

Spatial Data Modelling for 3D GIS

Alias Abdul-Rahman · Morakot Pilouk

Spatial Data Modelling
for 3D GIS

ABC

Library of Congress Control Number:

ISBN 978-3-540-74166-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and Integra, India

Printed on acid-free paper SPIN: 12038497

2007932286

Dr. Alias Abdul-Rahman Dr. Morakot Pilouk
ESRI
380 New York Street
Redlands 92373-8100
USA
mpilouk@esri.com

Cover design: deblik, Berlin

5 4 3 2 1

Department of Geoinformatics
Faculty of Geoinformation
Science and Engineering
Skudai 81310
Johor
Malaysia
alias@fksg.utm.my

Preface

This book is based on research works done by the authors at the University
of Glasgow, Scotland, United Kingdom and the International Institute for
GeoInformation Science and Earth Observation (ITC), The Netherlands in
2000 and 1996 respectively. We were motivated to write the book when
we began a joint research work in 1992 for our postgraduate theses on Dig-
ital Terrain Modelling (DTM) data structuring and eventually DTM soft-
ware development based on triangular irregular network (TIN) data struc-
ture. We realized then that many aspects needed to be addressed especially
if an advanced geo information system (GIS) such as 3D GIS system was
to be realized. Research in 3D GIS is getting growing in interest and this
has really motivated us to do more experiments in the 3D domain. One of
the most current interesting issues is spatial data modelling for 3D GIS.

We would like to thank our former supervisors, Dr Jane Drummond of
University of Glasgow and Dr Klaus Tempfli of ITC. Various helps re-
ceived from friends and colleagues at both institutions are also acknowl-
edged. Special thanks go to Mohamad Hasif Nasaruddin, a postgraduate
student at the Dept of Geoinformatics, Faculty of Geoinformation Science
and Engineering, Universiti Teknologi Malaysia (UTM), Johor, Malaysia
for his patient in formatting the manuscript.

This book aims to introduce a framework for spatial data modelling for
3D GIS and it is specifically written for GIS postgraduate level courses.
Postgraduate students, researchers, and professionals in Geo Information
(GI) science community may find this book useful and it may provide
some insights in various spatial data modeling problems. We hope that this
book will serve as one of the useful resources in 3D GIS or 3D geoinfor-
mation research.

Alias Abdul-Rahman (UTM, Johor, Malaysia)
Morakot Pilouk (ESRI, Redlands, CA, USA)

2007

Contents

Chapter 1 Introduction 1

 1.1 Why Does 3D GIS Matter? 1
 1.2 The Needs for 3D GIS 3
 1.3 The Need for 3D Spatial Data Modeling 7
 1.4 Problems Associated with Spatial Modelling
 for 3D GIS 9
 1.5 Previous Work 10
 1.6 Background to the 3D GIS Problem 13

Chapter 2 An Overview of 3D GIS Development 15

 2.1 GIS Functions 15
 2.2 3D GIS 16
 2.3 Recent Progress Made on 3D GIS 17
 2.4 Commercially Available Systems and 3D GIS 18
 2.4.1 ArcView 3D Analyst 18
 2.4.2 Imagine VirtualGIS 19
 2.4.3 GeoMedia Terrain 20
 2.4.4 PAMAP GIS Topographer 21
 2.5 Why is 3D GIS Difficult to Realise? 22
 2.6 Discussion 23

Chapter 3 2D and 3D Spatial Data Representations 25

 3.1 Introduction 25
 3.2 Classes of Object Representations 26
 3.2.1 Grid 26
 3.2.2 Shape Model 27
 3.2.3 Facet Model 28
 3.2.4 Boundary Representation (B-rep) 30
 3.2.5 3D Array 32
 3.2.6 Octree 33
 3.2.7 Constructive Solid Geometry (CSG) 34
 3.2.8 3D TIN (Tetrahedral network, TEN) 35
 3.3 GIS Applicability of the Representations 37
 3.4 The Selection Criteria 38
 3.4.1 Representation of Object Primitives 38

 3.4.2 Topology of Spatial Objects:
 Simplexes and Complexes 40

 3.5 Vector and Raster Representations 41
 3.6 Summary 42

Chapter 4 The Fundamentals of Geo-Spatial Modelling 43
 4.1 Spatial Data 44
 4.2 Spatial Data Modeling 44
 4.3 Models and Their Importance for Geoinformation 45
 4.4 Components of Geo-spatial Model 47
 4.5 Phases in Geo-spatial Modeling 48
 4.6 Conceptual Design of a Geo-spatial Model 50
 4.6.1 Definition of Space 51
 4.6.2 Abstraction of Space 52
 4.6.3 Abstraction of Real World Object 53
 4.6.4 Object and Spatial Extent 57
 4.6.5 Spatial Relations 57
 4.6.6 Application of Spatial Relations 62
 4.6.7 Representation of Spatial Objects
 and Relationships 65
 4.6.8 Spatial Data Models in GIS 73
 4.7 Logical Design of Geo-spatial Model 78
 4.7.1 Relational Approach 79
 4.7.2 Object-oriented Approach 81
 4.8 Summary 85

Chapter 5 The Conceptual Design 87

 5.1 TIN-based (2.5D) Data Model 87
 5.2 Properties of the TIN-based Data Model 90
 5.3 TEN-based Data Model 94
 5.4 Generalized n-dimensional Integrated Data Model 97
 5.4.1 The Definitions 98
 5.5 Single-theme and Multi-theme 101
 5.6 Euler’s Characteristics 102
 5.6.1 Euler’s Equality 103
 5.6.2 The Generalized Euler Equality 104
 5.7 Discussion 107

VIII CONTENTS

Chapter 6 The Logical Design 109

 6.1 Relational Approach 109
 6.1.1 Relational Data Structure for
 TIN-based Model 110
 6.1.2 Relational Data Structure for a
 TEN-based Model 112
 6.1.3 Relational Data Structure
 for an n-dimensional Data Model 115
 6.2 Object-oriented Approach 116
 6.2.1 Object-oriented Definition of a
 Spatial Object 117
 6.2.2 Object-oriented Design Based on IDM 118
 6.2.3 Specialization of Classes 120
 6.2.4 Aggregation of Objects 125
 6.2.5 Creation of Objects 126
 6.2.6 Behaviour of Objects in the Database 128
 6.2.7 Comparison with Other OO Approaches 129
 6.3 Discussion 130

Chapter 7 Object-Orientation of TIN Spatial Data 133

 7.1 Introduction 133
 7.2 Object-oriented Concepts 133
 7.2.1 The Abstraction Mechanisms 134
 7.2.2 The Programming Language 136
 7.3 Object-oriented TIN Tessellations 136
 7.3.1 Classes for 2D TIN Tessellations 136
 7.3.2 Classes for 3D TIN Tessellations 140
 7.4 Object-oriented Spatial Data Modelling 140
 7.4.1 The Classes Schema 140
 7.5 Object-oriented TIN Spatial Database
 Development 146
 7.5.1 The POET OO DBMS 146
 7.5.2 The POET Database Schema 147
 7.5.3 The POET Database Browser 148
 7.5.4 POET Database Query 148
 7.6 Object-oriented TIN-based Subsystems
 for GIS 149
 7.7 Summary 150

CONTENTS IX

S

TIN S

Chapter 8 The Supporting Algorithms 153

 8.1 Introduction 153
 8.2 Distance Transformation 153
 8.3 Voronoi Tessellations 158
 8.4 Triangulations (TINs) 163
 8.4.1 TIN Topological Data Structuring 168
 8.5 Visualization 170
 8.6 3D Distance Transformation 171
 8.7 3D Voronoi Tessellation 176
 8.8 Tetrahedron Network (TEN) Generation 181
 8.9 Constrained Triangulations 183
 8.9.1 The Line Rasterization 183
 8.9.2 The Construction of the
 Constrained TINs 185
 8.10 Contouring Algorithm 190
 8.10.1 Data Structures for Contouring 190
 8.10.2 The Algorithm 192
 8.10.3 The Contour Visualization 195
 8.11 Algorithms for Irregular Network Formation 196
 8.12 Summary 204

Chapter 9 Applications of the Model 207

 9.1 Integration of Terrain Relief and
 Terrain Features 207
 9.2 Creating an Integrated Database 209
 9.3 A Spatial Query Example 212
 9.4 Integrating with 3D Features 214
 9.5 Integrating with Geo-scientific Data 219
 9.6 Spatial Operators 221
 9.7 Graphic Visualization 223
 9.7.1 Wireframe Graphics 224
 9.7.2 Hidden Line and Surface Removal 225
 9.7.3 Surface Shading and Illumination 226
 9.7.4 Texture Mapping 227
 9.8 Virtual Reality 230
 9.9 Discussion 230

X CONTENTS

Chapter 10 The Web and 3D GIS 233

 10.1 Introduction 233
 10.2 Web 3D GIS 234
 10.3 Management of 3D Spatial Data 238
 10.4 GUI for 3D Visualization and Editing
 on the Web 240
 10.5 Current and Possible Approaches in
 Urban Planning 248
 10.6 Realized Browser-based Solutions 249
 10.7 Stand-alone Solutions/Toolkits/Front-ends 254
 10.8 Summary 255

Chapter 11 Conclusion and Further Outlook 257

 11.1 Summary 257
 11.2 Further Research 264

References and Bibliography 267

Index 287

CONTENTS X I

Chapter 1 INTRODUCTION

1.1 Why does 3D GIS Matter?

Next generation of Geo Information System (GIS) requires a new way of
spatial data modelling. We call the next generation of GIS 3D GIS. Fun-
damentally, a new digital model has to be developed or established. Ex-
ploiting digital computing technology to improve the quality of life, or to
prevent or mitigate hazards or disasters, would first require the construc-
tion of a model in digital form of the part of the earth and its environment.
Such a model, a simplified description of complex reality, can conven-
iently be used, stored, managed, maintained, distributed, and transported.
Even a complex model may be stored on a small scale, in diskettes, tape
cartridge or CD ROM, or transmitted via communication networks. A
digital model contains spatial and non spatial aspects of reality and pro-
vides a basis for operation and communication among the interested par-
ties. A model distinguishes objects an object, or a set of objects, com-
prises the elements of reality under investigation. Spatial aspects are those
related to shape, size and location that pertain to geometric properties. Non
spatial aspects include name, colour, function, price, ownership, and so
forth, often referred to as thematic properties. Spatial aspects of reality can
be well and economically represented in the form of graphics, whereas non
spatial aspects, in many cases, can better be represented in text. Graphic
representation facilitates rapid understanding of the situation in reality,
permitting high level abstraction or description about neighbouring rela-
tionships, while the textual representation is more suitable for aspects that
cannot be graphically described. A digital model must be capable of relat-
ing these two representations. Creating such a model as an artificial con-
struction of reality in a computing environment requires a tool set exploit-
ing the technology both of computer graphics (CG) (Sutherland, 1963,
1970; Foley et al., 1992; Watt, 1993) and database management (DBMS).
Geographic information systems (Burrough, 1986; Maguire et al., 1991),
and computer aided design (CAD) are examples of such tools. The essen-
tial difference between GIS and CAD is the handling of the spatial aspects
rather than the non spatial aspects.

Geographical Information Systems (GISs) represent a powerful tool for
capturing, storing, manipulating, and analysing geographic data. This tool
is being used by various geo-related professionals, such as surveyors, car-
tographers, photogrammetrists, civil engineers, physical planners (urban
and rural), rural and urban developers, geologists, etc. They use the tool

2 Chapter 1

for analysing, interpreting, and representing the real world and understand-
ing the behaviour of the spatial phenomena under their respective jurisdic-
tions. Almost all of the systems used by the geoinformation community to
date are based on two-dimensional (2D) or two-and a half-dimensional
(2.5D) spatial data. In other words, one may find difficulty processing and
manipulating spatial data of greater dimension than 2 in the existing sys-
tems, resulting in inaccurate or at least very incomplete information. Fur-
thermore, manipulating and representing real world objects in 2D GIS with
relational databases are no longer adequate because new applications de-
mand and increasingly deal with more complex hierarchical spatial data
than previously supported by the relational model. It has been suggested
in the literature that the abstraction of complex spatial data could be han-
dled more effectively in object-oriented rather than in relational database
environment (Egenhofer and Frank, 1989; Worboys, 1995).

The limitations of the current 2D GISs, especially in geoscience, have been
reported in the literature by Jones (1989), Raper and Kelk (1991), Rongxing
Li (1994), Houlding (1994), Bonham-Carter (1996), and Wei Guo
(1996). The limitations mentioned relate to data dimensionality and data
structures. Single valued z-coordinate data such as a point (x, y coordi-
nates) with the z-coordinate representing height presents no data handling
difficulty in such systems, but it is inadequate for data with multiple z-
values (Bonham-Carter, 1996; Raper and Kelk, 1991) such as ore bodies
and other important three-dimensional real world entities. A major im-
pediment to establishing 3D GISs is associated with inappropriate spatial
data structures, as reported in Jones (1989) and Rongxing Li (1994).
These two authors have proposed voxel data structures for 3D data as a so-
lution to the data structuring problem, but no real operational system was
developed based on the structure. The problem was also highlighted in the
geological field by Houlding (1994). True representations and spatial in-
formation, for example sub-surface 3D objects, could not be successfully
achieved with 2D systems. 3D visualisation tools alone (for example Ad-
vanced Visualization System (AVS), Voxel Analyst of Intergraph, and
other Digital Terrain Model (DTM) packages) were not able to truly man-
age such data as demanded. For example Wei Guo (1996) experimented
with the 3D modelling of buildings by using Molenaar’s (1992) formal
data structure in the relational database environment together with Auto-
Cad as a 3D visualization tool; AutoCad was used to generate the building
models. In the literature, a common suggestion has been that the existing
GISs were able to handle most of the 2D spatial data, but had difficulty in
handling 3D spatial data and beyond, therefore, an extension of the existing

INTRODUCTION 3

systems to at least a third-dimension (3D) is one of the solutions suggested
by GIS researchers.

Another observation is that the literature cites no work on three-
dimensional GIS coupled with object-oriented technology. Given that the
weakness of conventional off-the-shelf 2D or 2.5D GISs are revealed when
three-dimensional real world entities are considered, it is understood that
object-orientation and three-dimensionality are not more often jointly con-
sidered. Some works have focussed on 3D issues such as work reported in
Fritsch and Schmidt, 1995; Kraus, 1995; and Fritsch, 1996. But all of
these attempts were based on the relational database environment. There-
fore, this research monograph looks at both 2D and 3D spatial data model-
ling and the development of a geoinformation system using relational and
object-oriented technology to attempt to solve 3D problems in the GIS en-
vironment.

1.2 The Need for 3D GIS

We live in a three dimensional (3D) world. Earth scientists and engineers
have long sought graphic expressions of their understanding about 3D spa-
tial aspects of reality in the form of sketches and drawings. Graphical de-
scriptions of 3D reality are not new. Drawings in perspective view date
from the Renaissance period (Devlin, 1994). 3D descriptions of reality in
perspective view change with the viewing position, so their creation is
quite tedious. Traditional maps overcome this problem by using orthogo-
nal projections of the earth. However, they offer a very limited 3D impres-
sion.

These traditional drawings and maps reduce the spatial description of 3D
objects to 2D. Using computing technology, however, knowledge about
reality can be directly transferred into a 3D digital model by a process
known as 3D modelling. A 3D description of reality is independent of the
viewing position. Adequate cover of the aspects of reality under investiga-
tion requires its understanding from many different viewpoints. The disci-
plines of geology (Carlson, 1987; Bak and Mill, 1989; Jones, 1989;
Youngman, 1989; Raper and Kelk, 1991), hydrology (Turner, 1989), civil
engineering (Petrie and Kennie, 1990), environmental engineering (Smith
and Paradis, 1989), landscape architecture (Batten, 1989), archeology, me-
teorology (Slingerland and Keen, 1990), mineral exploration (Sides 1992),
3D urban mapping (Shibasaki et al., 1990; Shibasaki and Shaobo, 1992),
all draw on 3D modelling for the efficient completion of their tasks.

4 Chapter 1

A 3D model is the basis of a system providing the functionality to accom-
plish the task in hand. Scott (1994) has summarized the work of Bak and
Mill (1989), Fisher (1993), Kavouras and Masry (1987), Raper (1989),
Raper and Kelk (1991), and Turner (1989), to provide a set of functions
that can be expected from 3D modelling. These studies should provide the
means for constructing a 3D model from disparate inputs; permit the main-
tenance of existing models; facilitate effective 3D visualization with, for
example, orthographic, perspective or stereo display with hidden
line/surface removal, surface illumination, texture mapping; spatial analy-
ses enabling the calculation of volume, surface area, centre of mass, opti-
mal path as well as spatial and non spatial search and inquiry.

CAD is a typical CG tool for 3D modelling used in car, machinery, aircraft
and spacecraft designs, the construction industry, and architecture. CAD
focuses on the geometric aspect of the model and its 3D visualization. An
example would be a perspective view with hidden line and surface re-
moval, surface illumination, ray tracing, and texture mapping. The ques-
tion arises whether CAD can support all the tasks required in the disci-
plines listed above. Attempts have been made to use CAD for tasks in
earth sciences requiring 3D modelling and functionality. However, it can-
not immediately be assumed that CAD is suited to these tasks, for the fol-
lowing reasons.

 CAD was developed to solve problems in the design of man made ob-
jects with well or predefined shapes, sizes, spatial relationships and
thematic properties. CAD does not provide the tools for data structur-
ing, or dealing with objects lacking such well-defined shapes, sizes,
spatial relationships and thematic properties. Neither is it capable of
analysing spatial relationships, nor coping with the disparate data sets
and uncertainty typically encountered in GIS. For example, CAD will
not reliably maintain the neighbourhood relationships between objects
important in earth science analyses, because these relationships may
not be considered significant in the design.

 Designing an object, such as a building, is a subjective matter. All as-
pects of objects and their relationships have to be decided by a human
designer; there is little that can be automated. Earth science applica-
tions seek to model existing objects, with shapes, sizes and interrela-
tionships outside human control. Here, automation is desirable because
of the large number of objects involved. Some relationships important
for spatial analysis have to be created automatically. CAD does not
usually provide a function for this kind of automation.

INTRODUCTION 5

 CAD starts the object definition from 3D. When objects are broken
down in 2D components, the relationships between them are known.
Earth science applications typically model components of reality sepa-
rately, mostly in 2D, and are dominated by the application view, avail-
able tools and information. The components have to be combined and
their interrelationships discovered at a later stage. This is quite diffi-
cult, since CAD does not usually provide sufficient tools to derive the
relationships between the separate components.

 CAD creates a complex object by combining several components pos-
sessing such simple geometry as a cube, cylinder, or sphere. The op-
erations of transformation, union, and intersection can be readily ap-
plied to such components to obtain the complex object. Earth science
applications usually treat a complex object as a whole. Decomposition
into primitives is comparable to reverse engineering, the opposite of
CAD. The modelling approach used by CAD may not therefore always
be suitable for earth science applications. Geometric primitives of an
even lower level, such as points and lines, are needed to represent
complex reality beyond man made objects.

These geometric primitives also determine the related operations which
CAD may not be capable of providing.

A more suitable tool for earth science applications would be a GIS provid-
ing a 3D modelling capability, that is to say, a 3D GIS. At the time of writ-
ing, a GIS capable of providing the functions listed above list with full 3D
modelling capability is not commer-
cially available. Most GISs still limit
their geometric modelling capability
to 2D so that the 3D representation,
analysis and visualization provided
by CAD are not possible. Most en-
deavours to model the third dimen-
sion can be found in the representa-
tion of terrain relief and in digital
terrain models (DTM). DTM can fa-
cilitate spatial analyses related to re-
lief, including slope, aspect, height
zone, visibility, cut and fill volume,
and surface area, and the 3D visuali-
zation of a surface, as in a perspective
view. However, the basis of DTM is
a continuous surface with a single height value for every planimetric

(a)

(b)

(c)

Fig. 1.1 Single-valued surface (a), 3D
solid object (b) and multi-valued sur-
face (c).

6 Chapter 1

location (see Figure 1.1a). DTM cannot accommodate a 3D (solid) object,
or a surface with multiple height values at a given planimetric location (see
Figure 1.1b and Figure 1.1c, respectively).

Although raster-based systems which could be regarded as 3D GISs are
available, they may not be able to maintain the knowledge about reality
available in the original data set. This knowledge may be lost because of
problems in resolution and resampling. As a remedy, the original data set
would have to be stored separately from the model, for example, for:
• recreating the model if the result proves to be unsatisfactory because of

unsuitable mathematical definition
• creating another model with different resolution
• merging with another data set to create a new model
• archiving as a reference to, or evidence of, the model.

These activities imply the need to store original data in an appropriate
structure ready for future use. Necessary information about the data should
be attached to each data element. In DTM for instance, information that a
line is a breakline should be kept because it will have an impact on the in-
terpolation. Similarly, other information can be attached which influences
data handling strategies.

Since neither CAD nor GISs can at present fulfil the requirements of earth
science applications, further research and development of a 3D GIS would
seem appropriate.

Who needs 3D GIS?

As in the popular 2D GIS for 2D spatial data, 3D GIS is for managing 3D
spatial data. Raper and Kelk (1991), Rongxing Li (1994), Förstner (1995),
and Bonham-Carter (1996) present some of the three dimensional applica-
tion areas in GIS, including:

• ecological studies
• environmental monitoring
• geological analysis
• civil engineering
• mining exploration
• oceanography
• architecture
• automatic vehicle navigation
• archaeology

INTRODUCTION 7

Objects with known or
well-defined spatial ex-
tent, location and prop-
erties

Objects with unknown
or not well-defined spa-
tial extent, location and
properties

Fig. 1.2 Two types of real world
objects with respect to their spatial
extent.

• 3D urban mapping
• landscape planning
• defence and intelligence
• command and control

The above applications may pro-
duce much more useful information
if they were handled in a 3D spatial
system, but 3D spatial objects on
the surface and subsurface appear to
demand more complex solutions
(e.g. in terms of modelling, analysis,
and visualization) than the existing
systems can offer.

1.3 The Need for 3D Spatial
Data Modelling

In addition to the problem of creating a system capable of offering 3D
modelling and functionality, there is a further problem concerning the type
of 3D model chosen as the basis for 3D GIS. The model contains knowl-
edge about reality, so we consider below the types of real world objects it
must represent. Two kinds of real world objects may be differentiated in
terms of prior knowledge about their shapes and location, as shown in Fig-
ure 1.2. In reality, objects from the two categories coexist. Traditional GIS
models the objects of each category independently with the result that two
separate kinds of systems or subsystems have been developed.

Raper (1989) has also defined these two categories of objects. The first
category, regarded as ‘sampling limited’, is for objects having discrete
properties and readily determined boundaries, such as buildings, roads,
bridges, land parcels, fault blocks, perched aquifers. The second category,
known as ‘definition limited’, is for objects having various properties that
can be defined by means of classification, using property ranges. For ex-
ample, soil strata may be classified by grain-size distribution; moisture
content, colloid or pollutant in the water by percentage ranges; carbon
monoxide in the air by concentration ranges, and so forth. Molenaar
(1994a) regards these objects as ‘fuzzy spatial objects’.

Separate modelling of these two categories of objects tends to contradict
the reality, which leads to difficulties in representing their relationships.
Such a question as, ‘how many of the people working in a 50-storey office

8 Chapter 1

building are affected by polluted air generated by vehicles in nearby streets
during rush hours?’ cannot be answered until the two separate models are
combined, as shown in Figure
1.3. Modelling them together
with more accurate represen-
tation of their relationships in
the 3D environment requires
the integrated 3D modelling.

Note also that the properties
of an object may be well de-
fined in some specific dimen-
sions and ill defined in others.
For example, given a DTM
data set representing a sur-
face, the planimetric extent of
regions at the elevation of 100
metres above mean sea level
cannot be defined until the re-
sult of interpolation based on a mathematical definition (for example, lin-
ear interpolation) is obtained. That is to say, although the spatial extent of
this region may be known in the z-dimension, the spatial extent in plani-
metry (x, y) has still to be discovered. The model must contain the aspect
allowing the appropriate operation, such as interpolation or classification,
if the required description of the properties of an object is to be obtained.

Apart from the problem of the separate modelling of the two types of ob-
jects, there remains the further problem of the separate modelling of an ob-
ject’s components. These components are relief and planar geometry asso-
ciated with thematic properties. This separation has resulted in
independent systems and data structures, DTM and 2D GIS, respectively.
The consequences are data redundancy, which may lead to uncertainty
when the two data sets are combined and only one data set has been up-
dated.

DTM can facilitate several GIS analyses and visualization taking into ac-
counts the third dimension. The spatial information stored in DTM and in
GIS, however, can only be related through coordinates. This implies that
relationships between different components may not be properly repre-
sented because of metric computation instead of topology. To overcome
this, information derived from DTM must be converted into a form GIS
can recognize. For example, information about a slope or height zone must
first be converted into a thematic layer of GIS for further overlaying before

Fig. 1.3 An example of two types of real
world objects

INTRODUCTION 9

the spatial analysis can be carried out. Imagine having information about
the relief, planimetry and themes integrated into one model, so that con-
version of such information as slope, height zone and so forth were no
longer necessary. Such a question as, ‘which land parcels are subject to
one-metre flooding?’ could be answered from one model. Integrated mod-
elling of this kind is evidently also required for 3D GIS.

1.4 Problems Associated with Spatial Modelling

Establishing a 3D GIS while taking into account the integration of the nec-
essary components and different types of objects requires the solution of
the following problems related to the spatial model representing reality:

1) Design of a spatial model
• design of an integrated data model, or a scheme, permitting the deri-

vation of a unified data structure capable of maintaining all the com-
ponents of the geometric representation of real world objects, whether
obtained from direct measurements or from derivations, in the same
database. Each geometric component must be capable of representing
a real world object differently understood by different people.

2) Construction of a spatial model
• development of appropriate means and methods for 3D data acquisi-

tion;
• coordinate transformation into common georeferencing when differ-

ent components are to be included into one database;
• development of a data structuring method that unites the data from

various inputs of multi sources into an integrated database capable of
being maintained by a single database management system;

• design of thematic classes to organize representation of real world ob-
jects with common aspects into the same category;

• solving the uncertainty arising from discrepancies from different data
sets during the integration process and converting the uncertainty into
a ‘data quality’ statement to be conveyed to the end user.

3) Utilization of a spatial model
• utilization of existing components, such as 2D data and DTM (back-

ward compatibility) and preparation of those components for future
incorporation into the higher-dimension model (forward compatibil-
ity) to save the costs of repeating data acquisition.

for 3D GIS

10 Chapter 1

• development of additional spatial operators and spatial analysis func-
tions;

• development of maneuverable graphic visualization permitting the se-
lection of appropriate viewpoints and representation enabling conven-
ient, adequate uncovering of the details of objects stored in the data-
base;

• design of 3D cartographic presentation of information, including
name placement, symbol, generalization, etc.;

• design of a user interface and query language allowing users access to
the integrated database;

• development of a spatial indexing structure that speeds up data re-
trieval and storage processes for the integrated database, including
specific (database) views for each user group and guidelines keeping
these views updated according to the core database;

• development of tools for navigating among different models stored in
databases at different sites and computing platforms.

4) Maintenance of spatial model
• design of updating procedures, including the development of consis-

tency rules ensuring the logical consistency and integrity of the inte-
grated database, especially during the updating process.

1.5 Previous Work

The status and progress of research in the 3D GIS field within the scope of
this monograph and the identification of solutions and remaining problems
are made clear from the following review of previous work.

The development of data models for a 3D GIS has branched in two direc-
tions. The first is the full 3D approach that looks directly into the design of
a data model suitable for 3D GIS. Molenaar (1989) proposes a formal data
structure (FDS) for a 3D vector map which may be regarded as a generali-
zation of the 2D version of FDS. Shibasaki and Shaobo (1992), Rikkers

(1994), and Wang (1994) have reported
experimental use of 3D FDS.

The second approach comes from the viewpoint referred to as the ‘integra-
tion of DTM and GIS’. DTM became a discipline in its own right in the
late 1950s (Miller and Laflamme, 1958). Fritsch (1990) has recognized the
work of Makarovic (1977) as a proposer of this integration. Males (1978)
though not addressing the integration issue, demonstrated the use of a

et al. (1993), Bric (1993), Bric et al.,

INTRODUCTION 11

triangulated irregular network (TIN) permitting the attachment of thematic
information with elements of TIN in the ADAPT system.

Further steps towards this integration date from the late 1980s, when DTM
became an essential part of many complex spatial analyses in GIS in ero-
sion and slope protection, flood protection, the planning of irrigation for
agriculture, the geometric correction of remotely sensed images, and so
forth. Würländer (1988) investigates some strategies for integrating DTM
into GIS. Sandgaard (1988) describes an attempt at integrating DTM into
the Dangraf system to facilitate the production of maps with contour lines.
Mark and colleagues (1989) report an approach to interfacing a GIS based
on quadtree (Samet 1990) with a regular grid DTM for display or analysis.
Ebner and colleagues (1990) propose the ‘subroutine interface’ which was
implemented in the program package HIFI-88. Subroutines for interactive
editing of GIS are provided for updating DTM, for example, point inser-
tion and deletion, and the change of coordinates in planimetry and height
while databases of DTM and GIS remain separate. Ebner and Eder (1992)
report drawing on this approach to the facilitation of spatial analysis, using
the HIFI-GIS interface with the SICAD-Hygris System to analyse forest
damage in terms of such relief parameters as height, slope and exposition.
Fritsch (1990) reports the realization of integration at the data structure
level. Rather than a full 3D data structure, he suggests an approach that
separates two geometric databases for terrain and situation data from an-
other for thematic data. These three data sets are managed within one ob-
ject oriented database environment. Fritsch and Pfannenstein (1992a)
weigh the advantages and disadvantages of integration based on regular-
grid, TIN and a hybrid of both. Fritsch and Pfannenstein (1992b) extend
this comparison to the layer (organizing different themes in specific layers)
and object class (organizes objects into a hierarchy) approach.

An issue in spatial modelling concerns the representation of spatial rela-
tionships. Egenhofer (1989), Jackson (1989), Kainz (1989), and Pigot
(1991) have described the representation of spatial relationships between
objects in 2D and 3D space, based on sound mathematical concepts.

Regarding the issue of model construction, CAD and most CG software
packages provide interactive tools for the manual construction of models
of objects with discernible boundaries. Manual construction is labourious
and the method would not cope with large numbers of objects. For objects
with indiscernible boundaries, significant progress has been made in com-
putational geometry based on 2D and 3D Voronoi tessellation (Voronoi
1908, Thiessen 1911, Dirichlet 1850), in the construction of TINs, and tet-
rahedral networks (TEN). Watson (1981), Avis and Bhattacharya (1983),

12 Chapter 1

Edelbrunnner and colleagues (1986), Tsai and Vonderohe (1991), Midtbø
(1993) have all suggested methods for the construction of TEN based on
Delaunay triangulation criteria (Delaunay 1934). These methods were ex-
tensively applied long ago to the construction of TIN (Shamos and Hoey
1975, Lawson 1977, Lewis and Robinson 1978, Sibson 1978, McCullagh
and Ross 1980, Lee and Schachter 1980, Bowyer 1981, Watson 1981,
Mirante and Weingarten 1982, Maus 1984, Dwyer 1987, Sloan 1987,

ver, these developments are quite
independent of GIS.

For the issue of the exploitation of the 3D model, considerable progress
has been reported in two other disciplines exploiting CG technology,
namely CAD and virtual reality (VR). CAD and VR provide a realistic
visualization capability, that is to say, perspective display with hidden line
and surface removal, shading and surface illumination, ray tracing, and
texture mapping. In addition, VR provides high interactivity within the
concept of ‘functional realism’, allowing the user to manipulate and inter-
act with virtual objects stored in the computer’s database as in reality. For
instance, the user can ‘grab’ a virtual object displayed on the computer
screen, using the interfacing device called a ‘data glove’ which sends feed-
back to the user’s hand (for example, a pulse, or vibration) as soon as the
virtual object is virtually touched. Developments in this direction are also
quite independent of GIS.

The status of the research in 3D GIS and the most relevant remaining prob-
lems can be summarized in the following statements:

• The full 3D approach, 3D FDS, does not support well the modelling
of real world objects whose boundaries cannot be directly deter-
mined. Further extension to cover this issue is therefore needed.

• Progress made by the integration approach can only achieve solutions
for surface related objects with little support from theoretical concept
of spatial modelling. Extension of this approach to full 3D based on
sound spatial mathematics is required.

• Efficient methods for data acquisition, data structuring, database crea-
tion and updating with respect to 3D GIS have yet to be developed.

• The incorporation into 3D GIS of independent developments in 3D
visualization and 3D geometric construction, whether manual (inter-
active 3D graphical editing) or automatic (3D Voronoi and tetrahedral
network), needs further research.

Macedonio and Pareschi 1991, etc.). Howe

INTRODUCTION 13

1.6 Background to the 3D GIS Problem

In geomatics or geoinformatics we consider real world objects exist in
three-dimensional (3D), thus it is desirable to have a system which is able
to store, handle, manipulate, and analyse objects in a 3D environment. As
mentioned in the previous section, the current popular GIS software han-
dles, manipulates, and analyses geographic data in 2D or 2.5D, thus using
this system to manipulate 3D data full (particularly multiple Z coordinates)
information about real world objects may not be appropriate. Therefore,
the 2D GIS (or 2.5D GIS) needs to be extended, i.e. to 3D GIS. Only
within the last decade has 3D GIS begun to be discussed in the GIS re-
search community (Raper and Kelk, 1991; Rongxing Li, 1994). The de-
velopment of this particular GIS approach seems to be relatively slow due
to the lack of proper spatial data models and data structures, and the lack
of a comprehensive theory of object relationships and data basing for the
3D environment (Wei Guo, 1996). Attempts have been made to develop
3D GIS by Li et al. (1996), Pilouk (1996) and Qingquan Li and Deren Li
(1996). Li’s use an octree approach for 3D subsurface geological model-
ling, Pilouk uses a 3D TIN approach for regular features on the terrain,
while a combination of octree/tetrahedron was proposed by Qingquan Li
and Deren Li. Others have used Constructive Solid Geometry (CSG) and
Boundary-representation (B-rep) approaches (Cambray, 1993; Cambray
and Yeh, 1994; Bric, 1993; Bric et al, 1994; and Zeitouni et al, 1995). All
of this work were based on regular shaped objects, which were man-made,
and relational data basing. Nonetheless, there appears very little published
work on the modelling of 3D objects including natural objects, e.g. forests,
plants, water bodies, and other natural subsurface features using the object-
oriented (OO) approach. Recent research (Rongxing Li, 1994 and more
recently Fritsch, 1996) in this domain have suggested that 3D spatial data
modelling, structuring and data basing with object-orientation leads to bet-
ter 3D GIS. This suggestion seems mainly arise from the complexity of
3D spatial data, as well as some positive features of object-orientation
where every physical or spatial object of the real world can be defined dur-
ing software development. It is therefore imperative to investigate the
practicality of a means to improve the representation of natural objects in
3D and to manage them in an object-oriented GIS.

Chapter 2 AN OVERVIEW OF 3D

The previous chapter has introduced the importance and some of the exist-
ing problems in 3D spatial data modelling and in developing an informa-
tion system based on 3D spatial data. In this chapter, several types of two-
dimensional (2D) GIS systems which are related to the development of 3D
GIS will be further discussed. Some well established systems which are
currently available in the market will be reviewed. Since data structures,
data modelling and database management are important aspects of system
development, all the discussions and system overview will focus on these
aspects.

2.1 GIS Functions

Any GIS system should be able to provide information about geo spatial
phenomena. Principally, the tasks or the functions of a GIS system are to:
1) capture, 2) structuring, 3) manipulation, 4) analysis, and 5) presentation
(Raper and Maguire, 1992).

• Capture. Capturing is inputting spatial data to the system. Many dif-
ferent techniques and devices are available for both geometric and at-
tribute data. The devices in frequent use for collecting spatial data can
be classified as manual, semiautomatic or automatic, and the output
either in vector or raster format. Detailed discussion on data captur-
ing is not covered here.

• Structure. Structuring is a crucial stage in creating a spatial database
using GIS. This is because it determines the range of functions which
can be used for manipulation and analysis. Different system may
have different structuring capabilities (simple or complex topology,
relational or object-oriented).

• Manipulate. Among important manipulation operations are generali-
sation and transformation. Generalisation is applied for smoothing
spatial data and it includes line smoothing, points filtering, etc.
Transformation includes among others coordinate transformation to a
specified map projection and scaling.

• Analysis is the core of a GIS system. It involves metric and topologi-
cal operations on geometric and attribute data. Primarily, analysis in

GIS DEVELOPMENT

16 Chapter 2

GIS concerns operations on more than one set of data which gener-
ates new spatial information of the data. Terrain analysis (e.g. inter-
visibility), geometric computations (volume, area, etc), overlay, buff-
ering, zoning are among typical analysis functions in GIS.

• Presentation is a final task in GIS. At this stage, all generated infor-
mation or results will be presented in the form of maps, graphs, ta-
bles, reports, etc.

Ideally, a 3D GIS should have the same functions as a 2D GIS. However,
such 3D systems are not available due to several impediments. The ensu-
ing sections will discuss the challenges in 3D GIS development.

2.2 3D GIS

In this section, some problems and related issues in 3D GIS software de-
velopment are reviewed and discussed. 3D GIS should be able to model,
represent, manage, manipulate, analyse and support decisions based upon
information associated with three-dimensional phenomena (Worboys,
1995). The definition of 3D GIS is very much the same as for 2D system.
In GIS, 2D systems are common, widely used and able to handle most of
the GIS tasks efficiently. The same kind of system, however, may not be
able to handle 3D data if more advanced 3D applications are demanded
(Raper and Kelk, 1991; Rongxing Li, 1994) such as representing the full
length, width and nature of a borehole (some examples of 3D applications
areas are listed in section 2.3). 3D GIS very much needs to generate in-
formation from such 3D data. Such a system is not just a simple extension
by another dimension (i.e. the third dimension) on to 2D GIS. Adding this
third dimension into existing 2D GIS needs a thorough investigation of
many aspects of GIS including a different concept of modelling, represen-
tations and aspects of data structuring. Existing GIS packages are widely
used and understood for handling, storing, manipulating and analysing 2D
spatial data. Their capability and performance for 2D and for 2.5D data
(that is also DTM) are generally accepted by the GIS community. A GIS
package which can handle and manipulate 2D data and DTM cannot be
considered as a 3D GIS system because DTM data is not real 3D spatial
data. The third dimension of the DTM data only provides (often after in-
terpolation) a surface attribute to features whose coordinates consist only
of planimetric data or x, y coordinates. GIS software handling real 3D
spatial data is rarely found. Although the problem has been addressed (as
mentioned in chapter one) by several researchers such as Raper and Kelk

AN OVERVIEW OF 3D GIS DEVELOPMENT 17

(1991), Cambray (1993), Rongxing Li (1994), Pilouk (1996), and Fritsch
(1996), some further aspects particularly spatial data modelling using rela-
tional and OO techniques need to be investigated. This modelling issue
will be addressed in later chapter.

2.3 Recent Progress Made on 3D GIS

Some recent research efforts by the GIS community has focussed on how
to develop 3D systems; data structures and data models are major aspects
of GIS system development. These efforts are summarised below.

Much previous work done on 3D data modelling concentrated on the use
of voxel data structures (Jones, 1989). This particular approach does not
address spatial modelling aspects (that is also topological aspect of the
data); it is only useful for the reconstruction of 3D solid objects and for
some basic geometric computations. Another problems with this data
model is that it needs very large computer space and memory.

Carlson (1987) has proposed a model called the simplicial complex. He
uses the term 0-simplex, 1-simplex, 2-simplex, and 3-simplex to denomi-
nate spatial objects of node, line, surface, and volume. His model can be
extended to n-dimensions.

Cambray (1993) has proposed CAD models for 3D objects combined with
DTM as a way to create 3D GIS, that is a combination of Constructive
Solid Geometry (CSG) and Boundary representation (B-rep).

Other attempts to develop 3D GIS can be found in Kraus (1995), Fritsch
and Schmidt (1995), and Pilouk (1996). These attempts were based on the
TIN data structure to represent 3D terrain objects but no report exists on
any related aspects of using OO techniques for modelling and data struc-
ture.

Data modelling and structuring of 3D spatial objects in GIS has not been
as successfully achieved as in CAD (Li, 1994). Data modelling in GIS is
not only concerned with the geometric and attribute aspects of the data, but
also the topological relationships of the data. The topology of spatial data
must be available so that the neighbouring and connectedness between ob-
jects can be determined. There are a number of mathematical possibilities
for the determination of the topological description of objects. The infor-
mation gained from the generated TIN neighbours is useful for further spa-
tial analysis and applications. Topological relationships for linear objects
as represented by TIN edges can be established. One edge is represented

18 Chapter 2

by a start node and an end node. From this edge topology, a chain of
edges or arcs could be easily established. For TIN data, another approach
is the simplicial complex developed by Carlson. A TIN’s node is equiva-
lent to 0-simplex, TIN’s edge is equivalent to 1-simplex, a TIN surface
(area) is equal to 2-simplex, and 3-simplex is equivalent to a 3D TIN (tet-
rahedron). The simplicial complex technique checks the consistency of
generated TIN structures by Euler’s equality formulae (see Carlson (1987)
for a detailed discussion). An OO TIN approach is described in later

2.4 Commercially Available Systems and 3D GIS

There are few systems available in the market which can be categorised as
a system which attempts to provide a solution for 3D representation and
analysis. Four systems are chosen for detailed consideration. They were
chosen because they constitute a large share of the GIS market and provide
some 3D data processing functions. The systems are the 3D Analyst of
ArcView (from Environmental System Research Institute or ESRI Inc.),
Imagine VirtualGIS (from ERDAS Inc.), GeoMedia Terrain from Inter-
graph Inc. and PAMAP GIS Topographer. The following review is based
on the available literature and Web-based product reviews.

2.4.1 ArcView 3D Analyst

The 3D Analyst (3DA) is one of the modules available in ArcView GIS.
In ArcView these modules are known as extensions. The system’s exten-
sions and the main GIS module, that is the ArcView itself, is shown in
Figure 2.1. ArcView is designed to provide stand alone and corporate
wide (using client-server network connectivity) integration of spatial data
(Maguire, 1999). The 3DA can be used to manipulate 3D data such as 3D
surface generation, volume computation, draping for other raster images
(such Landsat TM, SPOT, GeoSPOTV images, aerial photos or scanned
maps), and other 3D surface analysis functions such as terrain intervisibil-
ity from one point to another (ESRI, 1997).

chapter.

AN OVERVIEW OF 3D GIS DEVELOPMENT 19

Fig. 2.1 The 3D Analyst (shown on top of the extension’s box) within ArcView
system

The system runs mainly on personal computers and accepts several operat-
ing system such Windows 95/98/2000 and Windows NT 4.0 as well as
wide range of UNIX platforms (ESRI, 2000). The system works mainly
with vector data. Even though raster files can be incorporated into 3DA, it
is only for improving the display of vector data (e.g. by draping vector data
with aerial photo images). (Raster files are and considerably for aspect of
2-D spatial data analysis.)

In summary, 3DA can be used to manipulate 3D data especially for visu-
alization purposes. Thus, ArcView is very much a 2D GIS system, but
3DA supplies 3D visualization and display (e.g. of data with x, y, z coor-
dinates). 3D GIS analysis is not achieved. It is worth noting, however,
that 3DA supports triangular irregular network (TIN) data structure.

2.4.2 Imagine VirtualGIS

The Imagine system was originally developed for remote sensing and im-
age processing tasks. Recently, the system has provided a module for GIS.
The Imagine system is one of the GIS solutions developed by ERDAS Inc

ArcView

Spatial
database

GIS
Functions

Extensions

3D Analyst

Spat ial Analyst

User Interface

Image Analysis

Tracking Analyst

Internet Map Server

Business Analyst

Network Analyst

Street Map

Street Map 2000

ArcPress

Windows OS UNIX OS

Core system

20 Chapter 2

(ERDAS, 2000). The GIS module is called VirtualGIS. It is a module that
provides a three-dimensional visual analysis tools. The system has run
under various computer systems ranging from personal computers to
workstations such as DEC computers, IBM personal computers, Hewlett
Packard, Sun Sparc and IBM RISC machines. Currently, the system
works with operating systems such as Windows98/2000, Windows NT and
various UNIX systems. It is a system which has an emphasis on dynamic
visualisation and real-time display in the 3D display environment. Besides
various and extensive 3-D visualizations, the system also provides fly-
through capabilities (Limp, 1999). Figure 2.2 shows the system overview
of the VirtualGIS with its core Imagine system.

Fig. 2.2 The VirtualGIS component (shown on top of the Add-on module’s box)
in the Imagine system architecture.

As with 3DA, this system also centres around 3D visualization with true
3D GIS functions hardly available.

2.4.3 GeoMedia Terrain

GeoMedia Terrain is one of the subsystems that work under the Geo-
Media GIS system developed by Integraph Inc. The system runs under
the Windows operating systems (including NT 4.0 system). The Terrain

Spatial
Database

IMAGINE

Image

Processing

 VirtualGIS

User Interface

Developer
Tool Kit

SubPixel
Classifier

Vector

NITF

ATCOR2

Add-on Module

Core system

DEC OS Windows IBM RISC SGI OS SUN OSOS

AN OVERVIEW OF 3D GIS DEVELOPMENT 21

system performs three major terrain tasks, namely, terrain analysis, terrain
model generations, and fly-through (Integraph, 2000). In general, the Ter-
rain serves as DTM module for the GeoMedia GIS as with other systems
mentioned in the previous sections where true 3D GIS capabilities are
hardly offered by software vendors. Figure 2.3 shows the Terrain subsys-
tem within the GeoMedia core system.

Fig. 2.3 The Terrain component within the GeoMedia system

2.4.4 PAMAP GIS Topographer

This GIS system is one of PCI Geomatics Inc.’s products. It runs under
Windows95/98 and NT operating systems. PAMAP GIS is a raster and
vector system (Geomatics, 2000). Besides its 2D GIS functions, the sys-
tem has a module for handling 3D data, called Topographer as depicted in
Figure 2.4. Four main GIS modules are offered, they are Mapper, Model-
ler, Networker and Analyser which form the core system. For 2D data
handling, the system performs GIS tasks as in other systems mentioned
earlier. For 3D data, most of the 3D functions in the Topographer work as
by any DTM packages, for example terrain surface generation, terrain sur-
faces analysis (e.g. calculation of area, volume) and 3D visualisation (such
as perspective viewing). This system also focuses on 3D display of terrain
data.

Spatial
Database

User Interface

Add-on Module

Core system

Windows NT OSOS

GeoMediaGIS

Functions

Spatial
Database

Terrain

22 Chapter 2

Fig. 2.4 The Topographer within the PAMAP GIS system

In summary, all the systems discussed here show little provision of 3D GIS
functionality even though most of them can handle 3D data efficiently in
the aspect of 3D visualization. A fully integrated 3D GIS solution has yet
to be offered by any general purpose GIS vendor.

There are, however, few prototype 3D GIS systems and one of them is de-
veloped by Fraunhofer Institute, Germany. This system utilises a CAD
modeller which can generate 3D objects (such as buildings) on top of the
terrain (Rimscha, 1997). Another prototype system which was developed
by an Austrian company Grintec has tested the system within urban ob-
jects. The system, called GO-3DM also uses CAD and DTM for the man-
agement of the city of Graz’s 3D objects (mainly buildings) as reported by
Rimscha. Despite some exciting developments in 3D visualization and the
possibility of incorporating them within GIS, true 3D GIS solutions remain
to be realised. This indicates that 3D GIS has far from arrived and needs
further investigations.

2.5 Why is 3D GIS Difficult to Realise?

The difficulties in realising 3D GIS or 3D geo-spatial systems stem from:

Windows OS

User interface

Spatial
Database

PAMAP TopographerMapper

Modeller

Networker

Analyser

Core system

AN OVERVIEW OF 3D GIS DEVELOPMENT 23

• Data structures: although there are several data structures available
for the 2.5 D and 3D data, each of them has its own strong and weak
points in representing spatial objects; and

• Data models: spatial data can be modelled in different ways. Any
model should be able to describe relationships between data in such a
way that information can be generated from them.

This monograph attempts to address these two major issues by investigat-
ing the possible uses of several data structures (including some 2D struc-
tures), the construction of these data structures, the utilisation of these
structures in spatial modelling, the development of a database from the
spatial data, and the implementation of them in the form of a software
package which can be seen as a component of GIS.

2.6 Discussion

From the foregoing discussions the problem of data structuring and data
modelling for 3D data in analytical GIS environment remains unsolved.
The only near solutions offered concentrate on the visualisation aspect as
indicated in section 2.4. This gap of GIS functionality needs to be investi-
gated. The effort carried out in this research work focuses on the spatial
data structuring and data modelling with emphasis on developing a soft-
ware which will contribute towards 3D GIS. To do this, several existing
pertinent data structures are investigated which can handle 2D as well as
3D data. This effort is realised in the form of software development which
covers aspects of data structuring, relevant algorithms development, data
modelling using object-oriented technique and a simple front-end OO in-
terface.

Chapter 3 2D AND 3D SPATIAL DATA
REPRESENTATIONS

In the geoinformation domain, two-dimensional (2D) and three-
dimensional (3D) spatial data are commonly available. There is no doubt
that 2D data are utilised much more than 3D. This situation is attributable
to several factors including difficulties in 3D data structuring, particularly
topological data structuring (Raper, 1992; Li, 1994). These problems need
to be investigated so that the feasibility of having a system capable of han-
dling both 2D and 3D data types can be assessed. This chapter focusses on
the subject of spatial data representation in an attempt to contribute to an
understanding of how spatial data could be utilised for a geoinformation
system. The chapter aims to review some of the pertinent spatial data rep-
resentations and adopt suitable structures for a geoinformation system ca-
pable of handling 2D and 3D spatial data.

3.1 Introduction

Geospatial data can be represented in three clearly distinct Euclidean di-
mensional contexts: 2D defines location by measurements on the XY axes;
2.5D defines location in 2D space with a dimensional attribute value at-
tached to the XY location, for instance elevation above datum (Z coordi-
nate) may act as the attribute value; 3D defines location extending through
3D space defined by X, Y, and Z axes (Raper, 1992). These locations po-
sition real-world spatial objects which could be regular or irregular in
shape. Man-made objects, e.g. buildings are examples of regular objects
while terrain surfaces, forests, sea floors, trees and algal blooms are exam-
ples of irregular objects. All real world objects are three-dimensional
(3D). How can objects be represented in a system where information re-
garding the state, behaviour, and the topological relationships of the ob-
jects with their neighbours can be elegantly retrieved? There exists no
straightforward answer to this question. In GIS, spatial objects are repre-
sented in the form of points, lines, and surfaces. These primitives work
well for two-dimensional (2D) objects as described by Peucker and Chrisman
(1975), but these authors did not consider 3D objects at all. As the
demand from GIS applications in the 3D environment increases, the basic
forms (e.g. single z-value for an xy location) of data representation are no
longer adequate (Raper and Kelk, 1991). As a result, work has emerged

26 Chapter 3

attempting to solve the problem, but much has focussed on regular objects
(Cambray, 1993; Bric, 1994) such as buildings, houses, etc.

Representing non-regular objects needs different data representations so
that the general shape of objects can be represented. The following sec-
tions look into several existing types of representation that can be used for
2D and 3D data.

3.2 Classes of Object Representations

As an initial classification, object
representations may be described
as surface-based and volume-
based (Li, 1994). Li called an ob-
ject a surface-based representation
if the object was represented by
surface primitives. It is volume-
based if an object’s interior is de-
scribed by solid information. Fig-
ure 3.1 shows the two categories
of spatial object representations.

The surface-based representations
are: grid, shape model, facet
model, and boundary representation (b-rep). The volume-based representa-
tions are: 3D array, octree, constructive solid geometry (CSG) and 3D TIN
(or TEN). Some of these representations are common in computer-aided
design (CAD) systems but not in GIS. Figure 3.8 illustrates the list of sur-
face-based representations with their basic elements. Figure 3.15 illus-
trates the list of volume-based representation with their basic elements.

The following sections describe the surface-based representations.

3.2.1 Grid

A grid is a widely used method for surface representation in GIS, digital
mapping and digital terrain modelling (DTM). It is a structure that speci-
fies height values at regular locations (see Figure 3.2). Many DTMs and
terrain surface packages are based on this representation for generating
surfaces as reported in Petrie and Kennie (1990). This structure has sev-
eral advantages; it is simple to generate, and topology information (in

Fig. 3.1 The two categories of spatial
object representations

Spatial object
representation

Surface-based

Volume-based

2D AND 3D SPATIAL DATA REPRESENTATIONS 27

terms of positions) is implicitly defined (Peucker, 1978). (In this structure,
the topology of grid points can be easily determined since each grid point
is relative to other points). The structure may be considered as an array
structure in computer programming. Each array element represents the
XY locations of the grid.

The relative positions (i.e. the topology or the neighbouring points) of the
grid points are easily defined, and they could be regular or irregular. Al-
though excellent terrain surfaces can be derived with this structure, it is not
helpful for surfaces of multiple heights, e.g. vertical walls or overhangs
(Heitzinger and Pfeifer, 1996). In fact, this is one of the major drawbacks
of the structure. Although it can represent surface points well, incorporat-
ing other terrain objects or terrain breaklines such as linear, polygonal, and
even more complex features needs extra geometric computations and in-
terpolations with the grid points. A better model than a grid is thus desir-
able.

A shape model describes an object surface by using surface derivatives
(e.g. slopes) of surface points (Rongxing Li, 1994) as shown in Figure 3.3.
In this model, each grid point has slope value instead of Z value. With
known slopes, a normal vector of a grid point can be defined and used to
determine the shape of the surface. An experiment reported by Rongxing

Fig. 3.2 Grid representation of surfaces (orthogonal and perspective views)

regular grids

X

Y

X

Y

Z

3.2.2 Shape Model

28 Chapter 3

Li (1994) showed that the structure has an application in surface model
reconstruction especially for sea bed surface mapping.

Although the technique can be used for sea bed surface mapping, the usage
of such technique for on-surface terrain mapping may need to be investi-
gated especially on the aspect of data acquisition. In this technique, slopes
of grid points are determined by usimg image processing technique (de-
tailed computation technique can be found in Rongxing Li (1994)). This
model works with regular or irregular XY locations as with the grid ap-
proach, and thus it has the same surface mapping capability as the grid
(discussed in section 3.2.1).

3.2.3 Facet

A facet model describes an object’s surface by planar surface cells which
can be of different shapes and sizes. One of the most popular facet models
uses triangle facets, sometimes known as a triangular irregular network
(TIN). A surface can be described by a network of triangle facets. Each
facet consists of three triangle nodes which have a set of x, y, z coordinates
for each node (see Figure 3.4).

Fig. 3.4 2D TIN model

N (-Z x, -Z y, 1)
1

-Z x
-Z y

Fig. 3.3 An example surface determination using shape
model (after Rongxing Li, 1994)

X

Y
(X 1, Y 1, (Z1)) (X 2, Y 2 , (Z2))

(X 3, Y 3 , (Z3)

(X 4, Y 4, (Z4))

(X 5, Y 5, (Z5))

(X 6, Y 6, (Z6))

(X , Y , (Z))

Model

2D AND 3D SPATIAL DATA REPRESENTATIONS 29

Figure 3.5 shows a distribution of points on the real world. The triangle
structure is widely used in DTM and other terrain surface software mainly
because of its structural stability and terrain feature adaptability (Midtbø,
1996), data interpolation simplicity (Abdul-Rahman, 1992) and also for
object visualization (Kraak, 1992). Triangles or TINs as illustrated in Fig-
ure 3.6 can be constructed in the raster or the vector domain, where most
of the triangulations techniques are based on the Delaunay triangulations.

Briefly, one way to generate triangles in the raster domain is first by raster-
ising all surface points. (These rasterised points are sometimes known as
kernel points in raster data processing.) That is by using a distance trans-
formation (DT) technique to each kernel point. DT calculates the dis-
tances of each point to the neighbouring points. Each kernel point has its
dual image that is a Voronoi polygon of surface points. Then, from three
neighbouring Voronoi polygons, a Delaunay triangle can be established
(i.e. three points represent one triangle). Thus, a set of triangles can be es-
tablished from a set of Voronoi polygons.

The shapes and sizes of the triangles vary, depending on the original dis-
tribution of the data sets. One of the advantages of this representation is
that the original observation data are preserved, that is, all surface points
are used for surface representation. Figure 3.6 shows an example of TINs
generated from random distributed points. The points were acquired using
ground land survey technique. Figure 3.6 illustrates that terrain surfaces in
the form of random distributed points are well represented by this planar
facet representation.

30 Chapter 3

TIN facets using digitized contours and photogrammetrically acquired data
sets were also generated and are presented towards the end of this book.

3.2.4 Boundary Representation (B-rep)

Boundary representation (B-rep) represents an object by a combination of
predefined primitives of point, edge, face, and volume. Examples of point
elements are individual points, contour points, and other auxiliary points
which approximate a curve or a face. Examples of edges are straight lines,
arcs, and also circles. Examples of faces are polygon planes and other spa-
tial object faces such as arced faces, cone and cylinder faces. Volumes are
an extension of surface elements for representing volume characteristics in
B-rep. They may consist of boxes, cylinders, cones, and other combina-
tions. To represent an object by this model, an element of B-rep needs to

Fig. 3.5 An example of terrain
points (acquired by ground sur-
vey

Fig. 3.6 An example of TINs fa-
cet representation of terrain sur-
faces for points as depicted in
Fig. 3.5

2D AND 3D SPATIAL DATA REPRESENTATIONS 31

have a geometric data element, an identification code of element and its re-
lationship to other elements (Rongxing Li, 1994). Figure 3.7 shows a sim-
ple B-rep representation of a polygon object. Here, the key element of
constructing an object is primitive combinations, i.e. a combination of
points to form an edge, combination of edges to form a planar surface.

For non-planar surface, smooth surface functions such as a Bezier surface
or B-spline functions could be incorporated in the surface generation, and
this normally involves a considerable amount of geometric and complex
computations. Although B-rep is popular in a computer-aided de-
sign/computer-aided manufacturing (CAD/CAM), due to computational
complexity and inefficient Boolean operations, it has been suggested that
B-rep is only suitable for regular and planar objects (Mäntylä, 1988;
Rongxing Li, 1994). In GIS, the use of B-rep for representing spatial ob-
jects is very limited because the model needs to be modified in such a way
that the three fundamental spatial data elements, i.e. geometric, attribute,
and object identification data can be stored together with the related topo-
logical data. Figure 3.8 illustrates a summary of the surface-based repre-
sentation of 2D objects.

Object boundary

Face, f (1)

Edge, e (4)

Vertex (4)

1

2
3

4

e1
e2

e3

e4

f1

e1 e2 e3

e4

1 2 3 4

Fig. 3.7 Planar polygon representation of B-rep

32 Chapter 3

The following sections describe the volume representations of 3D objects.

3.2.5 3D Array

3D array is perhaps the most simple data structure in the 3D domain. The
structure is easy to understand and to implement, but it may not be effi-
cient for some tasks. For example, if many array elements are occupied
with the same values, it creates
a huge but unnecessary demand
for computer storage space and
memory. Thus, it is less suitable
for representing objects at
higher resolution since storage
and memory increase with
higher resolution.

In the 3D array shown in Figure 3.9, the size of the array elements is equal
and each occupies the same amount of computer space although the voxel

Surface-based

Grid Shape Facet B-rep

Fig. 3.8 Examples of surface-based representations

Y

X

Z

Fig. 3.9 An example of 3D array representa-
tion for solid object

2D AND 3D SPATIAL DATA REPRESENTATIONS 33

size can be specified and controlled by a program. 3D array needs a huge
computing power and this is one of the reasons why this kind of represen-
tation is seldom used in practice (Feng Dong, 1996).

A much better way of representing 3D objects is by varying the size of the
voxel that is the octree technique.

3.2.6 Octree

The term octree refers to a hierarchical data structure that specifies the oc-
cupancy of cubic regions of the object space. These cubic regions are of-
ten called voxels. This representation has been used extensively in image
processing and computer graphics (Samet, 1984). It is a data structure that
describes how the objects in a scene are distributed throughout the three-
dimensional space occupied by the scene. It is simply a three-dimensional
generation of a quadtree. Conceptually, the area of interest is enclosed by
a cube represented by voxels (Mark and Cebrian, 1986). As in the quad-
tree structure, the octree is based on recursive decomposition, and can be
used to encode 3D objects (Meagher, 1982; Jones, 1989; Chen, 1991; Bru-
net, 1992; Rongxing Li, 1994; Feng Dong, 1996). In the octree approach,
each node is terminal or has eight descendants. The tree divides the space
of the universe into cubes which are inside or outside the object. The root
of the tree represents the universe, a cube with an edge of length 2n . This
cube is divided into eight identical cubes, called octants with an edge
length of 2n-1. Each octant is represented by one of the eight descendants
of the root. If an octant is partially full of solid, it is termed a “grey node”,
and it is divided into another eight identical cubes which are represented as
descendants of the octants in question. This process is repeated recur-
sively until octants are obtained which are either totally inside the solid
(“black nodes”) or totally outside it (“white nodes”) (see Figure 3.10). A
minimum octant size (i.e. a threshold) which determines the number of
subdivisions of if the octants is one of the important factors in octree proc-
essing. Meagher (1982) also reported that one of the advantages of the oc-
tree approach is its simplicity for Boolean operation and visualization ren-
dering algorithms, but it has a drawback in terms of storage space.

34 Chapter 3

Fig. 3.10 An example of Octree representation of object

To represent detailed objects, a large amount of storage space and more
processing power are needed. One way to overcome this problem is by us-
ing an octree model called the ‘vector octree’ as proposed by Samet (1984)
and also reported in Jones (1989). In the vector octree, three types of oc-
tree nodes are introduced, namely, face node, edge node and vertex node.
These extra nodes are used to represent object surfaces, and reduce the de-
gree of subdivision. They, thus require less storage. Rongxing Li (1994)
also reported that the octree approach is very efficient in spatial analysis,
Boolean operations, and database management because of their hierarchi-
cal data structure.

3.2.7 Constructive Solid Geometry (CSG)

Constructive solid geometry (CSG) represents an object by a combination
of predefined simple primitives called geometric primitives (see Figure
3.11). The examples of primitives are spheres, cubes, cylinders, cones, or
rectangular solid, and they are combined using Boolean set operators and
linear transformations as discussed in Mäntylä (1988). CSG is commonly
used in solid modelling such as CAD/CAM because object creation can be
completed interactively with a simple modelling language (Raper, 1989).
This representation is also widely used in engineering and architectural
visualization because constructing primitives or solid geometries is usually
straightforward (Feng Dong, 1996).

1

2
3

3

4 5

6

6

5

76

74 75

77 71

73
77

7776
7372

75

Z

X

Y

0 1 2 3 4 5 6 7

70 71 72 73 74 75 76 77

2D AND 3D SPATIAL DATA REPRESENTATIONS 35

Fig. 3.11 Simple objects from CSG simple primitive solids

The primitives of CSG are regularly shaped volumetric instances and can
be combined by using geometric transformation and Boolean operations.
The geometric transformations normally involve translation, rotation and
scaling, and Boolean operations normally involve union, intersection and
subtraction (or differencing). The storage space of CSG increases as the
number of primitives increases (Samet, 1990). Previous research sug-
gested that CSG is only suitable for describing regular shaped objects
(Cambray, 1993; Rongxing Li, 1994) because the primitive combinations
of regular objects to form irregularly shaped volumetric instances needs
considerable computing effort. Thus, CSG is currently considered not well
suited for irregular objects.

3.2.8 3D TIN (Tetrahedral network, TEN)

Basically 3D TIN is an extension of 2D TIN, sometimes called TEN (short
for a Tetrahedral Network). An object is described by connected but not
overlapping tetrahedra. Similar to 2D TIN, TEN has many advantages in
manipulation, display and analysis. A TEN is made of tetrahedra of four
vertices, six edges, and four faces. This representation has been consid-
ered a useful data structure in earth sciences by researchers for some time
(Raper and Kelk, 1991). It can be generated using the same techniques as
for 2D TIN. If we build a 2D TIN from 2D Voronoi processing, then 2D
Voronoi processing can be extended to 3D. 3D TIN can be derived from
3D Voronoi polyhedrons (Qingquan and Deren, 1996). Other techniques
of generating TEN can be found in Midtbø (1996).

1

an object

simple solid 1

simple solid 2

simple solid 3

c

36 Chapter 3

Fig. 3.12 An example of 3D TIN (TEN) model

Previous work has pointed out that TENs have several advantages over
other solid structures. The advantages are that it is the simplest data struc-
ture that can be reduced to point, line, area and volume (solid) representa-
tions; it supports fast topological processing, and it is also convenient for
rapid visualization. However, work on tetrahedra for GIS is very limited.
A screen shot illustration in Figure 3.14 shows an example of 3D TINs
generated from simulated boreholes datasets of Figure 3.13. Each bore-
hole has several height locations with the same XY coordinates.

This particular example indicates that TEN can be used to manipulate un-
derground 3D objects such as boreholes. Volume computation of litholo-
gies between boreholes is one of the possible 3D modelling tasks. Other
applications such as iso-surface generation are also possible as often de-
manded in Earth Science applications.

Fig. 3.13 An example of simulated
boreholes

Fig. 3.14 An example of 3D TIN
representation for the boreholes

X

Y

Z

2D AND 3D SPATIAL DATA REPRESENTATIONS 37

Figure 3.15 illustrates the summary of the volume-based representations
that can be used for 3D objects.

Fig. 3.15 Examples of the volume-based representations

3.3 GIS Applicability of the Representations

Based on the previous section, it can be seen that surface-based representa-
tions describe the geometric characteristics of objects by surface entities.
Grids, shape models, and facet models are suitable for describing irregular
object surfaces, while the B-rep model is more for exact surface geometry
of regular shapes. For volume-based representation, 3D array, octree, and
3D TIN (or TEN) can be used for irregular objects. The 3D TIN and oc-
tree models can be used for volume objects. Octrees are an approximate
representation, therefore a very detailed representation of objects is hard to
achieve; with octrees, storage space increases rapidly when the resolution
increases. Although computer storage is less of an issue these days, there
is little evidence of success in using the model for spatial data representa-
tion despite the convenience in volume computation and visualization as
reported by Turner (1992a).

As for TEN (3D TIN), it is suggested that the model is able to represent
objects accurately, describe complicated spatial topological relations and
maintain the original observations (Qingquan Li and Deren Li, 1996). Thus,
we can initially assume that irregular objects can best be represented by
3D TIN and octrees. To make a choice between these two representations

Volume-based

3D array Octree C SG 3D TIN

Z

Y

38 Chapter 3

for irregular objects, however, is a difficult task. The next section attempts
to define some means for selecting the most appropriate representation.

3.4 The Selection Criteria

The discussion and summaries of the previous sections have shown that
two representations stood out as the most suitable for irregular objects:
TEN (or 3D TIN) and octree. Between these however, which is the most
appropriate one? Two major items should be considered when selecting
the best representation:

• The ability to represent (or to be converted to) object primitives, e.g.
points, lines, surfaces, and areas.

• The ability to integrate topological and attribute so that geospatial da-
tabase queries and data retrieval can be performed.

The following section describes the association of these two properties
within the tetrahedral (3D TIN) and octree approaches.

3.4.1 Representation of Object Primitives

In the real world, the points, lines and areal features with which we have
traditionally populated our cartographic databases do not exist. Further-
more, surfaces as they are represented in spatial databases are a reduced
description of real world objects - being a representation of a part of the
object described locationally with respect to a surface such as the mean sea
level or a spheroid. In reality, all objects, as we perceive them and should
use them at the level of detail supported by a 'typical' GIS, are irregular
and three-dimensional, having more or less well defined bounding surfaces
separating them from other such irregular three-dimensional objects; they
are not points, lines, areas and surfaces.

Given that real world objects are all irregular and three dimensional and
can all be adequately represented using either the TEN or octree ap-
proaches, for reasons of efficiency or convenience, the chosen data may be
processed in a more primitive form (i.e. as points, lines, areas or surfaces).
A GIS processing example is route selection. Thus, a consideration is
needed whether either or both TEN and octree representations can be re-
duced to the object primitives and which representation can more easily be
reduced to the required object primitives.

2D AND 3D SPATIAL DATA REPRESENTATIONS 39

Fig. 3.16 The tetrahedron (3D TIN) primitives

Figure 3.16 shows a tetrahedron, the fundamental building unit of the TEN
approach. For purposes of illustration, let us consider a city, data relating
to which is to be processed as if the city were a point entity. Within a city
are buildings, streets and other utilities, trees, street furniture, waterways,
etc. Each of these real world objects can be represented using the TEN
approach; each tetrahedron's description includes vertices and attributes.
All objects belonging to the city will be appropriately attributed and re-
trievable. The mean of the x, y coordinates of all the vertices of these re-
trieved objects can provide x, y coordinate pairs to allow representation of
the city as a two-dimensional point feature.

Considering a particular street represented by tetrahedra, for each tetrahe-
dron at least one facet will represent the street surface, and the vertices of
this facet will be points along the street. A centre-lining procedure can
generate a line from the set of vertices from all the surface facets of the
street's tetrahedra.

Considering an object as a piece of undeveloped land within a city repre-
sented using the TEN approach, some tetrahedron edges will be the edges
between two 'undeveloped land' tetrahedra, and some will be the edges be-
tween undeveloped and land of another category. Those edges represent-
ing change in categories are the edges of the undeveloped land, and the x,
y coordinates of their vertices represent the bounding polygon (or 'area') of
the undeveloped land.

Finally, considering the surface of the city itself, if this has been described
by a series of tetrahedra, as with the street, some facets will be surface fac-
ets and their vertices describe an irregular DTM. It is possible that the

4 vertices
4 facets
6 edges

3 edges per
 facet, and

3 edges per
 vertex.

40 Chapter 3

coordinate system used to describe vertices' locations may not be appro-
priate for the DTM (e.g. with respect to an inappropriate datum). An ap-
propriate coordinate transformation will need to be introduced.

Octree works with 3D raster data sets. It is therefore the case that all ob-
ject entities have to be converted into 3D raster for further processing.
These objects then need to be decomposed into point, line, surface, and
solid primitives if they are to be used in a GIS, for example. A number of
authors have reported on the use of octree for GIS, but most of them have
focussed on visualization and volume computation tasks (Chen, 1991;
Mark and Cebrian, 1986; Meagher, 1982). Work on octrees with the re-
lated aspect of spatial data modelling is less reported. Most research work
on octrees was for solid modelling and visualization purposes as reported
in Turner (1992b).

The discussions thus far have shown that TEN representation is a more
promising model for 3D spatial objects than octree.

3.4.2 Topology of Spatial Objects: Simplexes and Complexes

In GIS, besides geometric and attribute data, topology has a vital role in
spatial information system. Topology is used to determine the connection
relationships of objects in space. For example, in the case of a point ob-
ject, one may need to know its relationship with neighbouring objects
(where it could be with points, lines, areas, or solid objects). The same
holds for lines, areas, and solid objects. A number of researchers have
looked into this topological problem, including Frank and Kuhn (1986)
and Worboys (1995). They all use the term complex and simplex for de-
scribing the topological relationships of planar objects. In the 2D case, tri-
angular irregular network structures can be regarded as simplicial com-
plexes in a Euclidean plane. Here, a 0-simplex is the set of a single point
in the Euclidean plane. A 1-simplex is a straight line segment. A 2-
simplex is a set of all the points on the boundary and in the interior of a tri-
angle whose vertices are not collinear. These simplices are well repre-
sented in the facet model of representation (see section 3.2.3) where a TIN
node is topologically equivalent to 0-simplex, the edge of a TIN is topo-
logically equivalent to 1-simplex, and a TIN area (surface) is topologically
equivalent to 2-simplex. Since this simplicial complex theory is extend-
able to n-dimension, then we could also represent TEN primitives using
the same principle. That is a 3-simplex is a volume which is a tetrahedron
(see Figure 3.17).

2D AND 3D SPATIAL DATA REPRESENTATIONS 41

Fig. 3.17 Example of simplices (0, 1, 2, and 3)

Simplices are the building blocks of a larger structures, the simplicial
complexes. Complexes are built from simplices. If we recall the TIN rep-
resentation (see Figure 3.4), a simplicial complex can be formed (i.e. two-
dimensional complexes). This concept of simplicial complex provides a
sound framework for analysis of the topology of a mixture of points and
edges in a plane and is workable for the TIN representation of spatial ob-
jects (both 2D and 3D) as cited in Worboys (1995).

3.5 Vector and Raster Representation

Geoinformation data may come in vector form, raster form, or in both
forms. Spatial objects are said to be in vector form if they are represented
by one of the basic discrete entities such as points, lines, and areas (poly-
gons) which are spatially referenced by a Cartesian coordinate system
(Burrough and McDonnell, 1998). The same spatial object entities can be
represented in raster form if they can be decomposed into pixels. Each
pixel is referenced by row and column positions. Representing spatial ob-
jects as raster or vector has its advantages and disadvantages. Vector rep-
resentation easily offers better accuracy than raster representation because
entities are represented by exact coordinates in space and do not have their
locations generalized to a pixel. Thus, raster gives more approximate loca-
tions for the represented entities. Further comparisons of these two repre-
sentations such as based on handling topology is explicitly described in the
vector form and therefore this is good for tasks such as network analysis.
However, geometric data processing such as coordinate transformation is
difficult (requiring resampling) in raster but easy to perform in vector form

0-simplex

1-simplex

2-simplex

3-simplex

(point)

(line)

(area)

(volume)

42 Chapter 3

(Burrough and McDonnell, 1998). A further debate on these two represen-
tations can also be found in Antenucci et al (1991) and Chou (1996).

The choice between the two representations depends on factors such as
processing speed, level of difficulty, etc. In this research, we used the
raster form as a means of data processing for 2D and 3D TIN model con-
struction and also for related data structuring. That is due to the simplicity
of raster data processing. The discussion in section 3.2.3 indicates that
TINs could be constructed using rasterised datasets. The simplicity of
raster data processing for the two object representations is also examined
and described in chapter eight.

3.6 Summary

From the foregoing discussion of 2D object representations, 2D TIN has
been shown to have several advantages over the other models of the same
category (i.e. the grid, shape, and the B-rep.). The model’s promise relies
on the fact that it can be used to construct a generic data structure (includ-
ing topological relationships). Other models such as grid, shape, and B-
rep require further structure modifications before they can be used, and
thus they lead to expensive modelling in the digital environment.

Since 2D TIN can be extended to 3D TIN and have similar geometric
properties, 3D TIN can represent 3D spatial objects. An important prop-
erty of the model (or the structure) is that simple object primitives are ag-
gregatable into a larger object. The aggregation of features into more
complex features is perhaps the most important feature in spatial data
modelling. Models other than 3D TIN have some drawbacks in this task,
in that they require a huge computing effort. For example, real world spa-
tial objects are complex in nature and it is obvious that tremendous de-
composition operations are involved if one deals with them as octrees. Al-
though the octree approach is widely used in the solid geometry
visualization community, difficulty in spatial data structuring and the re-
lated topology entails limited practicality in GIS.

The pertinent spatial object representations have been described and TINs
(2D and 3D) have been identified as the most appropriate representations
for the 2D and 3D spatial objects. Thus, these structures become the major
focus for the development of a geo information system in this research.

The modelling and other relevant fundamental aspects of the geoinforma-
tion system will be discussed in the next chapter.

Chapter 4 THE FUNDAMENTALS
OF GEO-SPATIAL MODELLING

In general, a GIS can be considered to have several components such as
spatial, graphical, numerical, and textual components (Worboys, 1995).
These system components have several important building blocks such as
data modelling, data structures, and types of applications. However,
Molenaar (1996a) argues that it is the process of spatial data modelling
alone which leads to the development of a complete geoinformation sys-
tem. This chapter introduces the fundamental concepts of spatial data
modelling and GIS. The concept of modelling spatial data will be investi-
gated, as well as the construction, manipulation and management of spatial
data within the development of a GIS system. In particular, concepts such
as spatial data, modelling of spatial data, construction, manipulation and
management of spatial data in the domain of the triangular irregular net-
works (TINs) data structure are the foci of this chapter. The aim is to de-
scribe major processes and steps involved in the development of a system
which is based on TIN spatial data. Although this system is far from com-
plete (since it does not contain, for example a temporal aspect), most of the
major components and the related building blocks for the system are con-
sidered. (Relevant temporal aspects of GIS are addressed in Langran
(1992) and Wachowicz (1999)).

The layout of the proposed TIN-based system is presented at the end of
this chapter, following the discussions on spatial data, spatial data model-
ling, data structuring, database models and the related database manage-
ment systems (DBMS).

This chapter also reviews various concepts fundamental to spatial model-
ling and specifically related to geo-information. The aim is to outline the
theoretical bases and fundamental concepts necessary for the design of a
geo-spatial model. Since spatial theory is a relatively young discipline de-
veloped from a combination of many branches of mathematics and com-
puter science, the terminology found in the literature can be confusing. In
this chapter, the terms used in this monograph are clarified. Five important
components of spatial model and phases of modelling are defined. The
emphasis is placed on the conceptual and logical designs of spatial models.
Mathematical concepts concerning space, objects, and their interrelation-
ships are taken as the foundation of the conceptual design of a spatial
model. The concept of a simplicial complex and the theory of graphs are
chosen as methods of representing objects and their interrelationships in

44 Chapter 4

the model. Existing spatial models are taken as examples to show the lines
of further development. Relational and object-oriented approaches are con-
sidered important for the logical design of a spatial model.

4.1 Spatial Data

Figure 4.1 shows the basic components of spatial data. Principally, there
are three spatial data components that need to be stored for GIS data: geo-
metric data, thematic data, and a link identification (ID) for the geometric
and the thematic component. The illustration in Figure 4.1 shows the link
between the geometric component (which deals with the location of the
data by means, for example, of a reference coordinate system) and the
thematic component (it provides the attribute values of the data, e.g.
names, and other identifiers (IDs) of the data). Object or feature needs to
be geometrically and thematically described (Longley et al., 1999; Laurini
and Thompson, 1991). The basic components of spatial data (TINs) can be
used to describe real world terrain objects, whether natural or man-made;
thus we have TIN-based spatial objects.

4.2 Spatial Data Modelling

Spatial data modelling is a process of describing real world spatial objects
so that these objects as perceived by us can be represented in a form or nota-
tion which we understand and use. There are several techniques for perceiv-
ing the real world (Burrough and Frank, 1995). These techniques have dif-
ferent descriptive models for different levels of complexity of perception of

Fig. 4.1 Component of spatial data.

Spatial data

Geometric

Thematic

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 45

the real world. If we would like to have these models represented and op-
erational in a geo-information system, then they have to be mapped into
data and processing models that can be handled by computers. Figure 4.2
illustrates a general view of the three stages of spatial data modelling
that one may apply in informa-
tion system development.

A data model is a notation for de-
scribing data. It is a meta con-
cept defining the content, struc-
ture, and meaning of data. The
model also provides concepts to
describe the structure and con-
tents, for example, of a database,
and the goal is similar to that of
the data types (either basic data
types or the Abstract Data Type
(ADT)) used in programming
languages to describe data within
programs. Data models can be
classified into the conceptual
data model (or high level model), the logical data model (or implementa-
tion model), and the physical data model (or low-level model) as shown in
Figure 4.2. Conceptual data models provide easy to perceive high-level
concepts. They are used in the early stages of system development to
communicate between end-users and system designer. Physical data mod-
els provide low-level concepts to describe how data are stored and ac-
cessed in the computer. The logical data model bridges the gap between
the conceptual data model and the physical data model. It is sometime
known as an implementation data model. It is used by database manage-
ment system to implement reality in computerised databases. Figure 4.2
shows the steps in typical database design and also serves as a basic means
to model terrain spatial objects.

4.3 Models and Their Importance for Geoinformation

Within the disciplines related to geoinformation science, the word ‘model’
has been used in two different ways. The first meaning is in the sense of a
representation, or replica, of something regarded as real or genuine, like a
globe in the classroom as a replica of the earth. The second meaning refers
to something used to produce a number of replicas, and may be needed for

Fig. 4.2 A typical spatial data model-
ling steps.

C o n c e p t u a l
m o d e l

L o g ic a l
m o d e l

P h y s i c a l
m o d e l

46 Chapter 4

the mass production of those replicas. The word ‘model’ in this sense may
be comparable to the word mould, or form, and has the meaning of design,
plan, or scheme. The quality of the mould directly influences the quality of
the replica, so that more serious attention has to be paid to the design and
construction of the mould than to the replica.

Regardless of the meanings of the word model, the process of producing a
model is known unequivocally as modelling. It is necessary to state clearly
what the model and modelling are actually meant for.

In the context of earth science, the end product we seek is a model in the
sense of a replica of some portion of the planet earth, and is called a geo-
spatial model. Since the term ‘spatial model’ covers a large territory over
many disciplines (like the modelling of human anatomy in medicine, mo-
lecular structure in chemistry, or atomic structure in nuclear physics), we
add the prefix geo to indicate the scope and purpose of this earth-related
model.

For the information system to utilize the geo-spatial model, it must be con-
structed in a digital form, so that it can be maintained and exploited by a
computer to perform certain tasks or operations that are:

1. less convenient in reality; for example, a distance can be obtained
from a model instead of measuring from place A to B in reality, pro-
vided that places A and B are represented in the model

2. too expensive, too difficult, or practically impossible in reality; for
example, a geologist may wish to see the continuous layer of sand-
stone lying fifteen metres under the earth’s surface; removal of the
upper soil to see this layer in reality is too expensive to contemplate.

The model in a digital form is in fact the database itself. Not only is a da-
tabase a collection of data, it also contains relationships between data ele-
ments, and rules and operations to change the state of the data elements,
regardless of how these components are stored. Components may be kept
in one data set, or separately, at different places, depending on the system
that manages and manipulates the model - the database management sys-
tem (DBMS).

A model containing all aspects of reality is impossible, because of its com-
plexity. Only some aspects can be included in the model at a manageable
level. Hence, the quality of the model is judged only in terms of its pur-
pose and how the model will be used. If the model permits the perform-
ance of the tasks or operations as required, and with acceptable results, the
quality may be regarded as good. A model constructed for a single purpose

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 47

may not be able to serve tasks or operations for different purposes, unless
it is an integrated model designed and constructed for multi purposes.

A single-purpose model represents only a single view of the reality (Figure
4.3). Since an integrated model represents various views of the reality,
such a model may be considered to be of higher value, since it contains
more aspects of the reality and may serve more purposes.

4.4 Components of Geo-spatial Model

A model in the form of a database
requires the categorization of as-
pects of reality into the compo-
nents of the database managed and
manipulated by a DBMS (Flavin
1981). The components of a geo-
spatial model include the follow-
ing:

1) Object types

Object types are classes of spatial
entities in a geo-spatial model. In
reality, they may be roads, rivers,
cities, land use, and so forth.

2) Relationships

Spatial rrelationships are named
associations between two or more spatial objects. For example, road A
passes through city B. ‘Passes through’ defines a relationship between the
road A and the city B, and may be written in a predicate form as
‘Pass_through (road A, city B)’ (Molenaar, 1994b).

3) Attributes, or descriptions

Attributes, or descriptions, are observed facts about a spatial object or rela-
tionship. An attribute or description is the smallest (non spatial) unit in the
model, and has to be associated with an object type or relationship to be
meaningful. An attribute or description cannot stand alone in the model.
For example, the object type ‘road’ has the name ‘A1', indicating that it is
a highway passing by several cities.

Fig. 4.3 Levels of geo-spatial model-
ling (after Molenaar 1994b).

Context mapping discipline

Spatial modelling

Conceptual design

Logical design

Internal design

Computer science

Application disciplines

Geo-information
theory

48 Chapter 4

4) Conventions

A convention results in a set of rules and constraints that govern the con-
tent, structure, integrity, and operational activity of the model. A conven-
tion applies to the entire model. An example, a convention stating that
‘each feature class contains objects of only one geometric type’ results in a
rule preventing an area object from belonging to a line feature class
(Molenaar, 1991).

5) Operations

A spatial operation is an action changing the state of the representation of a
real world object being modelled, or deriving additional information from
the current representation. Operations can be identified by events. Two
types of operations can be distinguished: standard, and user-defined. Stan-
dard operations are provided for routine tasks. A user-defined operation is
built by combining different types and sequences of standard operations.
Standard operations include retrieve, add, delete, modify, union, intersect,
difference, compare, and so forth. They can be applied to different compo-
nents of the model.

4.5 Phases in Geo-spatial Modelling

Before continuing this review of the necessary fundamental concepts, the
steps followed in geo-spatial modelling are defined.

Obtaining a geo-spatial model requires two main steps: the design phase,
and the construction phase (see Figure 4.3). Once the model is in place,
maintenance forms an additional phase. The design phase includes all the
abstraction processes, ranging from the conceptual design, the logical de-
sign, to the physical design. The product of the conceptual design is re-
ferred to as a conceptual model, or data model (Peuquet, 1984; Maguire
and Dangermond, 1991). It comprises a general scheme describing what
should be included in the model.

The logical design sets out all the elements needed for the construction,
without stating the actual size or type of each element of the model. This
design results in a logical model, or data structure. The physical design
phase specifies the actual size and type of each element of the model for
the implementation of the geo-spatial model. For example, a 16-bit real
number may be used to store the attribute ‘width.’ This phase yields an
internal model, or file structure, to be used by the software engineer to

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 49

establish the low level communication with the hardware at the bit and
byte level. Figure 4.1 and Figure 4.3 graphically illustrate this process.

Molenaar (1994b) also suggests the involvement of different disciplines in
geo-spatial modelling, as shown in Figure 4.3.

The five components of the geo-spatial model listed in the preceding sec-
tion can be realized in these three different design phases: the object types
and relations in the conceptual design phase; the attributes or descriptions
of objects and relations in the logical design phase; the operations in the
physical design phase.

The conventions must operate in every design phase. In the conceptual de-
sign phase, the conventions should state the allowable type of objects and
relations between them to be included in the model. In the logical design
phase, the conventions should state how the representation of one object is
distinguished from another; an object should have a unique identifier. In
the physical design phase, the conventions comprise a set of integrity and
consistency rules for the operations that may change the state of the model;
for example, the union of two areas sharing a common boundary has to
yield only one area.

Fig. 4.4 Geo-spatial modeling.

Geo-spatial Model

View of reality

Design Phase

Construction Phase

Maintenance Phase

50 Chapter 4

The design of the model is followed by the design and implementation of
the necessary functions and the user-interface to enable the construction
and exploitation of the model. The result of this implementation is a geo-
spatial information system (GIS). Having constructed the model, it must be
kept valid to ensure that it remains in a state comparable with the reality,
which is dynamic in nature. This is the maintenance phase. The basic
maintenance operations of insertion, deletion, and modification can be ap-
plied to any component of the model, that is to say object types, relations,
rules, attributes and operations. A GIS should also provide functionality to
maintain the geo-spatial model.

4.6 Conceptual Design of a Geo-spatial Model

The design phase deals with the abstraction of reality into the representa-
tion scheme. This phase answers two basic questions: what aspects of real-
ity (real world objects and the relationships between them) are to be mod-
elled?; how should they be represented in the model?

A geo-spatial database represents a state of reality from a specific point of
view or interest at an instant in time (if the temporal aspect itself is not the
subject of the model). The reality consists of a set of various objects and
the relationships between them which should be capable of representation
as components of the model described in the preceding section. To be
manageable, it is necessary to determine a limited number of aspects of the
reality (objects together with the relationships between them) during the
design phase which can be represented as the first and second components
of the model.

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 51

4.6.1 Definition of Space

Reality may be viewed as a space, that is to say, a collection of spatial ob-
jects and the relationships between them (Gatrell, 1991). Each spatial
object occupies a subspace to define its own spatial extent, which may be

Fig. 4.5 Design and construction phases for a geospatial model

View of reality View of reality View of reality

REALITY

Representation
or

Geo-spatial model

Representation Scheme

Geo-spatial Information System

Logical Design

Physical Design

Conceptual Design

C
on

st
ru

ct
io

n
Ph

as
e

D
es

ig
n

Ph
as

e

52 Chapter 4

defined by a set of spatial locations together with a set of interest proper-
ties characterizing those locations (Smith et al., 1987). Different sets of re-
lations may define different types of space. Metric space, for example, is
based on distance relationships; topological space is based on topological
relationships.

For the mathematical description of space, we can rely on set theory, in-
troduced by Cantor in 1880. Let O be a set of objects {o1, o2, o3, ..., oi }. R
is a binary relation on O if R ∈ O x O. If R is a relation on O, the relation-
ship (o1, o2) ∈ R can be denoted in prefix form by R (o1, o2). A space S is
then a collection, that is to say, a set of subsets, {[O], [R]}, denoted S =
{[O], [R]}.

In reality, the space is an unbounded region consisting of numerous objects
and relations. The space S (that is, a finite set) is only a view of reality in
which the context is defined for describing the aspects of reality relevant to
a particular discipline.

Having determined the collection [O] and [R], the question related to the
aspects of reality to be modelled can then be answered. An example is only
to include in the database the object types roads, rivers, buildings and land
parcels and the relationships between buildings and land parcels, rivers and
roads, roads and land parcels. In this sense, this database can be regarded
as the space S.

To answer the second question, how to represent the objects of reality and
the relationships between them, we have to consider some fundamental
concepts of spatial modelling.

4.6.2 Abstraction of Space

There are two major abstractions of space, each of which passes on its
characteristics to the spatial objects residing in that respective abstraction.
The first conceptualizes space as tessellated into a contiguous set of
smaller sub-spaces and is known as a field-based or tessellation-based
definition. Each individual spatial object is composed of a set of sub-
spaces (for example, a raster element in the raster-based GIS).

The second abstraction treats the space as empty and homogeneous, and
consists of a collection of spatial objects. It is known as an object-based or
feature-based definition (Ehlers et al., 1989).

Each sub-space of the field-based space is typically understood as, and as-
sociated with, regular shapes, like a square or a cube, usually found in the

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 53

raster-based geo-spatial model. Irregular shapes are also used, such as in
the triangular irregular network (TIN) that subdivides the space into a set
of irregular triangular shapes, as frequently used for the representation of
single value surfaces.

For object-based space, the best example is the vector-based geo-spatial
model, where each object is composed of several vector elements in the
form of geometric primitives (such as nodes, edges, faces, or bodies).

Field-based space and object-based space have different advantages and
disadvantages. The field-based representation of space offers connectivity
and continuity in all directions, thus providing the freedom to visit any lo-
cation in space. An intuitive example from reality is travelling in free
space in an aircraft. The pilot navigates by connecting the information in
his vicinity such as landmarks, topography, or a city, to determine the trav-
elling direction, but otherwise moves freely. This kind of approximation
may be regarded as spatial interpolation.

Object-based representation, on the other hand, does not permit such free-
dom. The navigation in space is limited to a confined subspace defined by
each spatial object. Connectivity and continuity are defined along with the
existence of spatial objects. An example from reality would be travelling
along a highway by car. The highway is comparable to a confined sub-
space of the global space. It restricts travel to a certain direction. The ex-
plicit destination is defined for each highway, so navigation in space is just
a matter of selecting the right highway. No approximation for direction is
necessary in this case.

The abstraction of space is typically decided during the conceptual design
phase, which is usually driven by the type of spatial operations. In this
book, we present an attempt to integrate the field-based and object-based
abstractions into a hybrid abstraction to allow confined and unconfined
navigations in a geo-spatial model, thereby facilitating a wider range of
spatial operations.

4.6.3 Abstraction of Real World Object

In the present context, the earth is the subject under consideration. It is im-
portant to bear this in mind, since some aspects of the earth have to be
taken into account and included into the model. In geoinformation science,
any real world object may be described geometrically and thematically
(see Figure 4.4 and Molenaar, 1989, Maguire et al., 1991, Gatrell, 1991).
The terms metric and semantic have also been used (Makarovic, 1984). In

54 Chapter 4

this book, the representation of a real world object is referred to as a fea-
ture where the terms spatial entity and geo-object may be found elsewhere
(Peuquet, 1988; Laurini and Thompson, 1992; Raper, 1989). A real world
object that has to be described, or related to a location in reality, is referred
to as a spatial object.

Figure 4.6 can be regarded as a
general representation scheme
for any spatial object. The the-
matic and geometric aspects
may be separately modelled and
considered as general compo-
nent types of the model. They
have, however, to be brought
together at some stage. The
geometric aspects are the spatial
characteristics of the object
such as shape, size and location.
The thematic aspects are the

non spatial characteristics of the object related to its state, functionality, or
utility in reality.

Figure 4.6 provides an extreme level of abstraction about the aspects of the
reality we want to deal with. It can only be used as a general framework
for the overall modelling process. This abstraction must be further elabo-
rated to achieve a more specific design.

Note, however, that Figure 4.6 is limited to the representation at a certain
instant. Object states that change over time have not been considered. Oth-
erwise, the dynamic aspects of the objects would have to be included as
additional components of the model. The term spatio-temporal is used to
indicate such a kind of model; it lies, however, outside the scope of this
book (Langran, 1992; Tansel et al., 1993 for more details on this subject).

4.6.3.1 Geometric Component

Two important aspects of a real world object, location and shape, need to
be included into the model which allows further derivation of the size of
the object. However, they can only be correctly described if the dimension
of space is taken into account. In mathematics, the dimensions of Euclid-
ean space are expressed through the number of referential axes, which are
linearly independent from each other. The distances from the origin along
each axis are arranged into the ordered-n-tuples notation (a1 , a2 , ..., an),

 Theme

Fig. 4.6 A general abstraction of the
real world object (at an instant of time)

 Object

 has has

 Geometry

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 55

which is a sequence of n real numbers used to represent a coordinate tuple
in nD-space (denoted by Rn, see also Anton, 1987).

In geoinformation science, the term ‘dimension’ has been used to denote
various meanings. With respect to boundary representation, the dimension
may indicate the data type being used to represent the object, such as point
(0D), line (1D), area or surface (2D) or body (3D) (Frank and Kuhn,
1986). Each object occupies a subspace and has its own dimensionality,
which may be regarded as the internal dimension. The external dimension
(R n) is then the dimension of the space embedding the object. The term
‘dimension’ also frequently indicates both the internal and external dimen-
sions. For example, 2D may mean objects in R 2, 2.5D means 2D objects in
R3, 3D means 3D objects in R 3, 3.5D means 3D objects in R 4, and so on.
In this book, these kinds of notations are used, dependent on the context of
each part. Egenhofer and Herring (1990) also discuss the dimensionality of
space and objects.

Having defined the dimension, an object’s location and shape can be de-
scribed. Location is defined by a set of coordinate tuples, while the de-
scription of shape can be given in different ways, for example, by a
mathematical function, a verbal description, or a skeleton with radius func-
tions (Blum, 1967; Pilouk, 1992). CAD is a discipline focusing on the 3D
modelling of geometric aspects where several approaches have been used:

− Primitive Instancing (PI): describes an object by a set of parameters
together with a shape function; for example, a rectangle can be de-
scribed by its width, height and a rectangular shape function.

− Sweep Representation: applies to an object of regular shape; for exam-
ple, a cylinder is the result of sweeping a circle along a straight line.

− Boundary Representation (BR): describes an object through its
boundary elements, that is to say, the vertices, edges and faces for a 3D
object.

− Constructive Solid Geometry (CSG): hierarchically decomposes an
object into a set of components with simpler geometry. The node of
each hierarchy may contain the set operator needed to combine together
the components in a lower level of the geometric hierarchy. Translation
and rotation parameters may also be attached to this node. For example,
a solid cube with a cylindrical hole can be decomposed into a solid cube
and a solid cylinder under the set operator ∩ (intersection) and a transla-
tion parameter to align the cylinder into the middle of the cube.

56 Chapter 4

− Spatial-Partition Representation: also decomposes an object similar
to CSG, but to the more primitive level known as cell. Only the set op-
erator ∪ (union) is allowed to combine cells to reconstruct the object.
This means that no intersection between two cells is possible. This dis-
tinguishes the spatial-partition representation from CSG. One criterion
for this kind of decomposition is that the adjacent cells must share
common boundary elements, such as vertices, edges, or faces. Different
decomposition schemes can be used:

− cell decomposition: decomposes an object into various types of
primitives with shapes which need not be regular; for example, a
simple house may be decomposed into a cube and a prism.

− spatial-occupancy enumeration: decomposes an object into a
set of regular cells with fixed shape and size; for example, regu-
lar-grid, pixel and voxel.

− irregular tessellation: decomposes an object into one type of
primitive with, different shapes and sizes; for example, triangu-
lar irregular network, tetrahedral network (TEN).

− hierarchical regular subdivision: subdivides a space into ho-
mogeneous zones using only one type of primitive which varies
in size; for example, rectangle (quadtree), cube (octree).

− binary space-partitioning (BSP): subdivides an object into
pairs of planes with arbitrary orientation and position.

In describing an integrated model, the boundary representation with irregu-
lar tessellation is used to geometrically describe an object. More details
about geometric modelling can be found in Requichar (1980), Mäntylä
(1988), Samet (1990), Foley et al. (1992), Bric (1993), and Cambray
(1993).

4.6.3.2 Thematic Component

Apart from geometry, objects are given a referential identifier and descrip-
tions and may be organized into a group, or theme, to differentiate them
and make reference to them more convenient. Objects having the same
characteristics may be grouped together, becoming more easily distin-
guished from objects with other characteristics. Nevertheless, the criteria
for judging whether an object belongs to a particular group are based on a
specific viewpoint. Using different criteria, an object can be classified into
a different group. The process of classifying objects into groups is known
as thematic modelling. The term single-theme is used when the geometric

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 57

description of an object is related to only one theme (Molenaar, 1989), and
multi-theme if the geometric description of an object relates to more than
one theme (Kufoniyi, 1995).

In this monograph, single-theme and multi-theme express the homogene-
ous and heterogeneous properties of a spatial object.

Since thematic modelling is context dependent with respect to a particular
application domain, the work discussed in this book made no attempt to
achieve the modelling of a thematic component capable of accommodating
a wide range of applications.

4.6.4 Object and Spatial Extent

There are two kinds of spatial objects that can be distinguished on the basis
of knowledge about their spatial extent. The first is of the type determinate
spatial extent. Objects of this type are referred to as determinate spatial ob-
jects which have discernible boundaries, and are typified by houses, roads,
rivers, land-parcels that can easily be sensed. Spatial objects of the second
category have indiscernible boundaries which are difficult to sense. These
objects are of the type indeterminate spatial extent, for example colloid in
water, plume of smoke, temperature distribution, soil type, etc., and are re-
ferred to as indeterminate spatial objects. The boundaries of determinate
spatial objects can be sampled and directly represented in the database.
However, this is not the case for indeterminate spatial objects - their boun-
daries cannot be directly sampled and must be derived by means of classi-
fication, or computation, using specific property values of the surrounding
neighbours (for example, by interpolation or extrapolation). Therefore, the
representation of indeterminate spatial objects in the database can only be
indirect.

4.6.5 Spatial Relations

Spatial relations are a key issue in the design of a spatial model. Many ex-
tensive reviews and discussions can be found; Frank and Kuhn (1986),
Pullar (1988), Pullar and Egenhofer (1988), Egenhofer (1989), Egenhofer
et al (1989), Kainz (1989), Egenhofer (1990), Kainz (1990), Egenhofer
and Franzosa (1991), Pigot (1991), Pigot (1992). This section provides
only a brief review of some of the important basic concepts in spatial
relations.

58 Chapter 4

A set theoretical definition of a relation has been given in section 4.6.1.
Recall that R is a relation on a set O of objects. In general, R can be further
distinguished by its different basic properties that depend on the relation-
ships between its member elements (see also Willard, 1970; Stanat and
McAllister, 1977; Pullar and Egenhofer, 1988).

• R is reflexive, if each element can be compared with itself (if and
only if (oi, oi) ∈ R), for example ‘point A’ is equal to itself.

• R is symmetric, if and only if R(o1, o2) implies R(o2, o1). For ex-
ample ‘area A’ is adjacent to ‘area B’ implies that ‘area B’ is adja-
cent to ‘area A.’

• R is antisymmetric, if and only if R(o1, o2) and R(o2, o1) implies o1
= o2 for all o1, o2 ∈ O, for example if a ≤ b and b ≤ a, then a = b.

• R is transitive, if and only if R(o1, o2) and R(o2, o3) implies R(o1,
o3) for all o1, o2, o3 ∈ O, for example area A < area B and area B <
area C then area A < area C.

For example, given a set of real number N, < is a transitive relation on N, ≤
is a reflexive, antisymmetric, transitive relation on N, and ≠ is a symmetric
relation on N.

It is necessary at this stage to consider the definition of functions in
mathematics used later.

Given two sets A and B, a function (or map) f from A to B, denoted f : A
→ B, is a subset of the Cartesian product A x B with the following proper-
ties:

 a) For each a ∈ A, there is some b ∈ B such that (a, b) ∈ f.
 b) If (a, b) ∈ f and (a, c) ∈ f, then b = c.

Each a ∈ A must be in relationship with exactly one b ∈ B and the rela-
tionship (a, b) ∈ f is normally written in a prefix form as b = f (a).

Comparing with relation R, every function on A is a relation R on A.
However, not all relations on A are functions.

Three classes of spatial relations, namely metric, order and topology, have
been distinguished, based on the type of function or relation associated
with a set of objects (Egenhofer, 1989).

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 59

Metric

Metric relations are built around the notion of distance function. Its
mathematical description is as follows (see also Willard, 1970):

Given a set M with x, y, z ∈ M and a set of real number N. A metric rela-
tion d is a function d : M x M → N with the following conditions:

a) d(x, y) ≥ 0, Distance from x to y is more than or equal to zero.
b) d(x, x) = 0; d(x, y) = 0 implies x = y, Distance from x to itself equal to

zero. Distance from x to y equal to zero implies that x is equal to y.
c) d(x, y) = d(y, x), Distance from x to y equal to distance from y to x
d) d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality). Distance from x to y

plus distance from y to z is more than or equal to distance from x to z.

A metric space is an ordered pair (M, d) consisting of a set M together
with a function d: M x M → N satisfying the above four conditions. The
function d is also called the metric on M. Functions d : M x M → N are
called distance functions. A metric space is the Euclidean n-space, denoted
Rn, if the distance function is the Euclidean distance below:

The number ‘n’ defines the number of distance components between x and
y (each one computed along an independent vector) and denotes the di-
mensionality of Euclidean space.

The distance functions available in metric spaces are used to develop the
notion of continuity crucial for the development of topology.

Order

Order defines a comparative type of relationship between the objects based
on a preference. Two kinds of order relations can be distinguished: strict
order and partial order. Strict order is a relation < , which is transitive. This
kind of relationship may be represented as a tree-like structure. Partial or-
der is a relation ≤, which is reflexive, antisymmetric, and transitive, and
may be viewed as a network structure. Every order relation has a converse
relationship, for example a < b conversely implies b > a. A formal study
about the use of order for spatial relationships has been reported by Kainz
(1989), Kainz et al., (1993). Algorithms and data structures for order op-
erations have also been presented in Kainz (1990).

60 Chapter 4

Topology

Since the eighteenth-century, topology has developed as a discipline of
mathematics. The definition of topology, as the study of the properties of
figures remaining invariant under topological transformation, was given by
Augustus Möbius (Devlin, 1994). The explanation of topology in this sec-
tion, however, follows the general (point set) topology founded by Haus-
dorff in 1914 (see Willard, 1970). Point set topology was developed from
metric (distance) which is easier to understand (Mäntylä, 1988). The pur-
pose of introducing topology is to be able to define any continuous func-
tion without mentioning distance (Willard, 1970; Armstrong, 1983; Pullar
and Egenhofer, 1988), thus adding the concept of ‘neighbourhood’ to loca-
tion, distance, and direction (Kainz, 1989). The expression of spatial rela-
tionships in the form of topology is more appropriate for handling by cur-
rent computer technology, which bases arithmetic computation on a finite
numbering system, and so cannot be used to completely represent continu-
ity based on Euclidean distance (Franklin, 1984; Frank and Kuhn, 1986).
For example, the state of a point lying inside a polygon might be changed
after rotation or scaling, because of rounding errors.

The expression of continuous function is accomplished by introducing the
concept of a point-set in metric space that is an open set (a set that does not
include its boundary; Pigot, 1991). Any open set has a continuity property
(consult Willard (1970) for proof). A point-set P is an open set if every
point x ∈ P is surrounded by an ε-sphere of radius ε > 0 such that distance
between x to any point y ∈ P is always less than ε. An example of ε-
sphere about a point c of a set of real number is an open interval (c-ε, c+ε).

A mathematical definition of topology is as follows:

A topology on a set X is a collection T of subsets of X, called the open
sets, satisfying:
 a) Any union of elements of T belongs to T,
 b) Any finite intersection of elements of T belongs to T,
 c) ∅ and X belong to T.

A topological space is denoted by (X, T). Given two topological spaces, A
and B, f : A→B is a continuous function if it preserves the neighbourhood
relations between mapped points. This mapping is also called continuous
mapping, or homeomorphism (Alexandroff, 1961; Pigot, 1991). The topo-
logical transformation is commonly known as rubber sheeting, in which
translation, rotation and scaling are included (Pullar and Egenhofer, 1988).
Examples of homeomorphic mappings are transformations to correct

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 61

distortion resulting from paper or film shrinkage in cartographic or photo-
grammetric digitizing.

Some properties of topology have been expressed as follows:

• Topology is defined as the set of properties which are invariant un-
der homeomorphisms (Alexandroff, 1961) - one-to-one, continu-
ous, and onto transformation (Pigot, 1991).

• Topological relationships are invariant under topological transfor-
mations such as translation, scaling, and rotation (Egenhofer,
1989).

The transformation that includes translation, scaling, and rotation is known
in photogrammetry as geometric transformation. It defines changes in
shape, size and location of an object.

Topology describes the relationship between an object and its neighbours.
Topological relations can be defined through the three components of an
object, that is, the interior, boundary, and exterior (Vaidyanathaswamy
1960; Pullar, 1988). An elementary set operation, an intersection, is used
as a mechanism to determine each type of relation. For example, if the in-
tersection between a boundary set of object A and a boundary set of object
B yields a non empty set, the relationship between the object A and the ob-
ject B may be defined as ‘touch.’ If in addition the intersection between
the interior set of the object A and the interior set of the object B also
yields a non empty set, the relationship between these two objects may be
defined as ‘overlap.’ Figure 4.7 shows some examples of topological rela-
tionships between two objects.

Intersection of the three components of two objects can be organized into a
3x3 matrix. This gives a 9-digit logic state, called a 9-intersection, which
can be interpreted as relation codes (see Bric 1993). The 9-intersection
gives in total 512 possible relationships, from which a set of relevant rela-
tionships can be found by a process described in Pullar and Egenhofer
(1988).

The dimensionality of topological space has frequently been mentioned in
the literature. Since topological space is derived from metric space, it also
inherits the dimensionality defined in metric. 2D topology would mean
that the topological relations are only valid for 2D metric space and cer-
tainly 3D topology would only be valid for 3D metric space. For example,
a triangle may have at most three neighbours in 2D space, but there can be
many more neighbours in 3D space. An important limitation is that there is
no continuous mapping from the higher dimension to the lower dimension.
This endeavour will therefore result in loss of information. 2D topology

62 Chapter 4

B

A B

A B

Object A disjoints with Object B

Object A meets Object B

Object A overlaps with Object B

Boundary set Interior set Exterior set

A B Int Bnd Ext

Int 0 0 1
Bnd 0 0 1
Ext 1 1 1

A

A B Int Bnd Ext

Int 0 0 1
Bnd 0 1 1
Ext 1 1 1

A B Int Bnd Ext

Int 1 1 1
Bnd 1 1 1
Ext 1 1 1

Fig. 4.7 Example of spatial topological relationships.

has been intensively studied by Egenhofer (1989). Pigot (1991), Bric
(1993), Rikkers (1993) have studied 3D topology, while Pigot (1994) have
studied 4D topology.

4.6.6 Application of Spatial Relations

The three types of spatial relations have been used in GISs with little reali-
zation by users concerning their categories. This section identifies some of
their usage with respect to type of relations.

Spatial Indexing

A spatial database often contains a large volume of data, so a lot of time is
required for the data retrieval process, particularly for non sequential data
access, for example during a query operation. This process can be speeded

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 63

up by heuristically limiting the search space in the database. We must
know roughly the location in the file that contains the data elements or re-
cords. Storing a bounding rectangle for a set of data elements can be used
as a method of giving a rough spatial index to a subset of the database. By
using the metric relation to compare the coordinate set of the data to be re-
trieved with the coordinates of two opposite corners of the bounding rec-
tangle, faster data retrieval can be achieved, because the search is limited
within a particular rectangle at the end. Bounding rectangles of many sub-
sets of a database may be further organized using a tree structure, further
speeding up spatial access. An example is the R-tree (Guttman, 1984;
Samet, 1990) which exploits the order relation to organize the 2D data and
allows the search to proceed from coarse to fine. Navigation in the tree
structure also helps avoid metric computation requiring a long access time,
so it dramatically speeds up the process. Other examples of spatial index-
ing using an order relation are quadtree and octree (Samet, 1990). Topol-
ogy can also be used for spatial indexing by storing the links (for example,
pointers) between data elements in the database directly. However, the
storage of such information is redundant to the storage of coordinate sets
based on metric relations. Problems of consistency between metric relation
versus topology or order relation arise. The consistency rules must be de-
fined and enforced to eliminate conflicts for any database operations that
may change the status of the database, for example to insert, delete or
modify a data element in the database. Examples defining and applying
consistency rules for spatial database can be found in Kufoniyi (1995).

Spatial Analysis

Two kinds of spatial analyses may be distinguished: query-based, making
preferential use of topological, and order relations, and computation-based,
relying heavily on metric and order relations. Spatial relationships like
‘touch’ or ‘disjoint’ can be expressed in terms of metric relations. Peuquet
(1986) has defined a relationship ‘touch’ by a distance equal to zero and
never less than zero at a single location. The relationship ‘disjoint’ may be
defined so that ‘the distance from any point of object A to any point of B is
greater than zero’ (Egenhofer, 1989). A distance relationship can be ex-
pressed in different forms, for example direction and proximity, which are
commonly used in spatial modelling. Based on some referential axes, dis-
tances can be used for georeferencing in the form of a coordinate tuple and
can be transformed into directions in terms of angularity. Discrete direc-
tions, for example north, east, south, west, can be used to express spatial
relationships (Alia and Williams, 1994). Direction may further define an

64 Chapter 4

orientation, for example ‘from-to’, useful for path finding in a network
structure. Proximity can be used to represent spatial relationships like
‘near’, ‘far’ or ‘within the distance of’, for example in the form of a buffer
zone, or distance tolerance. The distance tolerance always needs to be de-
fined for metric operation, because of the finite state of the computer,
which results in rounding-off errors. For example, intersection or touching
between two straight lines may be encountered and then recorded as topo-
logical relationships in the database, if the shortest distance between the
two lines is less than a predefined distance tolerance. Combining metric
and order relations is typically used for the elimination of short straight
line segments. The length of a straight line, that is the distance between its
two nodes, is computed and then the order relation < is used to compare it
with the predefined distance tolerance to decide on the deletion of this line.

Operations based on metric relationships (known as computational geome-
try) are time consuming if the data elements have not been organized in an
appropriate structure, lacking order or topology. However, most raster op-
erations, which are mostly simple and fast, are based on metric relation-
ships, because the data elements have already been organized into a strict
spatial order. Many relationships can be interpreted as order, for example,
in front/behind, larger/smaller, greater than/less than, under/over,
higher/lower, equal. For instance, the operator ≤ is spatially interpreted as
‘is contained in’ and can be used to answer a question like ‘what land par-
cels are inside the zone A?’

The use of topology has gained significant attention in GIS. It is used to
help the navigation between data elements in the database without using
sophisticated computational geometry. This is usually done by explicitly
storing the topology in the database which may be initiated manually by
human knowledge, or analytically derived by computational geometry (up
to some accuracy). Topological relations are translated into different types
of pointers from one data element to another and can therefore speed up
the searching operation, because the search space is dramatically limited.
For example, the incident relation ‘meet’ defined for polygons A and B
yields an arc C that is the result of the intersection between the boundaries
of A and B. The inverse relationship may be defined from the arc C to the
two polygons A and B as ‘left’ and ‘right’ of the arc respectively.

 meet(A, B) = A ∩ B = C;
 left(C) = A;
 right(C) = B

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 65

The ‘left’ and ‘right’ pointers are then stored in the database directly.
Navigating in the database from A to B can be achieved by starting from A
and then searching for B exclusively via C.

4.6.7 Representation of Spatial Objects and Relationships

Models of the earth and geo-spatial objects may be physically created; ex-
amples are a metal or plastic globe used for teaching geography, a plaster
magnet of an urban quarter. Creating a model of the earth in the computing
environment requires different modelling tools. For the vector type of
geoinformation, objects have to be represented in an appropriate form con-
venient for storage, analysis, or graphical display. Two levels of represen-
tation of spatial objects are widely used. The first has its roots in the con-
cept of cell complex and simplicial complex (Frank and Kuhn 1986). The
other is in the concept of graph theory. The real world objects are mapped
to different types of elements of the two representations, depending on the
level of abstraction, as explained in the following sections.

Fig. 4.8 Examples of (a) simplices and (b) simplicial complexes.
The hull of each simplicial complex is a cell-complex.

0-simplex 1-simplex 2-simplex 3-simplex

(a)

1-simplicial
complex

2-simplicial
complex

3-simplicial
complex

(b)

66 Chapter 4

Definition Level: Cell Complex and Simplicial Complex

Based on the terminology used in Moise (1977) and Giblin (1977), Frank
and Kuhn (1986) described two types of elements, namely complex and
simplex, that can be used for the representation of real world objects.

A formalization of this concept has been provided by Egenhofer (1989). A
complex constitutes a description of an object as a whole. Different types
of complexes are defined by the (internal) spatial dimensions of objects,
that is 0-cell (point-object), 1-cell (line-object), 2-cell (area-object), 3-cell
(volume-object), and so on. However, for any spatial dimension, there is a
simplest geometric figure that can represent an object. This type of geo-
metric figure is called a simplex. For example, every point (node) which is
a geometry of dimension zero, is a 0-simplex. For spatial dimension one, a
straight line segment is the simplest geometry, so it is a 1-simplex. Like-
wise, a triangle is a 2-simplex and a tetrahedron a 3-simplex in two and
three dimensions respectively. In general, an n-simplex is the simplest ge-
ometry of dimension ‘n.’ A mathematical definition of simplex is as fol-
lows:

Any simplex of dimension n, called n-simplex, is bounded by (n+1) geo-
metrically independent simplices of dimension (n-1) (Egenhofer et al.,
1989).

For example, a tetrahedron is a simplex of dimension 3, that is, a 3-
simplex. It is bounded by (3+1) = 4 triangles that are simplices of dimen-
sion 2. These four triangles are not components of each other and do not
coincide; that is, they are geometrically independent. A triangle, that is, a
2-simplex, is bounded by (2+1) = 3 edges. Likewise, an edge is a 1-
simplex bounded by two nodes that are 0-simplices. Figure 4.8 shows
some examples of simplices and simplicial complexes.

If a complex object is composed of a contiguous and finite set of non over-
lapping simplices, it is called a simplicial complex. For example, a line ob-
ject composed of a chain of straight line segments is a 1-simplicial com-
plex. A polygon composed of a set of triangles is a 2-simplicial complex.
The hull of a simplicial complex is a cell-complex. The concept of a sim-
plicial complex is crucial for our design of an integrated data model.

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 67

Description Level: Graph

A simplicial complex is a representation of geo-spatial objects at a defini-
tion level which still requires further elaboration. Understanding is usually
facilitated by making an idea perceptible. A graph representation provides
such a possibility. The elements of a simplicial complex can be mapped to
elements of a graph which allows the idea to be visualized.

The origin of graph theory is attributed to Leonhard Euler, the Swiss
mathematician, with his publication in 1736 of an answer to the question
known as the ‘Bridges of Königsberg’ (Finkbeiner and Lindstrom, 1987;
Devlin, 1994). It is interesting to note that the first use of a graph was to
solve a problem of a spatial nature. Graph theory has been applied in many
disciplines, for example, electrical engineering, artificial intelligence, in-
formation modelling. In geo-spatial modelling, graph theory has been ap-
plied to represent the topological structure of geographic databases, such
as in DIME (Corbett, 1979; Marble et al., 1984), TIGER, ARC/INFO
(1991), FDS (Molenaar, 1989). It is also applied in many parts of this re-
search. Corbett (1979) has extensively applied concepts of graphs to ex-
press the topological relationships between the cell complexes that are
elements of a cartographic model. Graphs have also been used as a tool to
assist spatial network analysis, such as finding the optimum path, or the
shortest path. This section reviews some fundamental concepts of the
graph.

Different graph elements have been provided for the representation of ob-
jects in the same way as elements provided by the concept of simplicial
complex. Traditional elements of a graph are node, edge and face. How-
ever, these are limited to 2D representation. Additional elements of a graph
are needed for the representation of objects that have a greater spatial ex-
tent than 2D; for example a ‘body’ element for a 3D object. In order to
compare the simplicial complexes and graphs, we first look at the defini-
tion of the graph using mathematics.

Definition of a Graph

A graph G is defined by an incident relation between two disjoint sets N
and E, where N is a non empty set of i nodes (N = {n1 , n2 , n3 , ..., ni })
and E is a set of j edges (E = {e1 , e2 , e3 , ..., ej }). If E is an empty set, a
graph is called an empty, or null graph. If both N and E are finite sets, a
graph is called a finite graph.

68 Chapter 4

An edge e is further defined by a set of two nodes {n1, n2 } with an adja-
cent relationship. These two nodes can either be the same, or different. If
an edge is incident with two nodes that are identical, this graph is called a
loop. A graph that contains no loop is called a simple graph. If a graph
contains a pair of nodes that are incident with more than one edge, the
graph is called a multigraph. Figure 4.9 show some example of such
graphs.

The adjacent relation can also be defined for a set of edges; the edges are
said to be adjacent if all of them are incident with the same node. Here, the
degree (or valence) of a node n of a graph can be defined by counting the
number of edges that are incident at n.

Fig. 4.9 (a) a graph, (b) a loop and (c) a multigraph

Types of Graphs

If every node of a graph is of the same degree, the graph is a regular graph.
An edge, a triangle, a tetrahedron and a cube, are examples of graphs of
this kind with nodes of degree 1, 2 and 3, respectively. A graph with m
nodes is a complete graph, denoted by Km, if each pair of distinct nodes is
joined by one edge.

The degree of a regular graph is comparable to the dimension number of a
simplex, as defined in the preceding section. A complete graph Km is
equivalent to a (m-1)-simplex. This comparison is shown graphically in
Figure 4.10.

N1

N2

E1 = (N1, N2)

N1

N2

E2 E3E1

N1

E1 = (N1, N1)

(a) (b) (c)

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 69

Fig. 4.10 Complete graphs and simplices

If a set of nodes of a graph G can be divided into two non empty and dis-
joint subsets M and N of m and n nodes respectively, such that an edge of
G connects with a node of M and a node of N, this graph is called a bipar-
tite graph. If each node of M has a distinct set of edges connecting every
node of N and vice versa, then G is a complete bipartite graph and is de-
noted Km,n (see Figure 4.11).

Fig. 4.11 Bipartite graphs (b) K3,3 (c) K1,5 or star graph. Only (b) and (c) are com-
plete bipartite graphs

A graph can also contain subgraphs. If G1 and G2 are graphs with {N1, E1 }
and {N2 , E2 } incident relationships of nodes and edges respectively, G2 is
a subgraph of G1 if and only if all nodes of N2 are nodes of N1 and all
edges of E2 are edges of E1.

Simplex 0 1 2 3 4 5

Complete K1 K2 K3 K 4 K5 K6

graph

Name Node Edge Triangle Tetrahedron

Graphics

n1 n2 n3

m1 m2

n1 n2 n3

m1 m2 m3

m1

n1

n2

n3n4

n5

(a) (b) (c)

70 Chapter 4

Similarity of Graphs

The similarity of graphs can be expressed more formally in terms of iso-
morphism and homeomorphism. Two graphs G = {N, E} and G' = {N', E'}
are isomorphic if and only if N and N' are one-to-one correspondent and E
and E' are also one-to-one correspondent.

To define the homeomorphism of two graphs, the concepts of subdivision
and contraction have to be considered. Let a graph G = {N, E} and an edge
e = {n1 , n2 }∈E, then a simple subdivision G' of a graph G can be obtained
by inserting a new node m of degree two on e, therefore between n1 and n2,
and replacing the edge e with two new edges incident to two pairs of nodes
{n1 , m} and {m, n2 }. If G' results from a sequence of one or more simple
subdivisions of G, G' is called a subdivision of G. Conversely, if a graph G
= {N, E}, and two edges e1 = {n1, n2 }, e2 = {n2 , n3 }∈E, then a contraction
of G can be obtained by deleting the node n2 (of degree two) and conse-
quently replacing e1 and e2 by the new edge e = {n1, n3 }. It is possible to
perform this kind of contraction for every node of degree two of a graph.
Subdivisions and contractions are inversions of each other.

The two graphs G and G' are said to be homeomorphic if they are isomor-
phic, or if G' is either a
subdivision or a contrac-
tion of G. The concept of
homeomorphism is useful
for the generalization of
some aspects of graphs.
Some examples of iso-
morphic and homeomor-
phic graphs are shown in
Figure 4.12.

An intuitive approach can
be used to verify the iso-
morphism of graphs: if
two graphs G1 and G2
have different numbers of
nodes or edges, or if none
of the nodes of G1 graph

Fig. 4.12 (a) Graphs that are isomorphic; (b)
Graphs that are homeomorphic to (a)

(a)

n1

n2 n3

n4

n5n6
n1

n2 n3

n4
n5n6

n1

n5

n3 n4

n2

n6

(b)

n1

n2 n3

n4

n5n6

n1

n2 n3

n4

n5n6

n1

n2 n3

n4

n5n6

are of the same degree as
any node of G2, then G1 and G2 are not isomorphic.

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 71

Connectivity of Graphs

One aspect of graphs frequently applied to spatial modelling is connected-
ness. A graph can be connected or disconnected. For a connected graph,
every edge belonging to a walk W that visits all the nodes and edges of the
graph also belongs to the graph, while the same kind of walk for a discon-
nected graph cannot be defined without introducing an extra edge that is
not an edge of the graph. It can also be said that a connected graph has on-
ly one component, while a disconnected graph has two or more disjoint
components. For example, a cadastral map may be regarded as a set of
graphs used to represent different objects, such as houses and land parcels.
If some individual houses situated as islands inside land parcels are con-
tained in the map, it can be thought of as a disconnected graph. In this
monograph, the number of disjoint components is expressed as the degree
of isolation. This aspect is also important in the generalization of Euler
characteristics of graphs.

Planarity and Non Planarity of a Graph

The planarity of the graph is also commonly applied for checking the in-
ternal geometric consistency in a 2D-based spatial model (see Laurini and
Thompson, 1993); for example, an edge must have two different nodes
stored in the same database, and a triangle must have three edges. By defi-
nition, a graph G is planar if and only if it is isomorphic to a plane graph
that can be drawn on a plane with no crossing edges. Another definition
states that a graph is planar if and only if it can be embedded on the sur-
face of a sphere (Wilson, 1985). The latter definition allows a planar graph
to be embedded in a 3D Euclidean space so that the edges that seem to
cross each other when embedding onto a plane can be placed separately
around the surface of a sphere.

The algebraic approach to verifying whether a graph is planar is by apply-
ing the Euler equality.

Theorem (Euler): Let G be a connected, plane graph with n nodes and e
edges. Then G should satisfy the equation

 n - e + f = 2

where f is the number of non overlapping regions separated by G. Note
that each face of a planar graph is bounded by a simple circuit if the face is
finite. The right side of the equation is called the Euler characteristic of a
planar graph.

72 Chapter 4

It is important to note that the outer (infinite) region has to be counted as a
face; otherwise, the formula becomes

 n - e + f = 1

Also, to cover a disconnected graph with i components, the Euler equality
has been generalized as follows (see also Wilson 1985):

Theorem (generalized form of Euler's theorem): Let G be a planar
graph having i components, n nodes, e edges, and f faces. Then G should
satisfy

 n - e + f = i + 1

The outer region should be counted only once. If it is not counted, then the
formula becomes

 n - e + f = i.

This generalization is equal to the summation of all results where the Euler
formula has been applied to each separate component.

Another way of verifying the planarity of a graph is through checking its
non planarity condition by applying Kuratowski's theorem.

Kuratowski's theorem: Any non planar graph contains a subgraph ho-
meomorphic to K5 or K3,3.

K5 is a complete graph with each node of degree 5; K3,3 is a bipartite com-
plete graph with each node of degree 3 (see Figure 4.10 and Figure 4.11
respectively).

Dual Graphs

The concept of a dual graph
is also applied in spatial
modelling. The most com-
monly known are the graphs
that represent Delaunay tri-
angulation and Thiessen
polygons (Delaunay 1934,
Thiessen 1911). Consider a
graph G that has been em-
bedded onto a plane. G has n
nodes, m edges and f faces
and G' has n' nodes, m'

Fig. 4.13 (a) Graphs and their geometric
duals that are isomorphic to graphs in (b)

(a)

(b)

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 73

edges and f ' faces. G' is the (geometric) dual of G if:

(i) n' = f, m' = m and f' = n and such that each node ni' of G' can be
mapped inside each face fi of G in a one-to-one correspondent man-
ner, and

(ii) each edge e' of G' crosses a corresponding edge e of G, but no other
edges of G, where e' joining two nodes of G', ni' and nj' that, respec-
tively, lie inside two faces of G, fi and fj both adjoining e.

Observe also that any graph dual to G is isomorphic to G'. However, if G
and H are isomorphic, G' and H' need not be isomorphic. Examples of
graphs and their duals are illustrated in Figure 4.13.

4.6.8 Spatial Data Models in GIS

Based on the conceptual model of the real world presented in section 4.6.3,
a number of spatial data models have been developed, for example DIME,
ATKIS, TIGERS. In geoinformation science, data models may be catego-
rized according to dimensionality, representation of space and thematic
representation as explained in the following sections.

Multi dimension

If the aspects of reality to be modelled involve objects of various dimen-
sions, the spatial model should provide the highest spatial dimension, so
that all objects can be accommodated. For example, the data model may
contain point, line, surface and body features whose dimensions range
from zero to three. This kind of data model is regarded as multidimen-
sional. The dimension number of the model is the highest dimension of the
objects it can contain. The 2D data model is the most commonly used at
present, but demands for 3D and 4D are increasing. The 3D data model
may be regarded as equivalent to the static world, without any change over
time. If the temporal component is also taken into account, the dimension-
ality of space is then increased to 4D, as found in the modelling of dy-
namic processes.

Tessellation

Tessellation is a complete and continuous subdivision of space into spatial
units that may be of either regular or irregular shape. The model of the real
world constructed by this approach may be regarded as a tessellation-based

74 Chapter 4

model. In 2D, we know several types of regular tessellations, for example
squares, rectangles, hexagons, equilateral triangles and so forth. Squares
are the most commonly used, for example for storage of digital images and
surface models. While for irregular tessellation, triangles and Thiessen
polygons are the most commonly used units. Triangular irregular networks
are also frequently used for the storage of surface models, while Thiessen
polygons are used to represent influence zones and the proximity of ob-
jects. Both irregular tessellations are important in this kind of work and are
used to design data models. We therefore elaborate here on the irregular
tessellations.

Two kinds of irregular tessellation are distinguished. The first is tessella-
tion by complex geometry; the second relies on simplex geometry (see sec-
tion 4.6.7 for the definition of simplex and complex).

Tessellation by Complexes

Tessellation by complexes is achieved by subdividing space into a set of
cell complexes, for example, polygons and polyhedrons. The most impor-
tant in this thesis is Dirichlet tessellation (Dirichlet, 1850), or Voronoi tes-
sellation (Voronoi, 1908), based on the proximity of objects. If objects are
represented by kernel points, a Voronoi region encompasses a set of points
closer to a kernel point than to any other point in the set. This kind of tes-
sellation can be applied to any dimension.

Figure 4.14 is an example of 1D Voronoi Tessellation applied along any
straight line connecting two points. The influent zone of each kernel point
covers the distance from the point up to the middle of each line emanating
from the point, and connecting to the other point. For example, between

Fig. 4.14 1D Voronoi
tessellation

A

B D

C

E

J

F G

H

I

Fig. 4.15 2D Voronoi
tessellation

Fig. 4.16 An example
of Voronoi polyhedron

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 75

Fig. 4.17 A network of
tetrahedrons.

the points A and C connected by a straight line, the influence zone of A is
expressed by the dark, solid part of the straight line AC, while the influ-
ence zone of C is expressed by the dotted part. Figure 4.15 is an example
of a 2D Voronoi tessellation, also known as Thiessen polygons (Thiessen,
1911). Voronoi polygons are shown in thick lines, while kernel points are
shown as small black circles. A 3D Voronoi polyhedron may look like
Figure 4.16.

Tessellation by Simplices

Tessellation by simplices is done by subdividing space into a set of simple
objects, for example triangles and tetrahedrons. For 2D, the tessellation by
triangles is known as a triangular irregular network. Its extension to 3D is
a tetrahedral network (Figure 4.18). Different kinds of TINs are distin-
guished by the extent to which they have been considered important in this
thesis (see chapter 6 for more details). Delaunay triangulation is the most
popular method for TIN construction. A large number of publications have
already discussed this topic in depth (Delaunay, 1934; Sibson, 1978; Tsai,
1991). With respect to graph theory, De-
launay triangulation and Thiessen poly-
gons (2D Voronoi) are geometric duals
and each can readily be derived from the
other. Figure 4.17 shows both Thiessen
polygons and a Delaunay triangulation
in solid lines and dotted lines respec-
tively. Likewise, Delaunay tetrahedral
network and Voronoi polyhedrons are
geometric duals. Figure 4.16 shows
lines emanating from the node inside the
Voronoi polyhedron; they are the edges

Fig. 4.18 Thiessen polygons and
Delaunay triangulation.

76 Chapter 4

of tetrahedrons.

Delaunay triangulation has been used to facilitate spatial computation, for
example in DTM for the derivation of contour lines, interpolation of height
at a given planimetry, and computation of slope and aspect.

Single-theme and Multi-theme

Two kinds of data models can be distinguished based on the representation
capability of a geometric element of the data model. If a geometric element
is part of the representation of only one real world object (of one thematic
class), the data model is regarded as a single-theme data model (Molenaar,
1989). If a geometric element is part of the representation of more than one
real world object (of more than one thematic class), the data model is re-
garded as a multi-theme data model (Kufoniyi, 1995).

Single-theme

Molenaar (1989) suggested a spatial data model for vector representations
of geo-spatial objects. What he called the formal data structure (FDS) of a
single-valued vector map (SVVM) geometrically abstracts spatial objects
are objects such as monuments, roads, rivers, forests and parcels to points,
lines and areas. A terrain feature is described by an identifier, its geometric
primitives (arc and nodes), and its (single) thematic class. Figure 4.19
shows the graph representation of this conceptual model. Although the co-
ordinates of every node can be 3D, the spatial data model provides only
2D topology. The FDS approach provides a highly disciplined approach to
geoinformation modelling. The data model is presented by a diagram and a
set of conventions that provide the rules for modelling. The conventions
help to prevent confusion during modelling and subsequent processes
when operations need to be applied to the data set and facilitate formulat-
ing consistency rules for updating a geo-spatial database.

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 77

Multi-theme

A multi-theme (or multi-valued) vector map (MVVM) refers to the in-
tegrated representation of geo-spatial objects from more than one theme in
the form of point, line and area feature types in a database. A graphical
representation of the multi-theme data model is shown in Figure 4.20.

The multi-theme data model extends the concept of single-theme by adopt-
ing the idea that many spatial objects can overlap by sharing the same sub-
space. In the data model they can share the same geometry, because reality
can be viewed differently by different observers, or for different purposes.
For example, soil and water can coexist at the same location during flood-
ing, or for the analysis of moisture content of the soil. The multi-theme
data model provides additional geometric data types to group the geomet-
ric primitives shared by more than one feature. Since this group belongs to
different features with different themes, it is said to have a heterogeneous
(thematic) property. The feature itself belongs to only one theme, so it is
said to have a homogeneous (thematic) property.

 (x, y)

Begin

End

Left Right

is in

Line Class Area Class Point Class

Line Feature Area Feature Point Feature

Node

Shape
Coordinates

Arc

is aPart of

Has Has

Belongs to Belongs to Belongs to

1:1 relations M:1 relations

Fig. 4.19 A single-theme data model (after Molenaar, 1989).

78 Chapter 4

Fig. 4.20 Data Model for Multi-valued Vector Maps (Kufoniyi, 1992)

4.7 Logical Design of Geo-spatial Model

The logical design defines all the data elements needed for the representa-
tion of each spatial object. It outlines the method for the translation of the
data model from the conceptual level to a logical level. Three kinds of
logical data models are commonly used in information science: hierarchi-
cal, network, and relational. The hierarchical structures are those tree-like
structures where a record is linked to another record via a ‘parent and
child’ relationship. Based on the strict ordering of relationships, the struc-
ture is an acyclic directed graph in which no recursive relationship is al-
lowed.

Less strict than the hierarchical is the network structure, because it allows
any kind of link between data elements, provided there are elements at
both ends of the link. The operations using network data structure are fast

Line Class Area Class Point Class

Belong to

Line Feature Area Feature Point Feature

Part-of

Arc Node

Shape Coordinates

Begin

End

Left Right

(x, y, z)

Shared Line Shared Area Shared Point
is-in

Part of Part of

Belong to Belong to

Has

M:1
relations

1:1
relations

Crosses

Represented
by

Represented
by

Represented
by

Has

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 79

and efficient, but the design, implementation and maintenance of this data
structure are rather difficult.

The relational structure is more closely related to natural ways of thinking.
Regardless of performance, relational structure offers the quickest and the
easiest way to logical design. Another important logical design which has
become popular during the last decade is based on the object-oriented ap-
proach. The object-oriented approach extends the hierarchical and network
structures by encapsulating related operations as additional attributes with-
in each record. Logical design based on the object-oriented approach is ra-
ther involved, since we must also take into account the related operations.
Only the relational and object-oriented approaches are reviewed here,
since they are used in the design of a unified data structure (UNS) in later
chapters.

4.7.1 Relational Approach

A relational structure is a collection of relationships between data elements
representing aspects of reality based on set or relational algebra (see Date,
1986; Howe, 1989; Martin, 1983). The logical design of a spatial model
based on the relational approach can be achieved by organizing the repre-
sentations of spatial objects and relationships between them into a set of
tables consisting of rows and columns (that is, records and fields). Figure
4.21 is an example of the relational data structure of the SVVM shown in
Figure 4.19.

Fig. 4.21 Relational data structure of SVVM (adapted from Kufoniyi, 1989)

Point, Line and Area feature tables contain relationships between feature
level and class level. Point, line and area features are represented by identi-
fiers, that is, PID, LID, AID, whereas classes are represented by PClass,

Area feature Line feature Point feature

Arc Node

AID AClass LID LClass PID PClass PAid PNode

BEG END Left Right ALid NID x y

80 Chapter 4

LClass and AClass in their respective tables. Neighbourhood relationships
between each arc (indicated by BEG and END nodes) and its left and right
area features are presented in the Arc table. The field ALid in this table in-
dicates to which line feature each arc belongs.

Since the relational data structure consists of several tables, a Cartesian
product— a set of possible combination of rows of different tables— is
used to further derive relationships between data elements across the dif-
ferent tables being joined together. For example, to know the coordinates
of the beginning and end nodes of an arc, the tables Arc and Node are
joined together. The search is carried out on the Cartesian product of these
two tables to find the match between the values of BEG or END with the
values NID. If the match is found, the coordinate X and Y are obtained.

It is important for this kind of data structure for all relationships to be op-
timized to prevent anomalies occurring with updating. Normalization is the
optimization process that can be carried out stepwise, that is, from the first
to the fifth normal form. In general, the third normal form is found to be
acceptable. Several approaches for normalization exist, for example, non
loss decomposition, entity-relationship approach (Chen, 1983), depend-
ency diagram (Smith, 1985). The last mentioned is considered to be the
most intuitive approach.

Normal Forms

The first normal form (1NF) is obtained after eliminating repeated groups.
The second normal form (2NF) is obtained by elimination of the non iden-
tifier attributes which are not functionally dependent on the whole key.
The third normal form (3NF) requires the elimination of all the functional
dependency between non key attributes. The fourth normal form (4NF)
deals with multi-valued dependency that occurs when an attribute value
can be inferred from another record. The fifth normal form (5NF) deals
with the joint dependency that occurs when some facts are stored twice in
the same table. This situation may be regarded as a result of joining two
pairs of attributes in a record with one attribute in common. Hawrysz-
kiewyc (1991) discusses and provides examples of this issue.

Smith’s Normalization

Normalization is commonly achieved by decomposing a preliminary table
into first, second, third, fourth, and fifth normal forms; in this way, several
normalized relationships in the form of tables are obtained. This seems,

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 81

however, to be a very tedious task. Smith (1985) proposed a more attrac-
tive approach, whereby tables are composed from a dependency diagram.
If the procedure is followed correctly, the database tables obtained are then
fully normalized. The steps can be summarized in five phases:

1. Identifying all the data elements
2. Constructing dependency statements
3. Mapping from dependency statements to dependency diagram
4. Composing relational tables from the dependency diagram
5. Improving the handling of the relational table by introducing a

surrogate key if necessary.

Roessel (1986) has demonstrated the applicability of this method to a spa-
tial database. The same approach has also been used by Kufoniyi (1989),
Bouloucos et al., (1993), Ayugi (1992), Pilouk and Tempfli (1992), and
Chhatkuli (1993) because it helps clarify and creates more understanding
about spatial relationships. The normalization would also be useful for the
transition into object-oriented database structure, where the same kinds of
relationships have to be represented. This approach will be described in
later chapter.

4.7.2 Object-oriented Approach

The object-oriented approach was developed about two decades ago, start-
ing from the developments of the object-oriented programming languages
Simula 67 (Dahl et al 1970) and Smalltalk (Goldberg and Robson 1983).
Object-orientation has been built up from the idea of encapsulating data
and operation, and processing the data together. The confusion about
which data must be processed by which procedure is thereby avoided. Fur-
thermore, computer codes need to be reused, since an algorithm may be
applied to different types of data in different applications. The object-
oriented approach provides mechanisms allowing economic reuse of a
computer code by extending the code to accommodate additional types of
data without a major reprogramming effort. Moreover, it also provides ab-
straction mechanisms to natural model spatial objects.

Encapsulation

This is a mechanism tying together the attributes describing the state of the
object and the operations retrieving information about the object, or changing

82 Chapter 4

the state of the object. These operations are also known as an object's be-
haviour, method, and dynamic properties. Encapsulation provides the ob-
ject with the control determining which attributes and behaviours would be
private properties and which is accessible to the public. Encapsulation can
ensure that an operation is applied to the right object, thus preventing am-
biguity during operation. This is also known as a type-safe operation.

Classification

Each object needs to be organized into a certain class. Objects with the
same kind of properties and behaviours should be placed in the same class.
Each object is said to be an instance of a class. A class is a place for defin-
ing the specification of an object. A class is said to be an abstract data type
(ADT) in the sense that we have an opportunity to create new data types
that fit our abstraction about a real world object.

Inheritance

When an object has been defined, the inheritance mechanism permits the
propagation of the properties and behaviours to lower level objects in the
same hierarchy. The propagation from one object to another object is al-
lowed if the two objects have ‘parent’ and ‘child’ relationships. The child
inherits all the properties and behaviours from the parent through a class
mechanism. The inheritance is activated by deriving a new class from the
existing class. If the new class is derived from only one existing class, it is
known as single inheritance. It is called multiple inheritance if the new
class is derived from more than one existing class. The inheritance makes
the existing class reusable and thus significantly saves time in redesigning
a new class, provided that the new and existing classes have something in
common. If the inheritance is defined at the logical design stage, it is
called static inheritance. If the inheritance needs to be defined during the
construction of spatial model, it is called dynamic inheritance (Weiskamp
and Flamig 1992). Dynamic inheritance is needed when multiple represen-
tation of an object is required and the representation is not known prior to
the construction of the spatial model. For example, a city may be repre-
sented as a point, or as an area feature highly dependent on the user. To
make the logical design flexible, the type of representation can only be de-
cided upon during the construction of the spatial model.

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 83

Generalization and Specialization

If two or more classes have many properties and behaviours in common, a
more general class can be created to become their parent. Conversely,
when deriving many new classes from an existing class, each class may
have, in addition to the parent, more specific properties and behaviours.
The former scheme is generalization and the latter is specialization. These
two mechanisms permit the streamlining of classes, making them easier to
maintain. Generalization and specialization create a class hierarchy using
an inheritance mechanism. The generalized class exists at the higher levels
of the hierarchy, while the more specialized class exists at the lower levels
of the same hierarchy. The complexity of objects increases from higher to
lower levels of the hierarchy.

Aggregation

The design of a class needs to include many data types and behaviours. An
aggregation process is involved. Each data type aggregated into a class
may be either system or user defined. Different existing classes may be
aggregated to build up an aggregated class. Objects of existing classes are
components of a composite object in the aggregated class. The relationship
between each component and the composite object is of the type part-of.
The aggregated class does not inherit properties or behaviours from its
component classes; neither is it a parent of each component class. The
properties and behaviours of each component are normally inherited from
their respective parents. Relationships between components are well de-
fined. Each component is necessary for the constitution of the composite
object. The composite object cannot be independently constructed. The
aggregated class should have its own behaviours. The behaviours of the
components are normally suppressed by the aggregated class.

An example of an aggregated class is the object ‘car’. It is composed of
objects from the classes wheels, engine, steering wheel, and so forth. A car
does not inherit properties or behaviours from, say, the wheels or the en-
gine. A car resembles neither a wheel, nor an engine. A car is not complete
if the component wheel, or engine, is missing.

An example in GIS can also be given. A line feature is a composite object
consisting of a list of nodes. These nodes must be arranged in proper order;
each pair of nodes defines a straight line segment that constitutes the ge-
ometry of the line feature. If the nodes are badly arranged, or if one of
them is missing, the line feature cannot be correctly constructed.

84 Chapter 4

Association

In many cases, an object can be a container, or a collection, of many other
objects. The association defines a membership relationship between a
group, or a set, of lower level objects (members) with a higher level ob-
ject—the container. Relationships among member objects are not always
clearly defined, but the relationship between each member object and the
container must be clearly defined. The association is useful for the design
of container classes, for example, array, linked-list, stack, or queue. The
member objects need not be of the same class. Although the container in
computer science is commonly used to contain the same type of objects, as
for example in an array of integers, in reality a container can contain many
different objects. Two kinds of container exist: homogeneous and hetero-
geneous. A container is complete in itself and can be independently con-
structed without the member objects. In other words, a member object
need not constitute, nor be part of, the container. For example, an arc con-
tainer may be an array containing a set of arcs. This set of arcs does not
constitute the container. Whether or not this set, or subset, of arcs consti-
tutes a line feature is not important for the container. The container’s only
interest is whether an arc resides within the container or not. With respect
to this point, a container’s own behaviour lies very much in the manage-
ment of the membership of objects. The behaviours of each individual
member object are normally suppressed, while the group behaviours are
promoted.

The use of association and aggregation are easily confused, because both
of them relate to many objects at a lower level. We can consider the case
of a line feature as an example to decide whether association or aggrega-
tion of a set of arcs is more suitable. In the spaghetti model, where the rela-
tionship between any two consecutive arcs of a line feature is not consid-
ered important, the line feature may be treated as a collection of arcs. Here,
the association may be adequate. In a topological model like SVVM,
where traversing along the line feature to support network analysis should
be possible, aggregation is more suitable because the relationships between
two consecutive arcs are also considered important.

Polymorphism

Polymorphism allows two or more classes to use the same attribute name
without confusing about the class to which the attribute belongs. This is
done by associating an object with its attribute. For example, an area fea-
ture and a line feature can have the same attribute ‘length.’ Length, as an

THE FUNDAMENTALS OF GEO-SPATIAL MODELLING 85

attribute of the area feature, is the perimeter of the area boundary, whereas
it is simply the length of the line feature. Another kind of polymorphism is
called parametric polymorphism, whereby the class name is used as pa-
rameter to make the general design specific (Pohl 1993). The general de-
sign of a class is known as the template class. General dynamic behaviour
can also be provided as a template function.

4.8 Summary

In this chapter, we have reviewed some fundamental and theoretical con-
cepts related to spatial modelling. These concepts are important for the un-
derstanding and development of a spatial model in different phases. Two
phases of spatial modelling are distinguished: design and construction. The
maintenance phase, keeping the constructed spatial model valid, however,
is not covered in detail here. On the basis of the scope of involvement by
different disciplines in the design of spatial model which Molenaar
(1994b) describes, only the conceptual and logical design are within the
scope of geo-information theory. The detailed internal design is left for
computer scientists; it is therefore outside the scope of this book.

For the conceptual design, mathematical concepts about space and relations,
that is metric, order, and topology are considered important. Concepts of
simplicial complexes and the theory of graphs are used to represent real
world objects in the spatial model. Existing spatial data models resulting
from different conceptual design approaches, that is, SVVM, MVVM, ir-
regular tessellation by simplices, are considered fundamental to the model-
ling approach used here. For the logical design, relational and object-
oriented approaches are fundamental to the design of spatial data structures.

The elements of spatial theory provide a sound basis for the design of an
integrated geo-spatial model that permits the representation of both deter-
minate and indeterminate spatial objects. SVVM, for example, is a model
representing determinate objects. Simplicial complex and Delaunay trian-
gulation provide fundamental concepts for the representation of indetermi-
nate spatial objects. The mathematical concepts provided in this chapter
can be used to support the conceptual design for both FDS and integration
approaches. FDS can be formulated using cell complexes, or simplicial
complexes. For example, a face is a 2-cell complex which can be decom-
posed into a 2-simplicial complex by using the Delaunay triangulation
method. The same mathematical concepts can be used to evaluate existing
data models, whether or not the provision of the elements for the integrated
modelling of reality is sufficient.

Chapter 5 THE CONCEPTUAL DESIGN

This chapter elaborates on the development of an integrated vector data
model as a basis for the implementation of a core database in a 3D geoin-
formation system. The tessellation approach is used with the aim of ex-
tending the query space as offered in the object-based approach. The tes-
sellation approach accommodates a wider range of complex spatial
analyses that involve both computation (for example, interpolation, slope,
aspect, visibility, shading, surface area, volume) and simultaneous topo-
logical navigating in the database (for example, selection, indexing, sort-
ing). The combination of irregular tessellation and the application of to-
pology, as found in FDS and described in chapter 4, can offer such an
opportunity. They are therefore adopted to strengthen integrated 3D mod-
elling. We first elaborate the 2.5D model which integrates terrain relief and
terrain features. Since this data model is mathematically sound, it can be
readily extended to cover aspects required for 3D modelling. To ensure
forward compatibility, so that the 3D spatial model can be incorporated
into a higher dimensional spatial model in the future, a generalization for
nD is also presented. The properties of the integrated data model are dis-
cussed within the framework of simplicial complexes and graph theory.
This discussion leads to the definition of a simplicial network as well as its
Euler characteristics.

5.1 TIN-based (2.5D) Data Model

The first stage of development of the integrated data model aims at a struc-
tural integration of the representation of terrain relief and terrain features,
which is regarded as 2.5D. The terrain relief represents the geometry of the
earth’s surface, where terrain features are 2D representations of spatial ob-
jects. Terrain relief and terrain features information in the forms of DTM
and GIS, respectively, are familiar tools for solving spatial related prob-
lems, decision making and mitigating hazards, such as erosion and land-
slides, agricultural land reformation. Since the integrated database should
fulfil the requirements of a typical DTM and GIS (see chapter 4), it must
ensure all the functionalities of the two systems.

To design the integrated terrain relief and features data model, TIN and 2D
FDS have been selected, for the reasons indicated below.

88 Chapter 5

1) Efficient interpolation

Two main underlying principles adopted in the design of this data model
are proximal ordering and decomposition into primitives. Digital terrain
relief modelling requires interpolation, which in turn requires the proximal
relationships among the given points to be known. As DTMs are in most
cases based on non-gridded data, adjacency can best be expressed by tri-
angulation. Triangulation of surveyed points in order to interpolate contour
lines for topographic maps has in fact been applied long before the advent
of computers. Thiessen (1911) polygonal tessellation and its geometric
dual, the Delaunay triangulation (see chapter 4, Pilouk and Tempfli 1992),
are of special interest. This is through their establishment of a natural
neighbour structure facilitating the interpolation process where different
methods of interpolation (see Tempfli, 1982) can be applied.

2) Fidelity and embedding of constraints

One way to increase the fidelity of surface representation is to incorporate
skeleton data, such as ridge and drainage lines, in the DTM. Different ap-
proaches have been suggested, for example, by composite sampling — the
combination of selective and progressive sampling (Makarovic, 1977) and
constrained triangulation (Pilouk, 1992). The latter is capable of maintain-
ing skeleton data without losing their original geometry. Constrained tri-
angulation permits the embedding of such geometric components of skele-
ton features as the components of triangles; for example, a line feature can
be decomposed into a series of straight line segments and be embedded as
edges of triangles. The same approach as for the skeleton data can be ap-
plied to embedding geometric components of other terrain features in the
TIN structure without losing their original shape as obtained from observa-
tion or measurement. These features represent the human knowledge about
the aspects of reality which should be recorded correctly into the database
and so their information must be maintained. As a by-product, the fidelity
of surface representation increases when more terrain features are incorpo-
rated into the TIN. This capability of embedding the terrain features is one
of the most important aspects in the design of the integrated data model.

3) Locality

Locality is an important aspect of a very large data set where a large
amount of time is obviously required to process the whole data set, as in
data retrieval, calculation, and updating. As pointed out in the literature,
TIN permits local editing and updating of elevation data without the elaborate

THE CONCEPTUAL DESIGN 89

re-interpolation necessary in a grid-based structure (see Fritsch and
TIN structure that only involves

1994; Midtbø, 1993).

4) Convex shape

A triangle is a convex polygon. Its simplicity reduces uncertainties and
consequently requires less testing, thereby offering significant advantages
in many graphic and geometric operations where fast computing speed is
crucial. Some examples of these operations are the inclusion of a point in a
polygon, as in colour filling, and rasterization, intersection with a line and
a polygon, as in hidden-line/surface removal, and finding the direction of
the surface normal vector to determine the reflection of light and surface
visibility.

5) Finiteness and adaptability

The number of vector elements that are the components of a triangle is
fixed. It is, therefore, easy to control the consistency of its network. Never-
theless, a triangle’s finiteness does not prevent the adaptability of the net-
work to the terrain roughness, because the network of triangles can be den-
sified without limit. The irregular shape of a triangle permits its adaptation
to the irregular distribution of observations or measurements.

6) Compatibility with FDS

TIN has typically been used for the representation of surface geometry.
Since it is vector-based, creating the links between geometric components
and features that have links to thematic components in a similar way to
that defined in FDS is highly feasible (Molenaar, 1989).

Based on the above reasons, the design of the integrated terrain relief and
features data model is as shown in Figure 5.1.

Pfannenstein, 1992a). The local editing of
necessary data has been demonstrated in (Jackson et al., 1989, Pilouk et al.,

90 Chapter 5

Triangle
2-Simplex

Arc
1-Simplex

Node
0-Simplex

X, Y, Z

 Node1
 0-Simplex1

 Triangle1
2-Simplex1

Part of Part of Is a

Belongs to Belongs to Belongs to

Surface Feature
2-Complex

Point Feature
0-Complex

 Node2
 0-Simplex2

Surface
Class

Line
Class

Node
Class

Line Feature
1-Complex

 Triangle2
2-Simplex2

GG-Link GF-Link FC-Link

Fig. 5.1 The proposed integrated ‘DTM-GIS’ data model.

5.2 Properties of the TIN-based Data Model

The TIN-based integrated data model can be considered as the extension of
the 2D FDS of SVVM on the geometric level. The geometric primitive tri-
angle is added, and a data model obtained which serves the purpose of the
unified handling of all surface related data. In comparison with 2D FDS,
some links presented in 2D FDS are redirected in order to streamline the
links. An area feature is no longer linked to arc directly, but to its geomet-
ric primitive triangle. As a result of the decomposition, an area (surface)
feature then consists of one or more triangles. Arcs are linked to triangles
through the left and right links, labelled in Figure 5.1 as Triangle1 (2-
Simplex1) and Triangle2 (2-simplex2), respectively. The vertices of a trian-
gle can be found through the arc-triangle and arc-node links. Each node is
represented by one coordinate triple which consists of one X, one Y, and
one Z. Since all nodes are assigned 3D coordinates, a plane equation can
be derived from the three vertices of a triangle. This allows further deriva-
tion of information relating to terrain relief, such as elevation at any point,
slope, and aspect. Additionally, the real-time visualization is no longer
limited to orthogonal views (the traditional map). Popular visualizations,
such as perspectives and stereo views - even with shaded relief- surface

THE CONCEPTUAL DESIGN 91

illumination or texture mapping, can be generated more efficiently, and can
be combined with a cursor to access information from the ‘3D graphics.’

Following the FDS approach described by Molenaar (1989), the integrated
terrain relief and features data model consists of three levels, described in a
top-down manner:

1) Class level
This level consists of thematic class data types that maintain information
related to the application, or the manner in which the features described in
the next level will be used. For example, a line-feature as a road, a surface-
feature as an industrial zone, a point feature as a city. The classes are mu-
tually independent.

2) Feature level
This level consists of three feature data types: point-feature (0-complex),
line-feature (1-complex), and surface-feature (2-complex). Each level im-
plies the type of geometry to be used for its geometric representation. This
level provides the interface to the user. Each feature type maintains a fea-
ture-class (FC) link to exactly one class data type.

3) Geometry level

This level consists of three geometric data types, that is, node (0-simplex),
arc (1-simplex) and triangle (2-simplex). Each of them maintains a geome-
try-feature (GF) link to a feature it composes, so that a node may represent
a point-feature, an arc (which is a straight line) may be a part of a line-
feature, and a triangle must be a part of a surface-feature (Figure 5.1).
Within the same level, there are also geometry-geometry (GG) links be-
tween two related geometric primitives; that is to say, an arc has two nodes
- a beginning and an end - and it has two triangles - left and right. The
node type maintains the georeference to the external space in the form of a
coordinate tuple.

Note that the links represented as arrow-headed lines in Figure 5.1 only in-
dicate that those links are possible, but not necessary. For example, some
arcs are not part of any line-features and some nodes are not point-features.
Nevertheless, every node must be a vertex of a triangle and every arc must
be an edge of a triangle. In comparison with FDS, a node may be isolated
and an arc need not be an edge of a polygon. This interpretation will be-
come clear in chapter 6, where the mapping into a relational database
structure is explained in detail.

92 Chapter 5

In terms of simplicial complexes (Egenhofer et al 1989), this data model
consists of 0-simplices (nodes), 1-simplices (arcs), and 2-simplices (trian-
gles), with the smallest data elements of 0, 1, and 2 dimensions respec-
tively.

With respect to the transition from an object-based data to a tessellation-
based model, the following requirements defining a decomposition scheme
must be fulfilled:

1. A surface-feature (2-complex) is composed into a set of triangles (2-
simplicial complexes).

2. A line-feature (1-complex) is composed into a set of contiguous arcs
(1-simplicial complexes) that are in fact triangle edges.

3. A point-feature (0-complex) needs no decomposition; it is simply a
node (0-simplex) that is a triangle vertex.

Following the syntactic approach of Molenaar (1994b), the above decom-
position scheme can be mathematically described as follows:

 PartN [SN , CN]

 where,
 PartN = part of relation at dimension N
 SN = simplex of dimension N
 CN = (complex) object of dimension N

A decomposition process that guarantees the above requirements must be
made available to facilitate this. Delaunay and constrained triangulation
can serve this purpose. The process is described in more detail in chapter 7.
By assigning 3D coordinates (x, y, z) to every 0-simplex, the mapping of
this model in 3D metric space becomes meaningful in, for example, visu-
alization, or the calculation of slope or surface area. Consequently, various
topological operations and the derivation of topological relationships can
be readily performed by using the basic binary relationships (Egenhofer

The data model presented in Figure 5.1 only accommodates single-theme
GIS, which does not permit the sharing of the spatial region of different
objects of the same dimension in a database. So the next step of the devel-
opment of the integrated data model is to add the capability of handling
multiple themes stored in the same database. The multi-theme concept de-
veloped by Kufoniyi (1995) described in chapter 4 can be adopted. By
adding a sub-feature level that consists of three new data types between

et al 1989), because all objects are said to be decomposed into minimal
spatial objects of their dimensions.

THE CONCEPTUAL DESIGN 93

geometry and feature level, the more integrative data model as presented in
Figure 5.2 is obtained (Pilouk and Kufoniyi 1994).

This further developed data model enables the sharing of spatial regions
and the simultaneous representation of terrain relief. It is achieved by redi-
recting the links from geometry level to the sub-feature level instead of di-
rect links to the feature level. So, instead of being an explicit part of the
feature, each geometric primitive is then a part of a sub-feature and thus
indirectly a part of a feature. The sub-feature is in fact an aggregation of
the geometric primitives. The sub-feature level ensures the connection to
the theme by maintaining the ‘part of’ links to the data types at the feature
level. Observe that the sub-feature data types represent overlapping spatial
regions being shared by more than one feature of different themes. Each
sub-feature can then be a part of more than one feature and therefore has a
heterogeneous thematic property, while the feature itself is homogeneous,
because it represents only one object of reality that has a unique property
across its spatial extent (see chapter 4). A feature still belongs to only one
thematic class, so it does not lose its property of being single-valued. This
convention also suits data acquisition which is usually carried out per
theme.

Fig. 5.2 Integrated data model for DTM and multi-theme GIS (after Pilouk and
Kufoniyi, 1994)

Point Class

Coordinates

Begin

End

Left

Right

(x, y, z)

Belongs to

Line Class

Belongs to

Part of

Area Class

Heterogeneous
 Area
 2-complex

 Triangle
2-simplex

Part of

Belongs to

Part of Part of

Represents M : 1 relationships Represents 1 : 1 relationships

 Homogeneous
Line Feature
 1-complex

 Homogeneous
Point Feature
 0-complex

 Homogeneous
Area Feature
 2-complex

Heterogeneous
 Line
 1-complex

 Arc
1-simplex

 Node
1-simplex

Heterogeneous
 Point
 0-complex

94 Chapter 5

The model implies the following decomposition scheme:

1. Each area feature is decomposed into a set of subareas; each subarea
is still a 2-complex and is therefore further decomposed into a set of
triangles.

2. Each line feature is decomposed into a set of lines; each line is still a
1-complex and is therefore further decomposed into a set of arcs.

3. No decomposition is needed for any point feature; it is considered as
a 0-complex and a 0-simplex (that is to say, a node) at the same time.

The concept of Delaunay and constrained triangulation can still be used for
the decomposition into primitives, but, only after the decomposition of fea-
tures into sub-features for which the typical overlaying process in GIS can
be used.

5.3 TEN-based Data Model

The TIN-based data model presented in section 5.1 is limited to applica-
tions that consider single-valued surfaces (see Figure 1.1). It has no capa-
bility to serve applications that need to deal with multi-valued surfaces, or
solid bodies. Applications in geology, geo-science, architecture, civil engi-
neering, urban planning, facility management and environmental monitor-
ing all require full 3D spatial information, in which an integrated data
model that can represent multi-valued surfaces and solid objects is needed.

The TIN-based data model has to be extended to facilitate handling of 3D
objects in particular, in order to stretch the capability of the integrated data
model in both dimensionality and computability. The triangular network
can be generalized into a tetrahedral network. Delaunay triangulation can
also be generalized for tetrahedronization (see chapter 7).

As discussed earlier, the general properties of a tetrahedron are the same as
a triangle’s; each is a simplex of its dimension and convex. Some impor-
tant properties of their networks, for example, locality, fidelity and capa-
bility of embedding features are also similar. The latter indicates that the
geometry of the features can also be maintained within the tetrahedral net-
work (TEN), which means that TEN also has the capability of maintaining
human knowledge about the real world characterised as follows:

1. A body-feature is a contiguous set of tetrahedrons that is a subset of
the TEN.

2. A surface-feature is a contiguous set of triangles that are faces of tet-
rahedrons.

THE CONCEPTUAL DESIGN 95

3. A line-feature is a contiguous set of arcs that are edges of tetrahe-
drons and triangles.

4. A point-feature is a vertex of at least one tetrahedron.

The above statements may be treated in addition to the set of conventions
for 3D FDS; for example, self-overlapping or self-intersecting of a feature
is not allowed.

For the aspect of interpolation, the bivariate interpolation methods, for ex-
ample, the weighted average (Tempfli, 1982), can be generalized into tri-
variate; that is to say, values are estimated such that p = f(x, y, z).

For better understanding, we shall first discuss the single-valued variant as
shown in Figure 5.3. Compared with the TIN-based data model in Figure
5.1, the main differences (apart from the number of data types) are the GG-
links between the arc and the triangle. In Figure 5.1, the arc maintains the
left and right links to the triangle, while in Figure 5.3, the triangle provides
three links to the arc. These three links differentiate arcs as three triangle
edges. This differentiation is needed to normalize the many-to-many link
from triangle to arc into three many-to-one links; that is to say, a triangle
has arc X as ‘edge-1’, while arc X can be an ‘edge-Y’ (Y = 1 to 3) of many
triangles in 3D space. The left and right links from the arc to the triangle
are eliminated since in 3D, more than two triangles can share one arc. The
geometric type ‘triangle’ is comparable to ‘face’ in 3D FDS. However,
each triangle has only three edges and three nodes, so it is not difficult to
determine the triangle’s orientation by ordering the three edges. This order
can be subsequently recorded for each instance of the triangle data type
and does not consume additional storage. Such order makes it possible to
omit the edge data type that keeps the information about face orientation
that is important in 3D FDS, where the number of edges and nodes of the
face data type can be varied. Storing the direction of each arc in the edge
data type helps avoid the determination of face orientation, which may re-
quire considerable processing time. The orientation of each triangle helps
to further determine the first and the second tetrahedrons situated on the
positive and negative normal of the triangle respectively. (These are com-
parable to the left body and right body of a face in 3D FDS).

96 Chapter 5

Fig. 5.3 Tetrahedron-based data model

A more precise description of the TEN-based data model can be given in
terms of FDS together with simplicial complexes.

1. An instance of the node (0-simplex) data type has x, y, and z coordi-
nate types as its attributes. It may be a part of an instance of a point
feature (0-complex) type.

2. An arc (1-simplex) data type is defined as a straight line; it is there-
fore composed of only two instances of the type node, one on each
end. It may be defined as a part of an instance of a line (1-complex)
feature type.

3. A triangle (2-simplex) data type is composed of three arcs. It is
shared by two tetrahedrons (3-simplices), one on each side of its
plane (called the 1st and 2nd tetrahedron respectively). A triangle
may be a part of a surface feature.

4. A tetrahedron (3-simplex) is a part of a body (3-complex) feature.

Observe that the tetrahedron data type does not carry any geometric de-
scription (triangular faces, edges, vertices), since its components can al-
ways be found from the geometric links with the triangle data type, being
either the first or the second tetrahedron of a triangle (comparable to the
left or right body in FDS terminology).

To extend from single-theme to multi-theme, we must augment the sub-
feature level by one more data type - the sub-body - and redirect all necessary

Body Feature
 3-Complex

 Triangle
 2-Simplex

 Arc
 1-Simplex

 Node
 0-Simplex

X, Y, Z

Tetrahedron
 3-Simplex

 Body
Class

 Node1
 0-Simplex1

Tetrahedron1
 3-Simplex1

Part_of Part_of Part_of Is_a

Belongs_to Belongs_to Belongs_to Belongs_to

 Arc1
1-Simplex1

Surface Feature
 2-Complex

Point Feature
 0-Complex

Tetrahedron2
 3-Simplex2

 Arc3
1-Simplex3

 Arc2
1-Simplex2

 Node2
 0-Simplex2

Surface
 Class

 Line
Class

Node
Class

Line Feature
 1-Complex

THE CONCEPTUAL DESIGN 97

links in the same way as for the TIN-based data model. The TEN-based
version that is capable of handling 3D objects with multiple thematic rep-
resentations is shown in Figure 5.4.

Fig. 5.4 Multi-theme tetrahedron-based data model.

5.4 Generalized n-dimensional Integrated Data Model

Observing the similarities between the data models shown in Figures 5.1,
5.2, 5.3 and 5.4, we can establish a general concept of an integrated data
model based on irregular tessellation which may be useful for the study of
multi-dimensional spatial information. In the different stages of the devel-
opment, proceeding from TIN-based to TEN-based, both single-theme and
multi-theme can be formalized. Theoretical support to this generalization
is given by:

1. The FDS, which clearly represents relationships between the real
world objects and how components of their representations are related
in the spatial model.

2. The simplicial complexes, which help simplify the spatial objects and
systematically and consistently map them into the representations in
the model.

3. Graph theory, which can be used to rigorously describe the represen-
tations and which also provides the mechanism to ensure the integrity

Body Feature
 3-Complex

 Triangle
 2-Simplex

 Arc
 1-Simplex

 Node
 0-Simplex

X, Y, Z

Tetrahedron
 3-Simplex

 Body
Class

 Node1
 0-Simplex1

Tetrahedron1
 3-Simplex1

Belongs_to

 Arc1
1-Simplex1

Surface Feature
 2-Complex

Point Feature
 0-Complex

Tetrahedron2
 3-Simplex2

 Arc3
1-Simplex3

 Arc2
1-Simplex2

 Node2
 0-Simplex2

Surface
 Class

 Line
Class

Node
Class

Line Feature
 1-Complex

Shared Body
 3-Complex

 Shared Surface
 2-Complex

 Shared Point
 0-Complex

 Shared Line
 1-Complex

Part_of

Belongs_to Belongs_to Belongs_to

Part_of Part_of Part_of

Part_of Part_of Part_of Part_of

98 Chapter 5

of the overall representations, that is, the irregular network in this
case.

An important benefit of having a theoretical basis for the tessellation-based
integrated data model as a basic standard is that the compatibility across
different dimensions can be established, thus:

1. It is more convenient for the user to decide what kind of data model

to select; single-theme or multi-theme, and in what dimension. The
user can instantiate a requirement as an input parameter to the generic
data model and obtain the suitable model for the application. Users
need not worry whether the databases at hand are based on or limited
to a certain dimension. The generic data model makes possible the
handling of data across different dimensions.

2. The user can navigate in different databases from one dimension to
another dimension via the compatible links in various network struc-
tures, for example, from body, tetrahedron, triangle, arc, node and
coordinates, provided that other databases also adopt the generic data
model. In this sense, the generic data model can be regarded as dy-
namic.

3. The more efficient organizing, sharing and exchange of data and the
elimination of disparity and redundancy lead to significant cost reduc-
tions. Avoidance of duplicate data collection is also feasible if the
core database is widely accessible (Shepherd, 1991).

Prior to the design of the generic version of the integrated data model, a set
of definitions must first be introduced.

5.4.1 The Definitions

We limit our consideration to geometric modelling and recall the mathe-
matical description of spatial objects following the theory of combinatorial
topology described in chapter 4. This theory classifies spatial objects ac-
cording to their spatial dimensions defining the spatial extent of objects.
The simplest form of a geometric element for each dimension is called a
simplex. For example, a node is a 0-simplex, an arc (a straight line consist-
ing of two nodes) a 1-simplex, a triangle a 2-simplex, and a tetrahedron a
3-simplex.

Spatial position is defined by linking nodes to coordinates. Based on the
concept of minimal objects and the notion that a minimal object in a higher
dimension is composed of a specific number of minimal objects from

THE CONCEPTUAL DESIGN 99

lower dimensions, the following definitions can be given. (Note that some
definitions in chapter 4 are repeated here for convenience.)

Definition 5.4-1: The metric dimension is defined by the number of line-
arly independent axes denoted by the coordinate tuple (Anton 1987).

For example, nodes are defined by coordinate pairs in 2-dimensional
space, by (x, y, z) in 3-dimensional space, and by an n-tuple in n-
dimensional space.

Definition 5.4-2: Any simplex of dimension n, called an n-simplex, is
bounded by (n+1) geometrically independent simplices of dimension (n-1)
(Amstrong, 1983; Egenhofer et al., 1989; Kinsey, 1993) and n+1 simplices
of dimension 0 (which are in fact the vertices of Kn+1 complete graph; see
chapter 4; Finkbiner and Lindstrom, 1987).

For example, a tetrahedron (3-simplex, K4 complete graph) is bounded by
four triangles (2-simplices) and four nodes (0-simplices); a triangle (2-
simplex, K3 complete graph) is bounded by three arcs (edges of a triangle,
1-simplices) and three nodes; an arc (1-simplex, K2 complete graph) is
bounded by two nodes. Arcs are geometrically independent if they are not
parallel and none of them is of length zero.

Definition 5.4-3: Confining analysis to an n-dimensional metric space,
two n-simplices are always incident at a simplex of dimension n-1.

100 Chapter 5

Fig. 5.5 Examples of two n-simplices incident at an (n-1)-simplex in Rn

The above definition can be turned into a component relation that is being
shared. For example, in 1-dimensional space (x ≠ 0), a node can be shared
by at most two straight-line segments (whereas in two or higher dimen-
sional space, a node can be shared by an infinite number of arcs); in a 2-
dimensional space, an arc can be shared by only two triangles; in 3-
dimensional space, a triangle can be shared by only two tetrahedrons.
Similarly, in a 4-dimensional space, a tetrahedron can be shared by only
two 4-simplices (see Figure 5.5 for the graphic illustration).

Note that the above definitions only hold for simplices; they do not hold
for complexes.

Given the above three definitions, a generic n-dimensional data model can
be derived following the logic we observed when extending our model
from 2D to 3D. Figure 5.6 illustrates the nD data model. The generic data
model can be illustrated elegantly, and it has the advantage that objects of
dimensions higher than three need not be given names. The term ‘sim-
plicial network’ is, therefore, introduced to refer to the nD network. The
definition of a simplicial network can be given:

Definition 5.4-4: An n-dimensional simplicial network is a network of
simplices of different spatial dimensions, ranging from 0 to n-dimensions.

R1

Two 1-simplices incident at a 0-simplex

1 2 1 2

1 2 1 2

R2

Two 2-simplices incident at a 1-simplex

R3

Two 3-simplices incident at a 2-simplex
R4

Two 4-simplices incident at a 3-simplex

THE CONCEPTUAL DESIGN 101

Definition 5.4-5: A finite set of simplices constitutes a complex that repre-
sents a spatial object.

A simplicial network should also fulfil the generalized Euler characteristic
described in section 5.6.

Let us recall the similarities between simplices and complete graphs men-
tioned in chapter 4 (see Figure 4.10). The definition of a simplicial net-
work can be given in terms of graph theory.

Definition 5.4-6: A simplicial network is composed of a set of complete
sub-graphs. The simplicial network itself need not be a complete graph. Ei-
ther a simplicial network or each complete sub-graph can be, but not nec-
essarily, a planar graph.

5.5 Single-theme and Multi-theme

The characteristic of a single-theme data model is that an instance of a fea-
ture type belongs to only one thematic class, and an instance of a geomet-
ric type (node, arc, triangle, tetrahedron) can be defined as a part of only
one instance of a feature type (per theme). For a multi-theme data model,
an instance of a feature type still belongs to only one thematic class, but an
instance of a geometric type can be defined as a part of one or more in-
stances of a feature type.

Within the multi-theme concept, two types of complexes must be distin-
guished. A homogeneous complex (feature) is a set of contiguous sim-
plices of the same dimension, all relating to only one theme. A heteroge-
neous complex (overlapping part) is a set of contiguous simplices of the
same dimension that relate to more than one theme. A heterogeneous com-
plex is part of two or more homogeneous complexes. By introducing ho-
mogeneous and heterogeneous complexes, we can solve the problem of
‘many-to-many’ relationships between geometric primitives and features.
The formal definition of a multi-theme integrated n-dimensional data
model can thus be given.

Definition 5.4-7: A spatial object is represented by a complex. A complex
is a finite set of simplices. Two or more complexes can overlap; their in-
tersection yields a non-empty but closed and contiguous set of simplices
that are embedded in the network structure.

Figure 5.6 shows the nD data model for the single-theme concept. Figure
5.7 shows the corresponding multi-theme data model.

102 Chapter 5

Fig. 5.6 A generalized n-dimensional data model for single-theme

The multi-theme data model can be seen as an extension of the single-
theme data model, as it accepts objects that share the same spatial region.
This extension means two or more objects can have overlapping parts
(body, surface, line, point). A typical example is of layers of soil and a
volume of ground water sharing the same spatial region.

5.6 Euler’s Characteristics

This section presents the consistency aspect of the integrated data models
with respect to the graph theory that is crucial for ensuring the integrity of
a database structured by the simplicial network formation. The Euler char-
acteristics described below can be used to design the consistency checking
mechanism. General 2D-based GIS applied Euler’s equality, which has
been proven to work efficiently for planar graphs. In the case of simplicial
networks, the TIN-based model still complies with Euler’s equality, since
it is limited to 2D topology. For the tetrahedral network, even though a 3-
simplex (K4) is a planar graph, its combination may yield a non-planar one.
Moreover, the objects of dimension higher than 4 are clearly non-planar.
Therefore, this section presents a more general solution that can apply to

Part_of

Belongs_to

(n-1)-dimensionn-dimension

Part_of

n-simplex1

n-simplex2

Class

(n-1)-sim plex

Belongs_to

n-complex

Class

n-simplex

Part_of

Belongs_to

(n-2)-dimension

Class

(n-2)-sim plex

(n-1) simplex2

(n-1) simplexn

(n-1) simplexn+1

(n-1) simplex1

Part_of

Belongs_to

Class

 0-sim plex

 n-tuple
 Coordinate

0-dimension

(n-2)-com plex 0-complex(n-1)-com plex

THE CONCEPTUAL DESIGN 103

n-dimensions. The first part reviews Euler’s equality for planar graphs as a
basis. The second part introduces the generalized concept, the formaliza-
tion and some proofs.

Fig. 5.7 Generic multi-theme data model for n dimensions

5.6.1 Euler’s Equality

We recapitulate Euler’s equality for a planar graph as described in chapter
4 by the following equation:

 n + f = e + i

where,
 n = number of nodes
 f = number of faces
 e = number of edges
 i = degree of isolation

The degree of isolation indicates how many isolated regions are encoun-
tered. If the outer region is included in the graph, then it is also counted as
a face; correspondingly, i should be increased by one. The above formula
is applicable to the TIN-based data model.

Part_of

Belongs_to

(n-1)-dimensionn-dimension

Part_of

n-simplex1

n-simplex2

Class

(n-1)-sim plex

Belongs_to

Homogeneous
n-complex

Class

n-simplex

Part_of

Belongs_to

(n-2)-dimension

Class

(n-2)-sim plex

(n-1) simplex2

(n-1) simplexn

(n-1) simplexn+1

(n-1) simplex1

Part_of

Belongs_to

Class

 0-sim plex

 n-tuple
 Coordinate

0-dimension

Part_ofPart_of Part_of Part_of

Homogeneous
(n-2)-com plex

Homogeneous
0-complex

Heterogeneous
n-complex

Heterogeneous
(n-1)-com plex

Heterogeneous
(n-2)-com plex

Heterogeneous
0-complex

Homogeneous
(n-1)-com plex

104 Chapter 5

5.6.2 The Generalized Euler Equality

To support the statement that simplicial networks of 3D and higher dimen-
sions are non-planar, Kuratowski’s theorem about the non-planarity of the
graph is used.

Kuratowski’s theorem: A graph is planar if and only if it contains no sub-
graph homeomorphic to K5 or K3,3 (Kuratowski, 1930; see also chapter 4).

The above theorem implies that if a graph contains a sub-graph that is ho-
meomorphic to K5 or K3,3, then it is a non-planar graph.

We recall from chapter 4 that two graphs are homeomorphic (equivalent) if
and only if they are isomorphic, or both of them can be obtained from the
same graph by inserting or deleting nodes of degree two (a node that has
only two edges connecting to it). The degree of a node is defined by the
number of edges that meet at that node.

K5 is a complete graph (Figure 5.9) where K3,3 is a complete bipartite
graph. Recall again that a complete bipartite graph is a graph where the
nodes are divided into two subsets (for example, a and b in Figure 5.8),
such that each node in each subset is connected to every node of the other
subset, one edge per pair of nodes.

Fig. 5.8 Examples of complete bipartite graphs, Ka,b

By conducting a simple proof as graphically shown in Figure 5.9, it is clear
that a tetrahedral network can contain sub-graphs isomorphic to K5 or K3,3.

K3,3 K3,3 K5,3

a1

a2

a3

b1

b2

b3

a1

a2

a3

b1

b2

b3

b1

b2

b3

a1

a2

a3

a4

a5

THE CONCEPTUAL DESIGN 105

Fig. 5.9 Sub-graphs of a tetrahedral network that are isomorphic to K5 or K 5,5.
The thick lines indicates edges on the left side

The existence of such sub-graphs proves that a tetrahedral network is a
non-planar graph and this also holds for any simplicial network of a higher
dimension. The non-planarity implies that Euler’s equality needs further
generalization for it to be capable of application to the non-planar graph.

Sommerville (1929) has expressed an equation, similar to Euler’s equality,
for 3-cell complexes:

n - e + f - c = 1

where c = number of 3-cell complexes (see also Pigot, 1992). Pilouk et al.,
(1994) have presented the following equation applicable to a tetrahedral
network:

Nodes + Triangles = Arcs + Tetrahedrons + 1

Note that the outer region is not included in the above formula. The variant
for n-dimensions is:

0simplices + 2simplices + ... + ksimplices = 1simplices + 3simplices + ... + lsimplices + 1

A

B

C D

E

F

A

B

C D

E

A

B

C

E

D

F

A

B
C

D

E
K3,3

K5

K3,3 as a subgraph of a
tetrahedral network

K5 that is isomorphic
to a tetrahedral
network

106 Chapter 5

where: k is even; (0 ≤ k ≤ n)
 l is odd; (1 ≤ l ≤ n)
 0simplices = number of nodes

2simplices = number of edges (arcs),
 ksimplices = number of simplices of dimension k
 lsimplices = number of simplices of dimension l

The above equation can be used to verify
whether the simplicial network is well con-
structed. The imbalance indicates that the
simplicial network is ill-formed, that is to
say, having either free points, or intersect-
ing edges, or faces presented in the net-
work (Figure 5.10).

Another variant of the generalized Euler equality for an n-dimensional
complex is:

0complexes + 2complexes + ... + kcomplexes = 1complexes + 3comolexes + ... + lcomplexes + i

where:
 k is even; (0 ≤ k ≤ n)
 l is odd; (1 ≤ l ≤ n)
 i = degree of isolation

It is important to note that the degree of isolation must be determined cor-
rectly. There are different kinds of degree of isolation indicating the num-
ber of isolated objects. The isolated objects to be determined are:
 ● nodes with no connection to any arcs,
 ● arcs (a dangling arc does not fall into this type),
 ● faces (a dangling face does not fall into this type),
 ● bodies, for example, holes in a body.

For n-dimensions, isolated objects of dimension 4 and above should also
be included in i. Nevertheless, the type of isolation must be specified as a
convention for each data model, so that an imbalance indicates that the
convention is not met, and the system can issue a warning to the user. In
the case of the integrated data model based on the simplicial network, the
degree of isolation is equal to 1, because no isolated object other than the
network itself is allowed.

The above formulae can be rewritten in a general form:

2D 3D

Fig. 5.10 Examples of ill-formed
simplicial networks.

THE CONCEPTUAL DESIGN 107

for one simplicial network with no isolation:

for a simplicial network with I degree of isolation:

where,
n = dimension number
Nk = number of k-simplices
Ik = number of isolated objects or sets of mutually connected objects.

A mathematical proof of the above equation is given in Appendix A.

The developed simplicial network data model is based on four important
concepts:

• formal data structure
• a constrained Delaunay network
• simplicial complexes
• graph theory.

FDS helps define representations of real world objects with respect to their
relationships with geometric and thematic components. A constrained

oncept for representing spatial units
suitable for computation where existing knowledge represented in a form
similar to FDS can be considered to be the constraints. So, the computation
result can be adapted to the situation in reality. Simplicial complexes
and graph theory provide sound mathematical foundations for the sim-
plicial network data model and rigorously support the generalization of
this concept.

5.7 Discussion

Delaunay network provides the basic c

108 Chapter 5

Both the direct and indirect representation of real world objects can be ac-
commodated by the simplicial network data model. It permits refinement
of the knowledge about the reality by deriving new information from exist-
ing facts presented as the direct representation type. The locality property
of a simplicial network permits the adding of new facts into the spatial
model without undue disturbance of the model as a whole. The local prop-
erty applies to the elimination or updating of components of the model that
no longer represent reality well. The adaptability, a property of an irregular
network, makes modelling the variation aspect of the reality possible.
Since the model is based on the complete tessellation of space, there are
various means of navigation within the model, for example, using metric
computation, order, or topology. With respect to the volume needed for
storage of this kind of spatial model, the amount of data is expected to be
less than that needed to store the components of a 3D spatial model sepa-
rately. For example, storing terrain relief and terrain features in two sepa-
rate data sets implies storing redundant elements where two representa-
tions coincide. The finiteness and convexity properties of each element
of the model help simplify many operations. The data model complies
with the generalized Euler characteristics, which can be used for check-
ing logical consistency of the model with respect to its geometrical as-
pect. This consistency checking and some of its examples will be dis-
cussed in chapter 8.

Chapter 6 THE LOGICAL DESIGN

With the conceptual design of the integrated data model (IDM) presented
in the previous chapter, we proceed to the logical design stage aiming at
the unified data structure (UNS). This chapter explains the translation of
the IDM into two kinds of UNS, using the relational and object-oriented
approaches respectively. In contrast with the conceptual model, which is
independent of the type of system and computing platform, the data struc-
ture comes closer to the implementation stage. The type of database man-
agement system (DBMS), which depends on a hierarchical, network, rela-
tional or object-oriented concept, has to be selected. The object-oriented
approach contains the concepts of network and hierarchy and so demands
more implementation effort. Not only do all objects, but also the methods
of accessing each object, need to be carefully defined. Each DBMS type
may only be available on one specific computing platform. The advantages
and disadvantages in terms of speed and efficiency, ease of implementa-
tion, system maintenance and upgrade, and compatibility, have to be
weighed to select an appropriate system for the implementation.

Since the purpose of this chapter is to describe the approach to translating
the IDM presented in chapter 5 into UNSs, only a few single-theme vari-
ants of the IDM have been selected as examples. The same approach can
be followed for the other variants.

6.1 Relational Approach

The reasons for using the relational approach include:
• ease of implementation; users can concentrate on the application rather

than concern themselves about data access, since this is taken care of in-
ternally by the DBMS.

• flexibility; the data structure can be readily extended or modified to de-
lete or add more attribute columns, change the number of characters in a
string data type, and so forth.

• availability of various database management systems (Oracle, Informix,
dBASE, Interbase) on different computing platforms and operating sys-
tems (PC with DOS, Windows, or UNIX; workstation, mini or main-
frame with UNIX, VMS, or Windows).

• availability of software libraries and APIs (ODBC) and query languages
(SQL, QBE).

110 Chapter 6

• possibility of importing and exporting data to other systems, such as a
spread sheet, or a word processor.

An important reason for choosing the relational approach is its maturity in
providing a rigorous procedure for mapping a data model to a data struc-
ture. This process is known as normalization (see chapter 4). It is the
mechanism ensuring the data integrity of the database in the face of updat-
ing anomalies. We obtain a set of skeleton tables here, using Smith’s nor-
malization procedure as presented in Roessel (1986), Kufoniyi (1989),

6.1.1 Relational Data Structure for TIN-based Model

Following the five steps of Smith’s normalization described in chapter 4, a
TIN-based relational data structure is constructed as follows:

6.1.1.1 Constructing Dependency Statements

This step starts with the identification of the data fields to be stored in the
database. In the data model in Figure 6.1, data fields are encompassed by
ellipses, and the relationships are the labels on the lines connecting pairs of
ellipses. The relationship between each pair of fields is analysed and then
translated into a dependency statement. The list of dependency statements
is given below (Pilouk and Tempfli, 1993).

1. A surface feature, which is identified by a SID, belongs to one
SCLASS surface feature class.

2. A line feature, which is identified by a LID, belongs to one LCLASS
line feature class.

3. A point feature, which is identified by a PID, belongs to one PCLASS
point feature class and is represented by one PNODE node number.

4. Each NODENR node has a position given by one X x-coordinate, one
Y y-coordinate, and one Z z-coordinate.

5. An arc is identified by ARCNR; it has one Node1 starting node and
one Node2 ending node, and at most one Tri1 triangle on its left side
and at most one Tri2 triangle on its right side.

6. An ARCNR arc represents at most one ALID line feature.
7. A triangle is identified by TRINR and represents at most one TSID

surface feature.

Bouloucos et al., (1990), Ayugi (1992), Pilouk and Tempfli (1992),
Chhatkuli (1993). The relational approach also helps clarify and create
the understanding that spatial relationships called for when establishing
object-oriented data structure in which the same kinds of relationships
have to be represented.

THE LOGICAL DESIGN 111

6.1.1.2 Mapping from Dependency Statements

From the above list of dependency statements, the corresponding depend-
ency diagram can be drawn as in Figure 6.1. The attributes (data fields) are
shown within bubbles. A line between two bubbles indicates a relationship
between one data field and the other. A single-headed arrow indicates that
it is a single-valued dependency; a double-headed arrow indicates a multi-
valued dependency. More than 1 bubble covering a data field indicates that
not all the relationships may apply to every instance of the data field. For
example, an ARCNR should have a left and a right triangle (tri1 and tri2
respectively) but may not be part of a line feature. A number adjacent to a
line between two bubbles indicates the dependency statement number. The
indicator of the number of differently named fields having a common field
type (eg TRINR, tri1, and tri2 are of the same field type representing trian-
gle identifiers) is the domain flag; it is shown as a number in a small trian-
gle (see Figure 6.2).

6.1.1.3 Composing Relational Tables from Dependency Diagram

Tables are first composed from the single-valued dependencies and then
from the multi-valued dependencies. A bubble with no arrow pointing to it
becomes a primary key field in one table. A target bubble becomes a data
field in the same table. A bubble pointed to by an arrow and having a do-
main flag also becomes a
foreign key field in the same
table. In the case of multi-
valued dependency, all the
data fields with emanating
arrows comprise primary
keys. Special care should be
taken here if there are more
than three fields comprising
a primary key; the table may
not be practicable, since it
would result in bad response
times. The solution is to
split the table into two by in-
troducing a surrogate key
acting as the primary key in
one table and as a foreign key in the other. The following tables result (see
also Figure 6.1):

LID lclass SID sclass PID pclass pnode

ARCNR node1 node2

NODENR x y z

TRINR tsid

tri1 tri2

ARCNR alid

LINE SURFACE POINT

ARCLINE TRISURF

ARC

NODE

Fig. 6.1 TIN-based relational data structure

into Dependency Diagram

112 Chapter 6

R1: NODE (NODENR, x, y, z)
R2: ARC (ARCNR, node1, node2, tri1, tri2)
R3: TRISURF (TRINR, tsid)
R4: ARCLINE (ARCNR, alid)
R5: POINT (PID, pclass, pnode)
R6: LINE (LID, lclass)
R7: SURFACE (SID, sclass)

For convenience, the relational tables are labelled here by codes R1 to R7.
Each table has a table name shown outside the bracket. Inside the bracket
is the primary key, with its name shown in capital letters, and the set of at-
tributes. The tables R1 and R2 represent geometric primitives and all the
necessary topological relationships; for example, an arc has two nodes for
its start and it end end, and two triangles on the left and the right side. R3
and R4 represent part-of relationships between geometric primitives and
features; they are the same as R5, except that R5 also represents the the-
matic classification resulting from the one-to-one relationship between a
node and a point feature. R6 and R7 represent thematic classes for line and
area features.

6.1.2 Relational Data Structure for a TEN-based Model

The TEN-based data model can be mapped into a relational data structure
by following the same procedure as for a TIN-based model. Most of the
dependency statements are the same as for the TIN-based model. Some
statements, however, have to be modified and some additional statements
are required.

The following dependency statements yield the following:

1. A body feature, which is identified by a BID, belongs to one BCLASS

body feature class.
2. A surface feature, which is identified by a SID, belongs to one

SCLASS surface feature class.
3. A line feature, which is identified by a LID, belongs to one LCLASS

line feature class.
4. A point feature, which is identified by a PID, belongs to one PCLASS

point feature class and is represented by one PNODE node number.
5. An arc is identified by ARCNR and has one NODE1 starting node and

one NODE2 ending node.
6. Each NODENR node has a position given by a one X x-coordinate,

one Y y-coordinate, and one Z z-coordinate.

THE LOGICAL DESIGN 113

7. A triangle is identified by TRINR and represents at most one TSID
surface feature; it has at most two tetrahedrons TET1 and TET2 at-
tached to it, one on each side of the facet. It has at most three edges,
EDGE1, EDGE2 and EDGE3.

8. An ARCNR arc represents at most one ALID line feature.
9. A tetrahedron is identified by TETNR and represents at most one

TBID body feature.

Fig. 6.2 Dependency diagram of the tetrahedron-based data model

Figure 6.3 shows the dependency diagram derived from the above list of
dependency statements.

The following ten relations (tables) are obtained from the normalization
process.

R1: Node (NodeNr, x, y, z)
R2: Arc (ArcNr, node1, node2)
R3: Triangle (TriNr, tet1, tet2, edge1, edge2, edge3)
R4: Tetra (TetNr, tbid)
R5: TriSurf (TriNr, tsid)
R6: ArcLine (ArcNr, alid)
R7: Point (Pid, pclass, pnode)
R8: Line (Lid, lclass)

ALID

4

8
3

6

5
5

ARCNR

NODE1 + NODE2

TET1 + TET2

SCLASS

2
2

SID

3
3

LID LCLASS

7
2

TRINR

TSID

BCLASS

1
1

BID

EDGE1+EDGE2+EDGE3
5

7

7

Domain Flags

Domain of body object identifiers

Domain of line identifiers

Domain of node identifiers

Domain of arc identifiers

1

2

3

4

5

Domain of tetrahedron identifiers6

4 4

4

PID

PCLASS

PNODE

64

NODENR X+Y+Z

96

TETNR TBID

1

Domain of surface object identifiers

114 Chapter 6

R9: Surface (Sid, sclass)
R10: Body (Bid, bclass)

Fig. 6.3 A TEN-based relational data structure

R1, R2 and R3 can be regarded as geometry tables. R4, R5 and R6 are ge-
ometry-feature tables. R7 is a geometry-feature-class table. R8, R9 and
R10 are class tables. Note that table R4 maintains no other information
than a tetrahedron number (TetNr) and an identifier of the body feature
(TBID) to which it belongs. We can only search for the geometric compo-
nents of a tetrahedron of interest via the R3 (Triangle) table by matching
the attribute value of the tetrahedron (TetNr) with either attribute value of
tet1 or tet2. Once the match is found, the next step is to get each of the
three attribute values of edge1, edge2 and edge3 of the R3 table as a key to
search for the match with the ArcNr in the R2 (Arc) table. If the match is
found, we must get the attribute values of node1 and node2 and use each of
them to search for the match with the NodeNr in the R1 (Node) table to get
the coordinates x, y, and z for each respective node. In this way, we can
use this database for 3D interpolation and for responding to a wide range
of queries.

BID

node1 node2 NODENR x y zARCNR

BODY

ARC NODE

bclass

TETNR tbid

TETRA

TRINR

TRIANGLE

tet1 tet2 edge1 edge2 edge3

LID

LINE

lclass PID

POINT

pnodepclassSID

SURFACE

sclass

TRINR tsid

TRISURF

ARCNR alid
ARCLINE

THE LOGICAL DESIGN 115

6.1.3 Relational Data Structure for an n-dimensional Data Model

Since the generic integrated n-dimensional data model has been presented
in the previous chapter, mapping into the corresponding n-dimensional
UNS will not be further elaborated here. The procedure followed in the
TIN-based model can also be applied to a TEN-based data model. This
section is restricted to the end results, included here for the sake of com-
pletion.

By observing the number of tables in the TIN-based and TEN-based UNSs
and applying mathematical induction, it is possible to intuitively predict
the number of tables necessary for the n-dimensional UNS. There are n
geometric tables, n geometry-feature tables, 1 geometry-feature-class table
(i.e., for the link between node and point feature and class), and n feature-
class tables. The set of relational tables will resemble the following:

Geometry
G1 (S0Nr, Crd1, Crd2, Crd3, ..., Crdn);
G2 (S1Nr, S01, S02);
G3 (S2Nr, S11, S12, S13)
G4 (S3Nr, S21, S22, S23, S24)
...
Gn-1 (S(n-2)Nr, S(n-3)1, S(n-3)2, S(n-3)3, ..., S(n-3)(n-1))
Gn (S(n-1)Nr, S(n-2)1, S(n-2)2, S(n-2)3, ..., S(n-2)n, Sn1, Sn2)

Geometry-feature
GF1 (S1Nr, c1id)
GF2 (S2Nr, c2id)
GF3 (S3Nr, c3id)
GF4 (S4Nr, c4id)
...

GFn (SnNr, cnid)

Geometry-feature-class
GFC (C0id, C0class, S0Nr)

Feature-class
FC1 (C1id, C1class)
FC2 (C2id, C2class)
FC3 (C3id, C3class)
FC4 (C4id, C4class)
...
FCn (Cnid, Cnclass)

116 Chapter 6

where Crdi is a coordinate component,
Si represents the simplex or geometric primitive of i dimension,
Ci represents the complex or feature of i dimension.
Sij represents the number j of i-simplex
Cij represents the number j of i-complex

6.2 Object-oriented Approach

Although a relational database approach yields several advantages, certain
important aspects are still lacking, which the object-oriented approach
promises to fulfil. These aspects are:

• the relational approach is based on the Cartesian product. The joint op-
eration on several tables causes a long response time, particularly for
large amounts of data commonly found in GIS. The object-oriented ap-
proach includes the hierarchical and network data structures that can ef-
ficiently represent topology and facilitate navigation among different
elements in the database, and so is likely to have a better response time.

• a more complete and precise control over each individual object, espe-
cially where considerable ambiguity exists, as may happen when there
are many different types of objects stored within the same database.

• re-usability and extendibility of database management API (Application
Program Interface) with no modification to the source code. These re-
quirements mostly come from the community of developers, where the
source code needs to be protected and hidden from users for commercial
reasons. The API is implemented and compiled into a computer object
code that encapsulates the objects, their attributes and accessing meth-
ods together in a form similar to software libraries, where only function
names, methods of calling and function parameters are provided. The re-
usability and extendibility of the API are provided through the in-

ject-oriented compiler, such as C++, Smalltalk, or Object Pascal.

This section reports a study applying the object-oriented concept to the
structured geoinformation based on the integrated data model. The focus is
on the definition of objects and the design of object class hierarchies.

An object-oriented approach provides many alternatives to the design and
implementation with respect to different abstractions of the real world.
Worboys et al., (1990), Kainz and Shahriari (1993) have presented similar
designs in which the thematic class is defined as a parent that passes all

heritance mechanism. Users can further develop the API to fit their
requirements by deriving new classes from existing classes, using an ob-

THE LOGICAL DESIGN 117

aspects onto the geometric class. Their approach may be considered too
rigid if multiple representations are needed. Multiple representations re-
quire different types of geometry to be chosen for the representation of an
object, depending on the level of abstraction. If the geometric representa-
tion for an object has already been fixed at the design stage, it would not
be possible for the user to select any other kind of geometric representa-
tion. If for example it is decided to represent a road as a line-feature, it
would not be possible to represent the road later as a band, as might be
needed for abstraction on a larger scale, since the band is an area-feature.
The whole hierarchy would have to be redesigned for every different level
of abstraction, which could result in many classes. This approach may
therefore be regarded as an ad hoc solution.

The selected approach follows as strictly as possible the conceptual model
defined by (Molenaar, 1989). This conceptual model offers a natural way
of handling geoinformation, especially when considering the aspect of ob-
ject creation that relates to data acquisition. This approach does not fix the
geometric representation of a feature at the design stage. It divides the
components of a feature into two hierarchies. The inheritance hierarchy is
used for the thematic attributes and the aggregation hierarchy for the geo-
metric attributes. These two hierarchies are only combined at runtime (the
construction phase of the spatial model), thus allowing the user to select
different types of geometric representation for a feature. The requirement
for multiple representations can thus be fulfilled. Comparing the two ap-
proaches, the latter is more versatile, but it is more difficult to implement
and requires highly skilled software engineering.

In the following sections, the translation of the IDM into object definitions
follows, using the abstraction mechanisms of the object-oriented paradigm
presented in chapter 4, namely classification, specialization, aggregation,
and inheritance. The top-down approach starts from the most generalized
class and proceeds to the most specialized class. Part of the implementa-
tion to UNS is illustrated using the C++ object-oriented programming lan-
guage.

6.2.1 Object-oriented Definition of a Spatial Object

Recall that the abstraction of real world objects consists of two parts:
geometric and thematic (see Figure 6.4). The geometric component con-
tains information about shape, location and topology, while the thematic
component contains human knowledge about other properties of the ob-
ject (colour, name, ownership, function, and so forth). When applying a

118 Chapter 6

Geometric
object

Thematic
object

Feature object

Figure 6.4 Object-oriented definition of a real
world object. Feature object encapsulates
geometric component and thematic compo-
nent.

concept using the relational approach, the geometric and thematic attrib-
utes are linked through a feature identifier (see section 6.1.1). In an object-
oriented approach, the geo-
metric and thematic compo-
nents are realized as objects
that can be tied together by a
‘feature object’ through the
encapsulation mechanism.

Since the object-oriented ap-
proach uses terminology in a
similar way to our normal de-
scriptions of reality in the
conceptual design stage, it is
important to note that the dis-
cussion in this section is lim-
ited to the logical design
stage in object-oriented pro-
gramming terminology. The term ‘class’ is an abstract data type (ADT),
whereas the term ‘object’ is used to refer to an instance of a class in object-
oriented programming terminology. The terms class and ADT are used in-
terchangeably.

6.2.2 Object-oriented Design Based on IDM

Classification

Molenaar (1993) provides a rationale for arriving at an object-oriented de-
sign. We are concerned with the logical design of an object-oriented data
structure which defines a scheme for the storage of information about the
spatial object. The representation of a real world object can be translated
into three ADTs; ADTFeature, ADTGeometry, and ADTTheme. The
ADTFeature class at the top level of the hierarchy aggregates the
ADTGeometry and ADTTheme classes at the lower level. The ADTFea-
ture class defines the storage of a representation of a real world object as a
whole. The storage of geometric and thematic descriptions about the real
world object are defined by the ADTGeometry and ADTTheme classes re-
spectively. A feature is an instance of an ADTFeature class. Likewise, a
geometric object is an instance of an ADTGeometry class and a thematic
object is an instance of an ADTTheme class.

Each of the three ADTs is considered as a general class with its own hierar-
chy and which still has to be defined further. A general class is subdivided

THE LOGICAL DESIGN 119

into more specific classes to any desired level of refinement. The common
status and behaviour of subclasses characterize their general class. Given
the three general classes, we have to deal with three class hierarchies
which have to be related at an appropriate time based upon the user’s re-
quirements and context (Molenaar 1993). Among the three general classes,
the ADTFeature class has a ‘primus inter pares’ position. It must be con-
sidered to be at a higher level, since it constitutes and defines an aggrega-
tion hierarchy from the other two classes.

Thematic class

The ADTTheme class defines a data structure for the storage of thematic
information which is highly related to the application domain in geoinfor-
mation, such as land use, transportation networks, water bodies, and the
like. This class consists of information about common attributes and be-
haviours of descendant thematic objects. The purpose of having this class
is to facilitate the definition of an inheritance hierarchy, minimizing re-
dundancies and allowing re-usability between thematic information.

There follows a basic ADT for the storage of thematic information.

class : ADTTheme
description : general representation of thematic components of a

 spatial object
parent : none
attributes : code, name, texture, colour, ...
methods : create, delete, show code, modify code, show name,

 modify name, ...
constraints : ...

Geometric class

The geometric description of a spatial object is stored and maintained in
the ADTGeometry class. This class defines a hierarchy of geometric primi-
tives which comprise the geometric descriptions of a spatial object. The
class provides a general data structure for the storage of components, de-
scribing the shape of each feature, its georeferencing scheme and its topo-
logical relationships with other features. One important aspect is that every
geometric object has to be referred to its ADTFeature class. This relates to
the everyday life situation, where subordinates should always know their
superiors. An ADTFeature object is akin to the boss who represents and
rules the group of subordinates. This assumption helps us make the organi-
zation more natural and efficient.

120 Chapter 6

A basic ADTGeometry class is defined as follows:
class : ADTGeometry
description : general representation of geometric components of a
 spatial object
parent : none
attributes : identifier, reference to a feature class object (part of), ...
methods : create, delete, show identifier, modify identifier, show

 feature, modify feature, display graphics, ...
constraints : on creation, requires input of object identifier and

 reference to a feature object from the creator;
 on creation, sends a request to the reference feature
 object to update the geometric container of the feature, ...

Feature class

The ADTFeature class plays a central role in the representation of the
real world. This class provides the interface between the users and the
system. The class is also the entry point for the user to retrieve or store
all components of the feature. The ADTFeature class is an aggregate
class. Any instance of this class is a composite object, consisting of two
components; an ADTGeometry object, and an ADTTheme object. In
other words, both ADTGeometry and ADTTheme objects form ‘part-of’
an ADTFeature object.

Class : ADTFeature
Description : general representation of a spatial object
Parent : none
Attributes : identifier (to interface with users), reference to

 ADTTheme object, reference to the collection of
 ADTGeometry objects, ...
methods : create, delete, add to geometric container a reference to
 ADTGeometry object, delete from geometric container
 a reference to ADTGeometry object, (graphics) display
 geometry, display thematic properties, ...
constraints : on creation, requires identifier and reference to

 ADTTheme object from the creator, ...

6.2.3 Specialization of Classes

As we have said, each of the above classes can be further refined as more
detailed objects. The following sections show the construction of class

THE LOGICAL DESIGN 121

hierarchies using the specialization mechanism, resulting in inheritance
hierarchies.

6.2.3.1 Thematic Hierarchy

The class ADTTheme can be specialized as various subclasses, such as
road, railway, river, control point. The construction of this hierarchy is
very subjective, depending on the user’s point of view and application.
There are, however, many advantages in modelling thematic information
using an object-oriented approach, especially when an object has to be re-
lated to several themes at the same time. The object-oriented approach
provides a straightforward solution to this representation through the mul-
tiple inheritance mechanism. A class can inherit properties from more than
one parent class. Such a class then represents a combination of themes.

An example, taken from Figure 6.6, is the TRiver class which can be seen
as ‘is-a’ TWaterBody and TNatural transportation network at the same
time. By aggregating an object that belongs to the thematic hierarchy (for
example, class TRiver) as
the component of an ob-
ject that belongs to the
feature hierarchy (for ex-
ample, line feature class),
the object belonging to
the feature hierarchy
automatically carries
multiple thematic infor-
mation. However, ambi-
guity may arise in such a
case; two parent classes
may have attributes or
methods of the same
name and so need special
attention and appropriate
resolution. The designer of this class must decide from which parent the
new class inherits the properties, otherwise the ambiguous properties have
to be completely overridden. It may be necessary to resolve the ambiguity
by setting up consistency rules as detailed by Kufoniyi (1995). Egenhofer
and Frank (1989) and Kainz and Shahriari (1993) have reported some
other examples emphasizing the construction of the thematic hierarchy.
The specialization of thematic class, however, is not elaborated further
here.

ADTTheme

TBuilding TWaterBody TTransportation

TNatural TArtificialTResidence

TCity TRural TPond TRiver TChannel THighway

....

Fig. 6.5 Thematic class hierarchy (adapted
from Egenhofer et al 1989)

122 Chapter 6

6.2.3.2 Geometric hierarchy

The class ADTGeometry can be specialized for each geometric primitive
or simplex—node, arc, triangle, tetrahedron and so forth, as shown in Fig-
ure 6.6. These classes inherit properties from the parent class ADTGeome-
try; each of them contains only the additional status and behaviours that
are different from its ancestor.

Fig. 6.6 Geometric class hierarchy.

The following shows the class descriptions of the features.

class : TNode
description : 0D geometric component of the representation of a
 spatial object
parent : ADTGeometry
attributes : x, y, z coordinate, perspective transformed coordinate

 (xp,yp)
methods : get coordinates, modify coordinates, (graphics) display,

 2D, 3D, perspective transformation, ...
constraints : requires 3D coordinates, reference to ADTFeature object,

 and a geometric identifier from the creator

class : TArc
description : 1D geometric component of representation of a spatial

 object
parent : ADTGeometry
attributes : references to two TNode objects as begin and end nodes,

 references to two TTriangle objects on its left and right
 sides.

ADTGeometry

TNodeTArcTTriangleTTetrahedronTNSimplex ...

THE LOGICAL DESIGN 123

methods : create, delete, (graphics) display 2D, 3D, ...
constraints : requires identifier, references to two TNodes and

 ADTFeature objects from creator, ...

class : TTriangle
description : 2D geometric component of representation of a spatial

 object
parent : ADTGeometry
attributes : references to three TNode objects as its vertices, three

 TArc objects as its edges, three TTriangle objects as
 neighbour triangles, slope, parameters of plane in normal
 form (a, b, c, d), ...

methods : create, delete, get edges, get neighbours, get slope, get
 plane parameters, interpolate elevation for a given x,y
 coordinate, interpolate locations for a given z coordinate,
 (graphics) display 2D, display 3D, shade, ...

constraints : requires a geometric identifier, references to three TArc
 objects, and reference to an ADTFeature object, ...

class : TTetrahedron
description : 3D geometric component of representation of a spatial

 object
parent : ADTGeometry
attributes : references to four TTriangle objects as its faces, four

 TArc objects as its edges, four TNode objects as its
 vertices, four TTetrahedron objects as its neighbours, ...

methods : create, delete, get vertices, get edges, get faces, get
 neighbours, interpolate value for a given x,y,z
 coordinates, interpolate contour surface, (graphics)
 display 3D, shade, ...

constraints : requires a geometric identifier, references to four TNode
 objects, and reference to an ADTFeature object, ...

6.2.3.3 Feature Hierarchy

The class ADTFeature is specialized into four specific classes: point, line,
area and body, as shown in Figure 6.7. Each derived class has its specific
behaviours and attributes in addition to the behaviours and attributes of the
parent class ADTFeature. A simple example is the draw operation. Draw-
ing a point may only require drawing a pixel on a screen, while drawing a
line, or an area, requires additional operations. The topology has to be used
to navigate in the database to obtain all the nodes and their links before the

124 Chapter 6

pixels can be drawn along the line, or along the boundary of the area. The
specialization also helps streamline the handling of the geometry and to-
pology of each particular subclass. The design of related functions can be
concentrated on specifically for each one in turn, with no fear of their in-
terfering with each other, even if the functions of the different objects have
the same function names.

Fig. 6.7 Feature class hierarchy

The following shows the descriptions of the features:

class : TPointF
description : 0D representation of a spatial object
parent : ADTFeature
attributes : ...
methods : create, delete, display geometric (draw node, 2D, 3D),

 display thematic, ...
constraints : on creation, requires an identifier, references to

 ADTGeometry and ADTTheme objects from the
 creator, ...

class : TLineF
description : 1D representation of a spatial object
parent : ADTFeature
attributes : bounding rectangle, ...
methods : create, delete, display geometric (draw all component

 arcs as 2D, 3D), display thematic, ...
constraints : on creation, requires an identifier, references to

 ADTGeometry and ADTTheme objects from the

ADTFeature

TPointFTLineFTSurfaceFTBodyFTNComplex ...

 creator, ...

THE LOGICAL DESIGN 125

class : TSurfaceF
description : 2D representation of a spatial object
parent : ADTFeature
attributes : bounding rectangle (cube)
methods : create, delete, display geometric (draw all component

 triangles as 2D, 3D, shade), display thematic, ...
constraints : on creation, requires an identifier, references to

 ADTGeometry and ADTTheme objects from the
 creator, ...

class : TBodyF
description : 3D representation of a spatial object
parent : ADTFeature
attributes : bounding box (cube)
methods : create, delete, display geometric (draw all component

 tetrahedron as, 3D, shade), display thematic, ...
constraints : on creation, requires an identifier, references to

 ADTGeometry and ADTTheme objects from the
 creator, ...

6.2.4 Aggregation of Objects

The ADTFeature class forms an aggregation hierarchy by taking objects
belonging to the geometric and thematic hierarchies as its components (see
Figure 6.8). This is a stage of assembling or manufacturing an instance of
the ADTFeature class. Subclasses of this class, for example, TPointF,
TLineF, TSurfaceF, TBodyF, are also of aggregate types; a TLineF object
may consist of many TArc objects. For each subclass of the ADTFeature,
the actual aggregation has to be done at runtime. This is because it is not
possible to know at the design phase which specific class in the thematic
hierarchy will be its thematic component. The dynamic referencing
mechanism is the solution to this problem. The technique is first to define
the aggregation, using the reference to a generic class (ADTTheme). Dur-
ing runtime, the user selects the more specific class (for example, class
TRoad). Dynamic inheritance and aggregation take place here. The class
that aggregates the class TRoad into the class TLineF is, in fact, derived at
runtime. The TLineF object knows at that moment that its thematic com-
ponent is of the specific class TRoad, which is the descendant instead of

126 Chapter 6

the generic class ADTTheme. The reference to class ADTTheme is then
changed to class TRoad.

Fig. 6.8 Relationship between class hierarchies

6.2.5 Creation of Objects

In addition to the classes defined above, the system must provide container
classes, each of which is specific to the objects of the ADTTheme,
ADTGeometry and ADTFeature classes. The objects for each class should
be created in an appropriate sequence. ADTTheme objects are the first to
be created and registered into the container of ADTTheme. In practice, us-
ers should first define their own thematic hierarchies according to the pur-
pose of the application. For example, if the geoinformation is to serve the
management of a road network, the thematic hierarchy should start from
‘general road’ and then specialize down to ‘primary road’, ‘secondary
road’, ‘highway’, ‘superhighway’, and so on.

The ADTFeature objects are created next. Every instance of this class must
be registered into the container of ADTFeature. The user defines which
theme is to be represented by which kind of feature. The notions of scale

ADTFeature

TPointFTLineFTSurfaceF

ADTGeometry

TNode

TArc

TTriangle

TBuilding TWaterBody TTransportation

TResidence

TCity TRural TRiverTPond

ADTTheme

TRoadTChannel

TArtificialTNatural

....

Inheritance

AggregationTBodyFTNComplex ...

TTetrahedron

TNSimplex
...

THE LOGICAL DESIGN 127

scale maps may represent towns as point features (represented by TPointF
class), while on a larger scale they may be represented by area features
(represented by TSurfaceF class). To comply with this presumption, the
definition of ADTFeature class must consider the specialized classes of
ADTGeometry and ADTTheme. Molenaar (1993) discusses this issue in
detail.

The ADTFeature object created at this stage has to be considered incom-
plete, because of the lack of geometric content (see Figure 6.9). Comple-
tion can only occur when the reference to the geometric container has been
established and the geometric container filled with all necessary references
to ADTGeometry objects (see Figure 6.10).

The ADTGeometry objects are the last to be created. The reason for this is
that ADTFeature objects are not georeferenced before the stage of data ac-
quisition. The specialized class of ADTFeature defines the specialized
class of ADTGeometry object to be captured. When the user decides that a
river will be represented by a line feature, the ADTGeometry objects to be
captured are of the TArc class, and certainly not of the TTriangle class.
Because the TArc object has references to two TNode objects, the user is
forced to capture (create) two TNode objects prior to the creation of the
TArc object. This en-
genders strict disci-
pline in collecting data
with expected high
consistency.

Fig. 6.9 Steps to creating objects.

User define them atic hierarchy
based on application dom ain

creation of A DTTh em e o bjects

represe nt each them e

creation of A DTFe ature objects

User perform s data acqu isition
for each AD TFea ture object

creation of A DTG eom etry objects

AD TThe m e

O bjects

O bjects

O bjects

AD TFea ture

AD TG eom etry

User defines type of feature to

(Incom p lete)

O bjects

AD TFea ture

(Com plete)

Integrated database

and resolution govern the choice. For example, an application using small

128 Chapter 6

Fig. 6.10 Referencing scheme

6.2.6 Behaviour of Objects in the Database

By defining the hierarchies and relationships between the objects as out-
lined above, every object can respond to the message it receives from an-
other object (whether self-activated or not). This kind of operation is effi-
cient and consistent, since the appropriate operation is specific. For
example, a user may wish to display the area features in a perspective
view. Using a broadcasting mechanism, the user sends a message, such as
‘Draw-3D,’ to all objects belonging to the class TSurfaceF. On receiving
this message, each TSurfaceF object then reacts to it by sending another
‘Draw-3D’ message to all of its component TTriangle objects (by search-
ing in its geometric container). After each TTriangle object has received
the message, it is sent to all three vertices, the TNode objects. The message
asks the TNode objects to make a perspective transformation and then, us-
ing the transformed coordinates, to draw straight lines between themselves,
perhaps adding colour-fill or shading if so requested.

Null

Initial stage
After creation of

Triangle

ADTGeometry
container

for
TTriangle

TSurfaceF object

Reference
to Triangle container

TSurfaceF

Reference
to TTriangle

container

Creation of
Triangle

Reference to
Triangle(1)

Triangle[1]

Reference
to TSurfaceF

object

Triangle[2]

Reference
to TSurfaceF

object

Reference to
Triangle(2)

THE LOGICAL DESIGN 129

Considering the aspect of spatial access, we observe that TLineF and
TSurfaceF objects include references to geometric containers of classes
TArc and TTriangle respectively. Taking a TSurfaceF as an example, and
given a spatial location, the spatial search operation can be coarse to fine
using, for example, the bounding rectangle of the TSurfaceF object as spa-
tial index. The containment test is then performed in a simplified and fast
manner. On receiving a positive result, the spatial search is then limited to
TTriangle objects which are components of the TSurfaceF object. The
search can then be performed using a reference to the TTriangle container
that is one component of the TSurfaceF. This TTriangle container, which
is specific to the TSurfaceF, contains a series of references to TTriangle
objects. The references to the object offer a fast way of accessing the ob-
ject component, that is, the attributes and methods.

Regarding the interfacing of system and user, the objects of classes under
the ADTFeature hierarchy should provide all the necessary interfaces.
During the database operation (deleting, modifying and so on), the objects
of classes under the ADTGeometry hierarchy should not be directly acces-
sible to users and should be under the complete control of each specialized
ADTFeature object.

The example of implementation given as C++ object-oriented program-
ming language is presented in Pilouk (1996) and Abdul-Rahman (2000).
The focus is on the aspects of object creation, dynamic referencing and in-
heriting. For simplicity, a fixed size array is chosen as the container of ref-
erences to each specific ADTGeometry object. Other versions of C++ offer
more powerful container class libraries which can be used for the real im-
plementation. We have implemented part of this definition in our software
ISNAP (Integrated Simplicial Network Applications Package). The ex-
perimental investigation has demonstrated the feasibility of the design,
thereby stimulating further investigation into the matter, for example re-
sponse time and efficiency in spatial search operation. The implementation
of this logical design in a commercial OODBMS environment still needs
further exploration.

6.2.7 Comparison with Other OO Approaches

In comparison with the approaches presented by Webster and Omare
(1991), Worboys et al (1990), Kainz and Shahriari (1993), the object-
oriented approach discussed here offers a more flexible structure where
users have the freedom to select different types of geometric representa-
tion per thematic class with respect to the scale of data acquisition. As an

130 Chapter 6

example, a city can be represented by an area object when the data is ac-
quired from a map of scale 1: 50000, or a point object if acquired from a
map of 1: 500000. The other approaches mentioned above have only
adopted the inheritance hierarchies. For example, Webster and Omare
(1991) defined a point feature as a supertype (parent or ascendant) of the
node class, where a geometric class is a subtype (child or descendant) of a
thematic class, which is similar to the approach used by Kainz and Shahri-
ari (1993). Worboys et al., (1990) defined a district class as a specializa-
tion (child) of a polygon class where a feature object class is a child of a
geometric class. In both cases, the consequence is that only one type of
geometric representation is allowed in a hierarchy of that feature object.
This restriction might prove too stringent and so the rigid inheritance ap-
proach can only be used as a logical design for a particular application.
The whole object hierarchy has to be redefined when the database has to
be upgraded to use a more precise geometry.

The rigid inheritance approach described above may not be suitable for
UNS. In UNS, the possibility of having multiple geometric representations
per class helps minimize the number of features stored in the database. The
approach suggested in section 5.2 of using the aggregated hierarchy per-
mits the selection of the type of representation according to whatever is
available at the time of data acquisition. For instance, there may be many
cities on the map with different possible representations, such as point and
area, depending on their sizes. If the application only needs cities to be
represented as points, each point object can be derived from the area object
residing in the database, for example by using a cartographic generaliza-
tion function of that area object.

6.3 Discussion

This chapter has presented thus far the translation from the IDM into a re-
lational and an object-oriented UNS. Note, however, that only the neces-
sary attributes are included in the relational UNS. This approach offers a
quick and simple way of implementing an integrated database. Although
good performance in terms of response time may not be obtained, the re-
alization of all the necessary relationships between the data elements is fa-
cilitated. The control of database consistency depends on this minimum set
of relationships between the data elements, even when the object-oriented
approach is used. Significant performance gain in terms of response time is
expected from the object-oriented approach, because links and pointers are
used for navigating in the database instead of Cartesian products, as in the
relational approach. Joining several tables together results in a long

THE LOGICAL DESIGN 131

and search operation in a large data-
base. Most relational DBMSs offer a simple solution by creating an index
file that can be thought of as a reordering of the records, using criteria on a
selected column of each table. A typical indexing method is a binary tree
(B-tree, Knuth, 1973), which may not, however, be suitable for indexing
spatial data. The object-oriented approach permits the implementation of a
more suitable spatial indexing method, such as Grid File, R-tree (Guttman,
1984; Oosterom, 1990). This method, however, requires a greater effort in
implementing the index structure. Some DBMSs, such as Illustra (1994),
claim to have offered a solution by providing R-tree to support efficient
access to spatial data. Note that the index structure provides additional re-
lationships among data elements. Most of these relationships can be in-
ferred from the minimum set of relationships obtained from normalization
in the relational approach and so they may be considered redundant, which
asks for special care during the updating of the database.

It is worth mentioning that a UNS derived from the IDM can be managed
by a single DBMS. Users only deal with one system and one user-
interface. The time required for studying the use of the different com-
mands of different databases (even for the same kind of operations) can be
reduced, allowing users to concentrate on the actual application.

response time during a data retrieval

Chapter 7 OBJECT-ORIENTATION OF TINs
SPATIAL DATA

7.1 Introduction

The capabilities of object-oriented (OO) techniques have in recent years
presented a very promising tool for the development of information sys-
tems, especially those requiring the implementation of complex data mod-
elling. OO programming techniques are now being applied widely. OO
programming has tremendous potential; GIS is one example. OO tech-
niques of programming and design promise to produce easier to maintain
software for less effort and expense (Ross et al, 1992). Conventional
software development suffers from a number of drawbacks such as endless
lines of code, while OO programming allows programmers to build an ap-
plication program by using existing or easy-to-build entities called objects
(object - the term used in OO programming for, an instance of a con-
structed class). Therefore, it seems natural to apply OO techniques for
geo-scientific computations such as TIN spatial data modelling.

This chapter provides descriptions of TIN tessellations and spatial data
modelling using OO techniques. Section 7.2 discusses the concepts of
OO. OO design for TIN tessellations is discussed in section 7.3. A discus-
sion on the development of TIN spatial data modelling is provided in sec-
tion 7.4, and the POET OO DBMS development in section 7.5. The de-
velopment of OO TIN-based systems for GIS follows in section 7.6 and
the chapter closes with a summary. The implementation of OO techniques
for TIN data tessellations has been further discussed in Abdul-Rahman
(1999). Further implementation using an OO database management sys-
tem (DBMS) is described in Abdul-Rahman and Drummond (2000).

7.2 Object-oriented Concepts

Object-oriented conceptual modelling is now widely utilised in many
fields including GIS. The concepts of OO such as object classification,
encapsulation, inheritance, and polymorphism have made modelling of
complex real world objects easier. As mentioned above the object-
oriented approach is now being promoted as the most appropriate method
for modelling complex situations that are concerned with real-world

134 Chapter 7

phenomena, and thus applicable to GIS. Object-oriented concepts are con-
sidered more flexible and powerful than the traditional structural pro-
gramming and other major database models such as the relational or entity-
relationship model. Object-oriented concepts contribute to modelling as
follows:

• Considering objects and abstraction mechanisms (classification,
generation, aggregation and association), these aspects of OO can
be used for modelling real world phenomena, e.g. modelling of
spatial data for geoinformation systems; and

• Considering inheritance, propagation, encapsulation, persistence,
Abstract Data Type (ADT), polymorphism and overloading, these
aspects of OO can be used to construct and implement the model
discussed in (a).

The usefulness of these concepts in spatial modelling is explained in the
following section.

7.2.1 The Abstraction Mechanisms

Data abstraction is a method of modelling data. Object-oriented design
uses four major abstraction mechanisms: (1) classification, (2) generaliza-
tion, (3) inheritance, and (4) polymorphism. In object-oriented program-
ming, any physical or logical entity in the model is an “object”. The defi-
nition of a type of object is called a “class”, and each particular object of
that type known as an “instance” of the class. Once a class has been de-
fined, it can, potentially be reused in other programs by simply including
the class definition in the new program. However, it is not necessary for
the programmer who uses a class to know how it works, s/hey simply
needs to know how to use it. The definition of operations on or between
objects are called “methods”, and the invocation of methods is referred to
as “passing a message”. Recent research in software engineering has pro-
moted an object-oriented design method by which real world objects and
their relevant operations are modelled in a program which is more flexible
and better suited to describe complex real world situations (Khoshafian
and Abnous, 1995). Object orientation also may be considered as a par-
ticular view of the world which attempts to model reality as closely as pos-
sible (Webster, 1990). Details of all relevant OO concepts (object, ab-
straction, data types, class hierarchy, inheritance, classification,
aggregation, generalization and association) can be found in the OO litera-
ture such as Booch (1990), Bhalla (1991), and Stroustrup (1997). The fol-
lowing are some OO terms:

OBJECT-ORIENTATION OF TINs SPATIAL DATA 135

Classification

Classification can be expressed as the mapping of several objects (in-
stances) onto a common class. In the object-oriented approach, every ob-
ject is an instance of a class (a class is a fundamental building block in an
OO language). It describes common features of a set of objects with the
same characteristics; a class also defines nature of a state and behaviour,
while an object records the identity and state of one particular instance of a
class. Abstract Data Type (ADT) is the name of the mechanism to create a
class of spatial objects or any class in a domain of objects. An object is a
basic run-time entity in an object-oriented system. This entity includes
data and procedures that operate on data. Viewed from a programming
stand point, objects are the elements of an OO programming system send-
ing and receiving messages.

Generalization

Generalization in OO provides for the grouping of classes of objects,
which have some operations in common, into a more general superclass.
Objects of superclass and subclass are related by an “is a”- relation, since
the object of a subclass also “is-a” (n) instance of a superclass.

Inheritance

Inheritance allows the building of a hierarchy of types or classes that best
describes the real world situation in the application field. Each class can
take all or part of the structural or behavioural features from other classes,
which are its parents. In turn, the newly defined class is a child of the
classes from which it has inherited its features. Inheritance helps in deriv-
ing application-oriented classes without starting every definition from
scratch. Also, it makes it easier to create logically complex classes from
simpler classes.

Polymorphism

Polymorphism is a mechanism to define the different actions of the same
named function on different classes. It is implemented by inheriting some
functions from parent classes and overriding or modifying part of them.
Usually, the newly created class has similar but not the same behaviour as
its parents for that functional aspect. Polymorphism provides great flexi-
bility in class derivation, for example, the calculate_perimeter operation
may have different implementations for different classes such as class
“area”, class “triangle”, class “polygon”, etc. Each class performs the

136 Chapter 7

calculate perimeter operation differently although it has the same function
name.

7.2.2 The Programming Language

Object-oriented concepts were originally developed in early programming
languages such as Simula in 1960’s. Other OO programming languages
such as Smalltalk, C++ and Java have also been developed since then. Al-
though Java is said to be widely used for the Internet or distributed com-
puting environment these days, C++ language is much more widely used
and offers more OO concepts than other languages (Stroustrup, 1997).
There are several C++ compilers available from major software/compiler
vendors for a wide variety of computer systems. Most of these compilers
are meant for a wide variety of scientific computing tasks, including for in-
stance geoinformation modelling and computations. In the work reported
in this book, the Borland™ C++ compiler was utilised for all the software
development.

7.3 Object-oriented TIN Tessellations

OO TIN tessellations software has been developed for the construction of
2D and 3D TIN data structures. The algorithms are described in Chapter
8. The descriptions of the OO TIN tessellations are presented in the fol-
lowing segment.

7.3.1 Classes for 2D TIN Tessellations

Using the above OO mechanisms, the spatial tessellations are designed as
shown in Figure 7.1. In this design, the Booch (1990) notation was used to
represent the hierarchy of the classes. Booch has provided one of the
techniques for designing class hierarchy. Other possible techniques are
notations such as those of Rumbaugh and the Unified Modelling Language
(UML). In two-dimensional (2D) spatial tessellation, four major classes
have been recognised, the classes are TDistanceTransformation (TDT)
class, TVoronoiTessellation (TVor) class, TTinGeneration (TTinGen)
class, and TTinView (TTinView) class (see Figure 7.1). The TDT class is
used to calculate and generate a distance transformed image of given ob-
ject pixels. The TVor class is used to generate the Voronoi image of the
object pixels. The corresponding TIN of the object pixels can be determined

OBJECT-ORIENTATION OF TINs SPATIAL DATA 137

by using the TTinGen class, and the TIN viewing is handled by the TTin-
View class.

In this work, not all OO mechanisms were used. The two most useful
mechanisms are classification, and inheritance. The following section de-
scribing all the relevant classes the spatial tessellations.

 The Class TDistanceTransformation generates a distance transformed im-
age from a given rasterised data set. Operations or methods in this class
are: SetBackground, GetUpperMask, GetLowerMask, ForwardPass, and
BackwardPass. The details of these methods or procedures were fully de-
scribed in Abdul-Rahman and Drummond (1998, 1999). Here, only their
relationships with other classes in the class hierarchy are described. The
details (class headers which includes all the related attributes and methods)
for each class are presented in Abdul-Rahman (2000).

Fig. 7.1 The classes hierarchy for the 2D and 3D TIN tessellations

The following class TVoronoiTessellation generates a Voronoi image from
a given distance transformed data set. The major methods in this class are
ForwardVoronoi and BackwardVoronoi. These two operations are to gen-
erate the tessellated image in two passes. The forward pass begins from

138 Chapter 7

the top left corner of the image while the backward pass works reversely
(i.e. from the bottom-right pixel to the top-left pixel). The class mentioned
above, TTinGeneration produces a TIN from a given Voronoi image data
set. The ScanlinesUp and ScanlinesDown methods are to detect the TIN’s
triangles from the Voronoi images. After having generated the TIN then,
the next task is to display (visualize) them. The visualization make uses of
the Borland’s C++ compiler predefined class TApplication, that is the su-
perclass for the TTinView.

• The following gives the definitions of the 2D TIN classes:

class DistanceTransform

{
public:
// member data
typedef struct MpiStruct
{
short Nscanlines;
short Npixels;
...
} MpiType;

// member functions
DistanceTransform(); // constructor

void SetBackground(ImagePPtr Pixel, int Bg, int Fg);
void GetUpperMask(int r, int c, ImagePPtr Pixel, Mask& MaskPix);
void GetLowerMask(int r, int c, ImagePPtr Pixel, Mask& MaskPix);
void DistancePassOne(ImagePPtr Pixel);
void DistancePassTwo(ImagePPtr Pixel);
void ForwardDistance();
void BackwardDistance();
~DistanceTransform(); // destructor
};

class TVoronoiTessellation : public TDistanceTransform
{
public:
...
 // Function members
void CopyImage(ImagePPtr, ImagePPtr&);
void SetBackground(ImagePPtr, int, int);

OBJECT-ORIENTATION OF TINs SPATIAL DATA 139

void GetUpperMaskDist(int, int, ImagePPtr, Mask&);
void GetLowerMaskDist(int, int, ImagePPtr, Mask&);
void GetUpperMaskVoronoi(int, int, ImagePPtr, Mask&);
void GetLowerMaskVoronoi(int, int, ImagePPtr, Mask&);
void ForwardPass(ImagePPtr, ImagePPtr);
void BackwardPass(ImagePPtr, ImagePPtr);
void ForwardVoronoi();
void BackwardVoronoi();
};

class TINGeneration

{
public:
typedef struct MpiStruct
{
short Nscanlines; // no. of image rows
short Npixels; // no. of image columns
 ...
} MpiType;

typedef struct VertexStruct
{
DataType N1;
 ...
} TVertex;

typedef struct TsNodeStruct
{
short x;
 ...
} TsNode;

// function members
void GetMask(int, int, ImagePPtr, Mask&);
void GetSubImage(int, int, ImagePPtr, Mask&);
void ScanlinesUp(Mask);
void ScanlinesDown(Mask);
void Scanlines(ImagePPtr);
void MakeTIN();
 ...
};

140 Chapter 7

7.3.2 Classes for 3D TIN Tessellations

The tessellations of the 3D TIN have also been developed; their class hi-
erarchies are very similar to that of 2D TIN version. The only difference is
the computation dimension (the additional third dimension), and the way
to visualize the generated 3D tessellation files. The 3D tessellations also
have four major classes. The classes are TDistanceTransformation3D
(TDT3D), TVoronoi3D (TVor3D), TTinGeneration3D (TTinGen3D), and
TTinView3D (TTinV3D) (refers to Figure 7.1). Detailed definitions of
each class are presented in Abdul-Rahman (2000).

For purpose of displaying the DT and the Voronoi images, the
ILWIS™(1996) and AVS™(1997) packages have been utilised. The later
package is for 3D images while the former is for 2D images.

7.4 Object-oriented TINs Spatial Data Modelling

In this section, we provide a discussion of the OO TIN spatial data model-
ling techniques. The general modelling steps (recall Figure 4.2) can be
considered to describe TIN spatial data modelling. That is, the three-step
approach, namely the conceptual, the logical, and the physical steps. In
this work, the conceptual step is implemented by utilising TIN as a method
to represent spatial objects. Spatial objects are perceived as TINs. Then,
by having the TINs data constructed, a model to describe the objects (i.e.
their connectedness between objects) can be established. The description
of the objects and how they relate to each other, for example from TIN
nodes to TIN surface is the logical step. All the created classes (Node,
Edge, Area, and Body) are OO techniques are then physically modelled in
OO database environment.

The class schema for spatial data modelling is described below.

7.4.1 The Class Schema

The schema is based on several classes, they are Spatial Objects (the super
class), and four major subclasses which are Node, Edge, Polygon, and
Solid.

Spatial objects

The spatial object class is a general class of the real world objects. It is the
super class in the class hierarchy. In this work, an assumption is made that

OBJECT-ORIENTATION OF TINs SPATIAL DATA 141

all other objects are derived from the superclass (TSpatial object) (see Fig-
ure 7.2). All terrain objects could be categorised into several sub classes
such as points, lines, areas, and solids (volume) features. In OO model-
ling, these feature types are the classes in the modelling hierarchy.

Fig. 7.2 The class diagram (using the Booch notation)

ode

A node can be considered as the most basic geometrical unit in spatial data
modelling. It may represent point entities or point objects at a particular
mapping scale. Examples of point objects are wells, terrain spot heights,
and the like. In geoinformation, we may represent these objects by a class
called a node class. The coordinates of the nodes (including the nodes rep-
resenting edges) are held by a coordinates container class, called XYZCon-
tainer class.

Edge

An edge can be represented by two nodes at each end (i.e., a start node and
an end node). In this study, we consider two end points make a straight
edge. This edge type can be used to represent linear features. The arc con-
tainer class, called ARCContainer holds all the arcs. The arc containers
also serve any other class which requires arcs data in their operations, for
example the polygon class needs the arcs in order to form polygons.

142 Chapter 7

Polygon

A polygon (sometimes known as a surface) is used to represent area fea-
tures such as lakes, ponds, etc. A polygon may be constructed by chains of
closed edges.

Solid (or Body)
A solid is a representation for solid or body features such as buildings, or
trees. A chain of points and lines form body objects. A 3D TIN can be
represented by a series of triangle nodes and edges as mentioned in the
previous chapter.

The class schema in Figure 7.2, depicted using Booch (1990) notation is
the representation of the TIN spatial data model. The schema has four
geometric classes, namely T ode, TEdge, TPoly, and TSolid and two types
of containers: geometry and attribute. The geometric containers contain
the XYZ locations (held by the XYZContainer) and the ARCContainer
whereas the attribute containers are for the thematic values, e.g. names.
The attribute information is held by the odeAttrbute, and the EdgeAttribute.

The following gives the definitions of the classes as presented in Figure
7.2. In Booch notation, each class is represented by a “cloud-look” dia-
gram. It contains data and methods for a particular class. The arrow
shows the link between a class with another classes. More detailed class
definitions are given in Abdul-Rahman (2000).

The geometric classes are:

class TNode
{
public:

struct XYZContainer
{
double x;
double y;
double z;
};

XYZContainer Point[maxpoint];

struct NodeAtrContainer
{
int NodeNum;

OBJECT-ORIENTATION OF TINs SPATIAL DATA 143

string NodeName;
};
NodeAtrContainer NodeAtr[maxnodename];
...
...

void GetXYZCoordinates();
void Get2Node();
void NodeAttribute();
};

class TEdge

{
public:

ARCContainer Arc[maxarc];
EdgeNameContainer- EdgeAtr[maxarcname];
...
...
void ReadARCs();
void GetArcLength();
void GetArcAttribute();
int CheckQuadrant(float, float);
float Bearing(float, float, float, float);
float GetArcAzimuth(float, float, float, float);
void EdgeAttribute();

};

class TPoly
{
public:
struct TINContainer
{

int Node1;
int Node2;
int Node3;

};
TINContainer Triangle[maxtriangle];

struct TENContainer

{
int TriNum;
int NumofNbr;

144 Chapter 7

int Nbr1;
int Nbr2;
int Nbr3;
};

TENContainer TINNbr[maxtriangle];

void ReadTINs();
void GetTINNeighbour();
void GetTINNodes(int,

double&, double&, double&,
double&, double&, double&,
double&, double&, double&);

float GetTINArea();
void GetPolyArea(int, int, double&);
};

class TSolid

{
public:
struct TENContainer

{
int Node1;
int Node2;
int Node3;
int Node4;
};

TENContainer TEN[maxtriangle];

void ReadTENs();
void Get3TINNodes(int,

double&, double&, double&,
double&, double&, double&,
double&, double&, double&,
double&, double&, double&);

float GetVolume(double, double, double,

double, double, double,
double, double, double,
double, double, double);

};

class XYZContainer

OBJECT-ORIENTATION OF TINs SPATIAL DATA 145

{
public:
double x;
double y;
double z;

XYZContainer() {}
~XYZContainer() {}

};

class TINContainer
{
public:

int Node1;
int Node2;
int Node3;

};

 class TENPolyContainer
{
public:

int TriNum;
int NumofNbr;
int Nbr1;
int Nbr2;
int Nbr3;

};

 class TENContainer
{
public:

int Node1;
int Node2;
int Node3;
int Node4;

};

class ARCContainer
{
public:
int StartNode;

146 Chapter 7

int EndNode;

ARCContainer();
~ARCContainer();
};

• The attribute classes are:

class EdgeNameContainer
{
public:
int EdgeNum;
char EdgeName[30];
};

class NodeNameContainer

{
public:

int NodeNum;
 char NodeName[30];

};

7.5 Object-oriented TIN Spatial Database Development

This section explains the development of an OO database for TIN data us-
ing a commercial database management system, POET OO DBMS.

7.5.1 The POET OO DBMS

The POET (Persistence Object and Extended Technology) DBMS is util-
ised in this work as part of the OO spatial data modelling. The package
works under Windows 95 operating system for the PC environment, that is
the major computing environment adopted in this work. The package is
also chosen due to its economic reason; it costs less and can work with
Borland C++ programming language, the language adopted for the entire
software development in this book. The database package is said to have
the following capabilities (POET, 1996):

a. Encapsulation,

OBJECT-ORIENTATION OF TINs SPATIAL DATA 147

b. Inheritance, and
c. User-defined data types.

These properties are among the important OO features that can be useful
for our TIN spatial data modelling purposes.

7.5.2 The POET Database Schema

The DBMS is used to generate OO database from the constructed TIN spa-
tial data. In this work, the schema needs to be modelled according to the
POET database model (POET, 1996); it is required that all the C++ classes
are constructed as classes which POET can understand. In this case, all the
classes in the schema have to be compiled by POET PTXX compiler as
shown in Figure 7.3. The PTXX compiler maps all the normal C++
classes into several relevant PTXX schema files which in turn are used for
writing application programs (running under the normal C++ compiler) as
well as for populating the database. The PTXX compiler also generates
the OO database from the schema.

Fig. 7.3 The POET database development flow.

POE T PTXX
compiler

Classes

Application
program

Query

Reporting

OO Database

148 Chapter 7

7.5.3 The POET Database Browser

In POET, once the database schema has been properly compiled, then the
generated database can be inspected by using the built-in browser. All
generated objects can be examined for further database operations. Figure
7.4 illustrates the screen shot of the POET Developer module where the
TIN database is developed.

7.5.4 POET Database Query

The generated database can be queried by using a built-in database query
facility within the POET Developer module. This built-in technique is
adopted for this work. A query language similar to the Structured Query
Language (SQL) can be utilised. Here the language is called Object Query

Figure 7.4 The POET Developer which was used to develop the TIN OO database and
support database retrieval(query).Fig. 7.4 The POET Developer which was used to develop TIN OO database

and support database retrieval (query)

OBJECT-ORIENTATION OF TINs SPATIAL DATA 149

Language (OQL) and detailed syntax of the language can be found in
POET(1996). The following is an example of a query which can be per-
formed from the database:

defined extent allTEdge for TEdge;
select Edge
from Edge in allTEdge
where Edge.EdgeAtr.EdgeName = “River*”

In order to be able to manipulate the database, an application program has
been developed. This program runs under the normal Borland C++ com-
piler but it makes use of the files which are generated by the POET PTXX
compiler.

7.6 Object-oriented TIN-based Subsystems for GIS

The OO TIN GIS is based on several fundamental concepts and aspects of
spatial data which have been discussed in the previous sections. The basic
components of the system are data input processing, TIN data construc-
tion, TIN database, transformation operations, data output and user-
interface. Rasterization forms a major operation in the data input compo-
nent. Figure 7.5 shows the other major component of the proposed system
- visualization, which uses the commercial software, i.e. ILWIS™ (Inte-
grated Land and Water Information System) and AVS™ (Advanced Visu-
alization System). These two packages are only used for display purposes,
more especially for validating the output from the rasterization process. A
simple user-interface as part of the software development is also devel-
oped. Besides the programs written for databasing purposes, a commercial
database package is also used, called POET™ OODBMS as mentioned er-
alier. The DBMS package is for the development of the OO TIN spatial
database.

150 Chapter 7

Fig. 7.5 The proposed system for the TIN-based spatial data.

7.7 Summary

This chapter has introduced the implementation of object-oriented tech-
niques for TIN (2D and 3D) spatial data. The chapter reveals the useful-
ness of a commercial OO DBMS package to develop TIN spatial database
schema as described in section 7.5. The development of software which
has been described in this chapter could also be applied to a much larger
system.

2D and 3D TIN tessellations are one of the major components of the work
described in this book. These tessellations are shown to work perfectly in
the OO environment. The approach described in this chapter can be im-
plemented in the development of TIN-based GIS system. The graphic out-
put of the tessellations shown in Figure 7.6 clearly demonstrates the
workability of the OO technique. More results of the subsystems are pre-
sented in later chapter.

TINs data

display &
reporting

user
interface

rasterization

OOTinGIS
software

transformation
 - interpolation
 - contouring
 - geometric calculation
 (areas, volumes)

TINs
database

ILWIS

AVS
(for display)

construction

OBJECT-ORIENTATION OF TINs SPATIAL DATA 151

Fig. 7.6 The 2D and 3D TIN tessellations

Chapter 8 THE SUPPORTING ALGORITHMS

8.1 Introduction

This chapter introduces several major algorithms for TIN spatial data
structuring and constructions. Data structuring for terrain surfaces has been
investigated for several decades. The main concern of the earlier investiga-
tions was the suitability and the adaptability of data structures for repre-
senting terrain surfaces. A triangular irregular network (TIN) data structure
was first presented by Peucker et al.,1978. Several methods and techniques
have since emerged for the construction of TIN structures (McCullagh and
Ross, 1980; Watson, 1981; Mirante and Weingarten, 1982). Most of the
techniques were attributed to Delaunay (1934) and known as Delaunay tri-
angulation. TINs could be constructed either in the vector or in the raster
domain. In this research, a raster technique for the construction of the
TINs (2D and 3D) is used.

In this chapter, the algorithms for the construction of 2D TIN and 3D TIN
spatial data will be introduced. These algorithms are named Distance
Transformation (DT), Voronoi Tessellations, Triangulations, and Triangu-
lations Data Structuring. In this work, visualization and rendering routines
for 2D and 3D data have also been developed, as have rasterization pro-
grams for TIN data construction purposes. Each algorithm is explained in
detail together with its C++ pseudo-code.

8.2 Distance Transformation

Originally, the term distance transformation (DT) was used by Rosenfeld
and Pfaltz (1966) and later by Borgefors (1986). The DT was used to de-
scribe an operation of converting binary images to a grey-level image
where all pixels have a value corresponding to the distance to the nearest
feature (or object) pixel. The same principle has also been applied in other
areas of interest such as raster-based GIS and remote sensing (Gorte and
Koolhoven, 1990). The DT provides a method for calculating the distance
from every non-object element in a two-valued raster data set to the near-
est object element of a set of object elements. The Borgefors DT tech-
nique is a fundamental step in this raster-based TIN development. The
transformed image can be used to generate a Voronoi tessellated image,
and then a set of triangles can be generated from that Voronoi tessellated

154 Chapter 8

image. Triangles generated from Voronoi polygons are sometimes known
as the dual product of the Voronoi polygons (Gold, 1991; Fortune, 1992).
Borgefors (1986) identified several types of DTs known as City block,
Chessboard, Octagonal, Chamfer 3-4, Chamfer 5-7-11, and Euclidean.
Each DT produces different output images and requires a different compu-
tation time. Borgefors suggested that Chamfer 3-4 can be used for gener-
ating distance transformed images due to its processing simplicity. De-
scription of other DTs can be found in Borgefors (1986). It is not the
intention of this section to compare all the DTs but rather to explain them
and then use the most appropriate one (i.e. that is relatively easy to imple-
ment); a detailed explanation of the DT which used in the TIN develop-
ment is described later in this section.

Distance Transformation (DT) is a technique used in the image processing
community for a range of applications, one example is zone mapping
(Borgefors, 1986). A zone of accumulated distances could be mapped
from a rasterised point. This DT concept is used in this research and the
technique is one of the fundamental steps in the construction of the trian-
gulation. The task is to generate a distance-transformed image of object
pixels. In a raster image, object pixels could be in the form of random
points, digitized points, digitized lines, etc.

Figure 8.1 shows an example of several points whereas the DT image of
the points are illustrated in Figure 8.2.

In Figure 8.2, the darkest spots represent the location of the kernel points.
In the DT, each kernel point is used to generate distance image from
neighbouring kernel points. Distances accumulate from the centre of the
kernel points. In the above example, the centre of the kernel points gets
the value zero (the darkest shade) and the distances gradually increase

Fig. 8.1 Several kernel points
(or object points)

Fig. 8.2 The DT image of the
several points as shown in Fig.
8.1

THE SUPPORTING ALGORITHMS 155

from the centre (indicated with brighter images) as shown in Figure 8.2.
To perform the DT to an image of rasterised points, for example, a mask
(or a window of 3 x 3 pixels) is required, as shown in Figure 8.3(a). The
mask has 9 pixels (3 x 3 pixels). This mask is divided into two, called the
upper mask, and the lower masks, as shown in Figure 8.3(d).

Fig. 8.3 Masks for the DT operations

The algorithm works with two passes of the entire image. The first pass
(or scan) uses the upper mask while the lower mask is used for the second
pass. Each pixel in the mask is indexed according to Figure 8.3(b) where
the centre pixel of the mask represents the image pixel then being scanned.

In this algorithm, the DT works as follows: all object pixels are changed to
zero (i.e. a value 0) and the rest of the pixels (i.e. the background pixels) to
the highest possible value, e.g. an integer value of 32767 (of 16-bit data
type architecture). The entire image is scanned in two passes using the
Chamfer 3-4 mask of the Borgefors DT (Borgefors, 1986) as illustrated in
Figure 8.3(c). The first pass (scans with upper-mask) begins from the first
pixel (i.e. the top-left pixel) and goes to the last pixel of the image. In the
first pass, all the pixels which are covered by the mask get a new value.
Each pixel’s value has added to it either a value of 3 or 4 depending on the
location of the pixel. Then, the minimum value is determined from the

0 1 2

3 4 5

6 7 8

r,c r,c+1r,c-1

r-1,c r-1,c+1r-1,c-1

r+1,cr+1,c-1 r+1,c+1

C

+4 +3 +4

+3 +3

+4 +3 +4

0 1 2

3 4 r,c

r-1,c-1 r-1,c r-1,c+1

r,c-1

+4 +3 +4

+3 C

4 5

6 7 8 r+1,c+1r+1,c-1

r,c r,c+1

r+1,c

C

+4+4 +3

+3

Numbering Indexing Distance approximation

Upper mask

Lower mask

(d)

(b) (c)(a)

(e) (f)

156 Chapter 8

five possible candidates and assigned to the current pixel location. The
mask is then moved to the next pixel location. At this next location, the
minimum value for this pixel is again determined and assigned.

This process continues to the last pixel location (i.e. the bottom-right pixel)
of the image. The result of the first pass operation is used for the second
pass which operates in reverse order (i.e. from the last pixel to the first
pixel of the image). It is a recursive operation. Finally, a DT image is
generated after these two passes are carried out. In this DT image, all pix-
els contain the approximate distance to the nearest kernel points (object
pixels).

The following pseudo-code describes the DT algorithm:

// Procedure to Set the background image
void set background()
 {
 Set loop for rows (first row to last row)
 {
 Set loop for columns (first column to last column
 {
 if (Pixel value not equal to background)
 Set Pixel value to zero;
 else

Set Pixel value to background (highest possible value);
 }
 }

 }
// Procedure to assign the Upper Mask

void GetUpperMask()
 {
 Assign the Mask[0] to Mask[4] to the corresponding pixel lo-

cations,
e.g., Mask Pixel[0] = Pixel at [row-1][column-1];

 }

// Procedure to assign the Lower Mask
void GetLowerMask()
 {
 Assign the Mask[4] to Mask[8] to the corresponding pixel lo-

cations,
e.g., Mask Pixel[4] = Pixel at [row][column];

THE SUPPORTING ALGORITHMS 157

 }
// Procedure to compute distance in forward pass
void ForwardPass()
 {
 Set loop for row(first row to last row)
 {
 Set loop for (first col to last col)
 {
 GetUpperMask();
 If Mask has odd index add 4 to the Mask value;
 else
 Add 3 to the Mask value;
 }

 Get the minimum value of Mask[0] to Mask[4] and assign
to this pixel;

 }
 }
 }

// Procedure to compute distance in backward pass
void BackwardPass()
 {
 Set loop for row(from last row to first row)
 {
 Set loop for col(last col to first col)
 {
 GetLowerMask();
 If Mask has odd index add 4 to the Mask value;
 else
 Add 3 to the Mask value;
 }

 Get the minimum value of Mask[0] to Mask[4] and assign
to this pixel;

 }
 }

 }

The above steps then combined as follows into one main DT routine:

// Procedure to compute the distance using forward and back-

ward
void Forward&Backward()

158 Chapter 8

 {
 Reads the input Image;
 Set the Background;
 Compute distance using the FirstPass;
 Compute distance using the SecondPass;
 Write and save the transformed image to file;
 }

An image of a DT for a number of points within a data set (kernel points)
is illustrated in Figure 8.2. The darkest spots in the image represent the
kernel points, and it gradually brightens outward from the points. The DT
algorithm appears to work well.

8.3 Voronoi Tessellations

Voronoi polygons are also known as Thiessen or Dirichlet polygons. They
have been considered one of the fundamental structures in computational
geometry and other fields such as GIS. Voronoi polygons are often used
in GIS as a method for analysing points data, for example for finding near-
est neighbours (Burrough and McDonnel, 1998). In Voronoi polygons,
one centroid point represents one polygon. The extent of each polygon in-
dicates the influence of the
centroid point with respect
with the neighbouring
points.

This type of polygon is useful in GIS, e.g. for zone mapping or for deter-
mining the region of influence of a phenomenon or buffering (Gold et al,

Fig. 8.4 Example of Voronoi polygons
represented by several data points (after
Fortune (1992).

THE SUPPORTING ALGORITHMS 159

1997). Figure 8.4 shows Voronoi polygons where each is represented by a
centroid point.

Voronoi polygons can be constructed from DT image of kernel points as
described in section 8.2. The generation of the polygons can be done either
in parallel or in stages. In this algorithm, the tasks were carried out in par-
allel. If the DT generation as described in section 8.2 is re-examined, it
involves three steps. First, change the object pixel value to zero (i.e. 0)
and the background image to the highest possible value. Second, deter-
mine the minimum value of the current pixel location among five possible
candidates of the upper mask. Third, assign the minimum value to the cur-
rent pixel location. In other words, the pixel value represents a distance
value of the pixel calculated from the nearby object pixels.

To generate the Voronoi-tessellated image parallel with DT operation, two
output files are needed. That is one for the DT image and the other for the
Voronoi image. Computing the DT image according to the algorithm de-
scribe in section 8.2 involves the following steps at a particular pixel [i, j]:
First, the mask is “put” on the pre-processed image, the mask centre (hav-
ing the value 0) at [i, j] of the pre-processed image. Secondly, the values
of the mask are added to the values pixels that are being covered. Thirdly,
the minimum of the 5 resulting values is determined and assigned to [i, j]
of the current distance transform image. Before continuing to the next
pixel, for which the distance is to be computed, the value for the second
output image, the Voronoi tessellation image, at [i, j] has to be assigned.
This is done by determining the location of the pixel where the minimum
value was found just before, e.g. at [i, j-1]. The pixel value of the original
image at [i, j] is then taken and assigned to [i, j] of the Voronoi tessellation
image (see Figure 8.5 and also Figure 8.6). This method of computing the
Voronoi and DT in parallel was also suggested by Borgefors (1986) that
“the computing of the Voronoi tessellation image can be done by first
computing distance transformation from an object pixel while at the same
time keep track from which pixel the distance is computed”.

160 Chapter 8

Fig. 8.5 DT computation and Voronoi image generation during the forward pass.

A more complete picture for the parallel process of the DT and Voronoi
tessellation implementation is illustrated in Figure 8.6 where the outcome
of the first pass and the second pass applied to the input pixels is clearly il-
lustrated.

00 00 00

88 00 00

FF FF FF

00 03 FF

00 00 00

88 88 00

Mask Ele. Preprocessed + Mask Input image

0

1

2

3

4

88 + 4 = 92

88 + 3 = 91

88 + 4 = 92

0 + 3 = 3

88 + 0 = 88

00

00

00

88

00

V i i

0 1 2

3 4

FF FF FF

00 FF FF

+4 +3 +4

+3 +0

Mask indexing Input image

Preprocessed image Mask values

THE SUPPORTING ALGORITHMS 161

Fig. 8.6 DT and Voronoi tessellation parallel computation

The algorithm is tested by using several simulated digitized datasets (Fig-
ure 8.7) as well as photogrammetrically captured datasets (Figure 8.9).

00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 01 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 02 00 00
00 00 00 00 00 00 00

00 00 00 00 00 00 00
00 00 00 00 00 00 00

00 00 03 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00

FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF 00 FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF 00 FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF 00 FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF

FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF 00 03 06 09 12 FF
FF 03 04 07 10 13 FF
FF 06 07 08 11 14 FF
FF 09 10 11 12 15 FF
FF 12 13 14 00 03 FF
FF 15 16 04 03 04 FF
FF 18 08 07 06 09 FF
FF 12 11 10 09 10 FF
FF 15 00 03 06 09 FF
FF 04 03 04 07 10 FF
FF FF FF FF FF FF FF

FF FF FF FF FF FF FF
FF 06 07 08 13 14 FF
FF 03 04 09 10 13 FF
FF 00 03 06 09 12 FF
FF 03 04 07 09 10 FF
FF 06 07 07 06 07 FF
FF 09 07 04 03 04 FF
FF 09 06 03 00 03 FF
FF 10 07 04 03 04 FF
FF 07 06 07 06 07 FF
FF 04 03 04 07 10 FF
FF 03 00 03 06 09 FF
FF 04 03 04 07 10 FF
FF FF FF FF FF FF FF

+4 +3 +4

+3 0

0

+4 +3 +4

+3

00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 01 01 01 01 01 00
00 01 01 01 01 01 00
00 01 01 01 01 01 00
00 01 01 01 01 01 00
00 01 01 01 02 02 00
00 01 01 02 02 02 00

00 02 02 02 02 02 00
00 01 02 02 02 02 00

00 02 03 03 03 03 00
00 03 03 03 03 03 00
00 00 00 00 00 00 00

00 00 00 00 00 00 00
00 01 01 01 01 01 00
00 01 01 01 01 01 00
00 01 01 01 01 01 00
00 01 01 01 02 02 00
00 01 01 02 02 02 00
00 01 02 02 02 02 00
00 02 02 02 02 02 00
00 02 02 02 02 02 00

00 03 03 03 03 02 00
00 03 03 02 02 02 00

00 03 03 03 03 03 00
00 03 03 03 03 03 00
00 00 00 00 00 00 00

Input image Preprocessed image

1st. Pass

2nd. Pass

162 Chapter 8

The Voronoi polygons in Figure 8.8 are clearly delineated. Different im-
age tones represent different polygons as depicted in Figure 8.10 where
their kernel points are shown in Figure 8.9.

1
2

4

3

5

67

Fig. 8.7 Several kernel points Fig. 8.8 The generated Vo-
ronoi polygons of the points as
shown in Fig. 8.7

Fig. 8.9 The rasterized kernel
points of the photogrammetric
data sets

Fig. 8.10 The generated Vo-
ronoi polygons of the kernel
points (Fig. 8.9)

THE SUPPORTING ALGORITHMS 163

8.4 Triangulations (TINs)

Descriptions of triangulations associated with digital terrain modelling
(DTM) and surveying can be found in texts such as Petrie and Kennie
(1990). A more specific discussion of TIN algorithms for visualization as-
pect can be found in (van Kreveld, 1997). In this section, the basic Delau-
nay triangulation (Delaunay, 1934) will be described.

The principle of Delaunay triangulation is that the circumscribing circle of
any triangle does not contain any point of the data set inside it, see Figure
8.11.

Fig. 8.11 Six non-overlapped triangles of seven points created by the Delaunay
triangulation technique

A number of triangulation algorithms have been developed based on De-
launay triangulations and are widely implemented in terrain surface mod-
ules in a number of GIS and DTM packages. In such packages, the trian-
gulation is normally known as a triangular irregular network (TIN). Each
triangle in a TIN connects three neighbouring points so that the plane of
the triangle fits the surface sufficiently. The TIN structure was designed
by Peucker and co-workers (Peucker et al., 1978) for digital terrain model-
ling. As mentioned in the foregoing discussion, a TIN is a terrain model
that uses a sheet of continuous, connected facets based on a Delaunay tri-
angulation of irregularly spaced nodes or observation points. TIN is con-
sidered to provide a better structure for surface modelling than other struc-
ture such as grids (grid for example may not retain the original data). It is

1

2

3

5

4

6

7

164 Chapter 8

not the intention of this section to describe fully the advantages of the
structure but rather to briefly mention the TIN primitives instead. The
primitives are nodes, lines, and surfaces which are considered the funda-
mental building blocks for spatial information. This is an interesting con-
sideration from which to develop and implement the TIN package dis-
cussed in this work. In two-dimensional space, the 2D TIN can be used
for developing a spatial information system; this is because the structure
contains spatial data primitives, namely node, line, and surface primitives.

At this point unconstrained triangulations have been developed; that is no
other terrain features incorporated such as breaklines or any linear features
except terrain points. A much better triangulation, that is constrained tri-
angulation capable of incorporating such terrain features is discussed in
section 8.9. Three kernel points of the neighbouring Voronoi polygons
need to be known to form a triangle as shown in Figure 8.12. If there are
more than three neighbouring polygons, for example if there four poly-
gons, then there will be two possibilities for triangle formation (see Figure
8.12).

1

2

3

4

Fig. 8.12 The two possible triangles formation

In this work, the triangles are properly constructed according to the Delau-
nay technique where there are no ambiguous triangles created.

In other words, a correct TIN topology is established. A correct triangle
formation can be achieved by searching three Voronoi polygon
neighbours. In order to find a unique set of three points from a Voronoi-
tessellated image, a 2 x 2 mask is used (as illustrated in Figure 8.13). The
mask is designed to detect only two specific situations where three or four
different pixel values fall inside the mask at a time. These different pixels

THE SUPPORTING ALGORITHMS 165

correspond to the neighbouring Voronoi polygons and the kernel points of
these polygons are used to form the triangle. Figure 8.13 shows the mask
for detecting the triangle topology.

Fig. 8.13 Mask (2 x 2) for TIN topology detection

The mask is separated into two parts with the aim of avoiding the overlap-
ping (crossover) triangles, as overlapping triangles are not allowed in the
Delaunay triangulation. The mask (2 x 2) is designed to work using a
matching operation. The pseudo code for the upper-part mask as follows:

if (mask[0] not equal to mask[1]) and

(mask[1] not equal to mask[2]) and
(mask[2] not equal to mask[0]) then
{

increase(number of triangles);
node[0] = mask[0];
node[1] = mask[1];
node[2] = mask[2];

}

whereas below is the matching condition for the lower-part of the mask:

if (mask[1] not equal to mask[2]) and
(mask[2] not equal to mask[3]) and

0 1

2 3

0 1

2

1

2 3

M ask inde xing (2 x 2)

U ppe r pa rt Lower part

P redef ined to polo gy

166 Chapter 8

(mask[1] not equal to mask[3]) then
{

increase(number of triangles)
node[0] = mask[1];
node[1] = mask[2];
node[2] = mask[3];

}

The triangle detection also works with two passes of operations as for the
previously discussed DT and Voronoi tessellation operations. The upper-
part mask is used to scan the Voronoi image from the first pixel to the last
pixel. A triangle is found if four different pixels match either one of the
matching conditions imposed by the mask (see Figure 8.14). The figure il-
lustrates how triangles could be detected.

Fig. 8.14 Triangle topology detection

The above topology matching condition works only if non-adjacent raster-
ised points are found in the data set. In other words, two adjacent pixels of
rasterised points produce incorrect topology (i.e. a very narrow polygon
creates crossing triangles). This situation can happen if one chooses an in-
appropriate pixel size at the rasterising stage of the data sets.

0 1

2 3

0 1

2 3

0 1

2 3

a b

c d

a b

c d

a b

c d

Mask indexing 4 different pixels

Use 2 diagonals

Use only 1 diagonal

Crossing topology

Non-crossing topology 4 crossing triangles

2 non-crossing triangles

Topology scan
on Voronoi polygons

THE SUPPORTING ALGORITHMS 167

Thus to overcome this problem, a few lines of condition codes are added to
the previous matching conditions. The matching conditions are as follows:

if (mask[0] not equal to mask[3]) and

 if (mask[0] not equal to mask[1]) and
(mask[1] not equal to mask[2]) and
(mask[2] not equal to mask[0]) then
{

increase(number of triangles);
node[0] = mask[0];
node[1] = mask[1];
node[2] = mask[2];
Add triangle to the list;

}

if (mask[0] not equal to mask[3]) and
if (mask[1] not equal to mask[2]) and

(mask[2] not equal to mask[3]) and
(mask[1] not equal to mask[3]) then
{

increase(number of triangles)
node[0] = mask[1];
node[1] = mask[2];
node[2] = mask[3];
Add triangle to the list;

}

168 Chapter 8

The triangle detection algorithm implementation works. Figure 8.15 and
Figure 8.16 indicate the workability of the algorithm.

8.4.1 TIN Topological Data Structuring

A program has been developed for establishing TIN neighbour information
(i.e. TIN topology). With this, one could determine the neighbours
(neighbouring triangles) of any given triangles. This is very useful for
some applications using the TIN data structure. The algorithm to establish
the neighbour triangles is based on the following concept: a triangle
neighbour is found if two common nodes of the triangles are encountered.
One triangle may have a maximum of three different neighbours. Below is
the pseudo-code for the algorithm.

loop (from triangle(t) = 1 to last)

{
loop (from triangle(tt) = 1 to last && num of neighbour <= 3)
 {
 if (t == tt) continue;

 set CommonNode = 0;

 loop (from node = 0 to < 3) && (CommonNode <= 2)

Fig. 8.15 The Voronoi polygons
and its dual product (i.e. the tri-
angles

Fig. 8.16 The detected TINs
from the Voronoi tessellated im-
age

THE SUPPORTING ALGORITHMS 169

 {
 CheckNode = (tri[t] -> Node[i] == tri[tt] -> Node[0]) ||
 (tri[t] -> Node[i] == tri[tt] -> Node[1]) ||
 (tri[t] -> Node[i] == tri[tt] -> Node[2]);

 if (CheckNode == true)

{
 CommonNode ++; // increase the common node

if (CommonNode == 2)
 {

 NumofNbr ++; // increase the number of
 neighbour

 Nbr[NumofNbr] = tt; // this triangle

 TotalNeighbour = NumofNbr + 1;// set total
 neighbours for a triangle

 }
 }
 }
 }
 }

The input is a TIN file (an ascii file of three triangle nodes; Node1,
Node2, Node3), and the output is an NBR file (a file of triangle number,
number of neighbour, Neighbour[1] or (Nbr1), Neighbour[2] or (Nbr2),
and Neighbour[3] or
(Nbr3)), see Figure 8.17.
The links of the dotted cir-
cles show that the triangle
T1 and the triangle T2 are
neighbouring triangles.

Full neighbouring informa-
tion for the triangles is well described in the NBR file, and the link of the

Fig. 8.17 The TIN neighbour data structure

T1T2

T3

T4
1

2 3

4

5

6

TIN file

NBR file

Node3Node2Node1

#

#

Nbr3Nbr2Nbr1Num_Nbrs

T1

T1

T2

T2

T3

T3

T4

T4

1 2 4

1 2 5

2 3 4

1 4 6

3 T2 T3 T4

1 T1

1

1

T1

T1

- -

- -

- -

170 Chapter 8

XYZ coordinates with the TIN file (Figure 8.18) facilitates other tasks
such as visualization.

Fig. 8.18 The link of XYZ coordinates and the TINs

8.5 Visualization

It has been claimed by de Berg (1997) that the visualization of TINs is one
of the major issues in TIN development. In this work only a simple dis-
play program for visualizing the generated TINs has been developed. One
of the fundamental tasks of any GIS or DTM package is to visualize data.
Figure 8.20 shows a simple TIN visualization.

THE SUPPORTING ALGORITHMS 171

Fig. 8.19 The visualization of TINs generated using digitized contours data
sets

The visualization program takes two input files, a XYZ coordinate file, and
the TIN table file. The triangles three nodes (i.e. Node1, Node2, and
Node3) can be linked to the corresponding XYZ coordinate table for the
nodes with the appropriate pointers. Based on values in the XYZ file, tri-
angles could be shaded according to slope, elevation, etc., for further visu-
alization.

8.6 3D Distance Transformation

Digital distance transformations in 3D have been considered for more than
a decade, not only in medical imaging but also in other areas (Borgefors,
1996). In this work, the DT technique was used to generate a DT image, a
Voronoi image and tetrahedra. The 2D DT algorithm discussed in previ-
ous sections can be extended to the third dimension relatively straightfor-
wardly due to the nature of the raster data structure. Thus, the same DT

172 Chapter 8

principle is utilised for the 3D TIN development. A 3D mask of dimen-
sion 3 x 3 x 3 was used as proposed by Borgefors (1996) known as Cham-
fer 3-4-5 mask (see Figure 8.20). Other types of masks are also applicable
such as the Chessboard mask and the City-block mask (Borgefors, 1996).

Fig. 8.20 The 3-4-5 mask for the 3D DT

The Chamfer 3-4-5 mask is used due to its computational simplicity and its
ability to generate quite accurate distance images. Each voxel in the mask
is assigned a local distance either with a value 3, 4 or 5, depending on the
voxel location (again, see Figure 8.20). The centre voxel of the mask is
surrounded by 26 other voxels in x, y, z directions, where each voxel has
three types of voxel neighbours. They are called face neighbours, edge
neighbours and node or vertex neighbours. The face neighbour voxels are
assigned the value 3, the edge voxels the value 4, and the vertex voxels the
value 5.

5

4

5

3

4

4

5

4

5

5

4

5
4

4

3
5

4

5

5

5 5

55

5

5

5

4

44

4

4

4

4

4

43

3

3

3

3

4

4 4

00

3

3 x 3 x 3 mask

Upper-part Lower-part

THE SUPPORTING ALGORITHMS 173

Figure 8.21 shows how the voxel values are accumulated within a (5 x 5 x
5) voxel space in the DT and Voronoi operations. To generate a distance
image of a 3D raster image, the first step is to set the voxel background
image to the highest integer value (F) and the object voxels to zeros (i.e.
0), see b. The image is then scanned in two passes, i.e. forward and back-
ward passes. The forward pass (using the upper-part mask) begins from
the first voxel to the last voxel. At this stage, the voxels surrounding the
object voxels will get new values. The new value is the minimum distance
from the 14 possible voxel candidates (see c). The result of the first pass is
taken into account for the second pass. This time, the image is scanned
with the lower-part mask (i.e. the backward pass) beginning from the last
voxel and moving to the first voxel; again see Figure 8.21 for the accumu-
lated distance of a 5 x 5 x 5 cubic space (see d). A 3D distance-
transformed image is formed after the two passes are carried out (see Figure
8.22). The Figure 8.22 shows the graphic output of the 3D DT of several
random points in 3D space.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

25

0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0

F F F F F
FFFFF

F F F F F
F F F F F
F F F F F

24
24
24
24
24 24

24
24
24
24 24

24
24
24
24 24

24
24
24
24 24

24
24
24
24

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0

F F F F F
F F F F F
F F F F
F F F F F
F F F F F

F F F F F
FFFFF

F F F F F
F F F F F
F F F F F

F F F F F
FFFFF

F F F F F
F F F F F
F F F F F

F F F F F
FFFFF

F F F F F
F F F F F
F F F F F

0 3 6
3
6

4 7
7 878

4

F
F
F
F

F
F
F F

F F
F F

F
F F F F F

FFFFF
F F F F F
F F F F F
F F F F F

F F F F F
FFFFF

F F F F F
F F F F F
F F F F F 9 8 7 8 9

58 854
345 4 7

5 4 5 8
F F F F F
F

10

10 10

109
9

9
9 9

9

9
98

8
8

8 8
8

8
87

7
7

7
6

10

10 10

10
9

9 9
9

9
99

9

8

8
8

8
8

88
8

7
7

7
76

9

9

98

88

8
8

88

8
7

7
7

7

7

11

5 5

5

4
4

4
43

8

8 8

87
7

7
7 7

7

7
76

6

6

6
4 4

44
3

3
3

3
0

9

9 9

9
8

8 8

88

88

8
7

7

7

7
5

5 5

54
4 4

4
3

10

10 10

109
9

9
9 9

9

9
9

8 8

8

8

8

8 8

87
7

7
76

24
24
24
24
24 24

24
24
24
24 24

24
24
24
24 24

24
24
24
24 24

24
24
24
24

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

25
25
2525 25

25
25 25

25
2525

25

24
24

24
2424

24
24
24 24 24

242424

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

25
25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25 25

25
25
25
25

a) Input image

b) Preprocessed image

c) Forward pass (3D DT)

d) Backward pass (3D DT)

e) Forward pass

f) Backward pass

Row

Coloumn

Level 1 Level 2 Level 3 Level 4 Level 5

25 is object voxel

Value 0 is assigned for object
voxel, and F is background image

Part of the polyhedron with ID 25

5 x 5 x 5 Voxel
cubic space

(3D Voronoi tessellation)

(3D Voronoi tessellation)

a) Input image 25 is
object voxel

b) Preprocessed image
Value o is assigned for ob-
ject voxel, and F is back-
ground image

c) Forward pass (3DT)

d) Backward pass (3DT)

c) Forward pass (3D Vo-
ronoi Tessellation)

c) Backward pass (3D Vo-
ronoi Tessellation)

Fig. 8.21 Slice of images (along the Z or level direction) for the 3D DT and
3D Voronoi tessellation

174 Chapter 8

Fig. 8.22 An example of a 3D distance transformation image of four points shown
as double cross-sections of a 3D space (visualized via the AVS software) in the x,
y and x, z planes

The algorithm for the 3D DT in a pseudo-code follows:

// Procedure to set the background image
void set background()
 {
 loop from first row to last row
 {
 loop from first column to last column
 {
Set loop for (first level to last level

 {
 if (Pixel value not equal to background)

 Set Pixel value to zero;
 else

Set Pixel value to background (highest possible value);
}

 }
 }
 }

THE SUPPORTING ALGORITHMS 175

// Procedure to assign the Upper Mask
void GetUpperMask()
 {
 Assign the Mask[0] to Mask[4] to their corresponding pixel

locations,
e.g. Mask[0] = Pixel[row-1][column-1];

// Procedure to assign the Lower Mask
void GetLowerMask()
 {
 Assign the Mask[4] to Mask[8] to their corresponding pixel

locations,
e.g. Mask[4] = Pixel[row][column];

 }

// Procedure to compute distance in forward pass
void ForwardPass()
 {
 loop from first row to last row
 {
 loop from first col to last col
 {
 GetUpperMask();
 If Mask has odd index add 4 to the Mask value;
 else
 Add 3 to the Mask value;
 }

 Get the minimum value of Mask[0] to Mask[4] and assign
to this pixel;

 }
 }
 }

// Procedure to compute distance in backward pass
void BackwardPass()
 {
 loop from last row to first row
 {
 loop from last column to first column
 {
 GetLowerMask();

176 Chapter 8

 If Mask has odd index add 4 to the Mask value;
 else
 Add 3 to the Mask value;
 }

 Get the minimum value of Mask[0] to Mask[4] and assign
to this pixel;

 }
 }
 }

and finally we need to combine the above steps into the following step:

// Procedure to compute the distance using forward and back-
ward

void Forward&Backward()
 {
 Reads the input Image;
 Set the Background;
 Compute distance using the ForwardPass;
 Compute distance using the BackwardPass;
 Write and save the transformed image to file;
 }

8.7 3D Voronoi Tessellation

A Voronoi image is generated from the DT image. Again, these two im-
ages are generated in parallel. The task also involves three steps. First,
cover the image with the mask. Second, the values of the mask are added
to the value of the voxels being covered by the mask. Third, a minimum
value from the 14 voxel candidates is determined and assigned to the cur-
rent voxel location. The original voxel value of the current voxel location
is taken, assigned, and written to the 3D Voronoi file. This is done prior
to the mask being moved to the next voxel location. The process continues
until the last voxel of the image is reached. Again, the result of this for-
ward pass is taken into account in the backward pass which begins from
the last voxel and proceeds to the first voxel of the image. Figure 8.21 (e
and f) shows how the 3D Voronoi polygons (i.e. polyhedrons) are gener-
ated from one object voxel with ID = 25. In other words, a polyhedron of
the voxels with ID 25 has been created. Visualization of the 3D DT and

THE SUPPORTING ALGORITHMS 177

3D Voronoi images or polyhedrons can be achieved by a true 3D viewing
package as provided by the AVS™ software (see Figure 8.23).

Fig. 8.23 An example of 3D Voronoi tessellation of four points shown as double
cross-section of 3D space (visualized via the AVS software)

The algorithm for the above 3D Voronoi tessellation in pseudo-code can
be written as:

// Procedure: SetBackground
void SetBackground(Voxel3D Voxel, unsigned char Bg, un-

signed char Fg)
 {
 loop from first level to last level
 {
 loop from first row to last row
 {
 loop from first column to last column
 {
 if (Voxel[l][row][col] == 0)
 Voxel[l][row][col] = Bg;
 else
 if (Fg > 0)
 Voxel[l][row][col] = Fg;
 }

178 Chapter 8

 }
 }
 }

// Procedure: GetUpperMaskDist
void GetUpperMaskDist(int l, int r, int c, Voxel3D Voxel,

Mask& MaskPix)
 {
 Assign the MaskPix[0] to MaskPix[13] to their corresponding

Voxel locations.
e.g. MaskPix[0] = Voxel[l-1][r-1][c-1];

 }

// Procedure: GetLowerMaskDist
void GetLowerMaskDist(int l, int r, int c, Voxel3D Voxel,

Mask& MaskPix)
 {
 Assign the MaskPix[13] to MaskPix[26] to their correspond-

ing Voxel locations.
e.g. MaskPix[13] = Voxel[l][r][c];

 }

// Procedure: GetUpperMaskVoronoi
void GetUpperMaskVoronoi(int l, int r, int c, Voxel3D Voxel-

Vor, Mask& MaskPixVor)
 {
 Assign the MaskPixVor[0] to MaskPixVox[13] to their corre-

sponding Voxel locations,
 e.g. MaskPixVox[0] = VoxelVor[l-1][r-1][c];

 }

// Procedure: GetLowerMaskVoronoi
void GetLowerMaskVoronoi(int l, int r, int c, Voxel3D Voxel-

Vor, Mask& MaskPixVor)
 {
 Assign the MaskPixVor[13] to MaskPixVox[26] to their cor-

responding Voxel locations,
 e.g. MaskPixVox[13] = VoxelVor[l][r][c];

 }

THE SUPPORTING ALGORITHMS 179

// Procedure: ForwardPass
void ForwardPass(Voxel3D Voxel, Voxel3D VoxelVor)
 {
 loop from first level to last level
 {
 loop from first row to last row
 {
 loop from first column to last column
 {
 GetUpperMaskDist(l, r, c, Voxel, MaskPix);
 GetUpperMaskVoronoi(l, r, c, VoxelVor, MaskPixVor);
 for (k = 0; k < 13; k ++)
 {
 if ((k == 0) || (k == 2) ||
 (k == 6) || (k == 8))
 MaskPix[k] = MaskPix[k] + 5;

 if ((k == 1) || (k == 3) ||
 (k == 5) || (k == 7) ||
 (k == 9) || (k == 11))
 MaskPix[k] = MaskPix[k] + 4;

 if ((k == 4) || (k == 10) || (k == 12))
 MaskPix[k] = MaskPix[k] + 3;
 }

 if (MaskPix[13] != 255)
 MaskPix[13] = 0;

 Voxel[l][r][c] = MaskPix[MinByIndex(0, 13)];
 VoxelVor[l][r][c] = MaskPixVor[MinByIndex(0, 13)];
 }
 }
 }
 }

180 Chapter 8

// Procedure: BackwardPass
void BackwardPass(Voxel3D Voxel, Voxel3D VoxelVor)
 {
 loop from last level to first level
 {
 loop from last row to first row
 {
 loop from last column to first column
 {
 GetLowerMaskDist(l, r, c, Voxel, MaskPix);
 GetLowerMaskVoronoi(l, r, c, VoxelVor, MaskPix-

Vor);
 for (k = 26; k > 13; k --)
 {
 if ((k == 18) || (k == 20) ||
 (k == 24) || (k == 26))
 MaskPix[k] = MaskPix[k] + 5;

 if ((k == 19) || (k == 21) ||
 (k == 23) || (k == 25) ||
 (k == 15) || (k == 17))
 MaskPix[k] = MaskPix[k] + 4;

 if ((k == 14) || (k == 16) || (k == 22))
 MaskPix[k] = MaskPix[k] + 3;
 }
 Voxel[l][r][c] = MaskPix[MinByIndex(13, 26)];
 VoxelVor[l][r][c] = MaskPixVor[MinByIndex(13, 26)];
 }
 }
 }
 }

// Procedure: ForwardVoronoi
void ForwardVoronoi()
 {
 ReadVoxelImage(Voxel);
 CopyVoxel(Voxel, VoxelVor);
 SetBackground(Voxel, 255, 0);
 ForwardPass(Voxel, VoxelVor);
 }

THE SUPPORTING ALGORITHMS 181

// Procedure: BackwardVoronoi

void BackwardVoronoi()
 {
 BackwardPass(Voxel, VoxelVor);
 }

8.8 Tetrahedron Network (TEN) Generation

Using the same principle as for the 2D TIN, the algorithm for the 3D TIN
utilises a mask of 2 x 2 x 2 (see Figure 8.24). It has eight voxel elements.
It provides a unique way of establishing tetrahedra. In order to obtain non-
overlapping tetrahedra, several predefined conditions have to be imposed
during voxel scanning. There are six possible non-overlapping tetrahedra
that we can get from the mask shown in Figure 8.24.

Fig. 8.24 The six non-overlapping TENs

The mask is then used to scan the voxel’s Voronoi tessellated-image once.
Once the tetrahedron is detected (based on the imposed conditions), it is
then written to a file. The file contains a record of tetrahedra where each
record has four nodes, it is an ASCII file and structured as in Figure 8.25.
Thus, it is one way of establishing a simple tetrahedral data structure. The

0 1

2

3

4

5

6 7

0

4
5

1

2
3 6

7
0 1

2
3

4 5

6 7

0 1

2
3

4 5

6 7

0 1

2
3

4 5

6 7

0 1

2
3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2
3

4 5

6 7

TEN 1 TEN 2

TEN 3
TEN 4

TEN 5
TEN 6

2 x 2 x 2 mask

Detail view of the mask

6 non-overlapping TENs (or 3D TINs)

182 Chapter 8

data structure together with a table of nodes’ coordinates provide a means
for further manipulation of the data, e.g. visualization.

The algorithm is implemented and tested by using simulated 3D raster data
sets. This data sets are generated by the 3D point-to-raster program devel-
oped in this work. A wireframe display program has also been developed
for visualizing the TENs (see Figure 8.26) for the output display.

Fig. 8.25 TEN data structure (for TEN 1 as shown in Fig. 8.24)

// The main program has the following routines:

void main()
 {
 GetVPIfile(VPI);
 GetVPDfile();
 AllocateMemory();
 Get3DTINfile();
 Make3DTIN();
 DeallocateMemory();
 }

Fig. 8.26 An example of TEN visualization

X Y Z # Node1 Node2 Node3 Node4

Points table TENs tab le

01 2

3
4

0

2

3 4
1

THE SUPPORTING ALGORITHMS 183

8.9 Constrained Triangulations

Constrained triangulation development is meant to accommodate linear
features, e.g. terrain breaklines, drainage lines, faults and other linear fea-
tures such as roads, railways, etc. Previously, this triangulation only
worked with points as discussed in section 8.4, but now a new feature is
introduced in this work, that is the capability of handling linear features.
In a constrained triangulation, these lines or linear features become part of
the triangle edges. Since the triangulation in this work is based on raster
data, further development of the rasterization routine has also been neces-
sary so that it can accommodate straight lines.

The next section discusses the line rasterization algorithm and the results
of constrained triangulation.

8.9.1 The Line Rasterization

Line rasterization is used to rasterise a series of lines - as input to the con-
strained triangulation. In this, a line has a start node and an end node.
Thus, the rasterization is simply a process of calculating the position of the
pixels between these two end nodes of a line. Line rasterization was suc-
cessfully implemented for the constrained triangulation by incorporating a
simple line equation, y = mx + C, where m is a slope of a line, the Bresen-
ham line plotting algorithm, and the Tang (1992) algorithm. The m (slope
of a line) is used only to detect the type of a line or arc in the data file
rather than to do the rasterization of points of a line. A line or an arc could
have a slope of (0 < m < 1), or (m > 1), or (-1 < m < 0), or (m < -1) or be
vertical or it could be horizontal. This approach can handle all cases of
lines, i.e. in all quadrants. The Bresenham algorithm is used to speed up
the operation, and Tang’s algorithm is for the constrained triangulation
where the edge or arcs can be accommodated in the Voronoi and the trian-
gulation process. This approach of line rasterization is fast and produces
well rasterised lines. It is fast because it does not involve a divisional op-
eration during the pixel increment along the line. The Bresenham line al-
gorithm can be found described in computer graphics texts such as Foley,
et al (1996), and Farrell (1994). Below is the line rasterization pseudo-code
(only the first quadrant is presented).

184 Chapter 8

void LineRasterization()
{

GetXYZFile();
GetArcFile();

loop from first arc to last arc
 {
 GetXYZforArcNodes(t, xstart, ystart, xend,

yend, sNd, eNd);
 Calculate the m for each line (m = (yend -

ystart) / (xend - xstart));
 GetMiddleXY for each line;

Detect the slope of a line, it could be (m > 0)
&& (m < 1), or

(m > 1), or (m < 0) && (m > -1), or (m < -
1), or

vertical, or horizontal line;
if (m > 0) && (m < 1) do the following

{
Swap the coodinates of the two nodes so that

the operation begins
with the lower position node;

Calculate the dx, dy;
Calculate the (2 * dx) and (2 * dy);
Calculate the pixel location, i.e. the row, and

col of the pixel location;
if swap the nodes is true

Assign the pixel location with the correct
value, i.e. the correct node number;

else
Assign the pixel location with the correct

value, i.e. the correct node number;
Initialise the Bresenham error of a line (that is

the difference of a point to the true position, see
Bresenham algorithm for detail.

Increase the xstart (i.e., xstart ++)
while (xstart < xend)

{
If the error > 0

error = error + (2*dy - 2*dx);
ystart ++;

THE SUPPORTING ALGORITHMS 185

else
error = error + (2*dy);

Calculate the row and col of the pixel

location;
Assign the correct pixel value to this

location;
Increase the xstart (i.e., xstart ++);

 }
and do the rest of the line cases (i.e. for
the other quadrants).

}

This line rasterization algorithm produces the following result as tested
with several simulated nodes, and arcs, as shown in Figure 8.27.

Fig. 8.27 Screen shot of the rasterized nodes and arcs.

8.9.2 The Construction of the Constrained TINs

In order to generate constrained triangulation, rasterised points and raster-
ised lines are needed as the input. This constrained triangulation is based
on the concept presented by Tang (1992). Here, the constrained edges were
represented by a series of pixels whose values were based on the edge
node IDs (identifiers). In other words, half of a line was represented by the
pixels of the start node, and the other half by the pixel values of the end
node (see Figure 8.28).

186 Chapter 8

The above figure also shows the propagation of the pixel values of the start
node to the end node of each arc. This approach also conforms with the
Voronoi tessellation concept where two kernel points have two corre-
sponding Voronoi zones separated by a boundary which happens to be lo-
cated in the middle of the two kernel points.

The illustrations in Figure 8.29a to Figure 8.29d show the result of the DT
and the Voronoi tessellation implemented for the constrained edges.

Arc# StartNode EndNode
1
2
3
4
5
n

1 2
2
3 4

3

4 5
5 6

ARC file

X Y Z
1

2
3

n

XYZ file

1

2
2 3

3

4

5

6
7

9

12

13

8

11

16
15

20
22

23
24

25

21

26 27
28 29

30

1
1
1

1
1

2

2
2

2 2
3 3 3

3
3

4

4

44

5
5

5
5

6
6

6
66

6
7

1
1 1 1 1

7
7
7

7

8
8

8
8

8

7

7

7 7 7 7
99999

9
9

9
9
9

10 10
10 10 10 10

11

1111 11
1111 11

11 1111 12
12 12

12 12 1313
13

13 13

14 14 15
15

15 1616 16
16 16 1717

17 17 17
1818

18 18 18 19
19 19

19 19

41

42

44

41

45

40 40
40

4141 42 42
42 42

42 4343 43
43 43 44

44
44 44 45

45 45

8 8 8
8 8 8 8

Fig. 8.28 An example of the pixel locations of the rasterized points and sever-
als edges or arcs. The left side is the corresponding coordinates and arc files.

THE SUPPORTING ALGORITHMS 187

It is clearly shown that the edges or arcs can be accommodated as a con-
strained feature in the distance transformation and Voronoi tessellation. A
constrained edge is represented by the thick black lines as in Figure 8.29c
and the respective polygons are shown in Figure 8.29d.

Further, all the points and the edges are then triangulated, and the results
are the constrained triangulations, see Figure 8.31.

Fig. 8.29a The DT image of the
rasterized kernel points

Fig. 8.29b The Voronoi image for
the kernel points Fig. 8.29a

Fig. 8.29c The DT image with the
edges and points

Fig. 8.29d The Voronoi image of
the corresponding dges and points
of Fig. 8.29c

188 Chapter 8

In this particular example, the edges are part of the features on the terrain
and also form part of the triangle edges. The results indicate that the con-
strained triangulation works. The development provides useful data struc-
turing mechanisms for TIN-based spatial data modelling and the related
applications. The fundamental GIS data types, i.e. node, arc, surface and
volume are generated with this approach. Their related spatial modelling
is discussed in Chapter 7.

The technique has also been tested using photogrammetrically acquired
data (Drumbuie, Kyle of Lochash, north-west Scotland) - see the results in
the following Figure 8.32 to Figure 8.35.

Fig. 8.30 The generated uncon-
strained triangulation

Fig. 8.31 The generated con-
strained triangulation

THE SUPPORTING ALGORITHMS 189

Fig. 8.32 The rasterized points and
lines

Fig. 8.33 The DT image of the area

Fig. 8.34 The Voronoi image Fig. 8.35 The generated TINs

190 Chapter 8

8.10 Contouring Algorithm

Contouring is one of the GIS applications that has been developed for this
work. This section describes the development of the data structures for the
contouring and contouring algorithm. A suitable file format for the above
application is also developed, so that it could be imported to other com-
mercial GIS software, e.g. Arc/Info, and ILWIS.

8.10.1 Data Structures for Contouring

This is one of the important components where the data storage and data’s
accessibility influence the behaviour and performance of the software. In
this it should be noted, besides the two TINs structures, namely, the three-
nodes table (TRI) and the triangle neighbour (NBR), that two other data
structures were developed. These two TIN topological structures are a tri-
angles’ edge and right and left triangles (TRS), and a triangles’ three sides
(SID).

Fig. 8.36 An example of 6TINs with seven nodes, and 12 sides or edges

Figure 8.36 shows a simple configuration of six TINs with seven nodes,
and 12 triangle sides.

T1 T2

T3

T4T5

T6

1

2

3

4

5

6

s1 s5

s6

s2

s3

s12
s11

s10 s8

s7

s9

s4

7

THE SUPPORTING ALGORITHMS 191

To facilitate the contouring application, a program has been developed to
generate two more data structures. Thus, from TRI (Triangle # and 3
nodes) and NBR (Triangle neighbours), TRS and SID structures are gener-
ated. The TRS contains Triangle sides and Right-Left triangles while the
SID structure contains Triangle # and the three sides or edges.

The algorithm for converting the TRI and NBR structures to TRS and SID
structures is based on the following concept: a triangle side has two nodes,
and each side only has either a right triangle or a left triangle (see Figure
8.36). The software has the following routines:

Read the triangles
Read the triangles neighbours, and
MakeTRSandSID structure.

The MakeTRSandSID has the following sub procedures, the ExistingSide
and the DoSide functions, and the algorithms are described below in
pseudo-code.

 ConvertStruct :: bool ExistingSides(int n1, int n2, int& s)
 {
 do
 {
 found = (n1 == Node1) && (n2 == Node2);
 if (! found)
 s ++;
 } while ((! found) && (s <= nsid));

 return found;
 }

void ConvertStruct :: DoSide(int t, int n1, int n2, int

snbr)
 {
 if (n1 > n2)
 {
 h = n1;
 n1 = n2;
 n2 = h;

 }

192 Chapter 8

 if (ExistingSides(n1, n2, s))
 {
 TriSides[s]->RightTri = t;
 Tri3Sides[t]->Side[snbr] = s;
 }

 else
 {
 nsid ++;
 TriSides[nsid] = new tsid;
 TriSides[nsid]->Node1 = n1;
 TriSides[nsid]->Node2 = n2;
 TriSides[nsid]->LeftTri = t;
 TriSides[nsid]->RightTri = 0;

 Tri3Sides[t]->Side[snbr] = nsid;
 }

 }

Fig. 8.37 The TRS and SID structure

8.10.2 The Algorithm

The contouring program makes use of two TIN data structures, namely the
TRS and SID structure plus the coordinates, and it is based on linear inter-
polation. The contouring program performs the following routines:

Read the input data (coordinates, TINs structure of TRS, and SID ta-
bles).
Open the output file for the interpolated data.
Get the min and max of the XYZ input coordinates, then perform

Side1 Side2 Side3#
Node1 Node2 RightTri LeftTri# SID structure

s1
s2
s3
s4
s5
s6
s7
s8
s9
s10

1 2 T1 0
2 3 T1 T2
1 3 T6 T1
3 4 T3 T2
2 4 T2 0
4 5 T3 0
3 5 T4 T3
5 6 0 T4
3 6 T9 T4
6 7 T5 0

T1 s1 s2 s3
T2 s2 s4 s5
T3 s4 s6 s7
T4 s7 s8 s9
T5 s9 s10 s11
T6 s3 s11 s12

TRS structure

THE SUPPORTING ALGORITHMS 193

MakeContouring.

The algorithm can be described as follows. MakeContouring has several
sub methods or procedures, they are CheckSide, FindFirstTri, Interpolate,
FindOtherSide, FindNextTri, and GetContours. The CheckSide is to check
the side of a triangle and whether or not it can be interpolated with the user
requested contour heights. The FindFirstTri is used to get the first triangle
which contains the requested contour height. FindOtherSide is to get the
other side of a triangle, whereas the FindNextTri is to get the next triangle
in the list. The Interpolate is to compute the interpolated point once a tri-
angle’s side satisfies the imposed conditions. Then all these sub proce-
dures are combined as the GetContours function performs the subsequent
major task - the contouring. Thus the GetContours behaves as follows.

void MakeContouring :: GetContours(int Hreq)

 {
 do
 {
 while (FindFirstTri(t, s) != 0)
 {
 ii ++;
 SegNr = ii;
 startt = t;
 starts = s;
 done = false;
 secondpart = false;

 do
 {
 Interpolate(s, SegNr, Hreq);
 FindOtherSide(t, s, nexts);
 FindNextTri(t, nexts, nextt);
 if (nextt == startt)
 {
 // found closed contours

 Interpolate(nexts, SegNr, Hreq);
 done = true;

 }
 else if (nextt == 0)
 {
 // hit border

194 Chapter 8

 Interpolate(nexts, SegNr, Hreq);
 if (secondpart)
 done = true;
 else
 {
 FindNextTri(startt, starts, t);
 if (t == 0)
 done = true;
 else
 {
 s = starts;
 secondpart = true;
 }
 }
 }
 else
 {
 t = nextt;
 s = nexts;
 }
 } while (! done);

 }

 } while (! ((t == 0) || (s == 0) || (z != prevH))) ;
 }

THE SUPPORTING ALGORITHMS 195

Fig. 8.38 An example of contours with 35 interval using six TINs with seven
nodes, and 12 sides or edges

T1 T2

T3

T4T5

T6

1

3

4

5

s1 s5

s6

s2

s3

s12
s11

s10 s8

s7

s9

s4

7

2

6

8.10.3 The Contour Visualization

The contour algorithm has been tested using real terrain data sets. Figure
8.39 and Figure 8.40 illustrate the generated contours from the simulated
and digitized contours datasets with different contour intervals. Format
conversion programs for contours display in other popular GIS packages
are also developed, for example PC Arc/Info (.LIN format) and ILWIS
packages (.SEG format). Figure 8.40 shows one of the examples of de-
rived contours output from photogrammetrically acquired data sets.

196 Chapter 8

8.11 Algorithms for Irregular Network Formation

For 2D simplicial network formation, scanning the Voronoi image using a
2x2 mask with predefined conditions generates the Delaunay triangulation.
A triangle is detected in a situation where at least three of the four ele-
ments of the mask are different. By combinatorial mathematics (Finkbe-
iner and Lindstrom, 1987; Liu, 1986), this is a 3-selection (3-combination)
from a mask, which is a set of at most four distinct elements. The 3-
selection is a subset of the mask. We can apply the following definition to
determine the number of combinations (triangles in this case):

The number of k-selections from an n-element set is denoted by C(n, k),

where 0 ≤ k ≤ n

Fig. 8.39 The generated contours
from the simulated datasets
(6TINs)

Fig. 8.40 The generated contours of
4m interval using photogrammetrically
datasets (Drumbuie, Kyle of Lochash,
north-west Scotland)

THE SUPPORTING ALGORITHMS 197

If the mask contains only three distinct pixels, it becomes:

which yields only one triangle.

If all four elements of the mask are different, it is:

which yields four triangles to be formed. This leads to four intersecting tri-
angles. The situation occurs when 4 points are situated on a circle, hence,
four Voronoi regions meet at the centre of this circle, as shown in Figure
8.41.

To overcome this problem,
only the combinations from
the two opposite diagonals
of the mask are selected,
which yield only two non-
intersecting triangles.

The above analysis leads to
the conditions i) and ii) for
triangulation. Let a, b, c and
d be the contents of the 2x2
mask at an instance:

Condition i) The elements in the upper
triangle of the mask must be different
(elements number 1, 2, 3 in Figure 8.42).
This allows four possibilities:

a b a b a b a b

c c c b c d c a

 or

Condition ii) The elements in the lower
triangle of the mask must be different
(elements numbered 2, 3, 4 in Figure
8.42). This allows four possibilities

Fig. 8.41 Four points situation a circle four
Voronoi regions meet ay its centre

a b

c d

a

b

c
d

Fig. 8.42 2x2 mask elements
numbering

198 Chapter 8

a a a b a b a b

b c a c c d c a

Condition iii) The two elements on the perpendicular diagonal must be dif-
ferent (elements numbered 1, 4 in Figure 8.42). This condition prevents a
faulty formation of a triangle caused by a sliver raster Thiessen polygon. A
sliver polygon may be caused by a situation as shown in Figure 8.43.

The consequence of this condition is the rejection of the following situa-
tion:

a b

c a

The union of the permissible situations in condition i) and ii) yields six dis-
tinct possibilities. One of these is rejected by condition iii), so that only
five possibilities remain.

 a b a b a a a b a b

 c c c b b c a c c d

For 3D, the formation of a 3D simplicial network is done by using the
2x2x2 mask to scan the 3D Voronoi array once. A tetrahedron is detected
when the contents of four elements of the mask from the total of eight are
different. By combinatorial mathematics, this is a 4-selection from a set of
eight distinct voxels, that is:

Fig. 8.43 Faulty triangulation caused by sliver Vo-
ronoi region

THE SUPPORTING ALGORITHMS 199

This means that there are 70 possible intersecting tetrahedrons.

To ensure proper formation of the 3D simplicial network, that is, the net-
work of tetrahedrons, a Boolean approach is used to set up a set of condi-
tions to form tetrahedrons. The general aim is to allow the creation of at
most six non-intersecting tetrahedrons at one instance if all eight elements
of the mask are different (see Figure 8.44).

To achieve this requirement, six primary conditions are attached to the
2x2x2 mask for the formation of a unique set of non-overlapping tetrahe-
drons. Note that the numbers encompassed by circles in Figure 8.44 corre-
spond to the following conditions (1) to (6). The numbering system of the
mask is shown by the numbers encompassed by small cubes.

(1) 1 ≠ 3 ≠ 4 ≠ 5 (2) 1 ≠ 2 ≠ 4 ≠ 5 (3) 3 ≠ 4 ≠ 5 ≠ 7

(4) 2 ≠ 4 ≠ 5 ≠ 6 (5) 4 ≠ 5 ≠ 6 ≠ 8 (6) 4 ≠ 5 ≠ 7 ≠ 8

The line drawn between two elements of the mask shows a possible edge
of a tetrahedron to be formed by this mask. While scanning the 3D Vo-
ronoi array, the mask looks for the boundaries of the four adjacent Voronoi
polyhedrons. On detecting this situation, a tetrahedron is formed if one of
the above six conditions is fulfilled.

Nevertheless, the above six conditions are not sufficient to prevent the er-
roneous formation in the case where more than four nodes are situated on
the surface of a sphere. This situation is comparable to the 2D case shown
in Figure 8.41 and Figure 8.43. Additional conditions are therefore added
to prevent overlapping or intersecting tetrahedrons. Conditions (a) to (i)
listed below correspond to the letters placed on the edges of tetrahedrons
in Figure 8.44.

1 2

3 4

5 6

7 8

5

7

2

4

5

7 8

4 4 4

8

5 6 65

5 5 5

3 34 4

1 1 2

7

2

1 23

456

4

c
e
g

c
e
g

c
e
g

i

h

f

a

f

c
e
g

c
e
g

c
e
g

h

i

b

a

d d

A 2x2x2 Mask
1 2

3 4

5 6

7 8

b

 Mask numbering and
predefined topology

predefined conditions to form 6 unique
tetrahedrons

Fig 8.44 A 2x2x2 conditional mask for forming tetrahedral network.

200 Chapter 8

(a) 1 ≠ 6, (b) 1 ≠ 7, (c) 1 ≠ 8,

(d) 2 ≠ 3, (e) 2 ≠ 7, (f) 2 ≠ 8,

(g) 3 ≠ 6, (h) 3 ≠ 8, (i) 6 ≠ 7.

Apart from the conditions above, another three must be added. These three
conditions are needed to prevent the formation of a tetrahedron because of
raster peculiarities. Similar to the broken appearance of an inclined line in
a 2D raster image, in 3D an inclined plane appears as a staircase. This
causes a problem when four points are situated on an inclined plane (rela-
tive to the 2x2x2 mask) and by chance on the circumference of a circle.
Then, four adjacent Voronoi polyhedrons would be detected. Without the
three conditions given below, a flat tetrahedron would be formed. This
problem does not occur if there are completely horizontal or vertical planes
(relative to the mask), since the previous conditions take care of such a
constellation:

(j) not (1 ≠ 5 and (1 = 4) and (5 = 8)),
(k) not (3 ≠ 4 and (3 = 5) and (4 = 6)),
(l) not (2 ≠ 4 and (2 = 5) and (4 = 7)).

Combining the first, the second and the third sets of conditions leads to the
following algorithm:

 if (1) and (b) and (c) and (d) and (e) and (g) and (l)
 or (2) and (a) and (c) and (d) and (e) and (g) and (k)
 or (3) and (b) and (c) and (e) and (g) and (h) and (j)
 or (4) and (a) and (c) and (e) and (f) and (g) and (j)
 or (5) and (c) and (e) and (f) and (g) and (i) and (l)
 or (6) and (c) and (e) and (g) and (h) and (i) and (k)

 then
 increase number of tetrahedrons (for memory allocation)
 form a tetrahedron.

Since there are several alternatives in designing this mask (for example, a
cube can be decomposed into five or six tetrahedrons), the mask in Figure
8.44 takes into account the compatibility with 2D triangulation. This pro-
vides an easy way of combining a TIN with TEN without any conflict. The
design of the 2x2x2 mask is based on the principle that a cube can be cut
by three different planes, each plane passing through two diagonally oppo-
site edges of the cube, taking a pair of edges for every coordinate axis. The

THE SUPPORTING ALGORITHMS 201

three planes intersect each other along a diagonal of the cube and divide
the cube into six tetrahedrons.

The topology of the resulting simplicial network is documented by tables
as shown in chapter 6.

Composition of Features

To complete the construction of the 3D spatial model, the topological rela-
tionships between the simplices and the complexes must be established by
classifying (assigning) each simplex as part of the complex it constitutes.
This can be achieved by performing an overlay process between the data
sets containing features and the simplicial network respectively. As a result
of the convex property of simplices, the centroid of each simplex can be
used for the containment test against the complex. This significantly sim-
plifies the overlaying process. Note that the overlaying process requires
both data sets to be correctly structured in advance. The most favourable
data structure for the features is of that derived from the variants of FDS
(see chapter 4), because of the compatibility.

Data Structuring for 3D FDS

The construction of a 3D spatial model based on a simplicial network re-
quires the incorporation of 3D features as constraints. The constraints are
preferably structured in the database according to 3D FDS. This database
provides the geometric components of the constraints involved in the net-
work construction and the thematic components for the composition of
features by the overlaying process. A relational data structure derived from
3D FDS has been presented by Rikkers et al., (1993), Bric (1993) and Bric
et al., (1994).

In Bric (1993), the capability of 3D FDS has been explored by building
TREVIS an experimental 3D GIS. Various queries about topological rela-
tionships between features in 3D space, for example neighbourhood, adja-
cency and inclusion, have been tested with satisfactory results. The data
sets used for the experiment were, however, structured manually. The
complexity of constructing a database of 3D features was realized and
simplification of the process by capturing necessary spatial relationships at
the data acquisition phase was proposed. Since aerial photographs were to
be used as the data source, strict photogrammetric digitizing procedures
were suggested. Further investigation into the design of photogrammetric
digitizing procedures has been carried out by Wang (1994), placing the

202 Chapter 8

main focus on urban scale application. Database creation involves the re-
construction of 3D features representing buildings, houses, and surface
features, for example roads, land parcels, and terrain relief. Each digitized
feature was assigned a specific code indicating for which data the structur-
ing strategy was suitable, as shown in Table 8.1.

Table 8.1 Examples of output format from photogrammetric data collection
process

Type Code Description/Example Purpose

Body
feature

B1 Roof outline Construct the body by plane
sweep vertically to intersect
with DTM

Surface
feature

S1 Roof facet boundaries
(ridge and drainage)

Replace the roof outline after
obtaining the body

Surface
feature

S2 Land parcel Make part of terrain surface

Line
feature

L1 Road, railway Make part of terrain surface

Point
feature

P1 Location of a tree,
lamppost

Make part of terrain surface

Note that only a limited number of codes were made available. Two major
groups of codes can be distinguished, the first contributing to the represen-
tation of buildings and the second contributing to the representation of ter-
rain surfaces. Since the aerial photographs are limited to near vertical
view, roofs of buildings and houses, 3D objects of interest can be captured
quite easily. The knowledge and experience of the operator carrying out
the digitizing are important for the correct interpretation of the situation
shown in the aerial photograph.

The data structuring can now proceed as shown in Figure 8.45. All possi-
ble topological relationships are also recorded in parallel with the recon-
struction of the geometry using the data structure (see Rikkers et al.,
1993)..

Representation of the terrain surface and outline of the roofs are used to
construct the 3D features representing the buildings and houses. The foot-
prints obtained are incorporated in the 2.5D simplicial network, that is, a
TIN which represents the terrain surface and 2D features shown in Figure

THE SUPPORTING ALGORITHMS 203

Fig. 8.45 Steps for data structuring for 3D FDS.

(b)(a) (c) (d)

(e)

(f)

(g)

8.45 (e) and (g), respectively. In this way, the topological relationships be-
tween terrain surface and 3D features can be established and maintained
within the 3D FDS database. In addition to the construction of geometry in
Wang (1994), the process shown in Figure 8.45 also includes face orienta-
tion, fulfilling the 3D visualization requirement for the normal vector of
each visible face of a body feature to point towards the outside of the body.

204 Chapter 8

Note however that not all topological relationships as described in Mole-
naar (1990) (for example a node in a body) can be established by this data
structuring through the lack of information during data collection. Some
adjacency may be capable of being directly inherited from 2D topology
(see Figure 8.46 (a) and (c)). Nevertheless, the relationships may not al-
ways be straightforward, for example as shown in Figure 8.46 (d). This
implies that further investigation of this issue is still needed.

8.11 Summary

In this chapter, several important algorithms for TINs (2D and 3D)
constructions have been introduced, namely the DT, the Voronoi
tessellations, triangulations (including constrained triangulations), and
constrained line rasterisation. One of the GIS application algorithms has
also been introduced, that is the contouring. Other major task in the
development is TIN data structuring, and topological data structuring for
2D TIN and 3D TIN (TEN) are also described.

Left
roof

Right
roof

(b)

(c)

(a)

(d) (e)

Fig. 8.46 (a) Outline of two adjacent roofs, (b) details of the roof, (c) two ad-
jacent flat roofs with the same elevation, (d) similar to (c) but different eleva-
tion, (e) replacing the outline of the roofs by their facets after reconstructing
the main geometry

THE SUPPORTING ALGORITHMS 205

We have presented methods for data structuring, database creation and in-
ternal consistency checking for the building of an integrated 3D database
based on IDM and UNS. We have also outlined the procedure for
acquiring 3D urban data and structuring them according to 3D FDS, an
intermediate step in the construction of an integrated 3D spatial model. For
generating a simplicial network with constraints, a vector approach is very
cumbersome. We have therefore proposed and developed a raster approach
which simplifies the implementation. Note, however, that this algorithm
has not been designed to adapt locally to different densities of nodes.
Special care should be taken during the rasterization process where the
selection of an appropriate raster cell-size is suggested, to avoid
information loss. Although raster processing is simple and fast, it requires
a large amount of memory and storage space. This problem is becoming
less significant with the rapid development of both computing power and
storage capacity.

Since the raster approach forms a simplicial network from Voronoi
regions, we have developed an approach that is valid for nD, incorporating
constraints into the simplicial network using invariant property of Voronoi
regions under Voronoi tessellation. This completes the geo-spatial
modelling ranging from the design to the construction phase.

Creating an integrated 3D database requires many steps. When
contemplating a large area with highly detailed information, the task may
seem impossible. We therefore suggest incremental construction of the
integrated database. This is one of the most important aspects that the
simplicial network structure offers. Also, more detailed information can be
contained through network refinement; this can be done locally. Although
the proposed data structuring is attained by raster processing, the end result
is a vector structure that does not depend on scale, or level of precision.
The simplicial network can be refined as necessary, so it can be used to
model broad ranges of real world objects.

To certify the integrity of a generated simplicial network, the generalized
Euler equality derived in chapter 6 can be used for the internal consistency
checking, valid for the geometric aspect of the simplicial network. Further
checks may still be necessary. However, more in-depth investigation is
needed to cover this aspect for the maintenance of the simplicial network.

Chapter 9 APPLICATIONS OF THE MODEL

Having designed the integrated data model, unified data structures and in-
troduced methods of construction, demonstrating the 3D spatial model’s
applicability is the last objective. This is achieved through various steps of
spatial data processing, using both simulated and real data. It is a stepwise
approach, starting from the 2.5D application that integrates terrain relief
and terrain features. Examples of spatial query and 3D visualization ex-
ploiting an integrated spatial model based on a simplicial network are also
presented. For the full 3D application, two kinds of data sets are used as
examples. The first uses the data of an urban area consisting of roads and
buildings. The second uses a simulated boreholes data. The latter is used to
demonstrate the modelling of subsurface objects typically found in geo-
logical applications.

9.1 Integration of Terrain Relief and Terrain Features

The combined use of terrain relief and terrain features has been often re-
ferred to as ‘integration of DTM and GIS’ as mentioned in chapter 1. This
section intends to demonstrate that the concept of a simplicial network can
offer a solution to this problem. The general aim is to create an integrated
spatial model representing the earth’s surface and 2D representation of
spatial objects related to this surface in a 3D space. Simulated data sets are
used for this demonstration. The data sets consist of:

• Surface features shown as land use and soil maps in Figure 9.1 and Fig-
ure 9.2, respectively

• Line features shown in Figure 9.1 and Figure 9.2
• Measurements for terrain relief modelling shown in Figure 9.3.

208 Chapter 9

Soil B1

Soil A1

Soil C1

Soil A2

BRIDGE

Delineation of soil types

Lake1

Forest

PastoralFarm

ArableFarm

RIVER2

BRIDGE

Boundary of land use types

Lake1

Fig. 9.2 Soil map. Fig. 9.1 land use map.

The data sets of land use, soil, line features and relief may be used to an-
swer the questions listed below:

• Which sections of the Road1 may need side slope protection?
• Where is a suitable location for dam construction?
• What is the total length of the railroad that may be damaged by

a 1-metre flooding from Lake1 this year?
• How large is the surface area of the soil type A1 between elevation

100 and 200 metres?
• Where are the forest areas with a terrain slope more than 30%?

Fig. 9.3 DTM points. Line features
and boundaries of area features to
be used as constraints.

RAILROAD1

Line features

APPLICATIONS OF THE MODEL 209

• How large is the catchment area generating run-off into the River1?

9.2 Creating an Integrated Database

The maps shown in Figure 9.1 and
Figure 9.2 are in the form of
SVVM. They should be combined
by overlaying in the first step of
the integration. This yields a multi-
theme data set shown as a multi-
valued vector map (MVVM) in
Figure 9.4. The multi-theme data
set is used as a basis to create rela-
tionships between features and
primitives at a later stage. Since
there are common features in both
land use and soil data sets, that is,
roads, rivers, railroads and lakes,
redundancy and uncertainty prob-
lems arise. For example, the digi-
tizing of Road1 in land use and soil data sets may be carried out separately.
Overlaying these two data sets may introduce slivers (small polygons)
along Road1. This problem, as shown in Figure 9.5, should be solved be-

fore proceeding further.

Shi (1994) has discussed the han-
dling of this kind of uncertainty. It
should be noted that uncertainty for
both planimetry and height are
likely if all data points have 3D co-
ordinates. However, it has been as-
sumed here that this problem has
been solved, allowing us to proceed
further.

The next step is to ensure that all
digitized points have 3D coordi-
nates. If some of these points have
only 2D coordinates, a preliminary
Delaunay triangulation may be con-
structed using only the nodes that

Fig. 9.4 Overlaying of land use and
oil map result in a multi-theme map

1

2

3

5

6

7

4
8 8

6 6

6

9

9

5

1

Line features

Fig. 9.5 Slivers caused by uncer-
tainty in data acquisition may occur
after overlaying of different data
sets. A solid line and dotted-line
show two different sources of data
for the same line feature

210 Chapter 9

have 3D coordinates. Linear features that are already in 3D should be in-
volved as constraints in the triangulation process, to ensure better fidelity
of the surface representation. The TIN resulting from the constrained tri-
angulation in this step can be used to introduce the third dimension to all
2D data points by means of interpolation. Each 2D point can be tested with
the point-in-triangle algorithm. The plane equation can be computed from
the triangle obtained from the positive results of this test. The height in-
formation is obtained at the point of intersection between the triangle plane
and the vertical line passing through this point.

When all the nodes with 3D coordinates have been obtained, they should
be used for constrained triangulation. All line features and boundaries of
area features should be used as constraints, as explained in chapter 8. The
resulting TIN, shown in Figure 9.6, is then overlayed with the multi-theme
data set, shown in Figure 9.4. The relationships between triangle compo-
nents, that is, faces, edges, nodes, and the point, line and surface features
can be created after this process. It is worth mentioning that the algorithm
used for overlaying TIN with a polygon map can be simplified to point-in-
polygon testing. The
centroid of each triangle
can be used as a point to
be tested against a set of
polygons.

Fig. 9.6 TIN resulted from constrained triangu-
lation using all digitized points. Line features
and boundaries of area features are used as con-
straints

Y

X

APPLICATIONS OF THE MODEL 211

Fig. 9.8 Regular-grid DTM derived from simplicial network database

Fig. 9.7 The constrained TIN presented in a perspective view shows aspect of
relief of this data set. The query results can be directly presented in this view.
Contour lines can also be derived directly from this database

212 Chapter 9

The database obtained at this stage is called a ‘simplicial network inte-
grated database’ (SNIDB) for convenience. Figure 9.7 presents the content
of the SNIDB in perspective view that creates understanding about relief.
Data structured in this way permit direct presentation of query results in
this kind of view. Regular-grid DTM can also be derived from this data-
base, as shown in Figure 9.8.

9.3 A Spatial Query Example

Having the database in a SNIDB scheme extends the query space typically
provided by a 2D GIS or a DTM significantly. Many complex queries re-
quiring many steps when using a typical 2D GIS can now be simplified.
For example, a road engineer looking for soil material of type A1 to use
for road construction might ask, ‘What is the volume of soil A1 within the
arable farm area and at a depth of 3 metres under the average elevation of
this area?’ Using the SNIDB, the system just looks for all the triangles that
are part of the polygons having feature code = 8, computes the mean eleva-
tion using this set of triangle vertices and then computes the summation of
volume under each triangle with a depth of 3 metres below this mean ele-
vation. The volume under each triangle can be computed using the formula
shown in Figure 9.9. The process is illustrated in Figure 9.10.

Without the SNIDB, a typical
user of several databases:

(a) overlays the soil database
and the land use database to
obtain the overlapping area
of soil A1 and arable farm
area.

(b) solves uncertainty, for ex-
ample in the form of slivers.

(c) overlays the results obtained
from (b) with the DTM da-
tabase to obtain the clip
DTM within the area of soil
A1 and arable farm area.

(d) uses the clipped DTM, cal-
culates the mean elevation
within the area.

(e) calculates the volume.
Fig. 9.9 Computation of volume above
datum and under a triangle.

Z2

d2

Zcentroid = (Z1+Z2+Z3) / 3
Hc = Zcentroid - Zdatum
Ah = d1.d2/2
V = Hc.Ah

Ah

Volume under a triangle:
 = height at centroid over datum multiply by

area of the triangle projected on a horizontal plane

H2

H3
H1

Z

XY
Zdatum

Zcentroid

Hc

Z1

Z3

APPLICATIONS OF THE MODEL 213

Fig. 9.10 Computing summation of volume under and area tessellated into a set of
triangles.

The above requires two subsystems, that is, 2D GIS and DTM. Steps (a) to
(b) are carried out in 2D GIS whereas steps (c) to (e) have to be done in the
DTM subsystem. Two overlaying processes are required, entailing extra
time to process the query.

The integration into SNIDB takes the responsibility of overlaying proc-
cesses away from the user. Although constructing the SNIDB might take
more time, the user gains the response time during the query process,
which seems to be more reasonable, because the query tends to take place
more frequently than the database construction. For example, the same
kind of question may be asked again for a different area, elevation and
date, requiring a repeat of the process from (a) to (e). This repetition is
needed for every different set of parameters given.

The overlaying process normally requires computational geometry at the
level of geometric primitives. A large amount of operating time may be re-
quired, especially for a large data set. The second problem is the solving of
uncertainty, which requires knowledge about the source of data and the
appropriate solution to be taken. The SNIDB approach performs preover-
laying at the database construction level and therefore turns the overlaying
process during a query into a spatial search which can be speeded up by
the use of topology. The uncertainty only needs to be solved once and is

Retrieve all triangles that are part
of the area feature with code 8

Compute sum of volume
under each triangle

214 Chapter 9

then converted into data quality that can be stored as an attribute in the da-
tabase. These features make the GIS more convenient to use.

9.4 Integrating with 3D Features

Should the model need to cover the full three-dimensional representation
of buildings and other man-made objects as shown in Figure 9.11, the sim-
plicial network can also meet this requirement. The assumption is that the
representation of 3D objects is given in the form of 3D FDS. Since the 2D
simplicial network is fully compatible with the 3D FDS, the complexity of
integration is reduced. As a result of compatibility, a feature belonging to
the 2D simplicial network can readily be considered as a feature of 3D
FDS. A surface feature (that is, part of the terrain surface) can be related
with a 3D feature via their footprints. This can be done by embedding the
footprints of 3D features within the simplicial network representing terrain
surface by means of constrained triangulation, as shown in the chapter 6.
The footprints of the 3D features carry the links to the terrain surface and
the 3D features themselves. In this way, the 3D topology between the sur-
face and 3D features is established, which permits the integrated use of the
two types of data within a 3D FDS database. Figure 9.12 shows an exam-
ple of terrain data. Figure 9.13 shows the data in the form of a simplicial
network that has been constructed by constrained triangulation.

APPLICATIONS OF THE MODEL 215

Fig. 9.11 Scanned aerial photograph of the study area of the city centre of En-
schede, The Netherlands.

Fig. 9.12 2D features on the terrain surface of the study area. The data was photo-
grammetrically digitized using a Matra T10 Digital Photogrammetric Workstation.

216 Chapter 9

Fig. 9.13 The result of triangulation applying 2D features as constraints. The con-
strained triangulation was carried out using the raster approach implemented in the
ISNAP program.

Figure 9.14 shows the data of 3D objects. The data has been digitized by
the stereo photogrammetric approach using a Matra T10 digital photo-
grammetric work station. Only the outlines of the roof of each building
were digitized manually.

Fig. 9.14 Buildings with walls and footprints resulting from vertically projecting
the roof outlines onto the TIN-DTM.

The wall and footprint of each building were obtained automatically by
vertically projecting the outline of the roof onto the TIN-DTM, shown in

APPLICATIONS OF THE MODEL 217

Figure 9.13, using a set of programs developed by the author and Wang
(1994). The 3D objects are maintained using the 3D FDS scheme.

The footprint of each building is then retrieved from the 3D FDS database,
as shown in Figure 9.15.

Fig. 9.15 All footprints of the buildings extracted from the 3D FDS database.

By mean of constrained triangulation or local updating of a 2.5D simplicial
network, all footprints of the buildings are embedded onto the terrain sur-
face that is represented by a simplicial network, as shown in Figure 9.16.
By means of overlaying, the part-of relationships can be established be-
tween triangles and a surface feature representing the footprint of a build-
ing and embracing them. All triangles affected by retriangulation are also
subjected to updating the part-of relationships with the corresponding sur-
face features.

218 Chapter 9

Fig. 9.16 A 2D simplicial network representing a terrain surface of part of the cen-
tral area of Enschede, The Netherlands.

Figure 9.17 shows the final result of the integration between the surface
and 3D objects.

Fig. 9.17 Merging of the representations of terrain surface and the 3D objects.

This kind of database may be used to answer questions such as:

• Which buildings are suitable for the placing of antennas for mobile tele-
phones?

• Which buildings are visible from point A located on the top of building
B?

• Will the noise from the high-speed trains passing nearby be heard in this
city?

APPLICATIONS OF THE MODEL 219

If the representation of a terrain surface, in which the footprints of 3D fea-
tures may be included, is stored separately from the database storing 3D
features, the user may have to face several problems before a query can be
carried out, for example:
− transformation to a common coordinate system
− solving uncertainty with the footprint of a building in the 3D database if

the footprint is also on the 2.5D database.

9.5 Integrating with Geo-scientific Data

Geo-sciences and engineering, including geology, air, soil and water pollu-
tion control, civil and geotechnical engineering, require the investigation
of objects of interest at levels beyond the scope of data sampling. Mathe-
matical models involving finite
element analysis are typically
used. The SNIDB can facilitate
such a requirement, because
each geometric primitive has a
finiteness property. A spatial
model in the form of a 3D sim-
plicial network may be used to
answer questions such as:

• Does the clay layer extend over the entire area under the construction
site?

• Which buildings are potential sources of chemical disposal into the
ground?

• Will these buildings be affected by the excavation of the soil to 10 me-
tres depth from the ground surface?

Data obtained from boreholes, as shown in Figure 9.18, usually have at
least one measurement in addition to the coordinates (x, y, z). The data can
be stored within the SNIDB, as it is for further processing in the spatial
analysis.

Fig. 9.18 An example of borehole loca-
tions for sampling geological data. Ver-
tical lines indicate boreholes.

220 Chapter 9

In this case, the SNIDB must apply the tetrahedral network to structure
such data. All point, line, and surface objects encountered at this stage
must be involved in the tetrahedronization as constraints. The SNIDB can
support a data base query for those objects as well as for some finite ele-
ment analyses such as volume, bearing capacity, soil strata, and the like.

Figure 9.19 shows how an iso-surface can be derived from a TEN. The
surface can be obtained in the form of a TIN.

Figure 9.20 is a wireframe plotting of the 3D simplicial network generated
from the simulated borehole data, using the ISNAP program (see section
7.2.6). Figure 9.21 shows the derivation of upper and lower surfaces
bounding a soil stratum from the generated 3D simplicial network.

10

50

120
90

80

20
15

60

80

Iso-surface at value 70

Borehole 2Borehole 1 Borehole 3

Fig. 9.19 Derivation of iso-surface from a tet-
rahedral network constructed using three bo-
reholes. The numbers in this figure are prop-
erty values used for interpolation of the
surface.

APPLICATIONS OF THE MODEL 221

Fig. 9.20 3D simplicial network generated from simulated borehole data

Fig. 9.21 Derivation of iso-surfaces from a 3D simplicial network

9.6 Spatial Operators

The applicability of the designed spatial data model also depends on the
user interface (for example, the query language) and the availability of
spatial operators. Both of these applications define the functionality of the

222 Chapter 9

system. The spatial operators define the operation at a low level, while the
spatial query language defines the operation at a relatively high level capa-
ble of being well understood by human beings.

The spatial operators are comparable to those found in mathematics, set
and logic algebra. The basic operators are union, intersection, or, and, xor,
and so forth. These basic operators can be combined to build more sophis-
ticated functions. Different kinds of spatial relations, that is, metric, order
and topology, are also essential to the design of spatial operators. Metric
operators are built around the computational geometry, for example point-
in-polygon, point-in-body, intersection of lines, and intersection of sur-
faces. Metric operators can be used to derive topological relationships.
With respect to the simplicial network data model, these problems can be
reduced to the level of a simplex. Point-in-polygon and point-in-body can
be reduced to point-in-triangle and point-in-tetrahedron respectively. The
intersection of bodies can be simplified to intersections between tetrahe-
drons, which can be further reduced to intersections between simplices of a
lower dimension, for example between triangles, edges, as shown in Figure
9.22.

Order operators are those used to compare and arrange spatial elements.
Topological operators are those defined by topological relationships, like
containment, touch, coincidence, disjoint, left, right. For example, a body
feature A is contained in another body feature B if all tetrahedrons of A are
contained in B. Body A is a neighbour of Body B if a tetrahedron of A is a
neighbour of a tetrahedron of B. Bodies A and B are coincident if all tetra-
hedrons of A are tetrahedrons of B, and vice versa. The spatial operator is
essential to spatial analysis. It is a link between the spatial query language
and the spatial analysis function.

Fig. 9.22 The intersection of two tetrahedrons can be reduced to intersections
between triangles or intersections between edges and triangles.

B

C

D

E

G

H

A A A A

C C C

D

H

E E

G G

H

D D

F F F F

APPLICATIONS OF THE MODEL 223

The concept of a simplicial network also helps to simplify the development
of 3D computational geometry. All spatial elements in the data model have
finite properties. The triangle and
tetrahedron are convex geometric
shapes, making many complex
computations simpler. Many 2D
operations can be readily general-
ized into 3D. For example, the al-
gorithm for point-in-triangle can
be generalized into point-in-
tetrahedron. An algorithm to
compute the area of a triangle can
also be generalized into comput-
ing the volume of a tetrahedron.
Generalization into n-dimensions
is implied.

Figure 9.23(a) shows an algo-
rithm for point-in-triangle testing. A point P1 situated inside a triangle is
always in the negative direction of the normal vector of each edge of the
triangle (given that the normal of each edge points outwards from the tri-
angle). This is not the case for a point situated outside the triangle. This as-
sumption also holds for testing if a point is contained in a tetrahedron as
shown is Figure 9.23(b). Note that this algorithm is not valid for a non
convex polygon or polyhedron. The line-intersection test can be used by
counting the odd or even numbers of intersections of the line emanating
from the point (see the dashed lines in Figure 9.23(a)) with the boundary
of polygon or polyhedron. An odd number indicates that the point is inside
the polygon or polyhedron, while an even number indicates that the point
is outside.
Spatial operators to calculate some properties of the spatial object, for ex-
ample volume, surface area can be designed more easily. The volume of a
complex object is the summation of the volumes of all the tetrahedrons
that are part of the object. The surface area of the complex object can be
computed from the summation of the area of all the triangles that are part
of the boundary of the object.

9.7 Graphic Visualization

In 3D geoinformation, visualization is one of the most important compo-
nents of the system. Realism and interaction are necessary for information

P2

P1

P2

P1

(a) (b)

2 1

1

Fig. 9.23 Point-in-triangle and point-in-
tetrahedron testing.

224 Chapter 9

to be quickly understood. The key is speed of data processing, which relies
on the power of the system and an appropriate data structure. SNIDB per-
mits the visualization of the representations of both determinate and inde-
terminate spatial objects. The representation of determinate spatial objects
can be displayed directly, while the derivation of the boundaries is needed
for indeterminate spatial objects prior to their graphic visualization. A
simplicial network supports different types of graphic visualizations, as
described below.

9.7.1 Wireframe Graphics

Wireframe graphics give a relatively low level of realism. They only make
use of nodes and arcs stored in SNIDB. Without interactivity, wireframe
graphics seem not to be very useful for complex, or large amounts of data
(refer to Figure 9.19, Figure 9.20). The operation to display 3D wireframe
graphics consists of transforming all the coordinates of the nodes into a
perspective system relating to the observer and the viewing distance to the
objects.

With all the coordinates in the perspective system, the next step is to use
arc and node topology to draw the straight lines connecting the beginning
and end nodes of each arc. The wireframe graphic is then obtained. Exam-
ples of wireframe graphics are shown in many of the figures in this chap-
ter. When there is a need to differentiate different type of graphically dis-
played information, different styles, colours and line thickness can be used.

Visualization using wireframe graphics can be further improved by adding
stereoscopic vision capability. A simple and economic approach is ana-
glyphic stereo, using red and blue (or green) filters to separate two parallax
images from the viewer’s left and right eyes. The parallax images are dis-
played using different camera positions along the line parallel to the eye-
base of the viewer. The blue (or green) shade is used for the left image and
the red shade for the right image. The viewing glasses must have red and
blue (or green) colours in the opposite sense of the displayed images. The
perception of depth helps to resolve visual ambiguity on a 2D display. Fig-
ure 9.24 is an example of an anaglyphic stereo pair.

APPLICATIONS OF THE MODEL 225

Fig. 9.24 An example of wireframe images displayed in anaglyphic stereo mode.

9.7.2 Hidden Line and Surface Removal

The 3D visualization with wireframe graphics can be significantly im-
proved by applying a hidden line and surface removal operation. For this
purpose, many algorithms are available in computer graphics and CAD
(Beaty and Booth ,1982; Foley et al., 1992). One of the most efficient and
relatively simple algorithms is known as a ‘z-buffer’ (or ‘depth-buffer’)
which is the raster-based operation that only stores the pixels belonging to
the visible part of the objects in the scene. For each location on the buffer
that is a 2D array, only the pixel nearest to the viewer is stored. Each pixel
value indicates the identifier of the facet. A simplicial network provides in-
formation in the form of a triangle that can be used for the purpose. How-
ever, some extra spatial index structure (for example, a BSP-tree) needs to
be constructed on top of the core database to speed up and ease the opera-
tion. For example, if the depth sorting algorithm is used, all triangles need
to be sorted according to the distance from the viewer. The remote trian-
gles are displayed first, while the triangle closest to the viewer is the last to
be displayed. Each triangle must be filled by background colour, while its
boundary is drawn in foreground colour. In this way, part of the objects
that should be invisible are overwritten. Only the visible parts remain on
the display device. The z-buffer is also a kind of index structure in the
form of a regular grid.

226 Chapter 9

9.7.3 Surface Shading and Illumination

When the hidden line and surface removal operation described above has
been applied, surface shading and illumination can take place next in the
sequence. Colour can be assigned to each triangle and then displayed by a
filling operation during the hidden line and surface operation. For surface
illumination, the lighting model must be used to compute the colour inten-
sity for each triangle. The intensity depends on the amount of light reflect-
ing from the facet to the viewer. The lighting models available are Gaurad
shading or Phong illumination (Foley et al., 1992). The general light ge-
ometry is shown in Figure 9.25.

Fig. 9.25 Principle of surface illumination

A simplicial network provides the planar surface that is ready to be used
for the calculation of a plane’s normal vector. Since the order of vertices of
the facet determines the direction of the normal vector, it is advisable to
store this information systematically in the database. For example, all tri-
angles belonging to the earth’s surface should have their normal vectors
pointing upwards so as to be able to interact naturally with simulated
sunlight. To calculate the amount of light reflecting from a triangle to the
viewer, the reflected light from the surface is first projected onto the

Light source

A planar surface
The amount of reflected
light on the direction of
the surface normal

The amount of reflected
light coming toward the
viewer

APPLICATIONS OF THE MODEL 227

normal vector of the triangle. This projected light is then projected onto
the viewer vector which determines the intensity of light the viewer per-
ceives from this light source. Some other factors also influence how the
viewer sees the shade and colour intensity of the triangle. Factor such as
type of material determines the roughness and shininess attributes of the
surface features. When there is more than one light source, such as those
reflecting from other surfaces nearby, the summation of the individual re-
flectances can be taken to be the total intensity.

9.7.4 Texture Mapping

If the texture information for each facet is available, it may be used to fill
the surface during display instead of normal colour filling. Illumination
can still be applied to improve realism. The hidden line and surface re-
moval operation needs to be applied beforehand. Since texture mapping is
a raster operation, the texture array and the array of pixels indicating visi-
ble facets must be stored in parallel in the buffer memory during the opera-
tion. This operation requires powerful hardware and software because of
the great deal of memory and large number of resampling operations
needed.

Incorporating texture information into a simplicial network is also possi-
ble. Texture information can be provided mathematically as a function, or
as an image which is typically in a raster form. Only the latter is consid-
ered here. For the raster data structure, incorporating texture information in
the form of an image is quite straightforward. Incorporating texture infor-
mation (known as ‘texture mapping’), however, can be challenging.
Knowledge of computational geometry, photogrammetry and digital image
processing are needed. The texture mapping helps improve the visualiza-
tion of geoinformation.

The process for texture mapping using an image involves the solving of
image transformation relative to parameters of the camera used to capture
the scene. If the vector data is completed with 3D coordinates, it can be
transformed to match the camera orientation and then superimposed onto
the image by taking into account the visibility of each vector element. The
image can then be segmented by the vector elements of SNIDB, that is to
say, the nodes, edges, and triangles. After the segmentation, the texture in-
formation can be stored along with each element of SNIDB. Each node has
a pixel value stored as an additional attribute. For an edge, a set of pixels
along the edge must be stored with the pixel size or scale factor. Even-
tually, this edge needs to be stretched or contracted, depending on the

228 Chapter 9

perspective transformation. Pixel values can be interpolated to fill the gaps
between pixels (see Figure 9.26).

For a face or a triangle, all the pixels falling inside the face or triangle dur-
ing superimposition must be stored. In order to normalize the camera pa-
rameters, this set of pixels may be resampled to a coordinate system that is
orthogonal to the face or the triangle on the same scale. The storage of
each segmentation (a face or a triangle) is then in the form of a rectangular
image in which the image size is the same as the bounding rectangle of
each segmentation. When the data has to be graphically viewed using dif-
ferent transformation parameters, the image must be re-sampled to map
onto each facet. The affine transformation can be applied by taking the
corners of the bounding rectangle as the control points to determine the
transformation parameters. The pixels that have data values are then
mapped onto the facet in a perspective view. To eliminate the gap in the
resulting view, four ad-
jacent pixels can be
used as vertices of a
square drawn as a
quadrangle in the per-
spective view. The col-
our of the quadrangle
can be determined, for
example, by taking the
average value of the
four pixels. The proc-
ess is shown in Figure
9.27.

Pixels along the edge to be stored
as texture information

Pixels along the edge that have been stretched
apart in a perspective view. The gaps are
filled by interpolation of pixel values.

New pixel that has been introduced by interpolation

Figure 9.26 Resampling operation along an edge.

APPLICATIONS OF THE MODEL 229

Fig. 9.27 Operation of texture mapping with respect to a face

With respect to the DBMS aspect, many modern and commercially avail-
able DBMSs (for example, Oracle Spatial, Illustra) are already capable of
storing and managing an image as an attribute of a record. This capability
suggests that, is feasible to incorporate the texture information into the in-
tegrated database. The data structure in a relational form may look like the
following:

Face Id Texture
 file

Name of texture
array

Dimension
 (W x H)

Pixel size
 (mm)

 347 FW1.DAT Front_wall 30 x 50 0.2

The bounding rectangle can also be derived directly from the dimension of
the texture image, using the lower-left corner of the image as the origin.
The upper-right corner is just the addition of the width and height of the
image to the origin, which can be started from (0, 0). The transformation

Resampling into the bounding
rectangle orthogonal to the facet

Resampling with affine
transformation to fit facet in
perspective view.Camera

Real world object

Object in a perspective
projection

Image plane
(texture)

Image to be stored

Bounding rectangle
used for affine
transformation

230 Chapter 9

problem is limited to 2D and is relative to each face. Detailed discussion
about digital image transformation can be found in Wolberg (1990).

9.8 Virtual Reality

VR can be used to explore the content of information stored in an SNIDB
or 3D FDS database. VR provides highly interactive, realistic and dynamic
visualization. It uses almost all the visualization techniques described in
section 7.5, that powerful hardware and software are needed. VR allows
the continuous change of viewing position and tries to provide ways of in-
teracting with the representation of spatial objects as it happens in reality.
Understanding the spatial model can be readily achieved if the information
content stored in the database is displayed appropriately. The storage of
3D coordinates and boundary representations in SNIDB and 3D FDS are
compatible with many VR systems. This means VR technology can be
adapted to access information stored in SNIDB directly. Thematic attrib-
utes of each feature can be translated into specific colour, shade, type of
material or texture, and to graphically rendered in each scene. Spatial rela-
tionships stored in the SNIDB provide constraints for the virtual environ-
ment. For example, adjacent objects should remain close together at any
viewing distance or direction in the virtual world. An experiment using the
constructed 3D spatial model in the VR environment has been conducted.
The 3D spatial model shown in Figure 9.17 was converted into the VRML
(virtual reality modelling language) and could be viewed by many VR sys-
tems. It is expected that future 3D GIS will have a built-in VR functional-
ity for interactive visualization and other kinds of responses, such as
sound.

9.9 Discussion

The concept of a simplicial network can be applied to the integrated mod-
elling of reality, for example the integration of terrain relief and terrain
features since the problem remain an issue in geoinformation science. The
spatial model resulting from this integration support operations typically
needs both DTM and 2D GIS. Queries about features and relief informa-
tion can occur together. A simplicial network representing the earth’s
surface and 2D representation of terrain objects can also be integrated
into a database of 3D FDS for urban applications. For applications in the
geo-sciences, for example geology, or environmental monitoring, spatial

APPLICATIONS OF THE MODEL 231

objects presented in a database of 3D FDS can be incorporated into the 3D
simplicial network as constraints to facilitate better derivation of the repre-
sentation of spatial objects with indeterminate spatial extent. The database
in the form of a simplicial network also facilitates various kinds of 3D
visualization, even when high interactivity and realism (for example vir-
tual reality) are required, provided there is an appropriate extension of the
data structure to accommodate more attributes, such as texture, or colour.
Also, spatial index structures suitable for each kind of operation must be
built on top of this core database for efficiency in terms of response time.
Although conceptually, the simplex elements of the simplicial network
data model help simplify many complex operations, the limitations on ap-
plying the SNIDB remain due to lack of 3D spatial operators that warrants
further development (see Chen and Abdul-Rahman, 2006) for recent ex-
periment on the 3D spatial operators for 3D objects in geo DBMS. These
operators are metric, order and topological operators for the computation
of volume, surface area, testing of containment, intersection, touch, dis-
joint, coincidence, and so forth. Such set operators as union, intersection,
difference, or, xor, are also needed. Once these operators are available, the
applicability of SNIDB will be extended significantly.

Chapter 10 THE WEB AND 3D GIS

10.1 Introduction

Recent developments in GIS are showing a general movement towards
Web-enabled GIS. The gap between desktop GIS and Web GIS is closing.
Applications based on network environments have already shown great po-
tential in relation to geo-information. Examples can be online city maps
and finding places (respectively routing) between points (MAP 24, 2004).
Obviously, the developments in Web-enabled GIS are driven by user re-
quirements and technology developments. But is the third dimension suffi-
ciently exploited by Web applications?

In general, the need of 3D geo spatial data is increasing. Professionals in-
volved in urban and landscape planning, cadastre, real estate, utility man-
agement, geology, tourism, army, etc. are especially keen on taking advan-
tages of the third dimension. Since real world spatial objects are in 3D, it is
obvious to extend GIS to the third dimension as well. However, the accep-
tance of 3D applications depends heavily on its profits. Therefore, we can
say that the number of users could increase with the introduction of new
and additional 3D functionality to the spatial system. Technologically,
side, state-of-the-art computer hardware is already offering a reasonable
means of dealing with the third dimension such as improved 3D visualiza-
tion techniques. Among others, there are photo-realistic texturing, ad-
vanced lighting or real-time navigation that could attract more users to use
such kind of applications. We firmly believe that the Web offers the possi-
bility to make the third dimension widely accessible.

This chapter aims to provide an overview about web-oriented 3D GIS.
Since we consider system architecture, data management, 3D GIS func-
tionality and visualization (respectively user interaction) critical for Web
3D GIS, we address them in detail here. The chapter explains the needed
system components and their importance with respect to the requested
Web 3D GIS functionality. System architectures and possible approaches
for implementing a Web-enabled 3D GIS are reviewed and explained. Di-
rections for further research are also outlined.

234 Chapter 10

10.2 Web 3D GIS

Traditionally, any geographic information system is based on the princi-
ples of data input, management, analysis and representation. Within a
Web-enabled environment, these principles are represented by or imple-
mented within the components shown in Table 10.1.

Table 10.1 GIS principles and their corresponding Web components.

GIS Principle

Web Component

Data Input

Client

Data Management

DBMS possibly extended by a spatial compo-
nent

Data Analysis

GIS Library recommended on Server

Data Representation

Client/Server

In order to achieve communication between the different components in a
Web environment, a Web server is needed. Since geo-data is a very spe-
cific type of data, different standards, e.g. the OpenGIS Consortium
(OGC) specifications have been developed and their usage has to be taken
into account (see Figure 10.1). A system composed of these components is
called here Web GIS. The system should cover a complete GIS workflow
within a Web environment. Figure 10.1 shows the general system architec-
ture which is mostly “Client-Server”.

Fig. 10.1 A typical Web GIS architecture.

THE WEB AND 3D GIS 235

Figure 10.1 shows the minimum system architecture of Web GIS. The Cli-
ent is an application, which can communicate with the Server through a
standard Web protocol, for example HTTP. This application can either be
in the form of a Web browser or stand-alone utility. In order to view and
interact with GIS data, the browser needs to be extended by using an ade-
quate Plug-In, Java Applet or both. Instead, a stand-alone application can
be used, for example any GIS which supports the appropriate protocol to
access other computers in the computer networks. The Web server is re-
sponsible for processing the request from the client and delivering the cor-
responding response. In Web GIS architecture, the Web server also com-
municates with the server-side GIS component. This adds spatial analysis
functionality to the system. Moreover, server-side components are respon-
sible for the connection to the spatial database, such as translating queries
into SQL and creating appropriate representations to be forwarded to the
server. In reality, GIS components are like software libraries, which offers
special “classes” (i.e. based on object-oriented mechanism) to do spatial
analysis on data.

Besides the components, a very critical aspect is the functionality offered
by the client or server side within Web-GIS. Figure 10.2 shows possible
distributions of functionality for a client/server system based on the con-
cept of the visualization pipeline (OGC, 2003b).

Fig. 10.2 Thin vs. thick within client server systems.

Figure 10.2 shows that a client is considered “thick” or “fat”, if the main
GIS functionality and the data rendering are hosted at the client side. Con-
sequently, the server in this specific system would be called “thin”. The
server is called “thick” if GIS functionality and pre-rendering is hosted at
server side. Within this system, the client would be called “thin”. Altmaier
and Kolbe (2003) exclude rendering for interactive 3D worlds on the

236 Chapter 10

server since real-time navigation in static images would not be possible
anymore.

However, finding a balance between server and client is still an interesting
question how to find the balance between server and client. Because of the
system complexity, required functionality, type of application, data sets,
even available funds for implementing one or another solution and user
experience, no ordinary rules can be specified. The question has to be an-
swered for each system individually. Regarding the general system archi-
tecture, 2D and 3D Web-GIS do not have many differences and the setup
shown in Figure 10.1 can be used for both. Traditionally, most GIS spatial
operations are very expensive and more complex compared to for example
administration numerical and textural type of data. This is especially the
case if the systems deal with the third dimension. Since calculations on 3D
geo-information are by far more expensive than those in 2D, developers
have to choose very carefully which system component is hosting certain
GIS functionality. As stated before, there is no general rule. Section 10.5
discusses concrete implementations and provides answers for individual
approaches. On the operational/functional side, the differences between
2D and 3D calculations are critical. The typical common operations for 2D
and 3D GIS are accessing attributes or further information on objects, cal-
culating distances and areas, buffering, routing and the nearest neighbour
analysis. Whereas operations like volume calculations are limited to 3D
only. Because 3D information is much more complex and has a higher
quantity, the processing is much more complex and therefore takes more
time and resources. 3D buffering for example needs more effort than the
corresponding operation in two-dimension. These operations are done by
the GIS component, either server or client side. In this respect, third party
tools or an individual developed component can be used. However, there
are very few available third-party tools which support 3D functionality.
Therefore, the needed systems have to be customized. Individual imple-
mentations can be realized in any programming language. Here, Java lan-
guage in conjunction with Servlets technology is one possibility (Vries and
Stoter, 2003).

At the moment, fundamental spatial analysis, database management sys-
tems offer spatial extensions too. There are spatial extensions available for
databases such as Oracle Spatial, PostgreSQL, Informix, DB2, Ingres and
most recently, MySQL. Unfortunately, these software do not support 3D
sufficiently (Vries and Stoter, 2003).

In order to provide the development of analysis functionality at a database
level, many DBMS are supporting procedural languages as well. Oracle’s

THE WEB AND 3D GIS 237

DBMS for instance offers two possibilities to create individual operations
at the database level. First, there is a PL/SQL, a procedural language. Sec-
ond, it has integrated its own Java Virtual Machine (JVM) in order to
process Java classes at the database level. The advantage compared to ex-
ternal spatial analysis will mainly be in terms of a better querying per-
formance. In addition, operators on database levels can be used by anyone
who has access to the database. Therefore, basic spatial analysis operations
can be reused within other applications (Jansen, 2003). Systems imple-
menting a spatial extension are called integrated systems (Oosterom et al.,
2002). Overall, the trend towards GIS in Web environments is still ongo-
ing.

Recently, however, the term distributed GIS has been introduced. Here, a
GIS will be completely distributed in a computer network. The corre-
sponding functionality, data and certain clients operate like nodes in an ob-
ject-oriented application (Peng and Tsou, 2003). However, there are no
distributed GIS for the third dimension available thus far. Furthermore,
since geo-data is a very specific type of data, standards have to be consid-
ered. Therefore, the Open GIS Consortium (OGC) has developed a wide
range of specifications/documents which should be considered for utiliza-
tion. The base for OGC-conformed GIS defines spatial data types and their
relationships (the Simple and Abstract Feature Specification). Further-
more, “implementation specifications” describe interfaces and rules of ex-
changing or transferring data between components. In context of Web
mapping, the Web Map Service Implementation Specification (OGC,
2001) has to be taken into account. It defines an interface for requesting
maps. The corresponding Web Map Service (WMS) creates maps of geo-
information. It has to support the operations of “GetCapabilities” and
“GetMap”. The operation “GetFeatureInfo” is optional but necessary for
retrieving further information about objects through user interaction.
“GetCapabilities” returns information about the Web Map Service itself,
while “GetMap” returns the map or figure. Since editing or manipulating
of data is one of the GIS principles, the Web Feature Service Implementa-
tion Specification (OGC, 2002) is a must as well. Operations of a Web
Feature Service (WFS) are insert, update, delete, query and discover data.
The data is represented in the form of Geographic Markup Language
(GML), another OGC standard for exchanging geo-information (OGC,
2003a). Both WMS and WFS, are based on the HTTP protocol for trans-
ferring data. Among others, GML3 includes a 3D geometry and therefore
suitable for Web 3D GIS. Besides, there is an implementation specification
regarding 3D terrain scenes (Web Terrain Service). Altmaier and Kolbe
(2003) realized that there is no specification or standard to describe the

238 Chapter 10

 introduced the W3DS portrayal ser-
vice for 3D spatial data.

OGC standards or others like the ISO/TC211 are important for the com-
munications between components within complex GIS, especially Web-
GIS. Systems can be extended easily by additional components that con-
form to the standards (Vries and Zlatanova, 2004). Another critical aspect
is the performance of the system. If there is one bottleneck, the whole
system will be affected. Therefore, system architects have to appropri-
ately design the system. First, the base of the system should be a state-of-
the-art computer hardware and appropriate applications or environments,
e.g. powerful 3D visualization techniques. Due to large data amounts,
data transfer between the components should be reduced to a minimum.
Low band-width may cause a critical bottleneck between the client and
the server. Streaming techniques, which allow data transfer in partial are
popular and should be favoured for the system development. In order to
achieve acceptable system performance, spatial analysis has to be done
on top of a reasonable concept of storing data. Consequently, databases
have to be largely employed, preferably with maintenance of topology
(see section 10.3).

10.3 Management of 3D Spatial Data

In order to manage a 3D geo-information, at least the use of databases and
their management systems (DBMS) are required. Object-relational model-
ing is the most common since relational databases are not very appropriate
for storing spatial data. The object-oriented database approach faces the
problem that the general acceptance and knowledge is not available so far
(Connolly and Begg, 2002). The field of geo information adopts both ap-
proaches and comprises them into Object-Relational DBMS (Shekar and
Chawla, 2003). As stated in section 10.2, the additional integration of spa-
tial extensions is compulsory for GIS applications. Furthermore, because
operations of 3D functionality are different from 2D, a reasonable concept
of data storage is inevitable. Therefore, the two aspects of 3D geometry
and 3D topology have to be taken into account. Geometry holds 3D coor-
dinates of objects and topology holds their spatial relationships. The OGC
proposes the separation between geometry and topology within databases
in order to perform certain queries on geometry and topology (Oosterom et
al, 2002). Regarding geometry, there are several DBMS available which
have the ability to handle spatial data types. These data types are divided
into geometric primitives of point, line and polygon. The OGC calls them

interactive 3D worlds. Therefore, they

THE WEB AND 3D GIS 239

simple features. However, 3D primitives like polyhedrons are missing and
have to be implemented individually. Stoter and Zlatanova (2003) showed
how to store a polyhedron within Oracle 9i using multiple polygons.

In contrast to geometry, the topological part is more critical. The state-of-
the-art DBMS does not offer any support for 3D topology. Shi et al.,
(2003) and Zlatanova et al., (2004) provide a brief overview about devel-
oped topological models including additional performance tests. Oracle re-
cently announced the integration of topology up to 4D in its database spa-
tial extension of Oracle 10g (Lopez, 2003). The corresponding OGC
specification (complex feature specification), however, is yet to be com-
pleted - in terms of the implementation specifications for complex features.
Topology is the base for reasonable querying of 3D spatial data. Since
there is no unique topological model available, topology has to be imple-
mented individually. Oosterom et al., (2002) provide an overview about
available approaches. A spatial data model normally meant for a certain
application (Zlatanova et al., 2002a) and a generic data model for general
applications is hardly available. The technique of visualization is another
factor for the question in selecting a topological model. Again, there is no
general rule of the selection. Topological models should fulfill tasks such
as covering all possible relationship and extensibility (Oosterom et al.,
2002).

Beside the geometry and topology, the spatial querying language for the
third dimension poses a challenge for the database community as well.
Güting (1994) concluded that in addition to SQL, a spatial query language
has to provide fundamental spatial operations and reasonable ways of rep-
resenting the results. Here, 3D operators on top of an ingenious data model
are not available so far.

Spatial indexing is one main key to improve querying performance on
geometric data - spatial objects are represented by indexes. Several differ-
ent indexing methods are common but mainly R-tree, Quad-tree and P-tree
are used. Furthermore, indexes are often used in conjunction with Level-
of-Details (LOD) implementations (Coors, 2003; Kofler, 1998). Due to the
fact that distributing within a Web environment has different requests on
the volume of data, spatial objects must be as simple as possible while rep-
resenting each object properly. Therefore, aspects of simplification and
generalization have to be regarded as well when modeling 3D objects.
Here, realistic photo-texturing is a common method to save resources.
However, it has to be done patiently and it is necessary to store them effi-
ciently. Furthermore, databases have to store the attribute information of
3D features as well.

240 Chapter 10

10.4 GUI for 3D Visualization and Editing on the Web

In order to interact and communicate with information, a Graphical User
Interface (GUI) has to be designed and created. A GUI is situated on top of
the user agent. Because geographic information is usually very complex,
this task is difficult to achieve. Moreover, the user interface is the most
critical due to the fact that this is the “main gate” to the application. If a
GUI is implemented poorly, an application will not be accepted by critical
users. Compared to user interaction in 2D, a GUI for the third dimension is
different (Cöltekin, 2002).

To develop a GUI for 3D visualization, different aspects are important.
First of all, the virtual world has to be sufficient. To do so, a set of core
features of creating a 3D world are needed. The technique of visualization
has to cover the state-of-the-art possibilities. In the case of 3D, these tech-
niques include are reasonable modeling of physical objects, lighting and
shadowing, definition of viewpoints, and photo-realistic texturing. As soon
as interaction has to be involved, using events, linking and inter-
nal/external scripting will become more important. In fact, 3D worlds in-
cluding real-time interactive navigation are a requirement today. To ex-
plore virtual worlds, a user would wants to be put into the space very
closely. Therefore, characteristics similar to computer games are very
popular, for instance walkthrough, flying, panning and sliding. If the target
is a singular object, rotating is another important real-time navigation at-
tribute. More advanced characteristics of virtual worlds are Levels of De-
tail (LOD) or multi-resolution texturing implementation. Furthermore,
culling algorithms should be provided in order to make sure that invisible
back-faces will not be rendered. Overall, the amount of rendered polygons
is a factor for the smooth navigation. Any technique which reduces the
amount while keeping the world realistic should be used (Kofler, 1998).

Intuitive editing of 3D data is much more complicated than visualization.
In order to provide a human readable GUI for editing, a significant amount
of effort is required. This is the reason why mainly common CAD or GIS
software products are used as front-ends at the moment (Stoter and Ooste-
rom, 2002; Zlatanova et al., 2002b).

The following sections describe some of the recent developments in GUI
for Web-based 3D visualization.

THE WEB AND 3D GIS 241

VRML/X3D

VRML (Virtual Reality Modeling Language) and respectively its succes-
sor X3D (Extensible 3D) were introduced by the Web3D Consortium to
distribute interactive virtual worlds on the Web. Both are mark-up lan-
guages and standardized. X3D fulfills the concepts of XML. The rendering
concept is mainly based on a scene graph definition and a node structure
(Web3D Consortium, 2004). VRML and X3D have accomplished the ba-
sic concepts for a 3D GUI (Dykes et al., 1999); listing all the features
would be too long here. Other concepts such as external authoring inter-
face (EAI) grading techniques are also worth considering. By using the
EAI, one can add individual functionality to virtual worlds. It could be de-
veloped either by using scripts or other programming languages and the
3D scenes could end up highly interactive. One good example in this as-
pect is accessing a database from VRML worlds to retrieve new data (Zhu
et al., 2003).

Realized VRML clients in combination with HTML have already proven
their ability to react as GIS user agents in many examples and prototypes
(see section 10.5). However, no well-known commercial implementation is
available. The most common use of VRML is within a client-side brows-
er/plug-in implementation. Unfortunately, plug-in vendors are hesitant
with shipping X3D browsers.

PHP and VRML/X3D Integration

PHP is becoming a very popular language for creating dynamic websites,
particularly for generating them from databases. 2D GIS is outdated, one
way is by using PHP to create database-driven VRML worlds for new 3D
GIS system.

PHP can produce any text information. In PHP, one has to take control of
this very information. This requires sending the VRML MIME type
(“model/vrml”), and then writing the appropriate VRML nodes.

The server strips all PHP code when sending a response. So, on lines
where only JSP code is present, the server simply sends blank lines back to
the browser.

It is necessary to include both PHP and VRML headers, and the content
type must be changed before the VRML header is set, so the final result
may look like this:

<?php
 header (“Content-type: model/vrml”);

242 Chapter 10

 echo “#VRML V2.0 utf8\n”;
?>

Below is an example of experiment on PHP and VRML/X3D integration
for building objects.

In this experiment, one of the objectives is to display a 3D building in
VRML code using a database. Figure 10.3 shows the VRML file contain-
ing some building datasets.

Fig. 10.3 3D building’s VRML file.

PHP scripting is added to this shape, which lets us use dynamic data to
change the sphere’s position in space (translation X Y Z), its color (dif-
fuseColor R G B), and its radius.

The Prototype and Process details

The basic idea of a prototype is to organize 3D geo spatial objects in a
DBMS and to query them via an Internet browser. Geo spatial objects con-
tain both spatial and non-spatial (administrative) information. The spatial
information can be visualized after conversion into VRML or X3D and the

THE WEB AND 3D GIS 243

non-spatial attribute information can be presented in (dynamic) HTML
pages.

Figure 10.4 shows a standard request process—the page is requested via a
browser. The request calls the designated PHP, which interacts with a da-
tabase. The model given below explains the prototypical process.

After receiving a response, the system follows the flow shown in Figure
10.3. The database sends the requested data to the PHP, which formats the
data and sends the response to the requesting browser. In our case study,
the data is returned to the PHP, which generates a VRML scene using the
data from the database.

On a client request, a connection is made to the DBMS and the spatial in-
formation of interest is selected from the DBMS and converted into
X3D/VRML. A browser plug-in at the client side makes it possible to view
the VRML or X3D output. VRML and X3D provide the possibility to start
a script when a user clicks on an object. This functionality is used to re-
trieve the non-spatial information that is linked to a 3D geo-object. Via the
VRML/X3D plug-in, a request is sent to an application server. The server
receives and interprets the incoming information and sends a HTML with
the required information back to the browser.

For retrieving the spatial and non-spatial information from the DBMS, a
technique is needed to communicate between a client and a database on a
server. For this communication, several techniques are available such as
ColdFusion, ASP.NET, ASP, JSP or PHP. The choice of the used tech-
nique is dependent on the Web server used.
The detailed architecture of publishing a 3D dataset on the Web is shown
in the following Figure 10.5.

Brows Data-

Fig. 10.4 The request and response processes.

SQL

PHP

VRML /

244 Chapter 10

Fig. 10.5 Web publishing architecture of 3D datasets using 3D-GeoDBMS.

To show the possibility to query 3D geo spatial objects via an Internet cli-
ent, first a simple prototype was built, based on Microsoft technology.

The following section describes (in detail) how the dynamic Web 3D visu-
alization could be performed.

An Approach Towards Supporting Dynamic Scene Generation

Today, the dynamic generation of HTML pages is a standard functionality
of all commercial database systems. This feature has been proven to be a
very effective and practical approach to support the (two-dimensional) vi-
sualization of information stored within database systems. In this section,
we outline how a similar functionality can be realized to dynamically gen-
erate VRML scenes from a database management system (DBMS). This
approach overcomes many of the limitations of static VRML scenes, by
exploiting the persistence, scalability and security mechanisms of database
management systems. In addition, it also provides a direct way to effi-
ciently generate three dimensional visualizations from existing information
in the database.

Here, a “Geometry” data type allows, for example, to store all apartments
of a building as VRML scenes together with the walls and its floor infor-
mation along with its ID. It is possible to select a subset of all apartments
with certain properties and merge them in a new scene, e.g., in order to
display all apartments that have already been rented out to tenants.

THE WEB AND 3D GIS 245

Fig. 10.6 A 3D dynamic data visualization of 3D building data on the Web.

Figure 10.6 shows a complete building structure generated using VRML
client application installed as a plug-in with Web browser. The figure also
shows the complexity of the 3D data and generating a dynamic scene
through database onto the Web browser as indicated in Figure 10.5.

Dynamic scene generation in VRML/X3D using the data from the Oracle
Spatial 10g was performed in a way given below:

A database connection is used as a statement inside PHP coding. Here are
the strings (i.e. scripts coding) used to connect to the Oracle database:

<?
$connection = OCILogon (“User Name”, “Password”, “service name”)

or die (“cannot connect to database”);
?>

The SQL in this case is quite simple — return all data contained in the ta-
ble after execution:

<?
 $stmt = OCIParse($connection, “select * from building”)
 or die (“cannot select”);

 OCIExecute($stmt, OCI_DEFAULT);
?>

246 Chapter 10

Once the result is assembled, the code loops through all of the records and
displays as many floors (of the building) available in the database. This is
the loop:

<?

$count = 0;
While (OCIFetch ($stmt))
{

 color = ociresult ($s, “color”);
 radius = ociresult ($s, “radius”);
?>

DEF Floor <? $count ?> Transform
{

 translation <? $count*15 ?> 0 0
 children
 [

 Shape
{

 appearance Appearance
{

 material Material
{

 diffuseColor <? $color ?>
}

 }
 geometry Sphere

{
 radius <?$radius?>

 } }] }

<?
count++;
}

Notice how the values from the database are inserted into the VRML. Two
strings, colour and radius, are set to the values from the database and then
displayed in the VRML code as <? $color ?> and <? $radius ?>.

THE WEB AND 3D GIS 247

The translation is handled by an integer (count), which keeps track of the
number of records and displaces the floor by 15 on the x-axis iteration of
the loop.

The variable count has another use as we generate objects, we give them a
name: DEF Floor1, DEF Floor2, and so on. We do this by inserting the
count into the VRML node’s definition DEF Floor <? $count ?>.

A DBMS supporting three-dimensional visualization must be able to gen-
erate new VRML scenes, both from existing operational business data rep-
resented by conventional data types and from existing multimedia data
represented by specialized media data types. Within the building, statistical
data about how many persons can live in one apartment could be visual-
ized by an arrow diagram, where the arrow size is proportional to the
number of family members allowed to live in an apartment. As always,
free the database resources at the end of the operation.

<?
 OCIFreeStatement ($stmt);
 OCILogoff ($connection);
?>

The VRML client has to be able to directly read and write the DBMS from
within a VRML scene. For more advanced interaction modes in multi-user
environments, this mechanism needs to be complemented by an event han-
dling system. This allows signaling a change in a scene to all other users
actively working on the same scene. The VRML event handling of the oth-
er users can then react by appropriately updating the scene, e.g. by reload-
ing a part or the whole scene.

The most important benefit of the above-outlined approach is that by
means of storing VRML scenes within a DBMS, we achieve persistence of
changes to scenes. Furthermore, the multi-user access control enables the
sharing of VRML data among multiple users, thus we move from isolated,
static scenes to shared spaces of dynamically generated three-
dimensionally (3D) visualized information. Scalability is achieved by load-
ing and generating scenes and scene components dynamically either at
loading time or at run time. The corresponding loading/generation schemes
can be determined both by physical characteristics of the VRML scene and
the logical structure of the application. Controlled access to scene data is
supported by the security and view mechanisms of the underlying DBMS.
For example, in the “Building” scenario, one might display the rent of an
apartment only to authorized members or customers but not to visitors.

248 Chapter 10

Java3D

Another instrument for creating 3D world on the Web is Java 3D. The Ja-
va3D library is a freely available API for developing Virtual Worlds in Ja-
va (Sun Microsystems, 2004). Therefore Java3D classes can be used by
Java Applets within HTML pages. Java3D’s functionality is almost the
same with that of VRML and X3D. Savarese (2003) introduces them
briefly. One big advantage compared to plug-in based solutions is that de-
velopers have more control about rendering and user interaction. Another
is the transformability. Compiled Java3D classes can either be used as
standalone application or applet. In contrast to the mark-up languages of
VRML or X3D, Java3D requires much more programming knowledge
(Diehl, 2001). This is probably one reason why only few solutions have
been realized using Java3D. One example for implementing Java3D within
a geo-related application is the DEMViewer (see Taddei, 2003).

10.5 Current and Possible Approaches in Urban Planning

The steady growth of urban environment worldwide poses challenges to
our society. In order to avoid chaos and confusion, urban scenarios like cit-
ies and their complex streams have to be planned well. Therefore, geo-
information and corresponding spatial data must be able to support plan-
ners and their decision makers tremendously (Laurini, 2001). Possible
fields of applications are listed in Table 10.2.

Table 10.2 Possible fields of applications within urban environments for Web-
based 3D GIS (after Altmaier and Kolbe, 2003).

Sector Description Example

Event management Simulation of the event
to attract people

Offering the possible 3D
view of a certain seat in a
stadium

Facility manage-
ment

Management of big
building complexes

Organizing the room avail-
ability of a hospital

Navigation support Car and pedestrian navi-
gation systems

Location-based service dis-
playing the recent position
and its environment

Environment Environmental Topics in
Cities: noise characteris- Visualizing the emission

THE WEB AND 3D GIS 249

tics, air flows, emission
dispersions, etc.

dissemination

Disaster/emergency

Organizing the work-
flows in the case of an
emergency

Directing rescue teams
through complicated envi-
ronments with support of
real-time data

Supply engineering Management of supply
related tasks

Organizing the power net-
work

Table 10.2 shows many possible useful scenarios for 3D applications in an
urban environment. While some of them, for example, event management
mainly deals with visualization only, there are applications involving spa-
tial analysis, particularly, the topic around disaster and emergency man-
agement.

However, recent 3D GIS implementations mainly cover 3D visualization
and simple interactive components like accessing additional information.
Other general GIS principles such as data analysis are still missing. The
reason for this is that the related data management is not suitable for real
3D functionality (Nebiker, 2003). However, there are a couple of proto-
types available which point towards the real 3D GIS. The following brief
descriptions introduce browser-based and stand-alone front-ends.

10.6 Realized Browser-based Solutions

As stated in section 10.2, browser based solutions are almost represented
by some kind of browser plus plug-in approaches. The following examples
use mostly HTML-based Web pages which have VRML embedded files.

A prototype system of 3D GIS (Zlatanova, 2000)

The developed system is a typical example of a very thin client, i.e. based
on HTTP, CGI scripting (realized in Perl), VRML and HTML documents
which are created on-the-fly. The VRML delivers the 3D graphics infor-
mation obtained as a result of spatial queries or/and provides means to
query graphically the objects observed in the 3D scene (by standard
VRML nodes). HTML documents are used to visualise text and images, to
specify SQL queries, or introduce new values for edited elements. Web
and VR browsers on the client stations are used to interact with the 3D
model(s) and specify queries. The data are structured according to the

250 Chapter 10

Simplified Spatial data Model (SSM) topological model and maintained in
a Relational Database Management System (RDBMS), namely MySQL.

Requesting information about a particular object can be done either by typ-
ing its ID in a HTML form or by clicking on the corresponding object in
VRML (its graphical representation). For example, a click with the mouse
on a building activates a CGI script, which delivers a “Query-Result” sec-
tion (HTML). The user selects the needed information from a “pull-down”
menu that is created on-the-fly with all the information available for the
object in the database.

Extracting a group of objects according to a criterion is completed by di-
rectly typing SQL query at the “Query” section. The result of the query is
displayed either in an HTML or in a VRML document. These documents
are created on-the-fly only with the information related to the objects of in-
terest. The same mechanism is used to create DELETE, UPDATE, and
INSERT forms to edit data. The free access to the database provides a me-
chanism to specify and display a wide range of spatial queries. Examples
of such queries are “Which is the highest building?”, “Show the buildings
in a particular area”, “Show all streets”, “Show all administrative build-
ings”.

An advantage of the system is that clients practically do not use any spe-
cific software besides a Web browser and a VR plug-in. The system also
does not have a specific GIS component since the SQL queries are directly
sent to the database. The spatial functionality is provided by operations at
database level. The major disadvantage is eventual overload of the server
in case of too many users. The performance of the system has not been
tested for multi-user access. Another disadvantage is increased complexity
of the VRML file if elaborated point-and-click operations are needed. To
be able to work with freeware VR browsers, all the interactions with ob-
jects are incorporated in the VRML (using special VRML nodes). There-
fore, in many cases, the size of the VRML file can increase drastically.

GOOVI 3D (Coors and Jung, 1998)

The system architecture is a medium client-server where most of the func-
tionality is provided at the server side but some functionality is also kept at
the client side. The components of the system are VRML, HTML, Java
and warehouse. The warehouse consists of files organised on the server.
The interface to the data warehouse is done by COBRA IDL and is based
on IIOP protocol. The two kinds of queries, i.e. obtaining additional

THE WEB AND 3D GIS 251

information about a selected object and extracting several objects as a re-
sult of specific queries, are also implemented. In the first case, this is done
by attaching to the objects in the VRML files hyperlinks to a HTML page
(the pages are stored in the warehouse) or, more dynamically, by Java
script nodes. In the second kind of data queries (objects which meet spe-
cific conditions), the server has to access at database level in order to per-
form the queries. The results are represented by highlighting the objects of
interest in the current VRML scene using Java and IIOP protocol. Thus no
new VRML file is created. Since the system is invented for discussing ur-
ban plans, editing/modification operations are not implemented. The au-
thors make a suggestion for SQL node in VRML that can be directly used
to connect to DBMS and extract information. First implementations of the
system use RDBMS to store objects as VRML nodes and information
about them as HTML pages. Later implementations made use of more ge-
neric representations in Oracle, using the topological model UDM (Coors,
2003). The advantage of the system is that it is a relatively thin client-
server system, allowing implementations without large resources at the cli-
ent side. Part of the functionality (data query) is performed at the server
but highlighting of the objects of interest is at the client side. In this re-
spect, the system is better balanced than the previous one. The system
however is a bit dependent on the file organisation in the warehouse (i.e.
mixture between files and DBMS storage). The major disadvantage is that
the extended protocol IIOP is used (which is generally not available).

SALIX (Lammeren and Hoogerwerf, 2003; Wachowicz et al., 2002)

SALIX is a typical example of a thick client. The system is intended for in-
teractive landscape planning, i.e. planning trees and bushes and simulating
their growth. The GUI is based on the Cortona environment, using VRML
and Java to provide all the functionalities. DBMS is used only to store the
objects of interest (a variety of tree and bush species). The objects are ma-
nually placed in the field of view. A large number of toolbars give the us-
ers the possibility to inspect certain constraints, the distance between the
planted trees in different stages of their life, to simulate growth, to create
conglomerates of objects from the same type, etc. The significant aspect of
this system is the extended functionality in terms of interactions and ma-
nipulations. There are still more improvements necessary toward making
real use of functionality available at DBMS (currently used only for object
storage).

252 Chapter 10

Accessing Geo-DBMS Using Web Technologies (Vries and Stoter, 2003)

Vries and Stoter (2003) describe two prototypes using a web environment
to query 3D spatial data and their attributes. The implemented applications
focus on reasonable ways to visualize query results within a web browser.
Because the operations are hosted on the server-side, the system is repre-
sented by a thin client and thick server. The realized prototypes can be dif-
ferentiated by the following technologies.

− VRML and Microsoft-specific technologies

This implementation uses common Web technologies to achieve a 3D
GIS. Geo spatial data is already available within VRML files, and its at-
tributes can be queried dynamically. These are stored in Microsoft’s
Access database system. Active Sever Pages (ASP) technology com-
bined with the Internet Information Server (IIS) as Web server environ-
ment is used to offer interaction with the database. The served VRML
world is embedded within the main frame of the HTML Page. User in-
teraction is possible in form of querying each objects attribute data. If
the user clicks on an object in the VRML world, a request is sent to the
server. After connecting to the database, ASP creates an appropriate
HTML fragment which holds the requested attribute data in a table and
embedded in the second frame of the application. This approach is ven-
dor specific and it only works properly on Microsoft (MS) components.

− X3D, Java Servlets, XSQL and Oracle 9i

This prototype system is based on an integrated database architecture.
The underlying DBMS hosts 3D spatial data as well as their attributes.
Oracle 9i and its spatial extension are preferred. Server-side, the system
is based on a Java Servlet Container, like Apache Tomcat, and the
Apache HTTP server. In detail, the prototype is using XML specific
Java libraries to query (XSQL) and exchange data. The libraries are part
of Oracle’s XML Developer Kit’s (XDK) which are integrated in Tom-
cat. Among the XSQL servlet and others, the XDK provides a XML
parser and XSLT processor. In order to visualize the queries, the XML
response of the database is transformed to X3D using XSLT style sheets
on-the-fly. On the client side, the browser window is separated into
three frames. The main frame is for showing the virtual world, another
for displaying the object’s corresponding attributes using HTML tables.
The third frame offers HTML forms in order to query the database for
spatial objects. Once a query is performed, the main frame will visualize
the new scene.

THE WEB AND 3D GIS 253

This state-of-the-art implementation demonstrates nicely the advantages
of a fully XML based system. Furthermore, it can be integrated into any
platform which supports Java programming language. Figure 10.7
shows the prototype’s client interface.

Fig. 10.7 A prototype system using Web technologies to access Geo-DBMS.

Pilot 3D of the GDI NRW

The Special Interest Group (SIG) 3D of the Geo-Data Infrastructure North-
Rhine Westphalia, Germany (GDI NRW) has proposed their first proto-
type (see, Groger et al., 2004). The 3D city model is based on the geomet-
rical objects point, line, surface and body and has been presented in Gröger
et al., (2004). The corresponding application logic - realized in Java pro-
gramming language - offers a standard based (OGC and ISO19107) solu-
tion to visualize 3D urban data. The proposed data model is used in 3D
city models, virtual flights and other projects which are able to improve
planning processes. For interactive 3D visualizations, VRML is currently
used. A first published result has been presented by the SIG 3D and is
available online (SIG 3D, 2004).

Overall, the “Pilot 3D” project can be seen as a prototype scenario in order
to prove the value of a standard-based Spatial Data Infrastructure. The
most important fact is that the SIG 3D proposes their own extension of the
Web Terrain Service called Web 3D Service (W3DS).

254 Chapter 10

10.7 Stand-alone Solutions/Toolkits/Front-ends

Most CAD or GIS can be integrated into a Web environment. They can be
used as a user agent on the client. Stoter and Zlatanova (2003) describe the
approaches using ESRI’s ArcScene and Bentley’s GeoGrapics iSpatial to
visualize and edit data. These examples do not cover the integration into a
Web environment. Nevertheless, one can do so, because other software
products are difficult to use and they are not very suitable for inexperi-
enced users. Therefore, different institution or companies have created
special 3D applications. Geonova’s Digital Landscape Server (DILAS)
product line is one promising approach. The following descriptions illust-
tare briefly the application and its components.

DILAS 3D (Nebiker, 2003)

Geonova’s commercial product line DILAS offers a large variety of mod-
ules which can be seen as 3D Web-GIS. The DILAS server and manager
are the main components of the system. They are responsible for character-
istics like data storage, management, representation and scene reconstruc-
tion. The DILAS modeler is an extension on Bentley’s Microstation V8.
This component integrates the creation and edition of new 3D objects and
their corresponding styles. Moreover, the modeler benefits from the possi-
bilities of Microstation due to the fact that it uses its Java API. In order to
publish 3D worlds on the web, the DILAS scene generator is the key com-
ponent. In conjunction with the visualization product G-VISTA, it can
generate complex 3D scenes like city models. These can be served by any
web server. Most recently, Geonova announced the new OGC conform
Web Map Service. Therefore any client which is supports this specification
can be used (GEONOVA, 2003).

The whole concept and the already implemented features look very prom-
ising for the use in urban planning. Based on a state-of-the-art object-
relational DBMS, DILAS offers managing, editing, reconstruct-
ing/visualizing and publishing virtual worlds. However, editing and man-
aging of 3D scenes is only possible within an intranet network. Further-
more, there is no 3D functionality offered by default. Nevertheless, the
examples shown are impressive.

GIERS (Kwan and Lee, 2003)

Kwan and Lee (2003) describe a developed GIS-based intelligent emer-
gency response system (GIERS) which implements 3D routing features up

THE WEB AND 3D GIS 255

to the inside of buildings for rescue teams in real-time. The results is a
navigable 3D GIS which includes building internal navigation as well as
associated ground transportation possibilities of a city. The underlying 3D
data concept comprises a topological node-relation structure which is used
for routing operations and worked within a relational database model. On
the technological side of the implementation, mainly Microsoft specific
technologies are used. Furthermore, depending to its purpose, the system is
able to communicate with mobile devices as well as through the Internet
(Kwan and Lee, 2003).

10.8 Summary

This chapter introduces the complexity of 3D GIS on the Web. System ar-
chitecture, data management and GUI visualization are seen as critical as-
pects. The chapter also discusses VRML/X3D and Java3D as visualization
techniques for distributing virtual worlds on the Web.

Due to the fact that there are not many core systems available, research on
3D Web-GIS needs a lot more effort to be successful, especially in the
field of data management which lacks reasonable approaches. Further-
more, data updating (including “dynamic” updating) should be addressed
as well. Finally, 3D Web services functionality has to be made available
for the next generation of 3D GIS system.

Chapter 11 CONCLUSION AND FURTHER
OUTLOOK

Research and development within the scope of 3D GIS are now extensive.
This book only deals with some parts of it. The emphasis here has been on
the conceptual and logical design of a 3D spatial model and how it can be
constructed and applied. Some examples utilizing the 3D spatial model
with respect to the design introduced in this book are also given. This final
chapter concludes the discussion drawn from this research and suggest
some recommendations for further research.

11.1 Summary

Several problems associated with 3D GIS were identified in chapter 1. The
scope of this book, however, restricts the emphasis to various stages of the
design and construction of a 3D vector spatial model. This kind of model
permits the integration in one database of two kinds of real world objects:
determinate and indeterminate spatial objects and their components. This
integration permits better representation of the spatial relationships be-
tween the two types of spatial objects. Determinate spatial objects - objects
with discernible boundaries, like buildings and roads - can be represented
directly by the elements of the model. Indeterminate spatial objects - ob-
jects with indiscernible boundaries, like soil strata, temperature, and min-
eral deposits - require indirect representation. Given a specific type of
property and a given property value, or the property range, the boundary of
an indeterminate spatial object can be derived from the surrounding
neighbours. In a vector spatial model, the neighbours may be represented
as a point, line, surface, or body feature.

When the boundary of an indeterminate spatial object has been derived,
this object then becomes a determinate object capable of being visualized
and allowing further spatial analysis (computation of volume, surface area,
relationships with other spatial objects, etc). To make this possible, the
neighbours must form a spatial unit permitting the performance of opera-
tions (interpolation, classification) to make the boundary of the indetermi-
nate spatial object explicit. To obtain an accurate result, the (derived)
boundary of the indeterminate spatial object and the characteristics of the
neighbours must be taken into account as constraints. For example, under-
ground discontinuities like geological faults, obtained from interpreting

258 Chapter 11

seismic data, may have to be incorporated directly into the spatial model so
that the derivation of orebody from drillhole samples of mineral deposits
can be obtained more accurately.

The review of the current situation indicates that existing systems do not
provide adequate 3D modelling tools for earth science applications need-
ing to model the relationships between determinate and indeterminate spa-
tial objects. Moreover, the components of spatial objects are often repre-
sented in separate spatial models, such as in models of terrain relief in
DTM and terrain features in typical 2D GIS. The consequence of these is
the difficulty of accurate representation of the relationships between ob-
jects in a spatial model. It is evident that the key problem is the lack of a
spatial data structure suitable for this kind of modelling which also permits
the adaptation of various available technological developments to be im-
plemented as functions of 3D GIS. Therefore, an appropriate spatial data
model has to be developed to make it possible to derive such a spatial data
structure. Although attempts towards the design of a 3D spatial data model
have been made, this aspect of integrated modelling of the two types of
spatial objects had not been adequately addressed. The main objective of
the research was, therefore, to design a data model suitable for the inte-
grated modelling of the two kinds of spatial objects and accordingly to
suggest a simple method of constructing a spatial model as well as to dem-
onstrating its usage.

The study commences with a review of all the necessary fundamental con-
cepts of geo-spatial modelling incorporated into the design, construction
and maintenance phases. Although different theories and concepts abound,
only those supporting the design of a spatial model are reviewed and or-
dered with respect to the conceptual and logical design phases. By relating
and bringing some order into those theories and concepts, the study also
contributes to the further development of spatial theory.

Conceptual design

Since a 3D GIS needs to adapt various technological developments for its
functionality, a review of these technological developments was carried
out. In addition to this, the present architecture of the geoinformation sys-
tems and future development trends are analysed and differentiated into
four stages of evolution: independent subsystems, functional integration,
client/server, and structural integration. The independent subsystem is the
common approach, since a GIS has been developed whereby available
subsystems in the form of hardware and software are taken as components
of a GIS. These subsystems evolve into software modules of a GIS in the

CONCLUSION AND FURTHER OUTLOOK 259

next evolution stage, the functional integration. However, few of the GISs
developed at this stage can provide all the functions the users require. The
client/server architecture, which is evolution stage three, emerges offering
an intermediate solution. This architecture makes use of communication
technology to exchange information between independent subsystems
connected on-line. Nevertheless, the architecture of the systems in these
three evolution stages still relies on various independent data structures
specific to functions or subsystems.

Since separate data storage requires different DBMSs, many problems per-
sist. These problems are summarized in chapter 3. The monograph antici-
pates evolution stage four, the structural integration, that is expected to of-
fer solutions with all functions relying on a common database. This
database provides the information necessary for all the operations in geo-
spatial modelling. A unified data structure is the basis of the system. The
system provides various database views and spatial index structures spe-
cific to functions or operations on top of the unified data structure. The cli-
ent/server approach can be adopted on top of the structural integration ar-
chitecture which allows each developer to concentrate on a set of functions
of 3D GIS. The review of some attempts towards structural integration
with respect to 3D GIS shows that the design of spatial data model is
needed to permit the derivation of a unified data structure for a 3D GIS
employing a structural integration architecture to accommodate both direct
and indirect representations of spatial objects.

To contribute to the development of 3D GIS adopting architecture based
on structural integration, the design of an integrated data model and the
development of the method to construct the spatial model were carried out.
The simplicial network data model (SNDM) is the result of the conceptual
design. The SNDM provides general concepts valid for spatial models
ranging from 2.5D to nD. The SNDM has the following properties:

1) Theoretical aspects:

i) The components of the model are distinguished into geomet-
ric, feature and thematic class levels in the same way as FDS.

ii) Complex spatial objects are decomposed into simplices. The
Delaunay concept of taking complex objects as constraints is
used in the decomposition method to provide spatial units
suitable for the indirect representation. All simplices contrib-
ute to the geometry of the simplicial network.

iii) A simplicial network as well as its components can be de-
scribed using graph the theory. Each simplex is a complete

260 Chapter 11

graph, therefore, a simplicial network is a network of complete
graphs with different degrees of nodes. This concept makes
the simplicial network a sound and consistent structure. Each
network has mathematical characteristics that accord with a
generalized Euler equality.

2) Practical aspects:

i) The network provides basic computation units suitable for finite
element analysis.

ii) The network accommodates both direct and indirect representa-
tions. The direct representation implies a high fidelity property of
representing spatial objects.

iii) The network has a locality property, so it is suitable for use as a
structure for the storage of a large database where a spatial model
can be maintained without large perturbations to the model as a
whole.

iv) The irregularity of the network makes it adaptable to spatial varia-
tion in reality. This makes the spatial model versatile.

v) The network is a complete tessellation of space, allowing more
freedom to navigate within the spatial model using various means,
such as topology, order, metric computation or their combinations.
For example, the derivation of iso-lines or iso-surfaces makes use
of a combination of different means to navigate in the spatial
model, while query about features make use of topology as a navi-
gation means.

Each component of a simplicial network has the following properties:

i) convex shape
ii) irregular shape
iii) finiteness, therefore, it is verifiable against a complete graph
iv) simplest geometry in its internal dimension.

These properties make it possible to automate many operations ranging
from the construction of a 3D spatial model (for example, the constrained
Delaunay network formation) to the derivation of information as required
by applications in earth sciences (for example, the computation of spatial
gradient, iso-lines, iso-surfaces) as indicated in chapter 1.

Logical design

With respect to the logical design, a unified data structure (UNS) can be
derived from the SNDM. This allows for the handling of a spatial model

CONCLUSION AND FURTHER OUTLOOK 261

by a single DBMS. Two different logical designs using the relational and
object-oriented approaches ensure that a SNDM is feasible. The UNS pro-
vides elements for storing the necessary information for various opera-
tions. Regardless of the speed of the spatial operations, a relational UNS
can be implemented using many commercially available DBMSs which al-
ready provide the basic operations to create, retrieve and update a database
and its elements. Normalization using Smith’s method is applied to obtain
relational UNS, providing better updating the database. Typical relational
DBMSs do not provide functions for spatial operations. These operations
have to be implemented in addition to the basic database operations.

The logical design using the object-oriented approach shows that SNDM
can be implemented differently for better performance that is not well pro-
vided for by the relational approach as a result of the unsuitable indexing
method. The implementation using C++ in the ISNAP program demon-
strates the practicability of the object-oriented approach. Instead of relating
components of a spatial model by joint operations and Cartesian products,
as is typical in the relational approach, relationships among the compo-
nents of a spatial model can be implemented as pointers. Spatial searches
can be more efficient, as can be seen in operations like the derivation of
grid DTM and contour lines.

Construction of a 3D spatial model

For practical use, a method of constructing such a spatial model must be
available. The constrained network construction is the method of con-
structing a spatial model based on SNDM. Incorporating representations of
determinate spatial objects as constraints into the simplicial network is the
most important issue. For 2D network construction, both raster and vector
approaches are available and ready for use. Since no simple method for 3D
network construction with constraints is available, generalizing a 2D algo-
rithm for 3D is feasible. The vector approach is, however, very compli-
cated to generalize for 3D network construction. Generalizing the raster
approach was achieved within this study. A general method valid for nD is
devised to incorporate constraints into the simplicial network. The method
is based on the invariant property of Voronoi regions under Voronoi tessel-
lation, using distance transformation. The geometry of line and surface
features can be embedded within the 3D simplicial network as required. A
further achievement is the construction of a spatial model based on 3D
FDS required as an intermediate structure for storing features to be used as
constraints in the 3D network construction. This achievement is, however,
limited to man made objects such as buildings and roads extracted by

262 Chapter 11

photogrammetric digitizing from a stereo model. The construction of this
kind of model is achieved by using the digitized outline of the building
roofs and DTM, as explained in chapter 8.

Implementation

The object-oriented UNS and method for constrained network construction
were implemented in the ISNAP program. Some functions which are only
available on separate systems (2D GIS and DTM) can now be imple-
mented in ISNAP, together with some additional functions required for 3D
modelling. In short, ISNAP has the following functionality:

• 2D Delaunay network construction with constraints
• 3D Delaunay network construction
• Graphic display:

− orthogonal, perspective and stereo views
− wireframe or surface illumination
− hidden line and surface removal

• Query of point, line and surface features that can be performed in any
display view

• Derivation of contour lines, contour surfaces
• Derivation of regular-grid DTM.

Apart from ISNAP, other developments in the field of 3D GIS have been
carried out. TREVIS has been developed to explore the capability of the
relational approach and 3D FDS for 3D GIS and uses as tool for 3D visu-
alization with some 3D editing capability. TREVIS can perform various
kinds of queries using functions provided by a commercial relational
DBMS, dBASE IV.

Testings

The applicability of the SNDM is demonstrated through three tests. These
tests were conducted using both TREVIS and ISNAP as tools for con-
structing the model: query, process, and visualization. The first test is spe-
cific to the problem of the integrated modelling of terrain relief and terrain
features typically handled separately by DTM and 2D GIS. ISNAP was
used to perform constrained triangulation, overlaying, query of features,
deriving contour lines and regular-grid. Basic GIS and DTM functions
could be performed on one database. It can be concluded that the inte-
grated modelling of terrain relief and terrain features is achievable using
SNDM.

CONCLUSION AND FURTHER OUTLOOK 263

The second test shows that the representation of a surface in the form of a
simplicial network can be integrated into a spatial model in the form of a
3D FDS that contains the representation of 3D spatial objects. The study
area was the central area of Enschede, The Netherlands consisting of dif-
ferent kinds of buildings. The terrain of the study area was represented in
the form of simplicial networks that facilitate the construction of the ge-
ometry of 3D representation of buildings. Representations of the footprints
of these buildings were incorporated into a simplicial network of the sur-
face, successfully integrated with 3D objects representing buildings and
stored within a 3D FDS database in the subsequent process.

The third test demonstrates the construction of a 3D simplicial network
and the derivation of the boundary of indeterminate spatial objects from
this network. A tetrahedral network was constructed from simulated bore-
hole data using the ISNAP program. Iso-surfaces that are the assumed
boundaries of a soil layer (for instance, clay) were derived from this tetra-
hedral network and then visualized in perspective and stereo mode. Deter-
minate objects such as buildings and roads could be incorporated into this
network for visualization purposes, or for complex analysis.

The test results shown in chapter 9 are obtained from TREVIS and ISNAP.
This ensures SNDM can be implemented and the resulting spatial model is
practicable. The model can fulfil various requirements, that is integrated
modelling of determinate and indeterminate spatial objects, supporting
complex queries, various kinds of visualizations. Boundaries of indetermi-
nate spatial objects can be derived and visualized.

The ISNAP program demonstrates that the 3D spatial model based on
UNS can facilitate various operations. Tasks in the scope of 3D GIS (de-
scribed as the functionality of ISNAP) that typically require many different
systems and databases can be carried out using ISNAP and an integrated
database. This makes the ISNAP a simple example of 3D GIS adopting the
structural integration architecture. Various functions are available and
reachable from one control panel with a common user-interface, making
the system more convenient to use and significantly reducing time in deal-
ing with many different systems. Since one database can facilitate many
operations, data redundancy due to storing duplicate data in different data-
bases (for example databases of terrain relief and terrain features) is elimi-
nated. Accessibility to each data element is improved because all compo-
nents of spatial model are stored in one database. Users need not deal with
uncertainty during spatial query or computation. This means many re-
quirements stated in chapter 3 can now be fulfilled. ISNAP also demon-
strates that various technological developments, construction of spatial

264 Chapter 11

model, query and deriving information from the model, 2D and various 3D
visualization techniques and so forth, can be integrated into one system
that uses SNDM.

11.2 Further Research

In this book, a simplicial network data model has been described. Previous
chapters have shown the design and implementation of the unified data
structure and method to construct the corresponding spatial model. Some
of the practicability of the constructed model has also been demonstrated.
However, further investigations and developments still need to be carried
out as listed below:

● Development of tools for 3D operations

Tools for 3D operations with respect to 3D GIS are still lacking.
Some examples of these tools are:
− interactive 3D editing with realistic visualization
− 3D overlay
− implementation of point-in-tetrahedron testing
− conversion between a 3D irregular network and 3D regular grid

useful for many operations
− a virtual reality interface for conveniently exploring content of a

3D database.

● Implementation of 3D constrained network construction
Although the concept of constrained network construction using
the raster approach has been generalized for n-dimensions, only
the constrained triangulation was implemented in ISNAP. The
constrained tetrahedronization still needs to be implemented.

● Development of 3D spatial index

Many operations in 3D GIS, for example for realistic visualization,
require data to be organized in a specific structure for efficiency.
These are task-oriented index structures. The integrated database
can only provide data in a basic structure and so requires the index
structure appropriate for each task to be built on top of it. There
are still requirements to identify index structure that provide effi-
cient operation for each task. An object-oriented approach is po-
tential for this kind of development; however, further studies, im-
plementation and experiments are still needed. Such a study

CONCLUSION AND FURTHER OUTLOOK 265

should include how to incorporate various database views and spa-
tial index structures with the core database.

• Further tests for applicability of the simplicial network data model with
some evaluations, for example against handling complex queries, finite
element analysis, visualization.

• Methods to handle uncertainty covering 3D cases, for example to re-
solving lines or planes that coincide in 3D space,

• Maintenance of a 3D simplicial network spatial model; this is the prob-
lem of updating the spatial database which also requires the develop-
ment of consistency rules.

• Comparative study raster and vector approaches for constrained network
construction with respect to speed, memory and storage usage and over-
all efficiency.

• High quality 3D cartographic presentation of 3D spatial model, includ-
ing:

− design of 3D symbols
− design of artificial texture
− text and name placement in 3D space
− use of 3D database for pictorial maps
− 3D graphic generalization.

As described in the previous sections, this research work has covered a
number of aspects of 2D and 3D spatial data structuring, data modelling,
database populating, application development and user interface for a GIS.
An important component of this research is the software that can be used
for the development of an operational GIS system. Key aspects and prob-
lems were identified and have been implemented and tested. However,
there are still other related issues that need to be investigated further and
considered for future development. We also recommend the following fur-
ther explorations:

• Implementing the constrained 3D TIN; incorporating 3D con-
strained features will extend data handling and provide more spa-
tial information.

• Further developing and formalising 3D spatial data. This is an im-
portant task for describing the relationships and links between data
and is the next logical step in the modelling process.

266 Chapter 11

• Redesigning the OO spatial data model using object-oriented data
analysis and design tools such as UML (United Modelling Lan-
guage) to accommodate more complex situations.

• Developing and implementing spatial operators for spatial database
manipulations.

• Constructing an advanced graphics user interface as the front-end pro-
gram. Simple display interfaces have been developed. Although they
were able to perform the task further work needs to be considered.

• Investigating an optimal integration between the developed subsys-
tems with an object-oriented database management system (OO
DMBS) as a database engine for facilitating TIN-based GIS.

Current research and industrial efforts for solving 3D spatial data informa-
tion system appears to focus mainly on the non object-oriented approach,
that is to say procedural (structured) techniques and the relational database.
This book also explained how object-oriented techniques could be used for
developing a TIN-based spatial data information system. The proposed
subsystems work as described in chapter 8 and 9. The subsystems repre-
sent several of the major components that any GIS would have, that is
from data input to a display or visualization subsystem. Although each of
the proposed subsystems work and generate good results, they do not op-
erate together as one fully operational system. Aspects of computing such
as system integration, graphical user interface need to be further consid-
ered for full integration to be materialised.

All the developed algorithms have shown to work and provide a good
framework for 3D GIS development. The performance of the algorithms in
terms of computing yard sticks such as speed and data volume, however, is
not part of the work discussed here.

Emerging technologies like Internet and Web influence the way we carry
out research and certainly will play a major role in the next generation of
3D GIS aspects like data modelling, processing, databasing, analysis, and
data distribution as discussed in the previous chapter.

Finally, we hope that all discussions from this book would lead to more in-
teresting, advanced research output, and eventually a “true” 3D GIS could
be realized in the near future.

References and Bibliography

Abdul-Rahman, A (1992) Triangular irregular network in digital terrain relief
modelling. M. Sc. Thesis, ITC, Enschede, The Netherlands, 80 p.

Abdul-Rahman, A (2000) The design and implementation of a two and three-
dimensional triangular irregular network based GIS. PhD Thesis, University
of Glasgow, U.K., 204 pp.

Alagic, S (1989) Object-oriented database programming. Springer Verlag, New
York, 320 pp.

Alexandroff, P (1961) Elementary concepts of topology. Dover Publications, Inc.,
New York.

Alia, A., Williams, H (1994) Approaches to the representation of qualitative spa-
tial relationships for geographic databases. In: Molenaar, M., and De Hoop, S.,
(Eds.) Advanced geographic data modelling. Netherlands Geodetic commis-
sion, pp. 204-216

Anton, H (1987) Elementary linear algebra, Fifth edition, John Wiley & Sons.
Arc/Info (1991) Surface modelling with TIN. Arc/Info user’s guide. ESRI, U.S.A.
Argiro, V. , Van Zandt, W (1992) Voxels: data in 3D, Byte, Vol. 17, May, pp. 177-182
Armstrong, M.A (1983) Basic topology, Springer, New York.
Avis, D., Bhattacharya, K.B (1983) Algorithms for computing d-dimensional

Voronoi diagrams and their duals. Advances in Computing Research, 1,
pp. 159-180

Ayugi, S.W.O (1992) The multi-valued vector map. M.Sc. Thesis, ITC, Enschede,
The Netherlands

Bak, P.R.G, Mill, A.J.B (1989) Three dimensional representation in a geoscien-
tific resource management system for minerals industry. In: Raper, J.(Ed.)
Three dimensional applications in geographical information systems. Taylor
& Francis, London, pp. 155-182

Barbalata, J.C., Lebel, R (1992) Digital elevation model for photogrammetric
measurements of soil erosion. International Archives of Photogrammetry and
Remote Sensing. Vol. XXIX, Part B4, Commission IV, Washington, D.C.,
U.S.A., pp. 831-835

Batten, L.G (1989) National capital urban planning project: development of a 3-D
GIS. Proc. of GIS/LIS ‘89. ACSM/ASPRS. Falls Church, pp. 781-786.

Beaty, J.C., Booth, K.S (1982) Tutorial: computer graphics. Second Edition, IEEE
Computer Society Press, Silver Spring, MD

Bernal, J(1988) On constructing Delaunay triangulation for a set of constrained
line segments. Technical Note 1252, National Institute of Standards and
Technology, United States of Commerce

Blum, H (1967) A transformation for extracting new descriptors of shape. Pro-
ceedings of Symposium on Models for Perception of Speech and Visual
Form. MIT Press, Cambridge, Mass., pp. 362-380

268 REFERENCES AND BIBLIOGRAPHY

Bonham-Carter, G. F (1996) Geographic information systems for geoscientists:
modelling with GIS. Computer Methods in the Geosciences. Vol. 13, Perga-
mon Publications. 398 p

Booch, G (1994) Object-oriented analysis and design with applications, 2nd. Edi-
tion, Addison-Wesley Publishing Co., Menlo Park, CA., 589 p

Borgefors, G (1984) Distance transformations in arbitrary dimensions. Computer
Vision, Graphics, and Image Processing. 27, pp. 321-345

Borgefors, G (1986) Distance transformations in digital images. Computer Vision,
Graphics, and Image Processing. 34, pp. 344-371

Bouloucos, T. Ayugi, S.W.O, Kufoniyi, O (1993) Data structure for multi-valued
vector maps, Proc. Fourth European Conference on Geographical Information
Systems (EGIS’93). Genoa, Italy, pp. 237-245

Bouloucos. T, Kufuniyi, O., Molenaar, M (1990) A relational data structure for
single valued vector maps. International Archives of Photogrammetry and
Remote Sensing, Vol. 28, Part 3/2, Commission III, Wuhan, China, pp. 64-74

Bowyer, A (1981) Computing Dirichlet tessellation. Computer Journal, 24,
pp. 162-166

Brassel, K.E, Reif, D (1979) Procedure to generate Thiessen polygons. Geo-
graphical Analysis. 11, pp. 289-303

Bric, V (1993) 3D vector data structures and modelling of simple objects in GIS.
M. Sc. Thesis, ITC, Enschede, The Netherlands, 107 p

Bric, V, Pilouk, M, Tempfli, K (1994), Towards 3D-GIS: Experimenting with a
Vector Data Structure. Proc. of the Symposium on Mapping and Geographic
Information Systems. Georgia, USA, ISPRS Archives Vol. 30, Part 4, pp.
634-640

Bric, V, Pilouk, M (1994) Computation of topologic space. ITC, Enschede, The
Netherlands

Bric, V, Pilouk, M, Tempfli, K (1994). Towards 3D-GIS: Experimenting with a
vector data structure. International Archives of Photogrammetry and Remote
Sensing. Vol. XXX, Part 4, Athens, Georgia, USA, pp. 634-640.

Bric, V (1993) 3D vector data structures and modelling of simple objects in GIS.
M.Sc. Thesis, ITC, Enschede, The Netherlands.

Brockschmidt, K (1993) Programming for Windows with Object Linking and
Embedding 2.0. Microsoft Press

Brunet, P (1992) 3-D structures for the encoding of geometry and internal prop-
erties, In: Three-Dimensional Modeling with Geosciencetific Information
Systems by A. K. Turner (ed.). NATO ASI Series C, Kluwer Academic
Publishing, Dordrecht, Vol. 354, pp. 159-188

Burrough, P.A (1986) Principles of geographical information systems for land re-
sources assessment. Clarendon Press, Oxford University Press, 194 pp

Cambray, B. de, (1993) Three-dimensional (3D) modelling in a geographical da-
tabase. Proc. 11th International Symposium on Computer Assisted Cartogra-
phy (AUTOCARTO 11). Minneapolis, pp. 338-347.

Cambray, de B, Yeh, T. S (1994) A multidimensional (2D, 2.5D, and 3D) geo-
graphical data model. International Conference on Management of Data

REFERENCES AND BIBLIOGRAPHY 269

(COMAD’94). Bangalore, India, Tata Mc Graw-Hill, pp.317-336, http://
www.prism.uvsq.fr/public/beatrix/publi_en.html

Cantor, G (1880) Über unendliche, lineare Punktmannigfaltigkeiten. Math. Ann.
(B) 17, pp. 355-388

Carlson, E (1987) Three dimensional conceptual modeling of subsurface struc-
tures. Technical Papers, Vol. 4, ASPRS-ACSM Annual Convention. Balti-
more, Maryland, pp. 188-200

Chen, P. PS (1983) The entity-relationship approach to information modelling &
analysis. Proc. International Conference. North-Holland

Chen, TK, and Abdul-Rahman, A (2006) 0D feature in 3D planar polygon testing
for 3D spatial analysis. In: Abdul-Rahman, Coors, Zlatanova (eds.) Innova-
tions in 3D geo information systems. Springer. Germany

Chen, X., Ikeda, K., Yamakita, K., Nasu, M (1994) Raster algorithms for generat-
ing Delaunay tetrahedral tessellations. International Archives of Photogram-
metry and Remote Sensing. Commission III, Vol. 30, Part 3/1, Munich, Ger-
many, pp. 124-131

Chew, LP (1989). Constrained Delaunay triangulations. Algorithmica 4, pp. 97-108
Chhatkuli, RR (1993) Modelling data quality parameters in a multiple-theme vec-

tor data structure and its implementation in a geographic information system.
M.Sc. Thesis, ITC, Enschede, The Netherlands

Collin, WJ (1992) Data structures: an object-oriented approach. Addison-Wesley.
Reading Massachusetts, 624 pp

Cöltekin A (2002) An Analysis of VRML-based 3D Interfaces for Online GIS:
Current Limitations and Solutions. Surveying Science in Finland. Vol.20, No:
1-2, p.80-91

Connolly, T, Begg, C (2002) Database Systems – A Practical Approach To De-
sign, Implementation and Management. 3rd Edition, Pearson Addison-
Wesley. Menlo Park, California.

Coors V (2003) 3D-GIS in Networking Environments. Computer, Environments
and Urban Systems, Vol. 27/4, 2003, Special Issue 3D cadastre, pp 345-357.

Coors V, Jung, V (1998) Using VRML as an Interface to the 3D Data Warehouse.
Proceedings of the third symposium on the Virtual reality modeling language,
Monterey, California, United States , pp 121-140.

Corbett, JP (1979) Topological principles in cartography. Technical paper 48, U.S.
Department of Commerce, Bureau of the census, 50 pp

Dahl, OJ, Myrhaug, B, Nygaard, K (1970) SIMULA common base language.
Norwegian Computing Center S-22, Oslo, Norway

Danielsson, P.E (1980) Euclidean distance mapping. Computer Graphics and Im-
age Processing. 14, pp. 227-248

Date, C.J (1986) An introduction to database systems. Vol. 1, Addison-Wesley,
Reading, Mass.

De Floriani, L, Puppo, E (1988) Constrained Delaunay triangulation for multi
resolution surface description. Proc. of the 9th International Conference on
Pattern Recognition. Rome, Italy, pp. 566-569

270 REFERENCES AND BIBLIOGRAPHY

De Floriani, L, Puppo, E (1992) An on-line algorithm for constrained Delau-
nay triangulation. CVGIP: Graphical Models and Image Processing. 54,
pp. 290-300

Delaunay, B (1934) Sur la sphére vide. Bulletin of the Academy of Sciences of the
USSR. Classe des Sciences Mathématiques et Naturelles, 8, pp. 793-800

Delobel, C., Lecluse, C, Richard, P (1995) Database: from relational to object-
oriented systems. International Thomson Computer Press. London, 382 p

Devlin, K (1994) Mathematics: The sciences of patterns. Scientific American Li-
brary, New York, 215 pp

Diehl S. (2001) Distributed Virtual Worlds. Springer-Verlag, Berlin Heidelberg
New York

Dirichlet, G.L (1850) Über die reduction der positiven quadratischen formen mit
drei unbestimmten ganzen zalen, J. Reine u. Angew. Math. 40, pp. 209-227

DLG-E, Digital Line Graph-Enhanced, U.S. Department of the Interior, U.S. Geo-
logical Survey

Dong, F (1996) Three-dimensional models and applications in subsurface model-
ing. Department of Geomatics Engineering Reports No. 20093. University of
Calgary, 93 p

Dwyer, R.A (1987) A fast divide-and-conquer algorithm for constructing Delau-
nay triangulations. Algorithmica. Vol. 2, pp. 137-151

Dykes J.A, Moore K.E, Fairbairn D (1999) From Chernoff to Imhof and Beyond:
VRML and Cartography. Proc. of 4th Int. Conference on the VRML and
Web3D Technologies (VRML99). Paderborn, Germany.

Ebner, H, Eder, K (1992) State-of-the-art in digital terrain modelling. Proc. 3rd.
European Conference on Geographical Information Systems (EGIS’92). Vol-
ume. 1, Munich, Germany, pp. 681-690.

Ebner, H, Hossler, R, Wurlander, R (1990) Integration of an efficient DTM pro-
gram package into geographical information systems. International Archives
of Photogrammetry and Remote Sensing. Vol. 28, Part 4, Commission IV,
Tsukuba, Japan, pp. 116-121

Edelsbrunner, H, Preparata, FP, West, DB (1986) Tetrahedrizing point sets in
three dimensions. Technical Report UIUCDCS-R-86-1310. Department of
Computer Science, University of Illinois, 1304 W. Springfield Avenue,
URBANA, Il 61801

Egenhofer, MJ (1991) Extending SQL for cartographic display. Cartography and
Geographic Information Systems. Vol. 18, No. 4, pp. 230-245

Egenhofer, MJ (1990) Interaction with geographic information systems via spatial
queries. Journal of Visual Languages and Computing. Vol. 1, No. 4, pp. 389-413

Egenhofer, MJ (1989) A formal definition of binary topological relationships.
Technical Report No. 101. NCGIA/Department of Surveying Engineering,
University of Maine. Orono, ME, USA

Egenhofer, MJ, Frank, AU (1989) Object-oriented modelling in GIS: Inheritance
and propagation. Proc. 9th International Symposium on Computer Assisted
Cartography (AUTOCARTO 9). Baltimore, Maryland, pp. 588-589

Egenhofer, MJ, Frank, AU, Jackson, JP (1989) A topological data model for spa-
tial databases. NCGIA Technical Report, No. 104

REFERENCES AND BIBLIOGRAPHY 271

Egenhofer, MJ, Franzosa, RD (1991) Point-set topological spatial relations. Interna-
tional Journal for Geographical Information Systems. Vol. 5, No. 2, pp. 161-174

Egenhofer, MJ, Herring, JR (1990) A mathematical framework for the definition
of topological relationships. Proc. of the Fourth International Symposium on
Spatial Data Handling. Zurich, Switzerland, pp. 803-813.

Egenhofer, MJ, Herring, JR (1992) Categorizing binary relationships between re-
gions, lines, and points in geographical databases. Technical report, Depart-
ment of Surveying Engineering, University of Main, USA

Ehlers, M, Greenlee, D, Smith, T, Star, J (1991) Integration of remote sensing and
GIS: Data and data access. Photogrammetric Engineering & Remote Sensing,
Vol. 57, No. 6, pp. 669-675

Ehlers, M, Edwards, G, Bédard (1989) Integration of remote sensing with geo-
graphic information systems: a necessary evolution. Photogrammetric Engi-
neering & Remote Sensing. Vol. 55, No. 11, pp. 1619-1627

Fang, T P, Piegl, LA (1993) Delaunay triangulation using a uniform grid. IEEE
Computer Graphics & Applications. May 1993, pp. 36-47

Fang, T P, Piegl, LA (1995) Delaunay triangulation in three dimensions, IEEE
computer Graphics & Applications. September, 1995, pp. 62-69

Field, AD (1986) Implementing Watson’s algorithm in three dimensions. Proc. of
ACM Symposium on Computational Geometry. pp. 246-259

Field, AD, Smith, WD (1991) Graded tetrahedral finite element meshes. Interna-
tional Journal for Numerical Methods in Engineering. 31(3), pp. 413-425

Finkbeiner, DT, Lindstrom, WD (1987) A primer of discrete mathematics. W.H.
Freeman and Company. New York, 363 pp

Fisher, TR (1993) Use of 3D geographic information systems in hazardous waste
site investigations. In: Goodchild, M.F., Parks, B., and Steyaert, L., (Eds.),
Environmental Modeling with GIS. Oxford University Press. New York

Flankin, WM (1984) Cartographic errors symptomic of underlying algebra prob-
lems. In: Marble, D, et al. (Eds.) Proc. of the International Symposium on
Spatial Data Handling. Zurich, Switzerland

Flavin, M (1981) Fundamental concepts of information modelling. Yourdon Press
Computing Series. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA
128 pp

Flowerdew, R (1991) Spatial data integration. In: Maguire, DJ, Goodchild, MF,
Rhind, DW, (Eds.) Geographical information systems principles and applica-
tions. Longman Scientific & Technical, pp. 375-387

Foley, JD, van Dam, A, Feiner, SK, Hughes, JF (1992) Computer graphics: prin-
ciples and practice. Second Edition, Addison-Wesley. USA, 1175 pp

Förstner, W, Pallaske, R (1993) Mustererkennung und 3D-Geoinformationssysteme.
ZPF, 61. Jg., 5/1993, pp. 167-177

Forstner, W (1995) GIS - the third dimension, Workshop on Current Status and
Challenges of Geoinformation Systems. IUSM working group on LIS/GIS.
University of Hannover, Germany, pp. 65-72

Frank, AU (1992) Spatial concepts, geometric data models and data structures.
Computer & Geosciences. Vol. 18, No. 4, pp. 409-417

272 REFERENCES AND BIBLIOGRAPHY

Frank, AU, Kuhn, W (1986) Cell graphs: a provable correct method for the stor-
age of geometry. Proc. of the Second International Symposium on Spatial
Data Handling. Seattle, Washington, USA, pp. 411-436

Fréchet, M (1906) Sur quelques points du calcul fonctionnel. Rendiconti di Pal-
ermo 22, 1-74

Fritsch, D (1990) Towards three-dimensional data structures in geographic infor-
mation systems. Proc. First European Conference on Geographical Informa-
tion Systems (EGIS’90). Volume 1, Amsterdam, The Netherlands, pp. 335-345

Fritsch, D, Pfannenstein, A (1992a) Integration DTM data structures into GIS data
models. International Archives of Photogrammetry and Remote Sensing. Vol.
XXIX, Part B3, Commission III, Washington, D.C., USA., pp. 497-503

Fritsch, D, and Pfannenstein, A (1992b) Conceptual models for efficient DTM in-
tegration into GIS. Proc. Third European Conference on Geographical Infor-
mation Systems (EGIS’92). Volume. 1, Munich, Germany, pp. 701-710

Fritsch, D, Schmidt, D (1995) The object-oriented DTM in GIS. Proc. of Photo-
grammetric Week. Stuttgart, pp. 29-34

Fritsch, D (1996) Three-dimensional geographic information systems - status and
prospects. International Archives of Photogrammetry and Remote Sensing
(ISPRS). Vienna, Vol. 31, Part 4, pp. 215-221

Gargantini, I (1992) Modelling natural objects via octrees. In: Three-dimensional
modeling with geoscientific by A. K. Turner (Ed.). NATO ASI Series, Kluwer
Academic Publishers. pp. 145-157

Gatrell, AC (1991) Concepts of space and geographical data. In: Maguire, DJ,
Goodchild, MF, Rhind, DW (Eds.). Geographical Information Systems. Vol.
1: Principles. Longman. UK

Geographical Information Science, Vol. 17, No.5, pp. 411-430
GEONOVA (2003) Newsletter Q3/2003
Giblin, P (1977) Graphs, surfaces and homology. Chapman and Hall, London
Gröger, G, Kolbe, T, Dress, R, Müller, H, Knopse, F, Gruber, U, and Krause, U

(2004) Das interoperable 3D-Stadtmodell der SIG 3D der GDI NRW. Version
2. Stand: 10.5.2004

 (URL: http://www.ikg.uni-bonn.de/sig3d/docs/Handout_04_05_10.pdf)
Goldberg, A, Robson, D (1983) Smalltalk-80: the language and its implementa-

tion. Addison-Wesley, Reading, Massachusetts
Golda, YV (1992) The “flowing” accumulation method and its application for

earth surface analysis. International Archives of Photogrammetry and Re-
mote Sensing. Vol. XXIX, Part B4, Commission IV, Washington, D.C.,
USA. pp. 836-842

Gorte, B, Koolhoven, W (1990) Interpolation between isolines based on the Bor-
gefors distance transform. ITC Journal - Special Issue Remote Sensing and
GIS, 1990-3. pp. 245-247

Green, P J, and Sibson, R (1978) Computing Dirichlet tessellations in the plane.
Computer Journal, 21, pp. 168-173

Gruen, A, Streilein, A, Stallmann, D, Dan, H (1993) Automation of house extrac-
tion from aerial and terrestrial images. Conference ASIA. Wuhan, China

REFERENCES AND BIBLIOGRAPHY 273

Guptill, C, Morrison, JL (1995) Elements of spatial data quality. Elsevier Science
Ltd.

Guo, W (1996) Three-dimensional representation of spatial object and topological
relationships. International Archives of Photogrammetry and Remote Sensing.
Vol. XXXI, Part B3, Commission 3, K. Kraus and P. Waldhausl (eds.), XXXI
International Congress of Photogrammetry and Remote Sensing, Vienna,
pp. 273-278

Gütting, R (1988) Geo-relational algebra: a model and query language for geomet-
ric database system. In: Schmidt, J, Ceri, S, Missikoff, M (Eds.) Advances in
Database Technology--EDBT ‘88, International Conference on Extending Da-
tabase Technology. Venice, Italy, Lecture Notes in Computer Science, Sprin-
ger Verlag, New York, Vol. 303, pp. 506-527

Güting, H (1994) An Introduction to Spatial Database Systems. VLDB Journal 3,
Hans-J. Schenk (Ed.), pp.357-399, 1994

Guttman, A (1984) A dynamic index structure for spatial searching. Proc.of the
SIGMOD Conference. Boston, pp. 47-57

Hausdorff, F (1914) Grundzüge der mengenlehre. Leipzig. Reprinted by Chelsea,
New York. 88 pp

Hawryszkiewycz, IT (1991) Introduction to system analysis and design. Second
edition, Prentice Hall, Australia

Hearnshaw, HM, Unwin, DJ (1994) Visualization in geographical information
systems. Wiley and Sons, 243 pp

Herring, JR (1989) A fully integrated geographic information system. Proc. 9th Inter-
national Symposium on Computer Assisted Cartography (AUTOCARTO 9).
pp. 828-837

Herring, RJ, Egenhofer, MJ (1990) A mathematical framework for the definition
of topological relationships. Proc. of the Forth International Symposium on
Spatial Data Handling. Zurich, Switzerland, pp. 803-813

Herring, J, Larsen, R, Shivakumar, J (1988) Extensions to the SQL language to
support spatial analysis in a topological data base. Proc. GIS/LIS ‘88. San
Antonio, Texas, pp. 741-750

Hesse, W, Leahy, FJ (1990) Authoritative topographic-cartographic information
system (ATKIS). The Project of the State Survey Authorities for the Creation
of Digital Landscape Models and Digital Cartographic Models. Landesver-
messungamt Nordrhein-Westfalen, Bonn, 29 pp

Houlding, S W (1994) 3D geoscience modelling: computer techniques for geo-
logical characterization. Springer-Verlag, Berlin, 309 p

Howe, DR (1989) Data analysis for database design. Second edition, Edward
Arnold A Division of Hodder & Stoughton, London. 317 pp

Illustra, (1994) Illustra, relational databases and spatial data. An Illustra Technical
White Paper by Malcolm Colton, Oakland, CA, 6 pp

Institute for Photogrammetry (ifp) (1997) Working Group IV/2: Digital Terrain
Models, Orthoimages, and 3D GIS. University of Stuttgart, Germany.
http://www.ifp.uni-stuttgart.de/comm4/wgIV2.html

274 REFERENCES AND BIBLIOGRAPHY

Intergraph, (1995) New OLE extensions for CAD/CAM/CAE and GIS adopted,
Press Releases. Intergraph Corp., Huntsville, http://www.intergraph.com/
press95/dmpr.html.

Jackins, C L, Tanimoto, SL (1980) Oct-trees and their use in representing three-
dimensional objects. Computer Graphics and Image Processing. Vol. 14,
pp. 249-270

Jackson, J (1989) Algorithms for triangular irregular networks based on simplicial
complex theory. ASPRS-ACSM Annual Convention. Baltimore, MD, USA.,
pp. 131-136

Jackson, MA (1983) System development, Prentice Hall, 418 pp.
Jansen R (2003) Oracle, Java, XML: Integration in Oracle9i. Frankfurt, Germany.
Jianya, G, Deren, L (1992) Object-oriented data models in GIS. International

Archives of Photogrammetry and Remote Sensing. Vol. XXIX, Part B3, Com-
mission 3, W. Fritz and J. R. Lucas (eds.), XXIX International Congress of
Photogrammetry and Remote Sensing, Washington, pp. 773-779

Joe, B (1989) Three-dimensional triangulations from local transformations. Siam
Journal on Scientific and Statistical Computing, 10(4), pp. 718-741

Jones, CB (1989) Data structures for three-dimensional spatial information sys-
tems in geology, International Journal of Geographical Information Systems.
Vol.3, No. 1, Taylor & Francis, London. pp. 15-31

Kainz, W (1989) Order, topology and metric in GIS. ASPRS-ACSM Annual Con-
vention, Baltimore, Vol. 4, pp. 154-160

Kainz, W (1990) Spatial relationships--topology versus order. Proc.of the Fourth
International Symposium on Spatial Data Handling. Zurich, Switzerland,
Brassel, K, and Kishimoto, H, (Eds.), Vol. 2, pp. 814-819

Kainz, W, Egenhofer, M, Greasley, I (1993) Modeling spatial relations and opera-
tions with partially ordered sets. International Journal of Geographical Infor-
mation Systems, Vol. 7, No. 3, pp. 215-229

Kainz, W, Shahriari, N (1993) Object-oriented tools for designing topographic
databases. Proc. GIS/LIS’93. pp. 341-350

Kanaganathan, S, Goldstein, NB (1991) Comparison of four-point adding algo-
rithms for Delaunay-type three-dimensional mesh generators. IEEE Transac-
tions on Magnetics. 27(3), pp. 3444-3451

Kavouras, M, Masry, S (1987) An information system for geosciences, design
considerations. Proc. 8th International Symposium on Computer Assisted Car-
tography (AUTOCARTO 8). Baltimore, MD, pp. 336-345

Kemp, Z (1990) An object-oriented model for spatial data. Proc. 4th. International
Symposium on Spatial Data Handling. Vol. 2, Zurich, Switzerland, pp. 659-668

Kinsey, LC (1993) Topology of surfaces. Springer Verlag. New York, 276 pp
Knuth, DE (1973) The Art of computer programming. Vol. 3: Sorting and Search-

ing, Addison-Wesley, Reading
Kofler, M (1998) R-trees for Visualizing and Organizing Large 3D GIS Data-

bases. Dissertation TU Graz, Austria
Kolbe, A (2003) Applications and Solutions for Interoperable 3D Geo-

visualization. Proc. of the Photogrammetric Week 2003. Stuttgart, Germany.

REFERENCES AND BIBLIOGRAPHY 275

Kraak, MJ (1992) Working with triangulation-based spatial data in 3D space. ITC
Journal 1992-1, pp. 20-33

Kraak, MJ, Verbree, E (1992) Tetrahedrons and animate maps in 2D and 3D
space. In: Proc. of the 5th International Symposium on Spatial Data Handling.
pp. 63-71

Kraus, K (1995) From digital elevation model to topographic information system.
45th.Photogrammetric Week. D. Fritsch and D. Hubbie (eds.), Stuttgart,
pp. 277-285

Kufoniyi, O (1989) Editing of topologically structured data. M.Sc. Thesis. ITC,
Enschede, The Netherlands

Kufoniyi, O, Bouloucos, T (1994) Flexible integration of terrain objects and DTM
in vector GIS. Proceedings International Colloquium on Integration, Automa-
tion and Intelligence in Photogrammetry, Remote Sensing and GIS. Wuhan,
pp. 111-122

Kufoniyi, O (1995) Spatial coincidence modelling, automated database updating
and data consistency in vector GIS. Ph.D. Thesis. Wageningen Agricultural
University, The Netherlands, 206 pp

Kufoniyi, O (1995b) An introduction to object-oriented data structures. ITC Jour-
nal 1995-1, pp. 1-7

Kuhn, W, Frank, AU (1991) A formalization of metaphors and image-schemas in
user interfaces. In: Mark, D, Frank, A (Eds.) Cognitive and linguistic aspects
of geographic space. Kluwer Academic Publ., Dordrecht, pp. 419-434

Kwan, MP, Lee, J (2003) Emergency response after 9/11: the potential of real-
time 3D GIS for quick emergency response in micro-spatial environments.
(http://dx.doi.org/10.1016/j.compenvurbsys.2003.08.002).

Lammersen R. van, Hoogerwerf ,T (2003) Geo-Virtual reality and Participatory
Planning. CGI Report 2003-07, Wageningen, The Netherlands

Langran, G (1992) Time in geographic information systems. Taylor & Francis.
London.

Larkin, BJ (1991) An ANSI C program to determine in expected linear time the
vertices of the convex hull of a set of planar points. Computers & Geo-
sciences. 17, pp. 431-443

Lattuada, R, Raper, J (1995) Applications of 3D Delaunay triangulation algo-
rithms in geoscientific modeling. GISRUK’95 Conference. U.K, http://www.
bbk.ac.uk/department/ geography/jonathanraper.html

Laurini, R, Thompson, D (1993) Fundamentals of spatial information systems.
Academic Press, London, 680 p

Laurini, R (2001) Information System For Urban Planning – A hypermedia co-
operative approach. London New York

Lawson, CL (1985) Some properties of n-dimensional triangulation. External Re-
port, JPL Publication 85-42. National Aeronautics and Space Administration.

Lawson, CL (1977) Software for C1 surface interpolation. In Rice, J (Ed.) Ma-
thematcal Software III. Academic Press. Newyork, USA, pp. 161-194

Lawson, CL (1972) Generation of a triangular grid with application to contour
plotting. California Institute of Technology, Jet Pollution Laboratory. Techni-
cal Memorandum No. 299

276 REFERENCES AND BIBLIOGRAPHY

Leach, R (1995) Object-oriented design and programming with C++. AP Profes-
sional. London. 463 p

Lee, DT, Lin, AK (1986) Generalized Delaunay triangulation for planar graph.
Discrete & Computational Geometry. 1, pp. 201-217

Lee, DT, Schachter, BJ (1980) Two algorithms for constructing a Delaunay trian-
gulation. International Journal of Computer and Information Sciences. 9,
pp. 219-242

Lopez, X (2003) Oracle Database 10g: A Spatial VLDB Case Study. Oracle Co-
operation Whitepaper.

 (URL:http://otn.oracle.com/products/spatial/pdf/customer_success/papers/
spatial_10g_ow2003.pdf).

Lewis, BA, Robinson, JS (1978) Triangulation of planar regions with applica-
tions. Computer Journal. 21, pp. 324-332

Lingas, A (1986) The greedy and Delaunay triangulations are not bad in the aver-
age case. Information Processing Letters. 22, pp. 25-31

Li, R (1993) Three-dimensional GIS: a simple extension in the third dimension?
ACSM/ASPRS Annual Convention. New Orleans, USA. Vol. 3, pp. 218-227

Li, R (1994) Data structures and application issues in 3-D geographic information
systems. Geomatica. Vol. 48, No. 3, pp. 209-224

Li, R, Chen, Y, Dong, F, Qian, L, Hughes, JD (1996) 3D data structures and ap-
plications in geological subsurface modelling. International Archives of Pho-
togrammetry and Remote Sensing. Vol. XXXI, Part B4, Commission 4,
K. Kraus and P. Waldhausl (eds.), XXXI International Congress of Photo-
grammetry and Remote Sensing, Vienna, pp. 508-513

Liu, CL (1986) Elements of discrete mathematics. Second edition, McGraw-Hill,
433 pp

Nebiker, S (2003) Support For Visualization and Animation in a Scalable 3D GIS
Environment: Motivation, Concepts and Implementation. International Ar-
chives of Photogrammetry, Remote Sensing and Spatial Information Science,
Vol. XXXIV-5/W10

Macedonio, G, Pareschi, MT (1991) An algorithm for the triangulation of arbi-
trarily distributed points: applications to volume estimate and terrain fitting.
Computer & Geosciences. 17, pp. 859-874

Maguire, DJ, Dangermond, J (1991) Functionality of GISs. In: Maguire, DJ,
Goodchild, MF, Rhind, DW (Eds.) Geographical Information Systems. Vol.
1, Principles, Harlow: Longman Scientific & Technical, pp. 319-335

Maguire, D.J., Goodchild, M.F., and Rhind, D.W., (Eds), 1991, Geographical in-
formation systems: principles and applications. Longman Scientific & Tech-
nical.

Makarovic, B (1984) Structures for geo-information and their application in selec-
tive sampling for digital terrain models. ITC Journal 1984-4, pp. 285-295

Makarovic, B, (1977) Composite sampling for DTMs, ITC Journal
Males, RM (1978) ADAPT - a spatial data structure for use with planning and de-

sign models. In: Dutton, G., (Ed.), First International Symposium on Advance
Study on Topological Data Structures for Geographic Information Systems,
Vol. 3, 19 pp

REFERENCES AND BIBLIOGRAPHY 277

Manacher, GK, Zobrist, AL (1979), Neither the greedy nor the Delaunay triangu-
lation of a planar point set approximates the optimal triangulation. Informa-
tion Processing Letters, 9, pp. 31-34

Mäntylä, M (1988) Solid modelling. Computer Science Press. Rocville, Maryland,
401 pp

MAP24 (2004). (http://www.map24.de/).
Marble, DF, Calkins, HW, Peuquet, DJ (1984) Technical description of the DIME

system. Basic Readings in Geographic Information Systems. SPAD Systems,
Ltd. USA., pp. 57-64

Mark, DM, Cebrian, JA (1986) Octrees: a useful data-structure for the processing
of topographic and sub-surface data. Technical Papers of ACSM-ASPRS An-
nual Convention. Vol. 1 (Cartography and Education)

Mark, DM, Lauzon, JP, Cebrian, JA (1989) A review of quadtree-based strategies
for interfacing coverage data with digital elevation models in grid form. Inter-
national Journal of Geographical Information Systems. Vol.3, No. 1, Taylor &
Francis, London, pp. 3-14

Martin, J (1983) Managing the data-base environment. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey

Maus, A (1984) Delaunay triangulation and the convex hull of n points in ex-
pected linear time. BIT, 24, pp. 151-163

McCullagh, MJ, Ross, CG (1980) Delaunay triangulation of a random data set for
isarithmatic mapping. The Cartographic Journal. 17, pp. 93-99

Meagher, D (1982) Geometric modelling using octree encoding. Computer Graph-
ics and Image Processing. Vol. 19, pp. 129-147

Meier, A (1986) Applying relational database techniques to solid modelling.
CAD. Vol.18, No.6, pp. 319-326

Meij, L. v.d (1992) Topologische relaties en bevragingen in de formele datastruc-
tuur voor drie-dimensionele vectorkaarten. Scriptie, LU Wageningen, The
Netherlands

Microsoft, (1993) Object linking and embedding: OLE 2.0 design specification,
Microsoft Corporation

Midtbø, T (1996) Spatial modelling by delaunay networks of two and three di-
mensions. PhD thesis. Norwegian Institute of Technology. University of
Tronheim, Norway, http://guran1.iko.unit.no/home/terjem/terjem.html

Midtbø, T (1993a) Incremental Delaunay tetrahedrization for adaptive data model-
ling. Proc. Fourth European Conference on Geographical Information Sys-
tems (EGIS’93). Genoa, Italy, pp. 227-236

Midtbø, T (1993b) Spatial modelling by Delaunay networks of two and three di-
mensions, Dr. Ing. Thesis, Norwegian Institute of Technology, University of
Tronheim, Norway, 147 pp

Miller, CL, Laflamme, RA (1958) The digital terrain model - theory and applica-
tion. Photogrammetric Engineering. pp. 433-442

Mirante, A, Weingarten, N (1982) The radial sweep algorithm for constructing tri-
anguled irregular networks. IEEE Computer Graphics and Applications. 2, pp.
11-21

278 REFERENCES AND BIBLIOGRAPHY

Moellering, H (1991) Spatial database transfer standards: current international
status. Elsevier Applied Science. 247 pp

Moise, EE (1977) Geometric topology in dimension 2 and 3 Springer Verlag,
New York

Molenaar, M, Fritsch, D, Bill, R (1996) Conceptual aspects of GIS technology.
ISPRS Congress Tutorial, Vienna

Molenaar, M (1994a) A syntax for representation of fuzzy spatial objects. In:
Molenaar, M, De Hoop, S (Eds.) Advanced geographic data modelling: spa-
tial data modelling and query languages for 2D and 3D applications. Nether-
lands Geodetic Commission, No. 40, Delft, The Netherlands, pp. 155-169.

Molenaar, M (1994b) A syntactic approach for handling the semantics of fuzzy
spatial objects. European Science Foundation, GISDATA, Baden, Austria,
15 pp

Molenaar, M (1993) Object hierarchies and uncertainty in GIS or why is stan-
dardisation so difficult?, Geo-Informations-Systeme. Vol. 6, No. 4, pp. 22-28

Molenaar, M (1992) A topology for 3D vector maps. ITC Journal. 1992-1, pp. 25-33
Molenaar, M (1991) Formal data structures, object dynamics and consistency

rules. Digital Photogrammetric Systems. Herbert Wichmann Verlag GmbH,
Karlsruhe, pp. 262-273

Molenaar, M (1990) A Formal data structure for 3-D vector maps. Proceedings
First European Conference on Geographical Information Systems (EGIS’90).
Volume. 2, Amsterdam, The Netherlands, pp. 770-781.

Molenaar, M (1989) Single valued vector maps - a concept in GIS, Geo-
Informations-Systeme. Vol. 2, No. 1, pp. 18-27

Molenaar, M (1988) Single valued polygon maps. International Archives of Pho-
togrammetry and Remote Sensing. Vol. 27, Part B4, Commission IV, Kyoto,
Japan, pp. 592-601

Ning, S (1992) On the principles and the approaches of implementing the strict
digital geometric rectification for SPOT imagery. International Archives of
Photogrammetry and Remote Sensing. Vol. XXIX, Part B3, Commission III,
Washington, D.C., USA., pp. 32-34

OGC (2001) Web Map Service Implementation Specification. (http://www.
opengis.org/docs/01-068r2.pdf)

OGC (2002) Web Feature Service Implementation Specification. (www.opengis.
org/docs/02-058.pdf).

OGC (2003a) Geographic Markup Language (GML 3). (http://www.opengis.
org/docs/02-023r4.pdf).

OGC (2003b) OpenGIS Reference Model. (http://www.opengis.org/docs/
03-040.pdf).

Oosterom P van, Stoter J, Quak W, Zlatanova S (2002) The Balance Between Ge-
ometry and Topology. Proc. of Spatial Data Handling. Ottawa, Canada

Oosterom, P. van (1990) Reactive data structures for geographic information sys-
tems, PhD Thesis. Leiden University. The Netherlands, 197 pp

Orenstein, JA (1990) An object-oriented approach to spatial data processing. Proc.
of the 4th International Symposium on Spatial Data Handling. Vol. 2, Zurich,
Switzerland, pp. 669-698

REFERENCES AND BIBLIOGRAPHY 279

Peng, W, Molenaar, M (1995) An object-oriented approach to automated generali-
zation. Proc. of GeoInformatics ‘95. Vol. 1, Hong Kong, pp. 295-304

Peng, W, Tempfli, K, Molenaar, M (1995) Automated generalization in a GIS
context. Proceedings of GeoInformatics ‘96. Florida, USA, 11 pp

Peng, Y.R, Tsou, MH (2003) Internet GIS – Distributed Geographic Information
Services for the Internet and Wireless Networks. Hoboken, New Jersey, USA.

POET Software Corporation,(1996) Why use an ODBMS?. POET Technical Ref-
erences, http://www.poet.com/t_oovsre.htm#ODBMS

Petchenik, BB (1991) New directions for national mapping. URISA, Vol.3, No.1,
pp.77-79

Petrie, G, Kennie, TJM (1990) Terrain modelling in surveying and civil engineer-
ing. Whittles Publishing. Glasgow, 351 p

Peucker, T, Chrisman, N (1975) Cartographic data structures. The American Car-
tographer. Vol. 2, No. 2, pp. 55-69

Peucker, T K (1978) Data structures for digital terrain models: discussion and
comparison. 1st. International Advanced Study Symposium on Topological
Data Structures for Geographical Information Systems. Harvard Paper on
GIS, Edited by G. Dutton, Vol. 5

Peuquet, DJ (1988) Representations of geographic space: toward a conceptual syn-
thesis. Annals of the Association of American Geographers. 78, pp. 375-94

Peuquet, DJ (1986) The use of spatial relationships to aid spatial database re-
trieval. Proc. of the Second International Symposium on Spatial Data Han-
dling, Seattle, WA

Peuquet, DJ (1984) A conceptual framework and comparison of spatial data mod-
els. CARTOGRAPHICA. Vol. 21, No. 4, pp. 66-113

Pfannenstein, A, Reinhardt, W (1993) Data analysis in geographical information
systems in combination with integrated digital terrain models. Proc. Fourth
European Conference on Geographical Information Systems (EGIS’93).
pp. 1341-1349

Pigot, S (1992) A topological model for a 3-D spatial information system. Proc.
5th International Symposium on Spatial Information Handling. Charleston,
S.C., pp. 344-360

Pigot, S (1991) Topological models for 3D spatial information systems. Proc. 10th
International Symposium on Computer Assisted Cartography (AUTOCARTO
10). Technical Papers. ACSM-ASPRS, Annual Convention, Vol. 6, Balti-
more, Maryland, USA., pp. 369-391

Pilesjo, P, Michelson, DB, Hall-Konyves, KM (1992) Digital elevation models for
identification of potential wetlands. International Archives of Photogram-
metry and Remote Sensing. Vol. XXIX, Part B4, Commission IV, Washing-
ton, D.C., USA., pp. 817-822

Pilouk, M, Radjabi Fard, A, Tempfli, K (1994) Local updating of TIN for the in-
tegrated DTM and GIS data structure. International Archives of Photogram-
metry and Remote Sensing. Vol. XXX, Part 4, Athens, Georgia, USA,
pp. 460-466

280 REFERENCES AND BIBLIOGRAPHY

Pilouk, M, Kufoniyi, O (1994) A relational data structure for integrated DTM and
multitheme GIS. International Archives of Photogrammetry and Remote Sens-
ing. Commission III, Vol. 30, Part 3/2, Munich, Germany, pp. 670-677

Pilouk, M, Tempfli, K, Molenaar, M (1994) A tetrahedron-based 3D vector data
model for geoinformations. In: Molenaar, M, De Hoop, S (Eds.) Advanced
geographic data modelling: spatial data modelling and query languages for 2D
and 3D applications. Netherlands Geodetic Commission, No. 40, Delft, The
Netherlands, pp. 129-140

Pilouk, M, Tempfli, K (1994) An object oriented approach to the unified data
structure of DTM and GIS. International Archives of Photogrammetry and
Remote Sensing. Vol. XXX, Part 4, Athens, Georgia, USA, pp. 672-679

Pilouk, M, Tempfli, K (1994) Integrating DTM and GIS using a relational data
structure. GIS’94. Vol. 1, Vancouver, Canada, pp. 163-169

Pilouk, M, Tempfli, K (1993) An integrated DTM-GIS data structure: a relational
approach. Proc. of 11th International Symposium on Computer Assisted Car-
tography (AUTOCARTO 11). Minneapolis, Minnesota, USA, pp. 278-287

Pilouk, M, Tempfli, K (1992) A digital image processing approach to creating
DTMs from digitized contours. International Archives of Photogrammetry and
Remote Sensing, Vol. XXIX, Part B4, Commission IV, Washington, D.C.,
USA., pp. 956-961

Pilouk, M (1992) Fidelity improvement of DTM from contours. M.Sc. Thesis.
ITC, Enschede, The Netherlands

Pilouk, M (1996) Integrated Modelling for 3D GIS. PhD Thesis. ITC Publication
No. 40, 200 p

Pohl, I (1993) Object-oriented programming using C++. Benjamin/Cummings
Publishing Company, Inc., California, 496 pp

Pullar, D (1988) Data definition and operators on a spatial data model. ACSM-
ASPRS, Annual convention. Vol. 2, pp. 196-202

Pullar, D, Egenhofer, M (1988) Towards formal definitions of topological rela-
tions among spatial objects. Proc. of the 3rd. International Symposium on Spa-
tial Data Handling. Sydney, Australia, pp. 225-242

Qingquan, L, Deren, L (1996) Hybrid data structure based on octree and tetrahe-
dron in 3-D GIS. International Archives of Photogrammetry and Remote
Sensing. Vol. XXXI, Part B, Commission 4, K. Kraus and P. Waldhausl
(eds.), International Congress of Photogrammetry and Remote Sensing,
Vienna, pp. 503-507

Raper, J (1992) Key 3D modelling concepts for geoscientific analysis. In: Three-
dimensional modeling with geoscientific by A. K Turner (ed.), NATO ASI
Series, Kluwer Academic Publishings, pp. 215-232

Raper, J (1990b) Three-dimensional applications in geographic information sys-
tems. Taylor & Francis, London, 189 p

Raper, J (1993) Three dimensional GIS for the 1990. Seminar on Three Dimen-
sional GIS - Recent Developments. ITC, Delft, The Netherlands, pp. 4-5

Raper, J (1989) The 3-dimensional geoscientific mapping and modelling system: a
conceptual design. In: Raper, J (Ed.) Three dimensional applications in geo-
graphic information systems. Taylor & Francis, London

REFERENCES AND BIBLIOGRAPHY 281

Raper, J (1990a) The 3-dimensional geoscientific mapping and modelling system:
a conceptual design. In: Three Dimensional Applications in Geographic In-
formation Systems, J. Raper (ed.) Taylor & Francis, pp. 11-19

Raper, J, Kelk, B (1991) Three-dimensional GIS, In: Geographical information
systems: principles and applications. D J Maguire, M Goodchild and
DW. Rhind (eds.) Longman Geoinformation, pp. 299-317

Requicha, AAG (1980) Representation for rigid solids: theory, methods, and sys-
tems, Computing Surveys. Vol. 12, No. 4

Rhind, DW (1992) Spatial data handling in the geosciences. In: Three-
Dimensional Modeling with Geosciencetific Information Systems by A. K.
Turner (ed.), NATO ASI Series C, Kluwer Academic Publishing, Dordrecht,
Vol. 354, pp. 13-27

Richardson, DE (1993) Automated spatial and thematic generalization using a con-
text transformation model. PhD Thesis. R&B Publications, Canada, 149 pp

Rikkers, R, Molenaar, M, Stuiver, J (1993). A query oriented implementation of
3D topologic datastructure. Proc. Fourth European Conference on Geographi-
cal Information Systems (EGIS’93). Genoa, Italy, pp. 1411-1420

Roessel, JW van (1986) Design of a spatial data structure using the relational
normal forms. Proceedings of the 2nd International Symposium on Spatial
Data Handling. Seattle, pp. 251-272

Rongxing Li (1994) Data structures and application issues in 3-D geographic in-
formation systems. Geomatica. Vol.48, No.3, pp. 209-224

Roushannejad, AA (1993) Mathematical morphology in automatically deriving
skeleton lines from digitized contours. M.Sc. Thesis. ITC, Enschede, The
Netherlands

Samet, H, Webber, RE (1988) Hierarchical data structures and algorithms for
computer graphics: Part I – Fundamentals. IEEE Computer Graphics and
Applications, May 1988, Vol. 8, pp. 48-68

Samet, H (1990) Applications of spatial data structures. Addison-Wesley, 507 p
Samet, H (1990) The design and analysis of spatial data structures. Reading,

Addison-Wesley. Massachusetts
Sandgaard, J (1988) Integration of a GIS and a DTM. International Archives of

Photogrammetry and Remote Sensing. XVI Congress, Commission III,
Kyoto, Japan, pp. 716-725

Savarese DF (2003) Learning to Fly. Java Pro Magazine. June issue. http://www.
fawcette.com/javapro/2003_06/magazine/features/dsavarese/.

Scott, MS (1994) The development of an optimal path algorithm in three-
dimensional raster space. MSc Thesis. Department of Geograhy, University of
South Carolina, 108 pp

Seed, GM (1996) An introduction to object-oriented programming in C++ with
application in computer graphics. Springer-Verlag, London, 1048 p

Shamos, MI, Hoey, D (1975) Closest-point problems. Proc. of the 16th Annual
Symposium on the Foundations of Computer Science (Washington: IEEE).
pp. 151-162

Shekar, S, Chawla, S (2003) Spatial Databases – A Tour. Pearson Education.
New Jersey

282 REFERENCES AND BIBLIOGRAPHY

Shephard, MS, Schroeder, WJ (1990) A combined octree/Delaunay method for
fully automatic 3-D mesh generation. International Journal for Numerical Me-
thods in Engineering. 29, pp. 37-55

Shepherd, IDH (1991) Information integration and GIS. In: Maguire, DJ, Good-
child, MF, Rhind, DW (Eds.) Geographical information systems principles
and applications - Vol. 1. Longman Scientific & Technical, New York, USA,
pp. 337-360

Shibasaki, R, Shimizu, E, Nakamura, H (1990) Three dimensional (3D) digital
map for an urban area. International Archives of Photogrammetry and Remote
Sensing. Vol. 28, Part 4, Commission IV, Tsukuba, Japan, pp. 211-220.

Shibasaki, R, Shaobo, H (1992) A digital urban space model - a three dimensional
modelling technique of urban space in a GIS environment. International Ar-
chives of Photogrammetry and Remote Sensing. Vol. XXIX, Part B4, Com-
mission IV, Washington, D.C., USA., pp. 257-264

Shmutter, B, Doytsher, Y (1988) An algorithm to assemble polygons. ACSM-
ASPRS Annual Convention. St. Louis, Missouri, pp. 98-105

Shi, W (1994) Modelling positional and thematic uncertainties in integration of
remote sensing and geographic information systems. PhD. Thesis. Interna-
tional Institute for Aerospace Survey and Earth Sciences, Enschede, The
Netherlands, 147 pp

Shi, W, Yang, B, Li, Q (2003) An object orientated data model for complex ob-
jects in three-dimensional geographical information systems. International
Journal of Geographical Information System, Taylor & Francis, London

Sibson, R (1978) Locally equiangular triangulations. Computer Journal. 21, pp.
243-245

Sides, EJ (1992) Modelling three-dimensional geological discontinuities for min-
eral evaluation. PhD Thesis. University of London, 281 pp

Singer, IM, Thorpe, JA (1967) Lecture notes on elementary topology and geome-
try. Scott Foressman & Co., Illinois, USA, 214 p

Slingerland, R, Keen, TR (1990) A numerical study of storm driven circulation
and ‘event bed’ genesis. Proc. of Symposium on Structures and Simulating
Processes. Freiburger Geowissenschafliche Beitrage, 2, pp. 97-99

Sloan, SW (1987) A fast algorithm for constructing Delaunay triangulations in the
plane. Advanced Engineering Software, 9, pp. 34-55

Smith, HC (1985) Data base design: Composing fully normalized tables from a
rigorous dependency diagram. Communication of the ACM. Vol. 28, No. 8,
pp. 826-838

Smith, TR, Menon, S, Star, JL, Estes, JE (1987) Requirements and principles for
the implementation and construction of large-scale geographical information
systems. International Journal of Geographical Information Systems. 1:13-32

Smith, DR, Paradis, AR (1989) Three-dimensional GIS for the earth sciences. In:
Raper, JF (ed.) Three dimensional applications in geographical information
systems. Taylor & Francis, London. pp. 149-155

Snyder, A (1993) The essence of objects: concepts and terms. IEEE Software.
January, 1993, pp. 31-42

REFERENCES AND BIBLIOGRAPHY 283

Sommerville, DMY (1929) An introduction to the geometry of N dimensions. Do-
ver publications, Inc., New York. 196 pp

Special Interest Group (SIG) 3D (2004). Pilot 3D der GDI NRW – Ergebnisse.
(URL:http://www.ikg.unionn.de/sig3d/docs/040109_Flyer_Endergebnis_3D-
Pilot.pdf).

Stanat, DF, McAllister, DF (1977) Discrete mathematics in computer science.
Prentice-Hall. Englewood Cliffs, NJ

Stoter J., and Oosterom P. van (2002) Incorporating 3D Geo-Objects into a 2D
Geo-DBMS. Proceedings of ASPRS/ACSM. Washington, USA

Stoter, J, Zlatanova, S (2003) 3D GIS - where are we standing. Joint Workshop
on Spatial, Temporal and Multi-Dimensional Data Modeling and Analysis.
Quebec City, Canada

Stoter, J, Zlatanova, S (2003) Visualisation and editing of 3D objects organised in
a DBMS. Proceedings of the EuroSDR Com V. Workshop on Visualisation
and Rendering. Enschede, The Netherlands

Sun Microsystems (2004) The Java 3D API. http://java.sun.com/products/
java-media/3D/.

Sutherland, IE, (1963) Sketchpad: A man-machine graphic communication sys-
tem. TR-296, MIT Lincoln Laboratory, Lexington, Mass.

Sutherland, IE (1970) Computer displays. In: Beatty, JC, Booth, K, (Eds.) IEEE
Computer Society Press. Silver Spring, MD, pp. 4-20

Taddei U. (2003) DEMViewer. http://www.geogr.uni-jena.de/~p6taug/demviewer/
demv.html.

Takahashi, M, Yokokawa, T, (1992) The automatic selection system of transmis-
sion line routes based on DTM. International Archives of Photogrammetry
and Remote Sensing. Vol. XXIX, Part B4, Commission IV, Washington,
D.C., USA. pp. 883-885

Tang, L, (1992) Raster algorithms for surface modelling. International Archives of
Photogrammetry and Remote Sensing. Vol. XXIX, Part B3, Commission III,
Washington, D.C., USA., pp. 566-573

Tansel, AU, Clifford, J, Gadia, S, Seger, A, Snodgrass, R (1993) Temporal data-
bases, theory, design, and implementation. Benjamin/Cummings Publishing
Company, Inc., California

Tempfli, K (1986) Composit/progressive sampling - a program package for com-
puter supported collection of DTM data. ACSM-ASPRS Annual Convention.
Washington DC

Tempfli, K (1982) Notes on interpolation and filtering. ITC Lecture Note. 3rd edi-
tion, ITC, Enschede, The Netherlands

Tempfli, K, Makarovic, B (1978) Transfer functions of interpolation methods.
ITC Journal 1978-1. pp. 50-78

Thiessen, AH (1911) Precipitation averages for large areas. Monthly Weather
Review, July, 39, pp. 1082-1084

Thomas, D, (1989) What’s in an object? Byte. March, 1989, pp. 231-240
TIGER, Topologically integrated geographic encoding and referencing system.

U.S. Department of Commerce, Bureau of the Census
Tri-service data standard, (1994) CADD/GIS Technology Center

284 REFERENCES AND BIBLIOGRAPHY

Tsai, VJD (1993) Delaunay triangulations in TIN creation: an overview and a lin-
ear-time algorithm. International Journal Geographical Information Systems.
Vol. 7, No. 6, Taylor & Francis Ltd., pp 501-524

Tsai, VJD, Vonderohe, AP (1993) Delaunay tetrahedral data modelling for 3-D
GIS applications. Proc. GIS/LIS ‘93 Conference, Minneapolis, Minnesota,
Vol. 2, pp. 671-680

Tsai, VJD, Vonderohe, AP (1991) A generalized algorithm for the construction of
Delaunay triangulations in Euclidean n-space. Proc. GIS/LIS ‘91 Annual Con-
ference. Atlanta, GA, Vol. 2, pp. 562-571

Turner, AK (1989) The role of 3-D GIS in subsurface characterization for hydro-
geological applications. In: Raper, JF (Ed.) Three Dimensional Applications
in Geographic Information Systems. Taylor & Francis. London, pp. 115-127

Vaidyanathaswamy, R (1960) Set topology. Chelsea Publishing Company, New
York

Voronoi, G (1908) Nouvelles applications des parameters continus á la théorie des
formes quadratiques. Deuxiéme Mémoire: Recherches sur les parallelloedres
primitifs. Journal fur die Reïne und Angewandte Mathematik. 134, pp. 198-287

Wang, ZJ (1994) Digital photogrammetric data acquisition for 3D GIS. M.Sc.
Thesis. ITC, Enschede, The Netherlands, 88 pp

Watson, DF (1981) Computing the n-dimensional Delaunay tessellation with ap-
plication to Voronoi polytopes. Computer Journal. 24, pp. 167-172

Watson, DF, Philip, GM (1984) SURVEY: Systematic triangulations. Computer
Vision, Graphics and Image Processing. Vol. 26, pp. 217-223

Watt, A (1993) 3D computer graphics. Addison-Wesley Publishing Company Inc.,
UK, 500 pp

Webster, CJ (1990) The object-oriented paradigm in GIS. International Archives
of Photogrammetry and Remote Sensing. Commission III, Vol. 28 Part 3/2,
Wuhan, China, pp. 947-984

Webster, CJ, Omare, CN (1991) A formal approach to object-oriented spatial da-
tabase design. Proc. of Second European Conference on Geographical Infor-
mation Systems (EGIS’91). Vol. 2, Brussel, pp. 1210-1218

Weibel, R (1993) On the integration of digital terrain and surface modeling into
geographic information systems. Proc. of 11th. International Symposium on
Computer Assisted Cartography (AUTOCARTO 11). Minneapolis, pp. 257-266

Weiskamp, K, Flamig, B (1992) The Complete C++ Primer. 2nd. edition, Aca-
demic Press, Inc., USA, 540 pp

Willard, S (1970) General topology, Reading, Addison-Wesley, Massachusetts,
USA. 369 pp

Wilson, RJ (1985) Introduction to graph theory. 3rd. Edition, Longman Scientific
& Technical. UK

Wolberg, G (1990) Digital image warping. Los Alamo, IEEE Computer Society
Press. Los Alamo. 318 pp

Worboys, MF, Hearnshaw, HM, Maguire, DJ (1990) Object-oriented data model-
ling for spatial databases. International Journal of Geographical Information
Systems. Taylor & Francis Ltd., Vol. 4, No. 4, pp. 369-383

REFERENCES AND BIBLIOGRAPHY 285

Vries, ME de, Zlatanova, S (2004) Interoperability on the Web: the case of 3D
geo-data. IADIS International Conference on e-Society. Spain

Vries ME de, Stoter, J (2003) Accessing 3D geo-DBMS using Web technology.
Wachowicz, M, Bulens J, Rip, F (2002) GeoVR construction and use: The seven

factors. Proceedings of the 5th AGILE. Palma
Web3D Consortium (2004) http://www.web3d.org/ (2004)
Worboys, MF, Hearnshaw, HM, Maguire, DJ (1990) Object-oriented modelling

for spatial databases. Int. Journal of Geographic Information Systems (IJGIS).
Vol. 4, No. 4, Taylor & Francis. London

Würländer, R (1988) Undersuchung zur Integration von digitalen geländemodel-
len in raumbezogene informationssystemme. Diplomarbeit. Technische Uni-
versität München

Youngman, C (1989) Spatial data structures for modeling subsurface features. In:
Raper, JF (Ed.) Three Dimensional Applications in Geographic Information
Systems. Taylor & Francis. pp. 129-136

Zeitouni, K, Cambray, B de (1995) Topological modelling for 3D GIS. 4th. In-
ternational Conference on Computers in Urban Planning and Urban Man-
agement. Melbourne, Australia, http://www.prism.uvsq.fr/public/beatrix/
publi_en.html

Zhu, C, Tan, EC, Chan, KY (2003) 3D Terrain visualization for Web GIS. Map
Asia 2003, Kuala Lumpur, Malaysia, October 2003.

Zlatanova, S (2000) 3D GIS for Urban Development. PhD Thesis. ITC Disserta-
tion Series No. 69 , The Netherlands

Zlatanova, S, Abdul-Rahman, A, Shi, W (2004) Topological models and frame-
works for 3D spatial objects. Journal of Computers & Geosciences. May, Vol
30, Issue 4, pp. 419-428

Zlatanova, S, Abdul-Rahman A, Shi W (2002a) Topology for 3D spatial objects.
International Symposium and Exhibition on Geoinformation (ISG). Kuala
Lumpur, Malaysia

Zlatanova, S, Abdul-Rahman A, Pilouk, M (2002b) 3D GIS: Current Status and
Perspectives. Proc. of the Joint Conference on Geo-spatial theory, Processing
and Applications. 8-12 July, Ottawa, Canada

Index

0-simplex, 17, 66
1-simplex, 17, 96
1-simplicial complex, 66
2.5D GIS, 13
2D array, 224
2D GIS, 8, 213, 229, 256
2D TIN, 136
2-simplex, 17, 66, 96
2-simplicial complex, 66
2x2x2 mask, 199, 200
3-4-5 mask, 172
3D Array, 32
3D cartographic presentation, 10
3D computational geometry, 222
3D coordinates, 226, 229
3D data structuring, 25
3D Distance Transformation, 171
3D FDS, 12, 95, 201, 229
3D functionality, 249
3D GIS, 1, 7, 9, 15, 16, 17, 255, 256
3D GUI, 241
3D modelling, 256
3D objects, 216
3D raster image, 173
3D spatial data, 15, 239
3D spatial data modelling, 3
3D spatial operators, 230
3D terrain scenes, 235
3D TIN, 35
3D topology, 237
3D urban mapping, 3
3D visualization, 203, 224
3D Voronoi, 12
3D Voronoi Tessellation, 176
3D worlds, 235
3-simplex, 17, 66, 96
4D, 73

Abstract Data Type (ADT), 45
abstraction mechanisms, 134
active sever pages, 252
affine transformation, 227
aggregation, 83, 125

anaglyphic stereo, 223
Apache HTTP, 250
ArcView 3D Analyst, 18
association, 84
ATKIS, 73
AutoCad, 2
AVS, 149

backward pass, 173
Bentley, 252
boolean, 199
Borgefors DT, 153
Boundary Representation (BR), 55
Boundary representation (B-rep), 17

CAD, 1, 4, 224
cartesian coordinate, 41
cell Complex, 66
CGI, 247
chamfer 3-4, 154
chamfer 3-4-5, 172
chamfer 5-7-11, 154
Classification, 82, 118, 135
Client-Server, 232
COBRA, 249
computer graphics, 224
conceptual data model, 45
conceptual design, 48
constrained triangulation, 94, 210
Constructive Solid Geometry

(CSG), 13, 17, 55
Contouring, 190
contouring algorithm, 190
Cortona, 251
CSG, 34

DB2, 236
dBASE, 109
DBMS, 46, 228
Delaunay triangulation, 164
DEMViewer, 246
dependency diagram, 111
depth sorting algorithm, 224

288 INDEX

Digital Terrain Model (DTM), 2
DILAS, 254
DIME, 73
dirichlet polygons, 158
distance transformation, 153
dual graphs, 72

encapsulation, 81
euclidean plane, 40
euclidean space, 59
Euler’s characteristics, 102

facet model, 28
FDS, 10, 96
fuzzy spatial objects, 7

gaurad shading, 225
GDI NRW, 253
generalization, 83, 135
geo-DBMS, 250
GeoMedia Terrain, 21
geo-spatial model, 46, 48
GML3, 239
GUI, 240

hidden line/surface, 4
HTML, 250
ILWIS, 149
Imagine VirtualGIS, 19
Informix, 109
inheritance, 82
Internet Information Server, 252
ISO/TC211, 238

Java API, 254
Java Applet, 235
Java3D, 248

levels of detail (LOD), 238
line rasterization, 183
logical data model, 45

metric operators, 221
metric space, 59
Microstation, 254
MySQL, 236, 250

n-dimensional Data Model, 115
neighbouring triangles, 169
Normal Forms, 80

object-oriented (OO), 13, 133
object-oriented GIS, 13
object-relational DBMS, 238
octree, 33
octree/tetrahedron, 13
ODBC, 109
OGC, 234, 237
Oracle Spatial, 236
Oracle9i, 252

PAMAP GIS Topographer, 21
Perl, 247
Phong illumination, 225
photo-texturing, 239
PHP, 241
physical data model, 45
physical design, 48
POET database, 148
point-in-tetrahedron, 222
point-in-triangle, 222
polymorphism, 84, 135

quadtree, 33

RDBMS, 250
regular-grid DTM, 212
relational Data Structure, 112
resampling, 226

sampling limited, 7
SIG 3D, 253
simplex, 66
simplexes, 40
simplicial complex, 17
solid (or Body), 142
spatial analysis, 63
spatial data modelling, 44
spatial indexing, 62
spatial operators, 221
spatial-partition representation, 56
SQL, 235, 239, 250
surface illumination, 4, 225

INDEX 289

surface removal, 224
sweep representation, 55

TEN, 39, 94
terrain features, 207
tessellation, 73
tetrahedron, 94, 181, 199
texture mapping, 226
thematic class, 119
thematic Hierarchy, 121
Thiessen, 158
TIGERS, 73
TIN, 11, 18
TIN Tessellations, 136
TIN topology, 164
TIN-based (2.5D) Data Model, 87
TIN-based system, 43
TIN-DTM, 216
Topology, 40, 60
topology detection, 165
topology matching, 166
triangle topology, 165

UDM, 251
UML, 266
UNS, 109

vertex voxels, 172
virtual reality (VR), 12
visualization pipeline, 233
volume-based representations, 37
voronoi, 153
voronoi Tessellations, 158
voxels, 33, 172
VR systems, 229
VRML, 229, 241, 251, 252

Web 3D GIS, 233
Web map service (WMS), 237
Web protocol, 235

X3D, 241, 252
XSLT, 252

z-buffer,224

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	back-matter.pdf

