
ISBN: 978-1-4665-1008-1

9 781466 510081

90000

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

w w w . c r c p r e s s . c o m

GIS and Remote Sensing

Introduction to GIS Programming and
Fundamentals with Python and ArcGIS®

“GIScience needs more programmers. This book is a great place to start.”
—Mark Gahegan, University of Auckland, New Zealand

“… an A to Z of GIS. [This textbook] covers a remarkable breadth of material, from the
practical nuts-and-bolts of programming a GIS, to the fundamental concepts that underpin
all of spatial information science. As spatial computing skills become increasingly valued
both in education and the workplace, a book like this is an invaluable resource for people
who want to understand more about and do more with spatial data. Those with a background
in GIS and geography will find a wealth of accessible information and exercises to build
new programming skills; skilled programmers can uncover the fundamental spatial
concepts that are the basis of elegant and robust spatial information systems. By marrying
the practice with theory, the book can claim to be a one-stop-shop for all your spatial
computing needs.”
— Matt Duckham, RMIT University, Melbourne, Australia

“This book is developed from the authors’ decades of combined teaching experience, with
obvious benefits for training those encountering GIS programming for the first time. The
comprehensive online materials are a boon. The treatment of topics proceeds from basic
to advanced in a commendably clear and comprehensive manner. This treatment will be
particularly useful for students encountering ‘Big’ space-time data that today pervade so
many areas of application.”
—Tao Cheng, University College London, United Kingdom

“A strong plus is that the book takes a very hands-on approach with lots of practical
examples and problems for the reader to work on. Python is used as the language which is
a good choice since it is freely available.”
— Steve Wise, University of Sheffield, United Kingdom

“In today’s GIS job market, Python Programming and ArcGIS are the must-have skills
for many students and professionals. This book provides excellent basic programming
concepts and step-by-step code examples for GIS students and professionals to enhance
their programming skills.”
— Ming-Hsiang Tsou, San Diego State University, California, USA

Yan
g

K14758

In
tro

d
u

ctio
n

 to
 G

IS
 P

ro
gram

m
in

g an
d

F

u
n

d
am

en
tals w

ith
 P

yth
o

n
 an

d
 A

rcG
IS

®

Chaowei Yang

Introduction to

Programming and
Fundamentals with

Introduction to GIS
Programming and

Fundamentals with
Python and ArcGIS®

http://taylorandfrancis.com

Introduction to GIS
Programming and

Fundamentals with
Python and ArcGIS®

Chaowei Yang
With the collaboration of

Manzhu Yu
Qunying Huang

Zhenlong Li
Min Sun
Kai Liu

Yongyao Jiang
Jizhe Xia

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4665-1008-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we
may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

For Chaowei Yang's parents, Chaoqing Yang and Mingju Tang,

for continually instilling curiosity and an exploring spirit

http://taylorandfrancis.com

vii

Contents

Preface ...xv
Acknowledgments .. xxi
Editor... xxiii
Contributors .. xxv

Section I Overview

 1. Introduction ...3
1.1 Computer Hardware and Software ..3
1.2 GIS and Programming ...5
1.3 Python ...7
1.4 Class and Object ..9
1.5 GIS Data Models .. 10
1.6 UML .. 11
1.7 Hands-On Experience with Python ... 14
1.8 Chapter Summary... 16
Problems .. 17

 2. Object-Oriented Programming ... 19
2.1 Programming Language and Python .. 19
2.2 Class and Object .. 21

2.2.1 Defining Classes .. 21
2.2.2 Object Generation ..23
2.2.3 Attributes ..23
2.2.4 Inheritance ..25
2.2.5 Composition.. 26

2.3 Point, Polyline, and Polygon .. 27
2.4 Hands-On Experience with Python ...30
2.5 Chapter Summary...30
Problems .. 31

Section II Python Programming

 3. Introduction to Python ..35
3.1 Object-Oriented Support ..35
3.2 Syntax ...36

3.2.1 Case Sensitivity ..36
3.2.2 Special Characters..36

viii Contents

3.2.3 Indentation ..36
3.2.4 Keywords .. 37
3.2.5 Multiple Assignments ...38
3.2.6 Namespace ..38
3.2.7 Scope ..38

3.3 Data Types ..40
3.3.1 Basic Data Types ..40
3.3.2 Composite Data Types...42

3.4 Miscellaneous ..48
3.4.1 Variables ..48
3.4.2 Code Style ... 49

3.5 Operators ..50
3.6 Statements ..53
3.7 Functions ..54
3.8 Hands-On Experience with Python ...56
3.9 Chapter Summary...56
Problems .. 57

 4. Python Language Control Structure, File Input/Output,
and Exception Handling ... 61
4.1 Making Decisions ... 61
4.2 Loops ...64
4.3 Other Control Structures ...66
4.4 File Input/Output .. 67
4.5 Exceptions .. 69
4.6 Hands-On Experience with Python ... 70

4.6.1 Find the Longest Distance between Any Two Points 70
4.6.2 Hands-On Experience: I/O, Create and Read a File 70
4.6.3 Hands-On Experience: I/O, Flow Control, and File72
4.6.4 Hands-On Experience: Input GIS Point Data

from Text File .. 74
4.7 Chapter Summary...75
Problems ..75

 5. Programming Thinking and Vector Data Visualization77
5.1 Problem: Visualizing GIS Data ...77
5.2 Transforming Coordinate System...80

5.2.1 How to Determine Ratio Value? .. 82
5.3 Visualizing Vector Data ...84
5.4 Point, Polyline, Polygon ..86
5.5 Programming Thinking ... 87

5.5.1 Problem Analysis ...88
5.5.2 Think in Programming ...88
5.5.3 Match Programming Language Patterns

and Structure ..89

ixContents

5.5.4 Implement Program .. 89
5.6 Hands-On Experience with Python ...90

5.6.1 Reading, Parsing, and Analyzing Text File Data90
5.6.2 Create GIS Objects and Check Intersection 92

5.7 Chapter Summary... 95
Problems .. 95

 6. Shapefile Handling .. 97
6.1 Binary Data Manipulation ... 97
6.2 Shapefile Introduction .. 101
6.3 Shapefile Structure and Interpretation .. 102

6.3.1 Main File Structure of a Shapefile 102
6.3.1.1 Main File Header .. 102
6.3.1.2 Feature Record .. 104

6.3.2 Index File Structure (.shx) ... 105
6.3.3 The .dbf File .. 107

6.4 General Programming Sequence for Handling Shapefiles 107
6.5 Hands-On Experience with Mini-GIS ... 108

6.5.1 Visualize Polylines and Polygons 108
6.5.2 Interpret Polyline Shapefiles .. 109

6.6 Chapter Summary... 113
Problems .. 113

 7. Python Programming Environment ... 115
7.1 General Python IDE .. 115

7.1.1 Python Programming Windows 115
7.1.1.1 Command-Line GUI .. 115
7.1.1.2 Interactive GUI ... 115
7.1.1.3 File-Based Programming 116

7.1.2 Python IDE Settings .. 117
7.1.2.1 Highlighting ... 117
7.1.2.2 General Setting of the Programming

Window .. 118
7.1.2.3 Fonts Setup for the Coding 118

7.1.3 Debugging .. 118
7.1.3.1 SyntaxError ... 120
7.1.3.2 Run-Time Exceptions ... 121
7.1.3.3 Handling Exceptions ... 122
7.1.3.4 Add Exception Handles and Clean-Up

Actions to File Read/Write 123
7.2 Python Modules .. 124

7.2.1 Module Introduction ... 125
7.2.2 Set Up Modules .. 125
7.2.3 System Built-In Modules ... 126

7.3 Package Management and Mini-GIS ... 127

x Contents

7.3.1 Regular GIS Data Organization ... 127
7.3.2 Mini-GIS Package .. 128

7.4 Hands-On Experience with Mini-GIS ... 131
7.4.1 Package Management and Mini-GIS 131
7.4.2 Run and Practice the Mini-GIS Package 132

7.5 Chapter Summary... 135
Problems .. 135

 8. Vector Data Algorithms ... 137
8.1 Centroid .. 137

8.1.1 Centroid of a Triangle ... 137
8.1.2 Centroid of a Rectangle ... 137
8.1.3 Centroid of a Polygon .. 138

8.2 Area ... 139
8.2.1 Area of a Simple Polygon .. 139
8.2.2 Area of a Polygon with Hole(s) .. 140

8.3 Length ... 141
8.3.1 Length of a Straight Line Segment 141
8.3.2 Length of a Polyline ... 142

8.4 Line Intersection .. 142
8.4.1 Parallel Lines .. 145
8.4.2 Vertical Lines .. 145

8.5 Point in Polygon .. 146
8.5.1 A Special Scenario ... 146

8.6 Hands-On Experience with Python ... 148
8.6.1 Using Python to Draw a Polygon and Calculate

the Centroid .. 148
8.6.2 Using Python to Draw Polygon and Calculate

the Area of Polygon ... 148
8.6.3 Using Python to Draw Line Segments and

Calculate the Intersection ... 148
8.7 Chapter Summary... 150
Problems .. 150

Section III Advanced GIS Algorithms and Their
Programming in ArcGIS

 9. ArcGIS Programming .. 153
9.1 ArcGIS Programming .. 153
9.2 Introduction to ArcPy Package ... 154

9.2.1 ArcPy Functions, Classes, and Modules 154
9.2.2 Programming with ArcPy in ArcMap 155
9.2.3 Programming with ArcPy in Python Window

outside ArcMap .. 156

xiContents

9.2.4 Using Help Documents ... 157
9.3 Automating ArcTools with Python .. 158
9.4 Accessing and Editing Data with Cursors 160

9.4.1 SearchCursor .. 160
9.4.2 UpdateCursor ... 164
9.4.3 InsertCursor .. 164
9.4.4 NumPy .. 165

9.5 Describing and Listing Objects ... 166
9.5.1 Describe ... 166
9.5.2 List .. 167

9.6 Manipulating Complex Objects .. 169
9.7 Automating Map Production .. 172
9.8 Creating ArcTools from Scripts ... 172
9.9 Handling Errors and Messages .. 176
9.10 External Document and Video Resources 177
9.11 Implementing Spatial Relationship Calculations

Using ArcGIS ..178
9.12 Summary .. 180
9.13 Assignment .. 182

10. Raster Data Algorithm .. 185
10.1 Raster Data ... 185
10.2 Raster Storage and Compression .. 186

10.2.1 Run Length Coding ... 187
10.2.2 Quad Tree .. 188

10.3 Raster Data Formats ... 189
10.3.1 TIFF .. 189
10.3.2 GeoTIFF ... 190
10.3.3 IMG .. 190
10.3.4 NetCDF .. 190
10.3.5 BMP .. 190
10.3.6 SVG ... 191
10.3.7 JPEG ... 191
10.3.8 GIF .. 191
10.3.9 PNG .. 191

10.4 Color Representation and Raster Rendering 191
10.4.1 Color Representation ... 191
10.4.2 Raster Rendering.. 194

10.5 Raster Analysis .. 196
10.6 Hands-On Experience with ArcGIS ... 198

10.6.1 Hands-On Practice 10.1: Raster Color Renders 198
10.6.2 Hands-On Practice 10.2: Raster Data Analysis:

Find the Area with the Elevation Range between
60 and 100 and the Land Cover Type as “Forest” 199

xii Contents

10.6.3 Hands-On Practice 10.3. Access the Attribute
Information of Raster Dataset and Calculate the Area 200

10.7 Chapter Summary... 205
Problems .. 205

 11. Network Data Algorithms .. 207
11.1 Network Representation .. 207

11.1.1 Basics Network Representation ... 207
11.1.2 Directed and Undirected Networks.................................. 207
11.1.3 The Adjacency Matrix ... 209
11.1.4 Network Representation in GIS ... 209

11.2 Finding the Shortest Path ... 210
11.2.1 Problem Statement ... 210
11.2.2 A Brute Force Approach for the Shortest

Path Algorithm ... 211
11.2.3 Dijkstra Algorithm ... 212

11.3 Types of Network Analysis ... 214
11.3.1 Routing .. 214
11.3.2 Closest Facility ... 214
11.3.3 Service Areas .. 214
11.3.4 OD Cost Matrix .. 216
11.3.5 Vehicle Routing Problem .. 216
11.3.6 Location-Allocation ... 217

11.4 Hands-On Experience with ArcGIS ... 218
11.5 Chapter Summary... 221
Problems ..222

 12. Surface Data Algorithms...223
12.1 3D Surface and Data Model ...223

12.1.1 Surface Data ..223
12.1.2 Surface Data Model ...223

12.1.2.1 Discrete Data ...223
12.1.2.2 Continuous Data ...225

12.2 Create Surface Model Data ..228
12.2.1 Create Grid Surface Model ...228
12.2.2 Creating TIN Surface Model .. 229
12.2.3 Conversion between TIN and Raster Surface
 Models ...229

12.3 Surface Data Analysis ...230
12.3.1 Elevation ..230
12.3.2 Slope ... 231
12.3.3 Aspect .. 232
12.3.4 Hydrologic Analysis ..234

12.4 Hands-On Experience with ArcGIS ...236

xiiiContents

12.4.1 Hands-On Practice 12.1: Conversion among DEM,
TIN, and Contours ...236

12.4.2 Hands-On Practice 12.2: Generate Slope and Aspect 239
12.4.3 Hands-On Practice 12.3: Flow Direction 239

12.5 Chapter Summary... 242
Problems .. 242

Section IV Advanced Topics

 13. Performance-Improving Techniques .. 247
13.1 Problems ... 247
13.2 Disk Access and Memory Management .. 248

13.2.1 File Management .. 249
13.2.2 Comprehensive Consideration ... 249

13.3 Parallel Processing and Multithreading .. 251
13.3.1 Sequential and Concurrent Execution 251
13.3.2 Multithreading ... 251
13.3.3 Load Multiple Shapefiles Concurrently

Using Multithreading .. 252
13.3.4 Parallel Processing and Cluster, Grid,

and Cloud Computing ..253
13.4 Relationship Calculation and Spatial Index254

13.4.1 Bounding Box in GIS ...255
13.4.2 Spatial Index ...256

13.5 Hands-On Experience with Mini-GIS ... 257
13.5.1 Data Loading with RAM as File Buffer 257
13.5.2 Data Loading with Multithreading258
13.5.3 Bounding Box Checking to Speed Up Intersection258
13.5.4 Line Intersection Using R-Tree Index 261

13.6 Chapter Summary... 262
Problems .. 263

 14. Advanced Topics ... 265
14.1 Spatial Data Structure .. 265

14.1.1 Raster Data Structure in NetCDF/HDF 265
14.1.2 Application of NetCDF/HDF on Climate Study 266

14.2 GIS Algorithms and Modeling .. 270
14.2.1 Data .. 270
14.2.2 Density Analysis .. 271
14.2.3 Regression Analysis (OLS and GWR) 272

14.3 Distributed GIS .. 275
14.3.1 System Architecture .. 276
14.3.2 User Interface ..277

xiv Contents

14.4 Spatiotemporal Thinking and Computing280
14.4.1 Problem: Dust Simulation and Computing

Challenges ... 280
14.4.2 Methodology 1: Utilizing High-Performance

Computing to Support Dust Simulation 281
14.4.3 Methodology 2: Utilizing Spatiotemporal Thinking

to Optimize High-Performance Computing 281
14.4.3.1 Dust Storms’ Clustered Characteristics:

Scheduling Methods .. 282
14.4.3.2 Dust Storms’ Space–Time Continuity:

Decomposition Method283
14.4.3.3 Dust Storm Events Are Isolated:

Nested Model ..284
14.4.4 Methodology 3: Utilizing Cloud Computing

to Support Dust Storm Forecasting284
14.5 Chapter Summary...285
Problems .. 286

References ... 287

Index ... 291

xv

Preface

Why Another GIS Programming Text?

Geographical information system (GIS) has become a popular tool under-
pinning many aspects of our daily life from routing for transportation to
finding a restaurant to responding to emergencies. Convenient GIS tools
are developed with different levels of programming from scripting, using
python for ArcGIS, to crafting new suites of tools from scratch. How much
programming is needed for projects largely depends on the GIS software,
types of applications, and knowledge structure and background of the
application designer and developer. For example, simple scripting integrates
online mapping applications using Google maps. Customized spatial
 analyses applications are routinely using ArcGIS with minimum program-
ming. Many develop an application leveraging open-source software for
managing big data, modeling complex phenomena, or responding to con-
current users for popular online systems. The best design and development
of such applications require designers and developers to have a thorough
understanding of GIS principles as well as the skill to choose between com-
mercial and open-source software options. For most GIS professionals, this
is a challenge because most are either GIS tool end users or information
 technology (IT) professionals with a limited understanding of GIS.

To fill this gap, over the last decade, Chaowei Yang launched an introduc-
tory GIS programming course that was well received. Enrollment continues
to rise and students report positive feedback once they are in the workplace
and use knowledge developed from the class. To benefit a broader spectrum
of students and professionals looking for training materials to build GIS
programming capabilities, this book is written to integrate and refine the
authors’ knowledge accumulated through courses and associated research
projects.

The audience for this book is both IT professionals to learn the GIS
 principles and GIS users to develop programming skills. On the one hand,
this book provides a bridge for GIS students and professionals to learn and
practice programming. On the other hand, it also helps IT professionals with
programming experience to acquire the fundamentals of GIS to better hone
their programming skills for GIS development.

Rather than try to compete with the current GIS programming literature,
the authors endeavor to interpret GIS from a different angle by integrating
GIS algorithms and programming. As a result, this book provides a practical
knowledge that includes fundamental GIS principles, basic programming
skills, open-source GIS development, ArcGIS development, and advanced

xvi Preface

topics. Structured for developing GIS functions, applications, and systems,
this book is expected to help GIS/IT students and professionals to become
more competitive in the job market of GIS and IT industry with needed
 programming skills.

What Is Included in the Text?

This book has four sections. Section I (Chapters 1 and 2) is an overview of GIS
programming and introduces computer and programming from a practical
perspective. Python (integral programming language for ArcGIS) program-
ming is extensively presented in Section II (Chapters 3 through 8) in the
context of designing and developing a Mini-GIS using hands-on experience
following explanations of fundamental concepts of GIS. Section III (Chapters
9 through 12) focuses on advanced GIS algorithms and information on how to
invoke them for programming in ArcGIS. Advanced topics and performance
optimization are introduced in Section IV (Chapters 13 and 14) using the
Mini-GIS developed.

Chapter 1 introduces computer, computer programming, and GIS.
In addition, the Unified Markup Language (UML) is discussed for capturing
GIS models implemented through simple Python programming. Chapter 2
introduces object-oriented programming and characteristics with examples
of basic GIS vector data types of Point, Polyline, and Polygon.

Chapter 3 introduces Python syntax, operators, statements, miscella-
neous features of functions, and Python support for object-oriented pro-
gramming. Using GIS examples, Chapter 4 introduces Python language
control structures, file input/output, and exception handling. Chapter 5
presents programming thinking using the visualization of vector data
as an example of the workflow of this critical process in programming.
Chapter 6 introduces the Python integrated programming environment
(IDE), modules, package management, and the Mini-GIS package. Chapter
7 discusses shapefile formats and steps on how to handle shapefiles
within the Mini-GIS. Chapter 8 introduces vector data processing algo-
rithms and includes line intersection, centroid, area, length, and point in
polygon. This presentation includes how Mini-GIS/ArcGIS supports these
algorithms.

Chapter 9 bridges Sections II and III by introducing ArcGIS program-
ming in Python using ArcPy, ArcGIS programming environment, automat-
ing tools, accessing data, describing objects, and fixing errors. Chapter 10
introduces raster data algorithms, including raster data format, storage, and
compression with hands-on experience using ArcGIS. Chapter 11 addresses
network data algorithms for representing networks and calculating the
shortest path in principles and using ArcGIS. Chapter 12 explores surface or

xviiPreface

3D data representation of 3D data, converting data formats and 3D analyses
for elevation, slope, aspect, and flow direction with examples in ArcGIS
programming.

Chapter 13 introduces performance-improving techniques and includes
storage access and management, parallel processing and multithreading,
spatial index, and other techniques for accelerating GIS as demonstrated in
Mini-GIS. Advanced topics, including GIS algorithms and modeling, spatial
data structure, distributed GIS, spatiotemporal thinking, and computing, are
presented in Chapter 14.

Hands-On Experience

As a practical text for developing programming skills, this book makes
every effort to ensure the content is as functional as possible. For every
introduced GIS fundamental principle, algorithm and element, an example
is explored as a hands-on experience using Mini-GIS and/or ArcGIS with
Python. This learning workflow helps build a thorough understanding of
the fundamentals and naturally maps to the fundamentals and program-
ming skills.

For system and open-source development, a step-by-step development of
a python-based Mini-GIS is presented. For application development, ArcGIS
is adopted for illustration.

The Mini-GIS is an open-source software developed for this text and can be
adopted for building other GIS applications. ArcGIS, a commercial product
from ESRI, is used to experience state-of-the-art commercial software.
For learning purpose, ArcGIS is available for free from ESRI.

Online Materials

This book comes with the following online materials:

• Instructional slides for instructors using this text for classroom
 education and professionals to assist in learning GIS programming.

• Python codes for class exercises and hands-on experiences and
structured and labeled by chapter to code the chapter’s sequence.

• Mini-GIS as an open-source package for learning the GIS
 fundamentals and for exemplifying GIS principles and algorithms.

• Answers to problems for instructors to check their solutions.

xviii Preface

The Audience for and How to Use This Text

This text serves two functions: a text for systematic building GIS program-
ming skills and a reference for identifying a python solution for specific
GIS algorithms or function from scratch and/or ArcGIS. The text is intended
to assist four categories of readers:

• Professors teaching GIS programming or GIS students learning with
a specific focus on hands-on experience in classroom settings.

• Programmers wanting to learn GIS programming by scanning
through Section I and Chapters 3 and 4, followed by a step-by-step
study of the remaining chapters.

• GIS system designers most interested in algorithm descriptions,
 algorithms implementation from both scratch and ArcGIS to
 assemble a practical knowledge about GIS programing to aid in GIS
choice for future development.

• IT professionals with a curiosity of GIS for GIS principles but
 skipping the programming exercises.

The intent of the authors for such a broad audience is based on the desire to
cultivate a competitive professional workforce in GIS development, enhance
the literature of GIS, and serve as a practical introduction to GIS research.

How Did We Develop This Text?

The text material was first developed by Professor Chaowei Yang in 2004
and offered annually in a classroom setting during the past decade. During
that time span, many students developed and advanced their programming
skills. Some became professors and lecturers in colleges and were invited
to write specific book chapters. Keeping the audience in mind, several
 professors who teach GIS programming in different cultural backgrounds
and university settings were invited to review the book chapters.

The following is the book development workflow:

• Using his course materials, Professor Yang structured this book
with Irma Shagla’s help, and the text’s structure was contracted to be
 published as a book. Assistant Professor Qunying Huang, University
of Wisconsin, Madison, explored using the earlier versions of the
text’s materials. Assistant Professors Huang and Zhenlong Li,
University of South Carolina, developed Section II of the text in
 collaboration with Professor Yang.

xixPreface

• Dr. Min Sun, Ms. Manzhu Yu, Mr. Yongyao Jiang, and Mr. Jizhe Xia
developed Section III in collaboration with Professor Yang.

• Professor Yang edited and revised all chapters to assure a common
structure and composition.

• Ms. Manzhu Yu and Professor Yang edited the course slides.
• Assistant Professor Li, Mr. Kai Liu, Mrs. Joseph George, and

Ms. Zifu Wang edited Mini-GIS as the software for the text.
• After the above text and course materials were completed, four

 professors and two developers were invited to review the text’s
content.

• The assembled materials for the text were finally reviewed by
 several professionals, including Ms. Alena Deveau, Mr. Rob
Culbertson, and Professor George Taylor.

• The text was formatted by Ms. Minni Song.
• Ms. Manzhu Yu and Professor Yang completed a final review of the

chapters, slides, codes, data, and all relevant materials.

http://taylorandfrancis.com

xxi

Acknowledgments

This text is a long-term project evolving from the course “Introduction to GIS
Programming” developed and refined over the past decade at George Mason
University. Many students and professors provided constructive suggestions
about what to include, how best to communicate and challenge the students,
and who should be considered as audience of the text.

The outcome reflects Professor Yang’s programming career since his
 undergraduate theses at China’s Northeastern University under the
 mentoring of Professor Jinxing Wang. Professor Yang was further mentored
in programming in the GIS domain by Professors Qi Li and Jicheng Chen.
His academic mentors in the United States, Professors David Wong and
Menas Kafatos, provided support over many decades, giving him the chance
to teach the course that eventually led to this text.

Professor Yang thanks the brilliant and enthusiastic students in his
classes at George Mason University. Their questions and critiques honed
his teaching skills, improved the content, and prompted this effort of
 developing a text.

Professor Yang thanks his beloved wife, Yan Xiang, and children—Andrew,
Christopher, and Hannah—for accommodating him when stealing valuable
family time to complete the text.

Ms. Manzhu Yu extends her gratitude to the many colleagues who
 provided support, and read, wrote, commented, and assisted in the editing,
 proofreading, and formatting of the text.

Assistant Professor Huang thanks her wonderful husband, Yunfeng Jiang,
and lovely daughter, Alica Jiang.

Dr. Min Sun thanks her PhD supervisor, Professor David Wong, for
 educating her. She also thanks David Wynne, her supervisor in ESRI where
she worked as an intern, and her other coworkers who collectively helped
her gain a more complete understanding of programming with ESRI
 products. Last but not least, she thanks her parents and lovely dog who
accompanied her when she was writing the text.

Yongyao Jiang thank his wife Rui Dong, his daughter Laura, and his par-
ents Lixia Yao and Yanqing Jiang.

http://taylorandfrancis.com

xxiii

Editor

Chaowei Yang is a professor of geographic information science at George
Mason University (GMU). His research interest is on utilizing spatiotem-
poral principles to optimize computing infrastructure to support science
 discoveries. He founded the Center for Intelligent Spatial Computing and the
NSF Spatiotemporal Innovation Center. He served as PI or Co-I for projects
totaling more than $40 M and funded by more than 15 agencies, organiza-
tions, and companies. He has published 150+ articles and developed a num-
ber of GIS courses and training programs. He has advised 20+ postdoctoral
and PhD students who serve as professors and scientists in highly acclaimed
U.S. and Chinese institutions. He received many national and international
awards, such as the U.S. Presidential Environment Protection Stewardship
Award in 2009. All his achievements are based on his practical knowledge
of GIS and geospatial information systems. This book is a collection of such
practical knowledge on how to develop GIS tools from a programming
 perspective. The content was offered in his programming and GIS algorithm
classes during the past 10+ years (2004–2016) and has been adopted by his
students and colleagues serving as professors at many universities in the
United States and internationally.

http://taylorandfrancis.com

xxv

Contributors

Fei Hu is a PhD candidate at the NSF Spatiotemporal Innovation Center,
George Mason University. He is interested in utilizing high-performance
cloud computing technologies to manage and mine big spatiotemporal
data. More specifically, he has optimized the distributed storage system
(e.g., HDFS) and parallel computing framework (e.g., Spark, MapReduce) to
 efficiently manage, query, and analyze big multiple-dimensional array-based
datasets (e.g., climate data and remote sensing data). He aims to provide
 scientists with on-demand data analytical capabilities to relieve them from
time-consuming computational tasks.

Qunying Huang is an assistant professor in the Department of Geography
at the University of Wisconsin, Madison. Her fields of expertise include geo-
graphic information science (GIScience), cyber infrastructure, spatiotemporal
big data mining, and large-scale environmental modeling and simulation.
She is very interested in applying different computing models, such as clus-
ter, grid, GPU, citizen computing, and especially cloud computing, to address
contemporary big data and computing challenges in the GIScience. Most
recently, she is leveraging and mining social media data for various applica-
tions, such as emergency response, disaster mitigation, and human mobility.
She has published more than 50 scientific articles and edited two books.

Yongyao Jiang is a PhD candidate in Earth systems and geoinforma-
tion sciences at the NSF Spatiotemporal Innovation Center, George Mason
University. He earned an MS (2014) in GIScience at Clark University and a BE
(2012) in remote sensing at Wuhan University. His research focuses on data
discovery, data mining, semantics, and cloud computing. Jiang has received
the NSF EarthCube Visiting Graduate Student Early-Career Scientist Award
(2016), the Microsoft Azure for Research Award (2015), and first prize in the
Robert Raskin CyberGIS Student Competition (2015). He serves as the tech-
nical lead for MUDROD, a semantic discovery and search engine project
funded by NASA’s AIST Program.

Zhenlong Li is an assistant professor in the Department of Geography
at the University of South Carolina. Dr. Li’s research focuses on spatial
high- performance computing, big data processing/mining, and geospa-
tial cyberinfrastructure in the area of data and computational intensive
GISciences. Dr. Li’s research aims to optimize spatial computing infra-
structure by integrating cutting-edge computing technologies and spatial
 principles to support domain applications such as climate change and
 hazard management.

xxvi Contributors

Kai Liu is a graduate student in the Department of Geography and
GeoInformation Sciences (GGS) in the College of Science at George Mason
University. Previously, he was a visiting scholar at the Center of Intelligent
Spatial Computing for Water/Energy Science (CISC) and worked for 4 years
at Heilongjiang Bureau of Surveying and mapping in China. He earned a BA
in geographic information science at Wuhan University, China. His research
focuses on geospatial semantics, geospatial metadata management, spatio-
temporal cloud computing, and citizen science.

Min Sun is a research assistant professor in the Department of Geography
and Geoinformation Science at George Mason University. Her research
interests include measuring attribute uncertainty in spatial data, developing
visual analytics to support data exploration, WebGIS, and cloud computing.
She is an expert in ArcGIS programming and also serves as the assistant
director for the U.S. NSF Spatiotemporal Innovation Center.

Jizhe Xia is a research assistant professor at George Mason University.
He earned a PhD in Earth systems and geoinformation sciences at the
George Mason University in the spring of 2015. Dr. Xia’s research interests
are spatiotemporal computing, cloud computing, and their applications
in geographical sciences. He proposed a variety of methods to utilize
 spatiotemporal patterns to optimize big data access, service quality (QoS)
evaluation, and cloud computing application.

Manzhu Yu is a PhD candidate in the Department of Geography and
Geoinformation Science, George Mason University. Her research interests
include spatiotemporal methodology, pattern detection, and spatiotemporal
applications on natural disasters. She received a Presidential Scholarship
from 2012 to 2015. She has published approximately 10 articles in renowned
journals, such as PLoS ONE and IJGIS, and contributed as a major author in
several book chapters.

Section I

Overview

http://taylorandfrancis.com

3

1
Introduction

This chapter introduces the basic concepts of computer, hardware, software,
and programming, and sets up the context for GIS programming.

1.1 Computer Hardware and Software

A computer is a device that has the capability to conduct different types of
automated tasks based on specific instructions predefined by or through
interactions with end users. For example, clicking on the ArcGIS icon will
execute ArcGIS software. We can select a destination and starting point to
trigger a routing analysis to identify a driving route using Google Maps.
Computers are some of the fastest-evolving technologies as reflected by the
processing capability of small calculators to supercomputers. The size of the
devices has reduced from computers occupying a building to mobile devices
in pockets (Figure 1.1). The user interactions range from typing punched
cards (early computers) to human–computer interaction, such as speaking to
invoke an action or task.

There are two important components of a computer (Hwang and Faye
1984): (1) the physical device that can conduct automated processing, and
(2) instruction packages that can be configured to provide specific functional-
ity, such as word processing or geographic information processing. The first
component of a computer, the hardware, is touchable as physical machines. The
second component, the software, may be purchased with the hardware in the
form of an operating system, or installed by downloading online. Computer
hardware can be configured or programmed to perform different tasks; thus,
a computer may also be called a general-purpose device. The software var-
ies greatly, whether it is providing document-processing capability, financial
management, tax return processing, or scientific simulations such as climate
change or the spread of disease. Depending on the type of software, it is
either procured publicly (freeware) or proprietary (requiring purchase and
licensing). Depending on the usage, software can be categorized as system
software, application software, or embedded software (Figure 1.2). System
software refers to the basic software that must be installed for a computer
to operate. Windows and Linux are examples of operating system (OS) soft-
ware, an essential component of a computer. Application software supports

4 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

specific groups of tasks, such as Microsoft Word for document processing
and Microsoft Outlook for emails. Embedded software is a type of firmware
that is burned onto hardware and becomes part of that hardware. Embedded
software exists longer on a computer than any other software. The firmware
will always come with the hardware when you purchase a computer, so the
firmware will not have to be changed as frequently, especially when updat-
ing a web browser or Turbo Tax Return routinely.

Geographic information system (GIS) is one type of application software
that deals primarily with geographic information (Longley et al. 2001). The
global positioning system (GPS, Misra and Enge 2006) is used for locating
geographic places, and can be installed in both cars and smart phones for
routing. GIS software includes two categories: professional GIS and light-
weight GIS. Professional GIS software, such as ArcGIS, provides the most

(a) (b)

FIGURE 1.1
(a) NASA supercomputer. (From NASA supercomputer at http://www.nas.nasa.gov/hecc/
resources/pleiades.html.) (b) Other computers: personal computer (PC), laptop, pad. (From differ-
ent computers at http://www.computerdoc.com.au/what-are-the-different-types-of-computers.)

Application software
Word, Web browser, ArcGIS

System software
Windows, Linux,...

Hardware

Embedded software

FIGURE 1.2
Different types of software.

http://www.nas.nasa.gov/hecc/resources/pleiades.html
http://www.nas.nasa.gov/hecc/resources/pleiades.html
http://www.computerdoc.com.au/what-are-the-different-types-of-computers

5Introduction

complete set of GIS functionalities for professionals in the GIS domain. Less
intense, but popular, GIS software used to view the geographic environment
are the online mapping application, such as Google Maps and Google Earth.

1.2 GIS and Programming

GIS originates from several domains and refers to the system designed to
capture, observe, collect, store, and manage geographic data, and to pro-
vide tools for spatial analyses and visualization (Longley et al. 2001). GIS
can help obtain geographic data to be used for decision making, such as
choosing routes for emergency response. GIS is known to have started from
the Canadian natural resource inventory computer program led by Roger
Tomlinson in the 1960s. GIS is becoming increasingly popular on mobile
devices as a means of analyzing information and patterns related to traffic
and weather.

Coined by Mike Goodchild, the term “GIS” can also refer to the field of
geographic information science or GIScience—the study of the scientifically
applied GIS principles and technologies (Goodchild 1992). According to
GIS scientists, GIScience involves remote sensing, global navigation satellite
systems, and GIS. Additionally, in various domains, GeoInformatics may be
applied to remote sensing, global navigation satellite system, and GIS infor-
mation. These topics, however, will not be explored in this book.

GIS is the system comprising hardware (computer, mobile devices, GPS),
software (ArcGIS or online mapping), and data (geographic information)
that can be utilized to accomplish a set of functionalities for a group of users.
All three components must be utilized for GIS to work effectively. A sig-
nificant difference between GIS and other software applications is its ability
to manage and manipulate the large volume and complexity of geographic
data, which comprises embedded spatiotemporal and attribute information.
The complex character of GIS data demands a specific suite of software to
extract information for decision making. Mature software packages are pub-
licly available, including the most up-to-date set of ArcGIS software and the
latest edition of Google Maps web mapping software.

The process of developing software is called programming. Programming
instructs the computer to accomplish a task based on the orders. There are
many different types of programming levels (Mitchell 1996). The lowest
level to program are based on the specific hardware instructions supported
by the central processing units (CPU), and used by smart-instrument devel-
opers. Because CPU instructions are processed as a sequence of 0s and 1s,
assembling language is developed to assist developers to remember those
instructions. Both languages are considered low level and are specific to the
hardware. Advanced languages have been developed to facilitate human

6 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

understanding, but are still restricted by the hardware instructions. For
example, C programming language is commonly used to develop software
(Kernighan and Ritchie 2006). To make the programming organization more
similar to how we view the world, C++ was proposed to support object-
oriented programming based on C (Stroustrup 1995). Since then, many dif-
ferent programming languages have been developed and are used in GIS
programming. For instance, Java is a language for cross-platform appli-
cation development proposed by Sun Microsystems (Arnold et al. 2000).
JavaScript is used to conduct scripting (simpler) programming for manip-
ulating objects within a web browser. In addition to Java and JavaScript,
ArcGIS has recently added Python to its list of programming languages
(Van Rossum 2007).

Why do we need GIS programming? Mature GIS software and applica-
tion templates provide many tools to accomplish our daily tasks; however, in
order to understand the fundamentals of how GIS works and to customize
software for specific problems, programming is required. The following list
gives programming examples:

• Customizing software for application: The National Park Service is
developing a simple web mapping application to allow the general
public to interactively select and view information for a particular
National Park. Using an online mapping tool such as Google Maps
and selecting a park with your mouse will trigger a query of the
selected information for that park. In this scenario, we need geo-
graphic information about the parks, a program for front-end user
interaction, and a database query language that will generate result
for the selected park.

• Automating a process: Suppose there are 100 geographic datasets col-
lected in text file format and we need to convert them into a shape-
file, a native data file format used by ArcView and ArcGIS, for
further processing. ArcGIS can perform the conversion one by one,
but doing this manually 100 times is monotonous. Therefore, a sim-
ple scripting tool to automatically read and process the 100 datasets
into shapefiles would be beneficial. Using Python scripts in ArcGIS
provides the capability to do so.

• Satisfying simple GIS needs: Suppose there is a transportation com-
pany that needs to track their company vehicles’ positions based
on 5-minute intervals. However, the company cannot afford to pur-
chase a professional GIS software license. To resolve the issue, the
company can use Python to create a map to show the company’s
service region and vehicle locations every 5 minutes. This program-
ming may include Zoom In/Out, and Move/Pan features, anima-
tions based on locations, and a selection of one or many vehicles.

7Introduction

• Cultivating advanced GIS professionals: Suppose a group of students
are asked to invent a routing algorithm based on predicted traf-
fic conditions and real-time traffic information. The students will
need to organize the road network information comparing real-time
and predicted network speed. It is essential to use the most accu-
rate predicted information in the routing process. Programming is
needed throughout the entire process for network management and
routing, and for reconstructing the results into map form or written
directions.

Geographic information has become increasingly important in all walks
of human life, whether it is for scientific discovery, forecasting natural disas-
ters, advancing technologies of observations, or creating public awareness
about location and routing. While some applications require complete GIS
technologies to produce valuable results, many geographic information
applications do not require sophisticated geographic information systems.
For the latter case, open-source or small geospatial information software
is utilized, while commercial GIS systems such as ArcGIS, are available for
the former case. To better address both needs, it is essential to understand
the fundamentals of how GIS works and its basic geographic information
processing. This chapter introduces the background structure for building
such capabilities: computer hardware and software, GIS and programming,
GIS data models and Unified Markup Language (UML, Fowler 2004), and
Python. Hands-on programming experience is needed for understanding
the concepts and developing the essential skills utilized by GIS professionals
in their work and research. Based on GIS fundamentals, this book will help
you develop and improve systematic programming skills and will provide a
more in-depth understanding of GIS fundamentals. Owing to its popularity
within the GIS community, Python will be the primary programming lan-
guage used in this book.

1.3 Python

Python was originally developed by a Dutch programmer, Guido van
Rossum, in 1990. Van Rossum was reportedly a fan of the British comedy
series, Monty Python’s Flying Circus, and upon developing the open-source
programming language, he borrowed to the name “Python” for the language
and his nonprofit institution, the Python Software Foundation.

Similar to programming languages C++ and Java, Python is an object-
oriented and interactive language. Python is dynamic in that it uses an auto-
matic memory management mechanism to allocate and release memory for

8 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

data (variables). Python and ArcGIS regularly release new versions of their
programs; this book is based on Python release 2.7 and ArcGIS 10.1.

There are many reasons for choosing Python, including the following:*

• It is excellent for programming beginners, yet superb for experts.
• The syntax of Python is very simple and easy to learn. When you

become familiar with them, you will feel that it is really very handy.
• It is highly scalable and well suited for both large and small projects.
• It is in a rapid development phase. Almost every half year, there is a

new major release.
• It is portable cross-platform. This means that a program written in

Windows can be run using the Linux or Mac operating systems.
• It is easily extensible. You can always add more class functions to

your current project.
• It has powerful standard libraries.
• Many third parties also provide highly functional packages for you

to utilize. Instead of developing GIS functions from scratch, you
can simply download the source code and integrate them into your
project.

• It is a fully object-oriented language, simple yet elegant, and stable
and mature.

There are several steps to learning Python for GIS programming:

• Get familiar with the concept of class and object (Chapters 1 and 2).
• Learn the syntax of Python, including variables, data types, struc-

tures, controls, statements, and other programming structures
(Chapters 1 through 4).

• Build Python programs from scratch and integrate open-source
libraries to facilitate programming (Chapter 5).

• Become comfortable with the Python programming environment
(Python interpreter or Python Text editor, Chapter 6).

• Solve GIS problems by writing code for GIS algorithms (Chapters 7
through 13).

These components are introduced in the above order throughout this
book. This chapter introduces important concepts such as object-oriented
programming, UML, and GIS models.

* http://pythoncard.sourceforge.net/what_is_python.html.

http://pythoncard.sourceforge.net/what_is_python.html

9Introduction

1.4 Class and Object

Within this section, we will discuss two types of fundamental concepts: class
and object (Rumbaugh et al. 1991). Class uses a set of attributes and behav-
iors to represent a category of real-world phenomena. For example, Figure 1.3
shows how to extract the student attributes and behaviors.

Another example is online shopping on Amazon or eBay. Both the custom-
ers and online products must be abstracted into classes:

• Customers would have a customer ID, shipping address, and bill-
ing address. Customer behavior would include adding or deleting a
product to the shopping cart.

• Products would have a product ID, product name, and product
price. Product behavior would include setting the price, and totaling
the product quantity/amount.

An object is a specific instance of a class. We can consider objects as
instances of classes by assigning values to their attributes. Specifically, a
class is the abstraction of a category or collection of real-world entities while
an object is a specific real-world entity within the class. Within a computer, a
class is the template and an object is the specific entity that occupies the com-
puter memory. The computer can operate on both the attributes and behav-
iors of an object. For example, when a student logs in to their college web
system with a username and password, the system will create a new stu-
dent object. The computer reads each student as an independent object with
several different attributes (e.g., username, password, and student ID). After
logging in, a student is able to search, register, or add/drop classes using the
object in the system, which represents him or her specifically. Chapter 2 will
introduce how to define classes and objects using Python.

FIGURE 1.3
An example of representing students with the Student class.

10 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

1.5 GIS Data Models

GIS data models are used to capture essential geospatial elements of a spe-
cific problem (Longley et al. 2001). There are three types of data models: vec-
tor data, raster data, and special data. Vector data models consist of point,
polyline, and polygon model types. Raster data includes equally split cells of
digital elevation models and images. Special data are composed of network
and linear data. This book highlights different types of GIS data models, but
will focus mainly on vector data models.

A point can refer to a class of vector data represented by a pair of x, y coor-
dinates in a two-dimensional (2D) space or a tuple of x, y, and z coordinates in
a three-dimensional (3D) space. For example, a city is represented as a point
on a world map. Each city has a group of attributes, which would include the
city name, population, average household income, and acro-names. Another
example using points is a map depicting all the restaurants within a certain
region. In addition to its point location, each restaurant will contain other
relevant information, including its name, room capacity, cuisine, and the
year it opened. In these cases, the point is a general classification, whereas
the city or the restaurant is a more specific type of class containing different
attributes. When designing, each point of the rectangle can represent a class
(Figure 1.4). This diagram is also referred to as a UML class diagram. The
first row refers to the name of the class: City; the second row refers to the
attributes of the class: name and averageIncome; the third row refers to a set of
methods: getName, getAverageIncome, and setName.

Polylines are a class of vector data represented by a list of points. For
instance, a river can be represented as a polyline on a map, which then can
be categorized as a type of polyline class. A polyline class may include point
coordinates, relevant attributes, and a set of methods. Another polyline data-
set example can be roads, highways, and interstates. Both examples are cat-
egories of polylines. Rivers can be represented using UML (Figure 1.5). The
first row of the UML is the subject of the class: River; the second row includes
the river’s attributes: name and coordinates; and the third row refers to the
methods the programmer will use: getName, setCoordinates, and setName.

FIGURE 1.4
A UML diagram for the City class.

11Introduction

Polygons are another class of vector data that are also represented by a list
of points; however, with polygons, the first and last points are the same. For
example, on the map of the state of Virginia, a specific county, like Fairfax
County, can be represented as a polygon. The county is a type of polygon
class, which includes a list of points, relevant attributes, and a set of meth-
ods. Countries on a world map may also be represented as polygons. In
either case, both the county and country are types of polygons. As shown
in Figure 1.6, the first row is the subject name: County; the second row is the
subject’s attributes: name and population; and the third row refers to the meth-
ods: getName, setPopulation, and setName.

Developing more methods will require adding more methods and attri-
butes to each class to capture the evolution of the data models and the
functionality of software; UML diagrams are used to standardize their rep-
resentation. This section uses class diagrams and relevant UML standards
for the point, polyline, and polygon classes.

1.6 UML

In 1997, the Object Management Group (OMG)* created the UML to record
the software design for programming. Software designers and programmers

* See OMG at http://www.omg.org/.

FIGURE 1.5
The River class includes three parts.

FIGURE 1.6
The County class includes three parts.

http://www.omg.org/

12 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

use UML to communicate and share the design. Similar to the English lan-
guage in which we communicate through sharing our ideas via talking or
writing, UML is used for modeling an application or problem in an object-
oriented fashion. UML modeling can be used to facilitate the entire design
and development of software.

The UML diagram is used to capture the programming logic. There are
two types of diagrams that we will specifically discuss: class diagrams and
object diagrams (Figure 1.7).

The UML class diagram can represent a class using three parts: name,
attributes, and methods. The attributes and methods have three different
accessibilities: public (+), private (-), and protected (#). Attributes and meth-
ods are normally represented in the following format:

• Attributes: accessibility attribute Name: Attribute data type, for
example, +name: String

• Methods: accessibility method Name (method arguments): method
return type, for example, +setName(name:String): void

Public refers to the method/attributes that can be accessed by other
classes. Private methods/attributes cannot be accessed by any other
classes.

Protected methods/attributes cannot be accessed by other classes except
those classes inherited from this class (explained below).

There are several fundamental relationships among different classes:
dependency, inheritance, composition, and aggregation. Dependency repre-
sents one class dependent on another. Inheritance is an important relation-
ship in which a class is a subtype of another class. Figure 1.8 illustrates the
dependency between geometry and coordinate systems in that the existence
of geometry depends on a coordinate system. This relationship is repre-
sented by a dashed line and an arrow from the geometry to the coordinate
system class. The relationship between a point, line, and polygon are classi-
fied within the geometry class.

Aggregation and composition are two other important relationships in
UML. Aggregation represents “has a” relationship in UML. For example,
a state is an aggregation of a number of counties (Figure 1.9a). Composition
represents, or “owns” relationship. For example, a multipoint class may be
composed of two or more points (Figure 1.9b).

The relationship can be quantified by the number of elements involved.
For example, a line includes 2+ points and a state includes 0+ counties. There
are six different types of this multiplicity relationship (Figure 1.10). A mul-
tipoint is composed of two or more points (Figure 1.9b) and a state is aggre-
gated by zero or more counties.

An object is an instantiation of a class. The object diagram shows a complete
or partial view of the model system structure at a specific time. So, the state

13Introduction

D
ia

gr
am

St
ru

ct
ur

e
di

ag
ra

m

Cl
as

s
di

ag
ra

m

Pr
of

ile
di

ag
ra

m

N
ot

at
io

n:
 U

M
L

Co
m

po
sit

e
st

ru
ct

ur
e

di
ag

ra
m

D
ep

lo
ym

en
t

di
ag

ra
m

Pa
ck

ag
e

di
ag

ra
m

Se
qu

en
ce

di
ag

ra
m

Co
m

m
un

ica
tio

n
di

ag
ra

m

In
te

ra
ct

io
n

ov
er

vi
ew

di
ag

ra
m

Ti
m

in
g

di
ag

ra
m

In
te

ra
ct

io
n

di
ag

ra
m

St
at

e
m

ac
hi

ne
di

ag
ra

m

Ac
tiv

ity
di

ag
ra

m
U

se
 ca

se
di

ag
ra

m
O

bj
ec

t
di

ag
ra

m
Co

m
po

ne
nt

di
ag

ra
m

Be
ha

vi
or

di
ag

ra
m

FI
G

U
R

E
1.

7
T

he
 c

la
ss

 d
ia

gr
am

 a
nd

 o
bj

ec
t d

ia
gr

am
 u

se
d

 in
 th

is
 b

oo
k.

14 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

of an object can be changed. Figure 1.11’s class name is worldMap, and its
object is the coordinate system that changed from WGS 1972 to WGS 1984
after performing reprojection.

1.7 Hands-On Experience with Python

A point is the basic data model within GIS. This section will examine
how to create a point class, including coordinates and calculations of the

Geometry Coordinate system

Point Line Polygon

FIGURE 1.8
Inheritance and dependency.

Counties Aggregation
(a) (b) Composition

Filled
diamond

MultiPoint

Hollow
diamond

State Point
0..* 2..*

FIGURE 1.9
(a) Aggregation and (b) composition are two polar relationships among classes.

FIGURE 1.10
Multicity relationship among classes.

15Introduction

distances between points. You will learn how to create point objects from
point class.

 1. Open the program (Figure 1.12):
Windows→All Programs→ArcGIS→Python 2.7
or
Windows→All Programs→Python 2.7→IDLE (Python GUI)

FIGURE 1.11
worldMap is an object of the Map class and the state is changing with different operations.

FIGURE 1.12
Launch the Python programming window (GUI).

16 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 2. Type in the point class codes as shown in Code 1.1.

Programming tips:

 1. Coding should be exactly the same as the figure shows.
 2. The init method is defined with four underscores: two “_” before

and two after “init.”
 3. Python is case sensitive, so lower- and uppercase of the same letter

will make a difference.
 4. There is no need to understand every statement for now; they will be

gradually explained in the following chapters.

1.8 Chapter Summary

This chapter briefly introduced GIS programming and included

• A general introduction to computer hardware and software
• Definitions of GIS and programming
• Python in a practical context
• Practical knowledge about several GIS data models

>>> import math
>>> class Point():
 def __init__(self):
 self.x = 0
 self.y = 0
 def setXY(self,x,y):
 self.x = x
 self.y = y
 def calDis(self,p):
 return math.sqrt((self.x-p.x)**2+(self.y-p.y)**2)

>>> p1 = Point()
>>> p2 = Point()
>>> p1.setXY(1,2)
>>> p2.setXY(2,3)
>>> p1.calDis(p2)
1.4142135623730951
>>>

CODE 1.1
Creating a point class and generating two points, then calculating the distance between the
two points.

17Introduction

• The unified modeling language for modeling object-oriented GIS
data

• Relevant hands-on experience

PROBLEMS

• Define computer, programming, software, and GIS.
• What are the different methods to categorize software?
• What are the three GIS data models found on the UML diagram?
• Explain why we need to learn GIS programming.
• Use the UML diagram to model the relationship between polylines.
• Use the UML diagram to model the relationship between polygons.
• Practice Python’s Chapter 3 tutorial: https://docs.python.org/3/tuto-

rial/introduction.html.
• Use Python to calculate the distance between Point (1, 2) and Point

(2, 2).
• Discuss how to identify classes used on a world map and how to use

UML to capture those classes.

https://docs.python.org/3/tutorial/introduction.html
https://docs.python.org/3/tutorial/introduction.html

http://taylorandfrancis.com

19

2
Object-Oriented Programming

This chapter introduces object-oriented programming in regard to Python’s
programming language, classes and objects, object generation, inheritance,
GIS classes and objects, and a general programming experience.

2.1 Programming Language and Python

Programming language is defined as an artificial language used to write
instructions that can be translated into machine language and then executed
by a computer. This definition includes four important aspects: (1) artificial
language, a type of programming language created solely for computer com-
munication; (2) instruction based, a programming language with limited
instructions supported by a specific computer or CPU; (3) translation, the
conversion from human instructions to a technical computer program,
or CPU; and (4) translator, of which there are two types: interpreter and
 compiler (Aho and Ullman 1972).

There are two different methods computer programmers use to convert
languages into a legible format on the computer. One method requires a
 computer programmer to compile a group of statements written in a spe-
cific language and convert them into a machine-readable format prior to
running the program. The other method entails simultaneously translating
the language while running the program. For example, in C programming,
we need to use C compiler to translate the program into machine codes
before execution. Similarly, C++ and Java are compiling-type program-
ing languages. BASIC programming language is an interpreter language
(Lien 1981), in which the interpreter will translate the program while it
is running. Likewise, Python, Perl, and PHP are considered interpreter
 languages. Therefore, in order to successfully use Python on a computer, a
Python interpreter must also be installed.

Programming languages have evolved considerably from machine and
assembly languages to intermediate and advanced languages (Rawen 2016).
Machine language instructions are represented in a specific sequence using
0s and 1s. One single digit, or number, is called a bit. A combination of
three bits is called an octal number (an eight digit combination using the
numbers 0–7), whereas a combination of four bits is called a hex number

20 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

(a 16 digit combination using the numbers 0–15). Assembly languages depict
the machine bit operations with easy-to-remember text representations.
Intermediate languages are typically more powerful and easy to code.
Advanced languages are more similar to human language, do not have
access to specific hardware functions, and are executed on several different
hardware types.

The example uses different representations for the “print letter ‘A’ for 1000
times” (Figure 2.1).

Machine languages become increasingly difficult to understand by
humans, so only specific CPUs are able to read the language accurately
(Hutchins 1986). Therefore, in GIS programming, we normally use advanced
languages such as C, Java, or Python instead of machine or assembly
language.

C is a typical procedural language that was developed around 1969–
1973 and became available to the general public around 1977–1979. It was
 officially standardized by the ANSI X3J11 committee in the mid-1980s and has
become one of the most commonly used languages in the computer industry.
The early editions of GRASS (Geographic Resource Analysis Support
System, Neteler and Mitasova 2013) GIS* open-source software and ArcGIS
were developed using C. Bjarne Stroustrup of Bell Laboratories expanded
C to C++ in order to support object-oriented features. C++ supports C fea-
tures in function calls and object-oriented classes/objects fashion. Both C
and C++ are complex for beginning programmers. Since 1999, ISO/ANSI has

* http://grass.osgeo.org/.

FIGURE 2.1
Print ‘A’ 1000 times using different types of languages.

http://grass.osgeo.org/

21Object-Oriented Programming

standardized C++ to improve and maintain state-of-the-art quality within
the industry. C and C++ are commonly used in Linux and have influenced
other languages such as C# and Java.

Developed by Sun at SunWorld’95, Java is a pure object-oriented language
developed to target Internet and cross-platform applications. Over time, Java
has become increasingly popular among IT companies such as Microsoft,
Borland/Eclipse, IBM, and Sun. The official Java resource can be found at
java.sun.com and an open-source compiler/programming environment can
be found on the Eclipse Foundation website at www.eclipse.com.

Python is an interactive language programming system created by
Guido van Rossum in 1990. Python is dynamically written and uses auto-
matic memory management. The nonprofit Python Software Foundation
consistently updates and manages this open-source project. Python is
fully developed in that it can write once and run many times on different
 platforms. This book will analyze and explain Python as it is applied to GIS
and ArcGIS* programming. You can download any version from Python’s
 website; however, not all versions interactively work with ArcGIS. Python
is easy to learn and use, and is supported by ArcGIS, which is why we have
chosen it to be the programming language for this book.

2.2 Class and Object

Classes and objects are widely used in Python. Class defines the template for a
category of objects with name, attributes, and methods. Objects are instances
of classes with attributes and methods. The attributes and methods can
be referred to using a ‘.’. For example, the coordinate attributes and calDis
method of a point object created from a Point class can be referred to using
point.x, point.y, and point.calDis().

2.2.1 Defining Classes

Python provides the mechanism to define a class using the keyword
class with the syntax of ‘class className:’, for example, ‘class Point:’, ‘class
Polyline:’, or ‘class Polygon:’. The attributes and methods can be defined for a
class using the ‘def’ keyword. Figure 2.2 shows the Python code for defining
a Point class with attributes name, x, y defined and the method setName()
defined. In the __init__ method, “0, 0” was passed in as value for x, y, and
name.

Many classes define a special method named __init__() to create/ construct
objects. The method will be called when we create an object using the class

* http://www.esri.com/software/arcgis.

http://www.esri.com/software/arcgis
www.eclipse.com

22 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

(such as Point class here). The __init__ method has four ‘_’—two before and
two after ‘init’—to make it the construction method that will be used when
creating an object. For all methods defined by a class, the first parameter is
always ‘self’, which refers to the object itself. This can be used to refer to the
attributes and methods of the objects. For example, the __init__ method will
create a point object with self as the first parameter and x, y, name initial val-
ues for the object. By default (without specifying the values), the values for
x, y, and name will be 0, 0, and blank string, respectively. The first two state-
ments of Code 2.1 create two point objects (point0 and point1). The object
point0 is created with default values and point1 is created with arguments

Colon for the opening of the
class body

Colon for the opening
of the method body

Init functionName of this classKeyword to
define all classes

Keyword used to
define function

Method name

Dot used to call
the attribute

Assign value

The second
argument name is x

The default value for
argument x

The first argument
is always self

FIGURE 2.2
An example of defining a Point class with Python.

>>> class Point:
 def __init__(self, x=0, y=0, name=''):
 self.x = x
 self.y = y
 self.name = name
 def setName(self,name):
 self.name = name

>>> point0 = Point()
>>> point1 = Point(1,1,'first point')
>>> point0.x, point0.y, point0.name
(0, 0, '')
>>> point1.x, point1.y, point1.name
(1, 1, 'first point')
>>> point1.setName('second point')
>>> point1.name
'second point'
>>>

CODE 2.1
Creating a point may pass in value to the object through parameters.

23Object-Oriented Programming

of 1, 1, and ‘first point’. If no parameters are given when creating point0, the
default values 0, 0, and ’ ’ will be used. When values (1, 1, ’first point’) are
given parameters, the __init__ method will assign the values passed into the
attributes of point1.

2.2.2 Object Generation

To create an object, type objectName = className() with none or multiple
parameters, which will be passed to the attributes declared in the __init__()
methods.

objectName = className(value1,value2,…)

In Code 2.1, we generated two objects, point0 and point1. While declaring
object point0, no parameter is passed while three values (1, 1, ’first point’) are
used to generate point1.

To refer to an object’s attribute or method, we start with the objectName,
followed by a period and then end with the attribute name or method name.

objectName.attributeName

objectName.methodName()

Code 2.1 uses .x, .y, and .name following the objects point0 and point1
to refer to the attributes x, y, and name. The instruction point1.setName() is
called to change the name of point1 to ‘second point’.

2.2.3 Attributes

Each class may have one or more attributes. Section 1.4 explains how attri-
butes can be public, private, or protected to indicate different accessibility by
other objects. How do you explicitly specify the public and private attributes
while declaring a class?

• Public: Attributes in Python are, by default, “public” all the time.
• Private: Attributes that begin with a double underscore (“_”).

Such attributes can be protected as private because it cannot be
directly accessed. However, they can be accessed by object._ClassName
_attributeName, for example, test._Test_foobar, where test is an object
of Test class, and _foobar is a private attribute (Code 2.2).

• Protect: Attributes prefix with a single underscore “_” by convention.
However, they still can be accessed outside of the class in Python.

Another important attribute in Python is the static attribute, which is used
to hold data that is persistent and independent of any object of the class

24 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

(Code 2.3). For example, we can create a map including different layers, and
the layer scale can be static and the same to all layer objects.

A class (and instantiated object) can have special built-in attributes.
The special class attributes include a class name and description of the class
(Code 2.4).

>>> class Test:
 def __init__(self):
 self.__foobar = "private attr"
 self.foobar = "public attr"

>>> test = Test()
>>> test.foobar
'public attr'
>>> test.__foobar

Traceback (most recent call last):
 File "<pyshell#23>", line 1, in <module>
 test.__foobar
AttributeError: Test instance has no attribute '__foobar'
>>> test._Test__foobar
'private attr'
>>>

CODE 2.2
Declare public, private, and protect attributes.

>>> class Test:
 version = 1.0

>>> Test.version
1.0
>>> t1 = Test()
>>> t2 = Test()
>>> t1.version
1.0
>>> t2.version
1.0
>>> Test.version = 2.0
>>> t1.version
2.0
>>> t2.version
2.0
>>> t1.version = 3.0
>>> t1.version
3.0
>>> Test.version
2.0
>>> t2.version
2.0
>>>

CODE 2.3
Declare static attributes.

25Object-Oriented Programming

• _name_: class name
• _doc_: description
• _bases_: parent classes
• _dict_: attributes
• _module_: module where class is defined

The special object attributes include a class name and an object’s attributes
(Code 2.5).

• _class_: class from which object is instantiated
• _dict_: attributes of object

2.2.4 Inheritance

Chapter 1 introduces three important relationships among objects in object-
oriented programming: inheritance, encapsulation, and polymorphism.
Inheritance is an efficient way to help reuse a developed class. While private
attributes and methods cannot be inherited, all other public and protected
attributes and methods can be automatically inherited by subclasses.

>>> p1 = Point()
>>> p1.__class__
<class __main__.Point at 0x02A100D8>
>>> p1.__dict__
 {'y': 0.0, 'x': 0.0}
>>>

CODE 2.5
Special object attributes.

>>> class Point:
 """Point Class Definition"""
 def __init__(self):
 self.x = 0.0
 self.y = 0.0
 def getDistance():
 pass ## ignore here

>>> Point.__name__
'Point'
>>> Point.__doc__
'Point Class Definition'
>>> Point.__module__
'__main__'
>>>

CODE 2.4
Special class attributes.

26 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

To inherit a super class in Python, include the super class name in a pair of
parentheses after the class name.

class DerivedClassName(SuperClass1)

We can also inherit multiple classes in Python by entering more than one
class name in the parentheses.

class DerivedClassName(SuperClass1, SuperClass2, SuperClass3)

Figure 2.3 shows an example of inheritance. Assuming we have a class
Feature, which includes a method draw(), then the class Polygon will inherit
from the class Feature. With this inheritance, the Polygon class will have
the method draw() as well. When we define the ParkingLot class with the
 inheritance from the Polygon, the ParkingLot will have attributes of x and y
coordinates as well as the method draw(). The Polygon and ParkingLot may
have different drawing implementations; however, you can use the draw()
feature for both the Polygon and ParkingLot. This particular method using
different implementations for different subclasses is called polymorphism.

2.2.5 Composition

Composition is an efficient way to help us reuse created objects, and to
 maintain the part-to-whole relationship between objects. To maintain the

FIGURE 2.3
An example of inheritance (ParkingLot class inherits from class Polygon, and Polygon inherits
from Feature).

27Object-Oriented Programming

composition relationship, you must define a class with an attribute that can
include a number of other class objects.

Figure 2.4 shows an example of composition. The class Point and the class
Polygon inherit from the class Feature. The class Polygon border is defined by
a sequence of points formed in a ring and is captured by point attributes.
The points’ coordinates are kept in the point objects. Not only does this show
how a Polygon object requires a number of Point objects, but also the composi-
tion relationship between Point and Polygon.

2.3 Point, Polyline, and Polygon

In GIS, there are three basic vector data types, which include Point, Polyline,
and Polygon (Chang 2006). We can abstract those features and define a class
for each of them to be reused. We can also define a Feature class as a super
class for Point, Polyline, and Polygon. The following are examples of the four
classes:

• Feature: Normally, a Feature class (Figure 2.5) has a name to keep the
feature name and a method draw() to draw the feature on a map.
The draw method should include at least two parameters, self and
map. Self refers to the object accessing feature object data while
drawing, whereas a map refers to the background that we will draw
the feature on.

FIGURE 2.4
Composition example (a Polygon class includes attribute points as objects generated from class
Point).

28 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 For example, Code 2.6 is an example of defining Feature as a class
in Python:

• Point: A Point class (Figure 2.6) should have at least two spatial attri-
butes, x and y, to represent the coordinates of a point. Another non-
spatial attribute could include the name. A Point class could also use
 calDis() to calculate the distance between two points. The argument
for the calDis method is current point object “self,” and another point
object “point.” The return value for the distance between two points
is designated as float.

 For example, Code 2.7 is an example of defining Point as a class in
Python:

 After declaring a Point class, we can initiate objects. For example,
we can populate two points with data (1, 2), (2, 2), and then calculate
the distance between the two points (Code 2.8).

• Polyline: Defining a polyline class requires different attributes to
keep the data of polylines and methods by polylines. For example,
two lists of x, y coordinates or a list of points can be used to keep

FIGURE 2.6
UML design for Point class to keep point vector data.

FIGURE 2.5
UML design for Feature class to define common attributes and methods of Point, Polyline, and
Polygon.

>>> class Feature:
 def __init__(self,name = ''):
 self.name = name
 def draw(self,map):
 pass

>>>

CODE 2.6
Define a Feature class as a super class for Point, Polyline, and Polygon.

29Object-Oriented Programming

the x, y coordinates depending on the design. For object-oriented
purposes, we can use the second approach (Figure 2.7a). For better
system performance, data points in polylines are different from real
objects in GIS, so we use the first approach (Figure 2.7b).

• Polygon: A Polygon class (Figure 2.8) could have one attribute,
“points,” to represent the list of all points used to define the border
or two lists—the x and y coordinates for all such points. A Polygon
class may also have a method getLength() to calculate the border

(a) (b)

FIGURE 2.7
(a) UML Polyline class uses point object list to keep coordinates for polylines. (b) UML Polylines
class uses x and y lists to keep coordinates data for Polylines.

FIGURE 2.8
UML design for Polygon class to keep polygon vector data.

>>> import math
>>> class Point(Feature):
 def __init__(self,x =0.0,y = 0.0):
 self.x = x
 self.y = y
 def calDis(self,point):
 return math.sqrt((self.x-point.x)**2+(self.y-point.y)**2)

>>>

CODE 2.7
Define a Point class in Python.

>>> p1 = Point(1,2)
>>> p2 = Point(2,2)
>>> p1.calDis(p2)
1.0
>>>

CODE 2.8
Calculate the distance between (1, 2) and (2, 2).

30 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

length of the Polygon without arguments. The return value for the
border length of polygon is designated as float.

2.4 Hands-On Experience with Python

The Code 2.9 defines a Polyline class and creates a polyline object. Type the
example onto your computer and describe what each line defines and why it
is included in the code.

2.5 Chapter Summary

This chapter discusses object-oriented programming as well as how to
 program objects, classes, and relationships. After reading, you should be
able to do the following:

• Understand object-oriented programming using Python.
• Define a class and know how to create objects using Point, Polyline,

and Polygon.
• Practice inheriting super classes.
• Know how to reuse the code and its necessary functions.

>>> # import math module from Python
>>> import math
>>> class Polyline(Feature):
 #Initiate method for a polyline object
 def __init__(self, points = []):
 self.points = points
 #A method to set points
 def setPoints(self, points):
 self.points = points
 #A method to get the length of the polyline object
 def getLength(self):
 length = 0.0
 for i in range(len(self.points)-1):
 length+=math.sqrt((points[i].x-points[i+1].x)**2+
 (points[i].y-points[i+1].y)**2)
 return length

>>>

CODE 2.9
A Polyline class has one attribute (points), two methods (setPoints(), and getLength()).

31Object-Oriented Programming

PROBLEMS

 1. Pick three points, for example, (1, 100), (25, 60), and (1, 1). Could you
form a polyline or polygon using these three points?

 2. Create an algorithm to calculate the distance between two points, for
example, (x1, y1), (x2, y2).

 3. Read Python Tutorial 6.2 and 6.3. (Use Python command line
 window for 6.2).

 4. Define and program three classes for Point, Polyline, and Polygon.
 5. Add distance calculation in-between every two points, and program

to calculate the distance among the three points given.
 6. Add the getLength() method in Polyline and Polygon; create a polyline

and polygon using the three points given; calculate the length of the
polyline and perimeter of the polygon.

http://taylorandfrancis.com

Section II

Python Programming

http://taylorandfrancis.com

35

3
Introduction to Python

Learning a programming language is a practical and progressive journey.
You will begin with the basics, and gradually increase your skills at com-
plex coding. This chapter will introduce fundamental Python components,
 including classes and objects, syntax, data types, operators, functions, flow
control, exceptions, input/output, and modules. A number of libraries are
available for specific development, including graphical user interfaces,
 databases, Internet, and web programming. To facilitate the learning
 process, you will utilize your understanding of GIS to start building a mini-
GIS package while learning the programming language.

3.1 Object-Oriented Support

One of Python’s most important characteristics is object-oriented structure.
Foundational Python programming requires understanding concepts about
classes and objects, inheritance, composition, package, and class sharing.
Python provides the mechanism to define a class and create objects from
that class.

Classes and objects are widely used in Python. Objects are instances of classes.
Objects have attributes and methods. Dot(.) refers to attributes and methods
of an object. In Chapter 2, this book defined Point class and created p1 as a
point object. You can use p1.x and p1.calDis() to call the attribute and method
of the object. Inheritance helps you reuse the attributes and methods of a
class (superclass) by using the super class to define new classes in the format
‘class subclass (superclass)’. All public and protected attributes and meth-
ods are inherited by subclasses automatically. Private attributes and meth-
ods will not be inherited. For example, three vector classes (Point, Polyline,
and Polygon) are defined by inheriting the Feature class’s method draw() as
detailed in Chapter 2. Composition helps maintain the part–whole relation-
ship, where one object of a class includes objects of other classes. Python uses
object reference to implement the composition relationship. As discussed in
Chapter 2, a list of points are used to keep the coordinates of a polyline or
polygon border.

When classes and methods are developed for software, similar classes/
methods are grouped into the same module for easier organization. So, all

36 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

GIS data classes can be put into one big module. Submodules include classes/
methods for vector, raster, and special data types. If other classes need to
access the classes/methods in a module, the module must be imported first.
For example, the math module in Code 2.5 and Code 2.6 are imported to
access all math methods (e.g., math.sqrt).

3.2 Syntax

3.2.1 Case Sensitivity

Python is case sensitive, meaning capital and lowercase letters represent dif-
ferent identifiers. You can define a variable myList with an uppercase L, and
store the list of items “1, 2, 3, and 4.” If you get the first value of the list using
mylist[0] with a lowercase l, you will see a NameError, which shows that mylist
is not defined because you defined myList using a capital L (Code 3.1).

3.2.2 Special Characters

Python has a list of special characters with special meanings. Table 3.1 lists
some common special characters and their respective functions.

3.2.3 Indentation

In Python, indentation is important for grouping code. Indented lines start
at different positions or column; numbers are not allowed, they will trigger
an IndentationError. You may use a different number of spaces or columns
to indent different levels of statements; however, 4 or 8 spaces are recom-
mended. Therefore, space and tabs play significant roles in organizing codes.
Different program editors (e.g., command line and Python GUI) use “tab” in
different manners. Depending on your text editor, it may represent different
numbers of spaces.

>>> myList = [1,2,3,4]
>>> myList[0]
1
>>> mylist[0]

Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 mylist[0]
NameError: name 'mylist' is not defined
>>>

CODE 3.1
Case sensitive.

37Introduction to Python

3.2.4 Keywords

Keywords, such as def and del, are reserved words and cannot be used for
any other purpose (e.g., as the names of variables, classes, and objects); oth-
erwise, a SyntaxError will occur (Code 3.2). Table 3.2 lists the keywords in
Python.

TABLE 3.1

Special Characters in Python

Symbols Function Example

\ Escape characters that have a
special meaning

>>> print ''test''
test
>>> print '\'test\''
'test'
>>> print '\\test'
\test

\n New line >>> print 'first line\nsecond line'
first line
second line

 \t Tab >>> print 'str1\tstr2'
str1 str2

: Go to next level of statements >>> class Polyline:
 def getLength():
 pass

Indicate Python comments >>> # this is a comment
; Join multiple statements on a

single line
>>> import math; x = math.pow(2,3)
>>> import math y = math.pow(2,3)
SyntaxError: invalid syntax

>>> x =and
SyntaxError: invalid syntax
>>>

CODE 3.2
Keywords SyntaxError example.

TABLE 3.2

Python Keywords

and elif global or
assert else if pass
break except import print
class exec in raise
continue finally is return
Def for lambda try
Del from not while

38 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

3.2.5 Multiple Assignments

Multiple assignments are useful in declaring variables simultaneously.
In Code 3.3,

• The first line of code assigns the same value to multiple variables by
using “a = b = c = value.”

• The second and third lines of code assign different values to dif-
ferent variables by using “a1, b1, c1 = v1, v2, v3,” or “(a2, b2, c2) =
(v1, v2, v3).”

3.2.6 Namespace

A namespace is a place in which a name resides. Variables within a namespace
are distinct from variables having the same names but located outside of
the namespace. It is very easy to confuse names in different namespaces.
Namespace layering is called scope. A name is placed within a namespace when
that name is given a value. Use dir to show the available names within an indi-
cated namespace. For example, dir() can find current namespace names, dir(sys)

Built-in namespace
(built-in names, such as int()) Outermost

scope

Global
scope

Local
scope

Global namespace
(global names)

Local namespace
(local names)

FIGURE 3.1
Hierarchy of namespaces.

>>> a = b = c = 0
>>> a1,b1,c1= 1, 1.0, 'c1'
>>> (a1,b1,c1)=(2, 2.0, 'c2')
>>> (a2,b2,c2)=(2, 2.0, 'c2')
>>> a, b, c, a1, b1, c1, a2, b2, c2
(0, 0, 0, 2, 2.0, 'c2', 2, 2.0, 'c2')
>>>

CODE 3.3
Multiple assignments.

39Introduction to Python

will find all names available from sys, and dir(math) will find all names available
from math. A program typically includes three layers of scope (Figure 3.1):

• The top layer is a system built-in namespace, which includes names
defined within Python itself; these are always available in your
 programming environment.

• The middle layer is global namespace defined within a file or module.
• The bottom layer is local namespace, which includes names defined

within a function or a class method.

3.2.7 Scope

Scope refers to a portion of code and is used to identify the effectiveness
of variables. Scope is important in functions, modules, classes, objects,
and returned data. Modules with function and data act similar to objects.
For example, when defining Point class, use p1 as a variable within the
 calDis() function of the class; or use p1 to refer to an object later when creating
a point object. The first p1 is only effective in the scope of the Point class’
 calDis() function. The second p1 is only effective at the same level as the
 overall program without indentation.

Variables can be local or global:

• Local variables are declared within a function, and are only
 accessible within the function. Once the function is executed, the
variable will go out of scope.

• Global variables are nonlocal and can be accessible inside or outside
of functions.

In the example of Figure 3.2, global_x is a global variable and local_y is a
local variable. If you use local_y variable outside the function, you will get
an error. For more information about namespaces and scope, please refer to
Raschka (2014).

FIGURE 3.2
Local and global variables.

40 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

3.3 Data Types

In python, data types are dynamic so that you do not have to define a variable’s
data type. The type of variable will be assigned when a value is assigned.
The change in values will change the type of variables. There are two catego-
ries of data types: basic data types (integer, floating, long, complex, strings,
type, and function) and composite data types (lists, tuples, and dictionaries).

3.3.1 Basic Data Types

The basic data types include number and string categories. The number cat-
egory includes integers, long integers, and float (Table 3.3).

• Integers
 Integers are equivalent to integers in C programming language. The

range of an integer is limited as follows:
 −231 ∼ 232 (−2147483648∼4294967296)
 The integer value can be represented by a decimal, octal, and

hexadecimal format. For example, 010 is an octal representation of 8
and ox80 is a hexadecimal of 8.

• Long integers of nonlimited length
 The range of long integer is only limited by computer memory. A

long integer is denoted by appending an upper- or lowercase “L.” It
can also be represented in decimal octal and hexadecimal formats.

• Float
 Floating numbers are equivalent to doubles in C language. A float

value is denoted by a decimal point (.) in the appropriate place and

TABLE 3.3

Basic Data Types

Basic Variable
Types Range Description Examples

Conversion
(Typecast)

Number Integer −231 ∼ 232 decimal , octal,
and hexadecimal
format

20, −20, 010,
ox80

int(), e.g., int(2.0),
int(‘2’), int(2L)

Long
integer

Limited only by
memory

Denoted by (L)
or (l).

20L, −20L,
010L, ox80L

long(), e.g.,
long(2), long(‘2’)

float Depends on machine
architecture and
python interpreter

Denoted by a
decimal point (.)

0.0, −77.0, 1.6,
2.3e25, 4.3e-2

float(), e.g.,
float(2),

String N/A Denoted by (‘’),
(“”)

‘test’, “test” str(), e.g., str(2.0)

41Introduction to Python

an optional “e” suffix (either lowercase or uppercase) represent-
ing scientific notation. The precision, or range of the float, depends
on the architecture of a machine as well as the Python interpreter
used.

• Conversion of numbers
 The int(), long(), float() built-in functions are used to convert from any

numeric type to another (Code 3.4).

Tips

Typecast: Convert data from one type to another, for example, float (‘3.14’),
which casts a string data type to float.

Type conversed assignment may result in lost precision, for example

y = 3.14
x = int(y)

where x will lose the precision values and has a value of 3 as a result.

• Strings
 String data are denoted by single quotes ‘’ or double quotes “”.
• Other built-in types
 There are several other built-in data types, such as type, None, func-

tion, and file. Code 3.5 illustrates the following types:
 Function type () takes an object as an argument and returns the

data type of the object.
 None is the null object and has no attribute.
 bool object has two potential values: True and False. Conditional

expressions will result in Boolean value as either True or False.

Tips

Different from C or Java language, Python does not support Byte, Boolean,
Char, Pointer data types.

>>> x = int (2.01)
>>> x
2
>>> float(2)
2.0
>>>

CODE 3.4
Data type conversion.

42 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

3.3.2 Composite Data Types

Another category of built-in variable data types is called a composite data
type (Table 3.4). Composite data types are ordered and sequentially acces-
sible via index offsets in the set. This group, also known as sequences,
 typically includes list, tuple, dictionary, and set. A list is different types
of data separated by commas, and are included in a pair of brackets, for
 example, [1, 2, 3, 4]. Tuples are lists of different types of data, such as (1, “the
first rated products,” “milk”) set off by parentheses. Dictionaries are lists
of keys and value pairs, as shown in the following example {‘john’:‘3-1111’,
‘phil’:’3-4742’, ‘david’:‘3-1212’}

• List
 The most commonly used and important composite data type is list,

which can be used to group different values together. Use list to keep
a series of points, polylines, and polygons in GIS programs.

 Define: A list object can be created from: [v1, v2, v3, ….], where
 elements are surrounded by a square bracket (e.g., as in Code 3.6).

 Operators: Composite data types are good for expressing complex
 operations in a single statement. Table 3.4 lists common operators
shared by complex data types.

• seq[index]: gets a value for a specific element. The starting index
of all sequence data is 0, and the end index is one fewer than the
 number of elements n in the sequence (i.e., n-1) (Code 3.6a).

TABLE 3.4

Composite Data Types and Common Operators

Container Define Feature Examples Common Operators

List Delimited by []; mutable [‘a’, ‘b’, ‘c’] seq[index],
seq[index1: index2],
seq * expr,
seq1 + seq2, obj in
seq, obj not in seq,
len(seq) etc

Tuple Denoted by
parenthesis ()

immutable (‘a’, ‘b’, ‘c’)

dictionary {key: value, key:
value , …}

mutable {‘Alice’: ‘7039931234’,
‘Beth’: ‘7033801235’}

>>> x = type(1)
>>> x
<type 'int'>
>>> x == int
True

>>> x = type(True)
>>> x
<type 'bool'>
>>> x == int
False

>>> type(None)
<type 'NoneType'>
>>>

Conditional expression

CODE 3.5
Function type, None type, and bool type.

43Introduction to Python

 If you try to access an element with an index that is larger than
the number of the total elements, then you will get an IndexError,
 indicating the index is out of range (Code 3.6b).

• len[list]: gets the length of the elements (calculates the total number
of the element) (Code 3.6c).

>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> b = [x*3 for x in a]
>>> b
[3, 6, 9, 12]
>>> a[0]
1
>>> a[3]
4
>>> a[4]

Traceback (most recent call last):
 File "<pyshell#27>", line 1, in <module>
 a[4]
IndexError: list index out of range
>>> len(a)
4
>>> a[1:3]
[2, 3]
>>> del a[0]
>>> a
[2, 3, 4]
>>> a*3
[2, 3, 4, 2, 3, 4, 2, 3, 4]
>>> a+b
[2, 3, 4, 3, 6, 9, 12]
>>> a = [1,4,7,9]
>>> sum = 0
>>> for i in a:
 sum+=i

>>> sum
21
>>>

CODE 3.6
List example.

>>> a = [1,2,3,4]
>>> a[0]
1
>>> a[3]
4

CODE 3.6a
A List operation.

44 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• seq[index1: index2]: generates a new sequence of data type with
 elements sequenced from index1 to index2 (Code 3.6d).

• del seq[index]: deletes the elements sequenced as index (Code 3.6e).
• seq * expr (Code 3.6f)
• seq1 + seq2: unions two sequence objects (Code 3.6g)

>>> a = [1,2,3,4]
>>> a[4]

Traceback (most recent call last):
 File "<pyshell#27>", line 1, in <module>
 a[4]
IndexError: list index out of range

CODE 3.6b
List operation out of range.

>>> a = [1,2,3,4]
>>> len(a)
4

CODE 3.6c
List length.

>>> a = [1,2,3,4]
>>> a[1:3]
[2, 3]

CODE 3.6d
Subset a List.

>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> del a[0]
>>> a
[2, 3, 4]

CODE 3.6e
Delete an element from a List.

>>> a = [1,2,3,4]
>>> a*3
[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]

CODE 3.6f
List multiplies an integer.

45Introduction to Python

• obj in seq (obj not in seq): loops through each object in the complex
data and performs an operation with each element. The example
goes through each object in the list a, and adds the value of each
object to the sum obj (Code 3.6h).

String data type also belongs to the sequence data type, and those opera-
tors can be applied to a string object.

Methods: As seen in the classes created in the previous chapters, a list is a
system built-in class. The objects created from list have many methods. The
most important methods include append(), insert(), remove(), pop(), sort(), and
reverse() (Code 3.7).

>>> a = [1,2,3,4]
>>> a.append(10)
>>> a
[1, 2, 3, 4, 10]
>>> a.insert(2,15)
>>> a
[1, 2, 15, 3, 4, 10]
>>> a.pop()
10
>>> a
[1, 2, 15, 3, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 15]
>>>

Append item 10 at the last position

Insert item 15 at the index position

Popup the last item

Sort the list

CODE 3.7
List methods.

>>> a = [1,4,7,9]
>>> sum = 0
>>> for i in a:
 sum+=i

>>> sum
21

CODE 3.6h
Loop each object in the complex data.

>>> a = [1,2,3,4]
>>> a = [11,12,13,14]
>>> a + b
[1, 2, 3, 4, 11, 12, 13, 14]

CODE 3.6g
Union two sequence objects.

46 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Built-in functions: There are three common built-in functions for
 handling a list, which are handy in GIS programming (Khalid 2016):

• filter(func, list): Filter is used to extract a target list from the original
list. For example, you can use the filter function to select all cities
within Virginia, or select the restaurants and hotels within Fairfax
city.

• map(func, list): Map is used to convert the original list to a new list
using the function. For example, you can convert it from degrees to
meters.

• reduce(func, list): Reduce is another method that is useful for real-
world GIS problems. To calculate the total street or road length of
Fairfax County, reduce can invoke a function func iteratively over
each element of the list, returning a single cumulative value.

• Tuple
 Similar to lists, tuple is another complex data type. One obvious

difference between tuple and list is that it is denoted by the use of
parentheses. Another difference is that tuple data type is immuta-
ble (Table 3.4), meaning that the element cannot be altered once it is
defined. An error will occur if the value of a tuple element is altered
(Code 3.8).

• Dictionary
 A dictionary is mutable and a container data type that can store any

Python objects, including other container types. A dictionary differs
from sequence type containers (lists and tuples) in how the data are
stored and accessed.

>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> a[0]=5
>>> a
[5, 2, 3, 4]
>>> x = (1,2,3,4)
>>> x
(1, 2, 3, 4)
>>> x[0]=5

Traceback (most recent call last):
 File "<pyshell#55>", line 1, in <module>
 x[0]=5
TypeError: 'tuple' object does not support item assignment
>>>

Immutable, cannot be changed

CODE 3.8
Tuple operation.

47Introduction to Python

Define: The syntax used to define a dictionary entry is {key:value,
key:value, …..}, where all elements are enclosed in braces. It is convenient for
storing spatial feature objects so each object will include a unique object ID,
spatial attributes (coordinates), and nonspatial attributes (e.g., Name). Where
unique IDs can be used as key, all attributes can be used as a value. The keys
are integers or strings while values can be any data type, such as list or dic-
tionary (Code 3.9).

In Code 3.9, parkingLots is declared as a dictionary data type that includes
two elements. The unique ID and parking lot sequence ‘A’ and ‘B’ are
used as the keys, and the attribute information of each key is held in a dis-
tinct list.

• Set
 Set is used to construct and manipulate unsorted collections of

unique elements. A set object can either be created from {v1, v2,
v3,….} where elements are surrounded by braces, or from a set(list)
where the argument is a list (Code 3.10).

Operations: Set supports several operations (Table 3.5), including union (|),
intersection (&), difference (-), and symmetric difference (̂) (Linuxtopia 2016).

Methods: Set is a system built-in class. Several important methods are
 supported by a set object, including add(), remove(), and pop(). It also

>>> parkingLots = {'A': [-101.12, 32.13, 'parking lot A',
'General parking'], 'B': [-101.14, 32.56, 'parking lot B',
'Stuff only'] }
>>> parkingLots
{'A': [-101.12, 32.13, 'parking lot A', 'General
parking'], 'B': [-101.14, 32.56, 'parking lot B',
'Stuff only']}
>>> parkingLots['A']
[-101.12, 32.13, 'parking lot A', 'General parking']
>>>

CODE 3.9
Dictionary operation.

>>> s = {1,3}
>>> s
set([1, 3])
>>> a = [2,4,3,1]
>>> s = set(a)
>>> s
set([1, 2, 3, 4])
>>>

CODE 3.10
Set operation.

48 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 supports four methods: difference(), intersection(), symmetric_difference(),
and union() (Code 3.11).

3.4 Miscellaneous

3.4.1 Variables

A variable is a memory space reserved for storing data and referred to by
its name. Before use, a variable should be assigned a value. Variables have
 different types of values. The basic variable value types include byte, short,
int, long, text, float, and double, as introduced in Section 3.4.1. Some types of
data can be converted using typecast. For example, float(“3.14”) will convert
texts into a floating number 3.14.

>>> s = set(['A','B','C','D'])
>>> t = set(['A','B','E','F'])
>>> s-t
set(['C', 'D'])
>>> s&t
set(['A', 'B'])
>>> s^t
set(['C', 'E', 'D', 'F'])
>>> s|t
set(['A', 'C', 'B', 'E', 'D', 'F'])
>>> s.difference(t)
set(['C', 'D'])

CODE 3.11
Set operations.

TABLE 3.5

Operations between Two Set Objects, s and t

Operation Operator Function Usage

difference − Create a new set with
elements in s but not in t

intersection & Create a new set with
elements common to
s and t

Get spatial objects with both
conditions matched, such as finding
the restaurants within Fairfax, as well
as with French style

symmetric
difference

^ Create a new set with
elements in either s or t
but not both

union | Create a new set with
elements in both s and t

Combine two states’ cities to get
collection

49Introduction to Python

In Python, variable types are dynamic, with the type only defined when
its value is assigned. This means a variable can change to a different data
type. For example (Figure 3.3), x = float(1) will assign x as float, but x = ‘x has
a dynamic type’ will change the variable x from a float type to a string type.
Here, we use ‘p1’ as an object variable name.

A name is required for each variable. The variable’s name must be a
legal identifier, which is a limited combination series of alphabet let-
ters, digits, and underscores. The name must begin with a character
or underscore, but it may not start with a digit. Therefore, ‘point1’ is a
legal name, but ‘1point’ is illegal. In addition, blanks are not allowed
in variable name. Python reserved words (Table 3.2) cannot be used as
 variable name.

3.4.2 Code Style

There are several guidelines to Python programming style.

Meaningful names: Use meaningful names for variables, classes, and
packages. If the meaning is not clear, add a comment to identify
what the name means.

Whitespace in expressions and statements: Always surround
 operators with a single space on both sides.

Indentation: Indented codes are used to organize code, as introduced
in Section 3.2.3.

Comments: Comments are used for documenting or explaining code.
Python supports two kinds of comments:

comments

FIGURE 3.3
Dynamic data type.

50 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The compiler ignores everything from the # to the end of the line.

""" comments line 1

 comments line 2

"""

This comment style indicates documentation strings (a.k.a. "docstrings").
A docstring is the first statement in a module, function, class, or method
definition. All modules should have docstrings, and all functions and classes
exported by a module should have docstrings (Figure 3.4).

3.5 Operators

Operators include basic characters, division and type conversion, modulo,
negation, augmented assignment, and Boolean operations. These operators
are categorized into several types:

• Arithmetic Operators (Table 3.6)
• Bitwise&Shift Operators (Table 3.7): Bitwise&Shift Operators can be

very complex. A general idea about these operators should be under-
stood and this book will use binary data representation.

• Assignment Operators (Table 3.8): Assignment operators are used to
assign values to variables. The most common assignment uses “=”
symbol. An example is a = b, which means assign value b to variable
a. Assignments can integrate arithmetic and Bitwise&Shift operators
yielding complex assignments such as “+=” (Add AND) (Code 3.12).

FIGURE 3.4
Coding style.

51Introduction to Python

• Comparison Operators (Table 3.9): Comparison operators are used
to compare two variables or objects, to check whether they are equal
or different.

• Logic Operators (Table 3.10): Logic operators are used together with
if, else, while keywords to create logic control statements (Section 3.4).
Statements with logic operators are either True or False. Code 3.13
shows an example.

TABLE 3.6

Arithmetic Operators (Assume Variable a Holds 5 and Variable b Holds 2)

Arithmetic Operators Description Example

+ Addition >>> a + b
7

− Subtraction >>> a − b
3

* Multiplication >>> a * b
10

/ Division >>> a/b
2.5

** Exponentiation: Performs exponential (power)
calculation on operators

>>> a ** b
25

% Modulus: Divides left-hand operand by right-hand
operand and returns remainder

>>> a % b
1

// Floor Division: The division of operands where the
result is the quotient in which the digits after the
decimal point are removed

>>> a // b
2
>>> 5.0 // 2.0
2.0

TABLE 3.7

Bitwise&Shift Operators (Assume Variable a Holds 5 and Variable b Holds 2)

Item Description Example

>> Binary Right Shift Operator. The left operand’s value is moved
right by the number of bits specified by the right operand.

a >> b will give 1,
which is 0000 0001

<< Binary Left Shift Operator. The left operand’s value is moved
left by the number of bits specified by the right operand.

a << b will give 20,
which is 0001 0100

& Binary AND Operator copies a bit to the result if it exists in
both operands.

a & b will give 0,
which is 0000 0000

| Binary OR Operator copies a bit if it exists in either operand. a | b will give 7,
which is 0000 0111

^ Binary XOR Operator copies the bit if it is set in one operand
but not both.

a ^ b will give 7,
which is 0000 0111

52 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

TABLE 3.8

Assignment Operators (Assume Variable a Holds 5 and Variable b
Holds 2)

Assignment
Operators Name How to Use Equivalent Result

= Equal assignment a = b Set a as b 2

+= Add AND a+ = b a = a+b 7

−= Subtract AND a− = b a = a − b 3

= Multiply AND a = b a = a * b 10

 /= Divide AND a/ = b a = a/b 2

%= Modulus AND a % = b a = a % b 1

** = Exponent AND a ** = b a = a ** b 25

|= Binary OR AND a| = b a = a | b 7

^= Binary XOR AND a^ = b a = a ^ b 7

<<= Left shift AND a<< = b a = a << b 20

>>= Right shift AND a>> = b a = a>>b 1

TABLE 3.9

Comparison Operators (Assume Variable a Holds 5 and Variable b Holds 2)

Comparison
Operators How to Use Compare (or Check) Results

= = a= = b a equals b (a == b) is not true.
< a < b a is less than b (a < b) is not true.
> a > b a is greater than b (a > b) is true.
>= a >= b a is greater than or equal to b (a >= b) is true.
<= a <= b a is less than or equal to b (a <= b) is not true.
!= a != b a is not equal to b (a != b) is true.
is a is b a and b are the same object (a is b) is not true.
is not a is not b a and b are different objects (a is not b) is true.
in a in range(b) a is a member of [1, 2, …,b] (a in range (b)) is not true.
not in a not in range (b) a is not a member of [1, 2, …,b] (a not in range (b)) is true.

>>> b=3
>>> a=b
>>> a
3
>>> a+=b
>>> a
6

CODE 3.12
Add AND example.

53Introduction to Python

3.6 Statements

A statement is a combination of variables and operators. The statement
should comply with the operator’s usage. If you assign a value, you should
use assignment operator. If you accidentally use comparison operators, you
should expect an error. Pay attention to the statement’s precision. For exam-
ple (Code 3.14), the first and second i seem to be assigned with similar values
using identical division and addition operations. However, they generate dif-
ferent results.

TABLE 3.10

Logic Operators (Assume Variable a Holds True and Variable b Holds True)

Logic Operators How to Use Results

And Logical AND operator. If both the operands are
true, then condition becomes true.

(a and b) is true.

Or Logical OR operator. If any of the two operands
are nonzero, then condition becomes true.

(a or b) is true.

Not Logical NOT operator. Use to reverse the logical
state of its operand. If a condition is true, then
Logical NOT operator will make false.

Not (a and b) is false.

x = int(raw_input('Enter your input for x: '))
y = int(raw_input('Enter your input for y: '))
if x >5 and y > 5:
 print 'both x and y are bigger than 5'
if x > 5 or y > 5:
 print 'either x or y is bigger than 5'
if x > y:
 print 'x is bigger than y'
if not x > y:
 print 'x is smaller than y'

CODE 3.13
Logic operations.

>>> i = 1/2+1/2
>>> i
0
>>> i = 1.0/2 + 1.0/2
>>> i
1.0
>>>

CODE 3.14
Statement examples.

54 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

3.7 Functions

Functions are defined by the keyword def followed by the function name
with various input arguments. Similar to the methods defined within a class,
the number of arguments can be zero to many. Class methods are special
functions with the first argument as ‘self.’

def funcName(arg1, arg2, …):
Statement blocks

A function is defined by a function name and other required input argu-
ments, like funcName(arg1, arg2, …). The arguments passed to a function
while calling a function should match what is declared. A function can
return none, one, or more arguments (Code 3.15).

When you declare default arguments for class methods (Section 2.1), you
can also set up default values for function arguments, and make those argu-
ments optional for the caller. The example (Code 3.16) shows how to calculate
cost function (calCost) and taxRate as the default argument. Therefore, when
the calCost function is set with the parameter as 100, the variable taxRate
uses 0.05 as its value.

Tips

Use the keyword lambda to declare one line version of a function. Usually
such functions are anonymous because they are not defined in a standard
manner. The body of the lambda function statement should be given on the
same line, like in the add() function (Code 3.17).

>>> # Return nothing
>>> def hello():
 print 'Hello, World!'

>>> hi = hello()
Hello, World!
>>> print hi
None
>>> #Return a value
>>> def add(x,y):
 return x+y

>>> z = add(1,2)
>>> print z
3
>>>

CODE 3.15
Return value from a function.

55Introduction to Python

The Python interpreter has built-in functions that are always available.
They are listed in alphabetical order in Figure 3.5. The functions written
in red have already been introduced. The functions written in blue are
 important, and will be introduced in later chapters.

>>> def add(x,y):
 return x+y

>>> add(1,2)
3
>>> a = lambda x,y:x+y
>>> b = a(1,2)
>>> print b
3

CODE 3.17
Lambda example.

>>> #Default Arguments
>>> def calCost(price, taxRate = 0.05):
 return price + price*taxRate

>>> calCost(100)
105.0
>>> calCost(100,0.075)
107.5
>>>

CODE 3.16
Default arguments.

FIGURE 3.5
System built-in functions. (From Python. 2001a. Built-In Functions. https://docs.python.org/3/
library/index.html (accessed September 3, 2016).)

56 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

3.8 Hands-On Experience with Python

The Python program (Code 3.18) calculates the sum of 1–100, all odd num-
bers between 1 and 100, and all even numbers between 1 and 100. Can you
solve for each of those calculations? Try coding in Python GUI and explain
how each calculation works and the structure of the codes.

3.9 Chapter Summary

This chapter introduces

• Python syntax
• Python data types
• Operators
• What a function is and how to declare a function

>>> numbers = range(1,101,1)
>>> sum1, sum2, sum3 = 0, 0, 0
>>> for i in numbers:
 sum1=sum1+i

>>> print sum1
5050
>>> i = 0
>>> while (i<101):
 if (i%2==0):
 sum2=sum2+i
 i+=1

>>> print sum2
2550
>>> for i in range(100):
 if (i%2==1):
 sum3+=i

>>> print sum3
2500
>>>

CODE 3.18
Sum-up calculations.

57Introduction to Python

PROBLEMS

 1. Keywords: Check the following keywords (Table 3.2.) and briefly
explain them (concepts, when/how to use keywords [use function
help() to get help about each keyword, e.g., help(’if’)], and design/
program an example of how to use the keywords). For example,
if, elif, else keywords.

 a. Explain
 if, elif, else are the keywords used to make decisions……

 b. Examples (Code 3.19)
 2. Operators: The five categories of operators include arithmetic

 operators, shift & bitwise operators, assignment operators, compari-
son operators, and logic operators. For each pair indicated below,
explain the differences between the two operators and then design
and enter an example in Python interpreter to demonstrate the
difference.

 a. “+” vs. “+=”
 b. “%” vs. “/”
 c. “*” vs. “**”
 d. “==” vs. “is”
 e. “!=” vs. “is not”
 f. “ in ” vs. “not in”
 g. “ and ” vs. “or”
 h. “ not in ” vs. “ not”
 3. Class and Object Concepts
 a. Briefly describe the argument “self” in class method and provide

an example.

>>> x = [1,2,3,4,5]
>>> y = 8
>>> z = [6,7,8,9]
>>> if y in x:
 print y, 'is in', x
elif y in z:
 print y, 'is in z', z
else:
 print y, 'is not in either x or z', x, z

8 is in z [6, 7, 8, 9]
>>>

CODE 3.19
If…elif…else example.

58 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 b. Design a simple class including at least one static, one private,
one protected, and one public attribute (which could also be a
method).

 c. Create an object and then access and print those attributes.
 4. Data Types and Functions

 In Python, the seven common data types are as follows: integer, long
integer, float, string, list, tuple, and dictionary. The three basic types
of vector data are Point, Polyline, and Polygon. Try to implement
the following class design of Polygon in Python using the proper
Python data types (use other data types instead of float) for the
 attributes and methods.

Description: A Point class has two attributes, x and y, to represent the coor-
dinate of a point. A Point class also has a method calDis () to calculate the
distance between two points. The arguments for the calDis method is point
object ‘self,’ and the another point object is “point.” The return value for the
distance between two points is designed as float.

The UML design for Point class to keep point vector data is as follows:

The following Code 3.20 exemplifies how to implement the Point class:
Description: A Polygon class has one attribute “points” to represent the list

of coordinates. A Polygon class also has a method getLength () to calculate
the perimeter of the Polygon. The arguments for the getLength method
is current Polygon object ‘self.’ The return value for the border length of a
 polygon is designed as float.

Point(Feature)
+x: float
+y: float
+ calDis(p: Point): float

>>> import math
>>> class Point:
 def __init__(self, x = 0, y = 0):
 self.x = x
 self.y = y
 def calDis(self,point):

 return math.sqrt((self.x-point.x)**2+(self.y-point.y)**2)

>>>

CODE 3.20
Point class definition.

59Introduction to Python

The UML design for a Polygon class keeping polygon vector data is as
follows:

Assign a polygon with the following data: [(1.0, 2.0), (3.0, 5.0), (5.0, 6.0),
(1.0, 2.0)] and calculate the border length of the polygon.

Polygon(Feature)
+points: list<Points>
+ getLength(): float

http://taylorandfrancis.com

61

4
Python Language Control Structure, File
Input/Output, and Exception Handling

In general, computer program statements are executed sequentially. Control
structures help computer programs break the sequence by jumping back and
forth to skip a set of statements. The control structures make programming
languages much more versatile for solving real-world problems. Control
structures include making decisions and loops. This chapter introduces
frequently used Python control structures and demonstrates methods for
operating GIS objects. This chapter also helps you learn how to read data
from and/or write data to a local file. When a Python program encounters an
error event (a.k.a. exception), it will crash if not handled. This chapter briefly
 covers how to capture and handle exceptions.

4.1 Making Decisions

Decisions are one of the most basic ways to change program execution flow.
They use conditional expressions to evaluate whether a statement is True or
False. For example, assuming a = 3 and b = 2, the conditional expression a >
b is True, while the expression a < b is False.

There are several expressions/values that result in False:

• Any number with a value of zero (e.g., 0, 0.0, 0L, 0j, Code 4.1 right)
• An empty string (‘’ or “”)
• An empty container, such as list (Code 4.1 left), tuple, set, and

dictionary
• False and None

Conditional expressions consist of operators and relevant variables/
values. Comparison and logic operators are used to construct conditional
 expressions and statements.

• Comparison Operators: >, >=, <, <=, = =, !=, is, is not, in, not in
• Logic Operators: and, or, not

62 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Logic operators are used to provide multiple conditional expressions, for
example, if x>0 and y>0: print ‘x and y are positive’, or perform negation of
expressions using not.

• if statement: When one condition is used to control the statement exe-
cution, an if statement is used to execute the statement block based on
the evaluation results of the condition expression. When a condition
expression is True, the following statement block will be executed;
otherwise, the following statement block will be skipped.

Statement syntax

if (conditional expression):
 Statement block

Statement example:

if a > b:
 print “a is bigger than b”

• if…else statement: When two conditions result in different executions,
the if statement is used with the else clause. If the conditional expres-
sion is True, then the statement block following if will be executed;
otherwise, the statement block after else will be executed.

Statement syntax:

if (conditional expression):
 Statement block
else:
 Statement block

Statement example:

if a > b:
 print “a is bigger than b”

>>> if []:
 print True
else:
 print False

>>> if 0:
 print True
else:
 print False

False False

>>>

CODE 4.1
False conditional expressions: empty list (left) and zero (right).

63Python Language Control Structure, File Input/Output

else:
 print “a is smaller than b”

• if….elif…else statement: When more than two conditions result in dif-
ferent executions respectively, use if, elif, or else. The elif statement
is similar to the else if used in C or Java. This statement will allow
programmers to check on multiple conditions.

elif syntax:

if (conditional expression 1):
 Statement block 1
elif (conditional expression 2):
 Statement block 2
elif (conditional expression 3):
 Statement block 3
…
else:
 Statement block n

If the conditional expression 1 (or 2, 3,….) is true, then the statement block
1 (or 2, 3….) will be executed and the other statement block will be skipped.
However, if all above conditions (1, 2, 3, …., n−1) are not true, the blocks under
else (statement block n) will be executed.

Tips: pass statement (Code 4.2)
pass statement is unique in that it does not perform any function. It is used

in the decision-making process, telling the interpreter not to do anything
under certain conditions.

In the software development process, it can serve as a place holder, to be
replaced later with written code (Code 4.3).

a=b=0
if a>b:
 pass
else:
 pass

CODE 4.2
Pass statement in if … else… structure.

def draw():
 pass

CODE 4.3
Pass is used as a place-holder statement written in method.

64 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

4.2 Loops

Another type of control structure is the loop. Usually, a loop executes a block
until its condition becomes false or until it has used up all the sequence
 elements in a container (e.g., list). You can either interrupt a loop to start a
new iteration (using continue) or end the loop (using break). Both while and for
can be used to loop through a block of statements.

• for statement: For loop is used to execute a repeated block of
 statements for a definite number of times. For is used with composite
data types (also known as sequence data types), such as string, list,
and tuple in the following syntax and example, which uses a for loop
to calculate the sum of 1 to 100 (Code 4.4):

Syntax:

for item in sequence:
 Statement block

• while statement: while statement is very flexible, and can repeat a block
of code while the condition is true. The while statement is usually
applied when there is an unknown number of times before execut-
ing the loop. Code 4.5 shows an example of using while loop to calcu-
late the sum of 1 to 100.

• range() function and len() function: The range (Pythoncentral 2011) and
len functions are often used in for and while loops. Using range(start,
end, step) generates a list where for any k, start <= k < end, and k
iterates from start to end with increments of step. For example,
range(0,4,1) produces a list of [0,1,2,3]; range(0,50,10) produces a list
of [0,10,20,30,40]. range function takes 0 as default starting value and
1 as default step. For example, range(4) produces a list of [0,1,2,3].
Code 4.4 is an example using range(4) to produce a list, and using for
loop structure to print every element within the list.

>>> for i in range(4):
 print i

0
1
2
3

CODE 4.4
Use range function with default start and step values.

65Python Language Control Structure, File Input/Output

The following example illustrates how to use the range function, and
how to calculate the sum of 1 to 100 by using the total variable to hold the
 summarizing result for loop (Code 4.6).

The function len() returns the total number of elements in composite data.
For instance, len(polyline.points) can return the number of points within a
polyline. The following example uses while and len() to calculate the length
of a polyline (Code 4.7).

• break: A break is used to interrupt the execution of a loop, such as
finding if two lines intersect one another. The loop can be broken
once the two line segments (from each of the two lines) intersect
(Code 4.8).

>>> i=0
>>> total=0
>>> while i<101:
 total +=i
 i+=1

>>> print total
5050
>>>

CODE 4.5
Calculating summary of 1 to 100 using while loop.

>>> def getLength(polyline):
 length, i=0.0, 0
 while i<len(polyline.points)-1:
 length+=math.sqrt((polyline.points[i].x-
 polyline.points[i+1].x)**2 +
 (polyline.points[i].y-polyline.points[i+1].y)**2)

CODE 4.7
Calculate the length of a polyline using while loop and len() method.

>>> total = 0
>>> for i in range(1,101,1):
 total+=i

>>> print total
5050

CODE 4.6
Calculate the summary of 1 to 100 using range and for loop.

66 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• continue: The continue statement is used less often than the break
statement to skip the rest of a loop body under a certain condi-
tion. This can eliminate executions of specific loop values or cat-
egories of values. For example, when a map is drawn, you may
uncheck the layers with an image. The code (Code 4.9) skips all
image layers:

4.3 Other Control Structures

• Loop and decisions combination: Loop and decisions are used together
to construct complex flow control:

for/while conditional expression 1:

statement blocks 1
if conditional expression 2
 statement blocks 2
else:
 break/continue
 statement blocks 3

The following example (Code 4.10) identifies the points shared between two
polygons (this is helpful to understand the data structure, although tuple is
not normally used to hold Point coordinates):

>>> def drawMap():
 for i in range(len(layers)):
 if (layers[i].layerType == 'Image'):
 continue
 layers[i].drawLayer()

CODE 4.9
Draw a map without drawing the image layers.

>>> bIntersect = False
>>> def intersect(line1,line2):
 for i in len(line1.lineSegments):
 for j in len(line2.lineSegments):
 if (line1.lineSegments[i].segIntersect

(line2.lineSegments[j])):
 bIntersect = True
 break

CODE 4.8
Test if two lines intersect with each other using break and for loop.

67Python Language Control Structure, File Input/Output

• Nested loops: Another complex structure are nested loops, especially
double loops. Given a list of points, if you were to calculate the
 distance of each pair of points on a point list, you will need to use
the double loop (Code 4.11).

4.4 File Input/Output

There are a series of built-in methods for operating files, such as open, read,
and write (PythonForBeginers 2012).

• Opening a file: To operate a file, use the function open with a
 filename and file operation mode as arguments. In the example f =
open(filename, mode), mode could be
• ‘r’: when the file will only be read, and this is the default

value.
• ‘w’: for only writing (an existing file with the same name will be

erased).

>>> def doubleloop():
 for i in range(len(points)-1):
 for j in range(len(points)-i-1):
 points[i].calDis(points[len(points)-1-j])

CODE 4.11
Calculate distance between points using double loops.

>>> p1, p2, p3, p4 = (0,0), (1, 1),(2, 2), (3, 3)
>>> polygon1= [p1, p2, p3]
>>> polygon2 = [p1, p2, p4]
>>> def getCommonList(list1, list2):
 commonList = []
 for eachVal in list1:
 if eachVal in list2:
 commonList.append(eachVal)
 return commonList

>>> results = getCommonList(polygon1, polygon2)
>>> print results
[(0, 0), (1, 1)]

CODE 4.10
Loop and decisions combination example.

68 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• ‘a’: open the file for appending; any data written to the file are
automatically added to the end of file.

• ‘r+’: open the file for both reading and writing.
• Reading a file: The open() function will load the file from disk storage

to the memory, and return it as a file object. This file object has three
file read methods:
• read(size): returns the entire file when no size parameter is passed

(by default the size is equal to −1), or content as a string in the
byte size specified.

• readline(): reads and returns one line as a string (including
 trailing ‘\n’).

• readlines(): reads and returns all lines from file as a list of strings
(including trailing ‘\n’).

• Writing a file: A file object has two written methods:
• write(str): writes string ‘str’ to file.
• writelines(list): writes a list of strings to file; each string element

is one line in the file.

The write function writes the contents of a string to a file. However, there
are other data types such as float and integer. How is data written into a
file? Since a string acts as the input argument, the str() and repr() function
will convert a nonstring object to a string object. For example, if you write
a float number 3.14 into a file, you can use write(str(3.14)). Typically, a text
file is organized line by line, while the write() function writes data into a
file and changes it to a new line using the special characters “\n”. Thus,
write (“first line\nsecond line”) will output two lines in the file as shown
below:

first line
second line

The return value is also a string when reading the data from a file with
read() and readline(); therefore, we need to format those string values into the
data type we prefer. We can use float(str), for example, float(‘3.14’), int(str), for
example, int(‘2.0’), and long(str), for example, long(‘2.0l’) to convert strings to
numbers.

• Change file object’s pointer position: While reading a file, we may need
to skip several lines and read out specific information in the file.
Under such circumstances, we can locate specific lines and words of
a file with the following two methods:

69Python Language Control Structure, File Input/Output

• seek(offsize, whence): go to a position within a file, with offsize
bytes offset from whence (0==beginning of file, 1==current
 location, or 2==end of file).

• tell(): return current cursor/pointer position within a file.
• Close a file: After we finish manipulating a file, we should close the

file to release it from the memory with the method:
• close(): close a file

 This is a very important step whenever we read or write data to a
file. Without this step, the file will be kept in the memory and may
exhaust the available system memory (memory leak) if too many
files are opened. Data may not be preserved onto hard drive before
closing a file.

4.5 Exceptions

Exceptions (Python 2001b) are the errors encountered when executing
Python programs, for example, the errors to open a nonexisting file, divi-
sion by zero, concatenate ‘str’ and ‘int’ objects. These exceptions can be
handled in Python programs using the try…except… statement. There can
be one or more except clauses in the statement. Each except clause is used
to catch one exception. If an exception clause matches the exception, the
program will execute the except clause. If no except clause matches, the
program will be passed on to outer try statements and give the exception
error. Code 4.12 handles the ZeroDivisionError using the try…except…
statement.

>>> def slope(x1,y1,x2,y2):
 try:
 return (y2-y1)/(x2-x1)
 except ZeroDivisionError:
 print 'Error: x1 equals x2'
 return None

>>> slope(1,2,3,4)
1
>>> slope(1,4,1,5)
Error: x1 equals x2
>>>

CODE 4.12
Handle ZeroDivisionError using try…except… statement.

70 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

4.6 Hands-On Experience with Python

4.6.1 Find the Longest Distance between Any Two Points

• Open a text file
• Enter the Code 4.13, where a single loop is used
• Try and test another method where multiple loops are used

(Code 4.14).

In this method, double loop is used to calculate the distances between each
pair of four points (p0, p1, p2, p3). As shown as Figure 4.1, during the outer
loop level 1, when i=0, the inside loop will iterate j from 1 to 2 to 3. After the
outer loop advances to i=1, j will be iterated from 2 to 3, and so forth.

4.6.2 Hands-On Experience: I/O, Create and Read a File

 1. Open the Python console. Type the Code 4.15 for windows OS:

>>> import math
>>> class Point: ## define a point class
 def __init__(self, x=0.0, y = 0.0):
 self.x = x
 self.y = y
 def getDistance(self,other): ## declare getDistance

as a method
 return math.sqrt((other.x-self.x)**2+(other.y-self.y)**2)

#Declare three points
>>> p1,p2,p3 = Point(1,5), Point(2,8), Point(10,3)
calculate the distances among random two points and keep
them in a list
>>> dist1 = p1.getDistance(p2)
>>> dist2 = p1.getDistance(p3)
>>> dist3 = p2.getDistance(p3)
>>> distances = [dist1,dist2,dist3]
##Declare the biggestDistance variable
>>> biggestDistance = 0.0
>>> for i in range(len(distances)):
 currentDistance = distances[i]
 if currentDistance > biggestDistance:
 biggestDistance = currentDistance

Finish finding and print
>>> print 'biggest distance is ->', biggestDistance
biggest distance is -> 9.43398113206
>>>

CODE 4.13
Find the longest distance between any two points of 3 points using single loop.

71Python Language Control Structure, File Input/Output

 Note: (1) Make sure the directory ‘c:/code’ exists, or you will gener-
ate an error such as: “IOError: [Errno 2] No such file or directory:
‘c:/code/points.txt’”. makedirs() function in os module could help to
create directory; (2) Make sure you have the permission to create a
file under ‘c:/code’ directory, otherwise you will generate an error
such as “IOError: [Errno 13] Permission denied: ‘c:/code/points.txt’”.

Loop 1: i = 0

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

Loop 2: i = 1

Loop 11: j = 1

Loop 12: j = 2 Loop 21: j = 2

Loop 22: j = 3 Loop 31: j = 3Loop 13: j = 3

Loop 3: i = 2

FIGURE 4.1
Use double loop to calculate the distance between each pair of four points p0, p1, p2, p3.

>>> import math
>>> class Point: ## define a point class
 def __init__(self, x=0.0, y = 0.0):
 self.x = x
 self.y = y
 def getDistance(self,other): ## declare getDistance as a method
 return math.sqrt((other.x-self.x)**2+(other.y-self.y)**2)

#Declare four points
>>> p0, p1,p2,p3 = Point(), Point(1,5), Point(2,8), Point(10,3)
keep in the list
>>> points = [p0, p1, p2, p3]
##Declare the biggestDistance variable
>>> biggestDistance = 0.0
>>> for i in range(len(points)):
 for j in range(i+1, len(points)):
 currentDistance = points[i].getDistance(points[j])
 if currentDistance > biggestDistance:
 biggestDistance = currentDistance

Finish finding and print
>>> print 'biggest distance is ->', biggestDistance
biggest distance is -> 10.4403065089

CODE 4.14
Calculate the longest distance between any two points of a 4 point set using double for loop
with i and j as incremental variables.

72 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

For Mac, or Linux OS, replace the directory ‘c:/code/points.txt’ with
a different one, for example, ‘/home/points.txt’.

 2. Go to the ‘points.txt’ directory, and check that there is a points.txt
created (which should be true if there is no error popping up for your
code). Now open the file and examine the information in the file.

 3. Code 4.16 reads out the data from the points.txt.

4.6.3 Hands-On Experience: I/O, Flow Control, and File

• Read out and manipulate point datasets: create a text file under c:/
code/points.txt, and put the following three lines in the file:
point:
p1: 1.0, 1.0
p2: 2.0, 2.0

 Note: This is a simple GIS data format file, where the first line “point:”
indicates that this is a point feature file.

• Read out the points p1 and p2 from the points.txt file and print out
the x and y coordinates. Open Python text editor and create a new
file to save as read_point.py. Enter Code 4.17 to the read_point.py.

• Question: If we revise the points.txt to the following format (replace
the colon with semicolon):
point;
p1; 1.0, 1.0
p2; 2.0, 2.0

>>> f = open ('C:/Users/Phil/Downloads/points.txt', 'w+')
>>> f.write('point:\n')
>>> f.write('p1: 1.0, 1.0 \n')
>>> f.write('p2: 2.0, 2.0 \n')
>>> f.close()

CODE 4.15
Write a text file.

>>> f = open ('C:/Users/Phil/Downloads/points.txt', 'r')
>>> f.readline() # Read the 1st line
>>> f.readline() # Read the 2nd line
>>> f.readline() # Read the 3rd line
>>> f.readline () # end of the file
>>> f.seek(0) #go to the begin of file
>>> f.readline()
>>> f.readlines() # read rest lines in a list
>>> f.seek(0)
>>> f.read() # read rest lines as a string
>>> f.close()

CODE 4.16
Read from a text file.

73Python Language Control Structure, File Input/Output

Which portion of the code should we revise? How about the following
format?

point:
1.0, 1.0; 2.0, 2.0

"""
GGS 650 Lecture 4 Practice
readPointFile() is the function to parse the following format data:
point:
p1: 1.0, 1.0
p2: 2.0, 2.0\n
readPolylineFile() is the function to parse the polyline format as:
polyline;
1: 1.0, 1.0; 2.0, 2.0;....
2: 2.0, 2.0; 3.0, 3.0;....
"""
>>> import math
>>> class Point: ## define a point class
 def __init__(self, x=0.0, y=0.0): ## init method for point class
 self.x = x
 self.y = y
 ## Declare getDistance as method of Point
 def getDistance (self, other):
 return math.sqrt((other.x - self.x)**2 +

(other.y - self.y)**2)
>>> def readPointFile(fileName):
 file = open(fileName,'r')
 #declare empty list for keeping points, and index for line Num
 points,index = [],0
 for line in file: ## Read each line iteratively
 index += 1 ## Increase index after reading one line
 if index == 1:
 continue ## "Ignore the first line 'point\n'"
 # split the line and get the coordinate,e.g,1.0, 1.0
 coords = line.split(':')[1]
 ## Get the point x, y value
 xCoord = coords.split(',')[0]
 yCoord = coords.split(',')[1]
 point = Point(float(xCoord),float(yCoord))
 points.append(point)
 file.close() # remember to close file after reading
 return points
Call the function for parsing the point file
>>> points = readPointFile('points.txt')#get all points
#print points
>>> length = len(points) # get the length of points list
>>> for i in range(length):
 point = points[i]
 print point.x, point.y ##print the x, y value of each point
1.0 1.0
2.0 2.0
10.0 11.0
11.2 13.4

CODE 4.17
Read a formatted GIS point data file.

74 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

4.6.4 Hands-On Experience: Input GIS Point Data from Text File

Code 4.18 reads point text file and parse the data by generating point objects.
The maximum distance between any two points is then found and written
to a result file. Please try it on your computer and interpret the example line
by line.

>>> import math
>>> class Point:
 def __init__(self,x,y):
 self.x = x
 self.y = y
 def dis(self,point):
 return math.sqrt((self.x-point.x)**2+

(self.y-point.y)**2)
>>> f = open('points.txt','r')
>>> f.readline()
>>> i = 0
>>> points = []
>>> while (i==0):
 line = f.readline()
 if (line.find(':')!=-1):
 cords = line.split(':')[1]
 if (cords.fiand(',')!=-1):
 xy = cords.split(',')
 points.append(Point(float(xy[0]),

float(xy[1])))
 else:
 i=1
>>> outf = open('pointsResults4.17.txt','w')
>>> lpoints = []
>>> dis = 0
>>> print points
[<__main__.Point instance at 0x03373198>,
 <__main__.Point instance at 0x03373990>,
 <__main__.Point instance at 0x03373148>,
 <__main__.Point instance at 0x03373B98>]
>>> for k in range(len(points)):
 for l in range(k+1, len(points)):
 if (points[k].dis(points[l])>dis):
 dis = points[k].dis(points[l])
 while (len(lpoints)>0):
 lpoints.remove(lpoints[0])
 lpoints.append(points[k])
 lpoints.append(points[l])
>>> outf.write('The longest distance is between point
['+str(lpoints[0].x)+','+str(lpoints[0].y)+'] and ' +
 'point ['+str(lpoints[1].x)+','+str(lpoints[1].y)+']\n
The distance is '+str(dis))
>>> outf.close()
>>> f.close()

CODE 4.18
Read and write the content of a point data file.

75Python Language Control Structure, File Input/Output

Text file content:

Point:
1: 1, 2
2: 100, 300
3: 4, 5
4: 0, 500
5: 10, 400
6: 600, 20
7: 500, 400
8: 500, 500

4.7 Chapter Summary

This chapter introduces different flow control structures including

• Make decisions using if, else, and elif.
• Loop a block of statements using while and for flow control.
• Combine loop (for and while) and conditional statements (if, else,

and elif) for complex flow controls.
• Read and write text files.
• Catch and handle errors using try…except… statement.

PROBLEMS

 1. Review the Python tutorial “Input and Output,” which came with
Chapter 7 of the Python software help document.

 2. Analyze the patterns of the following text string and save it to a text
file, for example, polylines.txt.

Polyline:

 1. 1603714.835939442,142625.48838266544; 1603749.4678153452,142620.21
243656706; 1603780.3769339535,142607.37201781105; 1603801.47584667
8,142582.27024446055; 1603830.4767344964,142536.14692804776;

 2. 1602514.2066492266,142330.66992144473; 1602521.4127475217,142414.9
2978276964; 1602520.1146955898,142433.93817959353; 1602501.3840010
355,142439.12358761206; 1602371.6780588734,142417.84858870413; 1602

76 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

351.6610373354,142408.02716448065; 1602334.5180692307,142388.58748
627454; 1602331.6999511716,142376.66073128115; 1602334.8067251327,
142348.965322732; 1602338.308919772,142323.6111663878; 1602349.022
6452332,142314.50124930218; 1602363.9090971674,142310.79584660195;
1602514.2066492266,142330.66992144473;

 3. Write a Python program to parse the text file and use list to hold
the two polylines. Please refer to Section 5.6.1 in Python Library
Reference (from Python help document) String methods for split(),
strip(), and Built-in Functions float(x).

 4. Generate two polyline objects.
 5. Calculate the length of the two polylines.
 6. Review the class materials on handling exceptions and Python

 tutorial “Errors and Exceptions” (Section 8.3 in Python help
document).

 7. While reading the file and converting the string data to another data
type, for example, float, please add “try…except…finally…” to catch
the Exceptions, for example, IOError and ValueError.

77

5
Programming Thinking and
Vector Data Visualization

Programming thinking is critical to mastering a program language
(Eckerdal et al. 2005). The only way to become accustomed to thinking in
a programming capacity is through experience. This chapter will visualize
vector data to illustrate how to think in a programming manner.

5.1 Problem: Visualizing GIS Data

Visualizing GIS data is like drawing or painting on a blank cloth or canvas
(Hearnshaw and Unwin 1994). GIS maps include essential elements such as
a legend, map title, pertinent information, and an image of visualized data.
An image of a map will include different types of GIS data, used in different
ways (Figure 5.1, for example).

Patterns are referred to as symbols, and include geometric patterns
(squares, lines, polygon), colors (green, gray, and beige), and a name of the
data features. Depending on the amount of computer memory, visualizing
GIS data in map form is a tedious process because the data must be put in
sequential order. Usually, the drawing process begins with a polygon to a
polyline, and then to a point feature. This way, the smaller areal features will
not cover any big areal features. Map drawing processes include multiple
steps, as denoted in Figure 5.2.

Prepare Canvas → prepare data/feature to draw (coordinate transfer) and
know where to draw → setup how to draw and draw the features → finalize
a drawing process (drying, etc.)

A computer program will require a GUI to interact with an end user for
input and output visualization. For example, the Python IDLE window is a
type of GUI used to program in Python. ArcGIS has both an ArcMap and
other GUIs for user interaction. In GIS software, both the GUI and GIS leg-
end are important in interpreting functions needed for a GIS system. This
section will discuss how to set up and use a simple GUI user interaction, as
well as prepare Canvas for map drawing.

78 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

FIGURE 5.1
A map using ArcGIS software, in which polygons are illustrated in light green, polylines in
dark red, and points in green.

Start

Prepare canvas

Coordiante transfer

Draw features

Finalize drawing

End

FIGURE 5.2
The process for visualizing GIS data.

79Programming Thinking and Vector Data Visualization

In Python, Tkinter and related classes and modules are commonly used
for drawing and developing GUIs. Aside from the Tkinter, there are other
toolkits available, like PyGTK, PyQt, and wxPython. Code 5.1 will bring up
a GUI:

In the sample code:

 1. The first line will import Tkinter’s classes and functions.
 2. The second line calls Tk() to generate a root window object.
 3. The third line calls Label class to generate a widget Label object.
 4. The fourth line uses pack() to make the label visible.
 5. The last line brings up the first window, which includes the label

(done when label is created).

In this example, a window was created with one label showing “Hello
World.” TKinter supports a variety of widget objects; the most common are
described in Table 5.1.

In addition to the widgets in Table 5.1, Tkinter has other widgets, which
include Entry, Frame, LabelFrame, Menubutton, OptionMenu, panelWin-
dow, Scale, Spinbox, and Toplevel.

When using other widgets, replace the third line and fourth line (in
Code 5.1) by creating an object of a specific widget and passing it in rele-
vant arguments specified on the online reference,* for example, when using
Canvas for map, replace the third line and fourth line with

can = Canvas(root, width = 800, height = 600)
can.pack()

Among all the widgets, Canvas is the most widely used. It supports many
methods, like drawing points, lines, polylines, and polygons. A typical
Canvas preparing code is shown in Code 5.2.

In Code 5.2, the third line creates a Canvas with the pixel size dimen-
sions of 800 by 600. Although the size is based on the computer monitor
size, the actual size can be adjusted on the display settings tab. The second
to last line ensures that Canvas is visible on the window and the last line

* http://www.pythonware.com/library/tkinter/introduction/tkinter-reference.htm.

>>> from Tkinter import *
>>> root = Tk()
>>> w = Label (root, text="Hello, world!")
>>> w.pack()
>>> root.mainloop()

CODE 5.1
Create a GUI using Tkinter.

http://www.pythonware.com/library/tkinter/introduction/tkinter-reference.htm

80 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

will ensure the window shows up. The Canvas prepared can be used as
the map cloth, which can be used to draw points, polylines, and polygons.
The next step is to prepare GIS data so that it can serve as visualization
on Canvas.

5.2 Transforming Coordinate System

GIS data are represented in a variety of formats and projections, for exam-
ple, a shapefile in ArcView versus a text file formatted in different appli-
cations. The first step for visualizing a GIS dataset is to read the GIS data
from the data file so that it can be manipulated as needed. Converting
polylines into variables from a text file and then performing calculations
(e.g., length) on them using the GIS data is required by the visualiza-
tion process. The basic GIS data vector is geographic coordinates, which
define where they will be drawn on Canvas. Many GIS data coordinates
are presented in latitude and longitude measurements (−90 to 90 and −180
to 180), unlike computer monitor measurements (800 × 600 or 1024 × 768

TABLE 5.1

Popular TKinter Widgets

Widgets Syntax Example

Button Using (master,
options) as
parameters to
initialize a widget,
root is the parent
widget, options
are the widget
options such as
command, back

Button(root, text="OK", command=callback)
Canvas Canvas(root, width = 800, height = 600)
Label Label(root, text="Hello, world!")
Listbox Listbox(root, height=8)
Menu Menu(root, borderwidth=2)
Message Message(root, text="this is a message")
Radiobutton Radiobutton(root, text="Grayscale", value="L")
Scrollbar Scrollbar = Scrollbar(root)
Text Text(root, font=("Helvetica", 16))

>>> from Tkinter import *
>>> root = Tk()
>>> can = Canvas(root, width=800, height = 600)
'''draw features and maps on the Canvas/cloth
...
...
'''
>>> can.pack()
>>> root.mainloop()

CODE 5.2
Preparing a Canvas for drawing.

81Programming Thinking and Vector Data Visualization

or 1600 × 1200). The monitor system is also called the monitor coordinate
system. The monitor coordinate system starts from the top left as an origin
(0, 0), and increases in value from top to bottom (y) and left to right (x) on
the monitor.

Other data coordinate systems, such as the Universal Transverse Mercator
(UTM, Grafarend 1995), will not fit on a monitor coordinate system. Moving
around map features on a GIS window while panning through the map will
cause the coordinate location to readjust on the computer monitor. It is to
note that the real GIS coordinates are first transformed to monitor coordi-
nates and then shown on the monitor. This allows the geographic coordinate
system to assimilate to the monitor coordinate system on the computer. This
section discusses how to convert from a GIS coordinate system to a computer
monitor system.

Day-to-day geospatial coordinates for points, polylines, or polygons are
floating numbers, and are represented in the 2D Cartesian coordinate system
(Pick and Šimon 1985). The geographic coordinate system has the lower
 coordinate values in the bottom left and the larger coordinate values in the
upper right. However, a monitor coordinate system point is represented as a
pixel with integers x and y numbered from the origin in the upper left corner
(Figure 5.3 right). Typically, the geographic area being analyzed is bigger than
the monitor screen size, so to accurately represent the geographic data on
the screen, a mapping conversion needs to be implemented. The coordinate
 system transformation converts point (x, y) on the geographic coordinate sys-
tem (Figure 5.3 left) to the (winx, winy) on the computer monitor (Figure 5.3
right).

To conduct the coordinate transformation, calculate two critical param-
eters, length ratios and reference (or control) points. The length ratio is the
reflecting factor from the geographic coordinate system to the monitor coor-
dinate system. For example, using 800 in the monitor will transform to a 360
degree longitude in the geographic coordinate system. The length ratio will
be 360/800. The reference point is referred to as a point in the geographic
coordinate system, showing a specific point (e.g., 0, 0) in the monitor coor-
dinate system. When initializing a map, the entire dataset of the geographic
domain should be displayed. Therefore, select the upper left point of a GIS

(154.23, 85.78)

GIS Data area (–179.00, –89.00,
154.23, 85.78)

Window within monitor
(800 × 600)

(–179.00, –89.00) (800, 600)

(0, 0)

FIGURE 5.3
An example of geographic area and window monitor size with 800 × 600.

82 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

dataset (the point with the lowest x coordinate and highest y coordinate) as
the origin of a computer monitor (0, 0,upper left).

In the coordinate transformation process, keep the map’s direction,
 meaning have the monitor map with the same top to bottom and left to right
direction. Along the x-axis, both the geographic coordinate system and the
monitor coordinate system will increase from left to right. However, along
the y-axis, the monitor coordinate system will increase from top to bottom
while the geographic coordinate system will increase from bottom to top.
Therefore, flip the direction when converting the coordinates from a geo-
graphic system to the monitor system. This is done by flipping the positive/
negative signs of length along the y direction. The following illustrates
how to calculate the coordinates corresponding to monitor coordinates
(winX, winY).

Both the geographic extent and monitor screen areas have five important
points (Figure 5.4) used to calculate length ratios: the center point (p0) and its
four corners (p1, p2, p3, and p4). Length ratios include both ratioX, which is
the length conversion ratio from geographic coordinates to monitor coordi-
nates along the X direction, and ratioY along the Y direction. The final ratio
used to convert geographic coordinates to monitor coordinates is selected
from either ratioX or ratioY.

T IPS: Using different ratios for the x- and y-axis will cause the map to be
distorted in the visualized map.

A reference point is another important element when converting geographic
coordinates to monitor coordinates. Reference points could be centers of
both systems, which are (−12.385, −1.61) and (400, 300), or upper left of both
systems: (−179.00, 85.78) and (0, 0).

5.2.1 How to Determine Ratio Value?

Figure 5.4 shows the calculation of ratioX and ratioY based on the four corner
points. Figure 5.5 shows monitor coordinates of four corner points based on
ratioX and ratioY. Using p2 as an example, use the upper left corner p4 as the

P4 P3 (154.23, 85.78)

P0

P2
P1 (–179.00, –89.00)

RatioX: (maxX–minX)/(800–0)

RatioY: (maxY–minY)/600

= (154.23+179.00)/800
= 0.4165375

= (85.78+89.00)/800
= 0.2913

FIGURE 5.4
Calculation of ratioX and ratioY.

83Programming Thinking and Vector Data Visualization

control point and ratioX as the ratio to convert it from the geographic coordi-
nates to monitor coordinates:

winX(p2) = (X(p2) − X(p4))/ ratioX = (154.23+179.00)/ 0.4165375 = 800
winY(p2) = (Y(p2) − Y(p4))/ ratioX = (85.78+89.00)/ 0.4165375 = 419.60

When using ratioY as the ratio, to convert it from the geographic coordinates
to monitor coordinates:

winX(p2) = (X(p2) − X(p4))/ ratioX = (154.23+179.00)/ 0.2913 = 1143.94
winY(p2) = (Y(p2) − Y(p4))/ ratioX = (85.78+89.00)/ 0.2913 = 600

As shown in Figure 5.5, using ratioX will not use all 600 pixels of window
height; however, not all features will show up while using ratioY (window
coordinates are out of boundary). Typically, the larger one should be selected
as the ratio value to ensure that all features are displayed on the screen at the
initialization stage.

Finally, transform the geographic coordinates (x, y) to the screen pixel
coordinates (winx, winy) after both the ratio and reference points (X0, Y0)
are determined using the following formula:

winx = (X–X0)/ratioX
winy= − (X – Y0)/ratioY (add a negative sign to flip the y-axis direction)

For example, if ratioX and an upper left point (−179.00, 85.78) are (0, 0), any
point (x, y) from the GIS data will serve as the coordinates for the monitor
window (Figure 5.6):

winx = (x – (−179.00))/ratioX
winy= – (y – (85.78))/ratioX

Therefore, the given input parameters are as follows:
Geographic coordinate system: any point (x, y), minx, miny, maxx, maxy
Monitor coordinate system: size (width, height) and (0, 0) at left corner

p4 (0, 0) p3 (800, 0) p4 (0, 0)

p1 (0, 419.60)

(800, 600) (800, 600)

p3 (1143.94, 0)

p2 (1143.94, 600)p2

Use
ratioX

Use
ratioY

FIGURE 5.5
The monitor coordinates of four corner points are based on ratioX (left) and ratioY (right), using
the upper left corner as the reference point.

84 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The monitor coordinates of point (x, y) can be determined using the
 following formula:

ratioX = (maxx-minx)/width
ratioY = (maxy-miny)/height
ratio = ratioX>ratioY?ratioX:ratioY
winx = (x-(minx))/ratio
winy = -(y-maxy)/ratio

5.3 Visualizing Vector Data

Once the geographic coordinate system is converted into the monitor coordi-
nate system, use the Tkinter package to visualize the data. The Canvas widget
provides a general-purpose visualization background (cloth) for displaying
and manipulating graphics and other drawings. The Canvas is a window
itself and its origin is located in the upper left corner (0, 0). Therefore, any
data visualization will display in this context starting from the upper left
corner of Canvas. When creating a Canvas object, there are several impor-
tant arguments, such as width (specifying the width of the Canvas window),
height (specifying the height of the Canvas window), and bg (specifying the
background color of the Canvas window). When drawing on Canvas, the
create_xx (the second column in Table 5.2) method will construct different
graphs.

Each of these methods will take different arguments as listed in the table.
For example, create_arc will take the parameters of x0, y0, x1, y1, options….
The (x0, y0) point will define the upper left point and the (x1, y1) point will

(–179.00, 85.78)

GIS data (–179.00, 89.00, 154.23, 85.78)

Window within monitor:
(800 × 600)

(0,0)

FIGURE 5.6
Coordinate conversion using ratioX as ratio and the upper left corner as the reference point.

85Programming Thinking and Vector Data Visualization

define the lower right point of the rectangle (in which the arc will be drawn).
There are many options, such as start (the beginning angle of an arc), extent
(the width of the arc in degrees), and fill (the color used to fill in the arc).
Figure 5.7 shows how to create a Canvas object and create three arcs using
the same rectangle points, but with different colors and extents. As illus-
trated, the angle starts from a positive x-axis and goes counterclockwise.

As shown in Figure 5.7a, the source code creates a window, where Canvas
is drawn creating a 30 degree arc (270 degrees red, 60 degrees blue, and
30 degrees green).

TABLE 5.2

Canvas Widgets Can Be Created Using Different Create Methods

Graphs Method Context Parameters Usage in GIS Notes

A slice out of an
ellipse.

create_arc(x0, y0,
x1, y1, options)

(x0, y0, x1, y1) is the
rectangle into which the
eclipse, (x0, y0) and (x1,
y1) are the two diagonal
points

Some symbols

An image as a
bitmap.

create_bitmap(x, y,
options)

(x, y) is the point location
where the bitmap is
placed

Show raster images

A graphic image. create_image(x, y,
options)

(x, y) is the point location
where the image is
placed

Show raster images

One or more line
segments.

create_line(x0, y0,
x1, y1,…,
options)

(x0, y0, x1, y1,…) is the
list of the points in the
polyline, (x0,y0) and
(x1, y1) are the two
diagonal points

Some polyline
features such as
rivers, roads

An ellipse; use
this also for
drawing circles,
which are a
special case of an
ellipse.

create_oval(x0, y0,
x1, y1, options)

(x0, y0, x1, y1) is the
rectangle into which the
eclipse, (x0,y0) and (x1,
y1) are the two diagonal
points

Some ellipse features
or symbols

A polygon. create_polygon(x0,
y0, x1, y1,…,
options)

(x0, y0, x1, y1,…) is the
list of the points in the
polygon

Some polygon
features such as
lakes, sea, cities

A rectangle. create_
rectangle(x0, y0,
x1, y1, options)

(x0, y0, x1, y1) is the
rectangle, (x0,y0) and
(x1, y1) are the two
diagonal points

A map border etc.

Text annotation. create_text(x, y,
options)

(x, y) is the point location
where the text is placed

Texture Caption

A rectangular
window.

create_window(x,
y, options)

(x, y) is the point location
where the window is
placed

A Canvas to draw the
map

86 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

QA: replace lines 6, 7, and 8 with the following line:

can.create_line (1,2,35,46,5,6,76,280,390,400)

Then run the code and check the GUI to see whether it is the same as
Figure 5.5c.

5.4 Point, Polyline, Polygon

The three most popular GIS feature data types include point, polyline, and
polygon. Proper methods should be selected to visualize each of them.
Table 5.1 lists the methods available for visualizing different types of graphs.
The polyline and polygon can be matched by create_line() and create_
polyon() methods. The point can be represented by using other methods
such as create_rectangle() or create_arc(). Knowing the specific size of an arc
and rectangle is important when filling it in with a color, forming a circle
or point. Therefore, the point, polyline, and polygon data can be visualized
using create_arc(), create_line, and create_polygon, respectively.

Within the arguments of create_arc(xy, start, extent, fill=color),

• xy can be a list of [x0, y0, x1, y1, … xn, yn]
• start and extent can be the default, which is the entire circle
• fill in color can be taken as feature visualization symbols defined

by users

from Tkinter import*
root = Tk()
can = Canvas(root, width = 800, height = 600)
can.pack ()
xy = 20, 20, 300, 180
can.create_arc(xy, start=0, extent=270, fill="red")
can.create_arc(xy, start=270, extent=60, fill="blue")
can.create_arc(xy, start=330, extent=30, fill="green")
root.mainloop ()

(a) (b)

(c)

FIGURE 5.7
Create an arc with Tkinter. (a) Source code, (b) Draw arc, (c) Draw line.

87Programming Thinking and Vector Data Visualization

Within the arguments of create_line(xy, options):

• xy can be a list of [x0, y0, x1, y1, x2, y2, …]
• options can be

• fill: to specify the color of the line
• width: to specify the pixel width of the line

Within the arguments of create_polygon(xy, options):

• xy can be a list of [x0, y0, x1, y1, x2, y2, …., x0, y0]. Note: the first and
last points are the same

• options include
• fill: to specify the fill color of the polygon
• outline: specify the border line color
• width: to specify the pixel width of the border line

Using these methods, the point, polyline, and polygon data drawn in
Figure 5.1 can be visualized in Python Tkinter Canvas as Figure 5.8.

5.5 Programming Thinking

Writing code involves a way of thinking that is foreign to most people;
however, writing code is not a unique process and is an analytical process.
Practicing the following steps will improve programming skills.

FIGURE 5.8
A simple Python GIS map with point, polyline, and polygon visualized.

88 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

5.5.1 Problem Analysis

The first step in programming is to analyze the problem and understand
the detailed requirements. One of the problem requirements of Chapter 3 is
to create a polygon and calculate the length of the polygon’s border. Part of
the problem requirements of Chapter 4 are to program coordinates of two
 polylines and calculate the length of the polylines.

5.5.2 Think in Programming

The second step is to think from a programming perspective, considering
several factors:

• How many components should be included in the code? For exam-
ple, in the Chapter 4 problem, three components are included
(Figure 5.9).

• What is the sequence of these components? After components have
been determined, think about the programming sequence. Which
component should run first and which should follow?

• Lastly, think about how to design data and program structures,
and organize the data and program structures to make them sim-
ple, reusable, and object-oriented in nature. Know how to manage
object creation, compose objects into larger structures, coordinate
control flow between objects, and obtain the results in the sequence
obtained from the problem analyses.

Component 1:
Read data from file.

Component 2: Parse and
organize data as points
and create polyline
objects.

Component 3:
Calculate the
length of
polyline.

Calculate the
length

p1

p1 p2 p3 p4 p5 p6 ...p8

p7

p2
p3

p4 p5

p6

FIGURE 5.9
Programming components/steps for the Chapter 4 problem.

89Programming Thinking and Vector Data Visualization

5.5.3 Match Programming Language Patterns and Structure

Now, match the programming components and sequences (design of
 programmable components) to language structures and patterns (Proulx
2000). A program can be implemented using different programming
 languages and can match the components to a more familiar language
 structure. There are several patterns to follow to implement each
component.

• First: Functional match. Similar to Chapter 4’s file operations, reading
data from the file (component 1) can open, read, and close the file in
different manners. Parsing and organizing data as points and creat-
ing polyline objects is similar to parsing data from a text file (using
split() and list operations), creating point objects, and creating poly-
line objects by defining and using Point, Polyline classes, and their
composition relationship.

• Second: Sequential match different components. The sequence of the
three components (Figure 5.5) means you should first read data,
parse the data and create objects, and then calculate the polyline
length. File operations are the order of opening, reading, and
 closing files.

• Third: Detailed data and programming structure match. Polyline length
calculation, for example, is adding many line segment lengths
through a loop. Storing a list of points uses the list data type. Parsing
coordinates is using the split and data conversion for each coordi-
nate in a loop fashion.

5.5.4 Implement Program

After analysis, programming with familiar language structure and patterns
should work in the following order:

• Read data from the file.
• Add Point and Polyline classes and list data structures to hold the

datasets before parsing the data.
• Parse data into a list of coordinates or points.
• Create point and polyline object before using polyline object.
• Call the method to calculate the polyline length.

After the first version of the program is developed,

• Again, sort through the logic of the programming, fix any
 remaining problems, and optimize the codes.

90 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• Debug and test the results of the program developed.

T IPS: In the programming thinking process, there will be times where you
are not as familiar with the particular pattern or structure. So, in effect,
there are several ways to conduct the search:

• Search for similar patterns written in “python programming …”
by replacing the … with the pattern or structure needed.

• Search the help document from the Python IDLE (if there is no
Internet available) by typing the … part into the search box for help.

• Discuss with peers: there are similar problematic patterns. Otherwise,
post a message or question on the Python programming blog.

The more patterns practiced, the more experienced a programmer will
become to find a solution.

5.6 Hands-On Experience with Python

5.6.1 Reading, Parsing, and Analyzing Text File Data

Try Code 5.3 for the problem from the last chapter and review the program-
ming thinking process introduced in this chapter.

"""
Chapter#4
Read the following data:
Polyline;
1: 1603714.835939442,142625.48838266544; 1603749.4678153452,142620.212
43656706; 1603780.3769339535,142607.37201781105; 1603801.475846678,142
582.27024446055; 1603830.4767344964,142536.14692804776;
2: 1602514.2066492266,142330.66992144473; 1602521.4127475217,142414.92
978276964; 1602520.1146955898,142433.93817959353; 1602501.3840010355,1
42439.12358761206; 1602371.6780588734,142417.84858870413; 1602351.6610
373354,142408.02716448065; 1602334.5180692307,142388.58748627454; 160
2331.6999511716,142376.66073128115; 1602334.8067251327,142348.9653227
32; 1602338.308919772,142323.6111663878; 1602349.0226452332,142314.50
124930218; 1602363.9090971674,142310.79584660195; 1602514.2066492266,
142330.66992144473;

Code 5.3 defines the function ‘readPolylineFile’ to read data line by line.
The readPolylineFile function will return two values: polylines and

91Programming Thinking and Vector Data Visualization

>>> import math
>>> class Points:
 def __init__(self, x=0.0, y=0.0):
 self.x,self.y = x, y
>>> class Polyline:
 def __init__(self, points =[]):
 self.points = points
 def getLength(self):
 i = 0
 length = 0.0
 while i < len(self.points)-1:
 length += math.sqrt((self.points[i+1].x
 -self.points[i].x)**2 +
 (s elf.points[i+1].y -self.

points[i].y)**2)
 i += 1
 return length

#
function to read out data one line by one line and
get all points from both lines
return two objects: points list and
the number of the points from the first line
>>> def readPolylineFile(fileName):
 f = open(fileName, 'r')
 polylines, points, index = [], [],0
 firstPolyLineNum = 0
 for line in f:
 index += 1
 if index == 1:
 continue
 coords = line.split(':')[1]
 eachcoords = coords.split(';')
 coordsLen = len(eachcoords)
 if index == 2:
 firstPolyLineNum = coordsLen-1
 print 'The first polyline number is : ',

firstPolyLineNum
 for i in range(coordsLen-1):
 singlecoords = eachcoords[i]
 #print 'singlecoords,', singlecoords
 xCoord = singlecoords.split(',')[0]
 yCoord = singlecoords.split(',')[1]

#print ‘xCoord and yCoord, ‘, xCoord, yCoord
 point = Points(float(xCoord),float(yCoord))
 points.append(point)

 f.close()
 return points, firstPolyLineNum

The first polyline number is : 5

CODE 5.3
Read from text file and create a polyline to hold data and analyze data. (Continued)

92 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 firstpolylineNum, which refers to how many points we have for first
polyline.

5.6.2 Create GIS Objects and Check Intersection

 a. Problem statement: Create four random points and four random rect-
angles, and find out whether any of the points are located inside any
of the rectangles. Write the results to a text file.

 b. Programming thinking of the problem: The workflow of this process is
to (a) create four points, (b) create four rectangles, and (c) check each
point to determine whether it is in any of the rectangles. The prob-
lem involves two data structures: Point and Rectangle classes. First,
the “declare classes” patterns for Points and Rectangles will hold
relevant datasets created from random module’s random method.

 The Point class and Rectangle class can be defined with the
 following attributes and functions (Figure 5.10).

1. Declare the Point class

class Point:

pass ## Implement me

call the function to read data and put into points list
>>> resuts = readPolylineFile(‘polylinesHw4.txt’)
>>> points = resuts[0]
>>> firstPolylinePointNum = resuts[1]
>>> length = len(points)
>>> print ‘ The total points and the numberof points for

firstpolyline is’,\
 length, firstPolylinePointNum

The total points and the numberof points for firstpolyline is 18 5
Gets the points for first polyline and calculate length
>>> pointsForFirstPoly = points[0:firstPolylinePointNum]
>>> polyLine1 = Polyline(pointsForFirstPoly)
>>> lengthForFirstPoly = polyLine1.getLength()
>>> print "Length for first polyline -> ", lengthForFirstPoly

Length for first polyline -> 155.775923237

Gets the points for second polyline and calculate length
>>> pointsForSecondPoly = points[firstPolylinePointNum:]
>>> polyLine2 = Polyline(pointsForSecondPoly)
>>> lengthForSecondPoly = polyLine2.getLength()
>>> print "Length for Second polyline -> ", lengthForSecondPoly

Length for Second polyline -> 549.438874589

CODE 5.3 (Continued)
Read from text file and create a polyline to hold data and analyze data.

93Programming Thinking and Vector Data Visualization

2. Declare the Rectangle class

class Rectangle:

pass ## Implement me

The problem requires creating four random points and rectangles, which
indicate that the following two steps need to be included in the program:

3. Generate four points

points = []

for i in range(4): ## Loop 4 times

pass ## Implement me

4. Generate four rectangles

rectangles = []

for i in range(4): ## Loop 4 times

pass ## Implement me

To check each of the four points, loop through the four points, and check to
see whether each of the points is in any of the four rectangles, and then loop
through the four rectangles. This will require a double loop to process.

5. Check which point is in which rectangle and record the result

for i in range(4):

for j in range(4):

#check if points[i] is in rectangles[j] and record results into a file

pass ## Implement me

There are two components in the last check process: (a) how to check if a
point is within a rectangle (the contains() method in rectangle class), and
how to write the results to a file (the file open, write, and close pattern).
Since the file needs to be written as you progress through the double loops,

(a) (b)

FIGURE 5.10
Two classes to be created for the point and rectangle problem.

94 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

>>> import random
1. Declare the Point class
>>> class Point:
 def __init__(self,x = 0.0, y = 0.0):
 self.x = x
 self.y = y

2. Declare the Rectangle class
>>> class Rectangle:
 def __int__(self):
 ## A rectangle can be determined by (minX, maxX)

(minY, maxY)
 self.minX = self.minY = 0.0
 self.maxX = self.maxY = 1.0
 def contains(self, point): ## Check if a point is within

a rectangle
 pass ## Implement me
3. Generate four points
#define a Point list to keep four points
>>> points = []
#generate four points and append to the points list
>>> pass ## Implement me

4. Generate four rectangles
#define a Rectangle list
>>> rects = []
>>> for i in range(4):
 rectangle = Rectangle()
 ## Generate x
 x1 = random.random()
 x2 = random.random()
 ## make sure minX != maxX
 while(x1 == x2):
 x1 = random.random()
 if x1<x2:
 rectangle.minX=x1
 rectangle.maxX=x2
 elif x1>x2:
 rectangle.minX=x2
 rectangle.maxX=x1
 ## Develop codes to generate y values
 ## and ensure the rectangle is not a line below
 pass ## Implement me
 ## add to the list
 rects.append(rectangle)

5. Add code to check which point is in which rectangle
>>> resultList = [] ## And use a list to keep the results
>>> pass ## Implement me

6. write the results to file
>>> f=open('HM5_Result.txt','w')
>>> for result in resultList:
 f.write(result+'\n')
>>> f.close()

CODE 5.4
Generating four points, rectangles, checking contains() relationships, and outputting results
to a text file.

95Programming Thinking and Vector Data Visualization

open it before entering the loop and close after exiting the loop. Write the
file when executing the loops.

The random.random() method may generate the same values for x1 & x2
or y1 & y2 (which means a line instead of a rectangle). This can be handled
by adding a method to check whether they are the same in order to prevent
an invalid rectangle.

Based on this programming thinking process, the programming codes can
be developed in the flow in Code 5.4:

5.7 Chapter Summary

This chapter introduces how to think like a programmer using GIS vector
data visualization and includes

• Problem analyses
• Pattern matching
• Coordinate transformation
• Drawing vector data on Canvas
• Two coding examples are used to demonstrate the programming

thinking process: (a) reading, parsing, and calculating length for
polylines, and (b) generating random points and rectangles; and
check the contain relationship between every point and rectangle

PROBLEMS

 1. There is a module named random in Python; import it and use its
method random() to generate a random number from 0 to 1.

 2. There is a popular algorithm in GIS to find whether a point is inside
a rectangle based on their respective point coordinates (x, y, and
minx, miny, maxx, maxy). Describe the algorithm in a mathematical
algorithm using (x, y, and minx, miny, maxx, maxy).

 3. Write a program to (a) generate m number of points and n number
of rectangles (m and n can be changed through user input), (b) check
which points are in which rectangles.

 4. Program to write the point coordinates and rectangles point coordi-
nates to a text file, and then write the result of (2) to the text file.

 5. In a Word document, explain the “point in rectangle” algorithm
and program created, and code the program in a .py file to find
which point generated in (3) is within which rectangle generated in
(3). Then check the text file output.

http://taylorandfrancis.com

97

6
Shapefile Handling

One of the most important functions of GIS software is to read popular GIS
data file formats, such as shapefiles. A shapefile is a binary data file format
originally developed by ESRI, and has been widely used for exchanging
 vector data among different GIS professionals and communities (ESRI 1998).
This chapter introduces how shapefiles are formatted and how to read them
with Python, that is, reading binary data, reading a shapefile header, reading
a point shapefile, and reading polyline and polygon shapefiles.

6.1 Binary Data Manipulation

Shapefiles are in binary format and the Python module for manipulating
binary data is known as struct. The struct module has a number of functions
to read data from and write data into binary format. This section introduces
how we can use the struct module to handle binary data.

Struct handles binary data by converting data back and forth between
its original format and binary format. The pack function of struct is used
to convert data into a binary format. For example, the following statement
returns a binary string containing the values v1, v2, … packed according to
the given format fmt. The arguments must match the values required by the
format exactly.

struct.pack(fmt, v1, v2, …)

The unpack function of struct is used to interpret binary data to its
 original value (Code 6.1). For example, the following statement unpacks the
binary (presumably packed by struct.pack(fmt, v1, v1, …)) according to the
given format fmt. The result is a tuple, even if it contains only one element.
The binary data must contain exactly the same number of data as required
by the format, that is, len(binary data) must equal calcsize(fmt).

struct.unpack(fmt, binarydata)

The struct module must be imported before using (the first statement of
Code 6.1). The code also demonstrates how to pack two integers (100, 200)
represented by variables (x, y) into a binary string. String ‘ii’ is used to rep-
resent two integer values with each ‘i’ representing one integer. The fifth

98 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

statement unpacks the binary string into its original data value (100, 200).
The string ‘ii’ is important and referred to as the string format (denoted
as fmt), which is used to specify the expected format, and is required to
call both pack and unpack methods. Table 6.1 details the format charac-
ters used in the string fmt to specify format for packing and unpacking
binary data.

Code 6.2 shows how to pack different formats using the format characters.
Five variables representing five values in data types of integer, Boolean,

TABLE 6.1

Format Characters

Format Character C Type Python Type Standard Size

C char string of length 1 1
B signed char Integer 1
B unsigned char Integer 1
? _Bool Bool 1
h short Integer 2
H unsigned short Integer 2
i int Integer 4
I unsigned int Integer 4
l long Integer 4
L unsigned long Integer 4
q long long Integer 8
Q unsigned long long Integer 8
f float Float 4
d double Float 8

>>> import struct
>>> i,b,x,y,z = 100,True,-180.0,90,0.212
>>> s = struct.pack('<ibdfd',i,b,x,y,z)
>>> len(s)
>>> result = struct.unpack('<i?dfd',s)
>>> print result
(100, True, -180.0, 90.0, 0.212)

CODE 6.2
Packing and unpacking different data types using proper format.

import struct
x,y = 100,200
s = struct.pack('ii',x,y)
print s
result = struct.unpack('ii',s)
print result

CODE 6.1
Examples of pack and unpack methods of the struct module.

99Shapefile Handling

double, float, and double are packed. The total length of the packed string
is 4(i) + 1(b) + 8(d) + 4(f) + 8(d) = 25. Because the struct package is following
C standard, the C Type is used. Python has fewer data types; however,
the standard size of each data type can be kept if the first character of
the format string is indicated by the byte order, size, and alignment of the
packed data.

By default, the @ will be used if the first character is not one of the
 characters given in Table 6.2 below:

• Native byte order is big-endian or little-endian, depending on the
host system. For example, Intel x86 and AMD64 (x86-64) are little-
endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and
Intel Itanium feature switchable endian-ness (bi-endian). Use sys.
byteorder to check the endian-ness of the system.

• Native size and alignment are determined using the C
 compiler’s sizeof expression. This is always combined with native
byte order.

• Standard size depends only on the format character as defined in
Table 6.1 above.

• Note the difference between ’@’ and ’=’: both use native byte order,
but the size and alignment of the latter is standardized.

• The form ’!’ is used when we cannot remember whether network
byte order is big-endian or little-endian.

Byte order* concept is also used in the ESRI Shapefile format. Big-endian
and little-endian byte orders are two ways to organize multibyte words
in the computer memory or storage disk. When using big-endian order,
the first byte is the biggest part of the data, whereas the first byte is the
smallest part of the data when using little-endian order. For example, when
storing a hexadecimal representation of a four-byte integer 0 × 44532011

* “Endianness.” Wikipedia. Wikipedia Foundation, Inc., http://en.wikipedia.org/wiki/
Endianness.

TABLE 6.2

Struct Starting Character

Character Byte Order Size Alignment

@ native native native
= native standard none

< little-endian standard none

> big-endian standard none
! network (= big-endian) standard none

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

100 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

(Table 6.3) using the big-endian order binary format, the byte sequence
would be “44 53 20 11.”

• For big-endian byte order, use ‘>’ while packing or unpacking the
bytes, for example, struct.unpack(‘>iiii’, s).

• For little-endian byte order, use ‘<’, for example, struct.unpack(‘<iiii’, s).
• If these two are mixed, for example, packing using ‘>’ and unpack-

ing using ‘<’, an unexpected result will be generated, as shown in the
last statement of Code 6.3.

While constructing the formatted string, the byte order should be
 specified. In the absence of a byte order symbol, packing and unpacking will
use little-endian by default for PCs (Code 6.4). The results of two codes show
no difference. The results are hexadecimal, that is, 0x 00000064 represents
100, 0x 0000c8 represents 200, and x0000012c represents 300. More about
struct and formatting info can be found at http://docs.python.org/library/
struct.html.

#This code should be typed in interactive window
import struct
x,y,z = 100, 200, 300
s = struct.pack('<iii',x,y,z) #little_endian
coding
s
'd\x00\x00\x00\xc8\x00\x00\x00,\x01\x00\x00'
s = struct.pack('iii',x,y,z) #default coding
s
'd\x00\x00\x00\xc8\x00\x00\x00,\x01\x00\x00'

CODE 6.4
The default byte order is little-endian for our computers.

import struct
x,y,z = 100,200,300
s = struct.pack('>iii',x,y,z)
print s
result = struct.unpack('>iii',s)
print result
result = struct.unpack('<iii',s)
print result

CODE 6.3
Pack and unpack must use the same byte order.

TABLE 6.3

Four-Byte Integer 0 × 44532011 in the Storage

Big-Endian 44 53 20 11
Little-Endian 11 20 53 44

http://docs.python.org/library/struct.html
http://docs.python.org/library/struct.html

101Shapefile Handling

6.2 Shapefile Introduction

A shapefile includes multiple files with the same file name and different file
extensions. Each vector dataset is stored in several files, such as .shp (main
file), .shx (index file), .dbf (dBASE file), .prj (projection file), etc. (Figure 6.1).
The main file, index file, and dBASE file are required by all GIS software that
works with shapefiles. The triple must have the same name, for example,
mymap.shp, mymap.shx, and mymap.dbf:

• .shp: The .shp file contains the vertices of all entities (Figure 6.1).
The vertices are organized hierarchically in features/records, parts,
and points. The .shp file also contains information on how to read
the vertices (i.e., as points, lines, or polygons). Some important
 attributes can also be termed as the third dimension (measure-
ments), and stored in the .shp file.

• .shx: An index is kept for each record, and is beneficial for finding
the records more quickly.

• .dbf: Attribute information is stored in the .dbf file associated with
each .shp file. The .dbf file contains dBASE tables and stores addi-
tional attributes that cannot be kept in a shapefile’s features. It
contains exactly the same number of records as there are features
in the .shp file (otherwise the data could not be interpreted). The
records belong to the shapes sequentially, meaning that the first,
second, and third records belong, respectively, to the first, second,
and third, features in the .shp file. If we edit the .dbf using a third-
party tool and alter the records, the order may be lost. More infor-
mation can be found from the ESRI shapefile format white paper
(ESRI 1998).

There are 14+ types of features supported by shapefiles, such as point,
polyline, and polygon. 3D features are added to shapefile structure with a
dimension dedicated to z value.

FIGURE 6.1
Shapefile structure. (Adapted from ESRI. 1998. ESRI Shapefile Technical Description. An ESRI
White Paper, 34.)

102 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

6.3 Shapefile Structure and Interpretation

6.3.1 Main File Structure of a Shapefile

The main file contains a file header and all feature records (Figure 6.2).
Each feature record is composed of a record header and record contents.

6.3.1.1 Main File Header

Figure 6.3 shows the file header format including 100 bytes. The first 4 bytes
indicate this file is a shapefile with an integer value of 9994. Bytes 4 to 24 are
integer 0 and reserved for future use. The first 28 bytes, including the data
description fields of the file header and file length (integer in bytes 24–27), are

FIGURE 6.2
Shapefile main file structure.

FIGURE 6.3
File header of shape main file.

103Shapefile Handling

in big-endian byte order, and ‘>’ is required to unpack the bytes, for example,
struct.unpack(‘>iiiiiii’, s). The unit for the total length of the shapefile is 16 bit
word, that is, the total file length in bytes would be double the value of the
interpreted number.

The rest of the file header is in little-endian byte order, and ‘<’ is required
to unpack them, for example, struct.unpack(‘<iiii’, s). Omit the ‘<’ since it is
the default value for pack or unpack on most PCs. Starting byte 28, a 4-byte
integer (value of 1000) refers to the version of the shapefile. Starting byte 32,
a 4-byte integer, indicates the feature shape type (e.g., 1 means the file is for
Point feature, and 3 indicates it is a Polyline file, Figure 6.3 right). Byte 36 to
the 100 is the bounding box of the entire dataset in the shapefile. The bound-
ing box includes four dimensions x, y, z, and m. Each dimension includes
minimum and maximum values in the sequence of minx, miny, maxx, maxy,
minz, maxz, minm, and maxm. The bounding box should be written with
fmt ‘<dddddddd’ for all values in double data type.

Hands-on practice: Interpret the shapefile header (Code 6.5)

• Open the Python GUI console.
• Copy the data given including Schools.shp, Schools.shx, Schools.dbf

to c:\code\data\.
• Practice the Code 6.5 with the Python interpreter GUI.

The first three statements have 28 bytes from the shapefile. The fourth state-
ment unpacks the data in big-endian order and has seven integers. The first
integer is 9994, the file code for shapefiles. The next five are zero, and are
reserved for future use. The last one is the file length, which is the total length
of the shape main file in 16-bit or two bytes unit. Therefore, the actual total
length of the file is double the indicated value (i.e., 288 * 2 = 576) bytes. The
next statement reads out 72 bytes and unpacks them using little-endian byte
order to obtain two integers and eight double values. The first one, with
a value of 1000, is the version of shapefile. The second one, with value 1,
indicates that the shapefile feature type is Point. The following four refer to

>>> import struct
>>> f = open('Schools.shp','rb')
>>> s = f.read(28)
>>> b = struct.unpack('>iiiiiii',s)
>>> print b
(9994, 0, 0, 0, 0, 0, 288)
>>> s = f.read(72)
>>> b = struct.unpack('<iidddddddd',s)
>>> print b
(1000, 1, 1847318.8628035933, 765532.64196603,
1859639.8841250539, 778092.9935274571, 0.0, 0.0, 0.0, 0.0)

CODE 6.5
Interpreting the shapefile main file header.

104 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

minx, miny, maxx, maxy, respectively, and minz, maxz, minm, maxm are all
zeros since these two dimensions are not used in this shapefile.

6.3.1.2 Feature Record

Figure 6.4 shows the record header and content structure for a Point shapefile.
The record header is the same for all shape types while record content is differ-
ent for different feature types and specific features. The record header includes
8 bytes, where the first 4 bytes indicate the sequential record number and the
next 4 bytes indicate content length for the record. The record header is in big-
endian byte order. The record content for each point feature includes 20 bytes,
with the first 4 bytes representing feature type, which is 1 for all points, 8 bytes
for the x coordinate, and 8 bytes for the y coordinate (Figure 6.5). The record
content is in little-endian byte order for Point record content.

Hands-on practice: Interpret the point shapefile (Code 6.6)

• Open the Python file editing window.
• Copy the data, including Schools.shp, Schools.shx, Schools.dbf into

c:\code\data\.
• Type the following code in the Python editor window.

FIGURE 6.4
Point record header and content.

FIGURE 6.5
File structure for Point .shp file.

105Shapefile Handling

Code 6.6 reads the shapefile to get the file length (bytes 24–27 in file header)
and uses the file length to calculate the number of points in this shapefile in
the following steps:

 1. Doubling the size to convert from 16-bit (two bytes) unit to 8-bit
(one byte) unit

 2. Subtracting 100 bytes for a file header
 3. Dividing by 28 (each record header and record content takes 28 bytes

in point shapefile) to get the feature number

The file length and number of point features are then printed out and a
text file is opened to write the results. A for loop is used to cycle through
each record/feature to read out the x, y values and print out and write to
the text file. Lastly, the two files are closed to conclude the file read/write
 process. In the for loop, the first line moves the file pointer to the position
where the ith record’s x value starts (100 + 12 + i*28, 12 refer to the record
header [8 bytes] and the shape type integer 1 [4 bytes]), then reads 16 bytes
for x, y and unpacks them into x, y variables.

6.3.2 Index File Structure (.shx)

Figure 6.6 shows the file structure for the .shx file. The index file header is
the same as the main file header, including 100 bytes and can be interpreted
using Code 6.7. The file length stored in the index file header is the total
length of the index file in 16-bit words (the 50 16-bit words of the header plus
4 times the number of records). This can also be used to calculate the number
of records. The ith record in the index file stores the offset and content length
for the ith record in the main file. The offset of a record in the main file is the
number of 16-bit words from the start of the main file to the first byte of the

>>> import struct
>>> f = open('Schools.shp','rb')
>>> f.seek(24)
>>> s = f.read(4) #Get the file length
>>> b = struct.unpack('>i',s) ##The file length is big-endian order

integer
>>> featNum = (b[0]*2-100)/28 ##Calculation the feature numbers
>>> out = open('schools_shp.txt','w')
>>> for i in range(featNum):
 f.seek(100+i*28+12)
 s = f.read(16) ##16 bytes with 8 bytes for both x and y
 x,y = struct.unpack('dd',s) ##little-endian order by default
 out.write(str(i)+':'+str(x)+','+str(y)+'\n')
>>> f.close()
>>> out.close()

CODE 6.6
Read the point shapefile and write the results to a text file.

106 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

record header for the record. Thus, the offset for the first record in the main
file is 50, given the 100-byte header.

Hands-on practice: Interpret the point .shx file

• Open the Python file editor window.
• If the folder “c:\code\data\” does not have the following files Schools.

shp, Schools.shx, Schools.dbf, copy the data into the folder.
• Type the Code 6.7 on the Python editor.

FIGURE 6.6
File structure for .shx file.

>>> import struct
#Open in binary mode for portability
>>> f = open('Schools.shx','rb')
>>> f.seek(24)
>>> s = f.read(4)
>>> b = struct.unpack('>i',s)
>>> featNum = (b[0]*2-100)/8
>>> out = open('schools_index.txt','w')
>>> for i in range(featNum):
 f.seek(100+i*8)
 s = f.read(8)
 off,length = struct.unpack('>ii',s)
 out.write(str(i)+':'+str(off)+','+str(length)+'\n')
>>> f.close()
>>> out.close()

CODE 6.7
Interpreting the shape index file to get the number of records, and the offset, content length of
each record.

107Shapefile Handling

Code 6.7 first reads the integer of index file length from bytes 24–27.
This number, in 16-bit or two-byte unit is then used to calculate the feature
 number by

 1. Doubling the value to obtain the length in byte unit
 2. Subtracting 100 index file header
 3. Dividing by the number of bytes for each record in index file (8 bytes)

The feature number and file length are printed and a text file is opened
to keep each feature offset and content length value in the main file. The for
loop reads each record and writes it in the text file. Again, both files are
closed at the end of the program. The for loop cycles through each record
to (a) move to the start of the ith record (100 + i*8), (b) read out 8 bytes for
two integers, and (c) unpack the two integers as offset and contentLength,
which are printed and written to the text file following the sequence of the
record. The text file and the output on the interactive window can be used to
verify the content.

6.3.3 The .dbf File

The .dbf file keeps attributes for the related shapefile. It has the same name
as the main and index file. Each feature must have a record in .dbf file. Each
feature must be in the same order in the .dbf file as it appears in the main and
index files. Details of the .dbf file format can be found online* and will not be
discussed in this book.

6.4 General Programming Sequence for Handling Shapefiles

Reading the shapefile is the first step to process the features (e.g., visual-
ize the features on the GUI, make a map, and perform spatial analysis).
There are several steps to reading a shapefile:

 1. Open file to read in binary mode.
 2. Read index file header and interpret the meta-information, for

 example, bounding box, and number of records.
 3. Read records’ meta-information, such as offset, and content length

for each record.

* “Data File Header Structure for the dBASE Version 7 Table File.” dBase. http://www.dbase.
com/KnowledgeBase/int/db7_file_fmt.htm.

http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm
http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm

108 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 4. Read data dynamically based on each record content structure
for specific shape types.

 5. Assemble data into objects of point, polyline, and polygon or other
types.

 6. Analyze and process data as needed.
 7. Prepare data to be written to a file.
 8. Write formatted data to files.
 9. Close files.

Steps 7 and 8 are for shapefile output. Unless converting each feature’s
 spatial attributes (coordinates) or nonspatial attributes from a different
format (e.g., a text file) to generate new shapefiles, these two steps are not
required. This conversion could also be easily accomplished using ArcGIS
Python scripting, which will be introduced later in this book.

6.5 Hands-On Experience with Mini-GIS

6.5.1 Visualize Polylines and Polygons

• Download and unzip the Mini-GIS package.
• Double click on the MiniGIS.py file.
• In the MiniGIS window, select File->load .shp->select the countries

folder (Figure 6.7a).

(a) (b)

FIGURE 6.7
(a) Select the ‘countries’ folder to add data, and (b) the map window displays countries as
 polygons and with country borders as polylines.

109Shapefile Handling

The country polygons and country border polylines will be displayed
(Figure 6.7b). We can operate the map by selecting View-> [Zoom In |Zoom
Out|Zoom Extent|Zoom Full]. All the source codes for the file read, map
display, and map operation are included in the package. Please try to iden-
tify from the Mini-GIS package the files that read shapefiles and visualize
polylines and polygons.

6.5.2 Interpret Polyline Shapefiles

The polygon shapefiles are in the same format as polyline except that the
shape type is 5 and the first point of a polygon part is the last point of
the same polygon part (Figure 6.8). Therefore, the practice in this subsection
can be utilized for reading polygon shapefiles with minor updates.

Reading a polyline file can leverage the code developed for reading the
feature number, record offset, and record content length (Code 6.8). Once
the offset and content length for each record is identified, the rest will go
to the starting position of a specific record to begin interpreting the poly-
line. For each record header, the first integer is the record sequence number
and the second integer is the content length, as shown in Figure 6.8. In the
record content, the first value is an integer showing the shape type as a
value 3-polyline. The following 32 bytes are the bounding box for minx,
miny, maxx, maxy for the current feature. Because a polyline may include
multiple lines, each line of a polyline is considered a part. The number of
parts of a polyline follows the bounding box as an integer, followed by the
number of points as an integer. Based on the part number, there are 4*part-
Number bytes holding the starting point of each part in the entire point
sequence in the current feature. The starting number is 0 for the first part.
Following the part index are the points’ x, y coordinates. If z and m dimen-
sions are supplied in the format, relevant fields, such as bounding box and
points coordinate values will adjust according to store z and m values. Based
on these analyses, the Python code for reading a shapefile can be structured
as follows (Code 6.8):

FIGURE 6.8
The shapefile polyline format with the file header and first polyline shown. The rest of the
shapefile repeats the polyline record format.

110 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

import modules for the line length calculation,
binary data unpack, and visualization.
import math
from Tkinter import *
import struct

define point, polyline classes
class Point:
 def __init__(self, x = 0.0, y = 0.0):
 self.x = x
 self.y = y
class Polyline:
 # define object initialization method
 ## partsNum
 def __init__(self, points= [], partsNum = 0):
 self.points = points
 self.partsNum = partsNum

#-----Part 1: read and process the first 100 bytes
#1. open index file to read in binary mode
shxFile = open("Partial_Streets.shx","rb")
shapefile name can be replaced with any polyline

##2. read index file header and interpret the meta information, e.g.,
bounding box, and # of #records
read first 28 bytes
s = shxFile.read(28)
convert into 7 integers
header = struct.unpack(">iiiiiii",s)
get file length
fileLength = header[len(header)-1]
calculate polyline numbers in the shape file based on index file
length
polylineNum = (fileLength*2-100)/8
print 'fileLength, polylineNum:',fileLength, polylineNum
read other 72 bytes in header
s = shxFile.read(72)
convert into values
header = struct.unpack("<iidddddddd",s)
get boundingbox for the shape file
minX, minY, maxX, maxY = header[2],header[3],header[4],header[5]
##3. read records¡¯ meta information, such as offset,
and content length for each record,

define an empty list for holding offset of each feature in main file
recordsOffset = []
loop through each feature
for i in range(0,polylineNum):
 # jump to beginning of each record
 shxFile.seek(100+i*8)

CODE 6.8
Reading and visualize polyline shapefiles. (Continued)

111Shapefile Handling

 # read out 4 bytes as offset
 s = shxFile.read(4)
 offset = struct.unpack('>i',s)
 # keep the offset in the list
 print 'offset is:', offset
 recordsOffset.append(offset[0]*2)
close the index file
print recordsOffset

#--------Part 2: read each polyline and prepare them in right order.
open the main file for read in binary
shpFile = open("Partial_Streets.shp","rb")
shapefile name can be replaced with any polyline
define an empty list for polylines
polylines = []
loop through each offset of all polylines
##4. read data dynamically based on each record content structure
for specific shape types
for offset in recordsOffset:
 # define two lists for holding values
 x, y = [], []
 # jump to partsNum and pointsNum of the polyline and read them out
 shpFile.seek(offset+8+36)
 s = shpFile.read(8)
 # generate an empty polyline object
 polyline = Polyline()
 partsNum, pointsNum = struct.unpack('ii',s)
 polyline.partsNum = partsNum
 print 'partsNum, pointsNum: ',partsNum, pointsNum

read the list of parts holding the starting sequential number of
point
 # in that part
 s = shpFile.read(4*partsNum)
 """
 Compose the unpack format based on number of parts
 When we unpack a binary string, we need a format (e.g., 'i' for

one integer,
 'ii' for two integer). However, we do not know how many

integer(partsNum)
 we need to unpack, therefore we use a loop to iterate the

partsNum.
 For each partsNum, we add one 'i' to the str. Therefore if the

partsNum
 equal to, for example, 2, the str will equal to 'ii' after the

loop
 """
 str = ''
 for i in range(partsNum):
 str = str+'i'
 print 'str is :', str

CODE 6.8 (Continued)
Reading and visualize polyline shapefiles. (Continued)

112 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 # get the starting point number of each part and keep in a
partsIndex list

 polyline.partsIndex = struct.unpack(str,s)
 # loop through each point in the polyline
 points = []
 for i in range(pointsNum):
 # read out polyline coordinates
 # and add to the points' x, y coordinates' lists
 # ADD CODES TO READ THE COORDINATES VALUES HERE
 #5. assemble data into objects of point, polyline,
 # and polygon or other types.
 point = Point(x, y)
 points.append(point)
 # assign points lists to the polyline
 polyline.points = points
 # add the polyline read to the
 polylines.append(polyline)
#--------------Part 3: prepare to visualize the data
create main window object
#8. Analyze and process (visualize) data as needed
root = Tk()
define window size
windowWidth, windowHeight = 800, 600
calculate ratios of visualization
ratiox = windowWidth/(maxX-minX)
ratioy = windowHeight/(maxY-minY)
take the smaller ratio of window size to geographic distance
ratio = ratiox
if ratio>ratioy:
 ratio = ratioy
create canvas object
can = Canvas(root, width = 800, height = 600)
loop through each polyline
for polyline in polylines:
 #define an empty xylist for holding converted coordinates
 xylist = []
 # loop through each point
 # and calculate the window coordinates, put in xylist
 for point in polyline.points:
 pass
ADD CODES HERE TO TRANSFORM THE COORDINATE SYSTEM BASED ON RATIO #
FOUND
for k in range(polyline.partsNum):
 #get the end sequence number of points in the part
 if (k==polyline.partsNum-1):
 endPointIndex = len(polyline.points)
 else:
 endPointIndex = polyline.partsIndex[k+1]

 #define a temporary list for holding the part coordinates
 tempXYlist = []

CODE 6.8 (Continued)
Reading and visualize polyline shapefiles. (Continued)

113Shapefile Handling

 1. Type/copy the code into the programming window, save the python
file.

 2. Copy the data Partial_Streets.shp and Partial_Streets.shx to the
same folder where you save the python .py file.

 3. Run the python file.
 4. Explore and analyze the code to understand each section of

the code.

6.6 Chapter Summary

This chapter introduces vector data file formats, ESRI’s shapefile format, and
explains how to read the files through the Mini-GIS:

• Learn how to process binary data.
• Become familiar with different shapefile file structures, including

.shp and .shx.
• Read the .shp and .shx using Python.
• Handle point shapefiles.
• Handle polyline shapefiles.

PROBLEMS

 1. Pick a polyline shapefile with 10–100 features and one polygon file
with 10–100 features.

 #take out points' coordinates for the part
 #and add to the temporary list
 for m in range(polyline.partsIndex[k], endPointIndex):
 pass
#ADD CODES HERE TO COMPOSE THE XYlist FOR DRAWING EACH LINE SEGMENT.
 # create the line
 #can.create_line(tempXYlist,fill='blue')
#add lines to window and show up the window
can.pack()
root.mainloop()

#9. close file
shxFile.close()
shpFile.close()

CODE 6.8 (Continued)
Reading and visualize polyline shapefiles.

114 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 2. Write a Python program to read the polylines and polygons from
the shapefiles. (We can use .shp and .shx files.)

 3. Construct polyline and polygon objects in Python.
 4. Draw the polylines/polygons using Tkinter package.
 5. Comment and explain the program to show the logic flow of your

programming by referring to Code 6.8.

115

7
Python Programming Environment

There are several branches of Python programming environment, most of
which are based on the Python Software Foundation open-source Integrated
Development Environment (IDE). This chapter introduces the general
aspects of the open-source IDE, including different aspects of programming
interfaces, path setup, debugging, highlighting, and module management.
This was exemplified in the Mini-GIS package in the previous chapters.

7.1 General Python IDE

Python is an interpretive (or interactive) language. Therefore, we do not need
to compile the code to an executable file (e.g., .exe, or .jar file) to run it. There
are two ways for a Python interpreter to read and apply the code.

7.1.1 Python Programming Windows

7.1.1.1 Command-Line GUI

In the windows system, the command-line GUI of Python IDE can be
accessed from Windows Program→Python→Python GUI (command-line).
The command-line can be used as a DOS or Linux command-line GUI. A
Python statement typed in the command-line GUI will be executed directly.
There are several Python commands that can only be executed on the com-
mand-line GUI (Figure 7.1), such as trying the fibo method in Chapter 6 of
Python’s online tutorial. However, this is the least friendly development
window because you cannot customize it and the code is not colored to illus-
trate the code structure while typing.

7.1.1.2 Interactive GUI

Another Python IDE is the Python IDLE window, where the Python inter-
preter will execute each command typed in the interactive GUI (Figure 7.2).
IDLE is useful for practicing the Python syntax, particularly for novice users
who are not familiar with the Python language, or for those who want to use
Python for simple ‘calculator’ operations, for example, calculate 510. When
using the IDLE interface, however, the commands are lost once the window

116 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

is closed; therefore, the interactive GUI is not appropriate for writing com-
plex programs.

7.1.1.3 File-Based Programming

A file-based programming window (can be brought up from Python IDLE
through menu File→New) provides a convenient way to preserve the code
by saving the code in a Python file (Figure 7.3). This window can be invoked

FIGURE 7.1
Python Command-line GUI.

FIGURE 7.2
Python Interactive GUI.

117Python Programming Environment

from the ‘File→New Window’ of the Python IDLE. Within this window,
there are three ways to execute the code: (a) press F5, (b) click on Run→Run
Module, or outside the window (c) double click on the .py file in Windows
explorer (the Python IDE must be installed for this to work).

7.1.2 Python IDE Settings

The Python IDLE can be customized with the “IDLE Preferences” dialog,
which can be invoked through Options→Configure IDLE in the IDLE menu.

7.1.2.1 Highlighting

Coloring the code can help you better understand, capture, communicate,
and interact with peer programmers. In Python IDLE, code (including com-
ments) can be highlighted with different colors based on the types of the

FIGURE 7.3
Python file-based programming window.

118 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

words input. For example, keywords can be set as yellow, variables as black,
and functions as blue (Figure 7.4). These settings can be customized in the
“Highlighting” tab.

7.1.2.2 General Setting of the Programming Window

The initial status of Python IDLE is configured in the “General” tab (Figure
7.5). Settings include which window to initialize (either the interactive or the
edit window), how to save the code, the initial window size, paragraph format-
ting, and source encoding method.

7.1.2.3 Fonts Setup for the Coding

The “Fonts/Tabs” tab can set up the code font size, style, and indentation
width (Figure 7.6).

7.1.3 Debugging

Testing the code to fix errors and improve the robustness is called debugging.
It is a must-have process in programming because it is almost impossible to

FIGURE 7.4
Color of different parts of a program can be highlighted for better formatting, communication,
interaction, and programming.

119Python Programming Environment

FIGURE 7.5
General setting for the initial status of Python IDLE.

FIGURE 7.6
Customize font size, style, and indentation for Python IDLE.

120 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

write bug-free codes. This section will go through basic skills for errors/
exceptions handling and debugging.

7.1.3.1 SyntaxError

Syntax errors occur when syntax requirements are not met, and are detected
in the interpreting process before the program is executed. Syntax errors are
removed when translating the source code into a binary code. When a syntax
error is detected, the Python interpreter outputs the message “SyntaxError:
invalid syntax.” Such errors occur frequently, especially when you are unfa-
miliar with Python’s syntax. Code 7.1 shows a syntax error with a missing
colon (‘:’) after True.

Unfortunately, error messages are often not informative. Described below
are four common mistakes that result in syntax errors; this list can be used
to help you detect problems:

• Indent correctly? In Code 7.2, elif statement should be at the same
indentation level as if statement.

• Using the keywords correctly? Are there typos in the keywords?
• Using keywords as the names of variables, functions, or classes?
• Incomplete statements, such as

• An unclosed bracket ‘{’, ‘ (’, ‘[’, quote ‘, “
• Omitting the colon symbol “:”. For example, omitting the colon

at the end of a def or while statement would yield a SyntaxError:
invalid syntax message (Code 7.3).

• Using if, elif, or while without any conditional expression.

To handle syntax errors, first check those four aspects.

>>> if (i>0):
 print 'i is bigger than 0'
 elif: print 'i is smaller than 0'

SyntaxError: invalid syntax
>>>

CODE 7.2
If invalid syntax because of indentation.

>>> while True print 'hello world'
SyntaxError: invalid syntax
>>>

CODE 7.1
While invalid syntax problem.

121Python Programming Environment

7.1.3.2 Run-Time Exceptions

Errors detected during execution are called exceptions. If an exception is
not fixed, the program is terminated and yields a so-called traceback error
message (Code 7.4). Many operations could result in exceptions. For example,
transferring a nondigit string to a float (Code 7.4a and b), accessing elements
with index out of boundary (Code 7.4c), and numbers divided by 0 (Code
7.4d). Table 7.1 gives common exceptions and their corresponding causes.

KeyboardInterrupt
>>> while True
SyntaxError: invalid syntax
>>> while True:
 (a)
>>> def add()
SyntaxError: invalid syntax
>>> def add():
 (b)

CODE 7.3
Missing parts of a statement syntax error.

>>> float([1,2,3])

Traceback (most recent call last):
 File "<pyshell#11>", line 1, in <module>
 float([1,2,3])
TypeError: float() argument must be a string or a number
 (a)
>>> float('strv1')

Traceback (most recent call last):
 File “<pyshell#16>”, line 1, in <module>
 float('strv1')
ValueError: could not convert string to float: strv1
 (b)
>>> x = [1,2,3,4]
>>> x[4]

Traceback (most recent call last):
 File "<pyshell#14>", line 1, in <module>
 x[4]
IndexError: list index out of range
 (c)

>>> 1/0
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in <module>
 1/0
ZeroDivisionError: integer division or modulo by zero
 (d)

CODE 7.4
Examples of run-time exceptions.

122 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Troubleshooting those errors are very specific when an exception is
thrown during run time. The following steps can be taken to handle run-
time exceptions:

• Check the exception type and review reasons causing the exceptions
(Table 7.1).

• Look into the code, especially the line (indicated in the exception
message) that throws errors, and analyze what resulted in the excep-
tion. Sometimes, you may need to go up/down a few lines to identify
the real problem.

• If still not sure about the causes, use ‘print’ to output the values for
relative variables to check if they are right.

• Revise code and run again.

7.1.3.3 Handling Exceptions

Handling Exceptions is the process of detecting the potential exceptions
and dealing with them before the entire program fails (Python 2001b). Try….
except statement is used to catch exceptions (Figure 7.7). Put the code that
may produce run-time exceptions within the “try” block followed with the
“except” block. There are three ways to handle the “except” part based on
how specific the error message is following an exception.

You can catch each exception using a different except block (Figure 7.7a)
or catch multiple exceptions within one except block (Figure 7.7b). You
can also detect all exceptions without any exception type after except

TABLE 7.1

Built-In Exceptions

Class Name Reasons for Having Exceptions

Exception The root class for all exceptions

AttributeError Attempt to access an undefined object attribute

IOError Attempt to open a nonexistent file

IndexError Request for a nonexistent index of a sequence, for example, list

KeyError Request for a nonexistent dictionary key

NameError Attempt to access an undeclared variable

SyntaxError Code is ill-formed

TypeError Pass function an argument with wrong type object

ValueError Pass function an argument with correct type object but with an
inappropriate value

ZeroDivionError Division (/) or modulo (%) by a numeric zero

123Python Programming Environment

(Figure 7.7c). Although the first approach requires more coding, it is rec-
ommended because it provides the most detailed exception messages for
debugging. The last approach is not recommended because it does not
provide potential causes for the exceptions.

The try…finally statement is used to define clean-up actions that must be
executed under all circumstances (Code 7.5 and Code 7.6). This means that
the finally statements are executed regardless of whether or not the exception
occurs.

7.1.3.4 Add Exception Handles and Clean-Up Actions to File Read/Write

File operations may generate run-time exceptions, for example, the file or file
path does not exist. A try…except…finally… statement can be applied to catch
and handle the error. In Code 7.7, the file operation code is placed in the “try”
block, “except” is used to capture IOError exceptions, and “finally” is used
to close the file if it does exist.

(b)

(a) (c)

FIGURE 7.7
Raise and catch exceptions.

>>> try:
 pass #try block
>>> except:
 pass #except block
>>> finally:
 pass #finally block #executes regardless of exceptions

CODE 7.5
Uses “try…except…finally” to capture the ZeroDivisionError exception and remove result
from memory if an exception happened.

124 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

7.2 Python Modules

Modules are units for managing a complex set of codes within Python.
Python modules are a convenient way for organizing, sharing, and reusing
code. The essential knowledge for using modules includes (a) understanding
the concept, (b) becoming familiar with common and useful Python mod-
ules, (c) managing codes as modules, and (d) configuring/installing a new
module to the Python environment.

>>> def divide(x,y):
 result = None
 try:
 result = x/y
 return result
 except ZeroDivisionError:
 print 'Division by zero'
 finally:
 print 'Cleaning up'
 del result

>>> divide(3,1)
Cleaning up
3
>>> divide(3,0)
Division by zero
Cleaning up
>>>

CODE 7.6
Try…except…finally to clean up variables if an exception occurred.

>>> f = None
>>> try:
 f = open('sample.txt', 'r+')
 f.readline()
 f.readlines()
 f.seek(0)
 f.read()
 f.write('This is a test!')
>>> except IOError:
 print 'The file does not exist!'
>>> finally:
 ## Close the file if the file opened
 if f:
 f.close()

CODE 7.7
Uses try…except…finally to handle file operation exceptions.

125Python Programming Environment

7.2.1 Module Introduction

The code blocks that we developed during the hands-on practices have been
saved as files (.py). Modules provide a logical way to organize and reuse
these .py files. The Python code files can be imported as standard modules,
such as sys and math module. Once imported, functions and attributes con-
tained in the module can be used anywhere in the program.

A module is ‘compiled’ into a binary version .pyc. This process is automati-
cally accomplished when the module is first loaded and executed. This com-
piling mechanism makes the module load faster but not run faster. Figure 7.8
shows the system modules, including .py, .pyc files, and packages.

During programming, it is possible to organize different classes, func-
tions, and other components into different files to form different modules.

7.2.2 Set Up Modules

There are three ways to set up a path to allow the system to find the mod-
ule. The easiest way is to update the system path temporarily by using the
sys.path.append() method (Code 7.8). However, the path configuration is lost
when the Python GUI is restarted.

To make the path configuration persistent, change the system’s Environment
Variable in the following steps:

 1. Right click on “My computer” and select “Properties.”
 2. Click Advanced tab on the top; Click Environment Variables on the

bottom.
 3. Click New in either window.

FIGURE 7.8
System modules.

126 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 4. Add the “PYTHONPATH” variable, and set the value as “c:\
pythoncode.”

 5. Save and quit.
 6. Restart your Python interactive GUI.
 7. Check if your path can be found with sys.path by importing sys

module.

Another method of setting up the module file path is to specify it at the
beginning of the Python program as follows:

import sys, os
if os.getcwd() not in sys.path:
 sys.path.append(os.getcwd)

The first statement imports sys and os modules. The second statement
fetches the current file path using os.getcwd to check if it is already in the
system path, adding to the system path if not.

7.2.3 System Built-In Modules

Python comes with many built-in modules (Table 7.2). The popular ones
include os, sys, math, shutil, and others. One rule for using a module is to
import it first.

• The os module enables interactions with the operation system. For
example, checking the current operation system, the file system, or
determining the number of hard drives.

• The sys module provides system-specific parameters and functions.
Common utility scripts often need to process command-line argu-
ments. These arguments are stored in the sys module’s argv attri-
bute as a list.

>>> import sys
>>> sys.path.append('c:\ggs650code')
>>> sys.path
['C:/Users/Phil/Documents/courses/book - gis programming/codes',
 'C:\\WINDOWS\\System32', 'C:\\Python27\\ArcGIS10.2\\Lib\\idlelib',
 'C:\\WINDOWS\\SYSTEM32\\python27.zip', 'C:\\Python27\\ArcGIS10.2\\DLLs',
 'C:\\Python27\\ArcGIS10.2\\lib', 'C:\\Python27\\ArcGIS10.2\\lib\\plat-win',
 'C:\\Python27\\ArcGIS10.2\\lib\\lib-tk', 'C:\\Python27\\ArcGIS10.2',
 'C:\\Python27\\ArcGIS10.2\\lib\\site-packages',
 'C:\\Program Files (x86)\\ArcGIS\\Desktop10.2\\bin',
 'C:\\Program Files (x86)\\ArcGIS\\Desktop10.2\\arcpy',
 'C:\\Program Files (x86)\\ArcGIS\\Desktop10.2\\ArcToolbox\\Scripts',
 'c:\\ggs650code']
>>>

CODE 7.8
Add the path to the module through sys.path.append() method will add the path to the end of
sys.path list.

127Python Programming Environment

• shutil is a module providing high-level file operations.
• glob gets file lists from directory wildcard searches.
• re is a short module that provides regular expression tools for

advanced string processing.
• The random module provides tools for making random selections.
• The datetime module supplies classes for manipulating dates and

times in both simple and complex ways.
• Common data archiving and compression formats are directly sup-

ported by additional modules, including zlib, gzip, bz2, zipfile, and tarfile.

math (Figure 7.9) is the most popular module used in this book.
We can always use built-in function dir() to find what is supported in a

new module. Figure 7.10 shows that the math module includes many meth-
ods, such as acos, sin, fabs, etc., and several private attributes, such as ‘__
doc__’, ‘__name__’, and ‘__package__’. These three attributes are typically
included in all modules. The built-in function help() can be used to check the
description of the module and functions.

7.3 Package Management and Mini-GIS

7.3.1 Regular GIS Data Organization

Figure 7.11 shows the ArcMap user interface managing multiple datasets.
Each dataset is a layer after it is loaded from the disk and rendered on the

TABLE 7.2

System Built-In Modules

Module Description Examples

os Interact with the operating system os.system(‘dir’)
sys System-specific parameters and

functions
sys.path, sys.exit()

math Floating point math functions math.pow()
shutil High-level file operations shutil.copyfile(), shutil.move()
glob Get file lists from directory

wildcard searches
glob.glob(‘*.shp’)

re Regular expression tools for
advanced string processing

re.match(‘c’, ‘abcdef’)

datetime Manipulate dates and times date.today()
zlib, gzip, bz2,
zipfile and tarfile

Data archiving and compression ZipFile(‘spam .zip’, ‘w’)

128 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

map display area (Figure 7.12). The composite layers of a map show the street,
park, house (Parcels), and river information about the city of Westerville,
Ohio. Upon loading a dataset to the memory, each layer includes a series of
objects (e.g., each house can be treated as one object).

7.3.2 Mini-GIS Package

In Chapters 1 through 6, we have developed a series of classes and func-
tions (Figure 7.13). In our previous practice, the visualization module has
been independent of the Point, Polyline, and Polygon module (Figure 7.13a).
However, visualization is added as a method to the Point, Polyline, and
Polygon module through the inheritance from a common super class, the

FIGURE 7.9
math methods.

FIGURE 7.10
Check a module.

129Python Programming Environment

Feature class (Figure 7.13b). Therefore, the visualization does not have to be
defined many times.

Putting these together creates a package for reading and displaying ESRI
shapefiles, including simple functions (e.g., calculate the distance and cen-
troid). As shown in Figure 7.14, Tkinter is a built-in module for data visual-
ization in a GUI, and struct is used for reading binary data. A feature class
is a simple module including only two methods, __init__() and vis() (Figure
7.14). Polyline and Point classes are inherited from the Feature class and
include two methods, __init__() and vis(), as well. In addition to these two
methods, Polylines also include a method length(). A polygon is inherited
from the Polyline class and overrides the vis() function.

FIGURE 7.11
ArcMap user interface.

Map
attribute

Layer
attribute

Object
attribute Object 1 Object k

Layer 1 Layer m Layer n

Map

FIGURE 7.12
Map data organization hierarchy.

130 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Point Polyline Polygon VisualizationReading data
for objects

Point

Coordinates

Distance Length Length

Visualization

Coordinates Text

Shapefiles

VisualizationVisualization

Coordinates

Coordinates

(b)

(a)

Distance Length
Length,

Centroid,
Area

Coordinates Text
Point,

Polyline,
Polygon

Shapefiles

Coordinates

Polyline Polygon Reading data
for objects

FIGURE 7.13
Developed code. (a) Visualization explicitly defined separate from Point, Polyline, and Polygon. (b)
Visualization is inherited from Feature class therefore, no need to define visualization explicitly.

Feature

Polyline

Polygon

struct ReadShapeFile

Features

Tkinter Layer

MapInherit

Import Init

Point

FIGURE 7.14
Hierarchy of primary Mini-GIS modules (Tkinter and struct are Python built-in modules).

131Python Programming Environment

7.4 Hands-On Experience with Mini-GIS

Mini-GIS is a tiny GIS software package developed using Python. The source
code can be downloaded from the course material package. After download-
ing and unzipping the miniGIS.zip file, there will be a miniGIS folder con-
taining several Python files and a sample data folder shown in Figure 7.15.

In the folder, *.py files are the Python files and *.pyc files are the compiled
python files. The ‘sample-data’ folder contains several shapefile data folders;
the ‘cities’ folder, which contains world city data; ‘countries,’ which contains
world country data; the ‘Fairfax’ folder contains schools, highways, major
utility lines, and regions in Fairfax; and the ‘multi-parts-polyline’ folder con-
tains two polylines with multiparts.

7.4.1 Package Management and Mini-GIS

The ReadShapeFile module reads different types of features, or layers,
which include Points, Polylines, and Polygons (Figure 7.16). The Commons

FIGURE 7.15
Mini-GIS code organization.

132 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

module provides common reusable functions; The Dialogs Module provides
the two dialogs to select layers; and the Events module provides mouse-
operated events handling.

Mini-GIS module includes the main function. A directory becomes
a Python package if it contains __init__.py. It includes the following
functions:

 1. The main functions for calling other parts
 2. Generate a window
 3. Input the datasets
 4. Visualize the data
 5. Show the window

Normally, this is the only part you need to understand fully if you get the
package from elsewhere; otherwise, the interface description is enough to
use a package.

7.4.2 Run and Practice the Mini-GIS Package

We can run the package in the following workflow:

 1. Add the path to the sys path; or just double click the MiniGIS.py; or
use IDLE to run the package. Here, use the third method to open
MiniGIS.py.

 2. Click Run→Run module menu or the ‘F5’ button to run the package.
It will bring up a window, which has the title ‘MiniGIS.’

 3. Import shapefile in two ways: ‘Import shp’ and ‘Add shp layer’ in
the File menu. Figure 7.17a illustrates the map of imported Fairfax
shapefile folder data.

FIGURE 7.16
Primary functions are feature modules and map modules.

133Python Programming Environment

 4. View the map using the menu under ‘View’ menu: zoom in, zoom
out, zoom to extent, zoom to full window and close layer. Figure
7.17b shows zooming the map to the left boundary. Figure 7.17c
shows the outputs in the Python Shell, which also outputs the map
ratio.

Mini-GIS also supports drawing features of different types: point, poly-
line, circle, and polygon. To draw a feature, click on ‘Edit’ to bring up a dia-
log box and select a layer. Figure 7.18 shows the feature added to the map
in the bottom left corner. However, the current Mini-GIS does not support
exporting these added features to the shapefile.

The Mini-GIS can also calculate the intersections between two polyline
layers. Figure 7.19 indicates the intersections between utility layers and high-
way layers with yellow circles.

(a)

(c)

(b)

FIGURE 7.17
(a) Using Mini-GIS to import Fairfax shapefile folder. (b) Zoom to extent. (c) Python Shell
outputs.

134 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

FIGURE 7.18
Draw features.

FIGURE 7.19
Intersections between HIGHWAY and UTILITY_LINES layers.

135Python Programming Environment

7.5 Chapter Summary

The chapter reviews the IDE of Python and demonstrates how to custom-
ize the settings of a Python IDE. Modules are also discussed and a Mini-
GIS package is introduced for reading and visualizing ESRI Shapefiles. The
implementation details (such as reading from shapefiles) of the Mini-GIS
will be introduced in the following chapters.

PROBLEMS

 1. Take the data used in Chapter 4.
 2. Based on the solution to problems in Chapter 4, how can you find the

bounding box (minx, miny, maxx, maxy) of the polylines?
 3. Prepare the data to visualize (coordinates transform, etc.) based on

the window size you want to draw.
 4. Program to draw the data (using Canvas and related objects/

functions/widgets). Organize your program in a file or several files
to set up a module in the system; import the module and execute the
module that was developed and configured.

 5. Develop a word document explaining the program.
 6. Provide comments for all lines in the code to explain the logic.

http://taylorandfrancis.com

137

8
Vector Data Algorithms

GIS is different from other software technologies due to its algorithms and
analyses for spatial relationships in spatial data. This chapter introduces
a similar category of algorithms for vector data processing, including the
calculations of centroid (8.1), area (8.2), length (8.3), line intersection (8.4),
and point in polygon (8.5), which are the fundamental algorithms based on
geometry and the spatial relationship.

8.1 Centroid

Centroid can be considered as the gravity center of a feature (wiki.gis
2011). One application example of centroid is to set up the annotation
location, such as labeling a building on a map. This section discusses the
centroid calculation for three geometry types: triangle, rectangle, and
polygon.

8.1.1 Centroid of a Triangle

A triangle’s centroid is defined as the intersection point of three medians of
a triangle (Johnson 1929, Figure 8.1). A triangle’s median is the line segment
extending from one vertex to the midpoint of its opposite side. Given three
vertices (x1,y1), (x2,y2), and (x3,y3) of a triangle, the centroid (xcentroid, ycentroid) can
be calculated with Equation 8.1.

x
x x x

y
x x x

centroid

centroid

= + +

= + +

()

()

1 2 3

1 2 3

3

3

(8.1)

8.1.2 Centroid of a Rectangle

A rectangle’s centroid is the intersection of the rectangle’s two diago-
nals (Figure 8.2). Given the bottom-left vertex (xmin, ymin) and upper-right

138 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 vertex (xmax, ymax) of a rectangle, the centroid can be calculated with
Equation 8.2.

x
x x

y
y y

centroid
min max

centroid
min max

= +

= +

()

()
2

2

(8.2)

8.1.3 Centroid of a Polygon

For any non-self-intersecting closed polygon with n points (x0,y0), (x1,y1), …,
(xn−1,yn−1), the centroid can be calculated with Equation 8.3, where A is the
area of the polygon, which is discussed in Section 8.2 (Bourke 1988). In this
formula, the last vertex (xn,yn) of the polygon is assumed to be the same as
the first vertex (x0,y0). In fact, triangles and rectangles are special polygons,
so Equation 8.3 can also be used for calculating the centroid of triangle and
rectangle.

(x1, y1) (x2, y2)

(x3, y3)

(x, y)

FIGURE 8.1
A triangle’s centroid is the intersection point of the three medians. (Refer to http://jwilson.
coe.uga.edu/EMAT6680Su09/Park/As4dspark/As4dspark.html. for the proof of concurrency
of the three medians.)

(xmax, ymax)

(xmin, ymin)

(x, y)

FIGURE 8.2
A rectangle’s centroid is the intersection of two diagonals.

http://jwilson.coe.uga.edu/EMAT6680Su09/Park/As4dspark/As4dspark.html
http://jwilson.coe.uga.edu/EMAT6680Su09/Park/As4dspark/As4dspark.html

139Vector Data Algorithms

x
x x x y x y

A

y

i

n

i i i i i i

i

n

centroid

centroid

=
+ −

=

=

−

+ + +

=

−

∑ 0

1

1 1 1

0

6

()()

11

1 1 1

6
∑ + + ++ −

()()y y x y x y

A

i i i i i i

(8.3)

8.2 Area

This section introduces how to calculate the area of polygon feature.
Two types of polygons are discussed: a simple polygon and a polygon with
hole(s).

8.2.1 Area of a Simple Polygon

A simple polygon is a polygon without self-intersecting sides that forms
a closed path. Figure 8.3a shows an example of a simple polygon with six
points (vertices), where point 1 is the same as point 6, forming a closed path.
The points are recorded in clockwise order.

To calculate the area of this polygon, we first draw vertical lines
from each point of the polygon to the x-axis to form five trapezoids:
A and B (Figure 8.3b), and C, D, and E (Figure 8.3c). By visually examin-
ing the five trapezoids, the area of the polygon (SP) can be derived from
Equation 8.4.

 S S S S S SP A B C D E= + − − − (8.4)

where SA, SB, SC, SD, and SE denote the corresponding areas of the five
trapezoids.

(a)

x

y

1,6

2

3

2

3

45 45

1,6

2

31,6

C D E

= –A B

(b)

x

(c)

x

FIGURE 8.3
Area calculation of a simple polygon.

140 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Since the coordinates for each point are known, we can calculate the area
for each trapezoid with Equation 8.5.

S
x x y y

S
x x y y

S
x x y y

S

A

B

C

D

= − +

= − +

= − +

=

()()

()()

()()

(

2 1 2 1

3 2 3 2

4 3 4 3

2

2

2
xx x y y

S
x x y y

5 4 5 4

6 5 6 5

2

2

− +

= − +

)()

()()
E

(8.5)

By plugging Equation 8.5 into Equation 8.4, we derive Equation 8.6 to cal-
culate the area of the polygon.

S

x x y y
x y x y

i

i i i i

i

i i i iP = − + = −
=

+ +

=

+ +∑ ∑
1

5
1 1

1

5

1 12
1
2

()()
()

(8.6)

By generalizing Equation 8.6, we have Equation 8.7 to calculate the area for
any simple polygon with n points (point0 = pointn).

A x y x y

i

n

i i i i= −
=

−

+ +∑1
2

0

1

1 1()

(8.7)

8.2.2 Area of a Polygon with Hole(s)

A polygon could have one or more holes. For instance, when a lake is repre-
sented as a polygon, an island in the lake can be represented as a hole in the
polygon. When calculating area for a polygon, we need to subtract the area(s)
of the hole(s) from the area of the encompassing polygon. Figure 8.4 shows a

C
–

– B

A +

FIGURE 8.4
A polygon with two holes.

141Vector Data Algorithms

polygon (A) with two holes (B and C). In GIS, the vertices of a hole are recorded
in counterclockwise order. Hence, the area of the holes SB and SC calculated
using Equation 8.7 will result in a negative number (SA < 0, SB < 0). Therefore,
the actual area of polygon A can be calculated as S = SA − (−SB) − (−SC) = SA +
SB + SC.

8.3 Length

Length calculation finds the length of a line feature and the perimeter of a
polygon feature.

8.3.1 Length of a Straight Line Segment

Suppose there are two points: P1(x1, y1) and P2(x2, y2) in the 2D Cartesian coor-
dinate system. To calculate the length of the line segment P1P2, we draw a
horizontal line from P1 and a vertical line from P2 to form a right triangle
(Figure 8.5). Suppose that the length for the horizontal side is a, for the verti-
cal side is b, and the hypotenuse is c. According to the Pythagorean theorem,
we have the equation c2 = a2 + b2.

If the side lengths of the two right angles a and b are known, the length of
the third side, which is the length of the line segment P1P2, can be derived.
Since a and b are parallel to the axis, we have a = x2 − x1, b = y2 − y1. Plugging
these two equations to c2 = a2 + b2, Equation 8.8 is derived to calculate the
length of a line segment:

 P P c x x y y1 2 2 1
2

2 1
2= = − + −() ()

(8.8)

a

b
c

α
P1(x1, y1)

P2(x2, y2)

x

y

FIGURE 8.5
Length calculation of a straight line segment.

142 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

8.3.2 Length of a Polyline

A polyline consists of many line segments, so the length of a polyline is the
sum of the length of all line segments.

Suppose there is a polyline with n + 1 points: p1, p2, p3,…,pn, and pn+1
(Figure 8.6). Based on Equation 8.8, the length of this polyline can be
 calculated by summing the lengths of all line segments (Equation 8.9).

L PP x x y y

i

n

i i

i

n

i i i ipolyline = = − + −
=

+

=

+ +∑ ∑
1

1

1

1
2

1
2() ()

(8.9)

8.4 Line Intersection

Checking intersections between two lines is fundamental for the many
spatial relationship calculations. When determining line intersections, we
need to check whether or not the two line segments have shared point(s).
Given two line segments, Line1 ((x1,y1), (x2,y2)) and Line2 ((x3,y3), (x4,y4)) in the
Cartesian coordinate system (Figure 8.7), if two line segments intersect then
there must be at least one point (x0,y0) that is on both segments. So the ques-
tion is how to find out whether there is a common point for the two line
segments. Furthermore, how do we calculate the coordinate values of the
common point (x0,y0)?

A common method to represent a line in the Cartesian coordinate system
is to use the linear equation: y = ax + b, where x, y are the variables, a, b are
the constants or parameters, a is the slope of the line, and b is the intercept of
the line with y-axis (Figure 8.8).

Based on this, Line1 can be represented as y = a12x + b12; and Line2 can be
represented as y = a34x + b34, where a12, b12, a34, b34 are constant values that
can be calculated based on the four points (x1,y1), (x2,y2), (x3,y3), and (x4,y4) as
detailed below.

P1(x1, y1)

P2(x2, y2)

P3(x3, y3)

P1(x4, y4)

Pn(xn, yn)

Pn+1(xn+1, yn+1)
P1P2

PnPn+1

P2P3
P3P4

FIGURE 8.6
A polyline with n + 1 points.

143Vector Data Algorithms

Calculating a12, b12, a34, b34: Since the two points (x1,y1), (x2,y2) are on Line1, we
have the following equation group (Equation 8.10):

y a x b

y a x b
1 12 1 12

2 12 2 12

= +
= +

(8.10)

By solving Equation 8.10, a12, b12 is represented as Equation 8.11:

a
y y
x x

b y a x

12
2 1

2 1

12 1 12 1

= −
−

= −

(8.11)

where x2 is not equal to x1.

x

Line 2

Line 2

y

(x4, y4)

(x2, y2) Line 1

Line 1

(x3, y3)

(x1, y1) (x0, y0)

FIGURE 8.7
Illustration of line segments intersection.

y = b
y = ax + b

x = –b/a

y

x

FIGURE 8.8
Mathematical representation of a line in Cartesian coordinate system.

144 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Similarly, for Line2, we have the following equation group (Equation 8.12):

y a x b

y a x b
3 34 3 34

4 34 4 34

= +
= +

(8.12)

By solving Equation 8.12, a34, b34 can be represented as Equation 8.13:

a
y y
x x

b y a x

34
4 3

4 3

34 3 34 3

= −
−

= −

(8.13)

where x3 is not equal to x4.
As mentioned above, if Line1 and Line2 intersect, there must be a point

(x0,y0) that is common to both line segments. In such case, (x0,y0) is the solution
for the binary linear equation group (Equation 8.14):

y a x b

y a x b

= +
= +

12 12

12 12
(8.14)

Accordingly, the problem of looking for the common point is transformed
to checking whether or not the equation group 8.14 has a solution. The solu-
tion (if exists) for Equation 8.14 can be represented as Equation 8.15:

x
b b
a a

y a x b

0
12 34

34 12

12 0 12

= −
−

= +

(8.15)

where a34 is not equal to a12, and a12, b12, a34, b34 can be calculated based on the
given four points. It should be noted that (x0,y0) is the solution for two infinite
lines. To check whether (x0,y0) falls on both Line1 ((x1,y1), (x2,y2)) and Line2
((x3,y3), (x4,y4)), the following test is required:

x x x

x x x

y y y

y y y

1 0 2

3 0 4

1 0 2

3 0 4

≤ ≤
≤ ≤
≤ ≤
≤ ≤

If the four conditions are all true, Line1 and Line2 intersect at point (x0,y0).
Otherwise, they do not intersect.

145Vector Data Algorithms

The above method for checking the intersection does not work for two
special scenarios: parallel lines and vertical lines.

8.4.1 Parallel Lines

Since parallel lines have the same slope, a34 is equal to a12. Therefore,
Formula 8.15 does not work for parallel lines (divided-by-zero when a34 = a12).
This makes sense since parallel lines will never intersect. However, if two
line segments are on the same line, we also have a34 = a12. For this scenario,
the two line segments will either overlap (have one or more than one shared
point) or not intersect.

8.4.2 Vertical Lines

As illustrated in Figure 8.9, if Line1 ((x1,y1), (x2,y2)) is vertical, we have x2 = x1.
In this case, the x coordinate of the intersection point is equal to x1 (x0 = x1),
and the y coordinate of the intersection point (y0) can be calculated as by
plugging x0 to the equation of Line2 as Equation 8.16.

 y a x b0 34 0 34= + (8.16)

Once (x0,y0) is calculated, the same test is required to check whether the
intersection point falls on both line segments. The same method can be
applied if Line2 ((x3,y3), (x4,y4)) is vertical.

If both lines are vertical, they are parallel. This can be handled the same
way as parallel lines.

(x4, y4)

(x2, y2)

(x3, y3) (x1, y0)

(x1, y1)

FIGURE 8.9

Line1 ((x1,y1), (x2,y2)) is vertical.

146 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Since a polyline consists of two or more line segments (Figure 8.10), the
 following procedure can be used to check whether the two polylines inter-
sect: for each line segment in polyline1, check whether it intersects with any
of the line segments in polyline2. Once a single intersection point is found,
we can conclude that the two polylines intersect. We may also find out all
the intersection points of two polylines by checking each of the line segment
pairs between the two polylines.

8.5 Point in Polygon

A ray casting algorithm (Shimrat 1962) is often used to check whether a point
is inside a polygon. With a ray casting algorithm, a ray is first drawn starting
from the point to any fixed direction (normally take a vertical or horizontal
direction to simplify the calculation), and then test how many intersection
points that ray has with the polygon. If the number of the intersection points
is odd, the point is in the polygon, otherwise, the point falls outside of the
polygon.

Figure 8.11 illustrates how the ray casting works for testing whether or not
each of the seven given points are in the polygon. Table 8.1 summarizes the
number of intersection points for the seven vertical rays.

8.5.1 A Special Scenario

If the ray passes the polygon vertex, then the ray intersects with both edges
sharing the vertex. Counting this scenario as two intersection points is
problematic. In Figure 8.12, the ray of point1 passes a vertex, which gen-
erates two intersection points, incorrectly suggesting that this point is
outside of the polygon based on the odd–even rule. For point3, which
is outside the polygon, the number of intersections is also two, which is

P2(x2, y2)

P2(x2, y2)

Pn(xm, ym)

Pn(xn, yn)

P1(x1, y1)

P1(x1, y1)

FIGURE 8.10
Intersection checking of two polylines.

147Vector Data Algorithms

consistent with the rule. Special consideration is needed to resolve such
scenarios.

Examining carefully, the difference is that, for point1, the two edges
sharing the vertex are on different sides of the ray, while for point three,
the two edges are on the same side (left) of the ray. A general pattern is that
if the edges are on different sides, we consider it as one intersection point,
but if the edges are the same side, then we consider it as two intersection
points. Based on this pattern, both edges of point2 are on the right side of
the ray as it passes through the vertex (i.e., two intersections); adding the
unambiguous intersection at the top of the polygon results in a total of
three intersection points, and we can correctly conclude that it falls inside
the polygon.

1
2 5

7

4

3 6

FIGURE 8.11
Illustration of ray casting algorithm.

TABLE 8.1

Number of Intersection Points for the Seven Rays

Point Id Number of Intersection Points Point in Polygon?

1 0 No
2 2 No
3 1 (odd) Yes
4 4 No
5 5 (odd) Yes
6 2 No
7 6 No

148 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

8.6 Hands-On Experience with Python

8.6.1 Using Python to Draw a Polygon and Calculate the Centroid

Download the Python file chap8_centroid_pract.py from the course mate-
rial package and run the code to get the “Centroid Practice” window. Select
“Draw Polygon” and click on the canvas to draw the polygon, then click
“Finish Draw” to finish the drawing. Select “Calculate Centroid” to calculate
and visualize the centroid on the canvas. Identify and analyze the code for
the centroid calculation and visualization (Figure 8.13).

8.6.2 Using Python to Draw Polygon and Calculate the Area of Polygon

Download the Python file chap8_area_pract.py from the course material
package and run the code to bring up the “Area Practice” window. Select
“Draw Polygon” and click on the canvas to draw a polygon, then click on
“Finish Draw” to finish drawing the image. Finally, click on “Calculate
Area” to show the area of this polygon. Identify and analyze the code for the
area calculation (Figure 8.14).

8.6.3 Using Python to Draw Line Segments and Calculate the Intersection

Download the Python file chap8_intersection_pract.py from the course
material package and run the code to get the “Line Intersection Practice”
window. Select “Draw Lines” and click on the canvas to draw one line, then
click “Finish Draw”. Repeat to draw another line, then click the “Check
Intersection” button to see whether they intersect. Please identify and
 analyze the code for intersection calculation (Figure 8.15).

1
2

3

FIGURE 8.12
Special scenarios: ray passes the polygon vertex.

149Vector Data Algorithms

FIGURE 8.13
“Centroid Practice” window.

FIGURE 8.14
“Area Practice” window.

150 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

8.7 Chapter Summary

This chapter introduces several popular vector data algorithms within
GIS, including line intersections, centroid calculations, area and length
 calculations, and point-in-polygons. Following the discussion of the
 algorithms, hands-on practices are provided, aiming to demonstrate
how to programmatically implement the vector data algorithms using
Python.

PROBLEMS

• Review the class material.
• Review the class practice code: chap8_intersection_pract.py
• Create the following four line segments: [(50,200),(400,200)],[(60,450),

(400,450)],[(100,600),(350,250)],[(300,100),(300,400)]
• Write a program to determine whether they intersect with each

other.
• Display the line segments on the monitor and draw the intersected

point in a different color and size.

FIGURE 8.15
“Line Intersection Practice” window.

Section III

Advanced GIS
Algorithms and Their

Programming in ArcGIS

http://taylorandfrancis.com

153

9
ArcGIS Programming

Programming all GIS analysis or mapping functions from scratch is not
 feasible because of their complexities; however, many commercial and open-
source packages, such as ArcGIS, support such comprehensive GIS func-
tions. Integrating various functions from existing packages will satisfy
analytical requirements of an application. ArcGIS supports such workflow
implementation through Python programming, which has become a sought-
after capability for GIS professionals. This chapter introduces programming
in ArcGIS for Desktop (i.e., ArcMap) using Python. The ArcGIS knowledge
introduced in this chapter will set the foundation for later chapters when
programming for algorithms and analyses.

9.1 ArcGIS Programming

Many practical GIS applications are complex and involve multiple GIS func-
tions, such as modifying and querying features and their associated attributes.
Taking hospitalization as a typical GIS example, suppose there are a group
of potential patients who would like to go to the nearest hospitals. In order
to locate the nearest hospital for each potential patient, iteration needs to go
through every patient to identify the hospitals within that patient’s neigh-
borhood and then locate the nearest hospital of each potential patient. This
becomes cumbersome when there are a large number of patients.

Manually conducting and repeating spatial data querying and process-
ing is time-consuming, tedious, and error-prone. It is, therefore, beneficial to
automate such processes using the functionality of a sophisticated GIS pack-
age. ArcGIS ModelBuilder (Figure 9.1, Esri 2016a) allows users to integrate
multiple tools from ArcToolbox (Figure 9.1a) to form an analysis workflow
in a graphical user interface. Note that ArcToolbox is reorganized in the new
version of ArcGIS (e.g., 10.4 and pro version). The related information can be
found at http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/
basics/what-is-geoprocessing-.htm. The model could batch the processes
supported by the tools. Additionally, ArcGIS provides ArcPy package (Esri
2016b), a Python library/module that can operate most ArcMap functions.
Automating a process involving multiple GIS algorithms or steps using the
ArcPy package and Python is both fast and easy. The batch process built
into ModelBuilder can also be exported as Python scripts. ModelBuilder is,

http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/basics/what-is-geoprocessing-.htm
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/basics/what-is-geoprocessing-.htm

154 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

therefore, similar to Python scripting with ArcPy; however, scripting with
ArcPy is more flexible than ModelBuilder, which is restricted by available
ArcTools and operation template. ArcMap provides a plug-in Python editing
window (Figure 9.1b). You can write Python scripts in a Python IDE outside
ArcMap by importing the ArcPy package. This chapter introduces how to
use ArcPy and demonstrates its use through a number of examples. Section
9.2 details ArcPy structure, the programming environment, and how to use
help documents. Sections 9.3 through 9.7 present several of the most fre-
quently used ArcPy functionalities. Sections 9.8 and 9.9 demonstrate how to
add the developed Python scripts as a new ArcTool so that others can reuse
the script tool from ArcMap.

9.2 Introduction to ArcPy Package

9.2.1 ArcPy Functions, Classes, and Modules

ArcPy package is built on the previous ‘ArcGIS geoprocessor scripting mod-
ule’ provided to users since ArcGIS 10.0 version to offer functions, classes,
and modules for accessing most ArcMap functions:

• Function: An Esri-defined functionality that finishes a specific task
(e.g., ListFeatureClasses, Describe, SearchCursor).

(a)

(b)

FIGURE 9.1
Geoprocessing with (a) ArcToolbox, ModelBuilder, and (b) ArcMap Python window.

155ArcGIS Programming

• Class: An Esri-defined object template that has a set of properties
and methods (e.g., SpatialReference, FieldMap objects).

• Module: A Python file that generally includes functions and classes
that finish similar tasks. There are data access, mapping, network
analyst, spatial analyst, and time modules in ArcMap 10.1+ versions.

9.2.2 Programming with ArcPy in ArcMap

Beginning with version 10.0, Esri had embedded a Python window inside
ArcMap (Figure 9.2 upper), which can be opened through the button on the
toolbar (inside the red rectangle). We can type Python script in the left panel
of the Python window (Figure 9.2 lower), which has ArcPy imported, so
we do not have to import the package from scripting. The interactive help
 document is included in the right panel to describe the current function or
class being used.

NOT E: We use ‘ArcPy’ in this text to be consistent with the Esri naming con-
vention; however, in programming, ‘arcpy’ (all lowercase) will be used.

Hands-On Practice 9.1

• Open Python window from ArcMap and type in (not copy) the
 following command:

 arcpy.Buffer_analysis(“”,“”,“”, “FULL”, “FLAT”, “ALL”)

FIGURE 9.2
ArcMap Python window and the opening button.

156 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• While typing, observe the change in the interactive help document
on the right panel of the window.

9.2.3 Programming with ArcPy in Python Window outside ArcMap

If programming using ArcPy outside ArcMap, import the ArcPy package
(Figure 9.3) first, and then import the usage of ArcPy in the external envi-
ronment to ensure that it is the same as in the ArcMap Python window.
ArcGIS must be installed to use ArcPy. The scripts developed can be saved
as *.py files, distributed to others, or added as a new ArcTool in the toolbox,
as detailed in Section 9.8.

To improve the flexibility of the developed scripts for end users, config-
ure the input as “dynamic” value, and allow the program to automatically
retrieve the input. The sys.argv can be used for this purpose with a list of
strings that hold the script name and additional arguments that are passed
to the script.

Hands-On Practice 9.2: Fetching System Parameter Input

 1. Open the Python editor window and enter Code 9.1. Save the code to
a .py file, for example, samplecode.py.

 2. Open the windows command console, navigate to the folder where
the *.py file was saved, and run the script to perform buffer analysis
with the following command:

 samplecode.py C:\Default.gdb\out2 C:\Default.gdb\output 5000
Meters

The first parameter is the absolute path of the input data, the second
parameter is the absolute path of the output data, and the third describes the
buffer size (Figure 9.4).

FIGURE 9.3
Sample code of using ArcPy outside ArcMap.

157ArcGIS Programming

9.2.4 Using Help Documents

Esri offers various help documents for users to obtain detailed scripting
knowledge when using ArcPy. Users can access the desktop help document
(Figure 9.5) by clicking the “help” option on the ArcMap menu bar. Another
help document is available on the ArcGIS resource center (Figure 9.5). For
ArcGIS 10.1 to 10.2.2 version, the content is under “desktop” -> “geoprocess-
ing” -> “ArcPy” at the resource center (http://resources.arcgis.com/en/help/
main/10.2/index.html). For the most recent version, the information can be
explored under http://resources.arcgis.com/en/help/. Both the resource cen-
ter and the desktop version ‘Help’ document describe how to use ArcTools.
At the end of each tool introduction, there are also syntax details and a
sample code for using the ArcPy function (Figure 9.6). This can be accessed
under “desktop” -> “geoprocessing” -> “tool reference.” You can also search
the name of the tool and the syntax so that the sample code is provided at the
bottom of the results page.

For novice users, one way to learn ArcPy is to go through one of the three
help documents, try the sample code, and make changes to the code using
customized data. The Python prompt window inside ArcMap embeds the
interactive help on each ArcPy function and class.

import arcpy
import sys

script_name = sys.argv[0]
fc=sys.argv[1]
output=sys.argv[2]
bufferSize=sys.argv[3]
arcpy.Buffer_analysis(fc, output, bufferSize)

CODE 9.1
Python code using ArcPy and allowing flexible parameter inputs.

FIGURE 9.4
Screenshot of the windows command to execute a .py file and the output. (If there is no error
reported in the window, and the output is generated, then the execution is successful.)

http://resources.arcgis.com/en/help/main/10.2/index.html
http://resources.arcgis.com/en/help/main/10.2/index.html
http://resources.arcgis.com/en/help/

158 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Hands-On Practice 9.3: Learn to Read Help Documents

 1. Read the help in ArcGIS resource center.
 2. Search “Add Field” tool in the search box on the top right.
 3. Read through the syntax of “arcpy.AddField_management” and

execute the sample code with your own data.

9.3 Automating ArcTools with Python

Most tools in ArcToolBox can be accessed using the ArcPy scripting. For
example, the clip analysis is

FIGURE 9.5
Desktop and online help document.

159ArcGIS Programming

arcpy.Clip_analysis (in_features, clip_features, out_feature_class, { cluster_
tolerance})

where the first three parameters are required and the last parameter with
braces is optional. Scripting, rather than operating the tool through the
ArcToolBox interface, is very useful when the process involves a loop (for/
while statement) or conditional expression (if statement) to execute the geo-
processing function repeatedly under certain conditions. For example, to cal-
culate the line length within each polygon in a data layer, the process needs
to include a for loop to enable the repeated process for each polygon. Inside
the for loop, there will be a clip function that can cut off the line inside that
polygon and a statistics function, which sums up the total length of the lines
within the polygon.

FIGURE 9.6
Syntax and sample code of Python script in the online help document for the corresponding
geoprocessing tool.

160 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Hands-On Practice 9.4: Calculate the Road Length within an Area

 1. Type Code 9.2 in the Python window in ArcMap. Change the paths
according to your workspace.

 Note that, arcpy.env.workspace is executed at the beginning to
set the workspace, which is the path for accessing the input data
and saving the results. With environment workspace set up, the
input and output parameter can be set using the relative path. If
the inputs are feature class, image, etc., stored in a geodatabase,
we can set the geodatabase as the workspace. If the inputs are
Shapefiles, TINs, etc., we can set the geodatabase as the folder
where the input files are stored. On the contrary, if the workspace
is not set, the input and output parameters need to be set using
absolute paths. Even when workspace is set, we can still input or
output any dataset outside the workspace by directly using the
absolute path, for example:

 arcpy.MakeFeatureLayer_management("I:\\sampledata\\data.gdb\\
bearMove", "inferLy")

 2. Open the output tables, and list the total lengths of roads in each
polygon (Figure 9.7)

9.4 Accessing and Editing Data with Cursors

Data analysis or processes often require records to access field values.
Use the cursor to point to a record in a table or feature class.

A cursor is a data access object that can be used either to iterate through
the set of rows in a table or to insert new rows into a table. Cursors are
commonly used to read and update attributes. Cursor is one of the ArcPy
function in the Cursor data access module (requiring ArcGIS10.1+), and is
recommended due to its high performance and easy operation.

Cursors have three forms. They are

• SearchCursor—Read-only access to obtain the geometry and attri-
butes of feature records

• UpdateCursor—Read-write access to update feature records
• InsertCursor—Write access with capability to create new records

9.4.1 SearchCursor

The SearchCursor function establishes a read-only cursor on a feature
class, such as a shapefile or a table. The SearchCursor can be used to iterate

161ArcGIS Programming

"
"
"

S
e
t

t
h
e

p
a
t
h

o
f

t
h
e

i
n
p
u
t

d
a
t
a

r
o
a
d
s

a
n
d

s
o
u
r
c
e

d
a
t
a
.

Y
o
u

n
e
e
d

t
o

c
h
a
n
g
e

t
o

y
o
u
r

o
w
n

p
a
t
h
.

I
n

t
h
i
s

s
a
m
p
l
e
,

t
h
e

w
o
r
k
s
p
a
c
e

i
s

a

g
e
o
d
a
t
a
b
a
s
e
.

"
b
e
a
r
M
o
v
e
"

a
n
d

"
r
o
a
d
s
"

a
r
e

t
w
o

f
e
a
t
u
r
e

c
l
a
s
s
e
s

i
n

t
h
e

g
e
o
d
a
t
a
b
a
s
e
.

"
"
"

a
r
c
p
y
.
e
n
v
.
w
o
r
k
s
p
a
c
e

=

"
O
:
\
\
B
o
o
k
\
\
C
o
d
e
\
\
9
\
\
c
h
p
9
D
a
t
a
\
\
b
o
o
k
S
a
m
p
l
e
D
a
t
a
.
g
d
b
"

#

e
n
s
u
r
e

b
e
a
r
M
o
v
e

i
s

i
n

w
o
r
k
s
p
a
c
e

f
i
r
s
t

a
r
c
p
y
.
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
(
"
b
e
a
r
M
o
v
e
"
,
"
i
n
f
e
r
L
y
"
)

a
r
c
p
y
.
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
(
"
r
o
a
d
s
"
,
"
t
a
r
g
e
t
L
y
"
)

"
"
"

"
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
"

c
a
n

c
r
e
a
t
e

a

f
e
a
t
u
r
e

l
a
y
e
r

o
b
j
e
c
t

f
r
o
m

t
h
e

p
a
t
h

o
f

t
h
e

i
n
p
u
t
,

w
h
i
c
h

i
s

a

s
t
r
i
n
g
.

"
S
e
l
e
c
t
L
a
y
e
r
B
y
A
t
t
r
i
b
u
t
e
"
,

"
C
l
i
p
_
a
n
a
l
y
s
i
s
"
,

a
n
d

"
S
t
a
t
i
s
t
i
c
s
_
a
n
a
l
y
s
i
s
"

a
r
e

t
h
e
n

c
o
n
d
u
c
t
e
d

o
n

t
h
e

f
e
a
t
u
r
e

l
a
y
e
r
.

"
"
"

f
o
r

i

i
n

r
a
n
g
e
(
0
,
9
)
:

#

s
e
l
e
c
t

t
h
e

p
o
l
y
g
o
n

w
i
t
h

F
I
D

=

i

a
r
c
p
y
.
S
e
l
e
c
t
L
a
y
e
r
B
y
A
t
t
r
i
b
u
t
e
_
m
a
n
a
g
e
m
e
n
t
(
"
i
n
f
e
r
L
y
"
,
"
N
E
W
_
S
E
L
E
C
T
I
O
N
"
,
"
\
"
O
B
J
E
C
T
I
D

\
"
=
"
+
s
t
r
(
i
)
)

#

e
x
e
c
u
t
e

c
l
i
p

a
n
a
l
y
s
i
s

a
n
d

o
u
t

i
n
t
e
r
m
e
d
i
a
t
e

d
a
t
a

"
o
u
t
_
"

+

s
t
r
(
i
)

i
n

w
o
r
k
s
p
a
c
e

f
c

=

a
r
c
p
y
.
C
l
i
p
_
a
n
a
l
y
s
i
s
(
"
t
a
r
g
e
t
L
y
"
,
"
i
n
f
e
r
L
y
"
,
"
o
u
t
"
+
s
t
r
(
i
)
)

#

e
x
e
c
u
t
e

s
u
m

s
t
a
t
i
s
t
i
c
a
l

a
n
a
l
y
s
i
s

a
n
d

o
u
t
p
u
t

r
e
s
u
l
t

"
s
u
m
_
"

+

s
t
r
(
i
)

i
n

w
o
r
k
s
p
a
c
e

a
r
c
p
y
.
S
t
a
t
i
s
t
i
c
s
_
a
n
a
l
y
s
i
s
(
f
c
,

"
s
u
m
"

+

s
t
r
(
i
)
,

[
[
"
S
h
a
p
e
_
L
e
n
g
t
h
"
,
"
S
U
M
"
]
]
)

C
O

D
E

9.
2

A
ut

om
at

e
ca

lc
u

la
ti

ng
 th

e
ro

ad
 le

ng
th

 w
it

h
in

 e
ac

h
p

ol
yg

on
.

162 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

through row objects and extract field values. The syntax of SearchCursor is
as follows:

arcpy.da.searchCursor (in_table, field_names, {where_clause}, {spatial_reference},
{explode_to_points}, {sql_clause})

The first argument (input feature table) and second argument (the queried
fields) are required while others are optional (e.g., limited by a where clause
or by field, and optionally sorted).

Hands-On Practice 9.5: Get Attributes of Each Feature of a Shapefile Using
the SearchCursor

 1. Open a Python window in ArcMap and type Code 9.3.

FIGURE 9.7
Example of output summary table generated by Code 9.2.

change path according to your own
inputdata = "O:\\Book\\Code\\9\\chp9Data\\Partial_Streets.shp"

"""
 Open a SearchCursor and include a list of attribute(s) that you want to
 access (e.g. Shape_Leng, NAME, TYPE) in the parameter(s).
"""
rows = arcpy.da.SearchCursor(inputdata, ["Shape_Leng", "NAME", "TYPE"])
outputFile = open("C:\\ArcGISdata\\results.txt", "w")

iterate through the rows in the cursor
for row in rows:
 # attributes are accessed using row[index] - e.g. row[0] is "Shape_Leng"
 outputFile.write("{}, {}, {}\n".format(row[0], row[1], row[2]))

"""
 The cursor will place a lock on the data until either the script completes or
 the cursor object is deleted. Therefore, we need to delete the row and
 cursor objects to remove read locks on the data source.
"""
del row
del rows
outputFile.close()

CODE 9.3
SearchCursor with for statement.

163ArcGIS Programming

 2. Check the results.txt file. What is included in the file? How many
lines you can find in the file?

 3. Search cursors also support the with statement. Using a with state-
ment will guarantee that the iterator is closed and the database lock
is released. By applying the with statement, the above code can be
changed to Code 9.4.

 4. A where clause may be used to limit the records returned by the cur-
sor. Run Code 9.5 and check the result again. How many lines are
included in the result file?

 5. SearchCursor can also access the feature geometry. Run Code 9.6
and Code 9.7, and then check the result again:

with arcpy.da.SearchCursor(inputdata, ["SHAPE@"], "FID < 10") as rows:
 for row in rows:
 for pntarray in row[0]:
 for pnt in pntarray:
 # return a tuple of x and y coordinates of the first two
 # features in the data
 print("{0}, {1}".format(pnt.X, pnt.Y))

CODE 9.7

Accessing geometry using SearchCursor example 2.

with arcpy.da.SearchCursor(inputdata, ["SHAPE@", "SHAPE@LENGTH"],
"FID < 10") as rows:
 for row in rows:
 # return the x and y of the first point and the length
 of each feature
 print "{}, {}\n".format(row[0].firstPoint, row[1])

CODE 9.6
Accessing geometry using SearchCursor example 1.

inputdata = "O:\\Book\\Code\\9\\chp9Data\\Partial_Streets.shp"

select the features with FID < 10
with arcpy.da.SearchCursor(inputdata, ["Shape_Leng", "NAME", "TYPE"],
"FID < 10") as rows:
 for row in rows:
 print "{}, {}, {}\n".format(row[0], row[1], row[2])

CODE 9.5
SearchCursor with where clause ("FID < 10").

inputdata = "O:\\Book\\Code\\9\\chp9Data\\Partial_Streets.shp"
with arcpy.da.SearchCursor(inputdata, ["Shape_Leng", "NAME", "TYPE"]) as rows:
 for row in rows:
 print "{}, {}, {}\n".format(row[0], row[1], row[2])

CODE 9.4
SearchCursor using with statement.

164 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

9.4.2 UpdateCursor

The UpdateCursor object can be used to update or delete specific rows in
a feature class, shapefile, or table. The syntax of UpdateCursor is similar to
that of SearchCursor:

arcpy.da.UpdateCursor (in_table, field_names, {where_clause}, {spatial_reference},
{explode_to_points}, {sql_clause})

Hands-On Practice 9.6: Update the Attributes of Each Feature for a Shapefile
Using the UpdateCursor

 1. Check the attribute value of “Shape_Leng” in the data “Partial_
Streets.shp.”

 2. Open a Python window in ArcMap and type Code 9.8 in the editor.
 3. Check the result “Partial_Streets.shp” to see whether the “Shape_

Leng” attribute has been updated.
 4. Open a Python window in ArcMap and type Code 9.9 in the editor

and run the code to delete specific rows.

9.4.3 InsertCursor

InsertCursor is used to insert new records into a feature class, shapefile, or
table. The InsertCursor returns an enumeration object, that is, a row in a table.

inputdata = "O:\\Book\\Code\\9\\chp9Data\\railway.shp"

create update cursor for the feature class
with arcpy.da.UpdateCursor(inputdata, ["Shape", "FID"]) as rows:
 for row in rows:
 if row[1] < 10:
 rows.deleteRow()

CODE 9.9
Using UpdateCursor to delete rows/records.

inputdata = "O:\\Book\\Code\\9\\chp9Data\\Partial_Streets.shp"

create update cursor for the feature class
with arcpy.da.UpdateCursor(inputdata, ["Shape_Leng", "FID"]) as rows:
 for row in rows:
 # update the field "Shape_Leng" under the conditions
 of field "FID"
 if row[1] > 10:
 row[0] = row[0] * 0.3048
 else:
 row[0] = row[0] * 0.5
 rows.updateRow(row)

CODE 9.8
UpdateCursor example.

165ArcGIS Programming

Hands-On Practice 9.7: Inserts Rows into a Shapefile Using the InsertCursor

 1. Open the attribute table of “school.shp” and count the number of
records.

 2. Open a Python window in ArcMap and type Code 9.10.
 3. Check the new row added to the data “school.shp.”

9.4.4 NumPy

As a new feature in ArcMap 10.1+, data access modules offer functions
to enable the transformation between data array and feature classes or
tables. Since NumPy library has powerful capabilities for handling arrays,
the related function of ArcPy is developed based on NumPy. With arcpy.
NumPyArrayToFeatureClass, arcpy.NumPyArrayToTable, and arcpy.
TableToNumPyArray functions, users can quickly transform values that are
organized in array into a feature class or table, and vice versa.

Without using the NumPy function in the data access module, include
many more steps to create a point feature class so the performance is much
lower (Code 9.11).

In contrast, creating the feature class with NumPy requires only one step.
The arcpy.da.NumPyArrayToFeatureClass function actually creates a fea-
ture class and inserts two records inside.

Hands-On Practice 9.8: Create a Feature Class Using
NumPyArrayToFeatureClass

 1. Open the Python window in ArcMap, and run Code 9.12 to cre-
ate a feature class using the NumPy functions in the data access
module.

inputdata = "O:\\Book\\Code\\9\\chp9Data\\bookSampleData.gdb\\school"
create the insert cursor and list the attributes that needs
to be filled up with values
cursor = arcpy.da.InsertCursor(inputdata, ["SCHOOL_NAM", "SHAPE@XY"])

"""
 Create the a new record with property "NAME" filled up
 with value "NewSchool" and xy coordinates filled up
 with (1847395.83394, 772277.97643)
"""
new_row = ["NewSchool", (1847395.83394, 772277.97643)]
cursor.insertRow(new_row)

delete cursor to remove locks on the data
del cursor

CODE 9.10
Insert Cursor example.

166 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 2. Also run Code 9.11 in the Python window in ArcMap, and compare the
execution time spent of with and without using numpy: the arcpy.
da. NumPyArrayToFeatureClass has a much better performance.

9.5 Describing and Listing Objects

9.5.1 Describe

Describe a function used to read data properties by returning a property
object. Depending on the arguments passed to the methods, the return
object could be

• Data types (Shapefile, coverage, network datasets, etc.)
• Geometry type (point, polygon, line, etc.)

import arcpy
import numpy

input array
array = numpy.array([(1,(471316.3835861763, 5000488.782036674)),
 (2, (470402.49348005146, 5000049.216449278))],
 numpy.dtype([('idfield', numpy.int32),('XY','<f8',2)]))

create the feature class with the field XY in the array
feat = arcpy.CreateFeatureclass_management
("O:\\Book\\Code\\9\\chp9Data\\Default.gdb", "out2", "POINT")
cursor = arcpy.da.InsertCursor(feat, ["SHAPE@XY"])

for i in array:
 new_row = [i[1]]
 cursor.insertRow(new_row)
del cursor

CODE 9.11
Add multiple new records to feature class using InsertCursor.

import arcpy
import numpy

output = "O:\\Book\\Code\\9\\chp9Data\\Default.gdb\\out"
input array
array = numpy.array([(1,(471316.3835861763, 5000488.782036674)),
 (2, (470402.49348005146, 5000049.216449278))],
 numpy.dtype([('idfield', numpy.int32),('XY','<f8',2)]))

create the feature class with the field XY in the array
arcpy.da.NumPyArrayToFeatureClass(array, output, ['XY'])

CODE 9.12
Add multiple new records to feature class using NumPyArrayToFeatureClass.

167ArcGIS Programming

• Spatial reference
• Extent of features
• Path and so on

Hands-On Practice 9.9: Check the Properties of a Feature Class

 1. Run Code 9.13 in ArcMap Python window and check the output.
What is the shape type of the input feature class?

 2. Replace the Describe parameter with another shapefile that has dif-
ferent geometric types and see how the results change when run-
ning it again.

9.5.2 List

ArcPy provides functions to list all data under a particular workspace or list
corresponding information in data. ListFields are frequently used functions
in ArcPy to list all the fields and associated properties of a feature class,
shapefile, or table. Code 9.14 is an example of the ListFields function. The
code controls operations to be conducted on specific fields only: those that
are in “Double” type or that include the name “Flag.”

Functions listing data under a workspace (e.g., ListDatasets,
ListFeatureClasses, ListFiles, ListRasters, ListTables) are very useful to help
batch processing. For example, to perform a buffer analysis for multiple

import arcpy

list the field of the data "roads.shp" under the folder "ArcGISdata"
fieldlists = arcpy.ListFields("O:\\Book\\Code\\9\\chp9Data\\
bookSampleData.gdb\\roads")

observe each field in the returning list
for field in fieldlists:
 # print out the property of the field, its name, scale, and type
 print field.name,field.scale,field.type

CODE 9.14
ListFields example.

data = "O:\\Book\\Code\\9\\chp9Data\\bookSampleData.gdb\\railway"
dscb = arcpy.Describe(data)

if dscb.shapeType == "Polygon":
 print "I am polygon"
elif dscb.shapeType == "Polyline":
 print "I am polyline"
else:
 print "I am not either polyline or polygon"

CODE 9.13
Describe function example.

168 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

polyline shapefiles in a workspace, list all the polyline shapefiles with the
ListFeatureClasses method, then use a loop to go through each shapefile,
performing a buffer analysis using Buffer_analysis method.

Hands-On Practice 9.10: Perform Buffer Analysis for Every Polyline Feature
Class in a Workspace

 1. Copy the data from Chapter 9 to your workspace (e.g., ‘C:\\
sampledata’), or use any shapefiles you may have and put them
under your workspace.

 2. Run Code 9.15 and check the output console to answer how many
polyline features do you have under the workspace?

 3. Change the code and implement buffer analysis for every point fea-
ture class within 10 miles.

The Walk function in the data access module can help list all data under
the workspace or under its sub-workspace in hierarchy. For example, there
is a shapefile, a .png file, a geodatabase “Default.gdb,” and a folder “temp”
under a specific workspace “sampledata.” This function will list all the files
under “sampledata,” the feature classes under “Default.gdb,” and the files
under “temp.” The Walk function is much faster than traditional List func-
tions. Code 9.16 is a sample code of the Walk function and Figure 9.8 shows
its results.

workspace = "O:\\Book\\Code\\9\\chp9Data"

for dirpath, dirnames, filenames in arcp.da.Walk(workspace):
 print "-------------"
 print dirpath;
 print dirnames;
 print filenames;

CODE 9.16
List files using arcpy.da.Walk function.

import arcpy

arcpy.env.workspace = "O:\\Book\\Code\\9\\chp9Data"
get the list of all of the polyline feature classes
fcList = arcpy.ListFeatureClasses('*','Polyline')

print the list of feature classes one at a time
for fc in fcList:
 print '-----Perform buffer analysis for Polyline:', fc
 inputFCName = fc[0:-4] # get rid of '.shp'
 outputFCName = inputFCName + '_buffer_10Meter' + '.shp'
 arcpy.Buffer_analysis(fc, outputFCName, '10 Meters')

CODE 9.15
List all polyline feature class and conduct buffer analysis on them.

169ArcGIS Programming

9.6 Manipulating Complex Objects

Besides the commonly used simple objects, such as string (e.g., data path)
or number (e.g., buffer distance), ArcPy offers classes to represent complex
objects (e.g., spatial reference and attribute field).

One typical complex object is ValueTable. Many ArcTools include this
object to allow input with multiple values. For example, the Union tool uses
ValueTable as one input parameter (Figure 9.9). Accordingly, the script uses
ValueTable to create the corresponding input parameter.

Another popular complex object, field, describes the field in the attribute
table of a feature class, shapefile, and table (Code 9.17).

Meanwhile, ArcPy also provides the classes for manipulating geometry
objects. Geometry information is usually stored in feature classes, feature
layers, or datasets. Accessing geometry directly is not common when using

FIGURE 9.8
Results of arcpy.da.Walk function.

FIGURE 9.9
Perform union with ArcMap and python scripting.

170 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

geoprocessing tool for analysis. Sometimes, however, only locational infor-
mation, such as creating sample points and making a buffer distance, is
needed. Using geometry objects can save the time on creating feature classes
that really do not persist. ArcPy offers several types of geometric objects:

• Point: a single point, which is the basic unit for all the other geometry
types, cannot be directly used as input in geoprocessing functions

• Geometry: a general type
• Multipoint: a geometry entity with multiple points, consisting of

Point(s)
• PointGeometry: a geometry entity with a single point, consisting of

Point
• Polyline: a line geometry entity, consisting of Point(s)
• Polygon: a polygon geometry entity, consisting of Point(s)

Code 9.18 presents a buffer analysis with geometry as input.

Hands-On Practice 9.11: Manipulate Spatial Reference Object

create a point
point = arcpy.Point(471316.38358618, 5000448)
create the geometry interface of the point
pointgeom = arcpy.PointGeometry(point)
create output geometry
outgeom = arcpy.Geometry()
calculate the buffer of the create point geometry
arcpy.Buffer_analysis(pointgeom,outgeom,"5000 Meters")

CODE 9.18
Example of using geometry object to coduct buffer analysis.

import arcpy

fc = "O:\\Book\\Code\\9\\chp9Data\\bookSampleData.gdb\\roads"
desc = arcpy.Describe(fc)
get a list of field objects from the describe object
fields = desc.fields

for field in fields:
 # manipulate field object and print out property of each field
 print field.name
 print field.aliasName
 print field.type
 if field.type == "Double":
 print field.scale

CODE 9.17
Accessing the properties of a field object.

171ArcGIS Programming

 1. Create the object using a string as the path to a .prj file or using a
string with the name of spatial reference (Code 9.19). SpatialReference
is an ArcPy class.

 2. Access the property of the spatial reference object (Code 9.20).
 3. Create a Feature class in geodatabase using the spatial reference cre-

ated (Code 9.21).
 4. Create a Feature class in geodatabase using the spatial reference of

another dataset (Code 9.22). The Describe function will be used to
obtain the spatial reference information of the data.

import arcpy

arcpy.env.workspace = ("O:\\Book\\Code\\9\\chp9Data")
use the name of the coordinate system
spatialRef = arcpy.SpatialReference("Hawaii Albers Equal Area Conic")
create the FDS using the spatialRef created from arcpy.
SpatialReference() method
arcpy.CreateFeatureDataset_management
('O:\\Book\\Code\\9\\chp9Data\\Default.gdb', 'results', spatialRef)

CODE 9.21
Create a feature class with a spatial reference.

print spatialRef.name
print spatialRef.XYTolerance
print spatialRef.metersPerUnit
print spatialRef.GCS

CODE 9.20
Access the properties of a SpatialReference object.

use the name of the coordinate system
spatialRef = arcpy.SpatialReference(“Hawaii Albers Equal Area Conic”)

or use a projection file (.prj)
sr = arcpy.SpatialReference(“C:\\coordsystems\\NAD 1983.prj”)

CODE 9.19
Create SpatialReference object.

import arcpy

arcpy.env.workspace = ("O:\\Book\\Code\\9\\chp9Data")
desc = arcpy.Describe('school.shp')
spatialRef = desc.SpatialReference

create the FDS using the describe object's SR(SpatialReference) object
arcpy.CreateFeatureDataset_management('O:\\Book\\Code\\9\\chp9Data\\
Default.gdb’,'results', spatialRef)

CODE 9.22
Create a feature class with the spatial reference from another data.

172 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

9.7 Automating Map Production

Data manipulation and analysis are automated through Python scripts and
ArcPy, while mapping processes involve user interactions on the interface or
through scripting. ArcPy includes a mapping module, the major functions of
which can be divided into two parts: exporting/printing maps and manag-
ing documents and layers. Figure 9.10 shows the functions in arcpy.mapping
module.

Code 9.23 represents the process of making a map for a feature class using
the predefined layer style. The process includes the opening of files and lay-
ers, changing layer style, and revising the location and content of map ele-
ments. The code is generalized from the script of an ArcTool named “CCMap
Generator” (Teampython 2013). The script is open and can be downloaded from
the Analysis and Geoprocessing community through the ArcGIS resource cen-
ter website http://resources.arcgis.com/en/communities/analysis/.

9.8 Creating ArcTools from Scripts

The ArcMap geoprocessing framework allows users to create custom-
ized ArcTools from the Python scripts developed. By setting up scripts as
ArcTools, users can configure input parameters and execute the functions
through a graphic interface. This makes the user-defined function more

FIGURE 9.10
Functions in arcpy.mapping module.

http://resources.arcgis.com/en/communities/analysis/

173ArcGIS Programming

#

o
p
e
n

t
h
e

m
a
p

d
o
c
u
m
e
n
t
,

w
h
i
c
h

i
s

t
h
e

*
.
m
x
d

f
i
l
e

m
x
d

=

a
r
c
p
y
.
m
a
p
p
i
n
g
.
M
a
p
D
o
c
u
m
e
n
t
(
'
C
C
M
a
p
D
o
c
T
e
m
p
l
a
t
e
.
m
x
d
'
)

#

l
i
s
t

t
h
e

d
a
t
a

f
r
a
m
e

i
n

t
h
e

m
a
p

d
o
c
u
m
e
n
t

-

d
f
s

i
s

t
h
e

f
i
r
s
t

d
a
t
a

f
r
a
m
e

i
n

t
h
e

d
o
c
u
m
e
n
t

d
f
s

=

a
r
c
p
y
.
m
a
p
p
i
n
g
.
L
i
s
t
D
a
t
a
F
r
a
m
e
s
(
m
x
d
)
[
0
]

#

c
r
e
a
t
e

a

l
a
y
e
r

f
r
o
m

t
h
e

d
a
t
a
s
e
t

(
e
.
g
.

a

f
e
a
t
u
r
e

c
l
a
s
s
)

w
h
i
c
h

w
i
l
l

b
e

s
t
y
l
e
d

a
n
d

m
a
p
p
e
d

l
y
r

=

a
r
c
p
y
.
m
a
p
p
i
n
g
.
L
a
y
e
r
(
f
e
a
t
u
r
e
c
l
a
s
s
)

#

o
p
e
n

t
h
e

s
y
m
b
o
l

s
t
y
l
e

f
i
l
e

*
.
l
y
r

s
y
m
b
o
l
l
y
r
s

=

a
r
c
p
y
.
m
a
p
p
i
n
g
.
L
a
y
e
r
(
'
C
C
M
a
p
S
y
m
b
o
l
o
g
y
T
e
m
p
l
a
t
e
.
l
y
r
'
)

#

g
e
t

t
h
e

f
i
r
s
t

l
a
y
e
r

w
i
t
h

n
a
m
e

c
o
n
t
a
i
n
i
n
g

t
h
e

s
t
r
i
n
g

"
t
e
s
t
"

i
n
s
i
d
e

t
h
e

*
.
l
y
r

f
i
l
e

s
y
m
b
o
l
l
y
r

=

a
r
c
p
y
.
m
a
p
p
i
n
g
.
L
i
s
t
L
a
y
e
r
s
(
s
y
m
b
o
l
l
y
r
s
,

(
'
*
t
e
s
t
*
'
)
)
[
0
]

#

c
h
a
n
g
e

t
h
e

s
y
m
b
o
l

s
t
y
l
e

o
f

t
h
e

f
e
a
t
u
r
e

c
l
a
s
s

l
y
r

i
n

t
h
e

d
f
s

d
a
t
a

f
r
a
m
e

i
n
t
o

t
h
e

p
r
e
-
d
e
f
i
n
e
d

s
t
y
l
e

s
y
m
b
o
l
l
y
r

a
r
c
p
y
.
m
a
p
p
i
n
g
.
U
p
d
a
t
e
L
a
y
e
r
(
d
f
s
,

l
y
r
,

s
y
m
b
o
l
l
y
r
,

T
r
u
e
)

#

a
d
d

t
h
e

f
e
a
t
u
r
e

c
l
a
s
s

w
i
t
h

t
h
e

u
p
d
a
t
e
d

s
y
m
b
o
l

s
t
y
l
e

i
n
t
o

d
f
s

d
a
t
a

f
r
a
m
e

a
r
c
p
y
.
m
a
p
p
i
n
g
.
A
d
d
L
a
y
e
r
(
d
f
s
,

l
y
r
)

#

s
e
t

t
h
e

l
o
c
a
t
i
o
n

a
n
d

c
o
n
t
e
n
t

o
f

t
h
e

f
i
r
s
t

m
a
p

e
l
e
m
e
n
t

(
e
.
g
.

t
e
x
t

b
o
x
)

i
n
s
i
d
e

t
h
e

m
x
d

m
a
p

d
o
c
u
m
e
n
t

e
l
m

=

a
r
c
p
y
.
m
a
p
p
i
n
g
.
L
i
s
t
L
a
y
o
u
t
E
l
e
m
e
n
t
s
(
m
x
d
,

'
T
E
X
T
_
E
L
E
M
E
N
T
'
,

'
t
e
s
t
e
l
m
'
)
[
0
]

e
l
m
.
e
l
e
m
e
n
t
P
o
s
i
t
i
o
n
Y

=

-
1

e
l
m
.
t
e
x
t

=

"
t
h
i
s

i
s

a

t
e
s
t

m
a
p

e
l
e
m
e
n
t
"

e
l
m
.
e
l
e
m
e
n
t
P
o
s
i
t
i
o
n
X

=

1
5

#

e
x
p
o
r
t

t
h
e

m
a
p

u
s
i
n
g

r
e
s
o
l
u
t
i
o
n

i
n

3
0
0

d
p
i

a
r
c
p
y
.
m
a
p
p
i
n
g
.
E
x
p
o
r
t
T
o
P
D
F
(
m
x
d
,

o
u
t
_
m
a
p
,

r
e
s
o
l
u
t
i
o
n

=

3
0
0
)

C
O

D
E

9.
23

M
ak

in
g

m
ap

s
w

it
h

pr
ed

efi
ne

d
 s

ym
bo

l s
ty

le
 a

ut
om

at
ic

al
ly

.

174 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

user-friendly and sharable, as well as more accessible for individuals who do
not know how to run a stand-alone script. Furthermore, the custom tool can
also be incorporated into ModelBuilder to be integrated with other tools for
implementing more advanced analysis processes.

ArcPy provides several getting and setting parameter functions for the
custom Python scripts to accept user input. The most typical functions are
as follows:

• GetParameter: Gets the value of the specified parameter from
 interface as an object (e.g., SpatialReference)

• GetParameterAsText: Gets the value of the specified parameter from
interface as a String

• GeoParameterValue: Returns the default value of the specified
parameter for the tool

• SetParameter: Sets a specified parameter property using an object
• SetParameterAsText: Sets a specified parameter property using a

String

The steps to add scripts as a tool in the ArcToolBox are shown in
Figure 9.11.

Hands-On Practice 9.12: Build ArcTools from Scripts

 1. Before creating the ArcTool, copy Code 9.24 and save as a *.py file.

import arcpy

"""
 The following is the buffer tool script, where the first
 argument is the input feature, the second argument is the
 output feature, and the third argument is the buffer
 distance
"""
inputFC = arcpy.GetParameterAsText(0)
outputFC = arcpy.GetParameterAsText(1)
bufferDist = arcpy.GetParameterAsText(3)

perform buffer analysis
arcpy.Buffer_analysis(inputFC, outputFC, bufferDist)

CODE 9.24
A script with GetParameter functions to obtain input from ArcTool interface.

1. Create a
toolbox

2. Create a
toolset 3. Add script

4. Input basic
info, such as
name, label, etc.

5. Specify script
file path

6. Specify
parameters

FIGURE 9.11
General steps to add scripts as tools.

175ArcGIS Programming

 2. Open ‘Catalog’ in ArcMap, click ‘ToolBoxes’, right click “My
Toolboxes,” and select “New” to create a new tool box (Figure
9.12). Revise the “ToolBox.tbx” to a meaningful name, such as
“MyGeoProcessor.tbx.”

 3. Add Toolset by right click, and select “New” -> Toolset (Figure 9.13).
Change the name of “toolset,” such as “Buffer.”

 4. Then, right click “Buffer,” and select “Add” -> “Script” (Figure 9.14).
 Specify (1) basic info for the tool, such as name, label, descriptions,

etc., (2) the script file path, and (3) input and output parameters,
including types and names, etc. Click “Finish” to complete creating
your customized ArcTool (Figure 9.15).

 5. Run the newly created tool and see what happens.

FIGURE 9.12
Add ArcToolBox.

FIGURE 9.13
Add ArcToolset.

176 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

9.9 Handling Errors and Messages

Informative messages help users track the running status of the script.
ArcTools interface typically return three types of messages with the follow-
ing symbols:

 Informative messages during running of the script

 Error message when a problem arises

 Warning messages
• arcpy.GetMessage() method can return the geoprocessing mes-

sages. By default without any argument, it will get all types of
messages. Using 0, 1, or 2 as argument, it will get the string of the
information error, or warning ID messages separately:

FIGURE 9.15
Configure the property of the tool, the path of script, and the input parameter.

FIGURE 9.14
Add Python script as ArcTool.

177ArcGIS Programming

• GetMessages(): All messages
• GetMessages(0): Severity level 0 - Only informative messages
• GetMessages(1): Severity level 1 - Only warning messages
• GetMessages(2): Severity level 2 - Only error messages

The arcpy.AddMessage() method can be used to create geoprocessing mes-
sages (severity level = 0) for your scripts; the arcpy.AddWarning() method
can be used to create warning messages (severity level =1) for your scripts;
and the arcpy.AddError() method can be used to create error messages
(severity level =2) for your scripts. As shown in Figure 9.16, the messages
between “Start time: Tue ….” and “Succeeded at …” are the ones added using
the AddMessage() method.

Hands-On Practice 9.13: Add Message into the Custom Script Tool

 1. Make a Python script with Code 9.25 and then add as an ArcTool.
 2. Use the tool to test the buffer analysis and check the output.

9.10 External Document and Video Resources

The ArcGIS desktop help document and Esri online help document (Figure
9.1) should be the first place to check the syntax and sample codes of ArcPy
classes, functions, and modules. By searching online, we can also find good
code samples for many geoprocessing functions.

FIGURE 9.16
Results of running script tool with messages added.

178 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The following resources could also provide the information from another
perspective:

• Search for “Using Python in ArcGIS Desktop” in YouTube.
• Esri offers free Virtual Campus courses using Python in different

version of ArcGIS Desktop, which can all be found by searching
“Python” in the link below http://training.esri.com/gateway/index.
cfm?fa=catalog.gateway&tab=0.

• ArcCafe: A blog, developed and maintained by the geoprocessing
and analysis teams of Esri, which introduces Python scripts used to
solve some common geoprocessing tasks.

• Esri usually provides sections to introduce the use of Python and
ArcPy at their annual user conference. These videos can be found
by searching “python” or “ArcPy” in the link http://video.esri.com/
channel/2/events/series.

9.11 Implementing Spatial Relationship
Calculations Using ArcGIS

Hands-On Practice 9.14: Calculate the centroid, perimeter, and area of poly-
gons using arcpy.

 Find the data “states.shp,” and run Code 9.26 in the ArcMap Python
window. Note that new fields must be added into the attribute table
before the calculation in order to record the results (Figure 9.17).

import arcpy

"""
 The following is the buffer tool script, where the first
 argumentis the input feature, the second argument is the
 output feature, and the third argument is the buffer distance
"""
inputFC = arcpy.GetParameterAsText(0)
arcpy.AddMessage('-------Input Feature: ' + inputFC)
outputFC = arcpy.GetParameterAsText(1)
arcpy.AddMessage('-------Output Feature: ' + outputFC)
bufferDist = arcpy.GetParameterAsText(2)
arcpy.AddMessage('-------Buffer Distance: ' + bufferDist)

perform buffer analysis
arcpy.Buffer_analysis(inputFC, outputFC, bufferDist)
arcpy.AddMessage("Finished Successfully")

CODE 9.25
AddMessage examples.

http://training.esri.com/gateway/index.cfm?fa=catalog.gateway&tab=0
http://training.esri.com/gateway/index.cfm?fa=catalog.gateway&tab=0
http://video.esri.com/channel/2/events/series
http://video.esri.com/channel/2/events/series

179ArcGIS Programming

#

s
e
t

t
h
e

w
o
r
k
s
p
a
c
e

a
r
c
p
y
.
e
n
v
.
w
o
r
k
s
p
a
c
e

=

"
O
:
\
\
B
o
o
k
\
\
C
o
d
e
\
\
9
\
\
c
h
p
9
D
a
t
a
"

"
"
"

A
d
d

f
i
e
l
d
s

"
c
e
n
t
X
"
,

"
c
e
n
t
Y
"
,

"
p
o
l
y
A
r
e
a
"
,

a
n
d

"
p
o
l
y
P
e
r
i
"

t
o

r
e
c
o
r
d

t
h
e

c
a
l
c
u
l
a
t
e
d

r
e
s
u
l
t
s
.

"
D
O
U
B
L
E
"

i
s

t
h
e

v
a
l
u
e

t
y
p
e
,

2
0

i
s

t
h
e

p
r
e
c
i
s
i
o
n

o
f

t
h
e

d
o
u
b
l
e

t
y
p
e
,

a
n
d

1
0

i
s

t
h
e

s
c
a
l
e
.

"
"
"

a
r
c
p
y
.
A
d
d
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
c
e
n
t
X
"
,
"
D
O
U
B
L
E
"
,
2
0
,
1
0
)

a
r
c
p
y
.
A
d
d
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
c
e
n
t
Y
"
,
"
D
O
U
B
L
E
"
,
2
0
,
1
0
)

a
r
c
p
y
.
A
d
d
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
p
o
l
y
A
r
e
a
"
,
"
D
O
U
B
L
E
"
,
2
0
,
6
)

a
r
c
p
y
.
A
d
d
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
p
o
l
y
P
e
r
i
"
,
"
D
O
U
B
L
E
"
,
2
0
,
6
)

"
"
"

C
a
l
c
u
l
a
t
e

t
h
e

c
e
n
t
r
o
i
d
,

a
r
e
a
,

a
n
d

p
e
r
i
m
e
t
e
r

u
s
i
n
g

t
h
e

C
a
l
c
u
l
a
t
e
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t

t
o
o
l
.

"
P
Y
T
H
O
N
_
9
.
3
"

m
e
a
n
s

t
h
e

c
a
l
c
u
l
a
t
i
o
n

e
x
p
r
e
s
s
i
o
n

"
!
S
H
A
P
E
.
C
E
N
T
R
O
I
D
.
X
"

i
s

i
n

P
y
t
h
o
n

9
.
3

s
y
n
t
a
x
.

"
"
"

a
r
c
p
y
.
C
a
l
c
u
l
a
t
e
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
c
e
n
t
X
"
,
"
!
S
H
A
P
E
.
C
E
N
T
R
O
I
D
.
X
!
"
,
"
P
Y
T
H
O
N
_
9
.
3
"
)

a
r
c
p
y
.
C
a
l
c
u
l
a
t
e
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
c
e
n
t
Y
"
,
"
!
S
H
A
P
E
.
C
E
N
T
R
O
I
D
.
Y
!
"
,
"
P
Y
T
H
O
N
_
9
.
3
"
)

a
r
c
p
y
.
C
a
l
c
u
l
a
t
e
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
p
o
l
y
A
r
e
a
"
,
"
!
S
H
A
P
E
.
A
R
E
A
!
"
,
"
P
Y
T
H
O
N
_
9
.
3
"
)

a
r
c
p
y
.
C
a
l
c
u
l
a
t
e
F
i
e
l
d
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,
"
p
o
l
y
P
e
r
i
"
,
"
!
S
H
A
P
E
.
L
E
N
G
T
H
!
"
,
"
P
Y
T
H
O
N
_
9
.
3
"
)

C
O

D
E

9.
26

C
al

cu
la

te
 th

e
ce

nt
ro

id
, p

er
im

et
er

, a
nd

 a
re

a
of

 p
ol

yg
on

s
u

si
ng

 a
rc

py
.

180 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Hands-On Practice 9.15: Selecting object based on spatial relationship (line
intersection and point in polygon) using arcpy.

 1. Find the two shapefiles “interstates” and “railway” in the disk, and
select the interstate roads that intersect with railways. Selection
will be conducted on the “interstate” features based on their spatial
relationship with “railway” layer. Run Code 9.27 in ArcMap python
window and Figure 9.18 shows the result.

 2. Select the railway stations (in “amtk_sta.shp”) in Virginia. Run Code
9.28 in ArcMap python window and see the result (Figure 9.19).

9.12 Summary

This chapter introduces programming within ArcGIS using Python scripts
and ArcPy package. This chapter introduces

• Esri geoprocessing framework and ArcPy.
• The capability and syntax of ArcPy functions, classes, and modules.
• How to create simple or complex analysis workflows with ArcPy?
• How to manipulate vector data or objects through ArcPy?

FIGURE 9.17
Result of Code 9.26.

181ArcGIS Programming

a
r
c
p
y
.
e
n
v
.
w
o
r
k
s
p
a
c
e

=

"
O
:
\
\
B
o
o
k
\
\
C
o
d
e
\
\
9
\
\
c
h
p
9
D
a
t
a
"

"
"
"

"
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
"

c
a
n

c
r
e
a
t
e

a

f
e
a
t
u
r
e

l
a
y
e
r

o
b
j
e
c
t

f
r
o
m

t
h
e

p
a
t
h

o
f

t
h
e

i
n
p
u
t

d
a
t
a
,

w
h
i
c
h

i
s

a

s
t
r
i
n
g
.

S
e
l
e
c
t
i
o
n

w
i
l
l

b
e

c
o
n
d
u
c
t
e
d

o
n

t
h
e

f
e
a
t
u
r
e

l
a
y
e
r
.

"
"
"

a
r
c
p
y
.
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
(
"
i
n
t
e
r
s
t
a
t
e
s
.
s
h
p
"
,

"
r
o
a
d
L
y
"
)

a
r
c
p
y
.
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
(
"
r
a
i
l
w
a
y
.
s
h
p
"
,

"
r
a
i
l
L
y
"
)

#

s
e
l
e
c
t

t
h
e

f
e
a
t
u
r
e
s

i
n

t
h
e

i
n
t
e
r
s
t
a
t
e
s

l
a
y
e
r
,

w
h
i
c
h

i
n
t
e
r
s
e
c
t

w
i
t
h

t
h
e

f
e
a
t
u
r
e
s

i
n

t
h
e

r
a
i
l
w
a
y

l
a
y
e
r

a
r
c
p
y
.
S
e
l
e
c
t
L
a
y
e
r
B
y
L
o
c
a
t
i
o
n
_
m
a
n
a
g
e
m
e
n
t
(
"
r
o
a
d
L
y
"
,
"
I
N
T
E
R
S
E
C
T
"
,
"
r
a
i
l
L
y
"
,
s
e
l
e
c
t
i
o
n
_
t
y
p
e
=
"
N
E
W
_
S
E
L
E
C
T
I
O
N
"
)

C
O

D
E

9.
27

C
al

cu
la

te
 li

ne
 in

te
rs

ec
ti

on
.

182 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• How to create ArcTools from the python scripts?
• How to implement spatial calculations using ArcGIS?

9.13 Assignment

• Read the ArcPy section in ArcGIS desktop help or the online version.
• Find a road data or download data from the package of correspond-

ing course material.
• Select highways from road data.
• Generate a buffer with 300 meters as the radius for the highway.
• Output the buffer as a transportation pollution zone.
• Add a field with the name of “buildings” with Long type in the buf-

fer zone data.
• Count the number of buildings within each buffer zone and store

into the new field.
• Write a report to explain how you conducted the analysis and

programming.
• Compare the differences of implementing spatial calculations using

ArcGIS and pure Python.

RailLy
RoadLy

FIGURE 9.18
Line intersection result.

183ArcGIS Programming

a
r
c
p
y
.
e
n
v
.
w
o
r
k
s
p
a
c
e

=

"
O
:
\
\
B
o
o
k
\
\
C
o
d
e
\
\
9
\
\
c
h
p
9
D
a
t
a
"

a
r
c
p
y
.
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
s
.
s
h
p
"
,

"
s
t
a
t
e
L
y
"
)

a
r
c
p
y
.
M
a
k
e
F
e
a
t
u
r
e
L
a
y
e
r
_
m
a
n
a
g
e
m
e
n
t
(
"
a
m
t
k
_
s
t
a
.
s
h
p
"
,

"
s
t
a
t
i
o
n
L
y
"
)

#

s
e
l
e
c
t

V
i
r
g
i
n
i
a

f
r
o
m

t
h
e

s
t
a
t
e

l
a
y
e
r

f
i
r
s
t

a
r
c
p
y
.
S
e
l
e
c
t
L
a
y
e
r
B
y
A
t
t
r
i
b
u
t
e
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
e
L
y
"
,
"
N
E
W
_
S
E
L
E
C
T
I
O
N
"
,
'
"
S
T
A
T
E
_
N
A
M
E
"
=
\
'
V
i
r
g
i
n
i
a
\
'
'
)

#

t
h
e
n

s
e
l
e
c
t

t
h
e

r
a
i
l
w
a
y

s
t
a
t
i
o
n
s

(
p
o
i
n
t
s
)

c
o
m
p
l
e
t
e
l
y

w
i
t
h
i
n

V
i
r
g
i
n
i
a

(
p
o
l
y
g
o
n
)

a
r
c
p
y
.
S
e
l
e
c
t
L
a
y
e
r
B
y
L
o
c
a
t
i
o
n
_
m
a
n
a
g
e
m
e
n
t
(
"
s
t
a
t
i
o
n
L
y
"
,
"
C
O
M
P
L
E
T
E
L
Y
_
W
I
T
H
I
N
"
,
"
s
t
a
t
e
L
y
"
,
s
e
l
e
c
t
i
o
n
_
t
y
p
e
=
"
N
E
W
_
S
E
L
E
C
T
I
O
N
"
)

C
O

D
E

9.
28

Se
le

ct
 a

ll
 r

ai
lw

ay
 s

ta
ti

on
s

in
 V

ir
gi

n
ia

.

184 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

NOT E: All codes can be successfully executed on ArcGIS for desktop ver-
sions 10.2.2 through 10.3. There may be problems on running the code on
more recent version of ArcGIS.

FIGURE 9.19
Point in polygon result.

185

10
Raster Data Algorithm

A raster is a data model representing geographic phenomena by pixels,
and can be created using a variety of devices and techniques, such as
 digital cameras, scanners, coordinate-measuring machines, seismographic
 profiling, and airborne radar. This chapter introduces the raster concept,
major categories of raster data, and how these data are displayed and
stored in a computer. Basic raster data conversion and analysis methods are
explored using three hands-on ArcGIS experiences.

10.1 Raster Data

With raster data model, geographic phenomena are represented as surfaces,
regions, or segments. Therefore, this data model is based on the field view of
the real world (Goodchild 1992). The field view is used widely for informa-
tion organization in image analysis systems for resource- and environment-
oriented applications. Raster data have two major categories: (1) discrete
data, also called thematic or categorical data, as employed in land-use or soil
maps; and (2) continuous data, also called nondiscrete data or surface data,
as employed in Digital Elevation Models (DEMs), rainfall maps, or pollutant
concentration maps.

A raster dataset represents geographic features in a 2D grid of cells
known as picture elements (pixels) (Figure 10.1). The location of each cell
is defined by its row and column numbers. The cell size dictates the spa-
tial resolution of the data. The locations of geographic features are only
represented by the nearest pixels. The value stored for each cell indi-
cates the type of the object, phenomenon, or condition that is found in
that particular location, and is normally given as the average value for the
entire ground area covered by the pixel. Different types of values can be
coded as integers, real numbers, or alphabet letters. If the code numbers
are integers, then they are more likely referencing to nominal attributes
(e.g., names in an associated table). Different attributes at the same cell
 location are each stored as separate themes or layers. For example, ras-
ter data pertaining to the soil type, forest cover, and slope covering the
same area are stored in separate soil type, forest cover, and slope layers,
respectively.

186 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

10.2 Raster Storage and Compression

Raster data are normally stored row by row from the top left, as illustrated in
Figure 10.2. This is the simplest way of storing and searching for raster data.
However, a raster, when stored in a raw state with no compression, can be

Column #

Row #

Cell value 1 2
1 1

Code Land cover

Forest
Water body

Crop

1
2
3 Lookup table

Pixel

Different
layers

FIGURE 10.1
Raster data structure.

3
(b)(a)

3 3 3 1 1 1 1

3 3 3 3 2 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 2

3 3 3 3 2 2 2 2

3 3 3 3 2 2 2 2

FIGURE 10.2
Raster image. (a) Each pixel of the raster is color coded and (b) value of each pixel and order of
pixel storage.

187Raster Data Algorithm

extremely inefficient in terms of computer storage space. Taking Figure 10.2a,
to extract the yellow area, the computer needs to extract the area one pixel at
a time, following the storage order Figure 10.2b. After getting the four yellow
cells in the first row, the computer needs to skip the remaining cells in the
first row before reaching the targeted cells in the second row, which results
in extra searching time.

Nowadays, data are increasingly available and has higher resolution.
Computing capabilities have also improved. Therefore, better methods
of data storage and compression are needed. Raster compression reduces
the amount of disk space consumed by the data file, while retaining the
 maximum data quality. There are different methods for raster data compres-
sion, including Run Length Coding, quad tree coding, and others.

For multilayer raster datasets, the normal practice is to store the layers
separately. It is also possible to store all information for each pixel together;
however, this requires extra space to be allocated initially within each pixel’s
storage location for layers, which can be created later during analysis.

10.2.1 Run Length Coding

The Run Length Coding (Pountain 1987) is a widely used compression
 technique for raster data. The primary data elements are pairs of values or
tuples, consisting of a pixel value and a repetition count, which specifies the
number of pixels in the run. Data are built by reading each row in succes-
sion through the raster and creating a new tuple every time the pixel value
changes or when the end of the row is reached. Figure 10.3 demonstrates the
process of Run Length Coding. Suppose we have raster data stored in a 4 by

84 84 90 90

88 93 93 93
93 93 93 93
87 87 87 94

Array

Run length coding

Run Length 84 2 90 2 88 1 193 7 87 3 94

84 84 90 90 88 93 93 93 93 93 93 93 87 87 87 94

�e identical pixel value Repeating time

FIGURE 10.3
Example of Run Length Coding.

188 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

4 matrix. The computer will scan it starting from the top left and move right,
working its way down, while keeping the data in an array. Then Run Length
Coding will process the string of pixels into a string of pairs (the identical
pixel value, and times of pixel repetition). The length of the initial string is
16 and after Run Length Coding the length is 12. Therefore, Run Length
Coding effectively reduces the storage volume.

Run Length Coding has its limitations. For example, Run Length will not
save storage in cases where pixel values do not repeat frequently. In some
cases, such as DEM data in a mountainous area, neighboring pixels always
have different values, and Run Length Coding may actually increase the
length of the initial storage. However, Run Length Coding is very successful
when dealing with black and white images, such as a fax. In this case, it is
relatively efficient because most faxed documents are predominantly white
space, with only occasional interruptions of black.

10.2.2 Quad Tree

The quad tree compression technique is the most common compression
method applied to raster data (Gosselin and Georgiadis 2000). Quad tree
coding stores the information by subdividing a square region into quad-
rants, each of which may be further divided into squares until the contents
of the cells have the same values. Figure 10.4 demonstrates the process of
quad tree compression. Suppose raster data is stored in a 4 by 4 matrix
(Figure 10.4a). First, the quad tree divides the raster data into four square
matrices (Figure 10.4b). In the sequence 0,1,2,3 (Figure 10.4b), the four matri-
ces are checked on whether or not the contents of their cells have the same
value. This process can be repeated recursively n times, until the cells within
a quadrant are all of the same value. For quadrant 0, the sequence is the
same with previous levels of processes, and the division results in four other

89 68 85 85
1 3

0 2
00

01

10

11

02

03

12

13 89
85

85

68

89 75

89 89

89 77

3

2

89 75 85 85

89

89

89 85 85

(a) (b) (c) (d)

77 85

89

00 01 02 03 10 11 12 13

89 77 89 89 89 75 68

85 85

0 1 2

Root

3

85

FIGURE 10.4
Quad tree process. (a) Pixel value of the rater, (b) search order of the four quadrants, (c) continu-
ing dividing when finding non-equal values inside each quadrant of (b), and (d) final division.

189Raster Data Algorithm

squares, 00,01,02,03. The same process happens in quadrant 1. For quadrant
2 and 3, all cells have the same value, so no division is needed. Therefore, the
final output of the quad tree is like Figure 10.4d. We call this arrangement a
tree, whose nodes correspond to the squares. Nodes are connected if one of
the corresponding squares immediately contains the other. The root node of
the tree corresponds to the whole picture, the leaf nodes correspond to the
single pixels.

Quad tree works for images with identical-value patterns. For each quad
division used, four more storage elements are needed. Quad trees are of
great interest for indexing spatial data, whereby cells that are adjacent in
space are more likely to have similar spatial index addresses than in column
or row ordering schema. Hence, data that are close together are also close
in the storage system. This feature makes quad tree compressed data much
easier and quicker to manipulate and access.

10.3 Raster Data Formats*

Raster format defines how the data are arranged and the corresponding
compression type or level. Many data formats apply compression to the
raster data so that all pixel values are not directly stored. Compression can
reduce the data size to 30% or even 3% of its raw size, depending on the
quality required and the method used. Compression can be lossless or lossy.
With lossless compression, the original image can be recovered exactly.
With lossy compression, the pixel representations cannot be recovered
exactly. To implement compression, the raster file must include some head
information about the compression method and parameters. Some raster
 formats, such as TIFF, GeoTIFF, IMG, and NetCDF, contain geoinformation,
while others, such as BMP, SVG, and JPEG do not.

10.3.1 TIFF

TIFF (Tagged Image File Format) is an image format recognized by many
computer systems. The TIFF imagery file format is used to store and transfer
digital satellite imagery, scanned aerial photos, elevation models, scanned
maps, or the results of many types of geographic analysis. TIFF supports
various compression and tiling options to increase the efficiency of image
transfer and utilization. The data inside TIFF files are categorized as lossless
compressed or lossy compressed.

* “GIS file formats.” Wikipedia: Raster. Wikipedia Foundation, Inc. http://en.wikipedia.org/
wiki/GIS_file_formats#Raster.

http://en.wikipedia.org/wiki/GIS_file_formats#Raster
http://en.wikipedia.org/wiki/GIS_file_formats#Raster

190 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

10.3.2 GeoTIFF

GeoTIFF are TIFF files that have geographic (or cartographic) data embed-
ded as tags within the TIFF file (Ritter and Ruth 1997). The geographic data
can then be used to position the image in the correct location and geometry
on the screen of a geographic information display. The potential additional
information includes map projection, coordinate systems, ellipsoids, datums,
and everything else necessary to establish the exact spatial reference for the
file. Any Geographic Information System (GIS), Computer Aided Design
(CAD), Image Processing, Desktop Mapping, or other type of systems using
geographic images can read GeoTIFF files created on any system following
the GeoTIFF specification.

10.3.3 IMG*

IMG files are produced using the IMAGINE image processing software
 created by ERDAS. IMG files can store both continuous and discrete, single-
band and multiband data. These files use the ERDAS IMAGINE Hierarchical
File Format (HFA) structure. An IMG file stores basic information including
file information, ground control points, sensor information, and raster layers.
Each raster layer in the image file contains information in addition to its
data values. Information contained in the raster layer includes layer informa-
tion, compression, attributes, and statistics. An IMG file can be compressed
when imported into ERDAS IMAGINE, which normally uses the run length
 compression method (described in Section 10.2.1).

10.3.4 NetCDF

NetCDF (Network Common Data Form) is a set of software libraries and
self-describing, machine-independent data formats that support the cre-
ation, access, and sharing of array-oriented scientific data (Rew and Davis
1990). It is commonly used in climatology, meteorology, and oceanography
applications (e.g., weather forecasting, climate change) and GIS applications.
It is an input/output format for many GIS applications, as well as for general
scientific data exchange. NetCDF is stored in binary in open format with
optional compression.

10.3.5 BMP

BMP (Windows Bitmap) supports graphic files inside the Microsoft Windows
Operational System. Typically, BMP files data are not compressed, which
can result in overly large files. The main advantages of this format are its
 simplicity and broad acceptance.

* “ERDAS IMAGINE .img Files.” Purdue University. ftp://ftp.ecn.purdue.edu/jshan/86/help/
html/appendices/erdas_imagine__img_files.htm.

191Raster Data Algorithm

10.3.6 SVG

Scalable Vector Graphics (SVG) are XML-based files formatted for
2D vector graphics. It utilizes a lossless data compression algorithm, and
typically reduces data to 20%–50% of the original size.

10.3.7 JPEG

JPEG (Joint Photographic Experts Group) files store data in a format with loss
compression (in major cases). Almost all digital cameras can save images in
JPEG format, which supports eight bits per color for a total of 24 bits, usually
producing small files. When the used compression is not high, the quality
of the image is not as affected, however, JPEG files can suffer from notice-
able degradations when edited and saved recurrently. For digital photos
that need repeated editing or when small artifacts are unacceptable, lossless
 formats other than JPEG should be used. This format is also used as the
 compression algorithm for many PDF files that include images.

10.3.8 GIF

GIF (Graphic Interchange Format) is the first image format used on the World
Wide Web. This format is limited to an 8-bit palette, or 256 colors. It utilizes
lossless Lempel–Ziv–Welch (LZW) compression, which is based on patented
compression technology.

10.3.9 PNG

PNG (Portable Network Graphic) is an open-source successor to GIF.
In contrast to the 256 colors supported by GIF, this format supports true color
(16 million colors). PNG outperforms other formats when large uniformly
 colored areas form an image. The lossless PNG format is more appropriate
for the edition of figures and the lossy formats, as JPEG, are better for final
distribution of photos, because JPEG files are smaller than PNG files.

10.4 Color Representation and Raster Rendering

10.4.1 Color Representation

Raster data can be displayed as either a grayscale or a color (RGB) image
by transforming pixel values. A colormap is a lookup table used to translate
each pixel’s value into a color. A given pixel value is used as an index into
the table, for example, a pixel value of nine will select the ninth element, or
colorcell (Figure 10.5).

A grayscale image can be displayed on monochrome screens by transform-
ing pixels into the intensity of gray level, which contains only a single value,

192 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

in the colormap. Grayscale can be simulated on a color screen by making the
red, green, and blue values equal in a given color cell, setting the brightness
of gray pixels on the screen.

Most color screens are based on RGB color model. Each pixel on the screen
is made up of three phosphors: one red, one green, and one blue, which are
each sensitive to separate electron beams. When all three phosphors are fully
illuminated, the pixel appears white to the human eye. When all three are
dark, the pixel appears black. Each pixel value in the visible portions of a
window is continuously read out of screen memory and looked up in the
colormap. The RGB values in the specified colorcell control the intensity of
the three primary colors and thus determine the color that is displayed at
that point on the screen (Figure 10.6).

Raster data can also be transformed from RGB model to grayscale.
The most common ways to conduct the transformation are Luster (Jack 2011),
Intensity (Hoeffding 1963), and Luma (Bosch et al. 2007). The Luster method
averages the most prominent and least prominent colors. The Intensity
method simply averages the values. The Luma method is a more sophisti-
cated version of the average method. It also averages the values, but it forms
a weighted average to account for human perception; because human beings
are more sensitive to green than other colors, green is weighted most heavily
(Equation 10.1). Figure 10.7 shows the transformation results.

′ =

+

+ +v

R G B R G B

R G B

max(, ,) min(, ,)
,

,

2

3

Luster method

Intensity methood

Luma method0 21 0 72 0 07. . . ,× + × + ×

 R G B

(10.1)

Colormap
19
18

Pixel value 17
16
I5
14
13

0

0

0

1

1

12
11
10

9 200
Colorcell 8

70 6
0

0

5
4
3
2
1
0

FIGURE 10.5
Pixel value to grayscale mapping.

193Raster Data Algorithm

Co
lo

rm
ap

R
G

B
19 18

Pi
xe

l v
al

ue
17 16 I5 14 13

0

0

0

1

1

12 11 10 9
25

5
0

0
Co

lo
rc

el
l

8 7
0

6

0

0

5 4 3 2 1 0

FI
G

U
R

E
10

.6
P

ix
el

 v
al

ue
 to

 R
G

B
 m

ap
pi

ng
 w

it
h

th
e

co
lo

rm
ap

.

194 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The color depth measures the amount of color information available to display
or print each pixel of a digital image. Owing to the finite nature of storage
capacity, a digital number is stored with a finite number of bits (binary digits).
The number of bits determines the radiometric resolution of the image. A high
color depth leads to more available colors, and consequently to a more accu-
rate color representation. For example, a pixel with one bit depth has only two
possible colors. A pixel with 8 bits depth has 256 possible color values, ranging
from 0 to 255 (i.e., 28–1), and a pixel with 24 bits depth has more than 16 million
of possible color values, ranging from 0 to 16,777,215 (i.e., 224–1). Usually, the
color depths vary between 1 and 64 bits per pixel in digital images.

10.4.2 Raster Rendering

Raster datasets can be displayed, or rendered, on a map in many differ-
ent ways. Rendering is the process of displaying the data. The map display
depends on both the data itself and the chosen rendering method. Methods
of rendering raster data commonly used in GIS software include Stretched,
RGB Composite, Classified, Unique Values, and Discrete Color.

The Stretched renderer represents continuous data by stretching it on the
statistics of the raster dataset. A stretch increases the visual contrast of the
raster display, especially when the raster display appears dark or has little
contrast. The image may not contain the entire range of values a computer can
display (Figure 10.8a, b); therefore, by applying a contrast stretch, the image’s

Original image Luster method

Intensity method Luma method

FIGURE 10.7
RGB to grayscale. (Original image from http://www.coloringpages456.com/color-pictures/.)

http://www.coloringpages456.com/color-pictures/

195Raster Data Algorithm

values could be stretched to utilize this range (Figure 10.8d). In the case of
eight bit planes, values are calculated in Equation 10.2.

′ = × +

= −
−

= − − ×

v m v c

m
v v

c m v
max() min()

max()

2 1

2 1

8

8

(10.2)

where v′ refers to the stretched pixel value and v refers to the original pixel
value. This may result in a crisper image, and some features may become
easier to distinguish (Figure 10.8c).

Different stretches will produce different results in the raster display;
standard methods include Standard Deviation, Minimum–Maximum,
Histogram Equalize, and Histogram Specification.

The RGB Composite renderer uses the same methods as the Stretched
 renderer, but allows combining bands as composites of red, green, and blue.

1400

1200

600

800

1000

400

200

0

0

1000

700
800
900

600
500
400
300
200
100

50
Pixel value

Co
un

t
Co

un
t

100 150 200 250

500

0

100 150 200
Pixel value

250

(a)

(c)

(b)

(d)

FIGURE 10.8
Stretch renderer. (a) Original figure, (b) Histogram of original figure, (c) Stretched figure,
(d) Histogram of stretched figure.

196 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Multiband raster datasets, such as satellite or aerial imagery, are usually
 displayed in different combinations of bands using RGB Composite.

The Classified renderer is used with a single-band raster layer.
The classified method displays thematic raster by grouping cell values
into classes. Continuous phenomena such as slope, distance, and suitabil-
ity can be classified into a small number of classes which can be assigned
as colors. Classification is a spatial data operation used in conjunction with
 previous selection operations. This can either create a new dataset or present
a different view of the same data (e.g., display properties).

Two less common renderers are Unique Values and Discrete Color.
The Unique Values renderer is used to display each value in the raster layer indi-
vidually. It is suitable for data containing discrete categories representing partic-
ular objects, such as a thematic map representing land use or types. The Unique
Values renderer can display each value as a random color or use a color map.
Discrete Color renderer displays the values in the raster dataset using a random
color. This renderer is similar to the Unique Values renderer, but is more effi-
cient when there are a large number of unique values because it does not have
to calculate how many unique values exist. The Discrete Color renderer assigns
a color to each unique value until it reaches the maximum number of colors
chosen. The next unique value starts at the beginning of the color scheme; this
process continues until each unique value has a color assigned to it.

10.5 Raster Analysis

Raster analysis includes various types of calculations based on pixels.
In this section, we introduce several raster data analyses that are conducted
 frequently, including reclassification, overlay, and descriptive operations.

Reclassification is the process of reassigning new output values to a value,
a range of values, or a list of values in a raster. It is conducted when (1) the
value of a cell should be changed, for example, in the case of land change over
time; (2) various types of values should be grouped together; or (3) specific
values should be removed from the analysis. There are several approaches
for reclassification, such as using lookup table and ranges of values.

Using a lookup table, the reclassification conducts a one-to-one change.
For example, in Figure 10.9, to perform a habitat analysis, the pixel values on
a land use raster, which represent numerous types of land use, need to be
changed to represent a simple preference values of high, medium, and low
(e.g., values 1, 2, and 3). The types of land most preferred are reclassified to
higher values and those less preferred to lower values. For instance, forest
is reclassified to 3, pasture land to 2, and low-density residential land to 1.

Using a ranges of values process, the reclassification is conducted in a
many-to-one change, reclassifying a range of values to some alternative

197Raster Data Algorithm

value and another range to a different alternative value. In our hypothet-
ical analysis of habitat, the second layer in the suitability model is based
on the preference for locations far from roads. Illustrated in Figure 10.10, a
distance map (continuous data) is created from the existing roads theme.
Instead of individually reclassifying each of the thousands of distance values
on a 1-to-3 preference scale, the values can be divided into three groups.
The farthest group receives the highest preference value, a value of 3, and the
nearest group, a value of 1.

Descriptive operations can also be used to conduct raster analysis.
Operations include minimum, maximum, mean, and median values, and can
be operated on a different spatial scale such as local, focal, zonal, or global.
Local operations work on individual raster cells, or pixels. Focal operations
work on cells and their neighbors, whereas global operations work on the
entire layer. Finally, zonal operations work on areas of cells that share the
same value. In GIS software, operations can be conducted in raster calculator,
where mathematical calculations and trigonometric functions are available.

Land use
0
1
2
3
4
5
6
7
8
9

Land use
preference

1
2
3

FIGURE 10.9
Reclassification of categorical data involves replacing individual values with new values.
For example, land use values can be reclassified into preference values of low (1), medium (2),
and high (3).

High : 1784.73

Low : 0

Distance
to roads

1
2
3

Distance
preference

FIGURE 10.10
Reclassification of continuous data involves replacing a range of values with new values.
For example, a raster depicting distance from roads can be reclassified into three distance
zones.

198 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Other applications of raster analysis can be DEM display, hydrology analysis
(introduced in Chapter 12), zonal statistics, buffer analysis, and so on.

10.6 Hands-On Experience with ArcGIS

10.6.1 Hands-On Practice 10.1: Raster Color Renders

 1. Figure 10.11a shows a land cover dataset stored in the geodatabase
“chp10data.gdb.” The raster is rendered using unique values with a
prespecified color map. Observing the layer in the “Table of Contents”
in ArcMap, when the label of this layer is shown as Figure 10.11b, the
layer should contain a color map. Try to open the layer properties
window (Figure 10.11c) by right clicking on the name of the layer in
the “Table of Contents” and select the “Properties…,” and select the
“Symbology” tab in the window. The raster dataset rendered using
color should have the choice of “Unique Values,” “Discrete Color,”
and “Classified.” The color map render is applied to the raster data-
set with one band.

 2. Change the color render mode. As shown in Figure 10.12a, export the
land cover data. In the “Export Raster Data” window (Figure 10.12b),
select “Use Renderer,” which allows the output raster using the same
color schema, and select “Force RGB,” which will transfer the single
band raster into the new Raster storing the pixel values in RGB mode.

When the raster is stored in RGB mode, we will see three sublayers in the
“Table of Contents” (Figure 10.13) and under the “Symbology” tab in the
“Layer Properties” window, there is an “RGB Composite” renderer choice,
but “Unique Value,” “Classified,” and “Discrete Color” are no longer available.

(b) (c)(a)

FIGURE 10.11
A raster data rendered using color map in ArcMap. (a) The raster layer rendered using color
map. (b) The label of the layer. (c) The properties window.

199Raster Data Algorithm

10.6.2 Hands-On Practice 10.2: Raster Data Analysis:
Find the Area with the Elevation Range between
60 and 100 and the Land Cover Type as “Forest”

 1. In the chp10data.gbd, there are two raster datasets “dem” and “land-
cover.” Run Code 10.1 in ArcMap python window to classify the
DEM data into several elevation ranges (0–10, 10–30, 30–60, 60–100,
and >100 degrees). The result is shown in Figure 10.14.

(a)

(b)

FIGURE 10.12
Steps of export raster data in ArcMap. (a) Export the land cover data and (b) “Export Raster
Data” window.

200 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 Note that the “Reclassify” function requires that the ArcMap users
have the “Spatial Analyst” extension; therefore, check the license of
the extension before executing the analysis.

 The Reclassify function provides two methods for defining the
classes: RemapRange redefines a range of values into a new class
value; RemapValue defines the one-to-one mapping relationship,
that is, replacing a single original value with a single new value.

 2. Land cover dataset stores the land cover types in detail. For exam-
ple, “Forest” is divided into three subtypes: “Deciduous Forest,”
“Evergreen Forest,” and “Mixed Forest.” Run Code 10.2 in the
ArcMap python window to generalize the land cover dataset.
The result is shown in Figure 10.15.

 3. Run Code 10.3 in ArcMap python window to overlay the classified
DEM and land cover datasets to find the area in forest (land cover
dataset pixel value = 4) with an elevation between 60 and 100 (DEM
dataset pixel value = 100). For this specific dataset, one way to find
the expected area is to add the two layers and find the pixels with
the value in 104, then reclassify all pixels with the value in 104 into
one class (1), and all other pixels into another class (0). Figure 10.16
shows the result of reclassification.

10.6.3 Hands-On Practice 10.3. Access the Attribute Information
of Raster Dataset and Calculate the Area

 1. Run Code 10.4 in ArcMap Python window to calculate the area of
the raster dataset. The raster dataset should be projected already.

FIGURE 10.13
Raster displayed in RGB.

201Raster Data Algorithm

 2. Using the classified land cover dataset that resulted from the
 previous practice, run Code 10.5 in the ArcMap Python win-
dow to calculate the area of each land cover type. The area
of each land cover type can be first calculated using the pro-
portion of the pixel counts of this type to the total pixel count,
and then multiply the total area of the raster dataset. Accordingly,
use the SearchCursor (see Chapter 8) to capture the counts of
pixels.

classify elevations into classes
set workspace
arcpy.env.workspace = "C:\\ArcGISdata\\chp10data\\chp10data.gdb"

"""
 Check the license of the spatial analyst extension. The

returning value "available" means the functions in this
extension are usable.

"""
arcpy.CheckExtension("spatial")

"""
 Define the input data. "Dem" is a file geodatabase raster

dataset stored in "chp10data.gdb"
"""
inRaster = "dem"

"""
 Define the value classes. The first two elements in the

bracket [0,10,10] means the minimum and maximum values in the
class and the third element means the new value for the pixels
following in the class.

"""
ranges = arcpy.sa.RemapRange([[0,10,10],[10,30,30],[30,60,60],
[60,100,100],[100,175,175]])

"""
 Execute the Reclassify function based on the "Value" field of

the raster using the RemapRange and set missing values as
"NODATA".

"""
outDEM = arcpy.sa.Reclassify(inRaster, "Value", ranges, "NODATA")

"""
 Output the reclassify function result as a new raster dataset

in the file geodatabase, named as "classifiedElevation"
(Figure x left).

"""
outDEM.save("classifiedElevation")

CODE 10.1
Classify DEM data.

202 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

FIGURE 10.14
Result of reclassifying DEM data in Code 10.1.

generalize land cover types
input data
inLandcover = "landcover"

"""
 Set the mapping relationship between old values and new values.
 The first element in the bracket [11,1] means the old value and
 the second element means the new value.
"""
values = ar cpy.sa.RemapValue([[11,1],[21,2],[22,2],[23,2],[24,2], [31,3],

[41,4],[42,4],[43,4],[52,5],[71,7],[81,8],[82,8],[90,9],
[95,9]])

execute the reclassify function and save as a new dataset
"classifiedLandcover"
outLandcover = arcpy.sa.Reclassify(inLandcover,"Value",values)
outLandcover.save("classifiedLandcover")

CODE 10.2
Generalize the land cover dataset.

203Raster Data Algorithm

FIGURE 10.15
Result of reclassifying land cover type data in Code 10.2.

"""
 Use the raster calculator to add two layers. Note that the

raster calculator can execute many other algebra calculations
on the

 raster dataset.
"""
temp = arcpy.gp.RasterCalculator_sa("'outLandcover' + 'outDEM'",
"overlayRaster")

"""
 Reclassify the layers into two classes - 1 and 0. 1

represents the area that is in the forest and has expected
elevation.

"""
outReclassify = arcpy.sa.Reclassify("overlayRaster", "Value", arcpy.

sa.RemapRange([[12,103,0],
[104,104,1],[105,184,0]]),
"NODATA")

CODE 10.3
Reclassify and find specific areas.

204 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

FIGURE 10.16
Result of reclassifying land cover type data in Code 10.3.

describe spatial extent of dataset and calculate area
desc = arcpy.Describe("classifiedLandcover")
area = desc.width * desc.height

CODE 10.4
Calculate area.

describe spatial extent of dataset and calculate area
desc = arcpy.Describe("classifiedLandcover")
area = desc.width * desc.height

store the total count of the pixels in the dataset
totalCount = 0
#initialize an array to put the counts of pixels in each land cover type
counts = []

"""
 Use the SearchCursor to access the Value and Count fields.

The Value field is the land cover type value.
"""
with arcpy.da.SearchCursor("classifiedLandcover", ["Value", "Count"])
as \ cursor:
 for row in cursor:
 totalCount = totalCount + row[1]
 counts.append({'type': row[0], 'count':row[1]})

calculate and print the area of each land cover type
for ele in counts:
 print 'The area of landcover type {0} is: {1}'.
 format(ele['type'],ele['count']/totalCount*area)

CODE 10.5
Calculate total area.

205Raster Data Algorithm

10.7 Chapter Summary

This chapter introduces raster data processing algorithms and demonstrates
them in ArcGIS using Arcpy programming, which includes the following:

 1. Raster data structure
 2. Color representation
 3. Raster data storage
 4. Raster data compression
 5. Raster data formats
 6. Raster analysis
 7. Hands-on experience with arcpy

PROBLEMS

For raster data of your choice, design a scenario that requires reclassifica-
tion. Explain the reasoning for reclassification and determine the purpose
for the new classes. Calculate the area for each class and use different color
 rendering methods to present the result.

NOT E: All codes can be successfully executed on ArcGIS for desktop
 versions 10.2.2 to 10.3. There may be problem on running the code on more
recent version of ArcGIS.

http://taylorandfrancis.com

207

11
Network Data Algorithms

A network is a system of interconnected elements, such as edges (lines) and
connecting junctions (points) that represent possible routes from one location
to another. People, resources, and goods tend to travel along networks:
cars and trucks travel on roads, airliners fly on predetermined flight paths,
oil flows in pipelines. By modeling potential travel paths with a network, it
is possible to perform analyses related to the movement of the oil, trucks, or
other agents on the network. The most common network analysis is finding
the shortest path between two points (McCoy et al., 2001). This chapter
 introduces network representation, algorithms, and applications in GIS, and
provides hands-on experience with ArcGIS.

11.1 Network Representation

11.1.1 Basics Network Representation

A network, sometimes called as graph, is a group or system of intercon-
nected objects. It could be the transportation system, or a number of
 interconnected computers, machines, or operations. There are two essential
components in a network: edges and nodes (Figure 11.1).

Each point in a network is called a vertex or node. The connections
between vertices are referred to as edges or links. Mathematically, a net-
work consists of a collection V of vertices and a collection E of edges.
Each edge e∈E is said to join two vertices, which are called its end points.
When there is an edge e that joins vertices u and v, they are termed
 adjacent, and edge e = (u,v) is said to be incident with vertices u and v,
respectively. For example, the network in Figure 11.2 can be represented
by the following:

• V = {v1,v2,v3,v4}
• E = {(v1,v2), (v2,v4), (v1,v3), (v1,v4), (v3,v4)}

11.1.2 Directed and Undirected Networks

There are two types of network systems: directed networks and undirected
networks. A directed network is a network in which the edges have directions,

208 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

meaning that there is no distinction between the two vertices associated
with each edge. For example, Figure 11.2 is actually an undirected network.
Undirected networks are used to model networks in airlines, shipping
lanes, and transit routes. For example, a two-way flight path connecting a
set of cities can be represented as an undirected graph. The cities could be
defined by the vertices and the unordered edges can represent two-way
flight paths that connect the cities.

In contrast, edges in a directed network direct one vertex to another.
In directed networks, an edge e is defined by ordered pairs such as <x,y>
where vertex x is the origin, and vertex y is the destination. For example,
edge <V2,V3> is directed from V2 to V3. The directed network example in
Figure 11.3a can be represented as V = {<V1,V2>, <V3,V2>, <V3,V1>}. Directed
networks are used to model road, electricity, telephone, cable, sewer, and
water systems. For example, a road network that connects a set of loca-
tions in a city with one-way roads can be represented as a directed graph.
The locations can be represented by the vertices and the directed edges can
represent the roads that connect the locations considering the traffic flow.
Note whether to define a network as a directed one or not largely depends
on the problem you are trying to model.

Edges

Nodes

FIGURE 11.1
An example of basic network elements.

e3

e5e1 e4

e2

v3

v1

v2
v4

FIGURE 11.2
An example of basic network representation.

209Network Data Algorithms

11.1.3 The Adjacency Matrix

There are many ways to represent a network. One of the most popular ways
is to use an adjacency matrix. An adjacency matrix is a square matrix used to
represent a finite graph. The elements of the matrix indicate whether the
pairs of vertices are adjacent or not in the graph. For example, for a net-
work with n vertices, the adjacency matrix for this network will be an n × n
matrix, where (i,j) is the index for the connection between vertex i and j. If
element (i,j) is nonzero (i.e., “1”), it means that vertices i and j are connected,
if it is zero it means they are not connected. Note that undirected adjacency
matrices are symmetric. Figure 11.4 shows the difference between adjacency
matrices for directed and undirected matrices.

11.1.4 Network Representation in GIS

Most GIS software uses node-edge representation for network analysis,
which is a variant of adjacency matrix. Node-edge network representation

(a) (b)
v1

v2 v3

v1

v2 v3

FIGURE 11.3
Example of directed and undirected network. (a) Directed network, (b) Undirected network.

v1

v2 v3

v3

v3

v2

v2

v1
v1

1
0

0

0
0

0

1
0

1
v3

v3

v2

v2

v1
v1

1
1

0

0
1

1

1
0

1

v2 v3

v1
(a) (b)

FIGURE 11.4
Adjacency matrix of directed and undirected network. (a) Directed network, (b) Undirected
network.

210 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

maintains a table of nodes and a table of edges, as demonstrated in
Tables 11.1 and 11.2.

• Node table: This table contains at least three fields: one to store a
unique identifier and the others to store the node’s X and Y coordi-
nates. Although these coordinates can be defined by any Cartesian
 reference system, longitudes and latitudes ensure an easy portabil-
ity to a GIS (Rodrigue, 2016).

• Links table: This table also contains at least three fields: one to store a
unique identifier, one to store the node of origin, and one to store the
node of destination. A fourth field can be used to state whether the
link is unidirectional or not.

11.2 Finding the Shortest Path

11.2.1 Problem Statement

In graph theory, a path in a graph is a finite or infinite sequence of edges that
connect a sequence of vertices, which, by most definitions, are all distinct
from one another (Bondy and Murty, 1976). Finding the shortest path is one

TABLE 11.1

Example of Node Table for the Network in Figure 11.2

ID X Y

v1 23.2643 75.1245
v2 23.1443 74.1242
v3 23.2823 75.1315
v4 23.1442 75.1286

TABLE 11.2

Example of Link Table for the Network in Figure 11.2

ID Origin Destination One-Way

e1 v1 v2 Not
e2 v2 v4 Not
e3 v1 v3 Not
e4 v1 v4 Not
e5 v3 v4 Not

211Network Data Algorithms

of the most important network analysis algorithms. It refers to finding the
path between two vertices in a network that minimizes the cumulative dis-
tance (or weighted distance) of its constituent edges. For a regular shortest
path problem, we usually make the following assumptions:

• Edges can be directed or undirected. A shortest path should respect
the direction of its edges.

• The length of each edge does not have to be a spatial distance. It
could also refer to time or some other cost.

• Distances between any nodes must be nonnegative.
• Not all vertices are reachable. If one vertex is not reachable from the

other, there is no possible path between them.

11.2.2 A Brute Force Approach for the Shortest Path Algorithm

A brute force approach to finding the shortest path between two vertices in
a network can be described as

• Step 1: Find all possible paths from the start point to the end point.
• Step 2: Calculate the length of each path.
• Step 3: Choose the shortest path by comparing the lengths of all

 different paths.

For example, given the network in Figure 11.5, we would like to find the
shortest path from A to all the other vertices. The number of each edge is the
cost and Table 11.3 shows all the possible paths from A to the other vertices.
Although this method of finding the shortest path is simple and straight-
forward, the complexity of this approach increases exponentially with the
number of vertices and edges. For example, if we connect B and C, there will
be at least two more routes from A to E. In a real network application, we

B

A

C

D E
1

21

2 2

FIGURE 11.5
A network example used to illustrate finding shortest path problem.

212 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

usually have a large number of both vertices and edges (e.g., a transporta-
tion system), which would be very expensive and time-consuming from a
 computational standpoint. Therefore, a computationally efficient algorithm
to calculate the shortest path is needed.

11.2.3 Dijkstra Algorithm

The Dijkstra algorithm is a widely used algorithm for solving the shortest
path problem. It consists of the following six steps. Let the node at which
we are starting be called the initial node. Let the distance of node Y be
the distance from the initial node to Y. Dijkstra’s algorithm will assign
some initial distance values and will try to improve them step by step
(Dijkstra, 1959).

• Assign to every node a tentative distance value: set it to zero for the
initial node and to infinity for all other nodes.

• Set the initial node as current. Mark all other nodes unvisited.
Create a set of all the unvisited nodes called the unvisited set.

• For the current node, consider all of its unvisited neighbors and
 calculate their tentative distances. Compare the newly calculated
tentative distance to the current assigned value and assign the
smaller one. For example, if the current node A is marked with
a distance of 6, and the edge connecting it with a neighbor B has
length 2, then the distance to B (through A) will be 6 + 2 = 8. If B was
previously marked with a distance greater than 8, then change it to
8. Otherwise, keep the current value.

• After considering all of the neighbors of the current node, mark
the current node as visited and remove it from the unvisited set.
A visited node will never be checked again.

• If the destination node has been marked visited (when planning
a route between two specific nodes) or if the smallest tentative
distance among the nodes in the unvisited set is infinity (when
 planning a complete traversal; occurs when there is no connection

TABLE 11.3

Brute Force Approach to Solving the Shortest Path Problem
(Find the Shortest Path from A to E)

Destination Point Possible Paths and Length Shortest Path

B AB: 1; ACDB: 6 AB: 1
C AC: 2; ABDC: 5 AC: 2
D ABD: 3; ACD: 4 ABD: 2
E ABDE: 4; ACDE: 5 ABDE: 4

213Network Data Algorithms

between the initial node and remaining unvisited nodes), then stop.
The algorithm has finished.

• Otherwise, select the unvisited node that is marked with the
 smallest tentative distance, set it as the new “current node,” and go
back to step 3.

As an example, the problem mentioned in the last section can be solved by
using the Dijkstra algorithm (Table 11.4). The pseudo-code for the Dijkstra
algorithm is shown in Table 11.5.

The implementation of Dijkstra algorithm is quite complex and requires
different types of data structures and elaborate considerations. Therefore,
ArcGIS examples are used to demonstrate how network analysis is
 supported in GIS. Source code is also available in many open-source
 software packages such as QGIS.

TABLE 11.4

Process of Using Dijkstra Algorithm to Solve the Shortest Path
from A to Other Vertices (CX Means the Cost from A to X)

Step Selected Point CA CA CA CA CA Path M

1 A 0 ∞ ∞ ∞ ∞ A A
2 B 1 2 ∞ ∞ AB AB
3 C 2 3 ∞ AC ABC
4 D 3 ∞ ABD ABCD
5 E 1 2 3 4 ABDE ABCDE

TABLE 11.5

Pseudo-Code for the Dijkstra Algorithm

Input: Network dataset (G), starting vertex (A)
{
DK1: for each vertex v in G:
DK2: dist[v] = ∞
DK3: dist[A] := 0
DK4: T = the set of all vertices in G
DK5: while T is not empty:
DK6: s = vertices in T with smallest dist[]
DK7: delete s from T
DK8: for each connected (neighbor) v of s:
DK9: temp_Distance = dist[s] + dist_between(s, v)
DK10: if temp_Distance < dist(v)
DK11: dist [v] = temp_Distance
DK12: shortest_Distance [v] = temp_Distance
DK13: return shortest_Distance []
}

214 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

11.3 Types of Network Analysis

Network analysis allows you to solve common network problems, such as
finding the best route across a city, finding the closest emergency vehicle
or facility, identifying a service area around a location, servicing a set of
orders with a fleet of vehicles, or choosing the best facilities to open or close.
All of these problems could be solved by using Dijkstra algorithm or its
variants.

11.3.1 Routing

Whether finding a simple route between two locations or one that vis-
its several locations, people usually try to take the best route. But the
“best route” can mean different things in different situations. The best
route can be the quickest, shortest, or most scenic route, depending on
the impedance chosen. The best route can be defined as the route that has
the lowest impedance, where the impedance is chosen by the user. If the
impedance is time, then the best route is the quickest route. Any valid
network cost attribute can be used as the impedance when determining
the best route.

11.3.2 Closest Facility

Finding the hospital nearest to an accident or the store closest to a custom-
er’s home address are examples of closest facility problems. When finding
 closest facilities, you can specify how many to find and whether the direction
of travel is toward or away from them using GIS software. Once you have
found the closest facilities, you can display the best route to or from them,
return the travel cost for each route, and display directions to each facility.
Additionally, you can specify an impedance cutoff for Network Analyst.
For instance, you can set up a closest facility problem to search for restau-
rants within 15 minutes’ drive time of the site of an accident. Any restaurants
that take longer than 15 minutes to reach will not be included in the results
(Figure 11.6).

11.3.3 Service Areas

With most network analysis tools, you can find service areas around any
location on a network. A network service area is a region that encompasses
all accessible streets, that is, streets that lie within a specified impedance.
For instance, the 10-minute service area for a facility includes all the streets
that can be reached within 10 minutes from that facility. One simple way
to evaluate accessibility is by a buffer distance around a point. For exam-
ple, find out how many customers live within a 5-kilometer radius of a site

215Network Data Algorithms

using a simple circle. Considering that people travel by road, however, this
method will not reflect the actual accessibility to the site. Service networks
computed by Network Analyst can overcome this limitation by identify-
ing the accessible streets within 5 kilometers of a site via the road network
(Figure 11.7).

FIGURE 11.6
Example of closest facility.

FIGURE 11.7
Example of service areas.

216 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

11.3.4 OD Cost Matrix

With most network analysis tool, you can create an origin–destination
(OD) cost matrix from multiple origins to multiple destinations. An OD
cost matrix is a table that contains the network impedance from each ori-
gin to each destination. Additionally, it ranks the destinations to which
each origin connects in ascending order, based on the minimum net-
work impedance required to travel from that origin to each destination
(Figure 11.8).

11.3.5 Vehicle Routing Problem

A dispatcher managing a fleet of vehicles is often required to make deci-
sions about vehicle routing. One such decision involves how to best assign
a group of customers to a fleet of vehicles and to sequence and schedule
their visits. The objective in solving such vehicle routing problems (VRP)
is to provide timely customer service while keeping the overall operat-
ing and investment costs for each route to a minimum. The constraints
are to complete the routes with available resources and within the time

FIGURE 11.8
Example of OD cost matrix.

217Network Data Algorithms

limits imposed by driver work shifts, driving speeds, and customer com-
mitments (Figure 11.9).

11.3.6 Location-Allocation

Location-allocation could help choose, given a set of facilities, from which
specific facilities to operate, based on their potential interaction with demand
points. The objective may be to minimize the overall distance between
demand points and facilities, maximize the number of demand points
 covered within a certain distance of facilities, maximize an apportioned
amount of demand that decays with increasing distance from a facility, or
maximize the amount of demand captured in an environment of friendly
and competing facilities.

Figure 11.10 shows the results of a location-allocation analysis meant to
determine which fire stations are redundant. The following information was
provided to the solver: an array of fire stations (facilities), street midpoints
(demand points), and a maximum allowable response time. The response
time is the time it takes firefighters to reach a given location. In this exam-
ple, the location-allocation solver determined that the fire department could
close several fire stations and still maintain a 3-minute response time.

FIGURE 11.9
Example of vehicle routing problem.

218 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

11.4 Hands-On Experience with ArcGIS

Hands-On Practice 11.1: Run the codes in the ArcMap Python window step by
step to help a salesman find the shortest travel path for calling on a number of
customers.

 1. The network dataset and the stops of the salesman are available in
the data disk under the folder “chp11data.” The first step to conduct
network analysis is to find the shortest path by using the arcpy.
na.MakeRouteLayer function to create a route layer from the net-
work dataset (Code 11.1).
 The input parameter is the ND layer of the network dataset. Give
a name to your output route layer, such as myRoute. In this example,
the impedance attribute is “Length.” “FIND_BEST_ORDER” and
“PRESERVE_BOTH” mean that the order of the salesman’s stops can
be changed when analyzing the shortest path (to approach an opti-
mal result), but the first and end stops are preserved as his fixed start
and end locations. The total length of the resulting path is calculated
for reference (accumulate_attribute_name = "Length"). Figure 11.11
shows the route data layer in ArcMap created by Code 11.1.

FIGURE 11.10
Example of location-allocation.

219Network Data Algorithms

 2. Add the stops of the salesman in the “stops.shp” to the route layer.
Code 11.2 is provided to obtain all the subclasses in the route
layer structure. The subclasses of a route layer include Barriers,
PolygonBarriers, PolylineBarriers, Stops, and Routes. Except the
“Routes” class, all the other classes are the input classes that allow
users to input stops and barriers to restrict the network analysis.

FIGURE 11.11
Network dataset (left) and the route layer generated using the dataset (right).

get the sub classes of the route layer
naClasses = arcpy.na.GetNAClassNames(routeLy, "INPUT")

CODE 11.2
Script to get all input sublayer in the route layer.

#create a route layer from the network dataset

arcpy.env.workspace = 'C:\\ArcGISdata\\chp11data'

routeLy = arcpy.na.MakeRouteLayer(in_network_dataset = "roads_ND.nd",
out_network_analysis_layer =
"myRoute", impedance_attribute = "Length", find_best_order = "FIND_
BEST_ORDER",
ordering_type = "PRESERVE_BOTH", time_windows = "NO_TIMEWINDOWS",
accumulate_attribute_name = "Length", UTurn_policy = "ALLOW_UTURNS",
restriction_attribute_name = "#",
hierarchy = "NO_HIERARCHY", hierarchy_settings = "#",
output_path_shape = "TRUE_LINES_WITH_MEASURES", start_date_time =
"#").getOutput(0)

CODE 11.1
Script to create a route layer from the network dataset.

220 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The analysis output will be automatically stored in the “Routes”
class. Since we set a parameter “INPUT” in the code below, the code
will only return those input subclasses (Figure 11.12).

 Run Code 11.3 to input stops in the “Stops” subclass. The default
value of speed and length at the stops is set as 0, which means the
salesman will not have speed and have length cost at those stops. The
results of adding stops to each route layer are shown in Figure 11.13.

 3. Run the Solve function (Code 11.4) to calculate the shortest path with
“Length” as impedance (i.e., constraining cost).

 Figure 11.14 (upper) shows the resulting route. The order of the
stops is different from the ones in Figure 11.11, because the order
has been changed to optimize the analysis result. The total length of
the route has been accumulated and stored in the attribute table of
the resulting route (Figure 11.14 lower).

FIGURE 11.12
Returned result of Code 11.2: all input sublayer in the route layer.

"""
 Add stops (the points in the "stops.shp") to the "Stops"

class in the route layer.
 Fieldmapping is used to input the attribute in the stops.shp

to the "Stops" subclass to constrain the network analysis
"""

fieldMappings = arcpy.na.NAClassFieldMappings(routeLy,
naClasses["Stops"])

set the default value for the properties of the fieldmapping

fieldMappings["Attr_Length"].defaultValue = 0

fieldMappings["Attr_speed"].defaultValue = 0

add the points in stops feature class into the sublayer â€œStopsâ€
of route layer with field mapping

arcpy.na.AddLocations(routeLy, "Stops", 'stops.shp', fieldMappings)

CODE 11.3
Script to add the salesman’s stops to the “Stops” sublayer in the route layer.

221Network Data Algorithms

 4. In the above example, use “Length” as the impedance to calculate
the shortest path. Now change the impedance parameter setting in
Code 11.1 into “impedance_attribute = ‘speed’’’ and run Codes 11.1
through 11.4 again to analyze the shortest path with road speeds as
the impedance cost.

11.5 Chapter Summary

This chapter introduces network-related data representations and
 algorithms. It also demonstrates how to program the functions provided by
ArcGIS through arcpy scripting:

 1. Basic network representation
 2. Directed and undirected networks

FIGURE 11.13
Returned result of Code 11.3: the route layer with stops added in.

create route for those stops
arcpy.na.Solve(routeLy)

CODE 11.4
Script to execute shortest path algorithm in the route layer.

222 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 3. Adjacency matrix
 4. Links Table and Node Table
 5. Shortest path algorithms (the Dijkstra algorithm)
 6. Hands-on experience with ArcGIS through arcpy scripting

PROBLEMS

Review the class material and practice code, and develop a network for
your University Campus for routing:

 1. Capture the network data model.
 2. Capture the datasets including vertices and links.
 3. Implement a simple routing algorithm that can route from one point

to another point.
 4. Point can be buildings, parking lots, and other points of interest.

NOT E: All codes can be successfully executed on ArcGIS for desktop
 versions 10.2.2 through 10.3. There may be problem on running the code
on more recent version of ArcGIS.

FIGURE 11.14
Routing result (upper: the route line; lower: the attribute table of the route layer).

223

12
Surface Data Algorithms

We live in a 3D space, where we observe entities stereoscopically. New
advanced technologies have been developed to enable researchers to explore
real-world 3D geospatial information. 3D is not only one of the key areas for
GIS evolution but also the basis that guarantees the success of the popular
Google Earth, Virtual Earth, and Image City. One of the major forms of 3D data
is surface data. Surface data can represent surface features, such as elevation
data, contamination concentrations, and water-table levels. This chapter intro-
duces the fundamentals of surface data and related processing algorithms.

12.1 3D Surface and Data Model

12.1.1 Surface Data

Surface data is the digital representation of real or hypothetical features in
3D space. A surface is a representation of geographic features that can be
considered as a Z value for each location defined by X, Y coordinates. Since
a surface contains an infinite number of points, it is impossible to measure
and record the Z value at every point. Raster, triangulated irregular network
(TIN), terrain, and Light Detection and Ranging (LiDAR) datasets are all sur-
face data types. A surface is usually derived, or calculated, using specially
designed algorithms that sample points, lines, or polygon data, and convert
them into a digital surface.

12.1.2 Surface Data Model

3D surface data can be represented as discrete data or continuous data.
Discrete data can be referred to as point-based or line-based, while contin-
uous data represents field, nondiscrete surface data. Discrete data can be
interpolated into continuous data.

12.1.2.1 Discrete Data

Discrete data can be mass points, breaklines, and contour lines. Mass points
are point data features that represent locations on the ground in three
dimensions (ESRI 2016a,b). A mass point is defined by x, y, and z coordinates,

224 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

typically represented as an easting, a northing, and an elevation. Mass
points are commonly used as components of digital elevation models and
digital terrain models to represent terrain. Mass points are generally created
in evenly spaced grid patterns, but may also be placed randomly depending
on the method of creation and the characteristics of the terrain being defined.

Breaklines are line features that represent sudden changes in terrain, usu-
ally associated with linear ground features such as retaining walls, road
edges, steep ridges, and ridgelines (ESRI 2016a,b). Like mass points, break-
lines consist of vertices that are defined in x, y, and z coordinates, typically
represented as eastings, northings, and elevations. Breaklines are also com-
monly used as components of digital elevation models and digital terrain
models to represent terrain.

Breaklines are classified into two groups: soft breaklines and hard break-
lines. The Z values of soft breaklines are calculated from existing points,
while those of hard breaklines are without calculation. In addition, soft
breaklines are used to define boundaries that are not physical features of the
landscape (e.g., TIN edges, political boundaries, vegetation, and soil types),
so that each triangle will be assigned to one feature type. Hard breaklines, in
contrast, are used to define interruptions in surface smoothness (e.g., streams,
shorelines, dams, ridges, and building footprints).

Contours are commonly used to express digital elevation data; however,
they can also be used to connect points of equal value for any such “surface”
parameters, such as temperature, water table, or pollution concentrations.
Each contour line corresponds to a specific value; therefore, contour lines
never cross each other (Figure 12.1). Where there is less drastic change in

FIGURE 12.1
Contour lines.

225Surface Data Algorithms

values, the lines are spaced farther apart; where the values rise or fall rapidly,
the lines are closer together. Contour lines can, therefore, be used not only
to identify locations that have the same value, but also gradient of values.
For topographic maps, contours are a useful surface representation, because
they can simultaneously depict flat and steep areas (distance between con-
tours) and ridges and valleys (converging and diverging polylines).

The elements needed to create a contour map include a base contour and a
contour interval from values for a specific feature. For example, we can create
a contour every 15 meters, starting at 10 meters. In this case, 10 meters would
be considered the base contour and the contour interval would be 15 meters;
the values to be contoured would be 10 m, 25 m, 40 m, 55 m, etc.

12.1.2.2 Continuous Data

Continuous surface data can be either Grid (e.g., Digital elevation model) or
TIN. Grid and TIN are the most frequently used models in continuous sur-
face representation, each offering its own advantages and shortcomings.

12.1.2.2.1 Grid

Grid surface refers to a surface map plotted as a grid of surface values with
uniformly spaced cells. This grid is in the same data structure as raster data,
consisting of a rectangular matrix of cells represented in rows and columns.
Each cell represents a defined square area on the Earth’s surface and holds
a value that is static across the entire cell (Figure 12.2). Elevation models are
one such example of Grid surface models.

FIGURE 12.2
Grid surface model.

226 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The advantage of grid surfaces is their simplicity in terms of storage and
processing. As a result, the computation of grid surface data is fast and
straightforward; however, because the cell value is determined by interpola-
tion, a grid surface has a fixed resolution as determined by the cell size. In
addition, some source data may not be captured, which may cause loss of
information.

12.1.2.2.2 TIN

TINs are a form of vector-based digital geographic data and are constructed
by triangulating a set of vertices, each with its own x, y coordinate and z
value (Figure 12.3). The vertices are connected with a series of edges to form
a network of triangles. Triangles are nonoverlapping; thus, no vertex lies
within the interior of any of the circumcircles of the triangles in the network
(Figure 12.4). Each triangle comprises of three vertices in a sequence, and is
adjacent to at least one neighboring triangle.

12.1.2.2.3 Comparison of Grid and TIN

TIN and Grid each has their advantages, so it would be arbitrary to credit
one as being better than the other. Some advantages and disadvantages of
TINs are as follows:

• The TIN model has variable resolution. A TIN preserves the x, y
location of input points, allowing for more detail where there are
extensive surface variations and less detail where the changes are
small or nonexistent.

• Since TINs are vector data, they can be displayed well at all zoom
levels. Raster display degrades when you zoom in too close.

FIGURE 12.3
TIN.

227Surface Data Algorithms

• For large-scale applications (those covering a small area in detail) or
applications where display quality is very important, TINs are often
a better choice.

• However, in many cases, TINs require visual inspection and manual
control of the network.

On the other hand, Grids have their advantages and disadvantages:

• Grid data structure is straightforward and easy to process. Their
matrix structure makes them well suited to analysis. A greater
 variety of mathematical and statistical functions are available for
Grid versus TINs.

• Grid is a more familiar and readily available data type.
• For small-scale applications (those covering a large area), or applica-

tions that require statistical analysis of data, Grids are often a better
choice.

• The disadvantage is the inability to use various grid sizes to reflect
areas of different complexity of relief.

5
3

4
4

23
2
1

Node ID X Y Z

2

1 1

3
4

5 56

A

B
C

D

6

1
1

4
6
5
3

5
3

6
5
3
3

6
3

7
8
5
4

1 32 4 65

Triangle ID Node sequence Neighbors
A 1, 2, 6 –, B, –
B 2, 3, 6 –, B, C
C 6, 3, 5 B, D, –
D 3, 4, 5 –, –, C

FIGURE 12.4
TIN triangles.

228 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

12.2 Create Surface Model Data

12.2.1 Create Grid Surface Model

Grid model data can be created from discrete features like mass points or
contours by sampling a series of regularly spaced grid points with corre-
sponding information and grid size. Then, based on points with known
elevations (e.g., mass points and points on contour lines), a representative
elevation for each grid can be interpolated or calculated. Each nearest point
will have a weight based on the distance from that point to the grid. The
used weight can be equal weight for all points or unequal weights for differ-
ent points. Equal weight will calculate the elevation of the unknown point as
the average of all points (Equation 12.1).

z

z

s

i

i

s

0
1= =

∑

(12.1)

Unequal weights, such as exponential weight (weight = e−d, where d is the
distance between Point i and Point 0) or power weight (weight = d−k, where
k is the power number), can provide more variability for different purposes.
Z0 is the estimated value at Point 0, and Zi is the Z value at known Point i
(Equation 12.2).

z

zi i

i

s

i

i

s0
1

1

=
∗

=

=

∑
∑

weight

weight

(12.2)

Different methods exist for calculating the grid’s elevation based on the
weights’ scheme and the number of nearest points used. Commonly used
interpolation methods include inverse distance weighting (IDW), spline, krig-
ing, and natural neighbors. IDW weights the points closer to the target cell
more heavily than those farther away. Spline fits a minimum curvature sur-
face through the input points. Kriging is a geostatistical interpolation tech-
nique in which the surrounding measured values are weighted to derive a
predicted value for an unmeasured location. These weights are based on the
distance between the measured points, the prediction locations, and the over-
all spatial arrangement among the measured points. Natural neighbors create
a Delaunay triangulation of the input points, selecting the closest nodes that
form a convex hull around the interpolation point, and then weighting their
values proportional to their area. In ArcGIS, Grid surface is phrased as Raster.

229Surface Data Algorithms

12.2.2 Creating TIN Surface Model

A TIN surface can be created from discrete data, such as points, lines, and
polygons that contain elevation information. Normally, mass points are
the primary input to a TIN and determine the overall shape of the surface.
Breaklines are used to enforce natural features, such as lakes, streams, ridges,
and valleys. Polygon features are integrated into the triangulation as closed
sequences of three or more triangle edges. It usually takes multiple steps to
create TIN from points:

 1. Pick sample points. In many cases, sample points must be selected
from control points, such as existing, dense Digital Elevation Model
(DEM) or digitized contours, to ensure accuracy of representation.
There are several existing algorithms for selecting from a DEM: the
Fowler and Little (1979) algorithm, the VIP (Very Important Points)
algorithm (Chen and Guevara 1987), and the Drop heuristic algo-
rithm (Lee 1991). In essence, the intent of these methods is to select
points at significant breaks of the surface.

 2. Connect points into triangles. The selected TIN points will then
become the vertices of the triangle network. Triangles with angles
close to 60 degrees are preferred since this ensures that any point
on the surface is as close as possible to a vertex. There are dif-
ferent methods of interpolation to form the triangles, such as
Delaunay triangulation or distance ordering. Delaunay triangula-
tion, the method most commonly used in practice, ensures that
no vertex lies within the interior of any of the circumcircles of the
triangles in the network (Figure 12.5). Delaunay triangulation is
accomplished either by starting from the edges of the convex hull
and working inward until the network is complete, or by connect-
ing the closest pair that must be a Delaunay edge, searching for
a third point such that no other point falls in the circle through
them, and then working outward from these edges for the next
closest point.

 3. Model the surface within each triangle. Normally, the surface within
each triangle is modeled as a plane.

12.2.3 Conversion between TIN and Raster Surface Models

The conversion from a TIN to a raster requires the determination of a
cell size, which represents the horizontal accuracy. Based on the cell size,
 elevation values can then be interpolated from the TIN at regularly spaced
intervals across the surface. With decreasing cell size, more points will
be interpolated, yielding an output raster that resembles the input TIN
more closely. A TIN’s slope and aspect values can also be converted to
raster.

230 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The conversion from a raster to a TIN requires the determination of a Z
value tolerance, which represents the vertical accuracy. Ancillary data may
be needed to improve the surface definition. Raster to TIN first generates a
candidate TIN using sufficient input raster points (cell centers) to fully cover
the perimeter of the raster surface. Then, by reiteratively adding more cell
centers as needed, the TIN surface is incrementally improved until it meets
the specified Z tolerance.

12.3 Surface Data Analysis

Based on the data models constructed, 3D-based analysis can be conducted
to solve real-world problems, such as calculating the elevation of a certain
place, presenting slope and aspect of surface terrain, and deriving hydrologi-
cal flow.

12.3.1 Elevation

Elevation of a certain point can be calculated based on the interpolation
methods introduced in creating the surface. In a Grid model, elevation of a

FIGURE 12.5
Delaunay triangulation.

231Surface Data Algorithms

certain point can be calculated using the Grid cells close to the point. Taking
IDW as an example, a general form of finding an interpolated elevation z at
a given point x based on samples zi = z (xi) for i = 1, 2, …, N using IDW is an
interpolating function (Equation 12.3).

z x

w x z

w x

d x x i

z d

i i

i

N

i

i

N i

i

()

()

()

, (,)

,

=
≠=

=

∑
∑

1

1

0 if for all

if ((,)x x ii =

 0 for some

(12.3)

where wi(x) = 1/d(x, xi)p is a simple IDW weighting function (Shepard 1968),
x denotes an interpolated (arbitrary) point, xi is an interpolating (known)
point, d is a given distance (metric operator) from the known point xi to the
unknown point x, N is the total number of known points used in interpola-
tion, and p is a positive real number, called the power parameter.

In the TIN model, the three points associated with the triangle inside which
the point falls, as well as other nearest points, can be used for calculation.

12.3.2 Slope

Slope identifies the steepest downhill slope for a location on a surface. Slope
is calculated for each triangle in TINs and for each cell in raster. TIN is the
maximum rate of change in elevation across each triangle, and the output
polygon feature class contains polygons that classify an input TIN by slope.
For raster, slope is determined as the greatest of the differences in elevation
between a cell and each of its eight neighbors, and the output is a raster.

The slope is the angle of inclination between the surface and a horizontal
plane, and may be expressed in degrees or percent. Slope in degrees is given
by calculating the arctangent of the ratio of the change in height (dZ) to the
change in horizontal distance (dS) (Equation 12.4).

 Slope atan /= ()dZ dS (12.4)

Percent slope is equal to the change in height divided by the change in
horizontal distance multiplied by 100 (Equation 12.5).

 Percent slope /= ×()dZ dS 100 (12.5)

For a raster slope, the values of the center cell and its eight neighbors deter-
mine the horizontal and vertical deltas. As shown in Figure 12.6, the neigh-
bors are identified as letters from a to i, with e representing the cell for which
the aspect is being calculated.

232 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The rate of change in the x direction for cell e is calculated with Equation 12.6.

 [] (() () (_)dz dx c f i a d g x cellsize/ /= + + − + + ∗2 2 8 (12.6)

The rate of change in the y direction for cell e is calculated with Equation 12.7.

 [] (() ()) (_)dz dy g h i a b c y cellsize/ /= + + − + + ∗2 2 8 (12.7)

Based on the above Equations 12.4 through 12.7, the summarized algo-
rithm used to calculate the slope is demonstrated in Equation 12.8.

Slope atanradians =

 +

dz
dx

dz
dy

2 2

(12.8)

Slope can also be measured in units of degrees, which uses Equation 12.9.

Slope atandegrees .=

 +

×dz
dx

dz
dy

2 2

57 295578

(12.9)

12.3.3 Aspect

Aspect is the direction that a slope faces. It identifies the steepest downslope
direction at a location on a surface. It can be thought of as slope direction or
the compass direction a hill faces. Aspect is calculated for each triangle in
TINs and for each cell in raster. Figure 12.7 shows an example of the aspect
results of a surface using ArcMap 3D Analytics.

Aspect is measured clockwise in degrees from 0 (due north) to 360 (again
due north, coming full circle). The value of each cell in an aspect grid indi-
cates the direction in which the cell’s slope faces (Figure 12.7).

Aspect is calculated using a moving 3 × 3 window visiting each cell in
the input raster. For each cell in the center of the window (Figure 12.6), an

a b c

d e f

g h i

FIGURE 12.6
Surface scanning window.

233Surface Data Algorithms

aspect value is calculated using an algorithm that incorporates the values
of the cell’s eight neighbors. The cells are identified as letters a through i,
with e representing the cell for which the aspect is being calculated.

The rates of change in the x and y directions for cell e are calculated with
Equation 12.10.

[] (() ())
[] (() ())
dz dx c f i a d g

dz dy g h i a b c

/ /
/ /

= + + − + +
= + + − + +

2 2 8
2 2 8

(12.10)

Taking the rate of change in both the x and y directions for cell e, aspect is
calculated using Equation 12.11.

 Aspect atan / /= ∗ −57 29578 2. ([], [])dz dy dz dx (12.11)

The aspect value is then converted to compass direction values (0–360
degrees), according to the following rule:

if aspect < 0
cell = 90.0 − aspect

else if aspect > 90.0
cell = 360.0 − aspect + 90.0

else
cell = 90.0 − aspect

Similarly, the aspect, or direction of the steepest downhill slope, can be
calculated for each triangle in a TIN dataset and output as a polygon feature
class. Each surface triangle’s aspect is determined in units of degrees, then
assigned an aspect code based on the cardinal or ordinal direction of its
slope. Figure 12.8 shows the aspect calculation in ArcMap 3D Analyst.

270

225

180

135

90

45

0

315

N
NW

SW

W

S
SE

NE

E

FIGURE 12.7
Clockwise in calculation aspect.

234 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

12.3.4 Hydrologic Analysis

One of the keys to deriving the hydrologic characteristics of a surface is the
ability to determine the flow direction. In Grid, flow direction should be
determined based on the grid cell and its eight neighbors. The flow direction
is determined by the direction of steepest descent, or maximum drop, from
each cell. This is calculated as Equation 12.12.

 maximum drop change in Zvalue distance_ _ _= ∗/ 100 (12.12)

For raster surface dataset, the distance is calculated between cell centers.
Therefore, if the cell size is 1, the distance between two orthogonal cells is 1,
and the distance between two diagonal cells is 1.414 (the square root of 2).
If the maximum descent to several cells is the same, the neighborhood is
enlarged until the steepest descent is found. When a direction of steepest
descent is found, the output cell is coded with the value representing that
direction (Figures 12.9 and 12.10). Taking the 3 by 3 square (in red rectangle)
as an example, the center cell (row 3, column 3) has a value of 44, surrounded
by 8 neighboring cells. The steepest descent can be found at southeastern
cell, which has the largest change from the center cell. Since the steepest
descent direction is found to be the southeast, based on the direction coding
(Figure 12.9), the flow direction of the center cell is 2.

If all neighboring cells are higher than the processing cell or when two
cells flow into each other, creating a two-cell loop, then the processing cell is
a sink, whose flow direction cannot be assigned one of the eight valid values.
Sinks in elevation data are most commonly due to errors in the data. These
errors are often caused by sampling effects and the rounding of elevations
to integer numbers.

Elevation

Input: TIN Output: surface aspect

Aspect code
–1

1
2
3
4
5
6
7
8
9

460.556–494
427.111–460.556
393.667–427.111
360.222–393.667
326.778–360.222
293.333–326.778
259.889–293.333
226.444–259.889
193–226.444

FIGURE 12.8
Surface aspect (3D Analyst).

235Surface Data Algorithms

To create an accurate representation of flow direction, it is best to use a
dataset that is free of sinks. Sinks should be filled to ensure proper delinea-
tion of basins and streams; otherwise, a derived drainage network may be
discontinuous. The profile view of filling a sink is illustrated in Figure 12.11.
For example, if the center pixel in Figure 12.9 is a sink, then the values of the
nine pixels are sorted in a specified order (Figure 12.11) according to one of
the several existing algorithms.

After filling sinks, flow direction can be conducted a second time to ensure
accuracy. Flow accumulation can be determined based on the flow direction
results. Accumulation is calculated according to the total number of cells
that drain into a given cell and the value of each cell. First, the incremental
flow (Figure 12.12b) of a given cell can be calculated by adding up the num-
ber of cells flowing into it. The total flow (Figure 12.12c) of a cell can then be
calculated by summing the incremental flow value from the given cell and
incremental flow values from all incoming cells.

Taking, as an example, the cell located at row 3, column 3 in Figure 12.12
(red rectangles), there are three arrows pointing to this cell, from northwest,
west, and southwest, so that in the incremental flow, the value of this cell is 3.
The accumulation value of this cell is obtained by adding this incremental
value and the values from all the cells that flow into the cell. In this case,
the calculation of accumulation flow is to add the incremental value 3 and 1

32 12864

8

16 1

24

FIGURE 12.9
Direction coding.

78 72 69 71 58 49

74 67 56 49 46 50

69 53 44 37 38 48

64 58 55 22 31 24

68 61 47 21 16 19

74 53 34 12 11 12

2 2 2 4 4 8

2 2 2 4 4 8

1 1 2 4 8 4

128 128 1 2 4 8

2 2 1 4 4 4

1 1 1 1 4 16

Elevation surface Flow direction

FIGURE 12.10
Flow direction example.

236 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

from northwest cell, 3 from west cell, and 0 from southwest. Therefore, the
accumulation flow of this cell is 3 + 1 + 3 + 0 = 7.

12.4 Hands-On Experience with ArcGIS

12.4.1 Hands-On Practice 12.1: Conversion
among DEM, TIN, and Contours

Step 1. Run Code 12.1 in the ArcMap Python window to create a TIN
from a DEM surface raster dataset, and then generate a DEM from
the TIN (Figure 12.13).

(b)(a)

FIGURE 12.11
Profile view of a sink before and after fill.

0 0 0 0 0 0

0 1 1 2 2 0

0 3 3 2 2 0

0 0 0 4 0 1

0 0 0 1 3 0

0

(a) (b) (c)

2 2 2 2 1

0 0 0 0 0 0

0 1 1 2 2 0

0 3 7 5 4 0

0 0 0 20 0 1

0 0 0 1 24 0

0 2 4 7 35 2

FIGURE 12.12
Flow accumulation calculations. (a) Flow directions. (b) Incremental flow. (c) Total flow.

237Surface Data Algorithms

Step 2. Compare the original DEM and the new DEM that was regener-
ated from the TIN. Observe the areas with dramatic difference and
consider the reasons (Figure 12.14).

Step 3. Run Code 12.2 in ArcMap Python window to create contours
through a DEM surface raster dataset (Figure 12.15).

Step 4. Run Code 12.2 again, using the new DEM generated from the
TIN as input, to create another contour layer. Compare the two con-
tour layers (Figure 12.16).

arcpy.env.workspace = r"C:\\ArcGISdata\\chp12data.gdb"

"""
 DEM to TIN
 The TIN data cannot be saved in a geodatabase, so the output data
 should be put into a folder e.g. C:\\ArcGISdata\\chp12data.gdb\\tin
"""
arcpy.RasterTin_3d("dem", r"E:\\ArcGISdata\\chp12data.gdb\\tin")

"""
 TIN to DEM
 The cell size of the new DEM is 50 meters, values are in the
 float type, and the methos used to raster the DEM is linear
 interpolation
"""
arcpy.TinRaster_3d(in_tin=r"E:\\ArcGISdata\\chp12data.gdb\\tin",
out_raster="demFromTIN",
 data_type="FLOAT", method="LINEAR",
 sample_distance="CELLSIZE 50",z_factor="1")

CODE 12.1
Conversion between DEM and TIN.

(b)(a)

FIGURE 12.13
Result of Code 12.1. (a) TIN created from DEM. (b) DEM created from the TIN.

238 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

(b)(a)

FIGURE 12.14
DEM comparison. (a) Original DEM. (b) DEM created from TIN, which is generated from the
original DEM.

FIGURE 12.15
Result of Code 12.2—the contour created from DEM.

"""
 The input is "dem" and the output is "contour".
 The contour is in 10 meter intervals and starts from 330 meters.
"""
arcpy.Contour_3d(in_raster="dem", out_polyline_features=" contour",
 contour_interval="10", base_contour="330", z_

factor="1")

CODE 12.2
Create contour from DEM.

239Surface Data Algorithms

12.4.2 Hands-On Practice 12.2: Generate Slope and Aspect

 1. Run Code 12.3 in ArcMap Python window to create slope from DEM
(Figure 12.17).

 2. Run Code 12.4 in ArcMap Python window to create aspect from
DEM (Figure 12.18).

12.4.3 Hands-On Practice 12.3: Flow Direction

 1. Run Code 12.5 in the ArcMap Python window to create flow direc-
tion matrix from DEM (Figure 12.19).

 2. Continue to run Code 12.6 in the ArcMap Python window to check
whether there are any sinks (i.e., cells without outlet). If any sinks
exist, fill them on the original DEM to create a new DEM that will
not generate any sinks upon flow direction calculations.

 3. Continue to run Code 12.7 in the ArcMap Python window to create
a flow direction and then a flow accumulation layer using the “no-
sinks” DEM you created. Water streams will be observed in the flow
accumulation layer (Figure 12.20).

set the workspace
arcpy.env.workspace = r'C:\\ArcGISdata\\chp12data.gdb'

the input is DEM, and slope is in the unit of degrees
slopely = arcpy.sa.Slope("dem", "DEGREE")
save the slope layer into geodatabase (path has been set above)
slopely.save("slope")

CODE 12.3
Create slope from DEM.

(b)(a)

FIGURE 12.16
Contour comparison. (a) Contour generated from the new DEM. (b) Pink line is the contour
generated from original DEM and green line is the one from the new DEM.

240 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

FIGURE 12.17
Result of Code 12.3.

set the workspace
arcpy.env.workspace = r'C:\\ArcGISdata\\chp12data.gdb'
aspectly = arcpy.sa.Aspect("dem")
aspectly.save("aspect")

CODE 12.4

Create aspect from DEM.

FIGURE 12.18
Result of Code 12.4.

241Surface Data Algorithms

calculate sink
sinks = arcpy.sa.Sink("fd")
fill the sinks on dem
dem_sinkfilled = arcpy.sa.Fill("dem")

CODE 12.6
Check and fill sink.

recreate flow direction on the dem with sinks filled
fd_filled = arcpy.sa.FlowDirection("dem_sinkfilled","NORMAL")
calculate the flow accumulation
fa = arcpy.sa.FlowAccumulation("fd_filled","","INTEGER")

CODE 12.7

Recreate flow direction and calculate flow accumulation.

"""
 Set the workspace. All new raster layers generated will be stored
 in the workspace.
"""
arcpy.env.workspace = r'C:\\ArcGISdata\\chp12data.gdb'

"""
 Create flow direction with "dem" as input. The "NORMAL" argument means
 edge cells are not forced outward, but follow normal flow rules.
"""
fd = arcpy.sa.FlowDirection("dem","NORMAL")

CODE 12.5
Create flow direction from DEM.

FIGURE 12.19
Result of Code 12.5.

242 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

12.5 Chapter Summary

This chapter introduces the fundamentals of 3D surface data and the related
basic processing algorithms and demonstrates how to program them in
ArcGIS using Arcpy. Contents include the following:

 1. Surface data structure and essential representations of surface data,
that is, discrete data or continuous surface data.

 2. The creation of two types of continuous surface data: Grid and TIN,
and the conversion between them.

 3. Surface data analysis, including the calculation of elevation, slope,
aspect, and flow direction.

 4. Hands-on experience with arcpy, conducting conversion among
DEM, TIN, and contours, and calculating slope, aspect, and flow
direction.

PROBLEMS

 1. Review the chapter and 3D Analyst extension of ArcGIS.
 2. Pick a problem related to 3D surface analysis.
 3. Design a solution for the problem, which should include the trans-

formation to TIN and Grid, slope analysis, and aspect or flow direc-
tion analysis.

FIGURE 12.20
Flow accumulation layer generated by running Codes 12.3 through 12.7.

243Surface Data Algorithms

 4. Select related 3D datasets to evaluate.
 5. Code in Python to program a tool added to the ArcToolBox for

 operating ArcGIS and 3D Analyst and use it to obtain the results
data/information needed in your solution.

NOT E: All codes can be successfully executed on ArcGIS for desktop versions
10.2.2 through 10.3. There may be a problem on running the code on the more
recent version of ArcGIS.

http://taylorandfrancis.com

Section IV

Advanced Topics

http://taylorandfrancis.com

247

13
Performance-Improving Techniques

Performance is critical in developing a GIS tool to accomplish tasks through
time (Gittings et al. 1993). For example, a program that may need one hour
to process line intersection can be improved to a few seconds for supporting
near-real-time GIS tasks. This chapter discusses several programming per-
formance improvement techniques (Yang et al. 2005) and strategies (Tu et al.
2004), including (a) fundamental computer engineering methods, such as
accessing a file on an external storage and output device, (b) computational
techniques, such as using parallel processing to speed up the performance,
and (c) spatial methods, such as spatial index for improving access to large
amounts of GIS data. General ideas, exemplar algorithms, and programming
demonstrations are provided in this chapter. The fundamental intersection
algorithm is used to illustrate how these techniques can be utilized to
improve performance.

13.1 Problems

If the waiting time for processing cannot be tolerated by the end user, then
the performance of a tool or computer software is critical to its success. Many
GIS algorithms are time-consuming. For example, given the 10,000 GIS river
features of the United States, finding the features within Washington, D.C.,
can be accomplished by evaluating each river to see whether or not it inter-
sects with the D.C. boundary. Supposing that one such evaluation takes 0.1
second, the entire process could take 0.1 × 10,000 = 1000 seconds, or approx-
imately 18 minutes. Such a long time is not tolerable to end users and is
not typical to commercial software or optimized open-source software.
As another example, if we have 10,000 roads and 10,000 rivers within the
United States, and we want to find all intersecting points, we need to check
for possible intersections between each road and each river. If such an
 average intersecting check takes 0.01 second, the entire process would take
10,000 × 10,000 × 0.01 seconds = 1M seconds or approximately 300 hours,
which is not tolerable. Many techniques can be utilized to improve process-
ing. We will take a closer look at three different techniques to examine how
and to what extent they can improve performance, as well as their limitations
and potential problems.

248 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Returning to the second example, calculate the line intersection by

 (a) Reading both data files into memory
 (b) Constructing polyline features for both datasets features
 (c) Looping through each feature of both river and road data to conduct

polyline intersection check
 (d) Looping through each line segment of the two polylines to check

whether they intersect
 (e) Keeping all the intersection points
 (f) Finalizing and visualizing or writing into a file, the results

The computing performance of the above steps can be improved in differ-
ent ways as detailed in Sections 13.2 through 13.4. Step (a) can be improved
with methods described in Section 13.2 by reading all data into memory to
save the time for going back to the hard drive every time we fetch binary
data for further processing. Steps (b) through (e) can be improved by two
spatial methods (Section 13.4), such as using bounding box to filter out those
not possible or using spatial index to go directly to the ones that have the
intersection potential, and parallel methods (Healey et al. 1997) of executing
the calculations using multithreading or grid, Hadoop cluster (Aji et al. 2013),
and cloud computing (Yang et al. 2011a) techniques (Section 13.3). Steps (f)
and (g) can be improved using multithreading (Section 13.3). Multithreading
techniques (Section 13.3) can also be adopted to improve performance in
steps (a) and (b).

The rationale behind the methodology described above is as follows: (1)
accessing data through input/output devices (e.g., hard drive and moni-
tor) is much slower than accessing data from RAM; (2) some calculations
against static data and spatial relationship, such as line intersection, can be
executed concurrently because each intersection calculation is independent
from other intersection calculations. This means the line intersection results
of line n and line m will not impact the line intersection between line i and
line j; (3) spatial data are spatially constrained. For example, if the bounding
boxes of two lines do not intersect, then the two lines cannot intersect. You
can, therefore, filter out many unnecessary calculations by first employing
the relatively simpler evaluation of bounding box intersections, as defined
by their four coordinates (minx, miny, maxx, maxy).

13.2 Disk Access and Memory Management

In a computer system, the components are integrated through several
approaches: the tightly coupled components (such as cache and register) are

249Performance-Improving Techniques

integrated inside the CPU, and the computer motherboard data bus inte-
grates the CPU with other on-board components, such as RAM and others
built on the motherboard. Many other components, such as printers, massive
storage devices, and networks, are connected through an extension (e.g., a
cable), from the motherboard. Hard drive (HDD) and massive storage are
among the most frequently used external devices to maintain data/system
files. Recent advances in computer engineering have enabled more tightly
coupled storage on the motherboard using bigger RAM and ROM sizes. In
general, a hard drive is slower than RAM in terms of data access; therefore,
we can speed up a file access process by reading only once from HDD into
RAM and then operating in the memory multiple times instead of reaccess-
ing HDD many times (Yang et al. 2011c).

13.2.1 File Management

In Python, file access is processed in three steps: open file, access file, and
close file. The first and third steps are common for file access and manage-
ment. The access file step can be quite different depending on how you read
from or write data to the file.

As a specific example, consider accessing point shapefile data: this process
includes reading the file header information to obtain the number of points
and the bounding box for the point shapefile. The rest of the process involves
rotating through the read point data process to get the x, y coordinates for all
points, and creating a feature point to add to the point data layer. Code 13.1a
shows reading from the hard drive once for all data, and then processing the
RAM-based data element by element to retrieve the information. Code 13.1b
shows reading from the hard drive every time a point feature is retrieved.
Changing the FileBuffer variable to true or false will switch between these
two reading modes at the ReadShapeFile.py module in the performance
package shipped with this book.

By switching the FileBuffer between true and false for reading one layer
of Amtrack station data (amtk_sta.shp) on a laptop, we obtained a value of
∼0.060 seconds for true and a value of ∼0.069 seconds for false. These values
may change according to different datasets, computers, and working loads
of the computers.

13.2.2 Comprehensive Consideration

The specific improvements will differ greatly according to the specific con-
figurations on the computer hardware (Peng 1999). For example, if the file size
exceeds the size of the RAM, you cannot use this method, and you will need
to device a different strategy, for example, reading the file in chunks instead
of reading the entire file. The difference between the speed of RAM and
speed of HDD should also be considered. The faster the RAM and slower the
HDD of a computer, the better speed improvement you can obtain using this

250 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

method. A laptop will have a less drastic speedup than a desktop using this
method, because the speed difference between accessing RAM and HDD on
a desktop is greater than that of a laptop.

The code for both polyline and polygon shapefiles have been added in the
performance.zip package. Different data layers can be added to the main.
py file and run it to test the time needed for reading the shapefiles with and
without the buffer option.

a:

if bFileBuffer:
 size = os.path.getsize(fileName)
 shpFile=open(fileName,'rb')
 s = shpFile.read(size)
 shpFile.close()
 b = struct.unpack('>i',s[24:28])
 b=b[0]*2
 featNum = (b-100)/28
 shpFile.close()
 layer.minx, layer.miny, layer.maxx, layer.maxy = struct.

unpack(“<dddd”,s[36:68])
 pointer = 100+12
 for i in range(0,featNum):
 b = struct.unpack('dd',s[pointer:pointer+16])
 point = FTPoint(b[0],b[1])
 layer.features.append(point)
 pointer+=28
b:

 else:
 shpFile=open(fileName,'rb')
 s = shpFile.seek(24)
 s = shpFile.read(4)
 b = struct.unpack('>i',s)
 b=b[0]*2
 featNum = (b-100)/28
 s = shpFile.read(72)
 header = struct.unpack(“<iidddddddd”,s)
 layer.minx, layer.miny, layer.maxx, layer.maxy =

header[2],header[3],header[4],header[5]
 for i in range(0,featNum):
 shpFile.seek(100+12+i*28)
 s = shpFile.read(16)
 b = struct.unpack('dd',s)
 point = FTPoint(b[0],b[1])
 layer.features.append(point)
 shpFile.close()

CODE 13.1
Reading point data from a shapefile with using a single- or multiple-access process: Code
(a) reads all data from the file at once using shpFile.read (size), and unpacks the data from the
content read to s, which is kept as a variable in memory. Code (b) reads data from the hard
drive by jumping through the elements needed and unpacking the data while moving ahead.

251Performance-Improving Techniques

The more external devices used, the slower the program. For example, if
“print” is added to the FTPoint class initialization function def __init__(self),
the process will become much slower if the same main file runs without
changing anything else.

13.3 Parallel Processing and Multithreading

Progressively building knowledge in sequential order means that later parts
depend on the earlier parts. For example, you have read about GIS program-
ming from Chapters 1 through 13 in sequential order. In computer pro-
cessing, if the process includes many steps and each step depends on the
previous step, then the execution will take much longer. But if the steps are
not dependent on the previous steps, then the steps can be executed in paral-
lel (Healey et al. 1997). For example, the three layers of data (Amtrack station,
states, and national highway lines) must be loaded for making the initial
map. If they are not dependent on each other for processing, then they can
be read and executed in three parallel processes.

13.3.1 Sequential and Concurrent Execution

The “Programming Thinking” chapter (Chapter 5) discusses how to ana-
lyze an application problem in sequence so that there is a clear logic about
the start, process, and end of an application. In a sequential execution pro-
cess, the statements written for an application will be run one by one and in
the sequence defined by the program logic. It is like one person taking the
statement instructions and executing them one at a time. The computer com-
ponents, however, are separated and linked through different data and com-
mand connections. This separation means that different components can be
utilized to execute different processes at the same time. For example, if you
read the hard drive to the RAM data file, you could also conduct mathemati-
cal calculations in the CPU at the same time. Modern computer architec-
tures allow many processes to be executed concurrently. It is like when there
are many people to do different tasks simultaneously, the entire application
task can be accomplished earlier. Python programming language provides
the multithreading (Tullsen et al. 1995) module to support such concurrent
process.

13.3.2 Multithreading

The performance package integrates a sample multithreading framework.
The logic workflow repeats a 0.01-second process 1000 times. Processed
sequentially, this will require roughly 10 seconds to finish all processes.

252 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

However, you can break the required processes into 10 groups, with each
group processed by a thread, so all 10 groups can be executed concurrently.
Ideally, this approach could reduce the processing time from 10 seconds
to 1 second. Code 13.2a creates a 10-thread list and Code 13.2b creates one
thread and executes the same number of processes. The SummingThread is
inherited from the Python module threading class Thread.

The code is included in the multithreading.py file and the execution will
output the time spent by each method. It is observed that the 10- multithread
approach is about 10 times faster than the single-thread approach by running
the Python file. The code can be experimented on by running on one com-
puter or multiple computers to compare the time outputs to observe the
improvements.

13.3.3 Load Multiple Shapefiles Concurrently Using Multithreading

One example of such concurrent processing is loading shapefile data into
RAM to create objects. The main Python file in the performance package
includes a package to load three shapefile data files concurrently if the mul-
tithreading variable is set to True. If it is False, then the three shapefiles will
be loaded sequentially. Code 13.3 illustrates the utilization of multithreading

a:

threads = []
for i in range(10):
 threads.append(SummingThread(i*100,(i+1)*100))

starttime = time.clock()

for i in range(10):
 threads[i].start() # This actually causes the thread to run

for i in range(10):
 threads[i].join() # This waits until the thread has completed
At this point, both threads have completed
result = 0
for i in range(10):
 result+=threads[i].total
b:

thread = SummingThread(0,1000)
starttime = time.clock()
thread.start()
thread.join()
print 'single thread'
print thread.total
print str(time.clock()-starttime) + ' seconds\n'

CODE 13.2
Execute the same process (takes 0.01 second) 10,000 times in 10 multithreads (a) versus in one
single thread (b).

253Performance-Improving Techniques

to read data (a) versus reading data sequentially (b). The AddMapLayer class
is a multithreading class defined as based on the Thread class of threading
module.

The main Python file can be experimented on by running on a computer
and switching the multithreading Boolean variable on or off and recording
the time spent on each approach. As an exercise, run the code 5 times with
each approach and record the average values. Also try this on different com-
puters or compare your results with peers if they used different computers.

13.3.4 Parallel Processing and Cluster, Grid, and Cloud Computing

Executing tasks concurrently (i.e., processing in parallel) will help speed up
the entire application; however, there are exceptions to its use. If the applica-
tion is executed in sequence and each statement depends on the previous one,
then the process cannot be parallelized. Different computers will have dif-
ferent capacities for handling different numbers of concurrent threads based
on the computer structure and its current usage. For example, an 8-core CPU
desktop will be able to handle more concurrent computing threads than a sin-
gle-core CPU desktop. The applicability of multithreading is determined by
the parallelizability of the process and the maximum number of concurrent
processes the computer architecture can handle. For example, does it have
multiple CPU cores and does it support calculation in GPU cores? The pro-
gram will also impact how many multithreads can be executed concurrently.

a:

if multithreading:
 starttime = time.clock()
 lr1 = AddMapLayer(map,'amtk_sta','yellow')
 lr2 = AddMapLayer(map,'amtk_sta', 'red')
 lr3 = AddMapLayer(map,'amtk_sta','pink')
 lr1.start()
 lr2.start()
 lr3.start()
 lr1.join()
 lr2.join()
 lr3.join()
 print (str(time.clock()-starttime) + ' seconds')

b:

else:
 starttime = time.clock()
 map.addLayer('amtk_sta','yellow')
 map.addLayer('amtk_sta', 'blue')
 map.addLayer('amtk_sta','red')
 print (str(time.clock()-starttime) + ' seconds')

CODE 13.3
Loading three data layers concurrently (a) or in sequence (b).

254 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

The example in Section 13.3.3 reads multiple shapefiles. If the file buffer
strategy is used, as discussed in Section 13.3.1, then it is possible to execute
more concurrent threads because when several threads access intensively, the
hard drive will let the threads compete for the same I/O resource, thereby
degrading the performance gain. The final and actual performance gain can
be determined by testing a combination of different computing techniques.

Many twenty-first century challenges require GIS data, processes, and
applications, and users are widely distributed across the globe (Ostrom et al.
1999). For example, when a tsunami hits the Indian Ocean, people along the
coast are impacted and need GIS to guide them in making safe decisions.
An application built on sequential strategy will not be able to handle this
problem in a way that satisfies end users or provides timely decision support
information. Therefore, supercomputers are adopted to provide information
in near real time by processing the data much more rapidly using closely
coupled CPUs and computers (Zhang 2010). Grid and cloud computing infra-
structure are utilized to share data, information, and processing among users
(Yang et al. 2013). Using such infrastructure would help improve the appli-
cation performance. But the detailed improvements have to be tested and
optimized to gain the best performance in a computing infrastructure. In
Xie et al. (2010), a high performance computing (HPC) example is illustrated,
which has a dust model parallelized and running on an HPC environment
to speed up the process. Results show that with the initial increase of CPU/
server numbers participating in the geospatial simulation, the performance
is rapidly improving. The time spent is reduced by nearly half by increas-
ing from one core to two cores, and from two cores to four cores; however,
increasing beyond eight CPU cores will not further increase performance.
Although concurrent processing can help increase processing speed, the dust
simulation is a spatiotemporal phenomenon, meaning that the dust concen-
tration moves across different simulation subdomains to maintain its natural
continuity. This process of sharing dust data among different subdomains,
known as model synchronization, is critical. The running time may actually
increase if the domain is divided among subdomains on different computers.
The benefit of running in parallel and the cost of synchronizing is observed to
reach a balance at a certain point—in this case, when using eight CPU cores.

13.4 Relationship Calculation and Spatial Index

Most spatial relationship calculations are complex and require examining
each feature within a data layer (Dale et al. 2002). The problem introduced
at the beginning of Section 13.1 would take a long time if you were to find
polyline intersections by executing the entire calculation process for all data
features. This is not acceptable in GIS software and tools. Fortunately, using

255Performance-Improving Techniques

spatial principles will optimize the process by filtering out complex calcula-
tions. An important component is the feature bounding box, defined by the
four coordinates of minx, miny, maxx, and maxy for a minimized rectangle
enclosing a feature. The spatial pattern or principle is that when the bound-
ing boxes of two features disjoint from each other, the two features must be
disjointed. If you are to calculate the intersection of a river data layer and road
data layer (Section 13.1), a bounding box of a river in Washington, DC will not
intersect with the bounding box of roads in California. This spatial pattern
can be utilized to filter out most features before starting the complex compu-
tation of the intersection as introduced in Chapter 8. Use the data layer inter-
section as an example to introduce how to build the algorithm into MiniGIS
and how to optimize the algorithm using a bounding box in Section 13.4.1.
Another simplified spatial pattern, applied to one-dimensional data, is to
sort features (such as points) according to a spatial dimension and to conduct
filtering according to a tree structure, such as binary tree. By expanding this
idea to two dimensions, many different types of spatial indices can be built
to speed up spatial relationship calculations (detailed in Section 13.4.2).

13.4.1 Bounding Box in GIS

Bounding box is widely used in GIS (Agarwal et al. 2012). For example, in
shapefile, the entire shapefile bounding box is maintained in both the .shx
and .shp files. Each polyline and polygon’s bounding box is also maintained
in .shp files to facilitate the usage of bounding box. As an exercise, find the
intersection points of two data layers: rivers and roads. These datasets are
kept in the map object of the MiniGIS package. This section will introduce
the logic related to implementing the intersection algorithm based on the
map object with two data layers. The detailed implementation is explained
in the hands-on experience section (Section 13.5).

The map object includes access to all other objects related to GIS data and
map operations of the mini-GIS packages. From the programming thinking
perspective, try to identify the intersection points of any river and any road
kept in the map object. In order to find this, we need to repeat each river and
each road to check whether they intersect with each other. Each river or road
is a polyline feature composed of multipart lines that include many points.
Therefore, we need to repeat calculations for every river line segment and
every road line segment to identify the potential intersections. Each line seg-
ment intersection is identified through the lineseg class defined in Chapter 8.
This process can, therefore, be interpreted as the following workflow:

 1. Check the intersection of two data layers in the map (can be selected
from existing layers in GUI).

 2. Check the intersection of two features in the data layers, using one
from each layer (rivers and roads), and keep all intersecting points
(Layer class).

256 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

 3. Check the intersection of every line segment pair, using one from
each layer (rivers and roads), and keep all intersecting points
(Polyline class).

 4. Check the intersection and calculate the intersecting point (LineSeg
class).

To speed up the process, add the bounding box check to the first three
steps to:

 1. Check whether two data layers are intersecting with each other and
return false if not.

 2. Check whether two features’ bounding boxes are intersecting with
each other and return false if not.

 3. Check whether two line segments’ bounding boxes intersect with
each other and return false if not.

The bounding boxes’ checking algorithm is relatively simple for bounding
box one (bb1) and bounding box two (bb2):

bb1.minx > bb2.maxx or bb1.maxx<bb2.minx or bb1.miny>bb2.maxy or bb1.
maxy<bb2.miny

If this statement is true, then the two bounding boxes cannot intersect with
each other. If this is not true, the two bounding boxes intersect with each other
and we can proceed with the following, more time-consuming, calculations.

13.4.2 Spatial Index

In the previous bounding box-based improvement, all features and all line
segments were checked to test for the condition of bounding box intersec-
tion. This is practical when the number of features is small. But when the
number of polylines or line segments is massive, this iterative process will
take a lot of time. Given a target bounding box, another method is to look for
features that only fill in bounding boxes intersected with the target one. This
can be achieved by using the spatial index (Samet 1990), which is built based
on spatial patterns and principles. This section introduces the popular R-Tree
index (Guttman 1984) as a spatial index example.

R-Tree is a very popular spatial index based on the bounding box (rectangle)
of polylines and polygons. The general principle of R-Tree is to build a tree
with features close to each other inside a branch of the tree. When searching
through an R-Tree, if the upper-level branches’ bounding box does not intersect
with a query rectangle/polygon, then it is not possible that features from the
branch will intersect with the query shape. Figure 13.1 shows an R-Tree index
with eight polygonal objects using their bounding box. The entire domain is
divided into two big rectangles with some overlap. Each rectangle includes

257Performance-Improving Techniques

four polygons. Each rectangle is further divided into two smaller rectangles
that are, again, divided into smaller rectangles, each containing one polygon.
In dividing, three types of criteria were applied: (a) the closer polygons are
put in the same rectangle, (b) each rectangle is the minimum rectangle that
includes the bounding boxes of all polygons within that rectangle, and (c) the
process of division yields two rectangles from the original one. These criteria
ensure that the closer polygons are inside the same branch of the R-Tree and
that the R-Tree is a balanced binary tree, which provide better performance.
There could be other criteria applied in the division process, such as minimiz-
ing the overlap of rectangles from the same level of division. The left side of
the figure shows mapping polygons and R-Tree division; the right side shows
the resulting R-Tree. When searching for features, only the branch that inter-
sects with the searching rectangle will be further searched. This will greatly
improve the performance when there are many features included.

13.5 Hands-On Experience with Mini-GIS

The techniques are implemented in map, polyline, lineseg, and layer classes
and called from the main program. Switches are provided to turn on and
turn off the method. The four datasets are provided to test the performance-
improving techniques by flipping the switches.

13.5.1 Data Loading with RAM as File Buffer

Hard drive operations are much more time-consuming than RAM access.
Different computers have different performance results. This hands-on

A

B

G H

N
J

K

M
L

I

C

D

FE

A B

G H I J K L M N

C D FE

FIGURE 13.1
R-Tree example.

258 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

experience is used to test the effectiveness of using RAM as a file buffer
when reading from the hard drive. Use RAM to hold all file content read in,
and process from RAM instead of accessing hard drive for each file opera-
tion. This method is implemented in the ReadShapeFile.py file.

Hands-on experience on file buffer:

 1. Open the main.py and ReadShapeFile.py files.
 2. Run the main.py file and record the time spent on loading data.
 3. Run (2) 5 times after the map window is closed for 10 seconds for

each time.
 4. Flip the bFileBuffer variable.
 5. Repeat (2) and (3) and record the time, then compare the time spent

on each method and analyze the result.
 6. Change computers (e.g., from desktop to laptop or from laptop to

desktop) and repeat steps (1) through (5).
 7. Analyze the time differences obtained among different computers.

13.5.2 Data Loading with Multithreading

Many processes in a GIS application involve parallelizable steps, and can,
therefore, be sped up using multithreading methods. One such process is to
load multi-data layers for the initial map as detailed in Section 13.3.2. You
can do a sample test to find the efficiency of this method by turning on and
off the multithreading in the main.py file, which added the multithreading
for opening and adding data layers.

Hands-on experience on multithreading:

 1. Open the main.py file.
 2. Run the program to record how much time is spent with

 multithreading switched to off.
 3. Run this for 10 times and record the processing times.
 4. Switch the multithreading to on and repeat step (3).
 5. Compare the processing times and analyze the result.
 6. Replace the three datasets and repeat steps (3) through (5).
 7. Copy and paste the same data with different names and run the

same experiments.
 8. Switch to another computer and run the same experiments.
 9. Analyze the patterns found in your recorded results.

13.5.3 Bounding Box Checking to Speed Up Intersection

Based on analyses of Section 13.4.1, we have four steps to find the intersect-
ing points as (a) check two data layers, (b) check two features, (c) check two

259Performance-Improving Techniques

line segments, and (d) the line segment intersection algorithm. We can add
a bounding box check for the first three steps, which will reduce the num-
ber of time-consuming calculations of (d) and improve the program perfor-
mance. The three bboxcheck functions are defined in the Layer, Polyline, and
LineSeg classes (Code 13.4). Because each layer has many polylines and each
polyline has many line segments, this process could significantly improve
the performance. Code 13.4 illustrates how the intersect and bboxcheck func-
tions are defined in Layer class. The Layer’s bboxcheck is called by Map class.
The Layer’s intersect function calls the Feature’s bboxcheck to avoid calculat-
ing two features whose bounding boxes do not intersect. The Polyline class
has similar definitions, with its bboxcheck defined by Layer class object, and
its intersect function calling the bboxcheck function of LineSeg class objects.

Once the calculations are completed, you can display the resulting points
on the GUI. This can be handled in several ways, including (a) adding a data
layer to store the points as the “intersecting point layer,” (b) maintaining
a data structure, for example, a list of intersecting points of map object to
keep all points, and (c) associating the points with one of the two layers. To
simplify the process, choose the second method by maintaining a list data
structure. After the intersection calculations, obtain a list of points defined
as self.intersectPoints in the Map class of map.py file. When displaying the
points after the calculation, you need to go through a process similar to what
you used to display points on Tkinter (Code 13.5)

• Call self.vis() method to redisplay all data.
• Go through all data layers that are visible.
• Go through all points to transform the geographic coordinate

 system from original to window coordinate system.

def bboxcheck(self,layer):
 if self.minx>layer.maxx or self.miny>layer.maxy or self.

maxx<layer.minx or self.maxy<layer.miny:
 return False
 else:
 return True
 def intersect(self,layer):
 intPoints = []
 for feature1 in self.features:
 for feature1 in self.features:
 if feature1.bboxcheck(feature2) or

noBoundingboxCheck:
 retPts = feature1.intersect(feature2)
 if retPts:
 for point in retPts:
 intPoints.append(point)
 return intPoints

CODE 13.4
Using bounding box check to filter out most intersection calculations in Layer class.

260 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• Go through all points to create a visible symbol, for example, a
square, for representing the point (Figure 13.2).

Hands-on experience: Investigate the effectiveness of bounding box
checking:

 1. Open the main.py, map.py, layer.py, polyline.py, and lineseg.py in
Python IDLE GUI.

 2. Change the Boolean value of noBoundingboxCheck to False as high-
lighted in Code 13.4 from layer.py, and save it.

 3. Run the program from main.py and click on the intersection button.
 4. Record the time spent on checking intersections.

 def vis(self):
 self.can.delete('all')
 self.calculate()
 for layer in self.layers:
 for feature in layer.features:
 feature.vis(self, layer.color)
 for point in self.intersectPoints:
 xy = self.transform(point)
 self.can.create_rectangle(xy[0]-4, xy[1]-4, xy[0]+4,

xy[1]+4, fill='brown')
 self.can.pack()

 def transform(self, point):
 if (self.controlPoint == 1): #TOPLEFT
 winx = int((point.x-self.minx)*self.ratio)
 winy = int((self.maxy-point.y)*self.ratio)
 elif (self.controlPoint==2): #CENTER
 winx = int((point.x-(self.minx+self.maxx)/2)*self.

ratio)+self.windowWidth/2
 winy = int(((self.maxy+self.miny)/2-point.y)*self.

ratio)+self.windowHeight/2
 elif (self.controlPoint==3): #LOWERLEFT
 winx = int((point.x-self.minx)*self.ratio)
 winy = int((self.miny-point.y)*self.ratio)+self.

windowHeight
 elif (self.controlPoint==4): #TOPRIGHT
 winx = int((point.x-self.maxx)*self.ratio)+self.

windowWidth
 winy = int((self.maxy-point.y)*self.ratio)
 else: #LOWERRIGHT
 winx = int((point.x-self.maxx)*self.ratio)+self.

windowWidth
 winy = int((self.miny-point.y)*self.ratio)+self.

windowHeight
 return winx,winy

CODE 13.5
Visualize the intersecting point as rectangles when displaying the data layers.

261Performance-Improving Techniques

 5. Change the Boolean value of noBoundingboxCheck to True as high-
lighted in Code 13.4 from layer.py, and save it.

 6. Run the program from main.py and click on the intersection button.
 7. Record the time spent on checking intersections without bounding

box checking for feature level.
 8. Compare the 2 times obtained (we obtained 2 seconds and 122 sec-

onds, respectively, with and without bounding box check at the fea-
ture level called in layer.py).

 9. Repeat this process to comment out “if (self.layers[1].bboxcheck(self.
layers[2])):” from map.py and “if ls1.bboxcheck(ls2):” and record the
time before and after commenting them out (we obtained 2 seconds
vs. 2.2 seconds, respectively, with and without the line segment
bounding box check).

 10. Use different combinations of the three bounding box checks to find
out which one is most important, and analyze the patterns found.

 11. Change the data to do the same experiment and check how the
results have been changed; analyze the patterns found.

13.5.4 Line Intersection Using R-Tree Index

The previous subsections compared the time needed for calculating line
intersections with and without using bounding box. It is observed that the

FIGURE 13.2
Visualization result of Code 13.5.

262 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

bounding box could significantly improve the performance of the program.
This subsection illustrates how R-Tree index could help further improve
the performance using the code embedded in the Layer.py file. The R-Tree
packages from Python Software Foundation need to be installed before
the testing (e.g., using pip to install Rtree-0.8.2-cp27-cp27m-win32.whl).

Hands-on experience on R-Tree index:

 1. Open the Layer.py and main.py file.
 2. Change the Boolean value of noBoundingboxCheck to True.
 3. Change brtree = False in Layer.py file.
 4. Run main.py file.
 5. Zoom and pan to show the map within the full window.
 6. Click on the intersection button and record the time spent on the

intersection calculation. This step may take a few minutes.
 7. Close the application.
 8. Change brtree = True in Layer.py file.
 9. Run main.py file.
 10. Zoom and pan to show the map within the full window.
 11. Click on the intersection button and record the time spent on the

intersection calculation.
 12. Repeat steps (2) through (10) 5 times.
 13. Analyze the computing time patterns found in the experiment.

13.6 Chapter Summary

This chapter explores performance-improving techniques for GIS
 programming and includes

 1. Performance challenges when dealing with big data or computing-
intensive process.

 2. Buffering techniques for reducing the number of accesses to slow
devices, for example, hard drive.

 3. Multithreading techniques for executing parallelizable processes
concurrently.

 4. Bounding box check for significantly reducing the number of time-
consuming calculations.

 5. Spatial index to get to datasets of interest directly instead of iterating
through all data.

263Performance-Improving Techniques

PROBLEMS

The objective of this homework is to understand and design a comprehen-
sive performance tuning and management process.

 1. Please select four different datasets or use the four datasets provided.
 2. Design a comprehensive performance testing experiment.
 3. Conduct the tests using the MiniGIS package.
 4. Compare the performance improvements before and after adopting

the techniques.
 5. Explain the performance differences and discuss the trade-off when

using different techniques.

NOT ES: The results may differ according to the datasets selected and the com-
puters used to run the MiniGIS. The applicability of the three different cat-
egories of techniques will determine the final performance of the software.

http://taylorandfrancis.com

265

14
Advanced Topics

GIS algorithms and programming are critical to the research and develop-
ment in advancing geographical information sciences (GIScience), because
most mature GIS software packages are not flexible enough to be revised for
the purpose of testing new ideas, models, and systems. This chapter intro-
duces how GIS programming and algorithms are utilized in advancing sev-
eral GIScience frontiers.

14.1 Spatial Data Structure

Spatial data structure is the logical and computational representation of
spatial datasets extracted and modeled from real world for solving a group
of application problems. Spatial data structure falls into two categories: (1)
vector data, such as point, polyline, and polygon to represent cities, rivers,
land surfaces, etc.; and (2) raster data as introduced in Chapter 10 to orga-
nize a matrix of cells into rows and columns where each cell has a value to
represent information, for example, temperature, elevation, and humidity. A
well-designed data structure should be able to provide accurate representa-
tion of the complicated data/problem and support efficient data access to
obtain optimal performance for spatiotemporal query, access, and analytics.
The netCDF/HDF-based raster data are taken as an example to show how it
helps organize scientific raster data to support spatiotemporal data represen-
tation, access, and analytics. Based on the netCDF/HDF data, an advanced
spatiotemporal index research is introduced.

14.1.1 Raster Data Structure in NetCDF/HDF

The classic data model in netCDF and HDF consists of multidimensional
variables within their coordinate systems and some of them are named aux-
iliary attributes (Rew and Davis 1990, Figure 14.1a). Each variable is specified
by a list of named dimensions and other attributes. The dimensions may be
shared among variables to indicate a common grid. Variables and attributes
have six primitive data types: char, byte, short, int, float, or double. Given
four-dimensional array-based datasets as an example (shown in Figure 14.2),
each variable consists of three spatial dimensions (latitude, longitude, and

266 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

altitude) and one temporal dimension (time). Each layer in the array has the
same latitude and longitude dimension, and is called the “grid,” which is
used to store the values for each of the layer-specific variables. These grids
are further grouped by altitude. The variables may have additional attributes
to explain more properties, such as the variable’s full name and the unit for
the variable’s value. However, the classic data model has two obvious limita-
tions: (1) lack of support for nested structure, ragged arrays, unsigned data
types, and user-defined types; and (2) limited scalability due to the flat name
space for dimensions and variables.

To address the limitations of the classic data model, a new data model
is proposed and implemented (Figure 14.1b). It adds a top-level, unnamed
group to contain additional named variables, dimensions, attributes, groups,
and types. Groups are like directories in a file system, each with its own set
of named dimensions, variables, attributes, and types. Every file contains at
least the root group. A group may also contain subgroups to organize hier-
archical datasets. The variables depicted in Figure 14.2 can be divided into
different groups by a certain characteristic, such as the model groups that
generated these data. When storing these variables in a physical file, each
2D grid will be decomposed into one-dimensional byte stream and stored
separately, one by one, in a data file.

14.1.2 Application of NetCDF/HDF on Climate Study

The Modern-Era Retrospective Analysis for Research and Applications
(MERRA) is the latest reanalysis product by NASA’s Global Modeling and
Assimilation Office (GMAO) using the Goddard Earth Observing System,
version 5 data assimilation system (GEOS-5) and providing data dating back
to 1980. MERRA has been widely used to study weather and climate vari-
ability. These data are archived in the HDF-EOS format, based on HDF4.
MAT1NXINT, one such MERRA product, and contains nearly 111 2D hourly
variables with a spatial resolution of 2/3° longitude by 1/2° latitude. With

(a) (b)

FIGURE 14.1
(a) The architecture of classic data model. (b) The architecture of the improved data model.
(From http://www.unidata.ucar.edu/software/netcdf/papers/nc4_conventions.html.)

http://www.unidata.ucar.edu/software/netcdf/papers/nc4_conventions.html

267Advanced Topics
La

tit
ud

e

La
tit

ud
e

Ti
m

e

Ti
m

e

Ve
rt

ic
al

la
ye

r m

Ve
rt

ic
al

la
ye

r 1

Va
ria

bl
e 1

Va
ria

bl
e 1

H
ea

de
r

by
te

s

gr
id

1

(v
1,

t 1,
a 1)

by
te

s

gr
id

n*
v

(v
n,

t 1,
a v)

...
...

...
...

...
...

by
te

s

gr
id

n*
v+

1

(v
1,

t 2,
a 1)

by
te

s

gr
id

2n
*v

(v
n,

t 2,
a v)

by
te

s

gr
id

m
*n

*v

(v
n,

t m
, a

v)

Va
ria

bl
e n

Va
ria

bl
e n

Va
ria

bl
e 2

Va
ria

bl
e 2

....
..

Lo
ng

itu
de

Lo
ng

itu
de

A
lti

tu
de

....
..

FI
G

U
R

E
14

.2
T

he
 lo

gi
ca

l s
tr

uc
tu

re
 o

f t
he

 im
pr

ov
ed

 d
at

a
m

od
el

.

268 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

HDF4, all variables at a certain time point can be stored in a single file instead
of multiple files.

To enable MERRA data, it can be analyzed in parallel without requiring
preprocessing; Li et al. (2016) utilized the netCDF library for Java to extract
the data structure information of MERRA files and build a spatiotemporal
index, which is implemented as a hash index. Figure 14.3 depicts the struc-
ture of the spatiotemporal index. The index consists of five components: gri-
dId, startByte, endByte, fileId, and nodeList. The first of these, gridId, records
the variable name, time, and altitude information for each grid; startByte
and endByte indicate the exact byte location of the grid in a file; fileId records
the file location where the grid is stored; and nodeList records the node loca-
tion where grids are physically stored in a Hadoop Distributed File System
(HDFS). The key for the hash index is gridId, and the others are treated as the
values. When querying the MERRA data, the spatiotemporal index will be
traversed first. If the gridId has the same variable name as one of the queried
variables, then the time and altitude information in gridId will be further
compared with the input spatiotemporal boundary. If they are within the
spatiotemporal boundary, the values (startByte, endByte, nodeList, and fileId)
will be fetched out and utilized to read the real data out from physical disks
using HDFS I/O API. The spatiotemporal index enables users to access data
by reading only the specific data constrained by the input spatiotemporal
boundary, eliminating the need to examine all of the data.

One month (January 2015) of the MAT1NXINT product (45.29 GB) was
used as experimental data. MapReduce was adopted to compute the daily
mean in parallel for a specified climate variable over a specified spatiotem-
poral range. Two scenarios were evaluated: the first scenario, as the baseline,
was performed without using the spatiotemporal index; the second was per-
formed using the spatiotemporal index. The experiments were conducted
on a Hadoop cluster (version 2.6.0) consisting of seven computer nodes (one
master node and six slave nodes) connected via 1 Gigabit Ethernet (Gbps).

gridld

grid1header grid2

Node1 Node3 Node4
Node2 Node4 Node5

gridm*n*k...

startByte endByte nodelist fileld
File level index

file Name compressCode

Node level index

Byte level index

Byte stream

(v1, t1, a1)
....

(vn, tm, ak)

FIGURE 14.3
The structure of spatiotemporal index.

269Advanced Topics

Each node was configured with eight CPU cores (2.35 GHz), 16 GB RAM,
and CentOS 6.5.

Figure 14.4 shows the run times, comparing the baseline and the index-
ing approach for different numbers of variables. When increasing the
number of variables in the query, the run time for the baseline condition
increased from 55 to 1042 seconds—nearly 19 times longer. In contrast,
when the spatiotemporal index was employed, the run time increased from
35 seconds to 85 seconds—only 2.4 times longer. This comparison result
demonstrates that the spatiotemporal index can significantly improve the
data access rate for the MERRA data stored in HDFS. Two factors lead to
this improvement:

 1. The spatiotemporal index can point exactly to data locations at the
node, file, and byte level. It can tell MapReduce at which node the
specified array of a variable is located, which file it is stored in, and
its starting and ending bytes within the file. With this information,
MapReduce can move the program close to the nodes where the ref-
erenced data are stored, minimizing data transfer by the network.

 2. The data structure information is extracted and stored externally
in the database. Therefore, when querying the data by variable
names, only the database needs to be queried; there is no need to
repeatedly access the metadata in MERRA data using HDFS I/O
API, and, thus, avoiding the limitation of HDFS when randomly
accessing small data.

Varying the number of query variables

Baseline

1200

1000

800

Ti
m

e (
se

co
nd

)

600

400

200
55

118

32
40

51 53.5 58.5 66 74 73 78 81.5 85.5

166
236

340

428
482

582
645

794

1042

0
11 21 31 41 51

Number of variables processed
61 71 81 91 101 111

With index

FIGURE 14.4
Run time for computing the daily global mean for January 2015 for different numbers of
variables.

270 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

14.2 GIS Algorithms and Modeling

GIS was developed to solve specific geospatial problems. In this process, a
real-world problem is extracted into conceptual models, which are further
abstracted into computable models. This process is called modeling, and
the eventual result of the model is to produce proper information that can
be used to support problem solving. For example, the weather forecasting
model can take abstract and parameterized inputs into geographical cal-
culations for simulating what weather might be expected at a future time
stamp.

To demonstrate the GIS algorithms and modeling, the following example
takes Twitter data from the 2015 Spring Festival in New York City and ana-
lyzes it for several phenomena of interest. The objectives are to identify the
spatial distribution of tweets related to the Spring Festival, and to explore
the socioeconomic variables that might explain this type of spatial distri-
bution. Social media analysis is one of the hottest research topics in recent
years, as it has become a novel avenue for the contribution and dissemina-
tion of information. Social media data from sources such as Twitter usually
include references to when and where a given social media feed was created
(Crooks et al. 2013). Through geosocial media, we are able, for the first time,
to observe human activities in scales and resolutions that were previously
unavailable. The Spring Festival, or Chinese New Year, is an important tra-
ditional Chinese festival celebrated on the Chinese lunar calendar. New York
City was selected as the study case because, according to the 2010 Census, it
is now home to more than one million Asian Americans, a number greater
than the combined totals of San Francisco and Los Angeles.

14.2.1 Data

Three datasets are used in this example: tweets in NYC during Chinese New
Year and the Asian population and number of Asian restaurants in NYC at
census tract level. Twitter data was collected using Twitter API; the Asian
population data were retrieved from U.S. Census Bureau; and the number
of Asian restaurants was acquired by using Google Places API (Figure 14.5).

To collect Twitter data, first, a geographical bounding box of NYC is speci-
fied to collect geotagged tweets from 1 week before to 1 week after Chinese
New Year. Second, we select a number of keywords (including “spring festi-
val,” “Chinese new year,” “dumplings,” “china lantern,” and “red envelope”)
to filter these collected tweets, ultimately collecting 2453 tweets related to
Spring Festival in New York City. Third, these filtered tweets are saved
into a PostgreSQL table, containing detailed information such as “Tweet_
ID,” “UserName,” “TimeCreated,” “Lat,” “Lon,” “Hashtag,” “Retweet,”
“ReplyTo,” and “Text.” Figure 14.6 gives an example of our Twitter data out-
put. Note that, although the number of geotagged tweets is still very small

271Advanced Topics

in general (about 1% of all tweets), researchers using this information can
be confident that they work with an almost complete sample of Twitter data
when geographical boundary boxes are used for data collection. Figure 14.7
shows the geographical distribution of filtered collected Twitter data in New
York City.

14.2.2 Density Analysis

In order to show areas where a higher density (or cluster) of activity occurs,
a heat map is created by using a color gradient. A heat map is usually gen-
erated using kernel density estimation, which creates a density raster of
an input point vector layer. Intuitively, the density is calculated based on
the number of points in a location, with larger numbers of clustered points
resulting in larger values. The most important step of this procedure is to
determine the default search radius, or bandwidth, which consists of five
steps (ESRI 2016a,b):

• Calculate the mean center of the input points.
• Calculate the distance from the (weighted) mean center for all points.

Asian population Number of Asian restaurants

0–401
402–1056
1057–2175
2176–4189
4190–9069

0–1
2–4
5–10
11–17
18–39

FIGURE 14.5
Asian population in New York City at census tract level (left) and the number of Asian restau-
rants in New York City at census tract level (right).

FIGURE 14.6
An example of Twitter data output.

272 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• Calculate the (weighted) median of these distances, Dm.
• Calculate the (weighted) standard distance, SD.
• Apply the following Equation 14.1 to calculate the bandwidth:

Bandwidth * SD=

−0 9

1
2

0 2. min ,
ln()

* * .D nm

(14.1)

 where SD is the standard distance, Dm is the median distance, and n
is the number of points.

A heat map allows for easy identification of “hotspots” and clustered
points. Figure 14.8 shows a heat map of filtered tweets in New York City cre-
ated by CartoDB, a popular online GIS analysis application. As we can see,
most of the tweets related to Spring Festival are concentrated in Manhattan
and Queens.

14.2.3 Regression Analysis (OLS and GWR)

Regression analysis is used to model, examine, and explore spatial relation-
ships and can help explain the factors behind observed spatial patterns.
Ordinary least squares (OLS) is the best known of all regression techniques.
It is also the proper starting point for all spatial regression analyses. It

FIGURE 14.7
Geographical distribution of collected Twitter data in New York City. (From CartoDB.)

273Advanced Topics

provides a global model of the variable or process you are trying to under-
stand or predict (early death/rainfall), creating a single regression equation
to represent that process. Geographically weighted regression (GWR) is
one of several spatial regression techniques, and increasingly being used in
geography and other disciplines. GWR provides a local model of the vari-
able or process to be understood/predicted by fitting a regression equation
to every feature in the dataset. When used properly, these methods pro-
vide powerful and reliable statistics for examining and estimating linear
relationships.

In this case, OLS is applied as a starting point to explore the relationship
between the number of involved Twitter users and demographic variables
such as Asian population. To achieve this, data can be summarized by each
census tract so that a regression analysis can be conducted at the census tract
level. Two variables are selected to explain the number of tweets in each
census tract: one is Asian population, and the other is the number of Asian
restaurants, which is regarded as a proxy for Asians’ real-world activities. A
regular OLS model is performed initially, with the decision of whether or not
to employ the GWR model depending on the OLS results.

FIGURE 14.8
Heat map of tweets in New York City (red represents high density, while blue represents low
density).

274 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

Table 14.1 shows the result of an OLS analysis. As can be seen, the R2 value
for this OLS model is only 0.35, which means only 35% of the variation in the
dependent variable can be explained by these two independent variables.
However, strong spatial autocorrelation is found in the spatial distribution
of the standard residual for each census tract (Figure 14.9); thus, conducting
a GWR analysis is deemed worthwhile. The global R2 value for the GWR
model is 0.699, which is much higher than that for the OLS model (Figure
14.10), implying that these relationships behave differently in different parts
of the study area. Figure 14.10 shows the local R2 value for GWR for each
census tract. As can be seen, the highest local R2 is clustered in Manhattan
and part of Queens.

TABLE 14.1

Result of OLS Analysis

Variable Coef StdError t_Stat Prob

Number of restaurants 2.906641 0.093339 31.140589 0
Asian population 0.001557 0.000218 7.151176 0

Standard residual
< –2.5 Std. Dev.
–2.5–1.5 Std. Dev.
–1.5–0.5 Std. Dev.
–0.5–0.5 Std. Dev.
0.5–1.5 Std. Dev.
1.5–2.5 Std. Dev.
>2.5 Std. Dev.

FIGURE 14.9
The standard residual of OLS of each census tract.

275Advanced Topics

14.3 Distributed GIS

Recently, with the development of data collocation technologies, data vendors,
scientists, and even the general public scattered across the world are creating
geospatial data on a daily basis. Traditional GIS running on a single machine
can no longer adequately handle so many distributed resource and users.
Accordingly, distributed GIS has been widely used to support distributed geo-
spatial data management and processing. Climate science is one of the domains
to which distributed GIS has been applied. Earth observation and model simu-
lations are producing large amounts of climate datasets in a distributed com-
puting environment. As a result, managing the complexity and magnitude of
big climate data is not a feasible job, and sometimes exceeds the capability of
climate scientists whose expertise is in data analysis. Furthermore, scientists
rely on Internet-based collaborative climate research, such as model sharing
and evaluation. Here, we use a Web-based geovisual analytical system as an
example to show how distributed GIS can relieve climate researchers of the
time-consuming tasks of data management and processing.

Local R2

.000015–.041491
.041492–.102610
.102611–.178814
.178815–.270943
.270944–.393207
.393208–.586986
.586987–.870157

FIGURE 14.10
The local R2 of GWR of each census tract.

276 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

14.3.1 System Architecture

The three major tasks of the system are defined as managing, processing,
and representing data; accordingly, the architectural components of the sys-
tem will be (1) a data repository to store data or metadata from simulation,
observation, and initial statistics, (2) an application Web server to provide
data processing and high-level analytical functions, and (3) a Web-based cli-
ent to perform simple analysis and display visualization results with interac-
tive tools (Figure 14.11).

To efficiently manage this data, a spatiotemporal climate data reposi-
tory is developed to uniformly manage the climate model output data by
dynamically extracting its associated metadata into its own database. A sci-
entific database is used to store the metadata for these data, such as content
descriptors (variable names, resolution, extent, etc.) and storage information
(format, file path in the file system, etc.). The data files themselves are stored
as a data repository using a traditional file system. Other than raw simu-
lated climate data, metadata and basic statistics (e.g., monthly/yearly mean)
are generated and stored in the repository in order to speed up farther cal-
culation. A standard Web service based on REST (Representational State
Transfer) serves as a secure method for accessing the data repository though

Scientist and public
over the space

Data retrieval

Data retrieval and
store

Data repository

Metadata of
observation data

Basic statistic

Simulation data

Upload data

Computing nodes
on the Internet

Application server

Web portal

HTTP requests

Image generator

Mean Anomalies Correlation

Data rendering module (Java Servlet)

Data analysis module (R and NCO utilities)

Subset

FIGURE 14.11
System architecture.

277Advanced Topics

the Web, and using the standard REST ensures that data access remains
interoperable.

Several analysis functions consulted by data scientists, such as the model
validation Taylor diagram, are executed in the application server, which
leverages high-performance computing resources. This allows large climate
data to be processed much faster than a stand-alone analysis system. Data
analysis requests are sent to the application server through HTTP request.
The server side then executes analytical models and outputs the results
as resulting figures, file paths, or values, which are returned to the client
for rendering. On the client side, the system provides a user-friendly envi-
ronment with geovisual analytical tools, which contain interactive tools,
dynamic graphs/maps, and live-linked views of data representation.

This system has been implemented and is able to support several types of
climate data, including the MERRA data introduced in Section 14.1, Climate
Forecast System Reanalysis (CFSR) data, ECMWF Interim Reanalysis (ERA-
Interim) data, CPC Merged Analysis of Precipitation (CMAP) data, Global
Precipitation Climatology Project (GPCP) data, and ModelE simulation
data, all of which are raster data. CFSR provides a global reanalysis of past
weather from January 1979 through March 2011 at a horizontal resolution
of 0.5°, and can effectively estimate the observed state of the atmosphere.
ERA-INTRIM, which provides the reanalysis data from 1979 to the present, is
an atmospheric model and assimilation system featuring improved low-fre-
quency variability and stratospheric circulation analysis versus its previous
generation, ERA-40. CMAP merges five kinds of satellite estimates (GPI, OPI,
SSM/I scattering, SSM/I emission, and MSU) to provide the global gridded
precipitation data from 1979 to near the present with a 2.5° spatial resolution.
GPCP combines the data from rain gauge stations, satellites, and sounding
observations to estimate monthly rainfall on a 2.5° global grid from 1979
to the present. ModelE is a general circulation model (GCM) developed by
NASA GISS that simulates more than 300 variables on a global scale at a spa-
tial resolution of 4° along parallels and 5° along meridians. The outputs are
monthly binary data with a size of 16 MB.

14.3.2 User Interface

Figures 14.12 through 14.15 show the graphic interface of this WebGIS system
with the following analysis and visualization algorithms/functions:

• Time series plotting (Figure 14.12): Users can select multiple data
variables in multiple areas of interest (AOIs) for the same time period
and plot the time series for better comparison.

• Correlation analyses for two variables with the same AOI (Figure
14.13): Display the relationships of any two variables or two AOIs
using scatter plots.

278 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

• Synchronous visualization of multiple parameters (Figure 14.14):
When users interact with one map window, the other three map
windows will simultaneously zoom to the same scale and geo-
graphic region to compare the selected variables.

• Data validation analysis (Figure 14.15): A Taylor diagram is a way of
graphically summarizing how closely a pattern (or a set of patterns)

FIGURE 14.12
Time series plotting for two variables and two AOIs.

FIGURE 14.13
Correlation analyses for two variables.

279Advanced Topics

matches observations. The position of each point appearing on the
plot quantifies how closely that model’s simulated result pattern
matches observations. Users can input the spatiotemporal range
and select the climate data from different models for comparison.
The server end will then retrieve the specified data in parallel and

FIGURE 14.14
Four variables displayed in four windows.

FIGURE 14.15
GUI for Taylor diagram service.

280 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

compute the parameters, such as standard deviation, root mean
square, and correlation to incorporate in Taylor diagram. After these
parameters are visualized in a Taylor diagram, the client will render
the Taylor diagram images with the information about its spatiotem-
poral range and input datasets. The Taylor diagrams for different
spatiotemporal ranges can also be displayed on the same page for
intercomparison.

14.4 Spatiotemporal Thinking and Computing

The geographical world evolves in a four-dimensional fashion: three spa-
tial dimensions and one temporal dimension. All phenomena on Earth are
evolving in this four-dimensional world. Better understanding the evolution
of integral space and time could help us understand our living environment
and better prepare us to solve different problems and address emergency
responses. This section uses an example of dust storm forecasting to illus-
trate how spatiotemporal patterns would help develop better thinking strat-
egy and improve dust forecasting.

14.4.1 Problem: Dust Simulation and Computing Challenges

Dust storms are serious hazards to health, property, and the environment
worldwide, especially in arid and semiarid regions such as northern China,
the Middle East, the Saharan desert, and the southwestern United States
(Knippertz and Stuut 2014). Dust storms rapidly reduce visibility, affect
road and air traffic, increase power failures, and cause significant economic
impact. In addition, dust storms allow pollutants and toxins such as salt,
sulfur, heavy metals, and particulate matter to become resuspended in
the atmosphere, resulting in negative long-term effects on human health
(Wilkening et al. 2000).

To mitigate the hazardous impacts of dust storms, research is being con-
ducted by international and national organizations to support comprehen-
sive, coordinated, and sustained observations and modeling of dust storms.
With the development of dust models, scientists have enhanced their under-
standing of dust event processes and have improved early warning capa-
bilities for societal benefit (WMO 2011). In order to better support public
health decision-making, the spatial and temporal resolution of dust storm
simulations needs to be increased. This demand for higher resolution makes
the model more computationally intensive. For example, if we run a coarse-
resolution (1/3°) 72-hour dust model forecast for the U.S. Southwest using a
single CPU, it will take about 4.5 hours to complete processing. When high-
resolution simulation (e.g., 1/12°) output is needed, the computing time will

281Advanced Topics

increase by a factor of approximately 4 times in each of the three dimen-
sions (latitude, longitude, and time steps), resulting in an overall increase of
4 × 4 × 4 = 64 times, or approximately 12 days total to complete the process-
ing—an unacceptable outcome. Therefore, one of the significant challenges
for dust storm forecasting is to reduce computing time for a 1-day forecast to
within an acceptable range (e.g., 2 hours) (Xie et al. 2010).

14.4.2 Methodology 1: Utilizing High-Performance
Computing to Support Dust Simulation

In order to reduce the computing time of dust simulation to an acceptable
range, the first method is to utilize high-performance computing to support
dust simulation. High-performance computing can harness high-perfor-
mance hardware such as multi-CPU-core computers or clusters to enhance
computing capacity and reduce execution time for scientific models. Parallel
processing, which is embedded in high-performance computing, parti-
tions the model domain into subdomains so that each subdomain can be
processed on a distinct CPU core, thus reducing the total processing time.
During parallel processing, distributed-memory parallel computers need to
communicate and synchronize so that the variable calculation is consistent
for the entire model domain. For example, during the dust transition process,
horizontal advection and lateral diffusion need to exchange dust concentra-
tion values among subdomains; therefore, communication among subdo-
mains is critical for the dust simulation.

The dust model utilized here is a numerical weather prediction model
(WRF-NMM), coupled with a dust module. The process of coupling dust
modules is parallelized by decomposing the model domains on two lev-
els (domain and subdomain) (Figure 14.16). For the dust simulation mod-
ules, MPI is used to communicate and exchange parameters and simulation
results between patches. Communication is required between patches when
a horizontal index is changed and the indexed value lies in the patch of a
neighboring processor. Also, the boundary conditions need to be updated
to maintain consistency after a periodic model running. Experiments have
been conducted for a continuous 24-hour dust simulation to test the model
running performance. Results show that it takes only about 9 minutes to run
the model for a 6-hour simulation and about 36 minutes for a 24-hour simula-
tion using 64 CPU cores.

14.4.3 Methodology 2: Utilizing Spatiotemporal Thinking
to Optimize High-Performance Computing

The above example shows how parallelization improves the computing
 performance of dust simulation models. It decomposes the model domain
into patches and tiles according to the default method for the parallel-
ization platform (the middleware Message Passing Interface Chameleon,

282 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

version 2; MPICH2), which dispatches subdomains to the computing nodes.
The following sections introduce further performance improvements by
considering the spatiotemporal pattern of dust storm phenomena in terms
of computing, especially the decomposition and scheduling approach.

14.4.3.1 Dust Storms’ Clustered Characteristics: Scheduling Methods

The first spatiotemporal pattern of dust storm phenomena is that it is a clus-
tered phenomenon with local dust concentration clustering. Therefore, dust
storm simulation has to deal with clustered regions, and the scheduling
method can take advantage of this characteristic. For example, if two com-
puting nodes and eight subdomains are determined, then the first, third,
fifth, and seventh subdomains will be dispatched to the first computing
node and the remaining subdomains will be dispatched to the second com-
puting node. MPICH2 uses the typical nonneighbor scheduling method. In
the subdomain and computing nodes experiment, two computing nodes are
utilized: half continuous subdomains are dispatched on the first computing
node and the rest are dispatched on the other computing node in a neighbor
scheduling fashion (Figure 14.17). In a cluster scheduling way, the number
of communication pathways between different computing nodes will be less
than the one using noncluster scheduling way.

In addition to the noncluster scheduling, Yang et al. (2011b) demon-
strated that an HPC supporting geospatial sciences should leverage spa-
tiotemporal principles and constraints to better optimize and utilize HPC

Domain Subdomain

FIGURE 14.16
WRF-NMM domain decomposition for parallel running (NCAR, MMM Division, 2004).

283Advanced Topics

in a spatiotemporal fashion. Huang et al. (2013a) observe that performance
improvement factors of approximately 20% on average could be achieved by
using the neighbor scheduling method. This result suggests that it is better
to dispatch neighbor subdomains to the same computing node to reduce the
communication over computer networks.

14.4.3.2 Dust Storms’ Space–Time Continuity: Decomposition Method

The second spatiotemporal pattern of dust storm phenomena is space–
time continuity, meaning that it is generated, moves, evolves, and slows
down in a continuous fashion. This space–time continuity results in the
requirement that a numerical simulation exchange data among neighbor-
ing subdomains.

Yang et al. (2011b) also demonstrated that different decomposition meth-
ods result in different computing times. A notable reason is that dynamics
are not consistent along the space, that is, velocities are relatively large near
the poles and are much smaller in the North–South (meridional) direction
than those in the East–West (zonal) direction (Nanjundiah 1998). Spatial
principle 2, “spatial heterogeneity of physical phenomena,” can be found in
the noneven dynamical characteristic of atmospheric circulation. Therefore,
communication needs differ among processors in the South–North (S–N)
direction from those of the West–East (W–E) direction. In addition, different
domain sizes along W–E and S–N directions result in different numbers of
grid cells along these two directions. Thus, for the same degree of paral-
lelization, different decompositions can result in different communication
overheads.

Figure 14.18 shows the experiment results of various decompositions of 24
subdomains along S–N and W–E directions from the same domain. Results
show that a one-dimensional decomposition in both longitude and latitude
alone is a bad idea for parallel implementation (24 × 1 and 1 × 24), and that
increased decomposition along longitude (S–N) direction is preferred, as
3 × 8 and 4 × 6 decompositions obtain higher performance than that of 8 × 3
and 6 × 4 decompositions (Yang et al. 2011b).

(a) (b)

FIGURE 14.17
Two scheduling methods for dispatching eight subdomains to two computing nodes. (a) Non-
cluster scheduling of 8 subdomains to 2 computing nodes (yellow and blue), (b) Non-cluster
scheduling of 8 subdomains to 2 computing nodes (yellow and blue).

284 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

14.4.3.3 Dust Storm Events Are Isolated: Nested Model

The third spatiotemporal pattern of dust storm is that dust storm events are
isolated or restricted in their spatiotemporal scope and can, therefore, be
treated event by event. Various dust models have been developed to simulate
the emission, transport, and deposition of dust storms using different resolu-
tion limitations and domain ranges. It would be ideal for a high-resolution
model to simulate a large spatial domain, but this goal is difficult to accom-
plish due to computing capacity and memory consumption (Yang et al. 2011b).

A

B

FIGURE 14.18
Different decomposition methods and their corresponding performance.

Low resolution
model domain

High resolution
model domain, AOI

FIGURE 14.19
Low-resolution model domain area and subregions (AOI, area of interest,) identified for high-
resolution model execution.

285Advanced Topics

Therefore, Huang et al. (2013a) proposed an adaptive, loosely coupled strategy,
which couples a high-resolution/small-scale dust model with a coarse-reso-
lution/large-scale model. Specifically, the adaptive, loosely coupled strategy
would (1) run the low-resolution model; (2) identify subdomains of high pre-
dicted dust concentrations (Figure 14.19); and (3) run the higher-resolution
model for only those subdomains with much smaller area in parallel.

In this approach, high-resolution model results for specific subdomains of
interest could be obtained more rapidly than an execution of a high-resolu-
tion model over the entire domain. Result shows the execution time required
for different AOIs when HPC handles all AOIs in parallel, and it is expected
to finish within 2.7 hours if all of the AOIs are simulated by the NMM dust
model in parallel.

14.4.4 Methodology 3: Utilizing Cloud Computing
to Support Dust Storm Forecasting

Dust storms have interannual variabilities and are typical disruptive events.
The report from NOAA (2011) shows that the reported yearly frequency and
percentage of the total time of dust storm in the United States varies each year.
It is estimated that the total time of dust storms was generally less than 90
hours, representing less than 1% of a year, if it is assumed that each dust storm
lasts an average of 2 hours. Therefore, a forecasting system for such events
would require different computing and access requirements during different
times of a year and even different hours within a day. Cloud computing is such
a computing platform in that its computing capabilities can be rapidly and
elastically provisioned, in some cases automatically, to scale up, and rapidly
released to scale down. With the capability of providing a large, elastic, and
virtualized pool of computational resources, cloud computing becomes a new
and advantageous computing paradigm to resolve scientific problems tradi-
tionally requiring a large-scale, high-performance cluster (Huang et al. 2013b).

In Huang et al. (2013b), local cluster and cloud computing platforms
(Amazon EC2) are tested and compared based on 15 computing tasks with
different domain sizes for 24-hour forecasting. Result shows that Amazon
cloud instances can complete most of these tasks in less time with the dedi-
cated computing platforms for each task. The results indicate that cloud
computing has great potential to resolve the concurrent intensity of the com-
puting demanding applications.

14.5 Chapter Summary

This chapter introduces how GIS programming and algorithms are uti-
lized to advance GIScience. Four examples were given to reflect the four

286 Introduction to GIS Programming and Fundamentals with Python and ArcGIS®

fast-growing aspects of GIScience. The first one is developing new spatial
data structure using climate data as an example, introducing a spatiotem-
poral index for speeding up climate data access. The second example intro-
duced how big social media data can be analyzed to extract information of
interest from the algorithm and modeling aspects. The third introduced how
a distributed GIS can be developed to support online climate data discov-
ery, navigation, and visual analytics. The fourth example discussed how
to leverage spatiotemporal thinking and computing to improve dust storm
simulation speed. These four examples demonstrate the advancements of
GIScience using GIS programming and algorithms and are expected to serve
as a bridge to advance future GIScience studies.

PROBLEMS

Requirement:

• Analyze the problems solved in each of the four examples in this
chapter to identify where programming can be used and how algo-
rithms are developed for modeling objectives.

• Identify an academic GIScience journal paper, read and understand
the paper, and try to lay out the aspects of the problem, data, algo-
rithm, and solution.

• Discuss how to create a program to implement the solution analyzed
in the journal paper.

Deliverables:

• Project Report
• Explain the paper problem.
• Explain the solution.
• Explain how the algorithms learned in class can be adopted to

develop the solution.
• Keep it as simple but clear as possible, and try to use a diagram

or picture in your report.

287

References

Agarwal, D., Puri, S., He, X., and Prasad, S.K. 2012. A system for GIS polygonal overlay
computation on Linux cluster-an experience and performance report. In Parallel
and Distributed Processing Symposium Workshops and PhD Forum (IPDPSW), 2012
IEEE 26th International, 1433–9. IEEE, Shanghai, China.

Aho, A.V. and Ullman, J.D. 1972. The Theory of Parsing, Translation, and Compiling.
Upper Saddle River, NJ: Prentice Hall, Inc.

Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J. 2013. Hadoop GIS:
A high performance spatial data warehousing system over MapReduce.
Proceedings of the VLDB Endowment 6(11):1009–20.

Arnold, K., Gosling, J., Holmes, D., and Holmes, D. 2000. The Java Programming
Language, Vol. 2. Reading, MA: Addison-Wesley.

Benedetti, A., Baldasano, J.M., Basart, S. et al. 2014. Operational dust prediction. In
Mineral Dust: A Key Player in the Earth System, eds. P. Knippertz, and W.J.-B.
Stuut, 223–65. Dordrecht: Springer Netherlands.

Bondy, J.A. and Murty, U.S.R. 1976. Graph Theory with Applications (290). New York:
Citeseer.

Bosch, A., Zisserman, A., and Munoz, X. 2007. Image classification using random for-
ests and ferns. International Conference on Computer Vision, Rio de Janeiro, Brazil.

Bourke, P. 1988. Calculating the Area and Centroid of a Polygon. Swinburne University of
Technology, Melbourne, Australia.

Chang, K.T. 2006. Introduction to Geographic Information Systems. Boston, MA: McGraw-
Hill Higher Education.

Chen, Z. and Guevara, J.A. 1987. Systematic selection of very important points (VIP)
from digital terrain models for construction triangular irregular networks.
Proceedings, AutoCarto 8, ASPRS/ACSM, Falls Church, VA, 50–6.

Crooks, A., Croitoru, A., Stefanidis, A., and Radzikowski, J. 2013. Earthquake: Twitter
as a distributed sensor system. Transactions in GIS 17:124–47.

Dale, M.R., Dixon, P., Fortin, M.J., Legendre, P., Myers, D.E., and Rosenberg, M.S.
2002. Conceptual and mathematical relationships among methods for spatial
analysis. Ecography 25(5):558–77.

Dee, D. and National Center for Atmospheric Research Staff. eds. The Climate Data
Guide: ERA-Interim. https://climatedataguide.ucar.edu/climate-data/ era-interim
(accessed June 9, 2016).

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1:269–71.

Eckerdal, A., Thuné, M., and Berglund, A. 2005. What does it take to learn ‘program-
ming thinking’? In Proceedings of the First International Workshop on Computing
Education Research, 135–42. ACM, Seattle, WA.

ESRI. 1998. ESRI Shapefile Technical Description. An ESRI White Paper, 34.
ESRI. 2016a. What Is ModelBuilder?, http://pro.arcgis.com/en/pro-app/help/

analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm (accessed
September 9, 2016).

ESRI. 2016b. What Is ArcPy?, http://pro.arcgis.com/en/pro-app/arcpy/get-started/
what-is-arcpy-.htm (accessed September 9, 2016).

https://climatedataguide.ucar.edu/climate-data/�era-interim
http://pro.arcgis.com/en/pro-app/help/�analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://pro.arcgis.com/en/pro-app/help/�analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm
http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm

288 References

Fowler, R.J. and Little, J.J. 1979. Automatic extraction of irregular network digital ter-
rain models. Computer Graphics 13:199–207.

Fowler, M. 2004. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Boston, MA: Addison-Wesley Professional.

Gittings, B.M., Sloan, T.M., Healey, R.G., Dowers, S., and Waugh, T.C. 1993. Meeting
expectations: A review of GIS performance issues. In Geographical Information
Handling–Research and Applications, ed. P.M. Mather, 33–45. Chichester: John
Wiley & Sons.

Goodchild, M.F. 1992. Geographical information science. International Journal of
Geographical Information Systems 6(1):31–45.

Gosselin, T.N., Georgiadis, G., and Digital Accelerator Corporation. 2000. Digital
data compression with quad-tree coding of header file. U.S. Patent 6,094,453.

Grafarend, E. 1995. The optimal universal transverse Mercator projection. In Geodetic
Theory Today, 51–51. Berlin, Heidelberg: Springer.

Guttman, A. 1984. R-trees: A dynamic index structure for spatial searching.
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data 14(2):47–57. ACM.

Healey, R., Dowers, S., Gittings, B., and Mineter, M.J. eds. 1997. Parallel Processing
Algorithms for GIS. Bristol, PA: CRC Press.

Hearnshaw, H.M. and Unwin, D.J. 1994. Visualization in Geographical Information
Systems. Hoboken, NJ: John Wiley & Sons Ltd.

Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables.
Journal of American Statistical Association 58:13–30.

Huang, Q., Yang, C., Benedict, K., Chen, S., Rezgui, A., and Xie, J. 2013b. Utilize cloud
computing to support dust storm forecasting. International Journal of Digital
Earth 6(4):338–55.

Huang, Q., Yang, C., Benedict, K. et al. 2013a. Using adaptively coupled models and
high-performance computing for enabling the computability of dust storm
forecasting. International Journal of Geographical Information Science 27(4):765–84.

Hutchins, W.J. 1986. Machine Translation: Past, Present, Future, 66. Chichester: Ellis Horwood.
Hwang, K. and Faye, A. 1984. Computer Architecture and Parallel Processing, Columbus,

OH: McGraw-Hill.
Jack, K. 2011. Video Demystified: A Handbook for the Digital Engineer. Burlington, MA:

Elsevier.
Johnson, R.A. 1929. Modern Geometry: An Elementary Treatise on the Geometry of the

Triangle and the Circle, 173–6, 249–50, and 268–9. Boston, MA: Houghton Mifflin.
Kanan, C. and Cottrell, G.W. 2012. Color-to-grayscale: Does the method matter in

image recognition? PloS One 7(1):e29740.
Kernighan, B.W. and Ritchie, D.M. 2006. The C Programming Language. Upper Saddle

River, NJ: Prentice Hall.
Khalid, M. 2016. Map, Filter and Reduce. http://book.pythontips.com/en/latest/

map_filter.html (accessed September 3, 2016).
Knippertz, P. and Stuut, J.B.W. 2014. Mineral Dust. Dordrecht, Netherlands: Springer.
Lee, J. 1991. Comparison of existing methods for building triangular irregular net-

work, models of terrain from grid digital elevation models. International Journal
of Geographical Information System 5(3):267–85.

Li, Z., Hu, F., Schnase, J.L. et al. 2016. A spatiotemporal indexing approach for effi-
cient processing of big array-based climate data with MapReduce. International
Journal of Geographical Information Science 1–19.

http://book.pythontips.com/en/latest/map_filter.html
http://book.pythontips.com/en/latest/map_filter.html

289References

Lien, D.A. 1981. The Basic Handbook: Encyclopedia of the Basic Computer Language.
San Diego, CA: Compusoft Pub.

Linuxtopia. 2016. Set Operations. http://www.linuxtopia.org/online_books/
programming_books/python_programming/python_ch16s03.html (accessed
September 3, 2016).

Longley, P.A., Goodchild, M.F., Maguire, D.J., and Rhind, D.W. 2001. Geographic
Information System and Science. England: John Wiley & Sons, Ltd., 327–9.

McCoy, J., Johnston, K., and Environmental Systems Research Institute. 2001. Using
ArcGIS Spatial Analyst: GIS by ESRI. Redlands, CA: Environmental Systems
Research Institute.

Mitchell, J.C. 1996. Foundations for Programming Languages (1). Cambridge: MIT press.
Misra, P. and Enge, P. 2006. Global Positioning System: Signals, Measurements and

Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press.
Nanjundiah, R.S. 1998. Strategies for parallel implementation of a global spectral

atmospheric general circulation model. High Performance Computing, 1998.
HIPC’98. 5th International Conference On 452–8. IEEE.

Neteler, M. and Mitasova, H. 2013. Open Source GIS: A GRASS GIS Approach (689).
New York: Springer Science and Business Media.

NOAA. 2011. Dust Storm Database. https://www.ncdc.noaa.gov/stormevents/
(accessed August 30, 2016).

Ostrom, E., Burger, J., Field, C.B., Norgaard, R.B., and Policansky, D. 1999. Revisiting
the commons: Local lessons, global challenges. Science 284(5412):278–82.

Peng, Z.R. 1999. An assessment framework for the development of Internet GIS.
Environment and Planning B: Planning and Design 26(1):117–32.

Pick, M. and Šimon, Z. 1985. Closed formulae for transformation of the Cartesian
coordinate system into a system of geodetic coordinates. Studia geophysica et
geodaetica 29(2):112–9.

Pountain, D. 1987. Run-length encoding. Byte 12(6):317–9.
Proulx, V.K. 2000. Programming patterns and design patterns in the introductory

computer science course. ACM SIGCSE Bulletin 32(1):80–4. ACM.
Python. 2001a. Built-in Functions. https://docs.python.org/3/library/index.html

(accessed September 3, 2016).
Python. 2001b. Errors and Exceptions. https://docs.python.org/2/tutorial/errors.

html (accessed September 3, 2016).
Pythoncentral. 2011. Python’s range() Function Explained. http://pythoncentral.io/

pythons-range-function-explained/ (accessed September 3, 2016).
PythonForBeginers. 2012. Reading and Writing Files in Python. http://www.

pythonforbeginners.com/files/reading-and-writing-files-in-python (accessed
September 3, 2016).

Raschka, S. 2014. A Beginner’s Guide to Python’s Namespaces, Scope Resolution, and
the LEGB Rule. http://sebastianraschka.com/Articles/2014_python_scope_
and_namespaces.html (accessed September 3, 2016).

Rawen, M. 2016. Programming: Learn the Fundamentals of Computer Programming
Languages (Swift, C++, C#, Java, Coding, Python, Hacking, Programming Tutorials).
Seattle, WA: Amazon Digital Services LLC, 50.

Rew, R. and Davis G. 1990. NetCDF: An interface for scientific data access. IEEE
Computer Graphics and Applications 10(4):76–82.

Ritter, N. and Ruth, M. 1997. The GeoTiff data interchange standard for raster geo-
graphic images. International Journal of Remote Sensing 18(7):1637–47.

http://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch16s03.html
http://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch16s03.html
https://www.ncdc.noaa.gov/stormevents/
https://docs.python.org/3/library/index.html
https://docs.python.org/2/tutorial/errors.html
https://docs.python.org/2/tutorial/errors.html
http://pythoncentral.io/pythons-range-function-explained/
http://pythoncentral.io/pythons-range-function-explained/
http://www.pythonforbeginners.com/files/reading-and-writing-files-in-python
http://www.pythonforbeginners.com/files/reading-and-writing-files-in-python
http://sebastianraschka.com/Articles/2014_python_scope_and_namespaces.html
http://sebastianraschka.com/Articles/2014_python_scope_and_namespaces.html

290 References

Rodrigue, J. 2016. Network Data Models. Methods in Transport Geography. https://peo-
ple.hofstra.edu/geotrans/eng/methods/ch2m3en.html (accessed June 22, 2016).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.E. 1991. Object-
Oriented Modeling and Design, 199(1). Englewood Cliffs, NJ: Prentice Hall.

Samet, H. 1990. The Design and Analysis of Spatial Data Structures, 199. Reading, MA:
Addison-Wesley.

Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data.
In Proceedings of the 1968 23rd ACM National Conference, New York, 517–24. ACM.

Shimrat, M. 1962. Algorithm 112: Position of point relative to polygon. Communications
of the ACM 5(8):434.

Stroustrup, B. 1995. The C++ Programming Language. Delhi, India: Pearson Education India.
Teampython. 2013. Conditioned Choropleth Maps (CCMaps) Generator. http://www.

arcgis.com/home/item.html?id=a1c79e4cb3da4e0db9dc01b11fea9112 (accessed
September 9, 2016).

Tu, S., Flanagin, M., Wu, Y. et al. 2004. Design strategies to improve performance of
GIS web services. ITCC 2:444.

Tullsen, D.M., Eggers, S.J., and Levy, H.M. 1995. Simultaneous multithreading:
Maximizing on-chip parallelism. ACM SIGARCH Computer Architecture News
23(2):392–403. ACM.

Van Rossum, G. 2007. Python programming language. In USENIX Annual Technical
Conference, Santa Clara, CA, 41.

wiki.gis. 2011. Centroid. http://wiki.gis.com/wiki/index.php/Centroid (accessed
September 3, 2016).

Wilkening, K.E., Barrie, L.A., and Engle, M. 2000. Trans-Pacific air pollution. Science
290(5489):65.

World Meteorological Organization (WMO). 2011. WMO Sand and Dust Storm
Warning Advisory and Assessment System (SDSWAS)—Science and Implementation
Plan 2011–2015. Geneva, Switzerland: WMO.

Xie, J., Yang, C., Zhou, B., and Huang, Q. 2010. High-performance computing for
the simulation of dust storms. Computers, Environment and Urban Systems
34(4):278–90.

Yang, C., Goodchild, M., Huang, Q. et al. 2011a. Spatial cloud computing: How can
the geospatial sciences use and help shape cloud computing? International
Journal of Digital Earth 4(4):305–29.

Yang, C., Wong, D.W., Yang, R., Kafatos, M., and Li, Q. 2005. Performance-improving
techniques in web-based GIS. International Journal of Geographical Information
Science 19(3):319–42.

Yang, C., Wu, H., Huang, Q. et al. 2011c. WebGIS Performance Issues and Solutions,
121–38. New York, USA: Taylor & Francis.

Yang, C., Wu, H., Huang, Q., Li, Z., and Li, J. 2011b. Using spatial principles to opti-
mize distributed computing for enabling the physical science discoveries.
Proceedings of the National Academy of Sciences 108(14):5498–503.

Yang, C., Xu, Y., and Nebert, D. 2013. Redefining the possibility of digital Earth and
geosciences with spatial cloud computing. International Journal of Digital Earth
6(4):297–312.

Zhang, J. 2010. Towards personal high-performance geospatial computing (HPC-
G): Perspectives and a case study. In Proceedings of the ACM SIGSPATIAL
International Workshop on High Performance and Distributed Geographic Information
Systems, San Jose, CA, 3–10. ACM.

https://people.hofstra.edu/geotrans/eng/methods/ch2m3en.html
https://people.hofstra.edu/geotrans/eng/methods/ch2m3en.html
http://www.arcgis.com/home/item.html?id=a1c79e4cb3da4e0db9dc01b11fea9112
http://www.arcgis.com/home/item.html?id=a1c79e4cb3da4e0db9dc01b11fea9112
http://wiki.gis.com/wiki/index.php/Centroid

291

Index

A

Adjacency matrix, 209
Aggregation, 12, 14
AOIs, see Areas of interest
Application software, 3–4
ArcGIS ModelBuilder, 153
ArcGIS programming, 21, 153; see also

Python programming
accessing and editing data with

cursors, 160–166
ArcPy package, 154–158, 159
ArcToolbox, ModelBuilder, and

ArcMap Python window, 154
assignment, 182
automating ArcTools with Python,

158–160, 161, 162
automating map production, 172, 173
creating ArcTools from scripts, 172,

174–176
describing and listing objects,

166–169
external document and video

resources, 177–178
handling errors and messages,

176–177, 178
manipulating complex objects,

169–171
ArcGIS software, 3, 7, 77

attribute information of raster
dataset and calculating area,
200–204

conversion among DEM, TIN, and
contours, 236–239

flow direction, 239–242
hands-on experience with, 198,

218–222, 236
implementing spatial relationship

calculations using, 178–180,
181, 182, 183, 184

raster color renders, 198–199
raster data analysis, 199–200

slope and aspect generation, 239
ArcMap

menu bar, 157
programming with ArcPy in,

155–156
Python window, 156, 199–201
user interface, 127–128, 129

arcpy.da.NumPyArrayToFeatureClass
function, 165

arcpy.GetMessage() method, 176
arcpy.mapping module, 172
arcpy.NumPyArrayToTable, 165
ArcPy package, 153, 154

functions, classes, and modules,
154–155

using help documents, 157–158, 159
programming with ArcPy in

ArcMap, 155–156
programming with ArcPy in Python

window outside ArcMap,
156–157

arcpy.TableToNumPyArray functions, 165
ArcToolbox, 153–154

automating ArcTools with Python,
158–162

ArcTools from scripts creation, 172,
174–176

Area, 139
polygon with hole(s), 140–141
of simple polygon, 139–140

“Area Practice” window, 148, 149
Areas of interest (AOIs), 277
Arithmetic Operators, 50–51
Artificial language, 19
Aspect, 232

clockwise in calculation, 233
generation, 239
surface aspect, 234
value, 233

Assignment Operators, 50, 52
Attributes, 9, 12, 23–25

292 Index

B

Base contour, 225
BASIC programming language, 19
Behaviors, 9
Big-endian byte orders, 99–100, 103–104
Binary data manipulation, 97–100
Binary format, 97
Bit, 19–20
Bitwise&Shift Operators, 50–51
Bounding box, 103, 109

checking to speed up intersection,
258–261

in GIS, 255–256
Breaklines, 224
Break statement, 65
Brute force approach for shortest path

algorithm, 211–212
Built-in functions, 46
Built-in methods, 67
Built-in module, 126–127

check module, 128
math methods, 128

C

C++ programming language, 6, 19, 20–21
CAD, see Computer Aided Design
calDis method, 21
Canvas widget, 79–80, 84–85
Cartesian coordinate system, 141, 142
Catch exceptions, 122
Central processing units (CPU), 5–6
Centroid, 137

“Centroid Practice” window, 148, 149
of polygon, 138–139
of rectangle, 137–138
of triangle, 137, 138

CFSR data, see Climate Forecast System
Reanalysis data

Chinese New Year, 270
Classes, 9, 12, 21–23, 35

ArcPy package, 154–155
attributes, 23–25
composition, 26–27
inheritance, 14, 25–26

Classic data model, 266
Classified renderer, 196
Climate Forecast System Reanalysis

data (CFSR data), 277

Climate science, 275
Climate study, application of NetCDF/

HDF on, 266–269
Closest facility analysis, 214, 215
Cloud computing, 253–254, 285
Cluster computing, 253–254
CMAP data, see CPC Merged Analysis

of Precipitation data
Code style, 49–50
Code writing, 87
Color

depth, 194
representation, 191–194
screens, 192

Colormap, 191
Command-line GUI, 115

Python, 116
Comments, 49–50
Comparison Operators, 51, 52, 61
Compiler, 19
Composite data types, 42

built-in functions, 46
dictionary data type, 46–47
list, 42–45
list methods, 45
Set operations, 47–48

Composition, 12, 14, 26–27
Comprehensive consideration, 249–251
Computer, 3

hardware, 3–5
processing, 251
software, 3–5
system, 248–249

Computer Aided Design (CAD), 190
Conditional expressions, 61
Continue statement, 66
Continuous data, 185, 223, 225

grid surface, 225–226
TINs, 226–227

Contours, 224–225
interval, 225
lines, 224

Control structures, 61, 66–67
Conversion of numbers, 41
Coordinate transformation, 81–82
CPC Merged Analysis of Precipitation

data (CMAP data), 277
C programming language, 6
CPU, see Central processing units

293Index

Cursors, accessing and editing data
with, 160

InsertCursor, 164–165
NumPy, 165–166
SearchCursor, 160, 162–163
UpdateCursor, 164

D

Data, 270–271
coordinate systems, 81
DEM, 188
discrete, 223–225
manipulation and analysis, 172
Twitter data, 271, 272
validation analysis, 278–279

Data analysis, 160
raster, 199–200

Data loading
with multithreading, 258
with RAM, 257–258

Dataset, 127–128
Data types, 40, 98–99

built-in types, 41–42
composite data types, 42–48
float data types, 40–41

datetime module, 127
Day-to-day geospatial coordinates, 81
Debugging, 118

add exception handles and clean-up
actions to file read/write,
123–124

handling exceptions, 122–123, 124
run-time exceptions, 121–122
SyntaxError, 120–121

Decision-making process, 63
Decomposition method, 283, 284
Delaunay triangulation, 229, 230
DEMs, see Digital elevation models
Density analysis, 271–272
Dependency, 12, 14
Describe function, objects, 166–167
Descriptive operations, 197
Dictionary data type, 46–47
Digital elevation models (DEMs), 185,

229
data, 188

Dijkstra algorithm, 212–213
Directed networks, 207–209

Direction coding, 235
Discrete Color renderer, 196
Discrete data, 223–225
Disk access, 248

comprehensive consideration,
249–251

file management, 249
Distance map, 197
Distance ordering, 229
Distributed GIS, 275; see also Mini-GIS

system architecture, 276–277
user interface, 277–280

docstring, see Documentation strings
Documentation strings, 50
.dbf file, 101
.shp file, 101
.shx file, 101
Double loop, 70
Dust

models, 280–281
simulation, 281
transition process, 281

Dust storms, 280
clustered characteristics, 282–283
events, 284–285
forecasting, 285
space–time continuity, 283

E

ECMWF Interim Reanalysis data
(ERAInterim data), 277

Elevation, 230–231
models, 225

Embedded software, 4
endByte, 268
ERA-INTRIM, 277
ERDAS IMAGINE, 190
Error message, 176
ESRI shapefile format, 99, 101
“Except” block, 122
except clause, 69
Exceptions, 69, 121

F

Feature bounding box, 255
Feature class, 27, 129
Field view, 185

294 Index

File-based programming, 116–117
FileBuffer, 249
File buffer, 257–258
fileId, 268
File input/output, 67–69
File length, 103, 105, 107
File management, 249
File read/write, add exception handles

and clean-up actions to,
123–124

Filter function, 46
Firmware, 4
float(str), 68
Float data types, 40–41
Flow accumulation, 235–236, 241
Flow direction, 239–242
Focal operations, 197
Fonts setup for coding, Python IDE, 118,

119
For loop, 64, 105, 107
Four square matrices, 188–189
Functional match, 89
Functions, 54–56

ArcPy, 154–155

G

Gbps, see Gigabit Ethernet
Geographical information sciences

(GIScience), 5, 265
Geographically weighted regression

(GWR), 273
local R2 value for, 274, 275

Geographic coordinate system, 81–84
Geographic data, 190
Geographic information, 7

processing, 3
Geographic information system (GIS), 4,

137, 190
algorithms and modeling, 270–275
algorithms and programming, 265
applications, 153, 190
ArcMap user interface, 129
data, 77–81, 83
data models, 10–11
data organization, 127–128
data vector, 80–81
map data organization hierarchy, 129
maps, 77

network representation in, 209–210
objects creating, 92–95
package, 35
programming, 21
software, 97, 194, 197, 214
spatial data structure, 265–269
spatiotemporal thinking and

computing, 280–285
Geographic Resource Analysis Support

System (GRASS), 20–21
GeoInformatics, 5
Geometry, 170
GeoParameterValue functions, 174
GEOS-5, see Goddard Earth Observing

System, version 5 data
assimilation system

GetParameterAsText functions, 174
GetParameter functions, 174
GIF files, see Graphic Interchange

Format files
Gigabit Ethernet (Gbps), 268
GIS, see Geographic information system
GIScience, see Geographical information

sciences
Global Modeling and Assimilation

Office (GMAO), 266
Global positioning system (GPS),

4, 5–7; see also Geographic
information system (GIS)

Global Precipitation Climatology Project
data (GPCP data), 277

Global variables, 39
GMAO, see Global Modeling and

Assimilation Office
Goddard Earth Observing System,

version 5 data assimilation
system (GEOS-5), 266

Google Earth, 5
Google Maps, 3, 5
GPCP data, see Global Precipitation

Climatology Project data
GPS, see Global positioning system
Graph, 207
Graphical user interface, 153
Graphic Interchange Format files (GIF

files), 191
GRASS, see Geographic Resource

Analysis Support System
Gray level intensity, 191–192

295Index

Grayscale image, 191–192
Grid, 265–266

computing, 253–254
model, 230–231
surface, 225–226
surface model creation, 228

gridId, 268
GWR, see Geographically weighted

regression

H

Habitat analysis, 196–197
Hadoop Distributed File System

(HDFS), 268
Handling errors and messages, 176–177

AddMessage examples, 178
Handling exceptions, 122–123

try…except…finally to clean up
variables, 124

Hands-on experience with mini-GIS, 131
package management and mini-GIS,

131–132
run and practice mini-GIS package,

132–134
Hands-on experience with python,

148–150
Hard breaklines, 224
Hard drive (HDD), 249
Hardware, 3–5
HDD, see Hard drive
HDFS, see Hadoop Distributed File

System
Heat map, 271
Help documents, 157–158

syntax and sample code of Python
script, 159

Hexadecimal representation, 99–100
Hex number, 19–20
HFA, see Hierarchical File Format
Hierarchical File Format (HFA), 190
High-performance computing, 281

dust storm events, 284–285
dust storms clustered characteristics,

282–283
dust storms space–time continuity,

283
spatiotemporal thinking to

optimizing, 281

Highlighting, Python IDE, 117–118
High performance computing (HPC), 254
Hole(s), area of polygon with, 140–140
HPC, see High performance computing
Hydrologic analysis, 234–236

I

IDE, see Integrated Development
Environment

IDW, see Inverse distance weighting
if…. elif…else statement, 63
if…else statement, 62
if statement, 159
IMAGINE image processing, 190
Indentation, 36
Indented codes, 49
Index file (.shx), 101, 105–107

header, 105–106
length, 107

Informative messages, 176
Inheritance, 12, 14, 25–26
InsertCursor, 164–165
Instruction based language, 19
int(str), 68
Integer, 103

data types, 40
Integrated Development Environment

(IDE), 115
debugging, 118, 120–124
fonts setup for coding, 118, 119
general setting of programming

window, 118, 119
highlighting, 117–118
python IDE, 115
python programming windows,

115–117
settings, 117

Intensity method, 192
Interactive GUI, 115–116
Interpretation

feature record, 104
index file structure, 105–107
main file header, 102–103
main file structure of shapefile,

102–107
Interpreter, 19
Interpret polyline shapefiles, 109–113
Inverse distance weighting (IDW), 228

296 Index

J

Java, 6, 19, 21
JavaScript, 6
Joint Photographic Experts Group files

(JPEG files), 191

K

Kernel density, 271–272
Keywords for Python, 37
Kriging, 228

L

Land cover dataset, 201
Leaf nodes, 189
Lempel–Ziv–Welch (LZW), 191
len() function, 64–65
Length, 141

of polyline, 142
ratios, 82
of straight line segment, 141

LiDAR, see Light Detection and Ranging
Light-weight GIS software, 4–5
Light Detection and Ranging (LiDAR),

223
Line-based data, see Discrete data
Line intersection, 142

binary linear equation, 144
“Line Intersection Practice” window,

148, 150
line segments intersection, 143
mathematical representation of line

in cartesian coordinate system,
143

parallel lines, 145
using R-tree index, 261–262
vertical lines, 145–146

Links table, 210
Linux, 3–4

command-line GUI, 115
List, 167–169

composite data types, 42–45
ListFeatureClasses method, 168
ListFields function, 167
Little-endian byte orders, 99–100,

103–104
Local operations, 197
Local variables, 39

Location-allocation analysis, 217–218
Logic Operators, 51, 53, 62
long(str), 68
Long integers data types, 40
Loop and decisions combination, 66
Luma method, 192
Luster method, 192
LZW, see Lempel–Ziv–Welch

M

Machine language instructions, 19–20
Main file (.shp), 101
Manipulating complex objects, 169–171
Map class, 259
Map drawing processes, 77
Map function, 46
Map production, automating, 172, 173
MapReduce, 268–269
Mass points, 223–224, 229
MAT1NXINT product, 268–269
math module, 125, 128
Memory management, 248

comprehensive consideration,
249–251

file management, 249
MERRA, see Modern-Era Retrospective

Analysis for Research and
Applications

Methods, 12
Mini-GIS; see also Distributed GIS

bounding box checking, 258–261
data loading with multithreading,

258
data loading with RAM, 257–258
hands-on experience with, 257
hands-on experience with mini-GIS,

131–134
interpret polyline shapefiles, 109–113
line intersection using R-Tree index,

261–262
package, 128–130
regular GIS data organization,

127–128, 129
visualizing polylines and polygons,

108–109
ModelE simulation data, 277
Modeling process, 270

data, 270–271

297Index

density analysis, 271–272
GIS algorithms and, 270
regression analysis, 272–275
social media analysis, 270

Model synchronization, 254
Modern-Era Retrospective Analysis for

Research and Applications
(MERRA), 266, 268

Modules
ArcPy, 154–155
Python, 124–127

Monitor coordinate system, 81–84
Multiband raster datasets, 196
Multilayer raster datasets, 187
Multiple assignments, 38
Multipoint, 170
Multithreading, 251

data loading with, 258
executing process, 252
loading multiple shapefiles

concurrently using, 252–253
multithreading. py file, 252
sequential and concurrent execution,

251

N

Namespace, 38–39
Native byte order, 99
Native size and alignment, 99
Nested loops, 67
Nested model, 284–285
NetCDF, see Network Common Data

Form
NetCDF/HDF

application on climate study, 266–269
raster data structure in, 265–266

Network, 207
adjacency matrix, 209
directed networks, 207–209
network representation in GIS,

209–210
representation, 207
undirected networks, 207–209

Network analysis types, 214
closest facility, 214, 215
location-allocation analysis, 217–218
OD cost matrix, 216
routing, 214

service areas, 214–215
VRP, 216–217

Network Common Data Form
(NetCDF), 190

Network data algorithms, 207; see also
Surface data algorithms

finding shortest path, 210–213
hands-on experience with ArcGIS,

218–222
network analysis types, 214–218
network representation, 207–210

Node, 207
table, 210

nodeList, 268
Noncluster scheduling, 282–283
Nondiscrete data, see Continuous data
Nonspatial attributes, 108
Numerical weather prediction model

(WRF-NMM), 281
NumPy, 165–166
NumPyArrayToFeatureClass, 165–166

O

Object-oriented programming, 19
class and object, 21–27
hands-on experience with Python, 30
point, polyline, and polygon, 27–30
programming language and Python,

19–21
Object Management Group (OMG),

11–12
Objects, 9, 12–14, 21, 35, 169

attributes, 23–25
composition, 26–27
describing and listing, 166–169
generation, 23
inheritance, 25–26

Octal number, 19–20
OD cost matrix, see Origin–destination

cost matrix
Offset of record, 105–106
OLS, see Ordinary least squares
OMG, see Object Management Group
Online mapping application, 5
Open-source

IDE, 115
packages, 153

Open() function, 68

298 Index

Operating system (OS), 3–4
Operators, 50–53
Ordinary least squares (OLS), 272–275

result of analysis, 274
standard residual of, 274
Twitter users, 273

Organizing data, 89
Original pixel value, 195
Origin–destination cost matrix (OD cost

matrix), 216
OS, see Operating system

P

Package management, 131–132
mini-GIS package, 128–130
regular GIS data organization,

127–128, 129
Parallel lines, 145
Parallel processing, 251, 281

and cluster, grid, and cloud
computing, 253–254

sequential and concurrent execution,
251

Parsing
coordinates, 89
data, 89

Pass statement, 63
Patterns, 77
Percent slope, 231
Performance-improving techniques, 247

disk access and memory
management, 248–251

hands-on experience with Mini-GIS,
257–262

multithreading, 251–254
parallel processing, 251–254
problems, 247–248
relationship calculation and spatial

index, 254–257
Perl, 19
Phosphors, 192
PHP, 19
Picture elements, see Pixels
Pixels, 185, 188, 192, 194, 201

values, 191–192, 196–197
PNG, see Portable Network Graphic
Point-based data, see Discrete data
Point, 14–15, 86–87, 170

class, 27–30, 92
in polygon, 146–148

PointGeometry, 170
Polygons, 11, 86–87, 139, 170

area of polygon with hole(s), 140–141
area of simple polygon, 139–140
centroid, 138–139
class, 27–30
features, 229
function, 159
module, 128–129
shapefiles, 109
visualizing, 108–109

Polylines, 10, 86–87, 170, 255
class, 27–30, 259
length calculation, 89
length of, 142
point in polygon, 146–148
visualizing, 108–109

Polymorphism, 26
Portable Network Graphic (PNG), 191
Power parameter, 231
Private methods/attributes, 12
Professional GIS software, 4–5
Programming, 5–7

language, 19–21, 35
structure match, 89

Programming thinking, 87
implement program, 89–90
match programming language

patterns and structure, 89
problem analysis, 88
think in programming, 88

Protected methods/attributes, 12
Public methods/attributes, 12
Pythagorean theorem, 141
Python, 6–8, 19–21, 35, 79, 97, 99, 104, 106

automating ArcTools with, 158–160,
161, 162

code, 109
data types, 40–48
to draw line segments and calculate

intersection, 148, 150
to draw polygon and calculate area

of polygon, 148, 149
to draw polygon and calculate

centroid, 148, 149
file access, 249
functions, 54–56

299Index

GUI, 15, 36, 56, 77, 79, 115, 125
miscellaneous, 48–50
object-oriented support, 35–36
operators, 50–53
program, 61, 69
programming with ArcPy in Python

window outside ArcMap,
156–157

statements, 53
syntax, 36–39

Python, hands-on experience with,
14–16, 56, 30, 70, 90, 148

create GIS objects and check
intersection, 92–95

input GIS point data from text file,
74–75

I/O, create and read file, 70–72
I/O, flow control, and file, 72–73
longest distance between any two

points, 70
reading, parsing, and analyzing text

file data, 90–92
Python IDE, 115–124

debugging, 118, 120–124
fonts setup for coding, 118, 119
general setting of programming

window, 118, 119
highlighting, 117–118
python programming windows,

115–117
settings, 117

Python IDLE, 77, 90
Python language control structure

control structures, 66–67
exceptions, 69
file input/output, 67–69
hands-on experience with Python, 70
input GIS point data from text file,

74–75
I/O, create and read file, 70–72
I/O, flow control, and file, 72–73
longest distance between any two

points, 70
loops, 64–66
making decisions, 61–64

Python modules, 124
module introduction, 125
set up modules, 125–126
system built-in modules, 126–127, 128

Python programming, 153; see also
ArcGIS programming

command-line GUI, 115, 116
file-based programming, 116–117
hands-on experience with mini-GIS,

131–134
interactive GUI, 115–116
package management and mini-GIS,

127–130
Python IDE, 115–124

Q

QGIS software packages, 213
Quad tree, 188–189

R

RAM, data loading with, 257–258
random module, 127
Random. random() method, 95
range() function, 64–65
Ranges of values process, 196–197
Raster, 185

analysis, 196–198
attribute information of raster dataset

and calculating area, 200–204
color renders, 198–199
conversion between TIN and raster

surface models, 229–230
rendering, 194–196
slope, 231
storage and compression, 186

Raster data, 185–186, 265
analysis, 199–200
models, 10
structure in NetCDF/HDF, 265–266

Raster data algorithm
attribute information of raster dataset

and calculating area, 200–204
BMP, 190
color representation, 191–194
GeoTIFF, 190
GIF files, 191
hands-on experience with ArcGIS, 198
IMG files, 190
JPEG files, 191
NetCDF, 190
PNG, 191

300 Index

Raster data algorithm (Continued)
quad tree, 188–189
Run Length Coding, 187–188
SVG, 191
TIFF, 189

Raster data formats, 189
BMP, 190
GeoTIFF, 190
GIF files, 191
IMG files, 190
JPEG files, 191
NetCDF, 190
PNG, 191
SVG, 191
TIFF, 189

Raster storage and compression, 186
quad tree, 188–189
Run Length Coding, 187–188

Ray casting algorithm, 146, 147
readPolylineFile, 91, 93
ReadShapeFile module, 131–132
Reclassification, 196–197
Reclassify function, 201
Record content, 104
Record header, 104, 109
Rectangle centroid, 137–138
Rectangle class, 92
Reduce method, 46
Reference point, 82
Regression analysis, 272–275
Relationship, 12

bounding box in GIS, 255–256
and spatial index, 254, 256–257

RemapRange, 201
RemapValue, 201
Rendering, 194
Representational State Transfer (REST),

276–277
REST, see Representational State Transfer
Return value, 68
RGB

Composite renderer, 195–196
image, 191
values, 192

Root node, 189
Routing, 214
R-Tree, 256–257

index, 261–262
Run Length Coding, 187–188

Run-time exceptions, 121–122

S

Sample points, 229
Scalable Vector Graphics (SVG), 191
Scheduling methods, 282–283
Scope, 39
SearchCursor, 160, 162–163
Sequential and concurrent execution, 251
Sequential execution process, 251
Sequential match, 89
Service areas analysis, 214–215
Set, 47–48
SetParameterAsText functions, 174
SetParameter functions, 174
Shapefile handling

binary data manipulation, 97–100
feature record, 104
general programming sequence for,

107–108
hands-on experience with mini-GIS,

108–113
index file structure, 105–107
main file header, 102–103
shapefile, 101–107

Shortest path algorithm
brute force approach for, 211–212
Dijkstra algorithm, 212–213
finding, 210
problem statement, 210–211

shutil module, 127
Sink, 234, 235
Slope, 231–232
Slope generation, 239
Social media analysis, 270
Soft breaklines, 224
Software, 3–5; see also ArcGIS software

application, 3–4
development process, 63
embedded, 4
GIS, 97, 194, 197, 214
light-weight GIS, 4–5

Spatial attributes, 108
Spatial data structure, 265

application of NetCDF/HDF on
climate study, 266–269

logical structure of improved data
model, 267

301Index

raster data structure in NetCDF/
HDF, 265–266

Spatial index, 256–257
Spatial pattern, 255
Spatial relationship calculations using

ArcGIS, 178–180
calculate line intersection, 181
line intersection result, 182
point in polygon result, 184
railway stations in Virginia, 183

Spatiotemporal index, 269
Spatiotemporal thinking and

computing, 280
cloud computing to support dust

storm forecasting, 285
dust simulation and computing

challenges, 280–281
high-performance computing to

support dust simulation, 281
to optimizing high-performance

computing, 281–284
WRF-NMM domain decomposition,

282
Special data models, 10
Spring Festival, 270
Standard size, 99
startByte, 268
Statements, 53
Statistics function, 159
Straight line segment, length of, 141
Stretched pixel value, 195
Stretched renderer, 194–195
String format (String fmt), 98
Strings, 41
Struct, 97

handles, 97
module, 97–98
package, 99

Surface, 223
Surface data, 223

continuous data, 225–227
discrete data, 223–225
model, 223

Surface data algorithms, 223; see also
Network data algorithms

hands-on experience with ArcGIS,
236–242

3D surface and data model, 223–227
Surface data analysis, 230

aspect, 232–234
direction coding, 235
elevation, 230–231
flow direction example, 235
hydrologic analysis, 234–236
slope, 231–232
surface scanning window, 232

Surface model data creation, 228
conversion between TIN and raster

surface models, 229–230
grid surface model creation, 228
TIN surface model creation, 229

SVG, see Scalable Vector Graphics
Symbols, 77
Syntax, 36

case sensitivity, 36
indentation, 36
keywords, 37
multiple assignments, 38
namespace, 38–39
scope, 39
special characters, 36, 37

SyntaxError, 120–121
System architecture, distributed GIS,

276–277
System built-in modules, 126–127

check module, 128
math methods, 128

T

Tagged Image File Format (TIFF), 189
Taylor diagram, 278–279
Thematic raster, 196
Three-dimensional space (3D space), 10
3D surface and data model, 223

surface data, 223
surface data model, 223–227

TIFF, see Tagged Image File Format
TIN, see Triangulated irregular network
Tkinter, 79, 129
Traceback error message, 121
Transforming coordinate system, 80

determining ratio value, 82–84
geographic area and window

monitor size, 81
Translation, 19
Translator, 19
Trapezoid, 140

302 Index

Triangle centroid, 137
intersection point of three medians,

138
Triangles, 229
Triangulated irregular network (TIN),

223, 226, 231
comparison of grid and, 226–227
conversion between TIN and raster

surface models, 229–230
surface model creation, 229
triangles, 227

“Try” block, 122
try…except…statement, 69
Tuple data type, 46
Two-dimensional space (2D space), 10

U

Undirected networks, 207–209
Unified Markup Language (UML), 7,

10, 11
class diagram, 12
class diagram and object diagram, 13
diagrams, 11, 12
object, 12–14
OMG, 11–12

Unique Values renderer, 196
Universal Transverse Mercator (UTM), 81
UpdateCursor, 164
User-defined function, 172, 174
User interface, distributed GIS, 277

correlation analyses for two
variables, 278

GUI for Taylor diagram service, 279
Taylor diagram, 278–279, 280
time series plotting, 278

UTM, see Universal Transverse Mercator

V

Variables, 48–49
Vector data, 265

models, 10
visualizing, 84–86

Vector data algorithms
area, 139–141
centroid, 137–139
hands-on experience with python,

148–150
length, 141–142

line intersection, 142–146
point in polygon, 146–148

Vector dataset, 101
Vector data visualization

create GIS objects and check
intersection, 92–95

determining ratio value, 82–84
geographic area and window

monitor size, 81
hands-on experience with Python, 90
implement program, 89–90
match programming language

patterns and structure, 89
point, polyline, polygon, 86–87
problem analysis, 88
programming thinking, 87
reading, parsing, and analyzing text

file data, 90–92
think in programming, 88
transforming coordinate system, 80
visualizing GIS data, 77–80
visualizing vector data, 84–86

Vehicle routing problems (VRP), 216–217
Vertex, 207
Vertical lines, 145–146
Very Important Points algorithm (VIP

algorithm), 229
Video resources, 177–178
VIP algorithm, see Very Important

Points algorithm
vis() function, 129
Visualization, 128–129, 130

GIS data, 77–80
vector data, 84–86

VRP, see Vehicle routing problems

W

Walk function, 168
Warning messages, 176
WebGIS system, 277
while statement, 64
Windows, 3–4, 115
Windows Bitmap, 190
with statement, 163
Word processing, 3
WRF-NMM, see Numerical weather

prediction model
write function, 68

	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page
	Dedication�����������������
	Contents���������������
	Preface��������������
	Acknowledgments����������������������
	Editor�������������
	Contributors�������������������
	Section I: Overview��������������������������
	1. Introduction����������������������
	1.1 Computer Hardware and Software���
	1.2 GIS and Programming������������������������������
	1.3 Python�����������������
	1.4 Class and Object���������������������������
	1.5 GIS Data Models��������������������������
	1.6 UML��������������
	1.7 Hands-On Experience with Python��
	1.8 Chapter Summary��������������������������
	Problems���������������

	2. Object-Oriented Programming�������������������������������������
	2.1 Programming Language and Python��
	2.2 Class and Object���������������������������
	2.2.1 Defining Classes�����������������������������
	2.2.2 Object Generation������������������������������
	2.2.3 Attributes�����������������������
	2.2.4 Inheritance������������������������
	2.2.5 Composition������������������������

	2.3 Point, Polyline, and Polygon���������������������������������������
	2.4 Hands-On Experience with Python��
	2.5 Chapter Summary��������������������������
	Problems���������������

	Section II: Python Programming�������������������������������������
	3. Introduction to Python��������������������������������
	3.1 Object-Oriented Support����������������������������������
	3.2 Syntax�����������������
	3.2.1 Case Sensitivity�����������������������������
	3.2.2 Special Characters�������������������������������
	3.2.3 Indentation������������������������
	3.2.4 Keywords���������������������
	3.2.5 Multiple Assignments���������������������������������
	3.2.6 Namespace����������������������
	3.2.7 Scope������������������

	3.3 Data Types���������������������
	3.3.1 Basic Data Types�����������������������������
	3.3.2 Composite Data Types���������������������������������

	3.4 Miscellaneous������������������������
	3.4.1 Variables����������������������
	3.4.2 Code Style�����������������������

	3.5 Operators��������������������
	3.6 Statements���������������������
	3.7 Functions��������������������
	3.8 Hands-On Experience with Python��
	3.9 Chapter Summary��������������������������
	Problems���������������

	4. Python Language Control Structure, File Input/Output, and Exception Handling��
	4.1 Making Decisions���������������������������
	4.2 Loops����������������
	4.3 Other Control Structures�����������������������������������
	4.4 File Input/Output����������������������������
	4.5 Exceptions���������������������
	4.6 Hands-On Experience with Python��
	4.6.1 Find the Longest Distance between Any Two Points���
	4.6.2 Hands-On Experience: I/O, Create and Read a File���
	4.6.3 Hands-On Experience: I/O, Flow Control, and File���
	4.6.4 Hands-On Experience: Input GIS Point Data from Text File���

	4.7 Chapter Summary��������������������������
	Problems���������������

	5. Programming Thinking and Vector Data Visualization��
	5.1 Problem: Visualizing GIS Data��
	5.2 Transforming Coordinate System���
	5.2.1 How to Determine Ratio Value?��

	5.3 Visualizing Vector Data����������������������������������
	5.4 Point, Polyline, Polygon�����������������������������������
	5.5 Programming Thinking�������������������������������
	5.5.1 Problem Analysis�����������������������������
	5.5.2 Think in Programming���������������������������������
	5.5.3 Match Programming Language Patterns and Structure��
	5.5.4 Implement Program������������������������������

	5.6 Hands-On Experience with Python��
	5.6.1 Reading, Parsing, and Analyzing Text File Data���
	5.6.2 Create GIS Objects and Check Intersection��

	5.7 Chapter Summary��������������������������
	Problems���������������

	6. Shapefile Handling����������������������������
	6.1 Binary Data Manipulation�����������������������������������
	6.2 Shapefile Introduction���������������������������������
	6.3 Shapefile Structure and Interpretation���
	6.3.1 Main File Structure of a Shapefile���
	6.3.1.1 Main File Header�������������������������������
	6.3.1.2 Feature Record�����������������������������

	6.3.2 Index File Structure (.shx)��
	6.3.3 The .dbf File��������������������������

	6.4 General Programming Sequence for Handling Shapefiles���
	6.5 Hands-On Experience with Mini-GIS��
	6.5.1 Visualize Polylines and Polygons���
	6.5.2 Interpret Polyline Shapefiles��

	6.6 Chapter Summary��������������������������
	Problems���������������

	7. Python Programming Environment��
	7.1 General Python IDE�����������������������������
	7.1.1 Python Programming Windows���������������������������������������
	7.1.1.1 Command-Line GUI�������������������������������
	7.1.1.2 Interactive GUI������������������������������
	7.1.1.3 File-Based Programming�������������������������������������

	7.1.2 Python IDE Settings��������������������������������
	7.1.2.1 Highlighting���������������������������
	7.1.2.2 General Setting of the Programming Window��
	7.1.2.3 Fonts Setup for the Coding���

	7.1.3 Debugging����������������������
	7.1.3.1 SyntaxError��������������������������
	7.1.3.2 Run-Time Exceptions����������������������������������
	7.1.3.3 Handling Exceptions����������������������������������
	7.1.3.4 Add Exception Handles and Clean-Up Actions to File Read/Write��

	7.2 Python Modules�������������������������
	7.2.1 Module Introduction��������������������������������
	7.2.2 Set Up Modules���������������������������
	7.2.3 System Built-In Modules������������������������������������

	7.3 Package Management and Mini-GIS��
	7.3.1 Regular GIS Data Organization��
	7.3.2 Mini-GIS Package�����������������������������

	7.4 Hands-On Experience with Mini-GIS��
	7.4.1 Package Management and Mini-GIS��
	7.4.2 Run and Practice the Mini-GIS Package��

	7.5 Chapter Summary��������������������������
	Problems���������������

	8. Vector Data Algorithms��������������������������������
	8.1 Centroid�������������������
	8.1.1 Centroid of a Triangle�����������������������������������
	8.1.2 Centroid of a Rectangle������������������������������������
	8.1.3 Centroid of a Polygon����������������������������������

	8.2 Area���������������
	8.2.1 Area of a Simple Polygon�������������������������������������
	8.2.2 Area of a Polygon with Hole(s)���

	8.3 Length�����������������
	8.3.1 Length of a Straight Line Segment��
	8.3.2 Length of a Polyline���������������������������������

	8.4 Line Intersection����������������������������
	8.4.1 Parallel Lines���������������������������
	8.4.2 Vertical Lines���������������������������

	8.5 Point in Polygon���������������������������
	8.5.1 A Special Scenario�������������������������������

	8.6 Hands-On Experience with Python��
	8.6.1 Using Python to Draw a Polygon and Calculate the Centroid��
	8.6.2 Using Python to Draw Polygon and Calculate the Area of Polygon���
	8.6.3 Using Python to Draw Line Segments and Calculate the Intersection��

	8.7 Chapter Summary��������������������������
	Problems���������������

	Section III: Advanced GIS Algorithms and Their Programming in ArcGIS���
	9. ArcGIS Programming����������������������������
	9.1 ArcGIS Programming�����������������������������
	9.2 Introduction to ArcPy Package��
	9.2.1 ArcPy Functions, Classes, and Modules��
	9.2.2 Programming with ArcPy in ArcMap���
	9.2.3 Programming with ArcPy in Python Window outside ArcMap���
	9.2.4 Using Help Documents���������������������������������

	9.3 Automating ArcTools with Python��
	9.4 Accessing and Editing Data with Cursors��
	9.4.1 SearchCursor�������������������������
	9.4.2 UpdateCursor�������������������������
	9.4.3 InsertCursor�������������������������
	9.4.4 NumPy������������������

	9.5 Describing and Listing Objects���
	9.5.1 Describe���������������������
	9.5.2 List�����������������

	9.6 Manipulating Complex Objects���������������������������������������
	9.7 Automating Map Production������������������������������������
	9.8 Creating ArcTools from Scripts���
	9.9 Handling Errors and Messages���������������������������������������
	9.10 External Document and Video Resources���
	9.11 Implementing Spatial Relationship Calculations Using ArcGIS���
	9.12 Summary�������������������
	9.13 Assignment����������������������

	10. Raster Data Algorithm��������������������������������
	10.1 Raster Data�����������������������
	10.2 Raster Storage and Compression��
	10.2.1 Run Length Coding�������������������������������
	10.2.2 Quad Tree�����������������������

	10.3 Raster Data Formats�������������������������������
	10.3.1 TIFF������������������
	10.3.2 GeoTIFF���������������������
	10.3.3 IMG�����������������
	10.3.4 NetCDF��������������������
	10.3.5 BMP�����������������
	10.3.6 SVG�����������������
	10.3.7 JPEG������������������
	10.3.8 GIF�����������������
	10.3.9 PNG�����������������

	10.4 Color Representation and Raster Rendering���
	10.4.1 Color Representation����������������������������������
	10.4.2 Raster Rendering������������������������������

	10.5 Raster Analysis���������������������������
	10.6 Hands-On Experience with ArcGIS���
	10.6.1 Hands-On Practice 10.1: Raster Color Renders��
	10.6.2 Hands-On Practice 10.2: Raster Data Analysis: Find the Area with the Elevation Range between 60 and 100 and the Land Cover Type as “Forest”���
	10.6.3 Hands-On Practice 10.3. Access the Attribute Information of Raster Dataset and Calculate the Area���

	10.7 Chapter Summary���������������������������
	Problems���������������

	11. Network Data Algorithms����������������������������������
	11.1 Network Representation����������������������������������
	11.1.1 Basics Network Representation���
	11.1.2 Directed and Undirected Networks��
	11.1.3 The Adjacency Matrix����������������������������������
	11.1.4 Network Representation in GIS���

	11.2 Finding the Shortest Path�������������������������������������
	11.2.1 Problem Statement�������������������������������
	11.2.2 A Brute Force Approach for the Shortest Path Algorithm��
	11.2.3 Dijkstra Algorithm��������������������������������

	11.3 Types of Network Analysis�������������������������������������
	11.3.1 Routing���������������������
	11.3.2 Closest Facility������������������������������
	11.3.3 Service Areas���������������������������
	11.3.4 OD Cost Matrix����������������������������
	11.3.5 Vehicle Routing Problem�������������������������������������
	11.3.6 Location-Allocation���������������������������������

	11.4 Hands-On Experience with ArcGIS���
	11.5 Chapter Summary���������������������������
	Problems���������������

	12. Surface Data Algorithms����������������������������������
	12.1 3D Surface and Data Model�������������������������������������
	12.1.1 Surface Data��������������������������
	12.1.2 Surface Data Model��������������������������������
	12.1.2.1 Discrete Data�����������������������������
	12.1.2.2 Continuous Data�������������������������������

	12.2 Create Surface Model Data�������������������������������������
	12.2.1 Create Grid Surface Model���������������������������������������
	12.2.2 Creating TIN Surface Model��
	12.2.3 Conversion between TIN and Raster Surface Models��

	12.3 Surface Data Analysis���������������������������������
	12.3.1 Elevation�����������������������
	12.3.2 Slope�������������������
	12.3.3 Aspect��������������������
	12.3.4 Hydrologic Analysis���������������������������������

	12.4 Hands-On Experience with ArcGIS���
	12.4.1 Hands-On Practice 12.1: Conversion among DEM, TIN, and Contours���
	12.4.2 Hands-On Practice 12.2: Generate Slope and Aspect���
	12.4.3 Hands-On Practice 12.3: Flow Direction��

	12.5 Chapter Summary���������������������������
	Problems���������������

	Section IV: Advanced Topics����������������������������������
	13. Performance-Improving Techniques���
	13.1 Problems��������������������
	13.2 Disk Access and Memory Management���
	13.2.1 File Management�����������������������������
	13.2.2 Comprehensive Consideration���

	13.3 Parallel Processing and Multithreading��
	13.3.1 Sequential and Concurrent Execution���
	13.3.2 Multithreading����������������������������
	13.3.3 Load Multiple Shapefiles Concurrently Using Multithreading��
	13.3.4 Parallel Processing and Cluster, Grid, and Cloud Computing��

	13.4 Relationship Calculation and Spatial Index��
	13.4.1 Bounding Box in GIS���������������������������������
	13.4.2 Spatial Index���������������������������

	13.5 Hands-On Experience with Mini-GIS���
	13.5.1 Data Loading with RAM as File Buffer��
	13.5.2 Data Loading with Multithreading��
	13.5.3 Bounding Box Checking to Speed Up Intersection��
	13.5.4 Line Intersection Using R-Tree Index��

	13.6 Chapter Summary���������������������������
	Problems���������������

	14. Advanced Topics��������������������������
	14.1 Spatial Data Structure����������������������������������
	14.1.1 Raster Data Structure in NetCDF/HDF���
	14.1.2 Application of NetCDF/HDF on Climate Study��

	14.2 GIS Algorithms and Modeling���������������������������������������
	14.2.1 Data������������������
	14.2.2 Density Analysis������������������������������
	14.2.3 Regression Analysis (OLS and GWR)���

	14.3 Distributed GIS���������������������������
	14.3.1 System Architecture���������������������������������
	14.3.2 User Interface����������������������������

	14.4 Spatiotemporal Thinking and Computing���
	14.4.1 Problem: Dust Simulation and Computing Challenges���
	14.4.2 Methodology 1: Utilizing High-Performance Computing to Support Dust Simulation��
	14.4.3 Methodology 2: Utilizing Spatiotemporal Thinking to Optimize High-Performance Computing���
	14.4.3.1 Dust Storms’ Clustered Characteristics: Scheduling Methods��
	14.4.3.2 Dust Storms’ Space–Time Continuity: Decomposition Method��
	14.4.3.3 Dust Storm Events Are Isolated: Nested Model��
	14.4.4 Methodology 3: Utilizing Cloud Computing to Support Dust Storm Forecasting��

	14.5 Chapter Summary���������������������������
	Problems���������������

	References�����������������
	Index������������

