (($_POST['img x'] and $ POST['img y'])
or $ POST['refresh']) {

if ($_POST['refresh']) { // Refresh, fake the coordinates
$clickx = 320;
$clicky = 240;
} else { // map click, use real coordinates
$clickx = $_POST['img x'];
$clicky = $ POST['img y'];
}
// Set the mouse click location (we need it to zoom)
$clkpoint->setXY($clickx,$clicky);

// Selected layers changed? set checkbox "CHECKED" status

if ($_PoST['layer']) { // any layers selected?
$layers = join(" ",$_POST['layer']); // yes

065
066
067
068

069
070
071
072
073
074
075
076
077

078
079
080
081
082
083
084
085
086

087
088
089
090
091
092
093
094
095

096
097
098
099
100

101

102

CHAPTER 8 USING PHP/MAPSCRIPT

} else {
$layers = ""; // no

}
$this layer = o;

if (preg_match("/urbanareas/", $layers)){
$urbanareas = "CHECKED";
$this_layer = $map->getLayerByName('urbanareas');
$this_layer->set('status', MS_ON);

} else {
$urbanareas = "";
$this_layer = $map->getLayerByName('urbanareas');
$this_layer->set('status', MS_OFF);

}

if (preg _match("/lakes/", $layers)){
$lakes = "CHECKED";
$this_layer = $map->getLayerByName('lakes");
$this_layer->set('status', MS_ON);

} else {
$lakes = "";
$this_layer = $map->getLayerByName('lakes");
$this_layer->set('status', MS_OFF);

}

if (preg match("/states/", $layers)){
$states = "CHECKED";
$this_layer = $map->getLayerByName('states');
$this_layer->set('status', MS_ON);

} else {
$states = "";
$this layer = $map->getLayerByName('states');
$this layer->set('status', MS_OFF);

}

// retrieve extent of displayed map
if ($_POST['extent']) {
$extent = split(" ", $ POST['extent']);
}
// Set the map to the extent retrieved from the form

$map->setExtent($extent[0], $extent[1],$extent[2], $extent[3]);

// Save this extent as a rectObj, we need it to zoom.

225

226

CHAPTER 8 USING PHP/MAPSCRIPT

103
104

105
106
107
108
109

110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128
129

130

131
132

133

134

135
136

$old extent->setextent(
$extent[0],$extent[1],$extent[2], $extent[3]);

// Calculate the zoom factor to pass to zoomPoint method
/7

// zoomfactor = +/- N

// if N > 0 zoom in - N < 0 zoom out - N = 0 pan

/7

$zoom factor = $ POST['zoom']*$ POST['zsize'];
// Set the zoom direction checkbox status

if ($zoom_factor == 0) {
$zoom_factor = 1;
$pan = "CHECKED";

nn

$zoomout = "";
$zoomin = "";
} elseif ($zoom factor < 0) {
$pan = "";
$zoomout = "CHECKED";
$zoomin = "";
} else {
$pan =
$zoomout = "";
$zoomin = "CHECKED";

}

$zoomsize = abs($ POST['zsize']);
// Zoom in (or out) to clkpoint

$map->zoomPoint($zoom factor,$clkpoint,$map->width,
$map->height,$old extent,$max_extent);

}

// We've dropped thru because the script was invoked directly
// or we've finished panning, zooming and setting layers on or off

// Set unique image names for map, reference and legend
$map_id = sprintf("%0.6d",rand(0,999999));

$image name = "third".$map_id.".png";
$image url="/tmp/".$image name;

137
138

139
140

141

142
143

144

145
146

147

148
149

150
151

152
153
154
155
156
157
158
159
160
161
162
163
164

165
166

CHAPTER 8 USING PHP/MAPSCRIPT

$ref name = "thirdref".$map_id.".gif";
$ref url="/tmp/".$ref name;

$leg name = "thirdleg".$map_id.".png";
$leg url="/tmp/".$leg name;

// Draw and save map image

$image=$map->draw();
$image->saveImage($img_path.$image name);

// Draw and save reference image

$ref = $map->drawReferenceMap();
$ref->saveImage($img path.$ref name);

// Draw and save legend image

$leg = $map->drawlLegend();
$leg->saveImage($img path.$leg name);

// Save the extent after panning and zooming in
// a form variable as a space delimited string
$new_extent = sprintf("%#3.6f",$map->extent->minx)." "
.sprintf("%3.6f",$map->extent->miny).
.sprintf("%3.6f",$map->extent->maxx).
.sprintf("%3.6f",$map->extent->maxy);

// Format the scale of the image for display

$scale = sprintf("%10d",$map->scale);

// Convert click cordinates to map coordinates & format for display
list($x,%y) = img2map($map->width,$map->height, $clkpoint,$old_extent);
$x_str = sprintf("%3.6f",$x);

$y str = sprintf("%3.6f",%y);

// We're done, output the HTML form

>

<html>

<head><title>MapScript Third Map</title></head>
<body bgcolor="#E6GE6E6">

227

228

CHAPTER 8 USING PHP/MAPSCRIPT

167

168

169
170
171

172
173
174

175
176
177

178
179
180

181
182
183
184

185
186
187

188

189
190
191
192
193
194
195
196
197
198

199
200
201
202
203

<form method=post action="<?php echo $script name;?>">
<table width="100%" border="1">

<tr><td width="60%" rowspan="6">
<input name="img" type="image" src="<?php echo $image url;?>
width=640 height=480 border=2></td>
<td width="40%" align="center" colspan="3">
<img SRC="<?php echo $ref url;?>"
width=300 height=225 border=1></td></tr>

<tr><td align="left" colspan="3">
Map scale: 1:<?php echo $scale;?>
</td></tr>

<tr><td align="left" colspan="3">
Click x,y:
<?php echo $x_str;?>,<?php echo $y str;?></td></tr>

<tr><td align="left" colspan="3">
<input type="hidden" name="extent"
value="<?php echo $new_extent;?>">Map Extent:
<?php echo $new_extent;?></td></tr>

<tr><td><center>Legend</center></td>
<td><center>Navigation</center></td>
<td><center>lLayers</center></td></tr>

<tr><td rowspan="2"><img src="<?php echo $leg url;?>"></td>
<td align="left">
<input type=radio name="zoom" VALUE=0
<?php echo $pan;?>> Pan

<input type=radio name="zoom" VALUE=1
<?php echo $zoomin;?>> Zoom In

<input type=radio name="zoom"
VALUE=-1 <?php echo $zoomout;?>> Zoom Out

<input type=text name="zsize"
VALUE="<?php echo $zoomsize;?>" SIZE=2> Size

<input type=SUBMIT name="refresh" VALUE="Refresh"></td>

<td align="top">
<input type="checkbox" name="layer[]" value="urbanareas"”
<?php echo $urbanareas;?> >Urban Areas

<input type="checkbox" name="layer[]" value="lakes"
<?php echo $lakes;?> >Lakes

204
205
206
207

208
209
210
211

<input type="checkbox" name="layer|[]

<input type="checkbox" name="layer|[]

</table>
</form>
</body>
</html>

CHAPTER 8 USING PHP/MAPSCRIPT

value="states"
<?php echo $states;?> >State Boundaries

" value="roads"
<?php echo $roads;?> >Roads
</td></tr>

229

CHAPTER 9

Extending the Capabilities of
MapScript with MySQL

Previously, you used MapServer’s CGI mode to create interactive maps, and you also duplicated
that same map functionality using the MapScript API in Perl, Python, and PHP. This manner
of presentation built upon your understanding of MapServer to introduce you to some of the
features of MapScript in several languages you likely use on a regular basis. Although this
provided a useful introduction, the present chapter will explore new territory to show how the
API can significantly extend MapServer’s reach and allow you to produce powerful, spatially
aware applications.

There are a number of ways to give MapServer more power. For example, a spatially aware
database management system such as PostGIS (based on PostgreSQL) could be used. Providing
feature selection (via a SQL WHERE clause), this kind of technology supports more complex
query applications than shapefile access allows. And, although shapefile speed can exceed that
of more sophisticated storage and retrieval technologies, this is accomplished at the cost of the
increased complexity required to tile the shapefiles and create spatial indexes. At some point,
application complexity and performance issues will require that you examine this option.
However, the added complexity of converting data sets and accessing the data from MapServer
places this outside the scope of an introductory book.

Alternatively, we could have looked at a MapServer implementation in mobile hardware.
With restricted data sets and inexpensive GPS hardware, running MapServer in a tablet PC
(or even a PDA) is certainly possible. However, while this is certainly an interesting project, it
seems too narrowly attractive to serve as an effective pedagogical exercise.

Instead, you'll create an application that bumps up the functionality of raw MapServer
significantly, and provides practice with using some of the techniques already presented while
presenting some important new ones.

If you've read each of the chapters describing the MapScript API implementations in Perl,
Python, and PHP, you'll have noticed the similarities and differences between each implemen-
tation. Since the differences are small, and this application will be longer than the previous
MapScript applications, only the PHP version will be described. If you have a clear understanding
of the techniques so far presented, the conversion to Perl or Python will be straightforward.

231

232

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Describing Application Requirements

One of the limitations of MapServer noted earlier is its inability to use items in joined DBF files
to classify features. This is an example of the larger issue of MapServer’s general lack of data-
base capabilities. It’s possible, of course, to employ a spatially aware database engine such as
PostGIS, and manipulate the contents of the mapfile via URLs to obtain some added functionality
(an interesting topic, but beyond the scope of this book), but this comes at the cost of increased
complexity and still doesn’t provide full database capability.

The alternative described in this chapter will require only a small increment in complexity
over the previous MapScript application, and will provide the ability to display dynamic data
on the map and retrieve attributes associated with these dynamic features.

The application will provide a simple locating service for a mythical restaurant chain called
Slurp and Burp Restaurants. They specialize in coffee, several varieties of flat food, math lectures,
and free WiFi access, but not all products or services are available at all locations.

Before we get started, allow me to give you some background on Slurp and Burp’s fictional
existence. A market survey indicated that a significant fraction of the Slurp and Burp clientele
were itinerant early adopters of cellular wireless technologies. These customers wished to optimize
their break time by avoiding restaurants (which Slurp and Burp calls stores) that don’t provide
the required products or services. In order to serve the needs of these customers, Slurp and
Burp’s Marketing VP decided that the company needed a website that would provide this
information in a graphical manner.

This specification was passed to the IT Director, and after some consultation with store
managers, a list of requirements was compiled. The company’s rapid growth and continual
reassessment of features ruled out the use of static maps because of the frequent need for updates.
Generating dynamic maps containing store information required the use of a database, so in
order to leverage IT experience with SQL, MySQL was chosen as the database engine. After
extensive product research and detailed examination of several proprietary mapping engines,
MapServer was selected as the map rendering tool. MapServer played to the strengths of the IT
department because it’s open source and possesses a PHP API. Additionally, it can interoperate
with MySQL and supports the required dynamic capabilities.

The operational requirements were developed by a committee that included technical
staff and several store managers. None had a background in mapping or GIS, but perusal of the
MapServer Application Gallery (http://mapserver.gis.umn.edu/gallery.html) demonstrated
the possibilities of the engine and allowed staff, naive in the ways of mapping, to develop a
realistic list of requirements.

The final design document specified the following requirements:

1. The initial display must present Slurp and Burp’s market area with store locations
indicated by markers of some sort.

2. When a user mouses over a marker, a box will display, containing some information
about that store’s location and hours of operation.

3. When a user clicks on the map, he or she will be provided with a list of stores located
within a user-specified distance of the click point.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

4. The user must be able to navigate by panning across the map and zooming in and out.

5. The information available for display will include store address, phone number, hours
of operation, geographic coordinates, and services provided at each store.

In order to support these features, the application that follows will consist of an external
MySQL database that contains tables describing various attributes of Slurp and Burp’s stores
(noted in Point 5). A PHP script will access MySQL to retrieve dynamic information, and will
use the PHP MapScript API to render a map of an urban area in which several Slurp and Burp
stores are located. The map will display street, neighborhood, and water features rendered
from the contents of several shapefiles. Each store location will be marked with the Slurp and
Burp logo (a cup of coffee), which MapScript will render directly from the geographical coordi-
nates stored in the database.

Store details will be displayed in tool tips (small message boxes) that pop up when the
mouse hovers over the symbol marking each store location. The tool tips will be implemented
as a combination of third-party JavaScript code and HTML tags.

The user will also be able to enter a number representing a search radius, and then click on
the map to perform a spatial query that returns a list of the stores within the specified distance
of the mouse click.

In addition to this, the richer user interface will require that browser-specific interaction
issues be addressed. The application will provide similar functionality in two browser envi-
ronments: the Microsoft IE (Internet Explorer) environment and the Mozilla environment.
JavaScript will be used to tailor the interface to the browser so that the same PHP code will
work in both, without requiring any knowledge of which browser is requesting service.

Addressing Some Design Issues

In the previous section, the Slurp and Burp corporate context was used to describe one common
way that technical staff are introduced to MapServer—through a request from a non-technical
user for an application that falls pretty much outside the skill set of someone who doesn’t work
in the usual GIS environment. This context was adopted because it makes the fewest assump-
tions about the technical capabilities of the technical staff. It allows you to address (if briefly)
most of the questions surrounding the selection of any technology: can it do what you need

it to do, can it interface with your other systems, and what does it cost? Finally, it's a way to
describe the operational requirements without addressing design issues in any depth. These
issues are reviewed in the following section.

Mozilla vs. IE

The most significant of the design issues results from the differing capabilities of Mozilla-like
browsers and IE-like browsers. Much of the functionality of this application depends on the
sensing of the mouse pointer location over client-side imagemaps for the display of tool tips,
and the sensing of mouse clicks on the image to provide pan and zoom capabilities. While both
browser types have handlers for each of these events, they don’t function the same way.

233

234

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Note Mozilla-like refers not only to Mozilla itself but also the various Netscape and Firefox releases.
IE-like refers to Microsoft’s Internet Explorer and all other browser types.

As shown in the code snippet, Mozilla and Netscape allow an image in an <input> tag to
be used as a client-side imagemap. The imagemap is used to track the position of the mouse
pointer over the image and display a tool tip when the pointer is over an imagemap hot spot.
At the same time, because the image is an input variable, it’s also clickable so that the user can
navigate the map simply by pointing and clicking.

<input name="img" type="image" src="/some/image" width=640 height=480 usemap="#map">

Microsoft IE and KDE Konqueror don’t allow an image in an <input> tag to actas an HTML
imagemap. In the code snippet that follows, the image in the <input> tagis clickable, allowing
point-and-click navigation just like Mozilla, but since mouseover events aren’t sensed, tool tips
can’t be popped up.

<input name="img" type="image" src="/some/image" width=640 height=480>

If the image is displayed in an tag, imagemap capabilities are available, but point-
and-click navigation isn’t, since the image is no longer an input variable.

Special handling is needed if the application is to function correctly in both types of browsers.
This special handling is treated in greater detail in the code analysis that follows, but to anticipate
this discussion, I'll note briefly that JavaScript code embedded in the HTML generated by the
PHP script can determine which block of HTML tags (those for Mozilla or those for IE) is actually
rendered when the page is loaded. By displaying the image in an tag and providing a
different means of navigation for IE-like browsers, you can keep the functionality in the two
environments fairly similar—but not identical.

Despite its importance to the operation of the application, extensive knowledge of JavaScript,
while useful, isn’t a heavy requirement. The pop-up tool tip, implemented with a third-party
JavaScript library, is more or less a black box. The code used to tailor the navigation interface
uses a conditional statement and a single JavaScript function, and is trivial.

Creating the MySQL Database

MySQL is a powerful, popular open source database engine. It understands SQL (Structured
Query Language), which is more or less standard (although different implementations provide
different flavors of SQL). The target version of the MySQL database engine used for the develop-
ment of this book is 4.1, but any more recent version will be satisfactory. A detailed description of
MySQL, including installation and use, is beyond the scope of this book—it’s assumed that your
environment already contains a functioning MySQL engine at least as recent as the target version.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 235

Note MySQL is a topic worthy of its own book and many have been published. W. Jason Gilmore’s book
Beginning PHP 5 and MySQL: From Novice to Professional (Apress, 2004), provides an excellent introduction.

A potentially more serious issue is the PHP build configuration. The target version of PHP
is 5.0.2—since this is a fairly recent release, it’s likely that you'll need to install it. It's important
that you include MySQL support when you configure the PHP build. In the last chapter, you
added the option --with-mysql=/usr/include to build a MySQL-enabled version of PHP. If in
doubt, enter the following tags into a file called phpinfo.php:

<?
phpinfo();
>

and load it into a browser. If your Apache server is configured to parse and execute files with
the extension .php, then a page similar to Figure 9-1 will be displayed. This will confirm that
your installed PHP libraries understand both MapScript and MySQL.

&) phpinfo(] - Netscape =1=1x]
¥ File Edit “iew Go Bookmarks Tool: 'Window Help
E i - ’Q va °§ 44 hittp:/localhost/phpinfo. phy - | A
:| Back Forward Reload Stop I& PRGOS ITRITR TR J @
=
MapScript L
MapServer Mapserver version 4.4.1 QUTPUT=GIF OUTPUT=FNG OUTFUT=JFPEG
Yersion QUTPUT=WEMP SUPPORTS=PROJ SUPPORTS=FREETYFE
SUPPORTS=WMS_SERVER INPUT=EFPLT INFUT=0GR INFUT=GDAL
INPUT=5HAPEFILE

PHP ($Revision: 1.220.2.2 $ $Date: 2004/12/19 22:17.59 $)

MapScript

Yersion

mysql

Active Persistent Links 1} J

Active Links 1}

Client APl version 3.23.96

MYSQOL_MODULE_TYPE external

MYSQOL_SOCKET Aarrunimyselimysel sock

MYSOL_INCLUDE -lfusrincludesmysal

MYSQL_LIBS -Lsusrilib -Imysglclient

mysql.allow_persistent on on

mysql.connect_timeout 60 60

mysql.default_host no value no vaiue

mysql.default password no vaiue no vaiue
4 | ‘ ' _>l_I
% 2 | bwe | -l

Figure 9-1. The phpinfo.php page shows that both the MapScript and MySQL modules have been loaded.

236

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Since you couldn’t have gotten this far without PHP MapScript, the most likely error is a
PHP installation that isn’t MySQL aware. If this is the case, rebuild PHP with the MySQL configure
option --with-mysql=/usr/include (using the appropriate location of the MySQL include files
in your environment). If the build fails because you don’t have MySQL installed, download the
latest version from www.mysql.com and install it.

An understanding of the basics of SQL is required for retrieving information from tables,
but the MySQL interface in PHP isn’t difficult to use, and this application doesn’t make extensive
use of MySQL'’s capabilities. The application connects to the MySQL server on localhost,
selects the restaurant database, and executes a straightforward SQL select. Initial creation of
the restaurant database is done by loading a file containing the MySQL instructions that create
the database and populate its tables. These instructions are located in the file
mapserver create_restaurant, in the code distribution available at the Apress website.

To create the restaurant database, run the MySQL client mysql under the administrator
account—(typically the user ID is root) by executing the following command:

$ mysql -u root -p

Enter the password when requested. Assuming you've copied mapserver create restaurantto
/tmp/, run the following command at the prompt, in order to create and populate the database:

mysql> source /tmp/mapserver create restaurant;
A series of messages will scroll past. At the prompt, run the following command:
mysql> show databases;

which displays the databases that MySQL knows about, as shown in the results that follow.
In this case, you're only interested in the one just created, restaurant.

Hmmm e +
| Database |
Hmmm e +
| mysql |
| restaurant |
| test |
Hmmm e +

4 rows in set (0.00 sec)

Now, select the restaurant database.
mysql> use restaurant;
Then, type the following command:
mysql> show tables;

which produces a list of the tables in the restaurant database.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 237

T LT T +
| Tables in restaurant |
T LT T +
| menu |
| product |
| store |
T LT T +

3 rows in set (0.00 sec)

This confirms that the tables were created. Finally, check the creation of the store table by
typing the following:

mysql> SELECT * FROM store;

which should display the following lines:

[=== oo R ——— R R o +
| id | address |latitude |longitude | phone |opentime | closetime |
[== oo R ——— R R o +
| 1] 201 Portage Ave | 49.8955 | -97.1385 |728-1234 |08:00:00 |20:00:00 | |
| 2 | 1200 Grant Ave | 49.8578 | -97.1692 |958-6789 |07:00:00 [21:00:00 |
| 3 | 1436 Pembina Highway | 49.8091 | -97.1565 |726-6205 |00:00:00 |00:00:00 |
| 4 | 800 St Marys Rd | 49.8442 | -97.1127 |510-8976 |08:00:00 |00:00:00 |
| 5 | 10234 King Edward St | 49.8983 | -97.2071 |233-9248 |06:00:00 |12:00:00 |
[=== oo R ——— R R R +|
5

You can check that each of the other tables was properly created the same way.

Creating the Application User Account

In the development environment, the user mysql is used by the application to access the
database, but you can choose whatever user ID you like as long as you give it the appropriate
privileges. For this application, mysql only needs read access to the database. Creating it
requires MySQL root privileges. The password of user mysgl in the application code is set to
password, which isn’t a good idea either, so change it to something more appropriate. Login as
root and execute the following command:

$ mysql -u root -p

Enter the password when requested. At the prompt, run the following commands to install
user mysql with password password:

mysql> GRANT select ON restaurant.* TO mysql@local IDENTIFIED BY 'password';
mysql> flush privileges;

The next section describes how to install the JavaScript library that supports the pop-up tool tips.

238

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Installing the JavaScript Tool Tip Code

The tool tips used in this application are implemented using overlib, a third-party JavaScript
library created by Erik Bosrup. The library is released under the Artistic license, and is available
at www.bosrup.com/web/overlib. The site provides extensive documentation and examples.
The overlib distribution contains the library itself, overlib. js, as well as a number of plug-ins
that perform other functions. Installation of overlib is just a matter of unzipping the archive
into some location in the Apache DocumentRoot. In the development environment, this is /var/
www/htdocs/.

Patching PHP MapScript

Generally, every feature in a layer possesses a shape index (which is just a sequential number
identifying the shape). The shape index is the usual means by which a feature is referenced. If
a feature matches a spatial query, its shape index can be retrieved and used to reference that
feature in subsequent processing.

This application renders some shapes dynamically. Instead of retrieving them from a
shapefile, the features are drawn based on coordinates passed directly from the application
to MapScript. You want to be able to use the store ID number as the shape index so that spatial
query matches will return a pointer to the appropriate row in the store table.

Unfortunately, PHP MapScript (version 4.4.1) doesn’t allow the shape index of a feature to
be set—it’s read-only. Attempting to retrieve the shape index for a matching feature from a
dynamically generated layer always returns the value -1.

However, there’s a solution: a patch that allows the shape index to be set from the script.
(This patch will be incorporated into the next release, MapServer 4.6). This patch is necessary
for performing the spatial search component of the application. If this isn’t a critical function
for you, then you can probably forgo installing the patch, but if you need the functionality and
feel confident running a slightly unconventional version of MapScript, then install it. The patch is
included with this chapter’s application in the file mapscript.c-patchedversion.

The installation is straightforward. Put the new source file someplace safe, like /tmp/,
and then change to the PHP MapScript directory and rename the current version of the main
MapScript source before copying the new version. You can, if you like, rebuild the entire MapServer
distribution with the new code installed for PHP MapScript, but that isn’t necessary (and probably
not even wise—you should always keep changes contained and to a minimum). Instead, just
rebuild MapScript directly. The following procedure takes just a few minutes.

$ cd /usr/local/src/mappserver-4.4.1/mapscript/php3

$ cp mapscript.c mapscript.c-original-4.4.1

$ cp /tmp/php_mapscript.c-patchedversion ./php mapscript.c
$ make

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

This re-creates php_mapscript.so, which you can then copy to the location specified in
php.ini, in which PHP looks for loadable modules. (In the development environment, this is
/usr/1ib/php/extensions/.) PHP MapScript will now be able to set the value of shapeindex,
which allows the shape index to be used as a pointer to the store table in the MySQL database.

Building the Application

This application creates a map displaying an urban area with streets, rivers, and neighborhoods.
These features are all drawn from a spatial data set consisting of three shapefiles. From these
three shapefiles, four layers are generated: a neighborhood layer, a hydrographic layer (in this
case, a river), and two street layers. At scales below 1:120,000 (i.e., 1:120,001 and above), only
major streets are shown; at larger scales, smaller thoroughfares are also rendered. Layer selection
is available (as in previous applications), and the usual navigation features (pan and zoom) are
available. However, depending on the browser used to view the map, pan and zoom are imple-
mented differently.

On top of this urban map, large coffee cups are rendered, with each cup representing the
location of a Slurp and Burp store. When the mouse pointer hovers over a cup, a small box is
popped up that displays information about that store. The map can be used in Browse mode,
in which normal navigation rules apply. But mode selection also allows the map to be used in
Query mode. In this mode, a numerical value that represents a search radius can be entered.
When the user clicks on the map image, all stores within the search radius around the click
point are returned and used to build a table that displays information for the matching stores.
This table is displayed below the map.

For the sake of completeness, the mapfile and PHP script for this application are shown
in Listings 9-1 and 9-2. While you could type all 1,200 lines (after all, I originally typed them
myself), I advise you to download this code from the Apress website.

From a learning standpoint, it’s also advisable to install the application before analyzing
the code—1,200 lines is a lot to digest without seeing it in operation. Since the MySQL database
has been created, and the JavaScript tool tip library has already been installed, just copy the
files fifth.map and phpms_fifth.php to the Apache DocumentRoot (/var/www/htdocs/ in the
development environment).

In the next section, I'll give a brief description of the application in action before proceeding
to analysis of the code.

The Application in Action

Type the application URL http://localhost/phpms_fifth.php into the browser address bar
and press Enter. You should see an image similar to Figure 9-2 if your browser is Mozilla-like,
or Figure 9-3 if your browser is IE-like.

239

240 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

@) MapSecript Fifth Map - Netscape

Seven|Oaks]

Raint Douglas

St. yamesEFAssiniboial all 1 249467
» Mlap scale:
5 S

57 N Clickzy: -1.000000, -1.000000

Map Extent: -97 384655 43 697240 -26 877772
50.077403

Mode Navigation Layers

& Pan
 Browse O ZoomTn ‘hoods
© Query ' Zoom Out Rivers

Search radius: SLZE Major streets

(mjles) Streets

Figure 9-2. The initial display of the Slurp & Burp application in Netscape Navigator

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 24

3 MapScnpt Fifth Map - Microsoft Internet Explorer

J File Edit View Favorites Tools Help

J@Backv@v B E ©|p55alch /"¢ Favores @|@-&.Dﬁ e 8 |,f,.

JAddrsssl http:/Aacalhost/phpme_fifth. php j i Ge

Se veln(Gak:s]

R3int/Doulglas,

‘ St. yamesEIA'ssiniboial

IMap scale: 1 240467

‘Ch:k b4'8 -1.000000, -1.000000
‘Map Extent: -07 384633 40 607240 -96 877772 50.07°
‘ Mode Navigation Layers
] @ Pan
[& Browse 2oomin | hoods
Eﬂ. S:a?cfgdms @ Zomm |IZ S
s |2_Size ¥ hfajor stre

1
I {miles) E— | I Streets

<

| »
[ElDane C T e

Figure 9-3. The initial display of the Slurp & Burp application in IE (note the presence of navigation
arrows)

The Mozilla interface is the same as previous applications—just point and click to zoom
and pan. Because of the IE imagemap issues discussed earlier, the IE interface is somewhat
different. Notice the arrows at each side of the map. These are now the only means of panning
the image. Clicking one of these arrows will pan the map in the direction of that arrow. In order
to zoom, set the zoom direction and size, and click Refresh. If Zoom Inis selected, this willzoom
in to the center of the map image. If Zoom Out is selected, it will zoom out from the center. To
zoom in toward a point near the upper-left corner of the image, you must first pan to bring this
point to the approximate center of the map and then zoom in toward it.

Hover the mouse pointer over one of the coffee cups that represent store locations, and
the tool tip will pop up to display some information about that store, as shown in Figures 9-4
and 9-5.

242 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

() MapSeript Fifth Map - Metscape

File Edit View Go Bookmarks Tools ‘Window Help

< . v A B [T

Back Forward Reload Stop

v]

firanscona

Map scale 1: 249467
Click =,y -1.000000, -1.000000
MMap Extent: -97.384655 49.697240 -96 877772

Slurp 8 Burp 50.077403
Restaurants Mode |[Navigation| Layers
& p
© Browse ~ Z:I;mln I 'hoods
Store#: 2 < Query O Toom ot | P Rivers

Address: 1200 Grant Ave
Phone: 958-6789
Hours: 07:00:00 - 21:00:00

Search radius: |2_Size ¥ Major streets

i Street;
|1 (miles) Refresh ¥ Streets

7]
&
F
a
9

=

7

e | http://mapserver.shacknet. nu/phpms_fifth.phptt _WE 4

Figure 9-4. A pop-up tool tip displayed in Netscape Navigator

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 243

a MapScript Fifth Map - Microsoft Internet Explorer

J File Edit ‘“iew Favortes Tool: Help

JeEackv @v B @ -:{M/OSea.ch *Favomes @|@-&%-D a3

| Address | ttp:/ focalhost/phpms_fith.php =l &) 6o

'Seven|Oaks;

Roint/Dou glasy

[Map scete: 1240467

y3 |C]ick xy: B7.131214, 40887321
&,

|Map Extent: -07 334655 40 697240 -06 877772 5007

Store#: 5 e
tddress: 10234 King Edward St | Mode |Navigation| Layers

— Phonge: 233-9248 “-’_‘
n . N _ SN0 o
Hours: 06:00:00 - 12:00:00 Fan
5]] Browse © ZoomIn I hoods
z .. —— @ Qs € ZoomOu, | Rivers
iy s 3 & i Search radius: V| Major str
= 1 (miles) O | Streets
v Refresh |
4 | »
|@ http: //mapzerver. shacknet. nuphpms_fifth. php lilifili’i o Internet

Figure 9-5. A pop-up tool tip displayed in IE

In the IE environment, try panning and zooming to get a feel for how the controls operate.
Then change the mode from Browse to Query. Set the search radius to some large value (like
5 miles) and click somewhere on the map image. (IE users will need to click Refresh before
being able to click on the map.) Since the search radius is large, the search will retrieve several
stores and present a table of results at the bottom of the page. Note that the query will only
match stores that are displayed on the map, so setting a large search radius and zooming in
so that only a single store is visible will return just that store. If no stores are visible, then no
matches will be found. Figures 9-6 and 9-7 show the results of the search.

244 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

hScript Fifth Map - Netscape M= E|
Edit “iew Go Bookmark: Toolz Window Help

- ’&“ v \a fgg Ig; hitp: 4 #localhostphpms_fitth php

* Fomward Reload Stop

Point Dou/glas!

N

F‘d‘

PAIg|sispow e

WSl End Map sodler 1 124733

Click =5 -97.142698, 45 875441

4 % Wap Extent: -97.257934 45.792281 -97.004493
e 49.982362

S EG'-" a Mode Navigation Layers
S1S outhl o
. Ql;;)wse & Pan ¥ 'hoods
3 ;'W C ZoomIn |@ Rivers
e O Zoom Out [z Major
radius:

|5— 2 [Bize [streets
Refresh | | Streets

(miles)

re Address Latitude Longitude | Phone | Open | Close Menu

T ko Portage Ave 49.8955 [-97.1385 [728-1234 |08:00:00 [20:00:00 |Sandwiches|Coffee/WiFi

" 1200 Grant Ave 49.8578 [-97.1692 958-6789 |07:00:00 21:00:00 Sandwiches|Coffee/Bookstore

1436 Pembina Highway [49.8091 |-97.1565 [726-6205 00:00:00 00:00:00 |Sandwiches|Coffee[Flat food

" [s00 st Marys Rd 49.8442 (-97.1127 |510-8976 |08:00:00 |00:00:00 |Sandwiches|Coffee[Math lectures

" o234 King Edward St |49.8983 |-97.2071 [233-9248 06:00:00 [12:00:00 |Coffee|WiFilMath lectures Q
bzl | . -

Figure 9-6. Multiple query results displayed in Netscape Navigator

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 245

3 MapScript Fifth Map - Microsoft Internet Explorer

J@Back-@- %] (2] @|p3earch /% Favores ®|@-&-Dﬁ 5 s |,ﬁ'

J File Edit ‘“iew Favaites Tool: Help

J Address I hitp: 2 localhostyphpms_fith. php

IPAI 8| 2191p 0wl Bej

Map scale: 1: 124733

|C].1ck LY -97.142302, 49 875045

|Map Extent: -97.257934 49 792351 -97.004493 49 98]

| Mode Navigation Layers
0 Pan

O Browse & Zoomin |2 hoods

@ Query Zoomout |2 Bivers

Search radius: IE—Size | Major stre

. |5 (miles) I Streets
v Refresh |

,m‘ Address |Latitude |Lnngitude| Phone | Open ‘ Close ‘ Menu

[1 201 Portage Ave [49.8955 [-97.1385 [728-1234 [03:00:00 [20:00:00 |Sandwiches|C offee[WiFi

[[1200 Grant Ave [49.8578 [-97.1692 [938-6789 [07:00.00 [21:00:00 [Sandwiches|Coffee[Bookstors

[1435 Pembina Highway [49.8091 [-97 1565 [726-6205 [00:00:00 [00:00:00 [Sandwiches|Coffee[Flat food

l4 [300 St Marys Rd [49.8442 |-97.1127 [510-8976 [08.00.00 [00.00.00 |Sandwiches|C offee[hath lectures |

[(10234 King Edward St [49.8983 [-97.2071 [233-9248 [06:00:00 [12:00:00 [Cloffee [WiFiMath lectures -
« | »
€] Dere L I X

Figure 9-7. Multiple query results displayed in IE

Finally, if you look closely at Figure 9-8, you'll notice that the tool tip is displayed while the
mode is set to Query. Because of IE’s inability to track mouse cursor position on an input image,
this isn’t possible with IE (as you can see in Figure 9-9, in which the cursor is sitting on a cup
but no tool tip is displayed).

246 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

() MapScript Fifth Map - Netscape
File Edit View Go Bookmarks Tools Window Help
T T pyverem——" [,
i Back Forward Reload Stop I& P /neatos e ehe J @
& MewTab 4 MapScript Fifth Map | X
=
Map seale: 115501
Click xy: -07 167804, 40 857472
MWlap Extent: -07.183348 40 845404 07 150660 49 860253
2 Mode Navigation Layers
© 1200 Grant Ave &
o *' Pan
958-65780 @ © Browse o ¥ ‘hoods
o) ZoomlIn ¥ Ri
07:00:00 - 21:00:00 Query ' ZoomCut TErS
Search radius: ¥ Major streets
. 16 Size
0z (rniles) 7 Streets
Refresh
Store Address Latitude |Longitude | Phone Open | Close Menu
2 1200 Grant Ave 498578 |-97.1682 |958-678% [07:00:00 [21:00:00 [Sandwiches|Coffee[Bockstore [
e s | hipimapserver shacknet rudphpms._fith phpd T 'x@ 7

Figure 9-8. In Query mode, Netscape Navigator uses an input image to track both the coordinates of the
mouse click and the coordinates of the mouse pointer as it hovers over the image—thus, it’s possible to
display a tool tip in this mode.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 247

3 MapScript Fifth Map - Microsoft Internet Explorer

|
[
o

| Qe -) - [x] (2] (| S seaen S cRawies £ (20 o F - | JE B
| Address | pitp:/Aocalhost/ phpms_ffth.php =l BGe

|

J File Edit “iew Favorites Tool: Help

[Mop scale: 1:15592

‘C].ick X -97 1679092, 49857473

‘Map Extent: -97.121002 40 844040 07 150221 49 86¢

‘ Made | Navigation Layers
& Pan

C Browse Zoomin | hoods

& Query 0 Zoomout |2 Rivers

Search radivs: lz_Size ¥ Major str

02 i v
(miles) Refiash | I Streets

Sture| Address ‘Laﬁtude |Lungitu|:le ‘ FPhone ‘ COpen | Close | Menu -
|2 [1200 Grant Ave [49.8578 [-97.1692 [958-6789 [07.00:00 [21:00:00 [Sandwiches|CoffeeBookstore | -
P »
|&] Dane ’_,_,_,_,_ g Intemet

Figure 9-9. IE must use an input image to track mouse clicks in Query mode. Because it can’t track hover
coordinates at the same time, it’s unable to display tool tips in this mode.

Experiment with the interface in several browsers to understand how the interfaces differ
operationally, and how this might affect the functionality of your own application.

Mozilla-like browsers use the map image embedded in an <input> tag as both an input
field for capturing mouse-click coordinates and an imagemap to capture hover coordinates—
which means that tool tips are displayed regardless of mode. IE can capture click coordinates
from an image embedded in an <input> tag or it can capture hover coordinates from an image
embedded in an tag—but it can’t use a single image to perform both functions.

Since you're now familiar with the operation of the application, the next section will
proceed to a detailed analysis of the mapfile and PHP code.

Creating the Mapfile

As in previous chapters, you begin with a mapfile. There are no surprises in this mapfile—all
the keywords have been used in previous applications. It’s shown in its entirety in Listing 9-1.
The first 26 lines contain the usual objects: map parameters like name, size, extent, etc. Lines
030 through 035, however, define a new type of symbol: TYPE pixmap. Symbols of this type
employ an image (specified by the keyword IMAGE) to render a feature.

248

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

030 SYMBOL

031 NAME "Cup"

032

033 TYPE pixmap

034 IMAGE "/var/www/htdocs/cup.gif"
035 END

A reference map and scale bar are defined next in Lines 039 through 067, but I'll skip the
description because you've seen both of these objects several times already.

Lines 071 through 261 specify a layer named hoods, which represents the neighborhoods of
this urban area. The only thing notable about this layer is the 13 classes it contains (only the
first is shown in the code snippet that follows). In previous applications, layers contained far
fewer classes (usually only one or two). Having many classes in a layer, however, isn’t an unusual
occurrence; sometimes many distinctions are warranted in a single set of features. In the present
case, each class represents a different neighborhood, and fewer classes wouldn'’t do justice to
the facts on the ground. (13 is the minimum number of neighborhoods required to cover this
urban area. In reality, there are many more.)

071 LAYER

072 NAME "hoods"

073 DATA "nrn_geo"

074 STATUS on

075 TYPE polygon

076 LABELCACHE on

077 LABELITEM "NRNNAME"

078 CLASSITEM "NRN"

079 CLASS

080 EXPRESSION /~01/

081 STYLE

082 COLOR 173 152 4
083 END

084 LABEL

085 TYPE truetype
086 FONT "arialbd"
087 SIZE 10

088 COLOR 140 66 28
089 POSITION cc

090 OUTLINECOLOR 255 255 255
091 END

092 END

Lines 265 through 277 describe a hydrographic layer—that is, a layer devoted to water
features. Here, only the rivers are rendered. Notably, this is a polygon layer, which means that
rivers will be rendered at their true extents—not merely as their centerlines. At small scales,
rendering a river as a line makes sense, but at large scales, your map should show features
more realistically.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 249

265 LAYER

266 NAME "rivers"

267 DATA "waterp_geo"

268 STATUS on

269 TYPE polygon

270 CLASSITEM "HYDRO NAME"
271 CLASS

272 EXPRESSION /RIVER*/
273 STYLE

274 COLOR 0 0 255
275 END

276 END

277 END

Lines 281 through 307 define a road layer—majorstreets. Features are selected based on
the value of their STATUS attribute. If [STATUS] = 1, then the road is a major street.

281 LAYER

282 NAME "majorstreets"

283 DATA "roads_type"

284 STATUS on

285 TYPE line

286 LABELCACHE on

287 LABELITEM "NAME"

288 CLASS

289 EXPRESSION ([STATUS] = 1)
290 STYLE

291 SYMBOL "Bigline"
292 SIZE 2

293 COLOR 0 0 O

294 END

295 LABEL

296 TYPE truetype

297 FONT "arialbd"
298 SIZE 10

299 COLOR 0 0 O

300 OUTLINECOLOR 255 255 255
301 MINDISTANCE 300
302 POSITION auto

303 ANGLE auto

304 MINFEATURESIZE 25
305 END

306 END

307 END

250

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Lines 311 through 338 describe another road layer (only a fragment is shown in the following
code snippet), which renders non-major streets. This layer contains a lot of detail that would
clutter the map and increase response time, so it’s only rendered at scales larger than
1:120,000.

311 LAYER

312 NAME "streets"

313 DATA "roads_type"

314 STATUS on

315 TYPE line

316 LABELCACHE on

317 LABELITEM "NAME"

318 MAXSCALE 120000

319 CLASS

320 EXPRESSION ([STATUS] != 1)
321 STYLE

322 SYMBOL "Bigline"

The next layer, defined in Lines 342 through 360 (see the following code snippet), really
defines the bread and butter of this application: the points-of-interest layer. This is a point
layer with a single default class. Each point is marked by a Cup symbol circle with a width of 40
pixels. TOLERANCEUNITS is set tomiles, so any spatial query made on this layer will have to match
within some specified number of miles. However, there’s an issue with the queryByPoint ()
method, in that it appears to ignore the TOLERANCEUNITS setting and uses native units, which in
this case are decimal degrees. Specifying the keyword here has no effect now, but when this
situation is rectified, it will be essential. This matter is addressed further when I discuss what
changes the PHP script requires to handle this bug.

342 LAYER

343 NAME "poi"

344 STATUS default

345 TYPE point

346 LABELCACHE on

347 TOLERANCEUNITS miles
348 CLASS

349 SYMBOL "Cup"

350 SIZE 40

351 STYLE

352 COLOR 255 0 O
353 END

354 TEMPLATE "dummy.html"
355 TEXT ""

356 LABEL

357 BUFFER 20

358 END

359 END

360 END

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

One notable feature of this layer is its lack of a spatial data set. This layer will be used to
render the coffee cups representing store locations. Since these are dynamic features, they
don’t exist as features in a spatial data set—each is simply a pair of coordinates stored in the
MySQL table store. The layer itself could be created and populated directly by the PHP script.
However, this would complicate the code, so instead, an empty layer is defined in the mapfile
and populated with points relegated to the script.

Finally, in Line 354, a template named dummy . html is referenced. Recall that any layer that’s
to be queried must contain a class-level or layer-level query template. This is also the case
when using MapScript. The keyword and value must be present—even if you're creating the
map without using a mapfile. The file itself doesn’t have to exist, however. Every queriable
layer must possess a non-null template attribute, but the value associated with that attribute
doesn’t have to exist as a real object somewhere on a file system.

The PHP Script

In previous chapters, code changes have been incremental. This has provided a smooth transi-
tion from the trivial “Hello World” MapServer application at the beginning of the book, through
the increasingly complex examples, to the point you've reached now: prepared to build a
sophisticated, spatially aware, DBMS-using PHP application. It shouldn’t surprise you that this
step, too, is incremental. There are a few new MapScript methods and concepts to understand,
but most of the application has already been built in preceding chapters.

The analysis of the PHP script will proceed, as before, in the sequence in which the script
is executed, starting from first invocation through its invocation from the form. Most of the
new code has been incorporated as a set of functions, and these will be described in detail as
they're encountered. Those parts that are familiar will only be touched upon briefly.

First Invocation

When first invoked, execution begins at Line 258. The next few lines set the values of numerous
variables that you've seen before—script name, path defaults, and navigation defaults. Four
layers are defined in the mapfile. You set the values of the layer selection variables so that when
the map is first presented to the user, all layers will be selected.

258 $script name = "phpms_fifth.php";
262 $map_path = "/home/mapdata/";

263 $map_file = "fifth.map";

264 $img_path = "/var/www/htdocs/tmp/";
266 $zoomsize = 2;

267 $pan = "CHECKED";

268 $zoomout = "";

269 $zoomin = "";

271 $hoods = "CHECKED";

272 $rivers = "CHECKED";

273 $streets = "CHECKED";

274 $majorstreets = "CHECKED";

There are two modes of operation for this program: Browse mode, in which the usual pan
and zoom controls are active and mouse clicks navigate the map; and Query mode, in which

251

252

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

navigation controls aren’t active and mouse clicks initiate spatial queries on the points-of-
interest layer poi. Lines 276 and 277 set the values of the mode selection variables so that the
application starts in Browse mode. The search radius (in miles) is also specified. The search
radius is used in the same way as the value of the keyword TOLERANCE in the mapfile. Remember
that you set TOLERANCEUNITS to miles in the mapfile, although the current version of MapScript
ignores this when performing a point query.

276 $browse = "CHECKED";
277 $nquery = "";

278 $radius = 1;

Next, default mouse-click points and extents are defined. Finally, in Line 290, the mapfile
specified previously (fifth.map) is opened and a map is created.

281 $clickx = 320;

282 $clicky = 240;

283 $clkpoint = ms_newPointObj();

284 $old_extent = ms_newRectObj();

286 $extent = array(-97.384655, 49.697475, -96.877772, 50.077168);

287 $max_extent = ms_newRectObj();

288 $max_extent->setextent(-97.384655, 49.697475, -96.877772, 50.077168);
290 $map = ms_newMapObj($map_path.$map_file);

Lines 294 through 296 check to see how the script was invoked. If none of the form variables
are defined, the script was loaded from the address bar of the browser, not from a button or
a click on the map. Note that there are four form variables you haven’t seen before: left x,
right x, up_xand down_x, which indicate a mouse click on one of the four input images that
represent the navigation arrows for up, down, left, and right.

294 if (($_POST['img x'] and $ POST['img y']) or
295 $_POST['refresh'] or $_POST['left x'] or
296 $_POST['right x'] or $ POST['up x'] or $ POST['down x']) {

[R —

These variables allow a single script to handle navigation tasks despite differences in
browser capabilities. We'll return to a discussion of the buttons and their uses later.

Since this is the first invocation of the script, none of the form variables are defined, so
control drops through to Line 414.

Retrieving Dynamic Information

At this point, some variables have been given default values, and the map has been drawn
from the mapfile. Recall that when the mapfile layer poi was defined, no data source was specified.
This layer must be populated with the coffee cups representing store locations. The information
required to do this (i.e., the geographic coordinates of each store) is stored in the MySQL database
that you've already created. Lines 414 through 416 retrieve this information, add points to the
poi layer, and then create the pop-up tool tips.

414 $qresult = GetStoreTable();

In Line 414, the function GetStoreTable() is invoked to retrieve every row in the store
table and return it as a row in the array $qresult. The function is defined in Lines 161 through 177.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

In the following code snippet, the PHP function mysql_connect() is used to connect to the
database server on localhost. It passes the user ID (mysql), and the user’s password (password).
Prefixing the function name with an @ sign suppresses the return of an error message if the
connection can’t be made. Instead, a tailored message is displayed by the die statement.

161 function GetStoreTable() {
163 @mysql connect("localhost", "mysql", "password")
164 or die("Could not connect to MySQL server!");

Caution The topic of password security is far outside the scope of this book, but one point deserves
mention. Don’t use password as the password—it’s used here for demonstration purposes only.

Once the connection to the server has been made, a database must be selected. In this
case, it’s the restaurant database created previously. The function mysql_select db() takes
two parameters. The first is the name of the database. The second is a resource ID that’s only
required when accessing more than one database at a time. Since you're accessing only the
restaurant database, you can omit it. Here again, default error messages are replaced with
tailored ones.

165 @mysql select db("restaurant")
166 or die("Could not select database");

Lines 167 and 168 format the query string and execute the query. The query string selects
all rows from the table store. Then, the function mysql query() takes the query string as its
only argument and performs the query, returning a reference to the query result set.

167 $query = "SELECT * FROM store";
168 $result = mysql query($query);

Note It's unwise to execute an unrestricted SQL select statement against a large table, but it’s acceptable
here since this table contains only five stores. In a production environment, you should limit the select state-
ment to reduce the system load.

Lines 170 through 176 loop through the elements of the result set (using the function
mysql fetch array() to retrieve each row of the result set) and save it as a row in the array
$qresult. It takes two parameters—the reference to the result set $result, and a constant that
specifies how the returned results are formatted. The array $qresult is then returned.

170 $i = 0;

171 while ($row = mysql fetch array($result,MYSQL NUM)) {
172 $qresult[$i] = $row;

173 $i++;

174 }

176 return $qgresult;

253

254

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Note There are three possible values for the second parameter of mysql_fetch_array(). They are
MYSQL_NUM (which returns results as a numerically indexed array, with the fields in the same sequence as
they’re found in the table), MYSOL_ASSOC (which returns an associative array using field names for keys and
field contents for values), and MYSQL_BOTH (which returns both array types).

All the information required to render store locations on the map and create the pop-up
tool tips has been retrieved. The next section describes the process of adding points to a layer
so that they can be drawn.

Adding Features to a Layer

Line 415 invokes the function AddPoints (), and passes it references to the map created on Line 290
and the array containing the store information retrieved from the MySQL database.

415 AddPoints($map, $qresult);

Although fairly short in terms of code, the function AddPoints() isn’t as straightforward as
it appears. In order to add features to a layer, a reference to that layer must be created.

Line 180 uses the map object method getlLayerByName() to retrieve a reference to the layer
named poi, which is found in the map referenced by $map. Then, the array containing the query
results is scanned. In Lines 188 through 190, a new point object ($poi[]), line object ($1n[]),
and shape object ($shp[]) are created for every store. The latitude and longitude of each store
is then used in Line 191 to set the coordinates of the point just created in Line 190. $row[3] is
the longitude and $row[2] is the latitude of the store.

180 function AddPoints ($map, $qresult) {

185 $this_layer = $map->getLayerByName('poi');
186 $i = 0;

187 foreach($qresult as $row) {

188 $poi[$i] = ms_newPointObj();

189 $1n[$i] = ms_newLineObj();

190 $shp[$i] = ms_newShapeObj(MS_SHAPE POINT);
191 $poi[$i]->setXY($row[3],$row[2]);

It might seem obvious that any feature added to a layer must be a shape object—however,
a point isn’t a shape object, it’s a point object. In addition to this, you can’t add a point object
to a shape object directly—you must first add the point to a line object, then add the line to a
shape object, and finally, add the shape object to a layer. Lines 192 and 193 accomplish this.

192 $1n[$i]->add($poi[$i]);
193 $shp[$i]->add($1n[$i]);

In MapScript version 4.4.1, it’s not possible to set the shape index of a dynamically created
feature. The shape index is the sequential identifier of each shape in a layer. While sequential,
it’s not necessarily consecutive—gaps are allowed. Since the shape index is the only link between
the MySQL table containing store information and the features on the map, this is a critical
issue. This has been noted previously, and if you need the spatial query functionality, you'll

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

have to install the patch. (This patch has made it into MapServer version 4.6, so the patch is
only required for earlier versions.) Line 194 uses the newly available capability to set the shape
index to the value of the store ID ($row[0]), which is an integer value.

194 $shp[$1i]->set(index, $row[0]);

195 $this layer->addFeature($shp[$i]);
196 $it+;

197 }

198 return;

199 }

When points representing all the stores have been added to the layer, AddPoints () returns,
and the map created previously now knows about the points added to the poi layer.

Creating the Imagemap

Line 416 invokes the function CreateTTimagemap() with the query results array $gresult and
the map reference $map. CreateTTimagemap () returns a string, $image map, that contains the
HTML tags needed to implement a client-side imagemap. It will be inserted into the data stream
sent back to the browser when the CGI script file (phpms_fifth.php) is parsed and the embedded
PHP instructions are executed.

416 $image map = CreateTTimagemap($qresult,$map);

CreateTTimagemap() is defined in Lines 120 through 136. As shown in the following code
snippet, the first task is the creation of a point object to hold the geographical coordinates of a
store. Then, in Line 124, the first tag in the imagemap is defined.

120 function CreateTTimagemap($qresult,$map) {
123 $hotSpot = ms_newPointObj();
124 $imagemap = "<map name=\"stores\">";

The query result array is scanned and coordinates are set for the hot spot in Line 128.
In Line 129, the function MarkSpot () is invoked with the sequence number, map width and
height, map extent, and query result passed as parameters. Each invocation of MarkSpot ()
returns a string containing the HTML tags for a single imagemap <area> tag. Each $newarea is
appended to $imagemap until the result set is exhausted and the complete imagemap block is
returned in Line 135.

126 for ($1 = 0; $i < count($qresult); $i++) {

127 $row = $qresult[$i];

128 $hotSpot->setXY($row[3],$row[2]);

129 $newarea = MarkSpot($i,$map->width, $map->height,
130 $hotSpot, $map->extent, $row);
131 $imagemap = $imagemap."\n".$newarea;

132 }

134 $imagemap = $imagemap."\n</map>\n";

135 return $imagemap;

136 }

255

256

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

The code for function MarkSpot (), defined in Lines 085 through 117, is shown in the block
that follows. A hot spot consists of a square region surrounding the location of a store. The
square is 30 pixels on each side. The store coordinates are in decimal degrees and have to be
converted to image coordinates in pixels. In Line 093, the function map2img() inverts the trans-
formation performed by img2map() that was described in the previous chapter—it’s passed a
point object with coordinates in decimal degrees, and it returns image coordinates in pixels.

085 function MarkSpot($seq, $width,$height,$point, $ext, $row) {
091 $size = 15;
093 list($x, $y) = map2img($width,$height, $point, $ext);

With the variables $x and $y now in image coordinates, a square extent about this point is
determined. The extent is 30 pixels by 30 pixels. Some tinkering is done in Lines 095 through
098 to ensure that no extent extends beyond the image.

095 $xm = $x - $size; if ($xm < 0) {$xm = 0;}

096 $ym = $y - $size; if ($ym < 0) {$ym = 0;}

097 $xp = $x + $size; if ($xp > $width) {$xp = $width;}
098 $yp = $y + $size; if ($yp > $height) {$yp = $height;}

The coordinates of this extent are now used in the definition of the imagemap <area> tags.
Lines 100 through 114 create the tag and set its name to the sequence number passed from the
caller. The JavaScript event handler onMouseOver invokes overlib in Line 101. Then Lines 102
through 110 define a table for formatting the tool tip. Lines 110 and 111 specify some overlib
parameters to set the color, size, and alignment of the tool tip. Line 112 invokes the overlib
function nd() to close the tool tip. Line 113 determines the behavior if the hot spot is clicked—
in this case, nothing happens. Line 114 adds coordinates and then closes the <area> tag, which
isreturned in Line 116.

100 $area = "<area name=\"$seq\" ";

101 $area = $area."onmouseover=\"return overlib(";

102 $area = $area."'<table width=300>";

103 $area = $area."<tr><td></td>";

104 $area = $area."<td>Slurp & Burp Restaurants</td></tr>";

105 $area = $area."<tr><td></td><td><HR></td></tr>";

106 $area = $area."<tr><td>Storett:</td><td>$row[0]</td></tr>";

107 $area = $area."<tr><td>Address:</td><td>$row[1]</td></tr>";

108 $area = $area."<tr><td>Phone:</td><td>$row[4]</td></tr>";

109 $area = $area."<tr><td>Hours:</td><td>$row[5] - $row[6]</td></tr>";

110 $area = $area."</table>',FGCOLOR, '#FFFFFF',BGCOLOR, '#000000"',";
111 $area = $area."WIDTH,300,HAUTO,VAUTO);\" ";

112 $area = $area."onmouseout=\"return nd();\" ";

113 $area = $area."onclick=\"return false;\" ";

114 $area = $area."coords=\"$xm,$ym, $xp, $yp\" href=\"#\">\n";

116 return $area;

117 }

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Each store is now represented by a coffee cup displayed on the map, and as an <area> tag
in a client-side imagemap block that contains store information to be displayed in the pop-up
tool tip.

This section has described one method of producing pop-up tool tips, in which the creation
of a client-side imagemap to sense mouseover events allows the use of a third-party JavaScript
library to display and hide the information associated with each <area> tag.

Since this is still the first invocation, execution has dropped down past the pan, zoom, and
query code to retrieve dynamic information from a MySQL database, drawn coffee cups on a map,
and created the framework for displaying pop-up tool tips. The next task will be very familiar.

Creating and Saving Map Images

Lines 426 through 430 generate unique names for map and reference images. The images are
rendered and saved in Lines 432 through 436.

426 $map_id = sprintf("%0.6d",rand(0,999999));
427 $image name = "fifth".$map_id.".png";

428 $image url="/tmp/".$image name;

429 $ref name = "fifthref".$map_id.".gif";

430 $ref url="/tmp/".$ref name;

432 $image=$map->draw();

433 $image->savelmage($img path.$image name);
435 $ref = $map->drawReferenceMap();

436 $ref->savelmage($img path.$ref name);

Some variables (map extent, map scale, and click coordinates) are formatted so they can
be displayed on the page or saved as hidden variables in order to maintain state. Finally, the
last task before sending the HTML form back to the browser is a call to the function Hand1eIE(),
in Line 448. This returns a text string containing some HTML tags with embedded JavaScript
code. The purpose of this function is the topic of the next section.

438 $new_extent = sprintf("%3.6f",$map->extent->minx).

439 .sprintf("%3.6f", $map->extent->miny)." "
440 .sprintf("%3.6f", $map->extent->maxx)." "
441 .sprintf("%3.6f", $map->extent->maxy);

443 $scale = sprintf("%10d",$map->scale);

445 list($mx,$my) = img2map($map->width,$map->height, $clkpoint,$old extent);
446 $mx_str = sprintf("%3.6f",%mx);

447 $my str = sprintf("%3.6€",$my);

448 $NavigateIE = HandleIE($_POST['mode’],$image_url);
450 ?>

Using JavaScript to Fake Out IE

Unlike Mozilla-like browsers, in which an image can be used simultaneously as a clickable
input form variable and a client-side imagemap, IE requires that an image perform one task or

257

258

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

the other. This means that an image used as an imagemap must be enclosed in an tag,
and an image used as an input form variable must be enclosed in an <input> tag.

In the case of an tag, the mouse pointer position is available to JavaScript event
handlers (such as onMouseOver ()). If a user clicks on such as image, however, the form won’t be
submitted and the coordinates of the mouse click won’t be returned to the CGI script. This
application needs the JavaScript event handler to display and hide the pop-up tool tip, but it
also needs the coordinates of the mouse click in order to perform a spatial query around that
point. Since the two browser types provide such different capabilities with regard to this issue,
some additional code is required to provide similar functionality regardless of browser type.

The technique used is similar to faking mouse-click coordinates when Refresh is clicked.
Before the form is displayed in the browser, some JavaScript code embedded in the HTML is
executed to determine which browser is being used. Some of this code is generated by the PHP
script and inserted when the HTML is parsed for PHP commands, and some is embedded
directly in the HTML.

The function HandleIE() is defined in Lines 021 through 052. Two parameters are passed:
the URL of the map image, and the current mode. On first invocation, the mode is set to Browse.
In Browse mode, you want tool tips to be able to pop up, so you must enclose the IE imagemap
image in an tag. If you used this less elegant user interface for all browsers, there would
be no need for this code—however, you still want to retain the greater functionality of the
Mozilla browser, so you enclose the Mozilla imagemap in an <input> tag.

The following code snippet returns a string that contains JavaScript code that determines
which browser has loaded the document, and thus uses the appropriate tag. If the browser is
IE, then an tag is written into the document. If the browser isn’t IE, then an <input> tagis
written into the document. When the browser renders the document, the user will see the
image in an tag or an <input> tag, depending on browser. Note that you only need to
make this distinction in the case of Browse mode. In Query mode, both browsers require the
image to be enclosed in an <input> tag. IE loses its pop-up tool tips when in Query mode, but
Mozilla continues to show them.

021 function HandleIE($mode, $image url) {

022 // browser is IE *and* mode is browse display map image in
023 // tag otherwise display map image in <input> tag
024 if ($mode == "browse") {

025 $jscript = <<<ENDOFSCRIPT

026 <script>

027 if (navigator.appName!="Netscape")

028 {

029 document.write(

030 '<img name="img" src="$image url" '

031 +'width=640 height=480 usemap="#stores">'

032)

033 } else {

034 document.write(

035 "<input name="img" type="image" src="$image url"

036 +'width=640 height=480 usemap="#stores">

037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

052

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

}

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

)

</script>
ENDOFSCRIPT;

}

else {

$jscript = <<<ENDOFSCRIPT
<script>

document.write(
"<input name="img" type="image" src="$image url" '

+'width=640 height=480 usemap="#stores">

)

</script>
ENDOFSCRIPT;

}

return $jscript;

17

end HandleIE

Now that the map image is enclosed in browser-appropriate tags, some of the navigation
functionality lost by IE has to be replaced.
In the HTML section of the script, Lines 471 through 487 create a table with three rows and
three columns. The top and bottom row each have a single element that spans the width of the
table. The middle row has three elements.

<!--

<!--

<!--

<!--

<!--

<table border="0">

Display up arrow if browser is IE-like -->

<tr><td align="center" colspan="3"><?php echo Arrow("up"); ?»
</td></tr>

Display left arrow if browser is IE-like -->

<tr><td valign="center"><?php echo Arrow("left"); ?>
</td>

Displays image as or <input> depending on mode and browser -->
<td><?php echo $NavigateIE; ?>
</td>

Display right arrow if browser is IE-like -->
<td valign="center"><?php echo Arrow("right"); ?»
</td></tr>

Display down arrow if browser is IE-like -->

<tr><td align="center" colspan="3"><?php echo Arrow("down"); ?>
</td></tr>

</table>

The middle element (Line 479) is the string with the appropriately tagged map image
returned by the function Hand1leIE (). The contents of the other elements are shown in the code
snippet that follows. The function Arrow(), defined in Lines 004 through 018, takes a single
parameter: either up, down, left, or right. It returns a string containing JavaScript code that will
display an input image of the appropriate arrow if the browser is IE; or an empty string if not.

259

260

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Since these arrows are input fields, the CGI script can determine if any of them were clicked in
the previous invocation. This will be used later to pan the image in the case of an IE browser.

004 function Arrow($which) {

005 // return javascript code to display navigation buttons
006 // if the browser is IE-like or nothing if it's not
007 $arrow = <<<ENDOFSCRIPT

008 <script>

009 if (navigator.appName!="Netscape")

010 {

011 document.write(

012 "<input name="$which" type="image" src="$which.png">"
013)

014 }

015 </script>

016 ENDOFSCRIPT;

017 return $arrow;

018 }

Note that the purpose of this table is to tailor the navigation interface to the browser. IE
users are presented with the tools to pan and zoom, while Mozilla users can continue to use
point-and-click methods to navigate, without having to see the arrows. The same script handles
both cases.

At this point, the main CGI script is completed. The HTML form following the script is
parsed, any PHP instructions are executed, and the results are inserted into the page. The page
is then sent back to the browser, and the browser executes the various JavaScript functions and
displays the page with the appropriate navigation controls.

The user can zoom and pan, and turn layers on an off just as before—but now, whenever
the mouse pointer hovers over a coffee cup, a small rectangle pops up and displays information
about that store.

Suppose now that the user changes the mode from Browse to Query. What to do next
depends on the browser, and that is the topic of the next section.

Performing Spatial Queries

For Mozilla-like browsers, if the user changes the mode to Query and clicks on the map image,
it will cause a spatial query to be performed around the point clicked. If the browser is IE, however,
the user can’t click on the map since it’s still just an image, not an input variable. Clicking
Refresh will cause a query to be performed, but the click point will be the center of the map
image—probably not what'’s desired. Subsequent clicks on the image do work as expected
however. (It's no doubt possible to use JavaScript to re-render the images on the map without
going back to the server and changing the tag to an <input> tag, but this hasn’t been done.)

Assume that this is the third invocation so that there’s no question of how the click point
was generated—that is, assume the user clicked somewhere on the map. Assume also that the
search radius was left at 1 mile.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Now, instead of dropping through at Line 294, the code inside the if block is executed.
Input fields are evaluated to determine how the CGI script was invoked: with the Refresh
button, with one of the arrow buttons, or by a click on the map. Since this mechanism has been
used before, only the new navigation code will be described.

Lines 301 through 316 test whether one of the arrow keys has been clicked by checking for the
existence of one of the associated form variables. For example, if the variable $ POST['left x']
exists, then the script knows that the user wants to pan to the left. A fake click point is then
specified halfway between the center of the map image and the left edge. Control then drops
out of the if block. A similar process is performed if one of the other arrow keys is clicked.

301 // left arrow clicked - pan left 1/4 image width
302 } elseif ($ POST['left x']) {

303 $clickx = 160;

304 $clicky = 240;

305 // right arrow clicked - pan right 1/4 image width
306 } elseif ($ POST['right x']) {

307 $clickx = 480;

308 $clicky = 240;

309 // up arrow clicked - pan up 1/4 image height

310 } elseif ($ POST['up x']) {

311 $clickx = 320;

312 $clicky = 120;

313 // down arrow clicked - pan down 1/4 image height
314 } elseif ($ POST['down x']) {

315 $clickx = 320;

316 $clicky = 360;

The script now checks the status and sets the variables $nquery and $browse to CHECKED
or null, depending on the value returned from the browser. Recall that the CHECKED variables
maintain state from one session to another. In order to avoid negative search radii, the absolute
value of the quantity retrieved from the form is used.

325 if ($_POST['mode'] == "nquery") {
326 $nquery = "CHECKED";

327 $browse = "";

328 } else {

329 $nquery = "";

330 $browse = "CHECKED";

331 }

332 $radius = abs($_POST['radius']);

Lines 334 through 378 deal with setting layers on and off and setting the extent of the map
to the extent retrieved from the browser. I'll assume you’re familiar with these topics and move
on to something somewhat new.

Lines 381 through 383 convert the coordinates of the click point from image coordinates
to geographic coordinates, and use those values to create a point object that will be used to
perform a spatial query.

261

262

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

381 list($gx,$qy) = img2map($map->width,$map->height,$clkpoint,$old_extent);
382 $qpoint = ms_newPointObj();
383 $gpoint->setXY($qx,$qy);

The rest of the code up to Line 410 is concerned with navigation, another old topic that can
be skipped. Control drops down to Line 414, where a few things happen: the MySQL database
is queried to retrieve store information, points are added to the map to represent store locations,
and pop-up tool tips are created.

Lines 419 through 424 perform the spatial query. Note that the map is now in the same
state as it was when it was last displayed to the user. No panning or zooming was done, since
$ POST['mode'] == "nquery" and the zoomPoint() method are only invoked if the mode is Browse.

419 if ($_POST['mode'] == "nquery") {

421 $nearby = NearbyStores($qpoint,$map,$radius);
423 $result table = BuildResultTable($nearby,$qresult);
424 '}

The function NearbyStores(), defined in Lines 202 through 224, is invoked with the query
point, map, and search radius passed as parameters. It returns a list of store IDs that were
found within the search radius of the query point.

In order to perform a spatial search, a search layer has to be selected—Line 204 (shown in
the following code snippet) uses the getLayerByName () method to return a reference to the poi
layer.

202 function NearbyStores($point,$map,$radius) {
204 $qlayer = $map->getLayerByName('poi');

The next step presents another MapScript quirk. The queryByPoint () method ignores
whatever TOLERANCEUNITS might be set, and instead uses native map coordinates. The workaround
requires that you scale your search radius by the number of statute miles in 1 degree of latitude.
Since this is approximately 69.04 miles per degree, you can still allow the user to specify query
parameters in useful units like miles, while handling the quirk with this scaling process. The
same process could be used for other units, but the scale factor would change.

205 $qlayer->set("tolerance",$radius);

In Line 212, the actual spatial query is performed. The queryByPoint () method takes three
parameters: the query point ($point), a constant value that determines whether a query will
return all results (MS_MULTIPLE) or just the first (MS_SINGLE), and the search radius (in this case,
scaled by 69.04 statute miles per degree).

212 @$qlayer->queryByPoint($point, MS MULTIPLE, $radius/69.04);

The query creates a queryCacheObj for the layer. It’s accessed indirectly by the getNumResults ()
method in Line 213. If there are results, then the loop in Lines 215 through 220 retrieves each
result one by one. It does so by first creating a reference to a result via the getResult() method
in Line 217. This reference is then used to retrieve the shape index of the matching feature. This
shape index is the integer-valued store number that was set previously. The store number is
saved in an array. Finally, the array of store numbers is returned—or if there are no results, a
null is returned.

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

213 $numResults = $qlayer->getNumResults();

215 if ($numResults != 0) {

216 for ($1 = 0; $i < $numResults; $i++) {

217 $query result = $qlayer->getResult($i);
218 $Storelist[$i] = $query result->shapeindex;
219 }

220 } else {

221 $StoreList = ""; // no results

222 }

223 return $Storelist;

224}

Displaying Spatial Query Results

Now that a list of nearby stores has been retrieved, an HTML table needs to be constructed to hold
and display the results on the page. This task is performed by the function BuildResultTable()
defined in Lines 227 through 255. Two parameters are passed: the list of nearby stores, and the
query result array that was created when the stores table was first queried to retrieve store
information and display it on the map and in the tool tips.

Lines 229 through 237 define the start of a table and a row of column headings. If there are
stores nearby, then the table is filled with details from each nearby store. If there are no stores
nearby, a single line explains this to the user.

227 function BuildResultTable($nearby,$qresult) {

229 $result table = "<table border=1>\n<tr>";

230 $result table = $result table."<th>Store</th>";

231 $result table = $result table."<th>Address</th>";

232 $result table = $result table."<th>Latitude</th>";
233 $result table = $result table."<th>Longitude</th>";
234 $result table = $result table."<th>Phone</th>";

235 $result table = $result table."<th>Open</th>";

236 $result table = $result table."<th>Close</th>";

237 $result table = $result table."<th>Menu</th></tr>\n";

The loop in Lines 239 through 248 steps through the array $nearby, using the $store value
to retrieve store details from the query result array. It retrieves the menu of each store with a
call to the function GetStoreMenu(). Then, each row of the table is populated by the loop in
Lines 244 through 246. Finally, the result table is returned to the caller.

239 if ($nearby) {

240 foreach ($nearby as $store) {

241 $row = $qresult[$store - 1];

242 $menu = GetStoreMenu($store);

243 $result table = $result table."<tr>";

244 for ($j = 0; $j < 7; $j++) {

245 $result table = $result table."<td>$row[$j]</td>";
246 }

247 $result table = $result table."<td>$menu</td></tr>\n";

248 }

263

264

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

250 } else {

251 $result_table = $result table."<tr><td colspan=8>No results</td></tr>";
252 }

253 $result table = $result table."</table>";

254 return $result table;

255}

Retrieving a store menu requires a somewhat more complex query string than was used to
retrieve store information. In the first place, when items were retrieved from the store table in
order to populate the poi layer, no selection criteria needed to be specified since all stores were
to be selected. Second, only a single table needed to be accessed, whereas retrieving a menu
requires that all the tables in the database be queried. This task is performed by the function
GetStoreMenu()defined in Lines 139 through 158.

Line 141 connects to the MySQL server on localhost, and Line 143 selects the restaurant
database.

139 function GetStoreMenu($store id) {
141 @mysql_connect("localhost", "mysql", "password")

142 or die("Could not connect to MySQL server!");
143 @mysql_select db("restaurant")
144 or die("Could not select database");

Lines 145 through 148 build the query string in stages. Line 145 selects the description field
in the product table and specifies that the three tables (store, menu, and product) will all be
referenced by this query.

Line 146 restricts the query to rows for which the value of id in the store table equals the
value of store_id in the menu table. Line 147 similarly limits the query to rows for which the
product_id in the menu table equals the id in the product table. Finally, Line 148 requires that
the query return results only for the particular store ID passed to it.

145 $query = "SELECT product.description FROM store, menu, product ";
146 $query = $query."WHERE store.id=menu.store id ";

147 $query = $query."AND menu.product id=product.id ";

148 $query = $query."AND store.id=$store_id";

Line 149 performs the query, returning a pointer to the result set in $result. Lines 151
through 155 retrieve these results in sequence and store each product description in an
element of the array $item. When all results have been retrieved, the elements of $item are
joined into a string representing the menu, and returned.

149 $result = mysql query($query);

151 $i = 0;

152 while ($row = mysql fetch array($result,MYSQL NUM)) {
153 $item[$i] = $row[0];

154 $i++;

155 }

157 return join("|",$item);

158 }

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

At this point, the table of query results has been created and the map with store location
symbols has been created. Imagemap code has been generated that holds the pop-up informa-
tion. All that’s left for this invocation to do is save the map image to disk, format some variables
for display on the page, and shoot it back to the user.

That’s it—you’ve created a PHP MapScript application that uses MySQL to store dynamic
information, displays the dynamic information on a map, and allows spatial queries of that
map. Now, download the code (if you haven’t already), create the restaurant database, and fire
up the browser to take a look at what it can do.

Summary

This chapter has consolidated your understanding of elementary MapServer and MapScript,
and provided an introduction to the more sophisticated concept of MapScript spatial queries.
Of course, you've barely scratched the surface—MapScript queries aren’t limited to the simple
point queries described in this chapter—all the query modes described in Chapter 5 are available
to MapScript. Nevertheless, the foundation you’ve built is a solid one—the more complex
query modes are accessed in much the same way as the NQUERY mode you’ve used here. The
next step will be incremental rather than a great leap.

You've also seen how to extend MapScript’s capabilities by incorporating MySQL functionality
into a spatially aware application. PHP, Perl, and Python all possess numerous other special-
purpose libraries that provide additional functionality—and these can be used in conjunction
with MapScript in the same manner as MySQL. MapScript has supplied you with a powerful
new tool—how you use it will be up to you.

Code Listings

Listing 9-1. The mapfile for the restaurant application, fifth.map

001 # This is our fifth map file

002 NAME "fifth"

003 UNITS dd

004 EXTENT -97.384655 49.697475 -96.877772 50.077168
005 SIZE 640 480

006 IMAGECOLOR 255 255 255

007 IMAGETYPE PNG

008 SHAPEPATH "/home/mapdata”

009 FONTSET "/var/www/htdocs/fontset.txt"

010 HHHHHHHHHHHHHHHEHHHH
011 # Symbol for drawing fat lines

012 #

013 SYMBOL

014 NAME "BiglLine"
015 TYPE ELLIPSE
016 POINTS 1 1 END

017 END

265

266 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

018 HHHHHHHEHHHHHHHHH
019 # Symbol for drawing spots

020 #

021 SYMBOL

022 NAME "Circle"
023 FILLED true
024 TYPE ellipse
025 POINTS 1 1 END
026 END

027 HHHHHHHEHHHEHEHH
028 # Symbol for drawing cup symbols

029 #

030 SYMBOL

031 NAME "Cup"

032

033 TYPE pixmap

034 IMAGE "/var/www/htdocs/cup.gif"
035 END

036 HHHHHHHEHHHEHHHHHHHHEHEHH
037 # Reference map

038 #

039 REFERENCE

040 IMAGE "/var/www/htdocs/fifth_wpgref.gif"

041 SIZE 300 225

042 EXTENT -97.384655 49.697475 -96.877772 50.077168
043 STATUS ON

044 COLOR -1 -1 -1

045 OUTLINECOLOR 255 0 O

046 END

047 S R
048 # Scalebar

049 #

050 SCALEBAR

051 LABEL

052 COLOR 00 O
053 ANTIALIAS true
054 SIZE small
055 END

056 POSITION 1r

057 INTERVALS 2

058 STATUS embed

059 SIZE 144 5

060 STYLE 0

061 UNITS miles

062
063
064
065
066
067

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

BACKGROUNDCOLOR 255 0 0
IMAGECOLOR 255 255 255
COLOR 128 128 128
OUTLINECOLOR 0 0 255
TRANSPARENT off

END

B R S S T SR
Neighborhoods layer - hoods

#

LAYER
NAME "hoods"
DATA "nrn_geo"
STATUS on

TYPE polygon
LABELCACHE on
LABELITEM "NRNNAME"
CLASSITEM "NRN"
CLASS
EXPRESSION /”01/
STYLE
COLOR 173 152 4
END
LABEL
TYPE truetype
FONT "arialbd"
SIZE 10
COLOR 140 66 28
POSITION cc
OUTLINECOLOR 255 255 255
END
END
CLASS
EXPRESSION /002/
STYLE
COLOR 192 92 74
END
LABEL
TYPE truetype
FONT "arialbd"
SIZE 10
COLOR 140 66 28
POSITION cc
OUTLINECOLOR 255 255 255
END
END
CLASS

267

268 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

108 EXPRESSION /”03/

109 STYLE

110 COLOR 179 178 107
111 END

112 LABEL

113 TYPE truetype
114 FONT “"arialbd"
115 SIZE 10

116 COLOR 140 66 28
117 POSITION cc

118 OUTLINECOLOR 255 255 255
119 END

120 END

121 CLASS

122 EXPRESSION /”04/

123 STYLE

124 COLOR 140 66 28
125 END

126 LABEL

127 TYPE truetype
128 FONT “"arialbd"
129 SIZE 10

130 COLOR 140 66 28
131 POSITION cc

132 OUTLINECOLOR 255 255 255
133 END

134 END

135 CLASS

136 EXPRESSION /”05/

137 STYLE

138 COLOR 198 148 90
139 END

140 LABEL

141 TYPE truetype
142 FONT “"arialbd"
143 SIZE 10

144 COLOR 140 66 28
145 POSITION cc

146 OUTLINECOLOR 255 255 255
147 END

148 END

149 CLASS

150 EXPRESSION /006/

151 STYLE

152 COLOR 98 142 96
153 END

154 LABEL

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199
200

END

CLASS

END

CLASS

END

CLASS

END

CHAPTER 9

TYPE truetype

FONT "arialbd"

SIZE 10

COLOR 140 66 28

POSITION cc

OUTLINECOLOR 255 255 255

EXPRESSION /”~07/

STYLE

END

LABEL

END

COLOR 206 156 24

TYPE truetype

FONT "arialbd"

SIZE 10

COLOR 140 66 28

POSITION cc

OUTLINECOLOR 255 255 255

EXPRESSION /”~08/

STYLE

END

LABEL

END

COLOR 169 173 99

TYPE truetype

FONT "arialbd"

SIZE 10

COLOR 140 66 28

POSITION cc

OUTLINECOLOR 255 255 255

EXPRESSION /709/

STYLE

END

LABEL

COLOR 165 173 90

TYPE truetype
FONT "arialbd"
SIZE 10

COLOR 140 66 28

EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

269

270 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

201 POSITION cc

202 OUTLINECOLOR 255 255 255
203 END

204 END

205 CLASS

206 EXPRESSION /~10/

207 STYLE

208 COLOR 193 187 144
209 END

210 LABEL

211 TYPE truetype

212 FONT “"arialbd"
213 SIZE 10

214 COLOR 140 66 28
215 POSITION cc

216 OUTLINECOLOR 255 255 255
217 END

218 END

219 CLASS

220 EXPRESSION /~11A/

221 STYLE

222 COLOR 175 175 223
223 END

224 LABEL

225 TYPE truetype

226 FONT “"arialbd"
227 SIZE 10

228 COLOR 140 66 28
229 POSITION cc

230 OUTLINECOLOR 255 255 255
231 END

232 END

233 CLASS

234 EXPRESSION /~11B/

235 STYLE

236 COLOR 196 200 72
237 END

238 LABEL

239 TYPE truetype

240 FONT “"arialbd"
241 SIZE 10

242 COLOR 140 66 28
243 POSITION cc

244 OUTLINECOLOR 255 255 255
245 END

246 END

247 CLASS

248
249
250
251
252
253
254
255
256
257
258
259
260

262
263
264
265
266
267
268
269
270
271

273
274
275
276
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

EXPRESSION /"12/

STYLE
COLOR 239 231 140

END

LABEL
TYPE truetype
FONT "arialbd"
SIZE 10
COLOR 140 66 28
POSITION cc
OUTLINECOLOR 255 255 0

END

END
END

HUHHHHHHEHH
hydrographic layer - rivers
#
LAYER
NAME "rivers"
DATA "waterp geo"
STATUS on
TYPE polygon
CLASSITEM "HYDRO NAME"
CLASS
EXPRESSION /RIVER*/
STYLE
COLOR 0 0 255
END
END
END

A
Road layer - majorstreets
#
LAYER
NAME "majorstreets”
DATA "roads_type"
STATUS on
TYPE line
LABELCACHE on
LABELITEM "NAME"
CLASS
EXPRESSION ([STATUS] = 1)
STYLE
SYMBOL "Bigline"
SIZE 2

27

272 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

293 COLOR 0 0 O

294 END

295 LABEL

296 TYPE truetype

297 FONT “"arialbd"
298 SIZE 10

299 COLOR 0 0 O

300 OUTLINECOLOR 255 255 255
301 MINDISTANCE 300
302 POSITION auto

303 ANGLE auto

304 MINFEATURESIZE 25
305 END

306 END

307 END

308 HHHHHHHHHHHHHEHHEH
309 # Road layer - streets

310 #

311 LAYER

312 NAME “"streets"

313 DATA "roads_type"

314 STATUS on

315 TYPE line

316 LABELCACHE on

317 LABELITEM "NAME"

318 MAXSCALE 120000

319 CLASS

320 EXPRESSION ([STATUS] != 1)
321 STYLE

322 SYMBOL "Bigline"
323 SIZE 1

324 COLOR 0 0 0

325 END

326 LABEL

327 TYPE truetype

328 FONT "arialbd"

329 SIZE 8

330 COLOR 0 0 O

331 OUTLINECOLOR 255 255 255
332 MINDISTANCE 300

333 POSITION auto

334 ANGLE auto

335 MINFEATURESIZE auto
336 END

337 END

338 END

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

339 HHHHHHHHHEHHHEHEHH A
340 # POI layer - points of interest

341 #

342 LAYER

343 NAME "poi"

344 STATUS default

345 TYPE point

346 LABELCACHE on

347 TOLERANCEUNITS miles
348 CLASS

349 SYMBOL "Cup"
350 SIZE 40

351 STYLE

352 COLOR 255 0 O
353 END

354 TEMPLATE "dummy.html"
355 TEXT ""

356 LABEL

357 BUFFER 20
358 END

359 END

360 END

361 END # mapfile

Listing 9-2. The PHP script for the restaurant application, phpms_fifth.php

001

002
003

004

005
006

007
008
009
010
011
012
013
014
015
016

<?php

// Arrow - display navigation arrows for IE
function Arrow($which) {

// return javascript code to display navigation buttons
// if the browser is IE-like or nothing if it's not

$arrow = <<<ENDOFSCRIPT

<script>

if (navigator.appName!="Netscape")

{
document.write(
"<input name="$which" type="image" src="$which.png">’
)

}

</script>
ENDOFSCRIPT;

273

274 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

017 return $arrow;

018 } // end Arrow

019 // === mmm e
020 // HandleIE - allow spatial query when using IE

021 function HandleIE($mode, $image url) {

022 // browser is IE *and* mode is browse display map image in
023 // tag otherwise display map image in <input> tag
024 if ($mode == "browse") {

025 $jscript = <<<ENDOFSCRIPT

026 <script>

027 if (navigator.appName!="Netscape")

028 {

029 document.write(

030 '<img name="img" src="$image url" '

031 +'width=640 height=480 usemap="#stores">'

032)

033 } else {

034 document.write(

035 "<input name="img" type="image" src="$image url"
036 +'width=640 height=480 usemap="#stores">'

037)

038 }

039 </script>

040 ENDOFSCRIPT;
041 } else {
042 $jscript = <<<ENDOFSCRIPT

043 <script>

044 document.write(

045 "<input name="img" type="image" src="$image url" '
046 +'width=640 height=480 usemap="#stores">'

047)

048 </script>

049 ENDOFSCRIPT;

050 }

051 return $jscript;

052 } // end HandlelE

054

055

056

057

058

059
060

061

062

063

064

065

066

067

068

069

070

071

072

073
074

075

076
077
078
079
080

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

// img2map - convert image coords to map coords
function img2map($width, $height, $point,$ext) {
// valid point required
if ($point->x && $point->y){
// find degrees per pixel

$dpp_x = ($ext->maxx - $ext->minx)/$width;
$dpp_y = ($ext->maxy - $ext->miny)/$height;

// calculate map coordinates
$p[0] = $ext->minx + $dpp x*$point->x;

$p[1] = $ext->maxy - dpp_y*point->y;
}

return $p;

} // end img2map

// map2img - convert map coords to image coords
function map2img($width, $height, $point,$ext) {
// valid point required
if ($point->x && $point->y){

// find pixels per degree

$ppd_x = $width/($ext->maxx - $ext->minx);
$ppd_y = $height/($ext->maxy - $ext->miny);

// calculate image coordinates

$p[o] $ppd_x * ($point->x - $ext->minx);

$p[1] $height - $ppd_y * ($point->y - $ext->miny);
settype($p[0], "integer");

settype($p[1],"integer");

275

276 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

081 return $p;

082 } // end map2img

084 // MarkSpot - return an HTML imagemap area tag

085 function MarkSpot($seq, $width,$height,$point, $ext,$row) {

086 // Given the map size in pixels and the geographic
087 // extent of the map returns an <area> tag that
088 // contains Javascript event handlers that popup
089 // and hide tooltips on mouseovers.

090 // hotspot is point coordinates +/- $size pixels
091 $size = 15;

092 // get hotspot coords in pixels

093 list($x, $y) = map2img($width,$height, $point, $ext);

094 // calculate coordinates of imagemap area

095 $xm = $x - $size; if ($xm < 0) {$xm = 0;}

096 $ym = $y - $size; if ($ym < 0) {$ym = 0;}

097 $xp = $x + $size; if ($xp > $width) {$xp = $width;}

098 $yp = $y + $size; if ($yp > $height) {$yp = $height;}

099 // create <area> tag

100 $area = "<area name=\"$seq\" ";

101 $area = $area."onmouseover=\"return overlib(";

102 $area = $area."'<table width=300>";

103 $area = $area."<tr><td></td>";

104 $area = $area."<td>Slurp & Burp Restaurants</td></tr>";

105 $area = $area."<tr><td></td><td><HR></td></tr>";

106 $area = $area."<tr><td>Storett:</td><td>$row[0]</td></tr>";
107 $area = $area."<tr><td>Address:</td><td>$row[1]</td></tr>";
108 $area = $area."<tr><td>Phone:</td><td>$row[4]</td></tr>";
109 $area = $area."<tr><td>Hours:</td><td>$row[5] - $row[6]</td></tr>";

110 $area = $area."</table>',FGCOLOR, '#FFFFFF',BGCOLOR, '#000000"',";
111 $area = $area."WIDTH,300,HAUTO,VAUTO);\" ";
112 $area = $area."onmouseout=\"return nd();\" ";

113 $area = $area."onclick=\"return false;\" ";
114 $area = $area."coords=\"$xm,$ym,$xp,$yp\" href=\"#\">\n";

115

116

117

118

119

120

121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

140

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

// return <area> tag

return $area;

} // end MarkSpot

// CreateTTimagemap - create atooltip imagemap

function CreateTTimagemap($gresult,$map) {

// return an imagemap with an <area> tag
// for each row of the query results.

$hotSpot = ms_newPointObj();

$imagemap = "<map name=\"stores\">";

// scan the query results

for ($i = 0; $i < count($qresult); $i++) {
$row = $qresult[$i];
$hotSpot->setXY($row[3],$row[2]);
$newarea = MarkSpot($i, $map->width, $map->height,

$hotSpot, $map->extent, $row);

$imagemap = $imagemap."\n".$newarea;

}

// close the imagemap tag

$imagemap = $imagemap."\n</map>\n";

return $imagemap;

} // end CreateTTimageMap

// GetStoreMenu - returns string containing store menu

function GetStoreMenu($store id) {

// Retrieve products/services menu for a store

277

278

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

141
142

143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162

163
164

165
166

167
168

169

@mysql connect("localhost”, "mysql", "password")
or die("Could not connect to MySQL server!");

@mysql select db("restaurant")
or die("Could not select database");

$query = "SELECT product.description FROM store, menu, product ";
$query = $query."WHERE store.id=menu.store id ";

$query = $query."AND menu.product id=product.id ";

$query = $query."AND store.id=$store id";

$result = mysql query($query);

// save each menu item in an array element

$i = 0;

while ($row = mysql fetch array($result,MYSQL NUM)) {
$item[$i] = $row[0];
$i++;

}

// return menu as a string
return join("|",$item);

} // end GetStoreMenu

// GetStoreTable - returns array containing store table
function GetStoreTable() {
// Retrieve store table from MySQL database

@mysql connect("localhost", "mysql", "password")
or die("Could not connect to MySQL server!");

@mysql select db("restaurant")
or die("Could not select database");

$query = "SELECT * FROM store";
$result = mysql query($query);

// save each row of result in an array

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 279

170 $i = 0;

171 while ($row = mysql fetch array($result,MYSQL NUM)) {
172 $qresult[$i] = $row;

173 $i++;

174 }

175 // return array of results

176 return $qresult;

177 } // end GetStoreTable

178 / /o mm
179 // AddPoints - add store locations to 'poi' map layer

180 function AddPoints ($map, $qresult) {

181 // Use lat/long info from query results to add points
182 // to the points-of-interest layer of the map

183 // shape index is set to the store-id

184 // (this requires a patched version of Mapscript)
185 $this layer = $map->getLayerByName('poi');

186 $i = 0;

187 foreach($qresult as $row) {

188 $poi[$i] = ms_newPointObj();

189 $1n[$i] = ms_newLineObj();

190 $shp[$i] = ms_newShapeObj(MS_SHAPE_POINT);

191 $poi[$i]->setXY($row[3],$row[2]);

192 $1n[$i]->add($poi[$i]);

193 $shp[$i]->add($1n[$i]);

194 $shp[$1i]->set(index, $row[0]);

195 $this layer->addFeature($shp[$i]);

196 $i++;

197 }

198 return;

199 } // end AddPoints

201 // NearbyStores - return a list of stores near click point

202 function NearbyStores($point,$map,$radius) {

280 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

203 // get query layer

204 $qlayer = $map->getLayerByName('poi');

205 $qlayer->set("tolerance",$radius);

206 // query the query layer - $radius is set in browser

207 // queryByPoint ignores TOLERANCE units using native map units
208 // instead - in this case decimal degrees. The number of miles
209 // per degree is (approximately of course) 69.04 therefore
210 // the correction from degrees to miles. This would have to
211 // change if TOLERANCEUNITS, the map or scale units change.
212 @$qlayer->queryByPoint($point, MS MULTIPLE, $radius/69.04);
213 $numResults = $qlayer->getNumResults();

214 // we've got results, store id equals shape index

215 if ($numResults != 0) {

216 for ($i = 0; $i < $numResults; $i++) {

217 $query result = $qlayer->getResult($i);

218 $StoreList[$i] = $query result->shapeindex;

219 }

220 } else {

221 $Storelist = ""; // no results

222 }

223 return $Storelist;

224 '} // end NearbyStores

225 [/
226 // BuildResultTable - build HTML table of nearby stores

227 function BuildResultTable($nearby,$qresult) {
228 // assemble the table of nearby stores

229 $result table = "<table border=1>\n<tr>";

230 $result table = $result table."<th>Store</th>";

231 $result table = $result table."<th>Address</th>";
232 $result table = $result table."<th>Latitude</th>";
233 $result table = $result table."<th>Longitude</th>";
234 $result table = $result table."<th>Phone</th>";

235 $result table = $result table."<th>Open</th>";

236
237

238

239
240
241
242
243
244
245
246
247
248

249
250
251
252
253
254

255

256

257

258

259

260

261

262

263
264

$resul
$resul

// the

if (¢
for

}

// the
} else
$res
}
$resul

return

} // end

// Who ar

$script n

// Define
// before

// path d
$map_path

$map_file
$img_path

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

t_table

re are stores nearby

nearby) {

each ($nearby as $store) {

$row = $qresult[$store - 1];

$menu = GetStoreMenu($store);

$result table = $result table."<tr>";
for ($j = 0; $j < 7; $j++) {

$result table = $result table."<td>$row[$j]</td>";

}

$result table = $result table."<td>$menu</td></tr>\n";

re are NO stores nearby

{

ult_table = $result_table."<tr><td colspan=8>No results</td></tr>";

t table = $result table."</table>";
$result table;

BuildResultTable

e we

ame = "phpms_fifth.php";

some default values to use
form variables are available

efaults

"/home/mapdata/";
"fifth.map";
= "/var/www/htdocs/tmp/";

$result table."<th>Close</th>";
t_table = $result table."<th>Menu</th></tr>\n";

281

282

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

265

266
267
268
269

270

271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288

289

290

// Navigation defaults

$zoomsize = 2;
$pan = "CHECKED";
$zoomout = "";
$zoomin = "";

// Displayed layer defaults

$hoods = "CHECKED";
$rivers = "CHECKED";
$streets = "CHECKED";
$majorstreets = "CHECKED";

// Map mode
$browse = "CHECKED";
$nquery = "";
$radius = 1; // sets TOLERANCE for point query
// TOLERANCEUNITS miles specified in mapfile

// Default click point

$clickx = 320;
$clicky = 240;
$clkpoint = ms_newPointObj();
$old extent = ms_newRectObj();

// Default extent & maximum extent are the same

$extent = array(-97.384655, 49.697475, -96.877772, 50.077168);
$max_extent = ms_newRectObj();

$max_extent->setextent(-97.384655, 49.697475, -96.877772, 50.077168);

// Retrieve mapfile and create a map from it

$map = ms_newMapObj($map_path.$map file);

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL 283

291 // First time we're invoked use default variable and drop
292 // through to create map image for the first time else use
293 // form variables to pan and zoom before creating map image

294 if (($_POST['img x'] and $ POST['img y']) or

295 $ _POST['refresh'] or $ POST['left x'] or

296 $ POST['right x'] or $ POST['up x"'] or $ POST['down x']) {
297 // Refresh button clicked, fake the map click

298 if ($_POST['refresh']) {

299 $clickx = 320;

300 $clicky = 240;

301 // left arrow clicked - pan left 1/4 image width
302 } elseif ($ POST['left x']) {

303 $clickx = 160;

304 $clicky = 240;

305 // right arrow clicked - pan right 1/4 image width
306 } elseif ($ POST['right x']) {

307 $clickx = 480;

308 $clicky = 240;

309 // up arrow clicked - pan up 1/4 image height

310 } elseif ($ POST['up x']) {

311 $clickx = 320;

312 $clicky = 120;

313 // down arrow clicked - pan down 1/4 image height
314 } elseif ($ POST['down x']) {

315 $clickx = 320;

316 $clicky = 360;

317 // map was clicked, get the real coordinates

284

CHAPTER 9

318
319
320

321

322

323

324

325
326
327
328
329
330
331
332

333

334

335
336
337
338
339
340
341
342
343

344
345
346
347
348
349
350
351
352

EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

} else {
$clickx = $ POST['img x'];
$clicky = $ POST['img y'];

// Set the mouse click location (we need it to zoom)

$clkpoint->setXY($clickx,$clicky);

// mode or search radius may have changed, update 'em

if ($_POST['mode'] == "nquery") {
$nquery = "CHECKED";
$browse = "";

} else {
$nquery ;
$browse = "CHECKED";

}
$radius = abs($_POST['radius']);

// Selected layers may have changed, reset HTML 'checks'
$layers = join(" ",$_POST['layer']);

if (preg_match("/hoods/", $layers)){
$hoods = "CHECKED";
$this layer = $map->getLayerByName("hoods");
$this layer->set('status', MS_ON);

} else {
$hoods = "";
$this layer = $map->getLayerByName(hoods");
$this layer->set('status', MS OFF);

}

if (preg match("/rivers/", $layers)){
$rivers = "CHECKED";
$this layer = $map->getLayerByName('rivers');
$this layer->set('status', MS_ON);

} else {
$rivers =
$this layer = $map->getLayerByName('rivers');
$this layer->set('status', MS OFF);

o,
)

353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370

371

372

373

374

375

376

377
378
379
380
381

382
383

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

if (preg match("/majorstreets/", $layers)){
$majorstreets = "CHECKED";
$this layer = $map->getLayerByName('majorstreets');
$this layer->set('status', MS_ON);

} else {
$majorstreets =
$this layer = $map->getlLayerByName('majorstreets');
$this layer->set('status', MS_OFF);

}

if (preg_match("/streets/", $layers)){
$streets = "CHECKED";
$this layer = $map->getLayerByName('streets');
$this_layer->set('status', MS_ON);

} else {
$streets = "";
$this layer = $map->getLayerByName('streets');
$this layer->set('status', MS_OFF);

// since we were invoked by the form - retrieve previous map extent
if ($_POST['extent']) {

$extent = split(" ", $ POST['extent']);
}

// Set the map to the extent retrieved from the form

$map->setExtent($extent[0], $extent[1],$extent[2], $extent[3]);

// Save this extent as a rectObj, we need it to zoom.

$old extent->setextent($extent[0],$extent[1],$extent[2],$extent[3]);

// convert click point to geo coordinates before zoom or pan

// we need it for point query

list($9x,%$qy) = img2map($map->width,$map->height, $clkpoint,$old extent);

$qpoint = ms_newPointObj();
$gpoint->setXY($qx,$qy);

285

286

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

384
385

386
387
388
389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

405

406
407
408
409
410

411
412
413

414
415
416

417
418

// Calculate the zoom factor to pass to zoomPoint method
// and setup the pan and zoom variables for web page

// zoomfactor = +/- N

// if N > 0 zooms in - N < 0 zoom out - N = 0 pan
//

$zoom factor = $ POST['zoom'] * $ POST['zsize'];

if ($zoom factor == 0) {
$zoom_factor = 1;
$pan = "CHECKED";

nn

$zoomout = "";
$zoomin = "";
} elseif ($zoom factor < 0) {
$pan = ""
$zoomout = "CHECKED";

$zoomin = "";

nn

$zoomout = "";
$zoomin = "CHECKED";
}

$zoomsize = abs($ POST['zsize']);

// Zoom in (or out) to clkpoint

if ($_POST['mode'] == "browse") {
$map->zoomPoint($zoom factor,$clkpoint,$map->width,
$map->height,$old extent,$max_extent);
}
}

// Retrieve store table,
// add points to the points-of-interest layer,
// build tooltip imagemap

$qresult = GetStoreTable();
AddPoints($map, $qresult);
$image map = CreateTTimagemap($qresult,$map);

// The points-of-interest layer has been populated
// and can now be queried if in query mode

419

420

421

422

423

424

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442

443

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

if ($_POST['mode'] == "nquery") {
// find nearby stores
$nearby = NearbyStores($qpoint,$map,$radius);
// build HTML table of nearby stores

$result table = BuildResultTable($nearby,$qresult);

// create unique names for map and reference images

$map_id = sprintf("%0.6d",rand(0,999999));
$image name = "fifth".$map_id.".png";
$image url="/tmp/".$image name;

$ref name = "fifthref".$map id.".gif";
$ref url="/tmp/".$ref name;

// Draw and save map image
$image=$map->draw();
$image->saveImage($img_path.$image name);
// Draw and save reference image

$ref = $map->drawReferenceMap();
$ref->saveImage($img path.$ref name);

// Get new extent of map (we'll save it in a form variable)

$new_extent = sprintf("%3.6f",$map->extent->minx).
.sprintf("%3.6f",$map->extent->miny).
.sprintf("%3.6f",$map->extent->maxx).
.sprintf("%3.6f",$map->extent->maxy);

// get the scale of the image to display on the web page

$scale = sprintf("%10d",$map->scale);

287

288

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

444

445
446
447

448

449

450

451
452
453

454
455
456
457
458
459

460

461

462

463
464
465

466
467

468
469
470
471

472
473
474

// Convert mouse click from image coordinates to map coordinates

list($mx,$my) = img2map($map->width,$map->height,$clkpoint,$old_extent);
$mx_str = sprintf("%3.6f",$mx);
$my str = sprintf("%3.6f",$my);

$NavigateIE = HandleIE($ POST['mode'],$image url);

// We're done, output the HTML form
?>

<html>
<head>
<title>MapScript Fifth Map</title>

<script type="text/javascript">
var ol textsize = "5px";
var ol width = 300;
</script>
<script type="text/javascript" src="overlib.js">
<!-- overlLib (c) Erik Bosrup --> </script>

</head>
<body bgcolor="H#EGEGE6">
<!-- overlib needs this tag right after body-->

<div id="overDiv"
style="position:absolute; visibility:hidden; z-index:1000;">
</div>

<!-- image map stores tooltip info and displays it -->
<?php echo $image map; ?>

<form method=post action="<?php echo $script name;?>">
<table width="100%" border="1">
<tr><td width="60%" rowspan="6">
<table border="0">

<!-- Display up arrow if browser is IE-like -->
<tr><td align="center" colspan="3"><?php echo Arrow("up"); ?>
</td></tr>

475
476
477

478
479
480

481
482
483

484
485
486

487
488
489

490
491
492

493
494
495
496

497
498
499
500
501

502
503
504
505
506

507
508
509

<!--

<!--

<!--

<!--

<!--

CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

Display left arrow if browser is IE-like -->
<tr><td valign="center"><?php echo Arrow("left"); ?>
</td>

Displays image as or <input> depending on mode and browser -->
<td><?php echo $NavigateIE; ?>
</td>

Display right arrow if browser is IE-like -->
<td valign="center"><?php echo Arrow("right"); ?»
</td></tr>

Display down arrow if browser is IE-like -->
<tr><td align="center" colspan="3"><?php echo Arrow("down"); ?>
</td></tr>

</table>
</td>
<td width="40%" align="center" colspan="3">

Displays reference image -->
<img SRC="<?php echo $ref url; ?>" width=300 height=225 border=1>
</td></tr>

Displays map scale -->

<tr><td align="left" colspan="3">

<!--

Map scale: 1:<?php echo $scale; ?>
</td></tr>

Display click coordinates -->

<tr><td align="left" colspan="3">

<!--

Click x,y:8nbsp 8nbsp <?php echo $mx_str; ?>,
<?php echo $my_str; >
</td></tr>

Display map extent and save it as hidden variable -->

<tr><td align="left" colspan="3">

<input type="hidden" name="extent"
value="<?php echo $new_extent; ?>">
Map Extent: <?php echo $new_extent; ?></td></tr>

<tr><td><center>Mode</center></td>

<td><center>Navigation</center></td>
<td><center>lLayers</center></td></tr>

289

290 CHAPTER 9 EXTENDING THE CAPABILITIES OF MAPSCRIPT WITH MYSQL

510 <!-- Select map mode -->

511 <tr><td rowspan="2">

512 <input type=radio name=mode

513 value="browse" <?php echo $browse; ?> >Browse

514 <input type=radio name=mode

515 value="nquery" <?php echo $nquery; ?> >Query

516 Search radius:

517 <input type=text name=radius size="4"

518 value="<?php echo $radius; ?>">(miles)

519 <!-- Navigation controls -->

520 <td align="left">

521 <input type=radio name="zoom"

522 value=0 <?php echo $pan; ?>> Pan

523 <input type=radio name="zoom"

524 value=1 <?php echo $zoomin; ?>> Zoom In

525 <input type=radio name="zoom"

526 value=-1 <?php echo $zoomout; ?>> Zoom Out

527 <input type=text name="zsize"

528 value="<?php echo $zoomsize; ?>" SIZE=2>Size

529 <center>

530 <input type=submit name="refresh" value="Refresh">
531 </center></td>

532 <!-- Layer selection -->

533 <td align="top">

534 <input type="checkbox" name="layer[]"

535 value="hoods" <?php echo $hoods; ?> >

536 "hoods

537 <input type="checkbox" name="layer[]"

538 value="rivers" <?php echo $rivers; ?> >
539 Rivers

540 <input type="checkbox" name="layer[]"

541 value="majorstreets" <?php echo $majorstreets; ?> >
542 Major streets

543 <input type="checkbox" name="layer[]"

544 value="streets" <?php echo $streets; ?> >
545 Streets

546 </td></tr>

547 </table>
548 </form>

549 <!-- Display table of nearby stores in query mode -->
550 <?php echo $result_table; ?>

551 </body>
552 </html>

CHAPTER 10

Utility Programs

The source distributions of MapServer and several of the libraries contain many useful utility
programs. These allow you to create maps directly from a mapfile, investigate the contents of
a DBF file, and even create shapefiles. This chapter will be devoted to describing how to use
these programs and why you might want to use them.

The use of each program will be described, the various command-line parameters explained,
and a few short examples provided. The chapter will begin with the utilities bundled with
MapsServer, and then proceed through the shapelib, GDAL, and finally OGR utilities.

MapServer

The MapServer utilities consist mostly of programs for producing images directly from mapfiles.
While it’s certainly possible to let MapServer create images that are displayed in a browser, it’s
sometimes more convenient to do it from the command line. All of the following programs are
found in the main MapServer directory, and are built along with the MapServer CGI binary
mapserv.

A description of each utility is presented, followed by the usage syntax. Some programs
have complex options or employ new concepts. For these, a more extensive discussion is
provided that describes the options and explains the new concepts.

shp2img

The shp2img utility reads a mapfile and creates a map image based on its contents. The mandatory
mapfile name is specified by the -m switch (e.g., -m somemap.map, where the extension, usually
.map, is required). All other parameters are optional.

usage: shp2img -m mapfile -o outputimage -e minx miny maxx maxy -t -1 layers
-i format -all_debug n -map_debug n -layer debug layer name n -p n -v

If the outputimage name isn’t specified, then the image will be sent to STDOUT should the
user wish to pipe the image to another program for further processing. -e minx miny maxx maxy
sets the extent of the map image to be created—the default is the mapfile value. -t enables
transparency. Layers to be rendered can be specified by following -1 with a space-delimited list
of layer names. -i format sets the IMAGETYPE to format, overriding the value specified in the
mapfile. Use -p nto pause n seconds after the mapfile is read. -v displays the MapServer version
number and the libraries available. Debug levels for the map and all layers are specified by

291

292

CHAPTER 10 UTILITY PROGRAMS

-all debug n, while -map_debug nand -layer debug layer name n set the debuglevels for the
map and specified layer, respectively.

Tip If you have a problem and want to get the attention of MapServer developers, make things easy for
them. The best MapServer debugging tool is shp2img because it removes web server complications. Using
the simplest mapfile that produces the error, demonstrate that shp21img fails to create the expected map
image before submitting an error report.

legend

The legend utility reads a mapfile and creates a legend image based on its contents. The output
format (either GIF or PNG) depends on the version of the GD library against which MapServer
was built. The mapfile extension is required.

usage: legend mapfile outputimage

scalebar

The scalebar utility reads a mapfile and creates a scale bar image based on its contents. The
output format (either GIF or PNG) depends on the version of the GD library against which
MapServer was built. The mapfile extension is required.

usage: scalebar mapfile outputimage

sortshp

The mapfile keyword MAXFEATURES can be used to determine the number of features drawn
when a layer is rendered. However, this doesn’t take into account the importance a particular
feature might have. But, by sorting a shapefile based on one of its attributes, you can endow the
sequence number of a feature with a significance that allows the value assigned to MAXFEATURES
to choose the most important features to render. In this way, the sortshp utility can be used to
sort a shapefile based on the value of an attribute.

Consider, for example, aregion with thousands of lakes that range in area from a few acres
to a thousand square miles or more. If the shapefile that represents these features is sorted
according to lake area, and MAXFEATURES N is specified, then only the Nlargest lakes in the current
extent will be rendered. This can have a significant impact on response time.

usage: sortshp [-v] inputshapefile sortedshapefile item ascending|descending

CHAPTER 10 UTILITY PROGRAMS

The optional parameter -v displays the MapServer version and the various libraries supported.
inputshapefile identifies the shapefile to be sorted, and sortedshapefile is the name of the
sorted shapefile (the shapefile extension, .shp, isn’t specified). item is the attribute on which
the sort is performed. The parameters ascending and descending specify the order of the sort.

sym2img
The sym2img utility reads a symbol file and creates the image of a symbol based on its contents.

The output format (either GIF or PNG) depends on the version of the GD library against which
MapServer was built. The mapfile extension is required.

usage: sym2img mapfile outputimage

shptree

In order to render a layer based on the contents of a shapefile, MapServer reads the file sequen-
tially. MapServer must examine every feature to determine if it intersects the displayed extent.
Ifitdoes, it’s selected for rendering; if not, it’s ignored. If the displayed extent is a small fraction
of the shapefile’s maximum extent, most features will be ignored—however, the entire file
must still be scanned. When shapefiles are large, this can increase response time significantly.
However, it’s possible to create an efficient indexing scheme that allows MapServer to reduce
the number of features that must be examined, therefore reducing response time. This indexing
scheme is called a quadtree index.

Ifa quadtree-based spatial index is present, MapServer will take advantage of it. The utility
program shptree is used to create a quadtree index for a shapefile. The base name of the index
file is the same as the base name of the shapefile, but the index file extension is . qix.

usage: shptree shapefilename [depth] [indexformat]

The shapefile name is specified without the . shp extension. The optional parameter depth
determines the maximum depth of the index. If omitted or set to 0, shptree will determine the
depth. Some architecture issues arise from the different ways that different processor technol-
ogies store numerical quantities. The optional parameter indexformat resolves these issues by
specifying the byte ordering to use: NL indicates that the least significant byte will be stored
first, and NM indicates most significant byte first.

A quadtree is the hierarchical structure that arises from the recursive partitioning of a two-
dimensional extent into increasingly smaller areas. At each level, the area from the previous
level is divided into four new areas, then each of these is partitioned into four more areas, and
so on. The process is terminated when each area is so small that it contains only a few features.
Each element of the final partition, called a quad, is a rectangular extent that’s uniquely defined
by the sequence of supersets that contains it. This is shown schematically in Figure 10-1. In this
case, the map contains three features: a small circle, a rectangle, and a large circle. The sequence
of partitions is shown only for the small circle.

293

294 CHAPTER 10 UTILITY PROGRAMS

(]

1 1

4 | 4 :

1 1

1 1

1 : 1 :

! 1 ! 1

! 1 ! 1

! 1 ! 1

! | ! |

! 1 ! 1

! 1 ! 1

! | ! |
: g I ! Level 2

4 R4

A /g : ;

: 3 / 2 :/7 '

L ! 1 1 \

T 1 1

1 1 1 :

O b

[1 1 !

I 1 1 !

1 1 1 !

1 1 1 !

1 1 1 :

é 2/

Figure 10-1. A conceptual view of the hierarchical extents that comprise a quadtree

shptreevis

If a quadtree index has been created for a shapefile, shptreevis will produce a another shape-
file containing the quads generated by the index. This can be useful for understanding what the
index is doing.

usage: shptreevis inputfile outputfile

inputfile is the name of the shapefile for which the quadtree index was created, and
outputfile is the name of the new shapefile that will contain the quads. File extensions are
required.

CHAPTER 10 UTILITY PROGRAMS

Note When feature density is high, quadtree depth and response time increase. A data set may not,
however, be dense throughout—for example, some regions may contain many lakes while others contain
only a few. You can display the quads used by the index to indicate how density varies across the extent. You
can then use this knowledge to partition the data set into a collection of smaller extents called files, which,
when used in conjunction with a quadtree index, can result in shorter response times. Tiling is discussed in
the following section.

A quadtree index was created for the file roads_type.shp that was used in Chapter 9, and
shptreevis used to create a shapefile containing the quads from that index with the following
commands:

shptree roads_type.shp
shptreevis roads type.shp quads.shp

The result is shown in Figure 10-2. The roads_type layer has been superimposed to demonstrate

that the quads are large where features are sparse, and small where features are dense. As you
can see, the northeast corner of the extent contains many road features, and the quad sizes are
relatively small compared to the southeast corner (in which roads are few and quads are large).

= —
I =
=

S =

S

1l l_ _I_] o

Nl L S
Ziamii :ﬁ ;"__j___I_E!Zl =
jt#_‘%q%:j:_ . 'Pl—l_;_;;'li____
o pREE = = =M= ===
i e i e,

Figure 10-2. Roads (solid lines) superimposed on quads (dashed lines) generated by shptreevis,
based on the quadtree index generated by shptree

295

296

CHAPTER 10 UTILITY PROGRAMS

tile4ms

It’s frequently the case that the extent of a geographical area isn’t covered by a single shapefile.
This might arise because the spatial data has been acquired from several sources and no single
shapefile provides complete coverage, or because you've used smaller shapefiles for faster
rendering. The process of using multiple shapefiles to cover a geographical extent is called
tiling, since the shapefiles cover the extent like tiles covering a floor—each shapefile is consid-
ered a tile. Tiles need not overlap and gaps can exist, but in any case, MapServer needs to be
told how to access the multiple shapefiles.

This is done using the layer-level keywords TILEINDEX and TILEITEM in the mapfile. A tile
index is simply a shapefile that contains a polygon feature for several shapefiles. Each polygon
is arectangle that has the same extent as the shapefile to which it refers. Associated with each
of these rectangular features is an attribute containing the location of the shapefile.

In the mapfile, the keyword TILEINDEX specifies the name and location of the tile index
shapefile, and the keyword TILEITEM specifies the name of the attribute containing the location
of the tile. The utility program tile4ms is used to create the tile index shapefile.

usage: tiledms shapefilelist tilefile [-tile-path-only]

The syntax is straightforward. A text file, shapefilenames.txt, is created, containing the
following lines:

/home/mapdata/country1
/home/mapdata/country2
/home/mapdata/country3

Each line represents the path to a single shapefile. (Note that no file extensions are specified.)
Executing the following command-line instruction will then create the tile index shapefile /
home/mapdata/countries.

tilems ./shapefilenames.txt /home/mapdata/countries

The shapefile countries contains a rectangular extent for each of the three shapefiles identified
in the file shapefilenames.txt. Its attribute table contains an attribute named LOCATION, the
value of which is the location of the shapefile. You can now access these shapefiles in the
mapfile by specifying the following values (the keyword DATA isn’t used):

LAYER
NAME 'somelayer’
TILEINDEX countries
TILEITEM location
END

Now, when MapServer renders this layer, it will only read the shapefiles that have extents
(known from the tile index) that overlap the currently displayed extent of the map.

There’s an optional command-line flag, -tile-path-only (note that only a single hyphen
precedes the flag), which causes only the paths to the shapefiles to be stored in the location
field, rather than the full file name. In this case, the value associated with the keyword DATA is
appended to the path given by the LOCATION attribute of the tile index.

CHAPTER 10 UTILITY PROGRAMS

shapelib

The Shapefile C library provides a set of routines that can be used to write C programs that can
read, write, and update shapefiles. Although using this library is beyond the scope of this book,
I'd still like to mention that there are several very useful utility programs that accompany the
distribution. These include programs to create and append records to shapefiles and the associated
DBFfiles, programs to dump the contents of a shapefile to text, and programs to fix certain errors
in shapefiles. In addition to this, there are several contributed applications that will be discussed
later. Additional documentation is available online at http://shapelib.maptools.org/
shapelib-tools.html.

There are other utilities available that can perform these tasks with additional function-
ality (notably ogr2ogr, which is described later). However, if you're not an experienced user,
you may want to stick with the simple command-line parameters used by the shapelib utilities,
and avoid the more powerful (and complex) utilities for now.

dbfcreate
The dbfcreate utility creates an empty DBF file.
usage: dbfcreate filename -s fieldname width, -n fieldname width decimals, ...

filename is the base name of the DBEF file (the extension isn’t specified). Following the file
name is a list of comma-separated field definitions. String field definitions (introduced by -s)
require a field name and width. Numeric field definitions (introduced by -n) require a field name,
width, and number of decimal positions. The following command creates a DBF file named
example.dbf, which contains two attribute values: a 10-character string NAME and a 10-digit
AREA, which is a numeric field with 2 decimal places:

dbfcreate example -s NAME 10 -n AREA 10 2

dbfadd
The dbfadd utility adds a single record to a DBF file.

usage: dbfadd filename fieldvaluel, fieldvalue2,...

filename is the base name of the DBEF file (the extension isn’t specified). Following the file
name is a comma-separated list of field values. If string values contain embedded blanks, they
must be quoted (single or double quotes are both acceptable). The following command adds
the string-valued attribute "A Square" and the numeric value 1.0 to the DBF file example.dbf,
created previously:

dbfadd example "A Square" 1.0

dbfdump

The dbfdump utility dumps the contents of a DBF file to STDOUT.

usage: dbfdump [-h] [-r] [-m] filename

297

298

CHAPTER 10 UTILITY PROGRAMS

filename is the base name of the DBF file (the extension isn’t specified). The optional
command-line switches have the following effect: -h causes the field descriptions and field
contents to be dumped, -1 presents raw values (specifically, numeric fields are left unformatted),
and -m dumps each field to a separate line. The effects are additive. Typing the following command
(where example is the DBF file created earlier):

dbfdump -h -r -m example

produces the following output:

Field 0: Type=String, Title='NAME', Width=10, Decimals=0
Field 1: Type=Double, Title='AREA', Width=10, Decimals=2
Record: 0

NAME: A Square

AREA: 1.00

shpcreate

The shpcreate utility creates an empty shapefile.
usage: shpcreate filename featuretype

filename is the base name of the shapefile (the extension isn’t specified). featuretype, which
follows the file name, must be one of the following values: point, arc, polygon, or multipoint.
arc is equivalent to the MapServer line layer type. The following command creates a polygon
type shapefile named example. shp:

shpcreate example polygon

shpadd
The shpadd utility adds a single feature to a shapefile.
usage: shpadd filename x; y; X, y, ...

filename is the base name of the shapefile (the extension isn’t specified). Following the file
name is a list of space-delimited coordinate pairs. The number of coordinate pairs depends on
the shapefile type. A point type shapefile requires a single pair. An arc requires at least two
pairs. A polygon requires at least four pairs, with the last pair equal to the first. Amultipoint
shapefile requires a coordinate pair for each vertex. The following command adds a single
polygon feature (a square) to the shapefile example.shp created earlier:

shpadd example 00 01 11 10 00

shpdump
The shpdump utility dumps the contents of a shapefile to STDOUT.

usage: shpdump [-validate] filename

CHAPTER 10 UTILITY PROGRAMS

filename is the base name of the shapefile (the extension isn’t specified). The optional command-
line switch -validate counts the number of features with invalid ring orderings. Consider the
following command (where example is the shapefile created earlier):

shpdump -validate example

Executing this command produces the following output:

Shapefile Type: Polygon # of Shapes: 1

File Bounds: (0.000, 0.000,0,0)
to (1.000, 1.000,0,0)
Shape:0 (Polygon) nVertices=5, nParts=1
Bounds: (0.000, 0.000, 0, 0)
to (1.000, 1.000, 0, 0)
(0.000, 0.000, 0, 0) Ring
(0.000, 1.000, 0, 0)
(1.000, 1.000, 0, 0)
(1.000, 0.000, 0, 0)
(0.000, 0.000, 0, 0)

0 object has invalid ring orderings.

shprewind

A polygon consists of one or more rings, where a ring is defined as a closed, non-self-intersecting
loop. According to the shapefile specification published by ESRI, when a ring is traversed in
vertex order, the interior of the ring lies to the right. Occasionally, when points are added to or
removed from a polygon, the vertex sequence can get reversed, which confuses software and
leads to unexpected results. shprewind corrects the winding order.

usage: infilename outfilename

infilename is the base name of the defective shapefile, and outfilename is the base name
of the corrected shapefile (extensions aren’t specified).

dbfcat

The utility dbfcat appends the records in one DBF file to a second DBF file. The files must have
the same number of fields. This is used in conjunction with shpcat (described later) to append
the attributes and features of one shapefile to another.

usage: dbfcat [-f] [-v] fromfile tofile

fromfile is the base name of the source DBF and tofile is the base name of the destination
DBF (extensions aren’t specified). The optional command-line switches have the following
effect: - forces data conversion when the destination field types aren’t the same as the source
field types, or when there are null values in the source DBF. -v causes information about the
field mappings to be displayed.

299

300

CHAPTER 10 UTILITY PROGRAMS

dbfinfo

The dbfinfo utility displays information about a DBF file.
usage: dbfinfo filename

filename is the base name of the DBF file (no extension is specified). Consider the following
command (where example is the DBF file created earlier):

dbfinfo example

Executing this command produces the following output:

Info for example

2 Columns, 1 Records in file
NAME string (10,0)
AREA float (10,2)

shpcat

The shpcat utility appends the features in one shapefile to a second shapefile. The files must
have the same shapefile type. This is used in conjunction with dbfcat (described earlier) to
append the features and attributes of one shapefile to another.

usage: shpcat fromfile tofile

fromfile is the base name of the source shapefile and tofile is the base name of the desti-
nation shapefile (extensions aren’t specified).

shpinfo
The shpinfo utility displays information about a shapefile.
usage: shpinfo filename

filename is the base name of the shapefile (no extension is specified). Typing the following
command:

shpinfo example

produces the following output:

Info for example
Polygon(5), 1 Records in file
File Bounds: (o, 0)

(1, 1)

CHAPTER 10 UTILITY PROGRAMS

shpcentrd

The shpcentrd utility computes the centroid of each polygon in a shapefile, and creates a point
type shapefile containing each centroid as a feature.

usage: shpcentrd infilename outfilename

infilename is the base name of the polygon shapefile, and outfilename is the base name of
the point shapefile containing the centroids (extensions aren’t specified).

shpdxf
The shpdxf utility creates a DXF (Autocad Drawing Exchange Format) graphics file from a shapefile.
usage: shpdxf filename

filename is the full name of the shapefile—the extension is required. The base name of the
shapefile with the extension .dxf appended becomes the name of the output file.

shpproj
The shpproj utility re-projects a shapefile using the Proj.4 library.

usage: shpproj infilename outfilename (-i=inprojfile|-i="inparams"|-i=geographic)
(-o=outinfofile|-o="outparams" |o=geographic)

infilename is the base name of the input shapefile, and outfilename is the base name of
the re-projected shapefile. The projection parameters of the input shapefile can be read from
inprojfile or specified on the command line and enclosed in quotes. If the input shapefile is
unprojected (i.e., its coordinates are degrees of latitude and longitude), then the input projection is
specified as geographic. The Appendix contains a section devoted to projections, which provides
several shpproj examples.

GDAL/OGR

GDAL provides an abstract interface to various raster formats containing geospatial data. Such
an interface allows a user to access a data set with a standard set of tools without having to be
concerned with format-specific details. What’s important here, however, is the library provided
in the GDAL distribution that provides similar capabilities for accessing vector data sets. This
library is called OGR (which at one time stood for OpenGIS Simple Features Reference Imple-
mentation). This book hasn’t made specific use of either GDAL or OGR, but OGR provides
several utility programs that are useful even when the full functionality of the libraries isn’t
required. These programs were built as part of the GDAL build and can be found under the
GDAL source directory gdal-1.2.3/0gr/ . Anin-depth description of OGR is beyond the scope
of this book, so the descriptions given below will be less detailed than those in previous sections.
The descriptions of the OGR utilities will be restricted, more or less, to their use with shapefiles.
Additional documentation for the OGR utility programs described below is available online at
www.gdal.org/ogr/ogr_utilities.html.

301

302

CHAPTER 10 UTILITY PROGRAMS

ogrinfo

The ogrinfo utility displays information about a data set in one of the OGR-supported formats.
Although you’ve been concerned exclusively with shapefiles in this book, spatial data sets can
come in many formats. Among the formats understood by OGR are the following: Arc/Info
binary coverages; CSV (comma-separated variable) files; TIGER/Line files, and several spatially
aware database engines including MySQL, Oracle Spatial, and PostgreSQL.

usage: ogrinfo [-ro] [-q] [-where restriction] [-spat Xuin Ymin Xnax Ymax)
[-fid fid] [-sql statement] [-al] [-so] [--formats]
datasource [layer [layer ...]]

There are several optional command-line switches: -ro opens the data set in read-only
mode, -al lists everything (including the details of every feature), -so lists summary information
(omitting feature details), and -q causes the program to operate in quiet mode, which suppresses
some informational messages.

The switch -where introduces a simple attribute query, using the same syntax as a SQL
WHERE clause. The restriction must be quoted, and any strings must be quoted as well. For
example, to restrict the listing to records with a NAME attribute of “Bairdmore Blvd,” you’'d use
the syntax -where 'NAME="Bairdmore Blvd"'.To report only records with a numeric attribute
DIR greater than 0, you'd use -where 'DIR>0".

The switch -sql, followed by a quoted SQL statement, causes ogrinfo to execute the
statement and return the result. For example, -sql "SELECT name,area FROM water WHERE
area>10" water.shp would return the name and area of all features in the shapefile water.shp
with areas greater than 10.

You can also limit a report to those features found in a rectangular region by using the
switch -spat and specifying the coordinates of the lower-left and upper-right corners of the
bounding box. For example, -spat -97.000 49.000 -96.000 50.000 would return only those
features in the data set that lie within the rectangular region for which the lower-left and upper-
right corners are (-97.000, 49.000) and (-96.000, 50.000), respectively.

A particular feature can be selected by using the -fid switch and the feature’s record number.
-fid 49 would, for example, return the 49" feature in the data set.

You can use the --format switch (which takes no arguments) to produce a list of the formats
that OGR can understand. Note that, unlike the others, the format switch requires two hyphens.

datasource is the name of the file (in the case of shapefiles) or directory (when accessing
TIGER/Line data sets) containing the data set.

Alist of layer names can be specified to restrict reporting to those layers—if this isn’t done,
all layers will be returned.

There are a number of useful tasks that ogrinfo can accomplish. Determining the attribute
names available in a data set is one such task. If the data set consists of a shapefile, then the
shapelib utility dbfinfo can be used. But if this isn’t the case, then ogrinfo must be used. Specifying
both -al and -so on the command line, as follows, will produce the output found in Listing 10-1:

ogrinfo -al -so roads_type.shp

CHAPTER 10 UTILITY PROGRAMS

Listing 10-1. Using ogrinfo to find attribute names

INFO: Open of 'roads type.shp'
using driver 'ESRI Shapefile' successful.

Layer name: roads_type
Geometry: Line String
Feature Count: 15842
Extent: (-98.010101, 49.354854) - (-96.185323, 50.636213)
Layer SRS WKT:

(unknown)

ID: Integer (10.0)
LENGTH: Real (10.6)

DIR: Integer (19.0)

NAME: String (57.0)
SOURCE: String (5.0)
ORIGINALID: String (20.0)
DATE_ADD: String (10.0)
DATE_EDIT: String (10.0)
STATUS: Integer (6.0)

Frequently, the attribute that you wish to use to classify features will have many values.
The following command pipes the output of ogrinfo to grep, which selects lines containing the
string STATUS. These lines are then piped to sort, which (because of the -u switch) keeps only
unique values and produces the report shown in Listing 10-2.

ogrinfo -al roads type.shp | grep STATUS | sort u

Listing 10-2. Using ogrinfo to show unique values

STATUS (Integer) =0
STATUS (Integer) =1
STATUS: Integer (6.0)

Note that the last line in Listing 10-2 results from the definition of the attribute STATUS
(shown in Listing 10-1), rather than the feature details that show the value of the STATUS attribute
for each feature.

Another useful task ogrinfo can perform is finding all features in a data set that share an
attribute value. You might want, for example, to access all the segments of a line feature, such
as aroad. Invoking ogrinfo with the following parameters will display all the features in the
roads_type.shp shapefile that have a NAME attribute that equals Bairdmore Blvd:

ogrinfo -al -where 'NAME="Bairdmore Blvd"' roads type.shp

Listing 10-3 shows the first few lines of that report.

303

304

CHAPTER 10 UTILITY PROGRAMS

Listing 10-3. Using ogrinfo to explore the contents of a spatial data set

INFO: Open of 'roads_type.shp'
using driver 'ESRI Shapefile' successful.

Layer name: roads_type
Geometry: Line String
Feature Count: 25
Extent: (-98.010101, 49.354854) - (-96.185323, 50.636213)
Layer SRS WKT:
(unknown)
ID: Integer (10.0)
LENGTH: Real (10.6)
DIR: Integer (19.0)
NAME: String (57.0)
SOURCE: String (5.0)
ORIGINALID: String (20.0)
DATE_ADD: String (10.0)
DATE_EDIT: String (10.0)
STATUS: Integer (6.0)
OGRFeature(roads_type):216
ID (Integer) = 213
LENGTH (Real) = 0.000000
DIR (Integer) =0
NAME (String) = Bairdmore Blvd
SOURCE (String) = LBIS
ORIGINALID (String) = 1498
DATE_ADD (String) = 20000201
DATE_EDIT (String) = 20000201
STATUS (Integer) =0

LINESTRING (-97.16952500 49.78065500,-97.16883400 49.77871000)

ogr2ogr

ogr2ogr is used to convert spatial data sets from one format to another. A summary of available
formats is shown in Table 10-1. ogr2ogr can also be used to change the projection of a data set,
to select features based on spatial or attribute criteria, or to reduce the number of feature
attributes. Note that ogr2ogr can’t write (or create) all the formats that it can read. This utility
isn’t used in this book, but it’s included here since, sooner or later, you'll need to convert or

manipulate a data set.

CHAPTER 10 UTILITY PROGRAMS

Usage: ogr2ogr [-skipfailures] [-append] [-update] [-f format]
-select field list] [-where restriction] [-sql statement]
-spat xmin ymin xmax ymax] [-preserve fid] [-fid FID]
-a_srs assigned def] [-t_srs target def]
-s_srs source def]
[-dsco NAME=VALUE] ...]
output_dataset name
input_dataset_name

[-1co NAME=VALUE] [-nln name] [-nlt type] layer [layer ...]]

— e, ——

The command-line switch -skipfailures causes ogr2ogr to continue processing if errors
occur. The switch -update opens a data source in update mode, and the switch -append causes
ogr2ogr to append records to an existing layer rather than create a new one.

- format specifies the output format name. The format string must be enclosed in quotes—
for example, -f "ESRI Shapefile".

The attribute fields to be copied to the output data set can be specified with the parameter
-select_field, followed by a comma-delimited list of field names. If omitted, the default
behavior copies all fields.

The syntax and use of parameters -where, -sql, and -spat are the same as their ogrinfo
counterparts.

IfafeatureID (i.e., record number) is specified with - f FID, then only that feature is selected.
To my knowledge, the switch -preserve_fid has no effect on shapefiles.

The parameter -dsco defines a data set creation option. This option is specified as NAME=VALUE.
The VALUE is format dependent, and the shapefile format you've used in this book has no such
options. Similarly, the parameter -1co NAME=VALUE specifies the value of layer creation options.
Shapefiles don’t have these either.

An alternate name and a geometry type can be assigned to a new layer by using -nln name
and -nlt type, where name is the name assigned to the layer and type is one of the following:
NONE, GEOMETRY, POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTIPOINT, MULTILINE,
MULTIPOLYGON, or MULTILINESTRING.

The projection of the output data set can be assigned or changed. The projection needs to
be assigned, for example, when converting from a format that doesn’t contain explicit projec-
tion information (such as the shapefile format). The value of the command-line parameter
-a_srs specifies the assigned projection. The value assigned_def represents a WKT (well-known
text) definition, the name of a file containing such a definition, or an EPSG code. The param-
eter -t_srs specifies the projection to which the output data set will be converted. The value
target def also represents a WKT, a file name, or an EPSG code. The value of parameter s_srs
specifies the projection of the input data set or a projection that overrides the actual projection.
The value source_def is used in the same manner as assigned def and target def.

305

306

CHAPTER 10 UTILITY PROGRAMS

Table 10-1. OGR Formats

Format Name Can Be Created by ogr2ogr
Arc/Info binary coverage No
CSvV Yes
DODS/OPeNDAP No
ESRI Shapefile Yes
FMEODbjects Gateway No
GML Yes
IHO S-57 (ENC) No
MaplInfo Yes
Microstation DGN No
MySQL No
ODBC No
OGDI Vectors No
Oracle Spatial Yes
PostgreSQL Yes
SDTS No
SQLite Yes
UK .NTF No
US Census TIGER/Line No
VRT (virtual data source) No

Although the OGR library has many capabilities that allow MapServer to access a large
number of additional vector formats, it has utility even when you restrict yourself to shapefile
format, which is one of MapServer’s native formats. In the following example, features in a
shapefile are extracted to another shapefile based on an attribute value—and in the process,
the number of attributes is also reduced. (You might do this, for example, to reduce the size of
the shapefile in order to improve response time.)

ogr2ogr -sql "SELECT id,name,status FROM roads WHERE status=1" /
-t "ESRI Shapefile" newroads.shp roads.shp

The SQL SELECT statement will cause ogr2ogr to copy only those features for which
status=1; and for each of the copied features, only the attributes id, name, and status will be
created in the new shapefile.

CHAPTER 10 UTILITY PROGRAMS

ogrtindex

MapServer possesses several native spatial data formats. The ESRI Shapefile format is used
exclusively in this book. A description of tile indexes and how to create them was covered
earlier in this chapter, but the functionality described was exclusive to shapefiles. The program
ogrtindex provides the same capabilities for data sets accessed through OGR. (Using OGR to
access vector formats not otherwise supported by MapServer is beyond the scope of this book.)

usage: ogrtindex [-lnum n]... [-lname name]...
[-f output_format] output dataset src_dataset...

A shapefile consists of a single layer of a single type, but other vector formats allow a data
source to include several layers, which may be of different geometrical types. ogrtindex selects
the layers for which a tile index is to be created—based on either the layer number (starting
from zero) or the layer name. -1num n specifies the layer number and -1name name specifies the
layer name. The default selection is all layers.

Since atile index is just a spatial data set that points to other data sets, ogrtindex allows the
user to determine the format using -f format, where format is one of OGR’s supported output
types (see Table 10-1). output_dataset is the name of the tile index to be created, and src_dataset
isthe name of the data set over which the tile index will be created. If the tile index doesn’t exist,
it’s created; if it does, it’s appended to.

Summary

This chapter has described several utility programs that are distributed with MapServer, shapelib,
and GDAL/OGR. You should now be able to explore the contents of your spatial data sets,
create and populate shapefiles, and modify shapefile contents. The next chapter is a reference
to MapServer. All the mapfile keywords and their possible values, substitution strings, and CGI
form variables will be described briefly, but comprehensively.

307

CHAPTER 11

MapServer Reference

This chapter provides a comprehensive reference for mapfile keywords, CGI form variables,
and substitution strings, current as of MapServer version 4.4.1. The elements of these three
categories control the functionality, information content, and visual presentation provided by
MapServer when operating in CGI mode. Before beginning this summary, I'd like to reiterate
the purposes of these three important MapServer components.

* The mapfile specifies the graphical elements of the map and the spatial data sets from
which they’re constructed, and identifies the HTML templates that are used to display
these graphical elements.

* CGI form variables embedded in the templates contain control and user information
that enable MapServer’s interactive capabilities.

* Substitution strings (also embedded in the templates) provide the connections that
allow MapServer to populate the templates with graphical map elements and ancillary
text information.

Many of these items haven’t been used in the examples and applications presented so far,
but it’s hoped that the descriptions offered here will allow you to incorporate the functionality
that they provide into your own applications without too much trouble.

Some of the functionality described in the following sections allows MapServer to interact
with the broader world of GIS (for example, the use of the EPSG parameter files used by Proj.4).
In these cases, the syntax is described, but detailed usage instructions aren’t provided. A
comprehensive treatment of all GIS techniques, facilities, and standards that might be accessible
to a MapServer application would interfere with the primary goal, which is to provide an intro-
duction to MapServer. If you recognize the acronyms and features, which are employed without
explanation, and you know what to do with them, the text will indicate the syntax used to invoke
the associated MapServer functionality. If they are, however, unknown to you, it would be
more appropriate to seek out other resources to learn how (and why) to use them.

The canonical documents describing mapfile keywords, CGI variables, and template
substitution strings are maintained by Jean-Francois Doyon, Jeff McKenna, Steve Lime, and
Frank Koormann. They're available at http://ms.gis.umn.edu/docs/reference. The MapServer
website is in transition, so it’s a good idea to look at what’s available at the older version, which
can be found at http://mapserver.gis.umn.edu/doc.html.

309

310

CHAPTER 11 MAPSERVER REFERENCE

Mapfile Keywords

The mapfileis the basic configuration tool used by MapServer operating in CGI mode. It possesses
ahierarchical structure that conforms broadly to a hierarchical conception of a map. Specifically,
amap (the mapfile) contains layers that are laid down in sequence, with each layer containing a
particular set of features. Each layer is further broken down into classes, each of which repre-
sents a subset of the layer features that are rendered and labeled in the same style. Each style
contains a set of components that specify the symbol used to render a feature, its color and
size, and other characteristics.

Itisn’t possible to list the keywords in this glossary solely according to this hierarchical
structure—embedding each object within its parent would complicate the presentation. On
the other hand, listing every keyword in alphabetical sequence would lead to confusion, since
keywords with different parents can share the same name but possess slightly different syntax.
The organization I've chosen therefore represents a compromise. Each simple keyword (with
no substructure) is presented at the level of the mapfile at which it’s used, and its syntax is
described at that point. However, each structured keyword, containing other keywords, is noted—
but a detailed description of the contents of each is presented later in its own subsection. These
sections and subsections are presented in alphabetical sequence.

Map Object

The map object isn’t explicitly defined within the mapfile—it is the mapfile. It’s the parent of
all other mapfile objects and defines application characteristics that have global scope.

CONFIG
CONFIG [key][value]

Default: n/a

Specifies the values of environment variables for use by MapServer. For example, to set config-
uration parameters for some GDAL and OGR drivers, use CONFIG PROJ_LIB /somepath/, where
PROJ_LIBis the key, and the value /somepath/ is the path to the library.

DATAPATTERN
DATAPATTERN [regular expression]

Default: n/a

Specifies a regular expression that’s used to validate URL requests to change the value associ-
ated with the layer-level keyword DATA. If an attempt is made to change the value of DATA by
inserting map_layername_data=some_path_and_filename into a URL, the regular expression
must match the string some_path_and_filename.

CHAPTER 11 MAPSERVER REFERENCE 311

DEBUG
DEBUG [on | off]

Default: off
Turns debugging on or off. If turned on, output is sent to STDERR (which is directed to the error
log when using Apache or IIS) or the log file specified in the WEB object.

EXTENT

EXTENT [minx][miny][maxx][maxy]

Default: n/a

Specifies the extent of the map. A map extent is defined by the coordinates of the map’s lower-
left corner (minx, miny) and upper-right corner (maxx, maxy). Correctly calculating map scale
requires that the floating-point coordinate values represent the units specified by the keyword
UNITS. Errors in defining extents can result in blank maps, distorted maps, or errors. An extent
must be defined, and it must be in the same coordinate system as the map’s PROJECTION object
(if one exists).

FONTSET

FONTSET [filename]

Default: n/a
Specifies the path (absolute or relative to the location of the mapfile) to the file defining the
mapping from font aliases to TrueType font files.

IMAGECOLOR

IMAGECOLOR [int r][int g][int b]

Default:n/a

Specifies the background color of the map image. This color becomes transparent if TRANSPARENT
on is specified. The values are 1-byte integers in the range of 0 to 255, representing relative
amounts of red, green, and blue.

IMAGEQUALITY
IMAGEQUALITY [int N]

Default: 75
Specifies image quality for JPEG images. This usage is deprecated—use FORMATOPTION "QUALITY=n"
in an OUTPUTFORMAT declaration instead.

312 CHAPTER 11 MAPSERVER REFERENCE

IMAGETYPE
IMAGETYPE [gif | png | jpeg | wbmp | gtiff | swf | userdefined]

Default: n/a

Specifies the format of the output image. The image type can be one of the implicit OUTPUTFORMAT
types recognized by MapServer (described later in this section), or it can be a user-defined type
identified by its name as defined by the keyword NAME in the appropriate OUTPUTFORMAT declaration.

INTERLACE
INTERLACE [on | off]

Default: on
Turns image interlace on or off. This usage is deprecated—use FORMATOPTION "INTERLACE=on"
in an OUTPUTFORMAT declaration instead.

LAYER

LAYER

Default: n/a

Indicates the start of a LAYER object.
LEGEND

LEGEND

Default: n/a
Indicates the start of a LEGEND object.

NAME
NAME [name]

Default: n/a
Specifies the name used to identify map output. An identification number (generated by
concatenating the system time and process ID) is appended to this name to provide a unique ID.

PROJECTION
PROJECTION

Default: n/a
Indicates the start of a PROJECTION object.

CHAPTER 11 MAPSERVER REFERENCE 313

QUERYMAP

QUERYMAP

Default:n/a

Indicates the start of a QUERYMAP object.
REFERENCE

REFERENCE

Default: n/a
Indicates the start of a REFERENCE object.

RESOLUTION

RESOLUTION [int N]

Default: 72

Specifies the resolution of the output display in pixels per inch. It’s used in scale calculations only.
SCALE

SCALE [double N]

Default: n/a

Sets the scale of the map. Specifying SCALE 1000000 sets the map scale to 1:1,000,000. This value
is usually generated by MapServer (which takes into account the extent, image size, units, and
resolution) rather than specified by the application.

SCALEBAR

SCALEBAR

Default: n/a

Indicates the start of a SCALEBAR object.

SHAPEPATH

SHAPEPATH [path]

Default: n/a
Specifies the path to shapefiles. The value assigned to SHAPEPATH is prefixed to the data set specified
by the layer-level keyword DATA.

314

CHAPTER 11 MAPSERVER REFERENCE

SIZE

SIZE [int x][int y]

Default: n/a

Specifies the width and height of the map image in pixels.
STATUS

STATUS [on | off]

Default: on

Specifies whether the map image is created.

SYMBOL

SYMBOL

Default: n/a
Indicates the start of a SYMBOL object. Symbols can be defined in the mapfile itself or moved to
a file identified by the keyword SYMBOLSET.

SYMBOLSET

SYMBOLSET [filename]

Default: n/a

Contains symbol definitions. These can be accessed by the symbol name or sequence number
of the symbol, starting at 1. A value of 0 indicates the default symbol. Default symbols are single
pixels for point features, 1-pixel-wide lines for line features, and solid fills for polygon features.

TEMPLATEPATTERN

TEMPLATEPATTERN [regular expression]

Default: n/a

Specifies a regular expression that’s used to validate URL requests to change the value associ-
ated with the layer-level keyword TEMPLATE. If an attempt is made to change the value of TEMPLATE
by insertingmap_layername template=some path and filename into a URL, the regular expression
must match the string some_path_and_filename.

TRANSPARENT
TRANSPARENT [on | off]

Default: off
Makes the background color of the map transparent. This usage is deprecated—set transparency in
an OUTPUTFORMAT declaration instead.

CHAPTER 11 MAPSERVER REFERENCE

UNITS
UNITS [feet | inches | kilometers | meters | miles | dd]

Default:n/a
Specifies map distance units. This keyword affects scale calculations and scale bars. dd indicates
decimal degrees.

WEB
WEB

Default: n/a
Indicates the start of a WEB object.

CLASS Object

The CLASS object determines the appearance and labeling properties of features. Every layer
must specify one or more classes. A CLASS object is introduced by the keyword CLASS and termi-
nated by the keyword END.

BACKGROUNDCOLOR

BACKGROUNDCOLOR [int r][int g][int b]

Default: n/a

Specifies the color to be used to render non-transparent symbols. The values are 1-byte integers
in the range of 0 to 255, representing relative amounts of red, green, and blue.

COLOR

COLOR [int r][int g][int b]

Default: 000
Specifies the color to be used to render features. The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

DEBUG
DEBUG

Default: n/a
Turns class debugging on. The debug output is sent to STDERR or the log file specified in the
WEB object.

EXPRESSION
EXPRESSION [string]

Default: n/a

315

316

CHAPTER 11 MAPSERVER REFERENCE

Specifies the expression to evaluate to determine whether a feature should be included in the
class. The value assigned to EXPRESSION represents one of the following types of expressions: a
string comparison, a regular expression, a logical expression, or a string function.

A string comparison matches the contents of the attribute identified by the keyword
CLASSITEMwith string. The comparison is case sensitive. If an exact match is found, the feature
is included in the class. If string contains embedded blanks or special characters (like tabs or
new lines), it must be quoted.

A regular expression matches the contents of the attribute identified by the keyword
CLASSITEM with the regular expression specified by string. The regular expression must be
delimited by slashes, (e.g., /regular expression/).

Alogical expression consists of a parenthesis-delimited combination of attribute names
delimited by square brackets; the Boolean operators AND and OR; the numeric comparison oper-
ators =, >, <, <=, >=, and ! =; the string comparison operators eq, 1t, gt, le, ge, eq, and ne; and
comparison values. For example, EXPRESSION ([area]>100) will select features with area greater
than 100, and EXPRESSION ([status]!=0) will select records with status not equalto 0. String-
valued attribute names and comparison values must be quoted. For example, EXPRESSION
("[type]' ne 'river') will select only those features with type not equal to river.

Currently, the only string function supported by MapServer is length(), which computes
the length of a string-valued attribute. EXPRESSION (length('[name]') < 2) selects features
with short names.

JOIN
JOIN

Default: n/a

Indicates the start of a JOIN object. Current documentation erroneously includes JOIN objects
in the CLASS object, and states that JOIN objects are “defined within a QUERY object.” But this is
not the case. JOIN objects must be defined at the layer level.

LABEL

LABEL

Default: n/a
Indicates the start of a LABEL object.

MAXSCALE
MAXSCALE [double N]

Default: n/a
Specifies the maximum scale at which the CLASS will be rendered.

CHAPTER 11 MAPSERVER REFERENCE

MAXSIZE

MAXSIZE [int N]

Default: 50

Specifies the maximum size (in pixels) at which a symbol will be drawn.
MINSCALE

MINSCALE [double N]

Default: n/a
Specifies the minimum scale at which the CLASS will be rendered.

MINSIZE

MINSIZE [int N]

Default: 0

Specifies the minimum size (in pixels) at which a symbol will be drawn.
NAME

NAME [string]

Default:n/a

Specifies the name for the class for use in the legend. If a name isn’t specified, the feature will
still be drawn, but it won'’t be displayed in the legend.

OUTLINECOLOR

OUTLINECOLOR [int r][int g][int b]

Default: n/a
Specifies the outline color (for polygons only). The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

OVERLAYBACKGROUNDCOLOR
OVERLAYBACKGROUNDCOLOR [int r][int g][int b]

Default: n/a
Specifies the color used to render overlay symbols. The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

317

318

CHAPTER 11 MAPSERVER REFERENCE

OVERLAYCOLOR

OVERLAYCOLOR [int r][int g][int b]

Default: n/a

Specifies the color to be used for drawing features with an overlay symbol. The values are 1-byte
integers in the range of 0 to 255, representing relative amounts of red, green, and blue.
OVERLAYMAXSIZE

OVERLAYMAXSIZE [int N]

Default: 50

Specifies the maximum size (in pixels) that an overlay symbol can be drawn.
OVERLAYMINSIZE

OVERLAYMINSIZE [int N]

Default: 0
Specifies the minimum size (in pixels) that an overlay symbol can be drawn.

OVERLAYOUTLINECOLOR
OVERLAYOUTLINECOLOR [int r][int g][int b]

Default: n/a
Specifies the outline color of an overlay symbol (for polygons only). The values are 1-byte integers
in the range of 0 to 255, representing relative amounts of red, green, and blue.

OVERLAYSIZE

OVERLAYSIZE [int N]

Default: vector and ellipse types: the range of y values; pixmaps: the vertical size of the image;
TrueType font symbols: 1
Specifies the height (in pixels) of an overlay symbol.

OVERLAYSYMBOL
OVERLAYSYMBOL [integer | string | filename]

Default: 0

Specifies the overlay symbol used for drawing features, identified by name or number. The
name is the value associated with the keyword NAME in the SYMBOL definition. The number is the
sequence number of the symbol, starting at 1. The path (absolute or relative to the mapfile) to
a file containing a GIF or PNG image can be specified.

CHAPTER 11 MAPSERVER REFERENCE

SIZE
SIZE [int N]

Default: vector and ellipse types: the range of y values; pixmaps: the vertical size of the image;
TrueType font symbols: 1
Specifies the height of a symbol (in pixels).

STYLE
STYLE

Default: n/a
Indicates the start of a STYLE object.

SYMBOL
SYMBOL [integer | string | filename]

Default: 0

Specifies the symbol to use for drawing features, identified by name or number. The name is
the value associated with the keyword NAME in the SYMBOL definition. The number is the sequence
number of the symbol, starting at 1. The path (absolute or relative to the mapfile) to a file
containing a GIF or PNG image can be specified.

TEMPLATE
TEMPLATE [file | url]

Default: n/a

Specifies the name of the HTML file containing substitution strings used to display individual
query results. Instead of a file name, a string representing a URL containing substitution
strings may be specified. In one of the single query modes (for example, QUERY, FEATUREQUERY,
etc.) MapServer will report a query result by replacing any substitution strings and then redi-
recting the browser to the modified URL.

TEXT
TEXT [string]

Default: n/a

Specifies the text to be used to label features in a class. TEXT can be used instead of the value of
the attribute specified by LABELITEM. Bracket-delimited attribute names enclosed in parentheses
can be used to concatenate attributes. For example, TEXT ([NAME]:[ROADTYPE]) would label
features with the feature’s NAME and ROADTYPE, separated by a colon. If both LABELITEM and TEXT
have been specified, TEXT takes precedence.

319

320

CHAPTER 11 MAPSERVER REFERENCE

FEATURE Object

The FEATURE object is used to define an inline feature by specifying the coordinates of its vertices.
It's introduced by the keyword FEATURE and terminated by the keyword END. For a layer containing
an inline feature, MapServer will ignore any other data source specified in the layer.

POINTS
POINTS X, y; X, ¥, .« . . X, Yy, END

Default: n/a
Specifies a series of coordinate pairs representing the vertices of a shape. In a polygon layer,
the first and last vertices must be the same.

TEXT

TEXT [string]

Default: n/a
Specifies the text string used to label a feature.

GRID Object

The GRID object is used to define a map grid within a layer. It begins with the keyword GRID and
is terminated by the keyword END. A layer containing a GRID object requires no DATA source and
must be of TYPE 1ine, butis otherwise unexceptional. A single class is defined to specify symbol,
label, and color. If an output projection has been defined, the same projection must be defined
in the GRID object. There are two ways to control the number of grid lines drawn. You can use
MAXARCS and MINARCS to specify a range of acceptable values, or you can use MAXINTERVAL and
MININTERVAL to specify the interval between grid lines.

LABELFORMAT
LABELFORMAT [DDMM | DDMMSS]

Default: decimal representation of SRS (Spatial Reference System)
Specifies the format of the grid labels as degrees and minutes (DDMM) or degrees, minutes, and
seconds (DDMMSS). The strings are case sensitive and uppercase is mandatory.

MAXARCS
MAXARCS [double]

Default: n/a
Specifies the maximum number of arcs to be drawn.

CHAPTER 11 MAPSERVER REFERENCE

MAXINTERVAL
MAXINTERVAL [double]

Default: n/a
Specifies the maximum interval between grid lines.

MAXSUBDIVIDE
MAXSUBDIVIDE [double]

Default: n/a
Specifies the maximum number of segments used to render a grid line.

MINARCS
MINARCS [double]

Default: n/a
Specifies the minimum number of arcs to be drawn.

MININTERVAL
MININTERVAL [double]

Default: n/a
Specifies the minimum interval between grid lines.

MINSUBDIVIDE
MINSUBDIVIDE [double]

Default: n/a
Specifies the minimum number of segments used to render a grid line.

JOIN Object

The JOIN object specifies how an external DBF table will be joined to a shapefile attribute table
for query purposes. It’s introduced by the keyword JOIN and terminated by the keyword END.

When a feature is included in a query result set, and a join has been defined for that layer,
the joined table is scanned for records for which the T0 attribute equals the FROM attribute of the
selected feature. There are two types of join: one-to-one and one-to-many. The results from
each type are handled differently.

If a one-to-one join has been defined, then items from the matching record can be reported
in the class- or layer-level query template. Item values are accessed by means of a substitution
string composed of the concatenated join name, an underscore character, and the item name
from the external table (e.g., [test-join_item] retrieves the value of item from the external
table defined in test-join).

321

322

CHAPTER 11 MAPSERVER REFERENCE

If a one-to-many join has been defined, then there’s possibly more than one matching
record. In this case, the result isn’t reported directly in the query template, but in a join template
defined in the JOIN object itself. The query template is still used to format items from the attribute
table—but now, only a reference to the join is included, instead of substitution strings representing
external table items. This reference is the concatenation of the string "join", the underscore
character, and the join name (e.g., for test-join, the reference in the query template would be
[join_test-join]).

The template defined in the JOIN object can only contain references to items in the external
table—not the attribute table. The format of the substitution strings used to access these items
is identical to the one-to-one format.

The join template is processed once for each matching record. The results are concatenated,
forming a space-delimited list. This list is returned and substituted for the join reference
(e.g., [join_test-join]) in the query template.

Although current documentation states that joins are defined within a QUERY object, this is
not the case—joins are defined within a LAYER object.

FROM
FROM [itemname]

Default: n/a
Specifies the name of the item in the shapefile that will be used for the join.

NAME

NAME [string]

Default: n/a

Specifies the join name. This name is used to reference the join from the template and must
be unique.

TABLE

TABLE [filename]

Default: n/a

Specifies the full path to the external dBase file that will be joined to the attribute table.
TEMPLATE

TEMPLATE [filename]

Default: n/a
Specifies the template used for reporting results from one-to-many joins. Any substitution
strings that reference table items must reference items in the joined table only.

CHAPTER 11 MAPSERVER REFERENCE

TO

TO [itemname]

Default:n/a

Specifies the name of the join item in the table to be joined.
TYPE

TYPE [multiple | single]

Default: single
Specifies whether the join type is one-to-one (single) or one-to-many (multiple).

LABEL Object

The LABEL object defines a text string or symbol used to label a feature. It begins with the
keyword LABEL and is terminated by the keyword END.

ANGLE

ANGLE [auto | double N]

Default: n/a

Specifies the angle (in decimal degrees) at which a label will be drawn. An angle of 0 will cause
the label to be drawn parallel to the bottom of the map. For line layers only, the value auto
causes the label to be aligned with the feature.

ANTIALIAS

ANTIALIAS [true | false]

Default: false

Causes the label text to be antialiased.

BACKGROUNDCOLOR

BACKGROUNDCOLOR [int r][int g][int b]

Default: no background
Specifies the color of a background rectangle used to highlight a label. The values are 1-byte
integers in the range of 0 to 255, representing relative amounts of red, green, and blue.

BACKGROUNDSHADOWCOLOR
BACKGROUNDSHADOWCOLOR [int r][int g][int b]

Default: no background shadow
Specifies the shadow color of a background rectangle. The values are 1-byte integers in the
range of 0 to 255, representing relative amounts of red, green, and blue.

323

324

CHAPTER 11 MAPSERVER REFERENCE

BACKGROUNDSHADOWSIZE

BACKGROUNDSHADOWSIZE [int x][int y]

Default: 11

Specifies the offset of the background shadow in pixels.
BUFFER

BUFFER [int N]

Default: 0

Specifies (in pixels) the amount of space that’s left around text labels. BUFFER is available for
cached labels only.

COLOR

COLOR [int r][int g][int b]

Default: 000
Specifies the color used to render the label text. The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

ENCODING
ENCODING [string]

Default: n/a
Specifies the encoding format for the label. If the format specified by the string isn’t supported,
then the label won’t be drawn.

FONT

FONT [name]

Default: none
Specifies the alias of the font used to label a feature. MapServer translates the alias to the corre-
sponding path found in the file specified by the keyword FONTSET.

FORCE

FORCE [true | false]

Default: false
Forces alabel to be rendered even if it collides with a label that has already been rendered.
FORCE is available for cached labels only.

CHAPTER 11 MAPSERVER REFERENCE

MAXSIZE

MAXSIZE [int N]

Default: 256

Specifies the maximum font size (in pixels) for scaled labels.
MINDISTANCE

MINDISTANCE [int N]

Default: n/a

Specifies the minimum distance (in pixels) between identical labels of features in the same
class.

MINFEATURESIZE

MINFEATURESIZE [int N | auto]

Default: n/a

Specifies the minimum size (in pixels) at which a feature will be labeled. For line features, this is the
length; for polygons, this is the smallest dimension of the bounding box. If MINFEATURESIZE is set
to auto, only features larger than their labels will be labeled. MINFEATURESIZE is only available for
cached labels.

MINSIZE

MINSIZE [int N]

Default: 4

Specifies the minimum font size (in pixels) for scaled labels.

OFFSET

OFFSET [int x][int y]

Default: 00

Specifies the offset (in pixels) of the lower-left corner of the label from the label point.
OUTLINECOLOR

OUTLINECOLOR [int r][int g][int b]

Default: n/a
Specifies the color used to create a 1-pixel-wide outline around the label text. The values are 1-byte
integers in the range of 0 to 255, representing relative amounts of red, green, and blue.

325

326

CHAPTER 11 MAPSERVER REFERENCE

PARTIALS

PARTIALS [true | false]

Default: true

Renders partial labels for labels that would otherwise extend beyond the edge of the map.
POSITION

POSITION [ul | uc | ur | ¢l | cc | cr | 11 | 1c | 1r | auto]

Default: 1c

Specifies the position of the label with respect to the label point. Points and polygons can use
the eight outer positions, but not the center position, cc. Lines can use only uc or 1c. If POSITION
is set to auto, MapServer will attempt to position the label such that it doesn’t collide with
previously drawn labels. If such a position can’t be found, the label won’t be drawn unless
the value of the keyword FORCE is true. Auto-placement is available for cached labels only.

SHADOWCOLOR

SHADOWCOLOR [int r][int g][int b]

Default: no shadow

Specifies the shadow color. If SHADOWSIZE is specified but SHADOWCOLOR isn’t, no shadow is created.
The values are 1-byte integers in the range of 0 to 255, representing relative amounts of red,
green, and blue.

SHADOWSIZE

SHADOWSIZE [x][y]

Default: 11

Specifies the offset (in pixels) of the shadow behind the label text.

SIZE

SIZE [int N] | [tiny | small | medium | large | giant]

Default: n/a

Specifies the size of label text. TrueType label size is specified in pixels with an integer value.
The size of a bitmapped label is specified with a value of tiny, small, medium, large, or giant.
TYPE

TYPE [bitmap | truetype]

Default: bitmap
Renders labels using either bitmapped or TrueType fonts.

CHAPTER 11 MAPSERVER REFERENCE

WRAP
WRAP [character]

Default:n/a
Specifies the character that will cause the label to wrap and create a multiline label.

LAYER Object

Elements of the LAYER object determine what spatial data is to be rendered and how it’s to be
classified. It begins with the keyword LAYER and is terminated by the keyword END. Layers are
drawn in the order found in the mapfile, and subsequent layers are rendered on top of those
rendered earlier. Care must be taken to avoid obscuring previously rendered features.

CLASS
CLASS

Default:n/a
Indicates the start of a CLASS object.

CLASSITEM
CLASSITEM [attribute]

Default: none
Specifies the name of the attribute used to classify features when the keyword EXPRESSION is
used to perform string or regular expression comparisons.

CONNECTION
CONNECTION [string]

Default: n/a
Specifies the connection string used to retrieve data from a remote database.

An SDE connection string is a comma-delimited list containing hostname, instancename,
databasename, username, and passwozrd.

A PostGIS connection string consists of "user=username password=****** databasename=
dbname host=hostname port=5432".

An Oracle connection string consists of "user/pass[@db]".

CONNECTIONTYPE
CONNECTIONTYPE [local | sde | ogr | postgis | oraclespatial | wms]

Default: local
Specifies the type of connection.

327

328

CHAPTER 11 MAPSERVER REFERENCE

DATA

DATA [filename] | [sde parameters][postgis table/column][oracle table/column]

Default: n/a

Specifies the path to the shapefile (without extension) relative to the location specified by the
keyword SHAPEPATH or relative to the location of the mapfile. When accessing SDE layers, sde
parameters specifies the layer name and geometry column of the database as a quoted string in
the form "layername,geometry". For PostGIS layers, postgis table/column specifies the geometry
column and table name as a quoted string in the form "columnname from tablename". Accessing
an Oracle database requires the specification of an Oracle-compliant query, such as "shape
FROM table".

DEBUG

DEBUG [on | off]

Default: off

Turns layer debugging on. Debug output is sent to STDERR (frequently directed to the error log
of the web server) or the log file specified in the WEB object.

DUMP

DUMP [true | false]

Default: false
Returns data in GML or raw raster format (used for WFS and WCS access if these features
are enabled).

FEATURE

FEATURE

Default: n/a

Indicates the start of an inline FEATURE object.
FILTER

FILTER [string]

Default: none

Causes MapServer to perform attribute filtering of a layer when spatial filtering is done, but
before evaluation of class expressions. string is a regular expression for OGR and shapefile
access, and it’s a SQL WHERE clause for spatial databases. This is typically used to filter out null
attributes or shapes from a query.

CHAPTER 11 MAPSERVER REFERENCE

FILTERITEM

FILTERITEM [attribute]

Default:n/a

Specifies the name of an attribute whose value is compared to the regular expression specified
by the keyword FILTER. FILTERITEM is available for OGR and shapefile access only.
FOOTER

FOOTER [filename]

Default: n/a

Specifies the name of the HTML file displayed after all query results for a layer have been
presented. Used for multi-result query modes.

GRID

CGRID

Default: n/a
Indicates the start of a GRID object.

GROuUP

GROUP [name]

Default: n/a

Specifies the name of the group to which a layer belongs. The group name can be used instead
of the layer name as the value of the CGI form variable layer (or layers), in order to allow
multiple layers to be turned off and on together.

HEADER
HEADER [filename]

Default: n/a
Specifies the name of the HTML file displayed before any query results for the layer have been
presented. HEADER is used for multi-result query modes.

JOIN

JOIN

Default: n/a

Indicates the start of a JOIN object. Current documentation includes joins in the CLASS object
and states that joins are “defined within a query object.” But this is not the case—joins must be
defined at the layer level.

329

330

CHAPTER 11 MAPSERVER REFERENCE

LABELANGLEITEM
LABELANGLEITEM [attribute]

Default: n/a
Specifies the name of the attribute whose value (in degrees) is used to set the angle at which the
label is rendered. An angle of 0 will cause the label to be drawn parallel to the bottom of the map.

LABELCACHE

LABELCACHE [on | off]

Default: on

Turns the label cache on or off. If set to off, then labels are drawn when the features are drawn.
Otherwise, the labels are cached and drawn after all layers have been drawn.

LABELITEM

LABELITEM [attribute]

Default: n/a
Specifies the name of the attribute whose value is used to label a feature.

LABELMAXSCALE
LABELMAXSCALE [double N]

Default: none
Specifies the maximum scale at which labels for a layer will be rendered.

LABELMINSCALE
LABELMINSCALE [double N]

Default: none
Specifies the minimum scale at which labels for a layer will be rendered.

LABELREQUIRES
LABELREQUIRES [expression]

Default: none

Controls the drawing of labels for a layer based on the status of other layers, where expression
is a quoted Boolean string. Layer names are enclosed in square brackets, and the operators AND
and OR are available. If the layer is on, the bracketed name is replaced with 1—otherwise, it’s
replaced by 0. If the expression evaluates to 1, the layer will be labeled—otherwise, labels won’t
be drawn. For example, LABELREQUIRES "[interstates] AND [roads]" causes features in the
current layer to be labeled when the STATUS of both the interstates layer and the roads layer is on.

CHAPTER 11 MAPSERVER REFERENCE

LABELSIZEITEM

LABELSIZEITEM [attribute]

Default: none

Specifies the name of the attribute whose value (in pixels) specifies the size at which the label
will be rendered.

MAXFEATURES

MAXFEATURES [integer]

Default: all features

Specifies the maximum number of features that will be rendered in a layer.
MAXSCALE

MAXSCALE [double N]

Default: n/a

Specifies the maximum scale at which a layer will be rendered.

METADATA

METADATA
title "A title"
author "Someone"
END

Default:n/a
Allows data to be stored as name-value pairs, accessible by means of template tags. In the
example shown, the values of title and author are available as [title] and [author].

MINSCALE
MINSCALE [double N]

Default: n/a
Specifies the minimum scale at which a layer will be rendered.

NAME
NAME [string]

Default: none
Specifies the name of the layer (maximum 20 characters). This name is used as the value of the
CGI form variable layer to allow the layer to be turned on and off interactively.

331

332

CHAPTER 11 MAPSERVER REFERENCE

OFFSITE

OFFSITE [int r][int g][int b]

Default: n/a

Sets the transparent color for raster layers. The values are 1-byte integers in the range of 0 to
255, representing relative amounts of red, green, and blue.

POSTLABELCACHE

POSTLABELCACHE [true | false]

Default: false

Specifies that a layer will be drawn after all the labels in the cache have been drawn.
PROCESSING

PROCESSING [string]

Default: n/a

Specifies a processing directive for a layer. For raster layers processed by GDAL, SCALE, BANDS,
and DITHER are available. For more information, consult “Raster Data in MapServer 4.4,” at
http://ms.gis.umn.edu/docs/howto/raster data.

PROJECTION

PROJECTION

Default: n/a

Indicates the start of a PROJECTION object.
REQUIRES

REQUIRES [expression]

Default: renders the layer

Controls the drawing of a layer based on the status of other layers, where expression is a quoted
Boolean string. Layer names are enclosed in square brackets, and the operators AND and OR are
available. If the layer is on, the bracketed name is replaced with 1—otherwise, it’s replaced by 0. If
the expression evaluates to 1, the layer will be rendered—if not, the layer won’t be drawn. For
example, REQUIRES "[hydro] AND [poi]" causes the current layer to be drawn when the STATUS
of both the hydro layer and the poi layer is on.

SIZEUNITS

SIZEUNITS [pixels | feet | inches | kilometers | meters | miles]

Default: pixels
Sets the units of the CLASS object SIZE, which specifies the size of symbols used to draw features.

CHAPTER 11 MAPSERVER REFERENCE

STATUS
STATUS [on | off | default]

Default:n/a

Specifies whether a layer will be displayed and whether it can be toggled on or off. default
specifies that a layer will always be displayed; on specifies that a layer will be displayed, but can
be turned off; and off specifies that a layer won’t be displayed, but can be turned on.
STYLEITEM

STYLEITEM [attribute]

Default: n/a
Specifies the name of the attribute whose value determines how a feature will be rendered.
This functionality is considered experimental in version 4.4.

SYMBOLSCALE
SYMBOLSCALE [double N]

Default: n/a
Specifies the scale at which a symbol appears at its full size. Symbols are scaled within the
range specified by MINSIZE and MAXSIZE.

TEMPLATE
TEMPLATE [file | url]

Default:n/a

Specifies the name of the HTML file used to display individual query results. It’s the LAYER
equivalent of the class-level TEMPLATE. It’s used instead of separate identical templates for
each class.

TILEINDEX
TILEINDEX [filename]

Default: n/a
Specifies the name of the tile index file for the layer.

TILEITEM
TILEITEM [attribute]

Default: location
Specifies the name of the item in the tile index that contains the location of a tile.

333

334

CHAPTER 11 MAPSERVER REFERENCE

TOLERANCE
TOLERANCE [double N]

Default: 3 pixels
Specifies the search radius or sensitivity for queries. Units are specified by the keyword
TOLERANCEUNITS. To restrict a polygon search to points within the polygon, set TOLERANCE to 0.

TOLERANCEUNITS
TOLERANCEUNITS [pixels | feet | inches | kilometers | meters | miles | dd]

Default: pixels
Specifies units of TOLERANCE. dd represents decimal degrees.

TRANSFORM
TRANSFORM [true | false]

Default: true

Transforms spatial data from map coordinates to image coordinates for rendering purposes.
If TRANSFORM false is set, however, no transformation is performed. In such a case, the features
in a shapefile that has been created in image coordinates will always be drawn at the same
location on the map. This is useful for placing logos and other fixed items in a map.

TRANSPARENCY
TRANSPARENCY [int | alpha]

Default: n/a
Sets opacity for a layer. A value of 100 is opaque and a value of 0 is transparent. alpha causes
MapServer to honor the alpha transparency of pixmap symbols for RGB output formats.

TYPE

TYPE [point | line | polygon | circle | annotation | raster | query]

Default: n/a
Specifies the layer type, which determines how the layer should be drawn.

LEGEND Object

Elements of the LEGEND object determine the appearance and location of the legend. It’s introduced
by the keyword LEGEND and terminated by the keyword END. Named classes and associated symbols
are incorporated into the legend image—unnamed classes aren’t. Unlike other images created
by MapServer, the size of the legend image is unknown until the image is created; therefore,
hard-coding dimensions in the tag isn’t advised.

CHAPTER 11 MAPSERVER REFERENCE

IMAGECOLOR

IMAGECOLOR [int r][int g][int b]

Default:n/a

Specifies the background color of the legend image. The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

INTERLACE

INTERLACE [on | off]

Default: on

Turns the legend image interlace on or off. This usage is deprecated—use FORMATOPTION
"INTERLACE=on" in an OUTPUTFORMAT declaration instead.

KEYSIZE

KEYSIZE [int x][int y]

Default: 20 10

Specifies the size (in pixels) of symbol key boxes.

KEYSPACING

KEYSPACING [int x][int y]

Default: 55

Specifies spacing between labels and symbols in a legend. [x] represents the horizontal distance
(in pixels) between a legend label and its symbol key box. [y] represents the vertical distance (in
pixels) between adjacent symbol key boxes.

LABEL

LABEL

Default: n/a

Indicates the start of a LABEL object.

OUTLINECOLOR

OUTLINECOLOR [int r][int g][int b]

Default: n/a
Specifies the outline color for symbol key boxes. The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

335

336

CHAPTER 11 MAPSERVER REFERENCE

POSITION
POSITION [ul | uc | ur | 11 | 1c | 1r]

Default: 1r
Specifies the position (in the map image) of the embedded legend. Any one of the six positions
along the top or bottom of the map image is valid.

POSTLABELCACHE
POSTLABELCACHE [true | false]

Default: false
Specifies whether the legend is drawn after all the labels in the cache have been drawn. A value
of true specifies that the legend will be drawn after, and a value of false specifies that it will be
drawn before.

STATUS
STATUS [on | off | embed]

Default: on
Specifies whether a separate legend image will be created (on), not created (off), or embedded
in the map image (embed).

TRANSPARENT
TRANSPARENT [on | off]

Default: of f
Makes the background color of the legend transparent. This usage is deprecated—set transparency
in an OUTPUTFORMAT declaration instead.

OUTPUTFORMAT Object

The OUTPUTFORMAT object is used to define and name output formats. An output format declara-
tion begins with the keyword OUTPUTFORMAT and is terminated by the keyword END. It extends
the concept of an image format (such as GIF or JPEG) to include details about image structure
and color representation, and even which graphics driver should be used to generate an image.
Keywords and values that can be used to create user-defined formats are described first, and
then MapServer’s implicit output formats are described.

CHAPTER 11 MAPSERVER REFERENCE

DRIVER
DRIVER ["name"]

Default:n/a

Specifies the quote-delimited name of the graphics driver used to generate the image. The
following GD drivers are supported: "GD/Gif", "GD/PNG", "GD/WBMP", and "GD/JPEG". The Flash
driver name is "SWF". For GDAL-supported output, the name consists of the string "GDAL"
concatenated with the GDAL shortname for the format—for example, "GDAL/GTiff".
EXTENSION

EXTENSION [extension]

Default: n/a

Specifies the file extension used for the image generated by this output format.
FORMATOPTION

FORMATOPTION [option]

Default: n/a
Allows the specification of driver- or format-specific options. May occur zero or more times in
an OUTPUTFORMAT declaration. The following options are supported:

GD/JPEG. "QUALITY=n" sets JPEG image quality between 0 and 100.
GD/PNG. "INTERLACE=[on/off]" turns interlacing on or off.
GD/GIF. "INTERLACE=[on/off]" turns interlacing on or off.

GDAL/GTIiff. "TILED=yes", "BLOCKXSIZE=n", "BLOCKYSIZE=n", "INTERLEAVE=[pixel/band]",
"COMPRESS=[none, packbits, jpeg,lzw,deflate]".

GDAL/*. All format options are passed on to the GDAL create function.

Note For example, you could use GDAL/HFA (HFA is a GDAL format type) to specify ERDAS Imagine as the
output format in order to provide WCS services that require raw output of the data. Generally, format options
are used to control how GDAL actually creates the raster.

337

338 CHAPTER 11 MAPSERVER REFERENCE

IMAGEMODE
IMAGEMODE [PC256/RGB/RGBA/INT16/FLOAT32]

Default: n/a
Specifies the image mode used for output. The following image modes are available:

PC256. Generates a pseudo-colored image with a 256 (maximum) color palette
RGB. Creates a 24-bit RGB image with no transparency
RGBA. Creates a 32-bit RGB/alpha image with alpha-based transparency

INT16. Renders one band of data in 16-bit integer depth (restricted to raster layers that use
GDAL and WMS layers)

FLOAT32. Renders one band of data in 32-bit floating-point depth (restricted to raster layers
that use GDAL and WMS layers)

MIMETYPE

MIMETYPE [mimetype]

Default: n/a

Specifies the mime type used for the result.

NAME

NAME [name]

Default: n/a

Specifies the name used by the mapfile keyword IMAGETYPE to reference the format.
TRANSPARENT

TRANSPARENT [on | off]

Default: n/a

Specifies whether transparency is turned on or off for a particular format. It’s not available for
IMAGEMODE RGB. If TRANSPARENCY on and IMAGEMODE PC256 are specified, IMAGECOLOR becomes the
transparent color for any component of the map image.

Implicit Declarations

There are several implicit OUTPUTFORMAT declarations that MapServer will make if no explicit
declarations are found in the mapfile. Only those formats included by default or specified
during the build configuration are available.

CHAPTER 11

IMAGETYPE gif
Native support via GD

OUTPUTFORMAT
NAME gif
DRIVER "GD/GIF"
MIMETYPE "image/gif"
IMAGEMODE PC256
EXTENSION "gif"

END

IMAGETYPE GTiff
Requires GDAL support to be declared during build configuration

OUTPUTFORMAT
NAME GTiff
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE RGB
EXTENSION "tif"

END

IMAGETYPE jpeg
Native support via GD

OUTPUTFORMAT
NAME jpeg
DRIVER "GD/JPEG"
MIMETYPE "image/jpeg"
IMAGEMODE RGB
EXTENSION "“jpg"

END

IMAGETYPE png
Native support via GD

OUTPUTFORMAT
NAME png
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE PC256
EXTENSION "png"

END

MAPSERVER REFERENCE

339

340

CHAPTER 11 MAPSERVER REFERENCE

IMAGETYPE swf
Requires MING library support to be declared during build configuration

OUTPUTFORMAT
NAME swf
DRIVER "SWF"
MIMETYPE "application/x-shockwave-flash"
EXTENSION “swf"
IMAGEMODE PC256
FORMATOPTION "OUTPUT _MOVIE=SINGLE"
END

IMAGETYPE wbmp
Native support via GD

OUTPUTFORMAT
NAME wbmp
DRIVER "GD/WBMP"
MIMETYPE "image/wbmp"
IMAGEMODE PC256
EXTENSION "wbmp"

END

PROJECTION Object

The PROJECTION object specifies the map projection used for displaying or describing spatial
data. It begins with the keyword PROJECTION and is terminated by the keyword END.

The spatial information contained in any data set is either unprojected (in which case, its
coordinates represent decimal degrees of latitude and longitude) or it has been projected onto
a flat surface (in which case, its coordinates represent some sort of distance measure like meters
or miles).

There are numerous methods for projecting a more or less spherical earth onto different
kinds of flat surfaces, and a specific set of parameters is required to describe each of them. A more
extensive description of projections is provided in the Appendix, and the treatment here is
restricted to the general syntax for specifying projections to MapServer.

If a spatial data set is in a format that MapServer understands, then it can be rendered
without specific use of projections, no matter what projection the data possesses. This leads
to maps that exhibit different kinds of distortion, but in most cases, features are generally
recognizable. However, if the spatial data set includes data with different projections, or if the
distortion is undesirable, MapServer can project data on the fly to some common projection.

To do this, MapServer must know the projection to be used for the map images it creates,
and it must also know the projection of the underlying data. The PROJECTION object is used to
provide this information. The first PROJECTION object is defined at the level of the mapfile, and
specifies the output projection of the map. Subsequently, each layer with a projection that
differs from the output projection must then use a PROJECTION object to specify the projection
of the data it accesses.

CHAPTER 11 MAPSERVER REFERENCE

Caution On-the-fly projection is available to MapServer only if the Proj.4 library was specified during the
build configuration.

The PROJECTION object begins with the keyword PROJECTION and is terminated by the
keyword END. Within the PROJECTION object, quoted strings containing Proj.4 keywords are used
to describe the projection.

As an example, suppose that your data set consists of several shapefiles, each containing
unprojected data (i.e., the locations of the features are expressed in geographical coordinates
or decimal degrees of latitude and longitude). If this spatial data is used to generate a map
directly, the map features will seem to be compressed along the north-south axis. Suppose that
this distortion is unacceptable and you decide that the data should be re-projected using a
Lambert Conformal Conic projection.

A PROJECTION object defined at the map level specifies the output projection. Assuming
that the map should be centered on 90 degrees West longitude, the output projection (using
default values for several parameters) will look like this:

PROJECTION
"proj=lcc"
"lon_0=90w"

END

Within each layer, you need to define a PROJECTION object that describes the projection
of the source data. Since the shapefiles contain unprojected spatial data, each layer-level
PROJECTION object will look like the following:

PROJECTION
"proj=latlong"
END

The Proj.4 syntax required to specify projections is straightforward, but the repertoire of
projections is extensive (many are of interest only to specialists), and the arcana of map projections
is beyond the scope of this book. The brief overview provided in the Appendix will describe
what projections are and why they’re used, and it will present the detailed syntax of several
commonly used projections.

QUERYMAP Object

The elements of the QUERYMAP object determine how results of a query will be rendered. It’s
introduced by the keyword QUERYMAP and terminated by the keyword END.

COLOR

COLOR [int r][int g][int b]

Default: 255 255 0 (yellow)
Specifies the color used to highlight features. The values are 1-byte integers in the range of 0 to 255,
representing relative amounts of red, green, and blue.

3

342

CHAPTER 11 MAPSERVER REFERENCE

SIZE

SIZE [int x][int y]

Default: size specified in the map object by the keyword SIZE

Specifies the size (in pixels) of the querymap image.

STATUS

STATUS [on | off]

Default: n/a

Specifies whether a querymap image will be created (on) or not created (off).
STYLE

STYLE [normal | hilite | selected]

Default: n/a
Specifies how selected features are rendered, according to the following values:

normal. Features are drawn normally, without highlighting.
hilite. Selected features are drawn in COLOR, while other features are drawn normally.

selected. Selected features are drawn normally, while other features aren’t drawn.

Reference Map Object

The reference map object determines the characteristics of the reference map. It starts with the
keyword REFERENCE and is terminated by the keyword END. A reference map shows the context
of the currently displayed map image by outlining it on a image showing the initial map extent.
Reference maps can also be used to highlight the results of a query in context just as they do
with the map image. Finally, it’s possible to make reference maps interactive objects and
provide them with the same interactive controls as conventional map images.

COLOR

COLOR [int r][int g][int b]

Default: 25500

Specifies the color used to draw the reference box. This is the fill color that obscures the under-
lying map area. Setting any component to -1 produces no fill. The values are 1-byte integers in
the range of 0 to 255, representing relative amounts of red, green, and blue.

EXTENT

EXTENT [int minx][int miny][int maxx][int maxy]

Default: n/a
Specifies the spatial extent of the reference image.

CHAPTER 11 MAPSERVER REFERENCE

IMAGE

IMAGE [filename]

Default:n/a

Specifies the path (absolute or relative to the mapfile) to a file containing the GIF reference image.
MARKER

MARKER [int N | string name]

Default: crosshair

Specifies the symbol used when the reference box becomes too small. The name is the value
associated with the keyword NAME in the SYMBOL definition. The number is the sequence number
of the symbol, starting at 1.

MARKERSIZE

MARKERSIZE [int x]

Default: n/a
Specifies the size (in pixels) of the symbol (specified by the keyword MARKER) used when the box
is too small.

MAXBOXSIZE

MAXBOXSIZE [int x]

Default:n/a
Specifies the maximum reference box size (in pixels). If the size of a box would otherwise
exceed this maximum, nothing is drawn.

MINBOXSIZE

MINBOXSIZE [int x]

Default: n/a
Specifies the smallest reference box size (in pixels). For smaller sizes, the symbol specified by
the keyword MARKER is used instead of a box.

OUTLINECOLOR

OUTLINECOLOR [int r][int g][int b]

Default: n/a

Specifies the color used to outline the reference box. Setting any component to -1 suppresses
the outline. The values are 1-byte integers in the range of 0 to 255, representing relative amounts of
red, green, and blue.

343

344

CHAPTER 11 MAPSERVER REFERENCE

SIZE
SIZE [int x][int y]

Default: n/a
Specifies the width and height of the reference image in pixels.

STATUS
STATUS [on | off]

Default: on
Specifies whether a reference image is created (on) or not (off).

SCALEBAR Object

The SCALEBAR object defines the scale bar. It’s introduced by the keyword SCALEBAR and termi-
nated by the keyword END. The use of TrueType fonts isn’t supported, and the size of the scale
bar image isn’t known before it’s rendered.

The SCALEBAR object has several components, and the keywords used to specify the colors
of these components are the source of some confusion. First, consider the scale bar image itself
as a background layer on which all the other components are drawn. The color of this layer is
specified by the keyword IMAGECOLOR. The color of the scale bar itself alternates (depending on the
number of intervals specified) between the color specified by the keyword BACKGROUNDCOLOR and
the color specified by the keyword COLOR. In addition to this, an outline can be drawn around
each interval in the color specified by the keyword OUTLINECOLOR.

BACKGROUNDCOLOR

BACKGROUNDCOLOR [int r][int g][int b]

Default: n/a

Specifies the background color of the scale bar itself, one of two alternating colors that make up
the bar (the other color is specified by the keyword COLOR). The values are 1-byte integers in the
range of 0 to 255, representing relative amounts of red, green, and blue.

COLOR

COLOR [int r][int g][int b]

Default: 000

Specifies the foreground color of the scale bar itself, one of two alternating colors that make up
the bar (the other color is specified by the keyword BACKGROUNDCOLOR). The values are 1-byte
integers in the range of 0 to 255, representing relative amounts of red, green, and blue.

CHAPTER 11 MAPSERVER REFERENCE

IMAGECOLOR

IMAGECOLOR [int r][int g][int b]

Default:n/a

Specifies the background color of the image on which the scale bar is drawn. The values are 1-byte
integers in the range of 0 to 255, representing relative amounts of red, green, and blue.
INTERLACE

INTERLACE [on | off]

Default: on

Turns scale bar image interlace on or off. This usage is deprecated—use FORMATOPTION
"INTERLACE=on" in an OUTPUTFORMAT declaration instead.

INTERVALS

INTERVALS [int x]

Default: 4

Specifies the number of intervals shown on the scale bar.

LABEL

LABEL

Default: n/a

Indicates the start of a LABEL object.

OUTLINECOLOR

OUTLINECOLOR [int r][int g][int b]

Default: n/a

Specifies the color used to outline intervals. Setting any component to -1 suppresses outlining.
The values are 1-byte integers in the range of 0 to 255, representing relative amounts of red,
green, and blue.

POSITION
POSITION [ul | uc | ur | 11 | 1c | 1r]

Default: 1r
Specifies the position (in the map image) of the embedded scale bar. Any one of the six positions
along the top or bottom of the map image are valid.

345

346

CHAPTER 11 MAPSERVER REFERENCE

POSTLABELCACHE

POSTLABELCACHE [true | false]

Default: false

Specifies whether the scale bar is drawn after all the labels in the cache have been drawn (true),
or before (false). POSTLABELCACHE is valid for embedded scale bars only.

SIZE

SIZE [int x][int y]

Default: n/a

Specifies the size (in pixels) of the scale bar (not including labels).

STATUS

STATUS [on | off | embed]

Default: on

Specifies whether a separate scale bar image will be created (on), not created (off), or embedded in
the map image (embed).

STYLE

STYLE [int x]

Default: n/a

Specifies the scale bar style. Supported options are 0 and 1.

TRANSPARENT

TRANSPARENT [on | off]

Default: off
Makes the background color of the scale bar image transparent. This usage is deprecated—
set the transparency in the OUTPUTFORMAT object instead.

UNITS

UNITS [feet | inches | kilometers | meters | miles]

Default: miles
Specifies the scale bar units. If scale bar units and map units differ, conversion is done
automatically.

CHAPTER 11 MAPSERVER REFERENCE

STYLE Object

Elements of the STYLE object determine how symbols will be rendered. A class may contain
multiple STYLE objects, which are applied in sequence. The STYLE object begins with the keyword
STYLE and is terminated by the keyword END.

ANTIALIAS

ANTIALIAS [true | false]

Default: n/a

Indicates that TrueType fonts and CARTOLINE symbols are to be antialiased.
BACKGROUNDCOLOR

BACKGROUNDCOLOR [int r][int g][int b]

Default:n/a
Specifies the color used to render non-transparent symbols. The values are 1-byte integers in
the range of 0 to 255, representing relative amounts of red, green, and blue.

COLOR

COLOR [int r][int g][int b]

Default: n/a

Specifies the color used for drawing features. The values are 1-byte integers in the range of 0 to 255,
representing relative amounts of red, green, and blue.

MAXSIZE

MAXSIZE [int N]

Default: 50

Specifies the maximum size (in pixels) at which a symbol will be drawn.
MINSIZE

MINSIZE [int N]

Default: 0

Specifies the minimum size (in pixels) at which a symbol will be drawn.
OFFSET

OFFSET [int x][int y]

Default: n/a
Specifies the offset (in pixels) for shadows.

347

348

CHAPTER 11 MAPSERVER REFERENCE

OUTLINECOLOR

OUTLINECOLOR [int r][int g][int b]

Default: n/a

Specifies the outline color (for polygons only). The values are 1-byte integers in the range
of 0 to 255, representing relative amounts of red, green, and blue.

SIZE

SIZE [int N]

Default: vector and ellipse types: the range of y values; pixmaps: the vertical size of the image;
TrueType font symbols: 1

Specifies the height of a symbol.

SYMBOL

SYMBOL [int | string | filename]

Default: 0

Specifies the symbol used for drawing features, identified by name or number. The name is the
value associated with the keyword NAME in the SYMBOL definition. The number is the sequence
number of the symbol, starting at 1. filename specifies the path (absolute or relative to the
mapfile) to a file containing a GIF or PNG image.

WEB Object

The WEB object specifies the web interface, including paths, URLs, template files, and other
details that affect the way the application responds to the user.

EMPTY
EMPTY [url]

Default: value specified by keyword ERROR
Specifies the URL (not the path) of the web page to be displayed if a query returns no results.

ERROR
ERROR [url]

Default: n/a
Specifies the URL (not the path) of the web page to be displayed if a MapServer error appears.

CHAPTER 11 MAPSERVER REFERENCE

FOOTER

FOOTER [filename]

Default:n/a

Specifies the name of the HTML template file displayed after all query results have been
presented. It’s used for multi-result query modes.

HEADER

HEADER [filename]

Default: n/a

Specifies the name of the HTML template file displayed before any query results have been
presented. It’s used for multi-result query modes.

IMAGEPATH

IMAGEPATH [path]

Default: n/a
Specifies the path to the directory where images and temporary files are written. The path must
end with a / or \ (depending on the platform).

IMAGEURL
IMAGEURL [path]

Default: n/a
Specifies the base URL that points to the directory where images are written. The browser uses
this path to retrieve images.

LOG

LOG [filename]

Default: n/a

Specifies the file where MapServer activity will be logged. It must be writable by the web server.
MAXSCALE

MAXSCALE [double]

Default: n/a
Specifies the maximum scale at which a map will be returned. Requests for larger scales will
return this scale.

349

350

CHAPTER 11 MAPSERVER REFERENCE

MAXTEMPLATE
MAXTEMPLATE [file | url]

Default: n/a
Specifies the template to be used if the requested scale exceeds the value specified by the
keyword MAXSCALE.

METADATA

METADATA

non

"wms_ext" "minx miny maxx maxy"
"wms_title" "A title"
END

Allows data to be stored as name-value pairs, accessible by means of template tags. In the
example just displayed, the values of "wms_ext" and "wms_title" are available as [wms_ext] and
[wms_title]. This is also the method used to provide WMS output for MapServer. In this case,
substitute appropriate values for minx, miny, maxx, and maxy.

MINSCALE

MINSCALE [double]

Default: n/a
Specifies the minimum scale at which a map will be returned. Requests for smaller scales will
return the minimum scale.

MINTEMPLATE

MINTEMPLATE [file | url]

Default: n/a

Specifies the template to be used if the requested scale is smaller than the value specified by
the keyword MINSCALE.

TEMPLATE

TEMPLATE [filename | url]

Default: n/a
Specifies the main HTML template file used to display a map in interactive mode.

CGI Variables

MapServer recognizes certain CGI variables returned from HTML forms, and the values of
these variables can affect the way that the application operates. The variables indicate

CHAPTER 11 MAPSERVER REFERENCE

(among other things) the coordinates of the location of a mouse click, which layers should be
displayed, and what zoom factor and direction will be applied to the map.

BUFFER
BUFFER [distance]

Contains a distance (in the same coordinates as the mapfile) and is used to create a new map
extent around the point specified by the variable MAPXY. It’s used as an alternative to SCALE.

CONTEXT

CONTEXT [filename]

Specifies the name (relative to the mapfile) of a context file. Context files contain information
used to request WMS layers (CONNECTIONTYPE wms). More information is available at http://
mapserver.gis.umn.edu/doc/mapcontext-howto.html.

ID

ID [id-string]

Specifies a replacement for the default session ID. MapServer generates a unique ID for each
session by concatenating the number of seconds since January 1, 1970 at 0:00:00, and the
process ID. This variable replaces that default value.

IMG

IMG

Is used to identify the inputimage to MapServer. The name specified in an input tag containing
the map image (<input type="image" name="img" . . . >)isthe base name of the two variables
(img.x and img.y) used to return the image coordinates of a mouse click. MapServer expects
that the name associated with the image is img.

IMGBOX

IMGBOX [int x1][int y1][int x2][int y2]

Represents the coordinates (in pixels) of opposite corners (upper-left to lower-right) of an
image drag box as a space-delimited list. It's used by Java-based front ends.

IMGEXT

IMGEXT [int minx][int miny][int maxx][int maxy]

Contains the spatial extent of the current map image as a space-delimited list representing the
lower-left and upper-right coordinates of the extent.

351

352

CHAPTER 11 MAPSERVER REFERENCE

IMGSHAPE
IMGSHAPE [int x, int y,][int x, int y,][int x; int y,] . . .

Specifies the vertex coordinates of a user-defined polygon (in image coordinates—i.e., pixels)
as a space-delimited list. It’s used for query purposes.

IMGSIZE
IMGSIZE [int cols][int rows]

Specifies the size of the map image (in pixels).

IMGXY
IMGXY [int x][int y]

Contains the image coordinates (in pixels) of a mouse click on the map image.

LAYER
LAYER [name]

Specifies the name of a layer, thereby setting the layer’s STATUS to on.

LAYERS
LAYERS [name name . . .]

Specifies a space-delimited list of layer names, setting the STATUS of all layers to on.

MAP
MAP [filename]

Contains the full path to the mapfile.

MAPEXT
MAPEXT [int minx][int miny][int maxx][int maxy], MAPEXT (shape)

Contains the spatial extent of a map to be created as a space-delimited list. It’s used as an alter-
native to creating an extent with MAPXY and BUFFER or SCALE. When the value shape is used in a
query mode, MapServer creates an extent that’s slightly larger than the matching shape.

MAPSIZE
MAPSIZE [int cols][int rows]

Contains the image size (in pixels) of the map to be created. It’s used to change the map reso-
lution interactively.

CHAPTER 11 MAPSERVER REFERENCE

MAPSHAPE
MAPSHAPE [int x, int y,][int x, int y,][int x; int y;] . . .

Contains a user-defined polygon in map coordinates (i.e., real-world coordinates) as a space-
delimited list. It’s used for query purposes.

MAPXY
MAPXY [[int x][int y] | [shape]]

Contains the coordinates of a point in the same units as the underlying shapefile. MapServer
creates a new map extent around the point. The extent is determined either by the value specified
by the variable BUFFER (specified in the same units as MAPXY), or by setting the map scale to the
value specified by the variable SCALE. In query mode, specifying shape sets the new extent to the
extent of the selected shape.

MAXX
MAXX [number]

Contains the maximum x coordinate of the spatial extent for a new map or query. MAXX is one
of the components of MAPEXT.

MAXY
MAXY [number]

Contains the maximum y coordinate of the spatial extent for a new map or query. MAXY is one
of the components of MAPEXT.

MINX
MINX [number]

Contains the minimum x coordinate of the spatial extent for a new map or query. MINX is one of
the components of MAPEXT.

MINY
MINY [number]

Contains the minimum y coordinate of the spatial extent for a new map or query. MINY is one of
the components of MAPEXT.

MODE
MODE [value]

Contains the mode of operation. The following mode values are supported:

353

354

CHAPTER 11 MAPSERVER REFERENCE

BROWSE. Default mode providing interactive navigation of the map.

QUERY. Spatial search of all queriable layers that returns the closest feature (within a toler-
ance specified by the mapfile layer-level keyword TOLERANCE). QUERYMAP mode performs
the same query, but produces only a map and doesn’t return an attribute list.

NQUERY. Spatial search of all queriable layers that returns all features (within a tolerance
specified by the mapfile layer-level keyword TOLERANCE). NQUERYMAP mode performs the
same query, but produces only a map and doesn’t return an attribute list.

ITEMQUERY. Attribute search that returns the first feature that has an attribute that matches
the value of the form variable QSTRING. The value of QSTRING is an expression with syntax
identical to the mapfile class-level keyword EXPRESSION. The form variable QLAYER restricts
the search to a single layer, and QITEM restricts the search to a single attribute. If QLAYER

is omitted, all layers are searched. If QITEM is omitted, all attributes are searched.
ITEMQUERYMAP mode performs the same query, but produces only a map and doesn’t
return an attribute list.

ITEMNQUERY. Attribute search that returns all features that have an attribute that matches
the value of the form variable QSTRINC. The value of QSTRING is an expression with syntax
identical to the mapfile class—level keyword EXPRESSION. The form variable QLAYER restricts
the search to a single layer, and QITEM restricts the search to a single attribute. If QLAYER

is omitted, all layers are searched. If QITEM is omitted, all attributes are searched.
ITEMNQUERYMAP mode performs the same query, but produces only a map and doesn’t
return an attribute list.

FEATUREQUERY. Spatial search that selects a single polygon feature in a layer specified by
the form variable SLAYER, and returns all features in all other queriable layers that fall inside
that polygon or within the distance specified by each layer’s TOLERANCE. The TOLERANCE of
each queriable layer can be different. The TOLERANCE of SLAYER is irrelevant since only a single
feature from SLAYER is returned. FEATUREQUERYMAP mode performs the same query, but
produces only a map and doesn’t return an attribute list.

FEATURENQUERY. Spatial search that selects all polygon features in a layer specified by the
form variable SLAYER that fall within the TOLERANCE distance specified for SLAYER. It returns all
features in all other queriable layers that fall inside the selected polygons or within the
distance specified by each layer’s TOLERANCE. The TOLERANCE of each queriable layer can be
different. If the TOLERANCE of SLAYER is 0, this mode is functionally equivalent to FEATUREQUERY
mode. FEATURENQUERYMAP mode performs the same query, but produces only a map and
doesn’t return an attribute list.

ITEMFEATUREQUERY. Attribute search that selects the first polygon feature in a layer
specified by the form variable SLAYER that has an attribute that matches the value of the
form variable QSTRING. The value of QSTRING is an expression with syntax identical to the
mapfile class-level keyword EXPRESSION. It returns all features in all other queriable layers
that fall inside the selected polygon or within the distance specified by each layer’s TOLERANCE.
The TOLERANCE of each queriable layer can be different. The form variable QLAYER restricts
the search to a single layer. If QLAYER isn’t specified, all layers are searched.
ITEMFEATUREQUERYMAP mode performs the same query, but produces only a map and
doesn’t return an attribute list.

CHAPTER 11 MAPSERVER REFERENCE 355

ITEMFEATURENQUERY. Attribute search that selects all polygon features in a layer speci-
fied by the form variable SLAYER that have an attribute that matches the value of the form
variable QSTRING. The value of QSTRING is an expression with syntax identical to the mapfile
class-level keyword EXPRESSION. It returns all features in all other queriable layers that fall
inside the selected polygons or within the distance specified by each layer’s TOLERANCE. The
TOLERANCE of each queriable layer can be different. The form variable QLAYER restricts the search
to a single layer. If QLAYER isn’t specified, all layers are searched. ITEMFEATURENQUERYMAP
mode performs the same query, but produces only a map and doesn’t return an attribute list.

INDEXQUERY. Search that selects the feature in a layer specified by the form variable QLAYER
that has a shape index (i.e., sequence number in the shapefile) equal to the value specified
by the form variable SHAPEINDEX. Optionally, the form variable TILEINDEX can be used to
specify the tile that contains the shapefile to be queried. In such a case, if TILEINDEX is 2 and
SHAPEINDEX is 17, MapServer will return the feature with a shape index of 17 in the shapefile
pointed to by tile number 2 in the tile index. INDEXQUERYMAP mode performs the same
query, but produces only a map and doesn’t return an attribute list.

MAP. Image-only mode that produces a map image. Interactive navigation isn’t supported.
REFERENCE. Image-only mode that produces a reference map image.

SCALEBAR. Image-only mode that produces a scale bar image.

LEGEND. Image-only mode that produces a legend image.

ZOOMIN. Browse mode that sets ZOOMDIR to 1.

ZOOMOUT. Browse mode that sets ZOOMDIR to 1.

QITEM
QITEM [name]

Contains the name of the attribute to be searched in one of the ITEMQUERY modes. MapServer
compares the value of the form variable QSTRING with the value of the specified attribute.

QLAYER
OLAYER [name]

Restricts a search to a single layer, where [name] is a layer name specified by the layer-level
keyword NAME. If it’s not supplied, then all layers are searched in sequence.

QSTRING
QSTRING [expression]

Contains the query string. The value of QSTRING is an expression with syntax identical to the
mapfile class-level keyword EXPRESSION.

356

CHAPTER 11 MAPSERVER REFERENCE

QUERYFILE
QUERYFILE [filename]

Specifies a queryfile that’s loaded before any other processing, when in BROWSE or NQUERY mode.

REF
REF

Identifies the input tag containing the reference map image (<input type="image" name="ref"
.). The coordinates of a mouse click on the reference map image are returned in the two
variables (ref.x and ref.y).

REFXY
REFXY [x][y]

Contains the image coordinates (in pixels) of a mouse click on the reference map image. REFXY
is used by Java-based front ends.

SAVEQUERY
SAVEQUERY

Indicates that MapServer should save query results to a temporary file that can be used later.

SCALE
SCALE [number]

Contains a map scale and is used to create a new map extent around the point specified by the
variable MAPXY. SCALE is used as an alternative to BUFFER. The scale is specified by the denomi-
nator only, so if the scale is 1:1,000,000, SCALE has a value of 1000000.

SEARCHMAP
SEARCHMAP

Causes MapServer to search the new extent when searching a querymap in NQUERY mode.
Usually, a query will search the map as previously displayed in the browser. However, if a
querymap is navigated with pan and zoom, specifying SEARCHMAP causes the search to be
executed on the new extent—not the extent that existed before panning and zooming.

SHAPEINDEX
SHAPEINDEX [index]

Contains the shape index (i.e., sequence number) of a shape in the layer specified by the variable
QLAYER. SHAPEINDEX is used to perform index queries in INDEXQUERY mode. Use of the variable
TILEINDEX is only required with tiled layers.

CHAPTER 11 MAPSERVER REFERENCE

SLAYER
SLAYER [name]

Contains the name of the select layer for feature query modes. The select layer type must
be polygon.

TILEINDEX
TILEINDEX [index]

Contains the tile index (i.e., the sequence number of the tile) of a tiled shapefile used to perform
index queries with INDEXQUERY mode. TILEINDEX is used with the variable SHAPEINDEX.

ZOOM
ZOOM [number]

Contains the zoom factor to apply to the new map extent. A positive factor zooms in, a negative
factor zooms out, and a factor of 0 pans. ZOOM is used as an alternative to the combination of
ZOOMDIR and ZOOMSIZE. Minimum zoom is —25 and maximum zoom is 25.

ZOOMDIR
ZOOMDIR [1 | 0 | -1]

Contains the zoom direction. Setting ZOOMDIR to 1 zooms in, setting ZOOMDIR to -1 zooms out,
and setting ZOOMDIR to 0 pans.

ZOOMSIZE
ZOOMSIZE [number]

Contains the zoom factor, which is always a positive number. ZOOMSIZE and ZOOMDIR must be
used together.

Substitution Strings

MapServer doesn’t generate the HTML tags it uses to display its responses—instead, it searches
HTML templates for embedded substitution strings and replaces them with the current values
of the corresponding MapServer variables. Substitution strings are used to present information
to the application user, to maintain the state of the application across invocations, and to
provide a link between the application and information stored in spatial data sets, external
dBase files, or the mapfile itself.

Syntactically, a substitution string is just a sequence of characters delimited by square
brackets, that MapServer recognizes, and to which it can assign a specific value or range of
possible values. A value might be a numeric quantity representing the current scale of the map,
for example, or it might be a space-delimited list of numeric quantities representing the map
extent. Some values are HTML keywords that specify the checked state of a check box or the
URL of an image.

357

358

CHAPTER 11 MAPSERVER REFERENCE

In all these cases, the substitution string itself is a fixed, invariant string similar to a CGI
form variable. In fact, substitution strings sometimes bear a strong resemblance to CGI form
variables. For example, the string [scale], embedded in a template, will be replaced with the
current scale of the map, whereas the form variable scale is the value returned to MapServer
that specifies what the scale of the new map extent should be.

There is, however, a more complicated usage that employs variable strings to identify
external resources and track application-specific information generated by user input. In these
cases, a part—or even all—of a substitution string will depend on the factors specific to the
local environment, such as attribute names, layer names, or database names. Each of these
variable substitution strings is preceded by an asterisk in the section that follows.

*[item]

Use: queries
The value of an item in the attribute table of a queried layer, encoded for HTML.

*[item_esc]

Use: queries
The escaped form of the value of an item in the attribute table of a queried layer.

*[item_raw]

Use: queries
The raw form of the value of an item in the attribute table of a queried layer, not escaped or
encoded for HTML.

*[join_joinname]
Use: queries

The results of a one-to-many join, consisting of the concatenation of join-level templates (one
for each result).

*[ioinname_item]

Use: queries
The HTML-encoded value of an item in the DBEF file specified in the join.

*[ioinname_item_esc]

Use: queries
The escaped form of the value of an item in the DBF file specified in the join.

*[ioinname_item_raw]

Use: queries
The raw form of the value of an item in the DBF file specified in the join.

CHAPTER 11 MAPSERVER REFERENCE

*[layername_check]

Use: layer reference
The current checked status of the check box associated with the layer layername.

*[layername_metadatakey]

Use: layer reference
The metadata associated with the key metadatakey specified in layer layername. The underscore
character is mandatory.

*[layername_select]

Use: layer reference
The current selected status of the select tag associated with the layer layername.

*[metadatakey]

Use: general
The metadata associated with the key metadatakey specified in the WEB object.

*[metadatakey_esc]

Use: general
The escaped version of the metadata associated with the key metadatakey specified in the WEB
object.

*[variablename]

Use: general
The value of the form variable variablename, passed to MapServer on the previous invocation.

*[variablename_esc]

Use: general
The escaped version of the value of the form variable variablename, passed to MapServer on
the previous invocation.

*[zoom_NN_check]

Use: zoom state

The current checked status of the check box associated with zoom level NN. For example, if the
current zoom level is 12, then the string [zoom_12_check] is replaced with the string CHECKED—
otherwise, it’s replaced with "". If the current zoom level is -6, then [zoom -6 _check] is replaced
with CHECKED. Zoom levels range from -25 to 25.

359

360 CHAPTER 11 MAPSERVER REFERENCE

*[zoom_NN_select]

Use: zoom state
The current selected status of the select tag associated with zoom level NN. For example, if the
current zoom level is 19, then [zoom 19 select] will be replaced with SELECTED; if it’s not, it will

be replaced by "".

[cellsize]

Use: image geometry
The size of a pixel in world units.

[center]

Use: image geometry
The space-delimited x y coordinates (in pixels) of the center of the map image.

[center_x]

Use: image geometry
The x coordinate (in pixels) of the center of the map image.

[center_y]

Use: image geometry
The y coordinate (in pixels) of the center of the map image.

[cl]
Use: queries
The name of the current layer. [c1] is available only when processing query results.

[dx]

Use: map geometry
The width of the extent (maxx —minx) in map units.

[dy]
Use: map geometry
The height of the extent (maxy —miny) in map units.

[host]

Use: general
The web server host name.

lid]
Use: general
The unique session ID.

CHAPTER 11 MAPSERVER REFERENCE

[img]
Use: file reference

The path to the map image (the concatenation of IMAGE_URL and the file name) with respect to
the Apache DocumentRoot.

[layers]

Use: layer reference
The list of space-delimited active map layers. Used for a "POST" request.

[layers_esc]

Use: layer reference
The escaped version of the list of space-delimited active map layers. Used for a "POST" request.

[legend]

Use: file reference
The path to the new legend image, with respect to the Apache DocumentRoot.

[Irn]

Use: queries
The sequence number of the result in the current layer (beginning at 1).

[map]

Use: file reference
The path to the mapfile.

[mapext]

Use: map geometry
The space-delimited extent of the map in map units.

[mapext_esc]

Use: map geometry
The escaped version of the space-delimited extent of the map in map units.

[mapext_latlon]

Use: projections
The space-delimited extent of the map, reported in degrees of latitude and longitude.

[mapext_latlon_esc]

Use: projections
The escaped version of the space-delimited extent of the map, reported in degrees of latitude
and longitude.

361

362 CHAPTER 11 MAPSERVER REFERENCE

[mapheight]

Use: image geometry
The image height (in pixels).

[maplat]

Use: projections
The latitude of a mouse click when a projection is used.

[maplon]

Use: projections
The longitude of a mouse click when a projection is used.

[mapsize]

Use: image geometry
The space-delimited image width and height (in pixels).

[mapsize_esc]

Use: image geometry
The escaped version of the space-delimited image width and height (in pixels).

[mapwidth]

Use: image geometry
The image width (in pixels).

[mapx]

Use: map geometry
The x coordinate of a mouse click in map units.

[mapy]

Use: map geometry
The y coordinate of a mouse click in map units.

[maxlat]

Use: projections
The maximum latitude of the map extent (a component of [mapext latlon]).

[maxion]

Use: projections
The maximum longitude of the map extent (a component of [mapext latlon]).

CHAPTER 11 MAPSERVER REFERENCE

[maxx]

Use: map geometry
The maximum x coordinate of the extent of the map in map units.

[maxy]

Use: map geometry
The maximum y coordinate of the extent of the map in map units.

[minlat]

Use: projections
The minimum latitude of the map extent (a component of [mapext_latlon]).

[minlon]

Use: projections
The minimum longitude of the map extent (a component of [mapext_latlon]).

[minx]

Use: map geometry
The minimum x coordinate of the extent of the map in map units.

[miny]
Use: map geometry
The minimum y coordinate of the extent of the map in map units.

[nl]
Use: queries
The number of layers that returned results.

[nir]

Use: queries
The number of results returned from the current layer.

[nr]
Use: queries
The total number of results returned across all layers.

[pori]

Use: general
The web server port number.

363

364

CHAPTER 11 MAPSERVER REFERENCE

[queryfile]
Use: file reference
The path to the queryfile if SAVEQUERY was specified.

[rawext]

Use: map geometry
The space-delimited raw extent of the map in map units.

[rawext_esc]

Use: map geometry
The escaped version of the space-delimited raw extent of the map in map units.

[rawmaxx]

Use: map geometry
The maximum x coordinate of the raw extent of the map in map units.

[rawmaxy]

Use: map geometry
The maximum y coordinate of the raw extent of the map in map units.

[rawminx]

Use: map geometry
The minimum x coordinate of the raw extent of the map in map units.

[rawminy]

Use: map geometry
The minimum y coordinate of the raw extent of the map in map units.

[ref]
Use: file reference
The path to the reference image with respect to the Apache DocumentRoot.

[rn]
Use: queries
The sequence number of a result over all layers (beginning at 1).

[scale]

Use: image geometry
The scale of the map image.

CHAPTER 11 MAPSERVER REFERENCE

[scalebar]

Use: file reference
The path to the scale bar image with respect to the Apache DocumentRoot.

[shpclass]

Use: queries
The class index (sequence number within the layer) of the current shape.

[shpext]

Use: queries
The space-delimited extent of the current shape, with a 5-percent buffer.

[shpext_esc]

Use: queries
The escaped version of the space-delimited extent of the current shape, with a 5-percent buffer.

[shpidx]

Use: queries
The shape index of the current shape (starting from 0).

[shpmaxx]

Use: queries
The maximum x coordinate of the extent of the current shape.

[shpmaxy]

Use: queries
The maximum y coordinate of the extent of the current shape.

[shpmid]

Use: queries
The space-delimited coordinates of the center of the current shape’s extent.

[shpmidx]

Use: queries
The x coordinate of the center of the current shape’s extent.

[shpmidy]

Use: queries
The y coordinate of the center of the current shape’s extent.

365

366

CHAPTER 11 MAPSERVER REFERENCE

[shpminx]

Use: queries
The minimum x coordinate of the current shape’s extent.

[shpminy]

Use: queries
The minimum y coordinate of the current shape’s extent.

[shpxy options]

Use: queries

A list of coordinates of the vertices comprising a shape. By default, this is comma-delimited,
but other formatting options can also be specified. It’s formatted according to the options
specified. Its attributes are h (header), f (footer), and s (separator). The options are as follows:

cs specifies coordinate separator; the default is a comma: cs=",".

xh specifies characters to display before the x coordinate; the default is null: xh="".
xt specifies characters to display after the x coordinate; the default is space: xf= "
yh specifies characters to display before the y coordinate; the default is null: yh="".

yf specifies characters to display after the y coordinate; the default is null: yf="".

ph specifies the characters to display before each part of a multipart feature; the default is
null: ph="".

pf specifies the characters to display after each part of a multipart feature; the default is
null: pf="".

ps specifies the characters to display between parts of a multipart feature; the default is

nn

null: ps="".
sh specifies the characters to display before a feature; the default is null: sh="".
st specifies the characters to display after a feature; the default is null: sf="".

precision specifies the number of decimals of precision for displayed coordinates; the
default is 0: precision=0.

proj specifies the output projection of the coordinates using Proj.4 syntax; the default is
none. proj=image converts world coordinates to image coordinates.

As an example, [shpxy xh=":" xf=" | " yh="(" yf=")" precision=2 proj=image] will
format the coordinates of a sequence of points as follows: 320.00 | (240.00):320.00 | (235.00).

[tileindex]

Use: queries
The tile index of the current tile, or -1 if the shapefile isn’t tiled.

CHAPTER 11 MAPSERVER REFERENCE 367

[toggle_layers]

Use: layer reference
The list of all layers that have STATUS on or STATUS off (i.e., those layers that can be toggled).

[toggle_layers_esc]

Use: layer reference
The escaped version of the list of all layers that have STATUS on or STATUS off (i.e., those layers
that can be toggled).

[version]

Use: general
The MapServer version number.

[zoomdir_0_checkK]

Use: zoom state

The current checked status of the check box associated with zoom direction 0 (pan). For
example, if the current zoom direction is 0, then [zoomdir 0 check] will be replaced with
"CHECKED"; if not, then it will be replaced with "".

[zoomdir_0_select]

Use: zoom state

The current selected status of the select tag associated with zoom direction 0 (pan). For
example, if the current zoom direction is 0, then [zoomdir 0 select] will be replaced with
"SELECTED" ; if not, then it will be replaced with "".

[zoomdir_1_checkK]

Use: zoom state

The current checked status of the check box associated with zoom direction 1 (zoom in).

For example, if the current zoom direction is 1, then [zoomdir 1 check] will be replaced with
"CHECKED"; if not, then it will be replaced with "".

[zoomdir_-1_check]

Use: zoom state

The current checked status of the check box associated with zoom direction —1 (zoom out).
For example, if the current zoom direction is—1, then [zoomdir -1 check] will be replaced with
"CHECKED"; if not, then it will be replaced with "".

[zoomdir_1_select]

Use: zoom state

The current selected status of the select tag associated with zoom direction 1 (zoom in).

For example, if the current zoom direction is 1, then [zoomdir 1 select] will be replaced with
"SELECTED"; if not, then it will be replaced with "".

368 CHAPTER 11 MAPSERVER REFERENCE

[zoomdir_-1_select]

Use: zoom state

The current selected status of the select tag associated with zoom direction —1(zoom out).
For example, if the current zoom direction is -1, then [zoomdir -1 select] will be replaced
with "SELECTED"; if not, then it will be replaced with "".

Index

Numbers and Symbols
(pound sign)
using to insert comments, 17
/ (forward slash)
for delimiting regular expressions, 74-75
strings delimited by, 42
./Configure -h
running to see a list of available Perl
configuration options, 168

A
AddType directive
removing .php from, 209
ANGLE keyword
for specifying angle at which all labels are
drawn, 67-68, 323
ANNOTATION layer
code for specifying in the fourth.map
mapfile, 144
annotation layers
using, 81-83
using to label features, 26
ANTIALIAS keyword
for causing label text to be antialiased, 323
for specifying that TrueType font symbols
should be antialiased, 381
ANTIALIAS STYLE object
function of, 347
Apache
forcing to load CGI version of PHP, 208
Apache DocumentRoot
in the example environment, 13
Apress website
for downloading
mapserver_create_restaurant
code, 236
perlms_hello.pl code available from, 169
area searches and point queries
performed by NQUERY mode, 130-131
attribute queries
provided by MapServer, 103-104

attribute searches

performed by ITEMQUERY mode, 131
azimuthal projections

function of, 378-379

schematic representation of, 379

B
BACKGROUNDCOLOR CLASS object
for specifying color to be used to render
non-transparent symbols, 315
BACKGROUNDCOLOR keyword
setting background color of a legend
image with, 86-87
for setting the background color of scale
bar, 84
BACKGROUNDCOLOR LABEL object
for specifying the background rectangle
used to highlight a label, 323
BACKGROUNDCOLOR SCALEBAR object
for specifying background color of a scale
bar, 344
BACKGROUNDCOLOR STYLE object
for specifying color used to render
non-transparent symbols, 347
BACKGROUNDSHADOWCOLOR
LABEL object
for specifying shadow color of a
background rectangle, 323
BACKGROUNDSHADOWSIZE LABEL object
for specifying the offset of the background
shadow in pixels, 324
Beginning Perl, Second Edition (Apress, 2004)
by James Lee and Simon Cozens, 167
Beginning PHP 5 and MySQL: From Novice to
Professional (Apress, 2004)
by W. Jason Gilmore, 207, 235
BigLine symbol
using to draw roads, 80
bitmapped fonts
how they are rendered, 19
vs. TrueType fonts, 66-67

391

392

INDEX

Bostrup, Erik
overlib JavaScript library created by, 238
Boutell website
GD page address, 13
Browse mode
as MapServer default mode, 104
browsers
performing spatial queries for
Mozilla-like, 260-263
BUFFER CGI variable
used as an alternative to SCALE, 351
BUFFER LABEL object
for specifying amount of space left around
text labels, 324
building and installing
FreeType, 8-9
GD library, 9
GDAL (Geospatial Data Abstraction
Library), 9-10
libJPEG, 7-8
libpng, 7
Proj.4,9
shapelib, 10-11
zlib, 6-7

C
Cartographic Projection Procedures for the
UNIX Environment—A User's Manual
by Gerald Evenden, 379
cartographic projections, 373-381
CARTOLINE type symbols
properties of, 384-385
Central Cylindrical projection, 375
CGI (Common Gateway Interface)
website address for detailed information
about, 15
CGI MapServer web application
a broken image rendered by, 21-22
building the first map in, 23-30
components of, 15
creating, 31-54
CGl variables, 350-357
and substitution strings, 137-139
CHARACTER keyword
for specifying character used to render a
symbol, 381
checkboxes
code for defining in second.html template
file, 46

CHECKED state
setting for several layers in
perlms_third.pl, 174
Circle symbol
using, 81
Cities-layer templates
in MapServer Fourth Application, 154-155
(c]]
function of in queries, 138
CLASS keyword
for introducing a class, 26-27
class labels
effect of failing to use easily
distinguishable, 62
CLASS LAYER object
for indicating the start of a CLASS object, 327
CLASS object
for determining appearance and labeling
properties of features, 315-319
for specifying map features and how they
are rendered, 34
classes
using, 76-79
using expressions to define, 74-76
using to distinguish features of the same
type, 77
using to restrict features rendered at a
specific scale, 78-79
CLASSITEM keyword
identifying the name of the attribute used
to classify features with, 74-76
using to select the attributes you wish to
render, 39
CLASSITEM LAYER object
function of, 327
class-level query templates
for displaying tabular query results for
Countries layer, 153-154
in fourth_cities_header.html file, 155
function of, 135
click point
code for returning image coordinates
of, 178
code listing
for accessing mapObj coordinates
individually, 194
for adding a point to a shape object, 254
of beginning of perlms_third.pl
application, 173

for building PHP with MySQL configure
option, 236

for calculating map width and height of
extent in map units, 180

for calculating the zoom factor to pass to
zoomPoint() method, 179

to check the status and set variables
$nquery and $browse, 261

for checking that PHP is a loadable
module, 208

of class-level query template
fourth_cities_query.html, 166

of class-level query template
fourth_countries_query.html,
165-166

of the class-level query template in the
fourth-countries_query.html file,
153-154

for closing open tags in fourth.html file, 150

for closing open tags in phpms_third.php
file, 217

commands for building the Perl
MapScript, 169

of complete mapfile first.map, 20, 27-28

for complete phpms_hello.php, 222

to configure and build the Python
library, 188

for configuring, building, testing, and
installing zlib, 6

for connecting database server to
localhost, 253

containing second.html substitution
string, 45

converting click point coordinates from
image to geographic, 261-262

for converting from image to map
coordinates, 213

for converting mouse-click point from
image to map coordinates, 176, 216

for converting pixels to map coordinates
using proportions, 198

for creating a chain of references to access
extent coordinates, 215

for creating and saving reference map and
legend images to disk, 175

for creating a new majObj map based on
third.map, 193

for creating a new mapObj based on
third.map, 214

INDEX

for creating a PHP/MapScript rectObj(), 214

for creating a Python MapScript CGI
object referenced by parms, 193

for creating a Python MapScript rectangle
object, 192-193

creating a queryCacheObj for a layer,
262-263

for creating a reference to a new map
image, $map, 170

for creating a table and placing it in the
main application template, 387

for creating a unique file name for the map
image, 170

for creating a unique identifier for various
map images, 193, 215

for creating a vector symbol referenced by
the name box, 383

for creating a virtual click point in
perlms_third.pl, 174

for creating a virtual click point in
phpms_third.php, 214

for creating pointObj() and rectObj()
MapScript objects, 174

for creating the module php_mapscript.so
in /mapscript/php3/, 209

for creating the virtual click point for
python_third.py file, 192

to define a URL template that saves
current state of application, 151-152

for defining a LABEL in the fourth.map
mapfile, 143

for defining a line layer in the fourth.map
mapfile, 143-144

for defining an unnamed CLASS in
fourth.map mapfile, 142

defining a PHP/MapScript PointObj(), 214

for defining a point layer named Cities in
fourth.map mapfile, 142

defining a reference map, 87

for defining checkboxes for second.html
template file, 46

defining CreateTTimagemap()
function, 255

for defining file names and URLs for map
image, reference map image, and
legend image, 175

defining majorstreets layer in Slurp and
Burp Restaurants application, 249

393

INDEX

defining points-of-interest layer in Slurp
and Burp Restaurants application, 250

defining QUERYMAP object in fourth.map
mapfile, 141

for defining second.map WEB object
parameters, 36

defining streets layer in Slurp and Burp
Restaurants application, 250

for defining symbol for Slurp and Burp
Restaurants application, 247-248

for defining the default extent as an array
in perlms_third.pl, 175

for defining the legend template, 387

for defining the MapScript pointObj()
object, 192

for defining the path to the Python
MapScript mapfile, 189

for defining the PHP/MapScript default
extent as an array, 214

for defining the Python MapScript default
extent as an array, 193

for defining the submit button, 217

describing hydrographic layer in Slurp and
Burp Restaurants application, 249

for determining if the script has been
invoked by a form or not, 175, 193

for displaying the initialization file in
browser, 47

for doing longitude and height-to-latitude
conversions, 199

for drawing a non-contiguous vector
symbol, 384

for drawing interstate highway layers, 73

for drawing urban area polygons, 72-73

for embedding initial values in an HTML
template file, 21-23

employing the zoomPoint() method in
PHP/MapScript, 220

employing the zoomPoint() method in
Python MapScript, 198

for employing zoomPoint() method to
center map on click point, 179

for finishing the MapScript web page,
176-177

for first invocation for Slurp and Burp
Restaurants application, 251-252

for formatting the query string and
executing the query, 253

for fourth.map for the map name, units,
size, background color, and image
type, 140

for fourth.map mapfile WEB object, 140

for generating and opening HTML tags
and writing header, 170

for generating HTML tags for displaying
map image, 190, 211

for generating the third.map web page, 194

for header and initial HTML for creating
web page, 176

of HTML initialization file fourth_i.html, 160

for the HTML initialization file
second_i.html, 53

for HTML initialization file third_i.htm, 100

for HTML template second.html, 53-54

for HTML template third.html, 100-101

for identifying HEADER and FOOTER in
fourth.map mapfile, 141

for identifying the path to the Python
MapScript mapfile, 192

for indicating an EMPTY result set, 152

for initializing query-related CGI variables
to nulls, 146

for inserting the legend image and
navigation variables, 217

for inserting the map scale, click point
coordinates, and map extent, 217

for installing PHP, 208

for invoking CreateTTimagemap()
function, 255

JavaScript code for tailoring navigation
interface to a browser, 260

JavaScript creating a table with three each
rows and columns, 259

for joining an external table in the
fourth.map mapfile, 143

for the layer-level query HEADER for the
Countries layer, 152-153

of layer-level query template
fourth_cities_footer.html, 166

of layer-level query template
fourth_cities_header.html, 166

of layer-level query template
fourth_countries_header.html, 165

for legend, 86-87

for loading the Python MapScript and
random modules, 189

for looping through result set elements, 253

for making MapScript and CGI modules
available, 170

of mapfile fourth.map, 156-159

for mapfile second.map, 51-53

the mapfile third.map, 88-99

of map-level "no results" web page
fourth_empty.html, 165

of map-level query template
fourth_web_footer.html, 164

of map-level query template
fourth_web_header.html, 160-164

for obtaining map coordinate
conversions, 180

for opening the PHP script and naming
images, 210

for performing the spatial query, 262

the Perl MapScript "Hello World"
application, 172

for Perl MapScript version of
perlms_third.pl, 181-186

for PHP/MapScript version of third
application, 223-229

for phpms_fifth.php, 273-290

for placing the php binary in Apache's
script directory, 208

presenting map and reference images,
map information, and navigation
controls, 147

for printing the preamble and opening
tags for the web page, 195, 216

for producing form for user interaction
with MapServer, 45

for providing for a virtual mouse click for
second.html template file, 47

providing zoom controls for second.html
template file, 45-46

for the Python MapScript version of "Hello
World" application, 200-201

for query HEADER and FOOTER
templates in fourth.map mapfile, 142

for rebuilding MapScript directly, 238-239

for reference map for fourth.map mapfile,
140-141

for removing previous Python build
configuration options, 188

for reporting query summary results in
fourth_we_header.html, 151

for retrieving a list of layers that user
chooses to display, 178, 196, 219

INDEX

for retrieving extent as an instance of
rectObj, 176

for retrieving table information and
creating pop-up tool tips, 252

for retrieving the extent of the map just
saved to disk, 176

for retrieving the form variable extent,
178, 220

for retrieving the map scale from the map
object, 176, 194

for returning image coordinates of click
point, 178

for second.map application initialization
file, 44

for second.map application layer 1: urban
areas, 38-39

for second.map application layer 2: water
features, 40

for second.map application layer 3: state
boundaries, 41

for second.map application layer 4: road
network, 42

for selecting a database for retrieving
information, 253

for setting Countries layer TOLERANCE
value in fourth.html file, 149

for setting current values of hidden form
variables in fourth.html file, 150

for setting imgshape coordinates in
fourth.html file, 149

for setting mapfile parameters based on
CGI form variables, 145

for setting mapshape coordinates in
fourth.html file, 149

setting navigation defaults for
perlms_third.pl, 174

for setting PHP/MapScript navigation
defaults, 213

for setting PointObj coordinate values in
PHP/MapScript, 219

for setting query string in fourth.html
file, 149

for setting the binary check box values in
fourth.html file, 147

for setting the CHECKED state for several
layers, 192

for setting the CHECKED state for several
layers in PHP/MapScript, 214

395

INDEX

for setting the Cities layer TOLERANCE
value in fourth.html file, 149

for setting the extent of the map in Python
MapScript, 197

for setting the extent of the Perl MapScript
map, 178-179

for setting the imgbox coordinates in
fourth.html file, 148

for setting the navigation defaults for
python_third.py file, 192

for setting the navigation variables to be
saved in a form, 197, 220

for setting the query item in fourth.html
file, 148

for setting the query layer in fourth.html
file, 148

for setting the shapeindex in fourth.html
file, 149

for setting the value of zoomsize in
fourth_i.html file, 145

for setting the values of the rectObj
old_extent components, 197, 220

for setting up second.map image
parameters, 36

showing a list of modes that users can
select in fourth.html file, 148

showing HTML preamble for second.html
template file, 44

for Slurp and Burp Restaurants
application mapfile, 265-273

for specifying a class-level query template
for presenting results, 143

for specifying an ANNOTATION layer in
the fourth.map mapfile, 144

specifying a polygon layer named
Countries in fourth.map mapfile, 141

for specifying hoods layer in Slurp and
Burp Restaurants application, 248

for specifying the element containing the
map image, 216

for specifying the PHP/MapScript layer
selection controls, 217

for starting your Apache server, 21

of template file fourth.html, 160-164

for terminating the class, layer, and
mapfile, 19-20

for testing if an arrow key has been
clicked, 261

to untar the FreeType tarball, 8

to untar the GDAL tarball, 9

to untar the GD tarball, 9

to untar the libJPEG tarball, 7

to untar the libpng tarball, 7

to untar the Proj.4 tarball, 9

to untar the shapelib tarball, 10

using annotation layers, 81-83

using BigLine symbol, 80

using Circle symbol, 81

using CLASSITEM and EXPRESSION
keywords, 74

using DashedLine symbol, 80

using getLayerByName() method, 254

using imageObij() constructor draw() to
create image map, 175

using LABELMINSCALE in an annotation
layer, 83

using mapObj() method to create a new
Python MapScript object, 190

using newMapODbj() method to create a
PHP/MapScript map object, 210

using ogrinfo to explore the contents of a
spatial data set, 304

using ogrinfo to find attribute names, 303

using ogrinfo to show unique values, 303

using OVERLAYSYMBOL, OVERLAYSIZE,
and OVERLAYCOLOR, 81

using parms.getfirst() method, 196

using PHP Perl function fpreg_match() to
search for strings, 219

using Python string-comparison method
find(), 196-197

using randrange() method in Python
"Hello World" application, 190

using SCALEBAR keyword, 83-84

using the class-level query template in
fourth_cities_header.html, 155

using the draw() method to create the
third.map map image, 194, 215

using the getLayerByName() method, 262

using the img2map() function in Python
MapScript, 198

for using the setMode() function in
fourth.html template, 146-150

using the strict package in
perlms_hello.pl, 169

using TOLERANCE and
TOLERANCEUNITS in fourth.map
mapfile, 142
of WEB object, 32
COLOR CLASS object
for specifying color to be used to render
features, 315
COLOR keyword
for determining color in which a feature is
drawn, 19
for setting the foreground color of scale
bar, 84
for setting value for the RGB color of label
text, 67
use of in QUERYMAP object, 135-136
COLOR LABEL object
for specifying color used to render label
text, 324
COLOR QUERYMAP object
for specifying the color used to highlight
features, 341
COLOR reference map object
for specifying color used to draw the
reference box, 342
COLOR SCALEBAR object
for specifying foreground color of a scale
bar, 344
COLOR STYLE object
for specifying color used for drawing
features, 347
comments
using # (pound sign) to denote in
mapfiles, 17
comparison operators
table of for logical expressions, 76
CONFIG keyword
specifying values of environment
variables for use by MapServer
with, 310
conic projection
function of, 376-378
schematic representation of, 377
CONNECTION LAYER object
for specifying connection string used to
retrieve data, 327
CONNECTIONTYPE LAYER object
for specifying the type of connection, 327
CONTEXT CGI variable
for specifying the name of a context file, 351

INDEX

Countries-Layer templates
in MapServer Fourth Application, 152-154
Cozens, Simon and James Lee
Beginning Perl, Second Edition (Apress,
2004) by, 167
cylindrical projections
PROJECTION object syntax for using, 375
pros and cons of using, 374-376
schematic representation of, 375

D
DashedLine symbol
using to draw dashed lines, 80
DATA keyword
for identifying the base name of a
shapefile, 25
DATA LAYER object
function of, 328
data structures
for shapefiles, 371-373
DATAPATTERN keyword
function of, 310
dBase (DBF) files
joining, 136-137
.dbf filename extension, 24
dbfadd utility
for adding single records to a DBF file, 297
dbfcat utility
for appending records in one DBF file to a
second DBEF file, 299
dbfcreate utility
creating an empty DBF file with, 297
dbfdump utility
for dumping contents of a DBF file to
STDOUT, 297-298
dbfinfo utility
for displaying information about a DBF
file, 300
for finding the names of attributes, 38
-de configuration option
function of, 168
DEBUG CLASS object
for turning class debugging on, 315
DEBUG keyword
for turning debugging on and off, 311
DEBUG LAYER object
for turning layer debugging on, 328
default extent
defining as an array in perlms_third.pl, 175

397

398

INDEX

developable surfaces
utility provided by, 373
development environment
for examples in book, 5
Doyon, Jean-Francois
maintenance of MapServer documents
by, 309
DRIVER OUTPUTFORMAT object
function of, 337
DSO (dynamic shared object), 207-208
DUMP LAYER object
return data in GML or raw raster
format, 328
dynamic shared object. See DSO (dynamic
shared object)

E
earth
the figure of, 380
ellipse
symbol type, 79-81
ellipsoid
defined, 380
EMPTY keyword
use of in map-level query templates, 134
EMPTY page
for indicating an empty result set, 152
EMPTY WEB-level keyword
use of in MapServer, 106
EMPTY WEB object
for specifying the URL of the web page to
display if query returns no results, 348
ENCODING LABEL object
for specifying encoding format for a
label, 324
END keyword
function of in CGI MapServer web
application, 18
error messages
can't be executed because of wrong
permissions, 171
when script can't find the mapfile, 172
ERROR WEB object
for specifying URL of web page to display
if MapServer error appears, 348
ESRI's Spatial Data Warehouse
SDE client libraries as part of, 4

EXPRESSION CLASS object
function of, 315-316
EXPRESSION keyword
possible forms of and function of each
form, 39-40
specifying a comparison string with, 74-76
use of in queries, 104
expressions
using to define classes, 74-76
EXTENSION OUTPUTFORMAT object
function of, 337
EXTENT keyword
for specifying the extent of a map, 311
for specifying the geographic extent of
amap, 17
specifying the geographic extent of the
map with, 25
EXTENT reference map object
for specifying the spatial extend of the
reference image, 342
external libraries
used by MapServer, 2

F
FEATURE attribute
Unix command-line for displaying values
for, 42
FEATURE keyword
specifying an inline geographical feature
with, 18-19
FEATURE LAYER object
for indicating the start of an inline
FEATURE object, 328
FEATURE object
used for defining an inline feature, 320
FEATURENQUERY mode
vs. FEATUREQUERY mode, 123
query example, 120-122
spatial queries performed by and all
matching features returned, 132
FEATUREQUERY mode
vs. FEATURENQUERY mode, 123
query example, 119-120
spatial query performed by, 131-132
file extensions
associated with shapefiles, 371

file header
as shapefile component, 371
FILLED keyword
setting to fill a symbol with a specified
color, 80
specifying that symbol is to be filled with
color defined in CLASS object, 382
FILTER keyword
use of in queries, 104
FILTER LAYER object
function of, 328
FILTERITEM LAYER object
function of, 329
FIPS (Federal information processing
standards) codes, 37
first.html file
building for the first map, 28-30
loading, 28
first.map mapfile
creating, 24-28
font attributes
assigning to labels, 69-70
FONT keyword
setting font to be used with, 67
for specifying the font alias from which
CHARACTER will be drawn, 382
FONT LABEL object
for specifying the alias of the font used to
label a feature, 324
fonts
setting point size for, 67
use of in MapServer, 66-67
FONTSET examples, 385-386
fontset file
for telling MapServer where to find a
font, 12
FONTSET keyword
function of, 19, 311
FOOTER keyword
for specifying template file processed after
everything else is done, 134
FOOTER LAYER object
function of, 329
FOOTER WEB object
function of, 349
FORCE LABEL object
for forcing alabel to be rendered (available
for cached labels only), 324

INDEX

FORMATOPTION OUTPUTFORMAT object
for allowing specification of drive- or
format-specific options, 337
forward slash (/)
for delimiting regular expressions, 74-75
strings delimited by, 42
fourth_cities_footer.html
for closing the table opened in the
HEADER template, 155
fourth_countries_footer.html
for sending the FOOTER template back to
the browser, 154
fourth_i.html
initialization file contained in, 145-146
fourth_web_header.html
code to display result set information as
awhole, 151
fourth.html template file
for MapServer Fourth Application,
146-150
fourth.map mapfile
for a query application, 139-144
FreeType
building and installing, 8-9
used by GD for rendering fonts, 2
website for downloads and
documentation, 13
FROM JOIN object
function of, 322

G
GAP keyword
for specifying distance between characters
when rendering TrueType
symbols, 382
GD library
building and installing, 9
used by MapServer to render images, 2
GDAL (Geospatial Data Abstraction Library)
building and installing, 9-10
translator library for raster data, 3
website for downloads and
documentation, 14
GDAL/OGR utilities, 301-307
getLayerByName() method
using to retrieve a reference to layer
named poi, 254
getLayersByGroupName() method
lacking in Python MapScript, 199-200

399

400

INDEX

Gilmore, W. Jason
Beginning PHP 5 and MySQL: From Novice
to Professional (Apress, 2004) by,
207,235
GNU Make
absolute requirement for building
FreeType, 5
graphical distinction
importance of between map features, 65
GRID LAYER object
for indicating the start of a GRID object, 329
GRID object
for defining a map grid within a layer, 320
GROUP LAYER object
for specifying the name of the group to
which a layer belongs, 329

H
HandleIE() function
code defining, 258-259
HEADER keyword
specifying the path to a template file
with, 134
HEADER LAYER object
function of, 329
HEADER WEB object
function of, 349
“Hello World” application
building, 16-23
creating the mapfile for, 16-20
in Perl MapScript, 169-172
PHP/MapScript version of, 211
Hello World image, 23
hello.map file
code for creating, 17-20
using specifications from for building Perl
MapScript application, 169-172
HTML initialization form
MapServer invoked by Apache from,
15-16
HTML legends
example generated from the mapfile
third.map, 389
function of, 386-389
HTML tags
code for generating for displaying a
Python MapScript image, 190
HTML template
for second.map application, 43-50

HTML template and initialization file
creating, 20-23

HTML template file
building for the first map, 28-30
embedding initial values in, 21-23
for MapServer Fourth Application,

146-150

for second.map application, 44-50

|
lid]
function of in queries, 138
ID CGl variable
for specifying a replacement for the
default session ID, 351
IMAGE keyword
specifying file name of GIF or PNG image
for pixmap symbols, 383
image map
using imageObj() constructor draw() to
create, 175
IMAGE reference map object
for specifying path to a file containing the
GIF reference image, 343
IMAGECOLOR keyword
for defining the background color for map
images, 17
for specifying background color of scale
bar image, 84
for specifying background color of a map
image, 311
specifying your image background color
with, 24
IMAGECOLOR LEGEND object
for specifying the background color of a
legend image, 335
IMAGECOLOR SCALEBAR object
for specifying background color of image
on which scale bar is drawn, 345
imagemap
creating for the Slurp and Burp
Restaurants application, 255-257
IMAGEMODE OUTPUTFORMAT object
for specifying the image mode used for
output, 338
IMAGEPATH keyword
for telling MapServer where to put images
it creates, 18

IMAGEPATH WEB object
for specifying path to directory where
images and files are written, 349
IMAGEQUALITY keyword
for specifying image quality for JPEG
images, 311
images
library used for rendering in MapServer, 2
images file
for MapServer to save images in, 12
IMAGETYPE keyword
for specifying format of the output
image, 312
for specifying the format of the map
image, 17
specifying your image type with, 24
IMAGEURL keyword
specifying a URL showing where to an
image, 18
IMAGEURL WEB object
for specifying URL pointing to directory
where images are written, 349
IMG CGI variable
using to identify input image to
MapServer, 351
img, img.x, and img.y query CGI variables
function of, 138
IMGBOX CGI variable
representing the coordinates of opposite
corners of an image drag box, 351
imgbox coordinates
code for setting in fourth.html file, 148
imgext [minx] [miny] [maxx] [maxy] query
CGl variables
function of, 138
IMGEXT CGI variable
function of, 351
IMGSHAPE CGI variable
for specifying vertex coordinates of a
user-defined polygon, 352
imgshape coordinates
code for setting in fourth.html file, 149
IMGSIZE CGI variable
for specifying the size of the map image, 352
imgxy [x] [y] query CGI variable
function of, 138
IMGXY CGI variable
containing the image coordinates of a
mouse click on a map image, 352

INDEX

Independent JPEG Group website
directory list, 13
INDEXQUERY mode
query example, 126-127
retrieval of a single feature based in shape
index, 133
INDEXQUERYMAP mode
map image produced by, 114
initialization file
contained in the fourth_i.html file, 145-146
for second.map application, 43-44
initialization file and HTML template
creating, 20-23
INTERLACE keyword
for turning image interlace on or off, 312
INTERLACE LEGEND object
for turning legend image interlace on or
off, 335
INTERLACE SCALEBAR object
for turning scale bar image interlace on or
off, 345
INTERNAL keyword
values associated with, 84
interstate highway layers
code for drawing, 73
interstatel layer
adding labels to, 71
INTERVALS SCALEBAR object
for specifying number of intervals shown
on a scale bar, 345
[itemname], [itemname_esc], and
[itemname_raw]
function of in queries, 137
ITEMFEATURENQUERY mode
query example, 124-126
searches performed by and matches
returned, 133
ITEMFEATUREQUERY mode
query example, 123-124
searches performed by and matches
returned, 132
ITEMNQUERY mode
attribute searches performed by and all
matches returned, 131
query example, 117-119
for searching all queriable layers and
returning results, 105

401

402

INDEX

ITEMQUERY mode
attribute searches performed by and first
match returned, 131
query example, 116-117
setting TOLERANCE value in, 116-117
using in MapServer, 105

J
JavaScript
using to fake out IE in Slurp and Burp
Restaurants application, 257-260
JavaScript library
overlib created by Erik Bostrup, 238
JavaScript tool tip code
installing, 238
JOIN CLASS object
for indicating the start of a JOIN object, 316
JOIN LAYER object
for indicating the start of a JOIN object, 329
JOIN object
function of, 136-137, 321-323
[joinname_itemname],
[joinname_itemname_esc], and
[joinname_itemname_raw]
function of in queries, 137

K
KEYSIZE LEGEND object
for specifying the size of symbol key
boxes, 335
KEYSPACING LEGEND object
for specifying spacing between labels and
symbols in a legend, 335
keyword-value pairs
in mapfile definitions, 17
Knuth, Donald
The TeXbook (Addison Wesley, 1986) by, 61
Koormann, Frank
maintenance of MapServer documents
by, 309

L
LABEL CLASS object
for indicating the start of a LABEL object, 316
LABEL LEGEND object
for indicating the start of a LABEL object, 335
LABEL object
assigning font attributes to labels in, 69-70
code for defining in the fourth.map
mapfile, 143

for defining a text string or symbol used to
label a feature, 323
for specifying font type, size, and color of a
label, 19, 27
LABEL SCALEBAR object
for indicating the start of a LABEL object, 345
LABELANGLEITEM LAYER object
function of, 330
LABELCACHE keyword
for caching labels, 70
LABELCACHE LAYER object
for turning the label cache on or off, 330
LABELFORMAT GRID object
function of, 320
LABELITEM keyword
specifying the attribute name with, 71
LABELITEM LAYER object
function of, 330
LABELMAXSCALE keyword
for setting the maximum scale at which
labels will be rendered, 72
LABELMAXSCALE LAYER object
for specifying maximum scale at which
labels will be rendered, 330
LABELMINSCALE keyword
setting the minimum scale at which labels
will be rendered, 72
LABELMINSCALE LAYER object
for specifying minimum scale at which
labels will be rendered, 330
LABELREQUIRES LAYER object
function of, 330
labels
adding text to, 71
assigning font attributes to, 69-70
caching, 70
positioning, 68-69
positioning with the POSITION keyword, 70
setting orientation of, 67-71
setting the maximum scale at which they
will be rendered, 72
specifying number of pixels between, 69
wrapping, 70
LABELSIZEITEM LAYER object
for specifying the size at which a label will
be rendered, 331
lakes. See layer 2: water features; water
features: layer 2

Lambert Conformal conic projection
syntax for, 377-378
layer 2: water features
contents of for second.map application, 39
layer 3: state boundaries
code for, 41
layer 4: road network
contents of for second.map application,
41-42
LAYER CGI variable
for specifying the name of a layer, thereby
setting its STATUS to on, 352
LAYER keyword
for indicating the start of a LAYER
object, 312
for introducing a layer, 18
LAYER object
for determining what spatial data is to be
rendered, 327
function of in digital mapping processes,
33-34
for telling MapServer what to render, 25
layer-level FOOTER template
for closing the table opened in the
HEADER template, 155
for sending the FOOTER template back to
the browser, 153-154
layer-level HEADER template
in fourth_cities_header.html file, 154-155
in the fourth-countries_header.html file,
152-153
layer-level query templates
useful for multi-result queries, 134
layers
setting the maximum scale at which they
will be rendered, 72
LAYERS CGI variable
for specifying a space-delimited list of
layer names, 352
Lee, James and Simon Cozens
Beginning Perl, Second Edition (Apress,
2004) by, 167
legend image
code for defining file name and URL for in
perlms_third.pl, 175
LEGEND keyword
beginning a legend with, 85
for indicating the start of a LEGEND
object, 312

INDEX

LEGEND object
for determining the appearance and
location of a legend, 334-336
legend utility
for reading a mapfile and creating alegend
image on its contents, 292
legends
creating in MapServer, 85-87
example of embedded, 86
libcurl
client-side URL-transfer library, 3
lib]JPEG
building and installing, 7-8
used by MapServer to render JPEG images,
3
libpng
building and installing, 7
library of routines for rendering PNG
images, 3
website for downloads and
documentation, 13
libraries
selecting supporting used by MapServer,
14
specifying paths to with command-line
options, 11
steps for building, 6
Lime, Steve
maintenance of MapServer documents
by, 309
line layer
code for annotation layer, 82
for rendering a series of points as a
connected sequence, 25
line type shapefile, 371
LINECAP keyword
specifying how a CARTOLINE symbol is
terminated, 382
LINEJOIN keyword
specifying how the intersection of two
lines will be rendered, 382
LINEJOINMAXSIZE keyword
specifying the length of overrun on miter
type line joins, 382
LOG WEB object
for specifying file where MapServer
activity will be logged, 349
logical expression comparison operators
table of, 76

403

404 INDEX

M
man pages
website address for, 74
map
building the first in your MapServer
application, 23-30
building the HTML temple for the first
map, 28-30
MAP CGI variable
containing the full path to the mapfile, 352
map coordinates
code for calculating map width and height
of extent in map units, 180
map images
code for defining file name and URL for in
perlms_third.pl, 175
creating and saving in Slurp and Burp
Restaurants application, 257
map object
mapfile keywords, 310-315
simple and structured items in, 32-33
map projections
ways to categorize, 373-381
map symbols
creating legends for, 85-87
MAPEXT CGI variable
function of, 352
mapfile
code for Slurp and Burp Restaurants
application, 265-273
concepts, 31-34
creating for the Hello World application,
16-20
function of in CGI MapServer web
application, 15-16
with navigation controls and layer
selection, 35-43
objects included in each, 17
structure of, 32-33
syntax, 34
mapfile keywords, 310-315
"MapFile Reference - MapServer 4.4"
document
website address for, 34
map-level query templates
keywords that specify query templates,
133-134
in MapServer Fourth Application, 150-152
steps for creating a complete web page
in, 134

map-only query modes
function of, 107-108
maps
busy map produced by the second
mapping application, 56
digital vs. paper, 66
effect of further scale increases on feature
density, 59
effect of increasing scale by a factor of
two, 58
factors involved in optimum information
density, 60-61
the graphic design of, 61-66
importance of graphical distinction
between features, 65
labeling for clarity, 66-71
modifying the look and feel of, 55-101
reducing detail by deselecting Roads layer,
56-57
using scale to reduce clutter on, 71-74
MapScript
extending the capabilities of with MySQL,
231-290
MapScript web page
code for finishing, 176-177
MapServer
basic concepts, 15-16
basic knowledge needed before building, 1
building and installing, 1-14
classifying features in, 74-81
fourth.map mapfile, 139-144
how queries are processed by, 103-108
HTML required by, 20-21
making the executable accessible to
Apache, 11-12
OUTPUTFORMAT implicit declarations,
338-340
planning the installation, 1-4
query types in, 104-105
replacement of a substitution string with a
value, 137
selecting supporting libraries used by, 1-4
setting label color for, 67
simple examples, 15-30
substitution strings used in, 357-368
telling it where to find a font, 12
use of fonts in, 66-67
MapServer and Apache
configuring, 12-13

MapServer Application Gallery
the website address, 232
MapServer components
purposes of, 309-368
MapServer documents
website address for, 309
MapServer Fourth Application
FEATURENQUERY mode query example
and results, 120-122
FEATUREQUERY mode query results, 120
INDEXQUERY mode returns a single
feature based on shape index, 127
initial display of the query definition
page, 111
ITEMFEATURENQUERY mode results
with larger TOLERANCE for the
Cities layer, 126
ITEMQUERY mode results when
searching Countries layer, 119
mapfile for, 139-144
NQUERY mode multiple results produced
and states and cities displayed, 115
query initialization page, 110
query templates in, 150-155
result page for ITEMNQUERY mode
matches from Cities layer, 118
result page for QUERY mode displaying a
single city, 112
result page for QUERY mode displaying a
single state, 113
results page from
ITEMFEATURENQUERY mode
query, 125
results page from ITEMFEATUREQUERY
mode query, 124
showing an NQUERY mode spatial search
using a doughnut-shaped search, 129
showing an NQUERY mode spatial search
using a polygon search, 128
MapsServer reference, 309-368
MapsServer utilities, 291-296
MapServer Version 4.4.1
case sensitivity of, 34
MAPSHAPE CGI variable
containing the user-defined polygon in
map coordinates, 353
mapshape coordinates
code for setting in fourth.html file, 149

INDEX

MAPSIZE CGI variable
containing the image size of the map to be
created, 352
MAPXY CGI variable
function of, 353
MARKER reference map object
for specifying symbol used when
reference box is too small, 343
MARKERSIZE reference map object
for specifying size of symbol used when
reference box is too small, 343
MarkSpot() function
invoking in the Slurp and Burp
Restaurants application, 255-256
MAXARCS GRID object
for specifying the maximum number of
arcs to be drawn, 320
MAXBOXSIZE reference map object
for specifying the maximum reference box
size, 343
MAXFEATURES LAYER object
for specifying maximum number of
features rendered in a layer, 331
MAXINTERVAL GRID object
for specifying the maximum interval
between grid lines, 321
MAXSCALE CLASS object
for specifying maximum scale at which the
class will be rendered, 316
MAXSCALE keyword
for setting the maximum scale at which a
layer will be rendered, 72
MAXSCALE LAYER object
for specitying the maximum scale at which
a layer will be rendered, 331
MAXSCALE WEB object
for specifying maximum scale at which a
map will be returned, 349
MAXSIZE CLASS object
for specifying maximum size at which a
symbol will be drawn, 317
MAXSIZE LABEL object
for specifying the maximum font size for
scaled labels, 325
MAXSIZE STYLE object
for specifying maximum size at which a
symbol will be drawn, 347

405

406

INDEX

MAXSUBDIVIDE GRID object
for specifying the maximum number of
segment to render a grid line, 321
MAXTEMPLATE WEB object
function of, 350
MAXX CGI variable
function of, 353
MAXY CGI variable
function of, 353
McKenna, Jeff
maintenance of MapServer documents
by, 309
Mercator projection, 375-376
syntax for, 376
METADATA LAYER object
for allowing data to be stored as
name-value pairs, 331
METADATE WEB object
function of, 350
MIMETYPE OUTPUTFORMAT object
for specifying the mime type used for the
result, 338
MINARCS GRID object
for specifying the minimum number of
arcs to be drawn, 321
MINBOXSIZE reference map object
for specifying the smallest reference box
size, 343
MINDISTANCE keyword
for specifying number of pixels between
label, 69
MINDISTANCE LABEL object
for specifying the minimum distance
between identical labels, 325
MINFEATURESIZE keyword
for specifying size of smallest feature to be
labeled, 69
MINFEATURESIZE LABEL object
for specifying the minimum size at which
a feature will be labeled, 325
Ming
for creating SWF (Shockwave Flash)
movies, 4
MININTERVAL GRID object
for specifying the minimum interval
between grid lines, 321
MINSCALE CLASS object
for specifying minimum scale at which the
class will be rendered, 317

MINSCALE keyword
setting the minimum scale at which layers
will be rendered, 72
MINSCALE LAYER object
for specifying the minimum scale at which
a layer will be rendered, 331
MINSCALE WEB object
for specifying minimum scale at which a
map will be returned, 350
MINSIZE CLASS object
for specifying minimum size at which a
symbol will be drawn, 317
MINSIZE LABEL object
for specifying the minimum font size for
scaled labels, 325
MINSIZE STYLE object
for specifying minimum size at which a
symbol will be drawn, 347
MINSUBDIVIDE GRID object
for specifying the minimum number of
segments to render a grid lines, 321
MINTEMPLATE WEB object
function of, 350
MINX CGI variable
function of, 353
MINY CGI variable
function of, 353
MODE CGlI variable
function of and mode values supported,
353-355
mouse-click point
converting from image coordinates to
map coordinates, 176
Mozilla vs. IE
design issues regarding use of, 233-234
MySQL
excellent reference book for, 235
extending the capabilities of MapScript
with, 231-290
MySQL database
creating, 234-237

N
NAME CLASS object
for specifying name for the class for use in
the legend, 317
NAME JOIN object
for specifying the join name, 322

NAME keyword
for assigning a name to a symbol, 79-81
function of in CGI MapServer web
application, 17
naming your first.map mapfile with, 24
specifying name of layer with, 25
specifying the name used to access a
symbol, 383
for specifying the name used to identify
map output, 312
NAME LAYER object
for specifying the name of the layer, 331
NAME OUTPUTFORMAT object
used by the mapfile keyword IMAGETYPE
to reference the format, 338
National Institute of Standards and
Technology (NIST)
codes issued by, 37
navigation defaults
setting for perlms_third.pl, 174
newMapObj() method
using to create anew PHP/MapScript map
object, 210
NQUERY mode
area searches and point queries
performed by, 130-131
matches returned in a higher layer
TOLERANCE, 116
query example, 114-116
for searching all queriable layers and
returning results, 105
NQUERY mode with polygon search region
query example, 127-129
[nr], [nl], and [nlr]
function of in queries, 137

0
oblate spheroid
the figure of the earth, 380
Oblique Mercator projection, 375
OFFSET LABEL object
for specifying offset of lower-left corner of
a label from label point, 325
OFFSET STYLE object
for specifying the offset for shadows, 347
OFFSITE LAYER object
for setting the transparent color for raster
layers, 332

INDEX

OGR Simple Features Library
for access to read and write vector
formats, 3
ogr2ogr utility
for converting spatial data sets from one
format to another, 304-306
ogrinfo utility
for displaying information about a data set
in a OGR-supported format, 302-304
for geographic information and feature
values, 38
ogrtindex utility
function of, 307
online resources
list of for MapServer builds, installation,
and usage, 13-14
Oracle Spatial client libraries
for giving MapServer access to Oracle
Spatial Data Warehouse, 4
OUTLINECOLOR CLASS object
for specifying the outline color (for
polygons only), 317
OUTLINECOLOR keyword
for specifying color of the border around
the scale bar, 84
OUTLINECOLOR LABEL object
for specifying color used to create outline
around label text, 325
OUTLINECOLOR LEGEND object
for specifying the outline color for symbol
key boxes, 335
OUTLINECOLOR reference map object
for specifying color used to outline
reference box, 343
OUTLINECOLOR SCALEBAR object
for specifying the color used to outline
intervals, 345
OUTLINECOLOR STYLE object
for specifying the outline color (for
polygons only), 348
OUTLINECOLOR value
for drawing an outline around text, 67
output formats
supported by libraries, 1
OUTPUTFORMAT implicit declarations
made if no explicit declarations are found
in the mapfile, 338-340

407

408

INDEX

OUTPUTFORMAT object
for defining and naming output formats,
336-340
OVERLAYBACKGROUNDCOLOR CLASS
object
for specifying color used to render overlay
symbols, 317
OVERLAYCOLOR CLASS object
for specifying color used for drawing
features with overlay symbols, 318
OVERLAYCOLOR keyword
example using, 81
OVERLAYMAXSIZE CLASS object
for specifying maximum size in pixels an
overlay symbol can be drawn, 318
OVERLAYMINSIZE CLASS object
for specifying minimum size at which an
overlay symbol can be drawn, 318
OVERLAYOUTLINECOLOR CLASS object
for specifying the outline color for an
overlay symbol (for polygons
only), 318
OVERLAYSIZE CLASS object
function of, 318
OVERLAYSIZE keyword
example using, 81
OVERLAYSYMBOL CLASS object
for specifying the overlay symbol used for
drawing features, 318
OVERLAYSYMBOL keyword
example using, 81

P
parms.getfirst() method
code showing use of, 196
PARTIALS LABEL object
for rendering partial labels, 326
passwords
importance of using unique for security

purposes, 253

PDFlib

provides ability to produce output as

PDFs, 4

Perl

building, 168-169
configuring, 168
created by Larry Wall in late 1980s,

167-168

Perl MapScript
building, 169
building and installing, 168-169
figure of the "Hello World" application, 171
"HelloWorld" application, 169-172
importance of checking for typos, 172
an interactive map application, 172-180
troubleshooting the "Hello World"
application, 171
using, 167-186
Perl MapScript "Hello World" application
code for, 172
Perl MapScript Third Map application
perlms_third.pl version, 173
perlms_third.pl
Perl MapScript Third Map application
version, 173
setting the CHECKED state for several
layers, 174
PHP
building, 208-209
website address for downloading, 208
PHP MapScript
patching to retrieve the shape index,
238-239
PHP script
first invocation for Slurp and Burp
Restaurants application, 251-252
phpinfo.php page
showing the MapScript and MySQL
modules are loaded, 235
PHP/MapScript
building and installing, 207-210
using, 207-229
PHP/MapScript application
checking if MySQL support is included
in, 235
code for navigation defaults, 213
img2map height-to-latitude conversion,
212-213
img2map width-to-longitude conversion,
212-213
original projection of the spatial data used
for, 380
producing an interactive map, 212-222
PHP/MapScript "Hello World" application
creating, 210-212

phpms_fifth.php
code for Slurp and Burp Restaurants
application, 273-290
phpms_hello.php
website for code distribution, 210
phpms_third.php
downloadable from Apress website, 212
PHP/MapScript version of the third
application, 218
pixmap
symbol type, 79-81
poi mapfile layer
for Slurp and Burp Restaurants
application. See points-of-interest
layer
point layer
defining one named Cities in fourth.map
mapfile, 142
used to render spatial data as isolated
points, 25
point queries
performed by QUERY mode, 130
point type shapefile, 371
POINTS FEATURE object
for specifying coordinate pairs
representing vertices of a shape, 320
POINTS keyword
specifying the coordinates of points that
constitute a vector symbol, 383
using to describe a list of coordinate pairs,
18-19
points-of-interest layer
for Slurp and Burp Restaurants
application, 250
polygon layer
for rendering a series of points as an
area-enclosing figure, 26
polygon type shapefile, 372-373
POSITION keyword
for specifying the placement of a label,
68-69
using to position labels, 70
values associated with, 84
POSITION LABEL object
for specifying position of label with
respect to the label point, 326
POSITION LEGEND object
for specifying the position of the
embedded legend, 336

INDEX

POSITION SCALEBAR object
for specifying position of embedded scale
bar, 345
PostgreSQL client libraries
for giving MapServer access to PostGIS
data, 4
POSTLABELCACHE LAYER object
function of, 332
POSTLABELCACHE LEGEND object
function of, 336
POSTLABELCACHE SCALEBAR object
function of, 346
PROCESSING LAYER object
for specifying a processing directive for a
layer, 332
Proj.4
building and installing, 9
library of cartographic projection
routines, 3
website for downloads and
documentation, 14
Proj.4 library
projections available in, 379
projection categories, 373-381
PROJECTION keyword
for indicating the start of a PROJECTION
object, 312
PROJECTION LAYER object
for indicating the start of a PROJECTION
object, 332
PROJECTION object
specifying map projection used for spatial
data, 340-341
Python
building and installing from the source
distribution, 187-188
Python MapScript
building and installing, 187-189
code for defining the default extent as an
array, 193
code for defining the pointObj() object, 192
code for "Hello World" application,
pythonms_hello.py, 200-201
code for pythonms_third.py, 201-206
displaying resulting web page, 199
figure showing the "Hello World"
application, 191
vs. MapServer, 187

409

410

INDEX

a practical application for producing an
interactive map, 191-200
using, 187-206
Python MapScript application
code for identifying the path to the
mapfile, 192
Python MapScript "Hello World" application
creating, 189-191
using mapObj() method to create a new
object in, 190
using randrange() method in, 190
pythonms_hello.py
website address for downloading, 189
pythonms_third.py
figure showing the Python MapScript
version of, 195
Python MapScript code for, 201-206

Q

qitem [name] query CGI variable
function of, 139
QITEM CGlI variable
function of, 355
glayer [name] query CGI variable
function of, 139
QLAYER CGI variable
forrestricting a search to a single layer, 355
QSTRING CGI variable
containing the query string, 355
gstring query CGI variable
function of, 139
quadtree
conceptual view of hierarchical extents
that comprise, 294
queriable layer
needed for MapServer to perform a
query, 104
query CGI variables
available to MapServer query
applications, 138-139
query examples, 108-129
query item
code for setting in fourth.html file, 148
query layer
for associating a mouse click with a
specified data set, 26
code for setting in fourth.html file, 148

QUERY mode
maintaining state in, 107
point query performed by, 130
query example, 109-114
using in MapServer, 103-166, 104-105
query modes
functions of, 129-133
summary of main features of each, 109
query parameters
saving to a queryfile, 107
query string
code for setting in fourth.html file, 149
query substitution strings
function of in queries, 137-138
query templates
class-level, 135
displaying attributes from joined tables
in, 137
functions of, 105-106, 133-135
layer-level, 134
levels at which they can be defined,
105-106
map-level, 133-134
in MapServer Fourth Application, 150-155
structure of the for providing complete
web page, 106
query types
in MapServer, 104-105
queryfile [filename] query CGI variable
function of, 139
QUERYFILE CGI variable
for specifying a queryfile that's loaded
before any other processing, 356
QUERYMAP keyword
for indicating the start of a QUERYMAP
object, 313
QUERYMAP object
for determining how query results will be
rendered, 341-342
function of in query modes, 135-136
specifying querymaps in mapfile by, 107
querymaps
defined, 107
quotation marks. See quotes
quotes
enclosing keyword values with in strings, 17

R
raster layer
for rendering a georeferenced image, 26
record header
as shapefile component, 371
rectObj $old_extent
code for setting values of components
of, 179
REF CGI variable
for identifying input tag containing the
reference map image, 356
reference
MapServer, 309-368
REFERENCE keyword
for indicating the start of a REFERENCE
object, 313
reference map image
code for defining file name and URL for in
perlms_third.pl, 175
reference map object
for determining the characteristics of the
reference map, 342-344
reference maps
using in MapServer, 87
REFXY CGI variable
function of, 356
REQUIRES LAYER object
function of, 332
RESOLUTION keyword
for specifying the resolution of the output
display in pixel per inch, 313
[rn], and [Irn]
function of in queries, 138
road network: layer 4
contents of for second.map application,
41-42
Roads layer
reducing map detail by deselecting, 56-57
root privileges
needed for installing and building
MapServer software, 5

S
savequery [true] [false] query CGI variable
function of, 139
SAVEQUERY CGI variable
function of, 356
scale bars
creating, 83-85

INDEX

SCALE CGI variable
function of, 356
SCALE keyword
setting scale of a map with, 313
SCALEBAR keyword
for indicating the start of a SCALEBAR
object, 313
SCALEBAR object
color-related keywords used in, 84
for creating scale bars in MapServer, 83-85
for defining the scale bar, 344-346
scalebar utility
for reading a mapfile and creating a scale
bar image on its contents, 292
SDE client libraries
part of ESRI's Spatial Data Warehouse, 4
SEARCHMAP CGlI variable
function of, 356
second_i.html
code file for, 53
second.html template file
code containing the substitution string, 45
code file for, 53-54
code for defining checkboxes, 46
code for producing form for user
interaction with MapServer, 45
code for providing a virtual mouse click, 47
code for providing zoom controls, 45-46
contents of for second.map application,
44-50
second.map application
building with navigation controls and
layer selection, 35-43
coast of northern California as rendered
by, 49
code file for, 51-53
code for defining the WEB object
parameters, 36
code for layer1: urban areas, 38-39
code for layer 2: water features, 40
code for layer 4: road network, 42
code for setting up the image p
arameters, 36
displaying initialization file for, 47
effect of inappropriate detail in, 63-64
how defects in relate to MapServer
features, 61-66
initial display of the second map at full
extent, 48

41

412

INDEX

layer 1: urban areas, 37-39
layer 2: water features, 39-41
Midwest and eastern United States as
rendered by, 50
SHADOWCOLOR LABEL object
for specifying the shadow color, 326
SHADOWSIZE LABEL object
for specifying the offset of the shadow
behind the label text, 326
shape index
setting to the value of the store ID, 255
shapefile
function of, 24
Shapefile C library
routines for writing C programs that can
read, write, and update shapefiles,
297-301
shapefile specification, 369-373
attribute information, 370
data structures, 371-373
file extensions associated with
shapefiles, 371
file structure and file-naming
conventions, 370-371
shapeindex
code for setting in fourth.html file, 149
SHAPEINDEX CGI variable
function of, 356
shapelib
building and installing, 10-11
C routines for creating and manipulating
shapefiles, 3
shapelib website
for downloads and documentation, 14
SHAPEPATH keyword
using to find the directory containing
shapefiles, 25
shapes file
for MapServer to get its spatial data from
ESRI shapefiles, 12
SHAREPATH keyword
for specifying the path to shapefiles, 313
.shp filename extension, 24
shp2img utility
for reading a mapfile and creating a map
image on its contents, 291-292
shpadd utility

for adding a single feature to a shapefile, 298

shpcat utility
for appending features of one shapefile to
another, 300
shpcentrd utility
function of, 301
shpcreate utility
for creating an empty shapefile, 298
shpdump utility
for dumping contents of a shapefile to
STDOUT, 298-299
shpdxf utility
for creating a DXF graphic file from a
shapefile, 301
shpinfo utility
for displaying information about a
shapefile, 300
shpproj utility
for re-projecting a shapefile using the
Proj.4 library, 301
syntax for, 380
using to re-project spatial data, 380-381
shprewind utility
function of, 299
shptree utility
function of, 293-294
shptreevis utility
function of, 294-295
.shx filename extension, 24
signposts
for increasing the utility of a good map,
65-66
SIZE CLASS object
for specifying height of a symbol in
pixels, 319
SIZE keyword
setting font point size with, 67
setting the size of a symbol with, 79-81
for specifying the final map image
dimensions, 17
for specifying width and height of map
images in pixels, 314
specifying your image size with, 24
values associated with, 84
SIZE LABEL object
for specifying the size of label text, 326
SIZE QUERYMAP object
for specifying size of the querymap
image, 342

SIZE reference map object
for specifying the width and height of the
reference image, 344
SIZE SCALEBAR object
for specifying the size of the scale bar, 346
SIZE STYLE object
function of, 348
SIZEUNITS LAYER object
for setting the units of the CLASS object
SIZE, 332
slayer (selection layer)
value of in Fourth Application query
mode, 132
SLAYER CGI variable
containing the name of the select layer for
feature query modes, 357
slayer query CGI variable
function of, 139
Slurp and Burp Restaurants application
addressing some design issues, 233-239
adding features to a layer, 254-255
application in action, 239-247
building, 239-265
checking the creation of the store table, 237
code defining HandlelE() function,
258-259
code for the mapfile, 265-273
creating and saving map images, 257
creating the application user account, 237
creating the database and producing a list
of tables in, 236-237
creating the imagemap, 255-257
creating the mapfile for, 247-251
cursor is sitting on a cup in IE but tool tip
is not displayed, 247
describing requirements for, 232-233
design issues regarding use of Mozilla vs.
IE, 233-234
downloading code for, 239
importance of limiting the select
statement in, 253
initial display in IE with navigation
arrows, 241
initial display in Netscape Navigator, 240
invoking the MarkSpot() function in,
255-256
JavaScript code creating a table with three
each rows and columns, 259
multiple query results displayed in IE, 245

INDEX

multiple query results displayed in
Netscape Navigator, 244
PHP script for (phpms_fifth.php), 273-290
a pop-up tool tip displayed in Netscape
Navigator, 242
a pop-up tool tip displayed in IE, 243
retrieving dynamic information, 252-254
setting the hot spot in, 255
special handling required for browsers to
function properly, 233-234
tool tip displayed in Netscape Navigator
while mode is set to Query, 246
software
building and installing for MapServer and
libraries, 5-11
required to build MapServer, 4-5
software licensing
for software for building MapServer, 4
sortshp utility
function of, 292-293
spatial data
data sets in used for example in book,
23-24
under the shapefile model, 369
using shpproj to re-project, 380-381
website address for obtaining, 23
spatial data sets
untarring to the data directory, 24
spatial information
in shapefile file structure, 370-371
spatial queries
performed by FEATUREQUERY mode,
131-132
performing for Mozilla-like browsers,
260-263
provided by MapServer, 103-104
spatial query results
displaying, 263-265
state
maintaining in query mode, 107
state boundaries: layer 3
code for, 41
stateless protocol
MapServer web application based on, 15
STATUS keyword
for specifying whether the map image is
created, 314
use of in QUERYMAP object, 135
using default value with, 18

413

414

INDEX

values associated with, 84
values that can be assumed by, 25
STATUS LAYER object
function of, 333
STATUS LEGEND object
function of, 336
STATUS QUERYMAP object
for specifying whether or not a querymap
image will be created, 342
STATUS reference map object
for specifying if a reference image is
created or not created, 344
STATUS SCALEBAR object
function of, 346
stereographic projection
schematic representation of, 379
syntax for, 378-379
structured object
example of, 32
STYLE 1 scale bar
example of, 85
STYLE CLASS object
for indicating the start of a STYLE object, 319
STYLE keyword
setting a dash pattern or style with, 80
specifying the succession of pixels on and
off in a dashed-line style, 383
use of in QUERYMAP object, 135
values associated with, 84
STYLE object
elements determine how symbols will be
rendered, 347-348
function of in CGI MapServer web
application, 19
parameters contained in, 27
STYLE QUERYMAP object
for specifying how features will be
rendered, 342
STYLE SCALEBAR object
for specifying the scale bar style, 346
STYLEITEM LAYER object
function of, 333
substitution strings
and CGI variables, 137-139
in HTML templates, 16
importance of enclosing keyword values
in quotes, 17
used in MapServer, 357-368

sym2img utility
for reading a symbol file and creating
symbol image based on its
contents, 293
SYMBOL CLASS object
for specifying the symbol to use for
drawing features, 319
symbol definition reference, 381-383
SYMBOL keyword, 381
for indicating the start of a SYMBOL
object, 79, 314
SYMBOL STYLE object
for specifying the symbol used for drawing
features, 348
symbol types, 79-81
symbols. See also map symbols
creating and using, 381-385
setting antialiasing on or off for, 80
using, 79-81
SYMBOLSCALE LAYER object
for specifying the scale at which a symbol
appears at its full size, 333
symbolset file
for allowing MapServer to create symbols
on the fly, 12
SYMBOLSET keyword
contains symbol definitions, 314, 381

T
TABLE JOIN object
function of, 322
TEMPLATE CLASS object
function of, 319
TEMPLATE JOIN object
function of, 322
TEMPLATE keyword
specifying path to the file for each query
result, 135
for specifying the name of the HTML
template, 18
TEMPLATE LAYER object
for specifying name of HTML file used to
display query results, 333
TEMPLATE WEB object
function of, 350
TEMPLATEPATTERN keyword
function of, 314

TEXT CLASS object
for specifying the text used to label
features in a class, 319
TEXT FEATURE object
for specifying the text string used to label a
feature, 320
TEXT keyword
adding label text with, 71
for specifying text string used to label a
feature, 18-19
The TeXbook (Addison Wesley, 1986)
by Donald Knuth, 61
third_i.htm
code for HTML initialization file, 100
third.html
code for HTML template, 100-101
third.map application
fixes for inappropriate labels in
second.map application, 61-63
legend generated from, 387
mapfile code for, 88-99
suppressing detail to enhance information
content, 64
using to build a practical PHP/MapScript
application, 212-222
tile4ms utility
function of, 296
TILEINDEX CGI variable
function of, 357
TILEINDEX LAYER object
for specifying the name of the tile index
file for a layer, 333
TILEITEM LAYER object
function of, 333
TO JOIN object
for specifying the name of the join item in
the table to be joined, 323
TOLERANCE LAYER object
for specifying the search radius or
sensitivity for queries, 334
TOLERANCE value
setting for Countries layer in fourth.html
file, 149
setting in fourth.html file, 149
setting in NQUERY mode, 114-116
TOLERANCEUNITS LAYER object
for specifying units of TOLERANCE, 334

INDEX

TRANSFORM LAYER object
for transforming spatial data from map to
image coordinates, 334
TRANSPARENCY LAYER object
for setting opacity for a layer, 334
TRANSPARENT keyword
for making background color of the map
transparent, 314
specifying the color index of transparent
color in a GIF pixmap symbol, 383
use of for scale bar image, 84
TRANSPARENT LEGEND object
for making the background color of a
legend transparent, 336
TRANSPARENT OUTPUTFORMAT object
for specifying if transparency is turned on
or off for a format, 338
TRANSPARENT SCALEBAR object
for making the background color of a scale
bar image transparent, 346
truetype
symbol type, 79-81
TrueType fonts, 19
vs. bitmapped fonts, 66-67
Tube Map of London, England
website address for, 33
TYPE JOIN object
for specifying whether join type is single or
multiple, 323
TYPE keyword
determining type of font used to render a
label with, 19
specifying fonts with, 66-67
specifying the layer type with, 25
for specifying the symbol type, 383
using point value with, 18
values associated with, 25-26
TYPE LABEL object
for rendering labels using either
bitmapped or TrueType fonts, 326
TYPE LAYER object
for specifying the layer type, 334

u
UNITS keyword
for specifying map distance units, 315
values associated with, 84
UNITS SCALEBAR object
for specifying the scale bar units, 346

415

416

INDEX

unnamed CLASS
code for defining in fourth.map mapfile, 142
urban area polygons
code for drawing, 72-73
urban areas: layer 1
attributes described in the text file, 37
for second.map application, 37-39
US Census Bureau
website address, 37
utility programs
dbfinfo for finding names of attributes, 38
included in MapServer source
distributions and libraries, 291-307
ogrinfo for geographic information and
feature values, 38

v
vector
symbol type, 79-81
vector formats
library providing access to reading and
writing, 3
vector symbols
creating, 383-385
drawing a non-contiguous, 384
virtual click point
code for creating in perlms_third.pl, 174
creating for the python_third.py file, 192
virtual mouse click
code for providing in second.html
template file, 47

w
Wall, Larry
Perl created by, 167-168
water features: layer 2
feature attributes for second.map
application, 39-41
WEB FOOTER template
map-level query template, 151-152
WEB HEADER template
map-level query template, 150-151
WEB keyword
for embedding a MapServer map in a web
page, 17-18
for indicating the start of a WEB object, 315

WEB object
for determining which HTML templates
MapServer will use, 32
for specifying the web interface, 348-350
web page
embedding the map created by MapServer
in, 17-18
website address
for a comprehensive technical description
of the shapefile format, 369
for detailed information about CGI, 15
for downloading Cartographic Projection
Procedures for the UNIX
Environment--A User's Manual, 379
for downloading FreeType, 2
for downloading GDAL (Geospatial Data
Abstraction Library), 3
for downloading GD library, 2
for downloading libcurl, 3
for downloading libJPEG, 3
for downloading libpng, 3
for downloading OGR Simple Features
Library, 3
for downloading overlib distribution, 238
for downloading Perl source
distribution, 168
for downloading Proj.4, 3
for downloading shapelib, 3
for downloading software for building
MapServer, 5
for downloading the latest version of
MySQL, 236
for downloading the PHP distribution, 208
for downloading the python_third.py
file, 191
for downloading the Python source
distribution, 188
for downloading zlib, 3
for example of Tube Map of London,
England, 33
for information about the OGR utility
programs, 301
for the "MapFile Reference - MapServer 4.4"
document, 34
for the MapServer Application Gallery, 232
for MapServer documents, 309

for the MapServer website, 13
for obtaining spatial data used in book, 23
for phpms_hello.php code distribution, 210
for pointers to extensive documentation
for libraries, 4
for Unix regular expression syntax man
pages, 74
US Census Bureau, 37
WMS (web mapping service)
support for provided by libraries, 1
WRAP keyword
using to cause label text to wrap to a new
line, 70
WRAP LABEL object
for specifying a character that will cause a
label to wrap, 327

INDEX

Z
zlib
building and installing, 6-7
data-compression library used by GD, 3
zlib website
for downloads and documentation, 14
ZOOM CGI variable
containing the zoom factor to apply to the
new map extent, 357
ZOOMDIR CGlI variable
containing the zoom direction, 357
zoomPoint() method
code for calculating the zoom factor to
pass to, 179
ZOOMSIZE CGI variable
containing the zoom factor, which is
always a positive number, 357

417

forums.apress.com

FOR PROFESSIONALS BY PROFESSIONAL

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You'll find discussions that cover topics
of interest to T professionals, programmers, and enthusiasts just like you. If you post a query to one of our
forums, you can expect that some of the best minds in the business—especially Apress authors, who all write
with The Expert's Voice™ —will chime in to help you. Why not aim to become one of our most valuable partic-
ipants (MVPs) and win cool stuff? Here's a sampling of what you'll find:

DATABASES PROGRAMMING/BUSINESS

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration isSues.

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

INTERNET TECHNOLOGIES AND NETWORKING WEB DEVELOPMENT/DESIGN

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

Ugly doesn’t cut it anymore, and CGl is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

JAVA SECURITY

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don't let
anyone else know the answers!

TECHNOLOGY IN ACTION

All about the Zen of 0S X.

0S X'is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

Cool things. Fun things.

It's after hours. It's time to play. Whether you're into LEGO®
MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

OPEN SOURCE (winoows_________|

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

HOW TO PARTICIPATE:

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

	Beginning MapServer: Open Source GIS Development
	Table of Content
	Chapter 1 Building MapServer
	Chapter 2 Simple MapServer Examples
	Chapter 3 Creating the Mapping Application
	Chapter 4 Modifying a Map’s Look and Feel
	Chapter 5 Using Query Mode
	Chapter 6 Using Perl MapScript
	Chapter 7 Using Python MapScript
	Chapter 8 Using PHP/MapScript
	Chapter 9 Extending the Capabilities of MapScript with MySQL
	Chapter 10 Utility Programs
	Chapter 11 MapServer Reference
	Index

