
[1]

PostGIS Essentials

Learn how to build powerful spatial database
solutions with PostGIS quickly and efficiently

Angel Marquez

BIRMINGHAM - MUMBAI

PostGIS Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1170415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-529-2

www.packtpub.com

Credits

Author
Angel Marquez

Reviewers
Zeeshan Chawdhary

Eric-Jan Groen

Håvard Wahl Kongsgård

Richard Zijlstra

Commissioning Editor
Pramila Balan

Acquisition Editor
James Jones

Content Development Editor
Ajinkya Paranjape

Technical Editor
Mohita Vyas

Copy Editor
Sonia Michelle Cheema

Project Coordinator
Harshal Ved

Proofreaders
Maria Gould

Joanna McMahon

Indexer
Rekha Nair

Graphics
Sheetal Aute

Jason Monteiro

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Angel Marquez is a software engineer with a master's degree in computing
sciences. He has been working with GIS and open source tools for more than
a decade in both public and private sectors, in his home country of Mexico.

Firstly, I would like to thank my Lord Jesus Christ, the glory is
for him.
I am grateful to my wife and my little kid for being my inspiration
and motivation. I would like to thank my mom, for giving me the
chance of a better future, as well as my pastor Alfredo, and his wife,
who always take care of their lambs. Lastly, I am thankful to all the
incredible members of Packt Publishing, and especially Ajinkya for
his patience and guidance.

About the Reviewers

Zeeshan Chawdhary has been experimenting with location-based technologies
since 2007, having worked with industry leaders such as Foursquare, Google, and
Yahoo! in the LBS space. He has been working with start-ups for the past few years.
He has built and scaled up e-commerce, location-based services, and mobile apps
for millions of users.

He is also an author and has written three books for Packt Publishing on iOS,
Windows Phone, and iBooks Author, respectively. He is currently building
the technical backbone for a self-drive car rental start-up in India.

I would like to thank Packt Publishing for generously offering
me books to review. They not only help me learn about new
technologies but also strengthen what I already know, as well
as how other programmers work.

Eric-Jan Groen started his GIS adventure when he started working at Automotive
Navigation Data. They gave him the opportunity to experiment and explore the
world of GIS. They gave him carte blanche and he worked on special products for
them. While he worked there, Milo van der Linden was an inspiration to him from
the beginning; later on, Milo left and he ventured forward on his own. With Bojan
Sobocan acting as his supervisor, he initiated many projects and always found new
tools and ways to complete the tasks he was given.

After proofreading a book on GeoServer and having had a good time doing it,
reviewing this book was just as welcome.

Håvard Wahl Kongsgård is akin to a Swiss army knife when he's performing
data exploration. He believes that he predicted events in small wars in a previous
life. He's worked with everything from military projects and mine-clearing
operations to epidemiology.

Currently, he's finishing a PhD in spatial epidemiology while working with
a start-up.

Richard Zijlstra is a civil engineer with technical planning and GeoICT in general.
He has used his engineering degree in The Netherlands to work on projects related
to water management, infrastructure planning, and geographical information
management as well as with earthquakes in Greece (Patras), all of which have an
effect on environmental and social aspects. He collaborates system architecture,
requirement management, and the development of geographical information
technology.

At the moment, he is involved in developing an Enterprise Geo Data Architecture
to store open data on earthquakes, safety, and gas exploration in the Groningen
province of the northern part of The Netherlands. The project group is being set up
together by University of Groningen with Geodienst at @CIT_RUG. Gas extraction
in this area can often lead to earthquakes and also cause damage to buildings and
infrastructure. The project group will set up an open geodata storage to collaborate
all kinds of data, which will deal with the situation in this area.

His vision is, "Everybody uses and shares their own geographical information
to share and update each other's knowledge about the physical and social
environment." His mission is to find out what, where, when and why....

He is the founder and owner of Geoneer. Using his vision and point of view, he
hopes that Geoneer will help and collaborate in all the aspects of geographical
information technology worldwide. You can find them on Twitter at @Geoneer
and LinkedIn at http://www.linkedin.com/in/geoneer/.

He has also written a lot of documents, system architectures, and about the usage
of geographical information technology. The books OpenLayers Cookbook, Packt
Publishing, and Mastering GeoServer, Pack Publishing, were also reviewed by him
for their textual context .

I want to thank my parents for my healthy mind and the
environment I grew up in as a child in the Frisian countryside.
Also, I would like to thank the people of my town, Groningen, who
inspired me to do a lot of things in my life. I'm very thankful to these
people who have always known how I think, what I do, and what
I wished to do in the future. I am extremely thankful to my son,
Alessio Mori Zijlstra. He has been the greatest inspiration of my life!

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

[i]

Table of Contents
Preface v
Chapter 1: Introducing PostGIS and Setting it Up 1

What is PostGIS? 2
Why PostGIS? 3
Installing PostgreSQL 6
Installing PostGIS 10
Installing QGIS 16
Summary 19

Chapter 2: Creating Your First Spatial Database 21
The development of spatial databases 21
Creating our first database using a command line 22

Creating our first spatial data table using a command line 25
Creating a spatial database using GUI 26

Creating a spatial data table using GUI 28
Creating a spatial data table using a SQL script 31

Summary 32
Chapter 3: Inserting GIS Objects 33

Developing insertion queries with GIS objects 34
What is a spatial reference system? 35

Including SRS information in our spatial tables 38
Getting data from external sources 39

Summary 46
Chapter 4: Selecting and Filtering GIS Queries 47

Grouping data 48
Nonspatial queries 48

Table of Contents

[ii]

Spatial functions 51
The ST_Distance functions (geometry, geometry) 52
The ST_DWithin function (geometry, geometry, float) 54
The ST_Length function 56
The ST_Intersects function (geometry, geometry) 57
The ST_Within function (geometry A, geometry B) 58

Queries that use data from two databases 60
The Postgres_FWD module 61

Developing spatial queries with our own data 62
Summary 65

Chapter 5: Displaying GIS Data Graphically 67
Introducing QGIS 67
The QGIS application 68
Hands-on with QGIS 70
Developing a spatial query from QGIS 85
Summary 88

Chapter 6: Management of Vectorial and Raster Data
with PostGIS 89

The GDAL/OGR library 90
Working with GDAL/OGR commands 93
Working with raster files 96

Inserting raster data into our database 99
Graphically displaying raster data saved in our database 100

Summary 103
Chapter 7: Performance Tuning 105

Spatial indexes in PostGIS 105
Tuning spatial queries 106
Tuning PostgreSQL's configuration file for our spatial database 113
Summary 117

Chapter 8: Developing a GIS Web Application 119
Developing a web application 121

Installing the web server 121
Installing a PHP module 122
Installing Leaflet 124
Implementing the web application 124

Summary 130

Table of Contents

[iii]

Chapter 9: Developing a Desktop GIS Application 131
What is World Wind? 132

How does World Wind work? 132
Previous requirements 133
Installing World Wind 134

Setting up the development environment 135
Installing Eclipse 136

Configuring the development environment 136
Coding our first application 142

Getting the PostgreSQL–Java binding 150
Developing a management application 152
Summary 169

Index 171

[v]

Preface
PostGIS is basically an extension of PostgreSQL DBMS that allows it to manage
spatial datatypes. It was developed by Refractions Research Inc, a Canadian
company, and published under the GNU license. Through the years, PostGIS has
been observed to be a better solution than many of the other options on the market.
A lot of these solutions are proprietary.

This book's objective is to be a guide for those who are new to the field of spatial
databases; it covers some of the most basic and important concepts, while trying
to keep them simple. At the same time, it could be useful for those of you who are
advanced, have experience in this field, and are now looking for a way to graphically
show the results of its spatial queries and exploit the results. This may be because
you want to speed up your current queries. It might also be useful for developers
who have little or no knowledge about spatial databases, but want to build desktop
or web applications with spatial functionality, with only the basic concepts they
have learned. This book helps you in such a way that you either go through the first
chapter progressively until the end, or only focus on the chapters you're interested
in without reading any of the previous ones.

This book is not a complete or exhaustive reference of PostGIS, but is more like
a starting point where you will find the information that you need to start your
projects, in a consolidated and easy-to-digest manner. The practical exercises
will also help you brush up your knowledge along the way.

What this book covers
Chapter 1, Introducing PostGIS and Setting it Up, provides step-by-step instructions
to download, install, and configure the three basic tools needed for the rest of this
book: Postgres DBMS, the PostGIS extension, and QGIS for data visualization.

Chapter 2, Creating Your First Spatial Database, helps you to create your first GIS
database using both the command interface and graphical tools.

Preface

[vi]

Chapter 3, Inserting GIS Objects, introduces you to the basics of GIS objects and data
manipulation sentences.

Chapter 4, Selecting and Filtering GIS Queries, introduces you to the making, selecting,
and filtering of spatial GIS queries.

Chapter 5, Displaying GIS Data Graphically, shows you how to display query results
graphically into an electronic map.

Chapter 6, Management of Vectorial and Raster Data with PostGIS, shows you how to
import and export vectorial and raster data into and from a database, to and from
several file formats.

Chapter 7, Performance Tuning, shows you how to speed up spatial queries by using
indexes or tuning the PostgreSQL configuration for PostGIS.

Chapter 8, Developing a GIS Web Application, shows you how to create a GIS web
application using open source tools.

Chapter 9, Developing a Desktop GIS Application, shows you how to create a GIS
desktop application using open source tools.

What you need for this book
Basically, you will need a machine that can run Windows 7 and performs decently;
2 GB of RAM could be a good starting point. It would be desirable that you run your
system on a Solid State Drive (SSD), and that you have two separate disks: one for
the operating system and applications, and the other to store databases. This second
disk must be bigger than the first one, depending on how much spatial data you plan
to store, a 500 GB disk should be okay to do the job. If you have just one physical
disk, you can make two partitions for this purpose.

Who this book is for
This book is for those of you who have little or no knowledge about spatial databases
and are looking for a guide to help you explore this field in an easy and step-by-step
way, through practical exercises and easy-to-understand concepts.

It will also be useful for you if you've had previous experience handling spatial
databases, but also want to know about more advanced topics, such as spatial data
visualization, or how to work with raster and vectorial data.

Preface

[vii]

This book is a good option for developers who need to build desktop or web
applications and are probably not very familiar with the spatial database approach.
This book will provide you with the basics of the spatial theory and PostGIS
management, so that you can rapidly start to work on your projects.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"When the download finishes, we will get the postgresql-9.3.x-x-windows-x64.
exe file; this is the PostgreSQL installer for our operating system."

A block of code is set as follows:

CREATE TABLE tbl_properties
(
town character(30),
postal_code character(10),
street character(30),
"number" integer,
the_geom geometry
);

Any command-line input or output is written as follows:

BEGIN;

CREATE TABLE "overview" ("rid" serial PRIMARY KEY,"rast"
 raster,"filename" text);

INSERT INTO "overview" ("rast","filename") VALUES
('01000003000000000000407F400300000000407FC0FFFFF
FFF2BD423C102000000161F364100000000000000000000000
0000000008… 9E9E9E9EA'::raster,'GBOverview.tif');

END;

Preface

[viii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Navigate to the Database | DBManager."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/5292OS.pdf.

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so
that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing PostGIS and
Setting it Up

PostGIS is a powerful open source tool that allows us to develop robust spatial
databases. In this chapter, we will learn some useful basic concepts through practical
examples. We will also set up our working environment so we can get started with
it quickly. However, before we can continue, let me tell you about a very important
concept that we need to fully understand first: what is a GIS application?

Geographic Information Systems (GIS) are systems that were designed to manage
and analyze spatial data, showing it to the user in a graphical way; the main aspects
of a GIS system are as follows:

• It represents spatial data as a set of layers: A GIS application groups data of
the same kind (streets, landmarks, and so on) on layers. These layers are shown
to the user one above the other, thereby creating a unified view of the data. The
following image shows an example of how these layers are displayed:

Introducing PostGIS and Setting it Up

[2]

We now have an integrated view of the data, so the user can extract
information generated by the combination of them; as an example, using this
integrated view, we can measure the distance between the landmark 1 and
the vegetation area 2.

• It shows the spatial data above a map: This helps users to get a better
understanding of the displayed data, putting it in the context of the area
of interest.

• It has a comprehensive set of analytic and data transformation tools: As
mentioned in the last example, a GIS application must give users a way
to analyze, process, and transform such spatial data, so they can get new
information from the input data.

It is quite likely that you have experience and some basic knowledge of relational
databases and computer programming. It will also be desirable if you have basic
knowledge about geography, but if you don't, then there's no need to worry; one
of this book's objectives is to explain to you some of the most important and useful
concepts of geography in a practical and simplified way, so that you can understand
them through the development of the book, and focus on the practical application of
them. This book will also show you how powerful PostGIS can be and how much it
can help you in creating strong and sometimes complex databases. By the end of the
book, you should be able to develop amazing spatial projects.

In this chapter, we will cover the following topics:

• Learning about some basic GIS concepts
• Setting up the PostgreSQL database manager
• Setting up the PostGIS spatial extension
• Setting up the QGIS spatial data viewer

What is PostGIS?
PostGIS is the geographic extension of the database management system,
PostgreSQL, which allows us to store geographic objects as part of our data tables.
A geographic object is a special type of data that allows us to store a geographic
position or a set of them as part of a line or a polygon. Essentially, PostGIS is a
powerful tool that enables you to handle complex geographical data and visually
explore this data when you use it along with graphical tools, such as QGIS.

Chapter 1

[3]

Why PostGIS?
PostGIS is an extension of the powerful PostgreSQL, one of the most reliable open
source DBMS available, which has spent a lot of time on the market, but what makes
it such a good platform for PostGIS is the fact that it implements something called
Generic Index Structure (GIST), which allows it to build indexes in almost any
kind of data type. Given this flexibility and the fact that the structure of PostgreSQL
gives you the chance to build custom functions very tightly to the core, PostGIS
could by developed in a natural way. This is because it basically adds spatial data,
spatial indexes, and spatial functions to the existing features of PostgreSQL without
any complicated, intermediate, or special conversion processes. The other important
features of it are:

• It has a lot, and I mean a lot, of useful spatial functions to search, analyze,
convert, and manage spatial data

• It has both vectorial and raster data support; these data types will be
described in Chapter 6, Management of Vectorial and Raster Data with PostGIS

• It's based on open standards as defined by the Open Geospatial Consortium.
You can visit http://www.osgeo.org/ to know more

• For the last decade, PostGIS has been used, proved, and improved by a lot of
public and private organizations all around the world

• It's supported by other well-proven open source projects (such as Proj4,
GEOS, and GDAL)

• Almost all (if not all), both open and closed GIS software, have compatibility
with it (such as ETL and desktop and server Geotracks)

With a GIS database, we can handle geographic data more efficiently because it
contains functions and algorithms that make it easier to manipulate and analyze it.

We might come across a hypothetical situation where we are the IT department of a
real estate company, and are required to develop a computational system to control
the data of the houses it's selling. Currently, the company only has an electronic
sheet where all this data is stored. The sheet looks similar to the following table:

Town Postal code Street Number
London N7 6PA Holloway Road 32
West Berkshire RG12 1DF Charles Square 45
Bristol BS1 4UZ St Augustine's Parade 39

Introducing PostGIS and Setting it Up

[4]

Additionally, the company wants to be able to show the geographic position of
every property it has assigned on a map via its website. Suppose we don't know
anything about spatial databases, we have a tight schedule, and we just want to use
a traditional relational approach. The first thing we could do is to build a data table,
taking the electronic sheet as a base, and adding two more fields. These fields will be
doubles and will store the latitude and longitude values of the geographical position
of every property. That table must be created through a command as shown in the
following code snippet:

CREATE TABLE tbl_properties
(
town character(30),
postal_code character(10),
street character(30),
"number" integer,
latitude double precision,
longitude double precision
);

In Chapter 2, Creating Your First Spatial Database, we will see how to run these kinds
of commands. The created table must look similar to the following table:

Town Postal code Street Number Latitude Longitude
London N7 6PA Holloway Road 32 51.556173 -0.116190
West Berkshire RG12 1DF Charles Square 45 51.381320 -1.344165
Bristol BS1 4UZ St Augustine's Parade 39 51.453462 -2.598348

Has the problem been solved or not? What if our boss wants to know which houses
are located at least 10 miles away from the local supermarket of some specific town?
Well, we could develop a software in our favorite programming language that reads
the position of every house in the table and calculates the distance between the
supermarket and the house. The main problem with this approach is that we have to
write our own function to calculate the distance, but these functions can have errors
that show us the wrong results. Another problem here is the fact that when we need
to run a radius-based search (looking for all the objects located at x distance from a
specific position), we will need to go through the entire table, making comparisons
with every register; there is no way to use an optimization mechanism as an index
to hasten the query.

If, instead of doing this, we use a geographical field to store these positions,
we will only have to make a spatial query to achieve the result we're looking for.
Here is an example of how we could create our table with the spatial field instead
of the doubles:

Chapter 1

[5]

CREATE TABLE tbl_properties
(
town character(30),
postal_code character(10),
street character(30),
"number" integer,
the_geom geometry
);

Now, in order to insert the spatial data into the table we must use the following query:

INSERT INTO tbl_properties (town, postal_code, street, "number", the_
geom) VALUES ('London', 'N7 6PA', 'Holloway Road', 32, ST_GeomFromEWKT
('SRID=4326;POINT(-0.116190, 51.556173)'));

The result will be similar to the following:

Town Postal code Street Number the_geom
London N7 6PA Holloway

Road
32 POINT(-0.116190, 51.556173)

West
Berkshire

RG12 1DF Charles
Square

45 POINT(-1.344165, 51.381320)

Bristol BS1 4UZ St Augustine's
Parade

39 POINT(-2.598348, 51.453462)

The following query asks the database to bring all the registers that are located at
10 statute miles (the distance, in this case, must be given in degrees, so, we have
divided 10 miles by 69.047, the equivalent of one degree in statute miles) from
the geographical position where the latitude is 51.56 and the longitude is -0.117.
Supposing that this is the geographic position of our fictitious supermarket, this
position is stored and is a point geometry object on the database:

SELECT * FROM tbl_properties WHERE ST_DWithin(the_geom, ST_
GeomFromText('POINT(-0.117, 51.56)',4326), (10.0 / 69.047));

In the following chapters, we will explain how to make spatial queries. This is
an example of exactly how useful spatial databases can be; taking some time to
understand how to use them will certainly be useful.

Before we can start working on spatial databases, we have to prepare our working
environment. In the following sections of this chapter, we will see how to do this step
by step.

Introducing PostGIS and Setting it Up

[6]

Installing PostgreSQL
PostgreSQL is a powerful Object-Relational Database Management System
(ORDBMS). We need this because PostGIS is just an extension of it. It's open source
and free of cost.

The first thing we have to do is download and install the PostgreSQL database
management system. In this book, we will assume that you are working on a 64-bit
Windows machine with a version of Windows 7 or later. We will use the most recent
stable version available at the time of the writing, which is the Version 9.3. Perform
the following steps:

1. First, we have to navigate to the official site, http://www.postgresql.org.
2. Then, we have to go to the Download section at http://www.postgresql.

org/download/, as shown in the following screenshot:

Chapter 1

[7]

3. After this, we need to go to the Binary packages section of the page and
select the Windows hyperlink:

4. Now, we have to choose the download hyperlink in the paragraph
Download the installer from EnterpriseDB for all supported versions.
as shown in the preceding screenshot.

5. Similar to the preceding screenshot, we will select the most recent stable
version and the Win 86-64 installer.

6. When the download finishes, we will get the postgresql-9.3.x-x-
windows-x64.exe file; this is the PostgreSQL installer for our operating
system. Now, we will double-click on this file.

Introducing PostGIS and Setting it Up

[8]

7. Immediately, we can see a dialog box where the operating system asks us for
permission to run this file. We must allow this file to be executed as a system
manager, as shown in the following screenshot:

8. We will choose an installation folder, or just leave the default one
(C:\Program Files\PostgreSQL\9.3), and click on the Next button.

9. Next, we need to select a folder where all the data of our databases
will be installed. You can just select the default (C:\Program Files\
PostgreSQL\9.3\data), but it would be very desirable to select a folder
from another partition different from the one that uses the operating system;
this can help you to avoid losing your data if you have to format your system
for any reason.

10. We will see a screen with two text areas where we will need to type and
retype a password for the Postgres user. This password can be anything that
you want, but it cannot be an empty string. Be careful with the password you
choose because if you forget it, there is no way to get it back; we will have to
reinstall everything again!

Chapter 1

[9]

11. Now, we have to choose a listening port.
12. Then, we will see a dialog screen that asks you to select a Regional

Configuration. We can leave the default option, which means the same
language configuration that you have on your operating system, and then
click on the Next button.

13. Once the installer has finished copying the files, it will show a screen that will
tell you that the installation of PostgreSQL has finished. Here is something
important to keep in mind: the screen has a checkbox inside that asks you
whether you want to execute the Stack Builder at the end of the installation.
At this moment, we will choose not to do so. This checkbox must be
unchecked. In the next section of this chapter, we will properly explain what
the Stack Builder is, and what it is for. Now, we can click the Finish button.

14. Finally, PosgreSQL is installed on your machine. You can check whether the
installation was successful by executing a graphical tool for the DBMS called
PGAdmin III. Then you will see the main window. On the left-hand side is
the list of servers; in this case we just have one server:

Introducing PostGIS and Setting it Up

[10]

15. Double-click on the PostgreSQL 9.3 (localhost 5432) server and a dialog box
called Connect to Server will be shown. In this box, you must type your
Postgres user password and click on the OK button. If you wish, you can
check the Store password checkbox; it stores your password in this machine
so you don't have to type it every time you log in to your database:

Installing PostGIS
In the previous section of this chapter, we mentioned the Stack Builder; it's an
application that allows us to install several additional options or extensions for
PostgreSQL. Using this tool, we will install PostGIS in our database server. The
following procedure applies even if you have previously installed a version of
PostgreSQL higher than 8.X:

Chapter 1

[11]

1. First, you have to execute the application Stack Builder tool installed with
PostgreSQL.

2. We will see a dialog box that asks us for permission to execute this app, you
have to click on the Yes button.

3. Now, you can see a window with a combo box in the center, where you have
to choose the server that you want to configure. In this case, we only have
one installed in our computer; you must select the PostgreSQL 9.3 (x64) on
port 5432 option and click on the Next button:

Introducing PostGIS and Setting it Up

[12]

4. Next, we will see the same window as before, but with a list of available
applications for installation grouped by categories; we will select the Spatial
Extensions category:

5. Now, you must click on PostGIS 2.1 Bundle for PostgreSQL 9.3 (64 bit)
v2.1.x and click on the Next button.

6. Then, you will see a window that shows the packages you have selected.
In another area positioned after that, we can select a folder where all the
required files will be downloaded. This is not the installation folder; if you
don't have any trouble with the default directory, you can click on the
Next button.

7. When it finishes, you will see a window telling you that the application
has downloaded the required file and it can start to install it in your
computer. Leave the Skip Installation checkbox unchecked and click
on the Next button:

Chapter 1

[13]

8. Now, you can see another window that shows the license agreement.
It's not necessary that you read the entire document; you can to click the
I Agree button.

9. Once you have done this, you will see a window that shows the components
that need to be selected and installed. In the middle, it has a checkbox, where
PostGIS is checked, and another with the text, Create spatial database,
which is unchecked. Check this one and click on the Next button:

Introducing PostGIS and Setting it Up

[14]

10. Now, you have to choose a destination folder for the installation; you can
leave the default one and click on the Next button.

11. Then, a window appears where you have to log in to the database. Just type
your Postgres user password, defined in the previous section, and click on
the Next button.

12. In the next window, you will have to add a name for your spatial database.
In this case, I named it spatial_db1, but you can name it whatever you
want; type the name and click on the Install button, as shown in the
following screenshot:

13. Next, it will show you a dialog box that asks you for permission to set the
GDAL_DATA environment variable. At this moment, I will only tell you that
GDAL is a very useful and important library that PostGIS uses internally.
You have to click on the Yes button:

Chapter 1

[15]

14. Now another dialog box appears, asking you to decide whether you want to
set the POSTGIS_GDAL_ENABLED_DRIVERS; you will have to click on the Yes
button. In later chapters, I will tell you more about these system variables:

15. Another dialog box appears, asking you for permission to set POSTGIS_
ENABLE_OUTDB_RASTERS; click on the Yes button, as shown in the following
screenshot. We will see what a raster data is in Chapter 6, Management of
Vectorial and Raster Data with PostGIS:

16. Lastly, the installer shows a window that tells you that the installation is
completed. Now you just have to click on the Close button.

17. Now, maximize the Application Stack Builder window and click on the
Finish button.

Congratulations!, Now you have PostgreSQL with the PostGIS extension installed on
your machine. You can check whether everything is okay by running PGAdmin III,
and then running the following query in the Postgres database:

SELECT name, default_version,installed_version FROM pg_available_
extensions WHERE name LIKE 'postgis%' ;

Introducing PostGIS and Setting it Up

[16]

You must get a result dataset as shown in the following table:

name default_version installed_version
postgis 2.1.5
Postgis tiger
geocoder

2.1.5

Postgis topology 2.1.5

This means that you have the PostGIS extension available on your database server
and you can include it in any new databases that you create.

Finally, we will install the QGIS application. It's an open source project that allows
us to graphically represent the geographical data stored in several formats, including
the data that is stored in our database.

Installing QGIS
QGIS is a free and open source geographic information system. It's very user
friendly and it can read a lot of spatial formats, and it's an excellent tool for seeing
the data we generated graphically. You can visit the project's official site at
http://www.qgis.org/en/site/. Perform the following steps for the installation:

1. For installation, go to the project website in the For Users section
at http://www.qgis.org/en/site/forusers/index.html.

2. Then, you have to click on the Download QGIS button.
3. You will need to select the Windows version section. Once inside the

section, you will find a QGIS standalone Installer Version 2.4 (64-bit) link;
click on it.

4. The installer will start to download; when it finishes, you need to double-
click on the file for the installation to begin.

Chapter 1

[17]

5. Then, you will see a welcome window; click on the Next button:

6. After this, you will see a window with the agreement license; click on the I
accept button.

7. Then, select a destination folder for the installation. You can just leave the
default and click on the Next button. The installation requires 1.2 GB of disk
free space; make sure that you have it in your disk partition.

Introducing PostGIS and Setting it Up

[18]

8. Now, you can select which components will be installed. By default, the
QGIS option is selected; leave it the way it is, and click on the Install button:

9. When it finishes, the installation will be complete and you will see a window
that confirms it; now just click on the Finish button.

10. Once QGIS is installed, we can execute the QGIS Desktop 2.4.0 application.
If the application was correctly installed, you will see the following window:

Chapter 1

[19]

Summary
At this moment, we have learned how to install and set up our working environment
in order to use the PostGIS extension, and through this we have also learned some
useful geographic concepts that will allow you to get a better understanding of how
PostGIS works. So, we have installed the QGIS application that will allow us to
graphically explore our databases and check that everything is okay with the data.

Now, we are ready to start developing our first spatial database, for this we will
continue with a practical example at the beginning of the next chapter.

[21]

Creating Your First Spatial
Database

Now that we have installed PostgreSQL with the PostGIS extension, we are ready
to develop our first spatial database. Remember that a spatial database is the one
that allows us to create geometric fields to store the geographic data (points, lines, or
polygons) that will represent the real life data. This way we will be able to use all the
advantages that PostGIS gives to spatial data management.

We will continue the real estate company example of the previous chapter; we
will explain how to develop the necessary databases and data tables using both
the command line and graphical tools available. In this chapter, we will cover the
following topics:

• Create spatial databases via a command line and GUI
• Create tables with spatial fields via a command line, GUI, and SQL scripts

The development of spatial databases
After an extensive analysis of the company's situation, the IT Department have
deployed a solution, which consists of making two databases:

• The first one will carry all the corporative information, including the data of
the properties for sale along with its spatial position.

Creating Your First Spatial Database

[22]

• The second one will be a larger database that will store geographic data
of the different cities where the company have properties for sale. These
features will include: buildings, highways, landmarks, and so on and will
be accessed less often.

The use of two separate databases could add more complexity to the following
examples, but this is exactly what we are looking for. In the following chapters, we
will see how we could work with two databases at the same time, and how we can
develop queries that use data from both the databases. The idea is that you will be
able to manage this situation if you find it in the real world. In the next chapter, we
will see how to obtain the data and fill it with the second database.

Creating our first database using
a command line
Well, it's time to create our first spatial database; PostGIS offers us several ways to do
it, graphical or via a command line. In this section, you will see both of them and you
will be able to select the one that you like more. There is nothing special about any
of them, because the final result is the same for both of them.

Before we can start to develop the first database, we have to make executable
binaries of PostgreSQL visible to our operative system, in this case Windows 7. For
this, we will include the application's path to the PATH system variable. Perform the
following steps:

1. First, navigate to Start | Control Panel | System and Security | System.
2. After that click the Advanced system settings option.
3. There, click the Advanced tab and click the Environment variables button.
4. Then, select the System Variables grid and select the row with the Path

value on the Variable field.

Chapter 2

[23]

5. Once this row is selected, click on the Edit button.
6. A window named Edit System Variable will show up. Edit the Variable

value: field by adding the following line at the end: ;C:\Program Files\
PostgreSQL\9.3\bin.

Creating Your First Spatial Database

[24]

7. Click the OK button in all the opened windows to save the changes.
8. Restart your computer for the changes to take effect.

Now we can start to build the first spatial database using the command line, by
following the next series of steps:

1. For creating the database, click on the Start button and type in the Search
programs and files section cmd. Then, you will see the system's prompt.
We will call our first database Real-State, so we will type the appropriate
command for building it up. In the command prompt, we will type the
following:
createdb –U postgres Real-State

Here, the –U parameter indicates the name of the user who will own the
database. After that, execute this command as the database has to be created:

2. To select the database, in the same window, type the following command:
psql –d Real-State –U postgres

If the system asks you for a password, type the Postgres user password. With
this command, you are selecting the Real-State database to start to work
with it:

3. As you can see, we are getting a warning message from the console. This
message tells us that the character code of the application differs from the
rest of the operating system; this could cause problems with 8-bit characters
within psql. To avoid this problem, we must type the following command
before we start working with psql:
cmd.exe /c chcp 1252

Chapter 2

[25]

4. We are changing the default character set of the operating system to be the
same as that of psql. This change will take effect just in the present session.
You will have to type this every time you open a new cmd window for work
with your database in text mode. You can also create a batch file to run
this command before you start to work with psql; just type the previous
command on notepad and save it with the .bat extension:

5. For creating the spatial extension, we will turn our database into a spatial one
with spatial functions and analyze options on your data, by executing the
following command in the psql prompt:
CREATE EXTENSION postgis;

6. After that, we will see that the command prompt responds showing us
CREATE EXTENSION in the console; this tells us that the commands were
executed successfully.

Creating our first spatial data table using
a command line
Before we can continue, it is necessary to explain a spatial table. Well, a spatial table
has a field of a special type called geometry; this is the data type that allows us to
store geographic data and it's only available after the spatial extension is created
in our database. There is another geographic data type called geography, it's mainly
used in order to get more accuracy in long distance measurements; the problem here
is that it uses more complex mathematics and there are less spatial functions that
accept this data type as a parameter. For our example, the geometric field will be
called the_geom in every spatial table we make.

Creating Your First Spatial Database

[26]

Now that the database is created, we can start to create our first spatial table. We will
call it tbl_properties and it will store the information about the properties that the
company has in consignment for sale. For this, you will have to type the following
lines in the psql command prompt:

CREATE TABLE tbl_properties

 (id integer NOT NULL,

town character(30),

postal_code character(10),

street character(30),

"number" integer,

the_geom geometry,

CONSTRAINT pk_id PRIMARY KEY (id)

);

You have to type every line with an Enter at the end. When you type the ; character
before the Enter key, you are telling the command line interpreter (psql) that this
is where the instruction ends and it has to execute it, as shown in the following
screenshot:

As in the past executions, the command line interpreter echoes us the name of the
last command that was successfully executed. In this case, we have to see the CREATE
TABLE string in the command prompt.

Creating a spatial database using GUI
There are a lot of people who prefer to use the command line instead of a graphical
GUI for interacting with the DBMS. If you are not one of them, you can make all
these operations using the PGAdmin application. Now, we will create another
database called Real-World that will store geographic features of the cities where
the company have properties for sale:

Chapter 2

[27]

1. First, we will click the windows Start button and type pgadmin in the Search
programs and files text box. After that, we will execute the PGAdmin III
application.

2. Once the main window is shown, we must double-click on the PostgreSQL
9.3 (localhost:5432) icon for opening the local server, as shown in the
following screenshot:

3. Once it's opened, we have to click the Databases item that belongs to the local
server. Then, we have to right-click in this item and it will show a pop-up
menu with three options, you will have to choose the New Database option:

4. There, you will see a New Database... window; there, in the Properties tab,
you can set the database name by typing Real-World in the Name text box.
In the Owner combo box, select the postgres user, as shown in the
following screenshot:

Creating Your First Spatial Database

[28]

5. After that, navigate to Definition | Template. You will see a list of the
available databases in your server. Select the Real-Estate database as a
template, before we can do it, the template database must be closed, if it is
not, you have to right-click on it and select the option Disconnect Database.
After that, click the OK button for the changes to take effect.

We have used this database as a template instead of creating a new one from scratch;
this technique could be useful if you need to create a new database with the same
structure of an existing one (maybe for testing).

Creating a spatial data table using GUI
Now you have a second database called Real-World, let's expand it and see all the
items that are inside of it:

• Catalogs: Here is where PostgreSQL stores information about tables and
columns that conforms the database itself. As an example, when you create
a new table, the information about it and its columns are stored there in the
form of registers of system tables.

• Event Triggers: Those are procedures defined by the user that can be written
in most of the available procedural languages as PL/pgSQL, PL/Tcl, PL/
Perl, and PL/Python, that PostgreSQL will run when a certain event, defined
by the user, fires up.

• Extensions: These are data structures, data types, functions, and so on
that are defined by a third-party entity and that can be added to existing
databases to extend its functionality.

• Schemas: A schema is a group of tables, data types, functions, and operators.
A single database can have several of these schemas and their main function
is to create a logical separation between objects. They are like directories on
an operating system, except that they can't be nested.

• Slony Replication: It's the PostgreSQL master-slave replication system. It's
designed to backup data online from the master database.

We will store spatial features of the cities where the company has properties for sale.
We will create a set of spatial tables, the first of them called tbl_buildings and will be
developed using the graphical tool. For this, you have to perform the following steps:

1. Double-click the Real-World database for it to open.
2. Click on the + symbol that is to the left of the database. You will see the list

of components that integrates the database. Click in Schemas (1) (we have
explained schemas earlier):

Chapter 2

[29]

3. You will see that there is only one schema called public, expand it. There you
will see a list of items that form the schema. A database can contain one or
more schemas that logically group data tables, it's analogous as a directory
of the operating system.

4. Right-click in the Tables item. There you will see a pop-up menu, select the
New Table... option.

5. You will now see a window called New Table.... Here, you must specify the
new table features. Type tbl_buildings in the Name text box and in the
Owner combo box, select postgres.

Creating Your First Spatial Database

[30]

6. Now click the Columns tab. There you must specify the definition of every
field in the table. For this click the Add button.
You will see a window called New Column. Here we will to specify the
Name, data type and Length if the data type is a character. You will have
to do this for every field in your table. Here is a list of the required fields
for this example:

Name Data Type Length Description
id character 7 Unique identifier
name character 20 Name of the building
type character 10 Type of building
address character 30 Address of building
the_geom geometry null Geometric representation

7. Once you have all the fields, click on the constraints tab, select Primary key
(a primary key is a field that holds a value that uniquely identifies a data
row) in the combo box that is in the bottom part of the window, and click
on the Add button.

8. Then, a window called New Primary key... will be shown. In the Name
text box, type pk_buildings_id without the quotes:

9. Then, click on the Columns tab. In the Column combo box, select id and
click on the add button.

10. After that, click on the OK button for the changes to take effect.

Well, now that we know how to create our tables from the GUI it's time to learn
a more automatic way to do it; we can develop a script and run it later. This can
be very useful, if as an example, you need to create our data tables from a script
generated by a database design tool. You can export the design model of your
data tables to SQL scripts and run it later.

Chapter 2

[31]

Creating a spatial data table using a SQL script
Now, we have the first table on the Real-World database. For the developing of
the second table, we will follow a different method. Here, we will define the table
structure using SQL language and then we will execute this script directly in the
GUI. The steps we have to perform are as follows:

1. Define the table script using a simple text editor, the following is the script of
the tbl_landmarks table:
CREATE TABLE tbl_landmarks
(id character(7) NOT NULL,
name character(30),
type character(15),
the_geom geometry,
CONSTRAINT pk_landmark_id PRIMARY KEY (id));

2. Open the PGAdmin application and click on the SQL magnify glass icon:

3. There you will see an SQL query editor, copy the table script and paste it
inside of the editor. Execute the query by clicking the green triangle on the
tool bar.

Creating Your First Spatial Database

[32]

4. If the query was successfully executed, you will see the message Query
returned successfully with no result in the messages tab at the bottom of
the window. If instead you get an error message, check your script carefully,
looking for errors.

Now that you know all the possible methods that exist for creating a spatial database
in PostgreSQL, you can choose whichever of them you feel more comfortable with.
The result of each one of those methods is the same for all cases.

Summary
In this chapter, you learned how to create a spatial database using both command
line and the GUI, and to develop spatial tables too. It's very important that those
two processes were fully understood before we can continue.

In the next chapter, we will learn how to fill those tables by obtaining the data from
publicly open and freely available sources.

[33]

Inserting GIS Objects
Now is the time to fill our tables with data. It's very important to understand some of
the theoretical concepts about spatial data before we can properly work with it. We
will cover this concept through the real estate company example, used previously.

Basically, we will insert two kinds of data: firstly, all the data that belongs to our
own scope of interest. By this, I mean the spatial data that was generated by us (the
positions of properties in the case of the example of the real estate company) for our
specific problem, so as to save this data in a way that can be easily exploited. Secondly,
we will import data of a more general use, which was provided by a third party.

Another important feature that we will cover in this chapter are the spatial data files
that we could use to share, import, and export spatial data within a standardized
and popular format called shp or Shape files. In this chapter, we will cover the
following topics:

• Developing insertion queries that include GIS objects
• Obtaining useful spatial data from a public third-party
• Filling our spatial tables with the help of spatial data files using a command

line tool
• Filling our spatial tables with the help of spatial data files using a GUI tool

provided by PostGIS

Inserting GIS Objects

[34]

Developing insertion queries with
GIS objects
Developing an insertion query is a very common task for someone who works
with databases. Basically, we follow the SQL language syntax of the insertion,
by first listing all the fields involved and then listing all the data that will be
saved in each one:

INSERT INTO tbl_properties(id, town, postal_code, street, "number)
VALUES (1, 'London', 'N7 6PA', 'Holloway Road', 32);

If the field is of a numerical value, we simply write the number; if it's a string-like
data type, we have to enclose the text in two single quotes.

Now, if we wish to include a spatial value in the insertion query, we must first find
a way to represent this value. This is where the Well-Known Text (WKT) notation
enters. WKT is a notation that represents a geometry object that can be easily read
by humans; following is an example of this:

POINT(-0.116190 51.556173)

Here, we defined a geographic point by using a list of two real values, the latitude
(y-axis) and the longitude (x-axis). Additionally, if we need to specify the elevation
of some point, we will have to specify a third value for the z-axis; this value will be
defined in meters by default, as shown in the following code snippet:

POINT(-0.116190 51.556173 100)

Some of the other basic geometry types defined by the WKT notation are:

• MULTILINESTRING: This is used to define one or more lines
• POLYGON: This is used to define only one polygon
• MULTIPOLYGON: This is used to define several polygons in the same row

So, as an example, an SQL insertion query to add the first row to the table,
tbl_properties, of our real estate database using the WKT notation, should
be as follows:

INSERT INTO tbl_properties (id, town, postal_code, street, "number",
the_geom) VALUES (1, 'London', 'N7 6PA', 'Holloway Road', 32, ST_
GeomFromText('POINT(-0.116190 51.556173)'));

The special function provided by PostGIS, ST_GeomFromText, parses the text given
as a parameter and converts it into a GIS object that can be inserted in the_geom
field.

Chapter 3

[35]

Now, we could think this is everything and, therefore, start to develop all the
insertion queries that we need. It could be true if we just want to work with the data
generated by us and there isn't a need to share this information with other entities.
However, if we want to have a better understanding of GIS (believe me, it could help
you a lot and prevent a lot of unnecessary headache when working with data from
several sources), it would be better to specify another piece of information as part of
our GIS object representation to establish its Spatial Reference System (SRS). In the
next section, we will explain this concept.

What is a spatial reference system?
We could think about Earth as a perfect sphere that will float forever in space and
never change its shape, but it is not. Earth is alive and in a state of constant change,
and it's certainly not a perfect circle; it is more like an ellipse (though not a perfect
ellipse) with a lot of small variations, which have taken place over the years.

If we want to represent a specific position inside this irregular shape called Earth,
we must first make some abstractions:

1. First we have to choose a method to represent Earth's surface into a regular
form (such as a sphere, ellipsoid, and so on).

2. After this, we must take this abstract three-dimensional form and represent
it into a two-dimensional plane. This process is commonly called map
projection, also known as projection.

There are a lot of ways to make a projection; some of them are more precise than
others. This depends on the usefulness that we want to give to the data, and the
kind of projection that we choose.

The SRS defines which projection will be used and the transformation that will
be used to translate a position from a given projection to another. This leads us to
another important point. Maybe it has occurred to you that a geographic position
was unique, but it is not. By this, I mean that there could be two different positions
with the same latitude and longitude values but be in different physical places on
Earth. For a position to be unique, it is necessary to specify the SRS that was used
to obtain this position.

Inserting GIS Objects

[36]

To explain this concept, let's consider Earth as a perfect sphere; how can you
represent it as a two-dimensional square? Well, to do this, you will have to make
a projection, as shown in the following figure:

A projection implies that you will have to make a spherical 3D image fit into a 2D
figure, as shown in the preceding image; there are several ways to achieve this. We
applied an azimuthal projection, which is a result of projecting a spherical surface
onto a plane. However, as I told you earlier, there are several other ways to do this,
as we can see in the following image:

Chapter 3

[37]

These are examples of cylindrical and conical projections. Each one produces a
different kind of 2D image of the terrain. Each has its own peculiarities and is used
for several distinct purposes. If we put all the resultant images of these projections
one above the other, we must get an image similar to the following figure:

As you can see, the terrain positions, which are not necessary, are the same between
two projections, so you must clearly specify which projection you are using in your
project in order to avoid possible mistakes and errors when you establish a position.

There are a lot of SRS defined around the world. They could be grouped by their
reach, that is, they could be local (state or province), national (an entire country),
regional (several countries from the same area), or global (worldwide). The
International Association of Oil and Gas Producers has defined a collection of
Coordinate Reference System (CRS) known as the European Petroleum Survey
Group (EPSG) dataset and has assigned a unique ID to each of these SRSs; this ID
is called SRID.

For uniquely defining a position, you must establish the SRS that it belongs to,
using its particular ID; this is the SRID. There are literally hundreds of SRSs defined;
to avoid any possible error, we must standardize which SRS we will use. A very
common SRS, widely used around the globe and the one that we will use in this
book, is the WGS84 SRS with the SRID 4326. It is very important that you store the
spatial data on your database, using EPSG: 4326 as much as possible, or almost use
one equal projection on your database; this way you will avoid problems when you
analyze your data.

Inserting GIS Objects

[38]

The WKT notation doesn't support the SRID specification as part of the text, since
this was developed at the EWKT notation that allows us to include this information
as part of our input string, as we will see in the following example:

'SRID=4326;POINT(51.556173 -0.116190)'

When you create a spatial field, you must specify the SRID that will be used. In the
previous chapter, we didn't specify this. When you do this, all the SRIDs will be set
to -1. I would recommend that you create your spatial field, specifying the data from
the beginning. Now that the concept of an SRS has been established, we will be able
to go back and correct the tables that we developed in the previous chapter.

Including SRS information in our spatial
tables
The matter that was discussed in the previous section is very important to develop
our spatial tables. Taking into account the SRS that they will use from the beginning,
we will follow a procedure to recreate our tables by adding this feature. This
procedure must be applied to all the tables that we have created on both databases.
Perform the following steps:

1. Open a command session on pgSQL in your command line tool or by using
the graphical GUI, PGAdmin III. We will open the Real_Estate database.

2. Drop the spatial fields of your tables using the following instruction:
SELECT DropGeometryColumn('tbl_properties', 'the_geom') Add the
spatial field using this command:
SELECT AddGeometryColumn('tbl_properties', 'the_geom', 4326,
'POINT', 2);

Repeat these steps for the rest of the spatial tables.

3. Now that we can specify the SRS that was used to obtain this position, we
will develop an insertion query using the Extended WKT (EWKT) notation:

INSERT INTO tbl_properties (id, town, postal_code, street,
"number", the_geom)VALUES (1, 'London', 'N7 6PA', 'Holloway Road',
32, ST_GeomFromEWKT('SRID=4326;POINT(51.556173 -0.116190)'));

Chapter 3

[39]

The ST_GeomFromEWKT function works exactly as ST_GeomFromText, but it
implements the extended functionality of the WKT notation. Now that you know
how to represent a GIS object as text, it is up to you to choose the most convenient
way to generate a SQL script that inserts existing data into the spatial data tables. As
an example, you could develop a macro in Excel, a desktop application in C#, a PHP
script on your server, and so on.

Getting data from external sources
In this section, we will learn how to obtain data from third-party sources. Most often,
this data interchange is achieved through a spatial data file. There are many data
formats for this file (such as KML, geoJSON, and so on). We will choose to work with
the *.shp files, because they are widely used and supported in practically all the GIS
tools available in the market.

There are dozens of sites where you could get useful spatial data from practically
any city, state, or country in the world. Much of this data is public and freely
available. In this case, we will use data from a fabulous website called
http://www.openstreetmap.org/.

The following is a series of steps that you could follow if you want to obtain
spatial data from this particular provider. I'm pretty sure you can easily adapt
this procedure to obtain data from another provider on the Internet. Using the
example of the real estate company, we will get data from the English county of
Buckinghamshire. The idea is that you, as a member of the IT department, import
data from the cities where the company has activities:

1. Open your favorite Internet browser and go to http://www.openstreetmap.
org/, as shown in the following screenshot:

2. Click on the Export tab.

Inserting GIS Objects

[40]

3. Click on the Geofabrik Downloads link; you will be taken to http://
download.geofabrik.de/, as shown in the following screenshot:

4. There, you will find a list of sub regions of the world; select Europe:

5. Next is a list of all countries in Europe; notice a new column called .shp.zip.
This is the file format that we need to download. Select Great Britain:

Chapter 3

[41]

6. In the next list, select England, you can see your selection on the map located
at the right-hand side of the web page, as shown in the following screenshot:

7. Now, you will see a list of all the counties. Select the .shp.zip column from
the county of Buckinghamshire:

8. A download will start. When it finishes, you will get a file called
buckinghamshire-latest.shp.zip. Unzip it.

At this point, we have just obtained the data (several shp files). The next procedure
will show us how to convert this file into SQL insertion scripts.

Inserting GIS Objects

[42]

Extracting spatial data from an shp file
In the unzipped folder are shp files; each of them stores a particular feature of
the geography of this county. We will focus on the shp named buildings.shp.

Now, we will extract this data stored in the shp file. We will convert this data
to a sql script so that we can insert its data into the tbl_buildings table. For this,
we will use a Postgis tool called shp2pgSQL. Perform the following steps for
extracting spatial data from an shp file:

1. Open a command window with the cmd command.
2. Go to the unzipped folder.
3. Type the following command:

shp2pgsql -g the_geom buildings.shp tbl_buildings > buildings.sql

4. Open the script with Notepad.
5. Delete the following lines from the script:

CREATE TABLE "tbl_buildings"(gid serial, "osm_id" varchar(20),
"name" varchar(50), "type" varchar(20), "timestamp" varchar (30)
); ALTER TABLE "tbl_buildings" ADD PRIMARY KEY (gid);
SELECT AddGeometryColumn('','tbl_buildings','geom','0','MULTIPOLYG
ON',2);

6. Save the script. Open and run it with the pgAdmin query editor.
7. Open the table; you must have at least 13363 new registers. Keep in mind

that this number can change when new updates come.

Importing shp files with a graphical tool
There is another way to import an shp file into our table; we could use a graphical
tool called postgisgui for this. To use this tool, perform the following steps:

1. In the file explorer, open the folder: C:\Program Files\PostgreSQL\9.3\
bin\postgisgui.

2. Execute the shp2pgsql-gui application. Once this is done, we will see the
following window:

Chapter 3

[43]

3. Configure the connection with the server. Click on the View Connections
Details... button.

4. Set the data to connect to the server, as shown in the following screenshot:

Inserting GIS Objects

[44]

5. Click the Add File button. Select the points.shp file.
6. Once selected, type the following parameters in the Import List section:

 ° Mode: In this field, type Append
 ° SRID: In this field, type 4326
 ° Geo column: In this field, type the_geom
 ° Table: In this field, type tbl_landmarks

7. Click on the Import button. The import process will fail and show you
the following message:

This is because the structure is not the same as shown in the shp and in
our table. There is no way to indicate to the tool which field we don't
want to import. So, the only way for us to solve this problem is let the
tool create a new table and after this, change the structure. This can
be done by following these steps:

8. Go to pgAdmin and drop the tbl_landmarks table. Change the mode
to Create in the Import list. Click on the Import button.

Chapter 3

[45]

9. Now, the import process is successful, but the table structure has changed.
Go to the PGAdmin again, refresh the data, and edit the table structure to
be the same as it was before:

 ° Change the name of the geom field to the_geom.
 ° Change the name of the osm_id field to id.
 ° Drop the Timestamp field.
 ° Drop the primary key constraint and add a new one attached to

the id field. For that, right-click on Constraints in the left panel.
 ° Navigate to New Object | New Primary Key and type

pk_landmarks_id. In the Columns tab, add the id field.

10. Now, we have two spatial tables, one with data that contains positions
represented as the PostGIS type, POINT (tbl_landmarks), and the other
with polygons, represented by PostGIS with the type, MULTIPOLYGON(tbl_
buildings). Now, I would like you to import the data contained in the
roads.shp file, using one of the two previously viewed methods.

11. The following table has data that represents the path of different highways,
streets, roads, and so on, which belong to this area in the form of lines,
represented by PostGIS with the MULTILINESTRING type. When it's imported,
change its name to tbl_roads and adjust the columns to the structure used
for the other tables in this chapter. Here's an example of how the imported
data must look like, as you can see the spatial data is show in its binary form
in the following table:

Inserting GIS Objects

[46]

In the next chapter, we will learn how to show this in a way that can be easier to
understand for human beings. Excellent! Now that we have learned how to fill
our spatial data tables, we are ready to generate selection and filtering queries that
will help us to obtain a lot of information that could be very difficult to get (if not
impossible) using a different approach. In the coming chapters, we will set up QGIS
projects to be able to check what the data looks like and whether the projection of the
data is right.

Summary
In this chapter, you learned some basic concepts of GIS (such as WKT, EWKT, and
SRS), which are fundamental for working with the GIS data. Now, you are able to
craft your own spatial insertion queries or import this data into your own data tables.

In the next chapter, we will see how to exploit this combination of your own as well
as external data, using the appropriate SQL spatial extension commands to filter and
select data.

There are several ways to create a database or table and you can use the one that
fulfills your needs or simply the one that you like the most without any differences
in the final result.

In the next chapter, we will learn how to fill these tables by obtaining data from
publicly open and freely available sources.

[47]

Selecting and Filtering
GIS Queries

We could say the very existence of PostGIS depends on the ability to develop
spatial queries and bring them to the user; therefore, this chapter is important. In
the previous chapter, we loaded a lot of data into our data tables; all this spatial
data isn't very useful if we don't have the appropriate tools needed to exploit and
extract the necessary information from it. This is what spatial queries are about.
They provide a way to process thousands or even millions of records in a relatively
shorter period of time.

If we understand the way spatial queries work, we could easily develop or adapt
existing spatial queries, which will help us to extract the hidden treasure of the
valuable that is buried below hundreds of thousands of records stored in our
spatial data tables.

We'll learn how to use the set of tools that PostGIS gives us in the form of spatial
functions, and to develop amazing spatial queries that will probably put a smile on
the faces of our bosses and clients. In this chapter, we will cover the following topics:

• Learning how to obtain useful information from our spatial tables by using
nonspatial queries

• Reviewing some of the most useful spatial functions through practical
examples

• Learning how to develop queries that can access data from two databases
at the same time (nested queries are beyond the scope of this book)

• Developing spatial queries that apply all the knowledge that has been
acquired

Selecting and Filtering GIS Queries

[48]

Grouping data
In the previous chapter, we imported spatial data from several cities in England.
This could be very useful in adding fields that would help us to classify and group
this data by a region, state, or city. So, let's add a new field called town to the
tbl_landmarks table using the following query:

ALTER TABLE tbl_landmarks ADD COLUMN town varchar(30);

Adapt this query to add the same field to the other tables contained inside the
Real_World database. This way, we will have a way to group data and the spatial
queries that we develop could be faster, because they will be able to discriminate
between a lot of registers without even accessing the spatial field.

In Chapter 7, Performance Tuning, we will see the techniques that will help us to
accelerate the performance of our spatial queries. The following is the update query
that will mostly be applied after importing data from another city into our data table:

UPDATE tbl_landmarks
SET town = 'London'
WHERE town IS null

As a convention, we will write the first letter of the towns' names in capital. Now, all
the registers have the town field set to London; you can apply this query by changing
the town value as you import more data into your table.

Nonspatial queries
In the previous section, we have seen how our existing table can be modified in order
to add more fields to it, which can make our data even more valuable. Well, we are
now ready to develop our first query. We will get the basic information about it first
using the standard function of PostgreSQL, then we will be adding complexities to
our queries. It's very important to fully understand and dominate the grouping and
filtering of SQL before we can apply the spatial functions. For this reason, we must
refresh all these skills first. We will see a set of practical exercises that will help us to
get basic information about the data stored in our data tables. The data tables in our
databases aren't related to each other, so you can work with each one separately.

We will work with the tbl_buildings table first. Let's check how many registers
from London we have stored in our table; to do this, we will run the following query:

SELECT COUNT(*) FROM tbl_buildings WHERE town='London'

Chapter 4

[49]

We must get a one-row result whose value differs from this depending on whether
there have been updates made to the imported data set, as shown in the following
table:

Count
223732

Now, you may want to know the data of how many towns you have loaded into
your spatial data table. To do this, you should use the following query:

SELECT town FROM tbl_buildings
GROUP BY town ORDER BY town

You will get a list of all the towns and information on them, which were added to
the spatial data table:

Town
Bristol
Buckinghamshire
London

The following exercise will get you a list of the data of all the different kinds of
buildings stored in our data table grouped by town:

SELECT town, type FROM tbl_buildings
GROUP BY town, type
ORDER BY town, type

We will now get the following result:

Town Type
Buckinghamshire agricultural
Buckinghamshire apartments
Buckinghamshire attraction
Buckinghamshire bank
Buckinghamshire barn
Buckinghamshire Barn
… …

Selecting and Filtering GIS Queries

[50]

The dots in the final record indicate that this is just an extract of the information and
that this list of records continues in the real query. However, what if we wanted to
know how many of them are in each city? We could add the following to our query:

SELECT town, type, COUNT(type) FROM tbl_buildings
GROUP BY town, type
ORDER BY town, type;

We will get the following table as the output of this query:

Town Type Count
Buckinghamshire agricultural 3
Buckinghamshire apartments 40
Buckinghamshire attraction 5
Buckinghamshire bank 7
Buckinghamshire barn 18
Buckinghamshire Barn 1
… … …

Here, we can see a problem, specifically with the barn rows. Now, what if you have
registers of the same kind in your data but they're written differently? In this case,
barn is written with all the letters in lower case and, in some occurrences, with the
first letter as a capital. To solve this problem, we could just standardize the data in
our table; in this case, we would decide that all the building types must be written in
lower case letters, and update all the data that doesn't fit into this new rule. We could
make this adjustment with the following query:

UPDATE tbl_buildings SET type = LOWER(type);

Now, when we rerun the last query, we get the following result in the barn row:

Town Type Count
Buckinghamshire barn 19

However, what if the data doesn't belong to us? We may be in a situation where we
probably only have read access to this specific data source, or for some other reason
we are unable to modify the data. In such a case, we just have to modify our original
query to address this problem:

SELECT town, LOWER(type), COUNT(type)
FROM tbl_buildings
GROUP BY town, LOWER(type)
ORDER BY town, LOWER(type);

Chapter 4

[51]

Now, we might only need information on how many universities there are in
London. To find out the number, use the following query:

SELECT town, type, COUNT(type) FROM tbl_buildings
WHERE town = 'London' AND type = 'university'
GROUP BY town, type
ORDER BY town, type

We will get the following result:

Town Type Count(type)
London university 229

Until now, we have only developed regular queries, but the power of PostGIS has
not been used here yet. Before we can develop our first spatial query, we must first
at least know the most important and useful set of functions that we can use to build
our spatial queries. In the next section, we will review and explain them through
practical examples using the data stored in our databases.

There are many spatial functions that you could use. We'll now see some of the most
important and useful functions through practical examples using the data loaded in
the past chapters.

When we have finished, we will need to know how to enable our database to
run queries that use data from two different databases; in this specific case,
the Real_Estate and the Real_World databases will be accessed.

Later on in this chapter, we will see how to set up our databases so we can run
queries that use data from both databases. These kinds of queries are called cross
database queries.

Spatial functions
In this section, we will see a subset of the most useful spatial functions that can be
used to extract the information that we need from the databases. These functions
will be illustrated through practical examples mentioned earlier. The functions
that we will cover are as follows:

• ST_Distance

• ST_DWithin

• ST_Length

• ST_Intersects

• ST_Within

Selecting and Filtering GIS Queries

[52]

The ST_Distance functions (geometry,
geometry)
It returns the distance between two geometries in projected units, as we saw
in Chapter 3, Inserting GIS Objects, which mentions the measurement units in
which the spatial coordinate is given. As an example, the POINT(-1.344165
51.381320) position is given in degrees; another geographic reference system
could use a different unit of measurement, such as meters or feet. If we want to
get the measurement in a specific unit of measurement, we will have to make the
appropriate conversion on the fly. We will see examples of how this conversion is
made and how we could take this into account when we develop our spatial queries.

As an example, let's take the data in the tbl_landmarks data table from the Real-
World database. Suppose we want to know the distance between two schools in feet,
in this case, the Wendover House School and the Quarrendon School, both located in
Buckinghamshire. We will have to use the following query to get this information:

SELECT ST_Distance(p1.the_geom, p2.the_geom) as distance
from tbl_landmarks p1, tbl_landmarks p2
where p1.name='Wendover House School' and p2.name = 'Quarrendon
School'
and p1.town='Buckinghamshire' and p2.town='Buckinghamshire';

The preceding query will give us the following result:

Distance
0.108007596490245

If the distance that you have to measure is on a bigger scale, that is, the distance
between larger pieces of terrain, such as countries, it will be better if you use a spatial
data field called geography. Explaining this data type is beyond the scope of this
book, but let me point out that it is more accurate than a geometric field, though its
processing is slower.

This measurement here is given in degrees; if we want to get the measurement in
feet, we will have to make the followings considerations:

• One degree comprises of 60 nautical miles
• One nautical mile has 6075 feet

Chapter 4

[53]

Now, taking this into account, we have to modify our query:

SELECT ST_Distance(p1.the_geom, p2.the_geom) * 60 * 6075 AS distance
FROM tbl_landmarks p1, tbl_landmarks p2
WHERE p1.name='Wendover House School' AND p2.name = 'Quarrendon
School'
AND p1.town='Buckinghamshire' AND p2.town='Buckinghamshire';

Following is the result in feet:

Distance
39368.7689206943

The next image shows you the distance graphically; this image was taken from
OpenStreetMap. As you can see, the distance is the length of a straight line
between the two locations:

Selecting and Filtering GIS Queries

[54]

The ST_DWithin function (geometry,
geometry, float)
The ST_DWithin function tells us whether the geometry is at a specific distance
to another. This distance must be given in the same measurement units that the
geographic system uses. Due to the nature of the geometry, it's more of a filtering
function that uses indexes, which is very useful to speed up queries, as we will see
in Chapter 7, Performance Tuning. The following image gives us a graphical example
of how this function works:

Now, let's perform another exercise. Suppose that we want to know the list of
hospitals that are at least a mile from Wendover House School, taking into account
that a degree has approximately 69 terrestrial miles (remember that these are shorter
than nautical miles). We must develop the query, as follows:

SELECT h.name AS hospital, ST_Distance(s.the_geom, h.the_geom) *69 AS
distance
FROM tbl_landmarks AS h INNER JOIN tbl_landmarks AS s
ON(ST_DWithin(s.the_geom, h.the_geom, (1.00/69)))
WHERE h.type ='hospital'
AND s.name ='Quarrendon School';

Chapter 4

[55]

This leads us to the following result:

Hospital Distance

Royal Buckinghamshire Hospital 0.572970551308805

As we can see in the following image, the distance between the hospital and the
school is less than a mile:

Selecting and Filtering GIS Queries

[56]

The ST_Length function
The ST_Length function returns the length of a geometrical object if it's a line; the
measurement is in the units of its spatial reference. In order to explain this function,
we can take an example to find out the length in miles of the primary street called
Chapel Street, in Buckinghamshire:

SELECT name, (ST_Length(the_geom))*69 AS length FROM tbl_roads
WHERE name = 'Chapel Street' AND type ='primary' AND town =
'Buckinghamshire';

We will get the following result in miles:

name length
Chapel Street 0.219139309313286

The length of Chapel Street is 0.22 terrestrial miles, also known as statute miles or
land miles. Since a mile is equivalent to 1,760 yards, we could say the street is 385.7
yards in length. Most of the streets in our database are divided into segments with
the same name. To get the real value of an entire street with this situation, we would
have to get the sum of the length of all the segments in the same city, in this manner:

Chapter 4

[57]

The ST_Intersects function (geometry,
geometry)
The ST_Intersects function returns true if the two geometries share any portion of
space, in other words, if the two geometries touch or overlap each other:

As an example, we would need to get the names of the streets that intersect the
Theydon Avenue street in Buckinghamshire:

SELECT ri.name FROM tbl_roads AS rk
INNER JOIN tbl_roads AS ri
ON(st_intersects(rk.the_geom, ri.the_geom))
WHERE rk.name = 'Theydon Avenue' AND ri.town = 'Buckinghamshire';

Here, we are comparing the table with itself; the INNER JOIN filters all the data
that doesn't fit in the st_intersects criteria, so the WHERE filter will process
much less data.

Selecting and Filtering GIS Queries

[58]

This query returns the following result; as you can see, it includes itself:

Name
Theydon Avenue
Elm Grove
Elm Grove
Wood Street
Lime Grove
Station Road

In this image, we can see that all these streets intersect each other at some point:

The ST_Within function (geometry A,
geometry B)
The ST_Within spatial function simply returns true when Geometry A is completely
inside B. Following image explains the concept:

Chapter 4

[59]

Now, we'll take an example: we may want to know the landmarks present within
a specific area. To find out this information, we will set this area using the ST_
GeomFromText function:

SELECT name, type FROM tbl_landmarks
WHERE ST_Within(the_geom, ST_GeomFromText('Polygon((-0.988 51.999,
-0.971 52.003, -0.9665 51.9913, -0.9805 51.9895, -0.988 51.999))',
4326))
ORDER BY name, type;

We will get a result that shows us 21 rows:

Name Type
Buckingham School School

Convenience
Convenience
Fuel
mini_roundabout

… …

Selecting and Filtering GIS Queries

[60]

OpenStreetMaps doesn't allow us to draw directly on the web page, so to show this
polygon graphically, I have chosen to use QGIS:

In the next chapter, I will show you how to graphically present the data stored in the
tables and queries that we have developed.

Queries that use data from two databases
Now that we have applied some of the most frequently used spatial functions,
we could use them to ask our databases some useful information that could be
of interest to the company's management or even possible clients.

However, before we start, we have to realize that we have two separate databases
and PostgresSQL doesn't support, at least not natively, queries to multiple databases.
How can we build a query that uses data from both databases at the same time? The
answer lies in installing the Postgres_FWD extension.

Chapter 4

[61]

The Postgres_FWD module
The Postgres_FWD module serves as an extension for PostgreSQL, as PostGIS allows
access to data stored in databases that are different from the one in use; you can
even access data from remote servers. This module allows us to create a foreign data
wrapper, which can be used as a local data table.

The following are the instructions you can use to install and configure it for our
databases (in Chapter 7, Performance Tuning, you can see how to speed up the
performance of each database):

1. Access the Real-Estate database using PGAdmin.
2. Open a SQL command window.
3. Execute the following command to create the extension:

CREATE EXTENSION postgres_fdw;

4. Then, execute this command to create the remote server; in this case, it is the
same as the local, so we will call the remote server real_world_server:
CREATE SERVER real_world_server FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'localhost', dbname 'Real-World');

5. Then, we have to map the user who will execute the queries in the remote
server:
CREATE USER MAPPING FOR CURRENT_USER SERVER real_world_server
OPTIONS (user 'postgres', password '123456');

6. Lastly, we must create a remote table to access these tables as if they were
local; in this case, we have named the remote and local tables differently
to avoid confusion; the landmarks table would be the link to the tbl_
landmarks remote table:

CREATE FOREIGN TABLE landmarks (id character varying(11), name
character varying(48), type character varying(16), the_geom
geometry(Point,4326), town character(30)) SERVER real_world_
server OPTIONS (table_name 'tbl_landmarks');

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Selecting and Filtering GIS Queries

[62]

We must repeat step 6 to add all the other spatial tables to the real estate database.
The following figure represents how the databases must be configured:

Real-World Real-Estate

tbl_landmarks tbl_roads

tbl_buildings
landmarks

buildings

roads

tbl_properties

As you can see there is a link between the tables of the Real-World database and
the Real-Estate database, so now it's possible to throw queries as if they were
local tables.

Developing spatial queries with our
own data
Finally, we can develop the desired spatial queries with our own data. In this section,
we will solve a series of possible information requests using the spatial function
that was shown to you in the previous section. It's very important to have the basic
concepts clear, in order to develop or adapt these queries to our own problem.

We will start with a question that was asked in the first chapter: which houses are
located at least 10 miles away from the local supermarket of a specific town? In this
case, we will take the city of London as an example; let's get a list of supermarkets
in London:

SELECT id, name, type FROM landmarks
WHERE type = 'supermarket' AND town = 'London'
ORDER BY name

Chapter 4

[63]

We will get a list of 540 rows; let's choose one to develop the query:

ID Name Type
304690529 £-stretcher supermarket
1579157125 99p Store supermarket
3098842500 ADM Food and Wine supermarket
448750327 Aldi supermarket
1964335366 Aldi supermarket
… … …

I will choose the 99p Store supermarket, though not for any particular reason. This row
has the 1579157125 ID. To see whether any of our properties is at least 10 miles away
from the supermarket, for this query, we must choose the ST_Dwithin function. We
will query the tbl_properties table, looking for houses that fit the filter:

SELECT p.id, p.town, p.postal_code, p.street, p.number, ST_Distance(p.
the_geom, l.the_geom)*69.00 AS distance FROM tbl_properties AS
p INNER JOIN landmarks AS l ON (l.id = '1579157125') WHERE ST_
DWithin(p.the_geom, l.the_geom, 10.00 /69.00)

In this case, we can see that our property in London is 9.8 miles away:

ID Town Postal_code Street Number Distance

1 London N7 6PA Holloway Road 32 9.79768721275219

Now, what if a client is interested in this particular property and asks you about the
three closest schools in the area? First, we could develop a query that tells us the
distance between the homes in question and all the schools in town:

SELECT s.id, s.name, ST_Distance(s.the_geom, p.the_geom)*69.00 AS
distance FROM landmarks AS s INNER JOIN tbl_properties AS p ON
(p.id=1) WHERE s.town ='London' AND s.type = 'school'

We get the following list:

ID Name Distance
196438 St Andrew's Church of England Primary

School
3.97779792566405

228047 St Mary's CE Primary School 6.80375648575588
20694281 Sedgehill School 11.2730843255474
20694282 Torridon Road Junior School 11.3893360006287
… … …

Selecting and Filtering GIS Queries

[64]

We have to organize this list in ascending order and only take the first three records
from it:

SELECT s.id, s.name, ST_Distance(s.the_geom, p.the_geom)*69.00 AS
distance FROM landmarks AS s INNER JOIN tbl_properties AS p ON
(p.id=1) WHERE s.town ='London' AND s.type = 'school' ORDER BY
distance ASC LIMIT 3

Now, we get the following result:

ID Name Distance
1862259416 1.02901277371039
389899550 Yerbury Primary School 1.04250291491521
2282281919 Ashmount Primary School 1.32943502876518

In this case, the data doesn't have the name of the closest school, but if the client
wants, we can give them the geographic position of it:

SELECT s.id, s.name, ST_Distance(s.the_geom, p.the_geom)*69.00 AS
distance, ST_AsEWKT(p.the_geom) AS position FROM landmarks AS s
INNER JOIN tbl_properties AS p ON (p.id=1) WHERE s.town ='London' AND
s.type = 'school' ORDER BY distance ASC LIMIT 1

We get the following result:

ID Name Distance Position
1862259416 1.02901277371039 SRID=4326;POINT(-0.11619

51.556173)

It is always a good idea to use table views in order to exploit your data
and make it more intelligent. You may have sensible data stored in some
fields of your data tables and you might want it to be available only to
certain users and not to others (as an example, there may be a situation
where the final prices of some properties must not be available to the
final clients, but only to the sales employees), so the use of table views is
always a good option for you to consider.

Chapter 4

[65]

Summary
In this chapter, you learned how to extract valuable information, using both spatial,
nonspatial, and a combination of both these approaches. Two different databases
were used here, because one of the book's objectives was to show how to do cross
queries. However, it's always preferable to use a single database to store all the
information that you need to use, so if you have control over the design of your
database system, it's better to use a single one. We covered some of the most useful
and generally used spatial functions. We worked with both databases at the same
time, exploiting their combined data by using the Postgres_FWD extension. In
order to see the result of the queries graphically, we directly used a website called
OpenStreetMaps. In the next chapter, we will learn how to use the powerful QGIS
tool to represent GIS operations in a graphical way.

[67]

Displaying GIS Data
Graphically

In this chapter, we will learn how to graphically see the data stored in our spatial
databases. To achieve this goal, we will use a powerful tool called QGIS. We have
used this tool in the previous chapter, but we will now take a closer look at it.
This chapter isn't a complete and exhaustive guide of QGIS; its objective is to
be a practical and useful reference that can achieve this book's goals.

In this chapter, we will cover the following topics:

• Learning the basics of how to use QGIS
• Seeing the data stored in our databases
• Using some additional data formats, besides the data stored in our databases
• Building and using spatial queries from the QGIS interface

Introducing QGIS
QGIS is a powerful, open, and free tool that helps us manage several kinds of spatial
data sources, which we can use to combine, transform, or analyze this spatial data.
Among these data sources, we can find:

• Vectorial data
• Raster files
• Web Map Services (WMS)
• Spatial Databases (PostGIS)

Displaying GIS Data Graphically

[68]

As we have established earlier, this chapter's objective isn't to be a comprehensive
guide of QGIS, but an attempt to give the reader a quick walkthrough of some of the
most useful features that will be needed in order to exploit data. We will just focus
on the functions that will allow us to complete our exercises and fully achieve the
objectives of this chapter.

Every time you run QGIS, you start a sort of working session, where you can
use your data as you need it. You have a blank space area where you can see the
data that you load from several possible data sources and the data types that
QGIS supports.

The QGIS application
First, let me show you the main window of QGIS:

At first glance, it would seem that this software is very complex to use because there
are a lot of options, but when you get used to it, you will realize that it is actually
very friendly and easy to use. Let's take a look at some of the most important
features of this tool:

Chapter 5

[69]

First, we have the main menu; it shows all the possible actions that we could take
with this tool, and we will explain the most important options that we can use later
on in this chapter.

In the left-hand section, we have several image icons, and each one represents a data
source that QGIS can use. Every time you load data from any source, QGIS adds it to
the working session as a layer. You can work with several layers at the same time; we
will see this concept in more detail later on in this chapter. Some of the data sources
that you can access are as shown in the following table:

Icon Name Function
Add vector layer You can open vectorial files formats, such

as SHP, KML, and so on

Add raster layer You can open an image (raster) file as a
Geotiff or as a JPG (even if they are not
georeferenced)

Add PostGIS layer You can access data stored in a PostGIS
database by developing a spatial query

Add WMS/WTMS
layer

You can access Web Map Services (WMS)
data sources available from your location
(via the Internet or Intranet)

Every time you add a layer to your project, you can see it in the blank area on the
right-hand side. Since this is the working area, you will see the data you have loaded
as one layer above all the previously loaded data. Actually, this is similar to the
layers of an onion skin. Here is a look at this working area:

In the bottom section of this area, you can see the geographical position of the mouse
cursor when it moves through the working area.

Displaying GIS Data Graphically

[70]

Now, we will see a set of graphical tools that will allow us to move the point of view
that a user has of the map; these tools will help him or her focus only on the subarea
of his or her interest. Take a look at the following table:

Icon Name Function
Pan Map You can move the view of the map to any side

you want

Zoom In You can get a closer look at the image, that is, in
the middle point of the working area

Zoom Out You can get far away from the middle point of the
working area in order to see more of the complete
image

Zoom to native
pixel resolution

You can see your data just like it was before when
it was originally loaded

Zoom Full You can see your data with an optimal zoom that
allows the data to fit into the whole blank area

Hands-on with QGIS
Now that we know the basis of QGIS, we can start to use it to see the data that is
stored in our data tables. First, we will take a look inside the tbl_landmarks table;
to do this, we will have to perform the following steps:

1. In the Layers menu, select Add PostGIS Layers:

Chapter 5

[71]

2. Now, you can see a window where you will have to specify the necessary
data in order to establish a connection with your PostGIS server:

3. Click on the New button to create a new connection, and you will see the
following window:

Displaying GIS Data Graphically

[72]

4. Fill it with the appropriate data; you can click on the Test Connect button to
check that the data is okay. If you are working from your personal machine
or think it's secure enough to save your username and password on it, you
can check those checkboxes to avoid QGIS from asking you for them every
time you connect to the server. Click on the OK button to finish.

5. You will see a warning dialog box if you choose to store the username and
password; click on OK to continue.

6. Now, you are again in the first window; click on the Connect button to
access your database:

7. You can see that the public schema of your database was added; now click
on the + symbol to expand the node:

8. We can now see a list of the spatial tables stored in this database; now,
we will select the tbl_landmarks table and see the following result:

Chapter 5

[73]

9. We can see a set of all the landmarks that we have stored. On the left-hand
side of the window, you can see a section titled Layers. In this section, we can
click on the checkbox on the left to see whether the content of this layer is on
our map.

There is a problem here. You can see the data, but there isn't any reference of where
the landmark is in the context of a city or country. Now, in order to address this
problem, we must get the spatial data that gives us the needed contextual reference.

There are a lot of websites that offer commercial and noncommercial data; most
of this data is available in public sources, such as the web pages of government
agencies. In this case, we will use a freely available shp file with the boundaries of
the United Kingdom, which you will find from the Global Administrative Areas
project. You can visit their website at http://www.gadm.org/country.

Displaying GIS Data Graphically

[74]

Perform the following steps:

1. Copy the file into the folder of your preference and then click on Add Vector
Layer in the Layer menu:

2. When this window shows up on the screen, you must click on the Browse
button and select the shp file; you will see a window where you will choose
Coordinate Reference System of your file. In this case, we will choose WGS
84 and click on the OK button, as shown in this screenshot:

Chapter 5

[75]

3. After this, we can see the United Kingdom map on the right-hand side.
4. If you load data that uses a different CRS, you can check the on-the-fly

transformation option of QGIS by navigating to Project Properties | CRS
| Enable 'on the fly' CRS transformation. This way all the data will be
displayed on the same projection:

And this is how it must look like:

Displaying GIS Data Graphically

[76]

5. However, now we can't see the landmarks. This is because the landmarks
layer is below the boundaries layer; we must correct this by placing the
landmarks layer above the boundaries layer. To do this, you must click
on the landmarks layer and drag it up:

6. Now, we can see both datasets; let's zoom into the area of our interest. To do
this, select the Zoom In tool and later click on the upper-left corner of the area
we want to zoom. Then, drag the mouse cursor to form a square; lastly, drop
the mouse button, and you will now see only the area of interest. Repeat these
steps until you can see the desired area at the appropriate zoom level:

Chapter 5

[77]

7. It looks okay now, but maybe it would look better if we change the blue used
for the background to white; to do this, we will have to right-click on the
layers of the boundaries, and then we will see the following pop-up menu:

8. Now, we must click on the Properties option to access the Layer Properties
window, so as to be able to change them:

Displaying GIS Data Graphically

[78]

9. We should change the color from blue to white in the color section:

10. Then, click on the OK button in the bottom section of the window and we
will see a change in the map, as shown in the following screenshot:

Chapter 5

[79]

11. It looks a lot better now, so we could help the user even more if we could
show a label above the landmark with it's name. To do this, we have to select
the properties window of the landmarks layer and then select the Labels
section on the left-hand side of the window:

Displaying GIS Data Graphically

[80]

12. We have to click the Label this layer with checkbox and select the name field
from the list of available data fields on the right-hand side, and then click on
the OK button, the result will be similar to the following screenshot:

Now, all the labels are shown for all the records with a nonempty name field value.

Don't you think that instead of the white background used here, it would be more
useful and interesting to have the image of a terrain? If you agree with me, we will
need to get this image from a public data source. Several governmental agencies
around the world provide public geographic data of their respective countries. In
this case, we will get an image from the national mapping agency of Great Britain,
known as "Ordinance Survey". You can get a lot of free spatial data under an
open data license. We can find it at Ordnance Survey; you can visit its website
at https://www.ordnancesurvey.co.uk/opendatadownload/products.html
and the license is available at http://www.ordnancesurvey.co.uk/docs/
licences/os-opendata-licence.pdf. This license allows us to:

Chapter 5

[81]

• Copy, publish, distribute, and transmit information
• Adapt information
• Exploit information commercially and noncommercially, for example,

by combining it with other information
• Include this information in your own product or application

For the following exercise, you must choose to download the GB Overview Maps
images. When you download the images, you get two geotiff files, GBOverview.
tif and GBOverviewPlus.tif; we will work with the second one. Perform the
following steps:

1. First, we must navigate to the Layers | Add Raster Image in the main menu.
2. Select the raster file from the folder where it's stored. Now, you will see a

screen similar to the following screenshot:

Displaying GIS Data Graphically

[82]

3. You can see a beautiful map, but the data loaded from the database is not
visible; you should put the landmark layer above the GBOverview layer,
and the result will be similar to that shown in the following screenshot:

4. You can now see the landmarks, but there is a problem; if you want to see the
boundaries layer, it doesn't let you view the image layer. In order to correct
this situation, we must convert the white color of the boundaries layer to
transparent. To do this, first right-click on the boundaries layer and navigate
to Properties | Style and change fill style to No Brush. Then, click on OK for
the changes to take effect:

Chapter 5

[83]

5. Put the boundaries layer above the GBOverview layer and you will be able
to see the boundaries, as shown in this screenshot:

Now, the map looks great, but there is a problem; the landmark data table
has a lot of registers, and maybe we only wanted to see data from one
specific city or area. We can do this by accessing data from a spatial query,
instead of the data table. We will now see how to throw a spatial query from
QGIS and display the result set:

Displaying GIS Data Graphically

[84]

6. First, we will remove the landmarks layer. Right-click on the layer and
select the option, remove; you will see a confirmation dialog. Click on the
OK button for the change to take effect, and the effects are shown in the
following screenshot:

7. Now, you have a map to look at, as the one shown in the previous
screenshot. The next step is to develop the spatial query.

We have learned how to load and combine information contained in several types
of file formats. We will now see how to add to this combination data directly
obtained from spatial queries to our database.

Chapter 5

[85]

Developing a spatial query from QGIS
It's possible to generate spatial queries from QGIS. Perform the following steps:

1. To do this, navigate to Layers | PostGIS Layers. We have to first select DB
Manager from the database menu option:

2. Once you have selected the option, you will see the DB Manager window.
There, you must select the PostGIS option:

Displaying GIS Data Graphically

[86]

3. Expand the child nodes until you get to the spatial tables stored in
the database, and then click on the SQL window button. You will see
SQL window. There, you can write an SQL query as if you were in the
PostgreSQL GUI:

4. Once you have finished, click on the Execute (F5) button. If the query is valid,
you will get the result set in the Result section, as shown in the following
screenshot:

Chapter 5

[87]

5. To see the graphical representation of the data, we must click on the Load
as a new layer checkbox. Then, you can specify which fields correspond to
the ID and the geometric fields in your database; the ID column should be
an integer with a unique value. For this, we have created an additional field
called num with serial as the data type:

6. You must specify a layer name too. When you are done, you can click on the
Load now! button to see the new layer:

If you put a label related to the name field, you can see all the schools in London.
You will now be able to repeat the exercises of the previous chapter using this
tool. You will see a graphical representation of the data, which when combined
with another visual support data, can give to the regular user a much better
understanding of the results rather than just seeing it in text form.

Displaying GIS Data Graphically

[88]

Summary
In this chapter, we have learned how to graphically display data stored in both
spatial data tables, and raster and vectorial files. By combining them, we can get
useful information that our clients and bosses can easily understand and use,
even if they don't have any knowledge or training in GIS applications.

In this chapter, we worked with vectorial files similar to the ones in Chapter 2,
Creating Your First GIS Database. We learned how to save shp data in our spatial data
tables, but is this the only kind of file that we can use? What if we get information
in a different data format, such as KML? Also, what happened to the raster files?
Where can they be stored? In the next chapter, we will answer this and several
other questions, by using several kinds of vectorial and raster files.

[89]

Management of Vectorial and
Raster Data with PostGIS

In Chapter 3, Inserting GIS Objects, we learned how to work with Shapefiles, generating
SQL insertion sentences to create and insert appropriate records in our spatial data
tables. Shapefiles are some of the most common and useful vectorial files used across
the world, but they aren't the only spatial data format available. There are a lot of
popular formats out there, and now we will learn how to deal with them. In this
chapter, we will see how to transform a file in almost any spatial format to shp.

It seems that the vectorial data is covered now, but what has happened to the raster
data? Could it be stored in the spatial database too? Well, the answer is yes. In this
chapter, we will work with raster data formats. We will insert and retrieve this data
into our spatial tables.

To achieve these goals, we will need a special tool that is actually a part of PostGIS's
infrastructure; this is a library called Geospatial Data Abstraction Library (GDAL).
GDAL allows us to convert spatial data from one format to another. In this chapter,
we will see the basics of this powerful tool and how we can interact with it to achieve
our goals. In this chapter, we will cover the following topics:

• Learning how to convert almost any kind of vectorial data file into an shp file
• Learning how to use GDAL to transform and re-project raster data files
• Learn how to store and retrieve raster data into our tables

Management of Vectorial and Raster Data with PostGIS

[90]

The GDAL/OGR library
Before we can move on with this chapter, we will need to explain what the GDAL/
OGR library is, and why it is necessary for us. Well, first let me tell you that GDAL
is a translator library used for raster and vector geospatial data formats, and is
released under an X/MIT style Open Source License by the Open Source Geospatial
Foundation. You can visit its official web page at http://www.gdal.org/.

You can use GDAL both as a set of command line utilities, or even as a set of API
libraries to add spatial functionality to your applications. This library divides itself in
two. Traditionally, the term GDAL is used to design the raster part of the library, and
OGR is used for the vector part. Basically, we will use it to transform data from one
type to another; in this particular case, we will learn how to transform KML files to
shps. Now that we know what GDAL is, it's time to install it into our machine. To do
this, you can perform the following steps:

1. Open your favorite web browser and go to GDAL's main page at
http://www.gdal.org/.

2. Click on the Downloads section, as shown in the following screenshot:

3. In the GDAL/OGR Binaries page, go to the Windows section and select the
first location, as shown in the following screenshot:

Chapter 6

[91]

4. Then, you will be redirected to the GIS internals support site; once you're
there, select the Stable Releases link, as shown in the following screenshot:

5. Here, you will see a table with different versions of GDAL; for our purposes,
we will choose the last one, as shown in the following screenshot:

6. Then, we will have to choose which component we want to install in our
computer; you must choose gdal-111-1600-x64-core.msi:

Management of Vectorial and Raster Data with PostGIS

[92]

7. Once you have selected the link, the download will start. When it is finished,
you must install it on your computer.

8. Then, you will see the installation wizard; click on the Next button for the
installation process to begin, as shown in the following screenshot:

9. Accept the terms of the license and click on the Next button.
10. Select the Typical option, as shown in the following screenshot:

Chapter 6

[93]

11. Then, click the Install button. The application wizard starts to copy the
appropriate files and registers the components into your computer.

12. When the wizard finishes installing the application, you will see a screen
similar to the following screenshot:

13. Click on the Finish button to close this window.
14. If you want the GDAL tools and application to be available from all the

locations in a msdos-like command interface, add the following path to the
PATH environment, C:\Program Files\GDAL, as we did in Chapter 2, Creating
Your First Spatial Database.

15. Restart your computer for the changes to take effect.

Working with GDAL/OGR commands
Now that the GDAL library is installed on our computer, let's run some commands
to test whether the installation was successful. Open a command line window and
write the following commands:

1. First, let's check the library's version:
gdalinfo –version

We must get the following result:

GDAL 1.11.1, released 2014/09/24

Management of Vectorial and Raster Data with PostGIS

[94]

Now, to see the raster formats that this tool can process, we must run the
following command:
gdalinfo --formats

We will get a list of the available formats that the tool is able to read and
sometimes write; the following screenshot is an extract of this list:

GDAL supports 118 different types of raster files.

Chapter 6

[95]

2. Now, if we want to do the same for vectorial files, we will use the following
command:
ogrinfo --formats

We will get a list of 65 types of files:

Supported Formats:

 -> "ESRI Shapefile" (read/write)

 -> "MapInfo File" (read/write)

 -> "UK .NTF" (readonly)

 -> "SDTS" (readonly)

 -> "TIGER" (read/write)

 -> "S57" (read/write)

 -> "DGN" (read/write)

 -> "VRT" (readonly)

 -> "REC" (readonly)

...

3. Now, let's focus on the vectorial files; our objective is to learn the basics to
transform any of these 64 different data types (except shp type, obviously)
into an shp file that we can insert directly into our PostGIS spatial data tables.
The command that we will use is ogr2ogr, and the syntax is:
ogr2ogr -f "Format name" output_file input_file

4. Let's see how to use this tool through an example that transforms a KML
file into an shp file. Let's take an example where we want to include the
United Kingdom postal code boundaries in our spatial database, but this
time instead of getting this information from an shp file, as we did in
Chapter 3, Inserting GIS Objects, we get it in a KML file from http://www.
freemaptools.com/. It comes with a lot of free spatial resources that you
could find useful. The file is named postcodes-boudaries.kml. Now, we
have to convert this KML file into an shp file so that we can insert it into a
spatial table. The command to fulfill this objective is:
ogr2ogr –f "ESRI Shapefile" postcode-boundaries.shp postcode-
boundaries.kml

5. We can adapt this example to transform any other supported data; all we
need to do is change the name of the input and output files, and OGR will
use the right transformation to obtain an shp file. If OGR doesn't know how
to handle a particular format or if the file is damaged, we will get an error
message telling us the list of drivers that OGR tried to use.

Management of Vectorial and Raster Data with PostGIS

[96]

Working with raster files
Raster files represent a terrain by its image at a certain altitude and contain metadata
that allows setting the image in the right place above an electronic map. Working
with raster data is a little different from working with vectorial data. First, we must
define a table with a field of raster type instead of the geometric type that we have
used in previous chapters.

We will need to use the GDAL raster2pgsql command; this tool will generate
the appropriate SQL sentences to create the spatial table and insert data into it.
We will work with the GBOverview.tif file that we used in Chapter 5, Displaying
GIS Data Graphically.

Before we start, we need to get a little information on this file; in this case, we must
know what projection it is using. To get this information, we must use a GDAL
command tool called gdalinfo. This tool gives us a lot of useful information on
a specific raster file. Now, we will use the following command:

gdalinfo GBOverview.tif

When we run it, we will get the following output:

Driver: GTiff/GeoTIFF

Files: GBOverview.tif

Size is 4000, 3200

Coordinate System is:

PROJCS["OSGB 1936 / British National Grid",

 GEOGCS["OSGB 1936",

 DATUM["OSGB_1936",

 SPHEROID["Airy 1830",6377563.396,299.3249646000044,

 AUTHORITY["EPSG","7001"]],

 AUTHORITY["EPSG","6277"]],

 PRIMEM["Greenwich",0],

 UNIT["degree",0.0174532925199433],

 AUTHORITY["EPSG","4277"]],

 PROJECTION["Transverse_Mercator"],

 PARAMETER["latitude_of_origin",49],

 PARAMETER["central_meridian",-2],

 PARAMETER["scale_factor",0.9996012717],

 PARAMETER["false_easting",400000],

 PARAMETER["false_northing",-100000],

Chapter 6

[97]

 UNIT["metre",1,

 AUTHORITY["EPSG","9001"]],

 AUTHORITY["EPSG","27700"]]

Origin = (-649749.999999999880000,1449750.000000000500000)

Pixel Size = (500.000000000000000,-500.000000000000170)

Metadata:

 AREA_OR_POINT=Area

 TIFFTAG_COPYRIGHT=Ordnance Survey. Crown copyright and database right
2013

 TIFFTAG_DATETIME=2013:08:12 13:27:15

 TIFFTAG_RESOLUTIONUNIT=3 (pixels/cm)

 TIFFTAG_SOFTWARE=Adobe Photoshop CS6 (Windows)

 TIFFTAG_XRESOLUTION=10

 TIFFTAG_YRESOLUTION=10

Image Structure Metadata:

 COMPRESSION=LZW

 INTERLEAVE=PIXEL

Corner Coordinates:

Upper Left (-649750.000, 1449750.000) (21d55'22.41"W, 61d27'54.60"N)

Lower Left (-649750.000, -150250.000) (16d 0'12.44"W, 47d41'10.18"N)

Upper Right (1350250.000, 1449750.000) (16d 9' 2.77"E, 61d43'17.34"N)

Lower Right (1350250.000, -150250.000) (10d42'41.48"E, 47d50'21.53"N)

Center (350250.000, 649750.000) (2d47'32.76"W, 55d44'18.95"N)

Band 1 Block=4000x32 Type=Byte, ColorInterp=Red

Band 2 Block=4000x32 Type=Byte, ColorInterp=Green

Band 3 Block=4000x32 Type=Byte, ColorInterp=Blue

This is a lot of information! But, in this case, we just need some data:
AUTHORITY["EPSG","27700"] is the ID of the projection that was used to create
this image, in this case, it is OSGB 1936 / British National Grid. As we've said
in the past, all the data that we will use must be projected in the EPSG 4326 WGS
84 projection. We must make a re-projection of the data before we can insert it into
the database. Now, we must use another GDAL tool called gdalwrap. This tool will
generate a new geotif file with the right projection. The following command is used
to run:

gdalwrap –s_srs EPSG:27700 –t_srs EPSG:4326 GBOverview.tif
GBOverview4326.tif

Management of Vectorial and Raster Data with PostGIS

[98]

Here, we tell GDAL that we want to generate a new file that we called
GBOverview4326.tif previously, from the old one with a different SRS, which is, in
this case, WGS 84. If everything goes well, we will get the new file in the same folder.
We can check the properties of the new file:

gdalinfo GBOverview4326.tif

From this, we will get the following outcome:

Driver: GTiff/GeoTIFF

Files: GBOverview4326.tif

Size is 5515, 2207

Coordinate System is:

GEOGCS["WGS 84",

 DATUM["WGS_1984",

 SPHEROID["WGS 84",6378137,298.257223563,

 AUTHORITY["EPSG","7030"]],

 AUTHORITY["EPSG","6326"]],

 PRIMEM["Greenwich",0],

 UNIT["degree",0.0174532925199433],

 AUTHORITY["EPSG","4326"]]

Origin = (-21.921732742690157,62.924895838648141)

Pixel Size = (0.006902997508602,-0.006902997508602)

Metadata:

 AREA_OR_POINT=Area

 TIFFTAG_COPYRIGHT=Ordnance Survey. Crown copyright and database right
2013

 TIFFTAG_DATETIME=2013:08:12 13:27:15

 TIFFTAG_RESOLUTIONUNIT=3 (pixels/cm)

 TIFFTAG_SOFTWARE=Adobe Photoshop CS6 (Windows)

 TIFFTAG_XRESOLUTION=10

 TIFFTAG_YRESOLUTION=10

Image Structure Metadata:

 INTERLEAVE=PIXEL

Chapter 6

[99]

Corner Coordinates:

Upper Left (-21.9217327, 62.9248958) (21d55'18.24"W, 62d55'29.63"N)

Lower Left (-21.9217327, 47.6899803) (21d55'18.24"W, 47d41'23.93"N)

Upper Right (16.1482985, 62.9248958) (16d 8'53.87"E, 62d55'29.63"N)

Lower Right (16.1482985, 47.6899803) (16d 8'53.87"E, 47d41'23.93"N)

Center (-2.8867171, 55.3074381) (2d53'12.18"W, 55d18'26.78"N)

Band 1 Block=5515x1 Type=Byte, ColorInterp=Red

Band 2 Block=5515x1 Type=Byte, ColorInterp=Green

Band 3 Block=5515x1 Type=Byte, ColorInterp=Blue

Now, we can see the new projection of this file in the following part of the outcome:

AUTHORITY["EPSG","4326"]

Inserting raster data into our database
Since we have got a re-projected file, we can continue to insert it into a spatial table.
Let's open a command window and go to the directory where the GBOverview4326.
tif file is. Now, let's run the following command:

raster2pgsql GBOverviwe.tif –F overview > overview.sql

The -F option means that we want to create a field that holds the file name of
the raster file. The overview function sets the name of the spatial table, and >
overview.sql specifies the name of the file where the SQL script must be saved.

After running this command, we will get a file named overview.sql; if we open it,
we will see the following outcome:

BEGIN;

CREATE TABLE "overview" ("rid" serial PRIMARY KEY,"rast"
raster,"filename" text);

INSERT INTO "overview" ("rast","filename") VALUES ('01000003
000000000000407F400300000000407FC0FFFFFFFF2BD423C102000000161
F3641000000000000000000000000000000008… 9E9E9E9EA'::raster,
'GBOverview.tif');

END;

Obviously, this is a shorter version of the insertion command. This one holds the
image data in the first field, and in the second field, the name of the file where the
image was extracted is set.

Management of Vectorial and Raster Data with PostGIS

[100]

Now, let's run this SQL script. You may have wanted to use the graphical tool to do
it, but as the file is very large, the SQL graphical tool has problems loading it. It will
be better to do this using the text command, by performing the following steps:

1. Open a command window.
2. Go to the folder where the SQL script is saved.
3. Log in into the Real-world database using the following command:

psql –U postgres –d Real-World

4. Run the SQL script with this command:
\i overview.sql

5. If the command is successful, you will see the following echo messages:

BEGIN

CREATE TABLE

INSERT 0 1

COMMIT

Graphically displaying raster data saved in
our database
Now that our table is created and filled, you would probably want to check whether
the data was correctly loaded. Well, to do this, we will use QGIS again, with the help
of the following steps:

1. Open QGIS.
2. Navigate to the Database | DBManager.
3. Log in into the real-world database.
4. Expand localhost and the public nodes; once you do this, you will see a

screen similar to the following screenshot:

Chapter 6

[101]

5. Let's select the overview table; we will see a sheet with information about
the table, as shown in the following screenshot:

Management of Vectorial and Raster Data with PostGIS

[102]

6. Right-click on the table and select the Add to canvas option:

7. The application starts to load the image onto the canvas. When it finishes,
you will see something similar to the following screenshot:

8. Now that we have our information stored into a spatial table, we
can combine it with several other types of data as we did in the
previous chapter, as shown in the following screenshot:

Chapter 6

[103]

This is just the tip of the iceberg of all the fabulous things that you can make using
these powerful and open sourced tools, which are available for free. Now it's up to
you to use your imagination to generate a lot of great and visually rich solutions by
combining these three tools (PostGIS, GDAL, and QGIS). In Chapter 8, Developing a
GIS Web Application, we will see how to develop web applications in order to give
the user a chance to work with the spatial data in a more automatic manner.

Summary
In this chapter, we learned how to insert both raster and vectorial files directly into
our database. We used the GDAL library to transform the available data into the data
formats that we need, giving us the possibility of using almost any kind of spatial
data file that we have available, regardless of the projection and format it was made
in (as long as it's available in GDAL).

In the following chapter, we will see how to work with this data in a more efficient
way. When we work with regular databases, we use the indexes to help us to get
a better performance from the server, especially when we work with thousands or
even millions of registers. PostGIS gives us the possibility of creating indexes that
will do the same for us with the spatial data tables. We will see how to accelerate
our spatial queries using them.

[105]

Performance Tuning
It's very common for a spatial database to have millions of records; this could cause
our queries' performance to decay a lot when even more data is added. This would
have a negative impact if we don't have the right strategies in place to deal with
this situation. Similar to the approach used for a regular database, we could create
indexes that help the DBMS to create strategies to speed up queries. In a spatial
approach, we can use indexes as well. In this chapter, we will learn about
the following topics:

• Why the spatial indexes in PostGIS are different from the regular indexes
• Creating a spatial index
• Making sure that PostgreSQL uses these indexes where they're necessary
• Tuning PostgreSQL's configuration for PostGIS

Spatial indexes in PostGIS
PostgreSQL supports three types of indexes:

• B-Trees
• R-Trees
• GIST

The third one, GIST, is a type of index that PostGIS uses for GIS data, so all the
spatial indexes must be created in this type. GIST stands for Generalized Search
Tree, and is used to index irregular structures, instead of basic data types (such as
integers, characters, strings, and so on). The syntax used to build a GIST index for a
geometry column is:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

Performance Tuning

[106]

Here, we can use GUI to build a spatial index instead of a command line. In the next
section, we will develop a spatial query and run it with and without an index in
order to compare the improvement in speed.

Tuning spatial queries
To illustrate how much an index helps to accelerate our spatial query, let's return to
our spatial database, Real-World. We have already loaded data from several cities in
Great Britain, and at this time we have more than half a million registers saved in our
data table. This set of stored records will be good enough for this exercise.

Now, let's develop the spatial query to perform the test. Let's say that we want a
query that gives us a list of all the buildings that were one-fourth of a mile from an
arbitrary building. To illustrate this, we have chosen the Royal College of Music
as a reference point without any particular reason. This image will depict this point
graphically:

Our spatial query will, therefore, be:

SELECT b2.*, ST_Distance(b1.the_geom, b2.the_geom)*69.00 AS distance
FROM tbl_buildings AS b1, tbl_buildings AS b2 WHERE b1.name = 'Royal
College of Music' AND ST_DWithin(b1.the_geom, b2.the_geom, 0.250 /69.00)

Chapter 7

[107]

Let's open a PGAdmin session, copy the query in the SQL editor, and run it. After
doing this, you will get a result as shown in the following screenshot:

After running the query, we get a result of 112 rows at an elapsed time of 1500
milliseconds. Now, let's generate a spatial index for this table; to do this, we must
perform the following steps:

1. In the PGAdmin application, expand the tbl_buildings node and go to the
Indexes (0) node.

2. Right-click on it and in the contextual menu select the New Index option:

Performance Tuning

[108]

3. In the New Index... window, type a name for your index; in this case,
we will call it idx_geo_buildings:

4. Now select the Definition tab.
5. It's very important that in the Access method combo box, you select the

gist option:

6. Now, let's go to the Columns tab; in the Column combo box, select
the_geom.

7. Click on the Add button, as shown in this screenshot:

8. Click on the OK button for the changes to take effect; it's very probable that
this might take a while as PostgreSQL would most likely be generating the
index structure at that moment.

Chapter 7

[109]

9. When the process finishes, you can close the New Index... window and see
the new index on the indexes list of our table, as shown in this screenshot:

If you prefer, you can generate the index via a command line. To do this, you can
type the following command in your SQL Editor window:

CREATE INDEX idx_geo_buildings ON tbl_buildings USING GIST (the_geom);

Before we can use the index, it is necessary that we vacuum our data table. Vacuum
is a function that forces PostgreSQL to collect table statistics; this information is later
used to optimize queries. In order to vacuum our data table, we must perform the
following steps:

1. Right-click on the tbl_buildings table icon.
2. In the contextual menu, select the Maintenance... option:

3. In the Maintenance window, select VACUUM.
4. In the VACUUM options section, select the ANALYZE option.

Performance Tuning

[110]

5. Click on the OK button for the changes to take effect:

6. When the process finishes, click on the Done button:

Once again, if you prefer, you can do this process from the command line by running
the following command:

VACCUM ANALYZE tbl_buildings (the_geom)

Chapter 7

[111]

Now, let's run our spatial query once again to see whether there are some
differences:

As you can see, the same query takes just 203 milliseconds to take effect, and this is
almost eight times faster than before. As you get more registers in your data table,
the effect of the spatial index is more notorious; it is very common in the GIS ambit
to have tables with millions of registers, so building indexes may be crucial for the
project's success in such cases.

There is another important thing that you should know about the usage of spatial
indexes. In order to make sure that we make use of these indexes when we run our
spatial queries, we must use the EXPLAIN command. This is a command that we
put before our query and instead of just running and showing us the result, it runs
the query, but also shows us information on how DBMS is running it. Out of the
information given to us, it tells us whether the spatial index was used. Now, take a
look at this example:

EXPLAIN SELECT b2.*, ST_Distance(b1.the_geom, b2.the_geom)*69.00 AS
distance FROM tbl_buildings AS b1, tbl_buildings AS b2 WHERE b1.name
= 'Royal College of Music' AND ST_DWithin(b1.the_geom, b2.the_geom, 0.250
/69.00);

Performance Tuning

[112]

When we run this query, we obtain this result:

QUERY PLAN

Nested Loop (cost=4.34..16628.04 rows=1 width=480)

 -> Seq Scan on tbl_buildings b1 (cost=0.00..16425.05 rows=6
width=164)

 Filter: (name = 'Royal College of Music'::bpchar)

 -> Bitmap Heap Scan on tbl_buildings b2 (cost=4.34..33.78 rows=1
width=316)

 Recheck Cond: (the_geom && st_expand(b1.the_geom,
0.0036231884057971::double precision))

 Filter: ((b1.the_geom && st_expand(the_geom,
0.0036231884057971::double precision)) AND _st_dwithin(b1.the_geom, the_
geom, 0.0036231884057971::double precision))

 -> Bitmap Index Scan on idx_geo_buildings (cost=0.00..4.34 rows=7
width=0)

 Index Cond: (the_geom && st_expand(b1.the_geom,
0.0036231884057971::double precision))

Taking a closer look at the result, we can see that the index has not been used by the
DBMS because of the following line:

 -> Bitmap Index Scan on idx_geo_buildings (cost=0.00..4.34 rows=7
width=0)

In this case, we are using the ST_DWithin spatial function as a filter. This is a
bounding box-based function, which means that it internally constructs a bounding
box and uses the && operator. These kinds of functions are the only ones that can
actually use the spatial index. Not all spatial functions are bounding box-based, so
when you run your query, make sure that your filter function is using it through the
EXPLAIN command.

Chapter 7

[113]

If you are using a bounding box function as a filter and you still find that your spatial
indexes are not being used, you can perform the following steps:

1. Run the VACUUM ANALYZE command; this will provide DBMS with better
information to make choices about the index usage. Actually, it is a good
practice to run this command regularly.

2. If the previous step doesn't work, you can modify the PostgreSQL pertinent
parameters, so it will be more probable that DBMS decides to use the index

In the next section, we will see which parameters, and why and how, we can adjust
them in order to get a better performance in running the queries.

Tuning PostgreSQL's configuration file
for our spatial database
Another important thing that we can do to speed up our database is to adjust some of
the parameters that PostgreSQL's DBMS uses. We have to configure new values for
them, keeping in mind the specific features of spatial databases (spatial records are
usually bigger than nonspatial ones). Now, we will see how to make these changes.

In order to do this, we will have to edit the postgressql.conf file. It's a
postgreSQLconfiguration file and we can find it in the C:\Program Files\
PostgreSQL\9.3\data folder.

There are two ways of performing this task; the first is to open it with a text editor,
such as Notepad, the second one is to open it using the utility that comes with
PGAdmin for these purposes. We can perform the following steps:

1. Run PGAdmin III.
2. Navigate to File | postgresql.conf.

Performance Tuning

[114]

3. When the file dialog is opened, navigate to the C:\Program Files\
PostgreSQL\9.3\data directory and select the postgresql.conf file.
You will see a window similar to the following screenshot:

Here, you can graphically change the parameters that rule the behavior of the
PostgreSQL database service. These changes will help us to improve the behavior
of the database components in order to make it more efficient for the spatial data
management. The changes can be the following:

Name checkpoint_segments
Description The maximum number of log file segments between automatic

WAL checkpoints.
Default value 3

Chapter 7

[115]

Name checkpoint_segments
Suggested value 6
Explanation: Write Ahead Logging (WAL) is a method to ensure that data

integrity consists of log changes to the database data (such as tables
and indexes) before these changes take effect, so in the case of a
database crash, the log can be used to restore it. Therefore, every
time that a checkpoint is created, all the data in the memory must
be saved to the disk, and this obviously causes a significant I/O
load. By incrementing the number of memory segments (typically
they are 16 MB in size) that must be filled before a new checkpoint
is created, we reduce the workload to our database server. This
applies especially well in the case of spatial data records, because
they are frequently bigger than the number of spatial pairs, as we
mentioned earlier on in this chapter.

Name constraint_exclusion
Description This is generally used for table partitioning
Default value Deactivated
Suggested value Activated, partition
Explanation: It will force the planner to only analyze tables for the purpose of

constraint consideration if they are in an inherited hierarchy and
not pay the planner penalty otherwise

Name maintenance_work_mem
Description It defines the amount of memory used for maintenance operations,

including vacuuming, index, and foreign key creations.
Default value 16
Suggested value 128
Explanation: A larger value might improve the performance for vacuuming and

restoring databases. Don't set it up larger than this because it can
lead to an excess of reserved memory that can affect other processes.

Name random_page_cost
Description It represents the cost of a random page access from the disk
Default value 4.0
Suggested value 2.0
Explanation: Lowering this value will cause it to be more attractive for the system

to use index scans on when a query is run

Performance Tuning

[116]

Name shared_buffers
Description This sets the amount of memory the database server uses for

shared memory buffers
Default value 32 MB
Suggested value 64 MB to 512 MB unlikely for an allocation of more than 40 percent

of RAM
Explanation: Increasing this value from the default usually improves the system

performance, but as the PostgreSQL documentation states "The
useful range for shared_buffers on Windows systems is generally
from 64MB to 512MB"

Name wal_buffers
Description It sets the amount of memory used for WAL data.
Default value 64kb
Suggested value 1MB
Explanation: As mentioned earlier, only once the WAL files have been flushed

will the changes be written to the data files themselves. The size of
this buffer only needs to be large enough to hold the WAL data for
a single typical transaction, because spatial data tends to be larger
than nonspatial, and it's recommended to increase the size.

Name work_mem
Description It defines the amount of memory that internal sorting operations

and hash tables can consume before the database switches to
on-disk files

Default value 1MB
Suggested value 16MB
Explanation: By increasing this value it becomes less probable that the system

will run out of available memory for operations (such as ORDER
BY and DISTINCT clauses, merge and hash joins, hash-based
aggegation and hash-based processing of subqueries), without
incurring on-disk writes, which will obviously improve the speed
of complex queries

Don't forget that all these values are only suggestions and that you have to find the
optimal value according to the needs of your database system. For all the changes to
take effect, you must restart the PostgreSQL service.

Chapter 7

[117]

Summary
In this chapter, you learned how to increase the speed of your spatial queries,
something that will be very useful for you when you have tables with millions of
registers. We saw the usage of spatial indexes, how to create them in a proper way,
and how to force DBMS to use them when a query is fired.

In the next chapter, we will consolidate the learning not only of this chapter, but of
the entire book; we will build a GIS application that will use all that we have learned.
These kinds of applications are very popular currently as people are in constant
touch with this class of technology and want to access all the information they
can get. Following the line of this book, we will use open source tools to build the
applications. We will once again take up the example of the real-estate company and
make two applications: one will be a web application for the customers and the other
will be a desktop application to manage data.

[119]

Developing a GIS Web
Application

Now that we have developed our spatial database, the ability to see the data inside it,
and actually tuned it to achieve an optimal performance, it's time to develop a useful
application, which exploits everything that we have seen in the previous chapters.

When you develop an application, you have to be very clear about who your target
audience is; this means thinking about who the users of your application will be and
the role of this application in an organization. This fact is crucial when you define not
only the application's logic, but also the technology that will support this logic in the
best way. We will split the system into two applications:

• Web application: Its objective is to be a platform that consumers can use
to get information on properties that are available for sale, including the
location of them on a map.

• Desktop application: The objective of this application is to show a way to
manipulate the information on these properties in a visual and easy manner,
rather than just using SQL commands to add, remove, or edit data. This
information is provided to the managers of a spatial database.

We will use the example of the real estate company to illustrate both these approaches;
in this case, we will develop two applications. To provide you with a better
understanding, let's describe the roles of the two actors that we will use in the system:

• Consumer: A consumer might want information on available properties to
see which one fits his or her needs better.

• Manager: A manager's prerogative is to be able to manage a property's
information (add, remove, or edit it), and especially to set up the geographic
position of it in the simplest and most effective way, which will allow him or
her to focus on getting the work done.

Developing a GIS Web Application

[120]

To explain a system's dynamic nature better, take a look at the following figure:

There are a lot of options available when you have to choose the right technology
to develop your project. However, it would be impossible to cover all of them in this
chapter, though, we will try to cover two of the main development environments
you could choose for your application.

We will continue to use open source development tools (such as PHP, JavaScript,
and so on), but the examples shown to you will be crafted in a way that will help
you adapt them in case you want to use any other commercial language or platform.
The purpose of this book isn't to teach you a particular programming language or to
configure any web or desktop platform, therefore, we will focus on the interaction
with spatial data.

In this chapter, we will cover the following topics:

• Setting up the development environment for a web application using open
source tools

• Learning how to create a web application that uses spatial data in our
databases

Chapter 8

[121]

Developing a web application
We can take an example where the management board of the real estate company
has decided to add a module to its website where potential clients can check the
available properties for sale online. The objective of this is to reinforce the sales
process and make the site more attractive and, therefore, the properties must be
placed on a map.

You, as chief of the development department, have decided to mount it in a separate
server, where you will have an Apache server with a PHP module. In the following
sections, we will cover the process that you have to follow in order to achieve the
companies' objective; we will touch on some installation aspects of the environment,
but in lesser detail, so that we can focus on the development.

Installing the web server
Installing and configuring an Apache web server is not really the objective of this
book, so we will cover a very simple and basic installation, which is enough to
prepare our environment. If you need more information on installing an Apache
web server, you can refer to Apache Tomcat 7 Essentials, Tanuj Khare, Packt Publishing
or PHP Application Development with NetBeans Beginner's Guide, M A Hossain Tonu,
Packt Publishing. We will assume that you have a Windows machine, actually I will
use a Windows 7 computer for the installation, and the process to install it in another
version of Windows is also very similar. To do this, perform the following steps:

1. Download the Apache web server from http://www.apachelounge.com/
download/:

2. Decompress and save it in a machine folder; in this case, we have saved it
in C:\Apache24. If you choose to install it on a different disk drive (maybe
D:), you will have to change the http.conf file content to redirect the path
installation.

Developing a GIS Web Application

[122]

3. Open a command line window and execute the following commands:
d c:\apache24\bin

httpd.exe –k install

This will install httpd.exe as a Window's service.

4. Create a shortcut on the desktop to C:\apache24\bin\ApacheMonitor.exe.
We will run this program to start and stop the web server.

5. Let's probe that everything is okay with the web server; to do this, open
your web browser and type: http://localhost/. A web page similar to the
following screenshot will be displayed:

Once we have the web server running, we must install and configure the PHP
module in order to generate the scripts that will access our database server. In this
case, we choose PHP as a language but you can choose any other and take this
example as a reference.

Installing a PHP module
Perform the following steps to install the PHP module:

1. Download the PHP module from http://windows.php.net/download/:

Chapter 8

[123]

2. Decompress and save it in the machine folder; in this case, we have saved it
in C:\php.

3. Rename the file from C:\php\php.ini-production to php.in.
4. Edit the php.ini file setting for the following options:

doc_root = c:\apache24\htdocs
extension_dir = c:\php\ext

5. Go to the extension section and remove the ; character from the following
line:
;extension=php_pgsql.dll;

This way, you will able to allow PHP to connect to the database server.

6. Open the C:\apache24\conf\httpd.conffile and add the following
lines at the bottom of the file:
LoadModule php5_module "c:/php/php5apache2_4.dll"
AddHandler application/x-httpd-php .php
PHPIniDir "C:/php"

7. Save the file and restart the Apache web server, with this command:
httpd.exe –k restart

8. To probe that everything is working fine, open Notepad and type the
following line:
<?php phpinfo();?>

9. Save it in the C:\Apache24\htdocs folder as test.php.
10. Now, open your web browser again and load the test script by typing

http://localhost/test.php on the navigation bar. Once you do this,
you will see a page similar to the following screenshot:

Developing a GIS Web Application

[124]

Now that all the underlying services are installed, it's time to install the map
visualization component. We have chosen a component that reunites the features of
simplicity of usage and beautiful presentation; this component is called Leaflet. There
are other powerful options, such as OpenLayers and CesiumJS. Packt Publishing
books, such as OpenLayers Cookbook, Antonio Santiago Perez and OpenLayers 3 Beginner's
Guide, Thomas Gratier, Paul Spencer, Erik Hazzard give you information on these.

Installing Leaflet
Leaflet is a beautiful, light, open source, and free component based on JavaScript;
you can find it at http://leafletjs.com:

Now, we will see how to install it in order to use it to develop our website. To do
this, perform the following steps:

1. Go to the Download section.
2. Then, you will have to decompress the download file and copy the content

inside the web folder of your server. In this case, we have copied it in C:\
Apache24\htdocs\leaflet.

Implementing the web application
Now that the component is installed, we can develop our PHP script. We can use the
Notepad application to edit it or, if you prefer, any other editing tool, such as Eclipse
for PHP, Notepad2, Bluefish Editor, and so on.

Before we start, let's establish the overall structure of the application that we are
going to make:

1. First, we will connect our script to the spatial database using PHP.
2. Then, we will create a JavaScript object that will contain the map that the

user will see.

Chapter 8

[125]

3. After this, we will read information on the database and, from it, we will
generate the code that will create the necessary JavaScript objects, which will
represent the positions of the properties.

We can show this graphically using the following image:

Now, let's start coding our application. Create a file named index.php in the
C:\Apache24\htdocs folder.

First, we must set up the connection to our database server, specifying the connection
parameters:

// connecting to the database
$dbconnection = pg_connect("host=localhostdbname=Real-Estate
 user=postgres password=123456") or die('couldn't connect! :
 ' . pg_last_error());

Now, let's throw a query to get all the registers saved in the spatial table:

$query = 'SELECT id, town, street, number, ST_X(the_geom),
 ST_Y(the_geom) FROM tbl_properties ';
$result = pg_query($query) or die(Query fails!: ' .
 pg_last_error());

Developing a GIS Web Application

[126]

$line = pg_fetch_row($result);
//We save the position of the first register in those two
 variables
$longitudeView =$line[4];
$latitudeView=$line[5];

Let's put some extra attention on the ST_X and ST_Y functions; these extract the x and
y values from the geometric object whose values correspond to the longitude and
latitude of our spatial position. The purpose of doing this is to obtain the latitude and
longitude as separate values; this will allow us to store them on separate variables
and then use these variables to create the JavaScript code.

Now, it's time to add the html code of our script. Here, we will add the JavaScript
code that we will need to invoke the map component:

<!DOCTYPE html><html><head>
<title>Real Estate Web Page</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-
 scale=1.0">
<linkrel="stylesheet" href="leaflet/leaflet.css" />
</head><body>
<div id="map" style="width: 600px; height: 400px"></div>
<scriptsrc="leaflet/leaflet.js"></script>

Here, we add the link to both the leaflet.css and leaflet.js files that our
application will need.

Now, we add the map object; this object will carry one or several layers of
information, and each of these layers gives you different kinds of information
on the piece of terrain that we are seeing:

<script>
var map = L.map('map');
 L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png',
{ attribution: '© OpenStreetMap contributors'
 }).addTo(map);

In this case, we have added an OpenStreetMap map layer. Here is some PHP code to
show the property's position as a marker on the map:

<?php $query = 'SELECT id, town, street, number, ST_X(the_geom),
 ST_Y(the_geom) FROM tbl_properties';
$result = pg_query($query) or die(The query failed: ' .
 pg_last_error());
while ($line =pg_fetch_row($result))

Chapter 8

[127]

{
$longitude =$line[4];
$latitude=$line[5];
$address=$line[2]." ".$line[3];
echo "L.marker([".$latitude.", ".$longitude."]).addTo(map)";
echo ".bindPopup('".$address."').openPopup();";
} ?>

We have added code that goes through the table, gives you the position of every
piece of property, and generates a market with that position. This market will have
a pop-up frame with the address of the property that will be shown when the user
clicks on the icon. Later, we will put the map's view as the first property on the table
with a zoom level of 16:

map.setView([<?php echo $latitudeView.",".$longitudeView ?>], 16);
 </script>

Finally, let's draw a table with the data of the properties in it:

<?php
// Throwing a query to the properties table
$query = 'SELECT id, town, street, number FROM tbl_properties';
$result = pg_query($query) or die('La consultafallo: ' .
 pg_last_error());
//Printing the results in a html table
echo "<table>\n";
while ($line = pg_fetch_row($result))
{
echo "\t<tr>\n";
echo "\t\t<td>".$line[0]."</td>\n";
 echo "\t\t<td>".$line[1]."</td>\n";
echo "\t\t<td>".$line[2]."</td>\n";
echo "\t\t<td>".$line[3]."</td>\n";
echo "\t</tr>\n";
}
echo "</table>\n";
//Freeing the result set
pg_free_result($result);
//closing the database connection
pg_close($dbconn);
?>
</body>
</html>

Developing a GIS Web Application

[128]

As you can see, we have added another cell to the table that contains a hyperlink.
This link has the ID of the selected register included as a part of it. This parameter
will help us make modifications to the script where it will zoom to the selected
property when the user clicks on it.

To get all this implemented we will add the following code at the sixth line of
our script:

$where="";
if(isset($_GET['id']))
$where=" where id=".$_GET['id'];

Now, we will have to modify the query in order to add the where clause:

$query = 'SELECT id, town, street, number, ST_X(the_geom),
 ST_Y(the_geom) FROM tbl_properties '.$where;

Putting everything together, we get the following script:

<?php
//Connecting to the database
$dbconn = pg_connect("host=localhostdbname=Real-Estate
 user=postgres password=123456") or die(Cant connect! '
 .pg_last_error());
$where="";
if(isset($_GET['id']))
$where=" where id=".$_GET['id'];
$query = 'SELECT id, town, street, number, ST_X(the_geom),
 ST_Y(the_geom) FROM tbl_properties '.$where;
$result = pg_query($query) or die(The query failed!! '
 .pg_last_error());
$line = pg_fetch_row($result);
$longitudeView =$line[4];
$latitudeView=$line[5];
?>
<!DOCTYPE html>
<html>
<head>
<title>Real Estate Example</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-
 scale=1.0">
<linkrel="stylesheet" href="leaflet/leaflet.css" />
</head>
<body>
<div id="map" style="width: 600px; height: 400px"></div>
<scriptsrc="leaflet/leaflet.js"></script>
<script>

Chapter 8

[129]

var map = L.map('map');
L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png',
{ attribution: '© OpenStreetMap contributors'
 }).addTo(map);
<?php
// Throwing a query to the properties table
$query = 'SELECT id, town, street, number, ST_X(the_geom), ST_Y(the_
geom) FROM tbl_properties';
$result = pg_query($query) or die(The query failed!' .
 pg_last_error());
while ($line =pg_fetch_row($result))
{
$longitude =$line[4];
$latitude=$line[5];
$address=$line[2]." ".$line[3];
echo "L.marker([".$latitude.", ".$longitude."]).addTo(map)";
echo ".bindPopup('".$address."').openPopup();";
}
?>
map.setView([<?php echo $latitudeView.",".$longitudeView ?>], 16);
</script>
<?php
// Throwing a query to the properties table
$query = 'SELECT id, town, street, number FROM tbl_properties';
$result = pg_query($query) or die(The query failed! '
 .pg_last_error());
//Printing the results in a html table
echo "<table>\n";
while ($line = pg_fetch_row($result))
{
echo "\t<tr>\n";
echo "\t\t<td>".$line[0]."</td>\n";
echo "\t\t<td>".$line[1]."</td>\n";
echo "\t\t<td>".$line[2]."</td>\n";
echo "\t\t<td>".$line[3]."</td>\n";
echo "\t</tr>\n"; }
echo "</table>\n";
//Freeing the result set
pg_free_result($result);
// Closing the connection
pg_close($dbconn); ?>
</body>
</html>

Developing a GIS Web Application

[130]

Now, we open our favorite web browser and see this result:

This is just a sample. You can easily add more functionality to the application in
case you want to add a private section where you can add extra information for
sales people, such as the price of the property, or you might want to add a picture
of the house in the pop-up.

Summary
Until now, we have learned how to install and configure an Apache web server with
the PHP module enabled and how to use it in conjunction with the Leaflet library to
create a web application, which shows the spatial data graphically to a user. For this,
we read the information that was already stored in the database; however, you might
ask, what if we need to update this information? In the next chapter, we will build a
desktop application for managers who can update this information. To achieve this
objective, we will use a beautiful and, of course, free and open source SDK called
WorldWind, which works with Java.

[131]

Developing a Desktop
GIS Application

Following with our sample, you might face a situation where the company asks
you to develop an application that can update the information stored in the database.
This application will be used just by the staff of a company, which uses different
operative systems (Windows, MAC OS, and even Linux), so that the application
can run on everyone's system. The reason for this is that the data can be updated
by three different people, all of whom use different operative systems.

A good option to use is Java. This is a great and well proofed tool and there is a lot
of support for it that you could find freely on the web. You can also buy a good book
to find out more on this subject; Packt Publishing has great options, such as Java EE
Development with Eclipse, Deepak Vohra or Java EE 7 First Look, NDJOBO Armel Fabrice.
However, what do we do about the spatial part? It would prove to be very difficult
to set the position of a property without actually seeing it on a map. To do this, we
will use a very useful SDK developed by NASA as an open source project called
World Wind. In the following subsection, we will learn how to install and develop
it and an application that will use it as a tool to show geographic data.

In this chapter, we will cover the following topics:

• Setting up the development environment for a desktop application using
open source tools

• Learning to create a desktop application that uses the spatial data stored in
our databases

Developing a Desktop GIS Application

[132]

What is World Wind?
World Wind is a Software Development Kit (SDK) developed in Java and created
by NASA as an open source project and is used to craft a GIS application. World
Wind uses OpenGL as graphical motor through a binding called Java Binding for
OpenGL (JOGL); this architecture allows World Wind applications to run on several
platforms, such as Windows, Linux, and Mac OS.

More precisely, World Wind is a collection of components that interactively display
geographic information inside Java applications. These applications use one or more
World Wind objects for its user interface. Those objects provide the graphic context
in order to be able to show geographic data above a terrestrial globe.

How does World Wind work?
Here, we will show a diagram of the World Wind's object architecture. You can see
the main classes that compound World Wind and how they interact with each other:

Application

WorldWindow

Configuration
(Singleton)

Model
Globe

Tessellator

Layer

View

Scene Controller

Window Environment
(Swing, AWT)

Frame Controller Canvas

Cache

Input Handler

Web

The preceding diagram shows us that the most important class in the World Wind
SDK is the WorldWindow and it encloses all the functionalities and supporting
classes that makes World Wind work. Basically, a WorldWindow object is a frame
where geographical data is shown. This data is represented by a terrestrial globe.
The area of the globe that a user can see at a specific moment is called the View; it
controls the altitude and the angle that a hypothetical observer must be in, in order
to see the terrain in the way that is shown at this time.

Chapter 9

[133]

Another important class in World Wind is Layers. A layer is a set of geographical
information (shown as images of the terrain or visual objects) that is shown on the
top of the surface of the terrain. As an example, let's say that you have a layer of
satellite images from a specific terrain, therefore, on top, you can have a layer that
shows the landmarks of a city in the form of icons.

On a typical usage, the applications create a terrestrial globe and add layers of
information in order to show their own data; this set of objects is called a Scene. The
control of this scene relies on a WorldWindow object, which manages the view of the
data and its interaction with the user.

World Wind uses the standard World Map Services (WMS) to download satellite
images; in this case, it comes with several public WMS sources, some of which are
provided by NASA itself. You can easily add additional servers that you can access.
World Wind automatically downloads the images of the terrain that you're interested
in and stores all of them in your local disk. Therefore, if you have downloaded a
specific world area when you have access to the Internet, and then you go offline,
you will be able to see the images of this terrain repeatedly.

Previous requirements
Now that we have a clearer idea of what World Wind is and how we can use it, we
can start installing it on our machine. However, first, let's see the previous hardware
and software requirements that need to be fulfilled in order to use it.

Hardware
You can use a Mac (any model that runs MacOS 10.9 or higher version) or a PC with
a video card that supports OpenGL 2 or superior versions of it. World Wind has also
been proven to work with NVIDIA, ATI/AMD, and Intel cards.

Software
Following are the software requirements:

• World Wind 2.0
• Java JDK 7.0
• Eclipse (for development purposes only)
• Windows, MacOS, or Linux with its graphical drivers correctly installed

and updated

Developing a Desktop GIS Application

[134]

Installing World Wind
The process of installing World Wind is actually very easy; all you have to do is to
follow a few steps:

1. Open your favorite web browser and go to http://worldwind.arc.nasa.
gov/java/.

2. Download the most recent and stable version of it; in this case, 2.0:

3. Once the download has finished, extract the files in a folder of your choice;
this will be the root folder of World Wind. In this case, we have extracted
the files in the My Documents folder.

4. To check whether everything is okay, open a command line window,
go to the World Wind root folder and type the following command:

run-demo.bat gov.nasa.worldwindx.examples.ApplicationTemplate

Chapter 9

[135]

If everything goes right, you will see the following window:

Now that we are sure that World Wind is correctly installed on our machine,
we can start configuring the development environment in order to create our
own applications.

Setting up the development environment
We have chosen Eclipse as a framework. You can select any other one that you like
or even use Notepad if you wish to. All you have to know is how to configure the
framework you've selected so that it can access the World Wind SDK libraries; in
this case, we will show you how to do this in Eclipse. However, we must first install
it on our machine.

Developing a Desktop GIS Application

[136]

Installing Eclipse
Eclipse is a very robust and easy-to-use framework and has spent several years on
the market, so you may have used it before. It is a very mature open source project
that will provide us with a solid developing platform. To install it, perform the
following steps:

1. Open your web browser and visit the downloads section of the official
web page of the project at http://www.eclipse.org/downloads.

2. Select Eclipse IDE for Java developers for 64 bits:

3. Extract the content to any folder on your machine; in this case, we have
chosen the My Documents folder.

Now, all that you have to do is to execute the eclipse.exe file to start the
configuration of the development environment.

Configuring the development environment
By configuring the development environment, we will be able to start writing our
own applications using the World Wind SDK. To do this, perform the following
steps:

1. Execute the eclipse.exe files.
2. Select a folder to use as Workspace; in this case, select the My Documents

folder:

Chapter 9

[137]

3. Navigate to the New | Project from the main menu:

4. Select the Java Project From existing Ant Buildfile option and click on the
Next button:

5. In the following window, click on the Browse... button that is to the right of
the Ant buildfile textbox:

Developing a Desktop GIS Application

[138]

6. Go to the worldwind root folder and select the build.xml file:

7. Eclipse sets the project name as worldwind by default, though you can
rename it if you want to; in this case, we will keep it the way it is:

Chapter 9

[139]

8. Click on the Finish button. You will see the following window:

Developing a Desktop GIS Application

[140]

9. As you can see, the World Wind project has several folders with data and
demos for testing purposes; the most interesting folder here is the src folder,
since it contains the entire source code of World Wind and a lot, and I mean
a lot, of useful examples. Let's expand and see what's inside it:

10. There are a lot of packages with classes and subclasses that will provide a lot
of spatial functionalities to our applications, simply by adding a reference
to this project. Now, let's expand the gov.nasa.worldwindx.examples
package:

Chapter 9

[141]

11. You can see here that there are plenty of useful examples that can easily
be used as guides to develop the applications we need. Now, to see that
everything has been installed and configured properly, let's run an example
called SimplestPossibleExample.java.

12. To do this we will go to the SimplestPossibleExample.java file listed
inside the gov.nasa.worldwindx.examples package.

13. Right-click on it and navigate to the Run as | 1 Java Application, as shown
in the following screenshot:

Developing a Desktop GIS Application

[142]

14. If everything is okay, you will see the following window:

It's great! Now that we are able to run the examples, it's time to make our own test
application using SDK. This will reinforce all that we have learned about World
Wind in this chapter.

Coding our first application
Let's create a simple application called HelloWorldWind that basically will just show
the terrestrial globe as the test application of the last subsection; however, the main
objective of it is to give us a better understanding of the relationship between the
classes and how they must be used when creating an application. To create the test
application, perform the following steps:

1. Run Eclipse and navigate to the File | New | Java Project:

Chapter 9

[143]

2. Specify the name of the project, in this case, we've chosen HelloWorldWind,
and then click on the Finish button:

3. Expand the project and right-click on the src folder:

4. Navigate to the New | Class as shown in the following screenshot:

Developing a Desktop GIS Application

[144]

5. In the Package textbox, write Example, in the class Name textbox, write
HelloWorldWind, in the Which method stubs would you like to create?
section, check the public static void main (String args[]) checkbox and
click on the Finish button:

6. If everything is fine, you will see a screen similar to the following screenshot
on the editing window of your IDE:

Chapter 9

[145]

This tells us that the class was successfully created and it contains a main method
that will allow us to run it as a Java application. Now, we must add the World Wind
classes that will allow us to transform this simple application into a GIS one! Before
we can have access to these classes, we must finish configuring our project in order
for it to be able to find the libraries that World Wind uses to run. Let's continue the
process by performing the following steps:

1. Right-click on the HelloWorldWind project and select the Properties option
from the contextual menu:

2. Navigate to Java Build Path | Projects and click on the Add... button:

3. In the next window, select the worldwind project:

Developing a Desktop GIS Application

[146]

4. Select the Libraries tab and click on the Add External JARs... button:

5. Select the jogl-all and glugen-rt jar files that are inside the worldwind
root folder:

6. Now that you have added the JOGL libraries to the project, click on the OK
button to finish.

Chapter 9

[147]

7. Since the project is configured now, let's add some code. The first step is to
focus on the window to edit the HelloWorldWind.jar file on Eclipse; now
we'll add the following code. First, our class must extend the JFrame class:
public class HelloWorldWind extends JFrame

We can see that the IDE detects an error on this code:

8. This is because we have not added the proper reference to this class. Eclipse
suggests several possible solutions to fix the error when you click the small
bulb, as shown in the following screenshot:

9. In this case, we will add a reference to the suggested class automatically. This
is a very common error and we will fix it in this way: in the following code,
we will assume that you apply this technique to fix the error:

10. Now, we'll add a new object of the WorldWindowGLCanvas class called world
on the 6th line. This object will give you the spatial context, as we saw in the
previous sections of this chapter:
WorldWindowGLCanvasworld;

Developing a Desktop GIS Application

[148]

11. Now, let's create a constructor for our class where we will properly initialize
our objects:
public HelloWorldWind()
{
 world = new WorldWindowGLCanvas();
 world.setPreferredSize(new java.awt.Dimension(1000,
 800));
 this.getContentPane().add(world,
 java.awt.BorderLayout.CENTER);
 world.setModel(new BasicModel());
}

12. The BasicModel class adds the globe of the earth and the default information
layers to the WorldWindow context. Now, in line 21, we'll add the following
code:
java.awt.EventQueue.invokeLater(new Runnable()
{
public void run()
{
JFrame frame = new HelloWorldWind();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setName("My first Application");
frame.pack();
frame.setVisible(true);
}
});

13. This simply allows the class that we crafted earlier to run. Putting everything
together, we get the following code:
import gov.nasa.worldwind.BasicModel;
import gov.nasa.worldwind.awt.WorldWindowGLCanvas;
import javax.swing.JFrame;
public class HelloWorldWind extends JFrame
{
WorldWindowGLCanvas world;
public HelloWorldWind()
{
world = new WorldWindowGLCanvas();
world.setPreferredSize(new java.awt.Dimension(1000, 800));
 this.getContentPane().add(world,
 java.awt.BorderLayout.CENTER); world.setModel(new
 BasicModel());
}

Chapter 9

[149]

public static void main(String[] args)
{
// TODO Auto-generated method stub
 java.awt.EventQueue.invokeLater(new Runnable()
{
public void run()
{
JFrame frame = new HelloWorldWind();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setName("My first Application");
 frame.pack();
 frame.setVisible(true);
}
});
}
}

14. Now, run the code in the same way that you did in the World Wind example;
you will then see the following window:

Now that we have successfully developed and built our first application using World
Wind, we are almost ready to start the final application, but before this, we have to
find a way to communicate our application with the database. For this purpose, we
must get the PostgreSQL–Java binding so that we can connect the application to the
database and run all the necessary queries.

Developing a Desktop GIS Application

[150]

Getting the PostgreSQL–Java binding
The PostgreSQL-Java binding is a library, which is in the form of a .jar file that we
need so that our application can establish a connection with the database. We will
now see the steps to follow to get this library:

1. Open your web browser and go to https://jdbc.postgresql.org/
download.html.

2. Download the JDBC3 PostgreSQL Driver, Version 9.3-1102 file:

Once it's downloaded, you will have to add this file to your Java project as
an external jar, similar to what was done in previous sections of this chapter.
To make sure that the library works properly on our machine, let's develop
an example application. To do this, follow these steps:

3. Run Eclipse.
4. Create a new project called Hello_PostgreSQL.
5. Create a class called testPostgreSQL.
6. Add the postgresql-9.3-1102.jdbc3.jar file as an external jar to

your project.

Chapter 9

[151]

7. Add the following code:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class testPostgreSQL
{
 public static void main(String[] args)
 {
 // TODO Auto-generated method stub
 Connection connnection = null;
 Statement statement = null;
 ResultSet rs = null;
 String url = "jdbc:postgresql://localhost/Real-Estate";
 String user = "postgres";
 String password = "123456";
 try
 {
 connnection = DriverManager.getConnection(url, user,
 password);
 statement = connnection.createStatement();
 rs = statement.executeQuery("SELECT VERSION()");
 if (rs.next())
 {
 System.out.println(rs.getString(1));
 }
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if (rs != null)
 {
 rs.close();
 }
 if (statement != null)
 {
 statement.close();
 }

Developing a Desktop GIS Application

[152]

 if (connnection != null)
 {
 connnection.close();
 }
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 }
}

8. Let's run the project; we must obtain an output similar to this:

PostgreSQL 9.3.5, compiled by Visual C++ build 1600, 64-bit

Now we are ready to start developing our final application. We will follow and
step-by-step style the developing, but for now, we will make more assumptions
about the management of the IDE, so that we can focus on developing the
spatial objects.

Developing a management application
Taking the example of the real estate company again, we have to develop a
software module that will allow administrators to manage (add, edit, and erase) the
information (including the geographic position) of the properties that the company
has available for sale. This application should enable the user to specify the data of
a property and set its position on a map by clicking on the terrain. This data must be
stored in the database in the form of geographic data.

Let's begin this process; follow these steps and keep the lessons that you've learned
in the past in mind, because we will focus on the development:

1. Create a new project called Real_Estate_Managment.
2. Set up the project adding the necessary libraries.
3. Create a class called Main that extends JFrame and includes the public.

static.main method.
4. Declare a WorldWindowGLCanvas object called world.
5. Create a constructor where you initialize the window and the world objects,

as we did in the HelloWorldWind application.

Chapter 9

[153]

6. We will declare a new object from the Layer class called propertiesLayer
and initialize it on the constructor in the following code snippet. This object
will hold all the icons that will represent the properties on the map:
propertiesLayer = new RenderableLayer();

7. Below this line, create a new object of the LayerList class called layers
and initialize it on the constructor. The layers object holds the set of layers
included on the world object. This collection will allow us to add new layers
or remove existing ones:

LayerList layers = world.getModel().getLayers();

Now that the main World Wind objects are set, let's create a set of objects that will
allow us to connect to the PostgreSQL server. To do this, perform the following steps:

1. Create a new Java.sql.connection object called Connection.
2. In the constructor, let's initialize it and add a Statement and a Resultset

object as we did on the testPostgreSQL project:
connection = null;
Statement statement = null;
ResultSet resultset = null;

3. Let's create string variables to hold the connection parameters:
String url = "jdbc:postgresql://localhost/Real-Estate";
String user = "postgres";
String password = "123456";

4. Create the connection and the statement objects using the parameters of
the previous step:
connection= DriverManager.getConnection(url, user, password);
statement= connexion.createStatement();

5. Now, we will create a query that procures the data from the properties
table:
resultset = statement.executeQuery("SELECT id, town,
 street, number, ST_X(the_geom), ST_Y(the_geom) FROM
 tbl_properties");

Developing a Desktop GIS Application

[154]

6. Now, let's go through the received records to add an icon that represents
the position of one of the properties:
while (resultset.next())
{
PointPlacemarkplacemark = new
 PointPlacemark(Position.fromDegrees
 (resultset.getDouble(6), resultset.getDouble(5), 0));
placemark.setLabelText(resultset.getString(3)+"
 "+resultset.getString(4));propertiesLayer.addRenderable
 (placemark);
}

The PointPlacemark class allows us to insert an icon on the surface of the
map. We have to add this object to a layer through the addRendereable
method, so that it can be viewed by the user.

7. Close both the statement and the resultset objects:
if (resultset != null)
{
 resultset.close();
}
if (statement != null)
{
 statement.close();
}

8. Let's add a line where the layer that contains the position of the properties
will be added to the set of layers that the world object contains:
layers.add(propertiesLayer);

9. Now, put the necessary code to run the application inside the main method,
taking the HelloWorldWind example as a guide, and substituting the name of
the class and the title of the application:
java.awt.EventQueue.invokeLater(new Runnable()
{
public void run()
{
JFrame frame = new Main();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setName("Managment Application");
frame.pack();
frame.setVisible(true);
}
});

Chapter 9

[155]

10. Now, we'll run the application and see this result:

There are a lot of things to be changed, but this a good start. The first thing that I
would like to change is the default position of the view of Earth. It would be nice if
the first thing that the user sees in the map is that the first property is in the table.

Now, we'll create a procedure that changes the position of the point of view of the
observer:

private void changeView(double latitude, double longitude)
{
 Position centerPosition = new
 Position(Angle.fromDegrees(latitude),
 Angle.fromDegrees(longitude), 1000);
 world.getView().setEyePosition(centerPosition);
 world.redraw();
}

This procedure will set the point of view at the indicated position at an altitude of
1000 meters. We can call this procedure when we are reading the records; in this
case, let's take just the first record of the table:

if(i == 0)
{
 changeView(resultset.getDouble(6), resultset.getDouble(5));
}
 i++;

Developing a Desktop GIS Application

[156]

Now, what if you want to change the yellow pin for something else? Well, you can
achieve this by adding the following lines:

PointPlacemarkAttributes attributes = new PointPlacemarkAttributes();
attributes.setImageAddress("images\\pushpins\\castshadow-
 green.png");

This object is a modifier that allows us to change several properties of the placemark
objects, among which is the image that it shows. For this to take effect, you just have
to add the following line of code when you create the placemarks:

placemark.setAttributes(attributes);

Back to our main objective, we need a window where the user can see and edit the
data stored in the database, because of this, we have created a new frame class called
ManagementWindow that includes a data table to see all the records that are stored:

When you click on a row of the table, the data is shown in the textboxes. Since this
part of the code is not relative to the spatial data, explaining it is beyond this book's
objective and will be obviated.

Chapter 9

[157]

An interesting functionality that our application must cover is the ability to catch the
position of a click on the map when the user asks it. In this case, this position must be
caught after the user clicks on the Position button. The position value must appear
on the latitude and longitude textboxes. To achieve this, we first must go to the
Main.java file and add this procedure:

private void AddPositionListener()
{
 this.world.getInputHandler().addMouseListener(new MouseAdapter()
 {
 public void mousePressed(MouseEvent mouseEvent)
 {
 if (armed && mouseEvent.getButton() == MouseEvent.BUTTON1)
 {
 Position curPos = world.getCurrentPosition();
 if (curPos != null)
 {
 armed=false;
 }
 mouseEvent.consume();
 }
 }
 }
);
}

This procedure uses a flag called armed, and it will be fired when the user clicks on
the Position button. On every window, we will need a link to point to each other.
This has been explained as follows:

On the Main.jar file:

ManagementWindow mwindow;

At the end of the constructor:

mwindow = new ManagementWindow(this);
mwindow.setVisible(true);

On the ManagementWindow.jar file:

Main mainWindow;

Developing a Desktop GIS Application

[158]

In the constructor:

this.mainWindow = mainWindow;

We have to add a public method in the ManagementWindow that allows you to
change the value of the latitude and longitude textboxes:

public void setPositionInTextBoxes(double latitude, double
 longitude)
{
 tfLatitude.setText(Double.toString(latitude));
 tfLongitude.setText(Double.toString(longitude));
}

In the AddPositionListener method, we can add these lines:

if (curPos != null)
{
 armed=false;
 mwindow.setPositionInTextBoxes(curPos.getLatitude().degrees,
 curPos.getLongitude().degrees);
}

Finally, add a method that creates the query that inserts the data (including the
spatial data, of course) into the database:

private String createInsertionQuery()
{
 String query;
 query = "Insert into tbl_properties (town, street, number,
 the_geom) "+
"values ('" +tfTown.getText()+ "', '" +tfStreet.getText()+ "', "
 +tfNumber.getText()+ ", "+
 "ST_GeomFromEWKT('SRID=4623;POINT("+tfLongitude.getText()+"
 "+tfLatitude.getText()+")')) ";
 return query;
}

All that we have to do is to call this function when the user clicks on the Save button.
Let's put everything together and see the entire code of both the windows:

Main.java
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

Chapter 9

[159]

import java.sql.SQLException;
import java.sql.Statement;
import gov.nasa.worldwind.BasicModel;
import gov.nasa.worldwind.awt.WorldWindowGLCanvas;
import gov.nasa.worldwind.geom.Angle;
import gov.nasa.worldwind.geom.Position;
import gov.nasa.worldwind.layers.LayerList;
import gov.nasa.worldwind.layers.RenderableLayer;
import gov.nasa.worldwind.render.PointPlacemark;
import gov.nasa.worldwind.render.PointPlacemarkAttributes;
import javax.swing.JFrame;
public class Main extends JFrame
{
 //declaration of the objects that we will need
 WorldWindowGLCanvas world;
 RenderableLayer propertiesLayer;
 Connection connection;
 boolean armed =false;
 ManagementWindow mwindow;
 public Main()
 {
 //initializing the "world window component"
 world = new WorldWindowGLCanvas();
 world.setPreferredSize(new java.awt.Dimension(1000, 800));
 this.getContentPane().add(world,
 java.awt.BorderLayout.CENTER);
 world.setModel(new BasicModel());
 //its necessary to create this object to set some visual
 //properties to the placemarks
 PointPlacemarkAttributes attributes = new
 PointPlacemarkAttributes();
 attributes.setImageAddress("images\\pushpins\\castshadow-
 green.png");
 //on this layer we will set put the icons that represents the
 //properties
 propertiesLayer = new RenderableLayer();
 //its necessary to obtain a layer list to add a new layer
 LayerList layers = world.getModel().getLayers();
 //Those objects help us to connect to the database
 connection = null;
 Statement statement = null;
 ResultSet resultset = null;
 //those are the connection parameters
 String url = "jdbc:postgresql://localhost/Real-Estate";

Developing a Desktop GIS Application

[160]

 String user = "postgres";
 String password = "123456";
 try
 {
 //we set the connection with the database
 connection = DriverManager.getConnection(url, user,
 password);
 statement = connection.createStatement();
 //now we throw a query to obtain the positions
 resultset = statement.executeQuery("SELECT id, town, street,
 number, ST_X(the_geom), ST_Y(the_geom) FROM
 tbl_properties");
 int i=0;
 //its necessary to go thru all the registers
 while (resultset.next())
 {
 //we will create an new visual object for every property and
 //add it to the visuallayer that we have created earlier
 PointPlacemark placemark = new
 PointPlacemark(Position.fromDegrees
 (resultset.getDouble(6), resultset.getDouble(5), 0));
 //the placemark will have a label with the address of the
 property
 placemark.setLabelText(resultset.getString(3)+"
 "+resultset.getString(4));
 placemark.setAttributes(attributes);
 propertiesLayer.addRenderable(placemark);
 //we change the view to focus just to the position of the
 first //property on the table
 if(i == 0)
 {
 changeView(resultset.getDouble(6),
 resultset.getDouble(5));
 }
 i++;
 }
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 //its necessary to close the connection to the batabase
 try {

Chapter 9

[161]

 if (resultset != null)
 {
 resultset.close();
 }
 if (statement != null)
 {
 statement.close();
 }
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 //now we add the layer that we have created to the layer list
 layers.add(propertiesLayer);
 //this window will bring the user the GUI for he can edit the
 data
 mwindow = new ManagementWindow(this);
 mwindow.setVisible(true);
 //we have added and event to "hear" when the mouse clicks the
 screen
 AddPositionListener();
 }
 //this function change the point of view of the observer
 public void changeView(double latitude, double longitude)
 {
 Position centerPosition = new
 Position(Angle.fromDegrees(latitude),
 Angle.fromDegrees(longitude), 1000);
 world.getView().setEyePosition(centerPosition);
 world.redraw();
 }
 //this is a flag that allows that the geographic position of the
 //mouse click on the screen can be stored when its active
 public void setArmed(boolean armed)
 {
 this.armed =armed;
 }
 //returns the own connection to the database
 public Connection getConnection()
 {
 return connection;
 }

Developing a Desktop GIS Application

[162]

 //this method help us to catch the position from the screen on
 //latitude, logitude
 private void AddPositionListener()
 {
 //this way the handler has more priority that the default
 windo //handler
 this.world.getInputHandler().addMouseListener(new
 MouseAdapter()
 {
 public void mousePressed(MouseEvent mouseEvent)
 {
 if (armed && mouseEvent.getButton() == MouseEvent.BUTTON1)
 {
 Position curPos = world.getCurrentPosition();
 if (curPos != null)
 {
 armed=false;
 //just where everything goes OK the position must be
 represented
 mwindow.setPositionInTextBoxes
 (curPos.getLatitude().degrees,
 curPos.getLongitude().degrees);
 }
 mouseEvent.consume();
 }
 }
 }
);
 }
 //sneds the new position to the GUI components
 private void addPosition()
 {
 Position curPos = this.world.getCurrentPosition();
 if (curPos != null)
 {
 //this function makes the trick
 mwindow.setPositionInTextBoxes
 (curPos.getLatitude().degrees,
 curPos.getLongitude().degrees);
 armed=false;
 }
 }
 public static void main(String[] args) {
 // TODO Auto-generated method stub

Chapter 9

[163]

 java.awt.EventQueue.invokeLater(new Runnable()
 {
 public void run()
 {
 JFrame frame = new Main();
 //Runs the application
 frame.setDefaultCloseOperation
 (JFrame.EXIT_ON_CLOSE);
 frame.setName("Managment Application");
 frame.pack();
 frame.setVisible(true);
 }
 });
 }
 }
 ManagementWindow.jar
 import gov.nasa.worldwind.geom.Position;
 import java.awt.BorderLayout;
 import java.awt.Dimension;
 import java.awt.GridLayout;
 import java.awt.event.ActionEvent;
 import java.awt.event.ActionListener;
 import java.sql.ResultSet;
 import java.sql.SQLException;
 import java.sql.Statement;
 import javax.swing.BorderFactory;
 import javax.swing.JButton;
 import javax.swing.JFrame;
 import javax.swing.JLabel;
 import javax.swing.JPanel;
 import javax.swing.JScrollPane;
 import javax.swing.JTable;
 import javax.swing.JTextField;
 import javax.swing.ListSelectionModel;
 import javax.swing.border.CompoundBorder;
 import javax.swing.border.TitledBorder;
 import javax.swing.event.ListSelectionEvent;
 import javax.swing.event.ListSelectionListener;
 import javax.swing.table.AbstractTableModel;
 import javax.swing.table.DefaultTableModel;
 public class ManagementWindow extends JFrame
 {
 //objects for the communication to the database and the
 graphical //visualization

Developing a Desktop GIS Application

[164]

 DefaultTableModel tableModel;
 Main mainWindow;
 Statement st = null;
 ResultSet rs = null;
 private Object[] row;
 JTextField tfTown ;
 JTextField tfStreet;
 JTextField tfNumber;
 JTextField tfLatitude ;
 JTextField tfLongitude;
 //new register
 boolean isNewRow=true;
 public ManagementWindow(Main mainWindow1)
 {
 //sets the window dimention
 this.mainWindow = mainWindow1;
 setAlwaysOnTop(true);
 setLocation(0, 300);
 setSize(400, 300);
 //sets all the necessary GUI components
 JPanel panelTop = new JPanel(new GridLayout(0, 2, 0,
 1));
 panelTop.setBorder(new
 CompoundBorder(BorderFactory.createEmptyBorder(9, 9,
 9, 9), new TitledBorder("")));
 panelTop.setToolTipText("Data");
 this.add(panelTop, BorderLayout.NORTH);
 panelTop.add(new JLabel("Town", JLabel.LEFT));
 tfTown = new JTextField(20);
 panelTop.add(tfTown);
 JLabel label1 = new JLabel("Street", JLabel.LEFT);
 panelTop.add(label1);
 tfStreet = new JTextField(20);
 panelTop.add(tfStreet);
 panelTop.add(new JLabel("Number", JLabel.LEFT));
 tfNumber = new JTextField(20);
 panelTop.add(tfNumber);
 panelTop.add(new JLabel("Latitude", JLabel.LEFT));
 tfLatitude = new JTextField(20);
 panelTop.add(tfLatitude);
 panelTop.add(new JLabel("Longitude", JLabel.LEFT));
 tfLongitude = new JTextField(20);
 panelTop.add(tfLongitude);
 JButton btnNuevo = new JButton("New");

Chapter 9

[165]

 btnNuevo.addActionListener(new ActionListener() {
 //when you click the "New" button al, the text will
 dissapear
 @Override
 public void actionPerformed(ActionEvent arg0)
 {
 isNewRow=true;
 clearDataInTextBoxes();
 }
 });
 panelTop.add(btnNuevo);
 JButton btnPosition = new JButton("Position");
 btnPosition.addActionListener(new ActionListener() {
 //when you click the position button you are activating
 the flags //to catch the position of the mouse into
 the terrain
 @Override
 public void actionPerformed(ActionEvent arg0)
 {
 ManagementWindow.this.mainWindow.setArmed(true);
 }
 });
 panelTop.add(btnPosition);
 JButton btnSave = new JButton("Save");
 btnSave.addActionListener(new ActionListener() {
 //here the data that the user entered will be saved
 @Override
 public void actionPerformed(ActionEvent arg0)
 {
 String query = createInsertionQuery();
 try {
 st = mainWindow.getConnection().createStatement();
 rs = st.executeQuery(query);
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });
 panelTop.add(btnSave);
 tableModel = new DefaultTableModel ();
 //here we will set the columns names
 String[] columnNames = {"ID",
 "Street",

Developing a Desktop GIS Application

[166]

 "#",
 "Latitude",
 "Longitude"};
 //sets the visual names of the columns
 tableModel.setColumnIdentifiers(columnNames);
 try {
 st = mainWindow.getConnection().createStatement();
 //here the query that brings all the porperties on the
 table is //runned
 rs = st.executeQuery("SELECT id, town, street, number,
 ST_X(the_geom), ST_Y(the_geom) FROM tbl_properties");
 while (rs.next())
 {
 //we will fill out datatable
 System.out.println(rs.getString(5));
 String[] data = new String[5];
 data[0] = rs.getString(1);
 data[1] = rs.getString(3);
 data[2] = rs.getString(4);
 data[3] = rs.getString(6);
 data[4] = rs.getString(5);
 tableModel.addRow(data);
 }
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 //visual components to show the table content
 JTable table = new JTable(tableModel);
 table.setPreferredScrollableViewportSize(new
 Dimension(500, 70));
 table.setFillsViewportHeight(true);
 JScrollPane scrollPane = new JScrollPane(table);
 add(scrollPane);
 table.setSelectionMode
 (ListSelectionModel.SINGLE_SELECTION);
 ListSelectionModel selectionModel =
 table.getSelectionModel();
 selectionModel.addListSelectionListener(new
 ListSelectionListener() {
 //when a row of the table is selected this event is fired
 public void valueChanged(ListSelectionEvent e)
 {
 handleSelectionEvent(e);
 }

Chapter 9

[167]

 });
 }
 //cleans all the data on the databoxes
 public void clearDataInTextBoxes()
 {
 tfTown.setText("");
 tfStreet.setText("");
 tfNumber.setText("");
 setPositionInTextBoxes(0, 0);
 }
 //creates the insertion query getting the data fron the visual
 //componets
 private String createInsertionQuery()
 {
 String query;
 query = "Insert into tbl_properties (town, street, number,
 the_geom) "+"values ('" +tfTown.getText()+ "', '"
 +tfStreet.getText()+ "', " +tfNumber.getText()+ ", "+
 " ST_GeomFromEWKT('SRID=4623;POINT
 ("+tfLongitude.getText()+"
 "+tfLatitude.getText()+")')) ";
 return query;
 }
 //stablish the data that must be showed on the textboxes
 public void setDataInTextBoxes(String town, String street,
 String number,
 double latitude, double longitude)
 {
 isNewRow = false;
 tfTown.setText(town);
 tfStreet.setText(street);
 tfNumber.setText(number);
 setPositionInTextBoxes(latitude, longitude);
 }
 //sets the right textboxes with the position data
 public void setPositionInTextBoxes(double latitude, double
 longitude)
 {
 tfLatitude.setText(Double.toString(latitude));
 tfLongitude.setText(Double.toString(longitude));}
 //when the user select a row this code will be fired and the
 data //stored on that row will be showed on the GUI
 components
 protected void handleSelectionEvent(ListSelectionEvent e) {
 if (e.getValueIsAdjusting())

Developing a Desktop GIS Application

[168]

 return;
 String strSource= e.getSource().toString();
 int start = strSource.indexOf("{")+1,
 stop = strSource.length()-1;
 String numrow = (strSource.substring(start, stop));
 String town =
 (String)tableModel.getValueAt(Integer.parseInt(numrow),
 0);
 String street =
 (String)tableModel.getValueAt(Integer.parseInt(numrow),
 1);
 String number =
 (String)tableModel.getValueAt(Integer.parseInt(numrow),
 2);
 String latitudeString =
 (String)tableModel.getValueAt(Integer.parseInt(numrow),
 3);
 String longitudeString =
 (String)tableModel.getValueAt(Integer.parseInt(numrow),
 4);
 double latitude = Double.parseDouble(latitudeString);
 double longitude = Double.parseDouble(longitudeString);
 mainWindow.changeView(latitude, longitude);
 setDataInTextBoxes(town, street, number, latitude,
 longitude);
 }
 }

As you can see, the application is not fully finished yet. I will let you finish this. As
an example, you can easily add functionalities to modify and delete the data, or
maybe you would like to set a field to specify an image icon for every property.

Chapter 9

[169]

Summary
In this chapter, you learned how to develop a desktop application using PostGIS.
To do this, we used the World Wind SDK, which has a tremendous amount of
useful spatial functions that could definitely help us build a much more complex
application than this one. It will be very difficult, if not impossible, to cover all the
possible options that you have when developing applications that have similar
characteristics, in a single book. I believe that the samples that we developed
throughout this book will serve as a guide for you if you choose or are familiar
with any other development tool.

I sincerely hope that this book has fulfilled your expectations and necessities. I hope
that this was just the beginning of a very long and productive relationship between
you and PostGIS and that this book has contributed toward it. Thanks a lot.

[171]

Index
A
Apache web server

installing 121, 122
URL 121

B
bounding box-based function 112

C
command line

used, for creating spatial database 22-25
used, for creating spatial data table 25, 26

configuration file, PostgreSQL
tuning, for spatial database 113-116

consumer 119
Coordinate Reference System (CRS) 37

D
data

grouping 48
desktop application 119
development environment, World Wind

configuring 136-142
Eclipse, installing 136
setting up 135

E
Eclipse

about 135
installing 136
URL 136

European Petroleum Survey Group
(EPSG) 37

F
first application

coding 142-149
PostgreSQL - Java binding,

obtaining 150-152

G
gdalinfo tool 96
GDAL/OGR commands

working with 93-95
GDAL/OGR library 90-93
Generalized Search Tree (GST) 105
Generic Index Structure (GIST) 3
Geographic Information Systems (GIS)

about 1
aspects 1, 2
objects, used for developing insertion

queries 34
Geospatial Data Abstraction

Library (GDAL)
about 89
URL 90

GUI
used, for creating spatial database 26, 27
used, for creating spatial data table 28-30

I
insertion queries

developing, with GIS objects 34

[172]

installing
PostGIS 10-15
PostgreSQL 6-10
QGIS 16-18

J
Java Binding for OpenGL (JOGL) 132

L
Leaflet

about 124
installing 124
URL 124

M
management application

developing 152-168
manager 119
map projection 35

N
nonspatial queries 48-51

O
Object-Relational Database Management

System (ORDBMS) 6
Open Source Geospatial Foundation 90
OpenStreetMap

URL 39
overview function 99

P
PHP module

installing 122-124
URL 122

PostGIS
about 1, 2
installing 10-16
need for 3-5
spatial indexes 105

Postgres_FWD module 61, 62

PostgreSQL
about 2
installing 6-10
URL 6

PostgreSQL-Java binding
about 150-152
URL 150

Q
QGIS

about 67, 68
application 68
installing 16-18
spatial queries, developing 85-87
URL 16
working with 70-84

QGIS application
about 68-70
data sources 69
graphical tools 70
Pan Map 70
Zoom Full 70
Zoom In 70
Zoom Out 70
Zoom to native pixel resolution 70

query
data, using from multiple databases 60
Postgres_FWD module, using 61

R
raster2pgsql command 96
raster data

graphically displaying, in database 100-102
inserting, into database 99

raster files
working with 96-99

requisites, World Wind
hardware 133
software 133

S
shp file

importing, with graphical tool 42-46
spatial data, extracting from 42

[173]

Software Development Kit (SDK) 132
spatial data

extracting, from shp file 42
spatial database

checkpoint_segments file 114, 115
constraint_exclusion file 115
creating, with command line 22-25
creating, with GUI 26, 27
development 21, 22
maintenance_work_mem file 115
PostgreSQL's configuration file,

tuning 113-116
random_page_cost file 115
shared_buffers file 116
spatial data table, creating

with command line 25, 26
spatial data table, creating with

GUI 28-30
spatial data table, creating with SQL

script 31, 32
wal_buffers file 116
work_mem file 116

spatial data table
creating, with command line 25, 26

spatial functions
about 51
ST_Distance function 52, 53
ST_DWithin function 54
ST_Intersects function 57, 58
ST_Length function 56
ST_Within function 58-60

spatial indexes, PostGIS
about 105
B-Trees 105
GIST 105
R-Trees 105

spatial queries
developing, from QGIS 85-87
developing, with own data 62-64
tuning 106-112

spatial reference system (SRS)
about 35-38
information, including in spatial

tables 38, 39
spatial tables

data, obtaining from external sources 39-41
SRS information, including 38, 39

SQL script
used, for creating spatial data table 31, 32

SRID 37
ST_Distance function 52, 53
ST_DWithin function 54
ST_GeomFromEWKT function 39
ST_Intersects function 57, 58
ST_Length function 56
ST_Within function 58-60

V
vacuum function 109

W
web application

about 119
Apache web server, installing 121
developing 121
implementing 124-130
Leaflet, installing 124
PHP module, installing 122, 123
web server, installing 122

Well-Known Text (WKT)
about 34
geometry types 34

World Map Services (WMS) 133
World Wind

about 132
development environment, setting up 135
installing 134, 135
requisites 133
URL 134
working 132, 133

Write Ahead Logging (WAL) method 115

Thank you for buying
PostGIS Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PostgreSQL Administration
Essentials
ISBN: 978-1-78398-898-3 Paperback: 142 pages

Discover efficient ways to administer, monitor,
replicate, and handle your PostgreSQL databases

1. Learn how to detect bottlenecks and make
sure your database systems offer superior
performance to your end users.

2. Replicate your databases to achieve full
redundancy and create backups quickly
and easily.

3. Optimize PostgreSQL configuration
parameters and turn your database server
into a high-performance machine capable
of fulfilling your needs.

PostgreSQL 9 High Availability
Cookbook
ISBN: 978-1-84951-696-9 Paperback: 398 pages

Over 100 recipes to design and implement a highly
available server with the advanced features of
PostgreSQL

1. Create a PostgreSQL cluster that stays online
even when disaster strikes.

2. Avoid costly downtime and data loss that can
ruin your business.

3. Perform data replication and monitor your data
with hands-on industry-driven recipes and
detailed step-by-step explanations.

Please check www.PacktPub.com for information on our titles

PostGIS Cookbook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial data in a
PostGIS database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS and
WFS using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data,
and routing data into usable forms.

3. Visualize data from the PostGIS database
using a desktop GIS program such as QGIS
and OpenJUMP.

PostgreSQL Replication
ISBN: 978-1-84951-672-3 Paperback: 250 pages

Understand basic replication concepts and efficiently
replicate PostgreSQL using high-end techniques
to protect your data and run your server without
interruptions

1. Explains the new replication features
introduced in PostgreSQL 9.

2. Contains easy to understand explanations
and lots of screenshots that simplify an
advanced topic like replication.

3. Teaches PostgreSQL administrators how
to maintain consistency between redundant
resources and to improve reliability,
fault-tolerance, and accessibility.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing PostGIS and Setting Up
	What is PostGIS?
	Why PostGIS?
	Installing PostgreSQL
	Installing PostGIS
	Installing QGIS
	Summary

	Chapter 2: Creating Your First Spatial Database
	The development of spatial databases
	Creating our first database using
a command line
	Creating our first spatial data table using
a command line

	Creating a spatial database using GUI
	Creating a spatial data table using GUI
	Creating a spatial data table using a SQL script

	Summary

	Chapter 3: Inserting GIS Objects
	Developing insertion queries with
GIS objects
	What is a spatial reference system?
	Including SRS information in our spatial tables
	Getting data from external sources

	Summary

	Chapter 4: Selecting and Filtering
GIS Queries
	Grouping data
	Nonspatial queries
	Spatial functions
	The ST_Distance functions (geometry, geometry)
	The ST_DWithin function (geometry, geometry, float)
	The ST_Length function
	The ST_Intersects function (geometry, geometry)
	The ST_Within function (geometry A, geometry B)

	Queries that use data from two databases
	The Postgres_FWD module

	Developing spatial queries with our
own data
	Summary

	Chapter 5: Displaying GIS Data Graphically
	Introducing QGIS
	The QGIS application
	Hands-on with QGIS
	Developing a spatial query from QGIS
	Summary

	Chapter 6: Management of Vectorial and Raster Data with PostGIS
	The GDAL/OGR library
	Working with GDAL/OGR commands
	Working with raster files
	Inserting raster data into our database
	Graphically displaying raster data saved in our database

	Summary

	Chapter 7: Performance Tuning
	Spatial indexes in PostGIS
	Tuning spatial queries
	Tuning PostgreSQL´s configuration file for our spatial database
	Summary

	Chapter 8: Developing a GIS Web Application
	Developing a web application
	Installing the web server
	Installing a PHP module
	Installing Leaflet
	Implementing the web application

	Summary

	Chapter 9: Developing a Desktop
GIS Application
	What is World Wind?
	How does World Wind work?
	Previous requirements
	Installing World Wind

	Setting up the development environment
	Installing Eclipse

	Configuring the development environment

	Coding our first application
	Getting the PostgreSQL–Java binding

	Developing a management application
	Summary

	Index

