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Preface

When we talk about forests, we talk about 30% of our planet’s land surface
area. In 2000 there was an estimated 3 870×106 ha of forest worldwide, of which
5% is in forest plantations and 95% in natural1 forests (FAO 2003). Forests are
not only a source for timber; they also generate significant nonwood goods and
services, mitigate climate change, conserve biological diversity, provide protec-
tion from natural hazards, and not least: provide recreational areas for an
increasingly urbanized world population. The availability of timber and non-
wood goods and services is waning as deforestation and degradation of tropi-
cal forests continue. While forest area has stabilized or is slightly increasing in
the boreal and temperate regions, the annual loss of forest area in the tropics
and subtropics is decreasing. Between 1990 and 2000 the annual rate of defor-
estation was estimated to be 14.6×106 ha (approximately 0.38%) and took place
mainly in tropical and subtropical forests (FAO 2003). The net annual rate of
change is about 9.4×106 ha (0.2%).

Maintaining and enhancing forest areas and the vitality of forest ecosystems
is a widely accepted political goal, which is often opposed by conflicting
demands of various stakeholders. Solutions to conflicts of this nature require
actions at different scales ranging from managing demands of local communi-
ties to resolutions of transboundary problems such as global climate change
(Jackson and Ingeles 1998; Mayers and Bass 2004; Sliggers and Kakabeeke
2005). Decisions about political measures as well as local management issues
will not be effective unless they rest on reliable, timely, and readily available
information. Forest inventories offer a tool to provide objective and reliable
information about the multiple functions of forest ecosystems and their poten-
tial to satisfy various demands.

There is always a direct relation between the quality of information available
and the cost involved in obtaining it. The complexity, diversity, and wide spa-
tial extension of forests preclude a 100% assessment in most cases. An alterna-
tive to a complete enumeration is sampling, which is the process of obtaining
information by assessing only a proportion of and drawing inference for the

1 In the FAO terminology “natural” includes both managed and unmanaged forests.



whole. Where spatial information is to be provided, remote sensing offers a
suite of methods.

This book is intended to be a primer on multiresource forest inventories,
with special reference to tropical and subtropical forests. The focus is on sus-
tainable forest management, which requires an assessment of both the current
state and changes over time. The information needs to be satisfied by forest
inventories cover a wide range, which extends far beyond the forests’ produc-
tive function and timber supply. Nonwood goods and services, environmental
functions – such as mitigating climate change – biodiversity, watershed protec-
tion, protective functions, or recreation are related issues.

Besides the diversity of topics, the size of the area for which information is
required is to be considered when designing and implementing a forest inven-
tory. Local assessments require different approaches from regional, national, or
multinational assessments. While field assessments may be a sufficient data
source for inventorying and monitoring small areas, extensive inventories for
large areas may involve the combination of different data sources for reasons of
cost-effectiveness. Thus, remote sensing has become a prominent tool for mul-
tiscale forest resources assessments (Franklin 2001; Wulder and Franklin 2003).

Today’s information needs about the forest resource often touch on areas
outside the forests as well. For example, information on the accessibility of for-
est areas, road network inside and outside forests, wildlife habitats at the edge
of and in close proximity to a forest, and the protective function of forests. The
forest is part of a larger landscape and its function and services can only be
fully appreciated in an integrated multidiciplinary approach to forest inven-
tory. The increasing availability of georeferenced data in digital format and the
widespread availability of powerful geographic information systems (GIS) have
greatly facilitated this integration and paved the way for cross-cutting spatial
analyses of inventory information.

The short annotation above portends to the diversity of methods and
approaches needed to carry out a multiresource forest inventory. It would be
far beyond the scope of this book to give an overarching collection of available
methods for forest resources assessments. Our intent is to give an introduction
to and overview of basic concepts, which can be easily adapted for real-world
situations.

M. KÖHL

S. MAGNUSSEN

May 2006 M. MARCHETTI

X Preface
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Forest Inventories — an Overview 1

1.1
Focus

Forest inventory is a process for obtaining information on the quality and
quantity of forest resources and forms the foundation of forest planning and
forest policy. While early concepts of sustainable forest management and forest
inventory focused on timber production (Hartig 1795; Cotta 1804), modern
forest inventory concepts support a holistic view of forest ecosystems address-
ing not only timber production but also the multiple functions of forests as
well as the need to understand the functioning mechanisms of forest ecosys-
tems (von Gadow et al. 2002; Corona et al. 2003).

Forest resources assessment facilitates a multifaceted analysis and study of
forests not only as an important source of subsistence, employment, revenue
earnings, and raw materials to a number of industries but also for their vital
role in ecological balance, environmental stability, biodiversity conservation,
food security, and sustainable development of countries and the entire bios-
phere. Forests have to be managed judiciously not only for environmental
protection and other services but also for various products and industrial raw
material. In some parts of the world biological resources are being depleted
faster than they can regenerate. Following the 1992 United Nations
Conference on Environment and Development (UNCED) conference in Rio
de Janeiro considerable progress has been made in the area of sustainable for-
est management. Among others, the International Tropical Timber
Organization (ITTO) and the Forest Stewardship Council (FSC) developed
criteria and indicators for sustainable forest management and certification.
The Kyoto Protocol of the United Nations Framework Convention on
Climate Change (UNFCCC) describes measures to mitigate greenhouse
gasses and addresses in Article 3.3 in particular the impact of deforestation
and afforestation on global climate change. The Convention on Biological
Diversity (CBD) that was ratified in 1994 deals with the protection and
maintenance of biodiversity.
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Forest resources assessments have their focus on the provision of informa-
tion, which has several implications:

1. The information provided has to satisfy user needs. An inventory is gener-
ally not carried out for the needs of a single stakeholder; multiple issues of
forests have to be covered. The objectives must be defined by those who
require the data to be collected. All groups of users of inventory results
should be involved in this phase of planning. Very often, the number of
those interested in the inventory results increases after an inventory has
already begun or after the findings have been published, so the data col-
lected usually fail to satisfy all demands for information. Before defining
the objectives it is advisable to make an inquiry not only among forest
authorities but also among private forest owners, the wood-processing
industry, land-use planning and environmental protection agencies, con-
sumers of secondary forest products, wildlife organizations, and other
potentially interested parties, thus enabling them to articulate their partic-
ular needs for information. In addition, this approach increases the possi-
bility of finding partners who will make a financial contribution.

2. The information obtained by an inventory is typically presented in maps
and statistical estimates. The basic concept of any statistical presentation is
to summarize the population of interest and extract the facts important for
potential users. This is generally done by presenting statistical parameters
such as mean values, totals, or ratios and percentages. In addition, infor-
mation on the variability or diversity of a population is an important eco-
logical issue.

3. The information has to be objective. All parts of the population should be
covered by the inventory; no part should be intentionally excluded. Data
must be assessed in a nonsubjective way. Objective information requires
the objective assessment of data. When information is gathered by some
form of sampling, only application of a statistical design with known selec-
tion probabilities for any population element can ensure the integrity of
the information-gathering process (inventory).

4. The information has to be reliable. The results of any sampling survey are
always estimates rather than true values and are thus subject to a certain
degree of uncertainty, as only part of the population is assessed. The uncer-
tainty can be reduced through an optimal combination of sampling design
and sample size in order to increase the precision of the estimates and to
reduce sampling errors. The measurements themselves may be subject to
error caused by, for example, inappropriate measurement devices, poor
training, or subjective interpretation of measurement rules and defini-
tions. Investments in improved instruments and the provision of intensive



training of field crews usually generate a handsome payback in the form of
an increase in the quality and accuracy of data. It is necessary to specify the
degree of precision and accuracy (see Chap. 3.4) to which the results
should attain. This must be decided by the prospective users, though it is
often difficult for administrators to think in terms of sampling error.

5. The information must be assessed in a cost-efficient way. Once forest man-
agers and decision-makers have provided a rough definition of the objectives,
several alternative inventory designs should be investigated. Alternatives can
be based on different sampling design, sampling intensities, or data sources.
Comparison of these alternatives allows assessment of the cost—benefit rela-
tionship and the final definition and weighing of the objectives.

6. The results of an inventory should be intuitively clear for potential users.
Users are normally not very familiar with sampling statistics and thus the
results should not require a Ph.D. in statistics for any immediate and basic
interpretation. Users will have confidence only in information that they can
understand. The inventory design should be documented and give advice
for the impartial interpretation of data. As sample-based results are always
subject to sampling errors, it is necessary to accompany any statistical esti-
mate with estimates of sampling error or confidence interval.

7. Forest inventories should “only” present information in statistical and
mapped format. It is beyond the mandate of a forest inventory to interpret
results. However, forest inventory specialists should give advice for the
interpretation of data. This restraint is also intended as a safeguard for the
integrity of the inventory process.

8. In inventories on successive occasions, terms and definitions should not be
changed unless it can be argued that the benefits outweigh the problems
introduced by a change. When terms and definitions are changed between
assessments one cannot distinguished between true change and change due
to change in definitions.

9. Planning of a forest inventory is a complex task that involves expertise from
many fields; thus, experts from silviculture, forest management planning,
economics, policy, ecology, or timber products need to be consulted at an
early stage.

1.2
Objectives

The main elements of an inventory depend very much upon the inventory
objective; thus the objectives of an inventory have to be laid down in a very
early phase of inventory planning. The exact definition is a joint action by
the inventory designer and the potential user group. It is a very laborious
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undertaking and consequently too little effort is often committed; yet without
it, one may lose sight of the real objectives with the risk of accepting inappro-
priate methods and procedures. The formulation of the objectives constitutes
not only the basis for the design of the sampling methods but also an instru-
ment for checking success once the survey is complete.

Four specific guidelines should be considered when determining inventory
objectives (FAO 1998):

1. Objectives need to be determined jointly by the people who will use the
results, including forest managers, planners, and decision-makers, as well
as by inventory specialists. Inventory objectives should not be determined
by inventory specialists alone.

2. Not all inventory objectives have the same level of importance. Some have
higher priority than others and it is the objectives having highest priority
that should determine the inventory design and the presentation of results.

3. Inventory objectives should reflect the physical effort that will be required
to conduct an inventory, the organization, estimated costs and time, the
existing knowledge of resources, the availability of specific aspects of
inventory technologies, and institutional capability. All have a direct bear-
ing upon the implementation of an inventory. An overriding consideration
is that an inventory must be practicable and achievable. The value of an
incomplete inventory that lacks important information and thus limits the
possibility to establish causal relationships could be zero or close to zero.

4. All objectives should be SMART
● Specific

– Well defined.
– They are clear to anyone who has a basic knowledge of the project.

● Measurable: They provide quantifiable measures of achievement and
variance from set objectives.

● Agreed upon: There is agreement between the users and the project team
on what the objectives should be.

● Realistic: Looking at the resources, knowledge, and time available, can
the objective be accomplished?

● Time-framed
– How much time is needed to accomplish the objective?
– Having too much time can affect the project performance.

The information requirements from forest owners, policy planners, the sci-
entific community, and society in general concerning forest resources have
been growing steadily since the 1950s when the main focus was on information
about timber supply (Table 1.1). The multiple functions of forests, biomass,
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global warming, biodiversity, and nonwood goods and services have since
gained prominence (Lund and Smith 1997).

The thematic scope of forest inventories can vary considerably. It is advisable
to review global initiatives and obligations in order to get a broad view on poten-
tial information topics to be covered by a forest inventory. UNCED criteria and
indicators for sustainable forest management have been formulated through sev-
eral international, national, and nongovernmental processes. These include the
Pan-European (or Helsinki) process (for European forests), the Montreal Process
(for temperate and boreal forests), the Tarapoto Proposal of Criteria and
Indicators for Sustainability of the Amazon Forest, the United Nations
Environment Program (UNEP)/Food and Agriculture Organization (FAO)
Expert Meeting on Criteria and Indicators for Sustainable Forest Management in
Dry-Zone Africa, or the Lepaterique Process of Central America. The ITTO, the
Tarapoto Process (TARA), the Center for International Forestry Research
(CIFOR), the African Timber Organization (ATO), and the Central American
Commission for Environment and Development (CCAD) developed systems of
criteria and indicators for sustainable forest management which cover adminis-
trative, economic, legal, social, technical, and scientific issues which affect natu-
ral forests and plantations. The criteria define the essential factors of forest
management against which forest sustainability may be assessed. Each criterion
relates to a key management factor which may be described by one or more qual-
itative, quantitative, or descriptive indicators. Through measurement and moni-
toring of selected indicators, the effects of forest management action, or inaction,
can be assessed and evaluated and action adjusted to ensure that forest manage-
ment objectives are more likely to be achieved. Table 1.2 summarizes the criteria
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Table 1.1. Increase in information needs about forest lands in the USA (after Lund and Smith
1997)

Nonforest lands,
habitats, old 
growth and 
primary forests

Ecosystems, Ecosystems,
biodiversity, biodiversity,
NWGS NWGS

Global Global Global 
warming warming warming

Biomass Biomass Biomass Biomass
Multiple Multiple Multiple Multiple Multiple 
resources resources resources resources resources

Timber Timber Timber Timber Timber Timber
1950s 1960s 1970s 1980s 1990s 2000+

NWGS nonwood goods and services
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Table 1.2. Criteria and indicators for sustainable management (after FAO 1998)

1. Extent of forest resources and global carbon cycles
Area of forest cover
Wood-growing stock
Successional stage
Age structure
Rate of conversion of forest to other use

2. Forest ecosystem health and vitality external influence
Deposition of air pollutants
Damage by wind erosion
Forest vitality indicators
Incidence of defoliators
Reproductive health
Forest influence indicators
Insect/disease damage
Fire and storm damage
Wild-animal damage
Anthropogenic influence indicators
Competition from introduction of nonnative plants
Nutrient balance and acidity
Trends in crop yields

3. Biological diversity in forest ecosystem
Ecosystem indicators
Distribution of forest ecosystems
Extent of protected areas
Habitat suitability
Forest fragmentation
Area cleared annually of endemic species
Area and percentage of forest lands with fundamental ecological changes
Forest fire control and prevention measures
Species indicators
Number of forest-dependent species
Number of forest-dependent species at risk
Reliance on natural regeneration
Resources exploitation systems used
Measures for in situ conservation of species at risk
Genetic indicators
Number of forest-dependent species with reduced range

4. Productive functions of forests
Percentage of forests/other wooded lands managed according to management plans
Growing stock
Wood production
Production of nonwood forest products
Annual balance between growth and removal of wood products
Level of diversification of sustainable forest production
Degree of utilization of environmentally friendly technologies
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Table 1.2. (continued)

5. Protective functions of forests
Soil conditions
Water conditions
Management for soil protection
Watershed management
Areas managed for scenic and amenity purposes
Areas and percentage of forest lands managed for environmental protection
Infrastructure density by FMU category

6. Socioeconomic functions and conditions
Indicators for economic benefits
Value of wood products
Value of nonwood products
Value from primary and secondary industries
Value from biomass energy
Economic profitability of SFM
Efficiency and competitiveness of forest products production, processing, and 
diversification
Degree of private and nonprivate involvement in SFM
Local community information and reference mechanisms in SFM
Indicators for the distribution of benefits
Employment generation/conditions
Recreation and tourism
Forest-dependent communities
Impact on the economic use of forests on the availability of forests for local people
Quality of life of local populations
Average per capita income in different forest sector activities
Gender-focused participation rate in SFM

7. Political, legal, and institutional framework
Legal framework that ensures participation by local governments and private 
landowners
Technical and regulatory standards of management plans
Cadastral updating of the FMU
Percentage of investment on forest management for forest research
Rate of investment on the FMU level activities: regeneration, protection, etc.
Technical, human, and financial resources

FMU forest management unit, SFM sustainable forest management

and indicators identified by the processes and initiatives and should facilitate the
definition of inventory objectives.

As not all objectives have the same importance, the priority of inventory
objectives has to be assessed before designing the inventory. Before a final deci-
sion on the inventory objectives, all issues that could constrain an implemen-
tation of the inventory should be listed and considered. Issues include cost



limits, availability of staff, presentation of the findings, the schedule, or the
population for which estimates should be given.

The listing of inventory objectives should not be confused with the list of
attributes to be assessed. Based on the objectives, the attributes for field assess-
ments, remote-sensing imagery, or other data sources have to be derived. The
attributes have to be defined in detail on the basis of data type, desired error,
and units of reference.

1. Populations for which estimates are to be presented. The term population is
used to describe that aggregate from which the samples are to be taken and
for which valid conclusions are to be drawn. In forest inventories it can be
relatively difficult to define the population, as the exact borders and the
surface area of the region to be surveyed must first be determined. Here,
maps, land-use classification, and remote-sensing imagery can be of great
assistance.

2. Data type. For each type of information required the measurement scale
must be defined. The results may be presented in one of three ways:
(a) Graphically – through maps, charts, diagrams, etc.
(b) Descriptively, or qualitatively – for example, forest type, stage of devel-

opment
(c) Quantitatively – for example, stem count, total standing volume, or

mean increment
The simplest method of measurement is to group observations into quali-
tative classes. Here, a general system of classification is based on given char-
acteristics and takes only the major manifestations of these into
consideration.

The allocation of data into different classes of equal standing is termed
nominal scaling as opposed to ordinal scaling, which reveals a ranked
order. Nominal scaling may, for instance, involve classification according to
tree species, administrative unit, or soil type. Examples of ordinal scaling
are the stand tree development class, or the stem quality class.
Mathematical operations for nominal as well as ordinal scales are limited.

Where quantitative data are to be furnished, any given parameter (i.e.,
population characteristic) is allocated a number reflecting the intensity of
a certain characteristic. Where the measurements are linearly related to val-
ues and the zero point is arbitrarily set, we have an interval scaling. An
example is the measurement of temperature: on the Fahrenheit scale the
freezing point of water is 32˚F, and water boils at 212˚F (at standard pres-
sure); on the Celsius scale the equivalent temperatures are 0 and 100˚C,
respectively. Interval scaling allows conclusions about the differences
between observations made at different scales.
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A further system for scaling quantitative data is the ratio or relative scal-
ing. Here, a true zero point exists, and the relationships between numerical
measurements can be directly interpreted as the relationship between the
dimensions of objects. For instance, a tree 20-m tall is twice as tall as one only
10-m tall. Such a statement cannot be made for two temperatures. Examples
in which relative scaling can be applied are weight, length, and time.

Whenever quantitative data are considered, it must be specified whether
overall values (e.g., total standing crop of the inventory area) or ratios (per
tree, unit area, or other units of reference) are to be given.

3. Error Limits. The results of any sampling survey are always subject to a cer-
tain degree of uncertainty, as only part of the population is measured and
the measurements themselves may be subject to error. The uncertainty can
be reduced through a careful choice of sampling strategy (design and esti-
mators), taking more measurements, or employing better instruments.
Most improvements impose additional costs. Consequently, it is necessary
to specify the degree of precision to which the results should attain.

In deciding the limits of error, the two components (1) sampling error and
(2) bias must be taken into consideration just as much as the chosen signifi-
cance level for confidence intervals. The desired error must be related to the
population, be it the entire inventory area or only a part of it. The given pop-
ulation and the desired error strongly influence the intensity of the survey.

1.3
A Typology of Forest Inventories

Forest inventories can be differentiated according to combination and empha-
sis of different data categories, i.e., the inventory objectives and the size of the
area to be surveyed.

Global forest inventories are conducted to determine forest resources at the
global level. This usually means the compilation of results from separate national
inventories. Thanks to advances in remote-sensing techniques, satellite data can
now be used to determine the distribution of forest vegetation throughout the
world (Itten et al. 1985; Kuswaha 1990; FAO 2003). Global inventories were con-
ducted by the FAO in 1946, 1953, 1958, and 1963 (World Forest Inventory) and in
1990 and 2000 (Global Forest Resources Assessment). Much discussion and read-
justment of the data catalogues from national inventories was necessary before the
data could be compiled to give a global picture (UN-ECE/FAO 2000; FAO 2001).

Individually designed national inventories do not permit monitoring of
either the environment or the development of resources on a global or conti-
nental scale. Joint or multinational coordinated surveys allow the collection of
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data for large, cohesive areas, for instance, the UNEP/FAO Project on
Monitoring Tropical Forest Cover or the annual UN Economic Commission
for Europe International Cooperative Program (ECE-ICP) reports on forest
condition in Europe, which began in the mid-1980s.

National forest inventories are already being conducted in many countries. In
western Europe, almost every country has its own national inventory (EC 1997),
some of which, especially those in Scandinavia, have been running for many
years. Timber volume is usually employed as a key parameter, though informa-
tion on the distribution of forested areas, the condition of the forest, and pro-
ductivity is also collected (Lund et al. 1987; Lund 1998). The nonwood functions
of the forest are receiving increased attention. Ideally, national inventories should
be planned as permanent surveys and conducted by a specific organization with
a permanent staff. Information obtained through national inventories is mainly
applied in questions of national forest policy (Clement 1988; Lund 1998).

Land-use inventories record not only forest resources but also the distribu-
tion of other types of land use. Aerial photographs and satellite data are of
especial importance here. The value of a forest inventory can be considerably
increased by extending it to give a land-use inventory. Where noncommercial
forms of vegetation, such as swamps, barren areas, or maquis, are recorded in
addition to the various types of agricultural use, areas potentially suited for
forestry can be identified. In Africa, FAO introduced an integrated system of
nomenclature for agricultural and forest areas (AFRICOVER).1

Regional inventories register only a part of the national forested area and
usually cover some hundreds of thousands up to two million hectares.
Similarly to national inventories, they are intended to provide a general picture
of the situation regarding forestry (Pellico-Netto 1979).

Reconnaissance inventories aim at furnishing a rough outline of the forest
conditions. As well as the location and extent of forested areas, they may aim to
register access, species composition, tree dimensions, the distribution of various
forest types, and a crude assessment of timber quality (Touber et al. 1989).
Through the employment of aerial photography and the restriction of field sur-
veys to the minimum, reconnaissance inventories can be conducted at little cost.
They frequently serve the preparation of a more intensive forest inventory. Data
on the degree of variation and time-and-motion studies conducted during a
reconnaissance inventory facilitate the planning of the definitive inventory.

Exploitation surveys or logging plan surveys are conducted in forests to pro-
vide a basis for the planning of programs for timber harvesting. The main
focus is on determining the standing crop, classified according to species,
dimensions, and assortment, and describing the accessibility of the area con-
cerned. Little or no attention is paid to increment or ecological conditions.

10 CHAPTER 1 Forest Inventories – an Overview
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Where the economic potential of establishing a wood-processing industry is
to be examined, a forest industries feasibility study (FIFS) is standard practice. A
FIFS comprises the collection of data not only on the forest resources as such
but also on the situation regarding demand and marketing, potential sites for
processing plants, the job market, sources of water and power, transport possi-
bilities, and existing industries. For further details see Higgins et al. (1973),
Philip (1976), Lanly (1977) and Staepelaere and Ginsburger (1978). As the
establishment of a timber industry is only worthwhile where there is a steady
supply of raw material, it is necessary to determine the forest resources in con-
siderably more detail than is usual in exploitation surveys. In particular, the
sustained yield of exploitable timber must be computed.

Working plan surveys are the most intensive type of forest inventory. The
preparation of working plans for intensively managed but restricted areas
requires relatively detailed information. Usually the data are computed on a
stand-by-stand basis for each species. Information on increment, detailed for-
est maps, data on the quality of the various sites are just as necessary as details
on topography, ownership, and access.

Forest condition inventories report on the symptoms of diseases and stress
(water, nutrient, competition, air pollution, climate change). In central Europe and
North America forest condition surveys are conducted annually in order to track
the course of development of different types of damage (UN-ECE 1998, 2004).

In addition to the types of inventories just described, special surveys are
sometimes conducted, for instance, to determine regeneration, available bio-
mass, or carbon sequestration.

Forest inventories may also be classified in terms of time. Static inventories
may be conducted simply to determine conditions at a given point in time, and
do not require consideration of possible subsequent inventories – a fact which
considerably simplifies their planning. Nevertheless, the additional expense of
permanently marking the sample plots is often a worthwhile investment.

The various types of inventory are not distinct types. In practice they will
often overlap. Neither is their nomenclature static; increasing demands on the
forest and forest information will invariably stimulate the development of new
types of inventory.

1.4
Inventory Planning

Lund (1998) outlined the steps needed to develop and implement a forest
inventory (Fig. 1.1). As the planning of an inventory may take a long time, usu-
ally involves experts in different fields, and requires networking between dif-
ferent tasks, it is advisable to base the entire inventory on a sound project
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management concept (Burke 2003). Good project management deals with
three factors: time, cost, and performance. Projects are successful if they are
completed on time, within budget, and meet performance requirements.
A multitude of components in any large project needs to be controlled. A large
toolkit of techniques, methodologies, and tools has been developed for this
purpose. They provide the tools for managing different components involved
in a project: planning and scheduling, developing a product, managing finan-
cial and capital resources, and monitoring progress. However, the success of a
project will always rest on the abilities of a project manager and the team
members. A project life cycle includes the four phases (1) study phase, (2)
design phase, (3) development phase, and (4) operation phase.

The following overview presents the separate steps in the four project man-
agement phases and is intended to serve as a checklist for inventory planning:

1. Study phase
(a) User needs.
(b) Initial investigation.
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3. Assemble and Evaluate Available Resources/Assets

4. Establish MRI Information Needs and Objectives

5. Develop the MRI Plan 6. Establish the Information System

7. Provide for Quality Assurance/Collect Data

8. Enter, Maintain and Analyze Data

9. Evaluate and Share Results

10. Documents Processes

1. Create an Effective Infrastructure 2. Create a Vision and Establish Objectives

Fig. 1.1. Steps in implementing a forest inventory (after Lund 1998)



(c) Formulation of the inventory objectives:
– Necessity of the inventory, information needed.
– Potential users of the results.
– Formulation of the inventory objectives.
– Priorities of the objectives.

(d) Determination of the administrative and logistic situation:
– Bodies responsible for the execution.
– Budget (available funds, bodies providing funds, financial adminis-

tration, time available).
– Legal basis (right of access to privately owned forest, labor laws, pro-

tection of private forest owners from information leaks).
– Available information (maps, aerial photographs, data from previous

forest inventories and other types of survey, scientific studies in the
inventory area, general details on the forest. Data on variation,
description of the terrain, accessibility, and climatic conditions).

– Potential use of aerial photography and remote sensing imagery.
– Possibilities for recruiting qualified staff.
– Available equipment (vehicles, computers and software, measuring

instruments, tents).
– Responsible bodies (staff management, financial administration,

monitoring of data security, data release, dissemination of data, def-
inition of inventory objectives and methods, execution of field sur-
veys, data evaluation, formulation and release of the final results,
publication, additional analyses).

(e) User review.
(f) Study phase report.

2. Design phase
(a) General system review
(b) Compilation of the data catalogue and stipulations for measurements

– Listing of all variables to be analyzed (depending on inventory
objectives)

– Definition of qualitative data
– Instructions for measurement of quantitative data

(c) Inventory design
– Description of the design to be employed
– Sampling methods
– Description of the sampling units, especially their form, size, num-

ber, and distribution
– Computation of the necessary sample size for each inventory level,

survey intensity
– Description of inventory levels (aerial photographic survey, inter-

pretation of satellite data, field surveys, questionnaires)
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– Map construction
– Estimation of areas
– Description of statistical methods for evaluation, estimation proce-

dures, correlations to be applied, and the computed parameters
– Methods of volume determination (e.g., volume functions, points of

measurement on the tree, volume inside or outside bark)
– Determination of regeneration conditions
– Determination of timber quality
– Description of road and transport networks

(d) Data base and/or information system design
(e) Control requirements
(f) Software selection
(g) Equipment selection/acquisition
(h) Staff recruitment
(i) Field manual
(j) Plans for work progress
(k) Design phase report

3. Development phase
(a) Implementation planning
(b) Computer program design
(c) User review
(d) Equipment acquisition and installation
(e) Field tests/pilot survey
(f) Computer program testing
(g) System testing
(h) Reference manual preparation
(i) Personnel training
(j) Changeover plan preparation
(k) Development phase report preparation
(l) User acceptance review

4. Operation phase
(a) Interpretation of aerial photographs and/or remote sensing data

– Instruments (interpretation instruments, computers, software)
– Organizations, staff, competence, duties
– Documentation and backup of the results

(b) Field surveys
– Organization, central coordination
– Communication between field survey teams and central coordinators
– Recording and delivery of data
– Training of field staff (localization of sample plot centers, assess-

ments on sample plots, use of instruments)
– Check cruises
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(c) Data evaluation
– Digitalization of data
– Checking and correction of data
– Data analysis
– Operating, system management, data security

(d) Final report
– Preparation (output format printed, Web-based, or CD-ROM)
– Approval for release
– Reproduction.
– Dissemination

(e) Performance evaluation

1.4 Inventory Planning 15



Forest Mensuration 2

2.1
Introduction

Remote sensing and field assessments are the main data sources for forest
inventories. While remote sensing provides spatially explicit data for large areas
at considerable costs, the number of attributes that can be extracted from
remote-sensing imagery is rather limited; thus, field assessments continue to be
an essential component of forest inventories.

Many aspects dealing with the in situ assessment of trees and forests are dealt
with in textbooks such as Prodan (1965), Loetsch et al. (1973), Hush et al. (2003a,
b), and Avery and Burkhardt (2001). An assessment of the productive function
has been the traditional focal point of forest inventories. In recent decades infor-
mation on the multiple functions of forests, especially nonwood goods and serv-
ices, has gained significant importance (Bachman et al. 1998; Corona et al. 2003).

In assessing forest functions it is essential to distinguish between the actual
existence of a function and the potential of a forest to provide a function.
Brassel (1995) described the problem of integrating the assessment of nonpro-
ductive forest functions in a national forest inventory program. He gives a set
of attributes that provide information on the functional potentials of forests
and that can be directly recorded in the field:

● Wood production: standing volume, increment, drain, accessibility, struc-
ture, stage of development, age, size of stand

● Biodiversity: number of woody species, especially trees and shrubs
● Nature protection: forests and forest edges as habitats for flora and fauna
● Pasturage: traces of other usage, game damage
● Recreational functions: evidence of human influence and overutilization
● Protective functions: evidence of surface erosions, stand density, surface (bare

soil, long grass, litter) as indicators of possible avalanches, evidence of rockfall

A number of forest functions cannot be assessed from within the forest itself
but only in its environment. Brassel (1995) gives the following examples:
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● Protection against avalanches
● Mitigation of floodings
● A safeguard against winds
● Improvement of quality of life by, for example, providing recreation grounds,

lowering of noise, screening from visual affronts, or filtering of dust
● Provision of drinking water
● Maintenance and enhancement of landscapes and their ecological functions
● Supply of nontimber products, especially food
● Combating global climate change by providing storages and sinks for carbon

2.2
Area Information

Information about the area and area proportion presents a major result of
forest inventories for the following reasons:

1. Information about the forested area itself is of major interest for, for exam-
ple, forest policy, management planning, and nature conservation. Detailed
accounts of subareas are frequently requested for location-specific man-
agement purposes, i.e., the absolute size and proportions of forest types,
ownership categories, or age classes.

2. Many attributes are presented in terms of unit area, such as the growing
stock per hectare. Area-related ratios serve to standardize and facilitate
comparisons over time and between different units of reference.

3. Quantifying forest area changes is especially important in regions with
strong land-use changes and forest area dynamics.

Information on area can be expressed in two different ways: (1) the total forest
area and (2) the proportion of forest area within a given region.

2.2.1
Forest Area Definitions

There exists no unique concept about what qualifies as a forest. The hyperdic-
tionary1 provides a definition of a forest that represents two different aspects:

1. The trees and other plants in a large densely wooded area
2. Land that is covered with trees and shrubs

1http://www.hyperdictionary. com/dictionary/forest



When we talk about forest area we relate to the area covered with trees and
shrubs. National legislations often have a legal definition of forest, but they are
generally not applicable to forest resource assessments. Forest is a qualitative
attribute of an area which cannot be measured directly. Instead forest is defined
by a set of quantifiable and measurable attributes. In order to increase the reli-
ability of forest area assessments, forest area definitions are based upon attrib-
utes that can easily be measured, such as crown density, size or width of the
forested patch, tree height, or productivity. For those attributes threshold 
values are specified and whenever a patch qualifies for the selected set of
attributes the patch is considered to be forest land.

A key question is, where to draw the borderline between trees inside a forest
and trees outside forests. Figure 2.1 shows an example from the Swiss Alps,
where trees grow close to the timberline. A predominant characteristic of
forests close to natural timberlines is that tree density is gradually lowered
towards the treeline. A forest area definition uses quantitative criteria to define
which areas stocked by trees qualify as forests and which areas do not.

The set of attributes selected as well as the specified threshold values vary in
individual forest area definitions. Table 2.1 shows some forest area definitions
used by international organizations.

Forest area definitions may also contain specifications about the allowed or
disallowed use of forests and forest types. As an example, the forest area defi-
nition as used by the Food and Agriculture Organization (FAO) for the global
Forest resources assessment 2000 is presented, and reads as follows (FAO 2001):
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Fig. 2.1. Trees close to the timberline in the Swiss Alps



“Land with tree crown cover (or equivalent stocking level) of more than 10 percent and
area of more than 0.5 ha. The trees should be able to reach a minimum height of 5 m
at maturity in situ. May consist either of closed forest formations where trees of vari-
ous storeys and undergrowth cover a high proportion of the ground; or of open forest
formations with a continuous vegetation cover in which tree crown cover exceeds
10 percent. Young natural stands and all plantations established for forestry purposes
which have yet to reach a crown density of 10 percent or tree height of 5 m are included
under forest, as are areas normally forming part of the forest area which are temporar-
ily unstocked as a result of human intervention or natural causes but which are
expected to revert to forest.

Includes: Forest nurseries and seed orchards that constitute an integral part of the for-
est; forest roads, cleared tracts, firebreaks and other small open areas within the forest;
forest in national parks, nature reserves and other protected areas such as those of spe-
cial environmental, scientific, historical, cultural or spiritual interest; windbreaks and
shelterbelts of trees with an area of more than 0.5 ha and a width of more than 20 m.
Rubberwood plantations and cork oak stands are included.

Excludes: Land predominantly used for agricultural practices.”

Table 2.2 summarizes quantitative criteria used in selected countries to assess
their forest area. The quantitative criteria found in definitions for forest area are
crown cover2 (5–30 %), width of the stand (9–50 m) and minimum area (0.01–2
ha). These quantitative criteria are measured either on aerial photographs or in
sample plots on the ground. Scandinavian countries also require a minimum
potential increment of at least 1 m3/ha/year for the site to be considered as forest
area. Australia has no national standards except for the minimum crown cover,
which is 20%.

Köhl et al. (2000) studied the effect of different national forest area defini-
tions on the estimated size of forest area in a simulation study. Differences in
the spatial distribution of trees and forested patches – as they can be found in
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Table 2.1. Forest area definitions

UNESCO Closed forest: trees 5 m or  taller with crowns interlocking 
(UNESCO 1973) Woodland: trees 5 m or taller  with crowns not usually touch-

ing but with 40% or more canopy  cover
FAO Forest resources Forest  (developing countries): 10% crown cover of trees 

assessment 1990 and/ or bamboos
(FAO 1995) Forest (developed countries): tree crown  cover 

(stand density) of more than 20% of the area
Closed forest (tropical countries): tree crown  greater than 40%

FAO Forest resources 10% crown cover of trees, minimum area 0.5 ha
assessment 2000
(FAO  2001)

2Proportion of area covered by the vertical projection of tree crowns
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the Mediterranean, the central and the Nordic regions of Europe – were
simulated in computer-generated forest/nonforest maps. The computer-gener-
ated forests were used to simulate the impact of exchanging one national defi-
nition with another in a number of European countries. This approach allowed
estimation of the effect of different national forest area definitions in absolute
terms. For example, in Spain (total forest area 259,840 km2) adopting the for-
est area definitions of Sweden and Finland would lead to a forest area that is
more than 12,000 km2 larger than if the area was delineated according to the
Spanish national definition. In contrast, the definition of the UK would result
in a forest area that is roughly 19,000 km2 smaller than the figure reported
according to the Spanish forest area definition. Depending on the chosen defi-
nition, the range of the Spanish forest area could vary from about 240,000 km2

(reference UK) to 274,000 km2 (reference Luxembourg).
A universal forest definition remains elusive. Sample-based estimates of for-

est area must therefore carefully consider the existing forest definition and take
competing definitions into account to ensure that estimates of forest areas can
be obtained for more than one definition. In the early phase of planning a for-
est inventory it should be considered whether only areas currently supporting
forest vegetation are to be surveyed or whether former forest areas and sites

Table 2.2. Forest area definitions in selected countries

Country Minimum Minimum Minimum Minimum 
width (m) crown  cover area (ha) production 

(m3/ha/year)

Austria 10 30% 0.05 –
Finland – – 0.25 1
France 15 500 stems/ha 0.05 –

or  10%
Germany 10 – 0.1 –
Greece 30 10% 0.5 –
Iceland – – 0.25 –
Ireland 40 20% 0.5 4
Italy 20 20% 0.2 –
Portugal 15 10% 0.2 –
Spain 20 5% 0.2 –
Sweden – – 0.25 1
Switzerland 25–50a 100–20% – –
UK 20 20% 0.25 –
Australia – 20% – –
New  Zealandb – 20% 0.5 –
Japan – 30% 0.3 –
USA 40 10% 0.40 1.4

aDepending on crown cover
bDefinition for forest and other wooded land
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suitable for reforestation or afforestation should be included (Pancel 1984;
Weaver and Birdsey 1986).

2.2.2
Assessment of Forest Area

Area information may be obtained from maps, aerial photographs, digital
remote-sensing data, or terrestrial surveys. Information on the size of an area
can be provided by two techniques: (1) the measurement of an area or (2) the
estimation of an area by sampling.

Areas may be measured by means of area calculations, weighing, planimetry,
or counting the number of cells in a square or parallel grid that covers the area
of interest. Area measurements can be very time consuming and impractical for
large-scale inventories. Especially where large-scale inventories are carried out,
areas of concern should not be delineated on the basis of the aerial photographs.
Where wall-to-wall maps are available in digital format geographic information
systems offer an efficient technique for calculating areas (Chou 1997).

The reliability of area estimates provided by measurement techniques
depends on the errors given by the method, the instruments applied, the
process of execution, and the particularity of the staff involved. Knowledge of
the positional error of a line (boundary) and the process involved in delin-
eation of objects of interest allows a model-based estimation of the error of a
polygon drawn by this process. Magnussen (1994) provides a model for esti-
mating the area of a forest stand when the stand is delineated by photographic
interpretation. Næsset (1998, 1999) also quantifies the error and estimates its
impact on volume estimation.

In forest inventories, area estimation by means of sampling is often prefer-
able to measuring techniques. There are two possibilities: point sampling and
parallel lines or “transects.”

Point sampling is based on the concept of random points: a point is chosen
at random from the possible locations and a value is assigned to the random
point, for example, it is either forest or nonforest. In practical applications
point sampling is realized by applying dot grids, where the dots are considered
to be a realization of a random process vis-à-vis the map. The localization of
one point corresponds to a Bernoulli experiment with the possible values of
nonforest and forest. The binomial distribution describes the probability of all
possible outcomes of the random sampling design completely. In the estima-
tion of the total area it is helpful to note that the number of sample locations
with forest (or nonforest) is asymptotically (when both sample size n and pop-
ulation size N go toward infinity) a realization of a Poisson process with a den-
sity l where each point represents on average an area of 1/l. An estimator for
the total forest area Aw is Aw=N/l.
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If nw out of n random points are found in the forest, l=nw/n is an unbiased
estimator of the true forest density (viz., proportion p). The forest area pro-
portion is estimated according to Cochran (1977) by

l̂ = p̂ = n
n w ,

( )v p s n
pq

p

2
.=t

t t
,

( )s v pp=t t ,

where ( )pt is the forest area proportion qt =1– ( )pt is the proportion of nonforest
area, v ( )pt is the variance of ( )pt , sp is the standard error of pt , n is the number
of dots on the dot grid inside the area A of interest, and nw is the number of
forest dots on the dot grid.

The area proportion always has to be seen in relation to the total area
(Fig. 2.2).

In practical applications the total forest area Aw is often estimated by multi-
plying the (known) total area A by the estimated forest area proportion  ( )pt :
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with the variance v(Aw) and the standard error s(Aw)
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Fig. 2.2. Area proportion assessed by dot grids



If these estimation equations are used for a systematic dot grid, as opposed to
a random sampling of dot locations, the standard error is generally overesti-
mated. The form and the spatial distribution pattern of the forest areas influ-
ence the amount of overestimation. Kleinn (1991, pp. 26–27) shows by using
systematically distributed points that the difference between the sampling error
of the area estimate and the true sampling error depends on the forest distri-
bution. It is moderately low for small-scale fragmented forest areas.
Nevertheless, experience shows that the binomial distribution gives acceptable
results for large inventory areas, as long as the forest patches are small com-
pared with the sample grid and as long as they are irregularly distributed
(Trachsler et al. 1980).

Sampling techniques for area estimation may be based on maps, aerial pho-
tographs, digital classification, or field surveys. Where maps and aerial photo-
graphs are used, it must be ensured not only that the latest data are verified but
it must also be recognized that precision will depend on the scale at which the
sampling is done. As a general rule, the larger the scale, the better is the accu-
racy. Forested areas are often only found on maps when they exceed a certain
area. Small patches of forest area may consequently not appear, which leads to
underestimation of the total forest area. Only maps with a high-dimensional
stability should be employed, or even better, recent aerial photographs, if
available.

2.3
Tree Information and Information for Characterizing the
Growing Stock

2.3.1
Species Identification

As it is seldom possible to identify tree species from aerial photographs of trop-
ical forests, identification must be made through a terrestrial survey. Every
inventory team should have or acquire thorough knowledge of the species to be
found in the inventory domain; this in turn requires that every tree on every
sample plot be identified. The large number of species occurring in the tropics
(Brünig 1973), the similarity of some species, the fact that the tree crowns are
often invisible from the ground, and the scarcity of dendrological experts ren-
der this a very difficult task to accomplish. It is often necessary to strike a com-
promise between precise botanical identification and the efficiency of the
terrestrial surveys (Noack 1971).

Every field survey team should include at least one “tree finder.” This may be
an experienced forester – though the services of such are often difficult to
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obtain – or one of the local inhabitants, who often possess an astonishing
knowledge of the species occurring in their neighborhood. Potential deficits in
the expertise of the selected tree finder should not be underestimated: basic
training courses should be provided to all and a continuous checking of survey
results is necessary.

Tree finders are often only familiar with the local name of a tree species.
Consequently it is necessary to compile a list of local and botanical species
names. One species may have several local names, while one local name may be
applied to a number of different species. Local names may vary with the 
gender or age of a tree. Consistency of records may be enhanced by making
extensive use of the same tree finder over longer periods of time.

In addition, an identification key based on morphological and anatomical
characteristics of a species, such as bark, roots, leaves, and fruits, can be of great
value (Ella and Escobin 1993; Luxmi-Chauhan et al. 1995; Salang and Sugawa
1997; Batalha et al. 1998; Ella and Pitarguen 1998). Subsidiary methods have
been described to support species identification, such as chlorophyll fluores-
cence (Tyystjarvi et al. 1998) subepidermal features (Luxmi-Chauhan et al.
1998), comparative DNA amplification fingerprinting (Böhm et al. 1993), or
allozymes (Rajora and Zsuffa 1991).

It is by no means always possible to survey every species, yet no species
should be ignored whether commercially important or not. In any case, the list
of identifiable species should be supplemented by a catalogue illustrating those
that were not identifiable. The catalogue leaves a legacy for future inventories
and a possible delayed identification.

In summary, the quality of species identifications may be improved through
various measures:

● Keeping a small number of permanently employed tree finders on the staff.
● Conducting conscientious, repeat intensive training courses throughout

the survey period.
● Compiling a list of local and botanical species names.
● Constructing a simple identification key, at least for the most important

species and those easily confused.
● Checking of inventory records on the sampling plots by particularly well

qualified staff. The findings of such checks should be presented to field
crews.

● Systematic checking by dendrologists, including cross-checking of parts
from randomly selected trees from a botanical laboratory. The frequency of
such checks should be high at the beginning of an inventory.

● Employing the services of a specialist who can, in case of doubt, identify the
species from various samples.
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2.3.2
Diameter at Breast Height and Upper-Stem Diameters

Diameter at breast height (DBH) is the most important measurable parameter
of a tree in the context of a forest inventory. Of all measurements on a tree, this
is one of the easiest to take and should consequently be recorded for all trees
on each sampling site. It is measured not only in forest inventories but in
almost all studies related to forestry and forest resources, and is thus a valuable
measure for comparisons. The breast height is selected as it is the most con-
venient point to measure a diameter along the stem. In countries using the
metric system, DBH is taken at 1.3 m above ground level, in the USA and
Canada at 1.37 m, and in Japan at 1.25 m.

DBH serves as a basis for computing other tree parameters, such as the basal
area or volume. Through a summation of the cross-sectional area at breast
height of individual trees, which is a function of DBH, the basal area of a stand
can be computed, which in combination with the number of trees reflects the
density of the stock.

DBH measurements can be utilized to estimate diameter distributions (de
Carvalho 1981), which present the number of trees per diameter class
(Fig. 2.3). Diameter distributions form an essential part of inventory results, as
they allow the determination of stand structure, stage of development, and in
some cases even the silvicultural approach to stand management.

A formal model describing the frequency distribution of DBH values or
basal areas in a stand is often of great utility in forest management. Yields and
economic values of thinning and harvest operations and often growth depend
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critically on the size distribution of trees. Models are commonly obtained by
fitting an observed diameter distribution to a statistical density distribution of
choice. Distributions such as the Weibull, Johnson, or beta have traditionally
been popular (Magnussen 1986; von Gadow 1987; Gove and Patil 1998; Cao
2004). According to Pretzsch (2001), the three-parameter Weibull function will
often provide a reasonable fit to a diameter distribution. The function of the
three-parameter Weibull is

( ) ,F x e1 [( ) / ]x a b c

= - - -

where a is the lower limit of the distribution, b the scale parameter, and c is a
shape parameter ({x, a, b, c}>0).

According to the standardized system of the International Union of Forest
Research Organizations (IUFRO 1959), the following labels are used to signify
the various diameter classes:
d the DBH over bark,
c the circumference of the stem at breast height over bark,
g the basal area at breast height over bark,
du, cu, gu the under-bark values of d, c, and g, respectively,
db the diameter over bark at buttress height,
dst the diameter over bark at stump height,
dx the diameter over bark at x meters height, for example,
d7 is the diameter at 7-m height, and 
d0.xh the diameter over bark at 0.x of tree height, for example, d0.1 is the diam-
eter at one tenth of tree height

The most widely used instruments for measuring DBH are calipers and
diameter tapes. The great girth of trees in tropical forests renders diameter
tapes preferable to calipers, as they provide more consistent measurements. In
order to measure tree diameter, the diameter tape should be wound around the
trunk in the horizontal plane and pulled tight with no bend, wrinkle, kink, or
buckle anywhere along the tape. Moss, lichens, and loose bark should be
removed prior to measurement.

Other measuring instruments are the Biltmore stick and Bitterlich’s sector
fork (Fig. 2.4). Subjective errors may occur with either of these, which make them
more suitable for rough measurements rather than for precise measurements. A
detailed description of these instruments can be found in Hush et al. (1982).

Readings should be accurate to the nearest millimeter. Rounding-off to the
next centimeter or allocation to general classes should not be carried out during
the actual measurement in the forest. Rounding-off of the DBH does not allow
precise determination of growth in diameter. DBH is a continuous parameter but
may be transformed into a discontinuous one if registered in classes. A tree is
then only considered to display an increase in diameter if the latest measurement
exceeds the threshold of the class to which the tree was previously assigned. On
permanent sampling plots established for the purpose of quantifying increment,
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the DBH must be measured to the nearest millimeter. The exact height and,
where callipers are used, the direction of the calliper arms must be recorded.

Considerable bias occurs when the cross-sectional area is calculated from
class observations of DBH, as

cDBH=DBH + rounding error

and for measures related to basal area the bias can be obtained from

E (cDBH2) = E (DBH + rounding error)2,

where E denotes an expectation (across diameters).
Errors in DBH measurements may occur in measuring with calipers or

diameter tapes. Errors arise from the tree, the instrument, and the operator.
For noncircular cross sections the tape is always positively biased. The bias of
a DBH measurement obtained with a calliper depends on the location of the
measurement and can be smaller or larger than the bias of a tape measure-
ment. The accuracy of diameter measurements of trees with irregular shapes
by callipers can be improved by the following measurement rules:

● Measure the maximum and minimum diameters
● Measure the maximum diameter and the one at right angles to it
● Measure any two diameters at right angles to each other

The instrumental error of cloth and fiberglass tapes is due to stretching of the
tape; tapes made of steel are much less prone to stretching. Worn-out callipers,
where the angle of the calliper arms is no longer 90˚ or where the arms are not
simultaneously in a horizontal plane, can result in substantial errors.

The main sources of operator error with both tapes and callipers are caused
by (1) incorrect location of the point of measurement (i.e., above or below 1.3

Diameter Scale

Eye

Pin

Fig. 2.4. Bitterlich’s sector fork
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m above ground), (2) incorrect tension (tape) and pressure (calliper) during
the measurement, and (3) incorrect reading of the scale of the instrument. The
last of these occurs more often than expected when a tape shows the reading of
circumference on one side and the diameter on the other.

In tropical rain forests and mangrove swamps, trees often have buttress or
stilt roots with root collars extending far up the stem. If this is the case then the
diameter is measured above the point at which the thickening ceases, and just
like DBH is taken as a basis for the determination of volume and stem form.
The instructions for field surveys should include clear definitions of the posi-
tions at which the base diameter of trees with forked or branched trunks or
those growing on slopes is to be measured (Fig. 2.5). Some forest inventories
require additional measurements of upper diameters as parameters for the esti-
mation of stem form or volume, or the computation of volume functions.
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Fig. 2.5. Measurement of diameter at breast height (from Zingg 1988)
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Optical measurements of stem diameter are made with a dendrometer.
A dendrometer is an instrument for measuring the diameter and height above
ground of points along the stem. There are four types of optical dendrometers
for the measurement of upper-stem diameters of standing trees:

1. Optical forks
2. Optical callipers
3. Fixed-base range finder
4. Fixed-angle range finder

Optical forks works on the basis of an angle subtended by two vertical sides of
a stem. The point of intersection of the two lines (the vertex) is the observer’s
eye. The geometry is shown in Fig. 2.6.

The use and the design of optical forks depend on whether the angle is con-
stant or variable. If the angle is constant, the distance from the tree must be
varied; if the angle is variable, the distance must be constant. Where the angle
is combined with the angle of inclination, the measurement and inclusion of
the latter in further calculations can be dispensed with.

The best-known types of optical forks are the mirror Relaskop and the Tele-
Relaskop (. In both cases the angle of inclination is automatically corrected for –
the angle stays the same but its confounding impact on the measurement is
eliminated. As the angle can be varied, it is possible to measure the diameter at
several different heights from a single location. The measurement of the diame-
ter at various positions along the stem with a mirror Relaskop is illustrated in
Fig. 2.7. Readings are in tachymeter units. At a distance of 20 m, one unit corre-
sponds to 10-cm width. For instance, if the measurements shown in Fig. 2.7 had
been taken every 20 m along the stem, the first reading of 6 would correspond to
a diameter of 60 cm; the second reading of 4.6 to 46 cm; the third of 1.3 to 13
cm, and the fourth of 0.5 to 5 cm.

The precision of measurement of the diameter at higher levels depends on
the distance from the tree and the visibility; where the view angle is smaller
than 2% and larger than 10% the precision of the measurements is affected.
Specifically for the measurement of large-diameter trees the wide-scale
Relaskop has been developed. For precision measurements, the Tele-Relaskop,
with its magnification of ×8 is to be recommended (Fig. 2.8). Any kind of
Relaskop should always be mounted on a tripod.

Optical callipers comprise a scale with two pentaprisms attached and a sight-
ing device. One pentaprism is in a fixed position, the other can be moved along
the scale. The observer looks through the fixed prism at one side of the tree (as
seen in cross section). The movable prism is moved along the scale until the two
sides of the trunk appear to coincide (Fig. 2.9). As the measurement is based on
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the principle of parallelism of lines of sight, correction of the inclination is
unnecessary. The diameter is read off from the position of the moveable prism
on the scale. The best-known optical calliper is the Wheeler pentaprism. If a cli-
nometer is attached, the height at which the various diameter measurements
were taken is determined simultaneously.

Range finders do not use parallel lines of sight, but allow determination of the
stem diameter through the relationship between a base and the angle of sight.

d = 2r = 2R sin

= 2R tan cos
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Fig. 2.6. Geometry of optical forks
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Relascope Units
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Fig. 2.7. Measurement of upper-stem diameters with the Relaskop

Fig. 2.8. Bitterlich’s Tele-Relaskop
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Fixed-base range finders, such as the Barr & Stroud dendrometer, are mounted
on a fixed base, and the angle of measurement is varied. With fixed-angle range
finders (e.g., the Breithaupt TODIS) the angle of the optics is predetermined and
the baseline is varied. Range finders are particularly suitable for precision meas-
urements and in conditions of poor visibility are far superior to other optical
dendrometers.

Stem diameter above 1.3 m can theoretically be determined with instru-
ments normally employed for measuring DBH, as long as these are fixed on a
pole or tripod. The only practicable instrument of this type is the Finnish cal-
liper, comprising a parabolic measuring scale attached to a telescopic arm. It
has been employed in national inventories in Scandinavia, Germany, and
Switzerland. This device, however, should not be used for measuring diameters
at heights above 10 m (Fig. 2.10).

Older textbooks suggest that the best way to measure the upper diameter of
a tree is simply to climb up and use a measuring tape or calliper (Fig. 2.11), but

Fig. 2.9. Optical calipers



Fig. 2.10. Finnish calliper

Fig. 2.11. Measurement of upper-stem diameters with callipers (by courtesy of
Andreas Zingg, WSL, Switzerland)
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this method is not only dangerous but also rarely achieves set standards of
accuracy. Climbing should be limited to a few exceptional cases.

2.3.3
Cross-Sectional Area Measurement

The cross-sectional area of a tree is that area it covers in cross section at breast
height. A synonym for cross-sectional area is basal area. The total cross-sec-
tional area of all trees or classes of trees per unit area (e.g., per hectare) is an
important parameter for determining stock density. It is generally assumed
that the cross-sectional area, g, is circular and can thus be directly computed
either from the diameter, d, or the circumference, c, according to the following
equations:

g =(π/4)d 2

and

g =c2/(4π),

where d is the diameter at 1.3 m and c is the circumference at 1.3 m.
The cross-sectional area of a stand is measured in square meters or square

feet. Unfortunately, the cross-sectional area of a tree rarely has an outline that
is a perfect circle. Rather, the assumed circular outline is an approximation.
Some species, for example, Tectonia grandes, have a very irregular stem form.
Matérn (1956) suggests that deviations from the circular can be described
through (1) the convex deficit (Fig. 2.12) and (2) the isoperimetric deficit. The
convex deficit is the difference between the area as determined with a measur-
ing tape and the actual cross-sectional area of the stem. If the cross-sectional
area of the stem is not circular, the circumference is greater than that of a 
circle of the same area.

Diameter measurements by tape and by callipers affect the calculation of
cross-sectional area for trees with irregular shapes in different ways. Wherever
measurements by tape and equations for computing cross-sectional area
assuming a circular form are applied, the computed area is always greater than
the true cross-sectional area. All areas of convex form deviating from the cir-
cular display an isoperimetric deficit.

Where a calliper is used for measuring noncircular trees, the error may be
smaller or larger and positive or negative compared with tape measurements.
Actual tree cross sections are neither circular nor elliptical. To control bias
arising from the assumption of form it is advisable to measure two diameters
perpendicular to each or to measure the smallest (d1) and largest (d2) diame-
ters and calculate the geometric mean, d d dg 1 2= .
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2.3.4
Height

Tree height is another tree attribute which can be measured directly. Tree
height is a parameter in volume and increment functions and, in combination
with stand age, serves as a measure of site quality. The term “height” is relatively
vague and must be defined according to inventory objectives. The most com-
mon definitions are (Fig. 2.13):

● Total height. This is the vertical distance between the base of the tree stem
(ground level) and the topmost tip of the tree. However, practical problems
arise in measuring the topmost tip of trees, for example, in tropical forests
where the tip of a tree is seldom visible from the ground or where trees have
drooping tops (e.g., hemlocks)

● Bole length. This is the distance along the stem between the stem base at
ground level and the base of the (live) crown. The base of the crown is the
point where the lowest living branch is attached to the stem. Stipulations
for measuring lopsided crowns or crowns with dead branches must be laid
down in the survey instructions.

Fig. 2.12. Cross section of a stem demonstrating the convex deficit
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● Merchantable height. This is the distance between the base of the stem at
ground level and upper end of the last merchantable section of the stem.
This point is defined by product-specific minimum-diameter standards, or
on the basis of qualitative features such as branches, irregular stem form,
or stem injury. Its determination in field surveys is liable to subjective
assessment errors.

● Stump height. This is the distance from the ground to the point at which the
stem has been or will normally be cut. In computing volume functions, it
is taken as a constant based on average practice.

● Usable length. This is the merchantable height minus the stump height.
● Sound merchantable length. This is the usable length minus the length of

stem displaying injury.
● Crown length. This is the distance from the crown base to the tip of the tree.
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Fig. 2.13. Definitions of tree heights
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Only in exceptional cases can tree height be measured directly. There are many
instruments for measuring heights. They are known as hypsometers, altime-
ters, or clinometers. Their use is based on one of two principles :

1. The relationship between similar triangles (geometric principle) (Fig. 2.14)
2. The determination of angles of inclination (trigonometric principle)

(Fig. 2.15)

Measurements using the geometric principle are based on the equation

,AC
A C

AB
A B=

l l l l

where AB corresponds to the tree height. Instruments applying the geometric
principle use fixed distances of A′B′, A′C′ and AC, where A′B′ and A′C′ are
given on the instrument and AC is set up by some reference fixed at the tree.
Examples of instruments applying the geometric principle are the Christen,
Merritt, and JAL altimeters. They all include a scale about 30-cm long. With the
Christen altimeter, the visual image of the tree or part of the tree to be meas-
ured must be fit exactly between the upper and lower ends of the scale. The
height or length of a tree, a stem, or a stem section is then determined on the
basis of a fixed reference length on the stem. Where the upper diameter is
measured with a Finnish calliper, the telescopic tube can be employed as a
reference length (Fig. 2.16).

The advantages of these instruments are they are relatively simple in con-
struction, the distance from the tree need not be measured, only one reading

A'C'

AC
A'B'

AB
=

B'

B
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A'

Fig. 2.14. Height measurements: geometric principle
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is necessary, and the measurement is not affected by the inclination of the
terrain.

The trigonometric principle is illustrated in Fig. 2.15. One measurement is
made at the tree tip, another at the stem base. The two angles a1 and a2 are
read, and the distance of the observer from the tree, D, is measured. The tree
height is then determined from these three known variables according to

BC = D tanα1

and

CA=D tana2.

As the tree height AB is given by BC+CA, it follows that

AB=D (tana1 +tana2).

Examples of instruments using the trigonometric principle are the Abney level,
the Haga altimeter, and the Blume Leiss and Suunto clinometers (Fig. 2.17). A
modern instrument for measuring tree height is the Vertex altimeter
(Fig. 2.18), which uses ultrasonic signals to obtain the exact distance from the
observer to a tree. The height is calculated trigonomically through the distance
and angle. The Vertex altimeter can be used for measuring height, distances,
angle, inclination, and current air temperature. The Bitterlich Relaskop can
also be used.

Systematic errors in the measurement of tree height are especially likely
when trees are leaning or have large crowns (Fig. 2.19). Deciduous trees often
pose a special problem when the crown has no distinct tip.

As the measurement of tree height is relatively time consuming, it can usu-
ally only be undertaken on a subsample. The height of nonmeasured trees is
often based on predictions obtained via a model estimated from the subsample
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Fig. 2.15. Height measurements: trigonometric principle
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Fig. 2.17. Altimeters using the trigonometric principle

Fig. 2.18. The Vertex altimeter
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of heights. The most common model is a height curve, showing the relationship
between tree height and DBH (Loetsch et al. 1973; Hush et al. 1982). In man-
aged forests the relationship between tree height and age is used to compute the
yield potential of a stand or site (Prodan 1965).

It is often observed that the total production of a stand is proportional to its
height. Within a climatic region and conditional on this height, the total pro-
duction appears to be independent of stand age, site, and silvicultural treat-
ment. The apparent conformity of this relationship is the basis of what has
become known as Eichorn’s Law (Eichhorn 1904). Different definitions are
used for presenting the stand height:

● Mean stand height, h h Nj

i

N

1

=
=

/d n

● Height of the mean cross sectional area of a tree, hg

● Lorey’s mean height, h g h GL i

i

N

i

1

=
=

/d n

● Height of dominant trees, hdom The arithmetic mean of the height of the
100 (h100) or 200 (h200) trees with the largest DBHs

The following functions are often used to describe the general development of
height over time in homogeneous monospecific single-age stands:

● Bertalanffy:

h = a [ (1 – b) ect ]1/(1-m),

where a is the maximum height (horizontal asymptote), t is age, and c and
m are coefficients to be determined

● Schumacher:

h = æ-b/t,

−32 m
−30 m

−34 m

−30 m

−27 m

Fig. 2.19. Sources of errors in height measurements (from Schmid-Haas et al. 1978)
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with a horizontal asymptote at h=a and a point of inversion at t=b/2
● Lundquist:

h = ae,(-b/t)c,

with a horizontal asymptote at h=a, and a point of inversion at t = (bc)1/c /
(c + 1), and where b and c are coefficients to be determined

● Decourt:

h = (t2 / a) [ (t2 + b) (t + c) ],

with a horizontal asymptote at h=1/a, and where b and c are coefficients to
be determined

Stand height curves are the graphical display of height above DBH and show
the dependency of the tree height on tree diameter. Stand height curves are
shifted “upwards” with increasing age., but the shift is not uniform across all
diameter classes since trees with the same diameter may belong to different
stand layers with contrasting height growth profiles (Fig. 2.20).
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Fig. 2.20. Stand height curves in spruce stands (after Prodan 1965)
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Table 2.3 presents commonly used functions for stand height curves in
homogeneous stands.

2.3.5
Bark Thickness

The diameter of standing trees naturally includes twice the thickness of the
bark. For commercial purposes, however, only the volume of the actual timber
is important. To calculate this, twice the thickness of the bark must be sub-
tracted from the overall diameter. Instruments for measuring bark thickness
are the Swedish bark gauge and the bark hammer (Fig. 2.21).

Bark measurements should be conducted with great care. With a bark thick-
ness of, for instance, 10 mm, a measurement error of ±1 mm leads to an error
of ±10%. Determination of bark thickness through coring is not to be recom-
mended, as this incurs the loss of loose bark tissues and a compression of the
bark itself, both of which can lead to pronounced bias in the recorded thick-
ness values.

Stem diameter under bark (du) is often a linear function of stem diameter
over bark (d1.3). If we have an estimate of this relationship then we can obtain
an estimate of bark thickness by predicting du from d1.3 and then take the dif-
ference as twice the thickness of the bark. The linear relationship has the basic
form du=a+bd1.3. Values of a and b for three tree species are given as follows
(after Loetsch et al. 1973):

● Tectona grandis: du= 4.962 + 0.003d1.3
● Dipterocarpus alatus: du= 4.356 + 0.0065d1.3
● Shorea albiba: du= 2.170 + 0.0079d1.3

The proportion of bark varies with species, age, buttressing, site, tree size, and
position on the stem (Santander Flores and Albertin 1974; Smith 1979).

Table 2.3. Functions for stand height curves in homogeneous stands

h=adb

h = a(1 − e- bd)
h=a + bInd
h = 1.3 + d2/(a  + bd)2

h = 1.3 + a[d/(1  + d)]2

h = 1.3 + ae- b/d

h = 1.3 + a + bd  + cd2

a, b, and c are coefficients to be  estimated, d is the diameter at breast height
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2.3.6
Tree Form

The form of a tree is captured by the diminution of the diameter from the base
to the tip. The diminution in diameter varies with species, site, stock density, or
age. Tree form determines the utilization of timber and is a major component
for the estimation of the volume of a tree.

Tree form can be described in terms of theoretical solids. The simplest solids
approximating the various stem sections are the cylinder, the paraboloid, the
cone, and the neiloid.

The form factor f is the relationship between the stem volume and the vol-
ume of a geometric figure – usually a cylinder – with the same length (height)
and cross section g as the stem. The volume is given by

v = ghf ;

thus, the form factor for a cylinder is less than 1 and it compensates for the
overestimation that would be incurred if one assumed a cylindrical stem form.

The form factor cannot be measured directly. An alternative way for
describing stem form is to calculate the form quotient, which is the ratio of an

Fig. 2.21. Instruments for measuring bark thickness



upper-stem diameter to a reference diameter. If the DBH is taken as a refer-
ence diameter, the resulting form quotient is termed the breast height form
quotient. It is not a true expression of the stem form, as the form quotients for
trees with the same stem form but differing dimensions vary. Consequently,
breast height form quotients are not directly comparable.

Hohenadl (1936) suggested that the diameter at one tenth, d0.9, of the tree
height be taken as the reference measurement. This allows computation of what
is termed the natural form function, which in turn permits the direct compari-
son of stem forms independent of tree dimensions. Hohenadl (1936) divided
the stem into five sections and derived a form quotient for each section:
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The tree form quotient according to Hohenadl can then be computed from
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and used for the immediate calculation of stem volume:
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Analogue series can be calculated with DBH as a reference diameter.
An alternative way to describe tree form is through a taper function. Taper

functions express the decrease in diameter from top to base. Scatter plots of
stem diameter against stem height visualize the taper of a tree in a graphical
format and allow for fitting the data to a function that describes the trend in
the data. The result is a taper curve (function). With the advent of powerful
computers, a variety of polynomial curves have been fitted to the profile of
individual trees. For example, Fries and Matérn (1965) fitted a polynomial up
to 58th power. Kozak (Kozak and Smith 1966; Kozak et al. 1969) fitted a ratio
of two second-order polynomials and found it acceptable. Species vary greatly
in branching habits, basal swell, and stem form, and variation within a species
is also important; hence, no single taper model is equally suitable to all species
and all sizes of trees. Rather, specific taper functions are needed on a species-
specific and a regional basis (Czaplewski 1989; Czaplewski et al. 1989).
Intensive studies have been undertaken in order to develop mathematical mod-
els that describe the stem taper (e.g., Sterba 1980; Reed and Green 1984; Bruce
and Max 1990). Recently flexible trigonometric and mixture modeling (i.e., the
taper is assumed to be a mixture of several standard geometric shape-curves)
has advanced our arsenal of taper functions to be considered in a specific appli-
cation (Sharma and Zhang 2004).

The first step towards obtaining a taper equation is to convert paired meas-
urements of stem diameter and stem height into relative heights and diameters,
for example, the height of a measurement point divided by the total height, or
the diameter at a measurement point divided by DBH. The result is a set of
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dimensionless numbers, where most of the correlation between size and varia-
tion is eliminated. Raw values of height and diameter often show large changes
in volumes of trees of different size with only minor differences in taper (shape).

Taper functions are used to estimate stem diameters for any height and vice
versa. Where a taper function is available, it can be used in the inventory to
compute volumes for various heights or sections. It is desirable to have unbi-
ased estimates of both upper-stem diameters d and their squared counterparts
d2. Estimates of d are used to derive assortments or products from a stem and
estimates, whereas d2 is used to estimate volume.

Typical taper functions for relative diameter have an inflection point at
about 20% of the height (from below), a point where the second derivative of
the taper curve changes sign. This change cannot be seen at stems but emerges
visually when the taper profiles are plotted with vertical scales compressed to
1/50 and 1/100 of the horizontal scale.

Many trees show a substantial difference between the shape of butt swell and
the shape of the upper part of the stem, which is difficult to capture in a single
function. Therefore, many taper functions are segmented polynomials. One
part describes, for example, the butt, while the other describes the upper stem.
The lower joint point is at the butt height or between the butt height and the
inflection point. Segmented curves need to be kept smooth and continuous at
the joint point, which can be realized by conditioning submodels to be con-
nected at these points and smoothed by conditioning their first-order and
higher-order derivatives (Max and Burkhart 1976).

Max and Burkhart (1976) developed a segmented polynomial model that
has consistently performed well. The from of the model is
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where rd is the relative diameter (i.e., the ratio of an actual diameter at a meas-
uring point above DBH to DBH, bi are regression coefficients, i={1,2,3,4}, h is
the height above ground estimated, H is the total tree height, ai are join point
parameters estimated from sample data, i={1,2}, and
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2.3.7
Volume

Volume is among the most important attributes determined in forest inven-
tory; the sampling design of forest management inventories is commonly
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optimized for volume. Procedures for volume determination are manifold
and cannot be discussed in detail here. For those interested, textbooks written
by Prodan (1965) or Hush et al. (1982) provide extensive information.
Methods and problems of volume determination are outlined in Cunia (1979)
and Kublin (1987). These historic references are still the most comprehensive
and they answer all basic questions associated with volume estimation in
practice. Computation of volume functions requires a solid basis in regression
analysis. The books by Draper and Smith (1981) and Myers (1986) give an
excellent undergraduate-level introduction to the topic.

The selection of the method to be used for volume determination is one of
the most important decisions in the planning of an inventory. Volume estima-
tion must be unbiased. Biased volume estimates may invalidate all main results
of the inventory (Cunia 1981; Gertner and Köhl 1992).

Existing volume functions offer convenience and expediency, but they
should be carefully checked before they are accepted for use. Existing volume
functions have often been derived from data representing only a small region
or a nonspecific population. The verification of existing volume functions
before their application in a forest inventory is essential (Kaufmann 1991).

It is of the utmost importance that the volume to be quantified in the inven-
tory is unambiguously defined. To this end, it is necessary to stipulate from the
beginning:

● The minimum and maximum diameter of the trees to be surveyed
● To what minimum diameter of the upper stem the volume is to be calcu-

lated (this gives – together with the maximum and minimum diameter –
the defined spectrum of tree forms)

● Whether the volume is to be determined inside or outside bark
● Whether branches, roots, and stump are to be included or not
● Whether damaged stem sections are to be excluded or not (this includes a

definition of damage and guidelines for delineating the extent of damage)
● Whether the gross or only the merchantable volume is to be determined
● Whether the term “usable volume” refers to the volume without logging

loss or loss through processing at the sawmill

FAO/UN Economic Commission for Europe (ECE) proposed a definition of
standing volume to be applied in forest inventories (p. 393 in UN-ECE/FAO
2000,):

Volume of standing trees, living or dead, above-stump measured overbark to
top (0 cm). Includes all trees with diameter over 0 cm (d.b.h.)

Includes: Tops of stems, large branches; dead trees lying on the ground which
can still be used for fibre or fuel.

Excludes: Small branches, twigs and foliage.
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Volume may be expressed in several different units. It is advisable, not least
to allow international comparison of results, to use the metric system (cubic
meters). Volume is usually determined in three steps:

1. Computation of volume functions for individual trees (preliminary study)
2. Measurement of individual trees (field surveys)
3. Determination of individual tree volume and compilation for data analysis

Besides methods for determining the volume of individual trees there are also
methods for estimating the volume of whole stands. The following remarks are
restricted to volume determination of individual trees as forest inventories
almost exclusively employ methods for the determination of such volumes.
The single tree volumes are accumulated on a plot basis to give figures for
larger units of reference.

Before the actual field survey is conducted, the method of volume estima-
tion for single trees must be determined, preferably through a preliminary
study. The aim is to derive valid (ideally unbiased with minimum prediction
error) volume functions for single trees, species groups, vegetation types, or
particular sites. A decision has to be made whether global or stratified models
are to be used (Lappi 1991).

In the past, volume tables were often constructed by means of graphical
methods, and were often subjectively biased. As statistical errors cannot be
computed from such tables, they should not be used in inventories. The con-
struction of volume tables is not discussed here.

To obtain representative data for the computation of volume functions, the
volume of a sufficient number of sample trees must be measured by sections
for which the assumption of a simple geometric shape is appropriate. This
task is considerably easier if the sample trees can be felled. For reasons of cost
or time, however, this is seldom possible, so it is usually necessary to take a suf-
ficient number of measurements of diameters at upper levels on standing
trees.

Ideally, four to ten sections or diameters should be measured, the measure-
ments in the lower portion of the stem being taken at smaller intervals than
those in the upper portion. The measurements can be used to estimate a spe-
cific geometric shape of the tree stem or to approximate the trend in diameter
as a function of height by means of polynomials, spline functions, or form
functions. Examples of the application of spline and form functions may be
found in Kublin (1987) und Schmid (1971). If none of these methods are used,
the volume of individual stem sections has to be calculated based on an
assumption about the geometric shape of each section.

Given gb as the basal area of the lower cross section, gu as that of the upper
cross section, and gm as that in the middle of a stem of length L, the volume of
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a section can be calculated from the following three equations and provides an
approximation to the volume of a cone frustrum:

1. Smalian’s formula: V
g g

L
2

u b
=

+

2. Huber’s formula: V g L
m

=

3. Newton’s formula: V
g g g
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The accuracy of the approximated volumes is best for Newton’s formula. Huber’s
and Smalian’s equations give reliable estimates only for sections that in fact have
the shape of a paraboloid; in other situations they will give biased results. For
Huber’s equation the bias is negative for conoids and paraboloids and positive for
the fuller shapes of third-degree paraboloids. In all cases the bias of Smalian’s
equation is opposite and twice that of Huber’s equation. For many applications
it is preferable to derive volume by integrating a cubic spline curve fitted through
data pairs of height and diameter measurements (Goulding 1979).

The total volume can be computed by summing the volume of individual
sections. This approach is called the sectional method. When measuring sec-
tional stem diameters, DBH and tree height (or length) should be recorded at
the same time, as they are normally used as input parameters in volume func-
tions. These measurements are used as independent variables (predictors) in
regression functions with volume as the dependent variable. These regression
functions can be derived through standard computer programs such as SAS,
SPSS, SPLUS, or STATA.

The most important predictor of volume is usually DBH. Depending on the
desired precision and availability of additional predictors, a measurement of
height and an upper diameter can also be included if they significantly reduce
the volume prediction error. The upper diameter serves as a surrogate of the
stem form.

Volume functions can be divided into three classes. The first class has DBH as
the sole predictor. Functions of this class may be termed local volume functions.
Their validity is obviously limited. They do not account for the potential impact
that age, site conditions, stem form, and growth history can have on the volume
of a stem with a given DBH. The most common local volume functions are:

● V=b0+b1d1.3
2

● logV=b0+b1logd1.3
● V= b0+b1d1.3 +b2d1.3

The second class has DBH and a height measurement as predictors. These
functions have a wider range of validity than functions in the first class. They
are frequently referred to as regional volume functions. Regional volume 
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functions are considerably more accurate than local volume functions.
Examples of regional volume functions are:

● V=b1d1.3
2h

● V=b0+b1d1.3
2h

● V=b0+b1d1.3
2+b2d1.3

2h+b3h
● logV=b0+b1logd1.3

2+b2logh
● logV=b0+b1logd1.3+b2log2d1.3+b3logh+b4log2h

The third class, which can be termed ‘large-scale’ volume functions, includes an
upper-stem diameter dx as a surrogate for stem form. Large-scale functions
have been developed specifically for scientific studies and national inventories.
Examples are:

● V=b0+b1d1.3 dxh
● V=π/4(b0 d1.3

2h+b1d1.3dxh+b2h
2)

The sample trees to be measured for the computation of volume functions
must be very carefully selected. Their geographical distribution should be
based on random sampling. For logistic reasons, sample trees are often con-
centrated at only a few sites. This, however, usually means that only a part of
the total range of variability over the whole inventory area is captured. Further,
sample trees are often selected in the vicinity of roads or in large forest clear-
ings because of easier access. Data from trees in such locations, however, often
lead to a distortion of the inventory results, as the growth conditions differ
greatly from those in the rest of the inventory area.

The ideal number of sample trees lies between 50 and 100 for local volume
functions and between several hundred and several thousand for large-scale func-
tions. The optimum depends on a number of factors, such as the range of diam-
eter, tree dimensions, variation in site conditions, or stand type. The number of
trees needed to derive regression estimates can be calculated according to the level
of significance, the power, and the R2 values. Software such as nQuery Advisor3

facilitates the calculation of sample sizes. Figure 2.22 presents the required sample
sizes for different R2 levels and for k normally distributed covariates. The signifi-
cance level of a=0.05 and a power of 80% were chosen. The results in Fig. 2.22
have to be interpreted in the following way (e.g., R2 value of 0.2):

When the sample size is 113, the multiple linear regression test of R2=0 (a=0.050) for four
normally distributed covariates will have 80% power to detect an R2 of 0.1000.

Sample sizes estimated from generic formulae can only serve as rough
guidelines. The actual problem is very complex (Dees 1988; Shieh 2001).

3http://www.statsol.ie/nquery/nquery.htm



52 CHAPTER 2 Forest Mensuration

Suffice to say that one should always be prepared to acquire additional data if
the predictive precision of an estimated function falls short of a set target.

It is essential to select sample trees covering the entire range of the independ-
ent variables (d1.3, d0.h). Simple random sampling of trees for volume measure-
ment will rarely satisfy this requirement. Most sample trees would be clustered
around the mean value of the predictors. To get sample trees from the entire
range of predictor values the principle of random selection must be modified in
order to ensure that trees of smaller and larger sizes are included in the sample.

The precision of an estimated volume function is determined in one of two
distinctly different ways. In the first approach, about one third of the data is with-
held, for validation purposes, from the estimation process. The volume function
estimated from a random subsample of about two thirds of the collected data is
then tested on the data withheld from the estimation process. The predicted vol-
ume is compared to the measured volume and an estimate of the prediction error
and prediction variance is obtained by standard techniques. Once satisfied that
the function meets specifications, a new set of functions are computed from all
measured trees. It would be a waste of valuable information if one were to leave
about one third of the data used for no other purpose than estimating precision.
The precision of predictions derived from the complete sample is almost always
better than that of predictions derived from a smaller sample.

The second approach to estimation of the prediction error is via cross-
validation or some form of resampling. In a cross-validation the data from one
tree are withheld from the estimation and a prediction is made for this tree from
the estimated volume function. The error of prediction is noted. This process is
repeated for all sample trees. The standard error of prediction is obtained directly
from the individual error estimates. In a resampling approach, a model-based
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Fig. 2.22. Sample size estimation for regression analysis (n over R2) (solid curve two
covariates, dashed curve four covariates)
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prediction error is drawn for each measured tree from a presumed distribution
of errors and a new data set is generated as the sum of a prediction and a ran-
dom prediction error. A new “bootstrap” model is obtained from these new
data in the same way as the original volume function and a new bootstrap pre-
diction is made in turn for all trees. The bootstrap prediction error is obtained
for each tree and the prediction variance is computed by standard techniques.
This process is repeated a large number of times (say 200) and the average pre-
diction variance is calculated (Miller 1974; Li and Schreuder 1985; Magnussen
and Burgess 1996). It is important to note that these methods rely on the
assumption of independently sampled observations (trees). When more than
one tree is selected per sample location, the assumption of independence may
be questionable. In the case of multiple sample tree per location (cluster sam-
pling) it is a safer practice to treat all trees from a sample location as a unit in
the cross-validation or bootstrap procedure.

2.3.8
Weight and Wood Density

Weight may also be used as a measure of production. Weight is increasingly
used for the scaling of traditional forest products and, for several reasons,
seems to be a sensible measure of quantification. It takes a great deal of time
and work to estimate the volume of branches, twigs, or any other irregularly
shaped parts of a tree, and the results are subject to considerable error, whereas
weighing is easy and direct. Many forest products, such as pulp, charcoal, par-
ticle boards, and other wood composites, are conveniently quantified in terms
of weight. It would therefore be logical and attractive to define the raw prod-
ucts in the same units.

The approximate weight of a tree can be obtained on the basis of stem vol-
ume measurements. Hush (1962), Taras and Clark (1977), and Crow (1978),
have derived equations relating the weight of various tree components to DBH
and tree height.

Gross weight of wood includes both the dry weight of wood and the mois-
ture content. The moisture content of a living tree stem varies according to
Kollmann and Côté (1968) between:

● Parts of the tree
● Heartwood and sapwood
● Species
● Tree size within a species
● Growing location of the tree
● Time of day
● Time of year
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If in addition to gross weight moisture content is also measured, the oven-dry
weight can be determined. When gross weight has been measured small sam-
ples of wood are selected and dried in an oven at 105˚C for 24 h. After this time
the water content of the wood samples should have gone (Panshin and Zeeuw
1980). In order to ensure this a subsample of the oven-dried wood samples
should be weighed and again dried for 12 h to ensure that there has been no
further weight reduction. It is important that the samples are weighed as soon
as they come out of the oven, as dried wood is hygroscopic and will reabsorb
moisture from the surrounding air and thus regain weight.

If large differences between the moisture content of the different parts of the
stem and branches can be found it may be advisable to calculate the dry weight
separately for tree components such as stem, branches, or twigs and then sum
up the components’ weights to obtain the total dry weight.

In addition to the moisture content the wood density of trees can be calcu-
lated. Wood density is defined as mass divided by volume at a specific moisture
content:

.Wood density volume
mass=

The units of wood density are kilograms per cubic meter or grams per cubic
centimeter. Published or otherwise available estimates of wood density allow
the calculation of the mass of a tree or its components for a given volume or,
conversely, the volume of a tree stem with a given weight. This concept can
be applied to convert the volume that has been measured on bigger parts of
the sample trees into weight. It can also be used to convert the weight of the
biomass into volume.

2.3.9
Biomass

Woody biomass is a renewable resource. If sufficient time is afforded a new
crop of biomass will replace one that was harvested When managed sustainably
the supply of biomass is safeguarded for future generations. Biomass is, on one
hand, an important forest product that can provide a significant amount of
energy for local and regional consumption but, on the other hand, biomass is
also a major player in the global biochemical cycles, especially in the carbon
cycle. Since about 50% of the forest biomass is carbon (Gifford 2000), forest
biomass provides a good estimate of the carbon pools in forests.

Various definitions exist for woody biomass. Biomass can be described as
the plant material being produced by or resulting from photosynthesis.
Schreuder et al. (1992) define biomass as the amount of living matter per unit
area or the volume of the forest habitat. In the scope of the ECE/FAO global



Forest resources assessment 2000 (FAO 2001) the attribute “above-stump woody
biomass” is defined as

The mass of the woody part (stem, bark, branches, twigs) of trees, alive or dead, shrubs
and bushes, excluding stumps and roots.

“Woody biomass” is defined as

The mass of the woody parts (wood, bark, branches, twigs, stumps and roots) of trees,
alive and dead, shrubs and bushes, measured to a minimum diameter of 0 mm (d.b.h.)

According to the Forest resources assessment 2000 definition woody biomass
includes the above-stump woody biomass plus the biomass of stumps and
roots but excludes foliage. Biomass is often divided into different components
in order to quantify the availability of woody material for different utilization,
for example, sawn timber, construction wood, feed, or bioenergy.

The biomass of trees, on a unit area basis (Young et al. 1964; Lodhiyal and
Lodhiyal 2003), may be taken as a measure of site productivity. Biomass of
components such as roots, branches, stem, bark, top sections, and even needle
or leaf mass can be interpreted as indicators of stand vigor, stand health, and
the need for silvicultural treatment. Biomass is expressed in kilograms of dry
weight. Surveys of studies on the biomass production of various tree species
throughout the world can be found in Young (1976), Pardé (1980), Cannell
(1982), Auclair (1983), Cervantes et al. (1998), Fearnside et al. (1999), Nelson
et al. (1999), Parresol (1999), Komiyama et al. (2000), Cordero and Kanninen
(2002), Cairns et al. (2003), Laclau (2003), and Muller-Landau (2004).

The direct assessment of the woody biomass of a tree is done by a destructive
process. A complete quantification of a tree requires the felling of the tree, sep-
arating the woody parts into different assortments, and assessing the total
weight of the assortments. As the sampling is destructive this method cannot be
used for monitoring tree growth by permanent assessments. This procedure can
be very time consuming and – especially for large trees – can entail substantial
assessment errors owing to the difficult logistics of handling large amounts and
volumes of woody material during the entire process of determination.

As an alternative to the direct determination of biomass, Brown (1997) sug-
gested an “expansion” of the volume of a bole (over bark) to biomass by means
of a volume-weighted average wood density factor. The method assumes the
availability of precise volume estimates. Applications should be limited to cases
where this assumption is justified.

In extensive inventories a direct assessment of woody biomass becomes
impractical. One alternative is to derive biomass functions with tree attributes
such as diameters and tree height or crown attributes, moisture content, and
wood density as independent predictors of biomass. Frost (1990) and Mushove
(1994) derived single tree biomass functions for Brachystegia spiciformis in
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Zimbabwe, with height and DBH as independent variables. Grundy (1995)
derived biomass functions for Brachystegia spiciformis and Julbernardia globi-
flora in Miombo Woodlands, Zimbabwe, which provide the total biomass per
hectare, i.e., they are not single-tree functions. Velle (1995) suggested in the
scope of a national biomass survey in Uganda three different types of biomass
functions, which reflect different growth conditions and phenotypes of trees.
He used DBH, tree height, and crown radius as predictors. Montagu et al.
(2002) developed an allometric equation for Eucalyptus pilularis in New South
Wales, Australia, to calculate aboveground biomass.

Aboveground biomass (kg)=1.021a×e(lnDBH×2.589–2.733),

where lnDBH is the natural logarithm of tree DBH (centimeters) and a is a bias
correction factor based on Baskerville (1965)

The Intergovernmental Panel on Climate Change (IPCC) has default values
for estimating root biomass when the aboveground biomass is known (IPCC
2004)4. These values were used in the carbon calculator to estimate the below-
ground component of the total tree biomass.

Suitable equations (functions) for predicting biomass of trees or stands may
not be available for a particular forest inventory. The equations must then be
obtained from a sample of trees selected specifically for this purpose. Sample
trees have to be selected from the population. The selection procedure for sam-
ple trees is driven by three requirements (Cunia 1979):

1. The sample trees should be representative for the population of interest
2. The selection procedure should allow a valid regression analysis
3. The selection procedure should be cost-efficient.

The trees to be selected for a destructive biomass assessment should not be selected
randomly but should be selected in a way that the individuals cover the whole size
range. On the other hand, the trees should not be selected subjectively. A subjective
selection invariably results in a bias. For example, trees with a low number of
branches should not be selected preferentially just because they reduce the assess-
ment effort of crew members. Objective selection can be achieved by stratified 
random sampling in the following way. All diameters of trees in a plot or stand are
measured. Then the trees are ranked by diameter. The smallest trees are deleted
from the list until the number of remaining trees can be divided by 3. The remain-
ing trees are then divided into three classes: “small”, “medium,” and “large.” From
each class an equal number of trees is randomly selected (Steward et al. 1992).

According to Steward et al. (1992) at least 12 trees should be taken for each
species or species group. In a national biomass survey in Uganda, roughly 3,000

4See their website at http://www.ipcc.ch
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trees were destructively sampled in order to derive biomass functions for 123
species (Velle 1995).

Extensive biomass assessments generally follow a two-phase procedure
(Fig. 2.23). In the first (experimental) phase, a small sample of trees is taken and
destructively measured. Based on this, fairly small sample regression analyses
are carried out and final biomass equations that give the single-tree biomass as
a function of easy-to-measure tree parameters (e.g., diameter at 30-cm, 1.3-m,
and/or 7-m height, crown diameter, or total tree height) are selected

In the second phase, a large set of sample trees is assessed. For all second-phase
trees the tree parameters serving as predictors of biomass are measured Once
these parameters have been assessed, they are used to predict the biomass of indi-
vidual trees through the biomass function. Individual tree biomass predictions
are then aggregated by statistical algorithms to estimates of interest. As this phase
does not require any destructive sampling it is easily integrated into an already-
existing sampling design and extended to cover applications in monitoring.

In order to increase the efficiency of single-tree biomass estimates, Valentine
et al. (1984) introduced to forestry a sample-based method for biomass assess-
ment of single trees that provides unbiased estimates of volume, dry or fresh
weight, and other components such as weight of fruits or mineral content. The
method consists of two sampling phases: (1) employment of randomized branch
sampling (RBS) to construct a random path through the tree, and (2) application
of importance sampling (IS) to select the location of sample discs to be extracted
and weighed.

RBS was pioneered by Jessen (1942) to estimate the amount of fruit on trees.
Valentine and Hilton (1977) used RBS to estimate the foliar area and mass and
leaf count on oak. Furness (1976) used RBS to estimate the number of insect
eggs and the larval population on trees. Gregoire and Valentine (1996) applied
RBS and IS to assess the stem length and surface (bark) area of tropical tree
species. IS has been applied as a method for the estimation of bole volume
(Wiant et al. 1989; Schreuder et al. 1992; Valentine et al. 1992; Gregoire et al.

Phase 1
Destructive sample of

trees and regression analyses
Product: biomass equations

Phase 2
Sample based assessment of

tree attributes and calculation of single tree biomass
Product: biomass figures (total, per ha) for units of reference

Fig. 2.23. Phases of biomass assessments
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1995; van Deusen and Baldwin 1993) and for quantifying fuel wood (de Gier
1991).

In RBS a tree is considered to be the entire stem system that develops from a
single bud. A branch segment or segment is the part of a branch between two
nodes. A path is the sequence of connected branch segments. At each node of
branching a decision about which branch to follow has to be made. The result of
these decisions is a random path through the entire tree. The choice of which
branch to follow is decided with probability proportional to size (PPS), where
“size” is a measure of the biomass above the node of each branch considered for
selection. In other words, the probability of selecting a given branch is propor-
tional to the estimated biomass supported by the branch. A suitable and effective
measure of size is the product of the length of the branch to the end of the path,
l, and its diameter squared, d2, at the node of branching. The selection probabil-
ities assigned to branches at a node must sum to 1 (Valentine et al. 1984). In the
lexicon of RBS no operational distinction is made between branch, stem, and
twig. The total selection probability of a random branch path is the product of
all the nodal selection probabilities along the chosen path. Whole tree estimates
of biomass are then obtained as Horwitz–Thompson estimators (a sample value
is expanded by the inverse of its selection probability) (Thompson 1992).

2.3.10
Quantification of Timber Quality

Even in intensively managed forests, a single stand is rarely stocked exclusively
with sound, defect-free timber. Tropical virgin forests, in particular, often have
a high proportion of trees with defects. The type of defect affects the mer-
chantable volume and the value of a tree. In tropical forests, the ratio of gross
volume to net volume can be as high as 10:8. Consequently, many inventories
require a quantification of the timber quality in order to facilitate an estima-
tion of net volume or volume loss due to defects.

The definition of quality (quality grade) depends on the use for which the
timber is intended. Uses like lumber, poles, ties, shingles, fuel wood, logs, or
veneer each come with a set of quality requirements. The quality is usually
defined according to the grade of the highest value. Quality is almost always
determined on the basis of discrete variables on an ordinal scale. There are two
types of grading systems:

1. Absolute grades: here the quality classes are based on tree dimensions. This
is termed dimension grading and may be done on the basis of, for instance,
minimal length or minimum top diameter.

2. Relative grades: the classification is based on the most valuable product
that can be obtained from the stem.
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Quality may be expressed in terms of (1) merchantable value, (2) quality
index – a figure representing the percentage of the value of a class in compar-
ison to a reference value – or (3) the volume distribution of quality classes of
the product concerned.

Quality is determined on the grounds of dimensions and defects.
Parameters such as the shape of the trunk, branch diameter and branch length,
number of branches, angle between branch and trunk, and number of second-
ary branches can be used to estimate the potential assortments on standing
trees (Borner et al. 2003). Makela and Makinen (2003) used a process-based
growth model to generate 3D sawlogs. Ruschel et al. (2003) studied the market
value of timer for different species in Brazil.

Defects are differentiated into technical and internal defects (Fig. 2.24).
Indicators of technical defects are forks, leans, sweep and crook, spiral grain
limbs, and knots, which indicate the presence of reaction wood or decay or may
impair the technical use of the timber. Internal defects may be indicated by the
presence of conks, suspect scars, fire scars, lightning scars, dead or broken tops,
forks or pronounced crooks, and logging and other scars due to harvesting.

Internal defects may be detected by means of microwaves, X-ray and γ-ray
computed tomography, or magnetic resonance. Detailed descriptions of these
techniques are given by Bucur (1985) and Hailey and Morris (1988).

The allocation of a tree to a given quality class is difficult, as a whole tree can
be assigned several qualities and the mixture of these varies from tree to tree.

Fig. 2.24. Examples of stem defects (from top left to bottom right: unveiled stem, frost
scar, dead branch, bifurcation, scars from raisin extraction, epiphytes)
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Fig. 2.24. (Continued)

Further, there are a number of commercial usages, each of which is based on
different quality classes (Palmer 1975; Hemmila and Sipi 2004; Zell et al.
2004).Continuous changes in the timber market, new technologies, and the
advent of new products with overlapping specifications force the provider or



seller of forest products to constantly adapt definitions of quality classes. For
this reason, a quality classification system used in forest inventories must be as
flexible as possible and based on a set of generic rules that permits a later
reclassification against a revised or new set of criteria.

Information on the wood quality and utilization of tropical wood can be
found in Brazier (1981), and on the detection of decay in Panzer (1975).

2.3.11
Age

Where management reports of tree planting or sowing are available tree age can
easily be determined. In temperate zones, information on tree age can be
achieved through counting annual rings. Seasonal patterns in the number of
cells, cell size, and cell shape laid down in the wood make it relatively easy to dis-
cern annual rings in the wood. For trees with an undisturbed record of growth
the number of rings from the pith to the inner bark is equal to the number of
years passed since the tree reached the height at which the ring counting is done.

Several difficulties can arise in the determination of tree age. Seedlings and
young trees may have endured suppression for periods of time which can vary
greatly in length, from 1 year to several decades, where young trees are sup-
pressed. Increased illumination caused by the opening of the canopy results in
rapid growth in height until the tree reaches the intermediate canopy. During
this phase, increase in diameter remains relatively modest. Only after the tree has
developed a full crown does increase in diameter begin to accelerate. For trees
with this growth pattern an age determination based on size would be not only
be extremely difficult but in all likelihood also biased. Consequently age is often
limited to indicate the period of time a tree has been part of the upper canopy
layer and how long it has taken to grow from one diameter class into the next.

In tropical forests an estimate of age can be provided by repeatedly measur-
ing the same trees (Vanclay 1996). Reliable and useful estimates require selec-
tion of a sufficient number of trees in each size class. The diameter is measured
accurately to the nearest millimeter with a tape. It has proved useful to mark
the level at which the diameter was last measured with paint, so as to minimize
measurement errors. The measurements should always be conducted at the
same time of year and should cover a period of at least 5 years.

It is widely thought that cambial growth in tropical trees is continuous and
generally not sensitive to climatic variation (Richards 1996); tropical trees should
not produce reliable ring chronologies. Worbes (1989, 1992) and Devall et al.
(1995) provide a historic perspective of this viewpoint. A corollary to this view-
point has been that owing to seasonal variation in temperature and soil water,
many woody temperate species interrupt cambial activity and add a morpholog-
ically distinct xylem layer, which results in a discontinuity between annual growth
increments. Even though the seasonal variation is not distinct most tropical 
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locations show intra-annual variation with respect to humidity, rainfall and solar
radiation (Richards 1996; Enquist and Leffler 2001). Eckstein et al. (1981) discuss
the problems of dendrochronology and the prospects for tree ring analyses.
Tropical tree ring chronologies have been described among others by
Pumijumnong et al. (1995) for teak (Tectona grandis) in northern Thailand, Vetter
and Botosso (1989) for Amazonian trees, Devall et al. (1995) for equatorial laurel
(Cordia alliodora), barrigon (Pseudobombax septenatum), and chirimoya (Annona
sraguei) in central Panama, and Palmer and Murphy (1993) for teak in Java.
Boninsegna et al. (1989) analyzed wood samples of 13 tree species from three sites
in Argentina for the occurrence and formation of tree rings. Well-defined annual
tree rings were found in Cedrela fissilis, Parapiptadenia rigida, Cordia trichomata,
and Chorisia spp. Stuiver et al. (1981) and Worbes and Junk (1989) used radioac-
tive and stable isotopes in estimating age. Bomb-produced 14C seemed to be the
most promising method for dating between 1955 and the present.

More aspects of age determination can be found in Borman and Berlyn
(1981), Mariaux (1981), Singh (1981), and del Valle (1986).

2.3.12
Growth and Increment

Growth is the dimensional increase of any organic system, while increment is
the dimensional increase within a given period of time. The main process
behind tree growth is photosynthesis. The growth and increment generated by
photosynthesis depend on environmental factors, growth history, and the state
of the living tissues in various plant organs, such as crown, root, and stem.
During a life cycle, which generally exceeds 100 years, trees are exposed to a
long list of different impacts that each can influence the health and vigor of a
tree and even its shape and structure. Growth (increment) is the net result of
this complex web of interacting processes. The main external growth determi-
nants are soils, nutrient supply, water supply, atmospheric conditions, climate,
competition, and pollution levels.

Growth and increment of single trees is mainly assessed for the following
attributes:

● Tree height (h)
● DBH (d1.3)
● Basal area (g)
● From factor (f)
● Height-to-DBH ratio
● Volume (V)
● Value
● Needle/leaf area
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The growth of a tree is characterized by short-term and medium-term varia-
tions; however, growth trends common to either single trees or stands can be
summarized in a set of general observations.

Growth is understood as the dimension of an attribute under study reached
at a given point in time. The growth curve (Fig. 2.25) is the graphical rendition
or a mathematical formulation of the realized dimension as a function of time
(t), y=f(t).

A generic example for the growth of tree height is the function

,h ae /b t= -

where the asymptote a and the relative growth rate b are constants that have to
be estimated for a particular application.

The growth curve of any attribute in an organic system often shows the
shape of an asymmetric “S” (sigmoid). The curve starts with an exponential
rate of increase, which represents the period of unconstrained growth. During
this period the acceleration in increment is positive. After a point of inflection
(zero acceleration), which is caused by one or more constraints in external or
internal factors, the growth rate decreases. Finally the curve asymptotically
approaches a maximum value (which is rarely, if ever, observed in practice).

To quantify the growth of a stand is a much more complex challenge, as it is
sum of the growth of the trees that make the stand. Stand growth can be quan-
tified by:

● The sum of attribute values per unit area (e.g., number of stems per hectare
or volume per hectare)

● Mean values (e.g., mean tree height, mean diameter, mean volume)

y (t)

Point of
inflection

t

Fig. 2.25. Growth curve
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Additional stand-level parameters and characteristics must be quantified as
well, for example:

● The frequency distribution of DBH, tree volumes, or tree heights
● Density (e.g., number of stems per hectare)
● Tree species composition
● Vertical structure

Forest management can have a significant impact on both the shape of a
growth curve (of trees and stands) and the amount of growth harvested
during thinning and harvest operations. It is therefore important to distin-
guished between:

● The growth of remaining/residual trees in a stand
● The growth extracted during forest management operations (e.g., by thin-

ning)
● The total growth, which is the sum of remaining and extracted stand

Increment is the dimensional increase within a given time interval:
Increment=∆ y/∆t.
Depending on the selected time interval the following types of increment

can be given:

● The acceleration of growth is obtained for the hypothetical situation where
the time interval is infinitely small (∆t→0). It is the first derivative (incli-
nation) of the growth curve (Fig. 2.26).

● Current annual increment, i, is obtained for a time interval of 1 year.
● Periodic annual increment, it1–t2

, is normally calculated for time intervals of
2–20 years (Fig. 2.27). For longer periods the periodic annual increment is the
average annual increment and it is approximately equal to the current annual
increment halfway through the period in question, given that the increment is
approximately a linear function of time during the period in question.
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● Mean annual increment, i0–t, is related to the time interval from age 0 to age
t (Fig. 2.28):
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Increment curves represent the acceleration of growth in relation to time and
have different shapes (e.g., asymptotical, bell-shaped, or negative exponential)
(Fig. 2.29). Several rules can be derived:
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Fig. 2.27. Periodic annual increment
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Fig. 2.28. Mean annual increment
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Fig. 2.26. Acceleration of growth (i.e., the first derivative of the growth curve)
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mean annual increment
current annual increment

i y(t)

i y(t)

i y(t)

1

1

Fig. 2.29. Relationship growth curve, mean annual increment and current annual
increment

● Current annual increment always culminates earlier and at a higher level
than does mean annual increment.

● Before reaching its maximum the mean annual increment is smaller than
the current annual increment.

● Acceleration of growth is the first derivative of the growth curve.
Consequently, increment reaches a maximum when the growth curve
shows its first point of inflection.

● The tangent to the growth curve that goes through the origin at t=0
touches the growth curve at a point t where the mean annual increment is
at a maximum.

In tropical forests, increment can be determined from repeated measurements
on permanent sample plots. In natural forest the growth curves of individual
trees might substantially differ from a sigmoid shape, which is typical for trees
growing in even-aged stands. The concurrence by other trees varies signifi-
cantly during the lifetime of trees growing in natural forests, so periods of sup-
pression may be followed by periods of release.

In temperate and boreal forests diameter increment can be measured by incre-
ment boring. By means of increment borers (Fig. 2.30) an increment core is
extracted from the stem. From the increment core the related radial increment is
obtained by measuring the corresponding width of the tree rings. However, in
years with extreme climatic variations, tree rings might be missing or more than
one ring might be generated. These situations lead to overestimation or underes-
timation of growth. As tree age, viz., time periods, can also be determined from
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the increment core, it is possible to calculate current annual and periodic annual
increment for the tree in question. Where the stem center is hit by the increment
core, one can also obtain an estimate of the mean annual increment. Where the
core does not hit the center or pith, the estimation of growth is subject to errors.

The apparent growth of a forest stand is the net outcome of several growth
components, some of which depend on thresholds and limits of observation.
Stand growth between two points in time is conveniently decomposed into sur-
vivor growth, ingrowth, mortality, and cut. Ingrowth is the number or volume of
trees growing to measurable size between the two points in time. Mortality is the
number or volume of trees dying from natural causes between the two points in
time, cut is the volume or number of trees felled between the two points in time,
and survivor growth is the growth of trees present at both points in time. On the
basis of these definitions, Beers (1962) presented growth terms for continuous for-
est inventory analyses. They are given for two different approaches. One approach
deals with pooled volume records. Tree volumes at the beginning and at the end of
the time period totaled with no attempt to pair successive volumes of individual
trees. In the second approach, successive tree volumes are paired to determine the
growth contribution of individual trees. The second approach is called “the tree
level approach.” The growth equations of Beers (1962) are given in Table 2.4.

Growth equations for volume totals and individual tree growth figures (tree
level approach) differ but, fortunately, lead to the same result. Although Beers

Handle

Cutting bit

Extractor

Fig. 2.30. Increment borer
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stressed volume growth, the terms in the growth equations are equally appro-
priate for a different growth attribute, such as basal area growth.

If stump inventories are carried out to assess cut, the determination of the
felling date has to be done with great care. The volume of felled trees can be cal-
culated by two regression functions, one giving the DBH, d1.3, as a function of
the diameter of the stump, ds, and a second function giving the volume of the
stem, V, as a function of DBH:

( ),d f d. s1 3=t

( ) .V f d .1 3= lt

As estimates of growth depend on their definition (type of growth), it becomes
essential to specify the definition of growth when results from independent
studies are compared. The definitions according to Beers (1962) should be
applied whenever possible. When comparing growth estimates over time or
between entities of interest (population, strata, species, age class, etc.) it is advis-
able to examine how the growth estimates were obtained. The following ques-
tions can help you to identify potential problems of analysis and interpretation:

● Has there been a change of methods or definitions during the course of
time?

● Are results of successive inventories comparable?
● Have seasonal effects (effect of time of assessment during the year) been

handled correctly and documented?
● How was bark increment estimated?

Table 2.4. Equations for growth estimation (after Beers 1962)

Type of growth Formula if using

Volume totals Individual tree  growth figures

Gross growth of =V2 + M + C-I–V =VS2 + I + M + C–I–VS1–M– C
initial volume =VS2–VS1=GS

Gross growth =V2 + M + C–V1 =VS2 + I + M + C–VS1–M–C=GS + I

Net growth of initial =V2 + C–I–V1 =VS2 + M + C–I–VS1–M–C =GS–M
volume

Net growth =V2 + C–V1 =VS2 + M + C–VS1–M–C=G S + I–M

Net increase =V2–V1 =VS2 + I–VS1–M–C=GS + I–M–C

V1 the volume of trees measured on the first  occasion, V2 the volume of trees measured on the  second
occasion, VS1 the initial volume of survivor  trees, VS2 the final volume of survivor trees, GS survivor
growth, M the initial volume of trees dying during the period between inventories, C the  initial volume
of trees cut during the period between  inventories, I the volume of trees at the second inventory  that were
below the measurable size on the first occasion 



While tree growth has been intensively studied in even-aged temperate and
boreal forests (Burschel and Huss 2003; Pretzsch 2001), studies on tropical forests
are comparatively rare. The following selection indicates the diversity of topics
treated when growth of tropical forests is studied. Singh (1989) discusses the var-
ious analytical techniques for determining increment. Lieberman et al. (1988)
describe growth in height in the palm Welfia georgii in a tropical wet forest in
Costa Rica, while Wan Razali (1988) illustrates the derivation of growth models
for regenerated mixed tropical forests with an example from Malaysia. Lugo et al.
(1988) investigated mean annual biomass increment in seven tropical plantation
species. Rai (1975, 1978, 1983) studied basal area, volume, and diameter incre-
ment in various species in India, while Rai and Sarma (1987) present the peri-
odic annual increment for different DBH classes and the mean annual increment
calculated from DBH measurements made over 5–21 years at five locations in
India. Peralta et al. (1987) present the results of observations on permanent plots
in Costa Rica. Uriarte et al. (2004) present a likelihood-based regression method
that was developed to analyze the effects of neighborhood competitive interac-
tions and hurricane damage on tree growth and survival.

2.3.13
Density

The density of stocking is one of the factors included in the basic definition of
forest; hence, “forest,” as a form of land use can only be distinguished from
treed vegetation when the trees occupy a minimum area or when their density
exceeds a minimum standard. Density may be expressed in terms of stem count
per unit area, volume per unit area, or biomass per unit area. One important
attribute used in ecological studies is crown density. Crown density is the pro-
portion of ground occupied by an (orthogonal) projection of the crowns onto
a flat terrain surface (Whitmore 1989). In exploited areas, the crown density
may provide useful information about harvest practices. As such it is a inform-
ative attribute to consider in many forest inventories. Aerial photographs con-
stitute a convenient medium for the provision of crown density estimates.

In undisturbed tropical forests, the trees tend to form a closed canopy. In
these cases the canopy density would be 1.0. Consequently, stem count per unit
area rather than crown density provides a more informative estimate of density.
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Sampling in Forest Surveys 3

3.1
Introduction

Inductive reasoning based on assessing a part of a whole is very much part of
our daily life. For example, when cooking a pot of spaghetti we infer the al
dente quality of all noodles by checking just a few. Where “the whole” is diverse,
complex, and extensive it might be risky to draw conclusions from only one or
a few instances. Sampling is an example of inductive logic by which conclu-
sions are inferred on the basis of a limited number of instances. A sample is a
subset of a population, which itself is the entire set of elements for which esti-
mates about specific characteristics are to be obtained.

In the context of forest resource assessments the collection of information
by means of a complete enumeration is only feasible in exceptional situations.
An alternative to complete enumeration is a sample survey, which serves as the
basis for estimates or inference for the underlying population. The process of
selecting a sample from a population is called sampling.

The first part of this chapter presents some basic terms and concepts, while the
second part describes some sampling procedures important for forest resource
assessments. For further reading the textbooks of Kish (1965), Cochran (1977),
Sukhatme et al. (1984), de Vries (1986), Särndal et al. (1992), Thompson (1992),
Schreuder et al. (1993), and Shiver and Borders (1996) are recommended.

3.2
Basic Concepts

3.2.1
Population, Samples, and Estimators

A population comprises all elements from which the sample is to be taken. It
may be defined very simply, for instance, the trees of a forest stand or the par-
ticipants of a workshop. The definition of the population must be unique and
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allow an operational and comprehensible decision on whether a questionable
element belongs to the population or not.

The population from which the sample is taken is termed the sampled pop-
ulation and must match the target population for which estimates are desired.
Only then can representative conclusions for a target population be drawn. The
population can be either infinite or finite depending on the definition. A pop-
ulation defined as the forest in a given region may comprise an infinite num-
ber of spatial locations but only a finite number of trees. We also need a
temporal definition of a population. Few populations remain constant over
time; most undergo changes due to birth, mortality, emigration and immigra-
tion processes. In the example before, the number of trees in a forest is likely to
change over time. When a population is finite and countable it is customary to
denote the population size by N, where N is a positive integer. For example, for
a population composed of a single forest stand with 200 trees N=200.

A sample consists of a number of sampling units (or simply units) selected
from the population by some design. The population is also uniquely defined
in terms of these units as the union of all possible samples of such units.
Sample units can be either unique discrete nonoverlapping units or arbitrarily
sized units located at random in the population (Williams and Eriksson 2002).
In the former case we view the population as a finite set of unique units that
completely tesselate the population. The tesselated paradigm ensures that every
population element can be clearly allocated to one unique unit. Examples of
sample units are single trees, sample plots, or districts. In the second case we
view the population as composed of an infinite set of possible locations for our
sampling units. A sample location provides attribute information that is repre-
sentative of the sampled locations.

For finite countable populations the N individual units of a population are
identifiable, if they can be uniquely labeled from 1 to N and the label of each
unit is known (Schreuder et al. 1993). While it may be relatively easy to iden-
tify and label N trees in a forest stand, the issue of identifiability quickly
becomes an insurmountable logistic obstacle when the population of the trees
in a large forested area. In extensive forest surveys the construction of an
exhaustive list of sampling units, called the sampling frame, is often one of the
major practical problems (Särndal et al. 1992). Without a complete sampling
frame one must adopt the point paradigm for a definition of the population.
Populations defined by the point paradigm are often less than intuitively clear.

A forest inventory sampling frame is often assembled from a unique
description of what qualifies as forest (i.e., the forest area definition). Forest
area definitions utilize quantitative criteria such as crown density, minimum
patch size, or minimum patch width to facilitate a forest/nonforest decision in
order to construct the sampling frame. Care must be given to the definitions to
ensure that the qualifying population is indeed the population of interest. Even



minor changes in a definition may lead to substantial and often surprising
changes to the qualifying population. The following example illustrates this
phenomenon. A survey of two treed areas with 25 sample plot locations in each
area (circles) arranged in a regular grid found that 13 sample locations were
covered by a tree canopy in the first area while only four were covered in the
second area (Fig. 3.1). Accordingly the sample-based estimates of the crown
density in each area are 13/25 (52%) and 4/25 (16%), respectively. A forest
qualifying threshold of 10% would result in a classification of both areas as for-
est. In contrast, only the first area would qualify as forest if the defining thresh-
old was raised to 30%.

Each sample unit and population element possess a series of attributes of
interest. The attribute may be intrinsic or derived. The cellulose content would
be an example of an intrinsic property. A market value, on the other hand, is
an example of a derived attribute – an attribute that can only be obtained via
another attribute or several other attributes. Natural resource attribute values
often exhibit a considerable variation between units (elements). An attribute
may or may not be measurable or quantifiable. Instead we may define counta-
ble or measurable variables linked to the attribute of interest. Knowledge of
and information on these variables are used for inference about the attributes
of interest. For example, the attribute of interest may simply be the “trees” in a
forest with the element attribute being “tree.” To characterize this attribute
beyond a mere count of trees we may choose to measure variables such as tree
height and stem diameter at breast height, identify the tree species, and assess
crown form. The number of variables to include will depend on what is needed
to be known about the attribute of interest.
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Fig.3.1. Two treed areas with 25 sample locations on a regular grid (circles). Sample
locations under a tree canopy cover are indicated by filled circles (13 in the leftmost area
and four in the rightmost area). (Courtesy of Markus Keller, WSL, Switzerland)



In order to characterize the attributes (variables) of a population certain
parameters are employed. When the parameters relate to all units/elements in
a population they are called population parameters. The aim of surveys is to
estimate population parameters or the functions of one or more of them. The
value of a parameter derived from a sample is called an estimate. The formula
for calculating this estimate is called an estimator. Parameters include aggre-
gates (e.g., total volume, total area) and averages (e.g., mean tree height) of val-
ues associated with each population element or unit. Ratios of pairs of
population parameters (e.g., volume per hectare as the ratio of total volume
and total area), counts (e.g., number of trees), and proportions (e.g., propor-
tion of forest area with a specific attribute) are further examples of population
parameters.

Estimates of population parameters are obtained via estimators. The esti-
mators treated in this book are either design-based or model-based estimators
(Särndal et al. 1992; Gregoire 1998; Little 2004). The underlying principle
behind a design-based estimator is that the population from which samples are
taken is considered as a fixed entity. The random selection of units/elements to
include in the sample is the only source of stochastic variation (sampling
error). Model-based estimators are based on the assumption that the popula-
tion of interest is generated by some process, a process that depends on a set of
parameters to be estimated from the sample. The actual population to be sur-
veyed is but one random realization from this process. We cannot observe the
assumed process, but our sample allows us to estimate the parameters of
the assumed model. Population estimates are obtained by combining the sam-
ple estimates with the model-based predictions for the nonsampled part of the
population (Valliant et al. 2000). Thus, the issue of model bias looms large over
these estimators and convincing support for the chosen model must come
from previous surveys or from the sample data themselves.

Parameters of a population are designated by capital letters from the Latin
and Greek alphabets. Lowercase letters are reserved for individual unit/element
values.

3.2.2
Probability Sampling

The general principle of sampling (Fig. 3.2) is to select a subset of units (i.e., a
sample) from a population, to measure this subset intensively, and to draw
inference from the sample to the entire population.

There exist countless approaches to select a sample from a population.
Intuitively it is obvious that the sample should represent the entire population.
The term representative as used in everyday language suggests that the sample
should be a tailgate miniature or a scaled-down replica of the population.
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Unless each unit in the population has an equal chance of being selected, this
intuitive concept is inappropriate. Many widely used sampling methods assign
varying selection probabilities to the individual units; the chance of being
selected can be assigned with respect to a known attribute or quantitative
measure of the units. A selection method complies with the conditions of
probability sampling when a procedure is followed that ensures that each unit
in the population has exactly the predetermined probability of being selected
for the sample. The selection probabilities are used in the estimators of param-
eters of interest and in estimators of sampling variance (Thompson 1992). The
choice of selection probabilities and estimators is called a sampling strategy
(Särndal et al. 1992).

Given a specific population of N units the set of all possible distinct samples,
s1, s2, ..., sv, can be defined and the units making up each sample can be desig-
nated (two samples are distinct if their union minus their intersection is not
empty). If n units out of N are to be selected without replacement (a unit can

only be selected once) there are ! ( ) !
!N

n n N n
N

=
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(Levy and Lemeshow 1991). Note, n! = n(n − 1)(n − 2)… (1) and 0!=1. For
example, if a population contains 200 elements and we wish to take a sample
of 25 elements, then the total number of possible samples is approximately
4.5×1031 (exact number is 45,217,131,606,152,448,808,778,187,283,008), quite
an astronomical figure. For each possible sample, say si, a selection probability
psi can be specified. The sum of these selection probabilities over all possible
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Fig. 3.2. The principle of sampling



samples is 1. A selection probability tells us how frequent a particular sample si
will be selected. We shall see later how we use these selection probabilities to
derive unbiased estimators of population attributes and parameters. Further
details on the use and significance of selection probabilities are in, for example,
Brewer and Hanif (1983). The term probability sampling refers to sampling with
a known selection probability of all sample units making up the population. In
practice it is hardly possible to list all possible samples si and their associated
selection probabilities psi. For sample estimators based on a probability sample
it is sufficient to know how to assign selection probabilities to the sampled units.
We denote the actual sample by the symbol s, where s is one of the possible dis-
tinct samples. Estimates of population totals and averages are normally obtained
by an expansion of individual sample attributes/variables to an estimate(s) of the
population total (Levy and Lemeshow 1991). Let yi be the attribute/variable
obtained from sample i with selection probability ir . The expanded estimate is
y i ir . Since the probability of obtaining this expanded estimate is ir the
expected value of the ith expanded value is simply y i. Thus, expansion estima-
tors of totals and averages are unbiased (if sampling was exhaustive the total, or
average, would be equal to the true total, or average).

Probability sampling methods employ a thorough selection process that
ensures that each unit in the population to be sampled has exactly its desig-
nated probability of being selected. In practice that means that any unit being
selected as part of the sample has to be accepted, irrespective of any problems
or difficulties in assessing it. A common problem in forest surveys is the acces-
sibility of terrain. Figure 3.3 shows a forest patch that is inaccessible by a nor-
mally equipped field crew. Where these areas are not excluded from the
sampling frame (i.e., inventory results refer to accessible forests only) they
need to be surveyed when selected under a probabilistic sampling scheme.
Often it is cheaper, quicker, or more comfortable to omit those 
units. This leads to in the problem that there is no longer control over the
probability with which the units comprising the population are selected. Some
units have little or no chance of being selected or are selected with uncon-
trolled or subjective probabilities. Such samples are called nonprobability
samples.

3.2.3
Definitions and Notations

In sample surveys, data on one or more variables/attributes are collected for
each selected unit of the population. Values reflecting a variable of a unit/ele-
ment forming a finite population are defined by ( , , )y i N1i f= and N is the
number of population units/elements. Through sampling, a sample s composed
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of n units is selected from the population units/elements. Variable/attribute val-
ues associated with a sampled unit are denoted by y |i i s] , where i s] means that
the ith population value is sampled. To simplify notation we will drop i s]
when warranted. The ratio n/N specifies the proportion of units selected from
the N population units and is termed the sampling fraction; the symbol f is
often used to denote this fraction. In infinite populations the sample fraction
is nil by definition.
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Fig. 3.3. Inaccessible forest areas in a Switzerland and b Germany



Sampled units are used to estimate parameters for the population. The four
most important population parameters are:

1. The mean Y (e.g., the mean standing reserve in the inventory area)
2. The total Y (e.g., the total standing reserve in the inventory area)
3. The ratio R between two means or totals (e.g., volume per hectare)
4. The proportion P of units with a specific attribute (e.g., proportion of units

with a given tree species).

The sample provides us with estimates of population parameters. Estimates are
distinguished from their true population values by adding a caret above the
associated symbol. The relationship between population values and sample
estimators is given in Table 3.1 for the most common population parameters.

3.2.4
Properties of Estimators

Whereas the term “estimate” signifies the value of a parameter, an “estimator”
denotes a rule according to which a parameter is derived from the sample data.
Estimators based on sampling surveys must display certain qualities.
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Fig. 3.3. (Continued)



An estimator is called a “consistent estimator” if the larger the sample size n,
the closer the estimate, say Yt , is to the true population parameter value Y.
When the expected value of the estimator E Yt` j equals the true parameter Y,
the estimator is unbiased. Estimators not meeting this condition are termed
“biased estimators.” Bias is defined as the difference between the expected value
of an estimator of a population parameter and the true value of this parame-
ter. For the estimator Yt the bias is given by Y E Y Ybias = -t t` `j j . An estimator
that is unbiased for a given sample design (if correctly implemented) is said to
be design-unbiased. Model-based estimators are said to be model-unbiased if
the model is true and the expectations of model predictions equal the expecta-
tions of the population units for which predictions are made.

Unbiasedness is a desirable property of an estimator. Important is also the
accuracy of an estimator. In repeated sampling of a single population using the
same sampling design the estimates obtained from an estimator will vary
between samples. Accuracy refers to the size of the deviations of the sample
estimates from their true value (Cochran 1977). Normally, though, we would
not know the true value. Different estimators of the same population parame-
ter can have different accuracy. Normally, though, we do not know the true
parameter value, which precludes a correct assessment of accuracy. We can,
however, estimate the precision of an estimator. Precision is a measure of the
deviations of individual sample estimates in repeat sampling from their mean
(average). Precise estimators produce estimates that cluster tightly around their
average. That means that we can have a high degree of confidence in the value
of a sample-based estimate. If we were to repeat the sampling process we would
likely obtain a result quite similar to the one we already have. Precision is com-
monly quantified as the inverse of the estimated variance of an estimate
(Cochran 1977). To assess precision of an estimate we need an estimate of its
sampling variance (var). Estimators of sampling variance have been developed
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for all practically relevant sampling designs and population parameters includ-
ing model-based predictions.

Bias and precision of estimators are both important attributes to consider in
planning a survey. Estimators for various design alternatives (viz., model alter-
natives) may produce different amounts of bias and vary in precision. Actually,
competing estimators often display a trade-off between bias and precision
(Congdon 2001). The usual criterion for comparing two estimators is the mean
square error (MSE). The MSE of an estimator, say Yt , is defined as 

Y Y YMSE var bias
2

= +t t t` ` `j j j

Note, the true variance of a sample-based estimate and the true bias will
never be known in practical applications. Instead we use available estimators of
variance and approximations to the bias (Särndal et al. 1992). A survey analyst
normally prefers an estimator with the lowest expected MSE.

Robust estimators are also desirable (Staudte and Sheather 1990). Robust
estimators are less sensitive to a few outlying sample values and to violations of
assumptions than are nonrobust estimators. The ideal estimator is unbiased,
highly precise, and robust. It is a challenge for the survey analyst to optimize
the sampling strategy, i.e., the choice of sample design and estimators.

3.3
Survey Design and Sampling Design

In planning a forest inventory, a range of methodological issues have to be con-
sidered. What data are to be collected? For which units of the population
should they be collected? Which system of nomenclature (including measure-
ment rules or definitions for each attribute to be assessed) is to be applied?
How should data be captured and processed in order to derive the requested
information? Additionally operational, organizational, and administrative
issues have to be resolved. It is the objective of the survey design to settle these
issues with respect to the available budget and the information needs. Ideally
this process could be formulated as an optimization problem. What is the best
design under a fixed set of resources and precision target? Examples of how this
problem is resolved in various settings are found in, for example, Mandallaz
2001, Brus et al. 2002, and Arner et al. 2004). Historic material in the form of
data from previous or related surveys provides a good source of prior infor-
mation of what the intended sampling may produce.

A second set of methodological issues deals with the question of how to select
the sample from the population (i.e., the sample selection) and how to derive
suitable estimates from the data collected (i.e., the estimation procedures).
Based on sampling theory, a variety of techniques have been developed for sam-
ple selection and estimation. It is the objective of the sampling design to select
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the most appropriate sampling methods in light of a set of overarching objec-
tives and constraints. The sampling design itself is part of the survey design.

Sampling designs can be divided into two main groups depending on
whether data and information outside the variables of primary interest (auxil-
iary information) are used to shape the design and/or the estimators:

1. Sampling designs without auxiliary information
2. Sampling designs with auxiliary information

In sampling designs without auxiliary information, only the observations on
the variables of interest are used to derive the parameters.

The populations we deal with in forest inventory can be described by a long
list of attributes, some associated with the trees, others with the environment
in which they grow or have grown. Information on several of these attributes
may be available to the survey analyst at the time a survey is planned. Available
information that is in some way associated with the attribute of interest for the
survey can often be incorporated in the design for stratification or assignment
of selection probabilities and in the estimators in the form of predictors.
Common examples of auxiliary information in forest inventory include aerial
photography, satellite imagery, and various thematic maps. As a rule, sampling
designs/estimators that exploit auxiliary information optimally are more effi-
cient than design/estimators that ignore this information. The most common
sampling designs in the two groups are listed in Fig. 3.4.
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Sampling Design Alternatives

Combined
Sampling Systems

1-Phase Sampling

Simple Random
Sampling

Systematic
Sampling

Cluster
Sampling

Stratified
Sampling

Multi-Phase
Sampling

Multi-Stage
Sampling

2-Stage Cluster
Sampling

2-Phase Sampling
With Regression

Estimators

2-Phase Sampling
for

Stratification

3-Phase Sampling
for

Stratification

2-Stage Sampling
with Stratification

3-Stage
Sampling

Poststratification

Prestratification

Fig. 3.4. Sampling design alternatives. The boxes on the rightmost branch list designs
that incorporate auxiliary information in the design and/or the estimation phase. The
boxes on the leftmost branch list designs that do not incorporate auxiliary information.
(Courtesy of Pelz and Cunia 1985)



The following sections describe the major sampling designs currently used in
forest inventories. The designs can apply to any population large or small, spatially
contiguous, or spatially dispersed. Large forest enterprises may conduct several
different inventories, each using a different design and estimators. Results from an
inventory or several inventories may be used in postinventory analyses to provide
estimators for specific subpopulations, updating, and forest modeling (van
Deusen 1996; McRoberts et al. 2002; Tuominen et al. 2003). The utility of inven-
tory results for these additional uses should be factored into the sampling strategy.

3.3.1
Simple Random Sampling

We begin the detailing of common inventory sampling designs with simple
random sampling (SRS) not because it is particular widely used in its simplest
form but because a presentation of SRS and its estimators will make it easier to
comprehend and appreciate more complex designs and their estimators.

In finite-population SRS n units are selected at random from the N units
comprising the entire population. The selections are done in such a way that all
possible distinct samples of size n have the same selection probability. Since
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O. The probability that a single unit/element is in the

sample is n/N. The principle of equal sample inclusion probabilities extends
naturally to infinite populations but we have, of course, no means of calculat-
ing these probabilities.

The simplest way of selecting units is to number all the elements of the pop-
ulation, to choose n numbers randomly, and to include the elements with the
corresponding numbers in the sample. Here, however, it must be ensured that
all the elements are listed – a circumstance that practically never occurs in for-
est inventories. In forest inventories using SRS, aerial photography, satellite
imagery, or a map is needed to establish a frame from which the sample is to
be taken. X/Y coordinates are randomly chosen and the survey is then con-
ducted at the corresponding points. These coordinates may designate the cen-
ters of fixed-area plots, point samples, stem distance methods, or a fixed
number of trees located nearest to the randomly selected coordinate whether it
is sampled or not (Sect. 3.4).

There are two types of SRS: SRS with replacement and SRS without replace-
ment. In SRS with replacement the same element may be drawn twice or more
often and thus the elements are given the same selection probability at every
draw, i.e., n/N for each draw in a finite population. In SRS without replacement
a selected unit/element is removed from the sampling frame before the next
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unit/element is selected. Thus, for a distinct element remaining in the sam-
pling frame after completion of k draws the probability of selection at the (k+1)th
draw is (n–k)/N and so on for k = 0, . . ., n – 1. Whenever a unit/element is
selected more than once the sample will contain “copies” of the sample record
associated with the unit. Copies of a sample record provide no new informa-
tion about the population; hence, sampling with replacement is considered
potentially wasteful and less efficient. The rationale for detailing with-
replacement sampling is that some variance estimators can only be derived if
we assume sampling with replacement (Brewer and Hanif 1983). These with-
replacement estimators are then used as approximations to an estimator for
sampling without replacement. When the sample sizes are small compared to
the size of the population of interest the differences will often be trivial. In the
following only SRS without replacement is considered.

3.3.1.1
Estimating the Population Mean

The population mean is given by

Y N y1
i

i

N

1

=
=

/ .

Under SRS the sample mean Yt is an unbiased estimator of the population mean:
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3.3.1.2
Sampling Error

In natural resource surveys the variable values associated with a sampling unit
vary from unit to unit. The degree of variability depends on the variable and
the population in question. Variability is thus an essential characteristic of sur-
vey sampling. The standard error and its square, the variance, are useful meas-
ures to quantify the variability or dispersion of values for individual
population units about their mean. The variance of individual unit values of a
variable, say yi, is defined by
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The standard deviation of the population attribute is the square root of the
variance:

.y ySD v a ri i=_ _i i
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Under SRS, a sample-based design-unbiased estimator of the population vari-
ance is

.y n
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A sample-based estimator of the population standard deviation of yi , ySD i
t _ i,

is obtained by taking the square root of yvar i
t _ i.

It is often convenient to remove the effect of the measurement scale from
estimators of variability. Variances expressed in relative terms with respect to
the mean of the variable to which they refer are scale-invariant. The coefficient
of variation is a popular scale-invariant measure of variation:
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Sample-based estimators of the coefficients of variation are obtained by replac-
ing the population quantities by their respective estimators.

The interunit variation means that the sample mean based on a sample of
size n will also vary from one sample to the next if we repeat the sampling. Let
us assume a population of size N, from which we take five samples each of size
n. For each sample we calculate, say, the mean Y j

t , j =1, ... ,5. Obviously, the five
means will vary. Consequently any sample estimate of a parameter is subject to
an error due to the randomness of the sample. This error is termed the stan-
dard error of sampling, or simply the standard error.

The larger the variability of the units, the larger is the standard error in sep-
arate estimates. Luckily, it is not necessary to take several samples from the
same population in order to determine the standard error. We can make use of
the central limit theorem which says that the mean of n randomly selected pop-
ulation values of a variable is asymptotically ( ,n N " 3) normally distributed
with a variance that is the variance of the random variable divided by n (Casella
and Berger 2002). With SRS an estimator of the sampling variance of an esti-
mate, say, Yt is
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An unbiased sample-based estimator is obtained by replacing the population
variance var (yi) by a sample-based estimate of this variance. The square root
of the sampling variance is the standard error of sampling:

.Y YSE var=
% t tta ak k

The quantity (N–n)/n accounts for the changes in selection probability for
sampling without replacement and is termed the finite-population correction
factor. If the sampling fraction n/N is small, the finite-population correction

factor will be close to 1. We get v̂ar (Y–̂) � v̂ar (yi) when n/N �1. Omitting the1
n
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finite-population correction factor results in a slight overestimation of the true
variance. For practical purposes, the finite-population correction factor needs
not be considered if the sampling fraction is smaller than 5%. Note the previ-
ous formula extends naturally to population parameters other than the one
chosen here.

3.3.1.3
Confidence Intervals for Sample Estimates

The concept of standard error is often not intuitively clear to many users of
inventory data and they may find it difficult to assess the significance of a stan-
dard error and interpret it correctly. Estimates arising from a sample-based
inventory ought to include a measure of uncertainty of the estimates.
Confidence intervals for sample estimates provide an intuitive easily under-
stood measure of the impact of a standard error.

A confidence interval for an estimate gives the range within which one can
expect the true population parameter to be located. The bounds of the confi-
dence interval are termed confidence limits. The interval should have the prop-
erty that the probability of the true value being located within the confidence
limits is known, say 1–a. The quantity 1–a is called the confidence coefficient
and the interval is called the 100(1–a)% standard interval. Typically the 95%
confidence interval is presented (a=0.05). The 95% confidence interval covers
for 95 out of 100 replicate samples of size n the true value of the population.
Conversely, there is a 5% chance that the true value is outside this interval.
A specific sample-based estimate of the confidence interval either includes the
true value or does not.

The distribution of sample estimates under repeat sampling is usually
assumed to be normal (invoking the central limit theorem) with a mean equal
to the estimate obtained and a variance equal to the estimated variance divided
by the sample size. Under this assumption and continuing with the previous
example with a population mean as the parameter of interest, the lower Y L

t
a k

and upper Y U
t

a k limits of the 100(1–a)% confidence interval for a sample-
based estimate are

Y Y t YSE, /nL 1 1 2 #= - - - a
%t t t

a k

and

.Y Y t YSE, /nU 1 1 2 #= + - - a
%t t t

a k

t ,n q1- is the q th quantile of Student’s t distribution (Casella and Berger 2002).
Values of t for n=50 and some common values of a are given in Table 3.2.
For large sample sizes, say larger than 50, the quantiles of the t distribution are
very close to the corresponding quantiles of a standard normal distribution zq.
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It is customary to use the standard normal quantile for large n. For large n and
95% confidence probability, t is approximately 2, and the confidence interval is
called the 95% confidence interval. For a 68% confidence probability, t is
approximately 1.

A word of caution is appropriate. Large sample sizes are usually needed to
assure that a 100(1–a)% confidence interval has the desired properties. We say
that the nominal coverage is asymptotically correct. Distributions of sample
statistics obtained from small samples may be skewed and not well described
be either Student’s t distribution or the normal distribution. Confidence inter-
vals obtained from such distributions may be liberal (they cover the true
parameter below the nominal rate) or conservative (they cover the true param-
eters above the nominal rate). Various resampling schemes and improved
approximations of the sampling distribution have been suggested to remedy
problems of this nature (Davison and Hinkley 1988; Barndorff-Nielsen and
Cox 1989; Shao 2003).

3.3.1.4
Estimating the Population Total

The population total, Y, is obtained by multiplying the population mean Y by
the number of elements in the population:

.Y y N Yi

i

N

1

#= =
=

/
An unbiased estimator of the population total Yt is
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As Y is N times the estimator Yr , an unbiased estimator of the variance of Yt ,
Yvar tt ` j, is

.Y Yvar var
2

N #=t tt t` aj k

The standard error of Yt and the upper and lower confidence limits are

,Y N YYSE var var#= =
% t tt t t` ` aj j k
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Table 3.2. Values of t for some common values of a (n=50)

Confidence coefficient (%)

50 80 90 95 99

α 0.50 0.20 0.10 0.05 0.01
t , /49 1 2- a 0.68 1.30 1.68 2.01 2.68
t , /49 2a –0.68 –1.30 –1.68 –2.01 –2.68



Y Y t YSE, /nL 1 1 2 #= - - - a
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and

Y Y t YSE, /nU 1 1 2 #= + - - a
%t t t

a k.

Note, in the above we assumed N is known without error. At times we do not
know N but we may have an estimate of N, an estimate with a sampling error.
To account for the added uncertainty, we must add an estimate of the error
stemming from imperfect knowledge of N. The general technique for obtain-
ing a variance estimator of an estimate that depends on several random vari-
ables is based on a Taylor series approximation (Kotz and Johnson 1988). The
technique also goes under the name of the delta technique (Kendall et al.
1983). Specifically, let Y be a function f of a set of predictor variables, i.e., Y =
f ( X1, X2,...,Xv). A first-order Taylor series approximation of the variance of,
say, a mean Y is
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when the predictors X1,X2,...,Xv are independent (no covariance).
Approximations to variances of a sum, a ratio, or a proportion are found by
straightforward extensions. At times the predictors X1,X2,...,Xv will not be inde-
pendent of each other. Under these circumstances the covariance of all possible
pairs of predictors must be added to right-hand side of the previous equation.

3.3.1.5
Determining Sample Size

The sufficient SRS sample size is determined by the inherent (natural) vari-
ability of the attribute values of the population, the degree of precision
required for the results, and the confidence coefficient we wish to apply to con-
fidence intervals of sample estimates. In SRS the sample size needed to satisfy
a desired precision (E) with a confidence coefficient of 100(1–a)% is calcu-
lated, for say a mean, according to

( )
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E
t yvar, /n

2
1 2

2 #
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In practice we would normally not know the variance of the variable of inter-
est. It must be replaced by an estimate derived from historic information,
related surveys, or simply from a qualified expert guess. Prudence dictates a
conservative guess.

As the t value depends on the degrees of freedom, i.e., the sample size, cal-
culations for small sample sizes must be done iteratively. During each iteration,
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the n value determined in a previous iteration is used to determine the appro-
priate t value. Iterations are stopped when the upwardly rounded value of n no
longer changes. Prodan (1965) suggested an alternative estimator of the vari-
ance derived from knowledge about the range of values yi in the population
(Beyer 1968). Provided that an estimate of the maximum and minimum values
of yi can be obtained, an approximate estimator of the variance is
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A usually very conservative “guess” is obtained by assuming that yi is uniformly
distributed between the maximum and the minimum. If this is indeed the case,

the variance of yi is max miny y 12i i

2

-_ _i i8 B (Snedecor and Cochran 1971).

3.3.1.6
Sampling for Proportions and Percentages

Some forest inventory results may be presented in terms of counts, propor-
tions, or percentages. Examples would be tree count, proportion of burned for-
est, and percentage of teak volume in a forest. Counts, proportions, and
percentages usually involve elements/units belonging to a defined class or
exhibiting a given characteristic. Additional examples might include ownership
types, proportion of trees with stem damage, or the percentage of the forest
area that is difficult to access. When there are more than two mutually exclu-
sive classes for an attribute/variable, the term “multinomial variable” is used.
The results obtained on the basis of multinomial variables are presented as
classifications on a nominal (e.g., tree species, soil type, access) or on an ordi-
nal (e.g., stand layer, timber quality, burned status) scale. Multinomial variables
are frequently analyzed and presented on the basis of a sequence of propor-
tions or counts.

The following discussion is limited to the relatively simple case of SRS where
each sampled unit exhibits a binary class value. There is extensive literature on the
more complex analysis of proportions and percentages in other sampling designs
(Kish 1965; Cochran 1977; Sukhatme et al. 1984; Agresti 1992; Lloyd 1999).

Binary variables assume one of two values, typically the value yi=1 when the
element/unit belongs to a given class and yi=0 otherwise. The number of pop-
ulation elements in the class assigned a value of 1 is given by
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where P is the proportion of elements/units in the population with a class value
of 1. The proportion of elements that do not have the class attribute with the
value of 1 is of course 1–P.
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The population variance of yi is
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Sample-based estimators of the population proportion and its variance are
obtained from the previous equations after substituting n for N and adding
carets to distinguish them from the true population values. When n is very
large a good approximation to the standard error of Pt is given by
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The confidence interval for Pt can be calculated from
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where the last term is a correction for continuity, which is necessary as P is not a
continuous variable. According to Cochran (1977) the omission of the continu-
ity correction leads to confidence intervals which are too small (liberal).
A detailed discussion of alternatives for the construction of confidence intervals
for P is given by, for example, in Dees (1988) and Burk (1991). The standard nor-
mal approximation for binary confidence intervals is sufficient in situations,
where Pt and n are not too small. Cochran (1977, p. 58) gives the smallest values
for n P# t to which the normal approximation can still be applied. For example,
for P=0.2 the smallest n is 200, while at P= 0.1 n should be larger than 600.

If more than one observation is made on the binary trait in every sampled
unit the estimation of proportions has to be modified since the number of
observations per sample unit can vary. Fixed-area plots are a typical example.
The number of, say, trees per plot varies naturally between plots, The estima-
tors of P and the variance of P are now given by
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where subscript i refers to sample unit and subscript j to the population ele-
ments in the i th sample unit. There are mi population elements in sample unit
i of which a i elements belong to the binary class given a value of 1. The corre-
sponding estimator of variance becomes
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where m is the mean number of population elements per sample unit.
Selection of an equal number of trees per plot as done in nearest-neighbor

(NN) methods (Pielou 1970) can be treated as a special case where mi is con-
stant. In this case ai is the area occupied by the selected trees (de Vries 1986).
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The estimation of proportions when the attribute/parameter of interest has
more than two classes can be treated as a special case of a binary class problem.
In brief, one obtains simultaneously an estimate of the proportion for each
class as if it was a binary class. Specifically, if the kth class out of K is consid-
ered, then elements/units in class k are given a value of 1 and all other ele-
ments/units a value of 0. The variance for each class is calculated as before for
a binary class. In balanced samples the sum of the estimated proportions for
the K classes will sum to 1, as they should. However, sample imbalances may
cause a violation of the sum-to-1 constraint. Formulae for postestimation cal-
ibration of proportions to meet a sum-to-1 constraints and formulae for vari-
ance and covariance estimation for proportions are found in, for example, Wu
(2003); Angers (1989); Agresti and Caffo (2000); Sison and Glaz (1995).

The estimation of confidence intervals for K classes has to take into account
that estimates of precision are simultaneously given for K classes. Doing this
requires us to distribute the global significance level a across the K interval esti-
mates. Multinomial confidence intervals have been described by Gold (1963),
Quesenberry and Hurst (1964), and Goodman (1964, 1965). The methods pre-
sented are based on the normal approximation (Fienberg and Holland 1973;
Angers 1989; Sison and Glaz 1995) and they differ with respect to the approach
to calculate simultaneous probability estimates. We limit ourselves to the presen-
tation of the Bonferroni method (Miller 1981), which can be used for the adjust-
ment of significance levels in multiple significance tests. The Bonferroni method
distributes the global significance level equally across the individual classes;
hence, the individual confidence coefficients become 1–a/K. For a simultaneous
confidence coefficient of 0.95 (a =0.05) the Bonferroni-adjusted significance
level for each of four classes is a4=0.05/4=0.0125. The t value associated with this
simultaneous Bonferroni-type confidence coefficient is obtained from tables or
from one of the many statistical software programs available today.

Estimates of P are of course restricted to the interval from 0 to 1. At times
an estimate of the lower bound of a confidence limit will be negative or the

upper limit could exceed 1. A logistic transformation of P to log P
P

1 -c m and

an estimation of the confidence limits on this transformed scale and a subse-
quent back transformation to the original scale resolves this type of problem
since the back transform of a logistic variable is always between 0 and 1 (Lloyd
1999). For example, if we have an estimate of 0.1 for P and the standard error
of this estimate is 0.0948 with nine degrees of freedom (n=10), the limits of our
95% standard interval would be −0.086 and 0.286. The logistic transform of 0.1
is 2.197 and the standard error on the logistic scale is found by application of

the previously mentioned delta technique to be 1/√n × P̂(1−P̂) or 1.054. The
standard interval on the logistic scale is therefore (−4.263, −0.131). After a back
transformation to the original scale the interval is (0.0139, 0.467).
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3.3.1.7
Ratio Estimators

Ratio estimators are widely used in forest inventories. Any attribute related to
an area such as, for example, the number of trees per hectare or the volume per
hectare, is defined as a ratio of two different attributes. The population ratio R
is obtained by dividing the population total of the attribute (total volume, total
number of stems) in the numerator of the ratio by the population total of the
attribute in the denominator of the ratio. A sample-based estimator of R is the
ratio of the two sample estimates of population totals. This is a ratio of means
estimator, which has a bias of the order of 1/n. There is no unbiased sample-
based estimator of R.
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where summation is over the sampled values. For sample sizes n over 30 the
bias if often negligible, but skewed population distributions of Y and especially
X can introduce a serious bias in a sample estimate (Hess and Bay 1997; Rao
1988). The variance of a ratio of means estimate is
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where ,y xcov i i_ i is the covariance between the two attributes/variables y and
x. The covariance is estimated as
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where summation is over the sampled values.
It is often possible to estimate a plot-level ratios Ri for each plot in a sample.

For example, the number of trees per hectare in each plot. However, the esti-
mation of the population ratio should not be based on these individual ratios
because the mean of these individual ratios as an estimate of R has more bias
than the ratio of means even if n is large (Cochran 1977). The exception is
when y R xi i#= for all elements in the population. In this case the mean of

/Y Xi i is obviously R everywhere. Furthermore, the per unit ratio is often
unstable and exhibits a large variance and a very skewed sampling distribution.

3.3.1.8
Advantages and Disadvantages of SRS

Strict adherence to the principles of simple random selection guarantees unbi-
ased and consistent estimates of population parameters and their standard
errors. Yet there are often other sampling designs for which the expected
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sampling error for a given sample size is lower than the sampling error
expected under SRS. The ratio of expected sampling variance under a design,
say ℑ to that of SRS is called the efficiency or design effect of ℑ (Särndal et al.
1992). Relative to a more efficient design a SRS requires a greater sample size
for a given expected standard error. This usually also means that the cost for a
forest inventory based on SRS would be higher than the costs incurred under a
more efficient sampling design. Note, however, that the expected efficiency of
a design relies on theoretical expectations. The survey planner has to obtain
estimates of the expected sampling error under different competing designs
and their cost implications before a rational choice can be made.

A SRS design often requires a surprisingly large investment in organization,
checking, and location of the samples, investments that can be more time-con-
suming and therefore more expensive than for other, more efficient proce-
dures. Also, through random selection an irregular spatial distribution of
sample locations may result, so the population as a whole is not uniformly rep-
resented (Fig. 3.5). Although these outcomes are fully expected under the SRS
design it is clearly unsatisfactory and perhaps even unacceptable to proceed
with a sample that one suspects will yield estimates that are far from the true
population values. For these reasons, the SRS design is commonly applied only
to smaller homogeneous subpopulations as part of a more complex design. In
general, a stratified sampling design with many homogeneous strata and just
two samples per stratum offers the most efficient design (Royall 1998). Finally,
a SRS design offers few opportunities for a postsampling correction/calibration
to mitigate the negative impact of a “poor” sample.
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3.3.2
Systematic Sampling

As the term implies, the sample units are not randomly distributed across
inventory area, but are drawn from the sample frame according to some sys-
tematic procedure. In systematic sampling the population is often subdivided
into an exhaustive list of spatial units and n sample units are selected from this
list by first choosing one unit at random, and then from this random starting
position a systematic selection of the remaining n–1 units is made. Thus, the
sample consists of one randomly selected unit. It is possible to derive unbiased
estimators of totals and means from this sample but not of variance
(Thompson 1992). The template for the spatial subdivision is often a regular
grid of square cells or an equilateral triangular network. A major advantage of
systematic sampling is that it is easy to locate the sample locations, the popu-
lation is uniformly covered, and the efficiency is generally better than using
SRS. As a rule, sample designs which are more “spatially balanced” will have a
lower root-mean-square error when sampling from a population with pat-
terned variation (Matérn 1980; Olsen et al. 1999; Stevens and Olsen 2004). As
the joint selection probability of selecting two distinct units in the sample is
either positive or zero, depending on the systematic sampling protocol, the
selected elements are not independent of each other. This feature makes sys-
tematic sampling fundamentally different from SRS. Large-scale forest inven-
tories, such as, for example, national inventories, often adopt a systematic
design for the selection of sample location (Pelz and Cunia 1985; EC 1997)

In systematic sampling a sampling frame is constructed, which is a list of all
sets of elements that are available for selection. When the basic sampling frame
is in the form of a list (e.g., plant rows in a plantation) or consists of elements
passing a certain point during a period of time (e.g., logs in a sawmill) the sam-
ple is generated by choosing elements from the frame that are separated by a
constant interval L. If the population size N is a whole-number multiple of L
then the sampling intensity n/N is equal to 1/L and all possible samples are size
n. For example, the sampling frame for a plantation made up of 12 rows of
plants could be the list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], where the number
refers to the sequential position of a row of plants. For L=4 the sampling inten-
sity is 1:4 and the sample will be composed of one of the following four possi-
ble subsets of rows [1, 5, 9], [2, 6, 10], [3, 7, 11], or [4, 8, 12]. In the sampling
process one and only one of these four subsets would be selected as a sample.

When the basic sampling frame is in the form of a map, the universe is two-
dimensional and we have several options for tesselating the population into
a set of mutually exclusive and jointly exhaustive sets of units. Sometimes the
tesselation is already provided to us in the form of suitable administrative
units, like, for instance, counties or postal code districts. An example of a
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simple geometric tesselation is in Fig. 3.6. The population displayed is com-
pletely contained inside a regular square grid of ten rows and ten columns.
There are two spacing intervals to be determined for the sample selection, one
for the rows, Sr, and one for the columns, Sc. The intervals chosen may or may
not be equal. A random starting point for selecting the systematic sample is
chosen by choosing at random one integer between 1 and Sr, say rSr and one
integer between 1 and Sc, say rSc. Once found, the sample consists of the sam-
ple unit with coordinates rSr + i × Sr and rSc + i × Sc for i = 0, …, n − 1. For a
square or rectangular sampling frame the sampling design is a 1 in (Sr×Sc) sys-
tematic sample. For Sr=Sc=5 in a 10×10 grid (N=100), for example, this 
systematic sample design results in a sample size of 4. There are 25 possible
samples of size 4. We only list five of them interleaving those samples that fol-
low logically from a preceding sample. In the row–column notation given in
Fig. 3.6 the possible samples of size 4 are [A1, A6, F1, F6], [A2, A7, F2, F7], . . .,
[A5, A10, F5, F10], [B1, B6, G1, G6], . . ., and [E5, E10, K5, K10]. In this simple
example all of the possible 25 subsets subset would have the same size n=4. An
irregular spatial outline of the population or an irregular existing tesselation of
the population may produce subsets of unequal size. When the sampling frame
is not a square or a rectangle the discrepancy between the desired sampling
intensity ( )S S1 r c# and the actual sampling intensity could become large.

Systematic sampling can be implemented as a special form of either a sim-
ple cluster sampling or a two-stage cluster sampling. Implemented as a simple
cluster sampling, each of the 25 possible subsets is considered as a single clus-
ter and only one is selected (Fig. 3.7).
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When systematic sampling is implemented as a two-stage cluster sampling
the sampling frame is divided into n compact clusters, each containing Sr×Sc
elements. A subsample of size 1 is drawn from each of the n clusters. In the pre-
vious example n=4 compact clusters would be generated and one element
selected from the 25 units inside each cluster (Fig. 3.8).

Estimators for the variance of the overall total and mean vary according to
the way the systematic sampling is implemented (Cochran 1977). However, it
is generally impossible to provide unbiased estimators of the variances when
systematic sampling is used. Attempts have been undertaken to find estimators
with little bias and low variance (Bellhouse 1985; Wolter 1985; Sherman 1996).
The most commonly used approach is based on the assumption that a system-
atic sample is equivalent to a random sample; however, this assumption holds
only when population attributes are randomly distributed over the population.
With the assumption of SRS equivalency, means and totals are computed using
the formulae applicable to SRS (Sect. 3.3.1). SRS estimators of standard errors
applied to estimates from systematic sampling are usually conservative; they
overestimate, on average, the actual error. An overestimation of about one third
is not unusual, but more extreme results have been reported (Hartley 1966;
Bellhouse 1988; Stehman 1992).

3.3 Survey Design and Sampling Design 95

Row 1 2 3 4 5 6 7 8 9 10

A

B

C

D

E

F

G

H

I

K

Column

Fig. 3.7. Systematic sampling implemented as a cluster sampling. A cluster is com-
posed of four shaded squares. The population contains 25 clusters, of which two are
selected



A series of variance estimators under systematic sampling have been pro-
posed as more attractive than those flowing from the assumption of SRS. Jessen
(1942), Yates (1949, 1981), and Cochran (1977) suggested a procedure that
involves grouping of pairs of adjacent sample units (clusters). Each grouped
pair of units is considered as a single stratum in a stratified sampling scheme,
which allows the computation of a within-stratum variance, an estimate
needed for the purpose of correcting the “inflated” SRS variance estimate. This
procedure leads to corrected variance estimates that are biased, the bias being
either positive or negative. Yates (1981) suggested for the situation of two-
dimensional sampling to combine sample units into blocks of 2×2 units. Each
block is then considered as a stratum in stratified random sampling. Instead of
using squared residuals for computing a sampling variance, von Neumann
et al. (1941) proposed using the sum of squared differences between adjacent
sample units. This method is known as the method of squared differences
(Ekström and Sjöstedt de Luna 2004; Stevens and Olsen 2004). The ideas of
Neumann and Yates have been developed further in the form of NN estimators
of local expectations and estimating the variance from the squared differences
between the sample values and NN “predictions” (Ekström and Sjöstedt de
Luna 2004; Stevens and Olsen 2004).
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In systematic sampling the sample size is usually determined on the basis of
optimizing a SRS design, which, for the reasons outlined earlier regarding the
conservative nature of SRS estimators, eventually leads to somewhat more
accurate inventory results than originally anticipated. In a systematic sampling
from a square grid the sample size determines the scale of the grid to be used
for implementing the systematic selection process. For a population occupying
a square with an area F and a desired sample size of n, the appropriate grid
spacing between sample locations should be /F n . It gets a bit more compli-
cated for population with an irregular outline, but in principle one finds the
smallest rectangle that completely contains the population and then finds
the grid spacing as before. Since some sample units may fall completely outside
the population, the sample size is increased by trial and error until a satisfac-
tory solution is obtained. For those who decide to use a triangular grid as the
frame for a systematic sampling process, the distance between points becomes

.F
n

F
n

2
3 1 075# #b when the population occupies a square. In a trian-

gular grid the distance between rows and columns is . F
n0 557# . To facili-

tate location of the sample units in the field, it is common practice to round off
distances to the nearest 0.1 m. In establishing the grid, however, it should
be borne in mind that some points may fall outside the target population. The
density of the grid should be increased according to the proportions of
sample units expected to fall outside the population of interest.

Semisystematic sampling designs have been suggested as a compromise
between a systematic sampling design and SRS. In a semisystematic design
the selection of spatially close sampling units is made less likely than by SRS
or the number of selections from a single row, or column, is constrained to help
achieve a more representative sample. Cox et al. (1997), Stein and Ettema
(2003), and Stevens and Olsen (2004) provide examples of these semisystem-
atic designs.

3.3.3
Cluster Sampling

Every sampling design is based on the division of the population into clearly
defined units. The smallest units into which a population can be divided and
which can be used for sample selection are the elements. Forest stands, lakes,
road segments, and geometrically defined spatial polygons are but a few exam-
ples of units. Trees, snags, orchids, and deer are examples of elements. In cluster
sampling two or more elements or two or more units are included in the sam-
ple at each sample location. The inclusion of two or more units/elements at each
sample location intensifies the sampling effort at each sample location. The cost
of including more than one unit/element at each single sample location is often
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modest compared with the cost associated with travel and measurement of one
unit/element per sample location. One example for such clustering is the sur-
veying of trees (elements) on sample plots (cluster/unit). Another example is the
establishment of three or four sample plots in a fixed geometric configuration
at each sample location instead of just a single plot. The grouping of elements
into clusters lent the procedure its name.

From the viewpoint of expense, such grouping of sampled elements/units is
justifiable. However, adding two or more “extra” units/elements at each sample
location does not necessarily mean that the sample size can be reduced by a fac-
tor equal to the number of added elements/units at each sample location. The
trade-off between the number of elements/units sampled per sample location
and the number of sample locations to visit in order to achieve a target preci-
sion on estimates of population parameters depends on the distribution of the
variance of attribute values across spatial and temporal scales. In general, the
less the variance of the attribute value is within a cluster, the less is the efficiency
of clustering sample observations relative to a SRS of individual units/elements.
This is intuitively clear. If units/elements in a cluster are more alike than
units/elements selected at random then we do not learn as much about the pop-
ulation from one cluster with m units/elements as we would learn from m inde-
pendent units/elements. Thus, for a cluster sampling approach to be attractive
in terms of precision for a given overall number of sampled units/elements, the
variation within a cluster must be large relative to the among-cluster variance.

In forests the variation in tree attribute within sample plots of, say, 100 m2

is often as large as the variance between such plots (Correll and Cellier 1987;
Saborowski and Smelko 1998; Barnett and Stohlgren 2003; Gray 2003). We can
exploit this large small-scale variation by adopting a cluster sampling design
for our forest inventories. In most forest surveys, the use of clusters with sev-
eral elements (more then 10) and three to four plots is often fully justified in
terms of both cost and overall precision. Conversely, in homogenous forest
areas a cluster composed of more than a few elements per sample location
would be inefficient.

An efficient cluster sampling design offers an attractive balance between the
cluster size (m) and the number of sample locations to visit (n). The balance
is a function of the spatial distribution of attribute values. The survey designer
must have, at least, a working knowledge of how this distribution will affect
the efficiency of cluster sampling with different cluster sizes and different spa-
tial configurations of elements/units in a cluster (Smith 1938; Kleinn 1996;
Magnussen 2001).

Cluster sampling is common in forest inventory. Examples are the national
forest inventories of Sweden, Finland, Austria, France, the USA, and Germany
(Köhl 1990). Clusters are square, rectangular, or have more complex shapes.
Sample plots are placed in a fixed geometric configuration within each cluster.
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The term cluster is rarely used explicitly for the spatially grouped plots. Instead
the word tract has become widely accepted as a quasi-synonym for a cluster (of
sample plots). A classic example of cluster sampling is provided by the Camp
Unit System(Fig. 3.9), introduced in Thailand for inventorying teak stands
(Loetsch 1957). A camp located in the center of a cluster is surrounded by what
is termed satellites, each satellite comprising several sample plots that can be
surveyed by a field team within a single day.

The simplest form of cluster sampling is the survey with clusters of constant
size. To facilitate the understanding of cluster sampling this version of cluster
sampling is detailed. Note, however, that cluster size in forest surveys is rarely
constant. Fixed-area sample plots are in effect clusters of trees. It is obvious that
the cluster size, i.e., the number of trees per plot, changes from cluster to clus-
ter. Even clusters (tracts) designed with a fixed number of plots in a fixed geo-
metrical configuration usually have no sample data for units/elements that are
outside or straddle the population boundary.

The sample-based estimator of the population mean for one-stage cluster
sampling with n clusters of equal size (m) or equal numbers of sample units per
cluster selected by SRS is
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which is simply the average of cluster averages. The corresponding estimator,
for sampling with clusters of unequal size, is a weighted average of cluster
means with weights proportional to cluster size (Cochran 1977). The estimator
of the sampling variance of the estimated population mean in a finite popula-
tion composed of N clusters is
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or simply the among-cluster variance of cluster means. Estimators for population
totals are obtained by dropping the averaging of within-cluster observations.

When sample clusters are located at random locations or when the popula-
tion is not tessellated uniquely by the clusters, the finite-population correction
factor is dropped from the variance estimator. Many cluster shapes (tracts)
used in forest inventory do not tessellate the population completely. The tes-
sellation would produce overlaps of clusters or leave gaps between clusters. The
selection probability of each cluster would no longer be equal and joint selec-
tion probabilities would have to be calculated for every pair of possible clusters.
Unequal cluster sizes would change the variance estimator to account for
unequal weighting of the squared deviations from each cluster. Again, the
weight would be proportional to cluster size.

Estimators for clusters of unequal size are described in Cochran (1977) and
Sukhatme et al. (1984). The optimization of forest inventory cluster sampling
designs with clustering of fixed-area and variable radius sample plots is dis-
cussed by Scott (1981) and Köhl and Scott (Scott 1994).

3.3.3.1
Two-Stage Cluster Sampling

In two-stage cluster sampling, or simply two-stage sampling, the entire popu-
lation is divided into N clusters. A sample of n clusters is selected. The ith clus-
ter is assumed to be subdivided into Mi equally large smaller units called
elements or simply second-stage units. A sample of mi second-stage units is
taken from the ith cluster. Thus, the sample is taken in two steps: first n clus-
ters are selected, then a sample of secondary units is taken from each cluster. In
a forest sampling context the clusters could be, for example, 1-km2 Advanced
Very High Resolution Radiometer (AVHRR) pixels and the secondary unit
could be a 25×25 m2 Landsat Enhanced Thematic Mapper Plus (ETM+) pixel,
and if selected the attributes of trees in this pixel would be measured by some
field procedure. A forest stand can also be viewed as a cluster and the inventory
plots placed within this stand acting as secondary units. Two-stage cluster sam-
pling is a very flexible design and applies well to a variety of applications. At
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each stage a different selection scheme can be applied; this includes stratified
selection of clusters and selection of secondary units chosen with equal proba-
bility, and selection of the secondary units with probability proportional to size
(PPS)/prediction.

Two-stage procedures are generally preferable where localized systematic
trends are expected. Systematic trends may occur in mountainous regions,
along rivers and water bodies, and where natural history or anthropogenic
effects have shaped vegetation and land use into distinct mosaics. The first-
stage sampling then primarily serves to isolate the systematic variation to the
first-stage units.

Two-stage sampling designs are frequently employed in forest inventory
(Fig. 3.10). In its simplest incarnation every cluster contains the same number
of secondary units, and both clusters and secondary units within clusters are
randomly selected at each stage. Two-stage sampling is particularly attractive
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when access to individual sample locations is time-consuming and costly; a
topical situation in many tropical forest regions.

Two-stage sampling is distinctly different from two-phase sampling. In the
latter, an auxiliary variable is sampled and measured in the first phase and a
target attribute/variable is measured in the second phase on a small subset of
the first-phase sample units. The association between the auxiliary and target
attribute is exploited, usually via linear regression, to allow a prediction of the
target attribute for all those units/elements sampled in the first phase for which
only the auxiliary attribute/variable was recorded. In two-stage sampling the
stratification of the population into clusters and second-stage units serves only
as a conduit for determining selection probabilities.

Aerial photography, for example, can be used in both design types. In a
two-phase sampling design the photographic images would be used to esti-
mate, by some form of interpretation, the value of an auxiliary attribute for a
series of sample units (stands, plots). The attribute of interest would be meas-
ured by standard field procedures on a small subset of these units. In a two-
stage design, however, the photographic images would only serve to stratify
the population into clusters (stands, tracts) and then a number of clusters
would be selected at random, after which a number of secondary units would
be selected from each cluster for recording of the attribute of interest. If a full
coverage of the inventory area by aerial photographs is not possible, then a
modification of the two-stage estimators given next is required (Saborowski
1990).

With SRS sampling of n clusters out of N population clusters and sampling
of mi secondary units within the ith cluster composed of Mi secondary units
the unbiased two-stage estimator of the population total is
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and the estimator for the population average per first-stage unit is obtained by
division by N. We see that each second-stage sample is scaled to an unbiased
estimate of the total in the sampled first-stage unit. For clusters of equal size
and equal second-stage sample sizes the estimator of the total is greatly sim-
plified. We leave the simplification as an exercise for our readers. The sample-
based estimator of variance of the estimated total is
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The two-stage estimator of variance is simply the variance of the first-stage
totals plus the average of the second-stage variances scaled to the first-
stage expectations.
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Cochran (1977) provides a mnemonic way to construct variance estimators
for multi-stage sampling. Simply put, the expected value of a population

parameter θ in a k-stage sampling is , , , ,E E E whereE l k1k l1 2 f f f=i_b i l8 B% /

is the expectation of θ over all possible samples at the lth stage of sampling
with all units at higher levels fixed. The expected variance of this expectation

is ,E E E E E E varvar vark k k1 2 1 2 3 1 1f f g f+ +i i i-_b _ _bi l i i l8 8 8B B B% % %/ / / where

varl i_ i is the lth-stage variance of θ with all higher stages fixed.
When all secondary units in all clusters are sampled (mi=Mi for all i) we

revert to estimators appropriate for single-stage cluster sampling. For n=N,
that is all clusters are sampled, but mi<Mi for at least some i, the two-stage esti-
mator is identical to the estimator for stratified random sampling with clusters
acting as strata.

At times we may have interest in estimating the attribute mean per first-
stage cluster (unit). We can get the estimator for this average by dividing the
estimator of the total by N. Similarly, the estimator for the variance of this
mean is the previous variance estimator of the total divided by N2. For large N
the first-stage sample fraction n/N is negligible and can be set to zero without
incurring more than a trivial bias in the resulting variance estimator. With
small first-stage sample fractions, and equal secondary sample sizes in each
cluster, the two-stage variance estimator for the mean simplifies to the variance
of the first-stage (cluster) mean values divided by n. In this specific situation,
the variance can be estimated from knowledge of first-stage cluster means only,
a useful result for two-stage designs with systematic subsampling of second-
stage units since we would not have an unbiased estimator of the second-stage
variance.

Two-stage sample estimators of totals (mean) and variance for designs with
unequal selection probabilities of first- and second-stage units have been devel-
oped (Mahalanobis 1946; Bowden 1979; Cochran 1977; Nusser et al. 1998).

The previous two-stage estimators assumed that the population was
divided into a unique set of N clusters that, in turn, were subdivided into a
fixed number of secondary units. N would be known in this situation. When
first-stage clusters are merely a fixed-area-sampling device located at random
in the population N is unknown and must be estimated by dividing the area
of the population by the area of a first-stage unit. Also, when and a small num-
ber of inventory plots are placed at random or in some geometric configura-
tion inside a first-stage unit we do not a priori know M but we can estimate
M by dividing the area of the first-stage unit (cluster) by the area of an inven-
tory plot. Possible errors in estimates of N and M must accounted for by
extending the previous variance estimator to include these potential sources
of variation.
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3.3.3.2
Two-Stage Cluster Sampling for the Estimation of Proportions

When the sampling objective is to estimate the proportion P of secondary units
with a specific attribute class value we are dealing with sampling for the esti-
mation of a proportion. To facilitate the derivation of estimators of means and
variance we define the attribute value (yij) of the jth secondary unit in the ith
primary unit as 1 when the unit has the class value of interest, and 0 otherwise.
Under SRS of n primary units and mi secondary units out of a total of Mi units
in the ith primary unit, the estimators of P and the sampling variance are
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respectively, where Pi
t is the estimate of the proportion P in the ith primary

unit. These formulae extend to cases with more than two classes by simply
replacing an estimate of P by an estimate of the vector of class-specific popu-
lation proportions.

3.3.3.3
Two-Stage Cluster Sampling with Stratification of the Primary Units

When the first stage is a sample of units in an aerial photograph or in a
remotely sensed image we can often associate each first-stage unit with a spe-
cific land use or vegetation cover-type class. Within each first-stage unit we
may sample one or more second-stage units. Second-stage units could be, for
example, conventional forest inventory ground plots. Two-stage designs of this
type are important for forest resource inventory. The first-stage units of a given
stratum, say, h, are usually assumed to have a constant size and shape, but size
and shape may vary from stratum to stratum. We shall consider a population
with N N hh

= / first-stage units and Mh second-stage units in each first-stage
unit of stratum h.

The estimator of the population mean per second-stage unit under SRS of
nh first-stage units and mh second-stage units within each first-stage unit in
stratum h is
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where wh is the relative size of stratum h in terms of second-stage units. For
unknown Nh and Mh, wh is replaced by nh/n (Cochran 1977, p. 328). With SRS in
both stages an unbiased estimator of the variance of Y
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where the term Yvar hi
t t

a k is the average weighted within first stage unit (cluster)
variance with weights proportional to the number of second-stage units
selected within a first-stage unit. Estimators for the population total and its
sampling variance are obtained from the previous estimators by scaling to the
number of second-stage units in the population.

Note, if the secondary units are drawn systematically from within the pri-
mary units, the design is not a true two-stage cluster sampling. In effect, the
appropriate estimators to use in this case would be those given for single-stage
cluster sampling.

3.3.4
Stratified Sampling

In stratified sampling we use auxiliary information to stratify the entire pop-
ulation into, say, H strata. Stratification aims at forming groups of elements
(units) with more or less similar attribute values. The ideal stratification
eliminates the within-stratum variation, hardly possible in practice. In the
ideal case a single sample from each stratum would suffice to gain complete
knowledge about the population parameter of interest since there is no
within-stratum variance, all elements (units) would have the same attribute
value. As we move away from the ideal case more samples are needed to pre-
cisely estimate the mean (total) of a stratum. In other words, stratification
aims at dividing a population into a number of parts which are as homoge-
neous as possible.

Besides improving the variance efficiency of estimators other reasons to
choose a stratified sampling design are (1) estimates for homogeneous sub-
populations (strata) may be required, (2) the desired precision is not the same
for all subpopulations, (3) assessment cost and/or attributes of interest are not
the same for all subpopulations, and (4) different sampling protocols apply to
different subpopulations.

A diverse spectrum of criteria can be used to stratify a population. Some
examples are major timber type, vegetation type, stand structure, species mix-
tures, site quality, protective status, habitat, ecological sensitivity, wetland status,
recreational use, nontimber resource values, and political and administrative
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units. Where satellite imagery provides the auxiliary information the stratifica-
tion is often done on the basis of the value of various indicators of vegetation
types, such as, for example, the normalized-difference vegetation index (Sims
and Gamon 2002; Wulder et al. 1996; Carlson and Ripley 1997; Gholz et al.
1997; Ricotta et al. 1999) or tessellated cap indices (Gustavson and Parker 1992;
Bettinger et al. 1996).

Cochran (1977) and Dalenius and Gurney (1951) give generally valid rules
for an optimum stratification of a single population parameter of interest
when the distribution of an attribute value (y) or some auxiliary variable (x)
related to y via a linear model is used directly for stratification. Given assump-
tions about the distribution of y and the relationship between x and y they
develop an optimal solution for the number of strata and the selection of strata
boundaries. The solution is optimal in terms of a minimum variance of the
estimator of a population total (mean). For many typical distribution models
for y, Gaussian, rectangular, triangular, and exponential, some five to ten strata
appear to give substantial reductions in variance.

Once the criterion upon which to base the stratification has been decided,
the inventory designer needs to consider the allocation of sample sizes to the
strata. Again, both Dalenius and Cochran provide solutions for fixed total
sample sizes or conversely for a fixed total cost of the inventory. When both
stratification and sample size allocation are considered simultaneously the
optimum design is often to maximize the number of strata and then take two
samples per stratum. When the attribute values within a population are clus-
tered, spatially or temporally, it is often good practice to define strata for each
cluster.

Elements within a stratum are selected independently from the selections of
elements in other strata. This accommodates stratum-specific sample sizes,
selection criteria, and survey methods. When SRS is applied in all strata, the
procedure is termed stratified random sampling.

In assessment, the strata are first evaluated separately and the results are
then compiled to give overall estimates. The fact that stratified sampling ren-
ders it possible to compute estimations for subpopulations together with their
precision is a distinct advantage.

In most practical situations auxiliary information suitable for a stratification
of the population is readily available when planning for an inventory begins. By
using this auxiliary information the efficiency of the inventory estimates of
population parameters can be greatly improved. On the basis of the auxiliary
information the population is divided into H distinct nonoverlapping strata or
conversely the population is divided into N distinct nonoverlapping units and
each unit is assigned to one and one only stratum. The strata cover the whole
population without overlap, i.e., N N hh

= / .
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3.3.4.1
Sample Allocation

Deciding the number of samples to take from each stratum is perhaps the most
important decision the inventory designer has to make once the decision to
adopt a stratified sampling design has been made. Allocation of samples to strata
may be done in various ways. The decision is often one of allocating a fixed total
sample of size n to individual strata. The expected precision and cost of the
resulting design can then be approximated from subject knowledge, experience,
or qualified guesses. Design alternatives for different n can then be compared and
the one judged most attractive against a set of global objectives is then favored.

One simple solution to the allocation problem prescribes an equal number
of samples to be taken in each stratum. The sample size in stratum h is thus
nh= n/H ⎤, where H is the number of strata and n/H ⎤ denotes the smallest
integer larger than n/H. Equal strata sample sizes, however, are seldom effec-
tive, as small strata are sampled with an disproportionately higher intensity
than a large stratum.

A popular allocation scheme is the allocation of samples in proportion to
the size of the strata. The size of stratum h (Nh) is measured in the number of
elements (units). With this approach the sample size in stratum h becomes

.n N n N N Nwithh h hh
1# #= =- /

At times the inventory designer will have some ideas or estimates of the
expected stratum-specific variance of the attribute of interest. When both
the within-stratum variance and the stratum size are considered together in the
allocation problem and the objective is to minimize the expected variance of an
estimate of a population total (mean), the solution is termed optimal allocation.
Cost constraints may of course necessitate a shift away from this optimum
towards an affordable design. The optimal allocation or Neymann allocation
(Cochran 1977, p. 99) becomes

,n
N

N
h

h hh

h h

#
#

=
v

v
/ p

p
R

S

S
S

V

W

W
W

where hvp denotes an a priori estimate of the standard deviation of the attrib-
ute of interest in stratum h.

Alternatives to the criteria of these allocation schemes include consideration
of differences in costs for different strata and various survey methods. The over-
all importance of a stratum may further modify the allocation. Imposing limits
on the minimum and maximum sample size in each stratum is also a popular
scheme akin to a “minimax” strategy (minimize the risk of an extreme low 
precision; Amrhein 1995).

⎣⎣
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3.3.4.2
Estimation of Population Means and Totals Under Stratified Sampling

The estimators of the mean and the variance for stratum, say h, are as follows:
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The estimator for the population means under stratified random sampling is

Y N
N

Y W Yh
h h hh hSTR # #= =/ /t t t .

Often we know neither the total population size N nor the size of individual
strata (Nh, h=1, ..., H). If we then replace the stratum weights Wh by the sam-
ple-based weights /W n nh h= we obtain a biased estimate. The bias remains
constant as the sample size increases. When the attribute of interest is expressed
in units per unit area, the area of the population (A) and the area of individual
strata (Ah) is used instead of N, or Nh. Area-based strata weights then replace
the weights based on size in units, or elements. For a stratum area Ah and total
area A Ahh

= / the area weight for stratum h becomes wa A Ah h
1#= - . When

strata areas are known to within a negligible error, a situation that is common
when the strata information comes from a classified remotely sensed image, the
bias arising from using estimated weights wah

% in place of the true area weights
wah can safely be ignored. If proportional allocation is used and Wh is replaced
by the area proportion of stratum h most of the potential gain of stratification
compared with SRS is nevertheless retained.

The estimator for the variance of Y STR
t is

Y n
W var y

N
n

var 1
h

h h

h h

h
STR

2
#

= -/t t t
a

_
dk
i

n.

The variance estimator is simplified if the sample fraction in each stratum is
negligible and if the sample allocation is proportional to stratum size (area).
We leave the simplifications as an exercise for the interested reader.

Estimates of population totals and variance of population totals are
obtained from the previous estimators of the population mean and variance by
multiplying the former by N and the latter by N2.

3.3.4.3
Estimation of Proportions Under Stratified Random Sampling

For attributes on a nominal or an ordinal scale it is often desired to give their pro-
portion within a stratum. Let P .h c be the proportion of sample units in stratum
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h with attribute class value c in the sample from the hth stratum. An estimator of
P .h c is

,P n
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where .hi cd is an indicator variable taking the value 1 if the ith sample in the
hth stratum has attribute class value c and zero otherwise. The estimate of the
proportion in the population is
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h

h h cSTR.c #= /t t

With proportional allocation, and assuming that the stratum-specific final
population correction factors can be ignored, the variance estimator for the
estimated population proportion is
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Again, area weights (known or estimated) could also be used in place of
sample size weights.

3.3.4.4
Design Effect

In many situations the surveyor will have a choice of sample design. We have
already mentioned how variance efficiency, costs, and other practical consider-
ations play a role in the final choice. A survey planner will often lack one or
more critical pieces of information needed to make a truly optimal choice.
Instead of optimizing a design it may be informative to know what variance to
expect under a given design and how this variance compares with the variance
of a “benchmark” design. The benchmark design is commonly the SRS design.
The ratio of expected variance under the candidate design and the expected
variance under the benchmark design is called the design effect, or DEFF for
short (Kish 1965; Cochran 1977; Särndal et al. 1992). The candidate design is
favored when the design effect is less than 1.

The design effect of stratified sampling with proportional allocation and
SRS as the benchmark is
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We gather from this expression that the design effect is below 1 when the
among-strata variance is made relatively large compared with the total vari-
ance. As the second term in the equation for the design effect is positive and
less than 1, the design effect for a proportionate stratified design will always 
be less than 1, i.e., stratified random sampling with proportional allocation of
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samples to strata is always more efficient than SRS. To the extent that the stra-
tum means differ from each other, the second term will increase with a corre-
sponding decrease in the design effect. Conversely as the among-strata variance
increases the within-stratum homogeneity is on the increase. In conclusion
then, stratified random sampling with proportional allocation of samples to
strata may produce a significant decrease in the sampling variance relative to
the variance expected for a SRS design with the same total sample size.

3.3.4.5
Poststratification

The term poststratification applies to a procedure for which SRS samples are
stratified to a set of known strata after completion of the sampling. In other
words, the auxiliary strata information was not used during the sampling
process. Poststratification may apply to a field survey completed before a
remote-sensing-based stratification becomes available. Poststratification facili-
tates forest surveys, as field sampling and analysis or interpretation of remote-
sensing data can be done independently.

In its simplest form poststratification applies to data from a SRS. Using the
previous notation for stratified random sampling but with the addition of “.ps”
to distinguish a poststratum from an a priori stratum. The poststratification
estimator of the population mean is

Y W Y. .. h hhSTR.ps ps psps
#= /t t

and, assuming we can ignore the finite-population correction factor, the esti-
mator of the sampling variance of the poststratified estimate of the population
mean is
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The first term in the variance estimator is identical to the variance under a strat-
ified sample with proportional allocation of sample sizes and within-stratum
SRS. The second term reflects an increase in the variance due to the random
nature of the strata weights. The strata weights in poststratification are the
expected value of a random binary variable taking the value of 1 if a sample is
in stratum h and 0 otherwise. The term W W1. .h hps ps-_ i is the well-known
variance of a binomial random variable (Snedecor and Cochran 1971). As
before, we can replace the strata weights that are based on sizes of strata in
terms of population elements (units) with area-based weights.

The above poststratification estimators are not changed if the initial 
sample is not obtained under SRS but from a systematic sample. The implicit
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proportional allocation is more likely to be satisfied in this case than when the
initial sample is obtained under a SRS scheme. According to Cochran (1977,
p. 134) poststratified sampling is almost as precise as proportional stratified
sampling, provided that the poststratified sample is reasonably large in each
stratum (nh.ps>20), and the effects of possible errors in the weights Wh.ps can be
safely ignored. As the increase in variance will be small if the average poststrat-
ification sample size across strata is sufficiently large, the application of the
equations presented here without further adjustments for poststratification is
defensible.

3.3.4.6
Pros and Cons of Stratified Sampling

Among the advantages of stratified sampling is the fact that estimates for sub-
population means or totals and their sampling variances are readily available.
As the survey procedures for separate strata must be independent (otherwise
there may be a covariance between results from different strata) sampling
designs and sample sizes can be chosen freely to fit separate strata. In that
regard the stratified sampling design is indeed flexible. In almost all cases, a
gain in precision of population estimates of means, totals, ratios, and propor-
tions is possible from either a prior stratification or a poststratification of the
population.

On the other hand, stratified sampling can also convey certain disadvan-
tages. The effect of inaccurate determination of the sizes of the strata has been
mentioned. This problem is manifest when aerial photographs are used as the
basis to define strata. Strata boundaries are transferred to the aerial -photo-
graphs and the sizes of the strata are determined either planimetrically or
through some form of point grid counting (Loetsch and Haller 1964; de Vries
1986). Either way, the procedure is costly and time-consuming and impractical
for large-scale surveys. Small spatially scattered strata (leopard pattern)
increase the likelihood for errors in the determination of the sizes of the strata.
Also, dated aerial photographs make estimates of the sizes of the strata impre-
cise. In all cases, the effect of the error in the strata area estimation must be
carefully considered as it can greatly diminish the gains otherwise expected
from stratified random sampling.

While stratification for the estimation of a single population attribute is
generally advantageous, the situation is less clear for a multipurpose inventory
with its many attributes of interest. For each variable of interest, a different
optimum stratification rule is more likely to emerge than not. Consequently,
the final stratification becomes a compromise, a compromise flavored by cer-
tain threshold and limits of precision not to be imperiled in any attribute or
subpopulation.
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The utility of stratified sampling is to be particularly critically examined
when the inventory is to be repeated on successive occasions. When different
sampling designs have been used for the individual strata or the samples have
been allocated to strata using a procedure other than proportional allocation,
the planning and execution of successive inventories can become very difficult
or in extreme cases outright jeopardized. If sample units change from one stra-
tum to another and the inventory design has also changed over time, new strata
must be defined to accommodate a possible strata × design effect in the esti-
mates. A resultant dramatic increase in the number of strata becomes a distinct
possibility. To the extent it materializes, it affects adversely the design effect of
stratified random sampling.

Furthermore, if the population attributes of interest have changed between two
inventories the stratification used in the older inventory may be inopportune. An
example of such a shift in focus is the current emphasis towards nonproductive
functions of the forest at the expense of a narrower focus on timber values.

Most problems that arise from shifting strata and attributes can be mitigated
effectively by proportional allocation of sample sizes and a systematic sampling
within strata. Inventory designs with these characteristics may be suboptimal
for determining an actual condition but they offer the advantage – not to be
underestimated – of flexibility and permanence.

3.3.5
Two-Phase Sampling

Two-phase sampling or double sampling is a sampling procedure where two
samples are taken from the population. The idea is to exploit an association
between the attribute values in the two samples. In the first sample, a large
number of easy-to-assess or low-cost sampling units are taken in order to
measure one or more auxiliary variables. From this sample a second, smaller,
sample is taken for the purpose of assessing the attribute/variable of interest.
The statistical link between the auxiliary variable(s) and the variable(s) of
interest can be established either by a linear regression (two-phase sampling
with regression estimators) or by using the auxiliary variable to estimate the
size of the strata (two-phase sampling for stratification). The two-phase design
extends naturally to three and more phases (Magnussen 2003).

3.3.5.1
Two-Phase Sampling with Regression Estimators

Two-phase sampling with regression estimators is similar to single-phase sam-
pling with regression estimators, with the difference being that the auxiliary vari-
able, say x, is not measured on all N population elements but on a subsample of
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N. In the first phase a large sample of size n1 is selected; in the second phase a
random subsample of size n2≤n1 is selected where the auxiliary variable, x, and
the variable of interest, say y, are measured. The two-phase sample with
regression estimator of the population mean for a single variable of interest and
a single auxiliary variable is

,Y Y X X2prgr 2 1 2#= + -bt t t t t
b l

where X Xand1 2
t t are the sample-based estimates of the mean of x in the first-

phase sample and in the second-phase sample, respectively, Y 2
t is the estimate

of the population mean of y obtained from the second-phase sample, and bt is
the least-squares regression coefficient of y on x computed from the second-
phase sample. Note, bt can be improved by recognizing that the first-phase
sample of x gives a better estimate of the variance of x than does the smaller,
second-phase sample (Särndal et al. 1992). The second term in the two-phase
sampling with regression estimator of the population mean is a term that cor-
rects the SRS estimate by an amount that is proportional to the difference
between the first-phase and second-phase estimates of the population mean of
the auxiliary variable and the average effect of a one unit change in the auxil-
iary variable on the expected value of the variable of interest. Unequal proba-
bility sampling in the second phase must also be taken into account when the
regression coefficient is computed. This is done by weighting the second-phase
sample pairs of x and y by the inverse of their inclusion probability.

An estimator of the variance of Y 2prgr
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where ( )y xvart is the conditional variance of y given x, or simply the variance
of the expected values of y once x is known. For a linear relationship y=a+
bx+error, the conditional variance of y is the variance of the linear prediction
a+ bx. The first term on the right-hand side of this variance expression con-
tains the variance of the linear predictions of y, while the second term adds the
variance of the prediction errors. The third term is a correction factor for
finite-population predictions. In infinite populations the last term drops out.

An alternative approximation of the variance of Y 2prgr
t is
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where xytt is the second-phase sample-based estimate of the product moment
correlation coefficient between the second-phase sample values of yi and xi.
Again the computational details of xytt depend on the second-phase sampling
design.

Two-phase sampling with regression is typically used in forest inventories
where remote-sensing data and field assessments are to be combined While two-
phase sampling with regression estimators is often more efficient than 
two-phase sampling for stratification, it has specific problems when used in
practical settings. The cost relationship between the assessment in the first and
the second phase  is one factor to consider carefully. The other is the strength
of the relationship between the variable of interest (y) and the auxiliary vari-
able (x). This strength is often measured in the fraction of the variance in y that
is explained by x. The coefficient of determination ( xy

2t ) quantifies this
strength; xy

2t is a real number between 0 and 1. A higher xy
2t means a stronger

relationship and conversely a lower variance of the two-phase sampling with
regression estimator. In large areas or in forests with a large spatial variability,

xy
2t values around 0.4 are not uncommon. Thus, only 40% of the variation in

y can be explained through variation in x. In homogenous or small-scale forest
areas higher R2 values are commonplace. To expect xy

2t values larger than 0.9,
however, is unrealistic given the natural variation of the variables and the lack
of perfect relationships between common inventory attributes. Furthermore,
such high values are probably questionable and could be the result of transfor-
mations of x, y, or both or the result of forcing the regression through the ori-
gin when an intercept term is significant. The interpretation of estimates of xy

2t
should always be prudent. A few nontypical observations in the secondary
sample or simply a nonrepresentative sample can grossly inflate the sample-
based estimates of the population value of the correlation (Royall 2001). A cur-
sory glance at the equation for the approximation of the variance may give the
misguided impression that any correlation can be exploited advantageously in
two-phase sampling with regression estimators.

De Vries (1986, pp. 117–120) provides an illustrative numerical example of
two-phase sampling with regression estimators. In phase 1 the volume in 90
randomly selected photographed plots is determined by a trained interpreter.
A subsample of 30 plots is randomly selected and their volume is determined
from field measurements of height, diameter, and local volume tables. The cor-
relation between the two volume estimates was strong (0.94) and the 90 pho-
tographic interpretations of voume brought about a 60% reduction in the
estimated variance relative to a SRS with 30 ground plots.

Attributes measurable in remotely sensed images like tree height, crown
diameter, or the number of trees within a defined area are often used as inde-
pendent variables in a regression function to estimate the growing stock of a
forest or forest stand. These types of applied regression estimators, however,
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have the distinct disadvantage that the independent variables can only be
determined correctly from the aerial photograph under a set of specific condi-
tions and appropriate resolution, conditions that are difficult to meet. Schade
(1980), for instance, believes that a scale of 1:10,000 is too small to determine
the crown size. In dense multilayered forests, typical in many tropical regions,
the assessment of the number of trees or the crown diameter is difficult and in
fully stocked stands the direct measurement of tree heights is impossible.
Consequently, a double-sampling design for estimation of volume or biomass
derived from volume functions, conversion factors, and presumed auxiliary
measurements in aerial photographs remains, for many practical applications,
a risky proposition.

We have so far regarded the application of two-phase sampling with regres-
sion estimators to a single attribute/variable of interest. Forest resource inven-
tories are usually planned and implemented for the estimation of a large
number of population parameters, all of interest to owners, managers, and
stakeholders. In addition, estimates are often desired for the both the forest as
a population and for one or more subpopulations. Detailed representation of
estimated parameters might include, for example, a total broken down by tree
development stage, by tree species, and by ecological zonation. For each esti-
mate, a new regression relationship has to be derived from the sample data. The
independent estimation of a large number of regression models from a single
data set invariably entails nonadditive results. Even the probability of obtain-
ing nonsensical results is not trivial. Users of inventory expect and should
expect additivity of results. The nonadditivity problem is akin to that encoun-
tered in sampling with partial replacement (SPR). The need to derive a multi-
tude of regression relationships and consequently the need to adjust the results
to ensure additivity means that the analysis of inventory results based on dou-
ble sampling with regression estimators quickly becomes very complex if not
awkward. Furthermore, the correctness of the regression analysis depends on
satisfying a set of rather strong assumptions regarding the residuals and the
variables x and y. Also, not all target variables can be estimated with a single
estimator. A number of variables on nominal or ordinal scale require a trans-
formation, if possible, to meet the assumptions of the regression model. A non-
linear relationship between x and y would exclude the use of two-phase
sampling with regression estimators.

An implicit requirement for the application of regression analysis is that
the assessment of the variable of interest and the auxiliary variable is done on
the same element. This can only be safeguarded if the sample plots in the two
phases coincide exactly. Studies of the positional accuracy in the Swiss
National Forest Inventory (NFI) found that the centers of the aerially pho-
tographed plots and the terrestrial sample plots were, on average, 5 m apart
(Keller 2001). Since great care and much expenditure were applied to obtain
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an accurate location of the terrestrial plots in the first Swiss NFI, it is reason-
able to assume that their accuracy is the best possible under current practical
conditions. Future generations of Global Positioning System (GPS) sensors
may raise the bar. In inaccessible forests, with difficult terrain and possibly
with crews not fully trained in surveying techniques the accuracy will worsen.
In tropical forests sample plot centers rarely coincide with centers marked on
a photograph or a satellite image. A close relationship between the correct
auxiliary variable and the variable of interest should therefore not be
expected. The fact that a relationship between two attributes/variables often
changes across locations (Gertner 1984; Walters et al. 1991) further strains the
notion of a single linear relationship across the entire sample. Finally, meas-
urement errors in the auxiliary variable attenuate the slope (Fuller 1987), and
our estimate of the slope is biased.

In conclusion, in forest inventory a double sampling with regression estimators
is only a realistic option for the analysis of a few major high-priority attributes.

3.3.5.2
Two-Phase Sampling for Stratification

Two-phase sampling for stratification is similar to stratified sampling except
for the fact that the sizes of the strata are not known without error. Strata sizes
are estimated by the larger, first-phase sample and the variable/attribute of
interest is assessed in the second phase. In two-phase sampling for stratification
an auxiliary categorical variable that can take one of H distinct values is sam-
pled in the first phase for the purpose of estimating the proportion of the pop-
ulation elements/units in each category (stratum). The second-phase sample
can be a subsample of units sampled from the first phase (dependent) or an
independent sample. We shall limit ourselves to the dependent sample with
SRS in each phase. De Vries (1986) treats the rare case of independent sampling
in the first and second phases. The national forest inventory in the USA, for
example, obtains sample-based estimates of the proportion of the land base
that is in the forest stratum, possibly forest stratum (i.e., status is uncertain),
and nonforest stratum through an intensive sampling and classification of
plots located on aerial photographs (Spencer and Czaplewski 1998). A less
intensive ground sampling provides the attributes of interest. The stratum of
each ground plot is known at the time of ground sampling. Population param-
eters are then estimated through a combination of estimates obtained for each
of the three strata. The uncertainty surrounding estimates of stratum size has
to be included in the estimators of sample variance. In two-phase sampling for
stratification with H strata and sample sizes n1 in the first phase and n2 in the
second phase the estimator for the population mean, for example, is as follows
(Cochran 1977):
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weighted sum of the means of strata with weights (wh) equal to the first-phase
estimates of the relative frequencies of units (elements) in each stratum.
A sample-based estimator of the variance of the estimated mean is
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where yvar h2t _ i is a second-phase sample-based estimate of the variance of
variable y in the hth stratum. As expected, the variance is the weighted sum of
within-stratum and among-strata variances corrected for sample fractions and
a finite population size.

For large n1and N the previous variance estimator approximates the vari-
ance in stratified sampling, i.e.,
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This approximation can often be used with impunity instead of the more com-
plex estimator when the first-phase sample consists of a very large number of
classified pixels (say over 1,000) taken from a very large remotely sensed image
with, say, over 100,000 population pixels (N). This result ought to be intuitive.
With a large sample size in the first phase, the variances of estimates of relative
sizes of strata become small and can be neglected and the difference between

Yvar pstr2
t t

a k and Yvar str
t t

a k has no practical importance.

The advantage of double sampling for stratification over stratified sampling
is that a laborious assessment of the sizes of the strata is replaced by a quicker
and less costly sampling procedure (Sutter 1990). Strata may be defined exclu-
sively for the purpose of estimation and they may not otherwise form any
meaningful subdivision of the population. The within-stratum variance, how-
ever, must be smaller than the variance in a nonstratified population before
there can be a pay-off from the first-phase stratification in the form of a lower
sampling variance. In comparison with double sampling with regression esti-
mators, the derivation of regression functions has been eliminated. In many
practical situations there is no suitable auxiliary variable that is uniformly and
strongly correlated with the variable of interest across the entire population.
Two-phase sampling for stratification would be a logical alternative in these
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circumstances. This argument extends to the case where several variables of
interest are to be determined and where field samples cannot be located with
any great precision or linked with a desired accuracy to observations made in
the first phase.

3.3.6
Multiphase Sampling

Two-phase inventories can be extended to multiphase sampling procedures
through the inclusion of additional assessment levels (Köhl and Kushwaha
1994). As the number of phases increases the number of possible pairs of two
phases that each could be used as an estimation of a desired parameter
increases exponentially. The optimum use of the sampled information requires
that we combine all possible estimators optimally, i.e., weighted with respect to
their sampling variances. While the extension of two-phase estimators to mul-
tiphase sampling is theoretically straightforward, the fact remains that the thin-
ning of sample sizes down through the hierarchy of phases quickly erodes any
tangible gains in precision by going from two to three or even more phases
(Magnussen 2003).

Three-phase sampling with regression estimators is, as expected, a complex
design with few practical applications (Pfeffermann et al. 1998). It can hardly
be recommended for other than special purpose surveys owing to considerable
estimation problems. Therefore, only three-phase sampling for stratification is
detailed. As before, we limit details to random subsampling in the second and
third phases Examples of practical applications of three-phase sampling for
stratification are given in Cherrill and Fuller (1994), Kirkman (1996), Williams
(1996), Lunetta et al. (1998), Vogelmann and Howard (1998), Cannell et al.
(1999), Lunetta and Elvidge (1999), Brown et al. (2000), Cruickshank et al.
(2000), Flores and Martínez (2000), Moran et al. (2000), Chong et al. (2001),
Franklin (2001), and Magnussen (2003). As general references Bowden (1979)
and Johnston (1982) can be recommended.

Estimators for three-phase sampling for stratification use an extension of
the notation of two-phase estimators. The first two phases provide information
for estimation of the relative frequencies of the strata in the population. This
includes estimation of the proportions of second-phase strata in each of the
first-phase strata. Given N, these estimators of strata proportions can be used
to estimate the number of population units in each stratum and the combina-
tion of first-phase and second-phase strata. These estimates of the sizes of the
strata are needed to scale estimates from subsamples in the second and third
phases to estimates for first-phase sampling. In summary, separate estimators
of the population parameter of interest are produced for each phase and then
combined to give one final estimate. The unbiased estimator of the population
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mean for L first-phase strata and H second-phase strata and sample sizes n1, n2,
and n3 in the three phases is

,Y W W Y W Yl
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where wlht is the proportion of second-phase sampleøs in first-phase stratum l
and second-phase stratum h, and Y lh3r is the third-phase mean of sample values
of y in first-phase stratum l and second-phase stratum h. Again, we see that the
mean is simply a doubly weighted average of third-phase estimates with
weights equal to the relative stratum frequencies in the first and second phases.
First-phase sample sizes in first-phase strata l and second-phase strata h are
n2lh with l = 1,. . ., L and h = 1,. . ., H. The total number of second-phase

samples in first-phase strata l is n nl lhh
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/ . Under SRS in each phase, sim-

ple ratios of sample sizes are used to estimate the number of population units
in each stratum. For example, if we have n2lh second-phase samples out of a
total of n2l second-phase samples in first-phase strata l and second-phase strata
h, and we have n1l first-phase samples out of a total of n1 first-phase samples in
first-phase strata l, and we would estimate the number of population units in
the l×h strata to be / /N n n n nl lh l1 1 2 2# #_ _i i. After these preliminaries we can
write the approximate variance of the estimate of the population mean as
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and (Cochran 1977)
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3.4
Errors in Forest Surveys

In sampling surveys, two types of errors are distinguished: sampling errors and
nonsampling errors. Sampling errors result from the facts that only part of the
population is surveyed and population parameters are estimated from the sam-
ple. The estimated parameters may deviate from the true population values.
One way in which sampling error may be expressed is through the standard
error of the mean. This ought to be given for all estimators, as it is essential for
the correct interpretation of inventory data. Nonsampling errors, on the other
hand, are not connected with the problem of dealing with only part of the pop-
ulation but arise from inaccurate measurements, less-than-perfect measuring
devices, mistakes in the execution of the sampling plan or protocol, and sam-
pling the wrong units/elements. Nonsampling errors of this nature are likely to
inflate the apparent sampling variance and to introduce a bias in the estimates.
When the sample observations are derived from model-based predictions and
not a direct measurement per se our data are subject to model error. Since mod-
els only predict the expected value, the apparent sampling variance of model-
based predictions will be too low; the residual model variance has been left out.

From a statistical point of view the reliability of results can be quantified by
giving their precision, accuracy, Mean Square Error (MSE), or bias. We shall
give definitions as there continues to be considerable confusion about the cor-
rect use of these terms:

Precision: Precision refers to the size of deviations in the estimate of a pop-
ulation parameter in repeat application of a sampling procedure. The standard
error or confidence interval quantifies precision. Increasing the number of
observations increases the precision of a statistical estimate.

Accuracy :Accuracy refers to the size of deviations between an observed value
and the true value. Thus, if we know the true value of a population parameter
then we can also define the accuracy of a survey estimate as the deviation
between the estimate and the true value.

Bias : Bias is directly related to the accuracy of an estimate. Bias is the differ-
ence between the estimated value and true value of a parameter. We cannot
estimate bias unless we know the true value of a parameter. In practice we do
not have this knowledge.

The effect of precision and bias can be seen in Fig. 3.11.
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Mean Square : MSE is a useful measure of reliability. It combines the preci-
sion of an estimate with the square of the bias. The MSE is a useful criterion
for the comparison of two or more competing estimators, possibly with differ-
ent amounts of bias. A direct comparison of estimators in terms of precision
only may skew the choice towards estimators that generate highly precise but
biased estimates. According to Cochran (1977, p. 15) the MSE of an estimate
of, say, a population total is

Y .Y Y YvarMSE
2

= + -t t tt` ` `j j j

For unbiased estimators MSE and precision are asymptotically { , }n N " 3_ i

identical. In the following chapters mostly unbiased estimators for population
parameters will be presented. The MSE and the precision of the estimates
derived from unbiased estimators should, therefore, be asymptotically equiva-
lent. Alternative estimators such as, for example, Bayesian and Stein estimators,
seek an attractive balance between bias and precision, often pursuing a mini-
mum variance at the expense of some small amount of bias (Box and Tiao
1973; Congdon 2001).

The standard procedure for calculating sampling error does not allow for
the influence of bias. Nevertheless, bias may multiply the sampling error by
several magnitudes (Gertner 1984). Increasing the sample size may certainly
decrease the sampling error but it can also increase the relative influence of
bias. Consequently, possible bias should be guarded against from the earliest
stage of planning a survey. It is often possible to somehow assess various
sources of inventory errors (Gernter und Köhl 1992) and then gauge the effect
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Fig. 3.11. Example for the concept of accuracy and precision of an estimator. If we
assume that the target center is the true but unknown population value and that the
position of each shot represents the estimate obtained by a random sample, it follows
that (1) the estimator is precise and accurate, (2) the estimator is precise but biased,
(3) the estimator is imprecise but unbiased, (4) the estimator is imprecise and biased.
(After Vanclay 1994)
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of potential bias arising from different sources during the inventory or perhaps
owing to the choice of estimators. Simulation studies may be needed to quan-
tify bias introduced by an estimator.

3.4.1
Non-Sampling inventory errors

Estimators of population attributes and their sampling variances have so far
been presented as if the observations were not only complete but also the best
possible. Best possible means that the most accurate technique for obtaining
data is applied everywhere. Practical surveys can rarely live up to this ideal; for-
est inventories are no exception (Goelz and Burk 1996; Chen 1998; Lesser and
Kalsbeek 1999; Chen and Cowling 2001).

3.4.1.1
Nonobservation

The sample can be incomplete owing to nonobservation of sample units or
errors in the population frame from which sample units are selected (Särndal
et al. 1992). Nonobservations of sample units can occur when some units are not
visited because (1) access is denied, (2) access poses a danger to the survey crew,
(3) the sample unit could not be located, and (4) sampling was terminated
owing to time and budgetary constraints. Errors in the population frame usually
result in an undercoverage, certain population units have a zero probability of
inclusion in the sample, or conversely an inflated inclusion probability if the unit
appears more than once in the frame. Regardless of cause, an incomplete sample
will, as a rule, result in a biased estimate of both the population attribute value
and its sampling variance. We can easily appreciate this result if we subdivide a
population of N units into two parts, one with attribute values y1i , i = 1, . . ., N1
for which observations can or will be made, and the second with attribute val-
ues , , ...,y i N1i2 2= for which observations will be missing regardless
N N N1 2+ =_ i. Let us assume w N N2 2

1#= - , our average sample-based
estimator of, say, a population mean is biased since E Y Y w Y Ys 2 1 2- = -t r r ra _k i,
where the expectation is with respect to the sampling distribution of sample
estimates. Only in the rare case when observations are missing completely at
random (MCAR; Little and Rubin 1987) can we expect no bias since under
MCAR Pr (Y | missing) = Pr (Y ) × Pr (missing) and E (Y

-
1) = E (Y

-
2). To mitigate 

a potential bias from missing observations we must either make assumptions
about either y2 or the mechanism leading to a missing observations, or perhaps
both. We can impute the missing values by suitable substitutes by specifying a
data model for y2 to complete the sample and then obtain the usual estimates as
if the sample was complete. There are many ways to do the imputation and to
obtain the statistical estimators from samples with imputations, each relying on
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a specific set of assumptions. Readers are referred to Rubin (1987), Efron (1994),
Schafer and Scheinker (2000), and McRoberts (2001) for details. Alternatively, if
data are missing at random and there exists a quantifiable relationship between
data values and the probability of a missing value we may be able to adjust our
sample estimates by obtaining a new set of sample inclusion weights from esti-
mates of the probability of a missing value , ,Pr Y X X1 1 2_ i, where x is an auxil-
iary variable known for all population elements. The adjustment option is only
available if the sample contains at least some elements from across the entire
range of x. For example, if the probability of obtaining a sample is a monotone
function g of the slope f of the terrain at the sample location and < <g0 1z_ i

then the inverse g1 z_ i can be used in conjunction with the original design-
based inclusion probabilities to reduce the bias due to missing observations.

Estimators of sampling variance obtained from surveys with missing data do
not account for a potential bias. The MSE (MSE = var + bias2) would be a 
preferred estimate of precision in the presence of a potential bias; however, we
will rarely know the magnitude of the bias. A rule of thumb (Cochran 1977) says
that unless the absolute bias is less than 0.1 times the sample-based estimator of
the standard error of an estimate, the reported standard error and any conven-
tional confidence interval for the estimator could be seriously misleading.

In sampling for proportions we can at least impose limits on the missing
data and use these limits to construct a conservative confidence interval for the
estimated population proportion. Cochran (1977) gives an example with
n2 = 200 missing binary observations out of n =1,000 target observations (i.e.,
n1 = 800) and 80 positive responses (y =1). By assuming that the missing data
at one extreme would be all 0 and all 1 at the other extreme, the following con-
servative 95% confidence interval of the sample estimate of the population
proportion becomes
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We can apply the same rationale towards estimating the sample size needed to
achieve a given target precision when it is known that some binary observations
will be missing. Since bias does not decrease with sample size, even a modest rate
of nonresponse (less than 10%) can have a serious impact on the quality of survey
estimates and every possible effort should be made to obtain a complete sample.

3.4.1.2
Measurement Errors

Directly observed or compiled attribute values of a sampled population ele-
ment (unit) are rarely, if ever, completely free of errors or bias. An observation
deviating from the best possible observation is said to be in error and possibly
biased. Conceptually we can write an observed, viz., a compiled, attribute value
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y il for the ith population element as a linear sum of the best possible value y i

plus a series of error and bias terms arising from various sources (k). For a uni-
variate attribute we can write our observations (compilations) as

, , ,y y e b y e b E e b0 0i i ik ikkk i i i ik ik != + + = + + =$ $//l _ i

where e and bi i$ $ denote the sum of error and bias in the observation (compi-
lation) y il . The errors eik will depend on the attribute and on the entire process,
including the design that generates the observed, viz., compiled, values y il .
Extension to multivariate attributes is straightforward. Only the univariate case
will be detailed.

For surveys with errors and possibly bias in observed/compiled attribute val-
ues the sample-based estimate of, say, a population mean Yr is ,Y Y e b= + +lt t

i.e., the estimate we would have obtained if there were no errors or no bias
Yta k plus the sum of the average error and the average bias. We would normally

not know the average error nor the average bias, but it is often assumed that the
errors are independent and cancel across the sample, which would leave us with
an estimate with a bias of b. With these assumptions the expected MSE of a
sample estimate is

, ,E Y Y e n b b e YMSE var var cov1 2i
i

n

s

2

1

#= + + - +$
=

/lt t r r t
b a _ _ al k i i k; E

where expectation is over the sampling distribution of Y lt . The expected MSE

is thus the sampling variance in the absence of errors and bias Yvar tt a k: D plus

the sum of the variance of the average error, the average of the squared bias dif-
ferential of individual samples, and twice the covariance between the average
error and Yt . The covariance term accounts for a possible correlation of errors
and attribute values. For example, a given surveyor may introduce a constant
observer bias to all samples assigned to this individual. Likewise, an instrument
may introduce an error that is a function of the read-out value.

The practical consequence of the expected MSE equation is that only the
first two terms decline at a rate of 1/n; the bias contribution is usually inde-
pendent of n but may actually increase with n if an increase in sample size
somehow compromises the quality of measurements or compilations. The
covariance term may decline with increasing n but only under a set of rather
specific and restrictive circumstances. Consequently, even a modest bias or
error covariance can greatly inflate the relative standard error of a survey.
Gertner and Köhl (1992) gave a clear demonstration of this in their analysis of
the errors and possible bias in the Swiss NFI. A modest 1% bias in the volume
compilations, for example, would double the relative standard error of the 
estimate of the total volume in a strata dominated by Norway spruce. When 
the covariance term ,cov e Yta k is negative, the observed variance can be less
than the actual sampling variance of the best possible estimate. When the
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observable values are constrained or categorical, the covariance term is gener-
ally negative.

Unless we somehow produce estimates of the measurement error variance,
the bias, and the error covariance, we will not know by how much our sample-
based estimates of population attributes and estimates of sampling error have
been biased. If we are willing to assume a constant bias and no error covariance
the variance of Y lt is

.Y n Y N
n

n evar var var1 1 1
= - +lt tt tb a c _l k m i

Thus, the expected sampling variance of a real-valued population attribute is
inflated by the variance of measurement errors; the bias term vanishes since it
was assumed to be constant. On the other hand, the expected sample-based
estimate of the sampling variance is

E Var Y n Var Y n Var e N
n1 1 1= + -lt t t t tb a _ cl k i m; <E F

Hence, a sample-based estimate of the sampling variance of a population
attribute observed/compiled with an error and possibly a constant bias is only
approximately unbiased if the sample fraction n/N is negligible.

Measurement errors may, however, not be independent across samples. In
presence of a correlation of some or all measurement errors (and constant
bias) the expected sample-based estimate of sampling variance becomes

,E Y n Y n e N
nvar var var1 1 1 1s e= + - -tlt t tt t tb a _ _ cl k i i m; <E F

where the expectation is over the sampling distribution and ett is an estimate
of the intrasample correlation between errors of measurement with

,E e e i j s evare s i j

1
# #!=t

-
t t` _j i9 C# - .

Since the correlation is mostly positive a sample-based estimate of sampling
variance appears more precise than it is. Positively correlated errors are not
unusual in attributes derived from remotely sensed data (Since we have
ignored the covariance of errors in our calculations of variance) (Congalton
1988; Dobbertin and Biging 1996).

3.4.1.3
Estimating Nonsampling Errors and Bias

Bias and measurement errors can seriously compromise the quality and preci-
sion of a survey. Diligence and high standards are required in all aspects and all
phases of a forest inventory to keep measurement errors and bias within
acceptable bounds. Quality standards and quality checks are integral parts of a
forest inventory. Still, measurement errors and bias are virtually impossible to

3.4 Errors in Forest Surveys 125



stamp out of a forest inventory. It is therefore good practice to investigate the
impact of measurement errors and bias on survey results. An error budget dis-
closes all possible sources and the expected impact of error in the entire process
that begins with a visit to a sample unit and ends with a set of survey estimates
of population attributes and is ideally suited for this purpose (Gertner and
Köhl 1992; Kangas 1996). The error budget will ideally not only disclose the
possible bias in estimators but also suggest where and how better standards can
mitigate the impact of bias and measurement errors. In well-designed invento-
ries with high measurement and compilation standards the contribution of
natural intrinsic variation in attribute values to the overall sampling variance
is usually orders of magnitude larger than the contribution of measurement
errors and bias (Gertner and Köhl 1992; Kangas 1996).

Survey observations (viz., compilations) include measurement errors and
bias. Estimates of the measurement errors and possible bias can be obtained
either by repeated measurements and compilations performed on a subset of
sample units or by model-based Monte Carlo simulations of the entire process
that produced the desired estimates.

The repeated measurement option is simple but costly, and also potentially
flawed unless great care is taken to ensure that the repeated measurements
allow an unbiased estimation of the error structure and possible bias. Several
pairs of two independent repeat observations y′

i1 and y′
i2 of the (best possible)

sample attribute value yi in the ith sample unit allow, under the assumption of
equal bias and equal error variance, the estimation of the measurement error
variance and the covariance of errors associated with a single sample. Estimates
are obtained by solving for var(e) and cov (e1, e2) the following equations:
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where m is the number of representative sample units selected for repeat obser-
vation. Under SRS, n large, and m = 0.5 × n, the average of two replicate esti-
mates of the sampling variance provides an approximate estimate of the
sampling variance of Yt via

. .Y Y Y evar var var var0 5 1 e1 2, + - - tl lt t t tt t t ta b b _ _k l l i i; E

Fewer than 30 repeat samples will not provide reliable estimates (Cochran
1977). The potential of a bias in the estimate of the measurement error vari-
ance arises from the fact that if the same person is asked to do a task twice a
recall from the first execution is likely to influence the second execution in
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some way or other. If a different person is assigned to the second observation
the estimate of the measurement error variance will be confounded by inter-
personal bias. A direct sample-based estimate of bias can only be obtained from
multiple repeat observations (more than six) of an attribute value using the
adopted survey methodology and one final observation of the best possible
value. The large number of repeat measurements ensures that the average
measurement error will be close to zero and therefore b Y yi i i, -lt .

In forest inventory the repeat measurement approach to estimate measure-
ment error variance and bias is often either impractical or too costly. Instead the
surveyor attempts to produce model-based estimates of measurement errors
based on Monte Carlo simulations. The measurement error budget starts with
the estimator of the (best possible) attribute value of interest. The estimator is
then expanded into a model that includes variables for all the basic attribute
values observed, viz., measured, on a sample unit. The model also includes all
functions and their parameters needed to transform basic sample attribute val-
ues into the desired attribute value. Once the model has been established, a
measurement error distribution and possible bias are specified for each variable
and parameter in the model based on either results from specialized studies or
subject knowledge. The actual survey data are then often assumed to be the best
possible (no measurement error and no bias). Errors and bias are then added to
all sample observations and model parameters according to the specified mod-
els in order to simulate a new data set from which the desired estimates are
obtained. By repeating this process a large number of times (more than 500) one
can estimate the relative contribution of bias and measurement errors to the
overall estimate of sampling error since we “know” both the best possible value
and the simulated observed value of all inputs to an estimator. An example of a
measurement error budget for volume estimation follows since it will contain
most of the commonly encountered features and problems.

Let us assume that we are interested in estimating the total volume of stem
wood in a population area (PA) of 300-ha (strata) from a simple random sam-
ple of size n = 40 with fixed-area circular sample plots with a nominal area of
A =100 m2 for all plots. In each plot we measure the diameter at breast height
(DBH) of the nti trees in the ith plot for which DBH≥5 cm with a tape. The
height of a maximum of 12 trees representing the range of DBH in the plot is
measured on each plot. A function that predicts tree height (HT) from DBH is
estimated from pairwise observations of HT and DBH. A predicted height HT%

is obtained for all trees with no measured height. A volume equation trans-
forms paired values of DBH and HT, viz., DBH and HT%, into a stem-volume
prediction of a single-plot tree. Stem volumes of single trees are summed on a
per plot basis and expanded to plot-specific estimates of the population total.
The desired estimate is the average plot-specific estimate of the total and the
sampling variance of the estimated total is the variance of the plot-specific 
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estimates of the total divided by n and multiplied by the finite-population cor-
rection factor. With no measurement errors and no bias the ideal (theoretical)
sample estimate of total stem volume with DBH≥5 cm would be

,Avol PA DBH HT DBH HT10
oij ij ij ij ij ij ij ij
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where vol is the total volume of stem wood and akij, k = 0,...,3 are the best pos-
sible parameters of a volume equation that generates the best possible predic-
tions of stem volume for the jth tree in the ith plot. All design variables (PA, A, n),
and all variables and parameters used in the volume compilation {nti, DBH,
HT, b0ij, . . . b3ij} are subject to both measurement errors and bias. The actual
observed volume estimate is based on
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where, as befor e, X′ is an attribute value with measurement error and pos-
sible bias and X is the best possible counterpart with no error and no bias.
Note that the PA may also be in error and that only one volume equation is
used to predict stem volume from DBH and HT. We could have used plot-
specific volume equations or volume equations specific to various subsets of
plots (Lappi 1991) but to keep this example relatively easy we opted for just
a single equation. The error-free and bias-free volume estimate and the
actual observed estimate are linked through the following set of measure-
ment equations (carets have been suppressed to avoid cluttering):
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where e(X) denotes a measurement error of attribute or parameter X with an
expected value of zero and b(X) the bias of attribute X. Subscripts refer to plot
level (i) and tree level (j). No covariance between any of the errors or error
processes was specified in the equations. They were left out intentionally. One
should, however, expect covariance between some errors and between some
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error processes but they would be inventory-specific and we wished to keep
the example simple. A model-based transformation of basic observations
invariably introduces covariance between errors and processes. Kangas (1996)
illustrates how one can use Taylor series approximations to obtain model-
consistent correlated multivariate errors for the Monte Carlo simulation.
Another approach to obtain correlated errors is to specify only a set of basic
errors (as in nti, DBH, and HT) and then propagate these errors through the
estimation process using, again, Taylor series approximations to the best pos-
sible estimate or conversely the observed estimate. Dedicated textbooks give
the necessary details (Fuller 1987; Goodchild and Gopal 1989; Carroll et al.
1995).

To arrive at an error budget we need to specify the distribution of all meas-
urement errors at both the plot level and the tree level and all bias terms and
then conduct Monte Carlo simulations of repeat sampling of actual+error+bias
attribute values followed by an estimation of total volume for each repeat sam-
ple. It is customary to perform a sequence of Monte Carlo simulations, each
with a specific set of errors and biases set to zero. This allows a separate assess-
ment of various sources of errors and bias.

Plot-level errors and bias are determined by plot-specific characteristics
ranging from topographical attributes to stand/forest conditions, in general,
and plot-specific aspects of the measurement process, in general. For example,
the plot area may be in error owing to an error in the slope correction to a hor-
izontal reference area (Gertner and Köhl 1992). The number of plot trees may
be in error because inappropriate corrections were done to adjust for bound-
ary effects (Gregoire and Scott 2003) or mistakes were made when it was
decided whether a tree located at the plot boundary was inside or outside of the
plot. Change in surveyors, surveyor diligence, weather conditions, and time of
day may also introduce plot-specific errors and/or bias.

3.5
Selection of Trees on Sampling Units

The sampling units of forest inventories are usually not individual trees but
rather a group of trees satisfying some criterion. Sample trees may be selected
by, for example, satisfying the criterion of location inside a sample plot, exceed-
ing a distance-weighted size threshold in point sampling, proximity to a survey
location or a survey line, or satisfying a rank proximity criterion at a sample
location.

The rank proximity criterion includes a fixed number of trees closest to a
sample location. For example, the six trees closest to a random sample location
may be selected (Prodan 1965). Estimators based on this type of tree selection

3.5 Selection of Trees on Sampling Units 129



will often be biased, especially if the spatial distribution of trees is aggregated
or in some other way displays distinct spatial patterns. Further, in dense or
trackless forests it is time-consuming and expensive to determine the ranking
of tree distances to a random point. Consequently, this procedure is not to be
recommended for tropical forests and is not discussed here further. Those who
would like to know more about it are referred to the literature (Prodan 1965;
Payandeh and Ek 1986; Pollard 1971).

3.5.1
Tree Selection with Fixed-Area Sampling Units

Fixed-area sampling units are the simplest intuitive basis for selecting trees to
be assessed in forest inventories. The term plot is applied to small circular, rec-
tangular, square, or triangular areas. A strip is a rectangular sample area, whose
length is a multiple of its width. Unbiased estimates can be computed for all
sample areas, no matter what their shape. In planning an inventory, survey
costs must be weighed against desired precision to determine the optimum size
and shape of the sample plots.

The shape of a sample plot is mainly determined by cost and other practi-
cal considerations. In temperate latitudes, circular plots are usually employed
as having the smallest periphery in relation to area and consequently the low-
est number of borderline trees. In tropical forests, where the undergrowth
hinders both access and visibility and large areas must be surveyed, it is usual
to take rectangles or squares because such plots are the easiest to establish.
Very often strips of up to 30-m wide and several hundred meters long are rec-
ommended.

For a fixed total sample area, choosing a larger plot size means that the sam-
ple size goes down since the product of sample size and plot area is constant.
A large plot is likely to produce a lower among-plot variance than a smaller
plot since large plots in general display more within-plot variation than do
smaller plots. Yet the lower number of larger plots afforded under a fixed total
sample area may actually produce a higher standard error than sampling with
a smaller plot (Correll and Cellier 1987; Magnussen 1998; Gray 2003). The
optimum plot size in terms of minimum sampling variance for a fixed total
sample area is determined by the spatial distribution and the variability of the
forest to be surveyed. Small plots in homogeneous forests may furnish results
with higher precision, as the number of independent observations for a given
sampling intensity is higher. On the other hand, in heterogeneous forests, the
coefficient of variation between small plots may increase so greatly that it
would be better to use a larger plot. Consequently, not only the costs but also
the variability of the inventory area must be taken into consideration. A key
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statistic to gauge the efficiency of different plot sizes is the intraplot correlation
coefficient (Cochran 1977). The coefficient measures the similarity of observa-
tions within the sample plot. Basically, the more similar the observations are,
the more efficient is the small plot, and vice versa (Correll and Cellier 1987;
Saborowski and Smelko 1998).

Zeide (1980), as well as Mesavage und Grosenbaugh (1956), Tardif (1965),
and O’Regan and Arvantis (1966), examined various methods for optimizing
plot size. Zeide weighed the time needed to locate a plot against the specified
precision and stated that the optimum plot design is the design with the low-
est expenditure for the specified precision. The optimum plot size aopt was
computed from

,a a m
t

opt 1

2

= c m

where a1 is the size of the plot used in a pilot survey, t is the average travel time
between two neighboring plots, and m is the average measuring time on a plot
of size a1. Zeide concluded from this that the greater the distance between plots,
the larger the plots should be.

To compare two plot designs with plot types 1 and 2, the relative efficiency
of type 1 for the estimation of, say, a population total is
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An efficiency ratio less than 1 means that plot type 1 is more efficient, and
vice versa. Note that the efficiency depends on the population parameter of
interest. It is possible that one plot type is more efficient for one parameter but
less efficient for a different parameter.

As a rule of thumb, a plot should be large enough to contain enough trees
per plot for the survey results to be representative of the population at large
while at the same time keeping the time to complete a plot to a minimum. It
follows that small plots should be employed for dense stands with small trees,
and large ones for open stands and large trees. Very often, a distinction is made
between unproductive relocation time between plots and productive survey
times. When travel time is significant, as in a tropical forest, the size of inven-
tory plots tends to be large, often in the 0.4–0.5-ha range.

The horizontal plane is the reference base for all inventory data, and sample
plots in sloping terrain must be adapted accordingly. Three distinct procedures
for this adaptation are given next; the first is general, while the second and third
are for circular plots only:
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1. All plots: Demarcate the plot on the incline and then expand the plot pro-
portionally to the degree of inclination in such a way that an orthogonal
projection of the expanded plot onto the horizontal plane matches exactly
the nominal plot in area.

2. Circular plots: Demarcate an ellipse on a slope with the short axis and the
long axis determined in such a way that when the ellipse is projected
orthogonally onto the horizontal plane it coincides with the circular out-
line of the nominal inventory plot.

3. Circular plots: Measure or compute the horizontal distance of candidate
plot trees to the plot center. Only trees within a distance of the nominal
plot radius are included and measured.

In order to simplify the field survey and to facilitate an audit and a quality
control of the inventory the enlargement of the plot in proportion to the
degree of inclination appears most suitable. Köhl and Brassel (2001) showed
for the Swiss NFI that there is no significant difference between the second and
third expansion approach. In mountainous regions, an error in the corrected
plot can induce a nontrivial error in the survey results. For this reason, correc-
tions for slope inclination must be made by fully qualified personnel only, and
all pertinent data about the expansion/correction process should be captured
to allow control and possibly correction of the errors.

Sample plots in areas with a high stem density may contain a large number
of trees. The aforementioned general principle about small plots being more
efficient in areas with a high tree density and larger plots being more efficient in
areas with a low tree density has led to a design with multiple concentric plots.
Two or more plots of differing size are demarcated around a given sample
point. In the smallest area, all trees with a diameter greater than a given mini-
mum fixed by design (e.g., 12 cm) are surveyed. In the larger plots, the 
minimum diameter threshold is higher. This design often allows a considerable
reduction of survey time with barely noticeable decreases in efficiency. Figure
3.12 shows the concentric plot design employed in the Swiss NFI. On the
smaller, 200-m2 plot, all trees with a DBH over 12 cm are measured, while on
the larger, 500-m2 plot only trees with a DBH of 35 cm or above are measured.

It is also important to consider the life span of an inventory plot when
deciding on a plot size. Permanent fixed-area sample plots intended for multi-
ple surveys are difficult to optimize. The number of trees and their size will nat-
urally change over time. To ensure that the plot size is sufficient throughout the
life of a plot, a permanent fixed-area plot tends to be relatively large. For con-
tinuous forest inventory and monitoring, fixed-area plots are to be particularly
recommended, as they allow easy determination of growth components such
as ingrowth, mortality, and cuts (Scott 1998). Also, fixed-area plots are usually
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simple to survey, maintain, and analyze. For these reasons they are preferred
over variable-radius plots.

3.5.2
Scaling of Individual Tree Data into Sample Plot Values

The statistical approach to sampling designs generally assumes that sample
plots represent the smallest (natural) sample unit; however, actual sampling
may not be done with this unit. Indeed plots of different size may be used or
trees may be selected based on a criterion of inclusion. Thus, individual tree
values sampled during a survey have to be scaled to this natural unit. It is
common to take an area of 1 ha as the natural unit. The scaling is accom-
plished by area weighting of the attribute, say Y, of the jth tree on the ith
sample location. Let aij denote the area of the sample plot used to sample the
ith tree at the jth sample location. The meaning of sample plot area for trees
selected by a criterion of inclusion will become clear as we later examine various
sampling methods.

The area weight given to the attribute valueYij is w aij ij
1= - , which becomes

the attribute value per hectare. This area weighting is flexible as it extends
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naturally to sampling with unequal probability of inclusion for individual
trees. A simple example ought to clarify the concept. Let us assume that we
are sampling with a set of fixed-area concentric sample plots. Trees below
a certain size threshold are measured on the smaller plot(s) and trees above a
certain threshold are measured on the bigger plot(s). Thus, the selection
probability of trees is not constant but depends on tree size. The effect of dif-
ferent plot sizes on selection probabilities has to be corrected through scaling
to a common (natural) unit via area weights. For each concentric plot a sep-
arate scaling factor applies. If, for example, two concentric plots of sizes 0.02
and 0.05 ha are used, the scaling factors are calculated as

.w for trees on the 0.05 ha sample plot0 05
1 20= = -

and

.w for trees on the 0.02 ha sample plot.0 02
1 50= = -

In the previous example it was the size of the trees that determined whether
they were measured on one plot or the other. Often DBH is used as the size cri-
terion owing to ease of measurement. In that case the area weights (scale fac-
tors) become functions of DBH. If in the previous example trees with a DBH
between 12 and 35 cm were tallied in the smaller, 0.02-ha plot and trees with a
larger DBH were tallied in the 0.05-ha plot we can express the weights as
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Note, the scaling of inventory estimates to a unit area (here 1 ha) allows us to
assess the effect of plot size, plot shape, and selection criterion on statistical
estimates of interest. Recall, we do not consider a scaled attribute value as a
ratio of two random variables since we assume throughout that the scale fac-
tor is known without error. Measurement errors in aij are not considered.

After scaling individual attribute values Yij to a unit area (1 ha), we usually
sum them to a single value Yi + for the ith sample location:

.Y w Yi ij ijj
=+ /

3.5.3
Point Sampling

Compared with fixed-area plots, point sampling is a relatively new procedure.
It was first presented by Bitterlich (1947, 1997) in 1947 and was further refined
and theoretically substantiated by Keen (1950) and then Grosenbaugh (1952).
Alternative names for this method are angle count, variable plot cruising, and
plotless cruising, names that reflect one of the most important features of the
method: the area surveyed varies.
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The first step in point sampling is the same as that in surveying with fixed-
area plots: the selection of sample locations (points). Then, attributes of inter-
est are measured on all trees meeting a certain criterion of selection. Typically
the criterion is DBH and the decision on whether to include or exclude the tree
from selection is based on a measurement with an angle gauge instrument. The
simplest form of an angle gauge has a cross-arm attached horizontally to a ver-
tical stick held at a known distance from the eye. With this instrument, an angle
in the horizontal plane and 1.3 m aboveground is aligned with the trunk of
each tree visible from the sample location. All trees with a DBH forming an
angle greater than the angle subtended by the crossbar are selected. Trees with
a smaller DBH are ignored (Fig. 3.13). Assessments and measurements are then
carried out on the selected trees. Refinements of this method include electronic
verification of inclusions based on optical/electronic measurements of angles
and distances at a fixed reference height (Bitterlich 1997).

The basal area per hectare at the sample location is determined through mul-
tiplication of the number of “in” trees by a constant factor derived from the given
angle subtended by the horizontal crossbar; no extra measurements are needed.
Thus, each tree assessed, independent of its diameter, represents the same basal
area per hectare; a proof is given next.
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The geometrical principle of point sampling is illustrated in Fig. 3.14 with a
cross-arm 2-cm wide (b=2 cm) attached to a stick 1-m long (l=1 m). For a tree
at distance Ri with a DBH equal to DBHi and subtending an angle equal to the
angle subtended by the angle gauge cross-arm we get
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Any sample location within a distance of 50 × DBHi from this tree would result
in the tree being included in the sample. In other words, the sample area for
this tree is p × (50 × DBHi)

2. The attribute value of the tree is therefore given
an area weight equal to the inverse of this area. If the attribute value is
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This means that every selected tree represents a basal area of 1 m2/ha. The basal
area per hectare is estimated by simply counting the number of “in” trees.

The simple derivation just shown is only valid for b/l=2/100. If a gauge with
a different subtended angle (a) is used a more general equation must be
employed (see Fig. 3.14 for details and definitions):
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For any given gauge angle a and count Ncount of “in” trees the basal area G per
hectare is estimated as

/sinG N N BAF,10 2count count
4 2# # #= =at _ i

where BAF is the basal area factor. The basal area factor is indicated on commer-
cially available angle gauges. After a 360˚ sweep and deciding on “in”/”out” for
every visible tree, one obtains the basal area per hectare by multiplying the num-
ber of “in” trees (Ncount) by the basal area factor. The chosen angle and thus the fac-
tor determine the number of trees selected. The wider the angle, the higher the
factor and the lower the number of trees selected. In tropical forests, factors
between 8 and 10 are popular; they ensure reasonable counts (between 10 and 40).
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As already illustrated, point sampling with an angle gauge is essentially sam-
pling with PPS (basal area) (Fig. 3.15). In fixed-area sampling all trees have the
same probability of selection, a probability that only depends on plot size. For
any attribute related to size, a selection with probability of selection propor-
tional to size will result in a more efficient sampling (Brewer and Hanif 1983;
Särndal 1996). The estimated sampling error for a given number of selected
trees will be lower than for sampling with equal selection probability.

It can happen that the angle subtended by a tree’s DBH appears to be exactly
equal to the gauge angle. Such trees are termed “borderline trees”; their diameter
and distance from the point center must be measured accurately, and the deci-
sion as to whether to include them or not is based on the equation. Alternatively
one could toss a coin and decide on the basis of the outcome of the coin toss.

Trees not visible from the sample location are obviously a potentially serious
source of bias in point sampling with an angle gauge. Great care must therefore
be taken to ensure that no tree has been missed.

Commercially available instruments for point sampling are based on one of
two different principles. One uses the previously outlined principle of two diver-
gent lines starting at the viewpoint and extending to a fixed reference distance
and beyond until intercepted by an obstacle (Fig. 3.16a). The practical problem
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that arises with this type of instrument is that a close object (reference distance)
and a distant object (the tree) have to be focused and two lines (right and left
side of the tree) observed simultaneously, often by a human observer. This ren-
ders decisions about whether or not to include borderline trees difficult. Angle
gauges sold under the name of Relascope include a feature for automatic
correction for inclinations from the horizontal. A wide-scale Relascope was
developed for application in tropical forests (Loetsch et al. 1973).
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The second principle is based on the diffraction of light rays, in our case
diffraction of light rays from the tree as they go through a wedge prism in
front of the observer (Fig. 3.16b). The observer will see two superimposed
images of the tree stem: an actual nondiffracted image superimposed on a
diffracted image. The tree is selected when its actual image overlaps with 
the diffracted image. Trees with a diffracted image displaced laterally relative
to the actual image are not selected. It is much easier to decide about bor-
derline trees with this type of instrument than with a Relascope or a stick-
type angle gauge. Ease of use made them popular, especially in Canada and
the USA.

With angle point sampling, any measured attribute (say population mean)
of the trees counted as “in” should be expanded to a common reference area of
1 ha in order to remove the effect of differential inclusion probabilities. The
expansion takes the form
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where BAij is the basal area of the jth “in” tree at the ith sample location.
Consequently the basal area of all “in” trees must be determined or, conversely,
estimated from a measurement of DBH and the assumption of a circular out-
line of the stem cross section. Per-hectare estimates of stems and basal area
deserve special attention. For stem count, the attribute value of each “in” tree is
1, so the estimator for the stem count per hectare becomes
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and the estimator for the basal area per hectare is
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There are many variations in horizontal point sampling methodology,
some have already been described. Vertical point sampling and vertical line
sampling (Strand 1958), the critical height method for volume assessment
and angle counting by Wenk (Loetsch et al. 1973; Hush et al. 1982) have also
become popular. Uebelhör (1988) describes the use of point sampling with
the wide-scale relascope in the Philippines NFI and recommends point sam-
pling for measurements in tropical rain forests to the reduce the cost of field
surveys. Other applications of point sampling in tropical forests have been
presented by Boon (1970), Puffenberger (1976), da Silva (1982), and Banyard
(1987). Sampling for coarse woody debris has spurred new refinements of the
Relascope idea for special-purpose sampling (Ståhl 1997, 1998; Ringvall and
Ståhl 1999).
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3.5.4
Point Sampling Versus Fixed-Area Plots

Forest resource sampling is a challenge owing to the frequently encountered
problem of uniquely defining population elements/units and consequently
the problem of defining a sampling frame. The point paradigm, by which a
population is defined as all possible spatial locations of a sample unit, is
adopted out of necessity. When there is no natural sampling unit the survey
designer has to decide on how observations are gathered at each sample loca-
tion. The decision as to whether to employ point sampling or sampling with
fixed-area plots depends on the individual aims and needs of the inventory. In
a study on an area of 60 ha in Surinam, Schreuder et al. (1987) compared the
efficiency of fixed-area plots, point sampling, and horizontal line sampling.
Fixed-area plots gave the best results in terms of root-mean-square error for
tree number, horizontal line sampling for basal area, the sum of tree diame-
ters, and the average tree diameter. Point sampling was superior for estimat-
ing the number of trees in the upper-diameter classes, while fixed-area plots
fared better for the smaller-diameter classes. These findings apply in general.

With point sampling in stands with a high stem count, with clusters of big
and small trees, or with dense undergrowth, there is a nontrivial risk that trees
may be hidden, and consequently that a negative bias may be incurred. The
time to implement repeated checks for hidden trees and their inclusion in the
local sample quickly erodes any practical advantage of point sampling. In such
cases, it is preferable to use fixed-area plots.

In the consideration of fixed-area plots versus point sampling the survey
analyst must also take into consideration the life span of a sample location. Will
the sample locations be used in future inventories or will they be part of an
ongoing monitoring? If plots are to be used again and again over time for the
purpose of estimating change and trends in population parameters, the fixed-
area plot has some distinct advantages. In point sampling, the inclusion prob-
ability of a tree depends on the attribute value of the tree (commonly basal
area) at the time of sampling. Thus, the inclusion probability does not remain
constant over time for attributes/variables that change over time. In the context
of estimating the population parameter “tree growth” the change in inclusion
probabilities generates some unique estimation problems. At the time of
remeasurement you can have trees included in the point sample that were not
included at the previous time of sampling. Estimation of growth of individual
trees becomes cumbersome when their inclusion probability has changed
between the times of measurement (Flewelling and Thomas 1984; Scott 1998).

There are two distinct events that would allow a tree to enter the later meas-
urement but not the earlier. First, the DBH of the tree exceeded the minimum
threshold diameter on the first occassion but it was located beyond the critical
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inclusion radius. The growth estimate for this tree would equal its size. The
common terminology for this type of growth is ongrowth. The second event
that allows a tree to enter the sample between sampling times happens when its
size exceeds the inclusion threshold on the second but not the first measure-
ment occassion. The growth calculated for this tree is called ingrowth. Kuusela
(1979) describes various estimators of growth based on point sampling with
repeated measurements at a fixed set of sample locations. The complex nature
of these estimators suggests that they should only apply in exceptional cases.
Procedures for estimation of increment and growth components in fixed-area
plot sampling are simple in comparison.

3.5.5
Sampling at the Forest Edge

Sample locations at the forest edge present a special estimation problem in for-
est inventories. Since the population of interest is restricted to areas classified
as forest it can happen that the effective sample area for locations along the
edge is less than the nominal area associated with sample locations in the inte-
rior of the forest. It would be wrong to simply disregard such sample locations
as this would mean that trees growing in areas along the forest edge would have
a different probability of being selected compared with trees growing further
away from this edge (Williams 1996; Gregoire and Scott 2003). Since growing
conditions and tree species along the forest edge are often distinctly different
from the those in the interior forest, disregarding edge plots could lead to a
serious bias in the inventory estimates.

The surveyor has several options for correctly dealing with the boundary
effects. The problem and solutions are best understood if we adopt a tree-cen-
tered view of sample areas. For the fixed-area plot the sample area of a tree is
simply the area covered by the sample plot when the center of the sample plot
and the tree location coincide. For point sampling the sample area is the area
covered by the circle centered at the tree location and with a radius equal to the
critical distance of selection. Any sample location falling inside the sample area
triggers the selection of the tree located in the center of the sample area. Trees
located along the edge of the forest will have part of their sample area outside
the population of interest. They are therefore less likely to be selected than a
tree further away from the boundary. The solutions presented next are for sam-
pling with fixed-area plots but they apply equally to point sampling by simply
replacing the term sample plot by sample area. One recommended option
involves finding the exact intersection of the forest edge with the inventory plot
and then computing the area of the plot that is inside the population. The
attribute values observed on this partial plot are scaled according to the area of
the plot inside the population. The weighting scheme can also be applied to
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trees in individual plots. For trees with a distance to the forest edge less than
the radius of the appropriate sample area (e.g., 12.62 m for a circular plot of
0.05 ha) the part of the sample area inside the forest is determined for each tree
and converted to an area weight wij (Fig. 3.17).

Another rather ingenious solution is the “fold-back” or the mirror reflection
method (Schmid 1969). In a mirror reflection of a straddler plot, the part of
the plot that falls outside the forest is projected orthogonally back into the for-
est with the forest edge serving as the axis of projection. The surveyor records
all attributes for the part of the plot that is fully inside the forest and then all
attributes on the mirror reflection of the part that was outside. In other words,
a part of the plot is measured twice and occasionally three or four times if the
boundary is on a corner and reflected portions of the plot overlap. Correctly
applied, this method produces unbiased results, but it assumes that the forest
boundary can be located accurately. In practice it is often quite difficult to
decide on the exact location of a boundary. Any nonlinear edge will also gener-
ate practical problems with the mirroring. When the forest edge cannot be
defined in precise and generally valid terms the method becomes problematic.
Two easy, but resulting in biased estimates, solutions are to (1) relocate the
straddling plot further away from the boundary to avoid overlap and (2) expand
the part of the plot inside the forest to compensate for the area outside the for-
est. Gregoire and Scott (1990) compared four unbiased and three biased meth-
ods for dealing with sample plots at the forest edge in a mixed hardwood and
mixed softwood stand in Maine, USA. They concluded that no single method
was uniformly superior; the performance depends on the nature and magnitude
of the “edge effect.” Some biased methods of plot relocation performed, at times,
better than the unbiased methods.
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In practice usually only plots with a plot center inside the forest are accepted
and tallied. The existence of sample locations outside the forest boundary, how-
ever, raises questions about the integrity of the sample frame and the multipli-
ers to use to when you scale per hectare estimates to population totals. If a
sample location is judged outside the forest but the outside location is actually
a part of the forest estate (in an administrative or legal context) it can be argued
that the “outside” location should have been included in the sample. In areas
with illegal forest clearing, for example, the discarding of “outside” sample loca-
tions could lead to a serious overestimation of per hectare valued attributes.

3.6
Sampling on Successive Occasions

Sampling on successive occasions is done for the following main objectives:

● To determine the status of the forest resource at the time of the first inventory
● To determine the status of the forest resource at the time of the second

inventory
● To determine changes in the forest resource between two successive inven-

tories

The idea of quantifying change in a forest resource as the difference between
two successive inventories was first applied to individual forest stands.
Repeated measurements of a selected number of representative stands offered
a way to verify the sustainability in terms of the yield of stands that were under
a fixed forest management regime. This fundamental idea to quantify forest
yield was born in the last century in Europe. In Germany, the first permanent
plots were established in 1860 (Graves 1906). Foresters in France (Gurnaud
1878) developed a set of rules for how to estimate increment from successive
measurement. In French-speaking countries the rules were given the name la
méthode du contrôle. Biolley (1921) was the first to apply the rules. The forest
of Couvet in the Swiss Jura, where the rules originated, was measured ten times
between 1890 and 1946 in intervals every 6–7 years. The rule set has since been
widely adopted. It is known as “the control method” in the English literature.

In the USA, the idea of obtaining quantitative estimates about the change in
standing wood volumes through repeated measurements of the same set of
plots gained support and acceptance during the years between 1929 and 1950
(Stott and Semmes 1962). The economic recession of the 1930s accentuated the
need for reliable estimates of wood volume. A general increase in interest in
primary production factors was instrumental in the pioneering application of
sampling methods for estimating change. A direct adaptation of the European
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yield control methods, which were based on recording all trees within stands
up to several hectares in size, would clearly not be feasible, the intensive con-
trol method of Gurnaud (1878) and Biolley (1921) even less so. As well, there
was no representative network of “benchmark” stands to which a set of stan-
dard management regimes applies. The great expanse of the North American
forests, mostly without any established stand structure, dictates that only a
small fraction of the forest of interest could be surveyed. The favored approach
was for the application of objective and scientifically sound sampling methods,
a rare approach at that time.

3.6.1
Continuous Forest Inventory

In the 1930s, a sampling method, known as continuous forest inventory (CFI),
was developed in the USA. CFI is based on repeated measurements of a set of
sample plots (Stott and Ryan 1939). Stott and Semmens (Stott and Semmens
1962) give a historic overview of the CFI application. In the Midwest, between
1937 and 1938, a few hundred permanent sample plots in forests operated by
the wood processing industry were established. In the Great Lakes and Central
Plains states starting in 1939, approximately 3,700 permanent circular sample
plots were set up in private, industrial, and public forest enterprises. In 1948,
the inventory of forests in Ohio and Wisconsin took place with about 1,000
permanent sample plots. In 1952, the American Pulpwood Association (APA)
became aware of the CFI and introduced it to its members. During the follow-
ing years, a cooperation between the APA and the USDA Forest Service led to
an extensive application of the CFI extending east of the Mississippi River. In
1962, approximately 50 enterprises associated with the wood processing indus-
try managed 25 million acres according to the CFI method. Most CFI plots
were established in what was termed “typical” timber-producing stands; as
such they are not representative of the entire forest resource.

The pioneers of CFI in Germany were Krutzsch and Loetsch (1938). In
1936 they set up a series of permanent sample plots for yield control. In
Sweden, CFI was pioneered by Patterson (1950) and early on applied to for-
est yield research at the Swedish forest experimental station. In Switzerland,
CFI was introduced by Schmid (1967) and it was applied to forest manage-
ment planning, in effect an extension of the classic control method to CFI.
His intensive effort towards an applied survey method for permanent sample
plots (Schmid-Haas et al. 1993) resulted in wide acceptance of the method in
Swiss forestry.

With the CFI method, all sample plots, which are measured on the first occa-
sion, are measured again in successive inventories. The estimators of population
parameters under CFI are time-specific. We indicate the time dependency of
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CFI estimators by a suffix t for time. The suffix takes on values 1,2,3, . . . for the
estimates of population parameters at the first, second, third, and so on inven-
tory. We are usually interested in the estimation of a change between two suc-
cessive inventories. When the context is clear we simply refer to estimators and
estimates of the “first” occasion and of the “second” occasion inventory, respec-
tively. In continuation of our example for the estimation of a population mean
under SRS at the first and the second occasion inventory, the CFI estimator is

, , .Y n Y t1 1 2,t t
t i

i

n

1

t

= =
=

/t

Changes in a population parameter between two inventories can be derived
as the difference between the estimates of the population parameter at two suc-
cessive inventories. For the previous example we have

Y Y Y,2 1 2 1= -D t t t .

When the same set of plots are remeasured on both occassions, the estima-
tor of the variance of the change of the mean becomes

, ,Y Y Y Y Y Y Yvar var var var var2,2 1 2 1 2 1 2 1# #= + - tD D Dt t t t t t t t t t t
a a a _ a ak k k i k k

where ,Y Y2 1tt _ i is an estimate of the correlation coefficient between the obser-
vations on the second and the first occasion; ,Y Y2 1tt _ i is restricted to values
between −1 and +1.

The higher the correlation is between paired observations from the first and
second inventory, the smaller is the variance of their difference. For a large num-
ber of size-related attributes the temporal correlation between plot variables
measured on two occasions will be positive. Autocorrelation is the single most
significant contributor to this correlation (the attribute on the second occasion
is equal to the attribute on the first occasion plus change). When the correlation
is positive the variance of the change will be less than the sum of the variances
on the first and second occasions. However, as time separates the two invento-
ries the correlation tends to dissipate. The rate of decrease will depend on how
well change is correlated with the attribute value on the first occasion. For trees
growing in the absence of disturbances, in a homogenous environment free of
competition, and with a nonrestrictive supply of nutrients, the correlation
between change and initial attribute value may be quite strong over long peri-
ods of time. In heterogeneous environments with frequent disturbances and
physiological stress the correlation may be weak, zero, or even negative. When
the correlation is zero or perhaps even negative the variance of the difference
will be equal to or larger than the sum of the respective variances. For example,
if large trees are more prone to hurricane damage than small trees, and one or
more hurricanes have gone over the forest since the previous inventory, the cor-
relation between, say, plot volume at the two occasions could be negative. At the
other extreme, when the correlation is 1, as is the case when the attribute value
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on the second occasion is equal to the attribute value on the first occasion times
a constant plus a constant, the variance of the change is 0. A correlation coeffi-
cient of 1 is extremely rare. If the plots measured on the first and the second
occasion are not the same and each set is selected independently of the other
then the correlation of attribute values is by definition zero and the variance of
the change estimate is simply the sum of the respective variances.

For a positive correlation coefficient a CFI estimate of change will have a
smaller variance than an estimate change derived from two sets of independ-
ent observations. The advantage of using the CFI method rests with the reduc-
tion of the variance of estimated change.

The CFI method, despite its obvious advantage, encounters practical and
inferential problems. Over time the locations of sample plots may become
known beyond the surveyors and, as a result, they may evolve differently from
the surrounding forest. This nontrivial risk is especially acute for visibly
marked sample plots. The potential of an inferential problem is latent because,
as paraphrased by Schmid-Haas (1983), “there is no guarantee that sample
plots, visible or not, will remain representative of the target population.”
Schmid-Haas also believes that even the most experienced forester cannot be
sure that he or she would not be influenced by the knowledge that certain parts
of the forest are subject to the intensive scrutiny of repeated measurements.
Consciously or unconsciously, it is possible that the sample locations are being
treated differently in some way, shape, or form. A sample plot inventory, which
cannot reliably eliminate this risk, may become biased and will quickly lose
credibility and invested goodwill.

If only the net change has to be estimated, for example, volume growth, per-
manent sample plots would be more cost efficient than two independent sur-
veys, which means that for the same cost they lead to a smaller sample error.
This seems obvious, since the difference between two independent observa-
tions is not only caused by change alone, but also by the variation within the
two populations. If only the current state is to be considered, temporary sam-
ple plots are often more cost effective than permanent plots, since the expen-
ditures for marking the sample plot centers and the registration of sample tree
locations do not exist.

The application of the CFI method can lead to inferential problems. All CFI
inventory systems rely on the assumption that the permanent plots are repre-
sentative. But are they? With time the plots may “drift” at a rate different from
that of the population they are supposed to represent. This risk is especially
acute in managed forests or in places with frequent land-use changes. As well,
changes in the inventory objectives are difficult to accommodate in CFI with its
system of plots established in the past and tailored to past objectives.

Practical survey objectives are often a blend of target precision on estimates
of state and change. In this case a design with a mixture of permanent and
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temporary plots appears attractive. The idea of a survey design with both plot
types arose from these considerations.

3.6.2
Sampling with Partial Replacement of Sample Plots

In SPR a fraction of the sample plots measured during a survey are replaced by
new sample plots at the subsequent survey. This pattern of partial replacement
is repeated over time. SPR was introduced into forest inventory around 1960.
Kish (1964), Cochran (1977), and Sukhatme et al. (1984) also discussed the
theory of SPR of sample plots. Bickford (1959) was the first to introduce the
theory of SPR to forest inventory. The first to apply SPR was the USDA Forest
Service in the Allegheny National Forest where it was combined with aerial
photographs and modified accordingly (Bickford 1959).

We shall describe SPR estimators based on only two SPR occasions for the
estimation of a population mean. SPR estimators for subsequent surveys are
more complex. After the second SPR there are three types of plots available for
the estimators:

1. n12 sample plots measured on both occasions (matched permanent plots)
2. n1 sample plots measured only on the first occasion (unmatched first occa-

sion plots)
3. n2 sample plots measured only on the second occasion (unmatched second

occassion plots)

The most precise unbiased linear estimator of the state on the first occasion Y 1
t ,

on the second occasion Y |2 1
t , and of change between the two occasions Y 21D t is
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where Y |j1 2 is used to denote the attribute value on the first occasion on the n12
matched plots. A corresponding estimator for the second occasion Y 2

t is
obtained by a simple switch of occasion subscripts. The best estimator of the
status on the second occasion exploits the relationship between the attribute
values on the first and the second occasion:

,Y c Y Y Y c Y1| | .2 1 2 1 2 1 1 2|1 2
#= + - + -bt t t t t t t t

a _k i: D

where .2 1bt is the ordinary least-squares regression coefficient obtained by
regression of Y |2 1

t on Y |j1 2
t and ct is an estimate of the optimal weight to be

assigned to the first term, which is essentially the estimator used for double
sampling with regression estimator. The optimal weight is
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where .2 1tt is an estimate of the correlation coefficient between the second
and the first occasion attribute values. The best unbiased linear estimator of
change is

Y Y Y| |21 2 1 1 2= -D t t t ,

where Y |1 2
t is the double sampling with regression estimator of status on the

first occasion computed as
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Finally, an unbiased (but not minimum-variance) SPR estimator of change is
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Ware (1960) examined inventory data from repeated measurements in the
northeastern region of the USA and found that in six out of eight cases, the
variance was not the same on both inventory occasions. It is therefore impor-
tant not to simplify the change estimator by assuming equal variances if they
are not. Violations of this assumption results in a biased estimator.

Ware and Cunia (1962) championed for a wider use of SPR in forest inven-
tories. SPR at that time was mainly of theoretical interest and practical applica-
tions were few. Optimality of SPR for change estimation requires either the
equality of population variance or the same sample size in successive invento-
ries, or both. An optimal rate of replacement of sample units is only solvable for
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a single attribute. The problem became intractable for multivariate attributes.
Different survey costs of new and repeatedly measured plots further increase the
complexity of an already complex optimization problem.

Scott (1981, 1984) provided a similar set of estimators derived from the
work by Meier (1953). Scott and Köhl (1994) applied the SPR concept to two-
phase sampling for stratification on two and three occasions.

After more than two inventory occasions, the best SPR estimator becomes very
complex and unwieldy (Scott 1986; Scott and Köhl 1994) thanks to a myriad of
plot types and pairwise associations between plot measurement values exploited
in the estimators. With only two inventory occasions, we have three different
types of plots. With three inventory occasions, there would be a six types of plots
with sample sizes n1, n2, n3, n12, n123, and n23. With four inventory occasions, we
would have ten plot types. Therefore, the complexity increases rapidly with the
number of observations over time. As design imbalance is also bound to creep in
over time; even the most ambitious SPR design can barely stand the test of time.

The problems encountered in practical implementation with SPR are clear
detractors. In some survey regions of the USA, SPR has recently been replaced by
more flexible and less complex designs (Hahn and Scott 2003, personal communi-
cation) such as, for example, a semisystematic sampling design where plot location
is random within a regular tesselation of the population into equal-sized hexagons.

3.6.3
Estimates for Subpopulations

Inventory results are not only needed for the entire population, but frequently
also for thematic subunits, such as, for example, the forest area structured by
ownership categories, by site quality, or by forest cover type. A tabular repre-
sentation of subpopulation estimates arranged in one-way, two-way, or multi-
way tables accommodates this need. The margins of these tables provide row,
or column, totals of one or more thematic subunits. When cell and marginal
estimates are obtained independently of each other, the additivity of estimates
is no longer assured. It will depend on the sampling design and the estimators
used to obtain estimates for individual cells. Only SRS and CFI estimators
result in additive tables (Table 3.3). Two-phase sampling and SPR designs are
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Table 3.3. Example of an additive table. Forest area by type of ownership and site quality in
1,000 ha

Poor/moderate Good/very good Total

Public forest 404.1 408.0 812.1
Private forest 114.5 259.7 374.2
Total 518.6 667.7 1,186.3

Source EAFV (1988, p. 81)



notorious for creating nonadditive summary tables. For all other designs and
estimators the cell values may not add to the row, or column, sums. An exam-
ple is given in Table 3.4. Nonadditive tables are not a problem per se for a stat-
istician. Nevertheless, we can hardly expect users of inventory results to accept
nonadditive tabulated results. Consequently, a need to remove the nonadditiv-
ity comes around frequently to the inventory analyst. The most popular
method is based on variants of iterative proportional fitting in which the row,
or the column, discrepancies are distributed across cells in proportion to their
row, or column, sums (Bishop et al. 1975; Li and Schreuder 1985; Zhang and
Chambers 2004). Another popular approach computes EB posterior predictive
estimates based on a model for the entire table (Green et al. 1992, Laird 1978).
These model-based estimates are, by definition, additive.

3.7
Sampling for Rare and Elusive Populations

Sampling for estimation of population totals, density, or the total or mean
attribute value when the population is rare (elusive) will require a large sample
size to get the sampling error down to an acceptable level. Efficient sampling
becomes paramount in order to control the cost and time needed to reach a
target precision. Exploiting auxiliary information associated with the popula-
tion of interest becomes especially attractive in this situation. Knowledge about
the spatial distribution of the population can also improve the efficiency of
sampling by choosing a design that is specifically tailored to do well under the
assumed distribution (Kalton and Anderson 1986; Sudman et al. 1988;
Christman 2000; Venette et al. 2002).

One of the real enigmas in sampling a rare/elusive population is the risk of
an empty sample. To state that the estimated population total is zero with a
sampling variance of zero (all sample values are zero) is a very strong statement
that is bound to attract a lot of attention. Consider the interest in rare popula-
tion and our concern about the disappearance of species and it is easy to
fathom the questions that may flow from an estimate of zero. The surveyor can
guard against a zero sample if one has a prior estimate p0 of the probability that
a sample unit will contain a population element. The chance of not having a
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Table 3.4. Example of a nonadditive table. Forest area by type of ownership and site quality in
1,000 ha

Poor/moderate Good/very good Total

Public forest 409.1 407.0 824.9
Private forest 119.4 256.8 370.3
Total 503.1 671.9 1,186.3



zero sample if n units are sampled independently is then ( )p1 n
0- . Let us say

that p0 is estimated at 0.06 and that the surveyor wishes to keep the probability
of an empty sample to 0.01 or less. A sample size equal to or greater than 765
would be needed.

Often sample sizes of this magnitude cannot be afforded and the surveyor
may end up with an empty sample. The notion of a zero sampling variance is
formally correct but clearly untenable in practice unless one is positive that the
population has disappeared, but then why have a survey? Instead of a zero vari-
ance we suggest deriving a sampling error based on the rule-of-three
(Jovanovic and Levy 1997). The rule states that 3/n is the upper 95% confi-
dence bound for a binomial probability when in n independent trials no event
has occurred. Since a (1– α)100% upper bound (p) for a binomial probability
can be found by solving p1

n
$- a_ i for p (n is fixed by design) with the

approximate solution logp n1
1#. - a-

-
a . For an upper 95% bound we get

−log0.05 = 2.996 � 3, which is the essence of the rule-of-three. Assuming a
half-normal distribution of sampling errors the approximate standard error of
the zero estimate according to the rule-of-three would be 0.9227 × n−1.5. To
reach this result we first found the scale parameter of a half-normal distribu-
tion with a 95% quantile equal to 3/n and then obtained the standard devia-
tion in a half-normal distribution with this scale parameter.

We shall now turn to potentially suitable design options for the sampling of
rare/elusive populations.

3.7.1
Adaptive Cluster Sampling

Many rare and elusive populations are naturally clustered in space. The den-
sity of population elements can be quite high in a few scattered locations with
favorable conditions. In surveys of rare/elusive populations the costs associ-
ated with traveling from one plot to another are often several orders of mag-
nitude higher than the cost of measuring a plot. It would therefore seem to
make sense to intensify sampling in areas with positive finds of the rare ele-
ments and reduce the time spent at plots with zero finds. Thompson (1990)
has devised an adaptive design that achieves this goal. In adaptive designs the
sampling effort is intensified at sample locations with a positive find. Strict
adherence to a set of rules governing how and when sampling is intensified
allows design-unbiased estimates of population attributes and their sample
variances (Thompson 1990). There are many innovative adaptive designs for
stratified (Thompson 1991), two-stage (Thompson 1991; Salehi and Seber
1997; Muttlak and Khan 2002; Smith et al. 2003), systematic (Acharya et al.
2000), line (Morgan 1997), restricted (Lo et al. 1997; Brown and Manly 1998;
Christman 2001; Muttlak and Khan 2002), and point sampling (Roesch 1993).
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Most of these designs can be integrated into one of the more conventional
survey designs presented throughout this book. We shall take a closer look at
adaptive cluster sampling as it is probably the one with the greatest potential
for application in forest inventories.

In adaptive cluster sampling an initial simple random sample is taken with
n fixed-area plots composed of one or more basic units of a fixed size and a
geometry that completely tessellates the population. The population is viewed
as composed of a regular array of N basic units. When a sample plot contains
one or more of the desired population elements, the area surrounding the plot
is searched for additional occurrence of elements. Around each plot with a pos-
itive find one imagines a regular grid of basic units with the actual plot located
at the center. All surrounding units with a positive attribute value and connected
directly or indirectly to the plot with a positive attribute value are included in
the sample. All empty units along the outside edge of included nonempty units
are also included, but only nominally because they have to be searched in order
to determine whether they should be included or not. Two plots are directly
connected if they share a common side and indirectly if they are connected
through an unbroken chain of connected plots. In other words, an entire clus-
ter of plots containing one or more population elements is included in the sam-
ple whenever the initial sample intersects a cluster. With this protocol more than
one spatial cluster of elements may be included in the sample at a single sample
location if the clusters are connected at the scale of the basic unit. Conversely,
different sample plots may intercept the same cluster of connected units. The
size and geometry of the basic unit will thus influence the connectivity of clus-
ters and ultimately the efficiency of adaptive cluster sampling. The example
given next will illustrate and clarify the sampling protocol.

To appreciate the design-unbiased sample estimators for this type of adap-
tive sampling it is helpful to view the population as composed of networks (Y)
of basic units. There are two types of networks. One is made up of all empty
units. Networks of this type are all of size x = 1 and have an attribute value 
y = 0. The other type of network consists of a set of connected (directly or indi-
rectly) basic units each with one or more population elements. There are a
finite number of networks in the population, say K, with sizes xi , i = 1,…,K in
basic units and attribute values of yi , i = 1,…,K. Thus, adaptive cluster sampling
can be viewed as a SRS of networks and their associated attribute values (x and
y). Our initial sample serves to intercept the networks. For plots composed of
several basic units the adaptive sampling protocol is applied to each unit in the
plot. The effect of multiunit sampling is in the number and mixture of inter-
cepted networks. Alternative definitions of a network and connectivity are 
possible (Christman 2000), but the one just given is usually preferred and is the
simplest to implement in the field.

A modified design-unbiased Hansen–Hurwitz (HH) estimator of the popu-
lation mean under adaptive cluster sampling is (Thompson 1990)
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where Y j is the attribute total in the jth sample unit in the network(s) inter-
cepted by the ith sample plot and X i} is the size in basic units of the network(s)
intercepted by the ith sample plot. Empty networks of size 1 will dominate the
sum when sampling rare/elusive populations. Note also that the empty edge
units included in the sample do not appear in the estimate of the mean. In
modified HH estimators the edge units are basically irrelevant. They do affect
effective sample size since all units on the outside edge of an intercepted or
connected nonempty unit have to be checked for inclusion or not.

The fact that only the average per unit attribute value of intercepted net-
work(s) enters in the modified HH estimator of the population mean illus-
trates that the within-network variance of Y j does not contribute to the
sampling variance of the estimated mean. All sample plots intercepting a net-
work(s) will record the attribute for that network(s). In SRS, recordings are
strictly on a per plot basis. When the initial random sampling is without
replacement the variance estimator of the population mean is
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where N is population size in basic units and Y i
t is the mean attribute value per

unit in the network(s) intercepted by the ith sample plot. The modified HH esti-
mators of the population mean and sampling variance are basically identical to
the corresponding estimators under SRS. Again, if one considers adaptive clus-
ter sampling as a sampling of networks the similarities are to be expected.
Horwitz–Thompson estimators are more complex since they involve comput-
ing the inclusion probabilities of edge-units. Since edge units have to be
searched they are viewed as part of the sample. Edge units can be selected if they
are either intercepted by a sample plot or because they are an edge to one or
more networks intercepted by the initial sample. Horwitz–Thompson estima-
tors are said to be less sensitive to the spatial distribution of population elements
than the HH estimators (Salehi 1999, 2003; Christman 2000, 2002; Felix-
Medina 2003). In adaptive cluster sampling the number of basic units included
in the final sample is at least the same as in the initial random sample. The
expected sampling variances in adaptive cluster sampling are therefore less than
the expected sampling variance in SRS. This argument extends naturally to
stratified adaptive sampling. If the population is truly clustered with a sizeable
within-cluster variation of the attribute of interest and the extra costs associ-
ated with delineating and searching for networks are modest compared with
the cost of interplot travel then the adaptive sampling approach can be very
efficient (Christman 2002; Brown 2003). It should be mentioned though that
the efficiency can fluctuate widely as a function of the spatial distribution of
attribute values (Acharya et al. 2000; Hanselman et al. 2003; Smith et al. 2003).
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An example of adaptive cluster sampling will hopefully clarify the sampling
protocol and the estimators. A survey to determine the number of rare orchids
within a 110.2-ha forested area is to be conducted. From ecological studies of
the orchids we know that they are clustered in a few suitable locations scattered
throughout the forest. Most orchid clusters have 11–27 individuals with a mean
cluster size of 16 and a standard deviation of 3.8. A cluster occupies between 25
and 270 m2 (median 200 m2). It is estimated that the orchids occupy less than
1% of the forested area. The survey designer decided that adaptive cluster sam-
pling with square 5-m×5-m plots would be a suitable approach. The sampling
frame can be regarded as 44,531 basic units of 5 m×5 m located in a regular grid.
According to the prior information about the orchids the expected network
sizes would be between one and eleven 5-m×5-m units. Differential GPS will be
used to stake out sample plots and the networks of connected 5-m×5-m units
with an accuracy that warrants the assumption of no errors in the orchid
counts. To safeguard with 99% probability against the possibility of an empty
sample (see before) a sampling intensity of 2% or 891 is deemed adequate. If the
orchid counts of 5-m×5-m units are distributed approximately as a Poisson dis-
tribution with a mean of .0 01 25#7 A orchids per unit we would expect a relative
standard error of 15% on the estimated population size. We introduce this detail
to highlight that sampling for rare and elusive populations is a costly endeavor.
What is not known to the surveyor but is listed here for the sake of complete-
ness is that there are a total of 480 orchids in the population (equivalent to 4.4
per hectare) distributed across 31 networks occupying a total of 243 5-m×5-m
units (0.56% of the total). A map of the orchid clusters is shown in Fig. 3.18.

In the initial SRS, a total of 13 orchids were found in four plots, whereas the
remaining 887 plots had no orchids. The orchid counts in the six nonempty
plots were 4, 1, 4, and 4. Without adaptive sampling around these nonempty
plots the estimated population density would have been 5.8 per hectare with an
estimated error of 2.7 per hectare. The adaptive search of networks around the
four nonempty plots added a total of 27 new units to the sample, i.e., a total of
918 units were sampled. Orchid counts in the four networks were 8, 8, 8, and
7, and the sizes of these networks were 21, 13, 15, and 18 units (of 25 m2).
Inserting these figures in the previous modified HH estimators yields a density
estimate of 3.9 orchids per hectare with a standard error of 2.0. For the extra
effort of delineating and counting units in six networks we have obtained esti-
mators that are clearly superior to what we would have obtained had we stuck
with a SRS design. Four of the six networks intercepted by the initial sample are
shown in Fig. 3.19. Edge units have not been highlighted, but there would be
eight, ten, eight, and ten edge units surrounding the four intercepted networks.
Note that three of the four networks joined one or more additional networks
at a plot corner. By the adopted definition of connectedness they are not to be
included in the sample.
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We stated before that the efficiency of adaptive cluster sampling in terms of
sampling variance relative to that of a SRS depends on the within-cluster vari-
ance of orchid density. For a fixed among-unit variance of orchid density the
among-network variance in orchid density declines as the within-network
variance increases and vice versa. In the previous example the within-network
variance of orchid density was approximately 1.6 times as large as the among-
network variance.

3.7.2
Sampling with Probability Proportional to Size

A concentration of sampling efforts in locations with a higher density of
rare/elusive population units has a substantial potential for boosting the effi-
ciency of sampling. Sampling with unequal probability is designed to give a
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Fig. 3.18. Map of 31 orchid cluster locations (dark circles). Cluster sizes are propor-
tional to the number of orchids in a cluster. Sample locations of 875 5-m×5-m sample
plots are indicated by light-gray squares. The grid spacing is 100 m×100 m



higher probability to sample locations where one expects the highest return
(Brewer and Hanif 1983; Godambe and Thompson 1988; Särndal 1996). The
challenge is to find an auxiliary attribute that is both known for the entire pop-
ulation and also is approximately proportional to the attribute of interest.
Point sampling with an angle gauge is but one example of sampling attributes
of trees with probability proportional to basal area. Other applications include,
for example, volume sampling from known sample tree lists of basal areas
(Schreuder et al. 1968, 1971, 1992; Gregoire and Valentine 1999; Magnussen
2000). Classified remotely sensed images of a population may also provide
clues about the location and quantities of interest which can be used in the
process of selecting samples (Ståhl et al. 2000; Williams 2001). The general
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theory and estimators for sampling with unequal probability can be found in
many forestry textbooks, for example, de Vries (1986), Schreuder et al. (1993),
and Shiver and Borders (1996). Estimators for sampling with and without
replacement are distinctly different and the latter are usually quite complicated
for all but the simplest cases (Brewer 2000) owing to nonnegative joint inclu-
sion probabilities. Although sampling with replacement is less efficient than
sampling without replacement owing to the potential of repeat samples with
no new information, the computational challenges involved in the estimators
of variance are such that we shall forgo this efficiency and present only the
estimators for sampling with replacement.

Let x i be the auxiliary attribute and y i the attribute of interest for the ith
population unit; x i is known for all units in the population. The sum of x i over
the entire population is Tx . We are interested in estimating the population total
Y. The draw-by-draw inclusion probability of the ith population unit is

n x Ti i x
1# #=r - with n equal to the desired sample size. When the sample is

selected at random with these inclusion probabilities the unbiased
Horvitz–Thompson estimator of the population total is (Brewer and Hanif
1983)
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where the summation is over the units in the sample (s). The unbiased sample-
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We illustrate the PPS methods using the same population of orchids as exem-
plified under adaptive cluster sampling. We assume that the orchids are typi-
cally associated with a certain group of tree species and that this group of
species can be identified with reasonable success by interpreters of remotely
sensed images. A classified grayscale remote-sensing image of the forest with
5×104 ×5×104 pixels is in Fig. 3.20. The grayscale levels are assumed to reflect
the likelihood of the tree species group being associated with orchids. A darker
tone reflects a higher belief in the occurrence of orchids and vice versa. Pixel
values were generated synthetically from the following algorithm:

. ,log logx y y0 5 1 4
1 1

~i i i j jj i
#= + + + + +c c/_ _i i< F

where

C . , , .E var0 4 1 0 4i i i+ = =c c c_ _ _i i i

and where the summation is over the four first-order neighbors to pixel j (to
mimic scaling and sensor spread function). The average signal-to-noise ratio
was 0.15 and the correlation between the feature of interest and the grayscale
value was 0.16.
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Two 15-pixel×15-pixel windows taken from the grayscale map reveal the
clustering of darker pixels with the presumed highest likelihood of orchid pres-
ence (Fig. 3.21).

The sample size of 891 was maintained and each unit was selected by form-
ing a two-column list with the number (1, . . . .,44,531) of each population unit
in the first column and the cumulative inclusion probabilities of these units in
the second column. Now draw 891 random numbers uniformly distributed
between 0 and 1. For each random number, find the unit number of the first
cumulative inclusion probability that is larger than or equal to the random
number. Select the population unit associated with that number. This selection
protocol ensures that units are selected with probability proportional to ir . For
example, you have drawn the random number 0.447297. Excerpts of the num-
bered list of cumulative selection probabilities are in Table 3.5. The highlighted
population unit with the number 19,839 should be selected.
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Fig. 3.20. Grayscale map of the spatial domain of the orchid population. A darker tone
reflects a higher belief in the presence of orchids



After selection we computed the average inclusion probability of the sam-
ple: it was 1.8 times higher than the average inclusion probability of a unit.
The grayscale values of selected units were also slightly more strongly corre-
lated with the actual orchid count (0.18) than seen across the entire popula-
tion (0.16). A total of 30 orchids were recorded for the PPS sample (compare
with 13 for SRS and 31 for the adaptive cluster sampling design). The PPS esti-
mator of orchid density was 4.3 (actual is 4.4) with a standard error of 1.4, a
clear improvement compared with the aforementioned alternatives. This PPS
example was governed by realistic choices of the correlation and association
between the auxiliary and the target attribute. Even with a modest relationship
the possible gains in efficiency are striking. A note of caution is nevertheless
warranted. If the assumptions about the auxiliary variable turn out to be
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Fig. 3.21. Two randomly chosen 15-pixel×15-pixel windows of details taken from the
grayscale map in Fig. 3.20

Table 3.5. Selection list of unit numbers and cumulative draw-by-draw inclusion probabilities.
Random draw is 0.447297 and unit 19,839 should be selected

Unit no. , , .Sum no1.nor_ i

1 7.8×10−6

h h
19,837 0.447272
19,838 0.447282
19,839 0.447303

h h
44,530 0.999949
44,531 1



wrong, or the association is very heterogeneous across the population, a PPS
sample may perform poorer than a simple random sample.

3.7.3
Line Transect Sampling

As the name implies, the survey is conducted along one or more survey lines.
In a survey of mobile population elements like animals, birds, and insects the
population is assumed fixed in size and location of each population element
during the time of the survey. How realistic this assumption is depends natu-
rally on the time and manner in which the survey is conducted. For immobile
elements this assumption is implicit and mostly quite reasonable. Line tran-
sect sampling does not depend on the existence of a sample frame, a feature it
shares with point sampling designs. In a line transect an observer moves along
the transect line(s) in an nonintrusive manner and records sightings of pop-
ulation elements and their distance to the survey line. The line can be staked
out on the ground or can be a line on a photograph or some other medium
and the observer can move on foot, in a vehicle, or in some elevated platform
of observation, for example, an airplane. It is a strict requirement that no ele-
ment is recorded more than once and that observations are mutually inde-
pendent. That is, the sighting of one object does not in any way impact on the
sighting of another. These are assumptions that can be difficult to justify in
many surveys of elusive animals or birds. Observations made with an angle
gauge (Ståhl 1997, 1998) are possible too and for specific purposes they are
efficient.

A characteristic of most line transect surveys is the nonconstant probability
of detection of population elements. In surveys with human observers visual
obstacles along the transect lines, the possible elusive nature of the elements of
interest, and our limited field of vision combine to make the sightings imper-
fect. Many elements cannot be seen and others are simply missed. This phe-
nomenon has to be taken into account in the estimation of a desired population
statistic obtained from an imperfect transect line survey. Unbiased estimates of,
say, population totals are only attainable if we know the probability of detecting
a given population element given our location of observation. This assumption
is rarely satisfied in practice. Often the probability of detection is some function
of the distance between the elements and the survey line. Detection could be
perfect up to a critical distance, after which it declines rapidly or it is only nearly
perfect for elements on the survey line and then decreasing monotonically with
distance (Ramsey and Harrison 2004). In repeat surveys within a single fixed
region the surveyors may obtain solid information about the detection function
(f ), in others an estimate must be derived from the survey itself. When the
detection function is derived from the survey data the estimated population sta-
tistics will only be approximately unbiased (Thompson 1992).
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There are a plethora of line transect methods reflecting requirements and
adaptations to the specific nature of the survey population and the environ-
ment in which it exists. Only the most common line transect survey design will
be presented in this section. Other popular alternatives have been detailed by,
for example, Ramsey et al. (1988).

The design we have chosen for detailing has a random selection of survey
lines, with the survey lines selected with probability proportional to their
length (L). The objective of the survey is to estimate a population total (N),
viz., density N per hectare, of an attribute of interest, for example, the number
of beetle-infested trees within a known fixed area representing a population or
a natural stratum of host trees for the beetle. First a fixed baseline (B) for the
reference and orientation of the transect lines is constructed. It is customary to
let the baseline run parallel to one of the axes in an orthogonal reference coor-
dinate system defining the outline of the population and all its elements. A
number (nL) of transect lines running orthogonal to the baseline and extend-
ing across the entire population are now chosen by simply generating nL ran-
dom locations within the population of interest. Since the number of points on
a transect line is proportional to its length the procedure will automatically
generate transect lines with probability proportional to their length. The base-
line need not be a single line. For some populations with a very irregular out-
line or a very large spatial domain it is often advantageous to slice the
populations by a system of parallel baselines. In that case the population is
viewed as a series of disconnected slices each defined relative to their baseline.
Selection of transect lines proceeds as for the case of a single baseline. Along
the entire length of the ith survey line , , ,L i n1i Lf=_ i the surveyor records
the shortest distance , , ...,x j n1ij i=_ i from the survey line to each of the ni
sighted elements along the ith line. Alternatively, the surveyor records a sight-
ing angle iji and a distance rij and converts these two measurements to xij via

sinx rij ij ij#= i . If sightings were perfect up to a distance of w100 with no sight-
ings possible beyond this distance then the obvious (unbiased) density estima-
tor for the ith survey line would be D n w L2i i i100

1
# # #=

-
_ i and we would

proceed to a length-weighted estimate of the population density and the sam-
pling variance. Given that the area of the population is known, an estimate of
the population totals is obtained by a simple multiplication of the density esti-
mate and PA. However, we shall assume that detection is an unknown function
of distance but no element at distance zero would be missed. With these
assumptions the density estimator obtained from the ith transect line becomes

,D L
n f
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t _ i

where f 0t _ i is the estimated value of the detection function at a distance of
zero. We detail the estimation of the detection function in the following. The
density estimator is clearly a ratio of two random variables (ni and Li) and is
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consequently biased. A jackknife estimator of the population density is there-
fore often preferable to a direct estimator (Efron 1982). A jackknife estimator
reduces the first-order bias by taking the average of nL leave-one-out estimates
of the population density. Specifically we have
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where D( )it is a population density estimate obtained after excluding data from
the ith transect line. The corresponding jackknife estimator of the sampling
variance is
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Note, this variance estimator does not account for the uncertainty in the esti-
mate of the detection function at distance zero nor the covariance between this
estimate and the random variables ni and Li (Shenk et al. 1998). The omission
is intentional since reliable estimates of these quantities require an intensive
sampling of transect lines (nL>30) since we would need a separate estimate of
f 0t _ i for every transect line. Estimates derived from a small number of survey
lines tend to be erratic. Confidence intervals for the population densities are
obtained as outlined in Sect. 3.3.1.3.

The detection function can be estimated in a number of ways. A subjective
but quick method derives f 0t _ i from a histogram of the sighting distances in
the survey. If there is a sharp drop in the number of sightings beyond a distance
of, say, w100, and one is willing to assume that no element was missed at shorter
distances, f 0t _ i would be estimated as 1/w100; conversely f 0t _ i is estimated as
the scaled height of the first class in a histogram with class intervals chosen in
some suitable way (Wand 1997). Estimation by kernel smoothing (Izenman
1991) would convey attractive properties to f 0t _ i but kernel-based estimation
of the lower endpoint of a density function restricted to the domain of positive
real numbers remain problematic. We opt for an estimation via the Fourier
series method (pp. 67–70 in Silverman 1986). The Fourier series method of
estimating f 0t _ i is

* , , ..., ,f w a k n0 1 1kk obs= + =/t t_ i

where w* is the maximum distance at which an element can be sighted, nobs is
the total number of sightings in the nL transect lines, and akt are the Fourier
coefficients given by
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The number of Fourier coefficients akt to include is determined by the first
value of k for which
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is true (Burnham et al. 1980). In practice, the number is rarely above 2.
A simple example will illustrate the estimation process. The population den-

sity of bark-beetle-infested trees within the 100.3-ha population domain shown
in Fig. 3.22 is to be estimated by a transect survey with three random survey
lines selected with probability to their length. The 1,350-m-long baseline and
the three selected survey lines of length 756, 1,102, and 1,114 m and orthogonal
to the baseline are indicated in the figure. The surveyor(s) move along the entire
length of each survey length and record every infested tree (recognizable by
resin exuding on the stem and possibly by a reddish needle discoloration)
they can spot and then record the distance between the tree spotted and the
survey line. Observations are not perfect: some trees will be missed and there is
a natural (unknown) limit to the distance an infestation can be ascertained
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Fig. 3.22. Population outline with baseline and three transect survey lines. Population
elements are indicated with dots and those observed from any of the three lines with
circles. The shaded area around each survey line gives the true 95% detection interval



from the survey line. The total number of sightings is 28. Table 3.6 gives the
number of sightings on each survey line (4, 13, and 11) and the distances to each
sighting from the survey line.

Sighted and nonsighted trees are indicated by different point signatures in
Fig. 3.22. A histogram of the observed distances of elements from the survey
lines is in Fig. 3.23. The sharp drop-off in the frequency of distances beyond
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Table 3.6. Number of sights on survey lines

j Distance xij (m)

x j1 x j2 x j3

1 17 1 3
2 15 25 3
3 16 8 37
4 22 15 11
5 70 4
6 30 2
7 82 67
8 1 17
9 14 6
10 10 4
11 12 42
12 2
13 34
Mean 17.5 23.4 17.8

# seen

15

10

15

10 30 50 70 90
dist. (m)

Fig. 3.23. Histogram of distances between seen objects and the nearest survey line



20 m is noticeable. We should expect w100 to be about 20 m. As an estimate of
w *, we took the 95% quantile of the recorded distances, which was 70.2 m.
Recall that only sighted elements are recorded; hence, a 95% sample quantile
corresponds to a higher quantile in the population of distances, in our case the
98% quantile. One should avoid the use of an observed maximum distance for
w* as it is a highly variable statistic; the three line-specific maxima bear this out.
The number of Fourier series coefficients to use according to the previous rule
is 1 and â1 = 0.0153, which gives us f̂ (0) = 0.0295 as the estimated fraction of
perfect sightings. Delete-one jackknife estimates of density were accordingly
1.60, 1.18, and 1.35 with an average .D 1 38jk =t and a relative standard error of
17.5%. A nominal 95% confidence interval runs from 0.34 to 2.42. The actual
population contained 200 infested trees with a density of 1.81 trees per hectare.

A density estimate obtained from a single transect line does not have a
design-based estimator of variance. Only an analytical estimate of the variance
is possible, and only if the surveyor is willing to make assumptions about the
distribution of elements and the arrangement of all possible survey lines inside
the population. The correctness of these assumptions can be difficult to ascer-
tain and the resulting estimates of variance can be quite poor. In the same vein,
observed distances from either a single line or multiple lines can be used
together with other predictors to generate spatial predictions of occurrence
(Hedley and Buckland 2004). The quality of all estimators obtained from a line
transect survey rests with the homogeneity of the detection function. If the
probability of detection depends on more than distance then these factors must
be incorporated into a generalized detection function (Marques and Buckland
2003; Ramsey and Harrison 2004). Finally, it is also critical that distance
recordings are without errors. The impact of measurement errors can be seri-
ous and should be assessed whenever possible (Marques 2004). In a finite spa-
tial domain of a population with a finite number of elements, any elements
close to a population boundary will have a lower likelihood of detection than
an element further away from the boundary. The reasons are the same as dis-
cussed for point sampling. The area of average detection is smaller for points
close to the boundary because they can only be detected from locations inside
the populations. The integral of all possible detection distances multiplied by
the probability of detection is smaller owing to the restrictions imposed by
nearby boundaries with nontrivial detection probability. When the area associ-
ated with points closer than w* from a boundary only represents a small frac-
tion of the total area, the boundary effect will be small. To gauge the potential
of bias the surveyor can compute the reduction in the survey area due to
boundaries. In our example, 95% of the recorded distances were within the
gray bars in Fig. 322. The search area “lost” owing to boundary effects can be
obtained by drawing six lines parallel to the baseline and going through the
starting and end points of the three survey lines I, II, and III. Six triangles form
between these six lines, the population boundary, and the outside of the shaded
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95% detection limits. In the example, these areas account for 0.5% of the nom-
inal (95%) search area in the absence of any boundary. It is, then, probable than
the number of observed elements is biased downwards by this amount. In a
larger survey with hundreds of observations it might be reasonable to add a
matching fraction of the total count to the observations and assign an average
distance to these “pseudo-observations.”

3.7.4
Capture–Recapture Sampling

Capture–recapture sampling is primarily used for estimation of the population
size of mobile population elements. Applications extend to estimation of the
probability of detection in line transect surveys with a fixed survey width along
the survey line (Borchers et al. 1998). In its simplest form a number of popu-
lation elements (n1) are captured at time 1 according to a chosen sample design
and capture method, marked, and then released. At time 2 a new sample of n2

elements is captured, of which n20 were unmarked and n21 were marked at time
1 n n n2 20 21= +_ i. If it can be assumed that the total population size N is fixed
during the time of the survey, that the first sample is representative of the pop-
ulation, that the n1 marked elements distribute themselves uniformly across the
population domain after the first capture, that the probability of catching a
population element at time 2 is unaffected by the outcome of the first sample,
and that the second sample is also representative of the population, then the
minimum biased estimator of the population size is (Seber 1982)
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We prefer this estimator to Petersen’s estimator of n n n1 2 21
1# # - (Seber 1982) as

it is undefined for n21=0. Implicit in this estimator is the assumption that the
ratio of recaptured elements in the second sample extends to the population at
large; an assumption that only holds if the two samples are truly representative
of the population at large. Large sample sizes are needed before the assump-
tions can be fully justified. It should be noted that there is no unbiased estima-
tor of N. Considerable effort has been spent on devising sample designs and
capture methods that mitigate potential sources of bias (Seber 1986; Knight
2003; Wintle et al. 2004). An approximate unbiased estimator of the variance
of this model-based estimator is
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One of the most persistent problems of capture–recapture surveys is the poten-
tial for interactions between the population elements and the capture process.
Models describing the effect of differential probabilities of capture at time 1
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and time 2, birth and mortality processes, emigration, and immigration have
been developed (Burnham et al. 1980; Norris and Pollock 1998; Efford 2004)
in order to obtain model-based estimates of population size at the first, or sec-
ond, survey time. Estimators of population sizes and their sampling variances
for sampling on more than two occassions are given by, for example, Cormack
(1993).

A maximum likelihood or a Bayesian estimation of N is possible if one is
willing to make assumptions about the distribution of n12, the only unknown
random variable in the estimation problem. The distribution of n12 is usually
assumed to be of hypergeometric, binomial, or Poisson form. In the binomial
and Poisson model, N is a random variable, not fixed. A likelihood function can
be associated with each of these models, which, in turn, would allow a likeli-
hood-based estimation of n12. In many cases some prior knowledge exists
about what the distribution of n12 might be. Earlier surveys or subject knowledge
could forward a prior distribution of n12 which would open up the possibility
for a Bayesian estimation procedure (Poole 2002).

Shiver and Borders (1996, p. 333, example 11.4.1) illustrate a capture–recapture
estimation problem with n1=125, n2=100, and n21=44. The estimated population
size using the previous estimator was 282 (rounded) with a standard error of 25
(rounded). Had we made the assumption of a hypergeometric distribution for n12
the estimated population size would have been 284 with a standard error of 29
(rounded). The variance of the maximum-likelihood estimate is obtained from
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where | ,n n N21 1, _ i is the likelihood function of n21 and the last factor accounts
for the scaling from the sample size (n2) at time 2 to the estimated population
size. Computation of the derivatives of the likelihood function is difficult and
complex regardless of the model chosen. Software that can do symbolic calcu-
lations is needed for easy estimation.

3.7.5
Inverse Sampling

With modest sample sizes a low sample yield of marked elements (n21) at
time 2 puts the surveyor in a conundrum. Sample variation may simply have
reduced n21 by chance but the ensuing estimator of N may be counterintu-
itive or apparently in error. Inverse sampling is a sample design in which the
sample yield is fixed prior to sampling, which makes the sample size an unknown
random variable (Panchapakesan et al. 1998; Cuzick 2001; Moore et al. 2003).
The advantage is clear: a target yield is assured. The downside is equally clear:
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there is no control over sample size and in practice the order of the sites to be
visited until the target yield has been reached has to be random to avoid the
sample being nonrepresentative of the population. For example, if the surveyor
decides that n21=44 then every single site to be visited before the target is
reached has to be determined by a random draw of all possible sites. This may
result in excessive travel times and cost and is only practical if the samples can
arrive in random order at a fixed location of observation. While estimators
under inverse sampling are generally close to or identical to the estimators
under random sampling the estimated variances are typically much larger. The
sampling distribution (of sample sizes) under inverse sampling at time 2 for
recapture could be assumed to be of negative hypergeometric or negative bino-
mial form (Johnson et al. 1992). To give an example of the variance inflation,
suppose that the surveyor in the previous example had decided that a yield of
44 marked elements at time 2 would be desired and that this yield by chance
was achieved after catching 100 elements. The maximum-likelihood estimate
of N would again be 284 but now the standard error would be 44 (rounded),
or almost 50% higher. Since there is no guarantee that the target yield can be
obtained within the available time and with existing resources, and given that
there is considerable risk of an inflated sampling variance, a cautionary
approach to inverse sampling is prudent.

3.7.6
Double Sampling

Two independent surveys or a survey in combination with a registration sys-
tem can be an efficient design for estimation of the total rare/elusive popula-
tion. Let n1 be the number of elements recorded during the first survey, n2 be
the number for the second survey, and n12 be the number identified in both
surveys. Recorded objects must be identified clearly and uniquely in order to
obtain n12. Let N be the unknown population total that we wish to estimate. N
is assumed constant from the onset of the first survey to the end of the second
survey. For two independent surveys we expect to find n n N1 2

1# # - elements
recorded in both surveys. Given the observed count n12, we obtain a double-
sampling estimate of N via

.N n
n n

DS
12

1 2#
=t

This estimator was first proposed by Chandra-Ssekar and Deming (1949).
Owing to its simplicity it has found widespread applications in human surveys,
and wildlife surveys. There is no need to have an exact estimate of the PA or for
that matter an estimate at all in order to estimate the total, perhaps one of the
main attractions of double sampling. No variance estimator has been for-
warded for this double-sampling estimator of the total. When sampling is with
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well-identified units, like line transects, survey lines, city blocks, or forest
stands, then a jackknife estimator of variance and sampling error is recom-
mended (Shao 1996). Note that the estimator is undefined for n12=0 and is gen-
erally very unstable for small counts of n12. It is our experience that n12 should
be around 5% of n n1 2# before estimates with an acceptable accuracy (relative
error less than 20%) can be expected. This means that the sampling intensity
has to be rather high in both surveys; if n1/N or n2/N sinks below 10% the
chance that n12=0 is nontrivial. A more specific assessment would require
assumptions about both survey design and population statistics, such as total
and distribution across the spatial domain.

Double sampling in forest inventory could be an option for the estimation
of, for example, the total number of trees of a rare species, the number of stems
logged at a logging site, the number of trees fallen owing to windthrow, or the
number of diseased trees. Counting could be done along random survey lines
with markings of all observed elements falling on the line(s) or in close prox-
imity to the line(s) or it can be done on remotely sensed images. We shall illus-
trate the double-sampling design for the estimation of the number of
windthrown trees in the same forest we used for demonstrating line transect
sampling, capture–recapture, and sampling with PPS.

A severe storm felled 1,688 trees in the 110.2-ha forest. The damage was
mostly concentrated in 11 areas (12% of total) of size 0.1–4.2 ha (average 1.2
ha) but scattered fall downs were observed throughout the forest. The number
of trees downed in the hardest-hit areas ranged from 41 to 59 per hectare with
a mean of 50 stems per hectare. Tall trees were predominantly hit by the storm.
The stem length of the fallen trees was 51 m, with a standard deviation of about
5 m. The surveyor decides to assess the damage by laying out two independent
surveys, each with 30 random survey lines, random with respect to location
and length. The orientation was random within a limited range of angles. The
average length of a survey line is approximately 275 m but individual lines
range from 30 to 890 m. A map of the fallen trees and the two sets of survey
lines is shown in Fig. 3.24.

In the first survey 266 fallen stems crossed the survey lines (n1), while 200
crossed the lines of the second survey (n2). A total of 41 stems were common
to both surveys (n12). From this we get an estimated total of 1,298 fallen trees.
A jackknife estimator of the total was 1,309, which indicates a bias of 11 (1%)
in the double-sampling estimator. The jackknife estimator of the standard
error was 122. To obtain the jackknife estimators we deleted one survey line
from the first survey and one survey line from the second survey number;
hence, 900 delete-one estimates were obtained. The distribution of these
delete-one estimates of the number of fallen trees is shown in the histogram in
Fig. 3.25. Notice the skewed distribution and the appearance of a mixture of
two distributions arising from the spatial heterogeneity of the intensity of
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windthrow across the forest. The fact that the nominal 95% confidence inter-
val for the sample-based estimator based on the assumption of a normally dis-
tributed sample estimate does not include the true number is a direct
consequence of this skewed distribution. A confidence interval with a coverage
closer to the nominal value should, therefore, be obtained from the quantiles
of the bootstrap distribution of sample estimates (Shao 1996).

3.7.7
Composite Sampling

In sampling for rare/elusive population elements the time and cost to identify
the presence/absence or to quantify the attribute of interest in a sample unit
can be very costly. For a rare/elusive element most sample units will have a
value of zero but will still carry the full cost of analysis. Soil sampling for rare
contaminants, sampling containers of wood chips for the presence of a rare
staining fungi or nematode, or landscapes for rare deforestation events are but
a few examples with relevance to forest inventory. As the name implies, in com-
posite sampling several sample units are joined into a single composite unit.
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The idea behind composite sampling is simple enough: the screening for the
presence/absence of an elusive element is concentrated on fewer composite
units. The only sample units to be examined individually are those for which
the composite sample came up positive for the presence of the rare element.
Lancaster and Keller-McNulty (1998) have reviewed the composite sampling
method and they provide a succinct overview of the pros and cons of this
method. Composite sampling is a process that involves defining and optimiz-
ing the compositing design, the measurement process, and the data analysis
process. The observed composite response y for composite unit i can be repre-
sented by

, , , ; , , , ,y f x x x e i nc 1i i i in i1 2 if f= + =_ i

where xij is the attribute value of the jth sample units in the ith composite unit,
;f $ $_ i is a function of the physical process of compositing, c is a set of weights

that depend on assumptions made about the physical process, and e represents
the measurement error. The utility of this expression may not be immediately
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clear or useful unless we know the function f, the vector c, and the measure-
ment error. When the compositing process model and the errors are not fully
known the inference about y becomes model-based and the uncertainty
regarding model parameters must be accounted for in the estimators of sam-
pling variance. In its simplest form, when the statistical objective is to estimate
a population mean, the physical process is presented as

, , ; .f x x c xci in ij ij
j

n

1
1

i

i

f =
=

/_ i

If the sample units enter with equal amount then the expected value of y is the
population mean with a variance of nx e

2 2
+v v . Compare this with the vari-

ance of n nx e
2 2

+v v that one would expect if the n measurements were done
on n sample units. Hence, composite sampling is a trade-off: cost savings are
achieved at the expense of precision and information. The trade-off will have to
be weighed carefully in each case. More elaborate schemes are possible: sample
units can themselves be sampled before they are combined into composite units
and the composite units can, in turn, also be sampled. Finally, measurement
units may be a small fraction of a composite unit. The process of mixing and
subsampling is captured by the vector c and the error term. Lancaster and
Keller-McNulty give a good example of how the sampling designs can be
employed to illicit estimates associated with population features, such as, for
example, row and column effects in spatial sampling. Estimation of prevalence
is also possible from composite sampling but model assumptions that need to
be verified are needed. Commonly one assumes that x is a Bernoulli random
variable with probability xr of taking the value of 1. If r sample units are pooled
equally into a composite sample then the probability that yi is 1 becomes

( )1 1 x
r- - r . A maximum-likelihood estimator of prevalence is
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A note of caution is in place: the estimator is not unbiased and it can be quite
imprecise, especially for high values of r.

Classification of pixels sampled from a remotely sensed image is akin to
composite sampling when the size of the pixel is a multiple of the sampling
unit applied in forest inventory. What is observed is a composite of features in
several individual inventory units. Attempts to obtain estimates at the scale of
sample units by “unmixing” (Oleson et al. 1995; Bosdogianni et al. 1997;
Grandell et al. 1998; Mertens 2003; Vikhamar and Solberg 2003) are in essence
attempts to solve for x given y and a model for c. The problem is generally
underdetermined (more variables than equations) but if one is willing to spec-
ify f and assume c to be invariant then one can use ordinary least-squares or
mixed linear models for the estimation of c and ultimately estimators of x.
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3.8
Small-Area Estimation

A forest inventory is designed to provide estimates of attribute values of
interest for the entire population or for a set of strata identified during the
design phase. After completion of an inventory it often happens that attrib-
ute estimates or an update of estimates for one or several small geographic
areas of the sampling frame of the inventory is needed. Estimators pertaining
to the forest in a particular county, district, or any other zone of interest to
someone are therefore needed on a routine basis. Related postsampling esti-
mation problems have surfaced in most large-scale surveys and spawned a
search for effective, design-consistent estimators applicable to domains
within a population and small geographically defined areas (Särndal et al.
1992; Rao 2003). A common feature in all small-area estimation problems is
the small number of samples taken within the small area. A direct estimation
based on only the samples taken inside the small area would in most cases
provide estimates with low precision and that are possibly biased. The survey
context, the particular features of the small area or domain, and the avail-
ability of auxiliary information determine in each case the most promising
approach to estimation. A rich and diverse collection of estimators have been
tailored to a wide spectrum of small-area estimation problems. The majority
are model-based or at least model-assisted. The data for a small-area or
domain are assumed to adhere to a model that we wish to estimate.
Optimality of estimates in terms of minimum bias and minimum variance is
the ideal that is pursued but it is rarely achieved. Most estimators are in some
sense the “best possible” given the estimation problem posed. One of the first
published forestry applications was given by Green et al. (1987). Timber vol-
umes per hectare and by county were to be estimated from a regionwide
inventory. They assumed that county-specific sample-based estimates
(means) of timber volumes per hectare were estimates of the sum of a ran-
dom county-specific effect and a random “error.” Improved, in terms of
mean squared error, county-specific estimates were then obtained as a
weighted average of the county-specific sample means and a weighted mean
of all counties. Related estimation problems are recurrent in forestry and
with the increase in the use of remotely sensed data as auxiliary information
we have greatly expanded our options for effective small-area estimation
(Kangas 1996; Lappi 2001). Only a few of the most commonly applied esti-
mators will be presented here. Rao (2003) provides a recent summary of
small-area estimators and Pfeffermann (2002) offers a review of current
trends, unresolved issues, and the future direction of small-area estimation
research.
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3.8.1
Direct Small-Area Estimators

Direct small-area estimation means that only the samples collected in the small
area (Ui) are used for estimation purposes. The sample size ni in Ui is a ran-
dom variable with a possible value of zero. As long as the probability of ni=0
remains low and ni is close to its expected value, the estimators employed for
estimation of population level attributes apply (Särndal et al. 1992; Rao 2003).
Often, however, there is a risk that ni=0 is nontrivial and this must be consid-
ered in estimating a small-area sampling variance.

Under SRS in a population occupying an area A, with n fixed-area plots each
with an area Aplot the direct small-area estimator for Ui say a total Y, is

,Y n A
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where Ai is the area of Ui and Yj is the plot total in the jth plot in Ui. Direct vari-
ance estimation is obviously only possible when n 2i $ . When the area of Ui is
not known or only known with error, the added uncertainty stemming from
either predicting Ai from the ratio ni/n or the error in Ai must be factored in.
In that case a variance approximation based on a Taylor series approximation
would be appropriate.

Direct estimates can be improved if the small area can be stratified into
G groups based on an attribute value closely related to the attribute of inter-
est. The sample size in each of the G groups must be larger than or equal to 2.
In that case a poststratified direct estimate for the small area Y |idir (SRS poststrat)

t

will have less variance than a simple direct estimate. Y |idir (SRS poststrat)
t is

obtained as per stratified random sampling, but the approximate variance of
Y |idir (SRS poststrat)
t is
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where nig is the sample size in the intersection of the gth group with Ui and Yig
is the plot total of y in group g plots in Ui.
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3.8.2
Synthetic Small-Area Estimators

A small-area estimator is called synthetic if it is obtained from a larger area,
covering several small areas, under the assumption that the large population is
homogenous with respect to the attributes of interest. In its simplest form the
estimator of the mean value of an attribute in the ith small area becomes
Y Y( )i syn =t t , where Yt is the sample-based estimate of the population mean.
Small-area totals are obtained by multiplying the mean by the area of the small
area (assumed known without error). A synthetic estimator benefits from the
(usually) low MSE of Yt , but suffers from a potentially serious bias if the small
area differs from the area of the rest of the population. Despite the obvious
potential problem in applying a population mean to a small area, its precision
makes it harder to ignore. Conversely an estimate based solely on data from the
small area Yi

t` j may appeal on the grounds of bias but not in terms of precision.
As we shall see, a compromise in the form of a weighted average of a small-area
estimate and global information can strike a good balance.

Auxiliary information in the form of a vector x related to y through the
population model y x $= l b may be available in the form of known totals Xi
for the small area. A synthetic regression estimator of the total is then
Y Xi isynreg $= lt bt , where bt is an estimate of the population regression coefficients
(c.f. Sect. 3.3.5.1). The bias of the regression estimator will be small if the
small-area regression coefficients i.β b, an assumption that can be examined
more closely in a separate assessment of the model (Ronchetti et al. 1997;
Zhang and Davidian 2001). A special case of the synthetic regression estimator
is the synthetic ratio estimator Y X R( |i isyn ratio) #=t t , where X i is the total of x in
the ith small area and Rt is the ratio of the estimated population totals of y and
x. Since the synthetic estimators can be biased an estimate of their MSE is
needed (variance plus squared bias) to gauge precision. Design-consistent vari-
ance estimators of the synthetic estimators, Yvar ( )i syn

tt ` j, are obtained as per the
design employed, but a reliable estimate of bias is harder to obtain. A common
approach to estimate the MSE of a synthetic estimate is to obtain synthetic and
direct sample-based estimates for a group of m “similar” small areas and then
compute

,Y Y YMSE var bias( ) ( ) ( )i i isyn syn syn
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Estimators applicable to small-area means are obtained in a similar way after
the appropriate scaling. Provided that sampling errors dominate bias the pre-
vious estimator of MSE is robust and asymptotically design-consistent for 
m,nj (j = 1,…., m) → ∞. Variance estimators based on resampling or leave-
one-out jackknifing are often preferred to design-based estimators of variance.
Synthetic estimators can, just like direct estimators, frequently be improved by
poststratification into G groups as outlined for the direct estimators.

3.8.3
Composite Small-Area Estimators

We saw that a synthetic estimate could be seriously biased if the small area was
distinctly different from the general population and that a local area estimate
could be very imprecise. As a compromise the composite estimator provides a
weighted average of two available estimators for the ith small area, say Yi1

t and
Yi2
t of totals

,Y Y Y1( )i i i i icomp 1 2# #= + -z zt t t_ i

where 0 ≤ z ≤1. Many small-area estimators have the composite form.
Composite estimators of means are obtained in a similar way. The MSE of the
composite estimator of a small-area total is given by
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where ,E Y Y Y Yp i i i i1 2- -t t` j is the expected mean-square cross-product of the
two estimators taken over all possible samples under the employed design (p).
By choosing the weights that minimize the MSE one obtains
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The difficulty with this estimator is that only approximate estimates of the
MSE of cross-products between Yi1

t and Yi2
t can be obtained by application of

some form of data resampling consistent with the design (Efron and Tibshirani
1993; Shao 1996; Lahiri 2003; Shen et al. 2004). If one is willing to assume that
the MSE of the cross-product is negligible compared with the MSEs of
Y Yandi i1 2, the approximately optimal weight becomes

Y Y YMSE MSE MSE*
i i iopt 2 1 2

1
#. +{

-

_ _ _i i i8 B

176 CHAPTER 3 Sampling in Forest Surveys



and

Y
Y Y

Y Y
YMSE

MSE MSE

MSE MSE
MSE( )

*
i

i i

i i
iopt comp opt

1 2

1 2
1

#

#
#. = {

%
% %

% %
%t

t t

t t
`

` `

` `
_j

j j

j j
i

from which we see that the MSE of the composite estimate is less than the
smallest of the component MSEs. The maximum reduction is 50% below the
smallest value which is achieved when the components receive equal weights.
Under a SRS design in a homogenous population the composite estimator that
combines an estimate based on samples inside the ith small area with one for
the population at large becomes

,Y N
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Y N
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Y1( |i
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i
comp SRS) # #= + -t t td n

which is also the best linear unbiased prediction (BLUP). Under similar cir-
cumstances and assuming that the variance of y is proportional to x the com-
posite ratio estimator becomes

.Y X
X

Y X
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i
i

comp ratio) ratio ratio# #= + -t t td n

Multivariate composite estimators are obtained by simple extensions of the
univariate estimators (Gregoire and Walters 1988).

3.8.4
Model-Based Small-Area Estimation

A model describing an attribute value of a population element as a linear com-
bination of fixed large-scale effects and random local effects offers the most
general and flexible approach for small-area estimation. Fixed effects are con-
stant for all population elements, while the local effects are specific to a small
area. The population or a large part of the population is viewed as an ensem-
ble of several small areas and estimation is done for all members of the
ensemble simultaneously. A model-based simultaneous small-area estimation
approach offers the advantage that the estimate for a specific small area can be
improved by “borrowing” information from either the entire ensemble of
small areas or a specific subset of small areas with certain attributes in com-
mon. The model and the associated model assumptions detail the communal-
ity of attribute values between population elements within a single small area
and between population elements in different small areas. A set of nested mod-
els is often necessary to succinctly describe the relationship between observed
sample values in various parts of the population. Our ability to obtain robust
design-consistent and asymptotically unbiased estimates of local random
effects have improved dramatically over the last 2 decades and continue to do
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so (Pfeffermann 2002). Two versatile yet simple models, the area-level linear
mixed model and the element linear mixed model, will be given as examples.
Checking of model adequacy, model fit, and model assumptions is incumbent
upon the analyst whenever a model-based inference is deemed appropriate
(Ritz 2004).

In the area-level model we assume that a small-area effect , , ,i m1i f=i is
a known function g Yir_ i of a small-area attribute value, say the mean Yir , and
furthermore is related to p area-specific auxiliary values Xi through the linear
model

ii ,b vX i i i#= +bl

where the bi are known positive constants and β is the p×1 vector of popula-
tion-specific regression coefficients, and the vi are area-specific random effects
assumed to be independent and identically distributed with an expected value
of zero and a variance v

2v . The function g can be the identity function, a linear
function, or a nonlinear function, while the constants bi are introduced to allow
for heterogeneity in the variance of random effects. Note that the expectations
of the random effects are with respect to the model, an important issue since it
can be difficult to justify for areas for which ni is small (less than 10).

We are interested in obtaining the BLUP of ii , which means that we seek a
design-consistent minimum-variance estimator of b and a BLUP of v i .
Preliminary estimates of ii can be obtained directly from the sample as

g Yi i=it t
a k but they are not the BLUP. We can write our direct sample-based

estimates as an observational equation as

e E e ewith 0 and var knowni i i p i i i i i= + = =i i i i }t ` `j j

Combining the model with the observational equation, we get

ii ,b v eX i i i i#= + +bl

which is a special case of a linear mixed model. The mix of sampling errors (ei)
and random model effects (vi) makes the model rather unique and introduces
inferential complexity. Especially, the assumption of known area-specific sam-
pling variances may be viewed as restrictive, and typically a direct estimate or
some smoothed estimate i}t is used in place of i} .

Since we must rely on estimated variance components our estimators are no
longer the BLUP but the empirical best linear unbiased prediction (EBLUP)
(Wolter 1985). The EBLUP of ii is

X1i i i i iEBLUP #= + -i c i c lt t t t_ i ,bu

where

.b bi i i iv v
2 2 2 2# # #= +c v } vt t ta k
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We recognize in i EBLUPit a composite estimator of a direct design-consistent
estimate iita k and a synthetic estimate X i bl u` j for the ith small area with weights

ic_ i determined by the strength of the among-area variation v
2va k relative to

that of the total random variation i v
2+} va k. More weight is given to a direct

local estimate when the data point to strong local effects and vice versa, an
intuitively appealing attribute. Only area-level auxiliary variables (Xi) are used
for the estimation, which makes the estimate i EBLUPit valid for any statistically
valid sampling design. When ii b vX i i i#= +bl u holds, the average bias will be
zero. Estimators of b depend on an available estimate of v

2v and vice versa;
therefore, an iterative estimation process is needed. A current estimate of b
is obtained from a current estimate of v

2v and so on until convergence is
achieved. Current estimates of b and v

2v are
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where v
2vt is a method of moments estimator of v

2v . Alternative estimators each
relying on a set of specific assumptions are abound. The specifics of the data at
hand and the experience of the analyst decide the choice.

Estimators of the MSE of i EBLUPit are approximate only since we rely on
model-based estimates of model parameters and a sample-based estimate of
error variances. The estimates are generally also biased. It is important to note
that the estimation of MSEs should be tailored to the estimation procedure
used for the fixed and random effects (Rao 2003). A slightly conservative MSE
estimator that is valid for the previous estimate is
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where var v
2vtt a k is an estimate of the variance of an estimated variance compo-

nent. A jackknife estimate of var v
2vtt a k can be obtained by repeating the previ-

ous estimation procedures m times, each time with one different small area
excluded from the analysis. Alternatively one can approximate this variance by
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n m p2 v
4 1
# - -v

-
t _ i . Datta et al. (1991) detailed a multivariate extension of

the area-level linear mixed model.
Our second small-area model is the element linear mixed model. In this model

the attribute value (y) of the jth individual population elements within the ith
small area is modeled as a linear combination of p fixed x ijl_ i effects known for
every element in i and two random effects v b ei ij ij+_ i

, , , , , , ,y v b e j n i mx 1 1ij ij i ij ij if f= + + = =bl l

where bij are known constants and eij is assumed to be a random variable with
an expected value of 0 with respect to the model and a variance of v

2v . Again,
b is a vector of population-level design-consistent regression coefficients. For
estimation purposes it is often assumed that the distribution of the random
variables is normal. We assume that a sample of size ni has been taken from the

Ni elements in the ith small area n nii

m

1
=

=
/c m and that this sample is consistent

with the model. We wish to estimate, say, Yir , the mean of y in the ith small area.
SRS from the ith small area or a sample selection based on xij both satisfy an
appeal to validity of the generic model (Rao 2003) Under the element linear
model the EBLUP estimator of the ith small-area mean can be written as a
composite estimator of the survey regression estimator and the regression syn-
thetic estimator:

Y Y X Xi i i i iEBLUP= + + -c
lt t t t

a k; E X1 i i#+ - c lt_ i ,bu

where Y i
t is the direct small-area estimate of Yir , X ir is the p × 1 vector of known

small-area means of the auxiliary variables, X i
t is the small-area sample estimate

of X ir , and ic is the weight given to the survey regression estimator. Note, when
the constants bij are not all 1 the sample means become
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The best linear unbiased estimator of the population-level regression coeffi-
cients is
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where b .i is the sample sum of fixed variance constants bij for the ith small area.
The weight given to the direct survey regression estimate is
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Provided we have large small-area sample sizes and ,b i j1ij 6/ # -, the survey
regression estimator is approximately design-unbiased but the synthetic
regression estimator X i bl u may be a biased for Y i

t . Estimation of the vari-
ance components v

2v and e
2v can proceed in different directions depending on

the assumptions made and the preferences of the analyst. Maximum-likelihood
and restricted-maximum-likelihood estimation requires assumptions about
the distribution of the random effect. If warranted, these methods lead to more
efficient estimates but only if the distributional assumptions actually hold.
They also provide a generic framework for estimation regardless of the values
chosen for the bij. As done for the area-level model we shall present the method
of moment estimation procedures under the assumption of random sampling
in small areas. First, we obtain ordinary least squares (OLS) estimates of the
element residuals eij as

e y Y X Xij ij i ij iOLS OLS= - - - bt t t ta k

where btOLS is the OLS estimate of the regression coefficient yij −Y
–̂

i regressed

on X Xij i- t (no intercept). Only residuals for nonzero values of X Xij i- t are
computed. From these residuals we estimate

,
n m n
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where n0 is the number of zero-valued x residuals. Second, we estimate the OLS
residuals (u) from a regression of y bij ij

1# - on x bij ij
1# - (no small-area effects),

i.e.,

,u b y Xij ij ij ijOLS OLS
1= - b- lt ta k

and obtain an estimate of v
2v from
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Summation in these expressions should be limited to small areas with ni>1.
Ghosh and Rao (1994) proposed the following estimator for the MSE:
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where X i
C is a matrix of nonsampled xij values in the ith small area and
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Flores and Martínez (2000) entertained the unit level mixed linear model for
the estimation of crop areas under irrigation in 53 small areas in the Duero
river basin in northwestern Spain. Auxiliary variables were estimates obtained
from remotely sensed images and the element of sampling was a 500-m × 500-
m ground area (25 ha). A random sample of 158 elements was taken (0–17 per
small area). The use of the auxiliary information resulted in a reduction of the
MSE of small-area estimates by 30–70%. Kangas (1996) used the mixed ele-
ment level model for estimating the timber volumes in eight Finnish munici-
palities and found it efficient (as opposed to direct or synthetic estimation)
even in the absence of auxiliary information. Wang and Fuller (2003) recently
suggested some improvements to the MSE estimation procedures of mixed
linear models; the improvement makes the MSE more robust when the
among-area variation is strong. Interested readers are referred to their text for
details.

3.8.5
Small-Area Estimation by Block Kriging

The spatial distance between two population elements can be an indicator of
the expected similarity of their attribute values. Within a forest stand, for
example, one would expect that the basal area in a 100-m2 unit, on average,
would be more similar to the basal area in units that are spatially close than to
the basal area in more distant units. This phenomenon of distance-dependent
similarity, if manifest, can be exploited in certain small-area estimation prob-
lems. Samples taken in the vicinity of the small area can be used efficiently to
predict, via a spatial model (Cressie and Chan 1989), the average attribute
value in the small area. Simple kriging is a basic form of spatial prediction for
a location with unknown attribute values (Goovaerts 1997). A simple kriging
prediction is a linear combination of known attribute values observed in
locations within a neighborhood of the location for which we seek a prediction
The weight given to an observation depends on the strength of the expected
covariance between the observed value and the value to be predicted.
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Small-area prediction by block kriging illustrates one of the simplest yet
most powerful spatial models for small-area estimation problems. As before,
we have a population sample of size n with attribute y and we wish to estimate,
say, the mean Yir for small area i. We have ni sample records available for the
small area i n 0i $_ i, which we consider as a “block” in the context of kriging.
Let us assume that there is no significant spatial trend in the observed y values
in the small area and its vicinity but y values in locations separated by less than
a relatively short distance of a few hundred meters do tend to be significantly
and positively correlated with each other. Furthermore, we also have a function

,C y yk l_ i that predicts, without bias, the expected covariance between two y
values observed in locations k and l. Normally the covariance is governed by the
distance between locations k and l. Issues surrounding the selection, estima-
tion, and validation of the spatial covariance function (variogram) are beyond
the scope of this text. Suffice to say that there are many complex statistical
issues one must consider before accepting a spatial model, as the risk of inad-
vertently introducing a serious bias is nontrivial (Cressie 1991; Chilès and
Delfiner 1999; Atkinson and Lewis 2000; Diblasi and Bowman 2001; Zhao and
Wall 2004).

In our chosen variant of block kriging the ni sample records from the small
area are used only for a direct estimate Y i

t , which is then combined with a block
kriging prediction Y i bkrig

t in the form of a composite estimator. Attribute val-
ues, both sampled and nonsampled, for the small area i (SAi) are denoted by yi.
The first step towards obtaining Y i bkrig

t is to choose a number of sample records
, , ,Y k N1k i

OKf= taken outside the small area but close enough to the small
area to justify the expectation that their attribute values would be significantly
correlated with attribute values inside the small area. The covariance

function can guide the cutoff distance for N i
OK since ,C y y yvark i

1
#

-

_ _i i can
be viewed as a crude predictor of the expected correlation of y values. Since
block kriging computations increase with the square of N i

OK there are good
reasons to keep the number as low as possible but high enough to take advan-
tage of spatial correlation. In practice, sample locations with an expected cor-
relation below 0.2 can be excluded with only a minimal impact on the
predictions and their estimated variance. The set of outside sample values
included for block kriging prediction is i

OK1 . From the selected outside sample
points we obtain the block kriging prediction for the small area as

, ,Y Y Yi k k k
k

N

ibkrig
OK

1

i
OK

# 1!= m
=

/t t

where kmt is the estimated block kriging weight assigned to Yk in i
OK1 .

Estimated block kriging weights are obtained as solutions to the following sys-
tem of block kriging equations (Goovaerts 1997):
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where ,C y yh l_ i is the average expected covariance between Yk from i
OK1 and

an element attribute value yl in SAi. We can obtain a good approximation of
,C Y Yk l_ i by computing the expected covariance between elements in i

OK1 and
a series of elements , , ...,y l M1l SAi= distributed evenly over SAi and then take
the average of these expected covariances (Goovaerts 1997); hence,
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The number of locations M SAi to be included in the average depends on the
rate of convergence. At one point increasing the number further will have only
a minor impact on the average. Around 16 is probably a reasonable choice. An
estimator of the variance of Y i bkrig

t is

, , , , ,Y C Y y C Y y y yvar SAi k j k k l i k i
k
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bkrig
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where ,C y yi j_ i is the expected block-to-block covariance which we approxi-
mate by the average covariance between elements in SAi, i.e.,
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The block kriging predictor Y
–̂

i bkrig and the direct estimate Y
–̂

i can now be com-
bined to a composite estimator as outlined in Sect. 3.8.3. To compute the MSE
of the composite estimator we need an estimate of the expected covariance
between Y

–̂
i bkrig and Y

–̂
i . They cannot be assumed to be independent since Y

–̂
i bkrig

implicitly generates M SAi pseudo-observations for SAi. The expected covariance
is approximated by the average expected covariance between the ni sample loca-
tions in SAi and the Ni

OK sample locations in 1i
OK. Alternatively, a single pre-

diction Y
–̂

i bkrig could have been obtained by including the ni sample points
in SAi in the set 1i

OK with no other change to the previously outlined procedure.
We chose a composite estimator as it is more transparent and computationally
easier to optimize. The choice will have only a minor impact on the results.

When y values display a spatial trend the block kriging procedure has to be
expanded to include the prediction of local trend values. While the extension is
technically straightforward the presence of a trend nevertheless complicates
matters. First, the trend has to be estimated precisely to avoid introduction of
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potentially serious bias. A precise estimation is often not possible from typical
survey data. Also, only few surveys will have enough data to support a thorough
model selection and validation process and a high enough sampling density to
ensure that there are a sufficient number of suitable predictors available in the
area around SAi (Lappi 2001). Still, there are situations in forest inventory where
spatial-model-based small-area predictions are attractive (Mandallaz 1993,
2000). They are identified by the presence of a significant distance- or location-
dependent correlation, viz., covariance, between sampled attribute values.

3.8.6
Empirical Bayesian Methods for Small-Area Estimation

The Bayesian framework uses the posterior distribution for inference (Ghosh
and Meeden 1997; Gaudard et al. 1999; Congdon 2001). The posterior distri-
bution is the product of a likelihood and a prior distribution, and as such it is
entirely model-based. A likelihood function f with parameters qi can be postu-
lated for the data sampled in a small area i (SAi) and then combined with prior
expectations with regard to the probability distribution function of the param-
eters qi in order to obtain the posterior distribution p of qi. When prior distri-
butions are estimated from samples taken outside SAi p is said to be the
empirical Bayesian (EB) posterior for SAi (Singh et al. 1998; Pfeffermann
2002). The EB approach offers a very flexible and rich framework for small-
area estimation. In applications with a Gaussian-likelihood function and a con-
jugate prior (a conjugate prior produces a posterior distribution of the same
type as implied by the likelihood), the posterior estimates will be similar to the
composite estimator (Congdon 2001).

An example with a continuous real-valued positive attribute y and one with
counts of a categorical attribute value illustrate the flexibility and power of the
EB approach. In our first EB example, suppose we have from SAi four (ni=4)
sample values , , ,Y Y Y Y Yi i i ii 2 3 41= # -={156, 220, 181, 185} with a mean Y i

t of

185.5 and a variance Yvar i
t t

a k of 173.4. A larger sample of size n– ni=100– 4= 96

from outside of SAi produced Y SAi2
t = 200 and Yvar SAi2

t t
a k = 4.59. The small-area

likelihood f is a Gaussian with qi , ,Y Yvari i i i1 2= =i i r r_ i# $- . and we seek to

estimate q̂i
EB the EB posterior of qi. We assume a Gaussian prior with parameters

,Y YvarSA SAi i
=~

2 2
t t t t

a k& 0 for the mean and a Γ (gamma )distribution prior with 

parameters mt = {96.00, 0.048} for the variance. The Γ distribution prior was 

chosen so that its expected value would be Yvar SAi2
t t

a k and its variance

Y n nvar2 2iSA
2

i
# - -

2
t t

a _k i, which is the variance of a variance when y is 

normally distributed (Snedecor and Cochran 1971). From these preliminaries
we obtain the posterior p of qi as
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The maximum posterior log-likelihood was −10.87 with qi
EB ,Y Yvari iEB EB= t t t

a k& 0

= {192.8, 9.7}. In this example we gave the sample from outside SAi maximum
weight, in that our priors were tailored to the large-sample results. The EB
posterior mean is almost a perfect average of Yt _

|SAi

and Y i
t (an estimated

weight of 0.49 is given to the direct estimate) and the posterior variance is
almost 18 times smaller than the variance of the direct estimate, but also
about 18 times as large as the variance of the  Yt _

|SAi

. We are of course free to
change the priors if only a part of the large sample is deemed representative
as a prior for SAi or we have other information that warrants a change. In any
case, the choice of an informative “prior” must be decided carefully and
should be justified explicitly in the same fashion as one would justify a model
choice. The EB framework is extended easily to deal with regression and ratio
estimators and multivariate attribute values (Ghosh and Meeden 1997; Green
and Valentine 1998; Elliot and Little 2000; Denison et al. 2002; O’Brien and
Dunson 2004).

Our second example show the flexibility of the EB appraoch to handle
binary data. We have done a survey of a beetle infestation. In each plot nt=16
trees are examined for the presence (y=1) or absence (y=0) of a certain beetle
species. We have a total of n=47 plots, of which ni=7 are inside SAi. We wish to
estimate the proportion of trees infested with the beetle in the small area (Pi)
and a variance of this estimate. At the plot level, the likelihood of observing,
say, nbj beetle-infested trees in the jth plot is

,Pr n n P n P P16 1j t i j i
n

i

n n

b b
j t jib b

#= -
-

` b _j l i

as per the binomial distribution. The results from the 40 “outside” plots are
used to form prior expectations of the proportion Pi. The survey produced the
following estimates:

. , .P Pvar0 172 5 196 10SA SA
4

i i #= =2 2
-t tt ` j

for the outside area and P̂i = 0.223, v̂ar (P̂i) = 2.949 × 10−3 for SAi, where 25 of
the 112 sample trees were infested with the beetle. We assume conveniently a
beta distribution as a prior for the parameter Pi in the small-area data
likelihood. The beta distribution has two parameters, α and β and a mean of
P̄ =a × (a + b)−1 and a variance of P

−
(1−P

−
) × (1 + a + b)−1. From the 40 outside

plots and by maximum-likelihood methods, we obtained â = 1.005 and 
b̂ = 4.843. The convenience in the choice of the prior is that the posterior distri-
bution of the small-sample estimate of P is also a beta distribution (Congdon

2001) but with parameters {â +Σ
ni

i = 1
nbi , b̂ +ni ×nt + 1} = {26.00,117.84}, from

which we obtain P̂iEB = 0.221 and v̂ar (P̂iEB)= 1.44 ×10−3. While the posterior
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mean is close to the direct sample mean, the EB estimate of the posterior vari-
ance is only half of the variance of the direct estimate.

EB extensions to multinomial data are straightforward: instead of a beta distri-
bution as a prior one conveniently chooses instead the Dirichlet distribution
(Santner and Duffy 1989; Green and Clutter 2000), which generates a Dirichlet
posterior with parameters determined as the sum of small-area counts and the
prior parameters (pseudo-counts).

3.9
k Nearest-Neighbor Prediction

When an auxiliary attribute(s) is known for all N population elements and a
functional relationship can be assumed to exist between them and the attrib-
ute of interest, available for n n N%_ i sampled elements only, then the predic-
tive power of the auxiliary attribute values can be exploited in several ways for
the purpose of improving the precision of an estimated mean or total of a pop-
ulation or a stratum. This was illustrated in Sect. 3.3.5 for two-phase sampling.
While global and strata estimates of totals and means are useful in their own
right, the management of natural resources often requires attribute values to be
provided for all population elements within specified areas. Essentially a map
showing the spatial distribution of attribute values is desired. A naive predic-
tion of local attribute values from a population-level regression model can pro-
duce unacceptable local artefacts because the predictions ignore any spatial
correlation among the predictors and because application of a single popula-
tion-level model may produce biased results when applied to spatial subsets of
the population (Rao 2003).

A forest can be viewed as a composition of a finite set of distinct composi-
tions of auxiliary attribute values. If, furthermore, we assume that the value of
the attribute(s) of interest is fixed for a given distinct composition of the aux-
iliary value(s) then, if the assumption holds, perfect predictions would be pos-
sible when the distinct set of auxiliary compositions matches that of the entire
population. The predicted attribute value would naturally be the value
recorded for the sample with matching auxiliary values. In practice a perfect
match is rarely possible because the sample simply does not exhaust the natu-
ral variability in the auxiliary attribute(s). To make our predictions we could
relax our requirement of a perfect match and assume that similar auxiliary
attribute values means similar values of the desired attribute. The kNN method
of prediction is based on this relaxed assumption and was first developed for
the purpose of replacing within-item missing attribute values (Rubin 1987). In
the kNN method a prediction is derived from the k sample records that match
most closely the auxiliary values of the element we wish to predict.
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The kNN method of prediction is intuitively appealing and conceptually
simple; however, a successful application demands complex and demanding
analyses and computations. The numbers of neighbors, the auxiliary traits to
include, and the definition of similar values are all nontrivial issues in need
of careful analysis (Moeur et al. 1995; Katila and Tomppo 2001; McRoberts
et al. 2002).Otherwise, carefully calibrated kNN predictions will be biased
and the result could be worse than predictions based on global expectations
(Holmgren et al. 2000; Franco-Lopez et al. 2001). kNN is now used routinely
to provide local estimates of national forest inventory attributes from local
auxiliary attribute values obtained from remotely sensed images (Gjertsen
et al. 1999; Katila et al. 2000; Katila and Tomppo 2001; Tomppo and Halme
2004).

All kNN methods require large sample sizes to ensure that similar matches
are indeed found. It is difficult to make specific recommendations, the natural
variability in attribute values is the decisive factor, but even for rather homo-
geneous forests of northern climes sample sizes over 200 seem to be required
for kNN methods to be even modestly successful (Haara et al. 1997; Franco-
Lopez et al. 2001; Holmström 2002). As the number of auxiliary attributes
increase it becomes increasingly difficult to find a good match, a paradigm
known as the curse of dimensionality (Scott 1992). Predictions derived from
the single most similar set of auxiliary attribute values are asymptotically unbi-
ased and they will preserve the sample variability in the desired attribute
value(s) (Moeur et al. 1995; McRoberts et al. 2002). When more than one sim-
ilar sample record is used for prediction, then it is a common observation that
predictions at the extreme tend to be biased in opposite directions (Moeur
et al. 1995; McRoberts et al. 2002).

The local kNN prediction of the attribute y from the auxiliary variables X
for the ith nonsampled population element is

,w yY
( )

i ij j
j NN xk i

#=
!

/t

where y j is the attribute value of the jth sample, w j is the weight given to this
value, and j is one of k NNs to the ith population element in terms of the aux-
iliary attribute values, j NN Xk i! _ i. In the multivariate case a scalar would be
replaced by the appropriate vector notation. The weights are chosen to reflect
the degree of similarity in the auxiliary attribute values between the ith non-
sampled and the jth sampled population element. Weights are usually based on
an index (dij) of similarity, viz., distance, between the auxiliary attribute values
of the ith and jth elements. Subject knowledge, prior beliefs, ecology, spatial
distance, and statistical consideration guide the choice of weight function. For
example, a close match in X could still receive a low weight if population 
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elements i and j are located on different soil types, on different aspects, in dif-
ferent vegetation zones, or are separated by a large spatial distance. Prior
knowledge can be used to guide the search towards locations with the highest
chance of a suitable match (van Lieshout and Baddeley 2002). It is customary
to choose weights such that

, , , , .w
d d

t1 1 0 1 2
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ij
ij
t

ij
t

j NN x
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t=0 implies equal weighting of the k neighbors, whereas t=1 weights with the
inverse of distance and higher t values ensure a more rapid decline in the
weight is given to the less similar values in the group of k most similar neigh-
bors. The choice of t is intimately connected to the number k of most simi-
lar neighbors. It makes little sense to have a high k and a high t as most
neighbors would then contribute little towards a prediction. Conversely, a
lower k would argue for a lower t. A t value of 1 seems to be the most popu-
lar choice.

The similarity index dij should reflect the impact that discrepancies in the
auxiliary variable(s) have on a local prediction. An ideal index is linear in
the square of the absolute prediction errors (Barbieri and Berger 2004). The
index is inevitably a function of the auxiliary attributes included as predictors,
their scale, and predictive power. Finding an optimal index or distance metric is
the crux of the kNN method and is often a very time consuming step. A generic
index takes the form

,d x x x xij i j i jx x
1= - -X

l
-
l_ _i i

where x is a p×1 vector of auxiliary attribute values, x xX l is a weight matrix,
and x′ is the transpose of x. In the case of Ix x=X l , the identity matrix, the
similarity index is equal to the Euclidian distance in the feature space of x.
A Euclidian distance weighting disregards the predictive power of individual
auxiliary attributes and distances are strongly influenced by scale differences

in the auxiliaries. The choice of D jx x
2= vX l a k, where D j

2va k is a diagonal

matrix of the variances of the auxiliary variables, removes the scale effect on
the distance measure but does not reflect a possible correlation among the
predictors. Disregarding the correlation can lead to biased predictions.
Choosing x x x x=X Rl l , where x xR l is the variance covariance matrix of the
auxiliary attributes, leads to a similarity index based on Mahalanobis dis-
tances (Rencher 2002) and removes both scale effects and correlation
between the auxiliary attributes, but their predictive powers is not taken into
account. These choices of the weight matrix result in nonparametric
kNN predictions. The predictive power of the auxiliary attributes can be
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incorporated by assuming that predictions of y are linear in x, i.e., y x= b lt t ,
or are linear in a set of mutually independent (orthogonal) variables z
obtained by premultiplying x by the Cholesky decomposition of x xR l

(Rencher 2002). In the former case we get

,d x x x xij i j i jx x
1= - -b bX

l
- ll

t t_ _i i

where bt is either an ordinary or a generalized least-squares estimate of regres-
sion coefficients, and in the latter case we get

,d x x x xij i j i j
2= - -CK C

l
l_ _i i

where C is a matrix of canonical correlation coefficients and z zK l a diagonal
matrix of canonical correlation coefficients (Rencher 2002). The two distance
measures are identical if all p of the transformed variable z are used as predic-
tors. If only a subset q (p>q) with a significant correlation to y (or y) is used
then the two will differ. Further details on the canonical approach can be found
in Moeur et al. (1995).

The expected error of a kNN-predicted value of y is usually estimated by some
leave-one-out cross-validation procedure (Franco-Lopez et al. 2001; McRoberts
et al. 2002; Rao 2003; Efron 2004). The procedure is relatively simple but time-
consuming. The one-by-one procedure makes a kNN prediction y kNNt for one of
the n sampled elements by withholding this observations from the calculations
of similarity indices, weights, and ranking of indices. The mean of the errors
made in these n predictions is the cross-validation estimate of error:

,Y n

Y Y
RMSE

( )

NN

i NN
i

i

n

CV

2

1
k

k

=

-
=

/
t

t

`

a

j

k

where YNN

i

k
t ^h is a kNN prediction of the ith sample value derived independently

from Yi. Bootstrapping offers an alternative method for estimating this error.
Instead of the delete one-at-a-time procedure of cross-validation, a sample of
size n is sampled with replacement from the original sample and a kNN predic-
tion rule is obtained from the bootstrap sample and is applied to the original
sample. By repeating this process a large number of times (more than 500) one
obtains a distribution of prediction errors from which statistics such as the
mean, mode, and quantiles are easily obtained. Estimates of the prediction vari-
ance are only approximations, possibly biased since predictions are based on
order statistics with a nonsmooth distribution function (Chen and Shao 2001).

Individual kNN prediction errors can be assumed to depend on the index
of similarity values dij for the kNNs used for a prediction; hence, a regression
model with the square of the prediction errors obtained during the cross-
validation process as the dependent variable, and the k dij index values as the
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predictors could be used to estimate the kNN error of individual predictions
(Moeur et al. 1995).

3.10
Resampling for Nonlinear Inventory Statistics

Users of forest inventory information are often interested in estimates that go
beyond the mean, the total, and associated estimates of their sampling vari-
ance. Estimates of, for example, population percentiles (e.g., the median and
the lower and upper 2.5 percentiles), ratios of estimates involving two or more
inventory attributes (e.g., percentage change during a given period of time or
the proportion of area in plantations), number of species in a population, or
simply a model-based transformation of one or several inventory estimates
into another attribute of interest (e.g., composite estimators, transformation of
volume to biomass or carbon content, small area estimates, estimates of non-
sampling errors) are demanded on a routine basis from the analyst. Let Tt be
such an estimate obtained from one or several inventory estimates Zt via some

function g as in T g Z=t t` j, where , , , , , , ,covY Y Y Y i j kZ 1k i j1 f f= =t t t ttt ` _j i& 0.

If g is linear in the inventory estimates (as in a weighted average with fixed and
known weights), the variance of Tt is estimated via a first-order Taylor series
linearization-substitution method (Rao 1988):

T g gvar Z Z Z
T

= Xl lt t t t t` _ _ _j i i i

where g Zl_ i is the vector of derivatives with respect to the inventory attrib-
utes and g Zlt _ i is g Zl_ i evaluated at Zt , ZXt _ i is the estimate of the variance
covariance matrix of Z, and superscript T denotes the transpose of a vector
or matrix.

For g linear in all the parameters Z the estimate T̂ and the estimate of the
variance of T will exhibit properties that are a linear function (g) of the ele-
ments of Z. If Ẑ is design-unbiased so is T̂ , and if the variance estimates for Z
are all design-unbiased and consistent so is the estimated variance of T.
However, when g is nonlinear, or possibly nonsmooth (derivatives do not exist
everywhere, as in a discrete distribution or when g embodies a series of hierar-
chical functions or the output of g is constrained), the statistical properties of
T̂ are no-longer predictable from g and the properties of Ẑ .T̂ may be biased
and the Taylor series method may produce a poor approximation to the vari-
ance of T since higher moments of the sampling distribution of T do not van-
ish (as they do in a normal distribution).

When g is nonlinear or nonsmooth the analyst may chose to adopt a resam-
pling scheme as an alternative to the Taylor series method. Research has shown
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that estimates of g Zt` j and gvar Zt t` j9 C with g nonlinear or nonsmooth derived
from a correct application of the bootstrap resampling technique are at least as
good as those based on the Taylor series method; often they are better (Shao
1996, 2003; Shao and Chen 1998; Hall et al. 2001; Van Hees 2002; Lahiri 2003;
Shen et al. 2004; Zhu and Morgan 2004). At times the function g is so complex
as to preclude an analytical estimator that the bootstrap or another resampling
alternative (e.g., jackknife, balanced replicate resampling, or Pòlya-urn) offers
the only practical option (Shao 1996; Meeden 1999). Estimation of the MSE of
composite estimators as exemplified by small-area estimation problems (see
also Sect. 3.8) becomes almost straightforward with bootstrap resampling.
Bootstrap resampling is also attractive for estimation problems when missing
data are imputed at random (hot-deck) or model-based (Saho and Sitter 1996;
van Deusen 1997; Shao and Steel 1999; McRoberts 2001; Lahiri 2003; Shao
2003). Although computer-intensive, the bootstrap computations are simple.

3.10.1
The Bootstrap

Efron (Efron and Tibshirani 1993) introduced the bootstrap resampling
method for the study of the properties of no-linear and nonsmooth statistics.
The bootstrap simulates the estimated sampling distribution of a statistic esti-
mating a population attribute by generating a large number (B) of bootstrap
estimates , ,T T* *

B1 ft t of T from which a mean, a variance, and an approximation
to the distribution function Pr T T*#t ta k are obtained by standard techniques.

In the simplest (naive) implementation of bootstrap resampling a single
bootstrap estimate T̂ *

l , l =1, . . . ,B, is obtained by a SRS with replacement from
n observed values of Yi , i =1, . . . ,n. The resampling yields a bootstrap sample
Y *

j , j =1, . . . ,n from which T̂ *
l is estimated. The naive implementation requires

that the observed Yi are identically and independently distributed (iid), which
is only possible if the data are collected by SRS. Sample selection with unequal
probabilities, however, invariably introduces a complex correlation structure
which makes the development of a theoretical valid bootstrap method chal-
lenging (Lahiri 2003). For sample surveys, bootstrapping methods have been
validated under randomization theory.

In forest inventories sampling is commonly from a finite population and
without replacement to avoid sampling the same element (unit) more than
once. Even point-sampling locations are usually chosen amongst a finite set of
possible locations. Consequently variance estimators include a correction fac-
tor for the sampling fraction (f ) in a finite population and the variance-
effective sample size under sampling without replacement is n–1 not n as in
sampling with replacement (Thompson 1992). These differences, if not carefully

192 CHAPTER 3 Sampling in Forest Surveys



identified and accounted for in the bootstrap resampling procedure, can lead
to a problem of bias in bootstrap estimates of variance and percentiles (Lahiri
2003; Shao 2003). Schreuder and Williams (2000) found conventional 95%
confidence intervals for the mean under SRS and sample sizes of 20, 40, and 60
to be slightly superior in terms of actual coverage of the true mean than corre-
sponding naive bootstrap confidence intervals.

A large number of modified bootstrap procedures have been proposed to
account for the sampling procedure and finite-population corrections (Shao
1996). The bootstrap can adapt to any sampling design with the provision that
resampling is done at the unit level (h) at which the iid assumption is still valid
given that the unit was sampled. In stratified multi-stage cluster sampling, for
example, bootstrap resampling would occur at the level of clusters within
strata. Attribute values in a cluster can not be assumed iid conditional on inclu-
sion of the cluster in the sample.

Common features of modified bootstrap procedures are (1) the resample
size mh is less than the size of the available sample nh at unit level h of resam-
pling, (2) a scaling of y, and (3) resampling without replacement from a syn-
thetic “complete” population with the sample records multiplied from nh to Nh.
Only the flexible rescaling bootstrap proposed by Rao and Wu (1988) will be
detailed here for the case where the actual sample units were selected by SRS or
unequal inclusion probabilities.

Under the SRS scenario at unit level h one obtains a bootstrap sample 
Y *

hj , j =1, . . . .,mh < nh, by SRS with replacement which is then rescaled accord-
ing to

+
, , ..., ,Y Y n

m f
Y Y j m1

1
1* *

hi h h

h h
hj h h= + -

-
- =

_
a

i
k

where Yh is the mean of the actual sample at unit level h and fh is the actual
sample fraction in unit level h (by count or area). This process is repeated for
all unit levels h (h=1,....,H). Then, one obtains a design-based estimate T *

l
u of T

as if Ỹ *
hi , j =1, . . .mh, h =1, . . . ,H, was an actual sample. B replications of this

process produce the rescaled bootstrap estimate of the sampling distribution of
T. Under an unequal probability sampling design the jth element in unit level
h is given a weight whj in order to expanded it to an (unbiased) estimate of the
population total. The bootstrap resampling is done as under SRS but instead of
rescaling Y *

hj one rescales the sampling weights

,w w m n m n m
n

r1 1 1* *
hj hj h h h h

h

h
hj

1 1
# # # #= - - + -

- -

_ _d i i n

where r hj
* is the number of times Yhi is included in the bootstrap resample.

After completing the bootstrap resampling across all H unit levels the desired
sample estimate is obtained from Y hj

* using weights whj
* in place of wh (Rao et al.

1992).
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Modified bootstrap procedures extend naturally to estimation with missing
data replaced by random or model-based imputations (Rubin 1987). The boot-
strap sample is taken from the complete nominal sample. Missing sample
records are simply added as empty records with a label that identifies them as
missing. After each round of modified bootstrap resampling the missing values
are imputed from the drawn bootstrap sample (only) by applying the exact
same protocol as would be used for the actual sample. If one did the imputa-
tions before the bootstrapping the variance estimates would be downward
biased (Shao 1996).

A major advantage of the bootstrap of multivariate data is the effortless pro-
vision of measures of multivariate associations within and between sampling
units since these are estimated by standard procedures from the replicated boot-
strap samples. These associations are almost always needed for the estimation of
variances of complex survey estimators. Needless to say, conventional methods
for obtaining estimates of these quantities can be exceedingly difficult.

3.10.2
The Jackknife Resampling

The jackknife is a delete n units at a time resampling technique (Efron 1982)
used to obtain first-order approximations to estimates of bias, and sampling
variance. When the function g is linear, the jackknife estimates will be equiva-
lent to the design-based estimates. When g is nonlinear or nonsmooth, a jack-
knife variance estimator may be inconsistent (Shao 1996). As for the bootstrap,
the rationale for using a jackknife resampling procedure for estimation is not
statistical but rather convenience when design-based or model-based estima-
tors are exceedingly complex or nonexistent.

When the data are a simple random sample of , , ...,i ny 1i = , the ith leave-
one-out jackknife sample is

, , ..., , , .... ,Y Y Y Y Yy i i i n1 2 1 1= - +^h # -

from which the ith jackknife replication of T g Y( ) ( )i i=t _ i is obtained as for the
actual sample. After obtaining possible distinct all n jackknife replication esti-
mates of T the jackknife estimate of bias in the estimate Tt obtained from the
actual sample is

n T T T n Tbias with1 ( ) ( )
( )i i

jack
1= - - =: :

- /t t t_ `i j

and the jackknife estimate of the standard error is

.T n
n T Tvar 1

( )i
i

n

jack
1

= - - :
=

/t t t t` `j j
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In finite-population sampling a correction for the sample fraction must be
reflected in the jackknife variance estimator. In multistage inventory one has to
decide what the unit to delete is. As for the bootstrap, one should delete the
highest unit level unit for which the iid assumption is valid given the unit is
included in the actual sample. Also, under unequal probability sampling the
effect of deleting one unit on the expanded (weighted) sample observations
must be addressed. We illustrate the jackknife procedure for unequal probabil-
ity stratified cluster sampling. Notation is as per the bootstrap example given
before. After deleting the j th unit in the h th unit level we obtain the h j th jack-
knife replication of Y from

,w Y n
n

w YY 1h j hj hj
h

h
h j h j

j jj jh h

# #= + -
!!!

///l l
l

l
l l

lll

t
^ h

from which we obtain T h jl l
t
^ h as before. We repeat this delete-one process across

all units j′ in a unit at level and across all unit levels h′ (h′=1,...,H) and obtain
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and finally the jackknife variance estimator for Tt from
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3.10.3
The Pòlya-Urn Resampling Scheme

The ease of implementation of the flexible and simple Pòlya-urn resampling
scheme and the fact that Pòlya-urn estimators of means, totals, and variances
are design-consistent and asymptotically equivalent to design-based estimators
(Ghosh and Meeden 1997) makes Pòlya-urn resampling an attractive alterna-
tive to the bootstrap. Pòlya-urn resampling generates a posterior distribution
of the statistic of interest. It is a predictive joint distribution for the unobserved
or unseen units in the population conditional on the seen sample values, sim-
ilar to the Bayesian bootstrap of Rubin (1981). Problems associated with the
sampling process, unequal inclusion probabilities, and finite populations are
not encountered in the Pòlya-urn resampling scheme.

The basic Pòlya-urn resampling scheme is very simple. Let us assume that
we have n sample observations Yi , i =1, . . . ,n, from a finite population of size
N. To implement the Pòlya-urn sampling we place the n sample records in a
virtual urn. We draw one sample record at random from the urn, and return
the record and one additional copy of this record to the urn. There are now n+1
sample records in the urn. We repeat this drawing scheme a total of N–n times.
After the last draw, the urn contains N sample records, which we interpret as
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one posterior prediction of a population census. From the N sample records,
we compute the attribute of interest by standard techniques, just as in a boot-
strap. A large number K (K >400) of posterior predictions are obtained in this
manner. As for the bootstrap, the number K is determined by the among-repli-
cate variability of the posterior predictions.

The Pòlya-urn resampling scheme adapts well to more complex designs. In
one-stage cluster sampling the resampling scheme is unchanged; a sample
record is the data from a cluster (Magnussen et al. 2004). Under a stratified
random sampling design, a Pòlya-urn resampling scheme such as the one just
described is implemented for each strata (Magnussen and Köhl 2002). In mul-
tistage cluster sampling (Meeden 1999) the resampling is done in a nested
sequence. For example, we have under SRS sampled n first-stage clusters out of
a total of N, and we have sampled m out of M ultimate units within each clus-
ter. We would then do an urn resampling of the n first-stage units until the urn
contained N such units. Then, we would take each first-stage unit in the urn
and conduct a second-stage round of urn resampling until the chosen unit
contained M ultimate units. After one completion of the nested urn resampling
scheme we have one posterior prediction of a population census and we can
proceed to compute the statistics of interest. And we continue until additional
replications of the nested resampling only produce minimal gains.

196 CHAPTER 3 Sampling in Forest Surveys



Remote Sensing 4

4.1
Introduction

Remote-sensing data play a growing role in studies of natural and seminatural
environments, a role that stretches from a visual interpretation to sophisticated
extraction of information by advanced image analysis and statistical algo-
rithms. Today, the synergy between traditional data types and remotely sensed
data is widely recognized as essential and critical for extensive “on-time” envi-
ronmental studies and monitoring at the local, regional (landscape), and
national levels.

The technologies and methods of remote sensing have evolved dramatically
over the last few decades. The spectrum of satellite and airborne sensors avail-
able provides a suite of imaging scales and information content of interest and
importance to planners and land managers. Easy access to historical remotely
sensed data, a continued reduction in data cost, and improved resolution from
satellite platforms all point towards the increased role and importance of
the remote-sensing technology for planning agencies and land management
initiatives involved in monitoring forestry, land-cover, and land-use change at
a variety of spatial scales.

Current remote-sensing technology offers collection and analysis of georefer-
enced data from ground-based, atmospheric, and Earth-orbiting platforms. It
offers linkages to Global Positioning System (GPS) data, geographic information
systems (GIS) data layers and functions, and emerging modeling capabilities. The
ease with which remotely sensed data can be integrated with other sources of
information and other data structures is cardinal to its success in land cover and
land-use information projects. Globally, the demand for landscape- and regional
level information on the state of the environment continues to grow as does the
demand for information content. Continued improvements in remote sensing
are needed to meet these demands.

The benefits of satellite-based remote sensing in mapping, monitoring, and
management of actual forest cover was recognized long ago by several authors
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(Dutt et al. 1994; Woodcock et al. 1994; Trotter et al. 1997; Achard et al. 2002;
Mollicone et al. 2003). Moreover, the temporal frequency at which new satellite
data for a particular region become available allows changes in the extent of for-
est cover at national and regional levels to be monitored in a reliable and effi-
cient manner. Forestry planning is, to a certain degree, already assisted by
remote sensing, mainly in North America and Europe: there have been some
good “showcases” after a hurricane, after flooding, after a snowstorm (freezing
rain), fire, etc. when major disturbances makes it pivotal to have up-to-date
maps and for management of disturbances both during and after the event. The
goal of the applications of remote sensing to forestry is to add value (utility) in
the planning process (Holmgren and Thuresson 1998), which should mean one
of the following: the information retrieved from satellite remote sensing
should be less expensive than that collected by other means; it should contain
better information at the same cost; or it should be both cheaper and better
in some way. Even, if detailed data were available – like high-resolution images
and field training sets – it would be already possible to optimize responses to
the continuous changing market demands. The need for a less expensive and
more comprehensive approach has prompted much research into extracting
forest information from aerial and satellite remote sensing (Trotter et al. 1997);
Woodcock et al. (1994) analyzed the costs which can be saved, both in the long
term and per unit area. The conversion of satellite image format to GIS is easy,
making map production possible within a short time and also allowing the fast
update of computer-based maps, a particularly useful feature in areas where
resource information is either limited or where rapid developments quickly date
information collected by conventional methods (Roy et al. 1985). In the years
since the launch of the Landsat Multispectral Scanner (MSS) in 1972, the first
optical satellite, technology has developed and improved towards better spec-
tral, spatial, and radiometrical resolutions: with newer sensor bands (green, red,
and near IR are usually available) being extended to blue and two mid-IR bands.

The principal applications of remote sensing and GIS in forestry domains,
the forest geomatics discipline that includes all the sciences for monitoring and
surveying the land and the environment (Gomarasca 2004), are in short the
following:

1. Forest inventory: restocking and assessment of tree cover/density/number
per hectare; identification of vegetation and forest types; production fore-
casting through the estimation of tree height, diameters, and volumes; nat-
ural revegetation; management issues in continuous-cover forestry;
monitoring changes in woodland cover.

2. Forest health and nutrition: vegetation stress; disease and pest infestations;
abiotic hazards, windthrow, fire and snow damage; pollution.



3. Forest sustainability: criteria and indicators for sustainable forest manage-
ment international processes. Satellite imagery is considered critical to cri-
teria and indicator reporting. The ability of remote sensing to measure the
direction of change and to compare measurements over time is essential for
determining and controlling progress towards sustainable management
and for aiding sustainable development. Information previously generated
in separate localities from estimates derived by extrapolation (rather than
actual field measurement) may now be produced by a few centers of excel-
lence that can efficiently treat large amounts of data and disseminate the
results effectively: satellite imagery could be used to monitor different indi-
cators in a substantial or partial capacity (Table 4.1) (Peterson et al. 1999).

4. Forest growth: physiological processes, photosynthetic processes, and water-
use efficiency; leaf water potential/content; variations of growth rate and
carbon sequestration.
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Table 4.1. Potential Applications of Space Imagery for Ministerial Conference on the
Protection of Forests in Europe indicators

Substantial role for these indicators Partial role for these indicators

1. Percent and extent of forest types relative to 1. Area and severity of disease 
historical condition and to total forest area infestation

2. Percent and extent of area by forest type and age 2. Percent of area successfully naturally
3. Area, percent, and representativeness of regenerated and artificially 

forest types in protected areas regenerated
4. Level of fragmentation and connectedness 3. Mean annual increment by forest 

of forest ecosystem components type and age
5. Area and severity of insect attack 4. Tree biomass volume
6. Area and severity of fire damage 5. Participation in the climate change
7. Percent and extent of area by forest type and age conventions
8. Area of forest converted to non-forest land use 6. Annual removal of forest products 
9. Percent of forest managed primarily for relative to the volume of removals 

soil and water protection determined to be sustainable.
10. Area, percent, and representativeness 7. Distribution of and changes in the 

of forest types in protected areas land base available for timber 
11. Percent canopy cover production
12. Percent biomass volume by general forest type 8. Availability of habitat for selected 
13. Area of forest depletion wildlife species of economic 
14. Area of forest permanently converted to importance

non-forest use 9. Area and percent of protected forest 
15. Semi-permanent or temporary loss or gain by degree of protection

of forest ecosystems, such as grasslands,
agriculture

16. Surface area of water within forested areas

Source Goodenough et al. (1998)



5. Forest ecology: monitoring biodiversity; landscape ecology; population
dynamics. Remote-sensing techniques offer also potential for assisting in the
analysis of large forest tracts for identification of ecosystem classes or aggre-
gations of ecologically similar classes. However, satellite images are acquired
at predetermined spatial resolutions, designed primarily for general land-
cover and land-use analysis and mapping. Although airborne systems are
capable of acquiring data at a variety of resolutions (i.e., spatial, spectral,
and temporal), optimal resolutions for specific terrain analyses are still
determined on an ad hoc basis. This problem was presented by Woodcock
and Strahler (1987) in a paper discussing the scale dependence of prediction
in remote sensing. Remote-sensing data are generally collected at a single
spatial resolution, in contrast to the many scales at which nature’s units and
processes exist. It is therefore difficult to identify a single spatial resolution
of remote-sensing data that will provide the most suitable level of informa-
tion for extracting forest ecosystem characteristics. Multiresolution remote-
sensing data can be expected to provide suitable information at a variety of
levels for inventories and forest ecosystem classifications (Fig. 4.1).

For remote sensing of forest ecosystems to become operational, the spatial res-
olutions of remote-sensing data must be appropriate for the application: the
chosen resolution will determine the information content and the measure-
ment error (Atkinson 1993; Atkinson et al. 1996). For instance, to discriminate
forest ecosystems at a landscape scale, the best spatial resolution for the spec-
tral reflectance of each forest type should be determined a priori.
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Fig. 4.1. Multiresolution scheme for forest monitoring (Courtesy of M. Kovac 2004)



Remote-sensing data provide a means of monitoring the rate of change
with respect to land-cover conversion or systematic change in health or pro-
ductivity. Integration of various datasets allows the land-use planner to make
decisions based on existing information within the digital database, as well as
to create new information through spatial analysis. Timely and spatially con-
sistent remote-sensing data for systematic analysis of landscape change (i.e.,
local to regional scales) over space and time are the main focus of remote sens-
ing. Remote-sensing data, image access solutions, and GIS provide opportu-
nities for integrated analysis of spatial data and product development. The
interactions of these components have been summarized by Wilkinson
(1996):

1. Remote-sensing data can be used as input data for analysis within a GIS.
2. GIS can provide ancillary data for improved remote-sensing analysis for

discrimination of forest types and land-cover and land-use classes.
3. The application of remote sensing and other spatial data within a GIS pro-

vides capabilities for modeling and scenario analysis.

4.2
Basic Concepts

“Remote sensing is the science of acquiring information about the Earth’s sur-
face without actually being in contact with it. This is done by sensing and
recording reflected or emitted energy and processing, analysing, and applying
that information” (Canada Centre for Remote Sensing 2003). The efficiency of
Earth observation (EO) has been evident when GIS and information technol-
ogy have overtaken traditional methods in forest assessment and management:
this is forest geomatics. In the EO process an interaction between incident radi-
ation and the targets of interest is involved. This is exemplified in imaging sys-
tems where the following seven elements are involved:

1. Energy source or illumination – the first requirement for remote sensing is
to have an energy source which illuminates or provides electromagnetic
energy to the target of interest.

2. Radiation and the atmosphere – since the energy travels from its source to
the target, it will come in contact with and interact with the atmosphere it
passes through. This interaction may take place a second time as the energy
travels from the target to the sensor.

3. Interaction with the target – once the energy makes its way to the target
through the atmosphere, it interacts with the target depending on the
properties of both the target and the radiation.
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4. Recording of energy by the sensor – after the energy has been scattered by
or emitted from the target, we require a sensor (remote – not in contact
with the target) to collect and record the electromagnetic radiation.

5. Transmission, reception, and processing – the energy recorded by the sen-
sor has to be transmitted, often in electronic form, to a receiving and pro-
cessing station where the data are processed into an image (hard copy
and/or digital format).

6. Interpretation and analysis – the processed image is interpreted, visually
and/or digitally or electronically, to extract information about the target
which was illuminated.

7. Application – the final element of the remote-sensing process is achieved
when we apply the information we have been able to extract from the
imagery about the target in order to better understand it, reveal some new
information, or assist in solving a particular problem (Chap. 6).

These seven elements comprise all aspects of a remote-sensing process. We
shall detail each of these seven elements, focusing on forest applications. Note,
however, that in general remote sensing also involves the sensing of emitted
energy and the use of nonimaging sensors.

4.2.1
Electromagnetic Radiation

As already noted, the first requirement for remote sensing is to have an energy
source to illuminate the target (or the energy being emitted by the target), in
the form of electromagnetic radiation. All electromagnetic radiation has fun-
damental properties and behaves in predictable ways according to the basics of
wave theory: it consists of an electrical field which varies in magnitude in a
direction perpendicular to the direction in which the radiation is traveling, and
a magnetic field oriented at right angles to the electrical field. Both these fields
travel at the speed of light. Two characteristics of electromagnetic radiation are
particularly important for understanding remote sensing. These are the wave-
length and the frequency (Fig. 4.2).

The wavelength is the length of one wave cycle, which can be measured as
the distance between successive wave crests. Wavelength is usually represented
by the Greek letter lambda (l). Wavelength is measured in meters or some fac-
tor of meters such as nanometers, micrometers, or centimeters. Frequency
refers to the number of cycles of a wave passing a fixed point per unit of time.
It is normally measured in hertz, and various multiples of hertz.

Wavelength and frequency are related by the following formula:

,c v= m
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where c is the speed of light (3×108 m/s), ν is the frequency (cycles per second,
hertz), and l is the wavelength (meters).

From this equation we see that wavelength and frequency are inversely
related to each other. The shorter the wavelength, the higher the frequency and
vice versa. Understanding the radiation in terms of wavelength and frequency
is crucial for assessing the information to be extracted from images.

4.2.2
The Electromagnetic Spectrum

The electromagnetic spectrum covers the range from shorter (including γ-rays
and X-rays) to longer wavelengths (including microwaves and broadcast radio
waves). Several regions of the electromagnetic spectrum are useful for remote
sensing (Fig. 4.3).

For most purposes, the UV portion of the spectrum represents the shortest
wavelengths with a practical significance in general remote sensing. The UV
region is just beyond the violet region of the visible interval of wavelengths.
The Earth’s substratum, rocks and minerals, fluoresces or emits visible light
when illuminated by UV radiation.

The light which our eyes (our remote sensors) sense is a very small part of
the electromagnetic spectrum. There is a lot of radiation around us which is
“invisible” to our eyes, but which can be detected by other remote-sensing
instruments and used to our advantage. The visible wavelengths cover a range
from approximately 0.4 to 0.7 µm. The longest visible wavelength is red and the
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shortest is violet. What we perceive as a color in the visible portion of the spec-
trum is given next: it is important to note that this is the only portion of the
spectrum associated with the concept of color.

● Violet: 0.4–0.446 µm
● Blue: 0.446–0.500 µm
● Green: 0.50 –0.578 µm
● Yellow: 0.578–0.592 µm
● Orange: 0.592–0.620 µm
● Red: 0.620–0.7 µm

Blue, green, and red are the primary colors of the visible spectrum. They are
defined as such because no single primary color can be created from the other
two, but all other colors can be formed by combining blue, green, and red in
various proportions. Although we see sunlight as a uniform or homogeneous
color, it is actually composed of UV, visible and IR wavelengths. The visible
portion of radiation is divided into its component colors when sunlight is
passed through a prism, which diffracts light according to the specific wave-
lengths of the light.

The next portion of the spectrum of interest for remote sensing is the IR
region, which covers the wavelength range from approximately 0.7 to 100 µm –
more than 100 times as wide as the visible portion! The IR region can be divided
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into two categories – reflected IR, and emitted or thermal IR. Radiation in the
reflected IR region is used in a very similar manner to radiation in the visible
region. It covers wavelengths from approximately 0.7 to 3.0 µm. The thermal or
emitted or mid-IR region is quite different, with this energy being essentially the
radiation emitted in form of heat from the Earth’s surface. It covers wavelengths
from approximately 3.0 to 15 µm. Then, the far-IR region follows, with wave-
length longer than 15 µm. It is useful to compress multispectral remote-sensing
information into a low number of synthetic bands that contain the highest total
information level and that can be visualized with additive synthesis, to take
advantage of the sensor information in a reduced number of channels.

The portion of the spectrum of more recent interest to remote sensing
(especially in the tropics) is the microwave region, from about 1 nm to 1 m.
The microwave region covers the longest wavelengths used in remote sensing.
The shorter wavelengths have properties similar to those of the thermal IR
region, while the longer wavelengths approach the wavelengths used for radio
broadcasting.

4.2.3
Interactions with the Atmosphere

Radiation used for remote sensing has to travel through the atmosphere before
it reaches the Earth’s surface. Particles and gases can modify the properties of
incoming radiation. These modifications are caused by scattering and absorp-
tion of photons (the particles of light) on their way through the atmosphere.

Scattering occurs when particles or large gas molecules present in the atmos-
phere interact with and redirect the electromagnetic radiation from its original
path. The extent of scattering depends on several factors, including the wave-
length of the radiation, the abundance of particles or gases, and the distance
the radiation travels through the atmosphere. There are three major types of
scattering.

1. Rayleigh scattering occurs when radiation interacts with particles that are
small compared with the wavelength of the light. Small specks of dust or
nitrogen and oxygen molecules when illuminated will produce this scatter-
ing. Shorter wavelengths are scattered much more than longer wavelengths.
It is the dominant scattering mechanism in the upper atmosphere. The fact
that the sky appears “blue” during the day is a direct consequence of Raleigh
scattering. As sunlight passes through the atmosphere, the shorter wave-
lengths (blue) of the visible spectrum are scattered more than the other visi-
ble wavelengths. At sunrise and sunset the light travels a longer distance
through the atmosphere than at midday and the scattering of the shorter  
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wavelengths is more complete; this leaves a greater proportion of the longer
wavelengths to penetrate the atmosphere.

2. Mie scattering occurs when the particles are just about the same size as the
wavelength of the radiation. Dust, pollen, smoke, and water vapor are com-
mon causes of Mie scattering, which tends to affect wavelengths longer
than those affected by Rayleigh scattering. Mie scattering occurs mostly in
the lower portions of the atmosphere, where larger particles are more
abundant. It dominates in overcast conditions.

3. Nonselective scattering occurs when radiation collides with particles larger
than the wavelength. Water droplets and large dust particles can cause this
type of scattering. Nonselective scattering got its name from the fact that all
wavelengths are scattered about equally. It causes fog and clouds to appear
white: blue, green, and red light are all scattered in approximately equal
quantities (blue plus green plus red gives white light).

Absorption is the other main process at work when electromagnetic radiation
interacts with the atmosphere. In contrast to scattering, this phenomenon causes
molecules in the atmosphere to absorb energy at various wavelengths. Ozone,
carbon dioxide, and water vapor are the three main atmospheric absorbents.

Ozone absorbs the harmful (to most living things) UV radiation from the
sun. Without a protective layer of ozone in the atmosphere our skin would
burn when exposed to sunlight.

Carbon dioxide is an efficient absorbent of radiation in the far-IR region of
the spectrum, and is associated with thermal heating. The absorption by car-
bon dioxide basically traps heat, otherwise emitted to outer space, inside the
Earth’s atmosphere. You may have heard carbon dioxide referred to as a green-
house gas. The trapping of heat is the working principle of a greenhouse. Water
vapor in the atmosphere absorbs much of the incoming longwave IR and
shortwave microwave radiation (between 22 m and 1 nm). The presence of
water vapor in the lower atmosphere varies greatly from location to location
and over time. Because these gases absorb electromagnetic energy in very spe-
cific regions of the spectrum, they influence where we can “expect” to find use-
ful information. Regions not severely influenced by atmospheric absorption
are the most useful for remote-sensing applications: they are generally known
as atmospheric windows (Fig. 4.4).

By comparing the characteristics of the two most common energy/radiation
sources (the sun and the Earth) with the atmospheric windows available to us, we
can define the wavelengths that are a priori expected to be most useful for remote
sensing. The visible portion of the spectrum corresponds to both an atmospheric
window and the peak energy level of the sun. Heat energy emitted by the Earth
corresponds to a window around 10 µm in the thermal IR region. A large win-
dow at wavelengths beyond 1 nm is associated with the microwave region.
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4.2.4
Radiation–Target Interactions

Radiation that is neither absorbed nor scattered in the atmosphere can reach and
interact with the Earth’s surface. There are three forms of interaction that can
take place when energy strikes or is incident upon the surface: absorption; trans-
mission; and reflection (Fig. 4.5). The total incident energy will interact with the
surface through one or more of these processes. The proportion of absorption,
transmission, and reflection generated by the interaction will depend on the
wavelength of the energy and the features of the material and its conditions.

Absorption occurs when radiation (energy) is absorbed by a target, while
transmission occurs when radiation passes through a target. Reflection occurs
when radiation “bounces” off the target and is redirected. In remote sensing, we
are most interested in measuring the radiation reflected from targets.

Two types of reflection from a target are distinguished: specular and diffuse.
Radiation hitting a smooth surface produces a specular or mirrorlike reflection,
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where the energy (or almost all) is directed away from the surface in a single
direction. Diffuse reflection occurs when radiation hits a rough surface, with the
energy being reflected almost uniformly in all directions. Most of the Earth’s
surface generates reflections that are somewhere between perfectly specular and
perfectly diffuse. Whether a particular target reflects specularly or diffusely, or
somewhere in between, depends on the surface characteristics (roughness) of
the feature and the wavelength of the incoming radiation. For wavelengths
much smaller than the surface variations or the sizes of the particles that make
up the surface, a diffuse reflection will dominate. Two examples of how radia-
tion at visible and IR wavelengths interacts with leaves and water at the Earth’s
surface can illustrate the main features and complexities of reflection.

1. Leaves: Chlorophyll – a chemical compound found in all (living) leaves –
strongly absorbs red and blue wavelengths but reflects green wavelengths;
leaves appear “greenest” therefore to us in the summer, when chlorophyll
content is a maximum. During senescence the amount of chlorophyll in
leaves drops significantly, which means less absorption and proportionately
more reflection of the red wavelengths, making the leaves appear red, yellow,
or brown (yellow is a combination of red and green wavelengths). The strik-
ing fall color of deciduous forests in temperate and boreal regions is a perfect
example of this phenomenon. The internal structure of healthy leaves acts as
excellent diffuse reflectors of near-IR wavelengths. If our eyes were sensitive
to near-IR radiation, trees would appear extremely bright to us at these wave-
lengths. In fact, measuring and monitoring the near-IR reflectance is one way
that scientists can determine how healthy (or unhealthy) vegetation may be
(Marchetti and Castagnoli 1989; Marchetti et al. 1998).

2. Water: Longer-wavelength visible and near-IR radiation is absorbed more
than shorter-wavelength radiation by water; thus, water typically looks blue
or blue-green and darker if viewed at red or near-IR wavelengths. If there
are suspended sediments in the upper layer of a water body, then more light
is reflected and the water will appear brighter. They are easily confused
with shallow (but clear) water, since their reflection is quite similar. Water
with a high algae concentration will appear greener than algae-free water:
as for leaves, it depends on the differential absorption by chlorophyll. The
shifting topography of a water surface (rough, smooth, floating materials,
etc.) leads to complications in the interpretation of a reflection pattern
observed over water bodies or wetlands. A mixture of specular and diffuse
reflections modifies color and brightness in complex ways.

From these two examples we see that, depending on the complex make-up of the
target that is being looked at and the wavelengths of radiation, very different
“outcomes” of the three processes involving absorption, transmission, and/
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reflection, that are quite difficult to predict, can be observed. By measuring the
energy reflected (or emitted) by specific targets across a variety of different
wavelengths, a spectral response for that target can be obtained. For example,
water and vegetation may show similar reflection in the visible wavelengths but
not in the IR part of the energy spectrum (Fig. 4.6). The spectral response of a
specific target can vary over time and space, as illustrated for leaves and water
bodies. Knowing where to “look” spectrally and understanding the factors that
modify the spectral response of a feature is of critical importance for the cor-
rect interpretation of the interaction of electromagnetic radiation with the
surface of the target.

The main part of the incoming radiation in the visible domain is absorbed
by the leaf pigments; roughly 10% is reflected (Sims and Gamon 2003).
Chlorophylls, caroteniods, and anthocyanins, with strong absorption in the
blue (0.35–0.50 µm) and red (0.62–0.70 µm) regions, dominate the reflectance
properties in this domain. The reflectance in the green region (0.50–0.62 µm)
is slightly higher. Owing to the low reflectance in the visible portion of the
spectrum, reflectance from only the uppermost portion of the canopy is
detected and measured by the sensor (Williams 1989). In dense canopies, the
influence from soil, understory, and lower parts of the canopy is small. This
influence increases when the leaf cover is reduced.

In the near-IR the high reflectance of leaves is caused by the internal leaf
structure, i.e., the cell wall to air interface within the leaves (Gausman 1977;
Peterson and Running 1989). Approximately 50% of the incoming radiation is
reflected by healthy canopies, the absorption is low, and the transmittance is
high (Fig. 4.6); therefore, incoming solar radiation can penetrate through and
reflect back up through multiple layers of leaves within the canopy. An increase
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in the number of leaf layers significantly increases the near-IR reflectance
(Williams 1989). Deviations from this reflectance increase with greater canopy
closure and have been attributed to shadows, occurring if the increased vegeta-
tion cover is accompanied by more shadows.

In the mid-IR the optical properties are mainly affected by the water content
of the target absorbing a large part of the incident energy. The strongest absorp-
tion occurs near 1.4 and 1.9 µm, with reflectance peaks around 1.65 and 2.2 µm
(Guyot and Riom 1988; Williams 1989). As the moisture content decreases, the
mid-IR reflectance increases. The 1.55–1.75-µm region (Thematic Mapper, TM,
band 5) has been proposed as the best suited wavelength interval for satellite
remote sensing of canopy water status in the mid-IR region (Tucker 1980).
Owing to the strong relationship between leaf moisture content, stomatal con-
ductance, respiration, and the rate and efficiency of photosynthesis, assessment
of the relative photosynthetic activity can be performed using remote-sensing
data (Williams 1989). Furthermore, compared with the visible range, in the
mid-IR natural surfaces show a wider dynamic range that makes it easy to iden-
tify different land covers; in this spectral window atmospheric noise is limited
and does not affect understanding of spectral information.

4.2.5
Passive and Active Sensing

So far, the sun has been considered the implicit source of energy and radiation.
The sun provides a very convenient source of energy for remote sensing. Its
energy is either reflected, as it is for visible wavelengths, or absorbed and
reemitted in thermal IR wavelengths. Remote-sensing systems, which measure
the energy that is naturally available, are called passive sensors (Fig. 4.7): they
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can only be used to detect the presence of energy that is available only during
the time of solar illumination (no reflected energy from the sun at night).
Otherwise, the energy naturally emitted (such as thermal IR) can be detected
during the day or the night, as long as the amount of energy exceeds the sensi-
tivity threshold of the sensor.

Active sensors, in contrast, generate an independent source of energy for
illumination. The sensor emits radiation towards a selected target. The radia-
tion reflected from the target is detected and measured by the sensor. The
advantages of active sensors include the ability to obtain measurements any-
time, regardless of the time of day or season. Active sensors can also use wave-
lengths that are not provided by the sun in sufficient quantities, such as
microwaves. They also provide improved control over the way a target is illu-
minated. However, active systems require the generation of substantial
amounts of energy for adequate illumination of distant targets. The most
common active sensor types in forest applications are laser fluorosensors and
synthetic aperture radars (SARs).

4.2.6
Characteristics and Analysis of Images

It is useful to define and understand a few fundamental terms and concepts
associated with remote sensing before we look more in detail at sensors and
their characteristics. EO involves electromagnetic energy that may be detected
either photographically or electronically. The photographic process uses chem-
ical reactions on the surface of light-sensitive film to detect and record energy
variations. It is important to distinguish between the terms images and photo-
graphs in remote sensing. An image refers to any pictorial representation,
regardless of what wavelengths or remote-sensing device has been used to
detect and record the electromagnetic energy. A photograph refers specifically
to images that have been detected as well as recorded on a film. Photographs
are normally recorded over the wavelength range from 0.3 to 0.9 µm – visible
and reflected IR. On the basis of these definitions we can say that all photo-
graphs are images but not all images are photographs.

A photograph can be represented and displayed in a digital format by sub-
dividing the image into small areas of equal size and shape, called picture ele-
ments – pixels. The brightness of each pixel is represented by a numeric value
or digital number. Using the previous definitions, the digital representation of
the photograph is actually a digital image of the photograph! After a scanning
process, where a special device assigns a number to each pixel in the film, the
computer transforms the digital values of the pixels to brightness values in the
display of the digital image. A multispectral shot of a scene gives back the spec-
tral properties of the objects in accordance with the different spectral bands.
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Electronic sensors record the energy as an array of numbers directly in digital
format (as in digital cameras); resolution, scanning process, and digital spec-
trum (8 bit, 16 bit, 32 bit, etc.) affect the quality of the acquisition process. It is
important to note that the digital format of capturing data is not necessarily
the same as is used for displaying data.

These two different ways of displaying remote-sensing data, either pictori-
ally or digitally, are increasingly interchangeable as they convey the same infor-
mation, although some detail may be lost when converting back and forth.

The visible portion of the spectrum contains colors. We can see a color
because our eyes can detect the entire visible range of wavelengths and our
brain provides the context of human interpretation and recognition. The
information from a narrow range of wavelengths is gathered and stored in a
channel, the sensor’s container for that portion of the spectrum, also often
referred to as a band. The data stored in a channel are usually represented as
one of the primary colors (blue, green, and red) and, depending on the relative
brightness (i.e., the digital value) of each pixel in each channel, the primary
colors can be combined in varying proportions to represent different colors.
Using this method to display a single channel or range of wavelengths, we dis-
play the channel through all three primary colors. Because the brightness level
of each pixel is the same for each primary color, they combine to form a black-
and-white image, showing various shades of gray from black to white. A dis-
play of more than one band each as a different color, a combination of different
bands (brightness levels may be different for each band), forms a color image.

4.2.6.1
Image Resolution

The digital image consists of discrete pixels: associated with each pixel is a value
represented as a digital number, which depicts the average radiance of that area
within that scene. The size of a pixel affects the reproduction of details within
a scene: you normally have the possibility to choose the resolution – the pixel
space of an image. detail in high resolution in a small scene or in low detail in
a large scene since the more the pixel size is reduced the more scene detail is
preserved in the digital representation. Remote-sensing imagery must always
be expressed toghether with information on the spatial resolution, but in EO
we can distinguish three types of resolution: the resolution depends both upon
the sensor and the platform (Fig. 4.8).

1. Spatial (geometrical) resolution. This is the number of pixel per surface
unit. In remote sensing it is referred to in terms of pixel real dimension on
land and is expressed in ISO units of meter (Fig. 4.9).
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2. Radiometric resolution. This is the finest distinction that can be made
among objects viewed in the same part of the spectrum. Digital number
values are displayed by image data, and vary from 0 to selected power of 2.
The range corresponds to the number of bits used for coding numbers in
binary format. Each bit records an exponent of power 2. The maximum
number of brightness levels available depends on the number of bits used.
If a sensor uses 8 bits to record the data, there would be 28=256 levels.

3. Temporal resolution, for satellite data only, is also important: it is the revisit
period and refers to the length of time it takes for a satellite to complete one
entire orbit cycle, expressed in days. The Landsat mission has, for example,
a revisit time of 16 days, the Système Pour l’Observation de la Terre (SPOT)
mission 26 days, and OrbView 3 days.
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4.2.6.2
Image Processing

Remote-sensing images are recorded in digital form and are processed by com-
puters to produce images for interpretation in two forms: photographic film
and digital format. Variations in the scene characteristics are represented as
variations in brightness on photographic film. The parts of a scene that reflect
a relatively high amount of energy will appear brighter and parts that reflect
relatively less energy will appear darker. Digital image processing is a collection
of computing techniques and algorithms for the manipulation of digital
images: it encompasses operations such as noise removal, geometric and radio-
metric corrections, enhancement of images, information extraction, and image
data manipulation and management. Image processing methods may be
grouped into three functional categories:

1. Geometric and radiometric corrections: the correction of errors, noise, and
geometric distortions introduced during flight, scanning, recording, and
playback operations.
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2. Image Enhancement: two distinct procedures are applied: linear contrast
enhancement (LCE) and spatial filtering (SF). In LCE the full sensitivity
brightness range of the detectors is utilized. The low end is put at 0 and the
high end as 1: brightness values between the two fixed endpoints are lin-
early stretched, improving the contrast for most of the original values. SF
is instead a pixel-by-pixel transformation of the image, which depends on
the graylevel of the pixels concerned as well as the graylevel of the neigh-
boring pixels. It is a procedure in which the graylevel of a pixel is altered
according to its relationship with respect to the neighboring pixels. The
neighborhood of the pixels to consider in SF is determined by experience
or is optimized for specific applications.

3. Information extraction and classificaton: dedicated computing algorithms
support the process of identification and extraction of specific pieces of
desired information. Many approaches are currently available and used for
the classification of remote-sensing data (Franklin 2001; Nyerges and
Green 2000). New generations of multilevel “hybrid” classifiers (neural net-
work, fuzzy, nonparametric Bayesian classifiers, expert systems) have sig-
nificantly improved the practical utility of satellite imagery. From
unsupervised to supervised classifiers relying on a single source or multi-
ple sources of information a wide gamut of procedures and protocols have
been developed. The results achieved vary dramatically in terms of preci-
sion and accuracy. The utility of a classifier depends intimately on defini-
tions of pursued targets and the intrinsic properties of the images used.
However, pixel-based common methods are characterized by systems of
nomenclature not detailed enough to be used as useful tools supporting
forest planning. Supervised methods are based on the manual acquisition
of a certain number of pixels, training sets, from all the channels of the
scanner, for each forest/land-cover class. Principal component analysis
(PCA) is traditionally employed in remote sensing as a data reduction and
decorrelation technique. Principal components are decorrelated (inde-
pendently to the second order) and thus become, for example, available to
Bayesian methods which require independent data (to the first order).
Most of the variance is in the first component, while the last components
contain mainly noise. In many landscapes, for example, the seven bands of
Landsat TM have an inherent information content of two to three compo-
nents. In the case of multitemporal data most of the variance due to sea-
sonality is often present on the second and higher components (Fabbro
2000). The images resulting from PCA are, however, difficult to interpret.
On the other hand, Kauth and Thomas (1976) proposed the Tasseled Cap
Transformation (a spectral compression tool for multispectral images, pro-
ducing the greenness for biomass, wetness for moisture, brightness for soil,
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yellow staff for vegetation condition) and vegetation indices provide
reduced data which can easily be interpreted. Tasseled cap transformation
has been extensively used with high-resolution data for forest and land-
cover change mapping (Rogan et al. 2002; Seto et al. 2002) and pastureland
surveying (Todd et al. 1998).

Supervised image classification techniques are widely used (Campbell 1996).
With such a technique, each pixel is classified according to the class that has
the greatest spectral similarity with the available set defined in the training
stage of the classification (Foody 2000). These types of classifications are
called “hard”, because the decision about the class to which each pixel belongs
is finally and exclusively based on a single criterion. Hard classifiers are suit-
able when signature data are gathered from training sites (the ground truth)
composed of single “pure” target type. Training sites satisfying this criterion
may be difficult to find, especially when the pixel size is a multiple of the size
of an object of interest (Eastman 1999). A hard classification may be inappro-
priate when most pixels contain more than one target type, where the target
could be, for example, a land-cover class (Campbell 1996). Pixels with a mix-
ture of target types dominate in images from coarser spatial resolution satel-
lite sensors (Foody 1996). In these cases where one should expect a majority
of the pixels to be mixtures of target types, a mixture analysis approach to
classification may be more rewarding. Spectral mixture analysis assumes that
the reflectance of each pixel is a linear combination of contributing subpixel
components. The spectral signature of these components, end members,
resulting from spectral unmixing (via PCA and parallel coordinates represen-
tation), provides reduced data which can easily be interpreted. Spectral mix-
ture analysis approaches, widely used with hyperspectral data, for mapping
remote-sensing images can take the form of “soft classifications,” like mixture
modeling (Shimabukuro and Smith 1991; Settle and Drake 1993; Oleson et al.
1995; Sohn and McCoy 1997; Faraklioti and Petrou 2000) or fuzzy supervised
classification (Wang 1990; Foody 1996; Ricotta et al. 2003a).

Classification of large amounts of data invariably favors an automatic or
semiautomatic approach to classification. The sheer cost of alternatives is pro-
hibitive. Various methods for automatic segmentation of images have therefore
seen the light in recent years. Most are based on a mixture of supervised and
unsupervised classifiers. In particular, “soft”-computing-based approaches as
in neural networks (e.g., multilayer perceptron, self-organizing maps), support
vector machines, fuzzy inference schemes, PCA and/or independent compo-
nent analysis, and hidden Markov models appear to hold promise. For complex
and difficult classification problems both supervised neural networks (multi-
layer Perceptron; Benediktsson et al. 1990; Bischof et al. 1992; Azimi-Sadjadi
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et al. 1993; Paola and Schowengerdt 1995; Atkinson and Tatnall 1997; Dejhan
et al. 2000), and nonsupervised linear vector quantization (Hara et al. 1995; Ito
and Omatu 1998) ought to be considered as options. Results show that neural
networks operate better than statistic classifiers when deductive information is
lacking. Neural networks seem to produce fewer errors when the results are
compared for pixels with a known target type. Neural networks also often pro-
duce images of a better visual quality. Particularly, in active remote sensing, the
results from neural network classification appear to be more consistent.
Maximum-likelihood classifiers have better performance when a reliable
model for the image data can be found. The difficulties encountered in formu-
lating a model for image data often dissuade one from using likelihood-based
classifiers. For this reason also in the neural network models the integration of
the statistical information is studied. The ease of dealing with heterogeneous
informations (also merging data) is another advantage of neural networks
(Atkinson and Tatnall 1997); weaving information can be also integrated, giv-
ing a group of pixels and not only one pixel in network input (Serpico and Roli
1995). The computational costs of classification by neural algorithms can be
high and good training data are pivotal for the performance of a neural net-
work. Most of the work published in the field of neural network classification
resorts to pixel-by-pixel classification, followed by clustering/smoothing pro-
cedures. In this way information such as texture or regularity (smoothness) of
land cover is only used (if ever) in a postprocessing phase.

A comprehensive approach to classification exploits attractive features of the
most popular methods in a self-organizing and self-learning system with pro-
cedures that take a priori knowledge explicitly into account. At the same time,
the spatial structure of the data (e.g., local correlation) and nonlinearities and
noise properties of the sensing system should be considered from the first
stages of processing, both from a statistical point of view (e.g., by blind decon-
volution methods, such as independent component analysis); they have to be
based on the correlation matrix of the data by resorting to spatially organized
nonlinear filtering architectures such as cellular neural/nonlinear networks.

Given the importance of spatial characteristics, spatial organization of infor-
mation and the limits of a per pixel classification, the need for new and better
classification systems is widely recognized. The use of more complex legends
makes the classification errors of traditional approaches greater, usually over
standard acceptable limits (Chirici et al. 2003a, b). A new suite of classifications
systems supposed to meet these needs are currently in various stages of devel-
opment. This implies higher classification errors, usually over standard accept-
able limits. Such problems still limit the operative diffusion of thematic maps
produced by supervised and unsupervised pixel-based classifications of
remotely sensed images. The last very high resolution generation of sensors
and the development of object-oriented classification techniques seem to be able
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to by-pass such problems. In object-oriented recognition it is not single pixels that
are classified but image objects are extracted/recognized in a previous image seg-
mentation step. Object-oriented classification is bound to become more wide-
spread as high-resolution and very high resolution sensors are employed in
remote sensing. Such an approach is also likely to reduce the “salt-and-pepper”
artefacts often seen in images classified on a per pixel basis. In fact, the traditional
classifiers tend to produce salt-and-pepper classification and have difficulties to
extract patches of interest. The new type of classification process is now turning
into a polygon base approach. Furthermore they permit addition of textual or
contextual information to the segments that must be describable in an appropri-
ate way to achieve improved classification results. The object-oriented approach
is based on the concept that important semantic information necessary to inter-
pret an image is represented in meaningful segments and their mutual relation-
ships. The first step in object-oriented classification is an automatic
segmentation of the image. The segmentation produces segments with an over-
all internal homogeneity and taking spatial continuity (texture, topology) into
consideration. The formatted objects will be labeled with values and statistic
information of the pixels of which they consist and spatial features as well as their
position within the hierarchical network. By adopting this paradigm, object-ori-
ented classification can achieve a higher efficiency and accuracy of polygon-
based classification than those possible with traditional classification procedures
(Chirici et al. 2003a, b; Fig. 4.10). Segmentation tends to minimize the spectral
heterogeneity (hs) of each patch derived from the digital number value of their
pixels and the geometrical heterogeneity (hg), dependent on the shape of the new
patches (Baatz and Schäpe 1999; Baatz et al. 2001):
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where q is spectral bands; sc is the standard deviation of digital numbers of the
c-band in the polygon considered, and wc is the weight of the c-band;
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For each patch hg_smooth is the fractal factor, l is the perimeter, n is the number
of pixels, hg_compact is the compactness factor, and b is the length of the minor
side of the smallest square parallel to the raster datum where the patch is
inscribable.

The algorithm works starting from each pixel and merges neighboring poly-
gons till the change of heterogeneity between the original patches and the new
polygon does not exceed a defined threshold.

Dealing with object-oriented techniques facilitates the manipulation of new
generations of remote-sensing products:
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● The fusion technique makes it possible to obtain good geometrical resolu-
tion and spectral properties, combining different channels, often including
thermal or very high resolution panchromatic bands. It can be performed
using, for instance, the multisensor multiresolution technique (Zhukov
et al. 1999; Minghelli-Roman et al. 2001). If higher spectral resolution pro-
vides better classification of the land cover, for instance, the spectral content
of low-spatial-resolution sensors can be conserved within the geometrical
resolution of high-resolution and very high resolution missions.

● The differences due to seasonal variation of phenological features of vege-
tation reflected in the spectral data, throughout the composition of various
passages (e.g., two Medium-Resolution Imaging Spectrometer, MERIS,
images taken on different dates consisting of 14 bands produce a single
image consisting of 28 spectral bands).
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Fig. 4.10. Landsat TM 5 image referred to Rondonia, Brazilian Amazonian rainforest.
This is a color composite of bands 4, 5, and 3. Primary forests and converted land uses
are evident



4.2.6.3
Visual Computer-Aided Interpretation

Humans are able to detect and recognize as many as 10,000 distinct objects
(Biederman 1985) under varying viewing conditions, while state-of-the-art
remote-sensing classification can recognize relatively few objects. In EO also tra-
ditional instruments, such as aereo-photogrammetry and high-definition film,
black and white, color, or color IR (CIR), have also improved dramatically. They
now permit the user to obtain photographic data at convenient costs and with
excellent spatial resolution capacity for very wide areas. Today’s film is more sta-
ble and permits a resolution down to 10–30 cm. Very high resolution films and
high-altitude flights could achieve lower prices than comparable satellite mis-
sions and can be employed cost effectively on regional areas on the scale
between 1: 25,000 and 1:50,000. They produce a high information content at
affordable prices. Image scales around 1:5,000–1:10,000 are also frequently used
and a large body of experience has been accumulated with this type of mate-
rial/image. Within Europe, the use of CIR photographs for the assessment of
ecosystems initality gathered from representative transects or by sampling pho-
toplots has been adopted in an operational way since the 1990s (Marchetti and
Castagnoli 1989; EC 1992). Related applications have used a grid of photopoints
georeferenced through GPS. Results from these applications including analyti-
cal restitution and interpretation are usually stored in a data base management
system and are integrated with auxiliary information for the sake of landscape
or regional assessments (Marchetti and Castagnoli 1989).

Both for traditional on-flight films and sensors, in the case of satellite mis-
sions, the basic concepts and paradigms of computer-aided interpretation of
images are valid. Remote-sensing data are best viewed as wavelength intensity
information and the information needs decoding before any sensible message
can be extracted. Any decoding process relies on our knowledge of the proper-
ties of electromagnetic radiation. In order to extract “meaningful” information,
the image interpreter has to exercise his or her judgement, scientific knowledge,
general knowledge of the area and the phenomena as well as experience, so that
he or she will be able to make truthful assumptions about the object/feature
under investigation.

The first stage in a visual image interpretation is known as the detection
stage. The detection stage is followed by a recognition and identification stage
in which the image interpreter has to exercise general, local, as well as specific
levels of reference to allocate objects into known categories. The general ref-
erence level is simply the interpreter’s knowledge of the phenomena and
processes to be investigated, the local reference level is the interpreter’s intimacy
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with his or her own local environment, and the specific reference level is
the interpreter’s deeper understanding. In recognition and identification, the
nongeometric image characteristics and location normally give a series of
clues. The clues may be internally consistent but this is not always the case.
The result of identification is a list of objects and features in the area, form-
ing the basis of delineation of areas having homogeneous patterns and char-
acteristics. This occurs in the analysis stage. Each delineated area has to be
classified through a process of induction (general inference from particular
cases) and deduction (particular inference from general observations).
Accuracy is then controlled by field checks.

The final stage of the interpretation is the classification: labeling spatial data
which can be displayed as maps, or incorporating them into a GIS. In this
process it is helpful to recall the basic image features useful for classification:
tone, color, shape, size, texture, pattern, shadow, and association.

1. Tone is the continuous grayscale varying from white to black (or bright to
dark in color images) of a pixel. It is the most important feature: objects are
often distinguished by tone.

2. Color is the chromatic value of a pixel. In a photograph it corresponds to
spectral reflected values.

3. Shape refers to the general form, structure, or outline of individual objects.
It could be regular or irregular. In both cases it can be distinguished into
subcategories that help us to understand the process the objects are sub-
jected to. Straight edge shapes typically represent urban or agricultural
(field) targets, while natural features, such as forest edges, are generally
irregular.

4. Size of objects in an image is a function of scale.
5. Texture (smoothness or roughness) of the image’s elements is related to the

amount of tonal change in a portion of the image. It is produced by ele-
ments that are too small to identify.

6. Pattern is a regular usually repeated shape with respect to an object.
7. Shadow is usually a visual obstacle for image interpretation. Shadows may

permit height estimation for some objects.
8. Association takes into account the relationship between recognizable

objects or features in the proximity of the target. The identification of
expected associated features may provide information to facilitate identi-
fication.

Table 4.2 gives a list of land-cover classes and their main features in terms of
visual characteristics.
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Table 4.2. Main parameters to identify land-cover classes from visual interpretation

Land-cover Land-cover Characteristics Parameters
class subclass

Artificial Other artificial Tone Variable from black to white
surfaces lands Color Variable but dark red and gray values 

are very common
Shape Regular
Size Variable. Anyhow objects are quite well

interpreted at any scale
Texture Smooth or slightly coarse
Pattern Regular
Shadow It can be a marked problem with tall 

artificial buildings
Association Linear and geometric objects

Green spaces Tone Dark
Color Mainly green
Shape Regular
Size Hundreds of square meters to a few 

hectares
Texture Coarse
Pattern Punctual or subcircular element next 

to other ones
Associacion Inside artificial surfaces

Agricultual Other Tone Medium in vegetation season. Dark or 
lands agricultural bright, depending on soil feature, in 

lands postharvest seasons
Color Green in in vegetation season. Brown 

shadings in other sesons
Shape Regular
Size Variable depending on agricultural 

development of the area
Texture Smooth
Pattern Mainly quadrangular juxtaposed elements
Shadow Mainly absent
Association Linear borderline woody plants, water 

storages
Tree plantations Tone Mainly dark. Variable in winter for 

deciduous trees
Color Mainly green. Variable in winter for 

deciduous trees
Shape Mainly quadrangular
Size A few hectares
Texture Coarse
Pattern Regular distribution of subcircular 

elements (trees)
Shadow It can help to distinguish them from 

other agricultural lands
Association Inside agricultural land

Natural Wooded lands Tone Mainly dark. Variable in winter for 
environ- deciduous forest
ments Color Mainly green. Variable in winter for 

deciduous forest



Table 4.2. (Continued)

Land-cover Land-cover Characteristics Parameters
class subclass

Shape Mainly irregular. Often it is possible 
to have a regular shape for forests
next to previous classes

Size Extremely variable, but more than 
0.5 ha

Texture Coarse
Pattern Irregular and difficult to identify
Association Sometimes in rugged geomorphological 

sites
Prairie Tone Medium in vegetation periods. Bright 

in dry periods
Color Mainly green. In therophytic-dominated 

prairie it is yellow or gold in dry 
periods

Shape Mainly irregular
Size Extremely variable
Texture Smooth or slightly coarse
Pattern Irregular and difficult to identify
Association Often next to wooded land

Wetlands Tone Medium
Color Mainly blue-green
Shape Mainly irregular
Size Extremely variable
Texture Smooth
Pattern Irregular and difficult to identify
Association Often next to inner water or sea

Unvegetated Tone Bright
surfaces Color Mainly bright gray or white

Shape Irregular
Size Variable
Texture Variable from coarse to smooth (ice or 

snow)
Pattern Irregular but often well delineated by 

linear and serpentine elements
Association Often located above the altitude limit 

of vegetation, even if it could be
included in wooded lands

Water Inner water Tone Mainly dark. It can vary depending on 
and seas reflection

Color Blue or blue-green
Shape Presence of rounded margins
Size Extremely variable
Texture Smooth or, in rare cases such as sea,

slightly coarse
Pattern Absent
Association Linear water or vegetation 

elements ending on it, beaches,
wetlands



4.3
The Instruments and Their Use

In the last 3 decades sensors operating at a wide range of imaging scales with
potential interest and importance to forest planners have become available.
Coupled with the ready availability of historical remote-sensing data, the reduc-
tion in data cost and increased “resolutions” from satellite platforms, remote-
sensing technology appears poised to make an even greater impact on planning
agencies and land management initiatives involved in monitoring land-cover and
land-use change at a variety of spatial scales. Current remote-sensing technology
offers collection and analysis of data from ground-based, atmospheric, and
Earth-orbiting platforms, with linkages to GPS data, GIS data layers and func-
tions, and emerging modeling capabilities (Franklin et al. 2000; Franklin 2001).
Planning and forest management agencies have numerous and varied responsi-
bilities and tasks (Jensen and Cowen 1999). Further, their ability to complete
these tasks is hampered by the paucity of comprehensive information on the
types and rates of land-use change and even less systematic evidence on the
causes, distributions, rates, and consequences of those changes (Loveland et al.
2002). For example, at the forest/rural–urban fringe, large tracts of undeveloped
rural land are rapidly converted to urban land use. This land-use dynamics
makes it difficult for planners to obtain or maintain up-to-date land-cover and
land-use information, where typical updating processes are on an interval scale
of 5 years (Chen et al. 2001). Although the full potential of remote-sensing tech-
nology for change detection applications has yet to be completely realized, the
need for remote-sensing information to help formulate policy and provide
insight into future change patterns and trends is now recognized (Jensen and
Cowen 1999). Otherwise remote-sensing technology often overlooks the needs of
end users. Effective real-world operational examples of land-cover and land-use
change still remain relatively rare (Loveland et al. 2002; Rogan et al. 2003).

In the near future, the field of remote sensing will change dramatically with
the projected increase in the number of satellites of all types (Glackin 1998). This
will further compound the problems already described. Although coarse spatial
resolution meteorological satellite data have been available since the 1960s, civil-
ian remote sensing of the Earth’s surface from space at medium spatial resolu-
tions (i.e., 250 m) only began in 1972, with the launch of the first of a series of
Earth resource satellites (i.e., Landsat). Since 2000 a proliferation of satellite
platforms with a large number of sensors (e.g., ENVISAT) and increasing spatial
resolutions (e.g., IKONOS and Quickbird) can been seen. Indeed, the ever-
expanding constellation of satellite platforms has acquired thousands of trillions
of bytes of data that are often invaluable for applications (Jensen 2000).
Furthermore, high-resolution airborne data acquisition technology has devel-
oped rapidly in recent years. A summary of the key characteristics of selected
satellite sensors is presented in Table 4.3.
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Table 4.3. Remote-sensing technology has been driven by three interrelated factors: (1) advancements in sensor technology and data quality,
(2) improved and standardized remote-sensing methods, and (3) research applications (for more detail on these issues refer to Jensen 2000;
Franklin 2001). High-resolution and very high resolution images are currently available (Landsat 7, 15 m; IRS-1C and SPOT-4, 6 m; Quickbird
and IKONOS, 1–4 m) and they are characterized by an improvement of the signal-to-noise ratio and by even better informative content, up to
24-bit character

Sensor Mission Organization Oparation Spatial Swath (km) Spectral Number of
Period Resolution (m) coverage (mm) channels

MSS (Landsat 1-5) NASA, USA 1972-1983 79 (MS) 240 (TIR) 185 0.50-12.6 4
METEOSAT EUMETSAT, Europe 1977 2500-5000 0.4–1.1, 5.7–7.1 3

10.5–1
AVHRR NOAA (6-15) NOAA, USA 1978 1100 2700 0.58-11.5 5
TM (Landsat 4,5) NASA, USA 1982 30 (MS) 120 (TIR) 185 0.45-2.35 7

HRV (SPOT 1,2,3) SPOT Image, France 1986 10 (PAN) 20 (MS) 60 0.50-0.89 3
LISS-I (IRS-1A) ISRO, Indian 1988 72,5 148 0,45-0.86 4
AVIRIS JPL, USA 20 20 0.4-2.5 224
LISS-II (IRS-1B) ISRO, Indian 1991 36,3 146 0,45-0-86 4
SAR, AMI (ERS-1) ESA 1991-2000 26,0 102 NA NA
SAR, OPS (JERS-1) NASDA, Japan 1992 18,0 75 0.43-1.7 7
LISS-III (IRS-1C, 1D) ISRO, Indian 1995 32, 70 188(WiFS) 142 0.52-1.7 4
SAR (RADARSAT-1) Canada 1995 8-100 45-500 NA NA
Panchromatic (IRS-1D) ISRO, Indian 1997 5,8 70 0.50-0.75 1
Goes-8-10 NESDIS, USA 1994 1000 (VNIR) 8000 8 0.52-12.5 5

(SWIR) 4000 (TIR)

SAR, OPS (ERS-2) ESA 1995 26 102 NA NA
EarlyBird DigitalGlobe, USA 1997 3 (PAN) 15 (MS) 6,30 0.45-0.89 3
HRVIR (SPOT4) SPOT Image, France 1998 10 (PAN) 20 (MS) 60 0.50-1.75 3
Vegetation (SPOT4-5) SPOT Image, France 1998 1150 2250 0.43-1.75 5
SeaWiFS (OrbView-2) Orblmage, USA 1997 1130 2800 0.40-0.88 8
MODIS NASA, USA 1999 250 (PAN) 500 2300 0.620-2.155, 36

(VNIR) 1000 (SWIR) 3.66-14.385
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Table 4.3. (Continued)

Sensor Mission Organization Oparation Spatial Swath (km) Spectral Number of
Period Resolution (m) coverage (mm) channels

ASTER (EOS Terra) 1999 15 (VNIR) 30  60 0.52-0.86, 14
(SWIR) 90 (TIR) 1.60-2.43, 8.125

MISR (EOS Terra) 1999 275 360 0.425-0.886 4
ETM+ (Landsat 7) 1999 15 (PAN) 30 (MS) 185 0.450-2.35, 7

60 (TIR) 10.4-12.5
IKONOS 1999 1 (PAN) 4 (NIR) 11 0.45-0.90 4
QuickBird 1999 0,82 (PAN) 3,2 (MS) 6,30 0.45-0.90 4
Hyperion and ALI 2000 10 (PAN) 30 (MS) 185 0.433-2.35 9

(EO-1)
MERIS (Envisat-1) 2001 300, 1200 1150 0.39-1.04 Up to 15
ASAR (Envisat-1) 2001 30,0 400 Radar 1
HRG (SPOT 5) 2002 5 (PAN) 10 (VNIR) 60 0.48-1.75 VNIR, 3

20 (SWIR) SWIR

OrbView-3 2003 1 (PAN) 4 (MS) 8 0.45-0.90 4

COSMO Sky/med Planned - - - -
SAOCOM Planned - - - -
TerraSAR Planned - - - -
Pleiades Planned - - - -
Radarsat-2 Planned - - - -
SMOS Planned - - - -
METOP Planned - - - -
NPOESS Planned - - - -
ALOS Planned - - - -



4.3 The Instruments and Their Use 227

4.3.1
Coarse Spatial Resolution Sensors

Even though coarse-resolution image data fall outside of the minimum spatial
resolution requirements outlined in Table 4.3, a brief evaluation of the contri-
bution of coarse-scale, large-area sensors to monitoring of forest change is war-
ranted. The National Oceanic and Atmospheric Administration (NOAA)
provided a long series of meteorological satellites, including the Advanced Very
High Resolution Radiometer (AVHRR), which provides an image every 12 h
(actually, every 6 h, because there are always two NOAA satellites working
simultaneously with different orbits). Coarse-resolution data have been used
for many years to acquire basic land-cover and land-use information over large
areas. Stow and Chen (2002) examined the sensitivity of anniversary-date mul-
titemporal AVHRR1 data to map land-cover and land-use change. Recently,
Zhan et al. (2002) described the monthly 250-m resolution vegetative cover
conversion product generated from Moderate-Resolution Imaging
Spectroradiometer (MODIS) data. This product is designed to serve as a global
alarm for land-cover change caused by anthropogenic activities and extreme
natural events. While these data are too coarse for the purposes of local-level
planning and forest management, they could serve as a general “change” prod-
uct for regional/national agencies especially owing to their great potential for
computation of vegetation indices and relative temporal profiles (Ricotta et al.
1998).

4.3.2
Medium and High Spatial Resolution Sensors

Medium-resolution sensors provide information at seemingly adequate scales
for a wide variety of applications. The continuation of the Landsat program
since 1972 is recognized as a key milestone in remote sensing (Franklin 2001).
For 12 years, the Landsat MSS sensor provided image data with a spatial reso-
lution of approximately 80 m in four spectral bands (i.e., visible and near-IR).
Although MSS data exhibited significant noise (Schowengerdt 1997), they nev-
ertheless provided a unique opportunity for researchers to investigate and
apply remote-sensing data at regional scales. The MSS spatial resolution was
also sufficient for general mapping efforts in natural areas. These data are
invaluable today for historical change detection studies and form an important
component of change detection data bases like the North American Land
Characterization (NALC) data set (Yuan and Elvidge 1998).

The launch of the Landsat TM in 1984 produced a new remote-sensing data
source that provided higher spectral-, spatial-, and radiometric-resolution data



(Fig. 4.10). Landsat MSS spectral bands and bandwidths were selected by sen-
sor designers for their general utility to map vegetation and geologic features.
Landsat TM spectral channels were chosen specifically to map vegetation, soil
moisture, and other key landscape features (Jensen 2000). Thus, the TM era has
permitted research to be conducted with greater precision over large areas (i.e.,
the swath width of a TM scene is 185×185 km2). Landsat TM data have facili-
tated investigations with thematic issues by an order of magnitude compared
with MSS. However, despite these advancements, the planning and land man-
agement community still lacked large-area, high-spatial resolution remote-
sensing data from space. This situation improved somewhat with the launch of
the SPOT-1 satellite in 1986. This sensor provided multispectral data with a
slightly higher spatial resolution (20 m) and a panchromatic channel (10 m).
The panchromatic data have a high geometric fidelity, so high that they are
suitable for photo-interpretion in much the same way as a typical aerial pho-
tograph (Jensen 2000). Several projects began to employ image fusion tech-
niques, using panchromatic and multispectral information for improved
land-cover monitoring (e.g., Treitz et al. 1992; Pellemans et al. 1993; Muchoney
and Haack 1994; Treitz and Howarth 1999). High-spatial-resolution panchro-
matic information is used effectively as textural information for land-use mon-
itoring (Chen et al. 2001). A 15-m spatial resolution panchromatic band was
added to the Landsat Enhanced Thematic Mapper Plus (ETM+). The Landsat
series became the most widely used EO data provider all over the world.
Overall, the widespread availability of high-spatial-resolution panchromatic
data allows for high-order investigation into urban/suburban and natural
landscapes (Jensen and Cowen 1999).

In addition to the panchromatic channel, the SPOT sensor was also a major
breakthrough in sensor design. The sensor acquires information using a linear
array of detectors. This approach is superior since there are no moving parts
(i.e., a rotating mirror that scans back and forth across the orbit path). This
design provides for a longer “dwell time” or radiance integration period over a
target (Schowengerdt 1997) and thereby provides increased sensitivity to
radiometric contrasts between surfaces. The overall capability of the SPOT sys-
tem was enhanced significantly in 1998 by adding a mid-IR channel to the
SPOT-4 sensor, a channel that ensures greater utility for land-cover and land-
use monitoring purposes (Stroppiana et al. 2002). The SPOT-5 sensor
(launched in 2002) collects panchromatic, visible, near-IR, and mid-IR data at
5-, 10- and 20-m spatial resolution, respectively.

The Indian Space Research Organization (ISRO) has also contributed to the
suite of medium-resolution sensors. ISRO has launched four linear-array sen-
sors to date (IRS-1A, IRS-1B, IRS-1C, and IRS-1D). In general, the Indian
Remote-Sensing Satellite (IRS) sensors offer an intermediate combination of
TM/ETM+-like spectral resolution, with SPOT-like-sensor spatial resolution.
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IRS-1C and IRS-1D (launched in 1995 and 1997, respectively) offer visible and
near-IR bands at 23-m spatial resolution and a mid-IR band at 70-m spatial
resolution. Most significantly, these IRS sensors acquire panchromatic infor-
mation at 5.8-m spatial resolution, which has significant implications for more
detailed mapping capabilities.

The contribution of medium-resolution sensors is expected to continue for a
long time (Franklin 2001). Indeed, follow-on sensors have already been
launched. The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), an instrument on the Terra platform, acquires visible and
near-IR information at 15-m spatial resolution and mid-IR information at 30-m
spatial resolution. Further, the Earth Observer (EO-1) platform includes the lin-
ear-array Advanced Land Imager (ALI) with ten bands, ranging from the visible
to the mid-IR regions of the electromagnetic spectrum at 30-m spatial resolution
and a panchromatic band acquired at 10-m spatial resolution (Jensen 2000).

4.3.3
Very High Spatial Resolution Sensors

Remotely sensed data with a spatial resolution of 5 m or better, a resolution
often required by forest planners and land managers, became a reality in 1994,
when the United States government declassified high-spatial-resolution satel-
lite remote-sensing data (i.e., between 1- and 4-m spatial resolution; Glackin
1998). This groundbreaking decision resulted in several new spaceborne high-
resolution sensors providing commercial very high resolution data products.

Technological advances in sensor design allow nearly aerial photographic pre-
cision and quality of data from modern high-resolution sensors, precision and
quality that permit the investigation of thematic information at the highest order
even in natural landscapes that are the most complex in the land-cover classes.
The three most advanced sensors are IKONOS-2 (Space Imaging, launched in
1999), Quickbird-2 (DigitalGlobe, launched in 2001), and Orbview-3 (ORBIM-
AGE). They offer 11-bit visible and near-IR information at 4-m spatial resolu-
tion, and panchromatic information at 1-m resolution or better (Jensen 2000;
Table 4.3).

Airborne systems have been in operation for many years and are increas-
ingly reliable, cost-effective, and available worldwide (Franklin 2001). The flex-
ibility of airborne platforms means that on-board sensors can acquire data at
user-specified times, rather than those of scheduled satellite overpasses.
Platform altitude can also be reduced to provide higher-resolution data (as
good as or better than stated before). In addition, multispectral sensors and air-
borne high-fidelity digital frame cameras (capable of acquiring data at 0.2 m
across visible and near-IR wavelengths) see wide use in land-cover and land-
use applications (Coulter et al. 2000; Jensen 2000; Chen et al. 2002).
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4.3.4
Hyperspectral Sensors

Historically, the majority of sensor research, development, and production
has been devoted to (1) medium-resolution (i.e., spatial and spectral) large-
area image acquisition and (2) high-resolution small-area image acquisition.
Today a burgeoning interest in the field of imaging spectrometry for land-
cover monitoring is observed (Treitz and Howarth 1999; Köhl and Lautner
2001). Imaging spectrometry is defined as “the simultaneous acquisition of
images in many relatively narrow, contiguous . . . spectral bands . . .” (Jensen
2000). The promise is that we may be able to detect and monitor phenomena
that could not be detected with a broadband imaging system (Herold et al.
2002). Government agencies and commercial firms have designed a number
of linear-array and area-array imaging spectrometers capable of hyperspectral
imaging. Franklin (2001) noted a significant increase in the number of air-
borne multispectral and hyperspectral data providers during the 1990s. The
Airborne Visible IR Imaging Spectrometer (AVIRIS) has been operating since
1987 and provides 12-bit data at 20-m spatial resolution across 224 spectral
bands. The Compact Airborne Spectrographic Imager 2 (CASI-2), a pro-
grammable system (the user can program the sensor to collect a combination
of high-spatial-resolution and high-spectral-resolution data) capable of col-
lecting up to 228 spectral channels. Hyperspectral satellite sensors in orbit at
the time this book went to print include the MODIS and the EO-1 Hyperion
instrument (Table 4.3).

A large number of research studies has examined and developed an under-
standing of hyperspectral data in natural environments (Treitz and Howarth
1999; Ustin et al. 1999). Yet there is still a significant need for research on quan-
tifying and assessing temporal change in both rural and urban environments
(Rashed et al. 2001; Herold et al. 2002).

4.3.5
Microwave Sensors

Active microwave remote-sensing (i.e., radar; Fig. 4.11) technology has been
around since 1991 (ERS 1/2). Applied use on the scale of optical remote sens-
ing has so far not materialized. Despite the theoretical expectation of a utility
in natural environments, there has been a paucity of applications of active
radar to land-cover monitoring (Kasischke et al. 1997). This may be attributed
to the lack of readiness and full understanding of the nature of radar data.
Reliable and robust methods of analysis remain in short supply. However, a
number of SAR systems have been developed for the five SAR systems that



have been deployed: SIR-C/X-SAR, ERS-1, ERS-2, JERS-1, and RADARSAT-1.
Only RADARSAT-1 (launched by the Canadian government in 1995) and
ERS-2 (launched by the European Space Agency in 1995) were operating in
2005. C-band RADARSAT-1 provides a range of spatial resolutions and geo-
graphic coverages: data are acquired over 50×50 km2 at 10-m spatial resolu-
tion (fine-beam mode), or, in ScanSAR wide-beam mode, over 500×500 km2

at 100-m spatial resolution. ERS-2 collects data in C-band wavelengths at 26-
m×30-m spatial resolution. C-band data from these sensors have been used
effectively in a number of forest mapping and forest change detection studies
(Grover et al. 2000; Quegan et al. 2000).

The remote-sensing research community appreciates the potential of
active SAR in natural environments, particularly the synergistic application of
SAR and optical data (Nezry et al. 1995; Gamba and Houshmand 2001).
Several new SAR satellites are planned for launch in the near future, adding
polarization diversity (vertical or horizontal) and polarimetry to a range of
resolutions and swath widths (e.g., ENVISAT, ALOS, PALSAR, and
RADARSAT-2). SARs are capable of operating day and night and given the
longer wavelengths, clouds and precipitation are transparent. These charac-
teristics make SARs all-time, all-weather sensors. Current studies can rely on
all-time capabilities of SARs and all-weather sensors are at an advantage in
frequently cloud covered tropical and boreal biomes. As imaging radars, SARs
map that portion of transmitted energy that is reflected back to the sensor’s
receiver by earth terrain features. SAR “reflection” is typically termed backs-
catter and earth terrain features scatterers. SAR backscatter at a given wave-
length and polarization is known to be determined by structural or geometric
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properties and dielectric properties. The contributing structural properties of
vegetation canopies are:

1. Size distribution of scatterers (for trees, main stem, branches, and foliage)
relative to wavelength

2. Orientation of scatterers
3. Number of scattering elements

Volumetric water content, the phase of water (liquid or frozen), and the specific
dry density of the scatterers determine the dielectric properties. SAR interaction
with larger structural elements of vegetation is in contrast with that of short-
wavelength optical sensors, which respond to pigment, structure, and water at the
cellular level, and is consistent with the physical principles of the sensor for veg-
etation properties on the order of the magnitude of the wavelength(s) employed.

To better understand all determinants of SAR backscatter, physics-based
models such as the Michigan microwave canopy scattering model (MIMICS;
Ulaby et al. 1991) have been developed. Using MIMICS, we can specify sensor
and vegetation parameters and model backscatter using radiative transfer the-
ory. Trunks, branches, and needles are modeled as dielectric cylinders and
leaves as dielectric disks. Major scattering terms are calculated (Fig. 4.12):

1. Surface and volume scattering from the tree crown (e.g., branches and
leaves, needles)

2. Direct ground scattering
3. Direct trunk scattering
4. Ground-to-trunk scattering
5. Ground-to-crown scattering

Crown

Direct
Ground

Direct
Trunk

Trunk Ground
Specular
Scattering

Ground/Crown
Specular Scattering

Fig. 4.12. Scattering mechanisms dominating synthetic aperture radar backscatter of
forests (after Kathleen et al. 1999)



Analysis of the relative contributions of each of these terms to total SAR
backscatter for a given forest type, size, and density is critical in algorithms for
land-cover classification and extraction of biophysical parameters. For example,
from MIMICS we know that for an array of vertical cylinders (i.e., branchless
tree trunks), SAR backscatter is known to be proportional to height squared.

SAR backscatter intensity and interferometric coherence have been used in
forest mapping and monitoring (Wegmuller and Werner 1995; Le Toan et al.
1997; Stussi et al. 1997). In particular, tropical forests are known to have a con-
stant backscattering coefficient (s0) between −7 and −6 dB in the C-band. The
interferometric coherence of the closed vegetated area is typically low com-
pared with that of the clearcuts or sparsely vegetated area.

4.3.6
Laser Sensors

Information about the current state of and recent changes in landscape-creat-
ing elements and scenary (such as forests, lakes, and meadows) is important for
environmental assessment on different administrative levels. During the last
few years, airborne as well as terrestrial laser scanning techniques have devel-
oped to the point where they can provide imagelike vertical profiles of vegeta-
tion and urban areas. In addition to airborne laser scanning, which has been
successfully introduced as a means of collecting information on a regional
level, terrestrial laser scanners are also used on a smaller scale to derive higher-
precision information. These systems are very flexible and can be used for
diverse uses such as topographic mapping, forest height surveying, and digital
elevation model (DEM) surveying.

All laser scanners consist of the key items shown in Fig. 4.13. Their perform-
ances are determined by the ranging accuracy, the precision of the laser beam
deflection mechanism – the opto-mechanical scanner – and the measurement
rate. Also, intensity images are becoming of greater interest. Laser scanners
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Fig. 4.13. Main components of a generic laser scanner (after Thiel and Wehr 2004)
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measure the three-dimensional coordinates by sampling synchronously the
slant range and the instantaneous deflection angles of the scanning device.

For airborne laser scanners the positional accuracy of the laser spots depends
on the accuracy of the position and orientation system and also the accuracy of
the scanner in the slant range. Compared with, for example, multispectral scan-
ners, the depth measurement provided by data from airborne laser sensors is
clearly unique (Thiel and Wehr 2004). With the advance of high-precision sys-
tems capable of working in most environments, several applications have
emerged. In the field of forest surveying, data capturing may be automated. In
fact, different sectors along the forest-wood production chain could require pre-
cise data on the three-dimensional structure of the environment (Fröhlich and
Mettenleiter 2004). In particular, airborne laser scanning has already proven its
usefulness for the acquisition of accurate and reliable topographic data of sur-
face characteristics of the canopy (Schnadt and Katzenbeißer 2004).

The most widely used system is lidar, an acronym for light detection and
ranging. It transmits laser pulses and detects the backscattered signal. It is an
active sensor, very similar to radar (radiowave detection and ranging), where
the range to the scattering object is determined from the time delay between
transmission and detection. The spectral image data are rectified with help of
the surface model to generate true ortho images in true color (red–green–blue,
RGB) and CIR. During the last decade, airborne lidar mapping has gained gen-
eral acceptance as an accurate and rapid method for three-dimensional sur-
veying, despite of its costs and the specialization it entails. It outputs the
three-dimensional coordinates of the surface locations hit by the laser pulse
(discrete ranges). Most systems are able to distinguish two returns from multi-
ple targets touched by a single laser pulse; some systems provide up to four
returns. This information is valuable for forestry applications for deriving sev-
eral vegetation parameters: tree/vegetation height, vertical canopy expanse,
crown cover, height of second, third, and lower levels of vegetation, and the
height and density of ground vegetation. Calculation of timber volume, bio-
mass, and other important vegetation descriptors is thus possible with ade-
quate precision (Hug et al. 2004).

4.4
Accuracy Requirements

The accuracy requirement depends on the context in which the measurements
are used. In some cases, changes may need to be just detected rather than meas-
ured. A major application of this will be when credit is given for preserving an
intact forest. Then, obviously, any detectable change due to logging or intentional
burns will void the credit for the preservation. The accuracy needed is difficult to



know (a sound assessment could be more expensive than the original purpose),
however some observations can be made in order to speculate on the approxi-
mate needs. If the measurement error, in biomass change, for example, is signif-
icantly below the uncertainty level, remote sensing should be considered valid.

The concepts of accuracy, precision, and reliability are essential for the eval-
uation of the classification of remote-sensing imagery. As there is a consider-
able amount of confusion in the use of those terms, a short description of the
terms as they are used throughout this task is given. Reliability is used to
describe the closeness of the results obtained (figures, maps, etc.) to the real sit-
uation. It is not a statistical term. Precision refers to the size of deviations from
the estimated mean, nt , obtained by repeated application. It is quantified by the
standard error or confidence intervals and can be increased by increasing the
number of observations. Accuracy refers to the size of deviations from the true
mean, m. Increasing the number of observations does not necessarily decrease
accuracy. In the remote-sensing literature some different concepts for the terms
reliability, precision, and accuracy can be found. Aronoff (1989) defines classi-
fication accuracy as “. . . the probability that the class assigned to location on a
map is the class that would be found at that location in the field . . . .” Story and
Congalton (1986) refer to this accuracy as “user’s accuracy” or reliability, as
being a measure of the value of a map for a potential user. The attribute preci-
sion is used by Aronoff (1989) in the context of positional accuracy. Campbell
(1996) defines precision as “detail”, i.e., the number of classes identified during
a classification process.

The objective of using remote sensing for land-cover assessments is to provide
the total area or percentage of various classes within the inventory region. If satel-
lite imagery is treated as total tally, the problem of area or percentage is not related
to a statistical estimation process and thus does not allow the quantification of the
precision of the results. If remote sensing is treated as a sampling procedure, in
which land-cover classes are assigned to dimensionless points, statistical estima-
tion procedures – including the estimation of sampling errors and confidence
intervals – can be applied. Two possible approaches are (Table 4.4):
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Table 4.4. The two alternatives for remote-sensing as a sampling driver and statistical results

Land-cover statistics Pixels are total tallies Pixels are systematic point 
of the inventory area samples of the inventory area

Area of classes ✓ ✓
Sampling error of area estimates – ✓
Proportion of classes ✓ ✓
Sampling error of the proportion 

of classes – ✓
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● Pixels are total tallies of the inventory area. Treating satellite imagery as a
total tally of the inventory area could be justified by treating the assigned
classes as the total cover of the entire pixel area, i.e., each pixel area covers
just one class in reality. This approach is applicable only if the variation of
the spatial pattern of classes is much larger than the pixel size, i.e., for small
pixel sizes.

● Pixels are systematic sample points of the inventory area. If the class
assigned to a pixel is seen as a (random) selection out of the entire classes
existing in the pixel area, the individual pixels can be treated as point sam-
ples. The pixel area is seen as being covered by a number of discrete classes,
each of which occupies a specific proportion of the pixel area. In contrast
to treating the pixels as total tallies, this approach allows each pixel to cover
more than one class. The classification process selects one of these classes
(depending on its proportion and its reflectance characteristics). The
selected class is then assigned to a dimensionless point and the pixel
becomes the area represented by this point. This approach has been applied
by van Deusen (1996) to provide unbiased estimates of class proportions
from thematic maps.

4.4.1
Accuracy of Position and of Classification

There is a decisive difference between the accuracy of estimating a statistical
key attribute such as area or proportion and estimating the positional accuracy
of a classified object. Thus, assessment of accuracy deals with two aspects: posi-
tional and thematic accuracy. Positional accuracy of remote-sensing data refers
to the accuracy of a geometrically rectified image. Thematic accuracy refers to
the nonpositional characteristics of a spatial data entity, i.e., the attributes
(Chrisman 1987). Speaking about positional accuracy, in a row–column image
the pixel locations are related to a coordinate system of another image data set
or to a particular map. The relationship can be established by locating identi-
cal ground control points (GCP) in the image within a reference coordinate
system. GCP have to be identified well in both the image coordinate system
(row and column coordinates i,j) and the reference coordinate system (refer-
ence coordinates x,y). These two coordinate systems can be linked by the use of
polynomial equations. Thematic accuracy relates to the nonpositional charac-
teristics of attributes. The emphasis is put on the assessment of the classifica-
tion results (Hord and Brooner 1976). The total classification accuracy can be
evaluated with contingency matrix between classification and test sites: the



kappa index of agreement should at least be calculated for a synthetic estimate
of classifier performance (Congalton 1991).

4.4.2
Testing the Accuracy of Borderlines

A third measure in thematic accuracy validation is to test the accuracy of bor-
derlines. Borderlines are the boundaries between different land-use classes.
Skidmore and Turner (1992) used line intersect sampling to estimate the length
of borderlines in maps ( ground truth). The comparison of two measures of
the length of borderlines is regarded to be a rather weak criterion for the assess-
ment of the accuracy of borderline detection. The simple example presented in
Fig. 4.14 shows the problem of comparing two length estimates. The locations
of the two lines are different; however, they have the same length.

A procedure for the assessment of borderline accuracy has to take into
account the location of the borderlines. The transects used for the validation
phase are set up in a way that borderlines can easily be detected on the ground.
As borderlines have a negligible width, they will hardly coincide with the bor-
derline of two pixels. Therefore, the following rule will be applied to handle
borderlines in pixels:

Borderline
present

nand pixeln 1+

nand pixeln 1+

,

,

pixel

pixel

yes if different land use classes are assigned to

no if identical land use classes are assigned to

-

-
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Fig. 4.14. Borderlines detected by two different methods
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Figure 4.15 illuminates this decision rule. Pixel n is located at a boundary
line between two classes. Class A is assigned to pixel n−1, class B to pixel n+1.
Depending on the spectral characteristics, one of the two classes A or B will be
assigned to pixel n. As the class changes either between pixel n−1 and n or
between pixel n and pixel n+1, a borderline will be recorded. Around the true
(mapped) land-cover boundary a buffer will be defined with width equal to the
pixel length. Thus, a bivariate attribute can be assigned to each pixel that shows
if a borderline is present (yes/no) in the classification and in the reference data.

Fig. 4.15. Borderline recognition



Geographic and Forest Information Systems 5

5.1 Introduction

The base of any information system is data. Data are the recorded values of
attributes of objects. They can be raw measurements and assessments according
to measurement rules or definitions or can be derived by functions or models.
From the perspective of information technology, data are a structured sequence
of symbols that follow certain rules.

Data as such do not constitute information of themselves; they are often not
of much interest for decision making unless they are transformed or converted
into something more meaningful and useful in terms of information needs.
Information is the linkage of data (syntax) and the associated meaning (seman-
tics). The user needs to know the “correct” rules for interpretation in order to
extract information from data. Depending on the vertical level of decision
processes, data need to be aggregated and condensed. In information theory,
which is a collective name for techniques and methods of data processing and
telecommunication, information is understood as a technical measure that is
associated with data according to probabilities.

The value and significance of spatial information was recognized independ-
ently by numerous cultures throughout the world in over 2,500 years of explo-
ration and development of maps, i.e., analogue representations of spatial order
(Dobson 1995). In the 1970s the launch of remote-sensing satellites resulted in
a precipitous rise of accessibility and application of spatial information. The
availability of spatial information in digital format allowed some of the major
deficits in the interpretation of maps to be overcome. The interpretation of
spatial relationships by visual examination of a map is often subjective, as the
pattern of interpretation may vary from person to person. Maps alone are often
not sufficient for analysis of spatial order and spatial associations, as the com-
plexity of spatial relationships may be hidden by generalized maps.

Spatial analyses are dedicated to the spatial order and associations of phenom-
ena or variables. While spatial order describes the organization of geographic
entities in the space, spatial association describes the geographical relationships
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among phenomena. Recent advances in geographic information systems (GIS)
link the map-based analysis of spatial patterns with quantitative analytical meth-
ods and allow for the objective interpretation of spatial patterns.

The purpose of this chapter is to introduce the quantitative methods offered
by GIS-based spatial analysis. For further reading, the books by De Mers
(1997), Longley et al. (2001), Chrisman (2001), or Bernhardsen (2002) are rec-
ommended.

5.2 Geographic Information Systems

The Environmental Systems Research Institute (1994) defined GIS as “a system
for organised collection of computer hardware, software, geographic data, and
personnel designed to efficiently capture, store, update, manipulate, analyse,
and display all forms of geo-referenced information.” Figure 5.1 displays the
conceptual framework for GIS.

A GIS according to this framework, has four major components or func-
tionalities:

1. A data input component that collects and preprocesses spatial data from
various sources. The input system can handle different types of spatial data
and data formats and integrate them in a consistent system.

2. A data-base system component that stores and organizes the spatial data
and renders data retrieval, updating, and editing possible.

3. A data manipulation and analysis component that provides operations to
select or classify spatial data by certain criteria, to combine them to form
new variables, and to alter spatial data for model building. Hypothetical
distributions can be generated, and descriptive, explanatory, and predictive
models can be derived.

4. A reporting component that displays information in tabular, graphic, or
mapped format.

software

input storage manipultaion analysis presentation

hardware

spatial data

personnel

Fig. 5.1. Conceptual framework of geographic information systems



5.2.1 Spatial Data

Quantitative data analysis is either spatial or aspatial. The key difference
between these two types of analyses is the inclusions or exclusion of spatial fac-
tors. In spatial analyses each object must be characterized by three elements:
attribute data, location, and topology. Attribute data provide information
about the properties of an object. For example, a line on a map may represent
a road, a power line, or an administrative boundary. The exact location of every
spatial feature must be available and is expressed by its coordinates on a
Cartesian plane. The topology is defined as the spatial relationship between
map features. A GIS provides the functionality to handle all three elements of
spatial data.

Topology is often misunderstood as a scale model. However, it represents
“only” spatial relationships between objects that can be displayed true to scale
by taking into account the location of objects. The difference between the two
concepts is displayed in Fig. 5.2, where the topology of a public transportation
network and a true-to-scale map are presented. The public transportation net-
work is not a true-to-scale representation, but focuses on the presentation of
intersections of different bus and tram lines and stops.
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Fig. 5.2. Topology of a public transportation network (left) and a true-to-scale map
(right; rings show the location of the four major conjunctions)



Topological features required for spatial analyses include the following:

1. Adjacency is required when spatial relationships based on neighborhood
information are attempted. For instance, the expected disturbances of a
natural forest are often higher than average when they are located close to
roads or settlements.

2. Containment indicates whether a single feature is contained within the
boundaries of another feature. For instance, forest located within a pro-
tected area may be subject to specific management regimes.

3. Connectivity indicates whether two segments are connected. The concept of
connectivity is especially important for transportation and routing analyses.

4. Intersection implies that two areas share a common area, which is a subset
of both. For instance, the area of a protected forest may be partially located
within the boundaries of a private forest, resulting in an area of intersec-
tion that is both private property and protected forest.

For efficient data handling and spatial analyses spatial objects need to be repre-
sented in a consistent and unambiguous way. The US National Committee for
Digital Cartographic Data Standards (NCDCDS) provides definitions for spatial
objects. Spatial objects are classified into point, line, and polygon (area) features.
Figure 5.3 presents selected cartographic objects defined by the NCDCDS.

A point feature is a zero-dimensional cartographic object. It specifies the
geometric location and no other meaningful measurement. The size of point
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Fig. 5.3. Selected cartographic objects defined by the US National Committee for
Digital Cartographic Data Standards



symbols may vary, but the area of those symbols is meaningless. The NCDCDS
defines four types of point features:

1. Entity point. It is used to describe the location of point features. Here the
positional accuracy is of major importance.

2. Label point. It is used to identify the position where text associated with
map features is presented. Positional accuracy is not an issue, but the label
points have to be chosen in a way that a user is not confused with different
labels displayed on the map.

3. Area point. It gives the position where the attribute information associated
with an area is displayed. For example, a point representing the location of
the forest service headquarters may be used to display forest area statistics.

4. Node. It represents the location of a point that has additional topological
characteristics, such as intersections or end points of line features.

In spatial representation, point features are zero-dimensional objects, as the dif-
ference in area among different point features (e.g., the area occupied by a utility
pole) is considered meaningless. Although line features occupy two-dimensional
space on maps they are treated as one-dimensional spatial representations as
their width is not considered. Line features present position and direction; length
is an important measurement of line features. The NCDCDS definitions for line
features are as follows:

1. Line is generally defined as a one-dimensional object.
2. Line segment is the direct connection between two points.
3. String is a sequence of strings without nodes or left and right identifiers.
4. Arc is the location of points that are defined by a mathematical function to

form a curve.
5. Link or edge is a connection between two nodes.
6. Directed link is a link with a specified direction.
7. Chain is a directed sequence of line segments that are nonintersecting or

are arcs with nodes at each end.

For directed links and chains, left and right area identifiers are optional. The
representation of both area and position leads to area features which are two-dimen-
sional. According to the NCDCDS the following selected area features are defined:

1. Area is a two-dimensional, bounded and continuous object.
2. Interior area is an area not including its boundary.
3. Simple polygon consists of an interior area and an outer ring. The bound-

ary does not intersect itself.

5.2 Geographic Information Systems 243



There are two data structures that are adopted by GIS to organize spatial data:
the vector and the raster data structure (Fig. 5.4). Some GIS software, especially
that developed for handling satellite data, use the raster data structure (e.g.,
IDRISI by Clark University), while others (e.g., the European Space Research
Institute’s Arc/Info and Arc-GIS) use vector data structures.

The raster structure is based on picture units (pixels); a map is decomposed
into pixels and each pixel is referenced by its row and column position. Each
pixel has a given size, and attributes are assigned on a per pixel basis. For a
given area for each attribute to be assigned (e.g., ownership, land cover, road
networks) an individual raster (data layer) can be constructed. Raster data
structures offer a few of advantages:

● They are simple and easy to reference.
● They represent continuous surfaces.
● Combination of different data layers is easy.
● A large amount of spatial information is available in raster format, for

example, remote-sensing data, or scanned maps, and data bases can easily
be constructed by importing raster data.

However, there are several disadvantages associated with raster data structures:

● In many cases raster data are subject to data redundancy. As a uniform pixel
size has to be chosen for each attribute it is likely that a large area is repre-
sented by a huge number of pixels all containing the same information.

● The aesthetic appearance of a map depends on the raster size. Linear fea-
tures are either lost or overrepresented in crude raster formats.

● Topological relationships are hard to capture.
● Spatial data coded in raster format are distorted by transformations. For

example, a line feature rotated by a specific angle and then rotated back
may be different from its original shape.

● The accuracy in spatial analyses tends to be lower than desired. For
instance, the length of a line can be computed exactly if the starting and
end points are given, but can only be approximated when the line is repre-
sented in raster format (Fig. 5.4)

The vector data structure uses vectors to represent spatial features. A vector is –
in mathematical terms – defined by a starting point, direction, and length. The
starting point is given by x- and y-coordinates, and the direction by an angle, for
example, with reference towards north. A point feature can be treated as a degen-
erated vector where direction and length are zero. A line feature is represented as
a sequence of vectors; as the width of a vector is not meaningful, line features are
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one-dimensional. A polygon is presented in the same way but with a closed set of
vectors.

Vector data formats have the following advantages and disadvantages:

● Redundancy. Owing to their organization in a compact format, vector data
structures show less redundancy than raster data.

● Topology of spatial features is clearly identified.
● The accuracy in spatial analyses and location is high.
● Map overlay, which is a simple task in raster data formats, becomes a com-

plex task and requires complicated computations.

Most of the commercial programs allow conversions from vector to raster for-
mat and vice versa. The data structures determine how information is stored
and processed in a GIS and have implications on the performance of spatial
analyses.

5.2.2 Spatial Analyses

The analysis subsystem is the heart of any GIS. There exist a vast number of
techniques for analyzing georeferenced data, which cover geographic analyses,
statistical analyses, systems modeling, and geostatistics. The current chapter is
limited to the fundamental methodology of spatial analysis. Interested readers
are encouraged to consult textbooks by Foresman (1998), Thill (1999), or
Longley et al. (2001) for further reading.

Spatial analyses are based on the three elements of spatial information:
location, attribute, and topology. In quantitative spatial analyses the geo-
graphic reference allows spatial features to be referenced and mapped, while the

5.2 Geographic Information Systems 245

6

5

4

3

2

1

A B C D E F

6

5

4

3

2

1

A B C D E F

Fig. 5.4. A line organized in a raster structure (left) and a vector structure (right)



analyses of attribute data allow for studying spatial distributions. A key element
in spatial analysis is the representation of the location of any object, which is
realized by the establishment of a coordinate system. Commonly used coordi-
nate systems are the Universal Transverse Mercator (UTM) or Gauss–Krüger
coordinate system. A GIS suitable for spatial analyses must provide means for
integrating diverse coordinate systems and for converting spatial data from one
to another commonly used coordinate system and to user-specific coordinate
systems. Other issues relevant in the scope of representing spatial data are map
scale, map orientation, and map projection (De Mers 2000; Burrough and
McDonnel 2000).

Once a coordinate system has been established, every point feature can be
represented by its x- and y-coordinates, and basic measurements such as dis-
tances or areas of spatial features can be conducted. In most situations not only
one but several spatially explicit attributes are to be represented in a GIS. For
any attribute (e.g., land use) or attribute classes (e.g., motorways and railroad
lines) an independent data layer is generated. The set of individual data layers
can be seen as a cascade of information on attributes. With reference to the
data layers, spatial analyses can be classified into two major categories: single-
layer and multiple-layer operations

5.2.2.1 Single-Layer Operations

Single-layer operations are also called horizontal operations as they consider
only one data layer and manipulate data horizontally. There are three groups of
single layer operations: feature manipulation, feature selection, and feature
extraction. Figure 5.5 presents a summary of single layer operations.

Feature Manipulation
Feature manipulation procedures for single layers include boundary opera-
tions and proximity analysis. Boundary operations alter the boundaries of
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Fig. 5.5. Single-layer operations



objects and define new boundaries. Common boundary operations are clip-
ping, erasing, updating, splitting, dissolving, appending, and elimination.

● Clip: A clipping procedure creates a specific set of boundaries and main-
tains all map features within this boundary (Figs. 5.6, 5.7). The new cover-
age is a subset of the original map.

● Erase: In contrast to the clip procedure, the erase procedure eliminates
the portion specified by the erase coverage from the output coverage; the
features outside the erase coverage remain on the output coverage
(Fig. 5.8).

● Update: Update is used to move new or additional information into a cov-
erage and to correct old information (Fig. 5.9). The update coverage con-
tains the information that is to be replaced in the original coverage.

● Split: The split procedure is used when a map is to be separated into sub-
divisions (Fig. 5.10). A map showing the boundaries – or tiles – of the new
subdivisions is superimposed on the original cover. New coverages are cre-
ated according to the tile system of subdivisions.

● Append: The append procedure merges separate, adjacent maps and creates
a new coverage that contains a single map (Fig. 5.11). Optionally the pro-
cedure can rebuild topology. However, the procedure may result in
unwanted boundaries and line features do not necessarily coincide.

● Dissolve/mapjoin: Dissolve and mapjoin procedures are typically used after
adjacent maps have been appended (Fig. 5.12). Dissolve eliminates unwanted
new boundaries and links the loose ends of line features. In addition, the
topology is rebuilt and nodes between lines with identical attribute values are
renamed.

● Eliminate: Merging polygons from different sources to a single layer or data
errors often produce unwanted lines. These so-called sliver polygons are
removed by the eliminate procedure (Fig. 5.13).
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Landsat TM
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Fig. 5.7. Original coverage (Landsat Thematic Mapper, TM) is clipped to extract the
forest areas to the output coverage

Fig. 5.8. Erase

Fig. 5.9. Update
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Besides boundary operations, feature manipulation includes proximity analy-
sis, which is based on distances from selected features. A common proximity
analysis is buffering, where equal-distance zones are drawn around features.
A buffer operation can be applied to any spatial feature. Proximity analysis is not
limited to single-layer operations. Where different attributes are to be studied
multilayer proximity analysis can be applied.

Figure 5.14 presents an application for buffering. In a stand the potential
area for natural recovery was estimated by constructing equal-distance buffers
around each tree of the species of interest. The analysis can be used for silvi-
cultural planning by identifying areas where the species of interest probably
does not regenerate naturally.

Feature Selection
As in aspatial databases GIS offer the possibility to select features from the data
space. The selection can be similar to a data-base query by formulating logical
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operations for the selection. For instance, from a forest map all forest with a
standing timber volume over 300 m3/ha could be selected. In addition, GIS
allow spatial constraints to be added to the selection procedure. For instance,
features can be selected by delineating shapes or specifying distances from a
given point; all features that fall inside the defined areas are then selected.

Feature Classification
Where entities show a wide range of values for several attributes, classification
might be helpful to extract significant information from the data (Fig. 5.15).
The classification can apply constant class intervals. Where the distributions
are not uniform a classification with nonconstant width of the class intervals
can be advantageous.

5.2.2.2 Multilayer Operations

Multilayer analyses are an extension of single-layer analyses (Fig. 5.16). They
operate on multiple data layers and examine the relationships between different
layers. Multilayer operation can be used either to combine multiple data layers
that cover the same area or to separate data on the same layer into different
layers. The basic functions of multilayer operations are:

1. Overlay analysis that uses logical operations to analyze or manipulate sev-
eral layers

2. Proximity analysis that involves distance measures of features on different
layers
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Overlay Analysis
In overlay analyses spatial conditions of different layers are studied according
to logical conditions. The logical conditions are set up by operators (relation-
ships) and operands (data elements). The relationships specified are mainly
based on Boolean operators (AND, OR, XOR, and NOT) and perform a logi-
cal check if a condition is true or false. Where ranked or metric data sets are to
be studied, operators relating to size or magnitude can be applied (smaller
than, greater than, equal to, smaller than or equal to, greater than or equal to).
Table 5.1 presents common Boolean operators for the two operands A and B.

When the Boolean operators are transferred into the context of multiple lay-
ers the basic operations union and intersection can be identified and can be
applied to merge spatial features from separate layers into a new layer.
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Table 5.1. True/false conditions for Boolean operators

A B A AND B A OR B A XOR B A NOT B

0 0 0 0 0 0
1 0 0 1 1 1
0 1 0 1 1 0
1 1 1 1 0 0



Union
The union operation is related to the Boolean OR operation. Two or more orig-
inal layers are overlaid to create a new output coverage. The procedure is
straightforward for point and line features, but may become complex when
applied to polygon features. Figure 5.17 presents the union operation for an
input layer with four polygons and a union layer with two polygons. The result-
ing output coverage contains eight polygons. For instance, if the input cover-
age contains ownerships and the union coverage contains forest types the
resulting output coverage will contain the appropriate information on forest
type by ownership.

Intersect
An analogue of the Boolean AND operation is the intersect operation
(Fig. 5.18). Where tow or more layers are merged, only those portions of the
input coverage are maintained that fall in the intersect coverage. While
the input coverage can be a point, line, or polygon, the intersect coverage must
be a polygon. For instance, the intersect operation may be used to identify pri-
vate forest land by merging forest areas (input coverage) and private ownership
(intersect coverage).
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Overlay analysis can be extended by specifying more complex mathematical
or logical operations. Chrisman (2001) described the rules of combination
overlay that allow the use of exclusionary rules, weightings, mathematical
manipulations, and Boolean logic all at the same time.

Proximity Analysis
Proximity is the quality of being near something. The easiest proximity
measure is the distance between two points. The proximity between two
polygons can be analyzed by either measuring the shortest separation
between polygon perimeters (interseparation) or the distance between the
polygon centers (centroid location). Other fundamental concepts of proxim-
ity analysis are the identification of the nearest feature in one layer from a
given point, line, or polygon in another feature (e.g., from a forest stand the
nearest road could be detected), and all the features in one layer within a
given distance from a feature in another layer (e.g., all mature forest stands
within a distance of 20 km from a sawmill).

5.2.3 Pattern Analysis

The spatial pattern or spatial arrangement is the placement, concentration,
connectedness, or dispersion of multiple objects within a defined area. Pattern
analysis offers tools to study, describe, and quantify spatial distributions.
Among those tools are statistical measures, study of spatial arrangement, and
spatial autocorrelation.

5.2.3.1 Statistical Measures

Several statistical parameters are available to describe spatial patterns. One of
the first measurements of spatial distributions is frequency, which is the num-
ber of features occurring in a specified area. The interpretation of frequency
might be misleading, when the size of the area within which the number of fea-
tures is counted is not specified. The measure of density relates frequency to
area (i.e., it is the ratio of frequency to area).

Frequency and density do not provide information on the spatial pattern of
point distributions (Fig. 5.19). Besides frequency and density, the spatial fea-
tures of a point pattern are described by dispersion and by the geometric cen-
ter. The geometric center of point distributions is characterized by the mean of
the x- and y-coordinates, while dispersion is related to the standard deviation
of the x- and y-coordinates.
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5.2.3.2 Study of Spatial Arrangement

While frequency, density geometric center, and dispersion provide a quanti-
tative overview of statistical patterns they do not offer information on the
spatial arrangement of points. There are three basic types of point patterns
(Fig. 5.20):
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Fig. 5.19. Hypothetical point patterns with the same frequency and density but differ-
ent dispersions and geometric centers
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1. Systematic or uniform: characterized by regular arrangement of points
with a relatively large distance between individual points (e.g., tree loca-
tions in plantations)

2. Poisson or random: the points are randomly located within an area (e.g.,
tree locations in a natural stand)

3. Clustered or aggregated: the point features are concentrated around a few
centers and form clusters (e.g., tree locations in a savannah)

The spatial arrangement may have a significant effect on the relationship
between features and can be described by a variety of approaches. Pielou
(1970, 1977) and Ripley (1981) provided methods for the analysis of point
pattern analyses. A simple and straightforward method is the nearest-neigh-
bor index, which is the ratio of the average nearest-neighbor distance to the
expected value of the nearest-neighbor distance. The average nearest-neigh-
bor distance, d , for a set of n points and utilizing the distance di, from a point
i to its neighbor is

.d n

d i
i

n

1= =

/

For a random point pattern within a given area, A, the expected value of the
nearest-neighbor distance, d′, is

.d n
A

2
1

=l

The nearest-neighbor index is

.
d
dNNI =
l

For a random spatial pattern, the nearest-neighbor index is 1. With increasing
clustering effects, the nearest-neighbor index becomes smaller than 1; nearest-
neighbor index values larger than 1 indicate a systematic pattern.

5.2.3.3 Spatial Autocorrelation

The concept of spatial autocorrelation combines the similarities in the location
of spatial features and their attributes. A pattern is characterized by positive spa-
tial autocorrelation when features that are located close together are also similar
in their attributes. Where features which are close together tend to be more dis-
similar in attributes than features which are further apart, a pattern is said to
exhibit negative spatial autocorrelation. Zero autocorrelation is found in situa-
tions where attributes are independent of location. Figure 5.21 presents a situa-
tion with extremely negative spatial autocorrelation.
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5.2.4 Network Analysis

In the GIS community a network is defined as a system of connected lines.
Each line has a starting point and an end point and intermediate points (called
vertices) that define the shape of a line. Vertices are defined by their location
and simply delineate a line but do not carry information on topology. Nodes
do carry information on both location and topology. Thus, starting and end
points of lines as well as all points defining locations where two or more lines
are connected are nodes.

In addition to nodes and vertices to each segment, an impedance factor and
additional attributes may be assigned. The impedance factor is related to the
size of a segment and can be its length or the time needed to travel from one
end to the other. Attributes may be information on one-way roads, load capac-
ities, or speed limits.

The structure of a network is characterized by its relative complexity and
connectivity. A straightforward approach for analyzing network structures is
the g index, which is the ratio of the actual number of links in a network to the
maximum possible number of links. The possible number of links in a planar
network with n nodes is 3(n–2). The g index is

( ),l
l

n
l

3 2max
= =

-
c

where l is the number of links in the network
The value of the g index ranges from 0 to 1, where a value closer to 1 indicates

a network with a complex structure with many links. Figure 5.22 presents two
hypothetical networks with a simple and a complex structure. Both networks have
eight nodes (n=8). While the simple network has only five links the complex net-
work has 11 links, resulting in g indices of 5/18=2.8 and 11/18=6.1, respectively.
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Fig. 5.21. Arrangement of cells with extreme negative (−1) spatial autocorrelation
(left) and extreme positive (+1) spatial autocorrelation (right)



Other measures for describing networks are the network diameter, network
connectivity, and network accessibility. Network diameter defines the maxi-
mum number of steps needed to move from any node to any other node
through the shortest possible route. In the complex network just described, the
network diameter would be 3. Network connectivity is based on the maximum
number of links directly connected to any node (four in the complex network).
The total number of unique ways through which one can move directly or indi-
rectly from one node to another through the network is quantified by network
accessibility.

Besides studying the complexity and structure of networks, network analy-
sis is widely used to solve routing or transportation problems. The most com-
mon applications include:

1. Routing problems: building the shortest pass between two specified loca-
tions

2. Traveling salesman scenario: visiting a set of stops (locations) in the most
efficient way

3. Shipment problem: minimizing total transportation costs within a trans-
portation network

4. Location allocation: finding the location that minimizes total distances or
traveling times to a number of points

5.2.5 Surface Analysis

Where a third dimension variable is available in addition to x- and y-coordi-
nates the variation of the surface with respect the third dimension can be ana-
lyzed. The third dimension variable – often called the z variable – can be any
quantifiable attribute, for instance, physical attributes such as elevation, aspect,
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Fig. 5.22. Two networks with simple (left) and complex (right) structures



slope, precipitation, or temperature or economic variables such as income,
value of the standing crop, potential yield, or stand volume.

Surface analysis covers two major issues: (1) the organization of information
about a surface, and (2) spatial interpolation. The latter allows the construction
of a continuous surface from a set of discrete data points.

5.2.5.1 Organization of Surface Information

The organization of surface information is driven by the nature of the data
source. In a vector-based GIS the z attribute characterizing a surface can be rep-
resented by:

● A set of irregularly spaced point features (Fig. 5.23a)
● A set of regularly spaced point features that form a grid (also called a lat-

tice) (Fig. 5.23b)
● A set of digital contour lines (Fig. 5.23c)
● A set of triangulated networks (Fig. 5.23d)

5.2.5.2 Spatial Interpolation

Despite the fact that surface information is represented by discrete point infor-
mation in digital data, surface analysis requires that data values can be estimated
at any location. Spatial interpolation techniques provide the means to convert
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discrete point information into continuous surface information. An implicit
assumption in spatial interpolation is that the z variable is spatially dependent.
This assumption is used to estimated from z values of a given set of points z val-
ues for any point on a surface.

Several techniques exist to derive regularly spaced systems of z values. Local
estimation derives the z value for a specific point on a surface based upon a
limited number of known z values in its neighborhood. As an example, for
local estimation the various-radius search method is presented in Fig. 5.24.
A radius of given size is specified for the point for which a z value has to be esti-
mated. If this radius does not contain the required number of known points,
the radius is enlarged until the specified number of known points is included.
The local estimate is then derived based on the selected points. Local estima-
tion approaches reflect the surrounding information, but need decisions on the
extent of the neighborhood and the number of known points to be used.

Global approximations use the entire set of known z values. The estimation
procedure relates to the entire known surface points and does not need any
constraints on the neighborhood to be included. An example for global esti-
mation is kriging, which is described in Chap. 3.

Widely used applications of surface analysis are perspective diagrams which
visualize the distribution of z values on a surface in a three-dimensional repre-
sentation. Commonly used perspective diagrams display altitudes on a surface
(Fig. 5.25).
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Fig. 5.24. Various-radius search method



5.2.6 Grid Analysis

In contrast to surface analysis, which uses vector data, grid analysis is based on
raster data. The regular arrangement of geographic units in raster data does not
render any spatial interpolation necessary. Grids are common data formats for
many data sources of spatial information, such as satellite imagery or scanned
aerial photographs or maps. The identical size and shape as well as the spacing
of geographic units make multilayer operations easy and efficient and allow for
organizing different features in the same layer. However, grid formats have
some disadvantages. Redundancy occurs where grid cells are smaller than the
spatial variation. Grid cells which are too large to resolve spatial detail prob-
lems result in difficulties in assigning grid values.

Values can be assigned to cells by different methods (Fig. 5.26), among
which are:
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Fig. 5.25. Perspective diagram of a surface in two different spatial resolutions and the
real situation (Matterhorn, Switzerland)
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● The centroid method, which assigns a value to a cell according to its cen-
troid location

● The predominant type methods, where grid values are assigned according
to the type of surface value with the largest area in the cell

● The most important type method, where surface values are ranked accord-
ing to their importance and grid values are assigned according to the most
important type within a cell

Grid-based spatial analysis can be performed on local, focal, zonal, or global lev-
els. The operations performed are based on mathematical functions or Boolean
operators. Local functions are performed on individual cell values and are exe-
cuted on a cell-by cell basis. Focal functions include the values of neighboring
cells. The neighborhood to be considered is often specified by an n×n kernel,
where n is typically an odd number so that the cell for which the value is to be
computed is in the center of the kernel. In applying zonal functions, two different
grids have to be available: (1) a grid that contains the cell numbers on which oper-
ations are to be performed, and (2) a grid that defines the shape, size, and loca-
tion of zones. The entire grid is considered by global functions, for instance, when
the distance of a cell to the nearest cell having the same value is searched for. Most
grid analysis are some combination of local, focal, zonal, and global analyses.

5.2.7 Geostatistical Methods

Geostatistical methods utilize point information for spatial interpolation. They
are a direct extension of methods developed for analyzing time series (Ripley
1981). The basic methods of geostatistics were developed by two mining
experts. Matheron (1965), working in France, developed the theoretical for-
mulation of spatial statistics, generally known as the theory of regionalized
variables. Krige (1951, 1966), working in South Africa, developed geostatistical
methods empirically and applied them to the location of gold deposits. Since
then, several comprehensive studies have been published (e.g., David 1977;
Journel and Huijbregts 1978; Clark 1979; Akin and Siemes 1988; Webster and
Oliver 1990; Goovaerts 1999; Deutsch 2002).

A set of random variables, Z(xi), determined from each point xi on a plot or
area, can be regarded as a realization of a sample from a random function Z(x).
The random variables are correlated according to the distance between any two
given points and their orientation. One observation, Z(xi) at point xi, can thus
be regarded as the realization of a random variable, and a set of observations,
z(x1), z(x2), z(x3),..., as the realization of a random vector Z(x). Through this
approach, locally dependent (regionalized) variables characterized by random-
ness and spatial dependence can be addressed.
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The development of a formula for this relationship can be illustrated with a
simple example of two sites of known distance from each other. The random
variables Z(x1) and Z(x2) have value z1 at the first location, and value z2 at the
second location. The relationship between the two values can be described by
the difference (z1 – z2) and by the variance:
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This equation can be extended for all possible pairs of locations by denoting
the two locations as x and x+h, where x represents the position of one point,
and h, termed lag, is a vector giving the distance and the orientation of the
other point.

It follows that
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If the observation extends over m points, all separated by the vector h, it follows
that we can estimate the mean s2(h) by
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In sample surveys, the practical application of geostatistical methods presents
a similar problem. The observation x must be measured, where x is a realiza-
tion of X. Similarly, where a random function Z(x) is considered, only the one
observation of the random variable z(x) is known. In order to draw statistical
inferences from z(x), assumptions regarding the stochastic model must be
made.

The first homogeneity assumption is that the expectation of the random
function is independent of the location x and is constant:

[ ( )] .E Z x = n

The second isotropy assumption concerns ( )s h2
1 2 , the expected squared dif-

ference between the values for the location separated by the lag h,

( ) ( ) ( )E Z Z hx x h 2
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This indicates that the variance of differences depends only on h. The semi-
variance g (h) is the expected value of the variance s2 for the lag h.

In linear geostatistics, only the first two moments are considered, so it suf-
fices to limit the definition of stationarity to these two moments. What is
termed the stationarity of order 2 is given when:
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● The statistical expectation E[Z(x)] exists and depends on the support point
● The covariance for each pair of random variables {Z(x), Z(x + h)} is pres-

ent and dependent on the vector h.

Where the spatial properties of Z(x) are invariant under translations, the ran-
dom function displays strict stationarity. This indicates that the k-component
vectorial random functions are identical for the two random functions
{Z(x1),....,Z(xk)} and {Z (x1 + h),..., Z(xk + h)} and are independent of the size
of the vector h.

Thus, the presence of a covariance needed to formulate a hypothesis for sta-
tionarity of the second order demands a finite variance, var {Z(x)} = g (0).
According to Journel and Huijbregts (1978), the two assumptions on which
E[Z(x)] and E [Z (x) − Z (x + h)2] are based express the intrinsic hypothesis,
although Matheron (1965) formulated it rather more broadly. The conse-
quences resulting from failure to meet this hypothesis are discussed in detail by
Akin and Siemes (1988).

Where the intrinsic hypothesis is valid, the measurements from several pairs
of samples, nh, with the distance of h can be used to estimate ct . The semivari-
ance ( )hct can be computed for several lag vectors to produce a set of semi-
variances ( ), ( ), ( ), ...h1 2c c ct t t . The basic equation for ( )hct is
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This very general representation is only valid for one-dimensional problems,
for example, soil samples along a given line. For this discussion we must restrict
ourselves to the previous comments and refer those interested to the literature,
as even one-dimensional problems illustrate the value of the variogram – the
most valuable tool for describing a regional variable.

The semivariogram is the plot of estimates ( )hct against lag h (sometimes
termed a variogram). Figure 5.27 shows one possible version of such a vari-
ogram, aimed at illustrating general characteristics. The variance increases with
increasing lag until it reaches a maximum, at which point the curve flattens out.
This maximum point is termed the sill. The lag at which the sill is reached is
termed the range and it denotes and shows the limits of the spatial dependence.

Another aspect is reflected by the nugget effect. Although the variance for
lags tending towards zero also tends towards zero, there is often a considerable
residual variance. This residual variance, or nugget variance, may stem from
different causes, for instance, measurement errors. Frequently, the structures
concerned are small in comparison with the lag and can only be resolved
through additional, less widely spaced samples. This must be taken into
account when interpreting variograms.
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Naturally there are other variograms with different, more complex forms
than that shown in Fig. 5.27; however, many of them, even those computed in
this study, conform to that pattern.

Where variograms at one level are computed on the basis of the one-
dimensional case, as discussed before, they can be constructed for various
directions. Ideally, they are elaborated in four directions: the two directions
parallel to the ordinate and abscissa and the two diagonals. If the variograms
for the different directions match, it can be assumed that the variation is inde-
pendent of direction. This circumstance is termed isotropy. Where variograms
for the different directions exhibit the same sill but different ranges, the term
geometric anisotropy is used. In a third case, termed zonal anisotropy, both the
sill and the range differ.

A more advanced step in the application of geostatistical methods is to seek
models to fit the sample values in a variogram. The elaboration of models for
fitting and their parameters is essential for local estimation. Models are com-
monly fitted on the basis of least squares. There are a whole range of functions
for fitting, for example, exponential, Gaussian, linear, and spherical models.
These functions are iteratively fitted to the points in the variogram, in a proce-
dure analogous to that of “fit-by-eye.” The ideal fitting of the functions is still
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the subject of debate. Webster and Oliver (1990, pp. 239–240 ff.) weighed the
various approaches and arguments against each other.

Estimates for point or small unit areas (blocks) at one level are possible
through the use of linear kriging, which can be regarded as an estimation pro-
cedure, in which a given number of samples, n, within a neighborhood are
taken into account through the method of weighted means. The estimate for a
block, B, is computed as follows:
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Since 1i =m/ is valid, the estimate is unbiased. The variance of ( )z Bt , the krige
variance, is given by
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Here, ( , )B Bc is the within-block variance, y is the lag range, and ( , )Bx ic is
the mean semivariance between the block and the ith sample point. The result-
ing estimates are unbiased and exhibit minimum variance. The semivariances
and li are computed via the fitting functions of the variogram, which demon-
strates the importance of the variograms for the krige procedure.

Though the theory of regionalized variables has been widely applied in
mineralogy, prospecting, and soil science, it has so far been used compara-
tively little in forestry. Webster and Oliver (1985) employed geostatistical
methods in soil mapping in the Wyre Forest, England. They showed that the
greatest variation occurred between points 66 m apart. The variables corre-
lated through this method corresponded with the occurrence of different soil
types.

Payn and Clough (1988) presented an approach based on geostatistical
methods for the mapping of plantations subjected to different fertilizer treat-
ments. The spatial variability of heavy metals with a stand covering 1 ha was
described by computing variograms according to Wopereis et al. (1988).

Palmer (1988) employed a combination of ordination and geostatistical
methods to describe the spatial pattern of plant associations. Using the results
as a basis, he deduced various square plot sizes and distances between plots for
phytosociological studies.

Ramirez-Maldonado (1988) discussed the theory and method of geostatis-
tics in the context of forestry. Sample plots which are close to each other are
often correlated; it is usually assumed that observations of the sample plots are
independent in space. He then fitted the variogram of basal area measurement,
constructed by means of point sampling, to a spherical model, and found that
small gauge constants are to be recommended as being more efficient than
large ones. He also used geostatistical methods for the analysis of the ten-point
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cluster employed by the US Forest Service and for two-phase sampling. He
presented a new theoretical approach to classic point sampling in which point
sampling is regarded as a multinomial process.

Using growth in height of Melia azederach in Karnal, India, as an example,
Samra et al. (1989) investigated the potentials of spatial interpolation by
means of krige procedures for the mapping of forest inventory results.
Within the study data, tree height varied in relation to both the lag h and the
direction within a given stand (anisotropy). Over 70% of the heterogeneity of
tree height in the northwest and southeast directions could be explained
through age.

Working in a forest near Zurich, Mandallaz (1991) compared various estima-
tion procedures based on geostatistical methods and reported on their suitability
for stand and enterprise inventories. A new approach termed double-kriging
permits the use of auxiliary information such as aerial photographs or maps
(Mandallaz 1994).
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Jost (1993) applied geostatistical methods for the estimation of standing
volume. For her study she used 28 data sets from Germany and North America
ranging from 5 to 5,000 ha in size. In 60% of the 28 data sets she found auto-
correlative structures. The spherical and exponential models were sufficient to
model semivariograms. The lags ranged between 100 and 150 m for stand data
and between 500 and 700 m for larger forested areas. Anisotropy was found
only in rare cases. Jost applied geostatistical methods in order to calculate the
sampling error in systematic sampling.

The potential of geostatistical methods for the analysis of forest decline sur-
veys was investigated Köhl and Gertner (1997). They analyzed a data set from
the Swiss National Forest Health Monitoring Program and could show distinct
spatial patterns of changes of forest condition. Köhl et al. (2000) applied geo-
statistical methods for the investigation of the spatial pattern of tree growth.
For a mixed-species, uneven-aged forest stand in the Bernese Pre-Alps in
Switzerland (Fig. 5.28) the pronounced spatial pattern of growth rates of indi-
vidual trees could be shown (Fig. 5.29).
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5.3 Forest Information Systems

The sustainable management of forest ecosystems requires decisions that have to
incorporate a diversity of specialized knowledge and are subject to long-term
impacts. Forest information systems (FIS) are a modern tool that provides decision
makers with comprehensive information and results in better management deci-
sions. The increasing amount of available data, the need for spatial reasoning, the
desire to share distributed information, and the impressive potential of modern
computer technology need to be made available for the thorough management of
forests. FIS offer the potential for informed decisions and support the maintenance
and enhancement of the multiple forest functions. However, problems on the
semantic level are much harder to be solved than the technical problems.

FIS should provide a comprehensive set of information to the decision
maker, support the implementation of more timely decisions, and improve the
quality of decisions (Dykstra 1997). As many decisions incorporate a spatial
domain, GIS have become a widely used component of FIS to facilitate han-
dling of spatial data (McCloy 1995). Because a FIS is a management tool rather
than a playground for computer enthusiasts, it is essential that the system inter-
face to the user is easy to learn, use, and understand. The current trend in
applying computer graphical interfaces improves the convenience by simulta-
neously requiring minimum training. A FIS is often based on sophisticated
technology and is implemented by experts with sophisticated technological
skills. However, a user has generally minor interest in technical solutions, but
demands a system that is efficient, easy to use, flexible, and reliable.

A FIS will comprise at least five components:

1. Input
2. Analysis
3. Estimation and prediction
4. Decision support
5. Presentation and visualization

FIS structured in those components deal with technologies such as computer sci-
ences, remote sensing, GIS, image processing, modeling and simulation, or inter-
net and communication protocols. Depending on the technical realization of the
system, the data utilized are either stored in a central data base or are retrieved
from distributed databases. Merging data from various sources and sectors is not
straightforward as different spatial, temporal, and thematic resolution as well as
data formats render harmonization necessary. Metadata standards such as the
Dublin Core Metadata Initiative (DCMI)1 offer a possibility to join different data
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sources. Where data sources are to be assessed via the Internet, tools for infor-
mation retrieval and resource allocation are required. Figure 5.30 presents the
dimensions of a FIS.

Decision support provides the interface with the decision maker. Here the
information retrieval capacities of the system and the information needs of the
user must be brought together. The method of information use affects the form
in which the information is presented, for example, as statistics, digital data,
graphs, or maps. It is advisable to supplement any output of the system by
information on its reliability.
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FIS recognize three types of information needs (FAO/ECE/ILO 1992):

1. Information for strategic planning and analysis
2. Information for tactical (medium and short-term) planning
3. Information for operational management and control

Information management is associated with cost. Data on phenomena have to
be assessed, the data have to be analyzed in order to extract information, the
information is used for decisions, and the decisions have to be translated into
actions. Costs originate from assessments, analyses, and decisions. A utility
function contrasts costs and benefit (Fig. 5.31).

Implementation of a FIS does not lead to a benefit per se. In order to opti-
mize the utility function it is advisable to customize FIS to the specific purposes
and conditions. However, considerable savings can be realized by modular
designs that assemble tried and tested components and reduce the development
of new components to a minimum (Günther and Humbolt 1998).

Information systems can be assigned to one of the following categories. The
classification criterion is the achieved analysis level of information.

1. Monitoring and control systems. These systems can be assigned to the classic
task fields of “measuring, controlling and regulating.” They are used either
for environmental monitoring (pollution of air, water, soil, or vegetation as
well as noise and radiation) or the control of technical processes in the scope
of computer-assisted process control.
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2. Conventional information systems. This class groups systems for the storage,
analysis, organization, integration, and presentation of different data
sources and data formats, such as

● Measurements from monitoring systems
● Formatted data such as areas, timber volumes, growth figures, mortality, or

potential cut
● Unformatted documents such as laws and regulations, or relevant literature

Often specific requirements in relation to time and space are to be considered.
Concerning the contents little more than a targeted analysis and compilation
of data can be achieved.
3. Evaluation and analysis systems. Evaluation and analysis systems allow for

the processing of data by means of complex mathematical and statistical
methods and models. Associated with this area are dispersal and prognosis
models, image analysis methods, and simulations. The results of the analy-
ses are information about the potential impact of alternative management
plans. Examples of evaluation and analysis systems are the prognosis of
potential timber supply under different silvicultural treatments or the
prognosis of changes of habitat suitability by introducing new landscape
management regimes.

4. Decision support systems. Decision support systems offer a decision maker
direct support during the decision process by providing assistance for the
evaluation of alternatives or for the substantiation of decisions. In contrast
to evaluation and analysis systems, decision support systems include
explicit valuation and rating methods. In addition, inference methods can
be realized; here especially knowledge-based systems originating from the
domain of artificial intelligence are demanded.

5. Integrated information systems. Currently information systems are not
only implemented in the forestry sector, but are becoming a widely used
tool in all environmental fields of activity. This includes both different
thematic alignments as well as different hierarchical levels (e.g., enter-
prises, communes, federal states, or international organizations). Many of
the systems implemented cannot be assigned to one of the specific cate-
gories already mentioned, as they combine different components. Such
systems are called integrated information systems. It is to be expected
that those systems will gain importance in the future and will be imple-
mented as distributed systems. The integration of different information
technology concepts, data formats, and system classes (e.g., simulation
systems, knowledge-based systems) is a particular challenge for applied
computer sciences.
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5.4 Methodical Components of Information Systems

When developing and implementing information systems, the entire spectrum
of computer sciences and computer technology goes into action; however,
some concepts and methods are more relevant than others. Table 5.2 presents
the relevance of concepts and methods for the different categories of informa-
tion systems.

1. Data base systems and geographic information systems. Data bases are
undoubtedly the most important tools for information systems. Owing to
the spatial context many FIS can be considered to be extended GIS, which
contain in addition to georeferenced data and relevant methods, additional
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Table 5.2. Methodical components of information system categories. The table combines the
methodical components with the different categories of information systems. Data-base and
geographic information systems, computer graphics and visualization, user interfaces and
software ergonomics, as well as integration are relevant for all information system categories.
(After Page and Hilty 1995)

Monitoring Conventional Evaluation Decision Integrated 
and control information and analysis support information 
systems systems systems systems systems

Data base ✓ ✓✓ ✓✓ ✓ ✓✓
systems and 
geographic 
information 
systems

Modeling and ✓ × ✓✓ ✓✓ ✓
simulation

Knowledge- ✓✓ × ✓ ✓✓ ✓
based systems

Computer ✓✓ ✓ ✓✓ ✓ ✓
graphics and 
visualization

User interfaces ✓✓ ✓✓ ✓ ✓✓ ✓✓
and software 
ergonomics

Artificial ✓ × ✓✓ × ✓
neural 
network and 
fuzzy logic

Integration ✓✓ ✓✓ ✓ ✓ ✓✓

✓✓ of particular relevance, ✓ relevant, × not relevant



thematic and nonformatted data with a temporal relation (Bettinger and
Wing 2003). Specific problems arise when the complex structured objects
of the forest and environmental sector need to be implemented into the
data models of conventional data-base systems. Another challenge is the
integration of different heterogeneous data sources in distributed systems,
which are a prerequisite for genuine exhaustive information systems for the
strategic managerial level. Orientation and user guidance within extensive
information systems with numerous heterogeneous data bases requires the
creation of metadata bases.

2. Knowledge-based systems. Increasingly attempts are undertaken to utilize
knowledge-based systems, especially expert systems, for information
management (Schmoldt and Rauscher 1996). The increasing number of
projects in the environmental context cannot belie that the proportion
of systems applied in everyday business is relatively small. Within the
environmental sector most of the expert system developments are in the
category of diagnosis and interpretation. The knowledge-based support of
the utilization of data bases, the processing of information request, and
monitoring tasks as well as training and education are promising fields of
application.

3. Modeling and simulation. Modeling and simulation methods have a long
tradition in the forestry sector; their practical applicability is proven.
Modeling and simulation are essential for the analysis of complex, dynamic
systems, as they are typical for the forestry and environmental sector.
Modeling and simulation components will increase the number of prob-
lems that can be treated by information systems. While simulation and
modeling techniques were up to now to a large degree developed as stand-
alone systems, the demand for their integration into information systems
will increase in the near future.

4. User interfaces and software ergonomics. A prerequisite for the wide applica-
tion of FIS is the assignment of modern, mainly graphical concepts for the
design of user interfaces. From experience especially within the group of
“occasional users” the supply level can be multiplied by offering user-
friendly interfaces. No task specific language should be used, but general
(natural) languages should be sufficient for queries.

5. Computer graphics and visualization. The application of computer graphics
as an instrument for sophisticated visualization is of vital importance in
any decision process. As the human eye can catch complex relationships
best, data visualization is an essential component of explorative data analy-
ses. Many tasks in forest ecosystem management indicate the comparison
and combination of numerous parameters referring to different geometric
and geographic objects or different time scales. Computer graphics and
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visualization facilitate data evaluation and decision processes by presenting
complex problems in an intuitively clear way.

6. Artificial neural networks and fuzzy logic. In the context of ecology and nat-
ural resources management, uncertain information and variables that do
not permit simple yes/no categorizations are rather common and allow us
to use more than just true or false. Artificial neural networks and fuzzy
logic can be used to make decisions where uncertainty occurs. Neural net-
works are systems inspired by biological nervous systems that process
information by passing data between many simple processing elements.
Computing systems mimic the brain through a network of highly inter-
connected, processing elements, which give them learning capabilities and
enable them to recognize, and to understand, subtle or complex patterns.2

Fuzzy logic provides an approach to approximate reasoning in which the
rules of inference are approximate rather than exact. Fuzzy logic is useful
in manipulating information that is incomplete, imprecise, or unreliable.
Also called fuzzy set theory, fuzzy logic extends the simple Boolean opera-
tors, can express implication, and is used extensively in artificial intelli-
gence programs. Fuzzy logic allows computers to work more easily with
phrases such as “fairly,”“rarely,” or “almost.”3 In the context of information
systems, neural networks and fuzzy logic are important as they support
structuring and analyses of large data sets that are subject to uncertainty.

7. Integration. Integration is an essential task in environmental reasoning.
Besides system-relevant problems of integration (such as the integration of
data bases, or simulation systems) the problems of integrating different
players and fields of expertise are to be solved. The additional integration
of isolated solutions as well as the integration of methods and data require
innovative approaches.

8. Other relevant methods. Among the other relevant methods used for the
design and implementation of information systems are remote sensing and
image analysis, which provide georeferenced data and facilitate environ-
mental monitoring and planning. The availability of distributed data bases,
data warehouses, and method bases as well as their accessibility via the
Internet makes computer networking a substantial component and chal-
lenge for information systems.
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Multiresource Forest Inventory 6

6.1
Introduction

All over the world, the idea of sustainable, close-to-nature, and multifunc-
tional forestry has progressively replaced the unbalanced perception of
forests as a source for timber (Kohm and Franklin 1997; Corona and Zeide
1999; von Gadow 2000). The sustainable management of the multiple func-
tions of forest resources requires a substantial amount and sensitivity of
information for decision-making processes. Information needs originating
from the consideration of ecological, environmental, or socioeconomic
aspects are hardly met by adding some “new” attributes to existing lists of
attributes of traditional and established forest inventory approaches (Avery
and Burkhart 2001). Forests are dynamically connected to their surrounding
areas, and the spatial and structural composition of border zones as well as
the interconnection of forests to other land-cover classes are driving factors
for ecological processes at the landscape level (Forman and Godron 1986).
Information needs originating from the consideration of ecological, environ-
mental, or socioeconomic aspects render sampling designs necessary that
widen the scope from timber production to the diverse functions and serv-
ices provided by forests.

This chapter describes different facets of multi-resource forest inventories.
As forest are complex (eco-)systems that show substantial variation with
respect to climate, management regime, stand history, disturbance, and needs
of local communities, it is clear that the need to quantify spatially explicit func-
tions of the services and needs of the forest will also vary considerably
(Bachmann et al. 1998, MCPFE 2003. The full range of potential forests func-
tions is so vast that we can afford to give only a few examples here. They are
restricted to the assessment of forest utilization, nonwood goods and services
(NWGS), landscape analysis, and forest fires.
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6.2
Forest Production

6.2.1
From Tree Volume to Utilized Timber Volume

Sustainability in tropical forests, when pursued, mainly applies to timber pro-
duction rather than to ecosystem conservation and to the range of goods and
services it offers (ITTO 2004). The sustainable timber management is usually
based on simple quantitative parameters such as (Marchetti et al. 2005) an
annual allowable cut for each forest management unit: it is very important to
remember that commercial tropical species grow, on average, around
1 m3/ha/year, with a possible strong decline in the second and subsequent rota-
tions. At present, logging impacts are mittigated (reduced impact logging vs.
conventional logging) by focusing on spatial patterns (Asner et al. 2004) and
prescribing a minimum diameter cutting limit (30–45 cm) and the maximum
number of exploitable trees (2–14/ha depending on the species).

Volume estimates from published forest inventories refer almost exclusively
to the gross volume of standing (live) trees. Only a part of this volume is
extracted during a harvest operation, and is called a drain. The volume 

Fig. 6.1. Logging losses in a pine stand (Pinus radiata) in New Zealand



fractions remaining in the forest are called logging losses (Fig. 6.1). The frac-
tion of the gross volume actually recovered from a certain site depends on
many factors. For instance, harvest technique, access to the harvest site, mar-
ket conditions, as well as quality, size, and species requirements set by con-
sumers and buyers. Consequently, information on the usable or net volume
recovered in the process of harvest and transport is needed for both consumer
information and economic and planning purposes.

The net volume is often computed through rough deductions from the gross
volume. Deductions are often subjective and determined, in part, by different
interests. To gain objective deductions it is useful to conduct a special recovery
study, otherwise known as a harvesting study or forest utilization study. Here,
representative net volumes are computed from samples with known total
(gross) volume. Such studies are particularly important in regions and for for-
est estates where the volume to be cut/harvested by logging contractors is to be
contractually fixed in terms of the net volume of timber to be recovered from
logging sites. Results from harvest studies allow forest managers a priori 
calculation of extractable volume and possibly the number of stems to be 
harvested. Those figures are essential for determining a sustainable level of log-
ging in both an economic and an ecological context.

Recovery, or harvesting, studies are carried out within the framework of spe-
cially planned harvesting operations or, where this is not feasible, in logging oper-
ations for which the plans have already been finalized. Their objective is to obtain
objective volume reduction factors for particular trees, tree sizes, species, or tree
species groups. There is little point in computing a single global reduction factor
since specific recovery factors vary greatly both in magnitude and in impact.
Impact depends on the harvest volume applicable to a specific reduction factor.

Because of the continually changing patterns of demand and supply in the
timber market, and the constant introduction of new technologies, the results
of a recovery study may only be valid for a limited period of time and for lim-
ited areas.

Recovery studies are oriented towards typical harvesting techniques. They
involve three common steps:

1. Determination of the number of trees not to be felled within the area of
harvest. Reasons for not felling a particular tree are besides poor growth
form, poor quality, or obvious defects, the desire to leave some mature trees
for regeneration, maintenance of gene pools, aesthetics, or wildlife.

2. Determination of the proportion of trees felled but not utilized. Reasons
for nonusage may be splitting, breaking, internal defects not detected
before felling, or poor logging practices.

3. Determination of the actual usable volume of the felled trees, classified
according to quality grades and species.
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On the basis of these three steps, the reduction factors are calculated. Recovery
studies are essential for planning and checking harvesting operations and for
identifying wasteful and ecologically unsustainable practices, including illegal
logging and overexploitation (Fig. 6.2). Various aspects of recovery studies are
discussed by Hutchinson (1985) and Torelli (1987).

Especially when harvesting is done by concessionaires it is advisable to moni-
tor the logging operations in order to assure ecological compliance. Bhandari and
Hussin (2003) have explored the potential of Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) imagery for the detection and quantification of forest log-
ging activities in a concession area in East Borneo. Multitemporal imagery and
field data, which were collected from recently logged sites and sites representing
the conditions that prevailed before logging, were combined and enabled reliable
monitoring of the logging activities. The development of impact indicators and
guidance to improve implementation of ecocertification principles and indica-
tors will increase with the awareness of sustainable forest management: national
forest programs and community forestry are continuously improving access to cer-
tification for small and low-intensity managed forests.

6.2.2
Access Studies

Accessibility to a forest areas is an important aspect to be considered for all util-
itarian aspects of forest production and functions. Human access to forests has
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Fig. 6.2. Overexploited forest area in Zimbabwe



become important for the debate on human-induced disturbances or irre-
versible destruction of forest ecosystems. Issues of access to a forest area can be
a major factor for the cost of field assessments carried out during the normal
process of a forest inventory. Hence, accessibility has a major implication on
the inventory design.

From the viewpoint of economics and management of the forest enterprise
and its resources, the interpretation of inventory data must be done in the con-
text of accessibility of the various resources. Consequently, accessibility studies
should be conducted for all surveys, especially in areas where the access to for-
est resources is a limiting factor. These studies are already a standard part of
preliminary investigations for national inventories in regions with a developed
infrastructure of transport corridors (Zinggeler et al. 1999).

Access to a resource can be gauged from maps and aerial photographs, but
a final assessment should be made on the basis of a field survey. For this rea-
son, accessibility studies are best conducted within the framework of a forest
inventory, not as an independent survey. A combined survey of access and
resources allows the analyst to estimate the available resources by access classes
that indicate the ease, constraints, or simply the cost of access.

In order to estimate accessibility, two types of data must be compiled:

1. Density of the existing transportation networks by type (roads, trails, rail-
ways, water channels)

2. Quality of transportation networks

The density of a forest road network is the total length of the network divided by
the area under consideration. Matérn (1964) showed that the overall length of a
transportation network can be determined efficiently from a line survey. Further
details are given by von Segebaden (1964) in his description of the application of
line surveys in the Swedish NFI. His concept is based on the surveying of paral-
lel, equidistant lines, with distance b between lines, oriented in a randomly cho-
sen direction. The total length of a network (L) can be computed from the
number of points (n) at which these lines intersect the network. The estimator is

L=(π/2)bn.

Where the transportation network runs parallel to the survey lines, a considerable
bias in the estimate of L is to be expected. However, the procedure can make use
of two perpendicular line patterns to balance out the bias. The line pattern(s) can
be traced on maps or aerial photographs or applied in field surveys, for example,
on the lines connecting the plots in a tract. Detailed discussions are given by
Matérn (1964), von Segebaden (1964), Stierlin (1979), and Stierlin and Zinggeler
(2001), while an analysis of a line survey may be found in EAFV (1988). Jung et al.
(2001) used the line-intersection method for forest road route selection.
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Where traffic routes are available in a georeferenced format, geographic infor-
mation systems (GIS) can be used for studying accessibility. Network diameter
(the distance between two nodes in a network) and network connectivity (the
number of nodes between any two nodes of the network) are essential aspects in
the spatial analysis of road network structures (Chou 1997; Haining et al. 2003).
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Table 6.1. Terrain classification in accessibility studies

Terrain parameters
Terrain pattern (e.g., rock outcrops, drainage pattern)
Width and depth of rivers
Ground roughness (occurrence of obstacles, friction)
Slopes (gradient, length of slope, aspect)
Area inundated by floods (duration, periodicity, frequency)

Soil parameters
Bearing capacity
Potential of erosion
Suitability for road construction

Climatic parameters
Temperature
Moisture
Rainfall (maximum, average, periodicity)

Parameters relevant for felling operations
Undergrowth, vegetation

Branchiness of trees
Slope
Climate
Microtopography

Other decisive factors for the accessibility of forests include the terrain, the
climate, the vegetation, and the soil type. The International Union of Forest
Research Organizations (IUFRO) Working Party on Terrain Classification (von
Segebaden et al. 1967) developed a terrain classification. Table 6.1 shows some
of the pertinent points to be considered in estimating accessibility.

6.3
Nonwood Goods and Services

6.3.1
Historical Perspective

Temperate and boreal forests have a long history of providing a large suite of
goods and services to local, regional, and larger communities. The mix of goods



and services has seen dramatic changes over time in response to demands and
needs of dependent societies. Wood extraction for cooking, housing, ships, tools,
and fencing went along with extraction of numerous other products, notably
resin, tannin, fodder, litter, medicinal plants, fruits, nuts, roots, mushrooms,
seeds, honey, ornamentals, and exudates. The use of the forest was generally only
regulated by virtue of ownership privileges or traditional rights. The ability of the
forest to sustain the production of goods and services was rarely taken explicitly
into account. Locally, demands could outstrip what could be produced sustain-
ably, often with long-lasting negative impact on the forest and local communi-
ties. A well-known example was the overuse of many central European forests for
grazing and extraction of litter. Forest soils became deficient in essential nutri-
ents, which triggered a long-lasting cycle of progressive degradation of the forest
community.

Over time, as the industrialized society took hold, the utilization of non-
timber products became marginalized as many forests became part of a
wood-producing business enterprise, a trend that simply mirrors the fact that
the economic benefits of wood production by far exceeded the economic
potential of NWGS. The shift happened through a complex interaction of
several different processes happening simultaneously: an increasing discon-
nect and less dependence of people on their local surroundings, an increas-
ing disregard of subsistence use of forests, the decline and even
disappearance of small-scale rural industries, technological substitution of
wood products, intensification of agricultural production, and a general
increase in prosperity.

Today we seem to have shifted towards a reevaluation of the opportunities
for forests to produce goods and services beyond timber. Conservationists,
foresters, forest owners, social development advisors, or indigenous people
are showing increasing interest in nontimber goods. From a national econ-
omy point of view, greater importance is attached to the multitude of serv-
ices provided by forests, for example, their role in the global carbon cycle,
water supply, protection, recreation, spiritual values, and well-being. It is
widely accepted that in distinct areas the value attributed to nontimber 
functions of forests exceeds the value of timber production (Köhl et al. 1995).
The sustainable use of nontimber forest resources is a well-accepted basic
premise.

This paradigm shift has been accompanied by a proliferation of studies on
nontimber functions of forests. Many of these studies were triggered by local
circumstances and the peculiarities of the resource under study. Studies focus-
ing on a holistic concept for the assessment of nontimber forest functions for
larger areas are, however, rare. In the following, definitions and classification
systems of NWGS as well as approaches for the assessment of NWGS are
presented.
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6.3.2
Definition of Nonwood Goods and Services

The socioeconomic contribution of forests to livelihood and the impact of
their use on the environment are essential components of modern concepts for
sustainable forest management (MCPFE 2003). A great deal of new informa-
tion on nontimber forest resources has been compiled. However, there is no
unique definition of nontimber resources. In contrast, a proliferation of new
terms is being introduced such as nonwood goods and benefits, NWGS, other
forest products, secondary forest products, special forest products, wild crafted
products, biodiversity products, natural products, minor forest products, non-
timber forest products, nonwood forest products, forest products other than
wood/timber, and tree crops (Vantomme 2003). One of the most versatile yet
precise definitions was given by De Beer and McDermott (1989):

“The term ‘Non-Timber Forest Products’ (NTFPs) encompasses all biological
materials other than timber, which are extracted from forests for human use.”

According to FAO (2004) nonwood forest product data collections fall into
one of 16 main categories. (Table 6.2).

In nonwood goods and services, the word services is often interpreted in a
broad sense to include aspects of the environment (e.g., biodiversity, provision
of habitats), socioeconomics (e.g., income), recreation (e.g., scenic beauty),
protection (e.g., erosion, water supply, avalanches, rockslides) and heritage val-
ues, even though services in the strict sense are quantifiable products or serv-
ices actually produced and used (e.g., managed grazing). Chandrasekharan
(1992) presented the following definitions:

Timber Wood in forms suitable for heavy construction; sawn wood
exceeding a specified width and thickness; not included is fuel
wood, wood for carving, pulp wood, small-dimensional wood.

Goods Things, articles, objects worth attaining; movable properties;
merchandise; wares; services of value. Economic goods are
defined as any physical object, natural or manmade, or service
rendered, which could command a price in a market.

Services Provision of assistance; act of serving; work done to meet
expressed or assumed needs; intangible, nontransferable eco-
nomic goods distinct from physical commodities.

Products Things/substances/articles produced by a process; output of
goods and services resulting from the input of resources or
factors of production used to produce them.

Benefits Advantages; favorable effects; output; profit. In forestry they
include products and nonmonetary favorable influences
attributed to forests
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The global Forest resources assessment 2000 (FAO 2001) provides a summary
of the most important nonwood forest products utilized in Africa, Asia, South
America, Central America, the Caribbean, Europe, and North America.
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Table 6.2. Nonwood forest product data categories (from FAO 2001)a

Plant products Animals and animal products

Category Description Category Description

Food Vegetable foodstuffs Living animals Mainly vertebrates such as 
and beverages provided mammals, birds, and reptiles 
by fruits, nuts, seeds, kept/bought as pets
roots, mushrooms, etc.

Fodder Animal and bee fodder Honey, beeswax Products provided by bees
provided by leaves,
fruits, etc.

Medicines Medicinal plants Bushmeat Meat provided by 
(e.g., leaves, bark, roots) vertebrates, mainly 
used in traditional mammals
medicine and/or for 
pharmaceutical companies

Perfumes and Aromatic plants Other edible Mainly edible invertebrates 
cosmetics providing essential animal products such as insects (e.g.,

(volatile) oils and other caterpillars) and other 
products used for «secondary» products of
cosmetic purposes animals (e.g., eggs, nests)

Dying and Plant material (bark and Hides, skins Hide and skin of animals 
tanning leaves) providing tannins for trophies used for various purposes

and other plant parts 
(especially leaves and 
fruits) used as colorants

Utensils, Heterogeneous group of Medicine Entire animals or parts of
handicrafts and products including thatch, animals such as various 
construction bamboo, rattan, wrapping organs used for medicinal 
materials leaves, and and fibers purposes
Ornamentals Entire plants (e.g., Colorants Entire animals or parts of

orchids) and parts of animals such as various 
the plants (e.g., pots organs used as colorants
made from roots) used 
for ornamental purposes

Exudates Substances such as gums Other nonedible Bones used as tools
(water soluble), resins animal products
(water insoluble) and 
latex (milky or clear 
juice), released from 
plants by exudation

aSource: FAO; http://www.fao.org/documents/show_cdr.asp?url_file=/DOCREP/004/41997E/y1997cof.htm



Major services provided by forests are (Gottle and Sène, 1997; MCPFE
2003):

● Protection of water resources, soil, and other ecosystem functions
● Protection of infrastructure and other managed natural resources
● Influence on the local climate and reduction of the impact of gas emission.
● Conservation of the natural habitat and biological diversity
● Recreational and other social functions of forests
● Protection of cultural and spiritual values

In the international context, the term “nontimber forest products” is widely
used, for example, by the Food and Agriculture Organization (FAO)1 and
the Center for International Forestry Research (CIFOR) (Cheng Tan et al.
1996).

6.3.3
Classification Systems for Nonwood Goods and Services

Various classification systems have been provided for assessment of NWGS. The
approaches include internal trade reporting, biodiversity inventories, ethno-
botanic studies, as well as assessments in the scope of forestry, wildlife ecology,
and land resource management. In the following, some of the more common
classification systems are presented. They demonstrate both the diversity and
inevitable shortcomings of any system that tries to classify NWGS; shortcomings
that reflect the fact that each system serves a different purpose.

6.3.3.1
National Nonwood Forest Product Accounting

Chandrasekharan (1995) presented a typology for national nonwood forest
products accounting that uses four classes: live plants and part of plants (A),
animals and animal products (B), prepared and manufactured products (C),
and services (D). Table 6.3 summarizes the subcategories under the four main
classes. Chandrasekharan’s typology is based on the product type and requires
reporting in different measurement units, including weight, volume, and mar-
ket value. The approach focuses on quantities that are marketed, but could eas-
ily be expanded to include potential harvests or changes of harvesting levels
over time. The approach is aimed at national-level statistics with no provision
to monitor local sustainability.
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6.3.3.2
End Use and Plant Use Classifications

Wyatt (1991) presented a classification system that has been applied in Ghana.
It has a focus on the end use of extracted material but does not include services.
Categories defined by Wyatt (1991) are as follows: sponges, chewing sticks,
tooth cleaners including fibers, jute, cloth, wool, cloth, pestles, aphrodisiacs, and
basketry, foodstuffs, including wild fruit, edible leaves, sweeteners, intoxicants,
beverages, water, medicinal plants, latex, rubbers, gums and resins, decorative
beads, and seeds. Ethno-botanists such as Prance et al. (1987), Boom (1989),
Edwards (1991), Salick et al. (1995), and Valkenburg (1997) have designed
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Table 6.3. National nonwood forest product accounting

A. Live plants and parts of plants Live plants
Parts of plants (fresh, cut, dried. or crushed), collected 

for specific uses
Specific parts of plants with multiple uses, not 

included under the previous group
Vegetable materials not elsewhere classified
Raw exudates and similar natural products

B. Animal and animal products Live animals
Animal products

C. Prepared/manufactured products Prepared (provisionally preserved) edible products
Prepared beverages
Prepared animal feed/fodder
Vegetable oils/fats
Animal fats/oils
Prepared waxes of animal or vegetable origin
Dying and coloring extracts of plant or animal origin
Phytopharmaceutical/medicinal extracts, galenicals,

medicaments
Essential oils and their concentrates
Resin and resin derivatives
Processed gums and latex
Fuels and alcohols
Other basic organic/phytochemicals
Prepared bark products
Plaited products
Products of natural fiber
Tanned leather, fur, and products of taxidermy
Miscellaneous products, manufactured from nonwood 

forest raw materials
Other nonwood plant and animal products

D. Services Forest-based services



plant-use classification systems mainly for application in tropical forests. They
classify NWGS according to local end uses and traditions. Ethno-botanic classi-
fication systems include categories such as edible, food, fuel, construction,
intoxicants, remedies, religion, exudates, oils, poison, resins, animal fodder, and
medicinal products.

6.3.3.3
Classification Based on Life Forms and Plant Parts

Classification systems based on life forms and plant parts are often developed in
the context of forest resource or wildlife assessments. As such they are easily
incorporated in multiresource forest inventories. McCormack (1998) presented
a simple classification that first separates animal- and plant-derived NWGS.
While no further subdivision is proposed for the animal-derived NWGS
class, the plant NWGS are further split into subcategories. This system can be
seen as a classification tree with classes (1) perennial species and products
[trees with subclasses wood and bark, nontrees with subclasses climbers
(lianas, rattans) and nonclimbers (palms, bamboo, shrubs, epiphytes)], (2)
ephemeral products from perennial species (e.g., nuts, seeds, and fruit), and
(3) ephemeral species (e.g., herbs, wild honey, and mushrooms). A classifica-
tion system aimed at applications in forest inventories was developed by
Kleinn et al. (1996). They defined (1) nonwood parts of trees such as fruits,
leaves and twigs that, for modeling and estimation purposes, can be related to
the size of the tree trunk, (2) products from “treelike” plants, such as bamboo
or rattan, with easily measurable size-related attributes, and (3) herbs and
other plants. Dunn et al. (1994) and Wong (1998) have given us similar clas-
sification systems.

6.3.3.4
Classification According to Management Characteristics

Classification systems based on aspects and characteristics of resource man-
agement have a natural tendency to focus on issues related to access, extraction,
utilization, processing, and commercialization. Wiersum (1999) presented a
classification of NWGS according to management characteristics (Table 6.4).

6.3.4
The Assessment of Nonwood Goods and Services

The need to include an assessment of NWGS in a local or regional forest sur-
vey is evident in many parts of the world. Whenever NWGS play or could play
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an important role for poverty reduction, a source of income, recreation, tra-
ditional use, and spiritual values to local communities, they need to be
addressed within a holistic framework for sustainable forest resource manage-
ment (Jones 2004; Sim et al. 2004). NWGS are now commonly included in
NFIs within the European Union. Traditions in northern and eastern Europe
are reflected in a strong emphasis on the assessment of berries, mushrooms,
resins, and medicinal plants. Assessments of animals, small herbs, or epiphytes
are rare in Europe. In the tropics an assessment of export products such as
bamboo or rattan is now a core component of many multiresource invento-
ries (Wong 1998; Serna 1990).

A seamless integration of an assessment of NWGS into a large-scale forest
resource survey may be difficult. A large suite of NWGS do not have the attrib-
utes of a physical commodity and many can only be defined unambiguously in
the context of time, space, culture, and behavior. Furthermore, their importance
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Table 6.4. Classification by resource management issues (after Wiersum 1999)

Supply characteristics 1. Production characteristics
Degree of ecological sustainability of extraction
Ease of vegetative or regenerative propagation
Ease of cultivation under different environmental conditions
Ease of stimulating production by technological means

2. Organization of production
Access to nontimber forest product resources
Gender division of production responsibilities

Demand characteristics 1. Opportunistically collected products for subsistence 
consumption not related to main household needs 
(e.g., snack foods)

2. Occasionally collected products purposively collected in times 
of emergency (e.g., medicinal products, emergency foods
during droughts)

Products for regular household consumption
Easy to substitute with products of other species (e.g., various 

food products, fodder, fuel wood)
3. Difficult to substitute with products of other species 

(e.g., preferred forest foods)
4. Products for sale at various market types (local,

regional/national, international)
High degree of competition with substitutes
Low degree of competition with substitutes

5. Products demanded in manufactured form, and which can be 
produced locally, giving them added value (e.g., palm sugar,
liquors)



may vary over short distances in time and space. Pelz (1995) listed several other
problems associated with the assessment of NWGS:

● Seasonality: Some of the functions, variables or attributes can only be
observed during specific seasons (e.g., fruits, mushrooms).

● Area reference: Some NWGS functions can be related to a single or a group
of sample plots, others only to a specific, usually small area, and some only
to a large area (e.g., wind protection extending beyond the forest).

● Assessment is only partially possible during an inventory. Recreational use,
for example, can only be assessed by indicators of use and not actual use
per se.

● Attributes are qualitative (e.g., conservation).
● Potential vs. actual use of the NWGS function (e.g., recreation – a forest

might be suitable for recreation, but the actual use depends on the prox-
imity to settlements and access).

● The assessment is often very costly (e.g. measuring herbaceous vegetation
or faunal diversity) compared with more traditional forest resource inven-
tory attributes.

The current lack of a unified methodology and approach to quantify NWGS
has limited the use, analysis, and comparison of NWGS data. Only a widely
accepted classification scheme can remove the major obstacle to the wider use
and dissemination of NWGS data.

NWGS can be described (1) in quality terms, (2) as indices, (3) in quantity
(physical) terms, or (4) in value (monetary) terms (Linddal 1995). Lund (1998)
identified four types of assessments that are needed for reporting on NWGS:

1. Biodiversity inventories (list of species)
2. Cultural studies
3. User, market, or product surveys
4. Resource inventories

Biodiversity inventories provide basically “a list of biological entities from a par-
ticular site or area” (Stork and Davies 1996). They can provide useful informa-
tion on the presence of taxa, but rarely note which taxa are potential nonwood
forest products and too often lack information (estimates) on abundance.

Cultural studies employ social science techniques to gain local knowledge
and are based on participatory approaches. Participators approaches include
those of rapid rural assessment (RRA), participators rural assessment (PRA),
participators learning and action (PLA), gender analysis, objective-oriented
project planning (ZOPP), appreciation–influence–control (AIC), and social
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assessment (Davis-Case 1990; Nichols 1991; Inglis 1991). Key features of these
techniques are the selection of methods and tools depends on the informants,
a multidisciplinary approach towards involving researchers and integration of
methods from different fields, and an adaptive approach to planning. No
method is formalized into a single rigid assessment protocol; rather, in view of
the overall objective to collect local knowledge, the best in situ approach is
chosen. Cultural studies rarely report on statistics related to quantitative
aspects of the NWGS resource(s).

Anthropological approaches view NWGS from a cultural perspective and
study the interaction between humans and their environment. They apply
quantitative methodologies and use quantifiable measures which lend them-
selves to statistical analyses. Zent (1996) provided the following examples: spa-
tial distribution analysis for the study of spatial relationships between human
and resource communities; resource accounting with records of resources pro-
cured or utilized by a community in a given period; human activity studies
with time spent in various resource-related behavior; and input–output analy-
sis with descriptive statistics on the interactive relationships between humans
and resources.

User, market, and product surveys assess the income generated by NWGS
and their contribution to markets. They use a variety of econometrics tools and
methods that are often different from those applied in natural resource inven-
tories. Most common are market surveys and market research, supply-and-
demand studies, investigation of trade networks, and studies quantifying the
share of NWGS utilization in local incomes (Godoy et al. 1993; Chopra and
Kumar 2004; Svarrer and Olsen 2005).

Resource inventories are based on quantitative approaches and provide sta-
tistical estimates for a well-defined population. They consider the availability
and abundance of quantifiable NWGS and, when repeated over time, indica-
tors of the sustainability of current and past patterns of NWGS use.

All four types of assessments require rules to assign numbers to objects in
such a way as to represent quantities of attributes. The measurement rules for
the assessment of nonwood products depend on the life form of the product
concerned. Wong (2000) proposed a suite of methods for different life forms
(Table 6.5). In practical applications difficulties may occur when objects are hid-
den (e.g., truffles), short-lived, or have the capacity to avoid or escape detection.

In defining the nomenclature for NWGS it is essential to decide whether the
assessment should include all goods available in a forest or it should be limited
to those that have actually been either extracted or used. A similar decision
must be made for services (Wullschläger 1982).

The quantification of nonwood services is far more complicated than the
assessment of nontimber products. A forest may have the potential to provide
a specific service, but the service may not be utilized. Further complicating the
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assessment are the difficulties associated with measuring a service and defining
unambiguous reporting units when natural units are missing. Information on
nonwood services is usually presented in the form of models that combine field
measurements, auxiliary data, subject knowledge, and expectations based on
historical data (Brassel 1995; Pelz 1995). Brändli (2001) describes models for
the estimations of protective functions of a forest. The model was developed
for Switzerland with data from the second Swiss National Forest Inventory
(NFI). Protection demands were defined as a function of hazard and damage
potentials, the presumed threats to human lives and property. Areas and
objects exposed to elevated natural hazards were identified by the application
of a generalized gradient method, with slope, flow direction, and flow height,
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Table 6.5. Assessment methods for different life forms (after Wong 2000)

Method Life form Description

Tally Any – sessile Counts of target individuals in sampling unit
Presence/absence Any Record occurrence of target in sampling unit
Size/age Larger plants Measure size of all individuals in a sampling unit 

measurement and animals (e.g., leaf width, stem diameter, height, life 
stage – juvenile/adult, etc.)

Cover Plants Record percentage of sampling unit covered by 
target species

Relative Any Score density of target in sampling unit into classes 
abundance (e.g., low, medium, high, or Braun–Blanquet scales 

for plants)
Trapping Mobile – Capture individuals for counting and measurement 

animals and (e.g., mist netting, Sherman traps, seed traps)
fruit/seeds 
of trees

Partial trapping Small animals Capture individuals and remove them from the 
out (where loss sampled population; repeat over a period of time 

from and use an exponential model of decreasing 
population is capture rates to estimate by extrapolation the size 
not critical) of the initial population

Mark–recapture Animals Capture individuals, mark (toe clipping, tags, paint,
etc.), release and recapture, use numbers recaught
to estimate total population.

Distance sampling Animals Record distance from observation point to a target 
and via (for example) a Fourier analysis estimate
the size of the target population

Response to Birds Play recordings of bird calls and count the number of
playback responses to a particular call

Indirect/index Any Record hair, dung, nests, or any other easily 
methods observable sign of presence; use regression methods

to estimate the size of the target population



as well as a generalized gradient for endangered objects as explanatory vari-
ables. Hazard rates were calculated for each pixel in a digital terrain model
(DTM). The model allows for a prediction of potential starting zones and tra-
jectories for rock-falls, avalanches, and landslides. Forests located in starting
zones and trajectory areas are viewed as providing a protective function.

Lesslie and Maslen (1995) presented an approach to quantify and identify
“wilderness.” The relative variation in remoteness from human activity across
a landscape plays a key role in their approach. The remoteness and absence of
human and technological influence enters into the Australian wilderness index
(Lesslie and Maslen 1995; Husby 1995). Specifically they use four indicators:

1. Remoteness from settlement (remoteness from places of permanent habi-
tation)

2. Remoteness from access (remoteness from established access routes)
3. Apparent naturalness (the degree to which the landscape is free from the

presence of permanent structures associated with modern technological
society)

4. Biophysical naturalness (the degree to which the natural environment is
free from biophysical disturbance caused by the influence of modern tech-
nological society).

Volk and Schirmer (2004) provided guidelines for mapping of forest functions.
For a set of services they gave attributes that are associated with the specific
service (Table 6.6). Those attributes can be assessed in the field or can be
derived from spatial data and can be used as input variables for models quan-
tifying NWGS.

6.4
Forest Ecosystems and Biological Diversity2

The 1997 the International Union for the Conservation of Nature and Natural
Resources (IUCN)3 Red List of Threatened Plants indicates that nearly 34,000
plant species, or 12.5% of the world’s vascular flora, are threatened with
extinction. Even more alarming is the 1996 IUCN Red List of Threatened
Animals, which revealed that 11% of all birds and 25% of all known mammal
species are threatened. As forests are the repository of much of the world’s
biodiversity (Kapos and Iremonger 1998), the forest society has to share
responsibility for the maintenance and conservation of forest biodiversity.
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One of the key agreements adopted at the 1992 Earth Summit in Rio de
Janeiro was the Convention on Biological Diversity (CBD) as a comprehensive
component for sustainable development. The Convention establishes three
main goals: the conservation of biological diversity, the sustainable use of its
components, and the fair and equitable sharing of the benefits from the use of
genetic resources.

There exists no single definition for biological diversity (Kaennel 1998). The
term “biological diversity” was introduced by Williams (Fisher et al. 1943) and is
unilaterally related to the number of species or species richness. The inadequacy
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Table 6.6. Attributes describing forest services (after Volk and Schirmer 2004)

Service Attributes

Protection of water resources, soil, and Soil, humus layer, precipitation, climate,
other ecosystem functions management regimes, silvicultural system,

slope, slope form, vegetation, topography,
stand age, stand density, crown closure,
application of pesticides, erosion, regulation
of access and traffic

Protection of infrastructure and Slope, slope length, slope from, soil, geology,
managed natural resources exposition, precipitation, climate,

management regimes, vegetation cover, stand
age, slope distance to objects to be protected

Influence on local climate and Vertical structure of stands, growth rate,
reductions in impacts of gas emissions biomass, melioration, exposition, slope,

species composition, stand age, management
regimes, wind direction, average and 
maximum wind speed, distance to potential 
emissions (industries, power plants, disposal
sites, mining sites), distance to residential
areas, recreational areas, or protected biotopes

Conservation of natural habitats and Patch size, structure and fragmentation of forest 
biological diversity margin, species composition, species mixture,

stand age, vertical and horizontal structure 
of stands, soil, diameter at breast height 
distribution

Recreational and other social functions Road density, accessibility, distance to next 
of forests settlement, parking spaces, length of hiking 

trails, number of visitors per hectare and day,
natural conditions (climate, relief, forest
structure), recreation infrastructure (e.g.,
camp sites, picnic sites, cross-country ski
runs), limiting factors (e.g., local emissions,
landfills, traffic noise), scenic values, historic
sites, evidence of traditional use (e.g., forest
grazing, coppice), and religious significance



of this definition becomes obvious when two populations with the same num-
ber of species but different species abundance are studied. Thus, diversity is
nowadays defined as a function of the number of species within a defined area
and the distribution of individuals within the species. According to Pielou
(1975), diversity is equivalent to variance. While variance characterizes the
variety of quantitative measures, diversity is related to the variety of qualita-
tive measures. Reid and Miller (1989) provided a commonly used definition
of biological diversity which refers to the “variety and variability amongst liv-
ing organisms and the ecological complexes in which they occur.” Commonly
biodiversity is divided into genetic, species, and ecosystem diversity. The
European Nature Information System (EUNIS) habitat classification glossary4

gives the following definitions:
Genetic diversity The variation between individuals and between popula-

tions within a species
Species diversity The different types of plants, animals, and other life

forms within a region
Community or The variety of habitats found within an area
ecosystem diversity

The complex concept of diversity renders the consideration of several
dimensions necessary (Vanclay 1998), which may be characterized in part by:

● Units, ranging from genes, species, structural aspects (e.g., morphological
groups, size classes) to landscape components

● Grain, ranging from individual samples and microhabitats, habitats,
regions to large biogeographic areas

● Patterns comprising richness, evenness, contagion, and fractal dimension
(Olsen et al. 1993; Sect. 6.5.)

Forest biodiversity cannot solely be described in the context of quantity.
A large area may offer the potential of biological diversity, but it is not neces-
sarily biologically diverse and valuable. Planted with exotic, nonnative species,
managed by silvicultural systems that aim at even-aged, single-species stands,
polluted or fragmented into small patches, even large forest areas may not
contribute significantly to biological diversity (Fig. 6.3). An indication of for-
est biodiversity is only valuable when quantity and quality are linked.
Biodiversity indicators have been developed that combine the aspects of qual-
ity and quantity of biological diversity. For instance, in the boreal region the
assessment of dead wood has been established as one indication of biological
diversity (Sect. 6.4.6).
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Fig. 6.3. Forest biodiversity: low biodiversity in an even-aged spruce stand a and
high biological diversity in a mixed-species mountain forest in Switzerland b and in
a tropical forest in Malaysia c



In order to implement biodiversity maintenance and conservation, policy
makers need sound information on (Puumalainen et al. 2002):

● The current situation of biodiversity (current state)
● Changes over time (time series)
● Cause–effect relationships

Maintaining forest biodiversity can be achieved by two complimentary
approaches: (1) biologically and geographically representative networks of
protected forest areas and (2) the conservation of forest biodiversity outside
protected areas by, for example, sustainable forest management. As a conse-
quence, forest monitoring concepts need to consider if a combined inventory
concept are approached, or if separate monitoring systems are needed.

Besides the assessment of biological diversity inside forests, multiresource
inventory systems have to address the interaction between forest ecosystems
and other land-use regimes. Information on forests in the landscape context
(Sect. 6.5) and information on the transition zones between forests and other
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land-cover types are corequisite (Sect. 6.4.2). The interactions of humans and
forest ecosystems require the assessment of forest management practices and
potential threats to the naturalness of forests.

6.4.1
Biodiversity Indicators

Biodiversity indicators are information tools, summarizing data on complex
environmental issues to indicate the overall status and trends of biodiversity
(Ott 1978). They need to address the structural, compositional, and func-
tional aspects of biological diversity. Besides providing information on the
current state and changes of biological diversity in managed and unmanaged
forests, they can also be used to assess national performance and to signal key
issues to be addressed through policy interventions and other actions. The
development of indicators is, therefore, important for monitoring the status
and trends of biological diversity and, in turn, feeding back information on
ways to continually improve the effectiveness of biodiversity management
regimes.

For the quantification of diversity a suite of methods have been described
(Pielou 1975; Magurran 1988). The objective of all methods is to depict mul-
tidimensional variability such as relative frequencies, spatial patterns, and
development over time in a one-dimensional ranked order.

The diversity of a population can be described by two components: (1) the
number of species or species abundance and (2) the relative frequency of the
individual species. Pielou (1975) presented an approach for describing diversity
by theoretical distributions, which are fit to the frequencies of species. The
parameters of the fitted distributions can serve as a measure for diversity.
However, this approach is rarely applied in practical applications, as it is based
on complex and hardly realistic assumptions (Sai und Mishra 1986). An alter-
native approach is based on descriptive statistics and derives diversity indices,
which can be applied for any desired population without reference to the under-
lying theoretical frequency distributions. Peet (1974) gave a comprehensive
overview on diversity indices. Several of the most frequently applied diversity
indices are species richness, species count, and Shannon’s and Simpson’s indices
(Shannon und Weaver 1949; Simpson 1949; Gove et al. 1994):
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Peet (1974) and Swindel et al. (1984) showed that Shannon’s index is sensi-
tive to changes in the importance of the rarest class, while Simpson’s index is
largely influenced by the most abundant class. Köhl and Zingg (1995) applied
the four diversity indices, species richness, species count, and Shannon and
Simpson indices, to monitor changes of diversity over time and showed that
Simpson’s and Shannon’s indices may fail in describing changes in species com-
position over time.

The development of biodiversity indicators is driven by the permanently
increasing understanding of ecological processes and the links between ecologi-
cal, social, and economic development. Their application depends on the specific
local conditions. Peet (1978) pointed out a major problem in the application of
biodiversity indicators: “To understand patterns of diversity a necessary first step
is to place these patterns in an appropriate perspective. Diversity values are
exceptionally difficult to interpret when taken out of context, and little justifica-
tion exists for their publication unless the perspective is provided.”

6.4.2
Assessment of the Forest Edge

According to Forman and Godron (1986), the primary significance of shape in
determining the ecological significance of patches in a landscape appears to be
related to the edge effect. An edge is the outer band of a patch, where the envi-
ronment is significantly different from the interior of the patch. The edge effect
is related to the different species composition and abundance found at the edge.
Forest edges can be described by various attributes, such as length, width, shape,
vertical and horizontal structure, density, and interior-to-edge ratio. Brändli
et al. (1995) described an assessment procedure for the forest edge that was oper-
ationally applied in the second Swiss NFI (Fig. 6.4). In the Swiss NFI, sample
plots are located in a systematic grid. Whenever a forest has margins within 25
m of the center of a field plot, an assessment of the forest margin is mandatory.
A taxation line of 50-m length forms the basis for the forest edge assessment.
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Determination of botanical diversity, description of important habitats for var-
ious animals, especially birds and insects, and judgment of the aesthetic value for
recreational purposes are important objectives of the edge assessment. Results of
the forest edge survey are given by Brändli and Ulmer (1999).

6.4.3
Sampling Diversity

Sampling for biodiversity can incorporate different scales and aspects. Alpha,
beta, and gamma diversity are common concepts to approach the different
scales of biodiversity monitoring (Table 6.7). Alpha diversity refers to the
species abundance within a community. Beta diversity is related to the degree
of changes of species abundance between different communities or environ-
mental gradients. Gamma diversity describes diversity at the landscape level.

In many extensive inventories, biodiversity is assessed by lists of key factors
(Tomppo 1997). The FAO Forest resources assessment 2000 (FAO 2001) used the
IUCN5 categories for protected areas as an indicator for biodiversity. Larsson
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et al. (2001) presented a preliminary list of key factors of European forest bio-
diversity at the national and regional levels which address structural, composi-
tional, and functional diversity (Table 6.8).

Where the presence and the relative abundance of species within well-
defined patches are to be assessed, the definition of patches (points, habitats,
regions, scale) and the corresponding sample size are critical (Vanclay 1998).
Odum (1968) presented the number of organisms found ranging from 1,021
per square meter for soil bacteria to 5–10 per square meter for deer. No general
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Table 6.7. Scales of diversity assessment (after Bischoff and Dröschmeier 2000)

α-diversity β-diversity γ-diversity

Definition Diversity within a Diversity within a mosaic Diversity within 
habitat of habitats, including biogeographical 

borderline effects region or country
Pressure Nutrients Heterogeneity Area shift

Structure Length of border Species formation
Access techniques Size of areas of a Species extinction
Management defined area type

Major protection Develop/optimize Biotope protection Species protection
strategy access techniques Compensatory areas Reintegration

Biotope networking Large corridors
Possibly isolation

Sensitive species Common wide- Widespread, Rare species
spread species uncommon species

Suitable size Units of a defined Regions Biogeographical 
of unit area type Altitude bands regions

Table 6.8. List of key factors of European forest biodiversity (after Larsson et al. 2001)

Scale Structural key factors Compositional Functional key factors
key factors

National Total area with Native species Natural disturbance: fires,
or regional respect to Nonnative or not wind and snow, biological 

Forest types “site-original” disturbances
Legal status/utilization tree species Human influence: forestry,
or protection Forest types agriculture and grazing,
Forest ownership other land use, pollution
Tree species and age 
classes 
Old growth or forest left 
for tree development 
Afforestation 
(deforestation)



advice for sample sizes and sampling units can be given as they depend on the
interdependency between organisms and patch size.

Another problem in sampling for biodiversity is the basic assumption of
randomness in sampling theory. Vanclay (1998) points out that “many factors
(predators, competition, habitat, etc.) lead organisms to aggregate, making it
unlikely that individuals will be randomly sampled.” Adaptive cluster sampling
and plant density estimation may help to implement sound sampling concepts
for real-world applications.

6.4.4
Assessment of Rare Species by Adaptive Cluster Sampling

Monitoring species diversity is an important objective for forest ecosystems
that we wish to maintain in a state considered as “close to nature.” Random or
systematic allocation of sampling units involves the nontrivial risk of missing
rare species (Chap. 3.7). Thompson (1990) describes the adaptive cluster sam-
pling (Chap. 3.7.1) as an efficient method for the assessment of spatially clus-
tered species with low abundance. Many rare species fall into this category. Low
abundance and spatially clustered means that there are only a few locations
where the species can be found. Consequently, they are easily missed in a con-
ventional survey. Adaptive cluster sampling allocates sampling units in two
steps: (1) an initially fixed number of sample plots is randomly or systemati-
cally distributed over the sampling area; (2) in each plot, where the rare species
under concern is found, the neighboring plots are also surveyed. For every
additional plot containing the species of interest a new set of neighboring plots
is established. The procedure is continued until no newly added plot contains
the species of interest. Despite the fact that a priori sample size cannot be cal-
culated, the procedure can be very efficient (Roesch 1993). In a simulation
study utilizing computer generated spatial patterns, Smith et al. (2003) con-
firmed the efficiency of adaptive cluster sampling relative to that of sampling
with randomly and systematically distributed plots. He found that adaptive
cluster sampling was superior for spatially clustered species occupying less than
5% of the inventory domain.

6.4.5
Plant Density Estimation

The problem of estimating plant densities commonly arises in forest surveys
when nontree species are considered. In vegetation surveys quadrat count
methods are a widespread tool, but according to Clayton and Cox (1986) “in
many times it is extremely time-consuming or impractical to map all the events
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or carry out quadrat sampling.” Accordingly, distance methods are often pre-
ferred to quadrat count methods. Distance-based estimators involve measuring
the distance from randomly selected points to a defined number of neighbors.
As distance methods often fail to find the analytic form for the distance distri-
bution when processes are nonrandom, Upton and Fingleton (1985) and Ord
(1990) provided estimators which are robust to departures from spatial ran-
domness. However, the practical applicability of these proposals seems to be
limited owing to the prohibitive number of measurements involved. Patil and
Taillie (1979) established a relation between the plant density and the proba-
bility density function of squared point-to-plant distances under fairly general
conditions. On the basis of this relation they proposed a plant density estima-
tor which just requires point-to-plant distances and whose results are consis-
tent and asymptotically normal. Barabesi and Fattorini (1995) suggested
collecting point-to-plant distances by the use of ranked-set sampling. Patil
et al. (1994) give an overview of ranked set sampling. The method involves the
selection of m random samples with m units in each sample from an infinite
population. In the next step, the units in each sample are ranked by visual
assessment or any other procedure that does not require exact measurements
of plant distances. The unit with the smallest rank is selected from the first
sample, the unit with the second smallest rank from the second sample, and
this procedure is repeated until the unit with the highest rank is selected from
the mth sample. The procedure requires the quantification of the m units out
of the m2 units originally selected. The procedure can be repeated r times in
order to obtain enough quantification for inference, resulting in n=mr quanti-
fied units out of m2r selected units. A considerable potential for efficiency can
be obtained whenever the ranking is reasonably correct. Barabesi and Fattorini
(1995) showed for various spatial plant patterns the improvement on simple
random sampling that can be achieved by estimating plant density by a ranked
set sampling of point-to-plant distances.

6.4.6
Assessment of Deadwood by Transect Relaskop Sampling and Guided
Transect Sampling

The assessment of coarse woody debris has become an important part of for-
est surveys. Dead decaying wood is important for the survival and presence of
many species depending on forested ecosystems. Ståhl and Lämås (1998) and
Travaglini et al. (2005) discussed the performance of circular plot sampling,
strip surveying, line intersect sampling, and transect Relaskop sampling for the
assessment of downed coarse woody debris. While the first three methods are
well known, the transect Relaskop method was introduced only recently by
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Ståhl (1998). It can be considered as a combination of Relaskop sampling and
line intersect sampling. Along survey lines, a wide-angle Relaskop is used and –
as in Relaskop sampling – all downed logs that appear to be larger than the
Relaskop angle are tallied. The procedure allows an estimation of the length of
downed logs by simply counting the logs included in the sample.

Ringvall and Ståhl (1999) described an innovative method called guided
transect sampling that exploits auxiliary information as a guide for a transect
with a starting point determined by conventional statistical design criteria. If
the inventory area is subdivided in quadrates or pixels, a surveyor has the
choice of moving to one of the three connected pixels in front of him or her.
Auxiliary information is used to assign probabilities to the pixels to be entered
next. Information from remote sensing can be utilized to assign probabilities
according to some probability proportional to size (PPS) rule to individual pix-
els and thus to determine the route (see also Chap 3.7.3). In sampling for scarce
objects the probabilities should be selected in a way that favors the detection of
a large number of the rare objects.

6.5
Landscape Analysis

In recent years landscape ecology has intensively studied quantitative methods
for describing spatial structures and fragmentation of spatial landscape ele-
ments. Turner and Gardner (1991) highlighted the significant need for research
in this field by saying that “. . . at landscape-level research requires new meth-
ods to quantify landscape patterns, compare landscapes, identify significant
differences, and determine relationships of functional processes to landscape
patterns . . . .”

Any landscape is characterized by a unique structure. Several statistical
measures, so-called landscape indices, have been described that allow us to
quantify the structure of a specific landscape (O’Neill et al. 1988; McGarigal
and Marks 1994; Walz 1999). Individual landscape indices describe different
structural characteristics and can be summarized in eight groups:

1. Area metrics
2. Patch density metrics
3. Edge metrics
4. Shape metrics
5. Core area metrics
6. Nearest-neighbor metrics
7. Diversity metrics
8. Contagion and dispersion metrics
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For each of these eight groups, several indices are available. The terminology of
several indices creates problems; some indices are defined slightly differently by
different authors, while seemingly different indices may lead to similar results
(Haines Young and Chopping 1996; Giles and Trani 1999). According to
Herzog et al. (1999) “half a dozen indices is sufficient to describe the main
structural characteristics of a landscape.”

The calculation of a single index or a set of indices does not necessarily
allow a sufficient description of landscape patterns, as the variability of a land-
scape depends on the scale selected and is not quantified consistently for vary-
ing scales (He et al. 2002; Leimgruber et al. 2002). Landscape indices may
perform above the small-scale variability and may smooth differences in
structure; hence, calculating a single measure for an entire landscape may not
reveal complete information, as the variability of a landscape is not necessar-
ily captured. This dilemma can be resolved by presenting landscape indices in
mapped format, which permits us to present the spatial dispersion of indices.
Maps are constructed by selecting subareas from the region under study and
the subareas are studied independently. One approach for selection of subareas
is the so-called windows concept.

6.5.1
The Theory of Windows

Windows, also known as kernels, masks, or filters, are used for digital image
analysis to characterize spatial information of neighborhoods (Gonzales and
Woods 1992). The traditional kind of window, the geometric window (Ricotta
et al. 1998, 2003b), is a rectangle with dimensions of n (number of rows) by m
(number of columns), where n and m should be odd numbers to allow a true
center pixel. The value calculated for the n×m pixel of the window will be pro-
jected to the center pixel.

Raster data are often analyzed by the “moving-window technique” (Fig. 6.5).
The window moves stepwise, pixel by pixel, through the entire image. At each
position the value for the neighboring pixels within the window is calculated
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Fig. 6.5. The moving-window technique



and assigned to the center pixel. This process is repeated until the last pixel of
the raster data set is reached. If the values of the center pixels are color-coded,
output images can be produced that visualize the spatial distribution of the
attribute of interest.

An example for a simple algorithm is the projection of the mean of the n×m
values calculated for the pixels within the window to the center pixel. The mov-
ing window technique computes moving averages for the entire input image.
In the case of large-scale landscape analyses, landscape indices can be calcu-
lated inside the window and projected to the center pixel, thus allowing the dis-
play of the spatial distribution of the given index.

In general, the size of the window should be chosen to provide an “optimal”
adaptation to the calculated landscape index within the context of the study.
Therefore, the extension of the window depends on the purpose and the object
of the study as Chavez and Bauer (1982) pointed out: “. . . there is no constant
rectangle . . . size that provides the best results for every image because the opti-
mum size is dependent on the ‘busyness’ of the individual image.”

Geometric windows generate artefacts along edges of the domain of interest,
because calculations close to borders of the input domain can lead to incorrect
results owing to a less than complete set of neighbouring pixels inside the domain
of interest. This results in output images having a border area with a number of
rows (nr) and columns (nc) that are not analyzed. Depen-ding on the n×m
window, we can calculate them using the following equations:

n
n

2
1

r=
-_ i

and

.n
m

2
1

c=
-_ i

Usually the border of the output image is padded with zeros in order to main-
tain constant image dimensions between input and output image dimensions.

Another problem using the geometric window method for landscape analyses
is the use of a single size and shape of window. That means that the current local
part of the landscape is forced into a rectangular neighborhood of pixels defined
by the window size. This results in an influence of the window size on the local
spatial characteristics of the landscape analyzed. If the size of the window is very
small relative to the mean dimensions of patches, the windows situated com-
pletely inside a patch get a uniform value. Deviations from this “uniform value”
are only to be expected when the window includes a patch boundary and thus
covers two or more patches. This effect is demonstrated in Fig. 6.6 for the exam-
ple of a 3×3 geometric window. Therefore, geometric windows can be used for
edge detection, but they do not satisfactorily reflect the spatial variability of

306 CHAPTER 6 Multiresource Forest Inventory



6.5 Landscape Analysis 307

Fig. 6.6. Assessment of a landscape with a 3×3 geometric window. The upper figure
shows a landscape segment and the starting point and direction for 3 × 3 geometric
window, the lower figure presents the result



landscapes. Geometric windows analyze the neighborhoods of pixels instead of
the neighborhood of patches and therefore their use in questions concerning
landscape ecology is limited. For this reason Merchant (1984) suggested the geo-
graphic window as an alternative to the geometric window.

In contrast to the geometric window, the geographic window method oper-
ates on a set of neighboring patches. A patch is defined as a group of pixels bor-
dering on each other and belonging to the same class of landscape.

The idea of the geographic window is quite similar to that of the geometric
window (Fig. 6.7). As with the geometric window it is based on a rectangular
“initial window,” but the size of this initial window is adapted to the objectives
under investigation. After the extent of the initial window has been defined, the
window expands until all patches touched by the geometric window are fully
included. If the initial window already contains entire patches, the geographic
window will not be expanded. In this situation the geographic window corre-
sponds to the geometric window. Another aspect to be mentioned is that the size
of the geographic window may never be smaller than the size of the geometric
one. In sum, the shape and the size of the geographic window change dynami-
cally with respect to the characteristics of the landscape under investigation.
Because of this adaptation, patches are never truncated in the rectangle borders
of a window; they are always completely included in calculations.

Figure 6.7 presents a geometric and a geographic window applied to the same
subset of a landscape consisting of four different patches. Figure 6.7a demon-
strates a 5×5 pixel geometric window with the center x. Figure 6.7b demonstrates
how the geographic window expands to include the entire area of patches.

The definition of the optimal size of a window is not straightforward.
Oehmichen (2001) studied window size in relation to the overall patch size and
showed that calculations with geometric and geographic windows yield
approximately the same values if the window size is large compared with the
patch size (Fig. 6.8).
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Fig. 6.8. Influence of window size



310 CHAPTER 6 Multiresource Forest Inventory

Fig. 6.8. (Continued)

Oehmichen (2001) and Köhl and Oehmichen (2003) studied the influence
of the patch shape on the results of both window concepts to spot the impact
of the complexity of landscapes. They used computer-generated landscapes to
alter the shape and the edges of the patches from regular to irregular appear-
ance. The more complex a landscape becomes, i.e., the more irregular the shape
and the edges of the patches are, the more pronounced are the differences in
the index values between geometric and geographic windows (Fig. 6.9).



Fig. 6.9. Influence of landscape complexity
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6.5.2
Trees Outside Forests

Tree resources outside the forest comprise trees that are excluded from defini-
tions of forest and other wooded lands. They are formations ranging from sin-
gle trees to systematically managed trees in plantations, trees in line, such as
windbreaks or hedgerows, and trees grouped in small patches (Koukal and
Schneider 2003). They are located mostly on farmlands, but are also located in
built-up areas. Many of them are planted, others are relics of former extensive
forests: the fragmentation and degradation of the forest cover is mainly due to
agricultural conversion and firewood extraction, particularly in regions where
the population pressure on natural resources is heavy, and where the natural
ecosystems and those influenced by humans are highly vulnerable. The
importance of nonforest trees is increasing with continuing destruction and
fragmentation of closed forests.

They provide wood and nonwood products, are part of habitats for animals
and plants, contribute to carbon storage and protection of soil and water
resources, and have much influence on the appearance of the landscape. Currently
these tree resources are not included in common forest inventories. Methods for
mapping and monitoring tree resources outside forests have been developed
mainly as a combination of very high resolution and aerial photographs remote-
sensing methods and field sampling methods, in general adopting line-intersect
sampling procedures (FAO, 2001).

6.6
Forest Fires

Wildfires, which are uncontrolled, unwanted human-caused or lightning-
caused fires, constitute one of the biggest phenomena that affect renewable nat-
ural resources on local and global scales. In the scope of the International
Geosphere and Biosphere Program (IGBP) the presence of one or more fires
was recorded for a total area of 6.5×106 km2 in the period between April 1992
and March 1993. Seventy percent of that area was located in the tropical zone,
with a pronounced focus in Africa, leading NASA6 to define Africa as the “earth
fire belt.” At present, the operational program of fire monitoring from the
National Oceanic and Atmospheric Administration Advanced Very High
Resolution Radiometer (NOAA-AVHRR) data exists for tropical forests, such as
the Amazon Basin, controlled monthly by the Brazilian federal government
(http://www.cnpm. embrapa.br;http://www.mma.gov.br).



At the UN World Conference on Natural Disaster Reduction held in Yokohama
in 19947 the following averages of areas burned annually were provided:

● 10–15×106 ha in the boreal and temperate forests
● 20–40×106 ha in the tropical rainforests
● 500–1,000×106 ha in the savannahs

Multiresource inventories and remote sensing facilitate forest fire assessment
by providing information on fire risk, danger, and hazard. Risk is related to the
causal agents of the event, hazard refers mainly to the fuel situation, and dan-
ger takes into consideration the meteorological condition. Within this context,
satellite images provide input to specifically designed GIS, to map the spatial
distribution of fire occurrences risk, hazard and danger. The diversity of factors
that affect the start and the spreading of a fire dictate the use of an integrated
approach to assessment. Topics to be considered in assessments are:

● Detection of fire spots
● Cartography of burned areas, to locate and estimate the extent of such

areas.
● Estimation of gas emissions
● Assessment of fire effects on vegetation and the damages suffered by forest

stands
● Checking the ability of the ecosystem to naturally recover after the fire and

the assessment of the dynamics (pattern and speed) of natural recovery
● Management of postfire assessment of large burned areas
● Checking the outcome of any eventual restoration intervention
● Monitoring forest fuel conditions (vegetation moisture stress)
● Development of risk models, by the integration of field assessments, remote

sensing, and GIS.

6.6.1
Assessment and Modeling of Wildfire Risks

The amount and condition of forest fuel is a critical variable for quantifying a
fire hazard (Burgan and Rothermel 1984; van Wagner et al. 1987). Field meas-
urements to quantify forest fire hazard concentrate mainly on the estimation of
fuel wood and litter. In the assessment of wildland fire risk, a key variable for
communities and ecosystems is the fire regime condition class (FRCC). It
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describes increasing risk levels from wildfire behavior and effects (Hann and
Bunnell 2001; Hardy et al. 2001; Schmidt et al. 2002), according to the relative
risk of losing key components that define an ecosystem. Condition classes are
generally equivalent to low, moderate, and high departure from the natural or
historical range of variability, considered a baseline for coarse-filter assessment of
risks to ecosystems, habitats, and social values (Morgan et al. 1994; Hann et al.
1998; Landres et al. 1999). Hardy et al. (2001) and Schmidt et al. (2002) proposed
mapping the FRCC and associated information to support national-scale strate-
gic fire and fuels planning in the USA using estimates for 1-km2 data units
derived from a combination of fire regime, cover type, forest density, potential
natural vegetation group, classification of biophysical environments, land strati-
fication based on site and disturbance conditions that support a regime of natu-
ral vegetation (Küchler 1975; Hann et al. 1998; Hann and Bunnell 2001). They
defined and mapped five historical natural fire regimes using a rule set approach
to unique combinations of biophysical data. The fire regimes, based on
Heinselman (1981), Brown (1995), and Morgan et al. (1996), define fire fre-
quency or interval as “the average number of years between fires” and severity as
the “effect of the fire on the dominant overstory vegetation” (Table 6.9). The rel-
ative risk is determined by comparing the current with the historical or natural
baseline based on combination of fire regime, cover type, and forest density or
nonforest for each potential natural vegetation group. A simplified description of
the FRCC and associated potential risks is given in in Table 6.10.

The classification (Table 6.10) is based on changes to one (or more) of the fol-
lowing ecological components: vegetation characteristics (species composition,
structural stages, stand age, canopy closure, and mosaic pattern); fuel composi-
tion; fire frequency, severity, and pattern; and other associated disturbances (e.g.,
insect and diseased mortality, grazing, and drought). Earth observation (EO)
data could greatly help to provide information, especially at large scales.

Coarse woody debris and dead fuel are very difficult to sense remotely. In
spite of the low resolution of Landsat Multispectral Scanner (MSS) images, sig-
nificant correlations between downed fuel classes and classification results
were estimated in the past (Rabii 1979). Most of these studies used topographic
data to help in the identification of some fuel categories (Shasby et al. 1981;
Agee and Pickford 1985). Other authors are not as confident in the application
of EO, because of the difficulty in identifying the understory component of
forest stands (Salazar 1982).

The physical principles underlying fire direct remote observation are based
on the specific reflectance patterns of burning and burned areas. The sun, the
main energy source, is directly responsible for the sensing in the visible and
near-IR bands (0.4–1.3 mm). Longer wavelengths are more related to the
object’s emittance, which is proportional to its temperature. This spectral
region is called the thermal IR, located between 8 and 14 mm. Between near-IR
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Table 6.9. Fire regime condition classes for modeling forest fires

Fire Frequency Severity Modeling assumptions
regime (mean fire 
class return interval)

I 0 − 35+ years, Surface and Open forest, woodland, and savannah 
Frequent mixed structures maintained by frequent fire;

also includes frequent mixed severity fires
that create a mosaic of different age 
post-fire open forest, woodland, shrub,
or herb patches that make a mosaic of
structural stages. Mean fire interval can 
be greater than 35 in systems with high
temporal variation.

II 0 − 35+ years, Replacement Shrub or grasslands maintained or 
Frequent cycled by frequent fire: fires kill non-

sprouting shrubs which typically regener-
ate and become dominant within 10-15
years; fires remove tops of sprouting
shrubs which typically resprout and 
dominate within 5 years; fires typically
remove most tree regeneration.

III 35 − 100+ years, Mixed and Mosaic of different age post-fire open 
Infrequent surface forest, early to mid-seral forest structural

stages, and shrub or herb dominated
patches generally <40 hectares, main-
tained or cycled by infrequent fire.
Interval can range up to 200 years.

IV 35 − 100+ years, Replacement Large patches generally >40 hectares, of
Infrequent similar age post-fire shrub or herb 

dominated structures, or early to 
mid-seral forest cycled by infrequent fire.
Interval can range up to 200 years.

V 200+ years Replacement, Variable size patches of shrub or herb 
mixed, and dominated structures, or early to mid to 
surface late seral forest depending on the type of

biophysical environment. Cycled by rare
fire or other disturbance events. Often
have complex structures influenced by
small gap disturbances and understory
regeneration.

and thermal IR wavelengths, there is a transition band called the mid-IR (1.3–8
µm) where reflectance and emittance processes are mixed together. The sun,
with a radiative temperature of 6,000 K, has its peak in the visible band, around
0.48 µm. The Earth’s surface emits strongly in the thermal band, around 9.66
mm, corresponding to an average temperature of 300 K. One of the main effects
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Table 6.10. Condition classes vs. fire regimes

Examples of Key Ecosystem Component Susceptibility to 
Changing Fire Regime Condition Classes

Condition Fire Regime Example Species Invasion by Smoke Insects and 
Class Management composition non-native production disease

Options and structure species hydrology,
and Soils

Condition Fire regimes are within Where appropriate, Species composition and Non-native Functioning Insect and 
Class 1 the natural (historical) these areas can be structure are functioning species are within their disease 

range, and the risk of maintained within (historical) range at both currently not natural populations 
losing key ecosystem the natural patch and landscape scales. present or (historical) functioning 
components is low. (historical) fire present in range. within their 
Vegetation attributes regime by limited extent. natural 
(species composition, treatments such as Through time (historical) 
structure, and pattern) fire use. or following range.
are intact and functioning disturbance 
within the natural sites are 
(historical) range. potential 

vulnerable to 
invasion by 
non-native 
species.
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Condition Fire regimes have been Where appropriate, Species composition and Populations of Have been Insect and 
Class 2 moderately altered from these areas may structure have been non-native moderately disease 

their natural (historical) need moderate moderately altered from invasive species altered from population 
range. Risk of losing key levels of restoration their historical range at may have their natural have been 
ecosystem components is treatments, such patch and landscape scales. increased, (historical) moderately 
moderate. Fire frequencies as fire use and hand For example: thereby range. Water altered from 
have departed from or mechanical Grasslands – Moderate increasing the flow typically their natural 
natural frequencies by one treatments, to be encroachment of shrubs potential risk less. Smoke (historical) 
or more return intervals restored to the and trees and/or invasive for these and soil range.
(either increased or natural fire regime. exotic species. populations to erosion 
decreased). This result in Shrublands – Moderate expend following fire 
moderate changes to one encroachment of trees, following typically 
of more of the following: increased shrubs, or invasive disturbances, greater.
fire size, intensity and exotic species. such as 
severity, and landscape Forestland/Woodland – wildfires.
patterns. Vegetation and Moderate increases in 
fuel attributes have been density, encroachment of
moderately altered from shade tolerant tree species,
their natural (historical) or moderate loss of shade 
range. intolerant tree species caused 

by fire exclusion, logging, or 
exotic insects or disease.
Replacement of surface 
shrub/grass with woody 
fuels and litter.

(Continued)
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Table 6.10. (Continued)

Examples of Key Ecosystem Component Susceptibility to 
Changing Fire Regime Condition Classes

Condition Fire Regime Example Species Invasion by Smoke Insects and 
Class Management composition non-native production disease

Options and structure species hydrology,
and Soils

Condition Fire regimes have been Where appropriate, Species composition and Invasive species Have been Insect and 
Class 3 substantially altered from these areas may structure have been sub- may be substantially disease 

their natural (historical) need high levels stantially altered from their common and altered from population 
range. The risk of losing of restoration historical range at patch in some cases their have been 
key ecosystem treatments, such and landscape scales. the dominant historical substantially 
components is high. Fire as hand or For example: species on the range. altered from 
frequencies have mechanical Grasslands – High landscape. their natural 
departed from natural treatments, before encroachment and Any disturbance (historical) 
frequencies by multiple fire can be used establishment of shrubs, will likely range.
return intervals. Dramatic to restore the trees, or invasive exotic increase both Typically 
changes occur to one or natural fire regime. species. the dominance higher 
more of the following: Shrublands – High and geographic mortality or 
fire size, intensity, severity, encroachment and extent of these defoliation.
and landscape patterns. establishment of trees, invasive species.
Vegetation attributes increased shrubs, or 
have been substantially invasive exotic species.
altered from their natural Forestland/Woodland – High 
(historical) range. increases in density,

encroachment of shade 
intolerant tree species, or 
high loss of shade intolerant
tree species caused by fire 
exclusion, logging, or 
exotic insects or disease.
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of fire on the environment is the overheating of the surface, caused by reduced
transpiration and by the increment of the solar radiation absorbed by soil.
Lambin and Erlich (1996) observed that ash and charcoal form a dry layer that
does not allow cooling processes, increasing by 7–8 K the superficial tempera-
ture during the day in recently burned areas. Forest fires have flame tempera-
tures of between 548 and 693 K (Robinson 1991), so their band of maximum
emittance is located in the range 4.18–5.29 µm (mid-IR). In consequence, this
can be the most adequate spectral interval for fire detection. The limit in fire
spot detection is the temporal resolution. To avoid the unmanageable spread of
a fire, the attack time must be around 20–30 min. The thermal band is more
sensitive to lower temperatures, so it can be utilized for recently burned areas.

The destructive effect of forest fires has initiated efforts for understanding and
modeling the mechanisms of fire propagation in different land-cover types. It
presents a complexity which involves several parameters, such as physical (com-
bustion process), biological (biomass characteristics), and environmental (mete-
orology, topography) ones. Most of the studies put emphasis on fire behavior
experienced with different combinations of fuel, weather, and topography. Perry
(1998) reported two main aims in fire modeling: the fire growth prediction, spread
rate quantification, and the fire area prediction of zones that can be affected. Fire
simulation models are used by several forest services in different countries and
almost all rely on the Rothermel equation of fire spreading rate (Andrews and
Queen 2001). In the last two decades, several studies have been carried out on tech-
nical improvement of fire modeling (Richards 1990, 1995; Hirsch 2000; Fall and
Fall 2001; Nelson 2002; Reed and McKelvey 2002) and on the development of spa-
tio-temporal GIS fire modeling environment (Yuan 1997; De Vasconcelos et al.
2002). Fire simulation models have been mainly developed for temperate ecosys-
tems and have to be calibrated for tropical and equatorial environments.

Critical parameters in wildfire modeling that need to be assessed are:

● Topography of the area
● Vegetation fuel layout (type and density)
● Meteorological conditions
● Transportation networks
● Public services and facilities, etc.

6.6.2
Detecting Fires and Emissions

The mid-IR is the optimum spectral band for monitoring hot spots. This band
is less affected by smoke, so images obtained with this band can show active
fires more easily than visual observation. The first experiments using sensors
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with information from this band were made in 1970, when an aerial scanner
was used to detect forest fires in Montana (Wilson et al. 1971). During 51 h of
observation, over 800 hot targets were detected and delineated. More than 200
of them were wildfires, and 45 were observed by the sensor before they were
visually observed from the 59 lookout towers in the area. The scanner also pro-
vided real-time information useful to fire fighters on the ground. Some years
later, in 1988, a similar scanner was used to help extinguish the big Yellowstone
fire (Ambrosia and Brass 1989). Thermal-band observation has also been used
for fire fighting using scanners on board helicopters (Bosiak 1986).

Besides detecting hot spots it is possible to remotely sense particulate and
gas emissions. Most of the work related to gas release is based on the determi-
nation of optical thickness, particle size, and single scattering albedo using
shortwave bands. Kaufman et al. (1990) in Canada, Cheasepeake Bay, devel-
oped a self-consistent algorithm for simultaneous determination of smoke
emissions and characteristics. This method is based on visible and near-IR
bands. The algorithm derives the aerosol characteristics from the difference in
upward radiances between two images of the same area, one acquired on a clear
day and one during hazy conditions. A close relation was found between the
aerosol estimation from AVHRR data and ground measurements. A more qual-
itative approach was adopted by other authors to estimate the area affected by
smoke plumes in large-scale forest fires (Chung and Le 1984; Jijia et al. 1989).
From the analysis of space photographs taken during the Skylab and Space
Shuttle missions between 1973 and 1986, a tenfold increase in smoke pall sur-
faces was estimated (Herfert and Lulla 1990). Setzer and Pereira (1991) also
estimated the amount of gases released to the atmosphere from the 1987
Brazilian Amazonian fires. Based on a simple method which relates the total
dry matter burned with fire emissions, total amounts of 1,700 Tg of CO2, 520
Tg of C, and 94 Tg of CO were calculated. More detailed projects to measure
gas emissions from tropical forest have been carried out since then, using satel-
lite, airborne, and field sensors (Kaufman et al. 1990, 1992).

In spite of its interest, the use of AVHRR data for fire detection is complicated
by several problems (Chuvieco and Martin 1994): the limited spatial resolution
of the sensor, the difficulty in geolocating image pixels, and – most important –
the limited spectral sensitivity. Originally designed for sea surface temperature
estimation, channel 3 is saturated at 320 K. Therefore, confusion between active
fires and other hot surfaces (i.e., bare soil during the summer season) may easily
arise. On the other hand, the strong radiometric contrast between a fire and the
surroundings may cause a pixel to appear as being burned even if only a small
portion of it is actually occupied by the fire (Kaufman et al. 1990). Fire observa-
tion requires the presence of active fires at the time of satellite overpass. Most
environmental satellites have a coarse cycle (one image every 2 or 3 weeks), which
makes it difficult to use them as a tool for real-time fire detection. An alternative



is the use of meteorological satellites. The drawback in using images from these
satellites is their low spatial resolution, 1.1 km at nadir. Therefore, their use is
more suitable for large fires, although this limit is balanced by the possibility of
detecting fires in remote lands where no visual detection is available. But even
with high temporal resolution sensors, such as AVHRR, fires may be missed
because of its brevity or because of cloud cover.

6.6.3
Mapping Burned Areas

Evaluation of forest fire effects includes two aspects: (1) the identification and
mapping of burned areas and (2) the evaluation of the damage in terms of
surface and affected vegetation and soil. Fires have two principal effects on the
forest areas (Robinson 1991): char production and amassing and fire scars.
Char represents an unmistakable fire action signal, but it tends to be almost
completely removed by wind and rain a few weeks after the fire; thus, forest
structure alteration is more an operational indicator. However, structure can-
not be associated with fire in an unambiguous manner: partial or total forest
canopy destruction can be the consequence of different actions such as cut-
ting, grazing, or pathogenic agents. This distinction is important to keep in
mind remote-sensing techniques to determine the location and extent of
burned areas. To recognize the spectral proprieties of burned areas, it is
important to distinguish white ash from black ash, when applying (Chandler
et al. 1983). Ash consists of light-colored mineral residues, produced by the
complete combustion of vegetal materials and caused by an intense fire (Riggan
et al. 1994); in contrast, charcoal indicates incomplete biomass combustion,
caused by less disastrous fires (Chandler et al. 1983; Ambrosia and Brass 1988).
These two combustion products are often described as ash, confounding spectral
information and interpretation of burned areas.

One of the first experiences in forest fire satellite mapping came from Colorado
(Hitchcock and Hoffer 1974). Two images after a fire were digitally processed and
two areas of different intensities were delineated on the map. Sometimes,
problems in identifying different damage levels occur (Minick and Shain 1981),
because of the range of species affected differentially by the fire. A 58% agreement
between burning intensities collected on the ground and detected by satellite may
be regarded as satisfactory accuracy considering the high costs of field survey.

A very important aspect in fire evaluation is timeliness. Remote sensing pro-
vides a quick tool to monitor the area affected by a fire and this makes it pos-
sible to mitigate some of its consequences (unprotected soil may be eroded). In
order to apply rehabilitation measures, the burned land surface should be
quickly evaluated. This was the objective of a pilot study conducted in Oregon
by Isaacson et al. (1982). An image before the fire was used to identify burned
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areas for potential reforestation. In the previously forested areas, annual grasses
were planted, while in areas of no previous forest, perennial grasses were used
instead. The former do not prevent tree growth, while the latter do. Thanks to
this quick evaluation, a big storm 2 months later did not create any mud-slide
or serious soil erosion. Remote-sensing studies of fires are usually carried out
using optical/IR sensors to provide some of the essential information, such as
the NOAA-AVHRR, Landsat Thematic Mapper (TM) (Pereira and Setzer 1993)
and SPOT-1–3 (Liew et al. 1998). The AVHRR sensors are able to detect the
presence of fire hot spots using channel 3 (3.8 µm) and provide images show-
ing the spatial distribution and temporal evolution of fire hot spots (Matson
et al. 1987; Robinson 1991). Channels 1 and 2 could also provide information
about aerosol characteristics and distribution of the smoke haze (Ferrare et al.
1990). However, owing to the coarse resolution (1.1 km) of the AVHRR sen-
sors, the exact locations of fires and the types of land cover on fire cannot be
determined. Measurements from hot spot images generally overestimate the
area burned but underestimate the total fire count (Kaufman et al. 1990;
Malingreau 1990). Burned areas can be mapped with high resolution, using the
spectral characteristics of the fire scars. Individual smoke plumes can be
observed in the images and hence the precise locations of the active fire areas
can be determined. Land cover can also be determined from the spectral and
contextual features of the fire areas.

Digital processing can be less than satisfactory if it is only based on spectral
data. Often, burned lands do not have a singular spectral signature but rather
a wide range of reflectance values, causing some difficulties:

1. Confusion between slightly burned and nonaffected vegetation (Benson
and Briggs 1978).

2. Difficulties in separating burned vegetation from other cover classes, espe-
cially from urban land. Confusion is greatest for areas where the previous
vegetation was sparse (Tanaka et al. 1983).

3. Confusion between burned areas and shade and water (Tanaka et al. 1983).

To identify a suitable spectral range for burned areas, it is necessary to study
characteristics of the neighboring vegetation not affected by fires. It is has been
demonstrated for different ecosystems that the near-IR spectrum is most suit-
able to study burned areas (Hall et al. 1980; Tanaka et al. 1983; Richards 1984;
Langaas and Kane 1991; López Garcia and Caselles 1991; Pereira and Setzer
1993; Caetano et al. 1994; Marchetti et al. 1995; Razafimpanilo et al. 1995;
Pereira 1999). In the near-IR spectral range sound vegetation shows a high
reflectance and can clearly be differentiated from surfaces with burned mate-
rial, which have lower averages values of reflectance than any other land-cover



type (except water). In the visible region, burned areas appear similar to agri-
cultural or sparsely vegetated lands.

Chuvieco and Congalton (1988) indicated a strong reduction of near-IR
values as a consequence of a fire: particularly they noted a decrease in the
Landsat TM4 band (0.76–0.90 µm). This result agrees with Koutsias and
Karteris (2000), who reported in addition a lower and nonmeaningful
decrease in the TM5 band (1.55–1.75 µm). Jakubauskas et al. (1990) found a
reduction of reflectance in the near-IR region that is proportional to fire
intensity; this relationship proved to be suitable for classifying severity classes
from Landsat TM. Pereira (1999) combined AVHRR near-IR and mid–IR
bands in small-scale burned area monitoring and considered Landsat TM4
and TM5 as the most adequate to identify burned areas. López Garcia and
Caselles (1991) showed that Landsat TM4 and TM7 (2.08–2.35 mm) results
were of most operational interest.

Pattern and texture variations after fire can be observed for a variable period
of time depending on land-cover type. In general, in forest ecosystems they per-
sist for 1 year, while in prairie they are detectable only for 2 months. A reason
could be the dependency of the size of coal particles on the size of original mate-
rial. In woods, flammable material has different sizes (leaves, branches, and
stems) and can remain on the ground as coal. In prairie, fire transforms burned
herbs almost exclusively into ash that can easily be dispersed by wind and rain.

Mapping of burned areas should be based on a multitemporal approach, as
it avoids confusion with land-cover types that show behavior similar to that of
a burned area. A widespread critique against multitemporal analysis pertains to
radiometric and geometric corrections that would guarantee the highest preci-
sion and accuracy in the overlay phase. Inaccuracies concerning the size and
radiometric properties of images can produce random errors and lead to a
biased estimate of burned areas. In addition, the magnitude of the errors
depends also on other parameters, such as the size and fragmentation of
burned areas. Where only images from the postfire situation are available, max-
imum-likelihood and minimum-distance classifiers have been widely used.
Those classifiers are more difficult to apply in multitemporal analysis of
burned areas (Siljestrom and Moreno 1996; Marchetti et al. 1995; Chirici et al.
2002). French et al. (1995) and Pozo et al. (1997) applied maximum value com-
posites of the original images for mapping the postfire situation. Other tech-
niques for multitemporal burned area monitoring are:

● Visual classification of the postfire mutitemporal images. A color composite
(Fig. 6.10) that includes the green, red, and near-IR is used to identify burned
scars. Tentative burned areas on the postfire images are confirmed as burned
areas when they are identified as not burned on the previous image.
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● The identification of vegetated areas using thresholding of the normalized-
difference vegetation index (NDVI) on the prefire image. A mask of pixels
with positive NDVI values is created. This mask retains areas that are veg-
etated on the prefire image and are susceptible to suffer forest fires. In the
next step the a “burn index” (orthogonal transformation of three spectral
bands in the range of the green, red, and near-IR) is applied to the postfire
image. The burn index identifies clearly burned areas. However, it may also
confuse some urban features, which should be removed when applying the
NDVI mask from the prefire image. The intersections of the mask obtained
on the prefire image with the burned areas identified on the postfire image
isolate vegetated areas that have been burned in the time lapse of the acqui-
sition of the two images.

● The use of a nonparametric and nonsupervised classification algorithm.
Fukunaga (1990) used a gradient modified function that searches for local
modes on bivariate histograms. The algorithm expands from the modes
identified to the border of the burned area, which is recognized as belong-
ing to a different spectral class. This approach was developed using prefire
and postfire imagery and was then applied to postfire imagery. Frequently
many of the modes detected in the bivariate histograms may not corre-
spond to modes of spectral classes, which may be a consequence of a sim-
ple modification of the image (e.g., normalization process).

Fig. 6.10. Ikonos composite 124 image used for mapping burned pine forest (P. pinea)
close to Rome after a fire event in 2000



6.6.4
Vegetation Indices and Forest Fires

Several linear transformations of reflectance values or biomass or vegetation
indices (VI) have been developed. The use of VIs, such as the NDVI, is widely
used for global-change studies (Goward et al. 1991). Forest fire assessment
through remote sensing may focus on different objectives, including mapping of
burned areas, evaluating the intensity of damage, or monitoring postfire regen-
eration. VI are used frequently (Jakubauskas et al. 1990; Bovio 1990). They have
improved classification accuracy and have significantly contributed to the iden-
tification of burning intensities (Milne 1986) mainly by enhancing the separa-
tion of vegetation and soil. Utilizing AVHRR, a simple difference between NDVI
values of images acquired before and after the fire gives a reliable estimation of
burned lands for the large-area events (Chuvieco and Martin 1993; Kasischke
et al. 1995). Principal component analysis was used to discriminate among
burned areas using multitemporal sets of images by Richards (1984), who
detected changes in vegetation cover by comparing modified spectral informa-
tion. VI captures relations between spectral bands in parts of the spectrum where
major differences between vegetation and other land-cover types occur (Tucker
1979). VI is commonly correlated to some physiologic parameters of vegeta-
tion, such as leaf area index, biomass, photosynthetic activity, and productive-
ness (Sellers 1987; Baret and Guyot 1991; Asrar et al. 1992). Owing to their
ecological value, VI are often used for mapping fires and monitoring regenera-
tion processes. They can be “intrinsic” (simple red/IR or NDVI) or “line soil
related” (perpendicular VI or weighted-difference VI) (Gomarasca 2004).
Figure 6.11 gives an example of Landsat bands TM3 (0.63–0.69 mm), TM4
(0.76–0.90 mm), and TM5 (1.5–1.75 µm). Those bands are respectively sensitive
to chlorophyl concentration, organization of mesophyll, and water content in
multitemporal analysis of greenness indices, such as:

● VI=TM4/TM3 (Birth and McVey 1968)
● NDVI= (TM4–TM3)/(TM4+TM3) (Rouse 1974)
● The IR index: II
● The normalized burn ratio, where the TM3 band is substituted with the

TM5 band (Hardinsky et al. 1983; Cohen 1991; Marchetti et al. 1995; Key
2003) (Fig. 6.11)

6.6.5
Indices for Danger Assessment

Wildfires occur mainly in dry seasons. This entails the conception of opera-
tional methods for near-real-time fire danger assessment using EO. Good
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knowledge of the fuel status in terms of quantity (load) and quality (moisture,
distribution, and size) is mandatory. Several indices can be assessed for esti-
mate of danger. Some authors assess landscape status from surface and near-
surface moisture estimation using remote-sensing data (Gillies et al. 1997;
Chuvieco et al. 2000; Ceccato et al. 2002a, b; Goward et al. 2002; Sandholt et al.
2002). Other studies are based on vegetation indices (Gonzalez-Alonso et al.
1997; Sannier et al. 2002). Recently the use of thermal properties of land sur-
face has been considered as a possible approach to address moisture status at
the surface and near the surface (Goetz 1997; Garouani et al. 2000; Kant and
Badarinath 2000; Czajkowski et al. 2002).
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Fig. 6.11. Multitemporal analysis of the normalized-difference vegetation index
obtained from Landsat Thematic Mapper images before and after the Castelfusano fire
event, close to Rome



References

Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002)
Determination of deforestation rates of the world’s humid tropical forests. Science
297:999–1002

Acharya NG, Bhattarai G, de Gier A, Stein A (2000) Systematic adaptive cluster sam-
pling for the assessment of rare tree species in Nepal. For Ecol Manage 137(1-3):
65–73

Agee JK, Pickford SG (1985) Vegetation and fuel mapping of North Cascades National
Park Service Complex. National Park Service Cooperative Park Studies Unit,
University of Washington, Seattle

Agresti A (1992) A survey of exact inference for contingency tables. Stat Sci
7(1):131–177

Agresti A, Caffo B (2000) Simple and effective confidence intervals for proportions and
differences of proportions result from adding two successes and two failures. Am
Stat 54(4):280–288

Akin H, Siemes H (1988) Praktische Geostatistik. Springer, Berlin Heidelberg New York
Ambrosia VG, Brass JA (1988) Thermal analysis of wildfires and effects on global

ecosystem cycling. Geocarto Int 3(1):29–39
Ambrosia VG, Brass JA (1989) Remote sensing thermal analysis of the 1988 Yellowstone

National Park Wildfires. Association of American Geographers National Meeting,
Baltimore, program abstracts, Sect VI, p 3

Amrhein P (1995) Minimax estimation of proportions under random sample-size.
J Am Stat Assoc 90(431):1107–1111

Andrews PL, Queen LP (2001) Fire modeling and information system technology. Int
J Wildland Fire 10:343–352

Angers C (1989) Note on quick simultaneous confidence intervals for multiple propor-
tions. Am Stat 43:91

Arner SL, Westfall JA, Scott CT (2004) Comparison of annual inventory designs using
forest inventory and analysis data. For Sci 50(2):188–203

Aronoff S (1989) Geographical information systems. Management perspective. WDL,
Ottawa

Asner GP, Keller M, Silva NM (2004) Spatial and temporal dynamics of forest canopy
gaps following selective logging in the eastern Amazon. Global Change Biol
10(5):765–783

Asrar G, Myneni RB, Choudhury BJ (1992) Spatial heterogeneity in vegetation
canopies and remote sensing of absorbed photosynthetically active radiation: a
modeling study. Remote Sensing Environ 41:85–103



328 References

Atkinson PM (1993) The effect of spatial resolution on the experimental variogram of
airborne MSS imagery. Int J Remote Sensing 14:1005–1011

Atkinson PM, Lewis P (2000) Geostatistical classification for remote sensing: an intro-
duction. Comput Geosci 26:361–371

Atkinson PM, Tatnall ARL (1997) Neural networks in remote sensing. Int J Remote
Sensing 18(4):699–709

Atkinson PM, Dunn R, Harrison AR (1996) Measurement error in reflectance data and
its implications for regularizing the variogram. Int J Remote Sensing 17:3735–3750

Auclair D (1983) Mesures des biomasses et des accroissements forestiers. Colloques de
l’INRA 19. INRA, Orleans

Avery TE, Burkhart HE (2001) Forest measurements, 5th edn. McGraw-Hill, New York
Azimi-Sadjadi MR, Ghaloum S, Zoughi R (1993) Terrain classification in SAR images

using principal components analysis and neural networks. IEEE Trans Geosci
Remote Sensing 31(2):511–515

Baatz M, Schäpe A (1999) Object-oriented and multi-scale image analysis in semantic
networks. In: Proceedings of the 2nd international symposium on operationaliza-
tion of remote sensing, ITC, Enschede, 16–20 August 1999

Baatz, M, Heynen M, Hofmann P, Lingenfelder I, Mimier M, Schape A, Weber M, and
Willhauck G (2001) eCognition user guide 2.0: object oriented image analysis.
Definiens Imaging, Munich

Bachmann P, Köhl M, Päivinen R (eds) (1998) Assessment of biodiversity for improved
forest planning. Kluwer, Dordrecht

Banyard SG (1987) Point sampling using constant tallies is biased: a tropical rainforest
case study. Commonw For Rev 66:161–163

Barabesi L, Fattorini L (1995) Kernel plant density estimation by a ranked set sampling
of point-to plant distances. In: Köhl M, Bachmann P et al (eds) The Monte Verita
conference on forest survey designs. Swiss Federal Institute of Forest, Snow and
Landscape Research (WSL/FNP), Zurich, Swiss Federal Institute of Technology
(ETH), Birmensdorf, pp 71–80

Barbieri MM, Berger JO(2004) Optimal predictive model selection. Ann Stat
32(3):870–897

Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR
assessment. Remote Sensing Environ 35:161–173

Barndorff-Nielsen OE, Cox DR (1989) Asymptotic techniques for use in statistics.
Chapman and Hall, London

Barnett DT, Stohlgren TJ (2003).A nested-intensity design for surveying plant diver-
sity. Biodivers Conserv 12(2):255–278

Baskerville GL (1965) Estimation of dry weight of tree components and total standing
crop in conifer stands. Ecology 46(6):867–869

Batalha MA, Aragaki S, Mantovani W (1998) Chave de identificacao das especies vasu-
lares do cerrado em emas (pirassununga, sp) baseada em caracteres vegetativos.
Universidade de Sao Paulo

Beers TW (1962) Components of forest growth. J For 60(4):245–248
Bellhouse DR (1985) Computing methods for variance estimation in complex surveys.

J Off Stat 1(3):323–329
Bellhouse DR (1988) Systematic sampling. In: Krishnaiah PR, Rao CR (eds) Sampling.

Elsevier, Amsterdam, pp 125–145



Benediktsson JA, Swain PH, Ersoy OK (1990) Neural network approaches versus sta-
tistical methods in classification of multisource remote sensing data. IEEE Trans
Geosci Remote Sensing 28(4):540–552

Benson ML, Briggs I (1978) Mapping the extent and intensity of major forest fires in
Australia using digital analysis of Landsat imagery. In: Proceedings of the interna-
tional symposium on remotesensing observation and inventory of Earth resources,
Freiburg, pp 1965–1980

Bernhardsen T (2002) Geographich information systems. Wiley, New York
Bettinger P, Wing MD (2003) Geographic information systems: applications in forestry

and natural resources management. McGraw-Hill, New York
Bettinger P, Bradshaw GA, Weaver GW (1996) Effects of geographic information system

vector-raster-vector data conversion on landscape indices. Can J For Res 16:1416–1425
Beyer WH (1968) Handbook of tables for probability and statistics. CRC, Boca Raton
Bickford CA (1959) A test of continuous inventory for national forest management

based upon aerial photographs, double sampling and remeasured plots. Proc Soc
Am For 143–148

Biolley HE (1921) L’aménagement des forêts par la méthode expérimentale et spécial-
ment la méthode du contrôle. Neuchatel, Paris

Birth GS, McVey G (1968) Measuring the color of growing turf with a reflectance spec-
trophotometer. Agron J 60:640–643

Bischof H, Schneider W, Pinz AJ (1992) Multispectral classification of landsat-images
using neural networks. IEEE Trans Geosci Remote Sensing 30(3):482–490

Bischoff C, Dröschmeier R (eds) (2000) European monitoring for nature conservation.
Schriftenr Natursch Landschaftspfl 2

Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory
and practice. MIT Press, Cambridge

Bitterlich W (1947) Die Winkelzählmessung. Allg Forst-Holzwirtsch Ztg 58(11/12):
94–96

Bitterlich W (1997) The relascope idea. Commonwealth Agricultural Bureau, Farnham
Böhm M, Löw R, Haag J, Kerwer A, Lüttge U, Rausch T (1993) Evaluation of compar-

ative DNA amplification fingerprinting for rapid species identification within ther
genus clusia. Bot Acta 106(5):448–453

Boninsegna JA, Villalba R, Amarilla L, Ocampo J (1989) Studies on tree rings, growth
rates and age-size relationships of tropical tree species in Misiones, Argentina. In:
Baas P, Vetter RE (ed) Growth rings in tropical trees. Proceedings of the joint session
of IUFRO P505 tree ring analyses and IAWA on age and growth rate determination
in tropical trees, Sao Paulo, Brazil, 18 May 1988. Int Assoc Wood Anat Bull
10(2):161–169

Boom BM (1989) Use of plant resources by the Chacobo. In: Posey DA, Balee W (eds)
Resource management in Amazonia: indigenous and folk strategies. Advances in
economic botany 7. New York Botanical Garden, New York, pp 78–96

Boon DR (1970) A critical review of timber survey methods in tropical rainforest.
Publications of the International Institute for Aerial Survey and Earth Sciences 58

Borchers DL, Zucchini W, Fewster RM (1998) Mark-recapture models for line transect
surveys. Biometrics 54(4):1207–1220

Borman FH, Berlyn G (ed) (1981) Age and growth rate of tropical trees, new directions
for research. Bull Sch For Environ Stud Yale Univ 94:20–30

References 329



Borner M, Guericke M, Leder B et al (2003) Survey of timber-quality relevant param-
eters of single trees – standardised methods for young to medium-mature broadleaf
species as a basis for scientific studies (Erhebung qualitätsrelevanter Parameter am
Einzelbaum. Aufnahmestandards für junge bis mittelalte Laubhölzer als Grundlage
für wissenschaftliche Untersuchungen). Forstarchiv 74(6):275–282

Bosdogianni P, Kalviainen H, Petrou M, Kittler J (1997) Robust unmixing of large sets
of mixed pixels. Pattern Recogn Lett 18(5):415–424

Bosiak A (1986) Detection and assessment of damage to forest, including that caused
by air pollution and fires. In: Sohlberg S, Sokolov VE (eds) Practical application of
remote sensing in forestry. Nijhoff, Dordrecht, pp 177–193

Bovio G (1990) La pianificazione antincendi per la difesa del patrimonio boschivo.
Acad Ital Sci For IFM 38:431–458

Bowden DC (1979) Multi-level sampling designs for resource inventories. Department
of Forest and Wood Sciences, Colorado State University, Rocky Mountain Forest and
Range Experimental Station, USDA Forest Service, Ft Collins

Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley,
London

Brändli UB (2001) Protection demands of the society. In: Brassel P, Lieschke H (eds)
Swiss National Forest Inventory: methods and models of the second assessment.
Swiss Federal Reseach Institute WSL, Birmensdorf, pp 232–238

Brändli UB, Ulmer U (1999) Naturschutz und Erholung. In: Brassel P, Brändli U (eds)
Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995.
Eidgenössiche Forschungsanstalt Forschungsanstalt für Wald, Schnee und
Landschaft, Birmensdorf, pp 279–394

Brändli UB, Kaufmann E, Stierlin HR (1995) Survey of biodiversity at the forest mar-
gin in the second Swiss NFI. In: Köhl M, Bachmann P et al (eds) The Monte Verita
conference on forest survey designs. Swiss Federal Institute of Forest, Snow and
Landscape Research (WSL/FNP), Zurich, Swiss Federal Institute of Technology
(ETH), Birmensdorf, pp 141–150

Brassel P (1995) Assessment of non-productive forest functions in the Swiss NFI. In:
Köhl M, Bachmann P et al (eds) The Monte Verita conference on forest designs.
Swiss Federal Institute of Forest, Snow and Landscape Research (WSL/FNP), Zurich,
Swiss Federal Institute of Technology (ETH), Birmensdorf, pp 38–46

Brazier JB (1981) Wood quality and properties and utilization of tropical wood –
acceptable timber from tomorrow’s forests. In: Hillis WE (ed) Proceedings of the
XVII IUFRO world congress, Kyoto, Japan, 6–11 September 1981, Division 5, forest
products, pp 86–94

Brewer KRW et al (2000) Deriving and estimating an approximate variance for the
Horvitz–Thompson estimator using only first order inclusion probabilities. Paper
presented at the 2nd International conference on establishment surveys. American
Statistical Association, Buffalo

Brewer KRW, Hanif M (1983) Sampling with unequal probability. In: Brillinger D,
Fienberg SE, Gani J, Hartigan JA, Krickeberg K (eds) Lecture notes in statistics, vol
15. Springer, Berlin Heidelberg New York, pp 1–164

Brown DG, Pijanowksi BC, Duh JD (2000) Modeling the relationships between land
use and land cover on private lands in the Upper Midwest, USA. J Environ Manage
59(4):247–263

330 References



Brown JA (2003) Designing an efficient adaptive cluster sample. Environ Ecol Stat
10(1):95–105

Brown JA, Manly BJF (1998) restricted adaptive cluster sampling, Environ Ecol Stat
5(1):49–63

Brown JK (1995) Fire regimes and their relevance to ecosystem management. In:
Proceedings of the Society of American Foresters National Convention, Anchorage,
18–22 September 1994. Society of American Foresters, Washington, DC, pp 171–178

Brown S (1997) Estimating biomass and biomass change in tropical forests. FAO
forestry paper no 134. FAO, Rome

Bruce D, Max TA (1990) Use of profile equations in tree volume estimation. In: LaBau
J, Cunia T (eds) State-of-the-art methodology of forest inventories. U S Dep Agric
Gen Techn Rep PNW 263:213–220

Brus DJ, Jansen MJW, De Gruijter JJ (2002) Optimizing two- and three-stage designs
for spatial inventories of natural resources by simulated annealing. Environ Ecol Stat
9(1):71–88

Brünig EF (1973) Species richness and stand diversity in relation to site and succession
of forests in Sawarak and Brunei (Borneo). Amazoniana 4(3):293–320

Bucur V (1985) Ultrasonic, hardness and X-ray densitometric anaysis of wood ultra-
sonics 23(6):269–275

Burgan RE, RC Rothermel (1984) BEHAVE: Fire behavior prediction and fuel modeling
system – FUEL subsystem. General technical report INT 167. USDA Forest Service

Burk R (1991) Kategoriale Datenanalyse unter komplexem Design. PhD thesis, University
of Freiburg

Burke R (2003) Project management. Wiley, New York
Burnham KP, Anderson DR, Laake JL (1980) Estimation of density from line transect

sampling of biological populations. Wildl Monogr 72
Burrough PA, McDonnel A (2000) Principles of geographic information systems.

Oxford University Press, Oxford
Burschel P, Huss J (2003) Grundriss des Waldbaus. Ulmer, Stuttgart
Cairns MA, Olmsted I, Granados J et al (2003) Composition and aboveground tree

biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol
Manage 186(1–3):125–132

Campbell JB (1996) Introduction to remote sensing, 2nd edn. Taylor and Francis, London
Canada Centre for Remote Sensing (1998) Fundamentals of remote sensing. Natural

Resources Canada, Ottawa
Canada Centre for Remote Sensing (2003) Principles of remote sensing. Centre for

Remote Imaging, Sensing and Processing (CRISP), National University of
Singapore. http:// www.crisp.nus.edu.sg/~research/tutorial/rsmain.htm

Cannell MGR (1982) Untersuchungen zur Wuchsdynamik junger Kiefernbestände.
Dissertation, Ludwig Maximilian University, Munich

Cannell MGR, Milne R, Hargreaves KJ, Brown TAW, Cruickshank MM, Bradley RI,
Spencer T, Hope D, Billett MF, Adger WN, Subak S (1999) National inventories of
terrestrial carbon sources and sinks: the UK experience. Clim Change 42(3):505–530

Cao QV (2004) Predicting parameters of a Weibull function for modeling diameter
distribution. For Sci 50:682–685

Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation
cover, and leaf area index. Remote Sensing Environ 62:241–252

References 331



Carroll RJ, Ruppert D, Stefanski LA (1995) Measurement error in nonlinear models.
Chapman and Hall, London

Casella G, Berger RL (2002) Statistical inference. Duxbury, London
Caetano MS, Mertes LAK, Pereira JMC (1994) Using spectral mixture analysis for fire

severity mapping. In: Proceedings of 2nd international conf on forest fire research,
Coimbra, pp 667–677

Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002a) Designing a spectral index
to estimate vegetation water content from remote sensing data, part 1. Theoretical
approach. Remote Sensing Environ 82:188–197

Ceccato P, Flass S, Grégoire J-M (2002b) Designing a spectral index to estimate vegeta-
tion water content from remote sensing data, part 2. Validation and applications.
Remote Sensing Environ 82:198–207

Cervantes V, Arriaga V, Meave J et al (1998) Growth analysis of nine multipurpose
woody legumes native from southern Mexico. For Ecol Manage 110(1–3):329–341

Chandler C, Cheney P, Thomas P, Trabaud L, Williams D (1983) Fire in forestry, vol 1.
Forest fire behavior and effects. Wiley, New York

Chandrasekharan C (1992) Terminology, definition and classification of forest products
other than wood. FAO corporate document repository. http://www.fao.org/
documents/ show_cdr.asp?url_file=/docrep/V7540e/V7540e28.htm

Chandrasekharan C (1995) Terminology, definition and classification of forest prod-
ucts other than wood. In: Report of the international expert consultation on non-
wood forest products, Yogyakarta, Indonesia, 17–27 January 1995. Non-wood forest
products no 3. FAO, Rome, pp 345–380

Chandra-Sekar C, Deming WE (1949) On a method of estimating birth and death rates
and the extent of registration. J Am Stat Assoc 44(101):21–31

Chavez P, Bauer B (1982) An automatic optimum kernal-size selection technique for
edge enhancement. Remote Sensing Environ 12:23–38

Chen D (1998) Measurement errors in line transect surveys. Biometrics 54(3):899–908
Chen D, Cowling A (2001) Measurement errors in line transect surveys where detectabil-

ity varies with distance and size. Biometrics 57(3):732–742
Chen D, Shao J (2001) Jackknife variance estimation for nearest-neighbor imputation.

J Am Stat Assoc 96(453):260–269
Chen D, Stow DA, Tucker L, Daeschner S (2001) Detecting and enumerating new

building structures utilizing very-high resolution image data and image processing.
Geocarto Int 16:69–82

Cheng Tan L, Ruiz Pérez M, Ibch M (1996) Non-timber forest product database.
CIFOR special publication. CIFOR, Jakarta

Cherrill AJ, Fuller RM (1994) The use of classified Landsat-5 thematic mapper imagery
in the characterization of landscape composition: a case study in northern England.
J Environ Manage 40(4):357–377

Chilès J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York
Chirici G, Corona P, Marchetti M, Portoghesi L, Travaglini D (2002) Feasibility assess-

ment very high resolution satellite imagery for hierarchical classification of burnt
pine stands in a Mediterranean coastal environment. Atti del III congresso SISEF
Alberi e foreste per il nuovo millennio, pp 67–72

Chirici G, Corona P, Marchetti M, Travaglini D (2003a) Testing Ikonos and Landsat 7
ETM+ potential for stand-level forest type mapping by soft supervised approach.

332 References



In: Corona P, Kohl M, Marchetti M (eds) Advances in forest inventory for sustainable
forest management and biodiversity monitoring. Forestry sciences, vol 76. Kluwer,
Dordrecht, pp 71–87

Chirici G, Corona P, Travaglini D (2003b) Sperimentazione di tecniche di classifi-
cazione object-oriented di immagini QuickBird a fini forestali. Ital For Mont
58(4):231–250

Chong GW, Reich RM, Kalkhan MA, Stohlgren TJ (2001) New approaches for sam-
pling and modeling native and exotic plant species richness. West North Am Nat
61(3):328–335

Chopra K, Kumar P (2004) Forest biodiversity and timber extraction: an analysis of the
interaction of market and non-market mechanisms. Ecol Econom 49(2):135–148

Chou Y-H (1997) Exploring spatial analysis in geographich information systems.
OnWord, Albany

Chrisman NR (1987) The accuracy of map overlays: a reassessment. Landscape Urban
Planning 14:427–439

Christman N (2000) A review of quadrat-based sampling of rare, geographically clus-
tered populations. J Agric Biol Environ Stat 5(2):168–201

Christman N (2001) Exploring geographic information. Wiley, New York
Christman N (2002) Efficiency of some sampling designs for spatially clustered popu-

lations. Envirometrics 8:145–166
Chung YS, LE HV (1984) Detection of forest-fire smoke plumes by satellite imagery.

Atmos Environ 18(10)2143–2151
Chuvieco E, Congalton RG (1988) Mapping and inventory of forest fires from digital

processing of TM data. Geocarto Int 4:41–53
Chuvieco E, Martin MP (1994) Global fire mapping and fire danger estimation using

AVHRR images. Photogramm Eng Remote Sensing 60(5)563–570
Chuvieco E, Vaughan P, Riano D, Cocero D (2000) Fire danger and fuel moisture con-

tent estimation from remotely sensed data. Proceedings crossing the millennium:
integrating spatial technologies and ecological principles for a new age in fire man-
agement. US University of Idaho, model. Remote Sensing Environ 79:225–242

Clark I (1979) Practical geostatistics. Applied Sciences, London
Clayton G, Cox TF (1986) Some robust density esimators for spatial point processes.

Biometrics 42:753–767
Clement J (1988) Inventorying and monitoring forests. Proceedings of joint meetings

of IUFRO subject groups S4.01, S4.02, S4.04 and S6.05 at the 18th IUFRO world
congress, Ljubljana, 1986

Cochran WG (1977) Sampling techniques. Wiley, New York
Cohen WB (1991) Response of vegetation indices changes in three measures of leaf

water stress. Photogramm Eng Remote Sensing 57 195–202
Congalton RG (1988) Using spatial autocorrelation analysis to explore the errors in

maps generated from remotely sensed data. Photogramm Eng Remote Sensing
54(5):587–592

Congalton RG (1991) A review of assessing the accuracy of classifications of remotely
sensed data. Remote Sensing Environ 37:35–46

Congdon RG (2001) Bayesian statistical modelling. Wiley, Chichester
Cordero LDP, Kanninen M (2002) Wood specific gravity and aboveground biomass of

Bombacopsis quinata plantations in Costa Rica. For Ecol Manage 165:3–9

References 333



Cormack RM (1993) Variance of mark-recapture estimates. Biometrics 49:1188–1193
Corona P, Zeide B (eds) (1999) Contested issues of ecosystem management. Food

Product, Binghampton
Corona P, Köhl M, Marchetti M (eds) (2003) Advances in assessments for sustainable

forest management and biodiversity monitoring. Kluwer, Dordrecht
Correll RL, Cellier KM (1987) Effects of plot size, block size and buffer rows on the pre-

cision of forestry trials. Aust For Res 17:11–18
Cotta H (1804) Systematische Anleitung zur Taxation der Waldungen. Sander, Berlin
Coulter L, Stow DA, O’Leary J, Hope A, Longmire P, Peterson S (2000) Comparison of

high-spatial resolution imagery for efficient generation of GIS vegetation layers.
Photogramm Eng Remote Sensing 66:1329–1335

Cox DD, Cox LH, Ensor KB (1997) Spatial sampling and the environment: some issues
and directions. Environ Ecol Stat 4:219–233

Cressie NAC (1991) Statistics for spatial data. Wiley, New York
Cressie N, Chan NH (1989) Spatial modeling of regional variables. J Am Stat Assoc

84:393–401
Crow TR (1978) Common regressions to estimate tree biomass in tropical stands. For

Sci 24:110–114
Cruickshank MM, Tomlinson RW, Trew S (2000) Application of CORINE land-cover

mapping to estimate carbon stored in the vegetation of Ireland. J Environ Manage
58(4):269–287

Cunia T (1979) On sampling trees for biomass table construction: some statistical
comments. In: Frayer WE (ed) Forest resource inventories, workshop proceedings,
vol II. Colorado State University, Ft Collins, pp 643–664

Cunia T (1981) Some theory on reliability of volume estimates in a forest inventory
sample. For Sci 11(1):115–128

Cuzick J (2001) Event-based analysis times for randomised clinical trials. Biometrika
88(1):245–253

Czajkowski K, Goward S, Shirey D, Walz A (2002) Thermal remote sensing of near sur-
face water vapor. Remote Sensing Environ 79:253–265

Czaplewski RL (1989) Graphical analysis of stem taper in model building. Can J For
Res 19:522–524

Czaplewski RL, Brown AS, Walker RC (1989) Profile models for estimating log end
diameters in the Rocky Mountain Region. U S Dep Agric For Serv Res Pap RM 284

Dalenius T, Gurney M (1951) The problem of optimal stratification. Skand Akt
34:133–148

da Silva JA (1982) Aplicacao do relascopio de banda larga em inventarios de florestas
tropicais. Silvic Sao Paulo 16A(1):601–603

Datta GS, Fay RE, Ghosh M (1991) Hierarchical and empirical Bayes multivariate
analysis in small area estimation. Proceedings of the Bureau of the Census 1991.
Annual Research Conference. US Bureau of the Census, Washington, DC, pp 63–79

David M (1977) Geostatistical ore reserve estimation. Elsevier, Amsterdam
Davis-Case D (1990) The community’s toolbox: the idea, methods and tools for par-

ticipatory assessments, monitoring and evaluation in community forestry. FAO,
Rome

Davison AC, Hinkley DV (1988) Saddlepoints approximations in resampling methods.
Biometrika 75(3):417–431

334 References



De Beer JH, McDermott M (1989) The economic value of non-timber forest products
in South East Asia. The Netherlands Committee for IUCN, Amsterdam

de Carvalho JOP (1981) Distribuicao diametrica de especies comerciais e potenciais
em floresta tropical umida natural na Amazonia, Boletim de Pesquisa no 23. Centro
de Pesquisa Agropecuaria do Tropico Umido, EMBRAPA, Brasília,

Dees MG (1988) Einfache statistische Analyse bei ordinaler Skalierung der
Schadensvariablen und einer Auswahl der Bäume in Probekreisen. Forstliche
Biometrie und Informatik, Vorträge anläßlich der 2 Sektionstagung. Mitt FVA
Baden-Württemberg Heft 142:85–99

de Gier A (1989) Woody biomass for fuel. ITC publication 9. ITC, Enschede
Dejhan K, Wisetphanichkij S, Kerdyou P, Cheevasuvit F, Mitatha S, Pienvijarnpong C,

Soonyeekan C (2000) Flood area assessment with fused multi-spectral multi-sensor
by using texture feature analysis and neural network classification. Paper presented
at the 21st Asian conference on remote sensing (ACRS 2000), Taipei, Taiwan, 4–8
December 2000

del Valle JI (1986) La ecuacion de crecimiento de von Bertalanffy en la determinacion
de la edad y el crecimiento de arboles tropicales. Rev Fac Nac Agron Medellin
39(19):61–74

De Mers MN (1997) Fundamentals of geographic information systems. Wiley, New York
De Mers MN (2000) Fundamentals of geographic information systems, 2nd edn.

Wiley, New York
Denison DGT, Holmes CC, Mallick BK, Smith AFM (2002) Bayesian methods for non-

linear classification and regression. Wiley, New York
Deutsch CV (2002) Geostatistical reservoir modelling. Oxford University Press, Oxford
Devall MS, Parresol BR, Wright SJ (1995) Dendrochronological analysis of Cordia

alliodora, Pseudobombax septenatum and Annona sraguei in central Panama. Int
Assoc Wood Anat J 16:411–424

De Vasconcelos MJP, Gonçalves A, Catry FX, Paúl JU, Barros FG (2002) A working pro-
totype of a dynamic geographical information system. Int J Geogr Inf Sci 16(1):69–91

de Vries PG (1986) Sampling theory for forest inventory. A teach yourself course.
Springer, Berlin Heidelberg New York

Diblasi A, Bowman AW (2001) On the use of the variogram in checking for independ-
ence in spatial data. Biometrics 57(211):218

Dobbertin M, Biging GS (1996) A simulation study of the effect of scene autocorrelation,
training sample size and sampling method on classification accuracy. Can J Remote
Sensing 22(4):360–367

Dobson JE (1995) Defining the university consortium for geographic information
sciences. GIS World 8(3):44–46

Draper NR, Smith H (1981) Applied regression analyses. Wiley, New York
Dunn RM, Out DO & Wong JLG (1994) Report of the reconnaissance inventory of the

high forest and swamp forest areas in Cross River State, Nigeria. Cross River State
Forestry Project (ODA Assisted), Calabar

Dutt CBS, Udayalakshmt V, Sadhasivaiah AS (1994) Role of remote sensing in forest
management, NRSA, Bangalore. http:// www.GISdevelopment.net

Dykstra DP (1997) Information systems in forestry Unasylva 189:10–15
EAFV (1988) Schweizerisches Landesforstinventar, Ergebnisse der Erstaufnahme

1982–1986 Eidg Anstalt Forstl Versuchswes Ber 304

References 335



Eastman JR (1999) Idrisi 32 – guide to GIS and image processing. Clark University,
Worcester

EC (1992) Coordination of information on the environment land cover (CORINE).
European Commission, Brussels

EC (1997) Study on European forestry information and communication System:
report on forest inventory and survey systems. European Commission, Luxembourg

Eckstein D, Ogden J, Jacoby GC, Ash J (1981) Age and growth rate determination in
tropical trees: the application of dendrochronological methods. In: Borman FH,
Berlyn G (eds) Age and growth rate of tropical trees: new directions for research.
Bull Sch For Environ Stud Yale Univ 94:83–106

Edwards I (1991) Quantitative ethnobotanical survey of a hectare of tropical forest
near Toraut, Dumogo Bone National Park, Northern Sulawesi, Indonesia. Sulawesi
Ethnobotanical Project. Preliminary report

Efford M (2004) Density estimation in live-trapping studies. Oikos 106(3):598–610
Efron B (1982) The jackknife, and other resampling plans. Society of Industrial and

Applied Mathematics, Philadelphia
Efron B (1994) Missing data, imputation and the bootstrap. J Am Stat Assoc 89:463–474
Efron B (2004) The estimation of prediction error: covariance penalties and cross-

validation. J Am Stat Assoc 99 (467):619–632
Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall,

Boca Raton
Eichhorn F (1904) Beziehung zwischen Bestandeshöhe und Bestandesmasse. Allg Forst

J Z 80:45–49
Ekström M, Sjöstedt de Luna S (2004) Subsampling methods to estimate the variance

of sample means based on non-stationary spatial data with varying expected values.
J Am Stat Assoc 99(465):82–95

Ella AB, Escobin RP (1993) Taxonomy and wood anatomy of the manggasinoro species
(shorea spp.): Dipterocarpaceae. The Philippine Journal of Science, Forest Products
Research and Development Institute, Department of Science and Technology
College, Laguna, Philippines

Ella AB, Pitarguen (1998) Identification and end-use characterization of unexploited
woody vines based on morphological and anatomical feature. In: Abstracts of the
4th pacific regional wood anatomy conference, New horizons in wood anatomy on
the threshold of a new miielium, 26–29 October

Elliot MR, Little RJA (2000) A Bayesian approach to combining information from a
census, a coverage measurement survey, and demographic analysis. J Am Stat Assoc
95(450):351–362

Enquist BJ, AJ Leffler (2001) Long-term tree ring chronologies from sympatric tropi-
cal dry-forest trees: individualistic responses to climatic variation. J Trop Ecol
17:41–60

Environmental Systems Research Institute (1994) Understanding GIS: the ARC/INFO
method, version 7 for UNIX and Open VMS. ESRI, Redlands

Fabbro L (2000) Amazonia biodiversity estimation using remote sensing and indigenous
taxonomy. ERS-Envisat symposium Looking down to earth in the new millennium
SP-461. European Space Agency Publication Division

Fall A, Fall J (2001) A domain specific language for models of landscape dynamics. Ecol
Modell 141:1–18

336 References



FAO (1995) Forest resources assessment 1990 – global synthesis. FAO forestry paper
124. FAO, Rome

FAO (1998) Guidelines for the management of tropical forests 1. The production of
wood. FAO forestry paper 135. FAO, Rome

FAO (2001) Forest resources assessment 2000, main report. FAO forestry paper 140.
FAO, Rome

FAO (2003) State-of-the-world’s forests. FAO, Rome
FAO/ECE/ILO (1992) Proceedinds of the joint FAO/ECE/ ILO committee seminar on

the use of information systems in forestry, Garpenberg, Sweden, 14–18 September
1992. ECE/ FAO Agriculture and Timber Division, Geneva

Faraklioti M, Petrou M (2000) Recovering more classes than avilable bands for sets of
mixed pixels in satellite images. Image Vision Comput 18:705–713

Fearnside PM, Graca PMLD, Leal N et al (1999) Tropical forest burning in Brazilian
Amazonia: measurement of biomass loading, burning efficiency and charcoal for-
mation at Altamira, Para. For Ecol Manage 123(1):65–79

Felix-Medina MH (2003) Asymptotics in adaptive cluster sampling. Environ Ecol Stat
10(1):61–82

Ferrare RA, Fraser RS, Kaufman YJ (1990) Saatellite measurements of large-scale air
pollution: measurements of forest fire smoke. J Geophys Res 95(D7):9911–9925

Fienberg SE, Holland PW (1973) Simultaneous estimation of multinomial cell probabil-
ities. J Am Stat Assoc 68:683–691

Fisher AR, Gorbert AS, Williams CB (1943) The relation between the number of
species and the number of individuals in a random sample of an annual population.
J Anim Ecol 12:42–58

Flewelling JW, Thomas CE (1984) An improved estimator for merchantable basal area
growth based on point samples. For Sci 30:813–821

Flores LA, Martínez LI (2000) Land cover estimation in small areas using ground sur-
vey and remote sensing. Remote Sensing Environ 74:240–248

Foody GM (1996) Fuzzy modelling of vegetation from remotely sensed imagery. Ecol
Modell 85:3–12

Foody GM (2000) Accuracy of thematic maps derived from remote sensing. Accuracy
2000. In: Heuvelink GBM, Lemmens MJPM (eds) Proceedings of the 4th international
symposium on spatial accuracy assessment in natural resources and environmen-
tal sciences. Delft University Press, Amsterdam, pp 217–224

Foresman TW (ed) (1998) The history of geographic information systems: perspec-
tives from the pioneers. Prentice Hall, Upper Saddle River

Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York
Franco-Lopez H, Ek AR, Bauer ME (2001) Estimation and mapping of forest stand

density, volume, and cover type using the k-nearest neighbors method. Remote
Sensing Environ 77:251–274

Franklin J (2001) Remote sensing for sustainable forest management. Lewis, Boca Raton
Franklin J, Woodcock CE, Warbington R (2000) Digital vegetation maps of forest lands

in California: integrating satellite imagery, GIS modeling, and field data in support
of resource management. Photogramm Eng Remote Sensing 66:1209–1217

French NHF, Kasischke ES, Bourgearu-Chavez LL, Berry D (1995) Mapping the loca-
tion of wildfires in Alaskan boreal forests using AVHRR imagery. Int J Wildland Fire
5(2):55–62

References 337



Fries J, Matérn B (1965) On the use of multivariate methods for the construction of
tree taper curves. In: IUFRO 3rd conference of the advisory group on forest statis-
tics section 25, Jouy-en-Josas, France, INRA 3:277–286

Fröhlich C, Mettenleiter M (2004) Terrestrial laser scanning: new perspectives in 3D
surveying. In: Thies M, Koch B, Spiecker H, Weinacker H (eds) Laser-scanners for
forest and landscape assessment. Int Arch Photogramm Remote Sensing Spatial Inf
Sci 36(8/W2):7–13

Frost P (1990) Wood biomass of Brachystegia spiciformis in Zimbabwe, internal
report. Forest Research Centre, Highlands, Harare

Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic.
Boston

Fuller WA (1987) Measurement error models. Wiley, New York
Furness GO (1976) The dispersal, age-structure and natural enemies of the long-tailed

mealy bug, Pseudococcus longispinus (Targoni-Tozetti) in relation to sampling and
control. Aust J Zool 24:237–247

Gamba P, Houshmand B (2001) An efficient neural classification chain for optical and
SAR urban images. Int J Remote Sensing 22:1535–1553

Garouani AEl, Boussema MR, Ennabli M (2000) Utilisation du systeme d’information
geographique (SIG) et des donnees de teledetection pour l’estimation de l’evapo-
transpiration reelle a l’echelle regionale. Int J Remote Sensing 21(15):2811–2830

Gaudard M, Karson M, Linder E, Sinha D (1999) Bayesian spatial prediction. Environ
Ecol Stat 6(2):147–171

Gausman HW (1977) Reflectance of leaf components. Remote Sensing Environ 6:1–9
Gertner GZ (1984) The sensitivity of measurement error in stand volume estimations.

Can J For Res 16:1120–1123
Gertner GZ, Köhl M (1992) An assessment of some nonsampling errors in a national

survey using an error budget. For Sci 38:525–538
Ghosh M, Meeden G (1997) Bayesian methods for finite population sampling.

Chapman and Hall, London
Ghosh M, Rao JNK (1994) Small area estimation: an appraisal. Stat Sci 9:55–93
Gholz HL, Curran PJ, Kupiec JA, Smith GM (1997) Assessing leaf area and canopy bio-

chemistry of Florida pine plantations using remote sensing. In: Gholz HL, Nakane
K, Shimoda H (eds) The use of remote sensing in the modeling of forest productiv-
ity. Kluwer, Dordrecht, pp 3–22

Giles RH, Trani MK (1999) Key elements of landscape pattern measures. Environ
Manage 123:477–481

Gillies RR, Carlson TN, Cui J, Kustas WP, Humes KS (1997) A verification of the ‘tri-
angle’ method for obtaining surface soil water content and energy fluxes from
remote measurements of the NDVI and surface radiant temperature. Int J Remote
Sensing 18(15):3145–3166

Gjertsen AK, Tomppo E, Tomter S (1999) National forest inventory in Norway: using
sample plots, digital maps, and satellite images. In: IEEE 1999 international geo-
science and remote sensing symposium, Hamburg, pp 729–731

Glackin DL (1998) International space-based remote sensing overview: 1980–2007.
Can J Remote Sensing 24:307–314

Godambe VP, Thompson ME (1988) On single stage unequal probability sampling. In:
Krishnaiah PR, Rao CR (eds) Sampling. Elsevier, Amsterdam, pp 111–123

338 References



Godoy R, Lubowski R, Markandya A (1993) A method for the economic valuation of
non-timber tropical forest products. Econ Bot 47(3):220–233

Goetz SJ (1997) Multi-sensor analysis of NDVI, surface temperature and biophysical
variables at a mixed grassland site. Int J Remote Sensing 18(1):71–94

Goelz SJ, Burk TE (1996) Measurement error causes bias in site index equations. Can J For
Res 26:1585–1593

Gold RZ (1963) Tests auxiliary to chi-squared tests in a Markov chain. Ann Math Stat
34:56–74

Gomarasca MA (2004) Elementi di geomatica. Associazione Italiana di Telerilevamento,
Milan

Gonzales RC, Woods RE (1992) Digital image analysis. Addison-Wesley, Reading
Gonzalez-Alonso F, Cuevas JM, Casanova JL, Caille A, Illera P (1997) A forest fire risk

assessment using NOAA-AVHRR images in the Valencia area, eastern Spain. Int
J Remote Sensing 18(10):2201–2207

Goodchild MF, Gopal S (1989) The accuracy of spatial databases. Taylor and Francis,
London

Goodenough D, Bhogal AS, Fournier R, Hall RJ, Iisaka J, Leckie D, Luther JE,
Magnussen S, Niemann O, Strome WM (1998) Earth observation for sustainable
development of forests, project description. Natural Resources Cananda, Victoria

Goodman LA (1964) Simultaneous confidence intervalls for contrasts among multin-
omial proportions. Ann Math Stat 35:716–725

Goodman LA (1965) On simultaneous confidence intervalls for multinomial propor-
tions. Technometrics 7(2):247–254

Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University
Press, New York

Goovaerts P (1999) Geostatistics for natural resources evaluation. Oxford University
Press, Oxford

Gottle A, Sène E-H (1997) Forest functions related to protection and environmental con-
servation. http://www.fao.org/ documents/show_cdr.asp?url_file=/docrep/w6251e/
w6251e06.htm

Goulding C (1979) Cubic spline curves and calculations of volume of sectionally meas-
ured trees, N Z J For Sci 9:89–99

Gove JH, Patil GP, Swindel BF, Taillie C (1994) Ecological diversity and forest manage-
ment. In: Patil GP, Rao CR (eds) Environmental statistics. Handbook of statistics, vol
12. Elsevier, Amsterdam, pp 409–462

Gove JH, Patil GP (1998) Modeling the basal area-size distribution of forest stands: a
compatible approach. For Sci 44: 285–297

Goward S, Markham B, Dye D, Dulaney W, Yang J (1991) Normalized difference vege-
tation index measurements from the advanced very high resolution radiometer.
Remote Sensing Environ 35:257–277

Goward S, Xue Y, Czajkowski KP (2002) Evaluating land surface moisture conditions
from the remotely sensed temperature/ vegetation index measurements. An explo-
ration with the simplified simple biosphere model. Remote Sensing Environ
79:225–242

Grandell J, Pulliainen J, Hallikainen M (1998) Subpixel land use classification and
retrieval of forest stem volume in the Boreal forest zone by employing SSM/I data.
Remote Sensing Environ 63:140–154

References 339



Graves HS (1906) Forest mensuration. Wiley, New York,
Gray A (2003) Monitoring stand structure in mature coastal Douglas-fir forests: effect

of plot size. For Ecol Manage 175(1–3):1–16
Green EJ, Clutter M (2000) Using auxiliary information to estimate stand tables. Can J For

Res 30:865–872
Green EJ, Valentine HT (1998) Bayesian analysis of the linear model with heterogenous

variance. For Sci 44 (1):134–138
Green EJ, Thomas CE, Strawderman WE (1987) Stein-rule estimation of timber

removals by county. For Sci 33(4):1054–1061
Green EJ, Köhl M, Strawderman WE (1992) Improved estimates for cell values in a two

way table. Biom Inform Med Biol. 23:24–30
Gregoire TG (1998) Design-based and model-based inference in survey sampling:

appreciating the difference. Can J For Res 28:1429–1447
Gregoire TG, Scott ZT (1990) Sampling at stand boundaries: a comparison of the sta-

tistical performance among eight methods. In: Burkhart HE, Bonnor GM, Lowe JJ
(eds) Research in forest inventory, monitoring, growth and yield. Publication FWS-
3-90. School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and
State University, Blacksburg, pp 78–85

Gregoire TG, Scott CT (2003) Altered selection probabilities caused by avoiding the
edge in field surveys. J Agric Biol Environ Stat 8(1):36–47

Gregoire TG, Valentine HT (1996) Sampling methods to estimate stem length and sur-
face area of tropical tree species. For Ecol Manage 83:229–235

Gregoire TG, Valentine HT (1999) Composite and calibration estimation following 3P
sampling. For Sci 45(2):179–185

Gregoire TG, Walters DK (1988) Composite vector estimator by weighting inversely
proportional to variance. Can J For Res 18:282–284

Gregoire TG, Valentine HT, Furnival GM (1995) Sampling methods to estimate foliage
and other characteristics of individual trees. Ecology 76(4):1181–1194

Grosenbaugh LR (1952) Plotless timber estimates – new, fast, easy. J For 50:32–37
Grover KD, Steven MD, Rondeaux G, Clark JA (2000) Estimating albedo from limited

spectral and angular data. Int J Remote Sensing 21(1):155–165
Grundy IM (1995) Regeneration and management of Brachystegia spiciformis and

Julbernardia globiflora in Miombo Woodland, Zimbabwe. PhD thesis, University of
Oxford

Günther O, Humbolt GO (1998) Environmental information systems. Springer, Berlin
Heidelberg New York, p 244

Gurnaud A (1878) Cahier l’aménagement pour l’application de la méthode par conte-
nance exposée sur la forêt des Eperous. Paris

Gustavson EJ, Parker GR (1992) Relationships between landcover proportion and
indices of landscape spatial pattern. Landscape Ecol 7:101–110

Guyot G, Riom J (1988) Review of factors affecting remote sensing of forest canopies.
Proceedings of the seminar on remote sensing of forest decline attributed to air pol-
lution. International Institute of Applied System Analysis, Laxenburg, pp 8:1–8:26

Haara A, Maltamo M, Tokola T (1997) The k-nearest-neighbour method for estimat-
ing basal area diameter distribution. Scand J For Res 12:200–208

Hailey JR, Morris PI (1988) Application of scanning and imaging techniques to assess
decay and wood quality in logs and standing trees. Forintex Canada Corporation,
Vancouver

340 References



Haines Young R, Chopping M (1996) Quantifying landscape structure: a review of
landscape indices and their application to forested landscapes. Prog Phys Geogr
20(4):418–445

Haining RP, Arbia G, Griffith DA (2003) Spatial error propagation when computing
linear combinations of spectral bands: the case of vegetation indices. Environ Ecol
Stat 10:375–396

Hall AV, de Winter M, de Winter B, van Oosterhout SAM (1980) Threatened plants of
South Africa. South African National Scientific Programmes report no 45. CSIR,
Pretoria

Hall P, Melville G, Welsh AH (2001) Bias correction and bootstrap methods for a spa-
tial sampling scheme. Bernoulli 7(6):829–846

Hann WJ, Bunnel DL (2001) Fire and land management planning and implementation
across multiple scales. Int J Wildland Fire 10:389–403

Hann WJ, Jones JL, Keane RE, Hessburg PF, Gravenmier RA (1998) Landscape dynam-
ics. J For 96(10):10–15

Hanselman DH, Quinn TJ, Lunsford C, Heifetz J, Clausen D (2003) Applications in
adaptive cluster sampling of Gulf of Alaska rockfish. Fish Bull 101(3):501–513

Hara Y, Atkins RG, Shin RT, Jin AK, Yueh SH, Kwok R (1995) Application of neural net-
works for sea ice classification in polarimetric SAR images. IEEE Trans Geosci
Remote Sensing 33(3):740–748

Hardinsky MA, Klemas V, Smart RM (1983) The influence of soil salinity, growth form
and leaf moisture on the spectral radiance of Spartinia alterniflora canopies.
Photogramm Eng Remote Sensing 49:77–83

Hardy CC, Schmidt KM, Menakis JM, Samson NR (2001) Spatial data for national fire
planning and fuel management. Int J Wildland Fire 10:353–372

Hartig GL (1795) Anweisung zur Taxation der Forste oder zur Bestimmung des
Holzertrags der Wälder. Heyer, Gießen

Hartley HO (1966) Systematic sampling with unequal probability and without replace-
ment. J Am Stat Assoc 71:739–748

He HS, Ventura SJ, Mladenoff DJ (2002) Effects in spatial aggregation approaches on
classified satellite imagery. Int J Geogr Inf Sci 16(1):93–109

Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. J Agric Biol
Environ Stat 9(2):181–199

Heinselman ML (1981) Fire intensity and frequency as factors in the distribution and
structure of Northern ecosystems. In: Proceedings of the conference Fire regimes
and ecosystem properties, Honolulu, 11–15 December 1978. General technical
report WO-26. USDA Forest Service, Washington, DC, pp 7–57

Hemmila T, Sipi M (2004) The effect of site and tree size on the quality of swan tim-
ber from small logs of Scots pine. Pap Puu Pap Timber 86(7):502–507

Herfert MR, Lulla KP (1990) Mapping continental-scale biomass burning and smoke
palls over the Amazon Basin as observed from the Space Shuttle. Photogramm Eng
Remote Sensing 10(56):1367–1373

Herold M, Gardner M, Hadley B, Roberts D (2002) The spectral dimension in urban
land cover mapping from high-resolution optical remote sensing data. In: Proceedings
of the 3rd symposium on remote sensing of urban areas, Istanbul, 11–13 June

Herzog F, Lausch A, Müller E, Thulke H-H (1999) Das Monitoring von Landschaft-
sveränderungen mit Landschaftsstrukturmaßen – Fallstudie Espenhain. IÖR-Schr
29:93–107

References 341



Hess GR, Bay JM (1997) Generating confidence intervals for composition-based land-
scape indexes. Landscape Ecol 12(5):309–320

Higgins HG, Phillips FH, Logan AF, Balodis V (1973) Pulping of tropical hardwoods:
individual and mixed species, wood and paper properties, resource assessment.
Division of Applied Chemistry technological paper no 70. CSIRO, Collingwood

Hirsch KG (2000) Canadian Forest Fire Behavior Prediction (FBP) System: user’s
guide. Special report no 7. Natural Resources Canada. Canada Forest Service-
Northern Center

Hitchcock HC, Hoffer RM (1974) Mapping a recent forest fire with ERTS-1 MSS data.
LARS information note 032674. LARS, West Lafayette

Hohenadl W (1936) Die Bestandesmessung. Forstwiss Centralbl 58:51–61, 69–86,
114–127

Holmgren P, Thuresson T (1998) Satellite remote sensing for forestry planning – a
review. Scand J For Res 13:90–110

Holmgren P, Joyce S, Nilsson M, Olsson H (2000) Estimating stem volume and basal
area in forest compartments by combining satellite image data with field data. Scand
J For Res 15(1):103–111

Holmström H (2002) Estimation of single-tree characteristics using the kNN method
and plotwise aerial photograph interpretations. For Ecol Manage 167:303–314

Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995)
Stratosphere-troposphere exchange. Rev Geophys 33:403–439

Hord MR, Brooner W (1976) Land-use map accuracy criteria. Photogramm Eng
Remote Sensing 42:671–677

Hug C, Ullrich A, Grimm A (2004) LiteMapper-5600: a waveform-digitizing LIDAR
terrain and vegetation mapping system. In: Thies M, Koch B, Spiecker H, Weinacker
H (eds) Laser-scanners for forest and landscape assessment. Int Arch Photogramm
Remote Sensing Spatial Inf Sci36(8/W2):24–29

Husby E (1995) Wilderness quality mapping in the Euro-Arctic Barents region. DN-
rapport 1995-4. Directorate for Nature Management, Trondheim.

Hush B (1962) Tree weight relationships for white pine in southeastern New
Hampshire. Univ N H Agric Exp Stat Tech Bull 106

Hush B, Miller CI, Beers TW (1982) Forest mensuration. Wiley, New York
Hush B, Miller CI, Beers TW (2003a) Forest mensuration, 3rd edn (reprinted). Krieger,

Malabar
Hush B, Beers TW, Kershaw JA (2003b) Forest mensuration, 4th edn. Wiley, New York
Hutchinson ID (1985) Rapid evaluation of tropical forests by the relative occurence of

botanical families. Commonw For Rev 64(1):43–56
Inglis A (1991) Harvesting local forestry knowledge: A comparison of RRA and con-

ventional surveys. RRA notes 12. Sustainable agricultural programme. IIED, London
IPCC (2004) Good practice guidance for land use, land-use change and forestry.

http://www.ipcc-nggip. iges.or.jp/public/gpglulucf/gpglulucf.htm
Isaacson DL, Smith HG, Alexander CJ (1982) Erosion hazard reduction in a wildfire

damaged area. In: Remote sensing for resource management. Jo-hannsen CJ, Sanders
JL (eds). Soil Conservation Society of America. Ankeny, pp 179–190

Ito Y, Omatu S (1998) A polarimetric SAR data classification method using neural net-
works. IEEE Int Geosci Remote Sensing 1790:246–251

Itten KI, Nanayakkara SDFC, Humbel R, Bichsel M, Sommer M (1985) Inventory and
monitoring of Sri Lankan forests using remote sensing techniques. In: Schmid-Haas

342 References



P (ed) Inventorying and monitoring endangered forests. Proceedings of the IUFRO
conference, Zurich, 19–24 August 1985, pp 93–98

ITTO (2004) For services rendered: the current status and future potential of markets
for the ecosystem services provided by tropical forests. ITTO technical series 21,
International Tropical Timber Organization, Yokohama

IUFRO (1959) The standardization of symbols in forest mensuration. University of
Maine, Orono

Jackson WJ, Ingeles AW (1998) Participatory techniques for community forestry–a
field manual. IUCN, Gland

Jakubauskas M, Lulla KP, Mausel PW (1990) Assessment of vegetation change in a fire-
altered forest landscape. Photogramm Eng Remote Sensing 56:371–377

Jensen JR (2000) Remote sensing of the environment: an earth resource perspective.
Prentice Hall, Upper Saddle River

Jensen JR, Cowen DJ (1999) Remote sensing of urban/suburban infrastructure and
socio-economic attributes. Photogramm Eng Remote Sensing 65:611–622

Jessen RJ (1942) Statistical investigations of a sample survey for obtaining farm facts.
Iowa Agric Exp Stat Res Bull 304

Jijia A et al (1989) Detection of forest fires in Da Hinggan Ling region by meteorolog-
ical satellite. Acta Meteorol Sin 3:562–568

Johnson NL, Kotz S, Kemp AW (1992) Univariate discrete distributions. Wiley, New York
Johnston DC (1982) Theory and application of selected multilevel sampling designs.

PhD thesis, Colorado State University, Ft Collins
Jones SG (2004) Non-timber forest products: potential for sustainable forest income.

In: Fladder SL (ed) Towards sustainability for Missouri forests. General technical
report NC-239 – North Central Station. USDA Forest Service, pp 98–105

Jost A (1993) Geostatistische Analyse des Stichprobenfehlers systematischer
Stichproben. Mitt Abt Forstl Biom 93-1

Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, London
Jovanovic BD, Levy PS (1997) A look at the rule of three. Am Stat 51(2):137–139
Jung DH, Kim JY, Chun KS (2001) Development of compromise method between

zero-line and center-line survey for environmentally friendly forest road route selec-
tion. KFRI J For Sci (Seoul) 64:68–77

Kaennel M (1998) Biodiversity: a diversity of definitions. In: Bachmann P, Köhl M,
Päivinen R (eds) Assessment of biodiversity for improved forest planning. Kluwer,
Dordrecht, pp 71–81

Kalton G, Anderson DW (1986) Sampling rare populations. J R Stat Soc Ser A 149:65–82
Kangas A (1996) On the bias and variance in tree volume predictions due to model and

measurement errors. Scand J For Res 11:281–290
Kant Y, Badarinath KVS (2000) Studies on land surface temperature over heteroge-

neous areas using AVHRR data. Int J Remote Sensing 21(8):1749–1756
Kapos V, Iremonger SE (1998) Achieving global and regional perspectives on forest

biodiversity and conservation. In: Bachmann P, Köhl M, Päivinen R (eds)
Assessment of biodiversity for improved forest planning. Kluwer, Dordrecht,
pp 3–13

Kasischke ES, Christensen NL, Stocks, BJ (1995) Fire, global warming and the carbon
balance of boreal forests. Ecol Appl 5:437–451

Kasischke ES, Melack JM, Dobson MC (1997) The use of imaging radars for ecological
applications – a review. Remote Sensing Environ 59:141–156

References 343



Kathleen M, Bergen M, Dobson C (1999). Integration of remotely sensed radar
imagery in modeling and mapping of forest biomass and net primary production.
Ecol Modell 122:257–274

Katila M, Tomppo E (2001) Selecting estimation parameters for the Finnish multi-
source national forest inventory. Remote Sensing Environ 76:16–32

Katila M, Heikkinen J, Tomppo E (2000) Calibration of small-area estimates for map
errors in multi source forest inventory. Can J For Res 30:1329–1339

Kaufman Y, Setzer A, Ward D, Tanre D, Holben B, Menzel P, Pereira M, Rasmussen R
(1992) Biomass burning airborne and spaceborne experiment in the Amazonas
(BASE-A). J Geophys Res 97(D13):14581–14599Kaufman YJ, Tucker CJ, Fung I et al
(1990) Remote sensing of biomass burning in the tropics. In: Goldammer JG (ed)
Fires in the tropical biota. Springer, Berlin Heidelberg New York, pp 371–399

Kaufmann E (1991) Volumenermittlung im zweiten Schweizerischen Landesforstinventar.
Eidg Anstalt Forstl Versuchswes, internal report

Kauth RJ, Thomas GS (1976) The tasseled cap – a graphic description of the spectral-
temporal development of agricultural crops as seen in Landdat. In: Proceedings of
the symposium on machine processing of remotely sensed data, Purdue University,
West Lafayette, 29 June 29–1 July 1976, LARS, West Lafayette, pp 41–51

Keen EA (1950) The relaskop. Emp For Rev 29(3):253–264
Keller M (2001) Aerial photography. In: Brassel P, Lischke H (eds) Swiss National Forest

Inventory: methods and models of the second assessments. WSL, Birmensdorf,
pp 45–64

Kendall M, Stuart A, Ord JK (1983) The advanced theory of statistics. MacMillan,
Simon and Schuster, New York

Key CH (2003) The normalized burn ratio (NBR): a landsat TM radiometric measure
of burn severity. http://nrmsc.usgs.gov/research/ndbr.htm

Kirkman H (1996) Baseline and monitoring methods for seagrass meadows. J Environ
Manage 47(2):191–201

Kish L (1965) Survey sampling. Wiley, New York
Kleinn C (1991) Der Fehler von Flächenschätzungen mit Punkterastern und linienför-

migen Stichproben. Mitt Abt Forstl Biom Univ Freiburg 91-1
Kleinn C (1996) Ein Vergleich der Effizienz von verschiedenen Clusterformen in

forstlichen Grossrauminventuren. Forstwiss Centralbl 115:378–390
Kleinn C, Laamanen R, Malla SB (1996) Integrating the assessment of non-wood for-

est products into the forest inventory of a large area: experiences from Nepal. In:
Domestication and commercialization of non-timber forest products in agro-
forestry systems. Proceedings of an international conference held in Nairobi. FAO,
Rome, pp 23–31

Knight J (2003) Zoologists prime traps for California wildlife survey. Nature 424:987
Köhl M (1990) National inventories and inventories of endangered forests in Europe.

In: LaBau VJ, Cunia T (ed) State-of-the-art methodology of forest inventory: a sym-
posium, proceedings, Sytacuse, 30 July–5 August 1989, pp 356–363

Köhl M, Brassel P (2001) Zur Auswirkung der Hangneigungskorrektur auf Schätzwerte
im Schweizerischen Landesforstinventar (LFI). Schweiz Z Forstwesen 152(6):215–225

Köhl M, Gertner G (1997) Geostatistics in evaluating forest damage inventories: con-
siderations on methods for describing spatial distributions. For Ecol Manage
95:131–140

344 References



Köhl M, Kushwaha SPS (1994) A four-phase sampling method for assessing standing
volume using landsat-TM-data aerial photography and field assessments.
Commonw For Rev 73:35–41

Köhl M, Lautner M (2001) Erfassung von Waldökosystemen durch Hyperspektraldaten.
Photogr Fernerkund Geoinform 2:107–117

Köhl M, Oehmichen K (2003) Comparison of landscape indices under particular consid-
eration of the geometric and geographic moving window concept. In: Corona P, Köhl
M, Marchetti M (eds) Advances in assessments for sustainable forest management and
biodiversity monitoring. Forestry sciences, vol 76. Kluwer, Dordrecht, pp 231–244

Köhl M, Scott CT (1994) Zur Auswertung von Gruppenstichproben bei extensiven
Forstinventuren. Allg Forst-Jagdz 165(5/6):101–106

Köhl M, Zingg A (1995) Eignung von Diversitätsindices bei Langzeituntersuchungen
zur Biodiversität. Allg Forst Z 167:76–85

Köhl M, Bachmann P, Brassel P, Preto G (eds) (1995) The Monte Verita conference on
forest survey designs. Simplicity versus efficiency and assessment of non-timber
ressources. Swiss Federal Institute of Forest, Snow and Landscape Research
(WSL/FNP), Zurich, Swiss Federal Institute of Technology (ETH), Birmensdorf

Köhl M, Thiele D, Zingg A (2000) GIS-based geo-statistical analysis of long term exper-
iments in forest research. In: Heuvelink GBM, Lemmens MJPM (eds) Proceedings,
spatial accuracy assessment, accuracy 2000. Proceedings of the 4th international
symposium on spatial accuracy assessment in natural resources and environmental
sciences, Amsterdam, July 2000, pp 373–380

Kohm KA, Franklin JF (1997) Creating a forestry for the 21st century. The science of
ecosystem management. Island, Washington, DC

Kollmann FFZ, Côté J (1968) Principles of wood science and technology I: solid wood.
Springer, Berlin Heidelberg New York

Komiyama A, Havanond S, Srisawatt W et al (2000) Top/root biomass ratio of a sec-
ondary mangrove (Ceriops tagal (Perr.) CB Rob.) forest. For Ecol Manage
139(1–3):127–134

Kotz S, Johnson NL (1988) Taylor-series linearization. Wiley, New York, pp 646–647
Koukal T, Schneider W (2003) Mapping and monitoring tree resources outside the for-

est in Central America. In: Corona P, Köhl M, Marchetti M (eds) Advances in
assessments for sustainable forest management and biodiversity monitoring.
Forestry sciences, vol 76. Kluwer, Dordrecht, pp 313–323

Koutsias M, Karteris M (2000) Burned area mapping using logistic regression model-
ing of a single post-fire Landsat-5 Thematic Mapper image. Int J Remote Sensing
21:673–687

Kozak A, Smith JHG (1966) Critical analysis of multivariate techniques for estimating
tree taper suggests that simpler methods are best. For Chron 42:458–463

Kozak A, Munro DD, Smith JHG (1969) Taper functions and their application in for-
est inventory. For Chron 45:278–283

Krige DG (1951) A statistical approach to some basic mining valuation problems on
the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139

Krige DG (1966) Two-dimensional weighted moving average trend surfaces for ore-
evaluation. J South Afr Inst Min Metall 66:13–38

Krutzsch H, Lötsch F (1938) Holzvorratsinventur und Leistungsprüfung der
naturgemässen Forstwirtschaft. Neumann, Radebeul

References 345



Kublin E (1987) Grenzen der klassischen Regressionsmodelle. Mitt FVA Baden-
Württemberg Heft 134

Küchler AW (1975) Potential natural vegetation of the conterminous United States,
2nd edn. Map 1:3,168,000. American Geographical Society, New York

Kuswhaha SPS (1990) Forest type mapping and change detection from satellite
imagery. J Photogramm Remote Sensing 45:175–181

Kuusela K (1979) Sampling of tree stock by angle gauge in proportion to tree charac-
teristics. Commun Inst For Fenn 95.7

Laclau P (2003) Root biomass and carbon storage of ponderosa pine in a northwest
Patagonia plantation. For Ecol Manage 173(1–3):353–360

Lahiri R (2003) On the impact of bootstrap in survey sampling and small-area estima-
tion. Stat Sci 18(2):199–210

Laird NM (1978) Empirical Bayes methods for two-way contingency tables. Biometrics
65:581–590

Lambin EF, Erlich D (1996) The surface temperature-vegetation index space for land
cover and land cover change analysis. Int J Remote Sensing 17:463–487

Lancaster VA, Keller-McNulty S (1998) A review of composite sampling methods. J Am
Stat Assoc 93(443):1216–1230

Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability
concepts in managing ecological systems. Ecol Appl 9:1179–1188

Langaas S, Kane R (1991) Temporal spectral signatures of fire scars. In: Savanna woodland
geoscience and remote sensing symposium 1991. IGARSS ‘91, vol 3, pp 1157–1160

Lanly JP (1977) Les inventaires de forets tropicales humides pour les decisions en
matiere d’investissement industriel. Bois For Trop 171:45–46

Lappi J (1991) Calibration of height and volume equations with random parameters.
For Sci 37:781–801

Lappi J (2001) Forest inventory of small areas combining the calibration estimator and
a spatial model. Can J For Res 31:1551–1560

Larsson TB, Svensson L, Angelstam P, Balent Gbarbate A, Bijlsma R-J, Boncina A,
Bradshaw R, Bücking W, Cancio O, Corona P, Diaci J, Dias S, Ellenberg H, Fernandes
FM, Fernandez-Gonzales F, Ferris R, Frank G, Moeller PF, Giller PS, Gustafson L,
Halbritter K, Hall S, Hansson L, Innes J, Jactel H, Kaennel-Dobertin M, Klein M,
Marchetti M, Mohren F, Niemelä P, O’Halloran J, Rametsteiner E, Refeo F,
Scheidegger C, Scotti R, Sjöberg K, Spanos I, Spanos K, Standovar T, Tommaras A,
Trakolis D, Uuttera J, Walsh PM, Vanderkerkhove K, Watt AD, van den Meerschaut
D (2001) Biodiversity evaluation tools for European forests. A report from the FAIR
project “Indicators for monitoring and evaluation of forest biodiversity in Europe”,
CT97-3575, European Commission RTD Programme. Ecol Bull 50

Leimgruber P, McShea WJ, Schnell GD (2002) Effects of scale and logging on landscape
structure in a forest mosaic. Environ Monit Assess 74(2):141–166

Lesser VM, Kalsbeek WD (1999) Nonsampling errors in environmental surveys. J Agric
Biol Environ Stat 4(4):473–488

Lesslie R, Maslen M (1995) National wilderness inventory handbook, 2nd edn. Australian
Heritage Commission, Australian Government Publishing Service, Canberra

Le Toan T, Ribbes F, Wang LF et al (1997) Rice crop mapping and monitoring using
ERS-1 data based on experiment and modeling results. IEEE Trans Geosci Remote
Sensing 35(1):41–56

346 References



Levy PS, Lemeshow S (1991) Sampling of populations: methods and applications.
Wiley, New York

Li HG, Schreuder HT (1985) Adjusting estimates in large two-way tables in surveys.
For Sci 31:366–372

Liebermann M, Lieberman D, Vandermeer JH (1988) Age-size relationships and
growth behaviour of the palm Welfia georgii. Biotropica 20(4):270–273

Liew SC, Lim OK, Kwoh LK, Lim H (1998) A study of the 1997 forest fires in South East
Asia using SPOT quicklook mosaics. Proc Int Geosci Remote Sensing Symp 2:879–881

Linddal M (1995) Assessment of non-wood goods and services – a forest policy
appraoch. In: Köhl M, Bachmann P et al (eds) The Monte Verita conference on forest
designs. Swiss Federal Institute of Forest, Snow and Landscape Research (WSL/FNP),
Zurich, Swiss Federal Institute of Technology (ETH), Birmensdorf, pp 213–227

Little RJ (2004) To model or not to model? Competing modes of inference for finite
population sampling. J Am Stat Assoc 99(466):546–556

Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New York
Lloyd CJ (1999) Analysis of categorical variables. Wiley, New York
Lo NCH, Griffith D, Hunter JR (1997) Using a restricted adaptive cluster sampling to

estimate Pacific hake larval abundance. Calif Coop Ocean Fish Invest Rep 38:103–113
Lodhiyal N, Lodhiyal LS (2003) Biomass and net primary productivity of Bhabar

Shisham forests in central Himalaya, India. For Ecol Manage 176(1–3):217–235
Loetsch F (1957) Report to the government of Thailand on inventory methods for

tropical forests. FAO report no 545. FAO, Rome
Loetsch F, Haller KE (1964) Forest inventory, vol I. BLV, Munich
Loetsch F, Zöhrer F, Haller KE (1973) Forest inventory, vol II. BLV, Munich
Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2001) Geographic information

systems and science. Wiley, New York
López Garcia MJ, Caselles V (1991) Mapping burns and natural reforestation using

Thematic Mapper data. Geocarto Int 6:31–37
Loveland TR, Sohl TL, Stehman SV, Gallant AL, Sayler KL, Napton DE (2002) A strat-

egy for estimating the rates of recent United States land-cover changes. Photogramm
Eng Remote Sensing 68:1091–1099

Lugo AE, Brown S, Chapman J (1988) An analytical review of production rates and
stemwood biomass of tropical forest plantations. For Ecol Manage 23(2–3):179–200

Lund HG (ed) (1998) IUFRO guidelines for designing multiple forest resources inven-
tories. IUFRO world series, vol 8. IUFRO, Vienna

Lund HG, Smith WB (1997) The Unites States forest inventory program. In: Nyssönen
A, Ahti A (eds) Proceedings of the FAO/ECE meeting of experts on global forest
resources assessment. Finn For Res Inst Res Pap 620:331–333

Lund HG, Caballero Deloya M, Villarreal Canton R (1987) Land and resource evalua-
tion for national planning in the topics. An international conference and workshop,
Chetumal, Mexica, 25–31 January 1987. General technical report WO-39. USDA
Forest Service, Washington, DC

Lunetta RS, Elvidge CD (1999) Remote sensing change detection. Environmental mon-
itoring methods and applications.Ann Arbor Press, Ann Arbor

Lunetta RS, Lyon JG, Guindon L, Elvidge CD (1998) North American landscape char-
acterization dataset development and data fusion issues. Photogramm Eng Remote
Sensing 64(8):821–829

References 347



Luxmi C, Raturi RD, Rao RV, Dayal R (1995) Wood anatomy of Indian Flacourtiaceae,
wood anatomy, botany division. Forest Research Institute, Dehra Dun

Luxmi C et al (1998) Identification of Indien bamboos using culm epidermal features
– an overview. In: Proceeding of a national seminar on processing and utilisation of
plantation timbers and bamboo, IPIRTI, Bangalore, 23–24 July 1998, pp 66-73

Magnussen S (1986) Diameter distributions in Picea abies described by the Weibull
model. Scand J For Res 1:493–502

Magnussen S (1994) A coordinate-free area variance estimator for forest stands with a
fuzzy outline. For Sci 42:76–85

Magnussen S (1998) Tree height tarifs and volume estimation errors in New
Brunswick. North J Appl For 15(1):7–13

Magnussen S (2000) PPP sampling for total volume with and without prior predic-
tions. In: Proceedings of the Society of American Foresters 1999 convention. Society
of American Foresters, Bethesda, pp 83–92

Magnussen S (2001) Fast pre-survey computation of the mean spatial autocorrelation
in large plots composed of a regular array of secondary sampling units. Math Modell
Sci Comput 13(3–4):204–217

Magnussen S (2003) Stepwise estimators for three-phase sampling of categorical vari-
ables. J Appl Stat 30(5):461–475

Magnussen SD, Burgess (1996) Stochastic resampling techniques fpr quantifying error
propagations in forest field experiments. Can J For Res 27:630–637

Magnussen S, Köhl M (2002) Polya posterior frequency distributions for stratified
double sampling of categorical data. For Sci 48(3):569–581

Magnussen S, Stehman SV, Corona P, Wulder MA (2004) A Pòlya-urn resampling
scheme for estimating precision and confidence intervals under one-stage cluster
sampling: Application to map classification accuracy and cover-type frequencies. For
Sci 50(4):1–13

Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London
Mahalanobis PC (1946) On large-scale sample surveys. Philos Trans B 231:329–451
Makela A, Makinen H (2003) Generating 3D sawlogs with a process-based growth

model. Forest Ecol Manage 184(1–3):337–354
Malingreau JP (1990) The contribution of remote sensing to the global monitoring of

fires in tropical and subtropical ecosystems. In: Goldammer JG (ed) Fires in the
tropical biota. Springer, Berlin Heidelberg New York, pp 337–370

Mandallaz D (1991) A unified approach to sampling theory for forest inventory based
on infinite population and superpopulation models. Chair of forest management
and planning. Swiss Federal Institute of Technology, Zurich

Mandallaz D (1993) Geostatistical methods for double sampling schemes: application
to combined forest inventories. PhD thesis, Swiss Federal Institute of Technology,
Zurich

Mandallaz D (1994) Geostatistical methods for double sampling schemes: application
to combined forest inventory. Chair of forest management and planning. Swiss
Federal Institute of Technology, Zurich

Mandallaz D (2000) Estimation of the spatial covariance in universal kriging: applica-
tion to forest inventory. Environ Ecol Stat 7(3):263–284

Mandallaz D (2001) Optimal sampling schemes based on the anticipated variance with
lack of fit. Swiss Federal Insitute of Technology, Zurich

348 References



Marchetti M, Castagnoli A (1989) Proposed methods for application of new techniques
for vegetation inventory, forest damage evaluation, their cartographic representation
and permanent monitoring. In: Proceedings of the international conference on
global natural resources monitoring and assesment: preparation for the 21st century,
FAO-IUFRO, Venice, pp 496–503

Marchetti M, Ricotta C, Volpe F (1995) A qualitative approach to mapping postfire
regrowth in mediterranean vegetation with Landsat data. Int J Remote Sensing
16(13):2487–2494

Marchetti M, Oradini A, Mariotti B, Cumer A (1998) Progetto transitalia: telerileva-
mento dei danni sulle foreste di aree appenniniche ed insulari. Doc Territor
39:20–30

Mariaux A (1981) Past efforts in measuring age and annual growth in tropical trees. In:
Borman FH, Berlyn G (eds) Age and growth rate of tropical trees, new directions for
research. Bull Sch For Environ Stud Yale Univ 94:20–30

Marques TA (2004) Predicting and correcting bias caused by measurement error in line
transect sampling using multiplicative error models. Biometrics 60(3):757–763

Marques FFC, Buckland ST (2003) Incorporating covariates into standard line transect
analyses. Biometrics 59(4):924–935

Matérn B (1956) On the geometry of the cross-section of a stem. Medd Stat
Skogsforsoeksves Inst 46(11)

Matérn B (1964) A method of estimating the total length of roads by means of a line
survey. Stud For Suec 18:68–70

Matérn B (1980) Spatial variation. Springer, Berlin Heidelberg New York
Matheron G (1965) Les variables regionalisèes et leur estimation, Masson, Paris
Matson M, Stephens G, Robinson J (1987) Fire detection using data from the NOAA-

N satellites. Int J Remote Sensing 8:961–970
Max TA, Burkhart HE (1976) Segmented polynomial regression applied to taper equa-

tions. For Sci 22:283–289
Mayers J, Bass S (2004) Policy that works for forests and people; real prospects for gov-

ernance and livelihoods. Earthscan, London
McCloy KR (1995) Resource management information systems, CRC, Boca Raton
McCormack A (1998) Guidelines for inventorying non-timber forest products. MSc

thesis, University of Oxford
McGarigal K, Marks BJ (1994) Fragstats. Spatial pattern analysis program for quanti-

fying landscpe structure, version 2.0. Oregon State University, Corvallis
MCPFE (2003) Improved pan-European indicators for sustainable forest management.

MCPFE Liaison Unit, Vienna
McRoberts RE (2001) Imputation and model-based updating techniques for annual

forest inventories. For Sci 47(3):322–330
McRoberts RE, Nelson MD, Wendt DG (2002) Stratified estimation of forest area using

satellite imagery, inventory data, and the k-nearest neighbors technique. Remote
Sensing Environ 82(2–3):457–468

Meeden G (1999) A noninformative Bayesian approach for two-stage cluster sampling.
Sankhya Ser B 133:144

Meier P (1953) Variance of a weighted mean. Biometrics 9:59–73
Merchant JW (1984) Using spatial logic in classification of landsat TM data In:

Proceedings of the pecora IX symposium, Sioux Falls, pp 378–385

References 349



Mertens K (2003) Using genetic algorithms in sub-pixel mapping. Int J Remote Sensing
24(21):4241–4247

Mesavage C, Grosenbaugh LR (1956) Efficiency of several cruising designs on small
tracts in North Arkansas. J For 54:569–576

Miller RG (1974) The jackknife – a review. Biometrika 61:1–15
Miller RG (1981) Simultaneous statistical inference. Springer, Berlin Heidelberg

New York
Milne AK (1986) The use of remote sensing in mapping and monitoring vegetational

change associated with bushfire events in Eastern Australia. Geocarto Int 1(1):25–34
Minghelli-Roman A, Mangiolini M, Petit M, Polidori L (2001) Spatial resolution

improvement of MeRIS images by fusion with TM images. IEEE Trans Geosci
Remote Sensing 39:1533–1536

Minick GR, Shain WA (1981) Comparison of satellite imagery and conventional aerial
photography in evaluating a large forest fire. In: Proceedings of the 7th interational
symposium on machine processing of remotely sensed data, Purdue University, West
Lafayette, pp 544–546

Moeur M, Crookston NL, Stage AR (1995) Most similar neighbor: an improved sam-
pling inference procedure for natural resource planning. For Sci 41:337–359

Mollicone D, Achard F, Eva HD, Belward AS, Federici S, Lumicisi A, Rizzo VC, Stibig H-
J, Valentini R (2003) Land use change monitoring in the framework of the UNFC-
CCC and its Kyoto protocol: report on current capabilities of satellite remote sensing
technology. EUR report 20867 EN. European Communities, Luxembourg

Montagu K, Duttmer K, Barton C, Cowie A (2002) Estimating above-ground biomass
carbon of Eucalyptus pilularis across eight contrasting sites – what works best? In:
International conference on eucalypt productivity, Hobart, 10–15 November 2002,
pp 49–50

Moore N, Tubert-Bitter P, Fourrier A, Begaud B (2003) A simple method to estimate
sample sizes for safety equivalence studies using inverse sampling. J Clin Epidemiol
56(5):433–435

Moran EF, Brondizio ES, Tucker JM, da Silva-Forsberg MC, McCracken S, Falesi I
(2000) Effects of soil fertility and land-use on forest succession in Amazônia. For
Ecol Manage 139(1–3):93–108

Morgan P, Aplet GH, Haufler JB, Humphries HC, Moore MM, Wilson WD (1994)
Historical range of variability: a useful tool for evaluating ecosystem change. In:
Sampson N, Adams DL (eds) Assessing forest ecosystem health in the inland west.
Haworth, New York, pp 87–111

Morgan P, Bunting SC, Black AE, Merrill T, Barrett S (1996) Fire regimes in the Interior
Columbia River Basin: past and present. Final report for RJVA-INT-94913, on file at
USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory,
Missoula

Morgan BJT (1997) Strip adaptive cluster sampling: probability proportional to size
selection of primary units. Biometrics 53:1092–1096

Muchoney DM, Haack B (1994) Change detection for monitoring forest defoliation.
Photogramm Eng Remote Sensing 60:1243–1251

Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific grav-
ity of tropical trees. Biotropica 36.1:20–32

Mushove PT (1994) Biomass functions for brachystegia spiciformis in Zimbabwe,
internal report. Forest Research Centre, Highlands, Harare

350 References



Muttlak HA, Khan A (2002) Adjusted two-stage adaptive cluster sampling. Environ
Ecol Stat 9(1):111–120

Myers RH (1986) Classical and modern regression with applications. Duxbury, Boston
Næsset E (1998) Positional accuracy of boundaries between clearcuts and mature forest

stands delineated by means of aerial photointerpretation. Can J For Res 28:368–374
Næsset E (1999) Effects of delineation errors in forest stand boundaries on estimated

area and timber volumes. Scand J For Res 14(6):558–566
Nelson BW, Mesquita R, Pereira JLG et al (1999) Allometric regressions for improved

estimate of secondary forest biomass in the central Amazon. For Ecol Manage
117(1–3):149–167

Nelson RM Jr (2002) An effective wind speed for models of fire spread. Int J Wildland
Fire 11:153–161

Nezry E, Rémondiére S, Solaas G, Genovese G (1995) Mapping of next season’s crops
during the winter using ERS SAR data. EOQ no 50. European Space Agency.
http://esapub.esrin.esa.it/eoq/eoq50/nezry50.htm

Nichols P (1991) Social survey methods: A field guide for development workers.
Development guidelines no 6. Oxfam, Oxford

Noack D (1971) Evaluation of properties of tropical timbers. J Inst Wood Sci
5(5):17–23

Norris JL III, Pollock KH (1998) Non-parametric MLE for Poisson species abundance
models allowing for heterogeneity between species. Environ Ecol Stat 5(4):391–402

Nusser SM, Breidt EJ, Fuller WA (1998) Design and estimation for investigating the
dynamics of natural resources. Ecol Appl 8(2):234–245

Nyerges AE, GM Green (2000) The ethnography of landscape: GIS and remote sensing
in the study of forest change in West African Guinea savanna. Am Anthropol
102(2):271–289

O’Brien SM, Dunson DB (2004) Bayesian multivariate logistic regression. Biometrics
60(3):739–746

Odum EP (1968) Energy flows in ecosystems: a historic review. Am Zool 8:11–18
Oehmichen K (2001) Vergleich von Landschaftsindizes unter besonderer

Berücksichtigung des geometrischen-und geographischen Window-Konzeptes.
Diploma, TU Dresden Tharandt

Oleson KW, Sarlin S, Garrison J, Smith S, Privette JL, Emery WJ (1995) Unmixing mul-
tiple land-cover type reflectances from coarse spatial resolution satellite data.
Remote Sensing Environ 54(2):98–112

Olsen ER, Ramsey RD, Winn DS (1993) A modified fractal dimensions as a measure of
landscape diversity. Photogramm Eng Remote Sensing 59(10):1517–1520

Olsen AR, Sedransk J, Edwards D, Gotway CA, Liggett W, Rathburn S, Reckhow KH,
Young LJ (1999) Statistical issues for monitoring ecological and natural resources in
the United States. Environ Monit Assess 54:1–45

O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, Deangelis DL, Milne BT,
Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL (1988) Indices of
landscape pattern. Landscape Ecol 7(1):153–162

O’Regan WG, Arvanitis LG (1966) Cost effectiveness in forest sampling. For Sci
12:406–414

Ord K (1990) Statistical methods for point pattern data. In: Griffith DA (ed) Spatial
statistics: past, present, future. Institute of Mathematical Geography, Ann Arbor,
pp 31–53

References 351



Ott WR (1978) Environmental indices: theory and practice. Ann Arbour Science, Ann
Arbour

Page B, Hilty LM (1995) Umweltinformatik. Oldenbourg, Munich
Palmer JG, Murphy, JO (1993) An extended tree-ring chronology (teak) from Java.

Proc K Ned Akad Wet-Biol Chem Geol Phys Med Sci 96:27–41
Palmer JR (1975) Towards more reasonable objectives in tropical high forest manage-

ment for timber production. Commonw For Rev 54(3/4):273–289
Palmer MW (1988) Fractal geometry: a tool for describing spatial patterns of plant

communities. Vegetatio 75(1–2):91–102
Pancel L (1984) Agroforstliche Landnutzungsmethode spezieller subhumider Vegeta-

tionsformen in Guinea Bissau. Forstarchiv 55(5):186–194
Panchapakesan S, Childs A, Humphrey BH, Balakrishnan N (1998) Inverse sampling

procedures to test for homogeneity in a multinomial distribution. Elsevier,
Amsterdam,

Panshin AJ, Zeeuw CD (1980) Textbook of wood technology, 4th edn. McGraw-Hill,
New York

Panzer KF (1975) Quantification of decay and related volume loss in tropical forest
inventories. Mitt Bundesforschungsanst Forst Holzwirtsch 109:117–128

Paola JD, Schowengerdt RA (1995) A detailed comparison of backpropagation neural
network and maximum-likelihood classifiers for urban land use classification. IEEE
Trans Geosci Remote Sensing 33(4):981–996

Pardé J (1980) Forest biomass. For Abstr 41:343–362
Parresol BR (1999) Assessing tree and stand biomass: a review with examples and crit-

ical comparisons. For Sci 45(4):573–593
Patil GP, Taillie C (1979) An overview of diversity. In: Grassle JF, Patil GP, Smith WK,

Taillie C (eds) Ecological diversity in theory and practice. International Cooperative
Publishing House, Fairland, pp 3–27

Patil GP, Sinha AK, Taillie C (1994) Ranked set sampling. In: Patil GP, Rao CR (eds)
Environmental statistics. Handbook of statistics 12. North-Holland, Amsterdam,
pp 167–200

Patterson HD (1950) Sampling on successive occasions with partial replacement of
units. J R Stat Soc Ser B 12(2):241–255

Payandeh B, Ek AR (1986) Distance methods and density estimators. Can J For Res
16(5):918–924

Payn TW, Clough ME (1988) Differential fertilisation on pine plantations on acid for-
est soils. South Afr For J 147:16–25

Peet RK (1974) The measurements of species diversity. Ann Res Ecol Syst 5:285–307
Peet RK (1978) Forest vegetation in the Colorado Front Range: patterns of species

diversity. Vegetatio 37(2):65–78
Pellemans AHJM, Jordans RWL, Allewijn R (1993) Merging multispectral and

panchromatic SPOT images with respect to radiometric properties of the sensor.
Photogramm Eng Remote Sensing, 59(1):81–87

Pellico-Netto S (1979) Die Forstinventuren in Brasilien: neue Entwicklungen und ihr
Beitrag für eine geregelte Forstwirtschaft. Mitteilungen aus dem Arbeitskreis für
Forstliche Biometrie

Pelz DR, Cunia T (1985) Forest inventories in Europe. Mitt Abt Forstl Biom Univ
Freiburg 3/85

352 References



Pelz DR (1995) Assessment of non-timber functions: state-of-the-art. In: Köhl M,
Bachmann P et al (eds) The Monte Verita conference on forest designs. Swiss Federal
Institute of Forest, Snow and Landscape Research (WSL/FNP), Zurich, Swiss Federal
Institute of Technology (ETH), Birmensdorf, pp 103–109

Peralta R, Hartshorn GS, Lieberman D, Lieberman M (1987) Resena de estudios a largo
plazo sobre composicion floristica y dinamica del bosque tropical en La Selva, Costa
Rica. Rev Biol Trop Ecol Ecofisiol Plant Bosques Mesoam 35(Suppl 1):23–39

Pereira MC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for
burned surface detection and mapping. IEEE Trans Geosci Remote Sensing
37(1):217–226

Pereira MC, Setzer AW (1993) Spectral characteristics of fire scars in Landsat-5 TM
images of Amazonia. Int J Remote Sensing 14:2061–2078

Perry GLW (1998) Current approaches to modeling the spread of wildland fire: a
review. Prog Phys Geogr 22(2):222–245

Peterson DL, Running SW (1989) Applications in forest sceinces and management.
In: Asrar G (ed) Theory and applications optical remote sensing. Wiley, New York,
pp 429–473

Peterson DJ, Resetar S, Browe J, Diver R (1999) Forest monitoring and remote sensing
a survey of accomplishments and opportunities for the future. Prepared for the
White House Office of Science and Technology Policy. Science and Technology
Policy Institute

Pfeffermann D (2002) Small area estimation – new developments and directions. Int
Stat Rev 70(1):125–143

Pfeffermann D, Skinner CJ, Holmes DJ, Goldstein H, Rasbach J (1998) Weighting for
unequal selection probabilities in multilevel models. J R Stat Soc Ser B 60(1):23–40

Pielou EC (1970) Introduction to mathematical ecology. Wiley, New York
Pielou EC (1975) Ecological diversity. Wiley, New York
Pielou EC (1977) Statistical ecology. Wiley, New York
Philip MS (1976) The role of forest inventories in the development of tropical moist

forests. Commonw For Rev 55(1):57–64
Pollard (1971) On distance estimators of density in randomly distributed forests.

Biometrics 27:991–1002
Poole (2002) Bayesian estimation of survival from mark-recapture data. J Agric Biol

Environ Stat 7(2):264–276
Pozo D, Olmo FJ, Alados-Arboledas L (1997) Fire detection and growth monitoring

using a multitemporale technique on AVHRR mid-infrared and thermal channels.
Remote Sensing Environ 60:111–120

Prance GT, Balée W, Boom BM, Carbeuri RL (1987) Quantitative ethnobotany and the
case for conservation in Amazonia. Conserv Biol 1(4):296–310

Pretzsch H (2001) Modellierung des Waldwachstums. Parey, Berlin
Prodan M (1965) Holzmesslehre. Sauerländers, Frankfurt
Puffenberger HE (1976) Forest inventories in the tropics: a consideration. J For

74(1):28–38
Pumijumnong N, Eckstein D, Sass U (1995) Tree-ring research on Tectona grandis in

northern Thailand. Int Assoc Wood Anat J 16:385–392
Puumalainen J, Angelstam P, Banko G, Brandt J, Caldeira M, Estreguil C, Folving S,

Garcia del Barrio JM, Keller M, Kennedy P, Köhl M, Marchetti M, Neville P, Plsson

References 353



H, Parviainen J, Pretzsch H, Ravn HP, Stahl G, Tomppo E, Uuttera J, Watt A, Winkler
B, Wrbka T (2002) Forest biodiversity – assessment approaches for Europe. EUR
report 20423 EN. European Commission, Joint Research Centre, Ispra

Quegan S, Le Toan T, Yu JJ (2000) Multitemporal ERS SAR analysis applied to forest
mapping. IEEE Trans Geosci Remote Sensing 38:741–753

Quesenberry CP, Hurst DC (1964) Large sample simultaneous confidence intervals for
multinomial proportions. Technometrics 6(2):191–195

Rabii HA (1979) An investigation of the utility of Landsat-2 MSS data to the fire-dan-
ger rating area, and forest fuel analysis within Crater Lake National Park, Oregon.
PhD dissertation, Oregon State University

Rai SN (1975) Rate of diameter increment of Cryptocaria wightiana in the tropical rain
forests of Western Ghats-India, Sivan. Eester Ranger College, Kurseong, pp 54–59

Rai SN (1978) Rate of growth of Dalbergia latifolia and Xylia dolabriformis. Malays For
41(3):241–252

Rai SN (1983) Basal area and volume increment in tropical rain forests of India. Indian
For 109(4):198–211

Rai SN, Sarma CR (1987) Diameter increment of iron wood tree (Mesua ferrea Linn.)
in humid tropics of India. J Trop For 3:324–329

Rajora OP, Zsuffa L (1991) Screening populus deltoids marsh. Selections by allozymes
to assure species identity. Scand J F Res 6:471–478

Ramirez-Maldonado H (1988) On the relevance of geostatistical theory and methods
to forest inventory problems. PhD thesis, University of Georgia

Ramsey FL, Harrison K (2004) A closer look at detectability. Environ Ecol Stat
11(1):73–84

Ramsey, Gates CE, Patil GP (1988) On transect sampling to assess wildlife populations
and marine resources. Elsevier, Amsterdam, pp 515–532

Rao CR (1988) Variance estimation in sample surveys. In: Krishnaiah PK, Rao CR (eds)
Handbook of statistics. Elsevier, Amsterdam, pp 427–447

Rao CR (2003) Small area estimation. Wiley, Hoboken
Rao CR, Wu CFJ (1988) Resampling inference with complex survey data. J Am Stat

Assoc 83:231–241
Rao CR, Wu C-FJ, Yue K (1992) Some recent work on resampling methods for com-

plex surveys. Surv Methods 18:209–217
Rashed T, Weeks JR, Gadalla MS, Hill AG (2001) Revealing the anatomy of cities

through spectral mixture analysis of multispectral satellite imagery: a case study of
the greater Cairo region, Egypt. Geocarto Int 16:5–15

Razafimpanilo H, Frouin R, Iacobellis, SF; Somerville RCJ (1995) Methodology for
estimating burned area from AVHRR reflectance data. Remote Sensing Environ
54:273–289

Reed DD, Green EJ (1984) Compatible stem taper and volume ratio equations. For Sci
30:977–990

Reed WJ, McKelvey KS (2002) Power-law behaviour and parametric models for the
size-distribution of forest fires. Ecol Modell 150:239–254

Reid WV, Miller KR (1989) Keeping options alive: the scientific basis for conserving
biodiversity. World Resources Institute, Washington

Rencher AC (2002) Methods of multivariate analysis. Wiley-Interscience, New York
Richards GD (1990) An elliptical growth model of forest fire fronts and its numerical

solution. Int J Num Methods Eng 30:1163–1179

354 References



Richards GD (1995) A general mathematical framework for modeling two-dimen-
sional wildland fire spread. Int J Wildland Fire 5(2):63–72

Richards JA (1984) Thematic mapping from multitemporal image data using the prin-
cipal components transformation. Remote Sensing Environ 46:16–35

Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press,
Cambridge

Ricotta C, Avena GC, Olsen ER (1998) Geographic windows in the fractal analysis of
local landscape complexity. Abstr Bot 22:143–147

Ricotta C, Avena G, de Palma A (1999) Mapping and monitoring net primary produc-
tivity with AVHRR NDVI time-series: statistical equivalence of cumulative vegeta-
tion indices. Photogramm Eng Remote Sensing 54:325–331

Ricotta C, Marchetti M, Marignani M, Carranza ML (2003a) Misure di incertezza per
classificazioni sfumate: alcune idee per la quantificazione. Ital For Mont 58(4):279–288

Ricotta C, Marchetti M, Corona P, Chirici G, Innamorati S (2003b) LADY: software for
assessing local landscape diversity profiles of raster land cover maps using geo-
graphic windows. Environ Model Software 18:373–378

Riggan PJ, Lockwood RN, Jacks PJ, Colver CG, Weirich F, DeBano LF, Brass JA (1994)
Effects of fire severity on nitrate mobilization in watersheds subject to chronic
atmospheric deposition. Environ Sci Technol 28:369–375

Ringvall A, Ståhl G (1999) Field aspects of line intersect sampling for assessing coarse
woody debris. For Ecol Manage 119:163–170

Ripley BD (1981) Spatial statistics. Wiley, New York
Ritz C (2004) Goodness-of-fit tests for mixed models. Scand J Stat 31(3):443–458
Robinson JM (1991) Fire from space: global fire evaluation using infrared remote sens-

ing. Int J Remote Sensing 12:3–24
Roesch F (1993) Adaptive cluster sampling for forest inventories. For Sci 39:655–669
Rogan J, Franklin J, Roberts DA (2002) A comparison of methods for monitoring

multi-temporal vegetation change using Thematic Mapper imagery. Remote Sensing
Environ 80:143–156

Rogan J, Miller J, Stow D, Franklin J, Levien L, Fischer C (2003) Land cover change
mapping in California using classification trees with Landsat TM and ancillary data.
Photogramm Eng Remote Sensing 69(7):793–804

Rouse JW Jr (1974) Monitoring vegetation systems in the Great Plains with ERST,
Washington, DC, Goddard Space Flight Center, earth resources technology satellite-
1 symposium, pp 309–317

Ronchetti E, Field C, Blanchard W (1997) Robust linear model selection by cross-vali-
dation. J Am Stat Assoc 92:1017–1023

Roy PS, Kaul RN, Sharma Roy MR, Garbyal SS (1985) Forest type stratication and
delineation of shifting cultivation areas in the eastern part of Arunchai Pradesh
using Landsat MSS data. Int J Remote Sensing 6(3/4):411–418

Royall RM (1998) A review of optimal designs in survey sampling. Can J Stat 12(1):53–65
Royall RM (2001) Model robust confidence intervals using maximum likelihood esti-

mators. Int Stat Rev 54(2):221–226
Rubin DB (1981) The Bayesian bootstrap. Ann Stat 9(1):130–134
Rubin DB (1987) Multiple imputation for nonrersponse in surveys, Wiley, New York
Ruschel AR, Nodari ES, Guerra MP et al (2003) Uses and valuation evolution of the

timber species from the Brazilian semi-evergreen forest of Alto-Uruguai, SC. Cien
Flor 13(1):153–166

References 355



Saborowski J (1990) Schätzung von Varianzen und Konfidenzintervallen aus mehrstu-
figen Stichproben am Beispiel von Waldschadensinventuren. Schriften aus der
Forstlichen Fakultät der Universität Göttingen und der niedersächsischen
forstlichen Versuchsanstalt, vol 99

Saborowski J, Smelko S (1998) Evaluation of inventories based on sample plots of vari-
able size. Allg Forst Jagdz 169(4):71–75

Saho J, Sitter RR (1996) Bootstrap for imputed survey data. J Am Stat Assoc
91:1278–1288

Sai VS, Mishra M (1986) Comparison of some indices of species diversity in the esti-
mation of the actual diversity in a tropical forest: a case study. Trop Ecol 27:195–201

Salazar LA(1982) Remote sensing techniques aid in preattack planning for fire man-
agement. USDA research paper PSW-162

Salehi M (1999) Rao–Blackwell versions of the Horvitz–Thompson and Hansen–Hurwitz
in adaptive cluster sampling. Environ Ecol Stat 6(2):183–195

Salehi M (2003) Comparison between Hansen-Hurwitz and Horvitz-Thompson esti-
mators for adaptive cluster sampling. Environ Ecol Stat 10(1):115–127

Salehi SM, Seber GAF (1997) Two-stage adaptive cluster sampling. Biometrics
53:959–970

Salang AT, Sugawa T (1997) Identification of dipterocarp timbers of Sarawak. In:
Proceedings of the TRTTC-JICA Research ‘97, Wisma Sumber Alam, Kuching,
Malaysia, 18–20 November 1997. Timber Research and Technical Training Centre
(TRTTC), Kuching, pp 110–127

Salick J, Mejia A, Anderson T (1995) Non-timber forest products integrated with nat-
ural forest management, Rio San Juan, Nicaragua. Ecol Appl 5(4):878–895

Santner TJ, Duffy DE (1989) The statistical analysis of discrete data. Springer, Berlin
Heidelberg New York

Särndal CE (1996) Efficient estimators with simple variance in unequal probability
sampling. J Am Stat Assoc 91:1289–1300

Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer,
Berlin Heidelberg New York

Samra JS, Gill MS, Bhatia VK (1989) Spatial stochastic modelling of growth and forest
resource evaluation. For Sci 35(3):663–676

Sandholt I, Rasmussen K, Anderson J (2002) A simple interpretation of the surface
temperature/vegetation index space for assessment of surface moisture status.
Remote Sensing Environ 79:213–224

Sannier CAD, Taylor JC, du Plessis W (2002) Real-time monitoring of vegetation bio-
mass with NOAA-AVHRR in Etosha National Park, Namibia, for fire risk assess-
ment. Int J Remote Sensing 23(1):71–89

Santander Flores C, Albertin W (1974) Performance of Dalbergia retusa Hemsl. in the
humid tropics, Turrialba, Costa Rica. Turrialba 24(1):76–83

Schade J (1980) Ein mehrphasiges Stichprobensystem für forstliche Grossrauminventuren
gestützt auf Landsat MSS Daten, Luftbilder 1:50,000 und ergänzende terrestrische
Messungen. Dissertation, University of Freiburg

Schafer JL, Scheinker N (2000) Inference with imputed conditional means. J Am Stat
Assoc 95(449):144–154

Schmid P (1967) Die Weiterentwicklung der Leistungskontrolle in der Schweiz. Wiss
Zeit Tech Univ Dresden 16/2

356 References



Schmid P (1969) Stichproben am Waldrand. Eidg Anstalt Forstl Versuchswes Ber
45(3):234–303

Schmid P (1971) Continuous forest inventory in Switzerland Eidg Anstalt Forstl
Versuchswes Mimeogr

Schmid-Haas P (1983) Information on drain by forest inventories. In: Forest invento-
ries for improved management, vol 17. Helsingin Yliopiston Metsänarvioimistieteen
Laitos, Tiedonantoja, pp 50–61

Schmid-Haas P, Werner J, Baumann E (1978) Kontrollstichproben: Aufnahmeinstruktion,
2nd edn. Eidg Anstalt Forstl Versuchswes Ber 186

Schmidt KM, Menakis JP, Hardy CC, Hann WJ, Bunnell DL (2002) Development of
coarse-scale spatial data for wildland fire and fuel management. General technical
report RMRS-GTR-87. USDA Forest Service, Rocky Mountain Research Station, Ft
Collins

Schmoldt DL, Rauscher HM (1996) Building knowledge-based systems For natural
resource. Kluwer, Dordrecht

Schnadt K, Katzenbeiaer R (2004) Unique airborne fiber scanner technique for appli-
cation-oriented LIDAR products. In: Thies M, Koch B, Spiecker H, Weinacker H
(eds) Laser-scanners for forest and landscape assessment. Int Arch Photogramm
Remote Sensing Spatial Inf Sci 36(8/W2):19–23

Schowengerdt RA (1997) Remote sensing: models and methods for image processing,
2nd edn. Academic, San Diego

Schreuder HT, Williams MS (2000) Reliability of confidence intervals calculated by
bootstrap and classical methods using the FIA 1-ha plot design. General technical
report RMRS-GTR-57:1-6. Rocky Mountain Research Station, USDA Forest Service

Schreuder HT, Sedransk J, Ware KD (1968) 3-P sampling and some alternatives I. For
Sci 14(4):429–453

Schreuder HT, Sedransk J, Ware KD, Hamilton DA (1971) 3-P sampling and some
alternatives, II. For Sci 17(1):103–118

Schreuder HT, Banyard SG, Brink GE (1987) Comparison of three sampling methods
in estimating stand parameters for a tropical forest. For Ecol Manage
21(1–2):119–127

Schreuder HT, Gregoire TG, Wood GB (1992) Sampling methods for multiresource
forest inventory. Wiley, New York

Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiresource
forest inventory. Wiley, New York

Scott CT (1981) Simplified estimators for sampling on multiple occasions. University
of Minnesota Department of Forest Research, staff paper no 23

Scott CT (1984) A new look at sampling with partial replacement. For Sci 30:157–166
Scott CT (1986) An evaluation of sampling with partial replacement. In: Use of auxil-

liary information in natural resource inventories. Society of American Foresters,
Blacksburg, 1–2 October 1985, SAF publ no 86-01:74–79

Scott CT (1992) Multivariate density estimation: theory, practice and visualization.
Wiley, New York

Scott CT (1998) Sampling methods for estimating change in forest resources. Ecol Appl
8(2):228–233

Scott CT, Köhl M (1994) Sampling with partial replacement and stratification. For Sci
40(1) 30–46

References 357



Seber GAF (1982) The estimation of animal abundance and related parameters.
Griffin, London

Seber GAF (1986) A review of estimating animal abundance. Biometrics 42:267–292
Sellers PJ (1987) Canopy reflectance, photosynthesis, and transpiration II: the role of

biophysics in the linearity of their interdependence. Remote Sensing Environ
21:143–183.

Serna CB (1990) Rattan resource supply situation and management. In: Torreta NK,
Belen EH (eds) Rattan. Proceedings of the national symposium/workshop on rat-
tan, Cebu City, 1–3 June 1988. Philippine Council for Agriculture, Forestry and
Natural Resources Research and Development book series no 99, Los Banos,
Laguna

Serpico SB, Roli F (1995) Classification of multi-sensor remote-sensing images by
structured neural networks. IEEE Trans Geosci Remote Sensing 33(3):562–578

Seto KC, Woodkock CE, Song C, Huang X, Lu J, Kaufmann RK (2002) Monitoring
land-use change in the Pearl River Delta using LANDSAT TM. Int J Remote Sensing
23:1985–2004

Settle JJ, Drake NA (1993) Linear mixing and the estimation of ground proportions.
Int J Remote Sensing 14:1159–1177

Setzer AW, Pereira MC (1991) Amazonia biomass burnings in 1987 and an estimate of
their tro-pospheric emissions. Ambio 20:19–23

Shannon CE, Weaver W (1949) The mathematical theory of communication. University
of Illinois Press, Urbana

Shao J (1996) Bootstrap model selection. J Am Stat Assoc 91:655–665
Shao J (2003) Impact of the bootstrap on sample surveys. Stat Sci 18(2):191–198
Shao J, Chen Y (1998) Balanced repeated replication for stratified multistage survey

data under imputation. J Am Stat Assoc 93(442):819–831
Shao J, Steel P (1999) Variance estimation for survey data with composite imputation

and non-neglible sample fractions. J Am Stat Assoc 94(445):254–265
Sharma M, Zhang SY (2004) Variable-exponent taper equations for jack pine, black

spruce, and balsam fir in eastern Canada. For Ecol Manage 198(1–3):39–53
Shasby MV, Burgan RE, Johnson GR (1981) Broad area forest fuels and topography

mapping using digital Landsat and terrain data. In: Proceedings of the 7th interna-
tional symposium on machine processing of remotely Sensed data, Purdue
University, West Lafayette, pp 529–538

Shen XT, Huang HC, Ye J (2004) Inference after model selection. J Am Stat Assoc
99(467):751–762

Shenk TM, White GC, Burnham KP (1998) Sampling-variance effects on detecting
density dependence from temporal trends in natural populations. Ecol Monogr
68(3):445–463

Sherman M (1996) Variance estimation for statistics computed from spatial lattice
data. J R Stat Soc Ser B 58(3):509–523

Shieh G (2001) Sample size calculations for logistic and Poisson regression models.
Biometrika 88(4):1193–1199

Shimabukuro YE, Smith JA (1991) The least-squares mixing models to generate frac-
tion images derived from remote sensing multispectral data. IEEE Trans Geosci
Remote Sensing 29(1):16–20

Shiver BD, Borders BE (1996) Sampling techniques for forest resource inventory. Wiley,
New York

358 References



Siljestrom P, Moreno A (1996) Monitoring burnt area by principal component analy-
sis of multitemporal TM data. Int J Remote Sensing 16:1577–1587

Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and
Hall, London

Sim HC, Appanah S, Lu WM (eds) (2004) Forests for poverty reduction: can commu-
nity forestry make money? FAO Regional Office for Asia and the Pacific, Bangkok

Simpson EH (1949) Measurement of diversity. Nature 163:688
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral

reflectance across a wide range of species, leaf structures and development stages,
Remote Sensing Environ 81(2–3):337–354

Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral
reflectance across a wide range of species, leaf structures and development stages.
Remote Sensing Environ 81(2–3):337–354

Sims DA, Gamon JA (2003) Estimation of vegetation water content and photosynthetic
tissue area from spectral reflectance: a comparison of indices based on liquid water
and chlorophyll absorption features. Remote Sensing Environ 84(4):526–537

Singh AC, Stukel DM, Pfeffermann D (1998) Bayesian versus frequentist measures of
error in small area estimation. J R Stat Soc Ser B 60:377–396

Singh KD (1981) Inventory techniques and mensurational methods to determine the
age and growth rate of tropical trees. In: Borman FH, Berlyn G (eds) Age and growth
rate of tropical trees, new directions for research. Bull Sch For Environ Stud Yale
Univ 94:121–127

Singh KD (1989) Studies on the volume and yield of tropical forest stands. FAO
forestry paper 51(1). FAO, Rome

Sison CP, Glaz J (1995) Simultaneous confidence intervals and sample size determina-
tion for multinomial proportions. J Am Stat Assoc 90:366–369

Skidmore AK, Turner BJ (1992) Map accuracy assessment using line intersect sam-
pling. Photogramm Eng Remote Sensing 58(10):1453–1457

Sliggers J, Kakabeeke W (2005) Clearing the air: 25 years of the convention on long-
range transboundary air pollution. United Nations, New York

Smith AP (1979) Buttressing of tropical trees in relation to bark thickness in Dominica
BW I. Biotropica 11(2):159–160

Smith DR, Villella RF, Lemarie DP (2003) Application of adaptive cluster sampling to
low-density populations of freshwater mussels. Environ Ecol Stat 10(1):7–15

Smith FH (1938) An empirical law describing heterogeneity in the yields of agricultural
crops. J Agric Sci 28:1–23

Snedecor GW, Cochran WG (1971) Statistical methods, 6th edn. Iowa State Univ Press,
Ames

Sohn Y, McCoy RM (1997) Mapping desert shrub rangeland using spectra unmixing
and modeling spectra mixture with TM data. Photogramm Eng Remote Sensing
63(6):707–716

Spencer RD, Czaplewski RL (1998) National forest inventory in the USA: an outline of
the procedure. Aust For 60(1):56–66

Staepelaere RL, Ginsburger PL (1978) Utilisation of bleached sulfate tropical hard-
wood pulp. In: Auchter RJ (ed) Proceedings of the conference on improved utiliza-
tion of tropical forests, 21–26 May 1978, pp 451–485

Ståhl G (1997) Transect relascope sampling for assessing coarse woody debris: the case
of a pi/2 relascope angle. Scand J For Res 12 (4):375–381

References 359



Ståhl G (1998) The transect relascope, an instrument for the quantification of coarse
woody debris. For Sci 44(1) 201–215

Ståhl G, Lämås T (1998) Assessment of coarse woody debris, a comparison of proba-
bility sampling methods. In: Bachmann P, Köhl M, Päivinnen R (eds) Assessment of
forest biodiversity for improved forest management. Kluwer, Dordrecht, pp 241–248

Ståhl G, Ringvall A, Lamas T (2000) Guided transect sampling for assessing sparse pop-
ulations. For Sci 46(1):108–115

Staudte RG, Sheather SJ (1990) Robust estimation and testing. Wiley, New York
Stehman SV (1992) Comparison of systematic and random sampling for estimating

the accuracy of maps generated from remotely sensed data. Photogramm Eng
Remote Sensing 58(9):1343–1350

Stein A, Ettema C (2003) An overview of spatial sampling procedures and experimen-
tal design of spatial studies for ecosystem comparisons. Agric Ecosyst Environ
94(1):31–47

Sterba H (1980) Stem-curves: a review of literature. For Abstr 41:141–145
Stevens DL, Olsen AR (2004) Spatially balanced sampling of natural resources. J Am

Stat Assoc 99(465):262–278
Steward JL, Dunsdon AJ, Hellin JJ, Hughes CE (1992) Wood biomass estimation of

central American dry zone species. Tropical forestry papers 26. Oxford Forestry
Institute, University of Oxford, Oxford

Stierlin HR (1979) Die Erfassung der Walderschliessung. Eidg Anstalt Forstl
Versuchswes Ber 204

Stierlin HR, Zinggeler J (2001) Terrestrial inventory. In: Brassel P, Lischke H (eds) Swiss
National Forest Inventory: methods and models of the second assessment. Swiss
Federal Research Institute (WSL), Birmensdorf, pp 65–87

Stork N, Davies J (1996) Biodiversity inventories. In: Biodiversity assessment. A guide
to good practice. Field manual 1. Data and specimen collection of plants, fungi and
mircoorganisms. HMSO, London

Story M, Congalton RG (1986) Accuracy assessment: a user’s perspective. Photogramm
Eng Remote Sensing 52(3): 397-399

Stott CB, Semmes G (1962) Our changing inventory methods and the CFI system in
North America. In: Proceedings of the 5th world forest congress, Seattle, pp 451–454

Stott CB, Ryan EJ (1939) A permanent sample technique adapted to commercial tim-
ber stands. J For 37:347–349

Stow DA, Chen DM (2002) Sensitivity of multitemporal NOAA AVHRR data of an
urbanizing region to land-use/land-cover changes and misregistration. Remote
Sensing Environ 80:297–307

Strand LC (1958) Sampling for volume along a line. Nor Skogst 51
Stroppiana D, Pinnock S, Pereira JMC, Gregoire J-M (2002) Radiometric analysis of

SPOT-VEGETATION images for burnt area detection in Northern Australia.
Remote Sensing Environ 82:21–37

Stuiver M, de Rebello AL, White JC, Broecker W (1981) Isotopic indicators of
age/growth in tropical trees. In: Borman FH, Berlyn G (eds) Age and growth rate of
tropical trees, new directions for research. Bull Sch For Environ Stud Yale Univ
94:75–82

Stussi N, Liew SC, Kwoh LK, Lim H (1997) Landcover classification using ERS-
SAR/INSAR data over tropical areas. In: Proceedings of the 1997 international geo-
science remote sensing symposium, pp 813–815

360 References



Sudman S, Sirken MG, Corvan CD (1988) Sampling rare and elusive populations.
Science 240:991–995

Sukhatme PV, Sukhatme BV, Sukhatme,S, Asok C (1984) Sampling theory of surveys
with applications. Iowa State University Press, Ames

Sutter R (1990) Increasing efficiency in volume estimation by the combination of aer-
ial and terrestrial samples in the Swiss NFI. In: Sylvander R (ed) Proceedings of the
IUFRO/SNS workshop, Umea, 26–28 February 1990. Swedish University of
Agricultural Sciences, report 4

Svarrer K, Olsen,CS (2005) The economic value of non-timber forest products – a case
study form Malaysia. J Sustain For 20(1):17–41

Swindel BF, Conde LF, Smith JE (1984) Species diversity: concept measurement, and
response to clearcutting and site preparation. For Ecol Manage 8:11–22

Tanaka S, Kimura H, Suga Y (1983) Preparation of a 125,000 Landsat map of assess-
ment of burnt area on Etajima Island. Int J Remote Sensing 4:17–31

Taras MA, Clark A (1977) Above ground biomass of longleaf pine in a natural saw-
timber stand in southern Alabama. USDA Forest Service, Southeast Forest
Experimental Station research paper SE-162

Tardif G (1965) Some considerations concerning the establishment of optimum plot
size in forest survey. For Chron 41:93–102

Thiel K-H, Wehr A (2004) Performance capabilities of laser scanners: an overview and
measurement principle analysis. In: Thies M, Koch B, Spiecker H, Weinacker H (eds)
Laser-scanners for forest and landscape assessment. Int Arch Photogramm Remote
Sensing Spatial Inf Sci 36(8/W2):14–18

Thill JC (1999) Spatial multicriteria decision making and analysis: a geographic infor-
mation sciences approach. Ashgate, Aldershot

Thompson SK (1990) Adaptive cluster sampling. J Am Stat Assoc 85:1050–1059
Thompson SK (1991) Stratified adaptive cluster sampling. Biometrika 78(2):389–397
Thompson SK (1992) Sampling. Wiley, New York
Todd SW, Hoffer RM, Milchunas DG (1998) Biomass estimation on grazed and

ungrazed rangelands using spectral indices. Int J Remote Sensing 19(3):427–438
Tomppo E (1997) Biodiversity monitoring in finnish forest inventories. In: Bachmann

P, Kuuslea K, Uuttera J (eds) Assessment of biodiversity for improved forest man-
agement, vol 6. Kluwer, Dordrecht, pp 87–94

Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information
and weighting of variables in kNN estimation: a genetic algorithm approach.
Remote Sensing Environ 92(1):1–20

Torelli N (1987) End-use orientated utilization of tropical forests – testing relevant bio-
logical, physical, chemical and mechanical properties. Funkcne integrovane
obhospodarovanie lesov a komplexne vyuzitie dreva medzinarodna vedecka konfer-
encia, Zvolen. Zb Ref Sekc 4:251–256

Touber L, Smaling EMA, Andriesse W, Kakkeling RTA (1989) Inventory and evaluation
of tropical forest lands: guidelines for a common methodology. Tropenbos technical
series 4. Tropenbos Foundation, Wageningen

Trachsler H, Kölbl O, Meyer B, Mahrer F (1980) Stichprobenweise Auswertung von
Luftaufnahmen für die Erneuerung der Arealstatistik. Bundesamt für Statistik und
Bundesamt für Raumplanung, Bern

Travaglini D, Mason F, Lopresti M, Lombardi F, Marchetti M, Chirici G, Corona P
(2005) Aspects of biological diversity in the CONECOFOR plots. IV: Deadwood

References 361



surveying experiments in Alpine and Mediterranean forest ecosystems. 3rd report
of TF on I&C evaluation of CONECOFOR. University of Florence, CFS:105–142

Treitz PM, Howarth, PJ, Gong P (1992) Application of satellite and GIS technologies
for land-cover and land-use mapping at the rural–urban fringe: a case study.
Photogramm Eng Remote Sensing 58:439–448

Treitz P, Howarth P (1999) Hyperspectral remote sensing for estimating biophysical
parameters of forest ecosystems. Prog Phys Geogr 23(3)359–390

Trotter CM, Dymond JR, Goulding CJ (1997) Estimation of timber volume in a conif-
erous plantation forest using landsat TM. Int J Remote Sensing 18(10):2209–2223

Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring
vegetation. Remote Sensing Environ 8(2):127–150

Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote
Sensing Environ 10:23–32

Tuominen S, Fish S, Poso S (2003) Combining remote sensing, data from earlier inven-
tories, and geostatistical interpolation in multisource forest inventory. Can J For Res
Rev Can Rech For 33(4):624–634

Turner MG, Gardner RH (eds) (1991) Quantiative methods in landscape ecology: the
analysis and interpretation of landscape heterogeneity. Ecological studies, vol 82.
Springer, Berlin Heidelberg New York

Tyystjarvi E, Karunen J, Lemmetyinen H et al (1998) Chlorophyll fluorescence can be
used to identify plant species. Photosynthesis: mechanisms an effects, vol V.
Proceedings of the XIth international congrss on photosynthesis, Budapest,
Hungary, 17–22 August 1998, pp 3857–3860

Uebelhör K (1988) Praktische Erfahrungen mit Winkelzählprobe und Breitbandrelaskop
im tropischen Regenwald. Forstarchiv 59(2):47–52

Ulaby FT, Pierce L, Oh Y, Sarabandi K, Dobson MC (1991) Scene classification and
radar polarimetry for mapping of soil and vegetation parameters. Paper presented at
the 6th international symposium on physical measurements and signatures in
remote sensing, Val D’Isere, France, 17–21 January

UN-ECE (1998) Manual on methods and criteria for harmonized sampling, assess-
ment, monitoring and analysis of the effects of pollution on forests, 4th edn. IPC,
Hamburg

UN-ECE/FAO (2000) Forest resources of Europe, CIS, North America, Australia, Japan
and New Zealand. United Nations publication no E.99.II.E.36. UN-ECE, Geneva

UN-ECE (2004) The condition of forests in Europe (2004). Executive report. UN,
Geneva

UNESCO (1973) International classification and mapping of vegetation. United
Nations Educational, Scientific and Cultural Organisation, Paris

Upton GJG, Fingleton B (1985) Spatial data analysis by example, vol I. Point patterns
and quantitative data. Wiley, Chichester

Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004) A neighborhood analy-
sis of tree growth and survival in a hurricane-driven tropical forest. Ecol Monogr
74(4):591–614

Ustin SL, Smith MO, Jacquemoud S, Verstraete M, Govaerts Y (1999) Geobotany: veg-
etation mapping for earth sciences. In: Renca AN (ed) Remote sensing for the earth
sciences, 3rd edn. Manual of remote sensing, vol 3. Wiley, New York, pp 707

Valentine HT, Hilton SJ (1977) Sampling oak foliage by the randomized-branch
method. Can J For Res 7:295–298

362 References



Valentine HT, Tritton LM, Frurnival GM (1984) Subsampling trees for biomass, vol-
ume or mineral content. For Sci 30:673–681

Valentine HT, Gregoire TG, Frurnival GM (1992) Estimation of the aggregate bole vol-
ume of a population of trees by stratified, two-stage, probability sampling.
Statistician 41:499–507

Valkenburg JLCH (1997) Non-timber forest products of East Kalimantan. Potentials
for sustainable forest use. Tropenbos series 16. Tropenbos Foundation, Wageningen

Valliant R, Dorfman AH, Royall RM (2000) Finite population sampling and inference.
A prediction approach. Wiley, New York

Vanclay J (1994) Modelling forest growth and yield: applications to mixed tropical
forests. CAB, Wallingford

Vanclay JK (1996) Estimating sustainable timber production from tropical forests,
CIFOR working paper no 11

Vanclay JK (1998) Towards more rigorous assessment of biodiversity. In: Bachmann P,
Köhl M, Päivinen R (eds) Assessment of biodiversity for improved forest planning.
Kluwer, Dordrecht, pp 211–232

van Deusen PC (1996) Incorporating predictions into an annual forest inventory. Can
J For Res 26:1709–1713

van Deusen PC (1997) Annual forest inventory statistical concepts with emphasis on
multiple imputations. Can J For Res 27:379–384

van Deusen PC, Baldwin VC Jr (1993) Sampling and predicting tree dry weight. Can J
For Res 23:1826–1829

Van Hees WWS (2002) A comparison of two estimates of standard error for a ratio-of-
means estimator for a mapped-plot sample design in southeast Alaska. Pacific North
West Research Station notes PNW-532:1–9. USDA Forest Service, Portland

van Lieshout MNM, Baddeley AJ (2002) Extrapolating and interpolating spatial pat-
terns. In: Lawson AB, Denison DGT (eds) Spatial cluster modelling. Chapman and
Hall/CRC, Boca Raton, pp 61–86

Vantomme P (2003) What are ‘non-wood forest products’ for FAO? Int For Rev
5(2):162

van Wagner CE (1987) Development and Structure of the Canadian forest fire weather
index system. Forestry technical report 35. Canadian Foresty Service. Ottawa

Velle K (1995) Estimation of standing stock of woody biomass in areas where little or
no baseline data are available. A study based on field measurements in Uganda.
Doctoral thesis, Agricultural University of Norway, Ås

Venette RC, Moon RD, Hutchison WD (2002) Strategies and statistics of sampling for
rare individuals. Annu Rev Entomol 47:143–174

Vetter RE, Botosso RC (1989) Remarks on age and growth rate determination of
Amazonian trees. Int Assoc Wood Anat J 10:133–145

Vikhamar D, Solberg R (2003) Subpixel mapping of snow cover in forests by optical
remote sensing. Remote Sensing Environ 84(1):69–82

Vogelmann JE, Howard SM (1998) Regional characterization of land cover using mul-
tiple sources of data. Photogramm Eng Remote Sensing 64(1):45–57

Volk H, Schirmer C (2004) Leitfaden zur Kartierung der Schutz-und erholungsfunk-
tionen des Waldes, Projektgruppe Forstliche Landespflege. Sauerländers’s Verlag,
Frankfurt

von Gadow K (1987) Untersuchung zur Konstruktion von Wuchsmodellen für
schnellwüchsige Plantagenbauarten. Forstl Forschungsber Münch 77

References 363



von Gadow K, Pukkala T, Tomè M (eds) (2000) Sustainable forest management.
Kluwer, Dordrecht

von Gadow K, Nagel J, Saborowski J (eds) (2002) Continuous cover forestry – assess-
ment, analysis, scenarios. Kluwer, Dordrecht

von Neumann J, Kent R, Bellison HR, Hart BI (1941) The mean square successive dif-
ference. Ann Math Stat 50:226–251

von Segebaden G (1964) Studies of cross-country transport distances and road net
extension. Stud For Suec 18

von Segebaden G, Strömnes R, Winer HI (1967) Proposal for international system of
terrain classification. IUFRO, 14th Congress Munich, Sect 31–32(8):756-764

Walters DK, Burkhart HE, Reynolds MRJ, Gregoire TG (1991) A Kalman filter
approach to localizing height-age equations. For Sci 37(6):1526–1537

Walz U (1999) Charakterisierung der Landschaftsstruktur mit Methoden der Satelliten-
Fernerkundung und der Geoinformatik. Dissertation, TU Dresden, Dresden

Wand MP (1997) Data-based choice of histogram bin width. Am Stat 51:59–64
Wang F (1990) Fuzzy supervised classification of remote sensing images. IEEE Trans

Geosci Remote Sensing 28(2):194–201
Wang F, Fuller WA (2003) The mean squared error of small area predictors constructed

with estimated area variances. J Am Stat Assoc 98(463):716–723
Wan Razali M (1988) Modelling the tree growth in mixed tropical forests. Use of diam-

eter and basal area increment. J Trop For Sci 1/2:114–121
Ware KD (1960) Optimum regression sampling design for sampling of forest popula-

tions on successive occasions. PhD dissertation, Yale University
Ware KD, Cunia T (1962) Continuous forest inventory with partial replacement of

samples. For Sci Monogr 3
Weaver PL, Birdsey A (1986) Tree succession and management opportunities in coffee

shade stands. Turrialba 36(1):47–58
Webster R, Olivier MA (1985) Utilisation exploratoire de la geostatistique pour la car-

tographie du sol dans la foret de Wyre (GB). Sci Terre Inf Geol 24:171–173
Webster R, Olivier MA (1990) Statistical methods in soil and land resource survey.

Oxford University Press, Oxford
Wegmuller U, Werner CL (1995) SAR interferometric signatures of forest. IEEE Trans

Geosci Remote Sensing 33:1153–1161
Whitmore TC (1989) Changes over twenty-one years in the Kolombangara rain forests.

J Ecol 77(2):469–483
Wiant HV, Wood GB, Miles JA (1989) Estimating the volume of a radiata pine stand

using importance sampling. Aust For 52:286–292
Wilkinson GG (1996) A review of current issues in the integration of GIS and remote

sensing data. Int J Geograph Inf Syst 19:85–101
Williams DL (1989) The radiative transfer characteristics of Spruce (Picea spp.): impli-

cations relative to the canopy microclimate. PhD thesis, University of Maryland
Williams DL (1996) Adaptive optimization of renewable natural resources: solution

algorithms and a computer program. Ecol Modell 93:101–111
Williams DL (2001) Nonuniform random sampling: an alternative method of variance

reduction for forest surveys. Can J For Res 31:2080–2088
Williams DL, Eriksson M (2002) Comparing the two paradigms for fixed-area sam-

pling in large-scale inventories. For Ecol Manage 168:135-148

364 References



Wilson R, Hirsch S, Madden R (1971) Airborne infrared forest fire detection system:
final report. USDA Forest Service research paper INT-93

Wintle BA, McCarthy MA, Parris KM, Burgman MA (2004) Precision and bias of meth-
ods for estimating point survey detection probabilities. Ecol Appl 14(3):703–712

Wiersum KF (1999) Understanding diversity in NTFP management: a neglected issue
in NTFP research. NTFP research in the Tropenbos programme: results and per-
spectives. Tropenbos Foundation, Wageningen

Wolter MK (1985) Introduction to variance estimation. Springer, Berlin Heidelberg
New York

Wong JLG (1998) Non-timber forest products from the reserved forests of Ghana.
Consultancy report 11. Forest Sector Development Project, Accra

Wong JLG (2000) The biometrics of non-timber forest product resource assessment: a
review of current methodology. Internal report. Wild Resources, Gwynedd

Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote
Sensing Environ 21:333–339

Woodcock CE, Collins JB, Gopal S, Jakabhazy VD, Macomber S, Ryherd S, Harward VJ,
Levitan J, Wu Y, Warbington R (1994) Mapping forest vegetation using landsat TM
imagery and a canopy reflectance model. Remote Sensing Environ 50:240–254

Wopereis MC, Gascuel-Odoux C, Bourrie G, Soignet G (1988) Spatial variability of
heavy metals in soil on a one-hectare scale. Soil Sci 146(2):113–118

Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savan-
nas and amountain forest in the Neotropics. Int Assoc Wood Anat J 10:109–122

Worbes M (1992) Occurrence of seasonal climate and tree-ring research in the tropics.
Lundqua Rep 34:338–342

Worbes M, Junk WJ (1989) Dating tropical trees by means of C-14 from bomb tests.
Ecology 70:503–507

Wu CB (2003) Optimal calibration estimators in survey sampling. Biometrika
90:937–951

Wulder MA, Franklin SE (eds) (2003) Remote sensing of forest environments: concepts
and case studies, Springer, Berlin Heidelberg New York

Wulder MA, Franklin SE, Lavigne MB (1996) High spatial resolution optical image tex-
ture for improved estimation of forest stand leaf area index. Can J Remote Sensing
22:441–449

Wullschläger E (1982) Die Erfassung der Waldfunktionen. Eidg Anstalt Forstl
Versuchswes Ber 238

Wyatt NL (1991) A methodology for the evaluation of non-timber forest resources.
Case study: the forest reserves of southern Ghana. MSc thesis, Cranfield Institute of
Technology

Yates F (1949) Sampling methods for censuses and surveys. Griffith, London
Yates F (1981) Sampling methods for censuses and surveys, 4th edn. Macmillan,

New York
Young HE (1976) A summary and analysis of weight table studies. OSLO biomass stud-

ies. University of Maine, Orono, pp 251–282
Young HE, Strand L, Altenberger R (1964) Preliminary fresh and dry weight tables for

seven tree species in Maine. Maine Agric St Orono Tech Bull 12
Yuan M (1997) Use of knowledge acquisition to build wildfire representation in geo-

graphical information systems. Int J Geograph Inf Sci 11(8):723–745

References 365



Yuan D, Elvidge CD (1998) NALC land cover change detection pilot study: Washington
DC area experiments. Remote Sensing Environ 66:166–178

Zeide B (1980) Plot size optimization. For Sci 26:251–257
Zell J, Hanewinkel M, Seeling U (2004) Financial optimisation of target diameter har-

vest of European beech (Fagus sylvatica) considering the risk of decrease of timber
quality due to red heartwood. For Policy Econ 6(6):579–593

Zent S (1996) Behavioural orientations towards ethnobotanical quantification. In:
Alexiades MN (ed) Selected guidelines for ethnobotanical research: a field manual.
New York Botanical Garden, New York, pp 199–239

Zhan X, Sohlberg RA, Townshend JRG, DiMiceli C, Carroll ML, Eastman JC, Hansen
MC, DeFries RS. (2002) Detection of land cover changes using MODIS 250 m data.
Remote Sensing Environ 83:336–350

Zhang L-C, Chambers RL (2004) Small area estimates for cross classifications. J R Stat
Soc Ser B 66(2):479–496

Zhang L-C, Davidian M (2001) Linear mixed models with flexible distributions of ran-
dom effects for longitudinal data. Biometrics 57:795–802

Zhao YL, Wall MM (2004) Investigating the use of the variogram for lattice data.
J Comput Graph Stat 13(3):719–738

Zhu J, Morgan GD (2004) Comparison of spatial variables over subregions using a
block bootstrap. J Agric Biol Environ Stat 9(1):91–104

Zhukov B,Oertel D, Lanzl F, Reinhäckel G (1999) Unmixing-based multisensor mul-
tiresolution image fusion. IEEE Trans Geosci Remote Sensing 37:1212–1226

Zingg A (1988) Schweizerisches Landesforstinventar, Anleitung für die Erstaufnahme
1982–1986. Eidg Anstalt Forstl Versuchswes Ber 304

Zinggeler J, Paschedag I, Ulmer U (1999) Erschliessung und Bewirtschaftung. In:
Brassel P, Brändli UB (eds) Schweizerisches Landesforstinventar: Ergebnisse der
Zweitaufnahmen 1993–1995, Eidgenössiche Forschungsanstalt für Wald, Schnee
und Landschaft, Birmensdorf, pp 233–254

366 References



Index

A
absorption, 205, 206, 207, 208, 209, 210
abundance, 290, 291, 292, 299, 301, 302
acceleration of growth, 64, 65, 66
accuracy, 120, 121, 154, 169, 235
active sensors, 211
adaptive cluster sampling, 151–155, 302
adaptive design, 151
adjacency, 242
aerial photography, 81, 82, 102
ALI, 226, 229
allocation, 107, 108, 109, 110, 111, 112
alpha diversity, 300
altimeters, 38, 41
among-cluster variance, 98, 100
analysis stage, 221
analysis, 211–223
angle count, 134, 139
angle gauge, 135, 136, 137, 138, 139, 156,

160
annual rings, 61
arc, 243
area point, 243
area proportion, 18
area weight, 108, 109, 133, 134, 136, 142
area, 243
ASTER, 226, 229
atmosphere, 201, 205–207
atmospheric windows, 206, 207
autocorrelation, 145
auxiliary information, 81, 105, 106, 150,

173, 175, 182
auxiliary variables, 112, 179, 180, 182,

188, 189
AVIRIS, 225, 230

B
backscatter, 231, 232, 233
band, 207, 212, 218, 219, 231, 233
bark hammer, 44
bark thickness, 44, 45
bark, 44, 45, 48, 55
basal area factor, 136
basal area, 26, 27, 35, 62, 68
Bayesian, 121, 167, 185–187, 195
Bernoulli experiment, 22
beta diversity, 300
bias, 28, 56, 79, 120, 125
design-unbiased, 79, 84, 152, 181, 191

model-unbiased, 79
biased estimate, 108, 121, 122, 142
binomial, 110, 151, 167, 168, 186
biodiversity indicators, 298–299
biological diversity, 286, 293–304
biomass functions, 55, 56, 57
biomass, 54, 55
Bitterlich’s sector fork, 27, 28
block Kriging, 182–185
bole length, 36, 37
Bonferroni method, 90
“bootstrap”, 53
borderlines, 237
brightness, 215
burn index, 324
burned areas, 321–324, 325

C
calipers, 27, 28, 33
Camp Unit System, 99
capture–recapture sampling,

166–167



368 Index

CASI-2, 230
central limit theorem, 84, 85
chain, 243
channel, 212, 215, 219, 225, 228, 230
Christen altimeter, 38, 40
circular plots, 130, 131, 132
Classification Systems, 286–288
classification, 215, 218, 219, 221

accuracy of position and of,
236–237

association, 221
color, 221
feature, 251
pattern, 221
shape, 221
size, 221
shadow, 221
tone, 221

Clinometers, 38, 39
Cluster(s)

of constant size, 99
sampling, 81, 94, 97–105, 151, 196
shapes, 100
sizes, 98, 100, 155

coarse woody debris, 303, 314
coefficient of variation, 84, 130
color, 221, 222, 234
composite estimator, 176, 177, 179, 180,

183, 184, 185, 191, 192
composite sampling, 170–172
Composite Small-Area Estimators,

176–177
Composite, 170–172
Computer graphics, 273, 274
confidence coefficient, 85, 86, 87, 90
confidence interval, 85, 86, 87, 89, 90,

123, 162, 193
Connectivity, 242
Containment, 242
control method, 143, 144
convex deficit, 35, 36
correlation coefficient, 114, 131, 145,

146, 148, 190
cost, 92, 97, 98, 106, 107, 112, 146, 149,

151, 153, 168, 172

Criteria and Indicators for Sustainable
Forest Management, 1, 5

cross-sectional area, 28, 35
crown cover, 20, 21
crown length, 37
current annual increment, 64, 66

D
data base systems, 273, 274
data type, 8
data, 239
DBH, 26, 27, 28, 29, 42, 50, 56, 62

diameter distributions, 26
errors, 28
of bias, 28

deflection angles, 234
degrees of freedom, 87, 90
delta technique, 87, 90
dendrometer, 30, 33
density, 254
design effect, 109–110, 112
design phase, of project management,

13–14
design-based estimator, 74, 165, 176, 195
detection stage, 220
development phase, of project

management, 14
diameter tapes, 27, 28
digital number, 211, 212, 213, 218
directed link, 243
dot grids, 22, 23
double sampling, 112, 115, 116, 117, 148,

168–170

E
efficiency, 92, 93, 98, 105, 106, 109, 131,

140, 150, 152, 153, 155, 157, 159
Eichorn’s Law, 42
electromagnetic radiation, 202–203, 205,

206, 209, 220, 229
elusive population, 150–172
Empirical Bayesian Methods, 185–187
energy source, 201, 202
entity point, 243
error budget, 126, 127, 129



error limits, 9
bias, 9
sampling error, 9

errors, 27, 28, 37
ERS, 225, 230, 231
estimates, 74, 85, 134, 149, 171
estimators, 71–74, 78, 91, 112, 153,

174, 175, 176
exploitation surveys or logging plan

surveys, 10

F
feature manipulation, 246, 250
features classification, 251
finite population, 76, 82, 84, 110, 113,

128, 193, 195
finite-population correction factor, 84,

85, 100, 110, 128
Finnish caliper, 33, 34, 38
fixed-angle range finder, 30, 33
fixed-area plots, 82, 89, 132, 134,

140–141, 152, 174
fixed-area sampling units, 130–133

plot, 130, 131
fixed-base range finder, 30, 33
forest area definitions, 18, 19, 20, 21
forest condition inventories, 11
forest edge, 141–143, 299, 300
forest functions, 17
forest industries feasibility study 

(FIFS), 11
forest information systems, 239–275
forest management planning, 144
forest road network, 281
forest/nonforest decision, 72
form factor, 45
form quotient, 45, 46
Fourier series, 162, 165
frequency, 202, 254
fuzzy logic, 273, 275

G
Gamma diversity, 300
geographic information systems, 22
geometric principle, 38

geometric window, 306, 307, 308
geometrical heterogeneity, 218
geostatistical, 262–268
GIS, 239, 240–268
global forest inventories, 9
grid analysis, 261–262
gross volume, 278, 279
growth equations, 67, 68
growth, 62–66

increment, 61

H
Hansen–Hurwitz (HH) estimator, 152
height curve, 43, 44
height of dominant trees, 42
high-spatial-resolution, 228, 229, 230
horizontal line sampling, 140
hot spots, 319, 320, 322
Huber’s formula, 50
hyperspectral, 216, 230
hypsometers, 38

I
IKONOS, 224, 225, 226, 229
image enhancement, 215
image processing, 214–219
image, 211, 212, 214, 215, 225
importance sampling, 57
increment boring, 66
information extraction, 214, 215
information requirements, 4
information, 239
ingrowth, 132, 141
integration, 273, 275
interaction, 201, 205–210
interior area, 243
interpretation, 197, 202, 208, 209, 220–223
intersection, 242
intraplot correlation coefficient, 131
inverse sampling, 167–168
IRS, 225, 228, 229

J
jackknife estimator, 162, 169
JERS, 225, 231

Index 369



K
k Nearest-Neighbor Prediction, 187–191

kNN method, 187, 188, 189
kernel smoothing, 162
kernels, 305
knowledge-based systems, 272, 274
kriging, 260, 266, 267, 268

L
label point, 243
landsat, 198, 209, 213, 215, 219, 224,

225, 226, 227, 228
landscape ecology, 304, 308
landscape, 197, 200, 201, 215, 220, 228,

229, 233
land-use inventories, 10
“large-scale” volume functions, 51
laser scanning, 233, 234
lidar, 234
likelihood, 111, 157, 158, 165, 167,

168, 172, 181, 185, 186
line segment, 243
line transect, 160–166, 169

sampling, 160–166, 169
line, 243
link or edge, 243
local volume functions, 50, 51
log-likelihood, 186
Lorey’s mean height, 42

M
matched permanent plots, 147
mean square error, 80, 93, 120, 140
mean stand height, 42
mean, 71, 76, 78, 79, 83, 108, 153, 164

estimate, 83, 91, 153
estimator, 91
proportion, 111
ratio, 111
total, 78, 79, 105, 111

measurement errors, 123–125, 126,
127, 128, 134, 200, 235

measurement scale, 8
interval scaling, 8
nominal scaling, 8
ordinal scaling, 8

ratio, 8, 9
relative scaling, 9

medium-resolution sensors, 227, 228,
229

merchantable height, 37
method of squared differences, 96
microwave, 230, 232
Mie scattering, 206
mirror reflection method, 142
model-based estimators, 74, 79, 194
model-based small-area estimation,

177–182
modeling, 245, 269, 274
MODIS, 225, 227, 230
Monte Carlo simulations, 126, 127, 129
mortality, 67

cut, 67
moving-window technique, 305
MSS, 198, 213, 225, 227, 228
multilayer, 251, 261
multiphase sampling, 118–119

N
national forest inventories, 10
nearest-neighbor index, 256
net volume, 279
network, 241, 257–258, 259, 273, 275
neural network, 215, 216, 217
neural networks, 275
Newton’s formula, 50
Neymann allocation, 107
NN estimators, 96
node, 243
nonobservation, 122–123
nonprobability samples, 76
nonproductive forest functions, 17
nonsampling errors, 120, 125–129
nonselective scattering, 206
nugget effect, 264

O
objective, 3–7

agreed upon, 4
cost-efficient, 3
inventory, 3, 4, 7, 8, 13
measurable, 4

370 Index



realistic, 4
reliable, 2
specific, 4
time-framed, 4

object-oriented classification, 217, 218
ongrowth, 141
operation phase, of project management,

14–15
optical calipers, 30
optical forks, 30, 31
optimal allocation, 107
optimum design, 106
optimum plot design, 131
optimum, 106, 107, 111, 118
overlay analyses, 252

P
passive sensors, 210
percentages, 88–90
periodic annual increment, 64, 65, 67, 69
photograph, 207, 211
pixels, 211, 235, 236
planning, 80, 106, 112, 121, 130
plant densities, 302
plotless cruising, 134
point sampling, 22, 134–140, 156
Poisson process, 22
polynomial curves, 46
population element, 72, 73, 89, 112,

116, 123, 124, 140, 150, 152, 160,
163, 177, 180, 182, 187

population total, 76, 86, 91, 100, 102,
105, 108, 121, 127–128, 131, 143,
150, 157, 160–161, 168, 175, 193

variance, 84, 89, 108, 148
proportion, 89, 104, 109, 116, 123
stratification, 102, 106, 111

population, 1, 5, 8, 9, 71, 83
positional accuracy, 234, 235, 236
posterior distribution, 185, 186, 195
poststratification, 110–111, 176
precision, 30, 33, 50, 52, 79, 120, 121,

173, 235
prediction error, 52–53
prevalence, 172
principal component analysis, 215

probability sampling, 74, 76, 113, 193,
195

processing, image, 214–223
project management, 12

study phase, 12, 13
design phase, 12, 13, 14
development phase, 12, 14
operation phase, 14

proportions, 88–90, 104, 108, 123
proximity analysis, 246, 250, 251, 254
proximity, 246, 254

Q
quality (quality grade), 58

R
RADARSAT, 225, 226, 231
radiation, 201, 202–203, 203, 205,

207–210, 220
radiometric corrections, 214
radiometric resolution, 213, 227
random points, 22, 23
randomized branch sampling, 57
range, 265
rank proximity criterion, 129
ranked set sampling, 303
ratio estimators, 90, 186
ratio of means estimator, 91
rayleigh scattering, 205, 206
reception, 202
recognition and identification, 220, 221
recognition, 218, 220, 221, 238
reconnaissance inventories, 10
recovery studies, 279, 280
recovery, 279, 280, 313
reflectance properties, 209
regional inventories, 10
regional variable, 264
regional volume functions, 50, 51
regression estimator, 112–116, 147, 175,

180, 181
relascope, 138, 139
relaskop, 30, 32, 39
reliability, 19, 22, 120, 121, 235
repeated measurement, 126, 141, 143,

144, 146, 148

Index 371



Resampling, 191–196
bootstrap, 192
Jackknife, 194–195
Pòlya-urn resampling scheme,

195–196
resolution, image, 213–214
rule-of-three, 151

S
sample allocation, 107, 108
sample location, 72, 73, 92, 93, 97, 98,

102, 123, 129, 133, 135, 136, 140,
141, 146, 155, 156, 184

sample size, 22, 51, 52, 87, 107, 166, 167
sample, 71
sampled population, 72, 123, 188
sampling design, 80–119
sampling errors, 120, 151, 176, 178
sampling frame, 72, 76, 82, 83, 93, 94,

95, 140, 154, 173
sampling on successive occasions,

143–150
sampling strategy, 75, 80, 82
sampling units, 130–141
sampling variance, 75, 79, 105, 124,

126, 174
sampling with partial replacement of

sample plots, 147–149
SAR, 225, 230, 231, 233
scatterers, 231, 232
scattering, 205, 206, 232, 234
secondary units, 100, 101, 102, 103, 105
selection probabilities, 75, 76, 81, 100,

102, 134, 158,
selection process, 75, 76, 97
semisystematic sampling designs, 97
Shannon, 298, 299
sill, 264, 265
simple polygon, 243
simple random sampling, 81, 82
Simpson, 298, 299
simulation, 274
single-layer operations, 246, 250
slant range, 234
Smalian’s formula, 50
small-area estimation, 173–187

smoothness, 217, 221
software ergonomics, 273, 274
sound merchantable length, 37
spatial analyses, 239, 241, 242, 245–254
spatial arrangement, 255–256
spatial autocorrelation, 254, 256, 257
spatial distribution, 20, 24
spatial features, 244, 245, 246, 252, 254,

256
spatial filtering, 215
spatial geometrical resolution, 212
spatial interpolation, 259–260, 262, 267
spatial pattern, 240, 254, 256, 266, 268
spatial resolution, 200, 212, 214, 216,

219, 220, 227, 228, 229, 231
species count, 298, 299
species diversity, 295, 302
species richness, 294, 298, 299
spectral heterogeneity, 218
spectral mixture analysis, 216
SPOT, 204, 213, 214, 225, 226, 228
SRS with replacement, 82, 192, 193
SRS without replacement, 82, 83
stand growth, 63, 67
standard deviation, 83, 84, 107, 151, 154
standard error, 83, 84, 85, 86, 89, 90, 91,

92, 95, 120, 124, 130, 151,154, 159,
165, 167, 168, 169

statistical presentation, 2
stock density, 35, 45
strata sizes, 116

mean, 116, 117
variance, 109, 117

stratification, 102, 106, 111
stratified random sampling, 96, 103, 106,

108, 109, 110, 111, 112, 174, 196
stratified sampling, 81, 105–112, 116, 117
stratum, 92, 96, 104, 105, 107, 108, 109,

110, 111, 112, 116, 117, 119, 161, 187
String, 243
study phase, of project management,

12–13
stump height, 37
subpopulations, 82, 92, 105, 106, 115, 149
surface analysis, 258–261
survey design, 80–119

372 Index



survivor growth, 67, 68
sustainable forest management, 1, 5, 7
Swedish bark gauge, 44
synthetic estimator, 175, 176, 180
synthetic ratio estimator, 175
systematic errors, 39
systematic sampling, 93–97, 112

T
taper function, 46, 47
target population, 72, 96, 146
Tasseled Cap Transformation, 215, 216
Taylor series approximation, 87,
129, 174
Taylor series, 87, 129, 174, 191, 192
Tele-Relaskop, 30, 32
temporal resolution, 213
the first-stage units, 101, 104
the isoperimetric deficit, 35
thematic accuracy, 236, 237
three-phase sampling, 118
thresholding, 324
topology, 241, 245, 247, 257
total height, 36, 46
tract, 99, 100, 102
training sets, 198, 215
transmission, 202, 207, 208, 234
tree age, 61, 66
tree finder, 24, 25
tree form, 45, 46, 48
tree height, 36, 37, 39, 42, 43,47, 50,

53, 56, 57, 62
tree resources outside the forest, 312
tree ring chronologies, 62
tree species, 44, 57, 62, 64
trigonometric principle, 38, 39, 41
two-phase sampling for stratification,

112, 114, 116–118
two-phase sampling with regression

estimators, 112–118

first-phase, 112, 113, 116
second-phase, 113, 114, 116

two-phase sampling, 112–118, 149, 187
two-stage cluster sampling, 100–103
two-stage sampling, 100, 101, 102

U
unequal probability, 113, 134, 155, 157,

193, 195
usable length, 37
user interfaces, 273, 274
user needs, 2, 12

V
variable plot cruising, 134
variogram, 264, 265, 266
vegetative cover conversion, 227
vertex, 30, 39, 41
visible spectrum, 204, 205
visual classification, 323
visualization, 269, 273, 274, 275
volume estimates, 278
volume functions, 29, 37, 48, 50
volume, 47–54, 68, 69

W
wavelength, 202
Weibull function, 27
weight, 53, 54, 55
Wheeler pentaprism, 31
wildfires, 312, 313–315, 317, 320, 326

danger, 313, 326
hazard, 313
risk, 313–315

window, atmospheric, 206
window concept, 305
windows, theory of, 305–311
wood density, 53, 54, 55
woody biomass, 54, 55
working plan surveys, 11

Index 373


	Contents
	1 Forest Inventories &#8212; an Overview
	1.1 Focus
	1.2 Objectives
	1.3 A Typology of Forest Inventories
	1.4 Inventory Planning

	2 Forest Mensuration
	2.1 Introduction
	2.2 Area Information
	2.2.1 Forest Area Definitions
	2.2.2 Assessment of Forest Area

	2.3 Tree Information and Information for Characterizing the Growing Stock
	2.3.1 Species Identification
	2.3.2 Diameter at Breast Height and Upper-Stem Diameters
	2.3.3 Cross-Sectional Area Measurement
	2.3.4 Height
	2.3.5 Bark Thickness
	2.3.6 Tree Form
	2.3.7 Volume
	2.3.8 Weight and Wood Density
	2.3.9 Biomass
	2.3.10 Quantification of Timber Quality
	2.3.11 Age
	2.3.12 Growth and Increment
	2.3.13 Density


	3 Sampling in Forest Surveys
	3.1 Introduction
	3.2 Basic Concepts
	3.2.1 Population, Samples, and Estimators
	3.2.2 Probability Sampling
	3.2.3 Definitions and Notations
	3.2.4 Properties of Estimators

	3.3 Survey Design and Sampling Design
	3.3.1 Simple Random Sampling
	3.3.2 Systematic Sampling
	3.3.3 Cluster Sampling
	3.3.4 Stratified Sampling
	3.3.5 Two-Phase Sampling
	3.3.6 Multiphase Sampling

	3.4 Errors in Forest Surveys
	3.4.1 Non-Sampling inventory errors

	3.5 Selection of Trees on Sampling Units
	3.5.1 Tree Selection with Fixed-Area Sampling Units
	3.5.2 Scaling of Individual Tree Data into Sample Plot Values
	3.5.3 Point Sampling
	3.5.4 Point Sampling Versus Fixed-Area Plots
	3.5.5 Sampling at the Forest Edge

	3.6 Sampling on Successive Occasions
	3.6.1 Continuous Forest Inventory
	3.6.2 Sampling with Partial Replacement of Sample Plots
	3.6.3 Estimates for Subpopulations

	3.7 Sampling for Rare and Elusive Populations
	3.7.1 Adaptive Cluster Sampling
	3.7.2 Sampling with Probability Proportional to Size
	3.7.3 Line Transect Sampling
	3.7.4 Capture&#8211;Recapture Sampling
	3.7.5 Inverse Sampling
	3.7.6 Double Sampling
	3.7.7 Composite Sampling

	3.8 Small-Area Estimation
	3.8.1 Direct Small-Area Estimators
	3.8.2 Synthetic Small-Area Estimators
	3.8.3 Composite Small-Area Estimators
	3.8.4 Model-Based Small-Area Estimation
	3.8.5 Small-Area Estimation by Block Kriging
	3.8.6 Empirical Bayesian Methods for Small-Area Estimation

	3.9 k Nearest-Neighbor Prediction
	3.10 Resampling for Nonlinear Inventory Statistics
	3.10.1 The Bootstrap
	3.10.2 The Jackknife Resampling
	3.10.3 The Pòlya-Urn Resampling Scheme


	4 Remote Sensing
	4.1 Introduction
	4.2 Basic Concepts
	4.2.1 Electromagnetic Radiation
	4.2.2 The Electromagnetic Spectrum
	4.2.3 Interactions with the Atmosphere
	4.2.4 Radiation&#8211;Target Interactions
	4.2.5 Passive and Active Sensing
	4.2.6 Characteristics and Analysis of Images

	4.3 The Instruments and Their Use
	4.3.1 Coarse Spatial Resolution Sensors
	4.3.2 Medium and High Spatial Resolution Sensors
	4.3.3 Very High Spatial Resolution Sensors
	4.3.4 Hyperspectral Sensors
	4.3.5 Microwave Sensors
	4.3.6 Laser Sensors

	4.4 Accuracy Requirements
	4.4.1 Accuracy of Position and of Classification
	4.4.2 Testing the Accuracy of Borderlines


	5 Geographic and Forest Information Systems
	5.1 Introduction
	5.2 Geographic Information Systems
	5.2.1 Spatial Data
	5.2.2 Spatial Analyses
	5.2.3 Pattern Analysis
	5.2.4 Network Analysis
	5.2.5 Surface Analysis
	5.2.6 Grid Analysis
	5.2.7 Geostatistical Methods

	5.3 Forest Information Systems
	5.4 Methodical Components of Information Systems

	6 Multiresource Forest Inventory
	6.1 Introduction
	6.2 Forest Production
	6.2.1 From Tree Volume to Utilized Timber Volume
	6.2.2 Access Studies

	6.3 Nonwood Goods and Services
	6.3.1 Historical Perspective
	6.3.2 Definition of Nonwood Goods and Services
	6.3.3 Classification Systems for Nonwood Goods and Services
	6.3.4 The Assessment of Nonwood Goods and Services

	6.4 Forest Ecosystems and Biological Diversity[sup(2)]
	6.4.1 Biodiversity Indicators
	6.4.2 Assessment of the Forest Edge
	6.4.3 Sampling Diversity
	6.4.4 Assessment of Rare Species by Adaptive Cluster Sampling
	6.4.5 Plant Density Estimation
	6.4.6 Assessment of Deadwood by Transect Relaskop Sampling and Guided Transect Sampling

	6.5 Landscape Analysis
	6.5.1 The Theory of Windows
	6.5.2 Trees Outside Forests

	6.6 Forest Fires
	6.6.1 Assessment and Modeling of Wildfire Risks
	6.6.2 Detecting Fires and Emissions
	6.6.3 Mapping Burned Areas
	6.6.4 Vegetation Indices and Forest Fires
	6.6.5 Indices for Danger Assessment


	References
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




