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Preface

 

The development of robust accuracy assessment methods for the validation of spatial data
represents a difficult challenge for the geospatial science community. The importance and timeliness
of this issue are related directly to the dramatic escalation in the development and application of
spatial data throughout the latter 20th century. This trend, which is expected to continue, will
become increasingly pervasive and continue to revolutionize future decision-making processes.
However, our current ability to validate large-area spatial data sets represents a major impediment
to many future applications. Problems associated with assessing spatial data accuracy are primarily
related to their valued characteristic of being continuous data and to the associated geometric or
positional errors implicit with all spatial data. Continuous data typically suffer from the problem
of spatial autocorrelation, which violates the important statistical assumption of “independent” data.
Positional errors tend to introduce anomalous errors with the combining of multiple data sets or
layers. The majority of large-area spatial data coverages are derived from remote sensor data and
subsequently analyzed in a GIS to provide baseline information for data-driven assessments to
facilitate the decision-making process. 

This important topic was the focus of a special symposium sponsored by the U.S. Environmental
Protection Agency (EPA) on “Remote Sensing and GIS Accuracy Assessment” on December 11–13,
2001, in Las Vegas, Nevada. The symposium evaluated the important scientific elements relevant
to the performance of accuracy assessments for remote sensing-derived data and GIS data analysis
and integration products. A keynote address was delivered by Russell G. Congalton that provided
attendees with an historical accuracy assessment overview and that identified current technical gaps
and established important issues that were the subject of intense debates throughout the symposium.
A total of 27 technical papers were presented by an international group of scientists representing
federal, state, and local governments, academia, and nongovernmental organizations. Specific
technical presentations examined sampling issues, reference data collection, edge and boundary
effects, error matrix and fuzzy assessments, error budget analysis, and special issues related to
change detection accuracy assessment.

Abstracts submitted for presentation were evaluated for technical merit and assigned to technical
sessions by the program committee members. Members then served as technical session chairs,
thus maintaining responsibility for session content. Subsequent to the symposium, presenters were
invited to submit manuscripts for consideration as chapters. This book contains 20 chapters that
represent the important symposium outcomes. All chapters have undergone peer review and were
determined to be suitable for publication. The editors have arranged the book into a series of
complementary scientific topics to provide the reader with a detailed treatise on spatial data accuracy
assessment issues. 

The symposium chairs would like to thank the program committee members for their organi-
zation of individual technical sessions and participation as session chairs and presenters.

 

Ross S. Lunetta and John G. Lyon
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1.1 INTRODUCTION

 

The need for assessing the accuracy of a map generated from any remotely sensed data has
become universally recognized as an integral project component. In the last few years, most projects
have required that a certain level of accuracy be achieved for the project and map to be deemed a
success. With the widespread application of geographic information systems (GIS) employing
remotely sensed data as layers, the need for such an assessment has become even more critical.
There are a number of reasons why this assessment is so important, including:
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• The need to perform a self-evaluation and to learn from your mistakes
• The ability to compare method/algorithms/analysts quantitatively
• The desire to use the resulting maps/spatial information in some decision-making process

 

There are many examples in the literature as well as an overwhelming selection of anecdotal
evidence to demonstrate the need for accuracy assessment. Many different groups have mapped
and/or quantified the amount of tropical deforestation occurring in South America or Southeast
Asia. Estimates have ranged by almost an order of magnitude. Which estimate is correct? Without
a valid accuracy assessment we may never know. Several federal, state, and local agencies have
created maps of wetlands in a county on the eastern shore of Maryland. Techniques used to make
these maps included satellite imagery, aerial photography (various scales and film types), and ground
sampling. Comparing the various maps yielded little agreement about where wetlands actually
existed. Without a valid accuracy assessment we may never know which of these maps to use. 

It is no longer sufficient just to make a map using remotely sensed or other spatial data. It is
absolutely necessary to take some steps toward assessing the accuracy or validity of that map.
There are a number of ways to investigate the accuracy/error in spatial data including, but not
limited to, visual inspection, nonsite-specific analysis, generating difference images, error budget
analysis, and quantitative accuracy assessment. 

The goal of this chapter is to review the current knowledge of accuracy assessment methods
and stimulate the reader to further the progression of diagnostic techniques and information to
support the appropriate application of spatial data. The ultimate objective is to motivate everyone
to conduct or demand an appropriate accuracy assessment or validation and make certain it is
included as an essential metadata element.

 

1.2 ACCURACY ASSESSMENT OVERVIEW

1.2.1 Historical Review

 

The history of accuracy assessment of digital, remotely sensed data is relatively short, beginning
in about 1975. Before 1975 maps derived from analog, remotely sensed data (i.e., photo interpre-
tation) were rarely subjected to any kind of quantitative accuracy assessment. Field checking was
typically performed as part of the interpretation process, but no overall map accuracy or other
quantitative measures of quality were typically incorporated into the analysis. Only after photo
interpretation began being used as reference data to compare maps derived from digital, remote
sensor data did issues concerning the accuracy of the photo interpretation arise. All the accuracy
assessment techniques mentioned in this chapter can be applied to assessing the accuracy of both
analog and digital remotely sensed data (Congalton and Mead, 1983; Congalton et al., 1983).

The history of accuracy assessment can be effectively divided into four developmental epochs
or ages. In the beginning, no real accuracy assessment was performed; rather, an “it-looks-good”
mentality prevailed. This approach is typical of many new, emerging technologies. Despite the
maturing of the technology over the last 25 years, some remote sensing analysts are still stuck in
this mentality. Of course, the map must “look good” before any further analysis should be per-
formed. Why assess a map that is obviously poor? However, while “looking good” is a required
characteristic, it is not sufficient for a valid assessment. 

The second age of accuracy assessment could be called the epoch of nonsite-specific assessment.
During this period, overall acreages were compared between ground estimates and the map without
regard for location (Meyer et al., 1975). In some instances, such as imagery with very large pixels
(e.g., AVHRR imagery), a nonsite-specific assessment may be the best and/or only choice for
validation. For most imagery, the age of nonsite-specific assessment quickly gave way to the age
of the site-specific assessment (third age). In a site-specific assessment, actual places on the ground

 

L1443_C01.fm  Page 2  Saturday, June 5, 2004  10:13 AM



 

PUTTING THE MAP BACK IN MAP ACCURACY ASSESSMENT 3

 

(i.e., locations) were compared to the same place on the map and a measure of overall accuracy
(i.e., percentage correct) was computed. 

Finally, the fourth and current age of accuracy assessment could be called the age of the error
matrix. This epoch includes a significant number of analysis techniques, most importantly the
Kappa analysis. A brief review of the techniques and considerations of the error matrix age can be
found below and is described in more detail in Congalton and Green (1999).

 

1.2.2 Established Techniques and Considerations

 

Since the mid-1980s the error matrix has been accepted as the standard descriptive reporting
tool for accuracy assessment of remotely sensed data. The use of the error matrix has significantly
improved our ability to conduct accuracy assessments. In addition, analysis tools including discrete
multivariate techniques have facilitated the comparison and development of various methodologies,
algorithms, and approaches. Many factors affect the compilation of the error matrix and must be
considered when designing any accuracy assessment. The current state of knowledge concerning
the error matrix, analysis techniques, and some considerations are briefly reviewed here.

 

1.2.3 The Error Matrix

 

An error matrix is a square array of numbers organized in rows and columns that express the
number of sample units (i.e., pixels, clusters of pixels, or polygons) assigned to a particular category
relative to the actual category as indicated by the reference data (Table 1.1). The columns typically
represent the reference data and the rows indicate the map generated from the remotely sensed
data. Reference data are assumed correct and can be collected from a variety of sources, including
photographic interpretation, ground or field observation, and ground or field measurement

The error matrix, once correctly generated, can be used as a starting point for a series of
descriptive and analytical statistical techniques. The most common and simplest descriptive statistic
is overall accuracy, which is computed by dividing the total correct (i.e., the sum of the major
diagonal) by the total number of sample units in the error matrix. In addition, individual category
accuracies can be computed in a similar manner. Traditionally, the total number of correct sample

 

Table 1.1

 

Example error matrix.

Land Cover Categories

D = deciduous

C = conifer

AG = agriculture

SB = shrub

63

6

0 11 85

8

11

89

4 22 24

79 8

4 7 3

113

101

107

103

73 118 132 424

D C AG SB

D

C

AG

SB

Row
total

Column
total

Reference Data

Classified
Data

PRODUCER S ACCURACY

D =  63/73 =  86%

C =  79/101 = 78%

AG = 85/118 = 72%

SB =  89/132 = 67%

USER S ACCURACY

D = 63/113 = 56%

C =  79/101 = 78%

AG =  85/107 = 79%

SB =  89/103 = 86%

OVERALL  ACCURACY =

(63 + 79 + 85 + 89)/424 = 
316/424 = 75%

101
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units in a category is divided by the total number of sample units of that category from the reference
data (i.e., the column total). This accuracy measure relates to the probability of a reference sample
unit’s being correctly classified and is really a measure of omission error. This accuracy measure is
often called the 

 

producer’s accuracy

 

 because the producer of the classification is interested in how
well a certain area can be classified. On the other hand, if the total number of correct sample units
in a category is divided by the total number of sample units that were classified into that category
on the map (i.e., the row total), then this result is a measure of commission error. This measure is
called 

 

user’s accuracy

 

 or reliability and is indicative of the probability that a sample unit classified
on the map actually represents that category on the ground (Story and Congalton, 1986).

 

1.2.4 Discrete Multivariate Analysis

 

In addition to these descriptive techniques, an error matrix is an appropriate beginning for many
analytical statistical techniques, especially discrete multivariate techniques. Starting with Congalton
et al. (1983), discrete multivariate techniques have been used for performing statistical tests on the
classification accuracy of digital, remotely sensed data. Since that time many others have adopted
these techniques as the standard accuracy assessment tools (Rosenfield and Fitzpatrick-Lins, 1986;
Campbell, 1987; Hudson and Ramm, 1987; Lillesand and Kiefer, 1994). 

One analytical step to perform once the error matrix has been built is to “normalize” or
standardize the matrix using a technique known as “MARGFIT” (Congalton et al., 1983). This
technique uses an iterative proportional fitting procedure that forces each row and column in the
matrix to sum to one. The rows and column totals are called marginals, hence the technique’s name,
MARGFIT. In this way, differences in sample sizes used to generate the matrices are eliminated
and, therefore, individual cell values within the matrix are directly comparable. Also, because the
iterative process totals the rows and columns, the resulting normalized matrix is more indicative
of the off-diagonal cell values (i.e., the errors of omission and commission) than is the original
matrix. The major diagonal of the normalized matrix can be summed and divided by the total of
the entire matrix to compute a normalized overall accuracy.

A second discrete multivariate technique of use in accuracy assessment is called Kappa (Cohen,
1960). Kappa can be used as another measure of agreement or accuracy. Kappa values can range
from +1 to –1. However, since there should be a positive correlation between the remotely sensed
classification and the reference data, positive values are expected. Landis and Koch (1977) lumped
the possible ranges for Kappa into three groups: a value greater than 0.80 (i.e., 80%) represents
strong agreement; a value between 0.40 and 0.80 (i.e., 40%–80%) represents moderate agreement;
and a value below 0.40 (i.e., 40%) represents poor agreement. 

The equations for computing Kappa can be found in Congalton et al. (1983), Rosenfield and
Fitzpatrick-Lins (1986), Hudson and Ramm (1987), and Congalton and Green (1999), to list just
a few. It should be noted that the Kappa equation assumes a multinomial sampling model and that
the variance is derived using the Delta method (Bishop et al., 1975).

The power of the Kappa analysis is that it provides two statistical tests of significance. Using
this technique, it is possible to test whether an individual land-cover (LC) map generated from
remotely sensed data is significantly better than a map generated by randomly assigning labels to
areas. The second test allows for the comparison of any two matrices to see whether they are
statistically, significantly different. In this way, it is possible to determine that one method/algo-
rithm/analyst is different from another one and, based on a chosen accuracy measure (e.g., overall
accuracy), to conclude which is better. 

 

1.2.5 Sampling Size and Scheme

 

Sample size is another important consideration when assessing the accuracy of remotely sensed
data. Each sample point collected is expensive. Therefore, sample size must be kept to a minimum,
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yet it is critical to maintain a large enough sample size so that any analysis performed is statistically
valid. Many researchers, notably Hord and Brooner (1976), van Genderen and Lock (1977), Tortora
(1978), Hay (1979), Rosenfield et al. (1982), and Congalton (1988a), have published equations and
guidelines for choosing the appropriate sample size. The majority of researchers have used an
equation based on the binomial distribution or the normal approximation to the binomial distribution
to compute the required sample size. These techniques are statistically sound for computing the
sample size needed to compute the overall accuracy of a classification or the overall accuracy of
a single category. The equations are based on the proportion of correctly classified samples (pixels,
clusters, or polygons) and on some allowable error. However, these techniques were not designed
to choose a sample size for creating an error matrix. In the case of an error matrix, it is not simply
a matter of correct or incorrect. Given an error matrix with 

 

n 

 

land-cover categories, for a given
category there is one correct answer and 

 

n – 

 

1 incorrect answers. Sufficient samples must be
acquired to be able to adequately represent this confusion. Therefore, the use of these techniques
for determining the sample size for an error matrix is not inappropriate. Instead, the use of the
multinomial distribution is recommended (Tortora, 1978).

Traditional thinking about sampling does not often apply because of the large number of pixels
in a remotely sensed image. For example, a 0.5% sample of a single Landsat Thematic Mapper
(TM) scene can be over 300,000 pixels. Most, if not all, assessments should 

 

not

 

 be performed on
a per-pixel basis because of problems with exact single pixel location. Practical considerations
more often dictate the sample size selection. A balance between what is statistically sound and
what is practically attainable must be found. A generally accepted rule of thumb is to use a
minimum of 50 samples for each LC category in the error matrix. This rule also tends to agree
with the results of computing sample size using the multinomial distribution (Tortora, 1978). If
the area is especially large or the classification has a large number of LC categories (i.e., more
than 12 categories), the minimum number of samples should be increased to 75 to 100 samples
per category. 

The number of samples for each category can also be weighted based on the relative importance
of that category within the objectives of the mapping or on the inherent variability within each of
the categories. Sometimes it is better to concentrate the sampling on the categories of interest and
increase their number of samples while reducing the number of samples taken in the less important
categories. Also, it may be useful to take fewer samples in categories that show little variability,
such as water or forest plantations, and increase the sampling in the categories that are more
variable, such as uneven-aged forests or riparian areas. In summary, the goal is to balance the
statistical recommendations to obtain an adequate sample from which to generate an appropriate
error matrix within the objectives, time, cost, and practical limitations of the mapping project.

Along with sample size, sampling scheme is an important part of any accuracy assessment.
Selection of the proper scheme is absolutely critical to generating an error matrix that is represen-
tative of the entire classified image. Poor choice in sampling scheme can result in significant biases
being introduced into the error matrix that may over- or underestimate the true accuracy. In addition,
the use of the proper sampling scheme may be essential depending on the analysis techniques to
be applied to the error matrix. 

Many researchers have expressed opinions about the proper sampling scheme to use, including
everything from simple random sampling to stratified, systematic, unaligned sampling. Despite all
these opinions, very little work has actually been performed in this area. Congalton (1988a)
performed sampling simulations on three spatially diverse areas (forest, agriculture, and rangeland)
and concluded that in all cases simple random sampling without replacement and stratified random
sampling provided satisfactory results. Despite the desirable statistical properties of simple random
sampling, this sampling scheme is not always very practical to apply. Simple random sampling
tends to undersample small but possibly very important areas unless the sample size is significantly
increased. For this reason, stratified random sampling is recommended where a minimum number
of samples are selected from each strata (i.e., category). Even stratified random sampling can be
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somewhat impractical because of having to collect ground information for the accuracy assessment
at random locations on the ground. 

Two difficult problems arise when using random locations: (1) the location can be very difficult
to access and (2) they can only be selected after the classification has been performed. This second
condition limits the accuracy assessment data to being collected late in the project instead of in
conjunction with the training data collection, thereby increasing the costs of the project. In addition,
in some projects the time between the project beginning and the accuracy assessment may be so
long as to cause temporal problems in collecting reference data. 

 

1.2.6 Spatial Autocorrelation

 

Spatial autocorrelation is said to occur when the presence, absence, or degree of a certain
characteristic affects the presence, absence, or degree of the same characteristic in neighboring
units (Cliff and Ord, 1973). This condition is particularly important in accuracy assessment if
an error at a certain location can be found to influence errors at surrounding locations positively
or negatively (Campbell, 1981). Work by Congalton (1988b) on Landsat MSS data from three
areas of varying spatial diversity (agriculture, range, and forest) showed a positive influence as
much as 30 pixels (1.8 km) away. More recent work by Pugh and Congalton (2001) using
Landsat TM data in a forested environment showed similar issues with spatial autocorrelation.
These results affect the choice of sample size and, especially, the sampling scheme used in the
accuracy assessment. 

 

1.3 CURRENT ISSUES AND NEEDS

1.3.1 Sampling Issues

 

The major sampling issue of importance today is the choice of the sample unit. Historically,
a single pixel has often been chosen as the sample unit. However, it is extremely difficult to know
exactly where that pixel is on the reference data, especially when the reference data are generated
on the ground (using field work). Despite recent advances in Global Positioning System (GPS)
technology, it is very rare to achieve adequate location information for a single pixel. Many times
the GPS unit is used under dense forest canopy and the GPS signals are weak or absent. Location
becomes even more problematic with the new high-spatial resolution sensors such as Space Imaging
IKONOS or Digital Globe imagery with pixels as small as 1 m. Also, it is nearly impossible to
match the corners of a pixel on an image to the ground despite our best registration algorithms.
Therefore, using a single pixel as the sampling unit can cause much of the error represented in
the error matrix to be positional error rather than thematic error. Since the goal of the error matrix
is to measure thematic error, it is best to take steps to avoid including positional error. Single
pixels should not be used for the sample unit. Instead, some cluster of pixels or a polygon should
be chosen.

 

1.3.2 Edge and Boundary Effects

 

Traditionally, accuracy assessment has been performed to avoid the boundaries between differ-
ent LC classes by taking samples near the center of each polygon, or at least away from the edges.
Avoiding the edges also helps to minimize the locational error as discussed in the last section.
Where exactly to draw the line between different cover types on the ground is very subjective.
Most LC or vegetation maps divide a rather continuous environment called Earth into a number
of discrete categories. The number of categories varies with the objective of the mapping, and our
ability to separate different categories depends on the variability within and between each category. 
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All this information should be represented in a well-defined, mutually exclusive, and totally
exhaustive classification scheme. However, in many instances, it would be useful to know more
about the boundaries or edges of different LC types. For example, when performing change detection
(i.e., looking for changes over time), it is important to know whether real change exists and that
change is going to occur along the boundaries between cover types. Therefore, it is important that
more research and study be undertaken to better understand this boundary and edge issue.

 

1.3.3 Reference Data Collection

 

Reference data are typically assumed to be correct and are used to evaluate the results of the
LC mapping. If the reference data are wrong, then the LC map will be unfairly judged. If the
reference data are inefficiently collected, then the project may suffer from unnecessarily high costs
or an insufficient number of samples to properly evaluate the results. Reference data are a critical,
very expensive, and yet often overlooked component of any spatial analysis. For example, aerial
photographic interpretation is often used as reference data for assessing a LC map generated from
digital satellite imagery. The photographic interpretation is assumed correct because it often has
greater spatial resolution than the satellite imagery and because photogrammetry has become a
time-honored skill that is accepted as accurate. However, photographic interpretation is subjective
and can be significantly wrong. If the interpretation is wrong, then the results of the accuracy
assessment could indicate that the satellite-based map is of poor accuracy when actually it is the
reference data that are inappropriate.

There are numerous examples in the literature documenting problems with collecting improper
or inadequate reference data. One especially insidious problem with reference data collection is
the size of the sample area in which the reference data are collected. Clearly, it is important to
collect reference information that is representative of the mapped area. In other words, if the map
is generated with remotely sensed data that have 30- 

 

¥

 

 30-m pixels, it does not make sense to
collect reference data for a 5-m

 

2 

 

area. A current example of this situation is the use of the Forest
Inventory and Analysis (FIA) plots collected by the U.S. Forest Service across the country. It is
important that these inventory plots be large enough to provide valid reference data.

The opposite situation must also be carefully monitored. For example, it is not appropriate to
assess the accuracy of a 1-ha mapping unit with 5-ha reference data. The reference data must be
collected with the pixel size and/or the minimum mapping unit of the map in mind. Additionally,
the same exact classification scheme using the same exact rules must be used to label the reference
data and to generate the map. Otherwise, errors will be introduced by classification scheme
(definitional) differences and the error matrix created will not be indicative of the true accuracy of
the map. Using well-designed field forms that step the collector through the process can be very
helpful in ensuring that the reference data are collected at the proper scale and with the same or
appropriate classification scheme to accurately assess the map.

 

1.3.4 Beyond the Error Matrix: Fuzzy Assessment

 

As remote sensing projects have grown in complexity, so have the associated classification
schemes. The classification scheme then becomes a very important factor influencing the accuracy
of the entire project. Recently, papers have appeared in the literature that point out some of the
limitations of using only an error matrix with a complex classification scheme. A paper by Congalton
and Green (1993) recommends the error matrix as a jumping-off point for identifying sources of
confusion and not just error in the remotely sensed classification. For example, the variation in
human interpretation can have a significant impact on what is considered correct and what is not.
As previously mentioned, if photographic interpretation is used as the reference data in an accuracy
assessment and the interpretation is not completely correct, then the results of the accuracy assess-
ment will be very misleading. The same statements are true if ground observations, as opposed to
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ground measurements, are used as the reference data set. As classification schemes get more
complex, more variation in human interpretation is introduced. Other factors beyond just variation
in interpretation are important also. 

In order to deal with ambiguity/variation in remotely sensed maps, Gopal and Woodcock (1994)
proposed the use of fuzzy sets to “allow for explicit recognition of the possibility that ambiguity
might exist regarding the appropriate map label.” In such an approach, it is recognized that instead
of a simple system of correct (agreement) and incorrect (disagreement) there can be a variety of
responses, such as absolutely right, good answer, acceptable, understandable but wrong, and
absolutely wrong. This approach deals well with the ambiguity issue. However, the results are not
presented in a standard error matrix format. Therefore, Congalton and Green (1999) and Green
and Congalton (2003) presented a fuzzy assessment methodology that not only deals with varia-
tion/ambiguity, but also allows for the results of the assessment to be presented in an error matrix.

 

1.3.5 Error Budget Analysis

 

Over the last 25 years many papers have been written about the quantification of error associated
with remotely sensed and other spatial data (Congalton and Green, 1999). As documented in this
chapter, our ability to quantify the total error in a spatial data set has developed substantially.
However, little has been done to partition this error into its component parts and construct an error
budget. Without this division into parts, it is not possible to evaluate or analyze the impact a specific
error has on the entire mapping project. Therefore, it is not possible to determine which components
contribute the most errors or which are most easily corrected. Some early work in this area was
demonstrated in a paper by Lunetta et al. (1991) and resulted in an often-cited diagram that lists
the sources of error accumulating throughout a remote sensing project.

It should be noted that each of the major error sources adds to the total error budget separately,
and/or through a mixing process. It is no longer sufficient to always just evaluate the total error.
For many applications there is a definite need to identify and understand (1) error sources and (2)
the appropriate mechanisms for controlling, reducing, and reporting errors. Perhaps the simplest
way to begin to look at an error budget is to create a special error budget analysis table (Congalton
and Green, 1999). This table is generated, column-by-column, beginning with a listing of the
possible sources of error for the project. Once the various components that comprise the total error
are listed, then each component can be assessed to determine its contribution to the overall error.
Next, our ability to deal with this error is evaluated. It should be noted that some errors may be
very large but are easy to correct while others may be rather small. Finally, an error index can be
created directly by multiplying the error contribution potential by the error control difficulty.
Combining these two factors allows one to establish priorities for best dealing with individual errors
within a mapping project. A template to be used to conduct just such an error budget analysis is
presented in Table 1.2.

 

1.3.6 Change Detection Accuracy Assessment

 

Much has recently been written in the literature about change detection (Lunetta and Elvidge,
1998; Khorram et al., 1999). This technique is an extremely popular and powerful use of remotely
sensed data. Assessing the accuracy of a change detection analysis has all the issues, complications,
and difficulties of a single date assessment plus many additional, unique problems. For example,
how does one obtain information on reference data for images/maps from the past? Likewise, how
can one sample enough areas that will change in the future to generate a statistically valid assess-
ment? Most of the studies on change detection do not present any quantitative results. Without the
desired accuracy assessment, it is difficult to determine which change detection methods are best
and should be applied to future projects. 
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Congalton et al. (1993) provided the first example comparing a single date and change detection
error matrix. It should be noted that if a single date error matrix has 

 

n

 

 map categories, then a change
detection error matrix would contain 

 

n

 

2 

 

map categories. This is because we are no longer dealing
with a single classification, but rather with a change between two different classifications generated
at different times. In a single date error matrix there is one row and column for each map category.
However, in a change detection error matrix the question of interest is, What category was this area
at T

 

1

 

 vs. T

 

2

 

? This comparison uses the exact same logic used for the single classification error
matrix; it is just complicated by the two time periods (i.e., the change). As always, the major diagonal
indicates correct classification while the off-diagonal elements indicate the errors or confusion.

 

1.4 SUMMARY

 

Validation or accuracy assessment is an integral component of most mapping projects incorpo-
rating remotely sensed data. In fact, this topic has become so important as to spawn regular
conferences and symposia. This emphasis on data quality was not always the case. In the 1970s
only a few enlightened scientists and researchers dared ask the question, How good is this map
derived from Landsat MSS imagery? In the 1980s, the error matrix became a common tool for
representing the accuracy of individual map categories. By the 1990s, most maps derived from
remotely sensed imagery were required to meet some minimum accuracy standard. Now, it is
important that with all the statistics and spatial analysis available to us that we do not lose track
of the primary goal of why we perform an accuracy assessment in the first place.

This chapter presented a review of techniques and considerations necessary to assess or validate
maps derived from remotely sensed and other spatial data. Although it is important to perform a
visual examination of the map, it is not sufficient. Other techniques, such as nonsite-specific analysis
and difference images, can help. Error budgeting is a very useful exercise in helping to realize error
and consider ways to minimize it. Quantitative accuracy assessment provides a very powerful
mechanism for both descriptive and analytical evaluation of the spatial data. However, given all
these techniques and considerations, it is most important that we remember why we are performing
the accuracy assessment in the first place. 

Both as makers and users of our maps, our goal is to make the best map possible for a given
objective. To achieve this goal we must not get lost in all the statistics and analyses but must apply

 

Error Source
Error Contribution 

Potential
Error Control 

Difficulty Error Index Error Priority

Error Contribution Potential:

 

Relative potential for this source as contributing factor to the total error 
(

 

1 = low

 

, 

 

2 = medium

 

, and 

 

3 = high

 

).

 

Error Control Difficulty:

 

Given the current knowledge about this source, how difficult is controlling the 
error contribution (

 

1 = not very difficult

 

 to 

 

5 = very difficult

 

).

 

Error Index:

 

An index that represents the combination of error potential and error difficulty.

 

Error Priority:

 

Order in which methods should be implemented to understand, control, 
reduce, and/or report the error due to this source based on the error index.

 

Table 1.2

 

Template for conducting an error budget analysis.
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the correct analysis techniques and use the proper sampling approaches. However, all these things
will do us no good if we forget about the map we are trying to assess. We must “put the map back
in the map assessment process.” We must do everything we can to ensure that the assessment is
valid for the map and not simply a statistical exercise. It is key that the reference data match the
map data, not only in classification scheme but also in sampling unit (i.e., minimum mapping unit)
as well. It is also important that we make every effort to collect accurate and timely reference data.
Finally, there is still much to do. Many maps generated from remotely sensed data still have no
validation or accuracy assessment. There are numerous steps that can be taken to evaluate how
good a map is. Now we must move past the age of “it looks good” and move toward the more
quantitative assessments outlined in this chapter.
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2.1 INTRODUCTION

 

This chapter focuses on the application of accuracy assessment as a final stage in the evaluation
of the thematic quality of a land-cover (LC) map covering a large region such as a state or province,
country, or continent. The map is assumed to be classified according to a crisp or hard classification
scheme, as opposed to a fuzzy classification scheme (Foody, 1999). The standard protocol for
accuracy assessment is to compare the map LC label to the reference label at sample locations,
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where the reference label is assumed to be correct. The source of reference data may be aerial
photography, ground visit, or videography. Discussion will be limited to the case in which the
assessment unit for comparing the map and reference label is a pixel. Similar issues apply to
sampling both pixels and polygons, but a greater assortment of design options has been developed
for pixel-based assessments. Most of the chapter will focus on site-specific accuracy, which is
accuracy determined on a pixel-by-pixel basis. In contrast, nonsite-specific accuracy provides a
comparison aggregated over some spatial extent. For example, in a nonsite-specific assessment, the
area of forest mapped for a county would be compared to the true area of forest in that county.
Errors of omission for a particular class may be compensated for by errors of commission from
other classes such that nonsite-specific accuracy may be high even if site-specific accuracy is poor.
Site-specific accuracy may be viewed as spatially explicit, whereas nonsite-specific accuracy
addresses map quality in a spatially aggregated framework.

A sampling design is a set of rules for selecting which pixels will be visited to obtain the
reference data. Congalton (1991), Janssen and van der Wel (1994), Congalton and Green (1999),
and Stehman (1999) provide overviews of the basic sampling designs available for accuracy
assessment. Although these articles describe designs that may serve well for small-area, limited-
objective assessments, they do not convey the broad diversity of design options that must be drawn
upon to meet the demands of large-area mapping efforts with multiple accuracy objectives. An
objective here is to expand the discussion of sampling design to encompass alternatives available
for more demanding, complex accuracy assessment problems.

The diversity of accuracy assessment objectives makes it important to specify which objectives
a particular assessment is designed to address. Objectives may be categorized into three general
classes: (1) description of the accuracy of a completed map, (2) comparison of different classifiers,
and (3) assessment of sources of classification error. This chapter focuses on the descriptive
objective. Recent examples illustrating descriptive accuracy assessments of large-area LC maps
include Edwards et al. (1998), Muller et al. (1998), Scepan (1999), Zhu et al. (2000), Yang et al.
(2001), and Laba et al. (2002). The foundation of a descriptive accuracy assessment is the error
matrix and the variety of summary measures computed from the error matrix, such as overall, user’s
and producer’s accuracies, commission and omission error probabilities, measures of chance-
corrected agreement, and measures of map value or utility

 

.

 

Additional descriptive objectives are often pursued. Because classification schemes are often
hierarchical (Anderson et al., 1976), descriptive summaries may be required for each level of the
hierarchy. For large-area LC maps, there is frequently interest in accuracy of various subregions,
for example, a state or province within a national map, or a county or watershed within a state
or regional map. Each identified subregion could be characterized by an error matrix and accom-
panying summary measures. Describing spatial patterns of classification error is yet another
objective. Reporting accuracy for various subsets of the data, for example, homogeneous 3 

 

¥

 

 3
pixel blocks, edge pixels, or interior pixels may address this objective. Another potential objective
would be to describe accuracy for various aggregations of the data. For example, if a map
constructed with a 30-m pixel resolution is converted to a 90-m pixel resolution, what is the
accuracy of the 90-m product? Lastly, nonsite-specific accuracy may be of interest. For example,
if a primary application of the map were to provide LC proportions for a 5- 

 

¥

 

 5-km spatial unit
(e.g., Jones et al., 2001), nonsite-specific accuracy would be of interest. Nonsite-specific accuracy
has typically been thought of as applying to the entire map (Congalton and Green, 1999). However,
when viewed in the wider context of how maps are used, nonsite-specific accuracy at various
spatial extents becomes relevant.

The basic elements of a statistically rigorous sampling strategy are encapsulated in the speci-
fication of a probability sampling design, accompanied by consistent estimation following principles
of Horvitz-Thompson estimation. These fundamental characteristics of statistical rigor are detailed
in Stehman (2001). Choosing a sampling design for accuracy assessment may be guided by the
following additional design criteria: (1) adequate precision for key estimates, (2) cost-effectiveness,
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and (3) appropriate simplicity to implement and analyze (Stehman, 1999). These criteria hold
whether the reference data are crisp or fuzzy and will be prioritized differently for different
assessments. Because these criteria often lead to conflicting design choices, the ability to compro-
mise among criteria is a crucial element of the art of sampling design.

 

2.2 MEETING THE CHALLENGE OF COST-EFFECTIVE SAMPLING DESIGN

 

Effective sampling practice requires constructing a design that affords good precision while
keeping costs low. Strata and clusters are two basic sampling structures available in this regard,
and often both are desirable in accuracy assessment problems. Unfortunately, implementing a design
incorporating both features may be challenging. This topic will be addressed in the next subsection.
A second approach to enhance cost-effectiveness is to use existing data or data collected for purposes
other than accuracy assessment (e.g., for environmental monitoring). This topic is addressed in the
second subsection.

 

2.2.1 Strata vs. Clusters: The Cost vs. Precision Paradox

 

The objective of precise estimation of class-specific accuracy is a prime motivation for stratified
sampling. In the typical implementation of stratification in accuracy assessment, the mapped LC
classes define the strata, and the design is tailored to enhance precision of estimated user’s accuracy
or commission error. Stratified sampling requires all pixels in the population to be identified with
a stratum. If the map is finished, stratifying by mapped LC class is readily accomplished. Geographic
stratification is also commonly used in accuracy assessment. It is motivated by an objective
specifying accuracy estimates for key geographic regions (e.g., an administrative unit such as a
state or an ecological unit such as an ecoregion), or by an objective specifying a spatially well-
distributed sample. It is possible, though rare, to stratify by the cross-classification of land-cover
class by geographic region. The drawback of this two-way stratification is that resources are
generally not sufficient to obtain an adequate sample size to estimate accuracy precisely in each
stratum (e.g., Edwards et al., 1998).

The rationale for cluster sampling is to obtain cost-effectiveness by sampling pixels in groups
defined by their spatial proximity. The decrease in the per-unit cost of each sample pixel achieved
by cluster sampling may result in more precise accuracy estimates depending on the spatial pattern
of classification error. Cluster sampling is a means by which to obtain spatial control (distribution)
over the sample. This spatial control can occur at two scales, termed regional and local. Regional
spatial control refers to limiting the macro-scale spatial distribution of the sample, whereas local
spatial control reflects the logical consequence that sampling several spatially proximate pixels
requires little additional effort beyond that needed to sample a single pixel. Examples of clusters
achieving regional control over the spatial distribution of the sample include a county, quarter-
quad, or 6- 

 

¥

 

 6-km area. Examples of design structures used to implement local control include
blocks of pixels (e.g.,  3 

 

¥

 

 3 or 5 

 

¥

 

 5 pixel blocks), polygons of homogeneous LC, or linear clusters
of pixels. Both regional and local controls are designed to reduce costs, and for either option the
assessment unit is still an individual pixel.

Regional spatial control is designed to control travel costs or reference data material costs. For
example, if the reference data consist of interpreted aerial photography, restricting the sample to a
relatively small number of photos will reduce cost. If the reference data are collected by ground
visit, regional control can limit travel to within a much smaller total area (e.g., within a sample of
counties or 6- 

 

¥

 

 6-km blocks, rather than among all counties or 6- 

 

¥

 

 6-km blocks). When used
alone, local spatial control may not achieve these cost advantages. For example, a simple random
or systematic sample of 3 

 

¥

 

 3 pixel blocks providing local spatial control may be widely dispersed
across the landscape, therefore requiring many photos or extensive travel to reach the sample clusters. 
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In practice, both regional and local control may be employed in the same design. The most
likely combination in such a multistage design would be to exercise regional control via two-stage
cluster sampling and local control via one-stage cluster sampling, as follows. Define the primary
sampling unit as the cluster constructed to obtain regional spatial control (e.g., a 6- 

 

¥

 

 6-km area).
The secondary sampling unit would be chosen to provide the desired local spatial control (e.g.,  3

 

¥

 

 3 block of pixels). The first-stage sample consists of primary sampling units (PSUs), but not
every 3 

 

¥

 

 3 block in each sampled PSU is observed. Rather, a second-stage sample of 3 

 

¥

 

 3 blocks
would be selected from those available in the first-stage sample. The 3 

 

¥

 

 3 blocks would not be
further subsampled; instead, reference data would be obtained for all nine pixels of the 3 

 

¥

 

 3 cluster.
Stratifying by LC class can directly conflict with clustering. The essence of the problem is

illustrated by a simple example. Suppose the clusters are 3 

 

¥

 

 3 blocks of pixels that, when taken
together, partition the mapped region. The majority of these clusters will not consist of nine pixels
all belonging to the same LC class. Stratified sampling directs us to select individual pixels from
each LC class, in opposition to cluster sampling in which the selection protocol is based on a group
of pixels. Because cluster sampling selects groups of pixels, we forfeit the control over the sample
allocation that is sought by stratified sampling. It is possible to sample clusters via a stratified
design, but it is the cluster, not the individual pixel, that must determine stratum membership. 

A variety of approaches to circumvent this conflict between stratified and cluster sampling can
be posed. One that should not be considered is to restrict the sample to only homogeneous 3 

 

¥

 

 3
clusters. This approach clearly results in a sample that cannot be considered representative of the
population, and it is well known that sampling only homogeneous areas of the map tends to inflate
accuracy (Hammond and Verbyla, 1996). A second approach, and one that maintains the desired
statistical rigor of the sampling protocol, is to employ two-stage cluster sampling in conjunction
with stratification by LC class. A third approach in which the clusters are redefined to permit
stratified selection will also be described.

The sampling design implemented in the accuracy assessment of the National Land Cover Data
(NLCD) map illustrates how cluster sampling and stratification can be combined to achieve cost-
effectiveness and precise class-specific estimates (Zhu et al., 2000; Yang et al., 2001; Stehman et al.,
2003). The NLCD design was implemented across the U.S. using 10 regional assessments based on
the U.S. Environmental Protection Agency’s (EPA) federal administrative regions. Within a single
region, the NLCD assessment was designed to provide regional spatial control and stratification by
LC class. For several regions, the PSU was constructed from nonoverlapping, equal-sized areas of
National Aerial Photography Program (NAPP) photo-frames, and in other regions, the PSU was a 6-

 

¥

 

 6-km spatial unit. Both PSU constructions were designed to reduce the number of photos that would
need to be purchased for reference data collection. A first-stage sample of PSUs was selected at a
sampling rate of approximately 2.0%. Stratification by LC class was implemented at the second stage
of the design. Mapped LC classes were used to stratify all pixels found within the first-stage sample
PSUs. A simple random sample of pixels from each stratum was then selected, typically with 100
pixels per class. This design proved effective for ensuring that all LC classes, including the rare classes,
were represented adequately so that estimates of user’s accuracies were reasonably precise. The
clustering feature implemented to achieve regional control succeeded at reducing costs considerably

 

.

 

2.2.2 Flexibility of the NLCD Design

 

The flexibility of the NLCD design permits other options for selecting a second-stage sample.
An alternative second-stage design could improve precision of the NLCD estimates (Stehman et
al., 2000b), but such improvements are not guaranteed and would be gained at some cost. Precision
for the rare LC classes is the primary consideration. Often the rare-class pixels cluster within a
relatively small number of PSUs. The simple random selection within each class implemented in
the second stage of the NLCD design will result in a sample with representation proportional to
the number of pixels of each class within each PSU. That is, if many of the pixels of a rare class
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are found in only a few first-stage PSUs, many of the 100 second-stage sample pixels would fall
within these same few PSUs. This clustering could result in poor precision for the estimated accuracy
of this class. Ameliorating this concern is the fact that the NLCD clustering is at the regional level
of control. The PSUs were large (e.g., 6 

 

¥

 

 6 km), so pixels sampled within the same PSU will not
necessarily exhibit strong intracluster correlation. In the case of weak intracluster correlation of
classification error, cluster sampling will not result in precision significantly different from a simple
random sample of the same size (Cochran, 1977).

Two alternatives may counter the clustering effect for rare-class pixels. One is to select a single
pixel at random from 100 first-stage PSUs containing at least one pixel of the rare class. If the class
is present in more than 100 PSUs, the first-stage PSUs could be subsampled to reduce the eligible
set to 100. If fewer than 100 PSUs contain the rare class, the more likely scenario, the situation is
slightly more complicated. A fixed number of pixels may be sampled from each first-stage PSU
containing the rare class so that the total sample size for the rare class is maintained at 100. The
complication is choosing the sample size for each PSU. This will depend on the number of eligible
first-stage PSUs, and also on the number of pixels of the class in the PSU. This design option
counters the potential clustering effect of rare-class pixels by forcing the second-stage sample to be
widely dispersed among the eligible first-stage PSUs. In contrast to the outcome of the NLCD, PSUs
containing a large proportion of the rare class will not receive the majority of the second-stage sample.

The second option to counter clustering of the sample into a few PSUs is to construct a “self-
weighting” design (i.e., an equal probability sampling design in which all pixels have the same
probability of being included in the sample). The term 

 

self-weighting

 

 arises from the fact that the
analysis requires no weighting to account for different inclusion probabilities. At the first stage,
100 sample PSUs would be selected with inclusion probability proportional to the number of pixels
of the specified rare class in the PSU. A wide variety of probability proportional to size designs
exists, but simplicity would be the primary consideration when selecting the design for an accuracy
assessment application. At the second stage, one pixel would be selected per PSU. A consequence
of this two-stage protocol is that within each LC stratum, each pixel has an equal probability of
being included in the sample (Sarndal et al., 1992), so no individual pixel weighting is needed for
the user accuracy estimates. The design goal of distributing the sample pixels among 100 PSUs is
also achieved.

 

 

 

2.2.3 Comparison of the Three Options

 

Three criteria will be used to compare the NLCD design alternatives: (1) ease of implementation,
(2) simplicity of analysis, and (3) precision. The actual NLCD design will be designated as “Option
1,” sampling one pixel from each of 100 PSUs will be “Option 2,” and the self-weighting design
will be referred to as “Option 3.” Options 1 and 2 are the easiest to implement, and Option 3 is
the most complicated because of the potentially complex, unequal probability first-stage protocol.
Not only would such a first-stage design be more complex than what is typically done in accuracy
assessment, Option 3 requires much more effort because we need the number of pixels of each LC
class within each PSU in the regio

 

n.

 

Options 1 and 3 share the characteristic of being self-weighting within LC strata. Self-weighting
designs are simpler to analyze, although survey sampling computational software would mitigate
this analysis advantage. Option 2 is not self-weighting, as demonstrated by the following example.
Suppose a first-stage PSU has 1,000 pixels of the rare class and another PSU has 20 pixels of this
class. At the first stage under Option 2, both PSUs have an equal chance of being selected. At the
second stage, a pixel in the first PSU has a probability of 1/1000 of being chosen, whereas a pixel
in the second PSU has a 1/20 chance of being sampled. Clearly, the probability of a pixel’s being
included in the sample is dependent upon how many other pixels of that class are found within the
PSU. The appropriate estimation weights can be derived for this unequal probability design, but
the analysis is complicated.
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In addition to evaluating options based on simplicity, we would like to compare precision of
the different options. Unfortunately, such an evaluation would be difficult, requiring either com-
plicated theoretical analysis or extensive simulation studies based on acquiring reasonably good
approximations to spatial patterns of classification error. A key point of this discussion of design
alternatives for two-stage cluster sampling is that while the problem can be simply stated and the
objectives for what needs to be achieved are clear, determining an optimal solution is elusive.
Simple changes in sampling protocol may lead to complications in the analysis, whereas maintaining
a simple analysis may require a complex sampling protocol. 

 

2.2.4 Stratification and Local Spatial Control

 

Clustering to achieve local spatial control also conflicts with the effort to stratify by cover types.
Several design alternatives may be considered to remedy this problem. An easily implemented
approach is the following. A stratified random sample of pixels is obtained using the mapped LC
classes as strata. To incorporate local spatial control and increase the sample size, the eight pixels
touching each sampled pixel are also included in the sample. That is, a cluster consisting of a 3 

 

¥

 

3 block of pixels is created, but the selection protocol is based on the center pixel of the cluster.
Two potential drawbacks exist for this protocol. First, the sample size control feature of stratified
random sampling is diminished because the eight pixels surrounding an originally selected sample
pixel could be any LC type, not necessarily the same type as the center pixel of the block. Sample
size planning becomes trickier because we do not know which LC classes will be represented by
the surrounding eight pixels or how many pixels will be obtained for each LC class present. This
will not be a problem if we have abundant resources because we could specify the desired minimum
sample size for each LC class based on the identity of the center pixels. However, having an
overabundance of accuracy assessment resources is unlikely, so the loss of control over sample
allocation is a legitimate concern.

Second, and more importantly, this protocol creates a complex inclusion probability structure
because a pixel may be selected into the sample via two conditions: it is an originally selected
center pixel of the 3 

 

¥

 

 3 cluster or it is one of the eight pixels surrounding the initially sampled
center pixel. To use the data within a rigorous probability-sampling framework, the inclusion
probability determined for each pixel must account for this joint possibility of selection. We require
the probability of being selected as a center pixel, the probability of being selected as an accom-
panying pixel in the 3 

 

¥

 

 3 block, and the probability of being selected by both avenues in the same
sample (i.e., the intersection event). The first probability is readily available because it is the
inclusion probability of a stratified random sample, n

 

h

 

/N

 

h

 

, where n

 

h

 

 and N

 

h

 

 are the sample and
population numbers of pixels for stratum h. The other two probabilities are much more complicated.
The probability of a pixel’s being selected because it is adjacent to a pixel selected in the initial
sample depends on the map LC labels of the eight pixels surrounding the pixel in question, and
this probability differs among different LC types. Although it is conceptually possible to enumerate
the necessary information to obtain these probabilities, it is practically difficult. Finding the inter-
section probability would be equally complex. Rather than derive the actual inclusion probabilities,
we could use the stratified random sampling inclusion probabilities as an easily implemented, but
crude, approximation. This would violate the principle of consistent estimation and raise the
question of how well such an approximation worked.

A second general alternative is to change the way the stratification is implemented. The problem
arises because the strata are defined at the pixel level while the selection procedure is applied to
the cluster level. Stratifying at the cluster level, for example a 3 

 

¥

 

 3 block of pixels, resolves this
problem but creates another. The nonhomogeneous character of the clusters creates a challenge
when deciding to which stratum a block should be assigned if it consists of two or more cover
types. Rules to determine the assignment must be specified. For example, assigning the block to
the most common class found in the 3 

 

¥

 

 3 block is one possibility, with a tie-breaking provision
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defined for equally common classes. A drawback of this approach is that few 3 

 

¥

 

 3 blocks may be
assigned to strata representing rare classes if the rare-class pixels are often found in small patches
of two to four pixels. An alternative is to construct a rule that forces greater numbers of blocks
into rare-class strata. For example, the presence of a single pixel of a rare class may trigger
assignment of that pixel’s block to the rare-class stratum. An obvious difficulty of this assignment
protocol is what to do if two or more rare classes are represented within the same cluster. Because
stratification requires that each block be assigned to exactly one stratum, and all blocks in the
region must be assigned to strata, an elaborate set of rules may be needed to encompass all cases.
A two-stage protocol such as implemented in the NLCD would reduce the workload of assigning
blocks to strata because this assignment would be necessary only for the first-stage sample PSUs,
not the entire area mapped. Estimation of accuracy parameters would be straightforward in this
approach because each pixel in the 3 

 

¥

 

 3 cluster has the same inclusion probability. This is an
advantage of this option compared to the first option in which the pixels within a 3 

 

¥

 

 3 block may
have different inclusion probabilities. As is true for most complex designs, constructing a variance
estimator and implementing it via existing software may be difficult. 

This discussion of how to resolve design conflicts created by the desire to incorporate both
cover type stratification and local spatial control via clustering illustrates that the solutions to
practical problems may not be simple. We know how to implement cluster sampling and stratified
sampling as separate entities, but we do not necessarily have simple, effective ways to construct a
design that simultaneously accommodates both structures. Simple implementation procedures may
lead to complex analysis protocols (e.g., difficulty in specifying the inclusion probabilities), and
procedures permitting simpler analyses may require complex implementation protocols (e.g., defin-
ing strata at the 3 

 

¥

 

 3 block level). The situation is even more complex than the treatment in this
section indicates. It is likely that these methods focusing on local spatial control will need to be
embedded in a design also incorporating regional spatial control. The 3 

 

¥

 

 3 pixel clusters would
represent subsamples from a larger primary sampling unit such as a 6- 

 

¥

 

 6-km area. Integrating
regional and local spatial control with stratification raises still additional challenges to the design.

The NLCD case study may also be used as the context for addressing concerns related to pixel-
based assessments. Positional error creates difficulties with any accuracy assessment because of
potential problems in achieving exact spatial correspondence between the reference location and
the map location. Typically, the problem is more strongly associated with pixel-based assessments
relative to polygon-based assessments, but it is not clear that this association is entirely justified.
The effects of positional error are most strongly manifested along the edges of map polygons.
Whether the assessment is based on a pixel, polygon, or other spatial unit does not change the
amount of edge present in the map. What may be changed by choice of assessment unit is how
edges are treated in the collection and use of reference data. For example, suppose a polygon
assessment employs an agreement protocol in which the entire map polygon is judged to be either
in complete agreement or complete disagreement with the reference data. In this approach, the
effect of positional error is greatly diminished because the error associated with a polygon edge
may be obscured when blended with the more homogeneous, polygon interior. The positional error
problem has not disappeared; it has to some extent been swept under the rug. This particular version
of a polygon-based assessment is valid for certain map applications, but not all. For example, if
the assessment objective is site-specific accuracy, the assessment must account for possible classi-
fication error along polygon boundaries. Defining agreement as a binary outcome based on the
entire polygon will not achieve that purpose.

In a pixel-based assessment, provisions should be included to accommodate the reality of
positional error when assessing edge or boundary pixels. No option is perfect, because we are
dealing with a problem that has no practical, ideal solution. However, the option chosen should
address the problem directly. One approach is to construct the reference data protocol so that the
potential influence of positional error can be assessed. The protocol may include a rating of location
confidence (i.e., how confident is the observer that the reference and map locations correspond
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exactly?), followed by reporting results for the full reference data as well as subsets of the data
defined by the location confidence rating. Readers may then judge the potential effect of positional
error by comparing accuracy at various levels of location confidence. A related approach would be
to report accuracy results separately for edge and interior pixels. An alternative approach is to
define agreement based on more information than comparing a single map pixel to a single reference
pixel. In the NLCD assessment, one definition of agreement used was to compare the reference
label of the sample pixel with a mode class determined from the map labels of the 3 

 

¥

 

 3 block of
pixels centered on the nominal sample pixel (Yang et al., 2001). This definition recognizes the
possibility that the actual location used to determine the reference label could be offset by one
pixel from the location identified on the map. 

Another important feature of a pixel-based assessment is to account for the minimum mapping
unit (MMU) of the map. When assigning the reference label, the observer should choose the LC
class keeping in mind the MMU established. That is, the observer should not apply tunnel vision
restricted only to the area covered by the pixel being assessed, but rather should evaluate the pixel
taking into account the surrounding spatial context. In the 1990 NLCD, the MMU was a single
pixel. It is expected that NLCD users may choose to define a different MMU depending on their
particular application, but the NLCD accuracy assessment was pixel-based because the base product
made available was not aggregated to a larger MMU. 

The problems associated with positional error are largely specific to the response or measurement
component of the accuracy assessment (Stehman and Czaplewski, 1998). However, a few points
related to sampling design should be recognized. Although the MMU is a relevant feature of a map
to consider when determining the response design protocol, it is important to recognize that a MMU
does not define a sampling unit. A pixel, a polygon, or a 3 

 

¥

 

 3 block of pixels, for example, are all
legitimate sampling units, but a “1.0-ha MMU” lacks the necessary specificity to define a sampling
unit. The MMU does not create the unambiguous definition required of a sampling unit because it
permits various shapes of the unit, it does not include specification of how the unit is accounted
for when the polygon is larger than the MMU, and it does not lead directly to a partitioning of the
region into sampling units. While it may be possible to construct the necessary sampling unit
partition based on a MMU, this approach has never been explicitly articulated. When sampling
polygons, the basic methods available are simple random, systematic, and stratified (by LC class)
random sampling from a list frame of polygons. Less obvious is how to incorporate clustering and
spatial sampling methods for polygon assessment units. Polygons may vary greatly in size, so a
decision is required whether to stratify by size so as not to have the sample dominated by numerous
small polygons. A design protocol of locating sample points systematically or completely at random
and including those polygons touched by these sample point locations creates a design in which
the probability of including a polygon is proportional to its area. This structure must be accounted
for in the analysis and is a characteristic of polygon sampling that has yet to be discussed explicitly
by proponents of such designs. Most of the comparative studies of accuracy assessment sampling
designs are pixel-based assessments (Fitzpatrick-Lins, 1981; Congalton, 1988a; Stehman, 1992,
1997), and analyses of potential factors influencing design choice (e.g., spatial correlation of error)
are also pixel-based investigations (Congalton, 1988b; Pugh and Congalton, 2001).

Problems associated with positional error in accuracy assessment merit further investigation
and discussion. Although it is easy to dismiss pixel-based assessments with a “you-can’t-find-a-
pixel” proclamation, a less superficial treatment of the issue is called for. Edges are a real charac-
teristic of all LC maps, and the accuracy reported for a map should account for this reality. Whether
the assessment is based on a pixel or a larger spatial unit, the accuracy assessment should confront
the edge feature directly. Although there is no perfect solution to the problem, options exist to
specify the analysis or response design protocol in such a way that the effect of positional error
on accuracy is addressed. Sampling in a manner that permits evaluating the effect of positional
error seems preferable to sampling in a way that obscures the problem (e.g., limiting the sample
to homogeneous LC regions)

 

.
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2.3 EXISTING DATA

 

It is natural to consider whether existing data or data collected for other purposes could be used
as reference data to reduce the cost of accuracy assessment. Such data must first be evaluated to
ascertain spatial, temporal, and classification scheme compatibility with the LC map that is the
subject of the assessment. Once compatibility has been established, the issue of sampling design
becomes relevant. Existing data may originate from either a probability or nonprobability sampling
protocol. If the data were not obtained from a probability sampling design, the inability to generalize
via rigorous, defensible inference from these data to the full population is a severe limitation. The
difficulties associated with nonprobability sampling are detailed in a separate subsection.

The greatest potential for using existing data occurs when the data have a probability-sampling
origin. Ongoing environmental monitoring programs are prime candidates for accuracy assessment
reference data. The National Resources Inventory (NRI) (Nusser and Goebel, 1997) and Forest
Inventory and Analysis (FIA) (USFS, 1992) are the most likely contributors among the monitoring
programs active in the U.S. Both programs include LC description in their objectives, so the data
naturally fit potential accuracy assessment purposes. Gill et al. (2000) implemented a successful
accuracy assessment using FIA data, and Stehman et al. (2000a) discuss use of FIA and NRI data
within a general strategy of integrating environmental monitoring with accuracy assessment.

At first glance, using existing data for accuracy assessment appears to be a great opportunity
to control cost. However, further inspection suggests that deeper issues are involved. Even when
the data are from a legitimate probability sampling design, these data will not be tailored exactly
to satisfy all objectives of a full-scale accuracy assessment. For example, the sampling design for
a monitoring program may be targeted to specific areas or resources, so coverage would be very
good for some LC classes and subregions but possibly inadequate for others. For example, NRI
covers nonfederal land and targets agriculture-related questions, whereas the FIA’s focus is, obvi-
ously, on forested land. To complete a thorough accuracy assessment, it may be necessary to piece
together a patchwork of various sources of existing data plus a supplemental, directed sampling
effort to fill in the gaps of the existing data coverage. The effort required to cobble together a
seamless, consistent assessment may be significant and the statistical analysis of the data complex. 

Data from monitoring programs may carry provisions for confidentiality. This is certainly true
of NRI and FIA. Confidentiality agreements permitting access to the data will need to be negotiated
and strictly followed. Because of limited access to the data, progress may be slow if human
interaction with the reference data materials is required to complete the accuracy assessment. For
example, additional photographic interpretation for reference data using NRI or FIA materials may
be problematic because only one or two qualified interpreters may have the necessary clearance to
handle the materials. Confidentiality requirements will also preclude making the reference data
generally available for public use. This creates problems for users wishing to conduct subregional
assessments or error analyses, to construct models of classification error, or to evaluate different
spatial aggregations of the data. It is difficult to assign costs to these features. Existing data obviously
save on data collection costs, but there are accompanying hidden costs related to complexity and
completeness of the analysis, timeliness to report results, and public access to the data.

 

2.3.1 Added-Value Uses of Accuracy Assessment Data

 

In the previous section, accuracy assessment is considered an add-on to objectives of an ongoing
environmental monitoring program. However, if accuracy data are collected via a probability
sampling design, these data may have value for more general purposes. For example, a common
objective of LC studies is to estimate the proportional representation of various cover types and
how they change over time. We can use complete coverage maps such as the NLCD to provide
such estimates, but these estimates are biased because of the classification errors present. Although
the maps represent a complete census, they contain measurement error. The reference data collected
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for accuracy assessment supposedly represent higher-quality data (i.e., less measurement error), so
these data may serve as a stand-alone basis for estimates of LC proportions and areas. Methods
for estimating area and proportion of area covered by the various LC classes have been developed
(Czaplewski and Catts, 1992; Walsh and Burk, 1993; Van Deusen, 1996). Recognizing this poten-
tially important use of reference data provides further rationale for implementing statistically
defensible probability sampling designs. This area estimation application extends to situations in
which LC proportions for small areas such as a watershed or county are of interest. A probability
sampling design provides a good foundation for implementing small-area estimation methods to
obtain the area proportions.

 

2.4 NONPROBABILITY SAMPLING

 

Because nonprobability sampling is often more convenient and less expensive, it is useful to
review some manifestations of this departure from a statistically rigorous approach. Restricting the
probability sample to areas near roads for convenient access or to homogeneous 3 

 

¥

 

 3 pixel clusters
to reduce confounding of spatial and thematic error are two typical examples of nonprobability
sampling. A positive feature of both examples is that generalization to some population is statisti-
cally justified (e.g., the population of all locations conveniently accessible by road or all areas of
the map consisting of 3 

 

¥

 

 3 homogeneous pixel blocks). Extrapolation to the full map is problematic.
In the NLCD assessment, restricting the sample to 3 

 

¥

 

 3 homogeneous blocks would have repre-
sented roughly 33% of the map, and the overall accuracy for this homogeneous subset was about
10% higher than for the full map. Class-specific accuracies could increase by 10 to 20% for the
homogeneous areas relative to the full map. 

Another prototypical nonprobability sampling design results when the inclusion probabilities
needed to meet the consistent estimation criterion of statistical rigor are unknown. Expert or
judgment samples, convenience samples (e.g., near roads, but not selected by a probability sampling
protocol), and complex, 

 

ad hoc

 

 protocols are common examples. “Citizen participation” data
collection programs are another example in which data are usually not collected via a probability
sampling protocol, but rather are purposefully chosen because of proximity and ease of access to
the participants. This version of nonprobability sampling creates adverse conditions for statistically
defensible inference to any population. Peterson et al. (1999) demonstrate inference problems in
the particular case of a citizen-based, lake water-quality monitoring program. To support inference
from nonprobability samples, the options are to resort to a statistical model, or to simply claim
“the sample looks good.” In the former case, rarely are the model assumptions explicitly stated or
evaluated in accuracy assessment. The latter option is generally regarded as unacceptable, just as
it is unacceptable to reduce accuracy assessment to an “it looks good” judgment

 

. 

 

Another use of nonprobability sampling is to select a relatively small number of sample sites
that are, based on expert judgment, representative of the population. In environmental monitoring,
these locations are referred to as “sentinel” sites, and they serve as an analogy to hand-picked
confidence sites in accuracy assessment. In both environmental monitoring and accuracy assess-
ment, judgment samples can play an invaluable role in understanding processes, and their role in
accuracy assessment for developing better classification techniques should be recognized. Although
nonprobability samples may serve as a useful initial check on gross quality of the data because
poorly classified areas may be identified quickly, caution must be exercised when a broad-based,
population-level description is desired (i.e., when the objective is to generalize from the sample).
Edwards (1998) emphasizes that the use of sentinel sites for population inference in environmental
monitoring is suspect. This concern is applicable to accuracy assessment as well.

More statistically formal approaches to nonprobability sampling have been proposed. In the
method of balanced sampling, selection of sample units is purposefully balanced on one or more
auxiliary variables known for the population (Royall and Eberhardt, 1975). For example, the sample
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might be chosen so that the mean elevation of the sample pixels matches the mean elevation of all
pixels mapped as that LC class (i.e., the population mean). The method is designed to produce a
sample robust to violations in the model used to support inference. Most nonprobability sampling
designs implemented in accuracy assessment lack the underlying model-based rationale of balanced
sampling and instead are the result of convenience, judgment, or poor design. Schreuder and
Gregoire (2001) discuss other potential uses of nonprobability sampling data.

 

2.4.1 Policy Aspects of Probability vs. Nonprobability Sampling

 

Considering implementation of a nonprobability sampling protocol has policy implications in
addition to the scientific issues discussed in the previous section. The policy issues arise because
both scientists and managers using the LC map have a vested interest in the map’s accuracy. Federal
sponsorship to create these maps adds an element of governmental responsibility to ensure, or at
least document, their quality. The stakes are consequently high and the accuracy assessment design
will need to be statistically defensible. Most government sampling programs responsible for pro-
viding national and broad regional estimates are conducted using probability sampling protocols.
The Current Population Survey (CPS) (McGuiness, 1994) and National Health and Nutrition
Examination Survey (NHANES) (McDowell et al., 1981) are two such programs designed as
probability samples. Similarly, national environmental sampling programs are typically based on
probability sampling protocols (Olsen et al., 1999).

The expense of LC maps covering large geographic regions combined with the multitude of
applications these maps serve elevates the importance of accuracy assessment to a level commen-
surate with these other national sampling programs. Accordingly, the protocols employed to evaluate
the quality of the LC data must achieve standards of sampling design and statistical credibility
established by other national sampling programs. These standards of accuracy assessment protocol
will exceed those acceptable for more local use, lower-profile maps. The exposure, or perhaps
notoriety, accruing to maps such as the NLCD will elicit intense scrutiny of their quality. Concerns
related to litigation may become more prevalent as use of LC maps affecting government decisions
increases. Map quality may be challenged not only scientifically, but also legally. Because the
sampling design is such a fundamental part of the scientific basis of an accuracy assessment, the
credibility of this component of accuracy assessment must be ensured. To provide this assurance,
the use of scientifically defensible probability sampling protocols should be a matter of policy.

 

2.5 STATISTICAL COMPUTING

 

The requirements for statistically rigorous design and analysis will tax the capability of tradi-
tional computing practice in accuracy assessment. Stehman and Czaplewski (1998) noted the
absence of readily accessible, easy-to-use statistical software that could perform the analyses
associated with the more complex sampling designs that will be needed for large-area map assess-
ments. Recent upgrades in computing software have improved this situation. For example, the
Statistical Analysis Software (SAS) analysis software now includes survey sampling estimation
procedures that can be adapted for accuracy assessment applications. Nusser and Klaas (2003)
implemented these procedures to obtain the typical suite of accuracy estimates and accompanying
standard errors for complex sampling designs. The SAS procedure accomplishing these tasks is
PROC SURVEYMEANS.

Survey sampling software will be invaluable if data from ongoing monitoring programs are to
be used for accuracy assessment. For example, suppose NRI data serve as the source of reference
data. Two characteristics of the NRI data, confidentiality and the unequal probability design used,
may be resolved by the capabilities available in SAS. To adhere to the estimation criterion of
consistency, the accuracy estimates must incorporate weights for the sample pixels derived from
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the unequal inclusion probabilities. The SAS estimation procedures are designed to accommodate
these weights. Confidentiality of sample locations can be maintained because the necessary esti-
mation weights need not refer to any location information. The possibility exists that with the
location information stripped away, the data could be made available for limited general use for
applications requiring only the sample weights, and the map and reference labels. Users would
need to conduct their analyses via SAS or another software package that implements design-based
estimation procedures incorporating the sampling weights. Analyses ignoring this feature may
produce badly misleading results. 

The use of SAS for accuracy assessment estimation provides two other advantages. SAS includes
estimation of standard errors as standard output. Standard error formulas are complex for the
sampling designs combining the advantages of both strata and clusters. Having available software
to compute these standard errors is highly beneficial relative to the alternative of writing one’s own
variance estimation code and having to confirm its validity. Second, SAS readily accommodates
the fact that many accuracy estimates, for example producer’s accuracy, are ratio estimators (i.e.,
ratios of two estimates). For ratio estimators, the SAS standard error estimation procedures employ
the common practice of using a Taylor Series approximation. The more complex design structures
that arise from more cost-effective assessments or use of existing data obtained from an ongoing
monitoring program will likely require more sophisticated analysis software than is available in
standard GIS and classification software. SAS does not provide everything that is needed, but its
capabilities represent a major step forward in computing for accuracy assessment analyses

 

.

 

2.6 PRACTICAL REALITIES OF SAMPLING DESIGN

 

In comments directed toward sampling design for environmental monitoring, Fuller (1999)
captured the essence of many of the issues facing sampling design for accuracy assessment. These
principles are restated, and in some cases paraphrased, to adapt them to accuracy assessment
sampling design: (1) every new approach sounds easier than it is to implement and analyze, (2)
more will be required of the data at the analysis stage than had been anticipated at the planning
stage, (3) objectives and priorities change over time, and (4) the budget will be insufficient.

 

2.6.1 Principle 1

 

Every new approach sounds easier than it is. Incorporating existing data for accuracy assessment
is a good case in point. While the data may be “free,” the analysis and research required to evaluate
the compatibility of the spatial units and classification scheme are not without costs. Confidentiality
agreements may need to be negotiated and strictly followed, spatial and temporal coverage of the
existing data may be incomplete and/or inadequate, and the response time for interaction with the
agency supplying the data may be slow because this use of their data may not be a top priority
among their responsibilities. Existing data that do not originate from a probability sampling protocol
are even more difficult to incorporate into a rigorous protocol and may be useful only as a qualitative
check of accuracy and to provide limited anecdotal, case-study information. 

 

2.6.2 Principle 2

 

More will be required of the data at the analysis stage than had been anticipated at the planning
stage. This principle applies to estimating accuracy of subregions and other subsets of the data. That
is, a program designed for regional accuracy assessments will be asked to provide state-level estimates
and possibly even county-level estimates. Not only will overall accuracy be requested for these small
subregions, but also class-specific accuracy within the subregion will be seen as desirable informa-
tion. Accuracy estimates for other subsets of the data will become appealing. For example, are the
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classification errors associated with transitions between cover types? How accurate are the classifi-
cations within relatively large homogeneous areas of the map? Deriving a spatial representation of
classification error is another relevant, but supplemental, objective that places additional requirements
on the accuracy assessment analysis that may not have been planned for at the design stage. 

 

2.6.3 Principle 3

 

Over time, objectives and/or priorities of objectives may change. This may not represent a major
problem in accuracy assessment projects, but one example is changing the classification scheme if
it is recognized that certain LC classes cannot be mapped well. Another example illustrating this
principle occurs when the map is revised (updated) while the accuracy assessment is in progress.
Some of the additional analyses described for Principle 2 represent a change in objectives also.

 

2.6.4 Principle 4

 

Insufficient budget is a common affliction of accuracy assessments (Scepan, 1999). Resource
allocation is dominated by the mapping activity, with scant resources available for accuracy assess-
ment. Adequate resources may exist to obtain reasonably precise, class-specific estimates of accu-
racy over broad spatial regions. For example, the NLCD accuracy assessment provides relatively
low standard errors for class-specific accuracy for each of 10 large regions of the U.S. However,
once Principle 2 manifests itself, data that serve well for regional estimates may look woefully
inadequate for subregional accuracy objectives. Edwards et al. (1998) and Scepan (1999) recognized
these phenomena for state-level and global mapping. In the former case, resources were inadequate
to estimate class-specific accuracy with acceptable precision for all three ecoregions found in the
state of Utah. In the global application, the data were too sparse to provide precise class-specific
estimates for each continent. 

Timeliness of accuracy assessment reporting is hampered by the need for the map to be
completed prior to drawing an appropriately targeted sample, and any accuracy assessment activity
concurrent with map production detracts from timely completion of the map. Managing and quality-
checking data is a time-consuming, tedious task for the large datasets of accuracy assessment, and
the statistical analysis is not trivial when the design is complex and standard errors are required.
Lastly, neither the time nor the financial resources are usually available to support research that
would allow tailoring the sampling design to specifically target objectives and characteristics of
each individual mapping project. Comparing different sampling designs using data directly relevant
to the specific mapping project requires both time and money. Instead of this focused research
approach, often design choices must be based on judgment and experience, but without hard data
to support the decision.

 

2.7 DISCUSSION

 

Sampling design is one of the core challenges facing accuracy assessment, and future devel-
opments in this area will contribute to more successful assessments. The goal is to implement a
statistically defensible sampling design that is cost-effective and addresses the multitude of objec-
tives that multiple users and applications of the map generate. The future direction of sampling
design in accuracy assessment must go beyond the basic designs featured in textbooks (Campbell,
1987; Congalton and Green, 1999) and repeated in several reviews of the field (Congalton, 1991;
Janssen and van der Wel, 1994; Stehman, 1999; McGwire and Fisher, 2001; Foody, 2002). While
these designs are fundamentally sound and introduce most of the basic structures required of good
design (e.g., stratification, clusters, randomization), they are inadequate for assessing large-area
maps given the reality of budgetary and practical constraints.
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For both policy and scientific reasons, probability sampling is a necessary characteristic of
the sampling design. Within the class of probability sampling designs, we must seek to develop
or identify methods that resolve the conflicts of a design combining stratifying by LC class and
clustering. Protocols incorporating the advantages of two or more of the basic sampling designs
need to be implemented when combining data from different ongoing monitoring programs to
take advantage of existing data, or when augmenting a general sampling design to increase the
sample size for rare classes or small subregions. Sampling methods need to be explored for
assessing accuracy for different spatial aggregations of the data and for nonsite-specific accuracy
assessments. As is often the case for any developing field of application, sampling design for
accuracy assessment may not require developing entirely new methods, but rather learning better
how to use existing methods.

Implementing a scientifically rigorous sampling design provides a secure foundation to any
accuracy assessment. Accuracy assessment data have little or no value to inform us about the map’s
utility if the data are not collected via a credible sampling design. Sampling design in accuracy
assessment is still evolving according to a progression common in other fields of application. Early
innovators identified the need for sound sampling practice (Fitzpatrick-Lins, 1981; Card, 1982;
Congalton, 1991). As more familiarity was gained with traditional survey sampling methods, more
complex sampling designs could be introduced and integrated into practice. The challenges con-
fronting sampling design for descriptive objectives of accuracy assessment were recognized as
daunting, but by no means insurmountable. The platitude that we must choose a sampling design
that “balances statistical validity and practical utility” was raised (Congalton, 1991), and specificity
was added to this generic recommendation by stating explicit criteria of both validity and utility
(Stehman, 2001).

 

 

 

The future direction of accuracy assessment sampling design demands new developments.
Practical challenges are a reality. For most, if not all, of these problems, statistical solutions already
exist, or the fundamental concepts and techniques with which to derive the solutions can be found
in the survey sampling literature. The key to implementing better, more cost-effective sampling
procedures in accuracy assessment is to move beyond the parochial, insular traditions characterizing
the early stage of accuracy assessment sampling and to recognize more clearly the broad expanse
of opportunities offered by sampling theory and practice. The book on sampling design for accuracy
assessment is by no means closed. Sampling design in accuracy assessment may have progressed
to an advanced stage of adolescence, but it has yet to reach a level of consistency in good practice
and sound conceptual fundamentals necessary to be considered a scientifically mature endeavor.
More statistically sophisticated sampling designs not only contribute to the value of map accuracy
assessments, they are the result of our current needs for more information related to map utility.
If our needs were simple and few, the basic sampling designs receiving the bulk of attention in the
1980s and early 1990s would suffice. It is the increasingly demanding questions related to utility
of these maps that compel us to seek better, more cost-effective sampling designs. Identifying these
designs and implementing them in practice is the future of sampling practice in accuracy assessment.

 

2.8 SUMMARY

 

As maps delineating LC play an increasingly important role in natural resource science and
policy applications, implementing high-quality, statistically rigorous accuracy assessments becomes
essential. Typically, the primary objective of accuracy assessment is to provide precise estimates
of overall accuracy and class-specific accuracies (e.g., user’s or producer’s accuracies). An extended
set of objectives exists for most large-area mapping projects because multiple users interested in
different applications will employ the map. Constructing a cost-effective accuracy assessment is a
challenging problem given the multiple objectives the assessment must satisfy. To meet this chal-
lenge, a more integrated sampling approach combining several design elements such as stratifica-

 

L1443_C02.fm  Page 26  Saturday, June 5, 2004  10:14 AM



 

SAMPLING DESIGN FOR ACCURACY ASSESSMENT OF LARGE-AREA, LAND-COVER MAPS 27

 

tion, clustering, and use of existing data must be considered. These design elements are typically
found individually in current accuracy assessment practice, but greater efficiency may be gained
by more innovatively combining their strengths. To ensure scientific credibility, sampling designs
for accuracy assessment should satisfy the criteria defining a probability sample. This requirement
places additional burden on how various design elements are integrated. When exploring alternative
design options, the apparently simple answers may not be as straightforward as they first appear.
Combining basic design structures such as strata and clusters to enhance efficiency has some
significant complicating factors, and use of existing data for accuracy assessment has associated
hidden costs even if the data are free

 

.
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3.1 INTRODUCTION

3.1.1 Committee on Earth Observing Satellites

 

The Committee on Earth Observation Satellites (CEOS) is an international organization charged
with coordinating international civil space-borne missions designed to observe and study planet
Earth. Current membership is composed of 41 space agencies and other national and international
organizations. It was created (1984) in response to a recommendation from the Economic Summit
of Industrialized Nations Working Group on Growth, Technology, and Employment’s Panel of
Experts on Satellite Remote Sensing, which recognized the multidisciplinary nature of satellite
Earth observation and the value of coordination across all proposed missions. The main goals of
CEOS are to ensure that: (1) critical scientific questions relating to Earth observation and global
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change are covered and (2) satellite missions do not unnecessarily overlap (http://www.ceos.org).
The first goal can be achieved by providing timely and accurate information from satellite-derived
products. Proper use of these products, in turn, relies on our ability to ascertain their uncertainty.
The second goal is achieved through coordination among CEOS members. 

As validation efforts are an integral part of “satellite missions,” part of the CEOS mission is
to reduce the likelihood of unnecessary overlap in validation efforts. The particular CEOS work
related to validation falls within the Working Group on Calibration and Validation (WGCV), which
is one of two standing working groups of CEOS (the other is the Working Group on Information
Systems and Services, WGISS). The ultimate goal of the WGCV is to ensure long-term confidence
in the accuracy and quality of Earth observation data and products through (1) sensor-specific
calibration and validation and (2) geophysical parameter and derived-product validation. 

To ensure long-term confidence in the accuracy and quality of Earth observation data and
products, the WGCV provides a forum for calibration and validation information exchange, coor-
dination, and cooperative activities. The WGCV promotes the international exchange of technical
information and documentation; joint experiments; and the sharing of facilities, expertise, and
resources (http://wgcv.ceos.org). There are currently six established subgroups within WGCV: (1)
atmospheric chemistry, (2) infrared and visible optical sensors (IVOS), (3) land product validation
(LPV), (4) terrain mapping (TM), (5) synthetic aperture radar (SAR), and (6) microwave sensors
subgroup (MSSG).

Each subgroup has a specific mission. For example, the relevant subgroup for global land
product validation is LPV. The mission of LPV is to increase the quality and economy of global
satellite product validation by developing and promoting international standards and protocols
for field sampling, scaling, error budgeting, and data exchange and product evaluation and to
advocate mission-long validation programs for current and future earth-observing satellites (Jus-
tice et al., 2000). In this chapter, by considering the lessons learned from previous and current
programs, we describe a strategy to utilize LPV for current and future global land-cover (LC)
validation efforts. 

 

3.1.2 Approaches to Land-Cover Validation

 

Approaches to LC validation may be divided into two primary types: statistical approaches and
confidence-building measures. Confidence-building measures include studies or comparisons made
without a firm statistical basis that provide confidence in the map. When presented with a LC map
product, users typically first carry out “reconnaissance measures” by examining the map to see
how well it conforms to regional landscape attributes, such as mountain chains, valleys, or agri-
cultural regions. Spatial structure is inspected to ensure that the map has sensible patterns of LC
that are without excessive “salt-and-pepper” noise or excessive smoothness and generalization.
Land–water boundaries are checked for continuity to reveal the quality of multidate registration.
The map is carefully examined for gross errors, such as cities in the Sahara or water on high
mountain slopes. If the map seems reasonable based on these and similar criteria, validation can
proceed to more time-consuming confidence measures. These include ancillary comparisons, in
which specific maps or datasets are compared to the map. However, such comparisons are not
always straightforward, since ancillary materials are typically prepared from input data acquired
at a different time. Also, map scales and LC units used in the ancillary materials may not be directly
comparable to the map of interest.

The Global Land Cover 2000 program has established a systematic approach for qualitative
confidence building in which a global map is divided into small cells, each of which is examined
carefully for discrepancies. This procedure is described more fully in section 2.1.

Statistical approaches may be further broken down into two types: model-based inference and
design-based inference (Stehman, 2000, 2001). Model-based inference is focused on the classifi-
cation process, not on the map 

 

per se.

 

 A map is viewed as one realization of a classification process
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that is subject to error, and the map’s accuracy is characterized by estimates of errors in the
classification process that produced it. For example, the Moderate Resolution Imaging Spectrora-
diometer (MODIS) LC product provides a confidence value for each pixel that measures of how
well the pixel fits the training examples presented to the classifier. Design-based inference uses
statistical principles in which samples are acquired to infer characteristics of a finite population,
such as the pixels in a LC map. The key to this approach is probability-based sampling, in which
the units to be sampled are drawn with known probabilities. Examples include random sampling,
in which all possible sample units have equal probability of being drawn, or stratified random
sampling, in which all possible sample units within a particular stratum have equal probability of
being drawn. 

Probability-based samples are used to derive consistent estimates of population parameters that
equal the population parameters when the entire population is included in the sample. Consistent
estimators commonly used in LC mapping from remotely sensed data include the proportion of
pixels correctly classified (global accuracy); “user’s accuracy,” which is the probability that a pixel
is truly of a particular cover to which it was classified; and “producer’s accuracy,” which is the
probability that a pixel was mapped as a member of a class of which it is truly a member. These
estimators are typically derived from a confusion matrix, which tabulates true class labels with
those assigned on the map according to the sample design.

While design-based inference allows proper calculation of these very useful consistent estima-
tors, it is not without its difficulties. Foremost is the difficulty of verifying the accuracy of the label
assigned to a sampled pixel. In the case of a global map, it is not possible to go to a randomly
assigned location on the Earth’s surface. Thus, the accuracy of a label is typically assessed using
finer-resolution remotely sensed data. In this case, accuracy is assessed by photointerpretation,
which is subject to its own error. Registration errors also occur and commonly restrict or negate a
pixel-based assessment strategy.

Another practical problem may lie in the classification scheme itself. Sometimes the LC types
are not mutually exclusive or are difficult to resolve. For example, in the International Geo-
sphere/Biosphere Project (IGBP) legend, permanent wetland may also be forest (Loveland et al.,
1999). Or, the pixel may fall on a golf course. Is it grassland, savanna, agriculture, urban, or built-
up land? A related problem is that of mixed pixels. Where fine-resolution data show a selected
pixel to contain more than one cover class, how is a correct label to be assigned?

Additionally, the classification error structure as assessed by the consistent estimators above
may not be the most useful measure of classification accuracy. Some errors are clearly more
problematic than others. For example, confusing forest with water is probably a more serious error
than confusing open and closed shrubland for many applications. This problem leads to the
development of “fuzzy” accuracies that better meet users’ needs (Gopal and Woodcock, 1994).

A final concern is that a design-based sample designed to validate a specific map cannot
necessarily be used to validate another. A proper design-based validation procedure normally calls
for stratified sampling so that accuracies may be established for each class with equal certainty.
With stratified sampling, the probability of selection of all pixels within the same class is equal.
If a stratified sample is overlain on another map, the selected pixels do not retain this property,
thus introducing bias. Whereas an unstratified (random or regular) sample does not suffer from this
problem, very large sample sizes are typically required to gain sufficient samples from small classes
to establish their accuracies with needed precision.

While the foregoing discussion described the major elements for validating LC maps, particu-
larly at the global scale, it is clear that a proper validation plan requires all three. Confidence-
building measures are used at early stages both to refine a map that is under construction and to
characterize the general nature of errors of a specific map product. Model-based inference, imple-
mented during the classification process, can provide users with a quantitative assessment of each
classification decision. Design-based inference, although costly, provides unbiased map accuracy
statements using consistent estimators.
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3.1.3 Lessons Learned from IGPB DISCover 

 

The IGBP DISCover LC dataset, produced from 1.1-km spatial resolution AVHRR data by
Loveland et al. (2000), remains a milestone in global LC classification using satellite data. The
validation process used incorporated a global random sample stratified by cover type. Selected
pixels were examined at high spatial resolution using Landsat and SPOT data in a design that
featured multiple photographic interpreters classifying each pixel. Although not without difficul-
ties, the validation process was very successful, yielding the first global validation of a global
thematic map. 

Recent research by Estes et al. (1999) summarized the lessons learned in the IGBP DISCover
validation effort that apply to current and future global LC validation efforts. A primary conclusion
was that the information of coarse-resolution satellite datasets is limited by such factors as multidate
registration, atmospheric correction, and directional viewing effects. These limits in turn impose
limits on the accuracies achievable in any global classification scenario. It should be noted that
coarse-resolution satellite imaging instruments continue to produce data of improved quality. For
example, data from MODIS that are used to develop LC products include nadir-looking surface
reflectances that are obtained at multiple spatial resolutions (250, 500, and 1000 m).

Second, LC products developed using the spectral and temporal information available from
coarse-resolution satellite imagers will always be an imperfect process, given the high intrinsic
variance found in the global range (variability) of cover types. While the natural variation within
many cover types is large, new instruments may yield new data streams that increase the certainty
of identifying them uniquely. Among these are measures of vegetation structure derived from multi-
angular observations, measures of spatial variance obtained from finer-resolution channels, and
ancillary datasets such as land surface temperature.

A third lesson concerns the quality and availability of fine-resolution imagery for use in
validation. Not only were Landsat and SPOT images costly, they were also very scarce for some
large and ecologically important regions, such as Siberian conifer forest. However, the present
Landsat 7 acquisition policy, which includes acquiring at least four relatively cloud-free scenes per
year for every path and row, coupled with major price decreases, has eased this problem significantly
for future validation efforts. However, the recent degradation of Enhanced Thematic Mapper Plus
(ETM

 

+

 

) capabilities may significantly reduce future data acquisition capabilities.
A fourth lesson documented that interpreter skill and the quality of ancillary data are major

factors that significantly affect assessment results. Best results were obtained using local interpreters
who were familiar with the region of interest. The most important observation was that proper
validation was an essential component of the mapping process and required a significant amount
of the total effort. Roughly one third of the mapping resources were expended equally to each of
the following: (1) data assembly, (2) data classification, and (3) quality and accuracy assessment
of the result. Supporting agencies need to understand that a map classification is not completed
until it is properly validated.

 

3.2 VALIDATION OF THE EUROPEAN COMMISSION’S GLOBAL
LAND-COVER 2000

 

The general objective of the European Commission’s Global Land Cover (GLC) 2000 was to
provide a harmonized global LC database. The year 2000 was considered a reference year for envi-
ronmental assessment in relation to various activities, and in particular the United Nation’s Ecosystem-
related International Conventions. To achieve this objective GLC 2000 made use of the 

 

VEGA 2000

 

dataset: a dataset of 14 months of preprocessed daily global data acquired by the VEGETATION
instrument aboard SPOT 4. These data were made available through a sponsorship from members of
the VEGETATION program (http://www.gvm.sai.jrc.it/glc2000/defaultGLC2000.htm).

 

L1443_C03.fm  Page 34  Saturday, June 5, 2004  10:16 AM



 

VALIDATION OF GLOBAL LAND-COVER PRODUCTS 35

 

The validation of the GLC 2000 products incorporated confidence building based on a com-
parison with ancillary data and quantitative accuracy assessment using a stratified random sampling
design and high-resolution sites. First, the draft products were reviewed by experts and compared
with reference data (thematic maps, satellite images, etc.). These quality controls met two important
objectives: (1) the elimination of macroscopic errors and (2) the improvement of the global
acceptance by the

 

 

 

customers associated in the process. Each validation cell (200 

 

¥

 

 200 km) was
systematically compared with reference material and documented in a database containing intrinsic
properties of the GLC 2000 map (thematic composition and spatial pattern) and identified errors
(wrong labels or limits).

This design-based inference had the objective of providing a statistical assessment of the
accuracy by class and was based on a comparison with high-resolution data interpretations. It was
characterized by: (1) random stratification by cover class, (2) a broad network of experts with local
knowledge, (3) a decentralized approach, (4) visual interpretation of the higher-resolution imagery,
and (5) interpretations based on the hierarchal classification scheme (Di Gregorio, 2000). Both the
confidence building and design-based components occurred sequentially. Confidence building
started with problematic areas (as expected by the map producer). This allowed for the correction
of macro-errors found during the check. Then, a systematic review of the product using the same
procedure was conducted before implementing the final quantitative accuracy assessment.

 

3.3 VALIDATION OF THE MODIS GLOBAL LAND-COVER PRODUCT 

 

A team of researchers at Boston University currently produces a global LC product at 1-km
spatial resolution using data from the MODIS instrument (Friedl et al., 2002). The primary product
is a map of global LC using the IGBP classification scheme, which includes 17 classes that are
largely differentiated by the life-form of the dominant vegetation layer. Included with the product
is a confidence measure for each pixel as well as the second-most-likely class label. Input data are
MODIS surface reflectance obtained in seven spectral bands coupled with an enhanced vegetation
index product also derived from MODIS. These are obtained at 16-d intervals for each 1-km pixel.
The classification is carried out using a decision tree classifier operating on more than 1300 global
training sites identified from high-resolution data sources, primarily Landsat Thematic Mapper and
Enhanced Thematic Mapper Plus (ETM

 

+

 

). The product is produced at 3- to 6-mo intervals using
data from the prior 12-mo period (http://geography.bu.edu/landcover/userguidelc/intro.html).

The validation plan for the MODIS-derived LC product incorporates all approaches identified
in section 3.1.2. Confidence-building exercises are used to provide a document accompanying the
product that describes its strengths and weaknesses in qualitative terms for specific regions. A Web
site also accumulates comments from users, providing feedback on specific regions. Confidence-
building exercises also include comparisons with other datasets, including the Landsat Pathfinder
for the humid tropics, United Nation’s Food and Agricultural Organization (FAO) forest resource
assessment, the European Union’s Co-ordination of Information on the Environment (CORINE)
database of LC for Europe, and the U.S. interagency-sponsored Multi-Resolution Land Character-
istics (MRLC) database.

Model-based inference of classification accuracy is represented by the layer of per-pixel con-
fidence values, which quantifies the posterior probability of classification for each pixel. This
probability is first estimated by the classifier, which uses information on class signatures and
separability obtained during the building of the decision tree using boosting (Friedl et al., 2002)
to calculate the classification probability. This probability is then adjusted by three weighted prior
probabilities associated with (1) the global frequency of all classes taken from the prior product,
(2) the frequency of class types within the training set, and (3) the frequency of classes within a
200- 

 

¥

 

 200-pixel moving window. The result is a posterior probability that merges present and
prior information and is used to assign the most likely class label to each pixel. The posterior
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probabilities are then summarized by cover type and region to convey information to users about
the quality of the classification. 

A form of design-based inference is used in the preparation of a confusion matrix taken from
the classification of training sites. In this process, all training sites are divided into five equal sets.
The classifier is trained using four of the five sets and then classifies the unseen sites in the fifth
set. This procedure is repeated for each set as the unseen set, yielding a pair of labels — “true”
and “as classified” — for every training site. Cross-tabulation of the two labels for the training site
collection yields a confusion matrix that provides estimates of global, user’s, and producer’s
accuracies. This matrix is provided in the documentation of the LC data product. 

Note that these estimated accuracies will be biased because the training sites are not chosen
randomly, and thus they may not properly reflect the variance encountered across the full extent
of the true LC class. However, in selection of training sites, every effort is made to identify sites
that do reflect the full range of variance of each class. Accordingly, the accuracies obtained are
thought to be reasonable characterizations of the true accuracies, even though they cannot be shown
to be proper unbiased estimators. In a final application of design-based inference, the MODIS team
plans to conduct a random stratified sample of its LC product at regular intervals. The methodology
will be similar to that of the IGBP DISCover validation effort (see section 3.1.3). However, funds
have not yet been secured to support this costly endeavor.

 

3.4 CEOS LAND PRODUCT VALIDATION SUBGROUP

 

The lessons learned from previous and ongoing projects point to several areas where LPV can
help with validation efforts. Perhaps most fundamental is that CEOS/WGCV/LPV provides a forum
to discuss these issues and develop and maintain a standardized protocol. Indeed, the authors are
all involved with LPV, and it was through this association that this chapter was developed. There
is also the opportunity to communicate on LC classification systems; although each project will
have its own system, coordination between the two projects results in synergy between the two
systems (Thomlinson et al., 1999; Di Gregorio and Jansen, 2000). Here we present methods by
which LPV can help address the specific lessons learned from IGBP in the context of the two
current projects. Table 3.1 lists the various subgroups and their corresponding URLs.

 

Table 3.1

 

CEOS Land-Cover Validation Participants and Contributions

Entity Role in Global Land-Cover Validation

 

CEOS
Working Group on Calibration and Validation Land Product 
Validation subgroup
http://www.wgcvceos.org/

Coordinates validation activities of CEOS
members

Global Observation of Forest Cover
Global Observation of Land Dynamics
http://www.fao.org/gtos/gofc-gold/index.html

Coordinates regional networks to provide 
“local” expertice

European Commission’s Global Land Cover 2000
http://www.gvm.sai.jrc.it/glc2000/defaultGLC2000.htm

Produces data

NASA’s Global Land Cover product
http://edcdaac.usgs.gov/modis/mod12q1.html

Produces data

EOS Land Validation Core Sites
http://modis.gsfc.nasa.gov/MODIS/LAND/VAL/CEOS_WGCV/
lai_intercomp.html

Sites under consideration for CEOS Land 
Product Validation Core Sites

VALERI (VAlidation of Land European Remote sensing 
Instruments)
http://www.avignon.inra.fr/valeri/

Sites under consideration for CEOS Land 
Product Validation Core Sites

CEOS “LAI-intercomparison”
http://landval.gsfc.nasa.gov/LPVS/BIO/lai_intercomp.html

Sites under consideration for CEOS Land 
Product Validation Core Sites
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As satellite sensors and related algorithms continue to improve, many of the technical obstacles
addressed above may be overcome. However, it is essential that groups producing global LC
products have a thorough awareness of technology improvements across the range of satellite
sensors, including optical, microwave LIDAR, and SAR. Such awareness can be supported through
LPV’s interaction with the other WGCV subgroups, including discussions at the semiannual WGCV
plenary meetings and utilizing the projects and publications available through the other subgroups
of WGCV. Further, coordination of various LC products can help determine the most suitable
approach to using multiple products. For example, the MODIS product has been operationally
produced since 2001. Careful examination of this product as well as the GLC 2000 product could
lend insight into the best way to use both in a complementary fashion.

 

3.4.1 Fine-Resolution Image Quality and Availability

 

Data sharing of high-resolution imagery may be one of the most immediate and concrete ways
in with LPV can support global land-product validation. Using the NASA Earth Observing System
Land Validation Core Sites (Morisette et al., 2002) as an example, the LPV and WGISS subgroups
are establishing an infrastructure for a set of “CEOS Land Product Validation Core Sites.” The initial
sites being considered for this project are shown in Plate 3.1, which represents an agglomeration
of three entities: the EOS Land Validation Core Sites, the VAlidation of Land European Remote
sensing Instruments (VALERI) project, and the CEOS “LAI Inter-comparison” activity (Table 3.1).
The concept is to establish a set of sites where high-resolution data will be archived and proved
free or at minimal cost over locations where field and/or tower measurements are continuously or
periodically collected (Plate 3.1). These core sites are intended to serve as validation sites for
multiple satellite products. Specific products appropriate for validation depend on the individual
field tower measurement parameters (Morisette et al., 2002). Practically, the limited number of sites
(approximately 50), which are not based on a random sample, cannot be used for statistical inferences
on a global product. However, in terms of LC validation, the high-resolution data from these sites
would allow a set of common “confidence-building sites” that could be shared by GLC 2000 and
MODIS as well as future global LC mapping efforts. LC product comparisons with high-resolution
data and cross-comparison with other global LC products over the core sites would provide sub-
stantive information for initial quality control. Additionally, within a given site a random sample
could be collected and design-based inference carried out for that particular “subpopulation.” So,
while the core site concept has limitations with respect to statistical inference, the opportunities for
data sharing and initial cross-comparison at a set of core sites seems worthwhile.

 

3.4.2 Local Knowledge Requirements

 

The LPV was strategically designed to complement the objectives of the Global Observation of
Forest Cover/Land Dynamics (GOFC/GOLD) program (http://www.fao.org/gtos/gofc-gold/). This
partnership provides a context for validation activities (through LPV) within the specific user group
(GOFC/GOLD). GOFC/GOLD is broken down into three implementation teams that include: (1)
LC characteristics and change, (2) fire-related products, and (3) biophysical processes. Initial activ-
ities of LPV have also focused on these three areas through topical workshops and initial projects.

A major component of GOFC/GOLD is to build on “regional networks.” These networks involve
local and regional partners who are interested in using the global products and serve to provide
feedback to the data producers. This regional network concept has proven to be a significant resource
to support validation efforts. The IGBP experience indicates that the knowledge gained through
regional collaborators is critical. LPV can use the regional networks as an infrastructure to gain
local expertise for product validation. This infrastructure can provide assistance with the difficult
and labor-intensive task of design-based inference planned for both MODIS and GLC 2000. 
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3.4.3 Resource Requirements 

 

The LPV has been established with the realization that proper validation requires a significant
scientific effort. Indeed, the subgroup has been established to conduct global validation activities
as efficiently as possible. The validation approaches described here have all been conceived to
minimize the resource requirements for global LC validation. To this end, the LPV has capitalized
on the most current sensor technologies (high-resolution) and exploited data-sharing opportunities
with both the CEOS core sites and the use of GOFC/GOLD regional networks to reduce the cost
and effort of global validation efforts. The LPV subgroup is collaborating with the MODIS LC
and GLC 2000 programs to help realize and develop these suggestions. This, in turn, can be applied
to future global LC products.

 

3.5 SUMMARY

 

This chapter presents the approach for the use of the CEOS to coordinate the validation efforts
of global land products. This premise is based on experience from previous global validation through
the IGBP, which depended on the goodwill, support, cooperation, and collaboration of interested
organizations and institutions. Two global LC efforts are now underway: (1) NASA’s MODIS
Global LC product and (2) the European Commission’s GLC 2000. These validation efforts will
likewise require coordination and collaboration — much of which has been or is being established.
In this chapter we discussed issues pertaining to validation of global LC products, presented a brief
overview of the validation strategy for the two current efforts, then described a mutually beneficial
strategy for both to realize some efficiencies by using CEOS to further coordinate their validation
efforts. This strategy should be applicable to other global LC mapping efforts, such as those being
developed for the GOFC/GOLD and beyond.
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4.1 INTRODUCTION

 

Satellite remote sensor data are commonly used to assess ecosystem conditions through synoptic
monitoring of terrestrial vegetation extent, biomass, and seasonal dynamics. Two commonly used
vegetation indices that can be derived from various remote sensor systems include the Normalized
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI). Detailed knowledge of vegetation
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index performance is required to characterize both the natural variability across forest stands and
the intraannual variability (phenology) associated with individual stands. To assess performance
accuracy, 

 

in situ

 

 validation procedures can be applied to evaluate the accuracy of remote sensor-
derived indices. A collaborative effort was established with researchers from the U.S. Environmental
Protection Agency (EPA), National Aeronautics and Space Administration (NASA), academia, and
state and municipal governmental organizations, and private forest industry to evaluate the Moderate
Resolution Imaging Spectroradiometer (MODIS) NDVI and LAI products across six validation
sites in the Albemarle-Pamlico Basin (APB), in North Carolina and Virginia (Figure 4.1).

The significance of LAI and NDVI as source data for process-based ecological models has
been well documented. LAI has been identified as the variable of greatest importance for quantifying
energy and mass exchange by plant canopies (Running et al., 1986) and has been shown to explain
80 to 90% of the variation in the above-ground forest net primary production (NPP) (Gholz, 1982;
Gower et al., 1992; Fassnacht and Gower, 1997). LAI is an important biophysical state parameter
linked to biological productivity and carbon sequestration potential and is defined here as one half
the total green leaf area per unit of ground surface area (Chen and Black, 1992). NPP is the rate
at which carbon is accumulated by autotrophs and is expressed as the difference between gross
photosynthesis and autotrophic respiration (Jenkins et al., 1999). 

NDVI has been used to provide LAI estimates for the prediction of stand and foliar biomass
(Burton et al., 1991) and as a surrogate to estimate stand biomass for denitrification potential in
forest filter zones for agricultural nonpoint source nitrogenous pollution along riparian waterways
(Verchot et al., 1998). Interest in tracking LAI and NDVI changes includes the role forests play in
the sequestration of carbon from carbon emissions (Johnsen et al., 2001) and the formation of

 

Figure 4.1

 

LAI field validation site locations within the Albemarle-Pamlico Basin in southern Virginia and
northern North Carolina. (1) Hertford; (2) South Hill; (3) Appomattox; (4) Fairystone; (5) Duke
FACE; (6) Umstead. 
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tropospheric ozone from biogenic emissions of volatile organic compounds naturally released into
the atmosphere (Geron et al., 1994). The NDVI has commonly been used as an indicator of biomass
(Eidenshink and Haas, 1992) and vegetation vigor (Carlson and Ripley, 1997). NDVI has been
applied in monitoring seasonal and interannual vegetation growth cycles, land-cover (LC) mapping,
and change detection. Indirectly, it has been used as a precursor to calculate LAI, biomass, the
fraction of absorbed photosynthetically active radiation (fAPAR), and the areal extent of green
vegetation cover (Chen, 1996).

Direct estimates of LAI can be made using destructive sampling and leaf litter collection
methods (Neumann et al., 1989). Direct destructive sampling is regarded as the most accurate
approach, yielding the closest approximation of “true” LAI. However, destructive sampling is time-
consuming and labor-intensive, motivating development of more rapid, indirect field optical meth-
ods. A subset of field optical techniques include hemispherical photography, LiCOR Plant Canopy
Analyzer (PCA) (Deblonde et al., 1994), and the Tracing Radiation and Architecture of Canopies
(TRAC) sunfleck profiling instrument (Leblanc et al., 2002). 

 

In situ

 

 forest measurements serve as
both reference data for satellite product validation and as baseline measurements of seasonal
vegetation dynamics, particularly the seasonal expansion and contraction of leaf biomass.

The development of appropriate ground-based sampling strategies is critical to the accurate
specification of uncertainties in LAI products (Tian et al., 2002). Other methods that have been
implemented to assess the MODIS LAI product have included a spatial cluster design and a patch-
based design (Burrows et al., 2002). Privette et al. (2002) used multiple parallel 750-m TRAC
sampling transects to assess LAI and other canopy properties at scales approaching that of a single
MODIS pixel. Also, a stratified random sampling (SRS) design element provided sample intensi-
fication for less frequently occurring LC types (Lunetta et al., 2001). 

 

4.1.1  Study Area 

 

The study area is the Albemarle-Pamlico Basin (APB) of North Carolina and Virginia (Figure
4.1). The APB has a drainage area of 738,735 km

 

2

 

 and includes three physiographic provinces:
mountain, piedmont, and coastal plain, ranging in elevation from 1280 m to sea level. The APB
subbasins include the Albemarle-Chowan, Roanoke, Pamlico, and Neuse River basins. The Albe-
marle-Pamlico Sounds compose the second-largest estuarine system within the continental U.S.
The 1992 LC in the APB consisted primarily of forests (50%), agriculture (27%), and wetlands
(17%). The forest component is distributed as follows: deciduous (48%), conifer (33%), and mixed
(19%) (Vogelmann et al., 1998). 

 

4.2 BACKGROUND

4.2.1 TRAC Measurements

 

The TRAC sunfleck profiling instrument consists of three quantum PAR sensors (LI-COR,
Lincoln, NE, Model LI-190SB) mounted on a wand with a built-in data logger (Leblanc et al.,
2002) (Figure 4.2). The instrument is hand-carried along a linear transect at a constant speed,
measuring the downwelling solar photosynthetic photon flux density (PPFD) in units of micromoles
per square meter per second. The data record light–dark transitions as the direct solar beam is
alternately transmitted and eclipsed by canopy elements (Figure 4.3). This record of sunflecks and
shadows is processed to yield a canopy gap size distribution and other canopy architectural param-
eters, including LAI and a foliage element clumping index.

From the downwelling solar flux recorded along a transect, the TRACWin software (Leblanc
et al., 2002) computes the following derived parameters describing forest canopy architecture: (1)
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canopy gap size (physical dimension of a canopy gap), (2) canopy gap fraction (percentage of
canopy gaps),

 

 

 

(3)

 

 

 

foliage element clumping index, 

 

W

 

e

 

(

 

q

 

), (4) plant area index (LAI, which includes
both foliage and woody material), and (5) LAI with clumping index (

 

W

 

e

 

) incorporated. Note that
in each case the parameters are for the particular solar zenith angle 

 

q

 

 at the time of data acquisition,
defining an inclined plane slicing the canopy between the moving instrument and the sun. 

Parameters entered into the TRACWin software to invert measured PPFD to the derived output
parameters include the mean element width (the mean size of shadows cast by the canopy), the
needle-to-shoot area ratio (

 

g

 

) (within-shoot clumping index), woody-to-total area ratio (

 

a

 

), lati-
tude/longitude, and time.

 

 

 

Potential uncertainties were inherent in the first three parameters and will
be assessed in future computational error analyses.

Solar zenith and azimuth influence data quality. Optimal results are achieved with a solar zenith
angle 

 

q

 

 between 30 and 60 degrees. As 

 

q

 

 approaches the horizon (

 

q

 

 > 60˚), the relationship between
LAI and light extinction becomes increasingly nonlinear. Similarly, best results are attained when
TRAC sampling is conducted with a solar azimuth perpendicular to the transect azimuth. Sky
condition is a significant factor for TRAC measurements. Clear, blue sky with unobstructed sun is
optimal. Overcast conditions are unsuitable; the methodology requires distinct sunflecks and shadows.

 

Figure 4.2

 

Photograph of (A) TRAC Instrument (length ~ 80 cm) and (B) PAR detectors (close-up).

 

Figure 4.3

 

TRAC transect in loblolly pine plantation (site: Hertford). Peaks (black spikes) are canopy gaps.
Computed parameters for this transect were gap fraction = 9%; clumping index (

 

W

 

e

 

) = 0.94; PAI =
3.07; L

 

e

 

 = 4.4 (assuming 

 

g

 

 = 1.5, 

 

a

 

 = 0.1, and mean element width = 50 mm).
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The TRAC manual (Leblanc et al., 2002) lists the following as studies validating the TRAC
instrument and approach: Chen and Cihlar (1995), Chen (1996), Chen et al. (1997), Kucharik et
al. (1997), and Leblanc (2002). TRAC results were compared with direct destructive sampling,
which is generally regarded as the most accurate sampling technique.

 

4.2.2 Hemispherical Photography Measurements

 

Hemispherical photography is an indirect optical method that has been used in studies of forest
light transmission and canopy structure. Photographs taken upward from the forest floor with a
180˚ hemispherical (fish-eye) lens produce circular images that record the size, shape, and location
of gaps in the forest overstory. Photographs can be taken using 35-mm film cameras or digital
cameras. A properly classified fish-eye photograph provides a detailed map of sky visibility and
obstructions (sky map) relative to the location where the photograph was taken. Various software
programs, such as Gap Light Analyzer (GLA), were available to process film or digital fish-eye
camera images into a myriad of metrics that reveal information about the light regimes beneath
the canopy and the productivity of the plant canopy. These programs rely on an accurate projection
of a three-dimensional hemispherical coordinate system onto a two-dimensional surface (Figure
4.4). Accurate projection requires calibration information for the fish-eye lens that is used and any
spherical distortions associated with the lens. GLA used in this analysis was available for download
at http://www.ecostudies.org/gla/ (Frazer et al., 1999).

The calculation of canopy metrics depends on accurate measures of gap fraction as a function
of zenith angle and azimuth. The digital image can be divided into zenith and azimuth “sky
addresses” or sectors (Figure 4.5). Each sector can be described by a combined zenith angle and
azimuth value. Within a given sector, gap fraction is calculated with values between zero (totally
“obscured” sky) and one (totally “open” sky) and is defined as the proportion of unobscured sky
as seen from a position beneath the plant canopy (Delta-T Devices, 1998).

 

4.2.3 Combining TRAC and Hemispherical Photography

 

LAI calculated using hemispherical photography or other indirect optical methods does not
account for the nonrandomness of canopy foliage elements. Hence, the term 

 

effective leaf area index

 

(L

 

e

 

) is used to refer to the leaf area index estimated from optical measurements including hemi-
spherical photography. L

 

e

 

 typically underestimates “true” LAI (Chen et al., 1991). This underesti-
mation is due in part to nonrandomness in the canopy (i.e., foliage “clumping” at the scales of tree

 

Figure 4.4

 

Illustration of (A) a hemispherical coordinate system. Such a system is used to convert a hemi-
spherical photograph into a two-dimensional circular image (B), where the zenith () is in the center,
the horizon at the periphery, east is to the left, and west is to the right. In a equiangular hemispherical
projection, distance along a radius (r) is proportional to zenith angle (Rich, 1990).
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crown), whorls, branches, and shoots. The TRAC instrument was developed at the Canada Centre
for Remote Sensing (CCRS) to address canopy nonrandomness (Chen and Cihlar, 1995). In the
APB study, hemispherical photography (L

 

e

 

) and TRAC measurements (foliage clumping index)
were combined to provide a better estimate of LAI following the method of Leblanc et al. (2002).

 

4.2.4 Satellite Data

 

MODIS was launched in 1999 aboard the NASA Terra platform (EOS-AM) and in 2002 aboard
the Aqua platform (EOS-PM) and provides daily coverage of most of the earth (Justice et al., 1998;
Masuoka et al., 1998). MODIS sensor characteristics include a spectral range of 0.42 to 14.35 

 

m

 

m
in 36 spectral bands, variable pixel sizes (250, 500, and 1000 m), and a revisit interval of 1 to 2
days. Landsat Enhanced Thematic Mapper Plus (ETM

 

+

 

) images were acquired at various dates
throughout the year and were used for site characterization and in subsequent analysis for linking
field measurements of LAI with MODIS LAI. ETM

 

+

 

 data characteristics include a spectral range
of 0.45 to 12.5 

 

m

 

m; pixel sizes of 30 m (multispectral), 15 m (panchromatic), and 60 m (thermal);
and a revisit interval of 16 d. They also play a vital role in linking meter-scale 

 

in situ

 

 LAI
measurements with kilometer-scale MODIS LAI imagery.

 

 

 

IKONOS is a high-spatial-resolution
commercial sensor that was launched in 1999 that provides 4.0-m multispectral (four bands, 0.45
to 0.88 

 

m

 

m) and 1-m panchromatic data (0.45 to 0.90 

 

m

 

m) with a potential revisit interval of 1 to 3 d.

 

4.2.5 MODIS LAI and NDVI Products

 

Numerous land, water, and atmospheric geophysical products are derived from MODIS radiance
measurements. Two MODIS land products established the primary time-series data for this research:
NDVI (MOD13Q1) (Huete et al., 1996) and LAI/FPAR (MOD15A2) (Knyazikhin et al., 1999). The
NDVI product was a 16-d composite at a nominal pixel size of 250 m. The LAI product was an 8-
d composite product with a pixel size of 1000 m. Both products were adjusted for atmospheric effects
and viewing geometry (bidirectional reflectance distribution function, BRDF). The NDVI product
used in this study was produced using the standard MODIS-NDVI algorithm (Huete et al., 1996).

 

Figure 4.5

 

Sky-sector mapping using GLA image analysis software. Eight zenith by 18 azimuth sectors are
shown.
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The MODIS LAI product algorithms were considerably more complex. The primary approach
for calculating LAI involved the inversion of surface reflectance in two to seven spectral bands and
comparison of the output to biome-specific look-up tables derived from three-dimensional canopy
radiative transfer modeling. All terrestrial LC was assigned to six global biomes, each with distinct
canopy architectural properties that drove photon transport equations. The six biomes included
grasses and cereal crops, shrubs, broadleaf crops, savannas, broadleaf forests, and needle forests.
The secondary technique was invoked when insufficient high-quality data were available for a given
compositing period (e.g., cloud cover, sensor system malfunction) and calculated LAI based on
empirical relationships with vegetation indices. However, a deficiency inherent with the second
approach was that NDVI saturates at high leaf biomass (LAI values between 5 and 6). The
computational approach used for each pixel was included with the metadata distributed with each
data set.

 

4.3 METHODS

 

Here we describe a field sampling design and data acquisition protocol implemented in 2002
for measuring 

 

in situ

 

 forest canopy properties for the analysis of correspondence to MODIS satellite
NDVI and LAI products. The study objective was to acquire field measurement data to evaluate
LAI and NDVI products using 

 

in situ

 

 measurement data and indirectly using higher-spatial-resolu-
tion imagery sensors including Landsat Enhanced Thematic Mapper Plus (ETM

 

+

 

) and IKONOS. 

 

4.3.1 Sampling Frame Design

 

Six long-term forested research sites were established in the APB (Table 4.1). The objective
was to collect ground-reference data using optical techniques to validate seasonal MODIS NDVI
and LAI products. Baseline forest biometrics were also measured for each site. Five sites were
located in the Piedmont physiographic region and one site (Hertford) in the coastal plain. The
Hertford and South Hill sites were composed of homogeneous conifer forest (loblolly pine),
Fairystone mixed deciduous forest (oak/hickory), and Umstead mixed conifer and mixed forest,
and both Duke and Appomattox sites contained homogeneous stands of conifer and deciduous
forest managed under varying silvicultural treatments (e.g., thinning). At Duke and South Hill,
university collaborators monitored LAI using direct means (destructive harvest and leaf litter); their
data were employed to validate the field optical techniques used in this study.

The fundamental field sampling units are referred to as quadrants and subplots (Figure 4.6). A
quadrant was a 100- 

 

¥

 

 100-m grid with five 100-m east–west TRAC sampling transects and five
interspersed transects for hemispherical photography (lines A–E). The TRAC transects were spaced
at 20-m intervals (north–south), as were the interleaved hemispherical photography sampling
transects. A subplot consisted of two 50-m transects intersecting at the 25-m center point. The two

 

Table 4.1

 

Location Summary for Six Validation Sites in the Albemarle-Pamlico Basin

Site State
Location

(lat., long.)
Elevation

(m)
Physiographic 

Region Ownership Area

 

Appomattox VA 37.219, –78.879 165–215 Piedmont Private 1200 m

 

2

 

 (144 ha)
Duke FACE NC 35.975, –79.094 165–180 Piedmont Private 1200 m

 

2

 

 (144 ha)
Fairystone VA 36.772, –80.093 395–490 Upper Piedmont State 1200 m

 

2

 

 (144 ha)
Hertford NC 36.383, –77.001 8–10 Coastal Plain Private 1200 m

 

2

 

 (144 ha)
South Hill VA 36.681, –77.994 90 Piedmont Private 1200 m

 

2

 

 (144 ha)
Umstead NC 35.854, –78.755 100–125 Piedmont State 1200 m

 

2

 

 (144 ha)
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transects were oriented at 45˚ and 135˚ to provide flexibility in capturing TRAC measurements
during favorable morning and afternoon solar zenith angles.

Quadrants were designed to approximate an ETM

 

+

 

 3 

 

¥

 

 3 pixel window. Subplots were designed
to increase sample site density and were selected on the basis of ETM

 

+

 

 NDVI values to sample
over the entire range of local variability. Quadrants and subplots were geographically located on
each LAI validation site using real-time (satellite) differentially corrected GPS to a horizontal
accuracy of 

 

±

 

 1 m. TRAC transects were marked every 10 m with a labeled, 46-cm wooden stake.
The stakes were used in TRAC measurements as walking-pace and distance markers. Hemispherical
photography transects were staked and marked at the 10-, 30-, 50-, 70-, and 90-m locations.
Hemispherical photographs were taken at these sampling points.

The APB quadrant design was similar to a measurement design used in a Siberian LAI study
in the coniferous forest of Krasnoyarsk, Russia (Leblanc et al., 2002). Here, each validation site
had a minimum of one quadrant. Multiple quadrants at Fairystone were established across a 1200-

 

¥

 

 1200-m oak–hickory forest delineated on a georeferenced ETM

 

+

 

 image to approximate a MODIS
pixel (1 km

 

2

 

), with a 100-m perimeter buffer to partially address spatial misregistration of a MODIS
pixel (Figure 4.7). The stand was quartered into 600- 

 

¥

 

 600-m units. The northwest corner of a
LAI sampling quadrant was assigned within each quarter block using a random number generator.

A SRS design was used to select ground reference data spanning the entire range of LAI–NDVI
values. Fairystone sites were stratified based on a NDVI surface map calculated from July 2001
ETM

 

+

 

 imagery. Analysis of the resulting histogram allowed for the identification of pixels beyond

 

±

 

 1 standard deviation. From these high/low NDVI regions, eight locations (four high, four low)
were randomly selected from each of the four 600- 

 

¥

 

 600-m units. Subplots were established at
these points to sample high or low and midrange NDVI regions within each of the four quadrants.

 

4.3.2 Biometric Mensuration

 

The measurement of crown closure was included in quadrant sampling to establish the rela-
tionship between LAI and NDVI. Wulder et al. (1998) found that the inclusion of this textural
information strengthened the LAI:NDVI relationship, thus increasing the accuracy of modeled LAI
estimates. Crown closure was estimated directly using two field-based techniques: the vertical tube

 

Figure 4.6

 

Quadrant and subplot designs used in the Albemarle-Pamlico Basin study area.

S

N

Quadrant

100 m

20 m

20
 m

L1_0

L1_0

L2_0

L2_0 L1_50

L2_50

A_10 A_90

E_10 E_90

L3_0

L4_0

L5_0

L1_100

L2_100

L3_100

L4_100

L5_100
Hemi

TRAC

Sub

 

L1443_C04.fm  Page 48  Saturday, June 5, 2004  10:17 AM



 

IN SITU

 

 ESTIMATES OF FOREST LAI FOR MODIS DATA VALIDATION 49

 

(Figure 4.8) and the spherical densiometer (Figure 4.9) (Becker et al., 2002). Measurement estimates
were also performed using the TRAC instrument and hemispherical photography.

Measurements of forest structural attributes (forest stand volume, basal area, and density) were
made at each quadrant and subplot using a point sampling method based on a 10-basal-area-factor
prism. Point sampling by prism is a plotless technique (point-centered) in which trees are tallied
on the basis of their size rather than on frequency of occurrence on a plot (Avery and Burkhart,
1983). Large trees at a distance had a higher probability of being tallied than small trees at that
same distance. Forest structural attributes measured on trees that fell within the prism angle of
view included (1) diameter at breast height (dbh) at 1.4 m, (2) tree height, (3) tree species, and (4)
crown position in the canopy (dominant, codominant, intermediate, or suppressed).

At each quadrant, forest structural attributes were sampled at the 10-, 50-, and 90-m stations
along the A, C, and E hemispherical photography transects (Table 4.2). Point sampling was per-
formed at the subplot 25-m transect intersection. Physical site descriptions were made at each

 

Figure 4.7

 

Multiple quadrant design used at the Fairystone and Umstead sites. The 1200- 

 

¥

 

 1200-m region
approximates a MODIS LAI pixel, with a 100-m buffer on each edge. Quadrants are randomly
located within each 600- 

 

¥

 

 600-m quarter.

 

Figure 4.8

 

Schematic of vertical tube used for crown closure estimation.
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quadrant and subplot by recording slope, aspect, elevation, and soil type. Digital images were
recorded at the zero-meter station of each TRAC transect during each site visit for visual documen-
tation. Images were collected at 0˚, 45˚, and 90˚ from horizontal facing east along the transect line. 

 

4.3.3 TRAC Measurements

 

The TRAC instrument was hand-carried at waist height (~ 1 to 1.5 m) along each transect at
a constant speed of 0.3 m/sec. The operator traversed 10 m between survey stakes in 30 sec,
monitoring speed by wristwatch. The spatial sampling interval at 32 Hz at a cruising speed of 0.3
m/sec was approximately 10 mm (i.e., 100 samples/m). To the degree possible, transects were
sampled during the time of day at which the solar azimuth was most perpendicular to the transect
azimuth. Normally, quadrants were traversed in an east–west direction, but if the solar azimuth at
the time of TRAC sampling was near 90˚ or 270˚

 

 

 

(early morning or late afternoon in summer),
quadrants were traversed on a north–south alignment.

PPFD measurements were made in an open area before and after the undercanopy data acqui-
sition for data normalization to the maximum solar input. Generally, large canopy gaps provided
an approximation of the above-canopy PPFD, used to define the above canopy solar flux at times
when access to open areas was limited. Under uniform sky conditions, above-canopy solar flux

 

Figure 4.9

 

Illustration of (A) a spherical densiometer 60˚ field of view and (B) convex spherical densiometer
(courtesy of Ben Meadows). 

 

Table 4.2

 

Vegetation Summary for Six Validation Sites in the Albemarle-Pamlico Basin

Site Type % Over TPH
Under
TPH

Avg. Ht
(m)

Avg. dbh
(cm)

CC%
Dom

CC%
Sup

BA/H
(m

 

2

 

/ha)

 

Appomattox Pine 25 1250 3790 15.9 21.6 71 34 36.7
Hardwood 25 1255 — 21.3 24.3 — — 22.9
Pine-Thinned 50 313 — 16.9 23.2 — — 11.5

Duke Hardwood 30 — — — — — — —
Fairystone Hardwood 100 725–1190 — 15.5–19.5 8.5–11.5 — — 12.6–13.1
Hertford Pine 100 1740 2830 14.3 18.5 71 29 37.3
South Hill Pine 100 — — — — — — —
Umstead Pine 30 — — — — — — —

Hardwood 70 — — — — — — —

 

Note:

 

Over TPH = trees per hectare for trees greater than 5.08 cm dbh; Under TPH = trees per hectare less
than 5.08 cm in dbh; Avg. Ht = average height; Avg dbh = average diameter at breast height; CC% Dom
= crown closure for dominant crown class determined by vertical tube method; CC% Sup = crown closure
for suppressed crown class determined by fixed radius plot method; BA/H = basal area per hectare.

A B
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was interpolated between measured values. Under partially cloudy conditions, the operator stopped
recording photon flux during cloud eclipse of the solar beam. 

Operators performed a check on the data in the field immediately after download to a portable
computer. Typically, this involved plotting the PPFD in graphical form and comparing the number
of segments collected to the number of 10-m intervals traversed. An important quality assurance
measure was the use of paper and computer forms for data entry. To ensure that all relevant ancillary
data (i.e., weather conditions, transect orientation, operator names, data file names) were captured
in the field, operators filled out paper forms on-site for TRAC, hemispherical photography, and
biometric measurements. These data forms were then entered into a computer database via pre-
scribed forms, preferably immediately after data collection. This was a simple but valuable step to
ensure that critical data acquisition and processing parameters were not inadvertently omitted from
field notes. The computer forms provided a user interface to the relational database containing all
the metadata for the APB project.

 

4.3.4 Hemispherical Photography

 

Two Nikon Coolpix 995 digital cameras with Nikon FC-E8 fish-eye converters were used in
conjunction with TRAC at all six APB research sites. Exposures were set to automatic with normal
file compression (approximately 1/8) selected at an image size of 1600 

 

¥

 

 1200 pixels. Hemispherical
images were not collected while the sun was above the horizon, unless the sky was uniformly
overcast. Images were primarily captured at dawn or dusk to avoid the issue of nonuniform
brightness, resulting in the foliage being “washed out” in the black-and-white binary image.

The camera was mounted on a tripod and leveled over each wooden stake along each A through
E photo transect. The height of the camera was adjusted to approximately breast height (1.4 m)
and leveled to ensure that the “true” horizon occurred at a 90˚ zenith angle in the digital photographic
image. The combination of two bubble levelers, one mounted on the tripod and the other on the
lens cap, ensured the capture of the “true” horizon in each photograph. Using a hand-held compass,
the camera was oriented to true north so that the azimuth values in the photograph corresponded
to the true orientation of the canopy architecture in the forest stand. Orientation did not affect any
of the whole-image canopy metrics (i.e., LAI, canopy openness, or site openness) calculated by
GLA. However, comparison of metrics derived by hemispherical photography, TRAC, densiometer,
or forest mensuration measurements required accurate image orientation.

After the images were captured in the field they were downloaded from the camera disk, placed
in a descriptive file directory structure, and renamed to reflect the site and transect point. A GLA
configuration file (image orientation, projection distortion and lens calibration, site location coor-
dinates, growing-season length, sky-region brightness, and atmospheric conditions) was created for
each site. Next, images were registered in a procedure that defined an image’s circular area and
location of north in the image. Image registration entailed entering pixel coordinates (image size-
and camera-dependent) for the initial and final X and Y points. The FC-E8 fish-eye lens used in
this study had an actual field of view greater than 180˚ (~185˚). The radius of the image was
reduced accordingly so that the 90˚ zenith angle represented the true horizon. Frazer et al. (2001)
described the procedure for calibrating a fish-eye lens. Calibration results were entered into the
GLA configuration file (Canham et al., 1994).

The analyst-determined threshold setting in GLA adjusted the number of black (“obscured”
sky) and white (“unobscured” sky) pixels in the working image. This was perhaps the most
subjective setting in the entire measurement process and potentially the largest source of error in
the calculation of LAI and other canopy metrics from hemispherical photographs. As a rule of
thumb, the threshold value was increased so that black pixels appeared that were not represented
by canopy elements in the registered color image. The threshold was then decreased from this point
until the black dots or blotches disappeared and the black-and-white working image was a reason-
able representation of the registered color image (Frazer et al., 1999). 
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4.3.5 Hemispherical Photography Quality Assurance

 

The height at which each hemispherical photograph was taken represented a potential source
of positional errors (~ 5 to 10 cm). At relatively level sampling points, the tripod legs and center
shaft were fully extended to attain a height that approximated breast height. However, at sites with
steep and/or uneven slopes, the camera height may have varied between repetitive measurement
dates due to variations in the extension of the tripod legs, possibly resulting in inclusion or exclusion
of near-lens vegetation.

Several comparisons of hemispherical photographic estimates of LAI with direct estimates in
broad leaf and conifer forest stands have been reported (Neumann et al., 1989; Chason, 1991; Chen
and Black, 1991; Deblonde et al., 1994; Fassnacht et al., 1994; Runyon et al., 1994). These
comparisons all showed that there was a high correlation between the indirect and direct methods,
but the indirect methods were biased low. This was because the clumping factor was not accounted
for using a random foliar distribution model (Chen et al., 1991).

To assess analyst repeatability, a set of 31 hemispherical photographic images collected in
eastern Oregon were analyzed and threshold values charted using SAS QC software (SAS, 1987).
Two analysts in the APB study repeatedly analyzed the 31 images to develop an ongoing quality
control assessment of precision compared to the Oregon assessment.

 

4.4 DISCUSSION

4.4.1 LAI Accuracy Assessment

 

Chen (1996) provided an estimate of errors in optical measurements of forest LAI using
combined TRAC and LiCOR 2000 PCA instruments. We assumed that the PCA was equivalent to
digital hemispherical photography for this discussion. Chen states that, based on error analysis,
carefully executed optical measurements can provide LAI accuracies of close to or better than 80%
compared to destructive sampling. The approximate errors accumulated as follows: PCA measure-
ments (3 to 5%); estimate of needle-to-shoot area ratio (

 

g

 

) (5 to 10%); estimate of foliage element
clumping index (3 to 10%); estimate of woody-to-total area ratio (5 to 12%). These factors sum
to an approximate total error of 15 to 40% in ground-based optical instrument estimates of LAI.

Chen (1996) also reports that the highest accuracy (~ 85%) (relative to destructive sampling)
“can be achieved by carefully operating the PCA and TRAC, improving the shoot sampling strategy
and the measurement of woody-to-total area ratio.” A crucial issue for this analysis was to better
understand the robustness of published values of needle-to-shoot area ratio (

 

g

 

) and woody-to-total
area ratio (

 

a

 

), because direct sampling of these quantities was logistically infeasible in this research
effort. Published values have been used in this analysis (Leblanc et al., 2002).

 

4.4.2 Hemispherical Photography

 

Figure 4.10 presents a chronosequence of hemispherical photographic images taken at the
midpoint (50 m) of the C transect at the Hertford site at five different dates in 2002. The images
were the registered black-and-white bitmap images produced by GLA. The date and LAI Ring 5
values were displayed to the right of each image. LAI Ring 5 represented a 0˚ to 75˚ field of view.
In the March 5, 2002, image, near-lens understory foliage was observed in the lower-left portion.
However, in subsequent images, the large-leafed obstruction was absent. The reason for the disap-
pearance of this understory image component was unclear. The tripod height may have been adjusted
to place the camera above the near-lens foliar obstruction, or perhaps field-crew effects may have
resulted in the disappearance of the obstruction. The presence of the near-lens foliage in the March
5 image may account for the somewhat elevated LAI value before leaf-out.
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Figure 4.10

 

Chronosequence of hemispherical
photographs taken at the Hertford
site along transect C and the 50-m
midpoint. Dates and LAI Ring 5 val-
ues are shown to the right of each
image.

Hertford, VA - TRANSECT C-50

05 March 2002

LAI Ring 5 = 1.6

Hertford, VA - TRANSECT C-50

05 April 2002

LAI Ring 5 = 1.7

Hertford, VA - TRANSECT C-50

05 June 2002

LAI Ring 5 = 2.29

Hertford, VA - TRANSECT C-50

05 July 2002

LAI Ring 5 = 2.13

Hertford, VA - TRANSECT C-50

05 August 2002

LAI Ring 5 = 1.88
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The orientation of the camera can be assessed by noting the position of the large tree bole that
originates from the five-o’clock position in the image. The April 9, 2002, image places the bole
closer to the 4:30 position. However, as mentioned previously, camera orientation does not affect
whole-image calculations of LAI or canopy openness. Orientation was important only if it became
necessary to match TRAC data with a particular sector of the hemispherical photograph.

L

 

e

 

 values derived by hemispherical photography increased over the course of phenological
development at the Hertford site. A decrease in L

 

e

 

 from 2.13 to 1.88 was observed between the
July 25 and August 5, 2002, images. The decrease may have partly been a result of the understory
removal operation that occurred between July 25 and 30, 2002. However, decreases of this mag-
nitude were observed at other APB sites in mid to late summer, when no understory canopy removal
was performed. The Hertford site was primarily coniferous forest. Needle loss due to the extreme
drought conditions experienced in the APB study area may partially account for the observed
decrease in L

 

e

 

.

 

4.4.3 Satellite Remote Sensing Issues

 

The MODIS LAI product was produced at 1-km

 

2

 

 spatial resolution. Inherent in this product
were a number of spatial factors that may contribute to uncertainty in the final accuracy of this
analysis. MODIS pixels were nominally 1 km

 

2

 

 at nadir but expanded considerably as the scan
moved off nadir toward the edges of the 2330-km-wide swath. As a result, off-nadir pixels sampled
a larger area on the ground than near-nadir pixels. The compositing scheme partially compensated
for this by preferentially selecting pixels closer to nadir. Mixed pixels contained more than one LC
type. In the APB study region, the landscape exhibits varying degrees of fragmentation, producing
a mosaic of parcels on the ground. Within a 1-km

 

2

 

 block, agricultural, urbanized, and forested LC
types may be mixed to such a degree that assigning a single LAI value is questionable. There were
also angular effects to consider. The NDVI and LAI products were adjusted for the bidirectional
reflectance distribution function (BRDF; MODIS product MOD43). Still, angular effects produced
by variable viewing geometry may have degraded the accuracy or interpretability of the results. 

An important issue was that of spatial scaling from 

 

in situ

 

 reference data measurements (m

 

2

 

)
to MODIS products (1 km

 

2

 

). ETM

 

+

 

 data provided the link between 

 

in situ

 

 measurements and
MODIS measurements. Quadrants correspond to a ground region of a 3 

 

¥

 

 3 ETM

 

+

 

 pixel window
(90 

 

¥

 

 90 m), and the subplots correspond to a region of approximately 2 

 

¥

 

 2 pixels (60 

 

¥

 

 60 m).
The Landsat data were precision-registered to ground coordinates using ground control points,
providing an accuracy between 0.5 and 1 pixel. Once the 

 

in situ

 

 data and Landsat image were
coregistered, an ETM

 

+

 

 LAI map was generated by establishing a regression relationship between

 

in situ

 

 LAI and Landsat NDVI. Then, the Landsat LAI map could be generalized from a 30-m
resolution to a 1-km

 

2

 

 resolution. Overall accuracy was influenced by accuracy of coregistered data
sets, interpolation methods used to expand

 

 in situ

 

 measurements to ETM

 

+

 

 NDVI maps, and the
spatial coarsening approach applied to scale the ETM

 

+

 

 imagery to the MODIS scale of 1-km

 

2 

 

pixels.

 

4.5 SUMMARY

 

Research efforts at the U.S. Environmental Protection Agency’s National Exposure Research
Laboratory and National Center for Environmental Assessment include development of remote
sensing methodologies for detection and identification of landscape change. This chapter describes
an approach and techniques for estimating forest LAI for validation of the MODIS LAI product,
in the field using ground-based optical instruments. Six permanent field validation sites were
established in the Albemarle-Pamlico Basin of North Carolina and Virginia for multitemporal
measurements of forest canopy and biometric properties that affect MODIS NDVI and LAI prod-

 

L1443_C04.fm  Page 54  Saturday, June 5, 2004  10:17 AM



 

IN SITU

 

 ESTIMATES OF FOREST LAI FOR MODIS DATA VALIDATION 55

 

ucts. LAI field measurements were made using hemispherical photography and TRAC sunfleck
profiling in the landscape context of vegetation associations and physiography and in the temporal
context of the annual phenological cycle. Results of these field validation efforts will contribute to
a greater understanding of phenological dynamics evident in NDVI time series and will provide
valuable data for the validation of the MODIS LAI product. 
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5.1 INTRODUCTION

 

To best respond to natural and human-induced stresses, resource managers and researchers
require remote sensing techniques that can map the biophysical characteristics of natural resources
on regional and local scales. The implementation of advanced measurement techniques would
provide significant improvements in the quantity, quality, and timeliness of biophysical data useful
in understanding the sensitivity of vegetation communities to external influences. In turn, this
biophysical data would provide resource planners with a rational decision-making system for
resource allocation and response action development planning.

Remotely sensed imagery can be analyzed to provide an accurate, instantaneous, synoptic view
of the spatial characteristics of vegetation environments (Ustin et al., 1991; Wickland, 1991). By
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simultaneously recording reflectances in the visible to short-wave region of the electromagnetic
spectrum, the canopy reflectance associated with these spatial characteristics may be used to provide
information on the biophysical characteristics of vegetation (Goudriaan, 1977). To predict the
vegetation response to external stresses, it is essential to identify biophysical characteristics observ-
able by remote sensing techniques that have well-defined connections to vegetative community
type and condition.

In complex vegetation communities, canopy structure and leaf spectral properties are biophysical
characteristics that can vary in response to changes in vegetation type, environmental conditions,
and vegetation health. These changes can modify the spectrum of light reflected from the canopy
and thus directly influence the remotely sensed signal. Transformed into reflectance, variations in
the image are directly related to changes in the canopy properties broadly defined by the leaf
composition, canopy structure, and background reflectance. Direct links, however, cannot be inferred
unless vegetation type covaries directly and uniquely with these canopy parameters, or when one
canopy property dominates the canopy reflectance (e.g., leaf reflectance). Historically, limited
ground-based observations circumvented the need for directly incorporating variation in canopy
properties into the remote sensing classification by defining reflectance ranges (e.g., class ranges)
that incorporate within-type canopy variability and acceptable between-vegetation-type classification
errors. Currently, the trend is to transform the temporal patterns revealed in the remote sensing data
into quantitative rate determinations to support qualitative judgments of external effects on these
resources (Lulla and Mausel, 1983). As we strive to extract more detailed and accurate information
about vegetation class variability, a greater understanding is needed of how each canopy property
(e.g., canopy structure) influences the canopy reflectance portion of the remotely sensed signal.

Leaf spectral properties have been directly related to vegetation type and stress and are general
indicators of the leaf chlorophyll, water content, and leaf biomass. Numerous studies have related
the canopy structure variable of leaf area index (LAI) to vegetation type, health, and phenology
(Goudriaan, 1977). In essence, to map vegetation type, and especially to monitor status, it is
necessary to relate, both individually and in aggregate, changes in leaf spectral properties and
structural and background parameters to changes in the canopy reflectance. In the pursuit of
extracting more detailed and accurate information about vegetation type and status from remote
sensing data, our goal is to provide an accurate assessment of canopy structure that will not covary
with leaf spectral and background properties with respect to location or time. As part of this goal,
the canopy structure indicator must be ultimately linkable to the remote sensing signal in complex
wetland and adjacent upland forest environments. Our challenge is to provide this information
based upon routine measurements that are cost-effective and easily implemented into operational
resource management and verified and calibrated with current operational ground-based measure-
ments (Teuber, 1990; Nielsen and Werle, 1993).

This chapter will examine light attenuation profiling as an indicator of changes in marsh canopy
structures. Reported here are techniques that were tested and implemented to gain a useful measure
of canopy light attenuation over space and time. Within the constraints of the data collected, the
consistency, reliability, and comparability of the collected light attenuation data are related to the
(1) area sampling frequency (horizontal spacing between profile samples), (2) canopy profile
(vertical) sampling frequencies, (3) exclusion of atypical canopy structures, and (4) collections at
different sun elevations. In addition, we present some relationships observed between and within
coastal wetland types and changes in the canopy structural properties. These relationships are
presented to indicate the spatial and temporal stability of these biophysical indicators as related to
mapping and monitoring with remote sensing imaging.

 

5.1.1 Marsh Canopy Descriptions

 

Measurements of canopy light attenuation and canopy reflectance spectra were collected at 20
marsh sites (30 

 

¥

 

 30 m) in coastal Louisiana and at 15 marsh sites in the Big Bend area of coastal
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Florida (Ramsey et al., 1992a,b, 1993). To provide a description of marsh characteristics, a few
data subsets were selected based on the presence of marsh grasses that dominate three of the gulf
coast wetland zones (Chabreck, 1970): 

 

Juncus roemerianus

 

 (Juncus R.) and 

 

Spartina alterniflora

 

(Spartina A.) for saline marsh, 

 

Spartina patens

 

 (Spartina P.) for intermediate (brackish) marsh, and

 

Panicum hemitomon

 

 (Panicum H.) for fresh marsh (Chabreck, 1970). Juncus R. dominates the
landscape and makes up the majority of biomass in marshes of the northeast gulf coast and Spartina
A. dominates the north-central gulf coast marshes (Stout, 1984). In these marshes, except for sites
recovering from recent burns, canopies usually contain a high proportion of dead canopy material
(Hopkinson et al., 1978; Ramsey et al., 1999). 

After reaching maturity, turnover rates of both live and dead biomass can remain nearly constant,
showing no clear seasonal pattern. Although mostly vertical, Juncus R. and Spartina A. (relatively
less vertical and more leafy) canopy structures vary depending on local conditions (e.g., flushing
strength), and dominant leaf orientation can change from top to bottom. Spartina P. and Panicum
H. marshes dominate the interior marshes of Louisiana. Generally, Spartina P. canopies are hum-
mocky with vertical shoots rising above a layer of thick and logged dead material. As in Juncus
R. and Spartina A. canopies, Spartina P. canopies seem to have a low turnover with little seasonal
pattern in live and dead composition. Panicum H. canopies exhibit yearly turnover. Beginning with
nearly vertical shoots in the late winter to early spring, the canopy gains height and increasingly
adds mixed orientations until maturity in the late spring to summer, then senesces in winter. 

 

5.2 METHODS

 

Light measurements were collected along transects centered at flag markers, as were all mea-
surements describing the canopy characteristics. A 30- 

 

¥

 

 30-m area was used to encompass the
spatial resolution of Landsat Thematic Mapper (TM) and similar Earth resource sensors. Additional
recordings and observations collected at each site included upwelling radiance from a helicopter
platform, canopy species type, percentage of cover, and height; photography; and estimates of live
and dead biomass percentages. 

 

5.2.1 Field Collection Methods 

 

Canopy light attenuation measurements were acquired using a Decagon Sunfleck Ceptometer
(Decagon Devices, 1991). The ceptometer measures both photosynthetically active radiation (PAR)
(400 to 700 nm) and the canopy gap fraction (sunflecks). Canopy light attenuation curves were
derived from PAR measurements. The ceptometer probe has 80 light sensors (calibrated to absolute
units) placed at equal intervals along an 80-cm probe covered with a diffuse plate. The narrow
probe (approximately 1.3 

 

¥

 

 1.3 cm) is constructed with a hard and pointed plastic tip so that it can
be inserted horizontally with minimal disruption of the marsh canopy. After inserting the probe
into the canopy and obtaining a horizontal probe orientation relative to gravity (bubble level), the
80 sensors are scanned and an average light intensity value for the probe is calculated, displayed,
and recorded (Decagon Devices, 1991). At each site, measurements for estimating PAR canopy
reflectance and the fraction of direct beam PAR (1 – skylight/direct sun irradiance) were collected.
A correction for PAR canopy reflectance was not included in the calculations. Disregarding this
correction, in general, results in less than a 5% error in the intercepted radiation (Decagon Devices,
1991). The direct beam fraction was used to estimate the leaf area and angle distributions. Normally,
measurements were collected when clouds did not obstruct or influence (intensified by cloud
reflection) the downwelling sunlight; sky conditions were documented. 

The depiction in Figure 5.1 presents our standard method of depicting light falloff with depth
in the canopy. Each point on the graph reflects the mean of all light measurements collected
throughout the site at the associated height above ground level. Error bars showing plus and minus
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one standard error (65% confidence interval) depict the variance about the mean at each canopy
height. The light attenuation curve represents the percentage of above-canopy PAR sunlight
(abscissa) reaching varying depths in the canopy (ordinate) throughout the site area. The curve
typifies light attenuation in an undisturbed and fully formed Panicum H. marsh.

 

5.2.1.1 Area Frequency Sampling

 

The three considerations combined to set the distance between profile collections included: (1)
the estimated canopy spatial variability, (2) the decision to sample 30-m transects in two cardinal
directions, and (3) the necessity to restrict the site occupation time. Early analyses of the collected
light attenuation data suggested profiles collected every 3 m and averaged over the 30-m transects
provided the best compromise to all sampling considerations (Figure 5.2). 

 

5.2.1.2 Vertical Frequency Sampling

 

Two vertical sampling distances were compared to assess the accurate and reliable portrayal of
canopy light attenuation. The earliest measurements were collected relative to the canopy height,
not at a constant height above the ground level. In a few of these early site occupations the relative
top, middle, and bottom measurements collected every 3 m along the 30-m transects were supple-
mented with light attenuation profiles (every 20 cm) collected at three to four transect locations. 

 

5.2.1.3 Atypical Canopy Structures

 

At each profile location, sky condition and canopy structure were recorded. Indicator flags were
inserted into the database to indicate whether (1) sunny or (2) cloudy sky existed and whether the
profile location was (1) undisturbed, (2) a partial gap or hole, or (3) completely lodged. These flags
could be used during the data processing to exclude or include any combination of sky and canopy
conditions. In almost all cases only sunny sky conditions were processed. Similarly, undisturbed
canopy was most often solely processed for generation of PAR light attenuation profiles typifying
each site. In relation to remotely sensed data, however, all canopy conditions will be incorporated

 

Figure 5.1

 

Left: A Ceptometer showing the sunflect (22.5) and PAR (299) readings. Middle: Ruth Spell is
shown measuring the above PAR intensity after collecting readings with canopy depth at one point
along one of the two transect directions (Figure 5.2). The above canopy PAR intensity (shown) is
used to normalize PAR measurements at each canopy depth. Right: The resulting summer and
winter profiles of a fresh marsh canopy site showing the light penetration (PAR at each depth/above-
canopy PAR) with depth averaged over the 22 measurement points along the two transect directions.
The standard errors of the 22 measurements at each canopy depth also are shown as horizontal
bars attached to each symbol. 
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in the reflectance returned to the sensor. Ability to include or exclude atypical structures is expected
to enhance remote sensing reflectance and canopy structure comparisons. 

 

5.2.1.4 Changing Sun Zenith

 

Light attenuation measurements collected at different times correspond to different sun eleva-
tions or zeniths. In order to relate PAR recordings at different sun zeniths, we used the following
relationships equating the beam transmittance coefficient to the product of leaf area and canopy
extinction coefficient (Decagon Devices, 1991):
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Although this relationship is based on the penetration probability without interference and is directly
relevant to sunfleck measurements, we tested the application of the sun zenith normalization to
PAR measurements. The canopy extinction coefficient expression (K) taken from Decagon Devices
(1991) was presented by Campbell (1986) as:
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where 
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 equates to the ratio of area projected by an average canopy element on a horizontal to
vertical plane. An 
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distribution, and the 
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Accounting for no change in leaf area and 

 

x

 

 

 

between light attenuation measurements and after
simplification, a correction factor for off-nadir sun angles is constructed as follows:
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where the sun zenith at the time of measurement is 
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. Assuming 
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 is 1.0 (spherical) and choosing
a standard zenith angle of 
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= 0 (sun directly overhead), then:

 

Figure 5.2

 

Light attenuation profile locations every 3 m along the 30-m east to west and south to north
transects.
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where normalization of PAR measurements to a sun nadir zenith (= 0.0) was estimated to be:
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5.3 RESULTS

5.3.1 Vertical Frequency Sampling 

 

Two examples were selected to illustrate noticeable differences between samples taken only
at the top, bottom, and middle canopy positions and at every 20 cm above the bottom (Figure
5.3). These early measurements were collected during July and August when the canopies reached
full growth. In both the Spartina P. (more hummocky and logged) and Panicum H. (more vertical
and leafy) marsh sites, similar differences were revealed between curves associated with the higher
and lower (relative) frequency depth sampling. Light attenuation was overpredicted nearer the top
of the canopy and underpredicted in the lower canopy. Even though measurement techniques were
further refined following these early collections to expressly test field sampling techniques, these
and similar results laid the basis for the vertical sampling frequency used throughout field collec-
tions in all marsh types. The choice of vertical sampling frequency relied on what was necessary
to obtain our primary purpose: to detect and monitor canopy structure differences between and
within wetland types that might influence variability in the remote sensing image data. An
additional consideration was our goal to use the data we collected to estimate what influence these
structural differences have on the canopy reflectance and whether these differences could be
detected at some level with remote sensing data. We felt light penetration collections limited to
a few positions in the canopy profile would severely jeopardize our ability to fulfill this purpose
and to reach our goal.

Following these initial tests, our standard collection technique was to profile light intensities
from the ground level to above the canopy in 20-cm increments at 3-m intervals along each transect.
To ensure proper measurement height at each profile, a pole marked in 20-cm increments was
driven into the ground until the zero mark was at ground-surface level (flood or nonflood). In
Spartina P. canopies the pole was placed between grass clumps. Profile measurements were collected
perpendicular to the transect direction and toward the hemisphere containing the sun. At each site
occupation, either 11 or 22 (most often) PAR recordings (one or two transects) were taken at each
profile height. The above-canopy PAR measured at the associated profile location normalized each
recorded PAR.

 

Figure 5.3

 

Aggregate site profiles (

 

Spartina patens

 

 and 

 

Panicum hemitomon

 

) associated with PAR intensity
collections at top, middle, and bottom canopy depths (shown as 

 

�

 

 with a dashed line) and at every
20 cm (shown as 

 

●

 

 with a solid line). 
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5.3.2 Atypical Canopy Structures

 

Examples of disturbed or logged conditions at one or more locations within a site were found
in all marsh types. Relative to the number of occurrences, however, Juncus R. marshes contained
the fewest of these and Panicum H. and Spartina P. the most. Juncus R. canopies were most often
affected by wrack deposits or the subsequent marsh dieback or by fire and the subsequent recovery.
Animal herbivory and fire often affected Panicum H. marshes, but water with higher salinity
deposited by a storm surge seemed to have a lingering impact evident in the poststorm collections.
In the 2 years of data collections, a major storm and a fire affected Spartina A. sites. To a lesser
extent, Spartina P. sites were affected by storms and fire. The typical hummocky nature of this
marsh limited the usefulness of the logged indicator.

The first example contains light attenuation curves generated from two occupations 1 day apart
of a Panicum H. marsh site that was severely affected by animal activity following the occupation
(Figures 5.4A and B). Other than the magnitude of variance depicted by the error bars, little evidence
was present in the affected curves (Figures 5.4C and D) indicating the widespread abnormal canopy
structure. In fact, neglecting that only 1 day elapsed between collections, aggregating all profile
locations results in fairly reasonable profiles (Figure 5.4A). Excluding all affected profiles left few
observations in the undisturbed sample set; however, the aggregate of these remaining profiles
showed a more consistent depiction of canopy structure of little or no change in canopy structure
(Figure 5.4B).

A second example shows curves depicting site occupations in a lightly affected Panicum H.
marsh chronologically from October (before full senescence) to February (after senescence and
removal of most dead material), September (substantially before the initiation of senescence), and
December (after full senescence but before total dead material removal). Although differences
between the undisturbed (Figure 5.5B) and aggregated (Figure 5.5A) sequences were not dramatic
and only two of the occupations contained severely logged locations, inclusion of locations with
partial gap (Figures 5C and D) reduces the clarity of the trend consistent with expected seasonal

 

Figure 5.4

 

Light attenuation profiles ([

 

●

 

] 9 and [

 

�

 

] 10 September) associated with a 

 

Panicum hemitomon

 

 marsh
representing the aggregate of (A) all profiles collected every 3 m along the 30-m transects, (B)
only profiles associated with undisturbed canopy locations, (C) only profiles associated with partial
canopy gaps, and (D) only profiles associated with severely lodged canopy locations. 
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changes. Similar to the second example, curves are shown depicting site occupations in a lightly
affected Juncus R. marsh chronologically in April, September, November, and March (Figures
5.6A, B, and C). Although little canopy structural change is expected in these marshes, curves
including only undisturbed profiles (Figure 5.6B) indicate a slight tendency for increased canopy
light attenuation in the spring vs. late summer and winter seasons. A final example shows the effect

 

Figure 5.5

 

Light attenuation profiles ([

 

�

 

] 16 October, [

 

�

 

] 7 February, 9 [

 

●

 

] September, and [

 

�

 

] 11 December)
associated with a 

 

Panicum hemitomon

 

 marsh representing the aggregate of (A) all profiles, (B)
only undisturbed canopy locations, (C) partial canopy gaps, and (D) only severely lodged canopy
locations. 

 

Figure 5.6

 

Light attenuation profiles ([
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] 26 April, [

 

�

 

] 4 September, [

 

●

 

] 3 November, and [

 

�

 

] 9 March)
associated with a 

 

Spartina alterniflora

 

 marsh representing the aggregate of (A) all profiles, (B) only
undisturbed canopy locations, and (C) partial canopy gaps. 
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of herbivory on a Spartina P. marsh closely preceding the March occupation and regrowth toward
recovery by July (Figures 5.7A, B, and C). Inclusion of locations with partial canopy (Figure 5.7C)
fully distorted the consistency shown in the undisturbed profiles (Figure 5.7B).

 

5.3.3 Changing Sun Zenith 

 

Normalization of canopy light penetration measurements to a nadir sun zenith was more
successful in more vertical canopies such as Juncus R. and less effective in more lodged and
horizontal canopies such as Spartina P. Canopy light penetration recordings collected at one Juncus
R. site at four different times and sun zeniths show a number of results of applying the sun zenith
correction factor (Figures 5.8A and B). First, as sun zenith increased the rate of PAR fall-off with
canopy depth increased. After application of the sun zenith correction factor, the PAR fall-off was
greatly decreased, and conversely the magnitude of PAR reaching lower within the canopy was
vastly increased. Second, after correction, light attenuation profiles associated with the first three

 

Figure 5.7

 

Light attenuation profiles ([

 

●

 

] 30 March and [

 

�

 

] 9 July) associated with a 

 

Spartina patens

 

 marsh
representing the aggregate of (A) all profiles, (B) only undisturbed canopy locations, and (C) partial
canopy gaps.

 

Figure 5.8

 

Aggregate light attenuation profiles of a 

 

Juncus roemerians

 

 marsh associated with PAR collections
at a sun zenith angles of [

 

—
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, [

 

�
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] 66
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, and [
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] 75
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 (A) without normalization and (B)
with normalization of PAR recordings to a nadir collection.
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occupation times completely aligned. The latest occupation indicated a limit to the correction. Sun
zenith angles higher than about 60

 

∞

 

 overcorrected the rate of PAR fall-off through the canopy. This
led to excluding PAR canopy penetration measurements to times when the sun zenith was at least
60

 

∞

 

 or higher.
A second example shows the application of the correction to PAR profile measurements during

nearly 3 years of occupations (Figure 5.9A and Figure 5.9B). The Juncus R. site was recovering
from a burn when the first occupation occurred in September. Occupations then followed chrono-
logically in April, September, January, June, and, finally, in September, 2 years after the initial
occupation. Inspection of the two plot series shows the consistency and accuracy resulting from
the application of the sun zenith correction factor. In contrast to the uncorrected plot series, the
corrected canopy PAR attenuation profiles became increasingly steep and reached lower levels of
PAR with time-since-burn.

The third example shows a series of PAR attenuation profiles created from measurements
collected at a Spartina A. site during 1 year and 9 months of site occupations beginning in February
(Figures 5.10A and B). The corrected and uncorrected series are dramatically different. After
February, the site occupations chronologically occurred in April, July, September, November, and
March, and again in September in the following year. The July occupation took place about 1
month before a hurricane affected this site (August 26), and the first September occupation occurred
about 10 days after the hurricane. The canopy light attenuation profile deepened each occupation
before the hurricane, but consistent with the effect of the hurricane, the attenuation profile shallowed
sharply immediately after the impact. PAR attenuation profiles changed little for a year after the
dramatic change in September.

 

Figure 5.9

 

Aggregate light attenuation profiles of a 

 

Juncus roemerians

 

 marsh associated with PAR collections
at different sun zenith angles the first year on [

  

] 25 September, the second year on [

 

�

 

] 29 April
and [

 

�

 

] 17 September, the third year on [
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] 13 January and [

 

�

 

] 24 June, and the final year on [

 

—

 

]
22 September (1994) (A) without normalization and (B) with normalization of PAR recordings to a
nadir collection.

 

Figure 5.10

 

Aggregate light attenuation profiles of a 

 

Spartina alterniflora

 

 marsh associated with PAR collections
at different sun zenith angles on [
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] 16 February, [

  

] 26 April, [

 

�

 

] 10 July, [

 

�

 

] 4 September, and
[

 

✴

 

] 3 November and the following year on [

 

�

 

] 9 March and [

 

—

 

] 2 September (A) without normalization
and (B) with normalization of PAR recordings to a nadir collection.
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PAR attenuation profiles over nearly a year and a half at a Panicum H. site highlight the
effectiveness of the sun zenith factor correction and depict typical seasonal changes and canopy
recovery following a burn (Figures 5.11A and B). Site occupations occurred chronologically begin-
ning in February and subsequently occurred in March, April, September, December, and the fol-
lowing year in January, April, and July. Although differences between the corrected and uncorrected
profiles were subtler than in the Juncus R. marshes, the sun zenith-corrected profile sequencing is
a more convincing depiction of expected canopy structure changes over the selected time period.
From the earliest occupation in February, PAR attenuation increased and the profiles deepened until
October, after which the December profile shows the expected decrease in PAR attenuation. After
the December occupation, the site was burned, as is confirmed in the February and subsequent April
profiles. The final July profile shows the canopy recovering to the late summer and early fall profile.

A final series of profiles associated with a Spartina P. site illustrate the increased consistency
in the sun zenith-corrected vs. -uncorrected profiles (Figures 5.12A and B). The final two profiles
in these series again show the zenith angle limitation of the correction technique in more vertical
canopies. Canopy PAR penetration measurements collected at very low sun zeniths are not com-
parable to those collected at sun zenith angles at least < 60

 

∞

 

. The movement of the PAR attenuation
profile from shallower to deeper with decreasing sun zenith angle in the Spartina P. canopy was
similar to what occurred in the Juncus R. marsh canopy (Figure 5.9A and Figure 5.9B).

 

5.4 DISCUSSION

 

Light penetration field measurements were described and discussed in terms of their complete-
ness, reliability or consistency and accuracy to characterize canopy structure. Marsh types discussed

 

Figure 5.11

 

Aggregate light attenuation profiles of a 

 

Panicum hemitomon

 

 marsh associated with PAR collections
at different sun zenith angles on [

  

] 7 February, [

 

✙

 

] 13 March, [

  

] 21 April, [

 

�

 

] 09 October, and
[

 

�

 

] 11 December and the following year on [

 

✴

 

] 22 January, [

 

�

 

] 22 April, and [

 

—

 

] 6 July (A) without
normalization and (B) with normalization of PAR recordings to a nadir collection. 

 

Figure 5.12

 

Aggregate light attenuation profiles of a 

 

Spartina patens

 

 marsh associated with PAR collections at
different sun zenith angles on [
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] 5 August, [
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] 21 October, and [

 

✴

 

] 30 December and the following
year on [

 

—

 

] 21 July at a sun zenith of 49

 

∞

 

, and [

 

�

 

] 21 July at 18

 

∞

 

 (A) without normalization and
(B) with normalization of PAR recordings to a nadir collection.
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included 

 

Spartina alterniflora

 

 and 

 

Juncus roemerianus

 

 (saline marshes), 

 

Spartina patens

 

 (brackish
marsh), and 

 

Panicum hemitomon

 

 (fresh marsh). Our primary purpose was to devise simple opera-
tional field collection methods and postanalysis procedures that could detect and monitor canopy
structure differences between and within wetland types that might influence variability in the remote
sensing image data. Our goal was to improve reliability and accuracy of current classifications
based on remote sensor data, and as a consequence to extend the biophysical detail extractable
with remotely sensed data.

Our first objective was to test the light penetration measurements for reliability, accuracy and
comparability over time and space and within and between marsh types. A ceptometer device that
measures PAR along an 80-cm probe was chosen for the light penetration measurements. In addition
to the choice of measuring device, four variables related to field data collection and postdata analysis
design were examined with respect to fulfilling data reliability and accuracy but also to maximizing
the potential for operational use for remote sensing calibration and assessment of classification
accuracy. These variables were the (1) horizontal (planar) and (2) vertical (canopy profile) spatial
sampling frequencies, (3) description and possible exclusion of atypical canopy structures, and (4)
normalization of measurements at different sun elevations.

At each site, we used 30-m transects in the north and south and east and west directions. Initially,
sample locations were at the site center, the transect extremes, and midpoints; however, sample
variability indicated higher sample frequency was needed. Within the early testing, sampling protocol
along transects was changed to collecting light penetration measurements every 3 m. This 30- 

 

¥

 

30-m site area and higher 3-m transect sampling frequency helped ensure more accurate depiction
of the local variability and more reliable mean and variance measures and matched or encompassed
the spatial resolution of most common resource remote sensing sensors. Similarly, after testing a
relative canopy profile sampling of top, middle, and bottom, the vertical sampling frequency was
standardized to light penetration measurements every 20 cm from the ground surface to above the
canopy. At each profile location, the above-canopy light recordings were used to normalize lower
canopy light recordings, transforming light absolute magnitudes to percentage penetrations. The
relative profile sampling (top, middle, bottom) did not adequately replicate the canopy light atten-
uation profile compared to the 20-cm sampling frequency, especially in fully formed canopies. The
20-cm sampling interval was selected to ensure our goals to increase the extractable canopy detail
and improve the predictability of canopy structure with remote sensing data.

To improve the reliability, accuracy, and detail of the canopy light attenuation data, at each profile
location the state of the sky condition (sunny or cloudy) and canopy structure (undisturbed, partial
gap, or completely lodged) was recorded. In this analysis, only sunny sky conditions were processed.
Observed differences relative to including or excluding disturbed canopy profiles were mostly attrib-
utable to the level of canopy disturbance. In most cases, excluding the disturbed profiles at each site
from the aggregate site light attenuation profile increased our ability to compare aggregate profiles
taken at the same site during multiple occupations. If the aggregate profiles were more comparable
within a site after exclusion, comparison between sites and marsh types also would improve with
exclusion. The inclusion of all profiles, each designated with a flag as to the sky and canopy condition,
allows us to view and analyze selected aspects (include or exclude) of the canopy variability and thus
greatly enhances our ability to understand and relate remote sensing reflectance to canopy structure.

Although more noticeable in 

 

Juncus roemerianus

 

 and less in 

 

Spartina patens

 

 canopies, in all
marshes as sun zenith increased the rate of light fall-off with canopy depth increased. To ensure
comparability of aggregate site light attenuation profiles, canopy light penetration measurements
were normalized to a nadir sun zenith. The successfulness of the normalization seemed to be
associated with the preferred orientation of the marsh canopy. In the most vertical canopies such
as 

 

Juncus roemerianus

 

, the correction worked well up to a sun zenith around 60

 

∞

 

. In highly lodged
or horizontal canopies such as 

 

Spartina patens

 

, the light penetration seemed less effective and
restricted to sun zenith angles < 49

 

∞

 

. Nontheless, normalized light attenuation profiles were more
consistent with the expected changes in canopy structure. Even in this normally highly lodged
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canopy, the normalization improved the comparability and accuracy of the generated light attenu-
ation profiles. In between these two extremes of vertical to lodged canopy orientations, improvement
of 

 

Spartina alterniflora

 

 aggregate attenuation profiles was somewhat similar to that associated with
the more vertical 

 

Juncus roemerianus

 

 canopy measurements. 

 

Panicum hemitomon

 

 improvement,
however, seemed dependent on the seasonal stage of canopy development. In the early stage of
regrowth and spring “green-up” the canopy is more vertical and therefore more conducive to
normalization. As the canopy transforms and becomes a dense mixture of leaf orientations, the
normalization tends to be less successful.

In all marshes, application of the sun zenith correction factor decreased the perceived light
falloff with canopy depth and increased the recorded light intensity reaching lower within the
canopy. After normalization the light attenuation profiles taken at different sun zeniths were more
closely aligned with each other and with the expected progression of canopy structure. A limitation
of the normalization seemed to be about a sun zenith of 60

 

∞

 

 in vertical canopies and less than 49

 

∞

 

in more horizontal canopies; however, these normalizations used a spherical canopy orientation
parameter (

 

x 

 

= 1, 

 

r

 

 = (x

 

/

 

(

 

x

 

 

 

+ tan

 

2

 

Q

 

2

 

)

 

1/2

 

). In most cases, preferred orientations deviate highly from
spherical in 

 

Spartina patens

 

 and, depending on the season, 

 

Panicum hemitomon

 

 canopies. Inclusion
of more appropriate values of 

 

x

 

 

 

(0 = vertical, 1 = spherical, 1000 = horizontal) could improve the
reliability and accuracy of light attenuation profiles in more horizontal canopies such as 

 

Spartina
patens

 

. Future analyses will examine inclusion of more appropriate orientation parameters.
It is difficult to relate canopy structure (as defined by light attenuation) to canopy reflectance

without further analysis, but a few observations are possible. In combination, the light attenuation
profiles show at least one major difference between marsh grass structures: the amount of vertical
to lodged grass. The relative amounts remain: (1) relatively stable throughout the year as shown
in the fairly vertical canopies of

 

 Juncus roemerianus

 

 and 

 

Spartina alterniflora

 

; (2) relatively
transitional, as in 

 

Panicum hemitomon,

 

 typifying a more vertical canopy in the winter and early
spring, a thicker, lodged canopy in summer, and a transition back to less lodged material through
fall; and (3) highly variable, as in

 

 Spartina patens,

 

 which shows typically a highly lodged, hum-
mocky character. Even though local areas may show a fairly consistent trend or pattern in light
attenuation profiles, high variability in light attenuation seems more common within 

 

Spartina patens

 

marshes than within other marsh types.
For remote sensing, structural influences would be the least variable in the 

 

Juncus roemerianus

 

and 

 

Spartina alterniflora

 

 marshes, but background variability may be relatively higher because of
the higher base light levels throughout the year. More variable influence of canopy structure on
spectral reflectance may be expected in the 

 

Panicum hemitomon

 

 marsh, with possibly higher
influences of background in the winter and early spring. Structure in the 

 

Panicum hemitomon

 

 marsh
is closely related to the seasonal occurrences of “green-up” and senescence. Less light penetration
in the summer because of increased lodging would decrease spectral information from deeper
within the canopy, but in the winter dieback background influences may be higher through this
more open canopy. Further, without the ability to separate structure and leaf optical influences on
canopy reflectance in these marshes, it would be difficult or impossible to detect what canopy
property was changing, as both were dramatically varying during these periods. Higher structural
variability within 

 

Spartina patens

 

 marshes would be expected to cause variability in canopy
reflectances, with reflectances least affected by structural variation in the summer and fall periods.
During winter and spring, however, increased high base light levels in 

 

Spartina patens

 

 marshes
could further complicate interpretation of canopy reflectance variability.

 

5.5 SUMMARY

 

Light penetration field measurements were tested and described in terms of their completeness,
reliability or consistency and accuracy to characterize canopy structure. A ceptometer device
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measuring photosynthetic active radiation (PAR) along a 1-m probe was chosen for the light
penetration measurements. Marsh types included Spartina alterniflora and Juncus roemerianus
(saline marshes), Spartina patens (brackish marsh), and Panicum hemitomon (fresh marsh). Four
variables related to field data collection and postdata analysis design were examined with respect
to fulfilling data reliability and accuracy and maximizing the potential for operational use for remote
sensing calibration and assessment of classification accuracy. These variables included: (1) the
horizontal (planar) and (2) vertical (canopy profile) spatial sampling frequencies, (3) the description
and possible exclusion of atypical canopy structures, and (4) the normalization of measurements
at different sun elevations.

Early testing showed 30-m transects in the north and south and east and west directions
combined with light penetration measurements every 3 m helped ensure more accurate depiction
of the local variability and matched or encompassed the spatial resolution of most common resource
remote sensing sensors. Similarly, vertical light attenuation profiles derived from sampling the
canopy every 20 cm from the ground surface to above the canopy improved reliability, consistency,
and completeness of repeated measurements. Accounting for the state of the canopy as undisturbed,
partial gap, or completely lodged at each profile location was found to increase the comparability
and detail of PAR attenuation profiles taken at the same site during multiple occupations and
between sites and marsh types.

In all marshes, as sun zenith increased the rate of light fall-off with canopy depth increased,
although this effect was more noticeable in Juncus roemerianus and less in Spartina patens canopies.
To remove the sun zenith influences, a method was tested to normalize canopy PAR penetration
measurements to a nadir sun zenith. The success of the removal was linked to the spherical canopy
leaf orientation used by the normalization. PAR normalizations seemed more successful when used
in more vertical canopies such as Juncus roemerianus and Spartina alterniflora, least successful
in highly lodged canopies such as Spartina patens, and more dependent on seasonal canopy
development in marshes such as Panicum hemitomon. In all marshes, application of the normal-
ization increased alignment of PAR attenuation profile taken at different sun zeniths and alignment
with the expected progression of canopy structure over time. 
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6.1 INTRODUCTION

 

Development strategies aimed at settling the landless poor and integrating Amazonia into the
Brazilian national economy have led to the deforestation of between 23 and 50 million ha of primary
forest. Over 75% of the deforestation has occurred within 50 km of paved roads (Skole and Tucker,
1993; INPE, 1998; Linden, 2000). Of the cleared areas, the dominant land-use (LU) practice
continues to be conversion to low-productivity livestock pasture (Fearnside, 1987; Serrão and
Toledo, 1990). Meanwhile, local farmers and new migrants to Amazonia continue to clear primary
forest for transitory food, cash crops, and pasture systems and eventually abandon the land as it
loses productivity. Though there are disagreements on the benefits and consequences of this practice
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from economic, agronomic, and environmental perspectives, there is a need to link land-cover (LC)
change in Amazonia with more global externalities.

Rehabilitating the productivity of abandoned pasture lands has the potential to convert large
areas from sources to sinks of carbon (C) while providing for the well-being of people in the region
and preserving the world’s largest undisturbed area of primary tropical rainforest (Fernandes et al.,
1997). Primary forests and actively growing secondary forests sequester more C, cycle nutrients
more efficiently, and support more biodiversity than abandoned pastures (Fearnside, 1996; Fearnside
and Guimaraes, 1996). Results from research on LU options for agriculture in Amazonia point to
agrosilvopastoral LU systems involving rotations of adapted crops, pasture species, and selected
trees as being particularly appropriate for settlers of western Amazonia (Sanchez and Benites, 1987;
Szott et al., 1991; Fernandes and Matos, 1995). Coupled with policies that encourage the sustain-
ability of these options and target LU intensifications, much of the vast western Amazonia could
be preserved in its natural state (Sanchez, 1987; Vosti et al., 2000). 

Many studies have focused on characterizing the spatial extent, pattern, and dynamics of
deforestation in the region using various forms of remotely sensed data and analytical methods
(Boyd et al., 1996; Roberts et al., 1998; Alves et al., 1999; Peralta and Mather, 2000). Given the
importance of secondary forests for sequestering C, the focus of more recent investigations in the
region has been on developing spectral models and analytical techniques in remote sensing to
improve our ability to map these secondary forests and pastures in both space and time, primarily
in support of global C modeling (Lucas et al., 1993; Mausel et al., 1993; Foody et al., 1996;
Steininger, 1996; Asner et al., 1999; Kimes et al., 1999).

The need to better integrate the human and biophysical dimensions with the remote sensing of
LC change in the region has been reported extensively (Moran et al., 1994; Frohn et al., 1996;
Rignot et al., 1997; Liverman et al., 1998; Moran and Brondizio, 1998; Rindfuss and Stern, 1998;
Wood and Skole, 1998; McCracken et al., 1999; Vosti et al., 2000; http://www.uni-
bonn.de/ihdp/lucc/). Most investigations that integrate remote sensing, agroecological, or socioeco-

 

Plate 6.1 

 

(See color insert following page 114.) Land-cover classification for three time periods between
1986 and 1999.
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nomic dimensions focus on the prediction of deforestation rates and the estimation of land-
cover/land-use (LCLU) change at a regional scale.

Local stakeholders have seldom been involved in remote sensing research in the area. This is
unfortunate because municipal authorities and local organizations represent a window of opportu-
nity to improve frontier governance (Nepstad et al., 2002). These stakeholders have been increas-
ingly called upon to provide new services or fill gaps in services previously provided by federal
and state government. Small-scale farmer associations are key local organizations because some
of the obstacles to changing current land use patterns and minimizing deforestation cannot be
instituted by farmers working individually but are likely to require group effort (Sydenstricker-
Neto, 1997; Ostrom, 1999).

 

6.1.1 Study Objectives

 

The objectives of our study were to: (1) determine LC change in the recent colonization area
(1986–1999) of Machadinho D’Oeste, Rondonia, Brazil; (2) engage community stakeholders in
the processes of mapping and assessing the accuracy of LC maps; and (3) evaluate the relevance
of LC maps (inventory) for understanding community-based LU dynamics in the study area. The
objectives were defined to compare stakeholder estimates and perceptions of LC change in the
region to what could be measured through the classification of multispectral, multitemporal,
remotely sensed data. We were interested in learning whether there would be increased efficiencies,
quality, and ownership of the inventory and evaluation process by constructively engaging stake-
holders in local communities and farmer associations. In this chapter, we focus our presentation
on characterizing and mapping LC change between 1994 and 1999.

 

6.1.2 Study Area

 

Established in 1988, the municipality of Machadinho D’Oeste (8502 km

 

2

 

) is located in the
northeast portion of the State of Rondonia, western Brazilian Amazonia (Figure 6.1). The village
of Machadinho D’Oeste is 150 km from the nearest paved road (BR-364 and cities of Ariquemes
and Jaru) and 400 km from Porto Velho, the state capital. When first settled, the majority of the
area was originally composed of untitled public lands. A portion of the area also included old,
privately owned rubber estates (

 

seringais

 

), which were expropriated (Sydenstricker-Neto, 1992).
The most recent occupation of the region occurred during the mid-1980s with the development

of the Machadinho Colonization Project (PA Machadinho) by the National Institute for Colonization
and Agrarian Reform (INCRA). In 1984, the first parcels in the south of the municipality were
delivered to migrant farmers, and since then the area has experienced recurrent migration inflows.
From hundreds of inhabitants in the early 1980s, Machadinho’s 1986 population was estimated to
be 8,000, and in 1991 it had increased to 16,756 (Sydenstricker-Neto and Torres, 1991; Syden-
stricker-Neto, 1992; IBGE, 1994). In 2000, the demographic census counted 22,739 residents. This
amounted to an annual population increase during the decade of the 1990s of 3.5%. Although
Machadinho is an agricultural area by definition, 48% of its population lives in the urban area
(IBGE, 2001).

Despite the importance of colonization in Machadinho, forest reserves comprise 1541 km

 

2

 

, or
18.1%, of its area. Most of these reserves became state extractive reserves in 1995, but there are
also state forests for sustained use. Almost the entire area of the reserves is covered with primary
forest (Olmos et al., 1999).

In biophysical terms, Machadinho’s landscape combines areas of altiplano with areas at lower
elevation between 100 and 200 m above sea level. The major forest cover types are tropical
semideciduous forest and tropical flood plain forest. The weather is hot and humid with an average
annual temperature of 24

 

∞

 

C and relative humidity between 80 and 85%. A well-defined dry season
occurs between June and August and annual precipitation is above 2000 mm. The soils have medium
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to low fertility and most of them require high inputs for agriculture development
(EMBRAPA/SNLCS, 1982; Brasil, MIRAD-INCRA e SEPLAN – Projeto RADAMBRASIL, 1985).

The study area is 215,000 ha and is divided between the municipalities of Machadinho D’Oeste
(66%) and the north of Vale do Anari (34%). It includes more recent colonization areas, but its
core comprises the first phase (land tracts 1 and 2) of the former Machadinho Settlement settled
in 1984 and 1985. These two land tracts have a total area of 119,400 ha. The land tracts have
multiple uses: 3,000 ha are designated for urban development, 35,165 ha are in extractive reserves,
and 81,235 ha are divided into 1,742 parcels (average size 46 ha) distributed to migrant farmers
by INCRA (Sydenstricker-Neto, 1992).

 

6.2 METHODS

6.2.1 Imagery

 

Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Map-
per (ETM

 

+

 

) digital images were acquired for the study area (path 231/row 67) for one date in 1986,
1994, and 1999. The 1994 and 1999 TM images were 30-m resolution and the 1986 MSS image
was resampled to 30 m to match the TM images. The images were acquired during the dry season
(July or August) of each year to minimize cloud cover. The Landsat images used for LC analysis
were the best available archived scenes.

The 1986 MSS image (August 10) and the 1999 ETM

 

+

 

 image (August 6) were obtained from
the Tropical Rainforest Information Center (TRFIC) at Michigan State University. The 1994 TM
image (July 15) was provided by the Center for Development and Regional Planning (CEDEPLAR)
at the Federal University of Minas Gerais (UFMG) in Brazil. Although a TM image for the 1986
date was available, random offset striping made this scene unusable. The MSS image acquired on
the same date was used instead, though thin clouds obscured part of the study area.

 

Figure 6.1

 

Legal Amazonia, Rondonia, and study area, Brazil.
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The geometrically corrected 1999 ETM

 

+

 

 image provided by TRFIC had the highest geometric
accuracy as determined using Global Positioning System (GPS) coordinates collected in the field
and resulting in a root mean square error (RMSE) of less than one pixel. Therefore, we coregistered
the 1986 and 1994 images to the “base” 1999 ETM

 

+

 

 image using recognizable fixed objects (such
as road intersections) in ERDAS Imagine 8.4. We used nine “fixed” locations, known as ground
control points (GCPs), to register both images. For the 1986 and 1994 MSS images, the RMSEs
were 0.54 and 0.47 pixels, respectively.

Additional image processing included the derivation of tasseled-cap indices for each image.
Tasseled-cap transformed spectral bands 1, 2, and 3 (indices of brightness, greenness, and wetness,
respectively) were calculated for the TM images using Landsat-5 coefficients published by Crist
et al. (1986). Although Huang et al. (2002) recommended using a reflectance-based tasseled-cap
transformation for Landsat 7 (ETM

 

+

 

) based on at-satellite reflectance, those recommended tasseled-
cap coefficients for Landsat 7 were not published at the time of this study. Tasseled-cap bands 1
and 2 (brightness and greenness) were calculated for the MSS image using coefficients published
by Kauth and Thomas (1976). These investigators have shown tasseled-cap indices to be useful in
differentiating vegetation types on the landscape, and the tasseled-cap indices were therefore
included in this analysis of mapping LC. Image stacks of the raw spectral bands and tasseled-cap
bands were created in ERDAS Imagine 8.4. This resulted in one 6-band image for 1986 (MSS
spectral bands 1, 2, 3, 4, and tasseled-cap bands 1 and 2), a 10-band image for 1994 (TM spectral
bands 1–7 and tasseled-cap bands 1, 2, and 3), and an 11-band image for 1999 (ETM

 

+

 

 spectral
bands 1–8 and tasseled-cap bands 1–3). The 15-m panchromatic band in the 1999 ETM

 

+

 

 image
was not used in this analysis.

 

6.2.2 Reference Data Collection

 

As in many remote areas in developing countries, data sources for producing and assessing
accuracy of LC maps for our study area were limited. Upon project initiation (2000) no suitable
LC reference data were available. Historical aerial photographs were not available for discriminating
between LC types for our study area. In this context, satellite imagery was the only spatially
referenced data source for producing reliable LC maps for the area.

Because we wanted to document LC change from the early stages of human settlement and
development (beginning in 1985), when major forest conversion projects were established, our
objective was to compile retrospective data to develop and validate a time series of LC maps. The
challenge of compiling retrospective data became an opportunity to engage community stakeholders
in the mapping process and “bring farmers into the map.” We decided to enlist the help of farmers,
who are very knowledgeable about land occupation practices and the major forces of land use
dynamics, to be our source for contemporary and retrospective data collection. Also, by engaging
the locals early in the process, we could examine the advantages and limitations of this strategy
for future resource inventory projects in the region conducted by researchers and local stakeholders.

We utilized a seven-category LC classification scheme as defined in Table 6.1. The level of
detail of this classification scheme is similar to that of others used in the region and should permit
some level of comparative analysis with collaborators and stakeholders (Rignot et al., 1997; de
Moraes et al., 1998).

In August 2000, with the assistance of members of nine small-scale farmer associations in the
study area, we collected field data to assist in the development of spectral models of each cover
type for image classification and to validate the resulting LC maps. All associations that we
contacted participated in the mapping project. Initially, we met with the leadership of each asso-
ciation and presented our research goals and objectives, answered questions, and invited members
of each association to participate in the study. After developing mutual trust and actively engaging
the association, data collection groups were formed averaging 12 individuals per association (total
over 100 individuals). Special effort was made to include individuals in each group who were long-
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term residents and who were knowledgeable about historical LU practices in the region. Nearly
half of the members in each of the nine groups were farmers who settled prior to 1986.

An introductory meeting was conducted with each group to provide a hard copy (false-color
composite) of the 1999 ETM

 

+

 

 image with parcel boundaries overlaid and to solicit comments and
observations regarding farm locations, significance of color tones on the image, and clarification
of LU practices and associated cover types. All participants were then asked to indicate retrospective
and current LU for their parcels and for other parcels with which they were familiar. Any questions
that could not be answered by individuals were referred to the group for discussion, elaboration,
and decision making. For each identified cover type, we annotated and labeled polygons on stable
acetate overlaid on the false-color composite image. Each polygon consisted of a homogeneous
area labeled as one of seven LC types for each year corresponding to the dates of the Landsat
images used in the study.

Notes were taken during the interview process to indicate the date each farmer started using
the land, areas of the identified LC types for each of the 3 years considered in the study (1986,
1994, 1999), changes over time, level of uncertainty expressed by participants while providing
information for each annotated polygon, and other information farmers considered relevant. After
each meeting, the research team traveled the main roads in the area just mapped by the farmer
association and compared the identified polygons with what could be observed. The differences
between the cover type provided by the farmers and what was observed were minimal. In areas
where such meetings could not be organized, the research team traveled the feeder roads and
annotated the contemporary LC types that could be confidently identified.

Field data were collected for over 1500 polygons, including all seven LC types of interest. We
considered this to be an adequate sample for image classification and validation of our maps.
Although an effort was made to ensure all land cover types were well represented in the database,
some types such as bare soil were represented by a relatively small sample sizes (

 

n

 

 < 200 pixels).

 

6.2.3 Data Processing

 

More than 1000 polygons identified during the farmer association interviews were screen-
digitized and field notes about the polygons were compiled into a table of attributes. Independent
random samples of polygons for each of the seven land-cover types were selected for use in image
classifier training and land-cover map validation. Although the number of homogenous polygons
annotated in the field was large, polygons varied greatly in size from 

 

<

 

 5 to 

 

>

 

1000 ha and were
not evenly distributed among the seven cover types (Table 6.2). For cover types that had a large
number of polygons, half of the polygons were used for classifier training and half for map
validation. For two cover types, however, the polygon samples were so large in area (and therefore
contained so many pixels) that they could not be used effectively because of software limitations.
The primary forest and pasture cover type polygons were therefore randomly subdivided so that
only one half of the pixels were set aside for both classifier training and for map validation (i.e.,
one quarter of the total eligible data pixels were used for each part of the analysis). However, this
approach did not yield a sufficient number of sample polygons for some of the more rare cover

 

Table 6.1

 

Land-Cover Classification Scheme and Definitions

Land Cover Definition

 

Primary forest Mature forest with at least 20 years growth 
Secondary forest Secondary succession at any height and less than 20 years growth
Transition Area recently cleared, burned, or unburned and not currently in use
Pasture Area planted with grass, ranging from overgrazed to bushy
Crops Area with agriculture, including perennial and annual crops
Bare soil Area with no vegetation or low, sparse vegetation
Water Waterbody, including major rivers, water streams, and reservoirs
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types (i.e., 

 

<

 

 1% land area). To address this issue, we randomly sampled individual pixels within
these polygons of the rare cover types and equally partitioned the pixels into the two groups used
for classifier training and map validation.

 

6.2.4 Image Classification

 

Spectral signature files were generated to be used in supervised classification using a maximum
likelihood algorithm. The spectral signatures included both image and tasseled-cap bands created
for each image of each analysis year. LC maps were produced for each of the 3 years containing
all seven LC types in each of the resulting maps. Postclassification 3 

 

¥

 

 3 pixel majority convolution
filter was applied to all three LC maps to eliminate some of the speckled pattern (noise) of individual
pixels. The result of this filter was to eliminate pixels that differed in LC type from their neighbors,
which tended thereby to eliminate both rare cover types and those that exist in small patches on
the landscape (such as crops). However, we concluded that the filtering process introduced an
unreasonable amount of homogeneity onto the landscape and obscured valuable information
relevant to the spatial pattern of important cover types within our unit of analysis, which was the
land parcel. All subsequent analyses were performed on the unfiltered LC maps for all three dates
of imagery.

 

6.2.5 Accuracy Assessment

 

We assessed the accuracy of the three LC maps at the pixel level using a proportional sampling
scheme based on the distribution of validation sample points (pixels) for each of the cover types
in the study. This methodology was efficiently applied in this study because the distribution of our
field-collected validation sample points was representative of the distribution in area of each cover
type in the study area (Table 6.2).

The proportional sample of pixels used for the accuracy assessment for each year was selected
by first taking into account the cover type having the smallest area based on the number of validation
pixels we had for that cover type. Once the number of pixels in the validation data set was determined
for the cover type occupying the smallest area, the total number of validation pixels to be used for
each analysis year was calculated by the general formula:

 

S

 

t

 

 = 

 

N

 

s

 

/

 

P

 

s

 

(6.1)

where 

 

S

 

t 

 

= the total number of validation pixels to be sampled for use in accuracy assessment, 

 

N

 

s

 

= the number of pixels in the land cover type with the smallest number of validation pixels, and

 

P

 

s

 

 

 

= the proportion of the classified map predicted to be the cover type with the smallest amount
of validation pixels.

 

Table 6.2

 

Number of Pixels Sampled for Classifier Training and Map 

 

Validation for the 1999 Image

Land-Cover
Class

Total No.
of Polygons

Total No.
of Pixels

 

 No. of Pixels/Polygons
Mean Variance

 

Forest 189 16,755 89 5,349
Secondary forest 108 3,060 28 401
Transition 43 10,054 33 917
Crops 306 2,693 63 1,358
Pasture 261 4,496 17 120
Bare soil 17 140 8 18
Water 106 1,705 16 244
Total 1,030 38,903 38 2,089
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The total number of validation pixels to be used to assess the accuracy for each cover type was
then calculated by the general formula:

 

V

 

c

 

 

 

= 

 

S

 

t

 

 

 

¥

 

 

 

P

 

c

 

(6.2)

where 

 

V

 

c

 

 

 

= the total number of validation pixels to be used for a specific cover type, 

 

S

 

t

 

 

 

= the total
number of validation pixels to be sampled for use in accuracy assessment, and 

 

P

 

c

 

 = the proportion
of the classified map predicted to be that cover type.

To illustrate this proportional sampling accuracy method, we describe the forest cover type for
the 1999 map. The cover type with the smallest number of validation pixels in 1999 was the bare
soil cover type with a total of 79 validation pixels (

 

N

 

s

 

). Of the total number of pixels in the 1999
classified map (8,970,395), the bare soil cover type was predicted to be 201,267 pixels, or a
proportion of 0.0224 of the total classified map (

 

P

 

s

 

). Using Equation 6.1 above, the resulting sample
size of validation pixels to be used for accuracy assessment of the 1999 LC map (

 

S

 

t

 

) was 3,521
pixels. In the 1999 map, the forest cover type was predicted to cover 68.6% of the classified map
(i.e., 6,155,275 pixels out of 8,970,395 total pixels). Using Equation 6.2 above, the sample size of
validation pixels to be used for the forest cover type (

 

V

 

c

 

) was then 2,414 (i.e. 3,521 

 

¥

 

 0.686).
Once the validation sample sizes were chosen for each cover type, a standard accuracy assess-

ment was performed whereby the cover type of each of the validation pixels was compared with
the corresponding cover type on the classified map. Agreement and disagreement of the validation
data set pixels with the pixels on the classified map were calculated in the form of an error matrix
wherein the producer’s, user’s, and overall accuracy were evaluated.

 

6.3 RESULTS AND DISCUSSION

6.3.1 Classified Imagery and Land-Cover Change

 

Presentation and discussion of accuracy assessment results will focus only on the 1994 and
1999 LC maps. (The 1986 map was not directly comparable because it was based on coarser
resolution and resampled MSS data and because it contained cirrus cloud cover over parts of the
study.) A visual comparison of 1986–1999 LC maps shows significant change. Plate 6.1 presents
the classified imagery with parcel boundaries overlaid for a portion of the study area near one of
the major feeder roads. In 1986, approximately 2 years after migrant settlement, only some initial
clearing was observed near roads; however, 13 years later (1999) there were significant open areas
and only a small number of parcels that remained mostly covered with primary forest. The extensive
deforestation illustrated in Plate 6.1 is confirmed by the numeric data presented in Table 6.3. In
1994, 147,380 ha, or 68.5% of the total study area (215,000 ha), was covered in primary forest.

 

Table 6.3

 

Land-Cover Change in Study Area, Rondonia 1994–1999

Class

 

Area (ha) Change in Area
1994–1999 (ha)

 

 Percentage of Area  Percentage of
Change 1994–19991994 1999 1994 1999

 

Forest 147,380 117,573 –29,806 68.5 54.6 –20.2
Secondary forest 27,759 30,732 2,973 12.9 14.3 10.7
Transition 2,234 5,555 3,321 1.0 2.6 148.6
Crops 12,072 27,833 15,760 5.6 12.9 130.5
Pasture 16,253 22,386 6,133 7.6 10.4 37.7
Bare soil 5,183 6,823 1,640 2.4 3.2 31.6
Water 4,251 4,252 1 2.0 2.0 0.0
Total 215,132 215,154  100.0 100.0  
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The amount of primary forest decreased in 1999 by 30,000 ha, a negative change of 20.2% in
primary forested area. The area of deforestation observed between 1994 and 1999 was more than
twice that estimated for the 1986 to 1994 period (not shown). This represented a 4.5 times increase
compared to the 1986–1994 deforestation rate. Table 6.3 presents the change in LC for 1994–1999
as both percentage of area and percentage of change.

All the nonforest cover types increased in area between 1994 and 1999. This was largely at the
expense of primary forest. Increases in secondary forest had the dominant “gain” in area during
this period, with a total increase in area of almost 31,000 ha in 1999, followed by slightly smaller
increases in crops and pasture (27,832 ha and 22,386 ha, respectively). The most significant
increases on a proportional basis occurred with the crops and pasture cover types; both increased
over 200% during this time period.

The increase in pasture area was inflated by a tremendous deforestation event totaling approx-
imately 5000 ha in 1995 in the southeastern portion of the study site. Subsequent to clearing, the
area was partially planted with grass and later divided into small-scale farm parcels in 1995 to
1996, creating a new settlement called Pedra Redonda. The most important and broadly distributed
crop among the small-scale farms was coffee 

 

(Coffea robusta)

 

, which received special incentives
through subsidized federal government loans and the promotional campaign conducted by the State
of Rondonia “Plant Coffee” (1995 to 1999).

The LC change matrix provides more detailed change information, including the distribution
of deforested areas into different agricultural uses (Table 6.4). For 1994 to 1999 we determined
that 61.1% of the area did not undergo LC change. This metric was calculated by summing the
percentages along the major diagonal of the matrix. Note that primary forest showed the greatest
decrease in area while concurrently exhibiting the largest area unchanged (48.9%), due to the large
area occupied by this cover type. For the remaining cover types, the change was significantly greater
(as shown throughout the diagonal of the matrix) because of the proportionally smaller area occupied
by these cover types.

The 8.3% conversion rate of primary forest to secondary forest indicates that some recently
deforested areas remained in relative abandonment, allowing vegetation to partially recover in a
relatively short period of time (Table 6.4). An increase in classes such as transition and bare soil
also indicates the same trend of new areas incorporated into farming and their partial abandonment
as well. Of areas that were primary and secondary forest in 1994, crops were the most dominate
change category (> 8%) followed by pasture (

 

<

 

 4%). While the change in LC mapped from the
image classification fits with what we expect to see in the region, it is important to differentiate
(when possible) real change from misclassification. Potential errors associated with the mapping
are discussed below.

 

Table 6.4

 

Land-Cover Change Matrix and Transitions in Study Area, Rondonia 1994–1999

1994

 

1999
Total

percentage
Total

area (ha)Forest
Sec.

Forest Transition Crops Pasture
Bare
Soil Water

 

Forest 48.9

 

8.3 1.8 5.9 2.3 1.2 0.0 68.5 147,380

 

Sec. forest

 

4.8

 

3.5

 

0.3 2.5 1.3 0.5 0.0 12.9 27,759

 

Transition

 

0.1 0.2

 

0.0

 

0.4 0.2 0.1 0.0 1.0 2,234

 

Crops

 

0.3 1.2 0.2

 

2.1

 

1.4 0.4 0.0 5.6 12,072

 

Pasture

 

0.2 0.7 0.1 1.3

 

4.5

 

0.8 0.0 7.6 16,253

 

Bare soil

 

0.3 0.4 0.1 0.8 0.7

 

0.2

 

0.0 2.4 5,183

 

Water

 

0.0 0.0 0.0 0.0 0.0 0.0

 

2.0

 

2.0 4,251

 

Total  percentage

 

54.6 14.3 2.6 12.9 10.4 3.2 2.0 100.0

 

Total  area (ha)

 

117,553 30,731 5,554 27,833 22,386 6,823 4,252  215,132

 

Note:

 

No change 1994–1999: 61.1%.
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6.3.2 Map Accuracy Assessment

 

The user’s accuracy is summarized in Table 6.5. The increase in overall map accuracies for each
subsequent year in the analysis was attributed to several factors. First, we used three different sensors
(MSS, TM, and ETM

 

+

 

), which introduced increased spatial and spectral resolution of the sensors
over time. Second, the 1986 MSS image had clouds that introduced some classification errors. Third,
collecting retrospective data was a challenge because interviewees sometimes had difficulty recalling
LC and associated LU practices over the study period. In general, retrospective LU information had
a higher level of uncertainty than for time periods closer to the date of the interview.

Despite these difficulties, however, overall accuracy was between 85 and 89% for 1986 and
1999, respectively. Accuracy for specific classes ranged between 50 and 90%, achieving 

 

≥

 

 96%
for primary forest in 1999. Some bare soil (1999) and crops (1986) classes were particularly difficult
to map and attained accuracies below 30%. The sample size for these particular cover types was
relatively small, which may have contributed to this poor outcome. When coupled with the fact
that areas of bare soil and crops tend to be small in the study area (

 

£

 

 1.0 ha), the lower accuracies
were not unexpected for these classes. Error matrices for 1994 and 1999 are presented in Tables
6.6 and 6.7, respectively. The overall accuracy for 1999 was 89.0% (Kappa 0.78). With the exception
of bare soil, all the remaining classes had user’s accuracies that ranged from 57.5 to 96.7% and
producer’s accuracies between 66.5 and 100.0%. The overall accuracy for the 1994 land-cover map
was 88.3%. In general, accuracy for specific cover types ranges between 50 and 90%, achieving a
high of 96.7% for primary forest in 1999. The bare soil (1999) accuracy was below 30%; however,
the limited proportion of training sample pixels relative to the total amount of pixels comprising
the study area for this specific class may have contributed to this poor outcome.

 

Table 6.5 User’s Accuracy in Study Area, 

 

Rondonia 1986–1999

Classified Data 1986 1994 1999

 

Forest 89.8% 93.5% 96.7%
Secondary forest 45.5% 63.1% 77.4%
Transition 42.9% 75.0% 57.5%
Crops 25.0% 53.6% 67.5%
Pasture 80.0% 77.5% 89.6%
Bare Soil  — 66.7% 28.7%
Water 100.0% 100.0% 93.6%
Overall accuracy 84.6% 88.3% 89.0%
Kappa statistic 0.52 0.69 0.78

 

Table 6.6

 

Error Matrix for the Land-Cover Map in Study Area, Rondonia 1994

Classified Data

 

Reference Data
User’s

AccuracyForest
Sec.

Forest Transition Crops Pasture
Bare
Soil Water Total

 

Forest 1218

 

76 0 5 0 1 3 1303 93.5%

 

Secondary forest

 

40

 

82

 

0 6 1 1 0 130 63.1%

 

Transition

 

0 0

 

9

 

3 0 0 0 12 75.0%

 

Crops

 

9 15 1

 

30

 

0 1 0 56 53.6%

 

Pasture

 

15 0 0 6

 

79

 

1 1 102 77.5%

 

Bare soil

 

4 0 0 5 0

 

18

 

0 27 66.7%

 

Water

 

0 0 0 0 0 0

 

25

 

25 100.0%

 

Total

 

1286 173 10 55 80 22 29 1655

 

Producer’s accuracy

 

94.7% 47.4% 90.0% 54.6% 98.8% 81.8% 86.2%

 

Note:

 

Overall classification accuracy = 88.3%. Kappa statistic = 0.69. 
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The pattern of misclassification and confusion between LC classes is similar for both the 1994
and 1999 error matrices (Table 6.6 and Table 6.7), although different image sensors (TM and ETM

 

+

 

)
were used. Confusion between primary and secondary forest was expected because our classification
scheme did not separate secondary forest for different successional stages. Some of the polygons
delineated in the field as secondary forest exceeded 12 years of regrowth and closely resembled
semideciduous primary forest. Accordingly, there was probably some spectral overlap between “old”
secondary forest and the semideciduous primary forest. Confusion between secondary forest and
crops occurred because many coffee areas were shaded with native species such as rubber tree 

 

(Hevea
brasiliensis)

 

, freijó 

 

(Cordia goeldiana)

 

, and Spanish cedar 

 

(Cedrela odorata,)

 

 or included pioneer
species such as embaúba 

 

(Cecropia 

 

spp.). Therefore, shaded crops appeared as partially forested areas.
Despite the lack of homogeneity within the “transition” LC class, confusion with other cover

types (crops, pasture, and bare soil) was minimal. Confusion most likely occurred because the
transition cover type was not particularly unique (Table 6.6 and Table 6.7). The confusion seen in
the error matrices between pasture and bare soil and the confusion between bare soil and recently
planted coffee areas were expected. Overgrazed pasture had little vegetative matter, allowing these
areas easily to be misclassified as bare soil. Also, it was unlikely that spectral reflectance by coffee
plants less than 0.5 m tall planted in a 3- 

 

¥

 

 3-m spacing was detected and discriminated from the
surrounding soil background, resulting in confusion between young coffee and bare soil. Water,
although spectrally distinct, was easily biased along edge pixels. This was particularly true in the
case of small and circuitous watercourses in mixed systems.

 

6.3.3 Bringing Users into the Map

 

Initially, the local farmers expressed substantial distrust and skepticism about the mapping
project; however, trust was established throughout the mapping process and a good working rela-
tionship was established. To best present our findings, we organized community meetings in the
areas of the farmer associations involved earlier in the process. Participation in these meetings ranged
from as few as six individuals to packed rooms with more than 30 people. These meetings inten-
tionally included the broader community and farmers who had not taken part in the data collection.
Each farmer that had provided input during the data collection phase of the study received a color
copy of the 1999 LC mapping results. Additional meetings were arranged with agricultural extension
agents, leaders of the local rural labor union, municipal officials, and middle school students.

Upon examination, farmers provided verbal confirmation of our estimates and errors. Specific
concerns closely resembled the classification errors shown in the accuracy assessment matrices
(Table 6.6 and Table 6.7). More than 30 farmers who did not participate in the data collection
process compared their estimates of LC for their individual parcels to the statistics generated from

 

Table 6.7

 

Error Matrix for the Land-Cover Map in Study Area, Rondonia 1999

Classified Data

 

Reference Data
User’s

AccuracyForest
Sec.

Forest Transition Crops Pasture
Bare
Soil Water Total

 

Forest 2370

 

73 0 3 0 0 6 2452 96.7%

 

Secondary forest

 

44

 

233

 

0 12 8 4 0 301 77.4%

 

Transition

 

0 0

 

54

 

19 5 16 0 94 57.5%

 

Crops

 

0 58 0

 

206

 

14 21 6 305 67.5%

 

Pasture

 

0 7 0 5

 

198

 

9 2 221 89.6%

 

Bare soil

 

0 0 0 64 7

 

29

 

1 101 28.7%

 

Water

 

0 2 0 1 0 0

 

44

 

47 93.6%

 

Total

 

2414 373 54 310 232 79 59 3521  

 

Producer’s accuracy

 

98.2% 62.5% 100.0% 66.5% 85.3% 36.7% 74.6%   

 

Note:

 

Overall classification accuracy = 89.0%. Kappa statistic = 0.78.
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the LC maps. In all cases, the general patterns were the same and differences in LC class areas
were small. Relevant ideas provided by local farmers were that the map provided a common ground
to engage participants in a discussion on environmental awareness and appreciation and that the
maps became an instrument of empowerment to local communities. For example, farmers were
shocked at the significant changes in LC over time for the whole area (1994 to 1999). This stimulated
a debate on the incentives for forest conversion vs. the constraints imposed by the agricultural
systems adopted by farmers.

Areas with perennial crops increased dramatically over the years of the study, with coffee
becoming the single most important cash crop. Consequently, farmers tended to decrease the amount
of land planted with annual subsistence crops such as rice, maize, beans, and cassava. As a result,
food security became an issue for some communities. Although new areas would typically come
into production within 2 years, the incentives were to expand areas of pasture. An important
economic incentive was the dramatic drop in coffee prices worldwide. In the 2001–2002 season,
sale prices of coffee in Machadinho D’Oeste were only half of the market value 2 years earlier.
Many small farms were not entirely harvested and many farmers reported that they were very
inclined to change areas with old coffee trees into pasture. However, the decline in coffee prices
motivated enlightened discussions on the economic and environmental dangers of converting most
of the land into pasture.

The importance of common forest reserves in the region and the potential and constraints of
fostering forest conservation were discussed extensively. There was great appreciation for the fact
that the map clearly indicated that the major water resources were within the forest reserves that
had not been cleared. Identification of secondary forest along major water streams within the settled
areas stimulated a debate on stream bank erosion and nutrient loss into rivers. The general agreement
was that farmers went too far in clearing the land and needed to focus efforts on reforesting the
areas around the rivers. Farmers voiced the reasons, incentives, and constraints they face in trying
to deliberately reforest areas along the water streams. In most of the reported cases of forest
recovery, natural regrowth was happening, rather than seeded reforestation. The reported lack of
available water in areas in which farmers had irrigated their coffee was a surprise to the researchers. 

Two outcomes contributed greatly to farmer empowerment. First, our map offered a synoptic
perspective of development patterns that farmers had not entirely realized previously. Farmers felt
that having a deeper knowledge of what was happening in their area would enable them to better
respond to local needs and contribute to statewide discussions on promoting environmental sus-
tainability. Second, farmers voiced the collective opinion that their participation in the mapping
project contributed to better organizing themselves into interest groups. The explicit acknowledg-
ment in the LC map legends of the local associations’ contributions was a source of pride within
the broader community.

 

6.4 CONCLUSIONS

 

Visual inspection and comparison of LC maps with other data sources enabled us to conclude
that our efforts provided good estimation of LC change in the study area. The study area changed
over the 13-year study period from a typical new colonization area in its early stage, where higher
proportions of forests and areas in transition dominate, to one in which these cover types are
diminished in area in comparison to the proportional increase in crops and pasture. Statistically
based evaluations (error matrices) demonstrated acceptable levels of accuracy with classification
errors that were easily explainable and understandable. Participation and input from local farmers
was very useful in producing cover maps and proved to be an extremely effective means for
collecting classifier training and validation data in areas where other sources were not available.
Follow-up meetings with farmers were very constructive for addressing conservation issues with
regional and global implications.
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Study weaknesses included the intrinsic limitations imposed by the use of the different satellite
sensors (i.e., MSS, TM, and ETM

 

+

 

). Also, reference data sizes for some cover classes were relatively
small and interviewees expressed greater levels of uncertainty in retrospective data reconstruction
than for the current time period. Despite these constraints in data collection, we were confident
that they did not represent an extra burden compared to the challenge of obtaining good levels of
agreement among remote sensing specialists when using other techniques such as high-resolution
videography. The application of an integrated field data collection process would have enhanced
the quality of our data. Such an integrated process would comprise simultaneous collection of
remotely sensed ground data and household socioeconomic surveys on LU/LC to facilitate direct
comparison between data sources. 

The level of detail of our classification scheme was similar to that used by other investigators
in the region, and our map accuracies compared favorably with their results (Rignot et al., 1997;
de Moraes et al., 1998). For local stakeholders, however, our classification scheme was not suffi-
ciently detailed. Stakeholders would most like to clearly distinguish specialty crops such as cacao,
coffee, and shade coffee, which would not be practical with the resolution of these data sets.

 

6.5 SUMMARY

 

This study assessed LC change in a recent colonization area in the municipalities of Machadinho
D’Oeste and Vale do Anari, State of Rondonia, Brazil. Landsat MSS, TM, and ETM

 

+

 

 data were
used to create maps of LC conditions for 1986, 1994, and 1999. Images were obtained in July/August
(dry season) and field data were collected during August 2000 with the assistance of nine local farm
associations and approximately 100 independent farmers. At meetings with the associations, hard
copy false-color composites of imagery data with parcel boundaries were presented to individual
landowners. Each individual provided historical and contemporary LU for known areas. Polygons
were annotated and labeled on stable acetate for each cover type, corresponding to the seven-category
classification scheme. Notes were taken during the interview process to indicate the dates of land
clearing, cover type, and level of uncertainty expressed by the participants.

Approximately 1000 polygons were field-annotated and random samples were selected for
classifier training and map validation. Spectral signature files were generated from training polygons
and used in a supervised classification using maximum likelihood classification. Overall accuracy
for each year ranged between 85 and 95% (Kappa 0.52–0.78). LC changes were consistent with
the trends observed in the study area and reported by others. The participatory process involving
local farmers was crucial for achieving the objectives of the study. The specific protocol developed
for data collection should be applicable in a wide range of cases and contexts.

The building of trust with the local stakeholders is important with contested issues such as
deforestation in the tropics. Systematic data collection among farmers (the primary land users)
provided a valuable source of information based on their direct observation in the field and historical
data not directly available through other sources. This procedure provided greater confidence for
interpreting and understanding classification errors. Finally, the process itself empowered local
farmers and provided a forum for discussing land use processes in the region, including challenges
to alleviate poverty, increase agrosilvopastoral farming systems, arrest deforestation, and study its
implications for developing more effective land use policies.

Including the local stakeholders in the research was a very effective process for evaluating LC
change in the region. For stakeholders and researchers, the mapping and reporting process fosters
better understanding of the patterns and processes of environmental change in the study area. We
foresee that participatory mapping projects such as the one reported in this chapter have the potential
to become an important planning device for regional-scale development in Brazil. With greater
economic opportunities and stronger institutions at the local level, society is likely to improve the
ability to identify and adopt more environmentally sound LU activities.
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7.1 INTRODUCTION

 

The Multi-Resolution Land Characteristics (MRLC) consortium, a cooperative effort of several
U.S. federal agencies, including the U.S. Geological Survey (USGS) EROS Data Center (EDC)
and the U.S. Environmental Protection Agency (EPA), has conducted the National Land Cover
Data (NLCD) program. This program used Landsat Thematic Mapper (TM) 30-m resolution
imagery as baseline data and successfully produced a consistent and conterminous land-cover (LC)
map of the lower 48 states at approximately an Anderson Level II thematic detail. The primary
goal of the program was to provide a generalized and regionally consistent LC product for use in
a broad range of applications (Lunetta et al., 1998). Each of the 10 U.S. federal geographic regions
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was mapped independently. EPA funded the Center for Earth Observation (CEO) at North Carolina
State University (NCSU) to assess the accuracy of the NLCD for federal geographic Region IV.

An accuracy assessment is an integral component of any remote sensing-based mapping project.
Thematic accuracy assessment consists of measuring the general and categorical qualities of the
data (Khorram et al., 1999). An independent accuracy assessment was implemented for each federal
geographic region after LC mapping was completed. The objective for this study was specifically
to estimate the overall accuracy and category-specific accuracy of the LC mapping effort. Federal
geographic Region IV included the states of Kentucky, Tennessee, Mississippi, Alabama, Georgia,
Florida, North Carolina, and South Carolina (Figure 7.1).

 

7.2 APPROACH

7.2.1 Sampling Design

 

Quantitative accuracy assessment of regional scale LC maps, produced from remotely sensed
data, involves comparing thematic maps with reference data (Congalton, 1991). Since there were
no suitable existing reference data that could be used for all federal regions, a practical and
statistically sound sampling plan was designed by Zhu et al. (2000) to characterize the accuracy
of common and rare classes for the map product using National Aerial Photography Program
(NAPP) photographs as the reference data.

The sampling design was developed based on the following criteria: (1) ensure the objectivity
of sample selection and validity of statistical inferences drawn from the sample data, (2) distribute
sample sites spatially across the region to ensure adequate coverage of the entire region, (3) reduce
the variance for estimated accuracy parameters, (4) provide a low-cost approach in terms of budget
and time, and (5) be easy to implement and analyze (Zhu et al., 2000).

The sampling was a two-stage design. The first stage, the primary sampling unit (PSU), was
the size of a NAPP aerial photograph. One PSU (photo) was randomly selected from a cluster of
128 photographs. These clusters were formed using a geographic frame of 30 

 

¥

 

 30 m. Randomly
selected PSU locations are shown in Figure 7.1. The second stage was a stratified random sample,

 

Figure 7.1
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within the extent of all of the PSUs only, of 100 sample sites per LC class. The selected sites were
referred to as secondary sampling units (SSU). The number of sites per photograph ranged from
1 to approximately 70 (Figure 7.2). The total number of sample sites in the study was 1500 (100
per cover classes), although only 1473 sites were interpreted due to missing NAPP photos. This
sampling approach was chosen by the Eros Data Center (EDC) over a standard random sample to
reduce the cost of purchasing the NAPP photography (Zhu et al., 2000).

 

7.2.2 Training

 

Before the NAPP photo interpretation for the sample sites could begin, photo interpreters were
trained to accomplish the goals of the study. To provide consistency among the interpreters, a
comprehensive training program was devised. The program consisted of a full-day training session
and subsequent on-the-job training. Two experienced aerial photo interpretation and photogram-
metry instructors led the formal classroom training sessions. The training sessions included the
following topics: (1) discussion of color theory and photo interpretation techniques, (2) understand-
ing of the class definitions, (3) interpretation of over 100 sample sites of different classes during
the training sessions followed by interactive discussions about potential discrepancies, (4) creation
of sample sites for later reference, and (5) repetition of interpretation practice after the sessions. 

The focus was on real-world situations that the interpreters would encounter during the project.
Each participant was presented with over 100 preselected sites and was asked to provide his or her
interpretation of the land cover for these sites. Their interpretations were analyzed and subsequently
discussed to minimize any misconceptions. During the on-the-job portion of the training, each
interpreter was assigned approximately 500 sites to examine. Their progress was monitored daily
for accuracy and proper methodology. The interpreters kept logs of their decisions and the sites for
which they were uncertain about the LC classes. On a weekly basis, their questions were addressed
by the project photo interpretation supervisor. The problem sites (approximately 400) were discussed
until all team members felt comfortable with the class definitions and their consistency in interpre-
tation. Agreement analysis between the three interpreters resulted in an average agreement of 84%.

 

7.2.3 Photographic Interpretation

 

7.2.3.1 Interpretation Protocol

 

The standard protocol used by the photo interpreters was as follows:

 

Figure 7.2
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• Each interpreter was assigned 500 of the 1500 total sites.
• Interpretation was based on NAPP photographs. 
• The sample site locations on the NAPP photos were found by first plotting the sites on TM false-

color composite images then finding the same area on the photo by context.
• During the interpretation process, cover type and other related information such as site homogeneity

were recorded for later analysis.
• When there was some doubt as to the correct class or there was the possibility that two classes could

be considered correct, the interpreters selected an alternate class in addition to the primary class.
• The interpretations were based on the majority of a 3 

 

¥

 

 3 pixel window (Congalton and Green, 1999).

 

7.2.3.2 Interpretation Procedures

 

The Landsat TM images were displayed using ERDAS Imagine. By plotting the site locations
on the Landsat TM false-color composite images, the interpreters precisely located each site. Then,
based on the context from the image, the interpreters located the site on the photographs as best
they could. Clearly, some error was inherent in this location process; however, this was the simplest
and most cost-effective procedure available. The use of a 3 

 

¥

 

 3 pixel window for interpretation
was intended to reduce the effect of location errors. 

The interpreters examined each site’s characteristics using the aerial photograph and TM image
and determined the appropriate LC label for the site according to the classification scheme, then
they entered the information into the project database. The following data were entered into the
database: site identification number (sample site), coordinates, photography acquisition date, pho-
tograph identification code, imagery identification number, primary or dominant LC class, alternate
LC class (if any), general site description, unusual observations, general comments, and any
temporal site changes between image and photo acquisition dates. The interpreters did not have
prior access to the MRLC classification values during the interpretation process.

Individual interpreters analyzed 15% (

 

n

 

 = 75) of each of the other interpreters’ sample sites to
create an overlap database to evaluate the performance of the interpreters and the agreement among
them. Selection of these 75 sites was done through random sampling. This scheme provided 225
sites that were interpreted by all three interpreters. Agreement analysis using these overlap sites
indicated an average agreement of 84% among the three interpreters (Table 7.1).

 

7.2.3.3 Quality Assurance and Quality Control

 

Quality assurance (QA) and quality control (QC) procedures were vigorously implemented in
the study as designated in the interpretation organization chart (Table 7.2). Discussions among the
interpreters and project supervisors during the interpretation process provided an opportunity to
discuss the problems that occurred and to resolve problems on the spot. 

The QA and QC plan is shown in Figure 7.3. Upon completion of training, a test was performed
to determine how similarly the interpreters would call the same sites. The initial results of the
analysis revealed that some misunderstandings about class definitions had remained after the training
process. As a result, the interpreters were retrained as a group to “calibrate” themselves. This helped
to ensure that calls were more consistent among interpreters. Upon satisfactory completion of the
retraining, the interpreters were assigned to complete interpretation of the 1500 sample sites. 

 

7.3 RESULTS

7.3.1 Accuracy Estimates

 

Table 7.3 presents the error matrix for MRLC Level II classes. The numbers across the top and
sides of the matrices represent the 15 MRLC classes (Appendix A). Table 7.4 presents the error
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matrix for MRLC Level I classes. The Level II classes were grouped into the following Level I
categories: (1) water, (2) urban or developed, (3) bare surface, (4) agriculture and other grasslands,
(5) forest (upland), and (6) wetland (woody or nonwoody). The overall accuracies for the Level I
and II classes were 66% and 44%, respectively. 

Table 7.3 illustrates the confusion among low-intensity residential, high-intensity residential,
and commercial/transportation categories. Many factors may have contributed to the confusion;
however, we believe the complex classification scheme used was a dominant factor. For example,
the most ambiguous categories were the three urban classes, which were distinguished only by
percentage of vegetation. Technically, it was beyond the methods employed in this study to quantify
subpixel vegetation content. As a result, many high-intensity residential areas in the classified image
were assigned to low-intensity residential and commercial/transportation classes. This occurred
because high-intensity residential classes, which had a median percentage of vegetation, were easily
confused with lower-intensity and higher-intensity urban development.

Also, many problems were encountered with the interpretation of cropland and pasture/hay
since these classes had very similar spectral and spatial patterns that occurred within the same
agricultural areas. In addition, cropland was frequently converted to pasture/hay during the interval
of two acquisition dates, or vice versa. Confusion also existed within classes of evergreen forest

 

Table 7.2

 

Interpretation Team Organization

Interpreter Organization

 

Photo Interpreters

 

PI #1 (500 pts + 75 pts 
from PI #2 and 75 pts 
from PI #3

PI #2 (500 pts + 75 pts 
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PI #3 (500 pts + 75 pts from 
PI #1 and 75 pts from PI 
#2

 

PI supervisor

 

Random checking for consistency, checking 225 overlapped sites, sites with question 
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Project supervisor

 

Checking sites with question from PI supervisor, random checking of overall sites, 
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Project director

 

Procedure establishment, discussions on issues, random checking, overall QA/QC

 

Figure 7.3

 

Training, photo interpretation (PI), and quality assurance and quality control (QA/QC) procedures.
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and mixed forest, deciduous forest and mixed forest, barren ground and other grassland, low-
intensity residential and mixed forest, and transitional and all other classes. 

The difference between image classification and photo interpretation is that image classification
is mostly based on the spectral values of the pixels, whereas photo interpretation incorporates color
(tones), pattern recognition, and background context in combination. These issues are inherent in
any accuracy assessment project using aerial photos as the reference data (Ramsey et al., 2001).
For this project, however, aerial photos were the only reasonable reference data source.

The interpretation process is not the only component of the accuracy assessment process
(Congalton and Green, 1999). Additional factors that should be considered are positional and
correspondence error. To account for these errors, the following additional criteria for correct
classification were considered in this project: (1) primary matches classified pixel, (2) primary or
alternate matches classified pixel, (3) primary is most common in classified 3 

 

¥

 

 3 pixel areas, (4)
primary matches any pixel in a classified 3 

 

¥

 

 3 pixel area, (5) primary is most common in classified
3 

 

¥

 

 3 pixel area, and (6) primary or alternate matches any pixel in a 3 

 

¥

 

 3 pixel area. “Interpreted”
refers to the classes chosen during the aerial photo interpretation process, “primary” and “alternate”
are the most probable LC classes for a particular site, and “classified” refers to the MRLC
classification result for that site. The analysis results for each cover class in six cases are presented
in Table 7.5 and Table 7.6. The overall accuracies under various scenarios ranged from 44% to
79.4% (

 

n

 

 = 1473) for cases “a” and “f,” respectively.

 

Table 7.4

 

Error Matrix for the Level I MRLC Data

 

P
I 

R
es

u
lt

s 
MRLC data

1 2 3 4 8 9 Tot % Corr
1 87

 

3 10 0 2 6

 

108

 

0.81 87

 

2

 

0

 

188

 

9 4 38 4

 

243

 

0.77 188

 

3

 

1 12

 

134

 

21 8 9

 

185

 

0.72 134

 

4

 

1 46 45

 

227

 

30 39

 

388

 

0.59 227

 

8

 

1 43 78 21

 

207

 

12

 

362

 

0.57 207

 

9

 

8 6 24 18 4

 

127 187

 

0.68 127

 

Tot 98 298 300 291 289 197 1473
%

 

0.89 0.63 0.45 0.78 0.72 0.64

 

0.66
Corr

 

87 188 134 227 207 127

 

970

 

Table 7.5 Summary of Further Accuracy Analysis by Interpreted Cover Class: Number of Sites

Class No.

Primary PI
Matches
MRLC

Prim or Alt
Matches
MRLC

Primary PI
Is Mode of

3 ¥ 3

Primary PI
Matches

Any 3 ¥ 3

Prim or Alt
PI Is Mode

of 3 ¥ 3

Prim or Alt
PI Matches
Any 3 ¥ 3

1.1 108 87 95 84 92 94 100
2.1 155 47 69 60 81 124 135
2.2 19 10 11 8 11 15 16
2.3 69 32 39 35 41 44 49
3.1 69 33 35 27 30 34 42
3.2 38 34 36 34 36 35 37
3.3 78 33 44 33 42 40 52
4.1 99 46 55 60 68 79 83
4.2 61 34 39 44 48 52 54
4.3 228 62 98 68 110 148 187
8.1 103 28 39 27 38 46 64
8.2 128 57 82 56 83 83 102
8.5 131 41 61 33 53 56 91
9.1 96 43 53 47 59 68 84
9.2 91 60 68 58 67 67 74

Totals 1473 647 824 674 859 985 1170
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7.3.2 Issues and Problems

7.3.2.1 Heterogeneity

The heterogeneity of many areas caused confusion in assigning an exact class label to the sites.
Since the spatial resolution of the Landsat TM data was 30 ¥ 30 m, pixel heterogeneity was a
common problem (Plate 7.1a). For example, a site on the image frequently contained a mixture of
trees, grassland, and several houses. Thus, the reflectance of the pixel was actually a combination
of different reflectance classes within that pixel. This factor contributed to confusion between
evergreen forest and mixed forest, deciduous forest and mixed forest, low-intensity residential and
other grassland, and transitional and several classes.

7.3.2.2 Acquisition Dates

Temporal discrepancies between photograph and image acquisition dates, if not reconciled,
would negatively affect the classification accuracy (Plate 7.1b). For example, to interpret early
forest growth areas, the interpreter had to decide whether the site was a transitional or a forested
area. If the photograph was acquired before the image (e.g., as much as 6 years earlier), it was
clear that those early forest growth sites would show up as forest cover on the satellite image. In
this case, the interpreters decided the appropriate cover class based on satellite imagery. 

7.3.2.3 Location Errors

Locating the reference site on the photo was sometimes problematic. This frequently occurred
when: (1) the LC had changed between the image and photo acquisition dates, (2) there were few
clearly identifiable features for positional reference, and (3) the reference site was on the border
of two or more classes (boundary pixel problem). When the LC had changed between acquisition
dates, locating reference sites was difficult because the features surrounding the reference site were
also changed. Similarly, when a reference site fell in an area with few identifiable features for
positional reference, the interpreter had to approximate the location of the reference site. For

Table 7.6 Summary of Further Accuracy Analysis by Interpreted Cover Class: Percentage of Sites for 
Each Class

Class Percentage

Primary PI
Matches
MRLC

Prim or Alt
PI Matches

MRLC

Primary PI
Is Mode of

3 ¥ 3

Primary PI
Matches

Any 3 ¥ 3

Prim or Alt
PI Is Mode

of 3 ¥ 3

Prim or Alt
PI Matches
Any 3 ¥ 3

1.1 100.0 80.6 88.0 77.8 85.2 87.0 92.6
2.1 100.0 30.3 44.5 38.7 52.3 80.0 87.1
2.2 100.0 52.6 57.9 42.1 57.9 78.9 84.2
2.3 100.0 46.4 56.5 50.7 59.4 63.8 71.0
3.1 100.0 47.8 50.7 39.1 43.5 49.3 60.9
3.2 100.0 89.5 94.7 89.5 94.7 92.1 97.4
3.3 100.0 42.3 56.4 42.3 53.8 51.3 66.7
4.1 100.0 46.5 55.6 60.6 68.7 79.8 83.8
4.2 100.0 55.7 63.9 72.1 78.7 85.2 88.5
4.3 100.0 27.2 43.0 29.8 48.2 64.9 82.0
8.1 100.0 27.2 37.9 26.2 36.9 44.7 62.1
8.2 100.0 44.5 64.1 43.8 64.8 64.8 79.7
8.5 100.0 31.3 46.6 25.2 40.5 42.7 69.5
9.1 100.0 44.8 55.2 49.0 61.5 70.8 87.5
9.2 100.0 66.3 73.9 63.0 72.8 72.8 80.4

Total
Percentage

100.0 44.0 55.9 45.7 58.3 66.8 79.4
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example, when the reference site was on the shadowy side of a mountain, it was impossible to see
the reference features except the ridgeline of the mountain; thus, the interpreter was required to
locate the reference site based on the approximate distance to and the direction of the ridgeline.
The third case was the most common source of confusion in the interpretation process. Reference
sites were frequently on the border of two or more classes. In these situations, the interpreter

Plate 7.1 (See color insert following page 114.) (a) Heterogeneity problem: reference site consists of
several classes. (b) LC class changed between acquisition dates in reference site. (c) Ambiguity
of class definitions; it is difficult to differentiate between high-density and commercial class
according to definition.

B&W Aerial Photo LANDSAT TM Image

LANDSAT TM ImageCIR Aerial Photo

LANDSAT TM ImageCIR Aerial Photo

(a)

(b)

(c)
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decided between two or more classes by determining which class covered the majority of the 3 ¥ 3
pixel window.

7.4 FURTHER RESEARCH 

The results of this study point to numerous opportunities for further research to improve
accuracy assessment methods for regional scale assessments, including: (1) examining the impact
of alternate classes in the accuracy assessment, (2) evaluating and analyzing the effect of positional
errors on accuracy assessment, (3) collecting field data for the 225 overlapping sample sites to
validate the interpretation, and (4) analyzing satellite data with a higher temporal resolution to
better identify changes between the acquisition of TM data and NAPP photography (e.g., using
NOAA-AVHRR and MODIS data).
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APPENDIX A

MRLC Classification Scheme and Class Definitions

The MRLC program utilizes a consistent classification scheme for all EPA regions at approx-
imately an Anderson Level II thematic detail. While there are 21 classes in the MRLC system, only
15 were mapped in EPA Region IV. The following classification scheme was applied to the EPA
Region IV data set:

1.0 Water: All areas of open water or permanent ice/snow cover.
1.1 Water: All areas of open water, generally with less than 25% vegetation.

2.0 Developed: Areas characterized by a high percentage of construction materials (e.g., asphalt,
concrete, buildings, etc.).
2.1 Low-intensity residential: Land includes areas with a mixture of constructed materials and

vegetation or other cover. Constructed materials account for 30 to 80% of the total area.
These areas most commonly include single-family housing areas, especially suburban neigh-
borhoods. Generally, population density values in this class will be lower than in high-
intensity residential areas.

 2.2 High-intensity residential: Includes heavily built-up urban centers where people reside.
Examples include apartment complexes and row houses. Vegetation occupies less than 25%
of the landscape. Constructed materials account for 80 to 100% of the total area. Typically,
population densities will be quite high in these areas.

2.3 High-intensity commercial/industrial/transportation: Includes all highly developed lands not
classified as “high-intensity residential,” most of which is commercial, industrial, and
transportation.

3.0 Barren: Bare rock, sand, silt, gravel, or other earthen material with little or no vegetation regardless
of its inherent ability to support life. Vegetation, if present, is more widely spaced and scrubby
than that in the vegetated categories.
3.1 Bare Rock/Sand: Includes areas of bedrock, desert pavement, scarps, talus, slides, volcanic

material, glacial debris, beach, and other accumulations of rock and/or sand without vege-
tative cover.

3.2 Quarries/strip mines/gravel pits: Areas of extractive mining activities with significant surface
expression.

3.3 Transitional: Areas dynamically changing from one land cover to another, often because of
land use activities. Examples include forestlands cleared for timber and may include both
freshly cleared areas as well as areas in the earliest stages of forest growth.

4.0 Natural forested upland (nonwet): A class of vegetation dominated by trees generally forming >
25% canopy cover.
4.1 Deciduous forest: Areas dominated by trees where 75% or more of the tree species shed

foliage simultaneously in response to an unfavorable season.
4.2 Evergreen forest: Areas dominated by trees where 75% or more of the tree species maintain

their leaves all year. Canopy is never without green foliage.
4.3 Mixed forest: Areas dominated by trees where neither deciduous nor evergreen species

represent more than 75% of the cover present.
5.0 Herbaceous planted/cultivated: Areas dominated with vegetation that has been planted in its current

location by humans and/or is treated with annual tillage, modified conservation tillage, or other
intensive management or manipulation. The majority of vegetation in these areas is planted and/or
maintained for the production of food, fiber, feed, or seed.
5.1 Pasture/hay: Grasses, legumes, or grass-legume mixtures planted for livestock grazing or

the production of seed or hay crops.
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5.2 Row Crops: All areas used for the production of crops such as corn, soybeans, vegetables,
tobacco, and cotton.

5.3 Other grasses: Vegetation planted in developed settings for recreation, erosion control, or
aesthetic purposes. Examples include parks, lawns, and golf courses.

6.0 Wetlands: Nonwoody or woody vegetation where the substrate is periodically saturated with or
covered with water. 
6.1 Woody wetlands: Areas of forested or shrubland vegetation where soil or substrate is

periodically saturated with or covered with water.
6.2 Emergent herbaceous wetlands: Nonwoody vascular perennial vegetation where the soil or

substrate is periodically saturated with or covered with water. 

Note:  Cover class types 5.0, 6.0, and 7.0 did not occur in federal geographic Region 4.
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8.1 INTRODUCTION

 

Australia’s first National Greenhouse Gas Inventory (NGGI) suggested that agricultural clearing
could represent as much as a quarter of Australia’s total greenhouse gas emissions (DOEST, 1994).
The Agricultural Land Cover Change (ALCC) project was undertaken by the Bureau of Rural
Sciences (BRS) and eight Australian state government agencies to document rates of deforestation
and reforestation (1990/1991–1995) for the purpose of improving estimates of greenhouse gas
emissions (Barson et al., 2000). For this study, woody vegetation was defined as all vegetation,
native or exotic, with a height 

 

≥

 

 2 m and a crown cover density of 

 

≥

 

 20% (McDonald et al., 1990).
This was the definition of “forest” agreed to by state and commonwealth agencies for Australia’s
National Forest Inventory (NFI) and the definition used for Australia’s NGGI (NGGI, 1999). The
definition includes vegetation usually referred to as forest (50–100% crown cover), as well as
woodlands (20–50% crown cover) and plantations (silvaculture operations), but not open woodlands
where crown cover is < 20%. Woodlands occupy 112.0 

 

¥

 

 10

 

6

 

 ha, followed by forests (43.6 

 

¥

 

 10

 

6

 

ha) and plantations (1.0 

 

¥

 

 10

 

6

 

 ha) (NFI, 1998).
The project documented both increases and decreases in woody vegetation over the period

1990/1991–1995 for the intensive land-use (LU) zone (Figure 8.1). Decreases or clearing were
defined as the removal of woody vegetation resulting in a crown cover of < 20%. Increases in
woody vegetation (usually due to tree planting) result in a crown cover that exceeds 20%). The
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intensive LU zone comprises some 288 

 

¥

 

 10

 

6

 

 ha, representing approximately 38% of the Australian
continent, and is where most land clearing has taken place. Outside this zone in the Australian
outback, the land-cover (LC) is disturbed but relatively intact (Graetz et al., 1995). The project
produced change maps for 156 pairs of Thematic Mapper (TM) scenes, which showed that clearing
for agriculture and development activities over the study period totaled approximately 1.2 

 

¥

 

 10

 

6

 

ha (308,000 ha/year). The results indicated that more than 80% of the clearing for agriculture was
taking place in the state of Queensland (Figure 8.2) and that the annual rates of clearing for the
continent were almost 210,000 ha, or 40% lower than the figures compiled for the first NGGI.

 

Figure 8.1

 

Study area for the agricultural land-cover change for the Australian continent 1990/91–1995 project.

 

Figure 8.2

 

Distribution of clearing (ha) of woody vegetation from 1990/91–1995 for agriculture, grazing, and
development in Australia.
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Clearing is a sensitive issue politically in Australia because of its impact on biodiversity
conservation, greenhouse gas emissions, and land and water salinization. In most states, farmers
are now required to apply for a permit before clearing vegetation. Because this study represented
the first major operational use of remotely sensed data in Australia, there was substantial interest
in the reliability of the LC change estimates. 

Traditionally, accuracy assessment of data sets derived from satellite imagery involves compar-
ing them against an independent or reference source of information assumed to be correct (i.e.,
aerial photographs). However, no suitable data were available for our 288 

 

¥

 

 10

 

6

 

-ha study area. The
limited existing aerial photography had already been used in the quality assurance process, which
required that every change pixel identified be checked against another data source (Kitchin and
Barson, 1998). Additionally, for most of the 156 TM scene pairs, LC change was a rare event; over
96% of the scenes had less than 3% of their area affected by change (Figure 8.3).

A methodology that did not require a reference data set and could be applied to change data
produced using a variety of approaches to image processing and radiometric calibration (Table 8.1)
had been developed by Lowell (2001) to evaluate the LC change maps produced for the ALCC
project by the state agencies. This chapter reports on the application of Lowell’s method and on
the reliability of the estimates of change produced for the Australian ALCC project.

 

Figure 8.3

 

Percentage of land-cover change by Thematic Mapper (TM) image (all causes).

 

Table 8.1

 

Land-Cover Change Detection Methods Used for Each State

State Method

 

NSW Unsupervised classification of combined 1991 and 1995 images
NT Band 5 subtraction of 1990 and 1995 images
QLD Thresholding of band 2, 5, and NDVI difference images
SA Unsupervised classification (150 classes) of combined 1990 and 1995 images
TAS Thresholding of NDVI difference data
VIC Unsupervised classification of combined 1990 and 1995 images to create woody, 

nonwoody, woody increase, and woody decrease
WA Combined 1990 and 1995 images and carried out canonical variant analysis 

based on biogeographic regions to identify suitable indices and bands to classify 
land-cover change
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8.2 METHODS

 

Lowell’s method produces an area-based, independent estimate of change for which confidence
intervals can be calculated; the estimates of change derived from image analysis are then compared
against these confidence intervals. The method uses 500- 

 

¥

 

 500-pixel sample units (Figure 8.4)
selected for each change image in a two-stage procedure to ensure that a minimum number (

 

n

 

) of
samples containing change are included. First, sample units are selected containing change areas
(increase or decrease), proportional to the amount of change across the image. The remaining
sample units are then selected according to a spatially distributed random sample without replace-
ment. Lowell demonstrated that 33 samples were required to obtain stable confidence intervals for
TM scenes in which change was relatively rare (i.e., approximately 0.13% of the scene). The 

 

n

 

could be reduced to 22 for scenes where change was more common (i.e., approximately 2.5%)
(Lowell, 1998). Following sample unit selection, the area of change (increase or decrease in woody
vegetation) was estimated for each sample using image enhancement techniques such as unsuper-
vised classification or by displaying band differences or differences among various combinations
of bands. Confidence intervals for woody vegetation changes were then calculated for the indepen-
dent estimates of change made for each scene. These were then compared with the amount of
change reported for the scene by the corresponding state agency. 

Lowell’s method was applied to the ALCC results within a spatial hierarchy to enable analysis
of variations in LC change at multiple resolutions (i.e., study area, state, TM scene, and sample
unit). Approximate 

 

z

 

-score values were calculated using the state estimates of change, the overall
sample estimate, and the individual sample results. Significance levels for the 

 

z

 

-scores were cal-
culated and compared for both the overall and individual sample unit results. Approximate confi-
dence intervals (95%) for the estimated proportion of change were also compared to the overall
state estimate. Dual assessment criteria (Jupp, 1998) were implemented to consider both the overall
scene results and the individual sample results; the state change estimates for a scene were only
accepted as reliable when both the overall and individual sample 

 

z

 

-scores were not significantly
different. Preparation of the grid for sample units was automated by writing a program to determine
the areal extent of each change image and to establish a grid of nonoverlapping 500- 

 

¥

 

 500-pixel
sample units.

 

Figure 8.4

 

Sampling strategy for estimating land-cover change (increase plus decrease in woody vegetation)
for a TM (Thematic Mapper) image.
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The BRS obtained 156 change images from state agencies and calculated the total change
(woody vegetation) for each image. Due to resource limitations, it was decided that only half the
scenes in the study area would be assessed. Scenes containing only a small percentage of landmass
were excluded, leaving 151 for possible assessment. Within each state, scenes were classified as
having “low” or “high” levels of change. A weighting program that took into account the amount
of change in each scene, the individual states’ overall contribution to Australia’s LC change, and
the methods used for change detection was used to select scenes for sampling. A total of 67 scenes
were selected for reliability assessment (Figure 8.3). 

Analysts who had not previously been involved in the project were selected through a compet-
itive tendering process to prepare the independent sample-based estimates of change for comparison
with the results produced by state agencies. The analysts were provided with coregistered TM
images for the 67 scenes, pixel coordinates for the upper left-hand corners for sample units within
scenes, and 1990/1991 LC maps showing the distribution of woody vegetation, but no LC change
information. They verified the image coregistration, and after some preliminary testing they calcu-
lated the normalized vegetation index (NDVI) for each image then subtracted the NDVI images
and displayed the difference image (Jensen, 1996). 

The NDVI difference image for each sample unit was examined at a range of threshold values
to determine the location of positive (increases in woody vegetation) and negative (decreases)
differences. These areas were checked in detail against the 1990/1991 and 1995 images and the
upper and lower thresholds for increases and decreases were recorded. A final classification of
change was performed using selected thresholds, and the change areas were checked against the
LC image. This ensured that only areas that were woody in 1990/1991 could be identified as a
“decrease” and those that were not woody in

 

 

 

1990/1991 as an “increase” in woody cover. The
analysis provided an estimate of the number of pixels of increase and decrease for each sample
unit in the image.

For quality assurance (QA) purposes, four to six sample units from half the images being
assessed were randomly sampled. Change for these sample units was assessed as described above,
but by different operators. Differences in interpretation were discussed and evaluated statistically
using a paired 

 

t

 

-test. A sample unit failed QA if the average of the differences found by two
operators was not the same. In this case the main operator reexamined all the sample units for the
image. The analysts provided BRS with a spreadsheet for each image containing the sample
locations and the number of pixels of increase and decrease for each sample in the image, plus
notes on any other areas of possible change identified. The BRS implemented an automatic analysis
to evaluate the differences between the state estimate of change and those provided by the consult-
ants. For scenes where the state’s and the analyst’s estimates of change differed substantially, the
BRS investigated the possible reasons. The approximate spatial distribution of the change in the
state change map was also examined to determine whether a lack of acceptance was due to highly
localized changes difficult to sample effectively using the current method.

The investigation of lack of acceptance included inspecting the state’s sources of information
used for initial checking of the change (i.e., aerial photography, other satellite imagery, or field
data) (Kitchin and Barson, 1998). Discrepancies were forwarded to respective states for advice on
likely reasons for such differences. If no reason could be identified (e.g., where severe drought had
led to leaf drop so that spectrally the area appeared to have been cleared, but ground inspection
showed that it had not), the scene was reprocessed by the analysts.

 

8.3 RESULTS

 

In the first assessment, 60 of 67 scenes met the acceptance criteria described above. The seven
noncompliant scenes were forwarded to the states for comment, and a new set of 500- 

 

¥

 

 500-pixel
sample units was generated for reprocessing these scenes. On reprocessing, five additional scenes
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met the acceptance criteria (Table 8.2). Of the remaining two scenes, one contained a significant
proportion of change due to fire on rocky hillsides that was difficult to map from the image without
additional photo interpretation. The second also contained changes due to fire and the loss of native
vegetation followed by plantation establishment. These changes were difficult to detect without
local knowledge and ancillary data. 

Further analyses of change maps were undertaken to estimate the variability in overall state
and continental estimates of change, and change estimates within each state. The analyst and state
results provide a spatial hierarchy in which change proportions and variability could be estimated
(Figure 8.5). The overall mean proportions and variability were estimated for the change scenes.
Approximate 95% confidence intervals for the means were calculated at each of the levels and
were used to identify any significant differences between the estimates at each of the levels. In
most cases, the mean change proportions estimated from the consultant’s process provided values
well within the 95% confidence interval estimated by the states (Table 8.3). The only exceptions
were two scenes from Queensland with mean change estimates in excess of the confidence interval
estimated by the state. Although the analyst’s process provided lower mean change proportion
estimates than those of the state, the two estimates of variability were generally similar. The
continental estimates were within the 95% confidence interval, although the state estimate of
continental change was 1.3% vs. the analyst’s lower estimate of 0.9%. The variability of the state
estimate was lower (0.2%) than that of the estimate provided by the consultant’s process (0.3%).
Table 8.4 summarizes the mean and variability of change for the spatial hierarchy. It shows that
the variability estimates from the analyst’s results are greater than those from the state at comparable
levels. The ranges of means for the change proportions were consistently lower for the analyst’s
results, but not statistically different. Our results indicated that the states’ results were the most
accurate, as was evidenced by the relatively small confidence intervals.

Of the 67 scenes evaluated, 90% were determined acceptable after initial processing and 97%
after additional processing. This high level of acceptance provided confidence in the results of the
ALCC project. The total potential error in LC change estimates across Australia is shown in Table

 

Table 8.2

 

Distribution of Scenes for Independent Assessment

State
Total Number of

Scenes in Study Area
Scenes

Assessed
Scenes

Reprocessed
Scenes Meeting

Acceptance Criteria 

 

New South Wales including 
Australian Capital 
Territory

37 10 2 9

Northern Territory 10 3 0 3
Queensland 53 22 0 22
South Australia 17 11 3 10
Tasmania 5 3 1 3
Victoria 16 9 0 9
Western Australia 18 9 1 9
Total 156 67 7 65

 

Figure 8.5

 

Estimation hierarchy from the state’s and analyst’s results sets.
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8.5. If the interpretation that 10% of the change scenes failed is correct (even though an additional
7% passed with reprocessing) and the error on the failing change scenes is as high as 30%, the
difference in LC change is only 3%. It would be surprising if the error were as high as this, since
no scenes failed for the state with the largest amount (> 80%) of clearing (Queensland). Thus, the
error was likely to be distributed among the states having the least amount of change.

 

8.4 DISCUSSION AND CONCLUSIONS

 

The goal of this study was to provide an independent evaluation of the reliability of the estimates
made by state agencies of LC change in Australia from 1990/1991–1995. Traditional approaches

 

Table 8.3 Comparative Analysis for State’s and Analyst’s Sample Unit 

 

Change Maps

State Source Mean
Standard
Deviation

95% Confidence
Interval

 

New South Wales State 0.003864 0.007294 0–0.018160
Analyst 0.001831 0.008726 0–0.018935

Northern Territory State 0.000644 0.000478 0–0.001579
Analyst 0 0 0

Queensland State 0.011593 0.012670 0–0.036427
Analyst 0.011075 0.025121 0–0.060313

South Australia State 0.012995 0.014141 0–0.040712
Analyst 0.005625 0.027887 0–0.060284

Victoria State 0.013600 0.019658 0–0.052130
Analyst 0.006055 0.029289 0–0.063462

Tasmania State 0.039160 0.026792 0–0.091672
Analyst 0.014050 0.026977 0–0.066925

Western Australia State 0.032650 0.026897 0–0.085369
Analyst 0.020183 0.061761 0–0.141235

Continental estimate State 0.012898 0.018069 0–0.048313
Analyst 0.008903 0.032335 0–0.072279

 

Note:

 

Differences between state’s and analyst’s estimates were not significant
(

 

p

 

 = 0.05) for any state shown.

 

Table 8.4

 

Comparative Analysis for State’s and Analyst’s Sample Unit Change Maps

Source Level Mean Range
Standard Deviation

Range

 

State change maps Continental 0.012898 0.018069
State 0.000644–0.039160 0.000478–0.026897
Scene 0–0.100215

Analysts Continental 0.008903 0.032335
State 0.001831–0.020183 0.008726–0.061761
Scene 0.000041–0.068090 0.000163–0.138222
Subsample 0–0.57344

 

Table 8.5 Potential Error in Land-Cover Change 
Estimates for Australia if 90% or 97% of Images 
Are Reliable and the Remaining 10% to 3% of 

 

Images Have Various Amounts of Error

Error per Image 90% Correct 97% Correct

 

10% 1% 0.3%
20% 2% 0.6%
30% 3% 0.9%
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for assessing the accuracy of LC product derived from remote sensor data were determined to be
inappropriate for an assessment of our LC change products because these methods require statis-
tically sufficient class representation (

 

n

 

) and relatively homogeneous distribution (CGC, 1994;
Congalton and Mcleod, 1994). In our study LC change was a relatively rare event and tended to
be concentrated in relatively few areas. Reference data to support a traditional accuracy assessment
approach were not available. 

The area-based method developed by Lowell (2001) was implemented to provide an independent
estimate of change for which confidence intervals were calculated. State estimates of change were
then compared against these confidence intervals to provided a means of evaluating the accuracy
of the state-produced LC change products. State estimates were within the established 95% confi-
dence intervals for 60 of the 67 scenes initially tested. The seven scenes that did not meet the
acceptance criteria were reprocessed and retested, and five were subsequently accepted. LC change
rates were underestimated by the analysts or overestimated by the states for the two scenes not
accepted. The method overcame the difficulties caused by the lack of suitable reference data. This
is likely to be a common difficulty in large-area studies of LC change. Suitable reference data will
rarely be available to match the multiple dates for LC change studies. Even when multiple-date
data are available, obtaining a “true” change map will be difficult, since the overlay of multiple-
date LC is likely to introduce error (Lowell, 2001).

We used an area-based sampling unit rather than a discrete sample-based approach because of
the relative rarity of woody vegetation change and the difficulty (and cost) of sampling enough
points across a change map to support a rigorous statistical assessment. Based on extensive testing
of the sample unit size, Lowell (2001) determined that the 500- 

 

¥

 

 500-pixel sample unit provided
stable estimates of the confidence intervals after relatively few sample units had been examined.
The present study demonstrated that a 500-pixel sample unit was a practical size for evaluation.
When sample unit location had been automated, one operator could evaluate a change map with
33 samples in approximately 10 h. The area-based reliability method provided a cost-effective
evaluation of the results of the ALCC project and represented only 3.5% of the total project budget.

Overall, the assessment demonstrated that the process of detecting LC change from TM data
provided repeatable and reliable results. Different change techniques and approaches to radiometric
calibration among individual states did not negatively affect results. Because LC change was a
relatively rare event, the area-based methodology had a considerable advantage over more traditional
point-based evaluation methods that require a large number of points (

 

n

 

) to support a rigorous
statistical analysis. The method is particularly useful when suitable reference data for testing the
change estimates are unavailable. 

Digital data sets and the final report are available on CD-ROM. Copies can be obtained from
the first two authors or downloaded (http://adl.brs.gov.au/ADLsearch/).

 

8.5 SUMMARY

 

Australia’s first NGGI identified that land clearing could be contributing as much as 25% of
Australia’s total greenhouse gas emissions. These figures were regarded as very uncertain, and a
collaborative project was undertaken with eight state agencies using TM imagery and other data
to document the rates of change in woody vegetation from 1990/1991–1995. The reliability of this
project’s results was assessed using a method developed by Lowell (2001) for this purpose.
Traditional methods of accuracy assessment were impractical given the large size of the study area,
the relative rarity of the change detected, and the lack of an appropriate reference data set. Lowell’s
method was implemented to provide an independent estimate of change against which state agency
estimates were compared. The reliability assessment demonstrated that the process of detecting
land-cover change from TM imagery was repeatable and provided consistent results across states.

 

L1443_C08.fm  Page 112  Saturday, June 5, 2004  10:26 AM



 

AUSTRALIAN AGRICULTURAL LAND-COVER CHANGE PROJECT 1990/91–1995 113

 

This approach may be useful in other environments where reference data suitable for checking
land-cover change are unavailable.
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9.1 INTRODUCTION

 

There is intense interest among federal agencies, states, and the public to evaluate environmental
conditions on community, watershed, regional, and national scales. Advances in computer technol-
ogy, geographic information systems (GIS), and the use of remotely sensed image data have provided
the first opportunity to assess ecological resource conditions on a number of scales and to determine
cross-scale relationships between landscape composition and pattern, fundamental ecological pro-
cesses, and ecological goods and services. Providing quantifiable information on the thematic and
spatial accuracy of land-cover (LC) data derived from remotely sensed sources is a fundamental step
in achieving goals related to performing large spatial assessments using space-based technologies.

Remotely sensed imagery obtained from Earth-observing satellites now spans three decades,
making possible the mapping of LC across large regions by the classification of satellite images.
However, the accuracy of these derived maps must be known as a condition of the classification.
Theoretically, the best reference data against which to evaluate classifications are those collected
on the ground at or near the time of satellite overpass. However, such data are rarely available for
retrospective multitemporal studies, thus mandating the use of alternative data sources. Accordingly,
the U.S. Environmental Protection Agency (EPA) has established a priority research area for the
development and implementation of methods to document the accuracy of classified LC and land
characteristics databases (Jones et al., 2000).

To meet the ever-growing need to generate reliable LC products from current and historical
satellite remote sensing data, the accuracy of derived products must be assessed using methods that
are both effective and efficient. Therefore, our objective was to demonstrate the viability of utilizing
new high-resolution digital orthophotography along with other airborne data as an effective sub-
stitute when historical ground-sampled data were not available. The achievement of consistent
accuracy assessment results using these diverse sources of reference data would indicate that these
techniques could be more widely applied in retrospective LC studies.

In this study, classification accuracies for four separate LC maps of the San Pedro River watershed
in southeastern Arizona and northeastern Sonora, Mexico (Figure 9.1) were evaluated using historical
aerial photography, digital orthophoto quadrangles, and high-resolution airborne video. Landsat
Multispectral Scanner (MSS) data (60-m pixels) were classified for the years 1973, 1986, and 1992.
Lastly, 1997 Landsat Thematic Mapper (TM) data (30-m pixels) were resampled to 60 m to match
the MSS resolution and classified. All data were analyzed at the Instituto del Medio Ambiente y el
Desarrollo Sustentable del Estado de Sonora (IMADES) in Hermosillo, Mexico. Map accuracy was
assessed by Lockheed-Martin (Las Vegas, Nevada) for 1973 and 1986 and at the University of
Arizona (Tucson, Arizona) for 1992 and 1997. This study incorporated previous accuracy assessment
methods developed for the San Pedro watershed by Skirvin et al. (2000) and Maingi et al. (2002).

 

9.2 BACKGROUND

9.2.1 Upper San Pedro Watershed Study Area

 

The study location comprised the upper watershed of the San Pedro River, which originates in
Sonora, Mexico, and flows north into southeastern Arizona. Covering approximately 7600 km

 

2

 

(5800 km

 

2

 

 in Arizona and 1800 km

 

2

 

 in Sonora, Mexico), this area represents the transition between
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the Sonoran and Chihuahuan deserts, and topography, climate, and vegetation vary substantially
across the watershed. Elevation ranges from 900 to 2900 m and annual rainfall ranges from 300
to 750 mm. Biome types include desertscrub, grasslands, oak woodland-savannah, mesquite wood-
land, riparian forest, and conifer forest, with limited areas of irrigated agriculture. Urban areas,
including several small towns and the rapidly growing U.S. city of Sierra Vista, are fringed by low-
density development that also occurs far from population centers. Numerous geospatial data sets
covering the upper San Pedro watershed can be viewed and downloaded at the U.S. Environmental
Protection Agency San Pedro Web site (USEPA, 2000).

 

9.2.2 Reference Data Sources for Accuracy Assessment

 

Aerial photography has long served in the creation of LC maps, both as a mapping base and
more recently as a source of higher-resolution reference data for comparison with maps produced
by classification of satellite imagery. Coverage for the conterminous U.S. at a scale of 1:40,000 is
available through the National Aerial Photography Program (NAPP) and is scheduled for update
on a 10-year, repeating cycle. Digital orthophoto quarter quadrangles (DOQQs) are produced from
the 1:40,000-scale NAPP or equivalent high-altitude aerial photography that has been orthorectified
using digital elevation models (DEMs) and ground control points of known location. A DOQQ
image pixel represents 1 m

 

2

 

 on the ground, permitting detection of landscape features as small as
approximately 2 m in diameter. However, the image analyst may need site visits and/or supple-
mentary higher-resolution images to visually calibrate for DOQQ-based LC interpretation.

Marsh et al. (1994) described the utility of airborne video data as a cost-effective means to
acquire significant numbers of reference data samples for classification accuracy assessment. In
that study, very similar classification accuracies were derived from airborne video reference data

 

Figure 9.1

 

Location of the upper San Pedro River watershed study area with shaded relief map.
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and from aerial color 35-mm reference photography acquired under the same conditions. With the
addition of Global Positioning System (GPS) coordinate data encoded directly onto the videotape
for georeferencing, sample points can be rapidly located for interpretation during playback.

 

9.2.3 Reporting Accuracy Assessment Results

 

The current standard for reporting results of classification accuracy assessment focuses on the
error or confusion matrix, which summarizes the comparison of map class labels with reference
data labels. Some easily computed summary statistics for the error matrix include overall map
accuracy, proportion correct by classes (user and producer accuracy), and errors of omission and
commission. Additional summary statistics usually include a Kappa (Khat) coefficient that adjusts
the overall proportion correct for the possibility of chance agreement (Congalton et al., 1983;
Rosenfield and Fitzpatrick-Lins, 1986; Congalton and Green, 1999). Although Kappa is widely
used, some authors have criticized its characterization of actual map accuracy (Foody, 1992). Ma
and Redmond (1995) proposed some alternatives to the Kappa coefficient, including a Tau statistic
that is more readily computed and easier to interpret than Kappa. Stehman (1997) reviewed a variety
of summary statistics and concluded that overall map accuracy and user and producer accuracies
have direct probabilistic interpretations for a given map, whereas other summary statistics must be
used with caution. The error matrix itself is recognized as the most important accuracy assessment
result when accompanied by descriptions of classification protocols, accuracy assessment design,
source of reference data, and confidence in reference sample labels (Stehman and Czaplewski,
1998; Congalton and Green, 1999; Foody, 2002). 

 

9.3 METHODS

 

Four LC maps for the upper San Pedro River Watershed (Plate 9.1) were generated using 1973,
1986, and 1992 North American Landscape Characterization (NALC) project MSS data (Lunetta
et al., 1993) and the 1997 TM data. All images were coregistered and georeferenced to a 60- 

 

¥

 

 60-
m Universal Transverse Mercator (UTM) ground coordinate grid with a nominal geometric precision
of 1 to 1.5 pixels (60 to 90 m).

 

9.3.1 Image Classification

 

The same LC classes (

 

n

 

 = 10) were used to develop all four maps (Table 9.1). Vegetation cover
classes represented very broad biome-level categories of biological organization, similar to the
ecological formation levels as described in the classification system for biotic communities of North
America (Brown et al., 1979). The classes included forest, oak woodland, mesquite woodland,
grassland, desertscrub, riparian, agriculture, urban, water, and barren and were selected after direct
consultation with the major land managers and stakeholder groups within the San Pedro watershed
in Arizona and Mexico (Kepner et al., 2000). Most of the watershed was covered by grassland,
desert scrub, and mesquite and oak woodland (Table 9.2).

The classification process for each data set began with an unsupervised classification using the
green, red, and near-infrared spectral bands to produce a map with 60 spectrally distinct classes.
The choice of 60 classes was based on previous experience with NALC data that usually gave a
satisfactory trade-off between the total number of classes and the number of mixed classes. In this
context, it proved helpful to define a set of 21 intermediate classes, which were easier to relate to
the spectral information. For example, the barren class contained bare rock, chalk deposits, mines,
tailing ponds, etc., that had unique spectral signatures. Each class was then displayed over the false-
color image and assigned to one of the LC categories or to a mixed class. 
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Interactive manipulation of spectral signatures for each class permitted many of the mixed
classes to be resolved.

 

 

 

The remaining mixed classes were separated into different categories using
a variety of ancillary information sources, such as topographic maps produced by the Mexican
National Institute of Statistics, Geography and Information (INEGI) (1:50,000 scale) and the U.S.
Geological Survey (1:24,000 scale). The ancillary information used depended on the image being
analyzed; for example, classification of the 1992 image relied heavily on field visits to establish
ground control. Five 3-day site visits were conducted from September 1997 to June 1998 to enable
analysts to collect specific LC data with the aid of GPS equipment.

 

9.3.2 Sampling Design

 

Because available reference data only partially covered the study area, pixels within each map
were not equally likely to be selected for sampling; thus, a trade-off between practical constraints
and statistical rigor was necessary (Congalton and Green, 1999). Sample points were selected using
a stratified random sampling design, stratified by LC area for each of the four accuracy assessments.
Reference data covering the Mexican portion of the study area were not available. The number of
sample points was calculated using the following equation based on binomial probability theory
(Fitzpatrick-Lins, 1981):

where 

 

N

 

 = number of samples, 

 

p

 

 = expected or calculated accuracy (%), 

 

q

 

 = 100 – 

 

p

 

, 

 

E

 

 = allowable
error, and 

 

Z

 

 = standard normal deviate for the 95% two-tail confidence level = 1.96.
For the lowest expected map accuracy of 60% with an allowable error of 5%, 369 sample points

were required. Under area-stratified sampling, rare classes of small total area (i.e., water and barren)
would not be sampled sufficiently to detect classification errors, so the minimum sample size was

 

Plate 9.1 

 

(See color insert following page 114.) 1973, 1986, 1992 and 1997 land-cover maps of the upper
San Pedro River watershed with key to classes.
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set to 20 where available (van Genderen and Lock, 1977). Work by Congalton (1991) and Congalton
and Green (1999) suggests that sample sizes derived from multinomial theory are appropriate for
comparing class accuracies, with a minimum sample size of 50 per class; however, this goal was
not attainable for rare classes in this study.

After evaluation of selected sample points in each reference data set, an error matrix was con-
structed, comparing map class labels to reference data labels for each LC classification. Overall map
accuracy and class-specific user and producer accuracies were calculated for each class. A Khat
(Cohen’s Kappa) and Tau (Ma and Redmond, 1995) were computed for the four error matrices,
followed by a significant difference test (Z-statistic) based on Khat values (Congalton and Green, 1999).

 

9.3.3 Historical Aerial Photography 

 

Reference data for the 1973 and 1986 LC maps were developed using aerial photography stereo
pairs covering the Arizona portion of the study area (1:40,000 scale). A team, including a photo

 

Table 9.1

 

Land-Cover Class Descriptions for the Upper San Pedro Watershed

 

Forest Vegetative communities comprised principally of trees potentially over 10 m in height and 
frequently characterized by closed or multilayered canopies. Species in this category are 
evergreen (with the exception of aspen), largely coniferous (e.g., ponderosa pine, pinyon 
pine), and restricted to the upper elevations of mountains that arise off the desert floor.

Oak Woodland Vegetative communities dominated by evergreen trees (

 

Quercus 

 

spp.) with a mean height 
usually between 6 and 15 m. Tree canopy is usually open or interrupted and singularly 
layered. This cover type often grades into forests at its upper boundary and into semiarid 
grassland below.

Mesquite 
Woodland

Vegetative communities dominated by leguminous trees whose crowns cover 15% or more 
of the ground, often resulting in dense thickets. Historically maintained maximum 
development on alluvium of old dissected flood plains; now present without proximity to 
major watercourses. Winter deciduous and generally found at elevations below 1200 m.

Grassland Vegetative communities dominated by perennial and annual grasses with occasional 
herbaceous species present. Generally grass height is under 1 m and they occur at 
elevations between 1100 and 1700 m, sometimes as high as 1900 m. This is a landscape 
largely dominated by perennial bunch grasses separated by intervening bare ground or 
low-growing sod grasses and annual grasses with a less-interrupted canopy. Semiarid 
grasslands are mostly positioned in elevation between evergreen woodland above and 
desertscrub below.

Desertscrub Vegetative communities comprised of short shrubs with sparse foliage and small cacti that 
occur between 700 and 1500 m in elevation. Within the San Pedro river basin this community 
is often dominated by one of at least three species (i.e., creosotebush, tarbush, and 
whitethorn acacia). Significant areas of barren ground devoid of perennial vegetation often 
separate individual plants. Many desertscrub species are drought deciduous.

Riparian Vegetative communities adjacent to perennial and intermittent stream reaches. Trees can 
potentially exceed an overstory height of 10 m and are frequently characterized by closed 
or multilayered canopies depending on regeneration. Species within the San Pedro basin 
are largely dominated by two species: cottonwood and Goodding willow. Riparian species 
are largely winter deciduous.

Agriculture Crops actively cultivated and irrigated. In the San Pedro River basin these are primarily found 
along the upper terraces of the riparian corridor and are dominated by hay and alfalfa. They 
are minimally represented in overall extent (less than 3%) within the basin and are irrigated 
by ground and pivot-sprinkler systems.

Urban (Low and
High Density)

This is a land-use dominated by small ejidos (farming villages or communes), retirement 
homes, or residential neighborhoods (Sierra Vista). Heavy industry is represented by a 
single open-pit copper mining district near the headwaters of the San Pedro River near 
Cananea, Sonora (Mexico).

Water Sparse free-standing water is available in the watershed. This category would be mostly 
represented by perennial reaches of the San Pedro and Babocomari rivers with some 
attached pools or repressos (earthen reservoirs), tailings ponds near Cananea, ponds near 
recreational sites such as parks and golf courses, and sewage treatment ponds east of the 
city of Sierra Vista, Arizona.

Barren A cover class represented by large rock outcropping or active and abandoned mines 
(including tailings) that are largely absent of above-ground vegetation.
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interpreter, an image processing specialist, a GIS specialist, and a statistician, conducted accuracy
assessments.  A preliminary study was conducted, using data collected during a field trip to the
study area, to evaluate the effectiveness and accuracy of using aerial photographs to discriminate
grassland, desertscrub, and mesquite woodland classes. These classes were particularly difficult to
distinguish on the aerial photographs.

 

9.3.3.1 Image Collection, Preparation, and Site Selection

 

Landsat MSS data registration and other data integrity issues were reviewed for the 1973 and
1986 maps. These efforts included checking projection parameters and visual alignment using GIS
data layers (i.e., roads, streams, digital raster graphics, and digital elevation models). Random
sample points were generated using DOQQs acquired in 1992 (1:25,000 scale), and individual
sample points were located on the aerial photographs using the DOQQs for accurate placement. A
180- 

 

¥

 

 180-m interpretation grid was generated and overlaid onto the LC maps.
Two mutually exclusive sets of sample points

 

 

 

were generated for both 1973 and 1986 maps.
The second set of sample points served as a pool of substitute points when no aerial photographs
were available for a sample point in the first set. Whenever possible, pixels selected as sample sites
represented the center of a 3 

 

¥

 

 3 pixel window representing a homogeneous cover type. For rare
classes (e.g., water), pixel sample points were chosen with at least six pixels in the window
belonging to the same class. A total of 813 reference samples were used to assess the 1973 (

 

n

 

 =
429) and 1986 (

 

n

 

 = 384) maps. Multiple dates of aerial photographs were used in assessment: June
1971 and April 1972 (1973 map) and June 1983, June 1984, and September 1984 (1986 map). 

 

9.3.3.2 Photograph Interpretation and Assessment

 

Photointerpreter training included using a subset of the generated sample points identified during
visits to the San Pedro watershed locations as interpretation keys. To avoid bias, photointerpreters
did not know what classifications had been assigned to sample points on the digital LC maps. To
locate the randomly chosen sample sites on the aerial photographs, the site locations were first
displayed on the DOQQ. Interpreters could then visually transfer the location of each site to the
appropriate photograph by matching identical spatial data such as roads, vegetation patterns, rock
outcrops, or other suitable features visible on the DOQQ and on the photograph. Each transferred
sample point was examined on stereoscopic photographs and identified using the definitions shown
in Table 9.1. LC categories for each sample point were recorded on a spreadsheet. A comment
column on the spreadsheet allowed the interpreter to enter any notes about the certainty or ambiguity
of the classification. The senior photointerpreter checked the accuracy of 10% of the sample point
locations and 15% of the spreadsheet entries to ensure completeness and consistency. All LC class
interpretations noted by a photointerpreter as “difficult” were classified by consensus opinion of
all the interpreters. 

 

9.3.4 Digital Orthophoto Quadrangles 

 

Approximately 60 panchromatic DOQQs acquired in 1992 for the U.S. portion of the study
area were available as reference data to evaluate the 1992 results. To obtain a precise geographic
matching between the DOQQs and the satellite-derived map, the 1992 source MSS image data
were geometrically registered to an orthorectified 1997 TM scene, and the resulting transformation
parameters were applied to the 1992 thematic map.

 

9.3.4.1 Interpreter Calibration

 

To effectively visualize conditions represented by the LC class descriptions (Table 9.1), Uni-
versity of Arizona and IMADES team members participated in a field visit to numerous sites in
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the San Pedro watershed study area, including areas that were intermediate between classes. The
analyst performing the 1992 assessment also reviewed high-resolution color airborne video data
for comparison with the appearance of LC classes in the DOQQs. The video data were acquired
over the watershed in 1995 and vegetation in selected frames at 1:200 scale was identified to species
or species groups (Drake, 2000). Image “chips” were extracted from the DOQQs as an aid to LC
class recognition in the reference data (Maingi et al., 2002).

 

9.3.4.2 Sample Point Selection

 

Generation of sample points from LC maps relied on a window majority rule. A window kernel
of 3 

 

¥

 

 3 pixels was moved across each cover class and resulted in selection of a sample point if a
majority of six of the nine pixels belonged to the same class. This ensured that points were extracted
from areas of relatively homogenous LC. A 180- 

 

¥

 

 180-m DOQQ sample size was used to match
the 3 

 

¥

 

 3 pixel map window and a map class was assigned and recorded for the DOQQ sample.
A total of 457 points were sampled to assess the 1992 map.

 

9.3.5 Airborne Videography

 

Accuracy assessment of the 1997 LC map was performed using airborne color video data
encoded with GPS time and latitude and longitude coordinates. The video data were acquired on
May 2 through May 5, 1997, and were therefore nearly coincident with the June Landsat TM scene.
There were 11 h of continuously recorded videography of the San Pedro Watershed for the area
north of the U.S.–Mexico border, acquired at a flying height of 600 m above ground level. The
nadir-looking video camera used a motorized 15

 

¥

 

 zoom lens that was computer controlled to cycle
every 12 sec during acquisition, with a full-zoom view held for 3 sec. The swath width at wide
angle was about 750 m and was approximately 50 m at full zoom. At full zoom, the ground pixel
size was about 7.0 cm and the frame was approximately 1:200-scale when displayed on a 13-inch
monitor. Although the nominal accuracy of the encoded GPS coordinates was only 100 m, ground
sampling revealed that average positional accuracy was closer to 40 m (McClaran et al., 1999;
Drake, 2000). The video footage was acquired by flying north–south transects spaced 5 km apart
and the total flight coverage encompassed a distance of nearly 2000 km. 

 

9.3.5.1 Video and GIS Data Preparation

 

The encoded GPS time and geographic coordinate data were extracted from the video into a
spreadsheet for each flight line. Coordinate data from the spreadsheets were used to create GIS
point coverages of frames from each flight line. Individual frames of the video data were identified
during viewing by a time display showing hours, minutes, and seconds, in addition to a counter
that numbered the 30 frames recorded per second. The time display information was included as
an attribute to the GIS point coverages, which were inspected for erroneous coordinate or time
data indicated by points that fell off the flight lines or were out of time sequence; such points
were deleted.

 

9.3.5.2 Video Sample Point Selection

 

To minimize the likelihood of video sample points falling on boundaries between cover classes,
selection of random sample points along the video flight lines was restricted to relatively homo-
geneous areas within classes. This was accomplished by applying a 3 

 

¥

 

 3 diversity or variety filter
to the 1997 map, which replaced the center pixel in a moving window by the number of different
data file values (cover classes) present in the window. Pixels assigned the value of one therefore
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represented centers of 180- 

 

¥

 

 180-m homogeneous areas on the map. Background, clouds, and
cloud-shadowed pixels were excluded to prevent the selection of pixels that fell at the edge of the
map, within openings in clouds, or in cloud-shadowed areas where the adjacent cover classes were
not known. 

Video flight line coverages were overlaid on the map of homogeneous cover, and a subset of
frames falling on homogeneous areas (

 

n

 

 = 4,567) was drawn from all study area frames (

 

n

 

 =
18,104). The map class under each subset frame was added as an attribute to the “candidate frames”
GIS point coverage for stratification purposes.

 

9.3.5.3 Random Frame Selection and Evaluation

 

Video sample points were drawn randomly from the homogeneous subset, stratified by map
class area, and were distributed throughout the Arizona portion of the study area. The water class
was excluded from analysis for lack of adequate reference data (

 

n

 

 = 6) and was not presented in
the final error matrix. A surplus of approximately 15% over the calculated minimum number of
frames needed for each cover class was selected. The videography interpreter was provided with
spreadsheet records containing the videotape library identifier, latitude, and longitude for each
sample frame, along with GPS time for frame location on the tape. A cover class was assigned to
each sample point and recorded in the spreadsheet.

Although the accuracy of video frame interpretation was not assessed in this study, it is expected
to be very high. Drake (1996) reported that LC identification of similar airborne videography at
the more detailed biotic community level averaged 80% accuracy after only 3 h of interpreter
training. The interpreter for this study had substantial prior experience in both video frame inter-
pretation and ground sampling for videography accuracy assessment in this region.

 

9.4 RESULTS 

9.4.1 Aerial Photography Method

 

Results of accuracy assessment are presented in Table 9.3 (1973) and Table 9.4 (1986). Overall
map accuracies were similar at 70% for 1973 and 68% for 1986. Khat and Tau statistics were also
similar at 0.62 and 0.59 (Khat), and 0.66 and 0.65 (Tau) for 1973 and 1986, respectively. The user’s
and producer’s accuracies were similar to overall accuracy for all except the mesquite woodland

 

Table 9.2 Upper San Pedro Watershed Land-Cover 
Classes: Absolute and Relative Areas; 
Representative Values from 1997 Land-

 

Cover Classification

Land-Cover Class Area (ha)
Proportion of 
Total Area (%)

 

Grassland 263,475 36
Desertscrub 229,571 31
Woodland Mesquite 101,559 14
Woodland Oak 90,540 12
Urban 16,562 2
Agriculture 14,530 2
Riparian 9,217 1
Forest 7,193 1
Barren 6,814 1
Water 417 <0.1
Total 739,878 100
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and barren classes, which showed substantially less than average accuracies in both years. The
water class in 1973 had very low accuracies of 25% (producer’s) and 10% (user’s) and could not
be assessed for 1986.

 

9.4.2 Digital Orthophoto Quadrangle Method

 

Accuracy assessment results are summarized in Table 9.5. Overall accuracy was about 75%,
with Khat of 0.70 and Tau of 0.72. The producer’s accuracy was 100% for four classes (forest,
urban, water, and barren), indicating that all pixels examined in the DOQQs for these classes were
correctly labeled in the 1992 map. The user’s accuracy was also high for forest and water classes
but was substantially less for urban and barren classes at 44 and 55%, respectively. Accuracies of
mesquite woodland and grassland classes were lower than those for other classes.

 

9.4.3 Airborne Videography Method

 

Overall 1997 map accuracy was 72%, with Khat of 65% and Tau of 68% (Table 9.6). A detailed
examination of results by cover class shows substantial variability in classification accuracy, with
producer’s accuracies ranging from 54 to 100% and user’s accuracies from 13 to 100%. For most
classes the two measures were roughly comparable and fell within the range of 60 to 90%.
Exceptions were the mesquite woodland class with accuracies around 50% and agriculture and
barren classes with relatively high producer’s accuracies (71 to 100%) but lower user’s accuracies
(13 to 21%).

 

Table 9.3 Error Matrix Comparing Aerial Photo Interpretation and 1973 Digital Land-Cover 

 

Classification, with Producer’s and User’s Accuracy by Class 

1973
Land-Cover

Class

 

Reference (Aerial Photo Interpretation Class)

1 2 3 4 5 6 7 8 9 10 Grand total

 

1 19 1 0 0 0 0 0 0 0 0 20
2 1 33 0 3 0 0 0 0 0 0 37
3 0 1 16 1 0 2 0 0 0 0 20
4 0 0 13 92 21 0 0 0 1 1 128
5 0 0 14 11 96 0 0 0 0 1 122
6 0 0 3 0 2 15 0 0 0 0 20
7 0 0 3 0 7 1 10 0 0 1 22
8 0 0 0 2 5 0 0 13 0 0 20
9 0 0 4 3 6 0 1 0 3 3 20

10 0 0 0 2 15 0 0 0 1 2 20
Grand Total 20 35 53 114 152 18 11 13 5 8 429

 

Land-Cover Class
1973 Map

Total
Photointerpreter

Total
Number
Correct

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

 

1. Forest 20 20 19 95 95
2. Woodland Oak 37 35 33 94 89
3. Woodland Mesquite 20 53 16 30 80
4. Grassland 128 114 92 81 72
5. Desertscrub 122 152 96 63 79
6. Riparian Forest 20 18 15 83 75
7. Agriculture 22 11 10 91 45
8. Urban 20 13 13 100 65
9. Water 20 5 3 60 15

10. Barren 20 8 2 25 10
Total 429 429 299

 

Note:

 

Overall accuracy = 70%; Tau = 0.66; Cohen’s Kappa (Khat) = 0.62; standard error = 0.027.
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9.5 DISCUSSION

9.5.1 Map Accuracies

 

Statistics describing map accuracy were very similar among the four dates tested regardless of
differences in assessment methods and reference data. Overall map accuracies ranged from 67 to
75% and Tau values from 0.65 to 0.72. There were no statistically significant differences among
Khat values (0.61 to 0.70) for all possible date comparisons. 

One aspect of sampling that differed among the assessments was the application of homogeneity
standards to the context of map sample points. Selection was made from the center of uniform 3 

 

¥

 

3 pixel windows for the1973 and 1986 assessments, with an exception for rare cover classes requiring
only a majority of five or more pixels to match the center pixel. All sample points were selected
from uniform 3 

 

¥

 

 3 windows in the 1997 assessment. In contrast, for the 1992 assessment, a map
class label was assigned as the majority of six or more pixels within a 3 

 

¥

 

 3 window centered on
the sample point. Although a positive bias may have been introduced by sampling only in homo-
geneous areas (Hammond and Verbyla, 1996), this effect was not apparent in results presented here. 

 

9.5.2 Class Confusion

 

For all dates evaluated the producer’s and user’s accuracies tended to be similar to the overall
classification accuracies and ranged between 61 and 100%. Generally low classification accuracies
were expected in a spatially heterogeneous setting such as the San Pedro watershed, where cover
types were distributed in a patchy fashion across the landscape due to climatic and edaphic effects

 

Table 9.4 Error Matrix Comparing Aerial Photo Interpretation and 1986 Land-Cover 

 

Classification, with Producer’s and User’s Accuracy by Class 

1986
Land-Cover

Classes

 

Reference (Aerial Photo Interpretation Class)

1 2 3 4 5 6 7 8 10 Grand Total

 

1 19 1 0 0 0 0 0 0 0 20
2 3 35 0 1 0 0 0 0 0 39
3 0 0 17 3 19 0 1 0 2 42
4 0 0 12 77 12 0 1 0 2 104
5 0 0 8 13 74 0 0 0 0 95
6 0 0 0 1 1 19 2 0 0 23
7 0 0 1 4 3 2 9 1 0 20
8 0 0 0 5 3 0 0 13 0 21

10 0 0 3 10 7 0 0 0 0 20
Grand Total 22 36 41 114 119 21 13 14 4 384

 

Land-Cover Class
1986 Map

Total
Photointerpreter

Total
Number
Correct

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

 

1. Forest 20 22 19 86 95
2. Woodland Oak 39 36 35 97 90
3. Woodland Mesquite 42 41 17 42 41
4. Grassland 104 114 77 68 74
5. Desertscrub 95 119 74 62 78
6. Riparian Forest 23 21 19 91 83
7. Agriculture 20 13 9 69 45
8. Urban 21 14 13 93 62

10. Barren 20 4 0 0 0
Total 384 384 263

 

Note:

 

Overall accuracy = 68%; Tau = 0.65; Cohen’s Kappa (Khat) = 0.61; standard error = 0.029.
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and land-use practices. Classes mapped with lower than average accuracy included the small-area
agriculture, urban, water, and barren classes and the widespread mesquite woodland class. Factors
likely to have contributed to class confusions included: (1) LC changes between the dates of image
and reference data (especially for the 1973 and 1986 maps), (2) high spatial variability within
classes (including areas dominated by soil background reflectance), (3) variable interpretations of
class definitions by independent assessment teams, and (4) errors in reference data interpretation.
Geometric misregistration did not appear to be a factor in the results presented here.

The agriculture class had higher producer than user accuracies for all dates and was most
frequently confused with riparian, desertscrub, and mesquite woodland classes. The spatial distribu-
tion of agricultural areas in the watershed essentially outlined the riparian corridors, contributing to
mixed pixel spectral response and classification confusion. There may have been difficulty in distin-
guishing fallow and abandoned agricultural fields from adjacent desertscrub and mesquite woodland,
since the spectral response of these cover types was generally dominated by soil background. 

The urban class included low-density settlement on both sides of the border. Low-density
development was difficult to distinguish from surrounding cover types even at the DOQQ scale,
suggesting the possibility of error in both maps and reference data. The accelerating pace of
development in the watershed, particularly in Arizona, may have contributed to cover changes
occurring between the dates of imagery and reference data.

The water class had the smallest area and was likely to have changed between the dates of
images and reference data, due to the ephemeral nature of most surface water in this semiarid
environment. For example, the 1973 NALC scene was acquired after a high-rainfall, El Niño–South-
ern Oscillation (ENSO) event during the winter of 1972–73 and portrayed wetter conditions than

 

Table 9.5 Results of DOQQ-Based Accuracy Assessment of 1992 Land-Cover Classification: 

 

Error Matrix and Producer’s and User’s Accuracy by Class 

1992
Land-Cover

Classes

 

Reference (Digital Orthophoto Quads)

1 2 3 4 5 6 7 8 9 10 Grand Total

 

1 22 2 0 0 0 0 0 0 0 0 24
2 0 44 0 3 1 0 0 0 0 0 48
3 0 2 40 9 10 1 0 0 0 0 62
4 0 6 12 68 17 0 0 0 0 0 103
5 0 1 8 11 89 0 0 0 0 0 109
6 0 0 0 0 0 20 3 0 0 0 23
7 0 0 1 0 0 4 18 0 0 0 23
8 0 0 2 1 10 0 1 11 0 0 25
9 0 0 1 0 0 0 0 0 19 0 20

10 0 0 0 7 2 0 0 0 0 11 20
Grand Total 22 55 64 99 129 25 22 11 19 11 457

 

Land-Cover Class
1992 Map

Total
DOQQ
Total

Number
Correct

Producer’s
Accuracy (%)

User’s 
Accuracy (%)

 

1. Forest 24 22 22 100 92
2. Woodland Oak 48 55 44 80 92
3. Woodland Mesquite 62 64 40 63 65
4. Grassland 103 99 68 69 66
5. Desertscrub 109 129 89 69 82
6. Riparian Forest 23 25 20 80 87
7. Agriculture 23 22 18 82 78
8. Urban 25 11 11 100 44
9. Water 20 19 19 100 95

10. Barren 20 11 11 100 55
Total 457 457 342

 

Note:

 

Overall accuracy = 75%; Tau = 0.72; Cohen’s Kappa (Khat) = 0.70; standard error = 0.025.

 

L1443_C09.fm  Page 126  Saturday, June 5, 2004  10:28 AM



 

ASSESSING THE ACCURACY OF SATELLITE-DERIVED LAND-COVER CLASSIFICATION 127

 

reference aerial photography acquired in 1971 and 1972 (Easterling et al., 1996; NOAA, 2001).
The water class was not evaluated in 1986 and 1997 assessments due to insufficient representation
in reference data.

The barren class was mapped with poor accuracy overall, including 0% correct in 1986. This
class was most often confused with mesquite woodland, grassland, and desertscrub. These classes
generally have sparse vegetation cover, with many image pixels dominated by soil or rock spectral
responses, and were difficult to distinguish from truly barren areas at the MSS 60-m pixel size. A
total of 38% of samples interpreted as barren on reference aerial photography from 1971 and 1972
were mapped as water in 1973; this was probably due to the interannual variations in precipitation
mentioned above.

The mesquite woodland class may be interpreted as an indicator of landscape change in the
San Pedro Watershed (Kepner et al., 2000, 2002). Conversion of many grassland areas to shrub
dominance during the last 120 years is well documented for this region (Bahre, 1991, 1995; Wilson
et al., 2001), and these change detection results were of potential interest to many researchers.
However, both user and producer accuracies of all four dates were generally low for mesquite
woodland (30 and 80%, respectively, for 1973 and 40 to 65% for other years). Class confusions
included all but the forest class, with especially large errors in the grassland and desertscrub classes.
This result may substantially reflect both the spatially and temporally transitional nature of the
class and differences in interpretation among the groups performing image classification and
accuracy assessment. Additionally, it was likely that neither the spectral nor the spatial resolution
of MSS imagery was adequate to distinguish the mesquite woodland class in a heterogeneous
semiarid environment, where most pixels are mixtures of green and woody vegetation, standing
litter, and soils of varying brightness (Asner et al., 2000). 

 

Table 9.6 Results of Video-Based Accuracy Assessment of the 1997 Land-Cover 

 

Classification: Error Matrix and User’s and Producer’s Accuracy by Class

1997
Land-Cover

Classes

 

Reference (Video Frame Data)

1 2 3 4 5 6 7 8 10 Grand Total

 

1 20 4 0 0 0 0 0 0 0 24
2 2 50 0 3 0 0 0 0 0 55
3 0 1 27 13 12 2 0 1 0 56
4 0 8 16 113 21 0 0 1 0 159
5 0 4 4 12 115 0 0 2 0 137
6 0 0 0 0 0 21 2 1 0 24
7 0 0 1 0 15 2 5 1 0 24
8 0 0 0 0 0 0 0 24 0 24

10 0 0 2 0 19 0 0 0 3 24
Grand Total 22 67 50 141 182 25 7 30 3 527

 

Land-Cover Class
1997 Map

Total
Video
Total

Number
Correct

Producer’s
Accuracy (%)

User’s Accuracy
(%)

 

1. Forest 24 22 20 91 83
2. Woodland Oak 55 67 50 75 91
3. Woodland Mesquite 56 50 27 54 48
4. Grassland 159 141 113 80 71
5. Desertscrub 137 182 115 63 84
6. Riparian 24 25 21 84 88
7. Agriculture 24 7 5 71 21
8. Urban 24 30 24 80 100
9. Water N/A N/A N/A N/A N/A

10. Barren 24 3 3 100 13
Total 527 527 378

 

Note:

 

Overall accuracy = 72%; Tau = 0.68; Cohen’s Kappa (Khat) = 0.65; standard error = 0.024.
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9.5.3 Future Research

 

Assessment of future LC classifications for the upper San Pedro area should incorporate some
measure of the reference data variability, perhaps also allowing a secondary class label (Zhu et al.,
2000; Yang et al., 2001). This may help to clarify the results for some cover classes. For example,
the low accuracies and class confusions associated with the mesquite woodland class may have
been due, in large part, to its gradational nature. If the interpreter would have been able to quantify
the confidence associated with reference point interpretations, there would not have been a need
to select sample points from homogeneous map areas, thus reducing the possibility of a positive
accuracy bias (Foody, 2002). Another useful tool for future San Pedro LC work is the map of all
sample points used in the accuracy assessment. Each point was attributed with geographic coordi-
nates and both map and reference data labels (Skirvin et al., 2000). These data could be applied
to generate a geographic representation of the continuous spatial distribution of LC errors (Kyri-
akidis and Dungan, 2001) to highlight especially difficult areas that should be field checked or
otherwise handled in the future.

 

9.6 CONCLUSIONS

 

The results discussed in this chapter indicate that historical aerial photography, DOQQ data,
and high-resolution airborne video data can be used successfully to perform classification accuracy
assessment on LC maps derived from historical satellite data. Archived aerial photographs may be
the only reference data available for retrospective analysis before 1992. However, their resolution
(1:40,000 scale for NAPP data) often makes this task difficult. Successful use of DOQQ data
requires precise geometric registration of the LC map to allow the overlay of orthorectified DOQQs.
The use of georeferenced high-resolution airborne videography as a proxy for actual ground
sampling in accuracy assessment provided the best method for current reference data development
in the San Pedro watershed. The advantages include: (1) cost-effective collection of a statistically
meaningful number of sample points, (2) effective control of coordinate locational error, and (3)
variable-scale videography that permits the identification of specific plant species or communities
of interest. Additionally, the videography provides a clear depiction of cultural features and land-
use activities. The main limitation of this method is that data are collected along predetermined
flight paths, thus constraining the sampling frame design.

 

9.7 SUMMARY

 

Because the rapidly growing archives of satellite remote sensing imagery now span decades,
there is increasing interest in the study of long-term regional LC change across multiple image
dates. However, temporally coincident ground-sampled data may not be available to perform an
independent accuracy assessment of the image-derived LC map products. This study explored the
feasibility of utilizing historical aerial photography, DOQQs, and high-resolution airborne color
video data to assess the accuracy of satellite-derived LC maps for the upper San Pedro River
watershed in southeastern Arizona and northeastern Sonora, Mexico. Satellite image data included
Landsat Multi-Spectral Scanner (MSS) and Landsat Thematic Mapper (TM) data acquired over an
approximately 25-year period. Four LC classifications were performed using three dates of MSS
imagery (1973, 1986, and 1992) and one TM image (1997). The TM imagery was aggraded from
30  to 60 m to match the coarser MSS pixel size. 

A stratified random sampling design was incorporated with samples apportioned by LC area,
using a minimum sample size of 

 

n

 

 = 20 for rare classes. Results indicated similar map accuracies

 

L1443_C09.fm  Page 128  Saturday, June 5, 2004  10:28 AM



 

ASSESSING THE ACCURACY OF SATELLITE-DERIVED LAND-COVER CLASSIFICATION 129

 

were obtained using the three alternative methods. Aerial photography provided reference data to
assess the 1973 and 1986 LC maps with overall classification accuracies of 70% (1973) and 67%
(1986). Assignments of class labels to sample points on 1992 reference DOQQs were verified by
comparison with higher-resolution airborne video data, with overall 1992 map classification accu-
racy of 75%. Accuracy assessment of the 1997 products used contemporaneous airborne color
video data and resulted in an overall map accuracy of 72%. There was no evidence of positive bias
in accuracy resulting from use of homogeneous vs. heterogeneous pixel contexts in sampling the
LC maps.

The use of historical aerial photography, high-resolution DOQQs, and airborne videography as
a proxy for actual ground sampling for satellite image classification accuracy has merit. Selection
of a reference data set for this study depended on the date of image acquisition. For example, prior
to 1992, historical aerial photographs were the only data available. DOQQs covered the period
since initiation of the high-resolution NAPP in 1992, and high-resolution airborne videography
provided a cost-effective means of acquiring many reference sample points near the time of image
acquisition. Problems that were difficult to avoid included inadequate sampling of rare classes and
reconciling cover changes between acquisition dates of aerial photography or DOQQs and satellite
image data. Other issues, including the need for consistent geometric rectification and criteria for
mutually exclusive and reproducible LC class descriptions, need special attention when satellite
image classification and subsequent LC map accuracy assessment are performed by different teams.
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10.1 INTRODUCTION

 

Over the past decade a number of programs have been undertaken to create definitive data sets
of processed satellite imagery that encompass national and global coverage at specific acquisition
epochs. Initial initiatives included the Multi-Resolution Land Characteristics (MRLC), the North
American Landscape Characterization (NALC), and the GEOCover programs (Loveland and Shaw,
1996; Sohl and Dwyer, 1998; Dykstra et al., 2000). Subsequent initiatives have been spawned to
generate information layers from these data sets, including the National Land Cover Data (NLCD)
layer (Vogelmann et al., 2001). It is recognized that a quantitative assessment to characterize product
accuracies is needed to support their acceptance and application by the general scientific community
(Zhu et al., 2000). An “ideal” accuracy assessment methodology for large-area products would
meet the following objectives: it would (1) provide an estimation of classification confidence, (2)
effectively characterize spatial variations in accuracy, (3) have the ability to be implemented
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coincident with the classification process (feedback mechanism), (4) be consistent and repeatable,
and (5) be sufficiently robust in design to support subsequent change detection assessments.

The most common approach to classification assessment is through the analysis of confusion
matrices (Congalton, 1991). In this approach product classifications for a statistically robust number
of samples (

 

n

 

) are compared with “reference” data derived from an independent source (e.g.,
interpretation of aerial photography). The cost of “reference” data acquisition represents a signif-
icant challenge. This results in numerous limitations, which include: (1) only a small fraction of
the area of interest is used in the assessment process, (2) the content of a single confusion matrix
is used to characterize the accuracy of diverse areas (Zhu et al., 2000); (3) rare classes are frequently
underrepresented (

 

n

 

), and (4) accuracy characterization is limited to “macroscopic” levels (i.e.,
overall product and individual class levels).

Cost and logistics preclude highly detailed accuracy characterization based solely on conven-
tional ground reference data, and therefore one must investigate complementary, albeit indirect,
methods of accuracy assessment. This chapter describes an assessment strategy based on classifi-
cation consistency. For most land resources satellites (e.g., Landsat), extensive image overlap occurs
between scenes from adjacent World Reference System (WRS) frames. For a given adjacent
path/row pair, each scene provides a quasi-independent classification estimate of those pixels
resident in the overlap region. Intuitively, we would expect the level of classification agreement,
hereafter referred to as classification consistency, to be indicative of the absolute levels of classi-
fication accuracy (i.e., high levels of consistency should be associated with high levels of classifi-
cation accuracy).

The objectives here are to (1) establish a statistical link between classification consistency and
both user’s and producer’s accuracies, (2) develop an integrated accuracy assessment strategy to
quantify classification consistency and hence infer classification confidence, and (3) illustrate and
assess this approach using synoptic land-cover (LC) products. 

 

10.2 LINK BETWEEN CLASSIFICATION CONSISTENCY
AND ACCURACY

 

To develop the statistical relationship between classification consistency for user’s and pro-
ducer’s accuracies, consider the case of two adjacent scenes, hereafter referred to as scenes number
1 and 2. If each scene is independently classified to a common scheme, the overlap region can be
used to quantify the classification consistency. For example, the consistency of class A in scene
number 1 can be written as:

(10.1)

where C

 

1A

 

 = the consistency, defined as the fraction of overlap pixels classed as A in scene number
1 that are also classed as A in scene number 2, M = the number of classes, P

 

kTA

 

 = the probability
that a pixel of true class T is labeled as class A in scene number k, and N

 

T

 

 = number of true class
T pixels in the overlap region. Note that P

 

kTT

 

 is the producer accuracy of class T in scene k.
The user accuracy for scene number 1

 

A

 

 will be equal to the ratio of the number of correctly
classified class A pixels to the total number labeled as A:

(10.2)
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The restricted two-class scenario (i.e., classes A and B) provides useful insights for those classes
within a larger class mix whose labeling accuracy is limited primarily by pairwise class confusion.
In this case, Equation (10.1) reduces to:

C

 

1A

 

 = [f P

 

1AA

 

 P

 

2AA

 

 + P

 

1BA

 

 P

 

2BA

 

 ]/[f P

 

1AA

 

 + P

 

1BA

 

 ] (10.3)

where f is the ratio of numbers of true class A to true class B pixels. That is:

f = N

 

A

 

/N

 

B

 

(10.4)

It can be seen that consistency is a function not only of the producer accuracies but also the relative
class proportions. Similarly, user accuracy can be expressed as a function of producer accuracy
and f. For example:

Q
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 = f P

 

1AA

 

/[f P

 

1AA

 

 + P

 

1BA

 

 ] (10.5)

If the two classifications are derived from similar data sources (e.g., scenes from the same sensor),
each scene will typically exhibit similar producer accuracies (i.e., P

 

1AA

 

 = P

 

2AA

 

 = P

 

AA

 

, etc.). In this
instance, consistency and user accuracy will be the same for each scene:
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and
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 = Q
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] (10.7)

We have examined the relationships of consistency and user’s accuracy as functions of pro-
ducer’s accuracy and f for a range of parameters applicable to the Laurentian Great Lakes region
in which LC has been classed as either forest or nonforest. Producer’s accuracies in the range 0.5
to 1 need only be considered since 0.5 corresponds to random class assignment. Also, for this level
of stratification, we would expect high producer’s accuracy performance (e.g., > 0.8 with Landsat
Multispectral Scanner (MSS) data). Finally, in the Great Lakes region, f varies dramatically from
approximately 0.1 in the agricultural south to 10 in the north for forested land and vice versa for
unforested land.

Figure 10.1 and Figure 10.2 illustrate the relationships of consistency and user accuracy with
producer’s accuracy, respectively, for f values ranging from 0.1 to 10 and a nominal class B
producer’s accuracy of 0.8. These results are typical of a range of realistic cases. From an inspection
of these plots we can draw a number of conclusions: (1) both consistency and user’s accuracy
increase monotonically with producer’s accuracy, suggesting that consistency is an indicator of
classification accuracy performance and (2) consistency and user’s accuracy exhibit similar sensi-
tivities to f. We hypothesize that consistency can be employed as a “surrogate” of user’s accuracy
to monitor variations in accuracy at scene-level spatial scales.

 

10.3 USING CONSISTENCY WITHIN A CLASSIFICATION METHODOLOGY

 

Our approach for applying consistency measures is dependent on the specific algorithms and
methodologies employed for our study area. The following discussion addresses key aspects of our
Great Lakes LC methodology and how they incorporate consistency and address our accuracy
objectives. Figure 10.3 illustrates the overall data processing flow.
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• Each Landsat scene is independently classified and composited with other scenes to generate a
final large-area LC product. This approach was labor intensive and is suitable primarily for synoptic
mapping (i.e., categorization into a few broad classes). However, it did have a number of important
practical advantages: image information content could be thoroughly exploited, and consistency
analyses were undertaken on each scene by comparing its classification with those of its nearest
four neighbours (cross- and along-track). Thus, regional variations in classification accuracy, arising
from interscene quality differences and spatial diversity in class proportions, were monitored at
the scene level.

• Scene classification was achieved through unsupervised spectral clustering (K-means algorithm,
150 clusters), followed by cluster labeling. For synoptic mapping (i.e., < 10 classes), each class
was described by a number of clusters (5–50). Cluster-based classification had some important
ramifications for accuracy considerations, including: (a) the true “unit of classification” was the
cluster, since it was at this level that label decision-making occurs; (b) since each class was
represented by a number of clusters, we did not expect that the labeling of each cluster would be
equally reliable; and (c) if consistency was evaluated at the cluster level and not at the “conventional”

 

Figure 10.1

 

Relationship of classification consistency as a function of producer’s accuracy for a range of class
proportions (f). The four cases shown span the range of forested and nonforested class proportions
encountered in scenes of the Laurentian Great Lakes watershed.

 

Figure 10.2

 

User’s accuracy as a function of producer’s accuracy for a range of class proportions (f). The four
cases shown spanned the range of forested and nonforested class proportions encountered in
scenes of the Laurentian Great Lakes watershed.
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class level, it provided a better model of “microscopic” aspects of user’s accuracy and an accuracy
estimate closer to the individual pixel level than conventional class-level assessment methods.

• Accuracy assessment was undertaken during the LC product generation process. Interscene clas-
sification comparison identified potentially mislabeled clusters, since these exhibited low classifi-
cation consistency levels. The statistical foundation for “grading” cluster label quality is described
elsewhere (Guindon and Edmonds, 2002). Suspect clusters were then revisited and relabeled before
the scene classifications were composited into the final product.

• Consistency played a pivotal role in the classification compositing process. Consistency can be
viewed as an indicator of the “confidence” that can be assigned to the accuracy of the class label.
For overlap regions, relative consistency was used to select the most likely correct classification
if two or more scenes predicted conflicting class labels. Additionally, net consistency or confidence
was accumulated during compositing, leading to a confidence overlay sampled at the pixel level
for the final product. This layer encapsulated (1) parent cluster confidence, (2) the spatial distri-
bution of available image data, and (3) interscene information agreement where multiple scene
coverage was available. As such, it provided a valuable ancillary product both for accuracy
assessment and to support postproduction interpretation activities.

 

10.4 GREAT LAKES RESULTS

 

The classification and accuracy assessment methodologies outlined above were implemented
using QUAD-LACC (Guindon, 2002). Here we will illustrate example outputs relevant to the
accuracy components. These processing examples were drawn from the creation of two synoptic
LC products of the mid-1980s and early 1990s NALC epochs. Each was sampled at 6" (longitude)

 

Figure 10.3

 

Schematic diagram illustrating the processing flow used in the Laurentian Great Lakes land-cover
mapping initiative. Classification consistency was used both to check individual scene classifications
and in the classification and compositing process to rationalize multiple classifications in overlap
regions and to generate a classification confidence layer.
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by 4" (latitude), or approximately 140 m, and included four general cover classes (i.e., water, forest,
urban or developed, and other nonforest land). For illustrative purposes, here we stratified the cover
classes into two categories (i.e., forest vs. nonforest).

A total of 5300 reference sites were identified within extended regions of thematically homo-
geneous cover based on supporting evidence from aerial photography interpretation and topographic
map inspection. They represented the spectral dispersion of each class. Since each Landsat scene
encompassed 100 to 150 sites, the classification labels of pixels within five-by-five-pixel neighbor-
hoods of each site were analyzed to derive estimates of producer’s accuracy. These estimates were
optimistic, since pixels near interclass boundaries were not included, and should not be viewed as
a measure of accuracy in the absolute sense.

 

10.4.1 Variation of Consistency among Clusters of a Given Class

 

Classification consistency analysis was undertaken on a scene once it and its immediate neigh-
boring scenes had been classified. The scenes from adjacent paths were most important since they
provided the greatest overlap and were not temporally correlated to the central scene. Using QUAD-
LACC, consistency evaluations were performed at the cluster level with each cluster assigned an
integral consistency measure of 0.0 to 10.0 corresponding to a range of classification agreement
of 0.0 to 100%. As an example, we use the case of scene 16/29 from the 1990s epoch. The LC of
this scene was approximately equally divided between forest and nonforest classes, with the forest
class encompassing a total of 52 clusters. An analysis of the two cross-track overlap regions (i.e.,
with scenes 15/29 and 17/29) indicated that 76.4% of 710,610 overlap pixels classed as forested
in scene 16/29 were also labeled as forest in one of the cross-track neighboring scenes, leading to
an overall class measure of 8.0. For the hypothesis that all clusters were equivalent in terms of
consistency, we estimated the approximate dispersion in cluster consistency measures from binomial
theory (Thomas and Allcock, 1984). Assuming equal pixel populations per cluster, the predicted
1-sigma spread in consistency among clusters should be only ± 0.05% (i.e., practically all clusters
should exhibit a consistency measure of 8.0). Figure 10.4 shows the spread in observed consistency
measures for the clusters of scene 16/29. Note that the histogram contained 104 entries, since each
overlap region provided an independent measure estimate for each cluster. The observed distribution
was much broader than predicted by the binomial model, indicating that there is a significant spread
in classification quality among clusters and, hence, added accuracy information was available at
the cluster level.

 

Figure 10.4

 

Histogram of consistency levels for forest clusters of scene 16/29. The dispersion among values
is indicative of the broad differences in classification “quality” among member clusters within a
given class.
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10.4.2 Aspects of Scene-Based Consistency Overlays

 

Once a final classification was obtained for a given scene, a “confidence” overlay was produced
wherein the confidence value of each pixel corresponded to the consistency level of its parent
cluster. Example results are shown in Figure 10.5 for the 1980s path/row scene 17/29. Figure 10.5
illustrates the three primary classes (i.e., water [dark], nonforested land [medium grey], and forested
[white]). Figure 10.6 shows an enlargement of the confidence layer of the central portion of Figure
10.5. The confidence range 0.0 to 10.0 was presented as a grey-level scale from black to white.
The following points are worthy of note: (1) Water was easily recognized, and hence the central
portions of most water bodies exhibited a high, uniform confidence level. (2) Pixels along interclass
boundaries, such as the edges of lakes or forest patches, tended to be of low confidence (Figure
10.6). They are members of clusters containing primarily “mixed” pixels and therefore have a low
accuracy. (3) Forested areas exhibited a slightly higher average confidence than nonforested areas.
This is related to the fact that this scene has more forest than nonforest cover. Consequently, the
population of pixels classed as forest will contain a relatively lower proportion of commission
errors, resulting in a corresponding higher level of interscene classification consistency.

 

10.4.3 Aspects of the Accumulated Confidence Layer

 

Figure 10.7 and Figure 10.8 illustrate a portion of a three-class LC product and accompanying
confidence overlay respectively. The interscene overlap regions are readily distinguishable in Figure
10.8 by their higher levels of accumulated confidence. In these regions significant confidence
variations still arise, either from conflicting classifications or information loss in one of the con-
stituent scenes because of cloud contamination (e.g., in central Michigan). Finally, in Figure 10.7
there are data gaps, appearing as nearly horizontal black lines, that arise because of along-track
data loss during the preprocessing steps of resolution reduction and haze removal (Guindon and
Zhang, 2002).

 

Figure 10.5

 

Land-cover classification of a portion of scene 17/29. Three classes are shown: water (dark), non-
forest land (medium grey), and forest (white). 
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Figure 10.6

 

Confidence overlay, derived from cluster consistency analyses, for the central quadrant of the
classification where brightness is proportional to confidence. 

 

Figure 10.7

 

Three-class (water [dark], nonforest [medium grey], and forest [white]) land-cover product of the
central portion of the Laurentian Great Lakes watershed. 
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10.4.4 Relationship of Accumulated Confidence and User’s Accuracy

 

The data set of 5300 five-by-five-pixel reference sites was used to investigate the relationship
between accumulated confidence and user’s accuracy. For each pixel, the appropriate reference
class was compared to the assigned class of the final LC product.

Confusion matrices were generated for pixels grouped according to number of contributing
scenes and accumulated confidence. User’s accuracies of both the forested and nonforested classes
were computed for each matrix. Figure 10.9 shows the relationship of user’s accuracy vs. accumu-

 

Figure 10.8

 

Accumulated confidence layer for the classification where brightness is proportional to confidence.
On the consistency scale described in the text, numerical values range from 0.0 to 10.0 in
nonoverlapping regions and 0.0 to 40.0 in regions where up to four individual scenes contribute
classification estimates.

 

Figure 10.9

 

Plot of user’s accuracy vs. accumulated confidence for forested and nonforested reference sites
located in areas where two scene classifications were available. The results indicated that classi-
fication confidence based on consistency monotonically increases with increasing user’s accuracy
and therefore is a useful indicator of the latter. 
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lated confidence for those pixels whose classification was determined based on two scenes. The
monotonic relationship between these variables confirms the earlier statistical arguments that
consistency is a legitimate “surrogate” of user’s accuracy.

 

10.5 CONCLUSIONS

 

Multiple-scene LC products can be expected to exhibit significant internal variations in user
accuracy. Detailed characterization of this variability was not feasible using conventional ground
reference sampling because of cost and logistics. However, the level of interscene classification
consistency provided an indirect “surrogate” measure and was used to gauge local accuracy. This
alternative approach was especially attractive for application with Landsat-based maps since exten-
sive overlap areas exist for adjacent orbital paths located in nonequatorial latitudes.

Consistency measures were effectively employed using a number of processing steps. First,
assessments were evaluated at the cluster level, thereby providing an estimation of performance at
the level of the labeling unit rather than only at the class level. Then, by analyzing the consistency
during the product generation phase, detection and correction of incorrectly labeled clusters was
accomplished prior to the creation of the final product, thereby improving its quality. Finally, within
the interscene overlap regions, consistency served as a “compositing” criterion to select an optimum
label and could be accumulated to encapsulate the added confidence associated with multiple
independent class estimations. 

 

10.6 SUMMARY

 

During the past decade, a number of initiatives have been undertaken to create systematic
national and global data sets of processed satellite imagery. An important application of these data
is the derivation of large geographic area (i.e., multiscene) LC products. These products exhibit
internal variations in information quality for two principal reasons. First, they have been assembled
from a multitemporal mix of satellite scenes acquired under differing seasonal and atmospheric
conditions. Second, intraproduct landscape diversity will lead to spatially varying levels of class
commission errors. Detailed modeling of these variations with conventional ground truth is pro-
hibitively expensive, and hence an alternative accuracy assessment method must be sought.

In this chapter we presented a method for confidence estimation based on the analysis of
classification consistency in regions of overlapping coverage between Landsat scenes from adjacent
orbital paths and rows. A LC mapping methodology has been developed that exploits consistency
evaluation to (1) improve scene-based classification performance, (2) support the integration of
scene classifications through compositing, (3) provide a detailed confidence characterization of the
final product, and (4) conduct postgeneration accuracy assessment. This methodology was imple-
mented within a prototype mapping system, QUAD-LACC, to derive synoptic LC products of the
Laurentian Great Lakes watershed. It should be noted that others researchers have suggested using
overlap regions to assess the accuracy of landscape metrics (Brown et al., 2000).
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11.1 INTRODUCTION

 

Thematic data derived from remotely sensed imagery lie at the heart of a plethora of environ-
mental models at local, regional, and global scales. Accurate thematic classifications are therefore
becoming increasingly essential for realistic model predictions in many disciplines. Remotely
sensed information and resulting classifications, however, are not error free, but carry the imprint
of a suite of data acquisition, storage, transformation, and representation errors and uncertainties
(Zhang and Goodchild, 2002). The increased interest in characterizing the accuracy of thematic
classification has promoted the practice of computing and reporting a set of different, yet comple-
mentary, accuracy statistics all derived from the confusion matrix (Congalton, 1991; Stehman,
1997; Congalton and Green, 1999; Foody, 2002). Based on these accuracy statistics, users of
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remotely sensed imagery can evaluate the appropriateness of different maps on their particular
application and subsequently decide to retain one classification vs. another.

Accuracy statistics, however, express different aspects of classification quality and consequently
appeal differently to different people, a fact that hinders the use of a single measure of classification
accuracy (Congalton, 1991; Stehman, 1997; Foody, 2002). Recent efforts to provide several mea-
sures of map accuracy based on map value (Stehman, 1999) constitute a first attempt to address
this problem, but in practice map accuracy is still communicated in the form of confusion-matrix-
based accuracy statistics. The confusion matrix, and all derived accuracy statistics, however, is a
regional (location-independent) measure of classification accuracy: it does not pertain to any pixel
or subregion of the study area. For example, user’s accuracy denotes the probability that any pixel
classified as forest is actually forest on the ground. In this case, all pixels classified as forest have
the same probability of belonging to that class on the ground, a fact that does not allow identification
of pixels or subregions (of the same class) that warrant additional sampling. A new sampling
campaign based on this type of accuracy statistic would just place more samples at pixels allocated
to the class with the lower user’s accuracy measure, irrespective of the location of these pixels and
their proximity to known (training) pixels. In other words, confusion-matrix-based accuracy assess-
ment has no explicit spatial resolution; it only has explicit class resolution.

In this chapter, we capitalize on the fact that conventional (hard) class allocation is typically
based on the probability of class occurrence at each particular pixel calculated during the classifi-
cation procedure. Maps of such posterior probability values portray the spatial distribution of
classification quality and are extremely useful supplements to traditional accuracy statistics (Foody
et al., 1992). As opposed to confusion-matrix-based accuracy assessment, such maps could identify
pixels of the same category where additional sampling is warranted, based precisely on a measure
of uncertainty regarding class occurrence at each particular pixel. 

Evidently, the above classification uncertainty maps will depend on the classification algorithm
adopted. Conventional classifiers typically use the information brought by reflectance values (fea-
ture vector) collocated at the particular pixel where classification is performed. In some cases,
however, classes are not easily differentiated in the spectral (feature) space, due to either sensor
noise or to the inherently similar spectral responses of certain classes. Improvements to the above
classification procedures could be introduced in a variety of ways, including geographical stratifi-
cation, classifier operations, postclassification sorting, and layered classification (Hutchinson, 1982;
Jensen, 1996; Atkinson and Lewis, 2000). The above methods enhance the classification procedure
by introducing, explicitly or implicitly, contextual information (Tso and Mather, 2001). Within this
contextual classification framework, one of the most widely used avenues of incorporating ancillary
information is that of pixel-specific prior probabilities (Strahler, 1980; Switzer et al., 1982). 

Along these lines, we propose a simple, yet efficient, method for modeling pixel-specific context
information using geostatistics (Isaaks and Srivastava, 1989; Cressie, 1993; Goovaerts, 1997).
Specifically, we adopt indicator kriging to estimate the conditional probability that a pixel belongs
to a specific class, given the nearby training pixels and a model of the spatial correlation for each
class (Journel, 1983; Solow, 1986; van der Meer, 1996). These context-based probabilities are then
combined with conditional probabilities of class occurrence derived from a conventional (noncon-
textual) classification via Bayes’ rule to yield posterior probabilities that account for both spectral
and spatial information. Steele (2000) and Steele and Redmond (2001) used a similar approach
based on Bayesian integration of spectral and spatial information, the latter being derived using
the nearest neighbor spatial classifier. In this work, we also use Bayes’ rule to merge spatial and
spectral information, but we use the indicator kriging classifier that incorporates texture information
via the indicator covariance of each class. De Bruin (2000) and Goovaerts (2002) also adopted
similar approaches using indicator kriging but did not link them to contextual classification. This
research extends the above approaches in a formal contextual classification framework and illus-
trates their use for mapping thematic classification uncertainty.
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Once posterior probabilities of class occurrence are derived at each pixel, they can be converted
to classification accuracy values. In this chapter, we distinguish between classification uncertainty
and classification accuracy: a measure of classification uncertainty, such as the posterior probability
of class occurrence, at a particular pixel does not pertain to the allocated class label at that pixel,
whereas a measure of classification accuracy pertains precisely to the particular class label allocated
at that pixel. We propose a simple procedure for converting posterior probability values to classi-
fication accuracy values, and we illustrate its application in the case study section of this chapter
using a realistically simulated data set. 

 

11.2 METHODS

 

Let denote a categorical random variable (RV) at a pixel with 2D coordinate vector
 within a study area 

 

A

 

. The RV  can take 

 

K

 

 mutually exclusive and exhaustive
outcomes (realizations): , which might correspond to 

 

K

 

 alternative land-
cover types. In this chapter, we do not consider fuzzy classes, i.e., we assume that each pixel 

 

u

 

 is
composed only of a single class and do not consider the case of mixed pixels.

Let  denote the probability mass function (PMF) modeling uncer-
tainty about the 

 

k

 

-th class 

 

c

 

k

 

 at location . In the absence of any relevant information, this

probability  is deemed constant within the study area 

 

A

 

, i.e., . For the set

of 

 

K

 

 classes, these 

 

K

 

 probabilities are typically estimated from the class proportions based on a

set of 

 

G

 

 training samples  within the study area 

 

A

 

, as ,

where  if pixel belongs to the 

 

k

 

-th class, 0 if not (superscript  denotes transposition).

In a Bayesian classification framework of remotely sensed imagery, these 

 

K

 

 probabilities
 are termed 

 

prior probabilities

 

, because they are derived before the remote sensing
information is accounted for.

 

11.2.1 Classification Based on Remotely Sensed Data

 

Traditional classification algorithms, such as the maximum likelihood (ML) algorithm, update
the prior probability  of each class by accounting for local information at each pixel  derived
from reflectance data recorded in various spectral bands. Given a vector 
of reflectance values at a pixel 

 

u

 

 in the study area, an estimate of the conditional (or posterior)
probability  for a pixel 

 

u

 

 to belong to the 

 

k

 

-th class can be
derived via Bayes’ rule as:

(11.1)

where  denotes the class-

conditional multivariate likelihood function, that is, the PDF for the particular spectral combination

 to occur at pixel 

 

u

 

, given that the pixel belongs to class 

 

k

 

. In the

denominator,  denotes the unconditional (mar-

ginal) PDF for the same spectral combination  to occur at the same pixel. For a particular
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pixel 

 

u

 

, this latter marginal PDF is just a normalizing constant (a scalar). It is common to all 

 

K

 

classes (i.e., it does not affect the allocation decision), and it is typically computed as

, to ensure that the sum of the resulting 

 

K

 

 conditional

probabilities  is 1. The final step in the classification procedure is

typically the allocation of pixel 

 

u

 

 to the class  with the largest conditional probability:

, which is termed 

 

maximum a posteriori

 

 (MAP)

selection.
In the case of Gaussian maximum likelihood (GML), the likelihood function is 

 

B

 

-variate
Gaussian and fully specified in terms of the (B 

 

¥

 

 1) class-conditional multivariate mean vector
 and the (B 

 

¥

 

 B) variance-covariance matrix
 of reflectance values. The exact form

of the likelihood function then becomes:

(11.2)

where  and  denote, respectively, the determinant and inverse of the class-conditional
variance-covariance matrix . 

In many cases, there exists ancillary information that is not accounted for in the classification
procedure by conventional classifiers. One approach to account for this ancillary information is
that of local prior probabilities, whereby the prior probabilities  are replaced with, say, elevation-
dependent probabilities , where  denotes the elevation or slope value at pixel

 

u

 

. Such probabilities are location-dependent due to the spatial distribution of elevation or slope. 
In the absence of ancillary information, the spatial correlation of each class (which can be

modeled from a representative set of training samples) provides important information that should
be accounted for in the classification procedure. Fragmented classifications, for example, might be
incompatible with the spatial correlation of classes inferred from the training pixels. This charac-
teristic can be expressed in probabilistic terms via the notion that a pixel 

 

u

 

 is more likely to be
classified in class 

 

k

 

 than in class 

 

k’

 

, i.e., , if the information in the
neighborhood of that pixel indicates the presence of a 

 

k

 

-class neighborhood. This notion of context
is typically incorporated in the remote sensing literature via Markov random field models (MRFs);
see, for example, Li (2001) or Tso and Mather (2001) for details.

 

11.2.2 Geostatistical Modeling of Context

 

In this chapter, we propose an alternative procedure for modeling context based on indicator
geostatistics, which provides another way for arriving at local prior probabilities  given
the set of 

 

G

 

 class labels ; see, for example, Goovaerts (1997). Contrary
to the MRF approach, the geostatistical alternative: (1) does not rely on a formal parametric model,
(2) is much simpler to explain and implement in practice, (3) can incorporate complex spatial
correlation models that could also include large-scale (low-frequency) spatial variability, and (4)
provides a formal way of integrating other ancillary sources of information to yield more realistic
local prior probabilities.

Indicator geostatistics (Journel, 1983; Solow, 1986) is based on a simple, yet effective, measure
of spatial correlation: the covariance  between any two indicators  and  of
the same class separated by a distance vector , and is defined as:
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(11.3)

The indicator covariance  quantifies the frequency of occurrence of any two pixels of
the same category 

 

k

 

, found 

 

h

 

 distance units apart. Intuitively, as the modulus of vector 

 

h

 

 becomes
larger, that frequency of occurrence would decrease. Note that the indicator covariance is related
to the bivariate probability  of two pixels of the same 

 

k

 

-th category
being 

 

h

 

 distance units apart, and is thus related to joint count statistics. For an application of joint
count statistics in remote sensing accuracy assessment, the reader is referred to Congalton (1988). 

Under second-order stationarity, the sample indicator covariance  of the 

 

k

 

-th category
for a separation vector 

 

h

 

 is inferred as:

(11.4)

where  denotes the number of training samples separated by 

 

h

 

. 
A plot of the modulus  (in the isotropic case) of several vectors  vs. the

corresponding covariance values  constitutes the sample covariance function.
Parametric and positive definite covariance models  for any arbitrary vector 

 

h

 

are then fitted to the sample covariance functions. The parameters of these functions (e.g., covariance
function type, relative nugget, or range) might be different from one category to another, indicating
different spatial patterns of, say, land-cover types. For a particular separation vector 

 

h

 

, the corre-
sponding model-derived indicator covariance is denoted as .

The spatial information of the training pixels is encoded partially in the indicator covariance
model  for the 

 

k

 

-th category and partially in their actual location and class label. In Fourier
analysis jargon, the covariance model  provides amplitude information (i.e., textural infor-
mation), whereas the actual locations of the training samples and their class labels provide phase
information (i.e., location information). Taken together, locations and covariance of training pixels
provide contextual information that can be used in the classification procedure.

Ordinary indicator kriging (OIK) is a nonparametric approximation to the conditional PMF
 for the 

 

k

 

-th class to occur at pixel 

 

u

 

, given the spatial infor-
mation encapsulated in the 

 

G

 

 training samples ; see Van der Meer (1996),
and Goovaerts (1997) for details. The OIK estimate  for the conditional PMF

 that the 

 

k

 

-th class prevails at pixel 

 

u

 

 is expressed as a weighted linear combination
of the  sample indicators  for the same 

 

k

 

-th class found in a
neighborhood  centered at pixel 

 

u

 

:

(11.5)

under the constraint ; this latter constraint allows for local, within-neighborhood

, departures of the class proportion from the prior (constant) proportion . In the previous

equation,  denotes the weight assigned to the 

 

g

 

-th training sample indicator of the 

 

k

 

-th category

 for estimation of  for the same 

 

k

 

-th category at pixel 

 

u

 

. The size of the neigh-

borhood  is typically identified to the range of correlation of the indicator covariance model .

s k k k k k

k k k k

E I I E I E I

Prob I I Prob I Prob I

( ) ( ) ( ) ( )} { ( )

( ) , ( ) ( ) } { ( )

h u h u u h u

u h u u h u

= + ◊{ } - + ◊{ }
= + = ={ } - + = ◊ ={ }1 1 1 1

s k ( )h

Prob I Ik k( ) , ( )u h u+ = ={ }1 1

s k
* ( )h

s k k g k g

g

G

kG
i i p*

( )

( )
( )

( ) ( )h
h

u h u
h

= + ◊ -
=

Â1

1

2

G( )h
hl   { , , , }hl l L= 1 …

  s k l l L* ( ), , ,h ={ }1 …
SSk k= "{ }s ( ),h h

s k ( )h

s k ( )h
s k ( )h

p c C ck g k g[ ( ) | ] Prob{ ( ) | }u c u c= =

  c ug gc g G= =[ ( ), , , ]'1 …
p ck g

*[ ( ) | ]u c
p ck g[ ( ) | ]u c

G( )u i u uk
k gi g G= =[ ( ), , , ( )]'1 …

N( )u

p c p c C c w ik g k
k

k
k

k g k g

g

G
* * *

( )

[ ( ) | ] [ ( ) | ] Prob { ( ) | } ( ) ( )u c u i u i u u
u

ª = = = ◊
=

Â
1

wk g

g

G

( )
( )

u
u

=
Â =

1

1

N( )u pk

wk g( )u

ik g( )u p ck g[ ( ) | ]u c

N( )u SSk

 

L1443_C11.fm  Page 149  Saturday, June 5, 2004  10:32 AM



 

150 REMOTE SENSING AND GIS ACCURACY ASSESSMENT

 

When modeling context at pixel 

 

u

 

 via the local conditional probability , the 
weights  for the 

 

k

 

-th category indicators are derived per solution of the
(ordinary indicator kriging) system of equations:

(11.6)

where  denotes the Lagrange multiplier that is linked to the constraint on the weights; see
Goovaerts (1997) for details. The solution of the above system yields a set of  weights that
account for: (1) any spatial redundancy in the training samples by reducing the influence of clusters
and (2) the spatial correlation between each sample indicator  of the 

 

k

 

-th category and the
unknown indicator  for the same category. 

A favorable property of OIK is its data exactitude: at any training pixel, the estimated probability
 identifies the corresponding observed indicator; for example, .

This feature is not shared by traditional spatial classifiers, such as the nearest neighbor classifier
(Steele et al., 2001), which allow for misclassification at the training locations. On the other hand,
at a pixel 

 

u

 

 that lies further away from the training locations than the correlation length of the
indicator covariance model , the estimated OIK probability is very similar to the corresponding
prior class proportion (i.e., ). In short, the only information exploited by IK is
the class labels at the training sample locations and their spatial correlation. Near training locations,
IK is faithful to the observed class labels, whereas away from these locations IK has no other
information apart from the 

 

K

 

 prior (constant) class proportions .

 

11.2.3 Combining Spectral and Contextual Information

 

Once the two conditional probabilities  and  are derived from
spectral and spatial information, respectively, the goal is to fuse these probabilities into an updated
estimate of the conditional probability , which
accounts for both information sources. In what follows, we will drop the superscript * from the
notation for simplicity, but the reader should bear in mind that all quantities involved are estimated
probabilities. In accordance with Bayesian terminology, we will refer to the individual source
conditional probabilities,  and , as preposterior probabilities and retain
the qualifier posterior only for the final conditional probability  that accounts
for both information sources.

Bayesian updating of the individual source preposterior probabilities for, say, the 

 

k

 

-th class is
accomplished by writing the posterior probability  in terms of the prior proba-
bility  and the joint likelihood function :

 (11.7)
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probability, which can be expressed in terms of the entries of the numerator using the law of total
probability.

Assuming class-conditional independence between the spatial and spectral information, that is,
, one can write:

(11.8)

Class-conditional independence implies that the actual class  at pixel 

 

u

 

 suffices to
model the spectral information independently from the spatial information, and vice versa. Although
conditional independence is rarely checked in practice, it has been extensively used in the literature
because it renders the computation of the conditional probability tractable. It appears in evidential
reasoning theory (Bonham-Carter, 1994), in multisource fusion (Benediktsson et al., 1990; Bene-
diktsson and Swain, 1992), and in spatial statistics (Cressie, 1993). The consequence of this
assumption is that one can combine spectrally derived and spatially derived probabilities without
accounting for the interaction of spectral and spatial information.

Using Bayes’ rule, one arrives at the final form of posterior probability under conditional
independence (Lee et al., 1987; Benediktsson and Swain, 1992):

(11.9)

where  denotes the complement event of the 

 

k

 

-th class and  denotes the prior
probability for that event. In the case of three mutually exclusive and exhaustive classes, forest,
shrub, and rangeland, for example, if the 

 

k

 

-th class corresponds to forest then the complement event
is the absence of forest (i.e., presence of either shrub or rangeland), and the probability for that
complement event is the sum of the shrub and rangeland probabilities.

In words, the final posterior probability  that accounts for both sources of
information (spectral and spatial) under conditional independence is a simple product of the spectra-

based conditional probability  and the space-based conditional probability

 divided by the prior class probability . Each resulting probability

 is finally standardized by the sum  of all resulting prob-

abilities over all 

 

K

 

 classes to ensure a unit sum.
A more intuitive version of the above fusion equation is easily obtained as:

(11.10)

where the proportionality constant is still the sum  of all resulting probabil-
ities, which ensures that they sum to 1.

This version of the posterior probability equation entails that the ratio 
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to the prior probability  times the ratio of the derived preposterior probability
 to the prior probability . Note that this is a congenial assumption whose conse-

quences have not received much attention in the remote sensing literature (and in other disciplines).
Under this assumption, the final posterior probability  can be seen as a modulation
of the prior probability  by two factors: the first factor  quantifies the influence
of remote sensing, while the second factor  quantifies the influence of the spatial
information.

Note that, in the above formulation, both information sources are deemed equally reliable, which
need not be the case in practice. Although individual source preposterior probabilities in the fusion
Equation 11.9 can be discounted via the use of reliability exponents (Benediktsson and Swain, 1992;
Tso and Mather, 2001), this avenue is not explored in this chapter due to space limitations.

 

11.2.4 Mapping Thematic Classification Accuracy 

 

The set of 

 

K

 

 posterior probabilities of class occurrence  derived
at a particular pixel 

 

u

 

 can be readily converted into a classification accuracy value . If pixel

 

u

 

 is allocated to, say, category , then a measure of accuracy associated with this particular class
allocation is simply , whereas a measure of inaccuracy (error) associated
with this allocation is . If such posterior probabilities are available
at each pixel 

 

u

 

, any classified map product can be readily accompanied by a map (of the same
dimensions) that depicts the spatial distribution of classification accuracy.

The accuracy value at each pixel 

 

u

 

 is a sole function of the 

 

K

 

 posterior probabilities available
at that pixel; different probability values will therefore yield different accuracy values at the same
pixel. Evidently, the more realistic the set of posterior probabilities at a particular pixel 

 

u

 

, the more
realistic the accuracy value at that pixel. Consider for example, the set of 

 

K

 

 preposterior probabilities
 derived from a conventional maximum likelihood classifier (Section

11.2.1) and the set of 

 

K

 

 posterior probabilities  derived from the
proposed fusion of spectral and spatial information (Section 11.2.3). These two sets of probability
values will yield two different accuracy measures  and  at the same pixel 

 

u

 

 (subscripts

 

c

 

 and 

 

f

 

 distinguish the use of conventional vs. fusion-based probabilities). It is argued that the use
of contextual information for deriving the latter posterior probabilities yields a more realistic
accuracy map than that typically constructed using the former preposterior probabilities derived
from a conventional classifier (Foody et al., 1992).

 

11.2.5 Generation of Simulated TM Reflectance Values

 

This section describes a procedure used in the case study (Section 11.3) to realistically simulate
a reference classification and the corresponding set of six TM spectral bands. Availability of an
exhaustive reference classification allows computation of accuracy statistics without the added
complication of a particular sampling design.

Starting from raw TM imagery, a subscene is classified into 

 

L

 

 clusters using the Iterative Self-
Organizing Data Analysis Technique (ISODATA) clustering algorithm (Jensen, 1996). These 

 

L

 

clusters are assigned into 

 

K

 

 known classes. To reduce the degree of fragmentation in the resulting
classified map, the classification is smoothed using MAP selection within a window around each
pixel 

 

u

 

 (Deutsch, 1998). The resulting land-cover (LC) map is regarded as the exhaustive reference
classification.

Based on this reference classification, the class-conditional joint PDF of the six TM bands is
modeled as multivariate Gaussian with mean and covariance derived from raw TM bands. Let

and  denote the (6 

 

¥

 

 1) vector of class-conditional mean and the (6 

 

¥

 

 6) matrix of class-
conditional (co)variances of the raw reflectance values in the 

 

k

 

-th class. Let  and  denote
the (6 

 

¥

 

 1) mean vector and (6 

 

¥

 

 6) covariance matrix, respectively, of the above 

 

K

 

 class-conditional
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mean vectors . A set of 

 

K

 

 simulated (6 

 

¥

 

 1) vectors  of class-
conditional means are generated from a six-variate Gaussian distribution with mean  and
covariance . In the case study, simulated class-conditional mean vectors 
were used instead of their original counterparts  in order to introduce class
confusion. Simulated reflectance values are then generated for each pixel in the reference classifi-
cation from the appropriate class-conditional distribution, which is assumed Gaussian with mean

, and covariance . For example, if a pixel in the reference classification has LC forest
(

 

k = 

 

1), six simulated reflectance values are simulated at that pixel from a Gaussian distribution
with mean  and covariance . A similar procedure for generating synthetic satellite imagery
(but without the simulation of class-conditional mean values ) was adopted by
Swain et al. (1981) and Haralick and Joo (1986). The simulated reflectance values are further
degraded by introducing white noise generated by a six-variate Gaussian distribution with mean 

 

0

 

and (co)variance 0.2 ; this entails that the simulated noise is correlated from one spectral band
to another.

Independent simulation of reflectance values from one pixel to another implies the nonrealistic
feature of low spatial correlation in the simulated reflectance values. In the case study, in order to
enhance spatial correlation as well as positional error, typical of real images, a motion blur filter
with a horizontal motion of 21 pixels in the –45˚ direction was applied to each band to simulate
the linear motion of a camera. The resulting reflectance values were further degraded by addition
of a realization of an independent multivariate white noise process, which implies correlated noise
from one spectral band to another. This latter realization was generated using a multivariate Gaussian
distribution with mean 

 

0

 

 and (co)variance 0.05 . To avoid edge effects introduced by the motion
blur filter, the results of Gaussian maximum likelihood classification, as well as those for indicator
kriging, were reported on a smaller (cropped) subscene.

The last step in the simulated TM data generation consists of a band-by-band histogram
transformation: the histogram of reflectance values for each spectral band in the simulated image
is transformed to the histogram of the original TM reflectance values for that band through histogram
equalization. The purpose of this transformation is to force the simulated TM imagery to have the
same histogram as that of the original TM imagery, as well as similar covariance among bands.
The (transformed) simulated reflectance values are finally rounded to preserve the integer digital
nature of the data.

 

11.3 RESULTS

 

To illustrate the proposed methodology for fusing spatial and spectral information for mapping
thematic classification uncertainty, a case study was conducted using simulated imagery based on
a Landsat Thematic Mapper subscene from path 41/row 27 in western Montana, and the procedure
described in Section 11.2.5. The TM imagery, collected on September 27, 1993, was supplied by
the U.S. Geological Survey’s (USGS) Earth Resources Observation Systems (EROS) Data Center
and is one of a set from the Multi-Resolution Land Characteristics (MRLC) program (Vogelmann
et al., 1998). The study site consisted of a subscene covering a portion of the Lolo National Forest
(541 

 

¥

 

 414 pixels). The original 30-m TM data served as the basis for generating the simulated
TM imagery used in this case study.

The subscene was classified into 

 

L = 

 

150

 

 

 

clusters using the ISODATA algorithm, and these 

 

L

 

clusters were assigned to 

 

K = 

 

3 classes: forest (

 

k = 

 

1), shrub (

 

k  = 

 

2), and rangeland (

 

k = 

 

3). The
resulting classification was smoothed using MAP selection within a 5 

 

¥

 

 5 window around each
pixel 

 

u

 

. The resulting LC map is regarded as the exhaustive reference classification (unavailable
in practice). A small subset (

 

G = 

 

314) of the 541 

 

¥

 

 414 pixels (0.14% of the total population) was
selected as training pixels through stratified random sampling. The sample and reference class
proportions of forest, shrub, and rangeland were , , and , respec-
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tively. The remaining unsampled reference pixels were used as validation data for assessing the
accuracy of the different methods. The cropped (ranging from 7 to 530 and from 9 to 406 pixels)
reference classification and the 

 

G = 

 

314 training samples used in this study are shown in Figure
11.1a and Figure 11.1b.

The class labels and the corresponding simulated reflectance values at the training sample
locations were used to derive statistical parameters: the class-conditional means 
and the class-conditional (co)variances  for forest, shrub, and rangeland, respectively.
The class labels of the training pixels were also used to infer the three indicator covariance models,

, for forest, shrub, and rangeland, respectively (Equation 11.5). All indicator covariance
models (not shown) were isotropic, and their parameters are tabulated in Table 11.1. The forest
and shrub indicator covariance models, , consisted of a nugget component (2 to 3% of the
total variance), a small-scale structure of practical range 25 to 30 pixels (59 to 61% of the total
variance), and a larger-scale structure of practical range 100 to 120 pixels (37 to 38% of the total
variance). The rangeland indicator covariance model, , consisted of a nugget component (1%
of the total variance), a small-scale structure of practical range 22 pixels (75% of the total variance),
and one larger-scale structure of practical range 400 pixels (24% of the total variance). These
covariance model parameters imply that forest and shrub have a very similar spatial correlation
that differs slightly from that of rangeland. The latter class has more pronounced small-scale

 

Figure 11.1

 

Reference classification (a) and 314 training pixels (b) selected via stratified random sampling.

 

Table 11.1 Parameters of the Three Indicator 
Covariance Models, 

 

s

 

1

 

, 

 

s

 

2

 

, 

 

s

 

3

 

, for Forest, 

 

Shrub, and Rangeland, Respectively

Nugget

 

Sill

 

Range
(1) (2) (1) (2)

 

Forest 0.02 0.61 0.37 30 120
Shrub 0.03 0.59 0.38 25 100
Rangeland 0.01 0.75 0.75 22 400

 

Note:

 

All indicator covariances were modeled using a
nugget contribution and two exponential cova-
riance structures with respective sills and prac-
tical ranges: sill(1), sill(2), range(1), and
range(2). Sill values are expressed as a per-
centage of the total variance: 

 

p

 

k

 

(1 – 

 

p

 

k

 

) = 0.23,
0.17, 0.12, for forest, shrub, and rangeland,
respectively; range values are expressed in
numbers of pixels.
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variability, and less large-scale variability, which is also of longer range than that of forest and
shrub. For further details regarding the interpretation of variogram and covariance functions com-
puted from remotely sensed imagery, see Woodcock et al. (1988).

 

11.3.1 Spectral and Spatial Classifications

 

Using the class-conditional means  and (co)variances , three
Gaussian likelihood functions were established for any vector  of reflectance values at any
pixel 

 

u

 

 not in the training set (Equation 11.1). The three Gaussian likelihood functions were
subsequently inverted (Equation 11.2) to compute the three spectrally derived preposterior proba-
bilities, , , and , for forest, shrub, and rangeland,
respectively. These GML preposterior probabilities are shown in Figure 11.2a–c. Note (1) the high
degree of noise in the probabilities, (2) the confusion of shrub and rangeland (probabilities close
to 0.5), and (3) the motion-like appearance that entails diffuse class boundaries. The corresponding
MAP selection at each pixel 

 

u

 

 is shown in Figure 11.2d. Note again the high degree of fragmentation
in the classified map. The overall classification accuracy (evaluated against the reference classifi-
cation) was 0.73 (Kappa = 0.44), indicating a rather severe misclassification.

Arguably, in the presence of noise, the original spectral vector could have been replaced by a
vector of the same dimensions whose entries are averages of reflectance values within a (typically
3 

 

¥

 

 3) neighborhood around each pixel (Switzer, 1980). This, however, amounts to implicitly
introducing contextual information into the classification procedure: spatial variability in the reflec-
tance values is suppressed via a form of low-pass filter to introduce more spatial correlation, and
thus produce less fragmented classification maps. In the absence of noise-free data, any such filtering
procedure is rather arbitrary: there is no reason to use a 3 

 

¥

 

 3 vs. a 5 

 

¥

 

 5 filter, for example. In
this chapter, we propose a method for introducing that notion of compactness in classification via
a model of spatial correlation inferred from the training pixels themselves.

Ordinary indicator kriging (OIK) (Equation 11.5 and Equation 11.6) was performed using the
three sets of 

 

G

 

 training class indicators and their corresponding indicator covariance models to
compute the space-derived preposterior probabilities , ,  for
forest, shrub, and rangeland, respectively. These OIK preposterior probabilities are shown in Figure
11.3a–c. Note the very smooth spatial patterns and the absence of clear boundaries, as opposed
to those found in the spectrally derived posterior probabilities of Figure 11.2. Note also that the
training sample class labels are reproduced at the training locations, per the data-exactitude
property of OIK. The corresponding MAP selection at each pixel 

 

u

 

 is shown in Figure 11.3d. The
overall classification accuracy is 0.73 (Kappa = 0.44), the same as that computed from the
spectrally derived classification, indicating the same level of severe misclassification for the
spacially derived classification.

 

11.3.2 Merging Spectral and Contextual Information

 

Bayesian fusion (Equation 11.9), was performed to combine the individually derived spectral
and spatial preposterior probabilities into posterior probabilities ,

, and , for forest, shrub, and rangeland, respectively; these
posterior probabilities account for both information sources and are shown in Figure 11.4a–c.
Compared to the spectrally derived preposterior probabilities of Figure 11.2, the latter posterior
probabilities have smoother spatial patterns and much less noise. Compared to the spacially derived
preposterior probabilities of Figure 11.3, the latter posterior probabilities have more variable
patterns and indicate clearer boundaries. The corresponding MAP selection at each pixel 

 

u

 

 is shown
in Figure 11.4d. The overall classification accuracy increased to 0.80 and the Kappa coefficient to
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0.59, a 9.6% and 34.1% improvement, respectively, relative to the corresponding accuracy statistics
computed from the GML classification.

For comparison, accuracy assessment statistics, including producer’s and user’s accuracy, for
all classification algorithms considered in this chapter are tabulated in Table 11.2. Clearly, classi-
fication accuracy using the proposed contextual classification methods was superior to that using
only spectral or only spatial information. As stated above, overall accuracy and the Kappa coeffi-
cients are significantly higher for the proposed methods. In addition, both producer’s and user’s
accuracy for all three classes are higher than the corresponding values computed from the spectrally
derived or the spacially derived classifications.

The reference and classification-derived class proportions are also provided in Table 11.3 for
comparison. Clearly, MAP selection from the fused posterior probabilities 
yielded the closest class proportions to the reference ones: 0.69 vs. 0.65 (reference) for forest, 0.21
vs. 0.21 for shrub, and 0.10 vs. 0.14 for rangeland. The other methods performed worse with respect
to reproducing the reference class proportions.

 

11.3.3 Mapping Classification Accuracy

 

The three spectrally derived preposterior probabilities, , , and
 for forest, shrub, and rangeland, respectively, were converted into an accuracy

value  for the particular class reported at pixel 

 

u

 

 (i.e., for the classification of Figure 11.2d),
as described in Section 11.2.4. These accuracy values were mapped in Figure 11.5a. The same
procedure was repeated using the three fusion-based posterior probabilities ,

, and , for forest, shrub, and rangeland, respectively, to yield

 

Figure 11.4

 

Conditional probabilities for forest (a), shrub (b), and rangeland (c), based on Bayesian integration
of spectrally derived and spacially derived preposterior probabilities (GML/OIK), and corresponding
MAP selection (d).
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Table 11.2 Accuracy Statistics for Classification 
Based on MAP Selection from Conditional 
Probabilities Computed Using Different 
Methods: Gaussian Maximum Likelihood 
(GML), Ordinary Indicator Kriging (OIK), 
and Bayesian Integration of GML and OIK 

 

Probabilities (GML/OIK)

GML OIK GML/OIK

 

Overall accuracy

 

0.73 0.73 0.80

 

Kappa

 

0.44 0.44 0.59

 

Producer’s accuracy

 

Forest 0.92 0.88 0.91
Shrub 0.44 0.52 0.63
Rangeland 0.30 0.39 0.51

 

User’s accuracy

 

Forest 0.82 0.78 0.86
Shrub 0.48 0.61 0.64
Rangeland 0.55 0.63 0.68

 

Table 11.3 Class Proportions from Reference and 
Classified Maps Based on MAP Selection from 
Conditional Probabilities Computed Using 
Different Methods: Gaussian Maximum 
Likelihood (GML), Ordinary Indicator Kriging 
(OIK), and Bayesian Integration of GML and OIK 

 

Probabilities (GML/OIK)

Reference GML OIK GML/OIK

 

Forest 0.65 0.73 0.73 0.69
Shrub 0.21 0.19 0.18 0.21
Rangeland 0.14 0.08 0.09 0.10

 

Figure 11.5

 

Pixel-specific accuracy values for GML-derived classes (a) and for GML/OIK-derived classes (b).

(a) (b)
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an accuracy value  for the particular class reported at pixel 

 

u

 

 (i.e., for the classification of
Figure 11.4d). These accuracy values were mapped in Figure 11.5b. The accuracy map of Figure
11.5b exhibited much higher values than the corresponding map of Figure 11.5a, indicating an
increased confidence in classification due precisely to the consideration of contextual information.
In addition, the low accuracy values (~0.4–0.6) of Figure 11.5b were found near class boundaries,
as opposed to the low accuracy values of Figure 11.5a, which just corresponded to pixels classified
as shrub and rangeland. This latter characteristic implied that contextual information yielded a
more realistic map of classification accuracy, which could be useful for designing additional
sampling campaigns. 

 

11.4 DISCUSSION

 

A geostatistical approach for mapping thematic classification uncertainty was presented in this
chapter. The spatial correlation of each class, as inferred from a set of training pixels, along with
the actual locations of these pixels, was used via indicator kriging to estimate the location-specific
probability that a pixel belongs to a certain class, given the spatial information contained in the
training pixels. The proposed approach for estimating the above preposterior probability accounted
for texture information via the corresponding indicator covariance model for each class, as well as
for the spatial proximity of each pixel to the training pixels after this proximity was discounted for
the spatial redundancy (clustering) of the training pixels. Space-derived preposterior probabilities
were merged via Bayes’ rule with spectrally derived preposterior probabilities, the latter based on
the collocated vector of reflectance values at each pixel. The final (fused) posterior probabilities
accounted for both spectral and spatial information. 

The performance of the proposed methods was evaluated via a case study that used realistically
simulated reflectance values. A subset of 0.14% (314) of the image pixels was retained as a training
set. The results indicated that the proposed method of context estimation, when coupled with
Bayesian integration, yielded more accurate classifications than the conventional maximum likeli-
hood classifier. More specifically, relative improvements of 10% and 34% were found for overall
accuracy and the Kappa coefficient. In addition, contextual information yielded more realistic
classification accuracy maps, whereby pixels with low accuracy values tended to coincide with
class boundaries.

 

11.5 CONCLUSIONS

 

The proposed geostatistical methodology constitutes a viable means for introducing contextual
information into the mapping of thematic classification uncertainty. Since the results presented in
the case study in this chapter appear promising, further research is required to evaluate the perfor-
mance of the proposed contextual classification and its use for mapping thematic classification
uncertainty over a variety of real-world data sets. In particular, issues pertaining to the type and
level of spatial correlation, the density of the training pixels, and their effects on the resulting
classification uncertainty maps should be investigated in greater detail.

In conclusion, we suggest that the final posterior probabilities of class occurrence be used in
a stochastic simulation framework, whereby multiple, alternative, synthetic representations of land
cover maps would be generated using various algorithms for simulating categorical variables
(Deutsch and Journel, 1998). These alternative representations would reproduce: (1) the observed
classes at the training pixels, (2) the class proportions, (3) the spatial correlation of each class
inferred from the training pixels, and (4) possible relationships with spectral or other ancillary
spatial information. The ensemble of simulated land-cover maps could be then used for error

a f ( )u
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propagation (e.g., Kyriakidis and Dungan [2001]), thus allowing one to go beyond simple map
accuracy statistics and address map use (and map value) issues.

 

11.6 SUMMARY

 

Thematic classification accuracy constitutes a critical factor in the successful application of
remotely sensed products in various disciplines, such as ecology and environmental sciences. Apart
from traditional accuracy statistics based on the confusion matrix, maps of posterior probabilities
of class occurrence are extremely useful for depicting the spatial variation of classification uncer-
tainty. Conventional classification procedures such as Gaussian maximum likelihood, however, do
not account for the plethora of ancillary data that could enhance such a metadata map product. 

In this chapter, we propose a geostatistical approach for introducing contextual information
into the mapping of classification uncertainty using information provided only by the training pixels.
Probabilities of class occurrence that account for context information are first estimated via indicator
kriging and are then integrated in a Bayesian framework with probabilities for class occurrence
based on conventional classifiers, thus yielding improved maps of thematic classification uncer-
tainty. A case study based on realistically simulated TM imagery illustrates the applicability of the
proposed method: (1) regional accuracy scores indicate relative improvements over traditional
classification algorithms in the order of 10% for overall accuracy and 34% for the Kappa coefficient
and (2) maps of pixel-specific accuracy values tend to pinpoint class boundaries as the most
uncertain regions, thus appearing as a promising means for guiding additional sampling campaigns.
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12.1 INTRODUCTION

 

As remote sensing applications have grown in complexity, so have the classification schemes
associated with these efforts. The classification scheme then becomes a very important factor
influencing the accuracy of the entire project. A review of the recent accuracy assessment literature
points out some of the limitations of using only an error matrix approach to accuracy assessment
with a complex classification scheme. Congalton and Green (1993) recommend the error matrix
as a jumping-off point for identifying sources of confusion (i.e., differences between the map
created from remotely sensed data and the reference data) and not simply the “error.” For example,
the variation in human interpretation can have a significant impact on what is considered correct.
If photographic interpretation is used as the source of the reference data and that interpretation is
not completely correct, then the results of the accuracy assessment could be very misleading. The
same holds true even for observations made in the field. As classification schemes become more
complex, more variation in human interpretation is introduced (Congalton, 1991; Congalton and
Biging, 1992; Gong and Chen, 1992; Lowell, 1992). 

 

L1443_C12.fm  Page 163  Saturday, June 5, 2004  10:33 AM



 

164 REMOTE SENSING AND GIS ACCURACY ASSESSMENT

 

Gopal and Woodcock (1994) proposed the use of fuzzy sets to “allow for explicit recognition
of the possibility that ambiguity might exist regarding the appropriate map label for some locations
on a map. The situation of one category being exactly right and all other categories being equally
and exactly wrong often does not exist.” They allowed for a variety of responses, such as absolutely
right, good answer, acceptable, understandable but wrong, and absolutely wrong. While dealing with
the ambiguity, this approach does not allow the accuracy assessment to be reported as an error matrix. 

This chapter introduces a technique using fuzzy accuracy assessment that allows for the analyst
to incorporate the variation or ambiguity in the map label and also present the results in the form
of an error matrix. This approach is applied here to a worldwide mapping effort funded by the
National Imagery and Mapping Agency (NIMA) using Landsat Thematic Mapper (TM) imagery.
The Earth Satellite Corporation (Earthsat) performed the mapping and Pacific Meridian Resources
of Space Imaging conducted the accuracy assessment. The results presented here are for one of
the initial prototype test areas (for an undisclosed location of the world) used for developing this
fuzzy accuracy assessment process. 

 

12.2 BACKGROUND

 

The quantitative accuracy assessment of maps produced from remotely sensed data involves
the comparison of a map with reference information that is assumed to be correct. The purpose of
a quantitative accuracy assessment is the identification and measurement of map errors. The two
primary motivations include: (1) providing an overall assessment of the reliability of the map (Gopal
and Woodcock, 1994) and (2) understanding the nature of map errors. While more attention is often
paid to the first motivation, understanding the errors is arguably the most important aspect of
accuracy assessment. For any given map class, it is critical to know the probability of the site’s
being labeled correctly and what classes are confused with one another. Quantitative accuracy
assessment provides map users with a consistent and objective analysis of map quality and error.
Quantitative analysis is fundamental to map use; without it, users would make decisions without
knowing the reliability of the map as a whole or the sources of confusion.

The error matrix is the most widely accepted format for reporting remotely sensed data clas-
sification accuracies (Story and Congalton, 1986; Congalton, 1991). Error matrices simply compare
map data to reference data. An error matrix is an array of numbers set out in rows and columns
that expresses the number of pixels or polygons assigned to a particular category in one classification
relative to those assigned to a particular category in another classification (Table 12.1). One of the
classifications is considered to be correct (reference) and may be generated from aerial photography,
airborne video, ground observation, or ground measurement, while the other classification is
generated from the remotely sensed data (observed). 

An error matrix is an effective way to represent accuracy because both the total and the individual
accuracies of each category are clearly described and confusion between classes is evident. Also
indicated are errors of inclusion (commission errors) and errors of exclusion (omission errors) that
may be present in the classification. A commission error occurs when an area is included into a
category when it does not belong. An omission error is excluding an area from the category in
which it does belong. Every error is an omission from the correct category and a commission to a
wrong category. For example, in the error matrix in Table 12.1 four areas were classified as
deciduous but the reference data showed that they were actually coniferous. Therefore, four areas
were omitted from the correct coniferous category and committed to the incorrect deciduous
category. Utilizing this information, users can ascertain the relative strengths and weaknesses of
each map class, creating a more solid basis for decision making.

Additionally, the error matrix can be used to compute overall accuracy and producer’s and
user’s accuracies (Story and Congalton, 1986). Overall accuracy is simply the sum of the major
diagonal (i.e., the correctly classified sample units) divided by the total number of sample units in
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the error matrix. This value is the most commonly reported accuracy assessment statistic. User’s
and producer’s accuracies are ways of representing individual category accuracies instead of just
the overall classification accuracy. 

One of the assumptions of the traditional or deterministic error matrix is that an accuracy
assessment sample site can have only one label. However, classification scheme rules often impose
discrete boundaries on continuous conditions in nature. In situations where classification scheme
breaks represent artificial distinctions along a continuum of land cover (LC), observer variability
is often difficult to control and, while unavoidable, it can have profound effects on results (Congalton
and Green, 1999). While it is difficult to control observer variation, it is possible to use a fuzzy
assessment approach to compensate for differences between reference and map data that are caused
not by map error but by variation in interpretation (Gopal and Woodcock, 1994). In this study, both
deterministic error matrices and those using the fuzzy assessment approach were compiled.

 

12.3 METHODS

 

Accuracy assessment requires the development of a statistically rigorous sampling design of
the location (distribution) and type of samples to be taken or collected. Several considerations are
critical to the development of a robust design to support an accuracy assessment that is truly
representative of the map being assessed. Important design considerations include the following:

 

• What are the map classes and how are they distributed? How a map is sampled for accuracy will
partially be driven by how the categorical information of interest is spatially distributed. These
distributions are a function of how the features of interest have been categorized — referred to as
the “classification scheme.” 

• What is the appropriate sample unit? Sampling units are the portions of the landscape that will be
sampled for the accuracy assessment. 

• How many samples should be taken? Accuracy assessment requires that an adequate number of
samples be gathered so that any analysis performed is statistically valid. However, the collection
of data at each sample point can be very expensive, requiring that sample size be kept to a minimum
to be affordable.

 

Table 12.1

 

Example Error Matrix
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• How should the samples be chosen? The choice and distribution of samples, or sampling scheme,
is an important part of any inventory design. Selection of the proper scheme is critical to generating
results that are representative of the map being assessed. First, the samples must be selected without
bias. Second, further data analysis will depend on which sampling scheme is selected. Finally, the
sampling scheme will determine the distribution of samples across the landscape, which will
significantly affect accuracy assessment costs.

 

This chapter addresses all of the above considerations relative to the NIMA GeoCover study.
Major study elements included (1) the finalization of the NIMA GeoCover classification scheme,
(2) accuracy assessment sample design and selection, (3) accuracy assessment site labeling, and
(4) the compilation of the deterministic and fuzzy error matrix

 

12.3.1 Classification Scheme

 

The first task in this project was to specify the NIMA GeoCover classification system rules. A
classification scheme has two critical components: (1) a set of labels (e.g., deciduous forest, urban,
shrub/scrub, etc.) and (2) a set of rules or definitions such as a dichotomous key for assigning
labels. Without a clear set of rules, the assignment of labels to types can be arbitrary and lack
consistency. In addition to having labels and a set of rules, a classification scheme should be
mutually exclusive and totally exhaustive. All study partners worked together to develop and finalize
a classification scheme with the necessary labels and rules. Table 12.2 presents the labels; the
classification rules can be found in Appendix A of this chapter.

 

12.3.2 Sampling Design

 

Sample design often requires trade-offs between the need for statistical rigor and the practical
constraints of budget and available reference data. To achieve statistically reliable results and keep
costs to a minimum, a multistaged, stratified random sample design was employed for this project.
Research by Congalton (1988) indicates that random and stratified random samplings are the optimal
sampling designs for accuracy assessment. 

One of the most important aspects of sample design is that the reference data must be inde-
pendent from data used to create the map. The need for independence posed a dilemma for the
assessment of the NIMA GeoCover prototype because the National Technical Means (NTM) used
for reference data development were not available for the entire study area. NTM can be defined
as classified intelligence gathering systems and the data they generate.

As a result of this limited NTM availability, a choice needed to be made to either (1) constrain
the accuracy assessment sample to the areas with existing NTM data, and thereby risk sampling

 

Table 12.2

 

Classification Labels

Class Number Class Name

 

1 Forest, Deciduous
2 Forest, Evergreen
3 Shrub/Scrub
4 Grassland
5 Barren/Sparsely Vegetated
6 Urban/Built-Up
7 Agriculture, Other
8 Agriculture, Rice
9 Wetland, Permanent Herbaceous

10 Wetland, Mangrove
11 Water
12 Ice/Snow
13 Cloud/Cloud Shadow/No Data
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only some of the mapped area, or (2) allow samples to be chosen randomly, resulting in some
samples landing in areas where existing NTM was not immediately available for reference data
development. The latter approach was selected because limiting the accuracy assessment area was
considered statistically unacceptable. To overcome the NTM data gaps, first-stage samples were
chosen prior to receipt of the final map. This provided additional time for the acquisition of new
NTM data. Persistent data gaps were supplemented by the interpretation of TM composite images.

First stage sample units were 15-min quadrangle areas. To ensure that an adequate number of
accuracy assessment sites per cover class were sampled, quadrangles were selected for inclusion
in accuracy assessment based on the diversity and number of cover classes in the quadrangle. A
relative diversity index was determined through the screening of TM composite images of the study
area. The number and diversity of cover type polygons were summarized for each quadrangle, and
the six quadrangles with the greatest cover type diversity and largest number of classes were selected
as the first-stage samples. 

The second-stage sample units were the polygons of the LC map vector file. Fifty polygons
per class were randomly selected across all the six quadrangles. If fewer than 50 polygons of a
particular class existed within the six quadrangles, then all the available polygons in that class were
selected. Both primary and secondary sample selection was automated using accuracy assessment
software developed for this project.

 

12.3.3 Site Labeling 

 

All accuracy assessment samples had two class labels: a map label and a reference site label.
For this project, the “map” label was automatically derived from the LC polygon map label provided
by Earthsat and stored for later use in the compilation of the error matrix. An expert analyst, based
on image interpretation of NTM data, manually assigned the corresponding “reference” label. Each
sample polygon was automatically displayed on the computer screen simultaneously with the
assessment data form (Figure 12.1). The analyst entered the label for the site into the form using
the imagery and other ancillary data available. To ensure independence, at no time did the image
analyst labeling the samples have access to map data. 

To account for variation in interpretation, the accuracy assessment analyst also completed a
LC-type fuzzy logic matrix for every accuracy assessment site (Figure 12.1). Each polygon was
evaluated for the likelihood of being identified as each of the possible cover types. First, the analyst

 

Figure 12.1

 

Form for labeling accuracy assessment reference sites.
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determined the most appropriate label for the site, and the label was entered in the appropriate box
under the “classification” column in the form. This label determined in which row of the matrix
the site would be tallied and was used for calculation of the deterministic error matrix. After
assigning the label for the site, the remaining possible map labels were evaluated as “good,”
“acceptable,” or “poor” candidates for the site’s label. For example, a site might fall near the
classification scheme margin between forest and shrub/scrub. In this instance, the analyst might
rate forest as most appropriate but shrub/scrub as “acceptable.” As each site was interpreted, the
deterministic and fuzzy assessment reference labels were entered into the accuracy assessment
software for creation of the error matrix.

 

12.3.4 Compilation of the Deterministic and Fuzzy Error Matrix

 

Following reference site labeling, the error matrix was automatically compiled in the accuracy
assessment software. Each accuracy assessment site was tallied in the matrix in the column (based
on the map label) and row (based on the most appropriate reference label). The deterministic (i.e.,
traditional) overall accuracy was calculated by dividing the total of the diagonal by the total number
of accuracy assessment sites. The producer’s and user’s accuracies were calculated by dividing the
number of sites in the diagonal by the total number of references (producer’s accuracy) or maps
(user’s accuracy) for each class. That is, from a map producer’s viewpoint, given the total number
of accuracy assessment sites for a particular class, what was the proportion of sites correctly mapped?
Conversely, class accuracy by column represents “user’s” class accuracy. For a particular class on
the map, user’s class accuracy estimates the percentage of times the class was mapped correctly.

Nondiagonal cells in the matrix contain two tallies, which can be used to distinguish class labels
that are uncertain or that fall on class margins from class labels that are most probably in error.
The first number represents those sites in which the map label matched a “good” or “acceptable”
reference label in the fuzzy assessment (Table 12.3). Therefore, even though the label was not
considered the most appropriate, it was considered acceptable given the fuzziness of the classifi-
cation system and the minimal quality of some of the reference data. These sites are considered a
“match” for estimating fuzzy assessment accuracy. The second number in the cell represents those
sites where the map label was considered poor (i.e., an error). 

The fuzzy assessment overall accuracy was estimated as the percentage of sites where the “best,”
“good,” or “acceptable” reference label(s) matched the map label. Individual class accuracy was
estimated by summing the number of matches for that class’s row or column divided by the row
or column total. Class accuracy by row represents “producer’s” class accuracy. 

 

12.4 RESULTS

 

Table 12.3 reports both the deterministic and fuzzy assessment accuracies. The overall and
individual class accuracies and the Kappa statistic are displayed. Overall accuracy is estimated in
a deterministic way by summing the diagonal and dividing by the total number of sites. For this
matrix, overall deterministic accuracy would be estimated at 48.6% (151/311). However, this
approach ignores any variation in the interpretation of reference data and the inherent fuzziness at
class boundaries. Including the “good” and “acceptable” ratings, overall accuracy is estimated at
74% (230/311). The large difference between these two estimates reflects the difficulty in distin-
guishing several of the classes, both from TM imagery and from the NTM. For example, a total
of 31 sites were labeled as evergreen forest on the map and deciduous forest in the reference data.
However, 24 of those sites were labeled as acceptable, meaning they were either at or near the
class break or were inseparable from the TM and/or NTM data (Appendix A).

The Kappa statistic was 0.37. The Kappa statistic adjusts the estimate of overall accuracy for
the accuracy expected from a purely random assignment of map labels and is useful for comparing
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different matrices. However, it does not account for fuzzy class membership and variation in
interpretation of the reference data. From a map user’s perspective, individual fuzzy assessment
class accuracies vary from 30% (for water) to 96% (for deciduous forest). Producer’s accuracies
range from 0% (for barren/sparse vegetation and wet, permanent herbaceous) to 100% (for water
and urban). The highest combined user’s and producer’s accuracies occur in the urban class (100%
and 91.7%, respectively).

A useful comparison is the total number of sites for a particular class by row and by column.
For example, for deciduous forest there are a total of 113 reference sites and a total of 56 map
sites. This indicates that the map underestimates deciduous forest. Another underestimated class is
agriculture–other (51 vs. 82). Conversely, for evergreen forest there are a total of 50 map sites and
26 reference sites, indicating that the map overestimates evergreen forest. Other overestimated
classes include shrub (47 vs. 31) and grassland (50 vs. 24).

 

12.5 DISCUSSION AND CONCLUSIONS

 

The following text discusses and analyzes the major sources of confusion and agreement in the
LC map for the initial prototype study. The highest user’s accuracy occurs in the deciduous forest
class (96.4%). However, producer’s accuracy in deciduous forest is low (63.7%), indicating that
there is more deciduous forest in the area than is indicated on the map. The highest producer’s
accuracy is in water and urban (100%). While the urban user’s accuracy is also high (91.7%)
(indicating that urban is a very reliable class), the user’s accuracy for water is low (30.3%),
indicating that significant commission errors may exist in the water class. For example, 18 water
map sites were determined to be deciduous in the reference data. After the matrix was generated,
these sites were reviewed. In each case, the sites were small, scattered polygons in forested areas.
Because the water was maintained at full resolution (no filtering was performed), any scattered
pixels of water were maintained in the polygon coverage. Many of these polygons came from one
or two pixels of water. Because there are many of these small polygons, more than half of the
accuracy assessment sites for water came from these polygons. 

Confusion also existed in the agriculture–other class, which tends to be confused with
shrub/scrub, grassland, or deciduous forest. User’s class accuracy for agriculture–other is estimated
at 71% (36/51). Eleven sites were labeled as deciduous forest. These sites were also reexamined.
In most all cases, the polygons came from small groups of pixels (greater than the minimum
mapping unit of 1.4 ha) labeled as agriculture within forested areas. The matrix also identifies
confusion between agriculture and shrub and between agriculture and grasslands. For the
shrub/scrub map class, 22 sites were labeled as agriculture in the reference data, with 15 sites rated
as “poor.” Subsequent review of the maps revealed scattered pixels and polygons of shrub within
agricultural areas and scattered agriculture within shrub. For grasslands, 24 sites were labeled as
agriculture in the reference data, with 18 sites labeled as “acceptable.” This reflects the uncertainty
with separating grassland from agriculture in many cases. Often, they have identical spectral
responses, and unless there are distinct geometric spatial patterns or other contextual features, it is
very difficult to distinguish these classes from TM imagery alone.

Map error is often the result of scattered polygons in otherwise homogeneous areas. For
example, scattered small polygons of water (particularly in forested areas) accounted for the low
estimate of class accuracy for water. Likewise, scattered polygons of agriculture in shrub and
grassland and scattered polygons of shrub and grassland in agriculture influenced the accuracies
of these classes. This type of error points to the need for increased precision in the image classi-
fication algorithms, additional map editing, and/or refinement of the polygon-generating algorithms.

Finally, it should be noted that the first-stage sample units contained no polygons of bar-
ren/sparse vegetation, agriculture–rice, ice/snow, mangrove, cloud/shadow or wet, permanent her-
baceous. Therefore, these map classes were not sampled for accuracy assessment. Because the first-
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stage samples are chosen for their diversity, this indicates that the entire map also has no or few
polygons with these classes. Considering the location of the prototype, it is reasonable to assume
that ice/snow, agriculture–rice, and mangrove do not exist in the area. However, a few reference
sites (

 

n

 

 = 5) were labeled barren/sparse vegetation and wet, permanent herbaceous, indicating that
these classes do exist in the area and may be underrepresented in the map. 

 

12.6 SUMMARY

 

The error matrix or contingency table has become widely accepted as the standard method for
reporting the accuracy of GIS data layers derived from remotely sensed data. The matrix provides
descriptive statistics including overall, producer’s, and user’s accuracies as well as sample size
information by category and in total. In addition, the matrix is a starting point for a variety of
analytical tools, including normalization and Kappa analysis. More recently, the incorporation of
fuzzy accuracy assessment has been suggested and adopted by many remote sensing analysts. As
proposed, most of these current techniques use a variety of metrics to represent the fuzzy analysis.
This chapter introduces the use of a fuzzy error matrix for applying fuzzy accuracy assessment.
The fuzzy matrix has the same benefits as a traditional deterministic error matrix, including the
computation of all the descriptive statistics. A detailed, practical case study is presented to dem-
onstrate the application of this fuzzy error matrix. 

A total of 311 accuracy assessment sites were utilized to estimate the accuracy of the initial
prototype area. The traditional estimate of overall accuracy is 48.6%. Accounting for fuzzy class
membership and variation in interpretation, overall accuracy is estimated at 74%. The spread
between the deterministic and fuzzy assessment estimates is large, but not unusual. Part of this
spread is a function of the lack of NTM for several of the reference sites (

 

n

 

 = 84), resulting in the
reference label’s being determined from manual interpretation of the TM data. Hopefully, more
NTM will be available as the project progresses, which will reduce the spread between deterministic
and fuzzy logic estimates. However, some spread will remain because of fuzziness in the boundaries
of LC classes. Therefore, acceptable fuzziness between deciduous and evergreen forest (especially
in mixed conditions) and deciduous forest and shrub will remain.
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APPENDIX

 

 A

Classification Rules

 

Parcel Appearance Categorization Call

 

If pixel appears as water Water 

 

(Category 11)

 

If 

 

≥

 

 35% man-made impervious material Urban 

 

(Category 6)

 

If cultivated (excluding forest plantations) Examine for evidence of rice cultivation
If rice Agriculture, Rice 

 

(Category 8)

 

Otherwise Agriculture, Other 

 

(Category 7)

 

If total natural vegetation cover 

 

≥

 

 10% Examine for content
If coastal/estuarine AND vegetation cover is mangrove Wetland, Mangrove 

 

(Category 10)

 

If 

 

≥

 

 35% woody vegetation AND > 3 m in height Examine for forest type
If woody vegetation deciduous w/ < 25% evergreen 
intermixture

Forest, Deciduous 

 

(Category 1)

 

If woody vegetation deciduous w/

 

≥

 

 25% evergreen 
intermixture OR if woody vegetation is 100% evergreen 

Forest, Evergreen 

 

(Category 2)

 

If woody vegetation 

 

≥

 

 10% cover AND height < 3 m OR if 
woody vegetation between 10% and 35% cover at any 
height

Shrub/Scrub 

 

(Category 3)

 

If herbaceous cover 

 

≥

 

 10% OR mixed shrub and grass AND 
no evidence of seasonal or permanent saturation (topo 
position = upland)

Grassland 

 

(Category 4)

 

Else Wetland, Permanent Herbaceous 

 

(Category 9)

 

If nonvegetated Examine for content
If soil intermittently or permanently saturated Wetland, Permanent Herbaceous 

 

(Category 9)

 

If snow or ice cover Perennial Ice or Snow 

 

(Category 12)

 

If view of ground obscured by cloud, shadow, satellite sensor 
artifact, or lack of TM data

Cloud/Cloud Shadow/No Data

 

(Category 13)

 

Else Barren/Sparsely Vegetated 

 

(Category 5)
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13.1 INTRODUCTION

 

The accuracy of thematic map products is not spatially homogenous, but rather variable across
most landscapes. Properly analyzing and representing the spatial distribution (pattern) of thematic
map accuracy would provide valuable user information for assessing appropriate applications for
land-cover (LC) maps and other derived products (i.e., landscape metrics). However, current thematic
map accuracy measures, including the confusion or error matrix (Story and Congalton, 1986) and
Kappa coefficient of agreement (Congalton and Green, 1999), are inadequate for analyzing the spatial
variation of thematic map accuracy. They are not able to answer several important scientific and
application-oriented questions related to thematic map accuracy. For example, are errors distributed
randomly across space? Do different cover types have the same spatial accuracy pattern? How do
spatial accuracy patterns affect products derived from thematic maps? Within this context, methods
for displaying and analyzing the spatial accuracy of thematic maps and bringing the spatial accuracy
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information into other calculations, such as deriving landscape indicators from thematic maps, are
important issues to advance scientifically appropriate applications of remotely sensed image data. 

Our study objective was to use the fuzzy set approach to examine and display the spatial
accuracy pattern of thematic LC maps and to combine uncertainty with the computation of landscape
indicators (metrics) derived from thematic maps. The chapter is organized by (1) current methods
for analyzing and mapping thematic map accuracy, (2) presentation of our methodology for con-
structing fuzzy LC maps, and (3) deriving landscape indicators from fuzzy maps.

There have been several studies analyzing the spatial variation of thematic map accuracy
(Campbell, 1981; Congalton, 1988). Campbell (1987) found a tendency for misclassified pixels to
form chains along boundaries of homogenous patches. Townshend et al. (2000) explained this
tendency by the fact that, in remotely sensed images, the signal coming from a land area represented
by a specific pixel can include a considerable proportion of signal from neighboring pixels. Fisher
(1994) used animation to visualize the reliability in classified remotely sensed images. Moisen et
al. (1996) developed a generalized linear mixed model to analyze misclassification errors in con-
nection with several factors, such as distance to road, slope, and LC heterogeneity. Recently, Smith
et al. (2001) found that accuracy decreases as LC heterogeneity increases and patch sizes decrease. 

Steele et al. (1998) formulated a concept of misclassification probability by calculating values at
training observation locations and then used spatial interpolation (kriging) to create accuracy maps
for thematic LC maps. However, this work used the training data employed in the classification process
but not the independent reference data usually collected after the thematic map has been constructed
for accuracy assessment purposes. Steele et al. (1998) stated that the misclassification probability is
not specific to a given cover type. It is a population concept indicating only the probability that the
predicted cover type is different from the reference cover type, regardless of the predicted and reference
types as well as the observed outcome, and whether correct or incorrect. Although this work brought
in a useful approach to constructing accuracy maps, it did not provide information for the relationship
between misclassification probabilities and the independent reference data used for accuracy assess-
ment (i.e., the “real” errors). Furthermore, by combining training data of all different cover types
together, it produced similar misclassification probabilities for pixels with different cover types that
were colocated. This point should be open to discussion, as our analysis described below indicates
that the spatial pattern of thematic map accuracy varies from one cover type to another, and pixels
with different cover types located in close proximity might have different accuracy levels.

Recently, fuzzy set theory has been applied to thematic map accuracy assessment using two
primary approaches. The first was to design a fuzzy matching definition for a crisp classification,
which allows for varying levels of set membership for multiple map categories (Gopal and Wood-
cock, 1994; Muller et al., 1998; Townsend, 2000; Woodcock and Gopal, 2000). The second approach
defines a fuzzy classification or fuzzy objects (Zhang and Stuart, 2000; Cheng et al., 2001). Although
the fuzzy theory-based methods take into consideration error magnitude and ambiguity in map
classes while doing the assessment, like other conventional measures, they do not show spatial
variation of thematic map accuracy.

To overcome shortcomings in mapping thematic map accuracy, we have developed a fuzzy set-
based method that is capable of analyzing and mapping spatial accuracy patterns of different cover
types. We expanded that method further in this study to bring the spatial accuracy information into
the calculations of several landscape indicators derived from thematic LC maps. As the method of
mapping spatial accuracy was at the core of this study, it will be presented to a reasonable extent
in this chapter.

 

13.2 METHODS

 

This study used data collected for the accuracy assessment of the National Land Cover Data
(NLCD) set. The NLCD is a LC map of the contiguous U.S. derived from classified Landsat
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Thematic Mapper (TM) images (Vogelmann et al., 1998; Vogelmann et al., 2001). The NLCD was
created by the Multi-Resolution Land Characterization (MRLC) consortium (Loveland and Shaw,
1996) to provide a national-scope and consistently classified LC data set for the country. Method-
ology and results of the accuracy assessment have been described in Stehman et al. (2000), Yang
et al. (2000, 2001), and Zhu et al. (1999, 2000). While data for the accuracy assessment were taken
by federal region and available for several regions, this study only used data collected for Federal
Geographic Region III, the Mid-Atlantic Region (MAR) (Figure 13.1). Table 13.1 shows the number
of photographic interpreted “reference” data samples associated with each class in the LC map
(Level I) for the MAR. Note that the reference data for Region III did not include alternate reference
cover-type labels or information concerning photographic interpretation confidence, unlike data
associated with other federal geographic regions.

 

Figure 13.1

 

The Mid-Atlantic Region; 10 watersheds used in later analysis are highlighted on the map.
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Major analytical study elements were: (1) to define a multilevel agreement between sampled
and mapped pixels, (2) to construct accuracy maps for six LC types, (3) to define cover-type-
conversion degrees of membership for mapped pixels, (4) to develop a cover-type-conversion rule
set for different conditions of accuracy and LC dominance, (5) to construct fuzzy LC maps, and
(6) to develop landscape indicators from fuzzy LC maps.

 

13.2.1 Multilevel Agreement

 

In the MRLC accuracy assessment performed by Yang et al. (2001), agreement was defined as
a match between the primary or alternate reference cover-type label of the sampled pixel and a
majority rule LC label in a 3 

 

¥

 

 3 window surrounding the sample pixel. Here we defined a multilevel
agreement at a sampled pixel (Table 13.2) and applied it for all available sampled pixels. It has
been demonstrated that the multilevel agreement went beyond the conventional binary agreement
and covered a wide range of possible results, ranging from “conservative bias” (Verbyla and
Hammond, 1995) to “optimistic bias” (Hammond and Verbyla, 1996). We define a discrete fuzzy
set 

 

A

 

 (

 

A 

 

= {(

 

a

 

1

 

, 

 

m

 

1

 

),…,(

 

a

 

6

 

, 

 

m

 

6

 

)}) representing the multilevel agreement at a mapped pixel regarding
a specific cover type as follows:

(13.1)

where 

 

a

 

i

 

, 

 

i

 

 = 1,…,6 are six different levels (or categories) of agreement at a mapped pixel; 

 

m

 

i

 

 

 

is
fuzzy membership of the agreement level 

 

i

 

 of the pixel under study; 

 

d

 

 is the distance from sampled
point 

 

k

 

 to the pixel (

 

k 

 

ranges from 1 to 

 

n

 

, where 

 

n

 

 is the number of nearest sampled points taken

 

Table 13.1

 

Number of Samples by Andersen Level I Classes

Class Name MRLC Code No. of Samples

 

Water 11 79
Developed 20s 222
Barren 30s 127
Forested Upland 40s 338
Shrubland 51 0
Nonnatural Woody 61 0
Herbaceous Upland Natural/Seminatural Vegetation 71 0
Herbaceous Planted/Cultivated 80s 237
Wetlands 90s 101
Total 1104

 

Table 13.2

 

Multilevel Agreement Definitions

Levels Description

 

I A match between the LC label of the sampled pixel and the center pixel’s LC type as well as a LC 
mode of the three-by-three window (662 sampled points)

II A match between the LC label of the sampled pixel and a LC mode of the three-by-three window (39 
sampled points)

III A match between the LC label of the sampled pixel and the LC type of any pixel in the three-by-three 
window (199 sampled points)

IV A match between the LC label of the sampled pixel and the LC type of any pixel in the five-by-five 
window (84 sampled points)

V A match between the reference LC label of the sampled pixel and the LC type of any pixel in the 
seven-by-seven window (31 sampled points)

VI Failed all of the above (89 sampled points)
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into consideration); 

 

I

 

k

 

 is a binary function that equals 1 if the sampled point 

 

k

 

 has the agreement
level 

 

i

 

 and 0 otherwise; 

 

p

 

 is the exponent of distance used in the calculation; and 

 

d

 

k

 

 is the
photographic interpretation confidence score of the sampled pixel 

 

k

 

. As information on photographic
interpretation confidence was not available for the Region III data set, 

 

d

 

k

 

 was set as constant (

 

d

 

k

 

 =
1) in this study. The division by the maximum of 

 

A

 

i

 

 was to normalize the fuzzy membership function
(Equation 13.1). Verbally, the fuzzy number of multilevel agreement at a mapped pixel defined in
Equation 13.1 is a modified inverse distance weighted (IDW) interpolation of the 

 

n

 

 nearest sample
points for each agreement level defined in Table 13.2. But instead of using all 

 

n

 

 data points together
in the interpolation, as in conventional IDW for continuous data, the 

 

n

 

 sample pixels were divided
into six separate groups based on their agreement levels and six iterations of IDW interpolation
(one for each agreement level) were run. For each iteration of a particular agreement level, only
those samples (among 

 

n

 

 sample pixels) with that agreement level would be coded as 1, while other
reference samples were coded as 0 by the use of the binary function 

 

I

 

k

 

. IDW then returned a value
between 0 and 1 for 

 

M

 

i

 

 in each iteration. In other words, 

 

M

 

i

 

 is an IDW-based weight of sample
pixels at the agreement level 

 

i

 

 among the 

 

n

 

 closest sample pixels surrounding the pixel under study.
With the “winner-takes-all” rule, the agreement level with maximum 

 

M

 

i

 

 (i.e., maximum membership
value 

 

m

 

i 

 

= 1) will be assigned as the agreement level of the mapped pixel under study. 
After the multilevel agreement fuzzy set 

 

A

 

 was calculated (Equation 13.1), its scalar cardinality
was computed as follows (Bárdossy and Duckstein, 1995):

(13.2)

Thus, the scalar cardinality of the multilevel agreement fuzzy set 

 

A

 

 is a real number between 1 and
6. This is an indicator of the agreement-level “homogeneity” of sampled pixels surrounding the pixel
under study. If 

 

car

 

(

 

A

 

) is close to 1, the majority of sampled pixels surrounding the mapped pixel
under study have the same agreement level. Conversely, the greater 

 

car

 

(

 

A

 

) is, the more heterogeneous
in agreement levels the sampled pixels are. Note that there is another way for a mapped pixel to
have a near 1 cardinality. That is when the distance between the mapped pixel and a sampled pixel
is very close compared to those of other sampled pixels, reflecting the local effect in the IDW
interpolation. However, this case occurs only in small areas surrounding each sampled pixel. 

 

13.2.2 Spatial Accuracy Map

 

Using the above equations, discrete fuzzy sets representing multilevel agreement and their
cardinalities were calculated for all mapped pixels associated with a particular cover type. Then,
the cardinality values of all pixels were divided into three unequal intervals (1–2, 2–3, and > 3).
They were assigned (labeled) to the appropriate category, representing different conditions of
agreement-level heterogeneity of neighboring sampled pixels. The three cardinality classes were
then combined with six levels of agreement to create 18-category accuracy maps.

 

13.2.3 Degrees of Fuzzy Membership 

 

This step calculated the possible occurrence of multiple cover types for any given pixel(s)
locations expressed in terms of degrees of fuzzy membership. This was done by comparing cover
types of mapped pixels and sampled pixels at the same location based on individual pixels and a
3 

 

¥

 

 3 window-based evaluation. To illustrate, assume that the mapped pixel and the sampled pixel
had cover types 

 

x 

 

and 

 

y

 

, respectively. In the one-to-one comparison between the mapped and
sampled pixels, if 

 

x 

 

and 

 

y 

 

are the same, then it is reasonable to state that the mapped pixel was
classified correctly. In that case, the degree of membership for cover type 

 

x

 

 to remain the same
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assigned to 1. On the other hand, if 

 

x 

 

is different from 

 

y

 

, then it can be stated that the mapped pixel
is wrongly classified, and the degree of membership of 

 

x

 

 to become 
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would be 1. The above
statements can be summarized as follows:
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and 
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is the number of pixels in the 3 
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 3 window with cover type 
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. The ultimate degrees of
membership of cover types

 

 

 

at the mapped pixel were computed as the weighted-sum average of
those from the one-to-one and 3 
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 3-window–based comparisons as follows:
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= 0.5) for the two one-to-one and 3 
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 3-window–based comparisons. Figure 13.2 demonstrates
how degrees of fuzzy membership of a mapped pixel were computed.

 

13.2.4 Fuzzy Membership Rules

 

Here we integrate degrees of membership at individual locations derived from the previous step
into a set of fuzzy rules. Theoretically, a fuzzy rule generally consists of a set of fuzzy set(s) as
argument(s) 
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and an outcome 
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Figure 13.2

 

Illustration of calculating the cover-type-conversion degrees of membership.
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where 

 

k 

 

is the number of arguments. We constructed four fuzzy rules for each cover type for four
different combinations of two arguments including (1) accuracy level (i.e., low and high) and (2)
majority (i.e., dominant or subordinate). Both of the arguments were available spatially; the first
was obtained from the accuracy maps constructed in previous steps and the second was derived
directly from the LC thematic map. The four fuzzy rules for cover type 

 

x

 

 are stated as follows: 

 

• Rule 1: if 

 

x 

 

is “dominant”

 

 

 

and the accuracy is “high,” then the degree of membership of 

 

x

 

 to
become 

 

y

 

 is:

 

(13.7)
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• Rule 4: if x is “subordinate” and the accuracy is “low,” then:

(13.10)

where  is accuracy level for land-cover type x at point i with its values ranging from 0 to 1
and nx,i is the number of pixels labeled x in the 3 ¥ 3 window surrounding the mapped pixel i. We
assigned values of  based on the multilevel agreement for cover type x at that point.  is
equal to 1 if the agreement level is I and is equal to 0.8, 0.6, 0.4, 0.2, and 0 for agreement levels
II, III, IV, V, and VI, respectively. While Equations 13.7–13.10 are based on fuzzy set theory and
the error or confusion matrix is associated with probability theory, outcomes of Equations
13.7–13.10 are somewhat similar to information in a row of the error matrix. Note that while one
sampled point is used only once in computing the error matrix, it is employed four times at different
degrees in constructing the four fuzzy rules. For example, a sampled point in a high accuracy area
dominated by cover type x will contribute more to rule1 than to rules 2–4. In contrast, a sampled
point in a low accuracy area and subordinate cover type x will have a more significant contribution
to rule 4 above than to the other rules. Consequently, each rule represents the degrees of membership
of cover type conversion for specific conditions of accuracy and dominance that vary spatially on
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the map. In contrast, a row in the error matrix is a global summary of a cover type for the whole
map and does not provide any localized information. 

13.2.5 Fuzzy Land-Cover Maps

The fuzzy rule set derived in the previous step was used to construct various LC conversion
maps representing the degrees of fuzzy membership (or possibility) from x to y of all mapped
pixels associated with cover type x. For example, to construct the “barren-to-forested upland” map,
the four fuzzy rules were applied to all pixels mapped as barren (Table 13.3a through Table 13.3d).
In contrast to ordinary rules, where only one rule is activated at a time, the four fuzzy rules were
activated simultaneously at different degrees depending on levels of accuracy and LC dominance
at that particular location. Consequently, four outcomes resulted from the four fuzzy rules. There
are different methods for combining fuzzy rule outcomes (Bárdossy and Duckstein, 1995). Here
we applied the weighted sum combination method whose details and application can be found in
Bárdossy and Duckstein (1995) and Tran (2002). 

A fuzzy LC map for a given cover type was constructed by combining six cover-type-conversion
maps. For example, to develop the fuzzy forested upland map, six maps were merged: (1) forested
upland-to-forested upland, (2) water-to-forested upland and developed-to-forested upland, (3) barren-
to-forested upland, (4) herbaceous planted/cultivated-to-forested upland, and (5) wetlands-to-forested
upland. The final fuzzy forested upland map represented the degrees of membership of forested
upland for all pixels on the map. The degree of membership at a pixel on the fuzzy LC map was a
result of several factors, including the thematic mapped cover type at that pixel and the dominance
and accuracy of that LC type in the area surrounding the pixel under study. To illustrate, in a forest-
dominated upland area with high accuracy, the degrees of membership of forested upland will be
high (i.e., close to 1). Conversely, in a barren-dominated area with high accuracy, the degrees of
membership of forested upland will be very low (i.e., close to 0) for barren-labeled pixels. In contrast,
in a barren-dominated area with low accuracy, the degrees of membership of forested upland increases
to some extent (i.e., approximately 0.3 to 0.4) for barren-labeled pixels. Focusing on forest-related
landscape indicators, we used only the fuzzy forested upland map in the next section.

13.2.6 Deriving Landscape Indicators

First, several a-cut maps were created from the fuzzy forested upland map. Each a-cut map
was a binary map of forested upland with the degrees of membership < a. For example, a 0.5-cut
forested upland map is a binary map with two lumped categories: forest for pixels with degrees of
membership for forested upland < 0.5 and non-forest otherwise. Then, landscape indicators of
interest were derived from these a-cut maps in a similar way to those from an ordinary LC map.
The difference was that instead of having a single number for the indicator under study (as with
an ordinary LC map) there were several values of the indicator in accordance to various a-cut
maps. Generally, the more variable those values were, the more uncertain the indicator was for that
particular watershed.

13.3 RESULTS AND DISCUSSION

Plate 13.1 presents accuracy maps for six cover types. All maps were created with the values
of 10 for the number of sampled pixels n and 2 for the exponent of distance p (Equation 13.1).
The smaller the number of n and/or the larger the value of p, the more the local effects of sampled
points on the accuracy maps are taken into account. One important point illustrated by these maps
is that the spatial accuracy patterns were different from one cover type to another. For example,
while forested upland was understandably more accurate in highly forested areas, herbaceous
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planted/cultivated tended to be more accurate in populated areas. On the other hand, developed
areas around Richmond and Roanoke had lower accuracy levels compared with other urbanized
areas, such as Baltimore, Washington, DC, Philadelphia, and Pittsburgh. 

For the forested upland accuracy map, some areas had abnormally low accuracy levels, such
as those in central and southern Pennsylvania. The southwestern corner of Virginia had a very low
level of accuracy (agreement level 6), indicating that there was almost no match at all between
sampled pixels and mapped pixels in this area. This raised questions about both the thematic map
classification process and the quality of the reference data. Thus, the fuzzy accuracy maps indicated
irregularities or accumulated errors associated with both the thematic map and reference data set.
This information is not illustrated using conventional accuracy measure; however, it is very bene-
ficial for designing sampling schemes to support reference data cross-examination.

Table 13.3 presents the fuzzy cover-type-conversion rule set that is, as mentioned above,
somewhat similar to a combination of four error matrices in one. The possibilities derived from
each fuzzy rule should be interpreted relatively. For example, for a low accuracy, barren-dominant
area, the possibility for a barren-labeled pixel to be forested upland (i.e., rule 3-a) was the highest
compared with other cover types, including barren, and it was double the second highest possibility
of barren-to-herbaceous planted/cultivated (i.e., 0.47 vs. 0.24). Note that the outcomes of each
fuzzy rule were not normalized (i.e., to have the highest possibility equal 1) for the purpose of
global rule-to-rule comparison. For instance, the wetlands-to-forested upland possibility of a wet-
lands-labeled pixel in a low-accuracy, wetlands-dominant area (rule 6-a) was double (0.69 vs. 0.33)
the developed-to-forested upland possibility of a developed-labeled pixel in a low-accuracy, devel-
oped-dominant area (rule 2-a). Unlike an error matrix, the fuzzy rule set table provided significant
insights into spatial accuracy variation of the thematic map under study. As the size of the referenced
data set was relatively small compared with the area it covered, we used only two arguments
(inputs): the accuracy levels and cover type dominance. If there are more sampled data in future
analyses, additional arguments (factors) that might affect the classification process (e.g., slope,
altitude, sun angle, and fragmentation) can be included in the fuzzy rules, and potentially more
insights into the thematic map spatial accuracy patterns can be revealed. 

Plate 13.1 (See color insert following page 114.) Fuzzy accuracy maps of (a) water, (b) developed, (c) barren,
(d) forested upland, (e) herbaceous planted/cultivated, and (f) wetlands.
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Figure 13.3 presents six fuzzy cover-type-conversion maps of water-to-forested upland, devel-
oped-to-forested upland, barren-to-forested upland, forested upland-to-forested upland, herbaceous
planted/cultivated-to-forested upland, and wetlands-to-forested upland. These maps resulted from
spatially applying the fuzzy rule set to six LC types on the thematic map. Each map had a distinct

Figure 13.3 Fuzzy cover-type-conversion maps of: (a) water-to-forested upland, (b) developed-to-forested
upland, (c) barren-to-forested upland, (d) forested upland-to-forested upland, (e) herbaceous
planted/cultivated-to-forested upland, and (f) wetlands-to-forested upland.
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pattern as the degree of membership of a cover type reclassified as forested upland at each location
on a map was decided by the dominance and accuracy of that cover type at that spot. Figure 13.4
shows the fuzzy forested upland map that was a combination of the six cover type conversion maps
(Figure 13.3). An abnormality in the southwestern corner of Virginia apparently resulted from a
very low level of accuracy for most of the forest upland sampled pixels in the vicinity. This made
the forested upland degrees of membership for this area very low, although the area was dominated
by forest. This irregularity can be verified only through the additional reference data. For other
forested areas with low accuracy levels, like southern Pennsylvania, the degrees of membership
were greater (around 0.5 to 0.6). This value implies that a forested upland-labeled pixel in such an
area has a low probability (0.1 to 0.2) of being another cover type (i.e., herbaceous planted/cultivated
or developed).

Figure 13.5a–d presents the crisp binary map and three a-cut maps of the fuzzy forested upland
map at the levels of 0.1, 0.25, and 0.5. One can see that the 0.1-cut forested upland map (b) had
more forest than the crisp binary map (a) in all areas other than southwestern Virginia. This result
is because the 0.1-cut map included pixels that were labeled to other cover types but had possibilities
> 0.1 of being forested upland. This was somewhat similar to the result if a rule to include only

Figure 13.4 Fuzzy forested upland map.
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the forested upland omission errors into the forested upland category had been used. Conversely,
the 0.25-cut forested upland map (c) appeared to be similar to the crisp binary map in terms of
forest coverage. This can be explained by the fact that only pixels with moderate forested upland
degrees of membership (> 0.25) were included in the 0.25-cut map. This excluded the forested
upland omission errors but maintained the commission errors. For the 0.50-cut map (d), forest
coverage was proportionately less than on the binary map and areas with low forest accuracy were
excluded from the map. By exploring various a-cut maps of forested upland, the different forested
upland map outcomes can be explored including and/or excluding omission and commission errors. 

Table 13.4 presents two forested landscape indicators (FOR% and INT20) for 10 watersheds in
MAR (Figure 13.5). FOR% was computed to extract the number of pixels with forested upland cover
on a watershed basis divided by the total number of pixels for each watershed to yield the watershed-
based index value. INT20 was used to calculate the proportion of forested upland cover within each

Figure 13.5 Crisp binary forested upland map (a) and three a-cut maps derived from the fuzzy forested upland
map: (b) 0.1-cut, (c) 0.25-cut, and (d) 0.5-cut. 
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window using a threshold of 90% to determine interior habitat suitability (i.e., suitable if ≥ 90%
forest coverage). Then, the proportion of watershed with suitable interior habitat was determined as
INT20 (based on a 450- ¥ 450-m window). Various values of FOR% and INT20 at three a-cut maps
provided possible values of these landscape indicators for the watersheds under study.

For the Schuylkill watershed (2040203) located in an urbanized area with moderate accuracy
for forested upland pixels, FOR% ranged from 55.4 to 45.4 with a 10% change from 0.1- to 0.5-
cut. Also, the FOR% value at 0.25-cut was very close to those for the crisp binary forested upland
map (i.e., 47.7 vs. 47.5) and INT20 values at this watershed changed about 8.3% from 0.1- to 0.5-
cut. The Lower Susquehanna watershed (2050306), also located in an urbanized area, had a
relatively higher accuracy level; 0.10- and 0.25-cut variations of FOR% and INT20 were only 8.2%
and 5.5%, respectively. Conversely, for the Little Kanawha watershed (5030203), located in a
forested area with a high accuracy level, FOR% changed only 4.2% from 0.1- to 0.5-cut (from
90.4 to 86.2%). However, the INT20 0.10- to 0.25-cut variation increased to 8.7%. These analyses
can be applied to other watersheds, providing valuable insights into the accuracy of the landscape
indicators across the region. These two landscape indicators serve as an example of how landscape
indicators derived from thematic LC maps can be analyzed to reveal their spatial accuracy and
possible value in the study area.

13.4 CONCLUSIONS

We have developed a fuzzy set-based method to map the spatial accuracy of thematic maps
and compute landscape indicators while taking into account the spatial variation of accuracy
associated with different LC types. This method provides valuable information not only on the
spatial patterns of accuracy associated with various cover types but also on the possible values of
landscape indicators across the study area. Such insights have not previously been incorporated
into any of the existing thematic map-related accuracy assessment methods. We believe that
including a spatial assessment in the accuracy assessment process would greatly enhance the user’s
capability to evaluate map suitability for numerous environmental applications.

13.5 SUMMARY

This chapter presented a fuzzy set-based method of mapping the spatial accuracy of thematic
maps and computing landscape indicators while taking into account the spatial variation of accuracy
associated with different LC types. First, a multilevel agreement was defined, providing a framework
to accommodate different levels of matching between sampled pixels and mapped pixels. Then, the

Table 13.4 Values of FOR% and INT20 for 10 Watersheds in the Mid-Atlantic Region

Watershed
FOR% INT20

Crisp 0.10-cut 0.25-cut 0.50-cut Crisp 0.10-cut 0.25-cut 0.50-cut

Schuylkill 47.5 55.4 47.7 45.4 23.6 31.1 24.0 22.8
Lower West Branch
Susquehanna

68.8 73.0 69.0 68.8 54.9 60.3 55.3 54.9

Lower Susquehanna 29.0 36.3 29.2 28.1 10.8 16.2 10.9 10.7
Nanticoke 30.1 57.5 31.2 21.9 6.8 37.6 8.0 4.5
Cacapon-Town 84.9 96.0 84.9 84.0 72.0 92.3 72.6 71.1
Pamunkey 64.2 78.4 65.2 60.1 39.1 61.9 40.5 36.4
Upper James 86.9 95.3 87.1 86.9 77.4 91.4 77.8 77.3
Hampton Roads 16.2 35.0 7.3 4.4 2.4 14.0 1.6 1.1
Connoquenessing 55.4 65.2 54.1 50.3 25.0 39.4 25.0 23.3
Little Kanawha 86.2 90.4 86.4 86.2 71.8 80.5 72.4 71.8
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multilevel agreement data at the sampled pixel locations were used to construct spatial accuracy maps
for six cover types approximating an Anderson Level I classification for the Mid-Atlantic region. A
set of fuzzy rules was developed that determined degrees of fuzzy membership for cover type
conversion under different conditions of accuracy and cover type dominance. Operations of the fuzzy
rule set created a set of fuzzy cover-type-conversion maps. Fuzzy LC maps were then created from
a combination of six fuzzy cover-type-conversion maps from all cover types. Then, the LC maps were
used to derive several a-cut maps that were binary maps for representative cover types in accordance
with different degrees of fuzzy membership. Finally, landscape indicators were derived from those
binary a-cut LC maps. Variations in the value of indicator values derived from different a-cut maps
illustrated the level of accuracy (uncertainty) associated with watershed-specific indicators.
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14.1 INTRODUCTION

14.1.1 Accuracy Assessment

 

Accuracy assessments of thematic maps have often been overlooked. With the increasing pop-
ularity and availability of geographic information systems (GIS), maps can readily be produced
with minimal regard for accuracy. Frequently, a map that looks good is assumed to be 100% accurate.
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Understanding the accuracy of meso-scale (1:100,000 to 1:500,000 scale) digital maps produced
by government agencies is especially important because of the potential for broad dissemination
and use. Meso-scale maps encompass large areas, and thus the information may affect significantly
large populations. Additionally, digital information can be shared much more easily than hard-copy
maps in the rapidly growing technological world. Finally, information produced by public agencies
is freely available and sometimes actively disseminated. These combined factors highlight that a
thorough understanding of the thematic accuracy of a map is essential for proper use.

A rigorous assessment of a map allows users to determine the suitability of the map for particular
applications. For example, estimates of thematic accuracy are needed to assist land managers in
providing a defensible basis for use of the map in conservation decisions (Edwards et al., 1998).

Errors can occur and accumulate throughout a land-cover (LC) mapping project (Lunetta et al.,
1991). The final map can have spatial (positional) and/or thematic (classification) errors. Spatial
errors may occur during the registration of the spatial data to ground coordinates or during sequential
analytical processing steps, while thematic errors occur as a result of cover-type misclassifications.
Thematic errors may include variation in human interpretation of a complex classification scheme
or an inappropriate classification system for the data used (e.g., understory classification when
satellite imagery can only visualize the overstory).

This chapter focuses on analysis and estimation of thematic accuracy of a LC map containing
105 cover types. Using a single reference data set, three methods of analysis were conducted to
illustrate the increase in accuracy information portrayed by fuzzy set theory and spatial visualization.
This added information allows a user to better evaluate use of the map for any given application.

 

14.1.2 Analysis of Reference Data

 

14.1.2.1 Binary Analysis

 

The analysis and estimation of thematic accuracy of meso-scale LC maps has traditionally been
limited to a binary analysis (i.e., right/wrong) (Congalton, 1996; Congalton and Green, 1999). This
type of assessment provides information about agreement between cover types as mapped (classified
data) and corresponding cover types as determined by an independent data source (reference data).
The binary assessment is summarized in an error matrix (Congalton and Green, 1999), also referred
to as a confusion or contingency table. In the matrix, the cover type predicted by the classified data
(map) is assigned to rows and the observed cover type (reference data) is displayed in columns.
The values in each cell represent the count of sample points matching the combination of classified
and reference data (Congalton, 1996). Errors of inclusion (commission errors) and errors of exclu-
sion (omission errors) for each cover type and overall map accuracy can be calculated using the
error matrix. “User’s accuracy” corresponds to the area on the map that actually represents that
LC type on the ground. “Producer’s accuracy” represents the percentage of sampling points that
were correctly classified for each cover type.

A binary analysis of accuracy data using an error matrix omits information in two ways: (1) it
does not take into account the degree of agreement between reference and map data and (2) it
ignores spatial information from the reference data. The error matrix forces each map label at each
reference point into a correct or incorrect classification. However, a LC classification is often not
discrete (i.e., one type is exclusive of all others). Instead, types grade from one to another and may
be related, justifying one or more map labels for the same geographic area. The binary assessment
does not take into account that the reference data may be incorrect. In addition, the error matrix
does not use the locations of the reference points directly, and accuracy is assumed to be spatially
constant within each LC type. Instead, accuracy may vary spatially across the landscape in a manner
partially or totally unrelated to LC type (Steele et al., 1998). This has led to the utilization of two
additional analysis techniques, fuzzy set analysis and spatial analysis, to describe the thematic
accuracy of a LC map.
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14.1.2.2 Fuzzy Set Analysis

 

An alternative method of analysis of thematic accuracy uses fuzzy set theory (Zadeh, 1965).
Adapted from its original application to describe the ability of the human brain to understand vague
relationships, Gopal and Woodcock (1994) developed fuzzy set theory for thematic accuracy
assessment of digital maps. A fuzzy set analysis provides more information about the degree of
agreement between the reference and mapped cover types. Instead of a right or wrong analysis,
map labels are considered partially right or partially wrong, generally on a five-category scale. This
is more useful for assessing vegetation types that may grade into one another yet must be classified
into discrete types by a human observer (Gopal and Woodcock, 1994). The fuzzy set analysis
provides a number of measures with which to judge the accuracy of a LC map. 

Fuzzy set theory aids in the assessment of maps produced from remotely sensed data by
analyzing and quantifying vague, indistinct, or overlapping class memberships (Gopal and Wood-
cock, 1994). Distinct boundaries between LC types seldom exist in nature. Instead, there are often
gradations from one cover (vegetation) type to another. Confusion results when a location can
legitimately be labeled as more than one cover type (i.e., vegetation transition zones). Unlike a
binary assessment, fuzzy set analysis allows partial agreement between different LC types. Addi-
tionally, the fuzzy set analysis provides insight into the types of errors that are being made. For
example, the misclassification of ponderosa pine woodland as juniper woodland may be a more
acceptable error than classifying it as a desert shrubland. In the first instance, the misclassification
may not be important if the map user wishes to know where all coniferous woodlands exist in an area.

 

14.1.2.3 Spatial Analysis

 

Advanced techniques in assessing the thematic accuracy of maps are continually evolving. A
new technique proposed in this chapter uses the spatial locations of the reference data to interpolate
accuracy between sampling sites to create a continuous spatial view of accuracy. This technique is
termed a 

 

thematic spatial analysis

 

; however, it should not be confused with assessing the 

 

spatial

 

error of the map. The thematic spatial analysis portrays thematic accuracy in a spatial context.
Reference data inherently contain spatial information that is usually ignored in both binary and

fuzzy set analyses. For both analyses, the spatial locations of the reference data are not utilized in
the summary statistics, and results are given in tabular, rather than spatial, format. The most
fundamental drawback of the confusion matrix is its inability to provide information on the spatial
distribution of the uncertainty in a classified scene (Canters, 1997). A thematic spatial analysis
addresses this spatial issue by using the geographic locations gathered using a global positioning
system (GPS) with the reference data. These locations are used in an interpolation process to assign
accuracy to locations that were not directly sampled. Accuracy is not tied to cover type, but rather
to the location of the reference sites. Therefore, accuracy can be displayed for specific locations
on the LC map.

Data that are close together in space are often more alike than those that are far apart. This
spatial autocorrelation of the reference data is accounted for in spatial models. In fact, spatial
models are more general than classic, nonspatial models (Cressie, 1993) and have less-strict
assumptions, specifically about independence of the samples. Therefore, randomly located reference
data will be accounted for in a spatial model.

Literature on the spatial variability of thematic map accuracy is limited. Congalton (1988)
proposed a method of displaying accuracy by producing a binary difference image to represent
agreement or disagreement between the classified and reference images. Fisher (1994) proposed a
dynamic portrayal of a variety of accuracy measures. Steele et al. (1998) developed a map of accuracy
illustrating the magnitude and distribution of classification errors. The latter used kriging to inter-
polate misclassification estimates (produced from a bootstrapping method) at each reference point.
The interpolated estimates were then used to construct a contour map showing accuracy estimates
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over the map extent. This work provided a starting point for this study. The fuzzy set analysis
described earlier was used in conjunction with kriging to produce a fuzzy spatial view of accuracy.

 

14.2 BACKGROUND

 

A LC map, or map of the natural vegetation communities, water, and human alterations that
represent the landscape (e.g., agriculture, urban, etc.), provides basic information for a multitude
of applications by federal, state, tribal, and local agencies. Several public (i.e., the USDA Forest
Service and USDI Fish & Wildlife Service) and private (i.e., The Nature Conservancy) agencies
use meso-scale LC maps for local and regional conservation planning. LC maps can be used in
land-use planning, fire modeling, inventory, and other applications. Because of their potential for
utilization in a variety of applications by different users, it is important to determine the thematic
map accuracies.

A thematic accuracy assessment was conducted on the northern half of a preliminary Arizona
Gap Analysis Program (AZ-GAP) LC map (Graham, 1995). The map (Plate 14.1) was derived
primarily from Landsat Thematic Mapper (TM) satellite imagery from 1990. Aerial video and
ground measurements were used to facilitate classification of spectral classes into 105 discrete
cover types for Arizona using a modification of the classification system by Brown et al. (1979).
This system attempted to model natural hierarchies in the southwestern U.S. However, Graham’s
procedures were not well described or documented.

The preliminary LC map consists of polygons labeled with cover types contained in a GIS with
a 40-ha minimum mapping unit (MMU); MMUs were smaller in riparian locations. This resolution
is best suited for interpretation at the 1:100,000 scale (meso-scale). 

 

14.3 METHODOLOGY

14.3.1 Reference Data

 

A random sampling design, stratified according to cover type, was used to determine the set of
polygons to be sampled in the accuracy assessment. A total of 930 sampling sites representing 59
different cover types in northern Arizona were visited during the summer of 1997. Field technicians
identified dominant, codominant, and associate plant species and ancillary data for a 1-ha area. The
field data at each site were assigned to one of the 105 cover classes by the project plant ecologist
using the incomplete definitions provided by Graham. Each reference site was tied to the GPS-
measured point location at the center of the 1-ha field plots. The resulting reference data set,
therefore, consisted of 930 points with a field assigned cover type and associated point location.

 

14.3.2 Binary Analysis

 

Traditional measures of map accuracy were calculated by comparing the cover label at each
reference site to the map. Matches between the two were coded as either agreed (1) or disagreed
(0). These statistics were incorporated into an error matrix from which user’s and producer’s
accuracies for each cover type were calculated, as well as overall accuracy of the LC map.

 

14.3.3 Fuzzy Set Analysis

 

The Gopal–Woodcock (1994) fuzzy set ranking system was refined for application to the
reference data for the northern AZ-GAP LC map (Table 14.1). The fuzzy set ranks reflected a
hierarchical approach to LC classification. While Gopal and Woodcock (1994) suggested that fuzzy
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set ranks for each cover type be assigned at each sampling point, this method would have been
impractical in the field. Instead, the fuzzy set ratings were predefined rather than assessed at each
sampling site. A matrix of the 105 cover classes (reference vs. map) assigned a fuzzy set rank to
each reference site by comparing its reference data assignment to the map assignment. 

Using the fuzzy set rank for each reference site, the functions that described the thematic
accuracy of the classification were calculated (Gopal and Woodcock 1994). For this study, we
calculated the following functions:

 

Max (M) 

 

= 

 

number of sites with an absolutely right answer (accuracy rank of 5)

Right (R)

 

 = 

 

number of sites with a reasonable, good, or absolutely right answer (accuracy ranks of
3, 4, and 5)

 

Plate 14.1 

 

(See color insert following page 114.) Preliminary AZ-GAP land-cover map to formation level
classification. See Appendix A for a complete list of all cover classes. The preliminary map contained
58,170 polygons describing 105 vegetation types (Appendix A).
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Increase (R – M) 

 

= 

 

difference between the Right and Max functions

 

The Max (M) function calculated the same information as user’s accuracy in a binary assess-
ment. The Right (R) function allowed reasonable and better answers to be counted. For this study,
the R function calculated the accuracy of the LC map to the life form level or better. The Increase
(R – M) function reflected the improvement in accuracy associated with using the R function instead
of the M function. Since the Gopal–Woodcock (1994) fuzzy set assessment was altered to save
time in the field, certain data for calculating membership, difference, ambiguity, and confusion
statistics were not collected.

 

14.3.4 Spatial Analysis

 

The nature of the accuracy ranks were explored by calculating the mean, median, and mode,
and a histogram was plotted. The points were mapped to display the accuracy rank and location of
the data. Interpolating the accuracy ranks produces a continuous map of thematic accuracy. Kriging
was data driven and exploited the spatial autocorrelation exhibited by the data. An ordinary kriging
regression technique for estimating the best linear unbiased estimate of variables at an unsampled
location was applied to reduce the local variability by calculating a moving spatial average.

The kriging interpolation produces continuous values even though the accuracy ranks are
ordinal. However, a value between two of the ranks is meaningful, and this suggests that the kriged
results are also meaningful. For example, a value between “reasonable or acceptable” and “good”
can be characterized as “reasonably good.”

The first step in the kriging process was to calculate the empirical variogram, or an analogous
measure of the spatial autocorrelation present in the data. The variogram is one of the most common
measures of spatial autocorrelation used in geostatistics. It is calculated as 0.5 the average difference
squared of all data values separated by a specified distance (lag):

(14.1)

where 

 

h

 

 = distance measure with magnitude only, 

 

N(h)

 

 = set of all pair-wise Euclidean distances

 

i 

 

–

 

 j = h

 

, 

 

|N(h)|

 

 = number of distinct pairs in 

 

N(h)

 

, and 

 

z

 

i

 

 and 

 

z

 

j

 

 = fuzzy set ranks at spatial locations

 

i

 

 and 

 

j

 

.
For the accuracy ranks in this study, we chose to use a modified version of the variogram to

calculate the empirical variogram, as follows (Cressie and Hawkins, 1980):

 

Table 14.1

 

Accuracy Ranks Assigned to the Reference Data of the AZ-GAP Land-Cover Map

Rank Answer Description

 

1 Wrong The reference and map types did not correspond, and there was no ecological 
reason for the noncorrespondence.

2 Understandable
but Wrong

The reference and map types did not correspond, but the reason for non-
correspondence was understood

 

a

 

.
3 Reasonable or 

Acceptable
The reference and map types were all the same life form (i.e.,

 

 

 

formation types

 

b

 

).

4 Good The reference and map types were characterized by the same species at the 
dominant species level.

5 Absolutely 
Right

The reference and map types were exactly the same.

 

a

 

These reasons include vegetation types that are ecotonal and/or vegetation types that can occur as inclusions
within other vegetation types.

 

b

 

Tundra, Coniferous Forest, Evergreen Woodland, Chaparral, Grasslands, Desert Scrub, Riparian Broadleaf
Woodland/Forest, Riparian Leguminous Woodland/Forest, Riparian Scrub, Wetlands, Water, and Developed.

g ( )
| ( ) |

( )
( )

h
N h

z zi j

N h

= -Â1
2

2
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(14.2)

This modified form of the variogram has the advantage of reducing the effect of outliers in the
data without removing specific data points. The estimation is based on the fourth power of the
square root of the absolute differences in 

 

z

 

-values.
Once an appropriate empirical variogram is calculated, a model is fit to the data (Figure 14.1).

The model variogram has known mathematical properties (such as positive definiteness) and is
used in kriging equations to determine the estimator weights. Possible valid models include expo-
nential, spherical, gaussian, linear, and power (Goovaerts, 1997).

The nugget effect (

 

C

 

0

 

) represents the random variability present in a data set at small distances.
By definition, the value of the variogram at a distance of zero is zero; however, data values can
display a discontinuity at very small distances. This apparent discontinuity at the origin could reflect
the unaccounted-for spatial variability at distances smaller than the sampling distance or could be
an artifact of the error associated with measurement. 

The range (

 

A

 

0

 

) is the distance over which the samples are spatially correlated. The sill (

 

C

 

0

 

 +
C

 

) is the point of maximum variance and is the sum of the structural variance (

 

C

 

, variance attributed
purely to the process) and the nugget effect (Royle, 1980). It is the plateau that the model variogram
reaches at the range, and it is estimated by the sample variance only in the case of a model showing
a pure nugget effect. The model is fit to the empirical variogram visually and is optimized by
calculating the residual sum of squares (RSS). The values of the three main parameters are changed
iteratively to reduce the RSS value and fit the model.

 

Figure 14.1

 

Generic variogram including empirical data (circles) and model (heavy line).
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Ordinary kriging was performed on the fuzzy set reference data. The model and parameters
were selected to produce a regularly spaced lattice of points representing accuracy ranks. Kriging
predicted continuous (rather than ordinal) accuracy ranks ranging from one to five. The resulting
tabular file of coordinate locations and predicted accuracy ranks was converted to a grid format,
with predicted accuracy rank as the value of each 1-km

 

2

 

 cell. The result is a fuzzy spatial view of
accuracy, a map of predicted accuracy ranks for northern Arizona. The continuous accuracy rank
estimates were rounded into ordinal ranks for ease of interpretation and display. A frequency
histogram was produced from the predicted accuracy ranks.

 

14.4 RESULTS

14.4.1 Binary Analysis

 

User’s and producer’s accuracies for each cover type and overall accuracy were low (Table
14.2). The highest producer’s accuracies were for anthropogenically defined cover types industrial
(60%) and mixed agriculture/urban/industrial (80%). Producer’s accuracies for natural cover types
ranged between zero and 50%; the best performers were Encinal mixed oak/mixed chaparral/semi-
desert grassland – mixed scrub (50%) and Mohave blackbush – Yucca scrub (50%). Likewise, the
highest user’s accuracies were also for anthropogenically defined cover types urban (91%) and
industrial (86%). Natural cover types ranged between 0 and 48.3%; the best performer was Engel-
mann spruce – mixed conifer (48.3%). The standard error was 

 

<

 

 5% for almost all sampled
vegetation types, and overall map accuracy was 14.8%.

 

14.4.2 Fuzzy Set Analysis

 

The Max statistic for the fuzzy set reference data yields the same information as user’s accuracy
for the binary accuracy assessment (Table 14.3). However, the R function provided a different view.
Accuracy improves across the table for all cover types because the R function was more inclusive
than the M function. For example, in cover class 18 (ponderosa pine – pinyon – juniper), the M
statistic indicates this type has very low accuracy (5%). The R statistic indicated that when assessed
at the life-form level it was 74% correct. The range for R statistics was large, between 0 and 100%.
However, the cover types were more often correct to the life form (mean 52.7% ± 33.4%) compared
to the M statistic (mean 13.8% ± 18.8%). The mean increase in accuracy when viewed at the life
form level was 38.8% ± 31.5%.

 

14.4.3 Spatial Analysis

 

The accuracy ranks had a mean and median near 3.0 with a large standard deviation; however,
the mode did not correspond to the mean and median (Figure 14.2). The distribution had a fairly
broad shape but is mostly symmetrical. The fuzzy set reference data (Figure 14.3) illustrated classic
signs of being positively spatially autocorrelated at shorter distance separations (Figure 14.4 and
Figure 14.5). This was substantiated by the lower variance values at shorter lag distances. Also,
the variance values seem to reach a plateau at a lag distance where they become uncorrelated. The
empirical variogram was best fit with a spherical model (Figure 14.4). The parameters were
iteratively changed to achieve a low residual sum of squares and resulted in a nugget of 0.6638,
sill of 1.4081, and range of 22.6 km.

The spherical model and parameters were used to determine the weights in the kriging equations.
The predicted accuracy ranks produced from kriging do not reach the extremes of “wrong” and
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Table 14.2

 

Producer’s and User’s Accuracies by Land-Cover Type 

Code Cover Type
No. of
Sites

Producer’s
Accuracy

(%)
Standard

Error

User’s
Accuracy

(%)
Standard

Error

 

3 Engelmann Spruce-Mixed Conifer 29 41.2 7.0 48.3 7.2
4 Rocky Mountain Lichen-Moss 1 0.0 0.0 0.0 0.0
5 Rocky Mountain Bristlecone-Limber 

Pine
2 0.0 0.0 0.0 0.0

6 Pinyon-Juniper-Shrub/Ponderosa 
Pine-Gambel Oak-Juniper

21 0.0 0.0 0.0 0.0

7 Pinyon-Juniper/Sagebrush/Mixed-
Grass-Scrub

34 18.2 6.5 11.8 5.5

8 Pinyon-Juniper-Shrub Live Oak-
Mixed Scrub

13 8.0 7.3 15.4 9.6

9 Pinyon-Juniper (Mixed)/Chaparral-
Scrub

33 8.3 4.6 3.0 2.9

10 Pinyon-Juniper-Mixed Shrub 18 0.0 0.0 0.0 0.0
11 Pinyon-Juniper-Mixed Grass-Scrub 34 5.3 3.7 2.9 2.9
12 Pinyon-Juniper (Mixed) 41 6.7 3.9 2.4 2.1
13 Douglas Fir-Mixed Conifer 35 38.5 7.2 28.6 6.7
14 Arizona Cypress 8 25.0 12.8 12.5 9.9
15 Ponderosa Pine 45 12.5 4.8 13.3 4.8
16 Ponderosa Pine-Mixed Conifer 23 11.5 5.4 13.0 5.6
17 Ponderosa Pine-Gambel Oak-

Juniper/Pinyon-Juniper Complex
36 11.8 5.1 16.7 5.9

18 Ponderosa Pine-Pinyon-Juniper 39 16.7 5.8 5.1 3.3
20 Ponderosa Pine-Mixed Oak-Juniper 3 10.0 18.2 33.3 28.6
21 Encinal Mixed Oak 1 0.0 0.0 0.0 0.0
22 Encinal Mixed Oak-Pinyon-Juniper 5 16.7 18.1 40.0 23.7
23 Encinal Mixed Oak-Mexican Pine-

Juniper
2 0.0 0.0 0.0 0.0

24 Encinal Mixed Oak-Mexican Mixed 
Pine

1 0.0 0.0 0.0 0.0

25 Encinal Mixed Oak-Mesquite 1 0.0 0.0 0.0 0.0
26 Encinal Mixed Oak/Mixed 

Chaparral/Semidesert Grassland-
Mixed Scrub

10 50.0 15.0 10.0 9.0

27 Great Basin Juniper 2 0.0 0.0 0.0 0.0
28 Interior Chaparral Shrub Live Oak-

Pointleaf Manzanita
14 20.0 10.7 35.7 12.9

29 Interior Chaparral Mixed Evergreen 
Schlerophyll

18 33.3 11.0 27.8 10.5

30 Interior Chaparral (Mixed)/Sonoran-
Paloverde-Mixed Cacti

1 0.0 0.0 0.0 0.0

31 Interior Chaparral (Mixed)/Mixed 
Grass-Mixed Scrub Complex

10 0.0 0.0 0.0 0.0

32 Rocky Mountain/Great Basin Dry 
Meadow

18 20.0 6.4 27.8 7.2

33 Madrean Dry Meadow 22 0.0 0.0 0.0 0.0
34 Great Basin (or Plains) Mixed Grass 20 9.5 6.1 10.0 6.1
35 Great Basin (or Plains) Mixed Grass-

Mixed Scrub
40 8.5 4.2 15.0 5.5

36 Great Basin (or Plains) Mixed Grass-
Sagebrush

4 11.1 16.4 25.0 22.7

37 Great Basin (or Plains) Mixed Grass-
Saltbush

24 35.7 8.1 20.8 6.9

38 Great Basin (or Plains) Mixed Grass-
Mormon Tea

20 11.1 6.8 5.0 4.8

42 Semidesert Mixed Grass-Mixed 
Scrub

2 0.0 0.0 0.0 0.0

43 Great Basin Sagebrush Scrub 12 0.0 0.0 0.0 0.0
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“absolutely right.” Instead, they range from a minimum of 1.039 to a maximum of 4.934, and mean
and median are very close to 3.0 (Figure 14.5).

The fuzzy spatial view of accuracy displays the predicted accuracy ranks reclassified as an
ordinal variable (Figure 14.6). High accuracy is lighter in color than low accuracy. The frequency
histogram of accuracy ranks shows that approximately 85% of the fuzzy spatial view of accuracy
had a rank of 3, 4, or 5 (Figure 14.5). In ecological terms, the LC map was accurate to the life
form level or better for a majority of the study area. 

 

14.5 DISCUSSION

 

A binary analysis using an error matrix provides limited information about thematic accuracy
of a LC map. In fact, an overall accuracy of 14.8% for the map was dismal and discourages use
of the map for any application. However, this was not unexpected given the preliminary nature of
the map, high number of cover types, small reference data sample size (

 

n

 

) compared to the number
of cover types and lack of documentation of the Graham vegetation types. In fact, a binary analysis
is conservatively biased against a classification system that is poorly defined and numerous in
classes (Verbyla and Hammond, 1995). The lack of descriptions in the Graham classification system
made labeling the cover type of each reference point difficult. In addition, division of the cover
types of Arizona into 105 classes made distinguishing between types problematic. Therefore, a
binary analysis likely assigned a wrong answer to locations with partially correct LC classification.

 

44 Great Basin Big Sagebrush-Juniper-
Pinyon

30 20.0 6.5 13.3 5.5

45 Great Basin Sagebrush-Mixed 
Grass-Mixed Scrub

27 20.0 7.0 22.2 7.3

46 Great Basin Shadscale-Mixed 
Grass-Mixed Scrub

24 0.0 0.0 0.0 0.0

47 Great Basin Greasewood Scrub 11 37.5 14.8 27.3 13.6
48 Great Basin Saltbush Scrub 7 6.7 9.5 14.3 12.9
49 Great Basin Blackbrush-Mixed Scrub 36 16.0 5.8 11.1 5.0
50 Great Basin Mormon Tea-Mixed 

Scrub
18 19.4 9.1 33.3 10.9

51 Great Basin Winterfat-Mixed Scrub 11 0.0 0.0 0.0 0.0
52 Great Basin Mixed Scrub 26 9.1 5.6 11.5 6.3
53 Great Basin Mormon Tea/Pinyon-

Juniper
16 0.0 0.0 0.0 0.0

55 Mohave Creosotebush-Bursage 
Mixed Scrub

7 28.6 17.9 28.6 17.9

58 Mohave Blackbush-Yucca Scrub 13 50.0 10.4 23.1 8.7
59 Mohave Saltbush Yucca Scrub 5 0.0 0.0 0.0 0.0
61 Mohave Creosotebush-Brittlebush 

Mohave Globemallow Scrub
5 0.0 0.0 0.0 0.0

63 Mohave Joshua Tree 1 0.0 0.0 0.0 0.0
64 Mohave Mixed Scrub 9 9.1 9.8 11.1 10.7
75 Sonoran Paloverde-Mixed Cacti-

Mixed Scrub
1 0.0 0.0 0.0 0.0

82 Agriculture 1 0.0 0.0 0.0 0.0
83 Urban 11 41.7 14.9 90.9 8.6
84 Industrial 7 60.0 18.9 85.7 13.4
85 Mixed Agriculture/Urban/Industrial 20 80.0 7.7 20.0 7.7
87 Water 2 0.0 0.0 0.0 0.0

 

Table 14.2

 

Producer’s and User’s Accuracies by Land-Cover Type (

 

Continued

 

)

Code Cover Type
No. of
Sites

Producer’s
Accuracy

(%)
Standard

Error

User’s
Accuracy

(%)
Standard

Error
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Table 14.3

 

Fuzzy Set Accuracy by Land-Cover Type 

Code Cover Type
No. of
Sites

Max (M)

 

Best Answer
Right (R)

 

Correct
Increase

 

(R - M)

# % # % # %

 

3 Engelmann Spruce-Mixed Conifer 29 14 48.3 25 86.2 11 37.9
4 Rocky Mountain Lichen-Moss 1 0 0.0 0 0.0 0 0.0
5 Rocky Mountain Bristlecone-Limber Pine 2 0 0.0 2 100.0 2 100.0
6 Pinyon-Juniper-Shrub/Ponderosa Pine-

Gambel Oak-Juniper
21 0 0.0 10 47.6 10 47.6

7 Pinyon-Juniper/Sagebrush/Mixed-Grass-
Scrub

34 4 11.8 19 55.9 15 44.1

8 Pinyon-Juniper-Shrub Live Oak-Mixed 
Scrub

13 2 15.4 11 84.6 9 69.2

9 Pinyon-Juniper (Mixed)/Chaparral-Scrub 33 1 3.0 12 36.4 11 33.3
10 Pinyon-Juniper-Mixed Shrub 18 0 0.0 7 38.9 7 38.9
11 Pinyon-Juniper-Mixed Grass-Scrub 34 1 2.9 18 52.9 17 50.0
12 Pinyon-Juniper (Mixed) 41 1 2.4 21 51.2 20 48.8
13 Douglas Fir-Mixed Conifer 35 10 28.6 28 80.0 18 51.4
14 Arizona Cypress 8 1 12.5 1 12.5 0 0.0
15 Ponderosa Pine 45 6 13.3 28 62.2 22 48.9
16 Ponderosa Pine-Mixed Conifer 23 3 13.0 16 69.6 13 56.5
17 Ponderosa Pine-Gambel Oak-

Juniper/Pinyon-Juniper Complex
36 6 16.7 20 55.6 14 38.9

18 Ponderosa Pine-Pinyon-Juniper 39 2 5.1 29 74.4 27 69.2
20 Ponderosa Pine-Mixed Oak-Juniper 3 1 33.3 2 66.7 1 33.3
21 Encinal Mixed Oak 1 0 0.0 0 0.0 0 0.0
22 Encinal Mixed Oak-Pinyon-Juniper 5 2 40.0 3 60.0 1 20.0
23 Encinal Mixed Oak-Mexican Pine-Juniper 2 0 0.0 0 0.0 0 0.0
24 Encinal Mixed Oak-Mexican Mixed Pine 1 0 0.0 0 0.0 0 0.0
25 Encinal Mixed Oak-Mesquite 1 0 0.0 1 100.0 1 100.0
26 Encinal Mixed Oak/Mixed 

Chaparral/Semidesert Grassland-Mixed 
Scrub

10 1 10.0 2 20.0 1 10.0

27 Great Basin Juniper 2 0 0.0 0 0.0 0 0.0
28 Interior Chaparral Shrub Live Oak-

Pointleaf Manzanita
14 5 35.7 6 42.9 1 7.1

29 Interior Chaparral Mixed Evergreen 
Schlerophyll

18 5 27.8 7 38.9 2 11.1

30 Interior Chaparral (Mixed)/Sonoran-
Paloverde-Mixed Cacti

1 0 0.0 1 100.0 1 100.0

31 Interior Chaparral (Mixed)/Mixed Grass-
Mixed Scrub Complex

10 0 0.0 0 0.0 0 0.0

32 Rocky Mountain/Great Basin Dry Meadow 18 5 27.8 5 27.8 0 0.0
33 Madrean Dry Meadow 22 0 0.0 6 27.3 6 27.3
34 Great Basin (or Plains) Mixed Grass 20 2 10.0 3 15.0 1 5.0
35 Great Basin (or Plains) Mixed Grass-

Mixed Scrub
40 6 15.0 15 37.5 9 22.5

36 Great Basin (or Plains) Mixed Grass-
Sagebrush

4 1 25.0 2 50.0 1 25.0

37 Great Basin (or Plains) Mixed Grass-
Saltbush

24 5 20.8 10 41.7 5 20.8

38 Great Basin (or Plains) Mixed Grass-
Mormon Tea

20 1 5.0 9 45.0 8 40.0

42 Semidesert Mixed Grass-Mixed Scrub 2 0 0.0 0 0.0 0 0.0
43 Great Basin Sagebrush Scrub 12 0 0.0 7 58.3 7 58.3
44 Great Basin Big Sagebrush-Juniper-

Pinyon
30 4 13.3 13 43.3 9 30.0

45 Great Basin Sagebrush-Mixed Grass-
Mixed Scrub

27 6 22.2 17 63.0 11 40.7
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46 Great Basin Shadscale-Mixed Grass-
Mixed Scrub

24 0 0.0 13 54.2 13 54.2

47 Great Basin Greasewood Scrub 11 3 27.3 10 90.9 7 63.6
48 Great Basin Saltbush Scrub 7 1 14.3 4 57.1 3 42.9
49 Great Basin Blackbrush-Mixed Scrub 36 4 11.1 24 66.7 20 55.6
50 Great Basin Mormon Tea-Mixed Scrub 18 6 33.3 9 50.0 3 16.7
51 Great Basin Winterfat-Mixed Scrub 11 0 0.0 5 45.5 5 45.5
52 Great Basin Mixed Scrub 26 3 11.5 18 69.2 15 57.7
53 Great Basin Mormon Tea/Pinyon-Juniper 16 0 0.0 10 62.5 10 62.5
55 Mohave Creosotebush-Bursage Mixed 

Scrub
7 2 28.6 6 85.7 4 57.1

58 Mohave Blackbush-Yucca Scrub 13 3 23.1 11 84.6 8 61.5
59 Mohave Saltbush Yucca Scrub 5 0 0.0 5 100.0 5 100.0
61 Mohave Creosotebush-Brittlebush 

Mohave Globemallow Scrub
5 0 0.0 5 100.0 5 100.0

63 Mohave Joshua Tree 1 0 0.0 1 100.0 1 100.0
64 Mohave Mixed Scrub 9 1 11.1 9 100.0 8 88.9
75 Sonoran Paloverde-Mixed Cacti-Mixed 

Scrub
1 0 0.0 0 0.0 0 0.0

82 Agriculture 1 0 0.0 0 0.0 0 0.0
83 Urban 11 10 90.9 11 100.0 1 9.1
84 Industrial 7 6 85.7 7 100.0 1 14.3
85 Mixed Agriculture/Urban/Industrial 20 4 20.0 19 95.0 15 75.0
87 Water 2 0 0.0 0 0.0 0 0.0

 

Sum 930 138  523 385
Accuracy of the whole map   14.8  56.2  41.4

 

Figure 14.2

 

Frequency histogram of accuracy ranks.

 

Table 14.3

 

Fuzzy Set Accuracy by Land-Cover Type (

 

Continued

 

)

Code Cover Type
No. of
Sites

Max (M)

 

Best Answer
Right (R)

 

Correct
Increase

 

(R - M)

# % # % # %

0.2032
0.2323

0.1677

0.2484

0.1484

0.0000
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0.7500

1.0000
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Accuracy Rank
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Minimum          1
Maximum         5
Mean                3
Median             3
Skewness        0.04100
Kurtosis          -1.286
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A fuzzy set analysis provided more information about the agreement between the reference data
and the map and was less biased against a small sample size compared to number of cover types.
The M statistics were disturbing, but less so when the R statistics were considered. The R function
indicates that many cover types were more accurately classified to the life form level. Yet, even for
this statistic, accuracies did not reach the targeted 80% in most instances. This added information
allows the user and producer to judge the value of the LC map for different applications. For
example, for certain cover types, the map performed adequately to the life form level and could be
used in applications where this determination is all that is required. Fuzzy set theory was particularly
appropriate for LC classification systems that must be discrete but represent a continuum.

Adding the spatial location of accuracy to the accuracy ranks contributed additional accuracy
information to the LC map. Thematic map accuracy may vary spatially across a landscape in a
manner partially or totally unrelated to cover type. In other words, a cover type may be misclassified
more often when it occurs in certain contexts, such as on steep slopes. Also, cover types that were

 

Figure 14.3

 

Map of fuzzy set reference data.
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Figure 14.4

 

Semivariogram and spherical model of the fuzzy set reference data (930 points).

 

Figure 14.5

 

Frequency histogram of accuracy ranks in the fuzzy spatial view of accuracy.
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located near ground control data used in the map development tended to be more correct than
remote areas for which only imagery was used to develop the map.

The fuzzy spatial view of accuracy built upon the information produced by the fuzzy set analysis
and created a map of accuracy of the preliminary AZ-GAP LC map. Not only was accuracy
displayed as it varied across the northern Arizona landscape, but the degree of accuracy was
conveyed by accuracy ranks. Overall, the fuzzy spatial view of accuracy indicated that the LC map
was accurate to the life-form level, with locations of higher and lower accuracy. The histogram of
accuracy ranks for northern Arizona indicated that the interpolated accuracy was 85% at the life-
form level for all cover types. However, where classification required identification of the dominant
and, in some cases, associate, species, accuracy remained low (8%). 

 

Figure 14.6

 

Fuzzy spatial view of accuracy.
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The fuzzy spatial view of accuracy facilitated the identification of areas with low accuracy that
needed focused attention to refine the map and allowed users to assess the accuracy of the map for
their specific area of interest.

 

14.6 SUMMARY

 

Using the same reference data and LC map, three methods of thematic accuracy assessments
were conducted. First, a traditional thematic accuracy assessment using a binary rule (right/wrong)
was used to compare mapped and reference data. Results were summarized in an error matrix
and presented in tabular form by thematic class. Second, a fuzzy set assessment was used to rank
and express the degree of agreement between the mapped and reference data. This allowed for
the expression of accuracy to reflect the fuzzy nature of the classes. Results were also displayed
in tabular form by class but included several estimates of accuracy based on the degree of
agreement defined. Lastly, a spatial analysis using the accuracy rank of the reference data was
interpolated across the study area and displayed in map form. Fuzzy set theory and spatial
visualization help portray the accuracy of the LC map more effectively to the user than a traditional
binary accuracy assessment. The approach provided a substantially greater level of information
about map accuracy, which allows the map users to thoroughly evaluate its utility for specific
project applications.
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APPENDIX

 

 A

Arizona Gap Analysis Classification System

 

Formation Land-Cover Class

 

Tundra Rocky Mountain Lichen-Moss
Forest Engelmann Spruce-Mixed Conifer
Forest Rocky Mountain Bristlecone-Limber Pine
Forest Douglas Fir-Mixed Conifer
Forest Arizona Cypress
Forest Ponderosa Pine
Forest Ponderosa Pine-Mixed Conifer
Forest Ponderosa Pine-Gambel Oak-Juniper/Pinyon-Juniper Complex
Forest Ponderosa Pine/Pinyon-Juniper
Forest Ponderosa Pine-Aspen
Forest Ponderosa Pine-Mixed Oak-Juniper
Forest Douglas Fir-Mixed Conifer (Madrean)
Forest Ponderosa Pine (Madrean)
Woodland Pinyon-Juniper-Shrub/Ponderosa Pine-Gambel Oak-Juniper
Woodland Pinyon-Juniper/Sagebrush/Mixed Grass-Scrub
Woodland Pinyon-Juniper-Shrub Live Oak-Mixed Shrub
Woodland Pinyon-Juniper (Mixed)/Mixed Chaparral-Scrub
Woodland Pinyon-Juniper-Mixed Shrub
Woodland Pinyon-Juniper-Mixed Grass-Scrub
Woodland Pinyon-Juniper (Mixed)
Woodland Encinal Mixed Oak
Woodland Encinal Mixed Oak-Pinyon-Juniper
Woodland Encinal Mixed Oak-Mexican Pine-Juniper
Woodland Encinal Mixed Oak-Mexican Mixed Pine
Woodland Encinal Mixed Oak-Mesquite
Woodland Encinal Mixed Oak/Mixed Chaparral/Semidesert Grassland-Mixed Scrub
Woodland Great Basin Juniper
Chaparral Interior Chaparral-Shrub Live Oak-Pointleaf Manzanita
Chaparral Interior Chaparral-Mixed Evergreen Sclerophyll
Chaparral Interior Chaparral (Mixed)/Son. Paloverde-Mixed Cacti
Chaparral Interior Chaparral (Mixed)/Mixed Grass-Scrub Complex
Grassland Rocky Mountain/Great Basin Dry Meadow
Grassland Madrean Dry Meadow
Grassland Great Basin Mixed Grass
Grassland Great Basin Mixed Grass-Mixed Scrub
Grassland Great Basin Mixed Grass-Sagebrush
Grassland Great Basin Mixed Grass-Saltbush
Grassland Great Basin Mixed Grass-Mormon Tea
Grassland Semidesert Tobosa Grass-Scrub
Grassland Semidesert Mixed Grass-Yucca-Agave
Grassland Semidesert Mixed Grass-Mesquite
Grassland Semidesert Mixed Grass-Mixed Scrub
Desert Scrub Great Basin Sagebrush
Desert Scrub Great Basin Big Sagebrush-Juniper-Pinyon
Desert Scrub Great Basin Sagebrush-Mixed Grass-Mixed Scrub
Desert Scrub Great Basin Shadscale-Mixed Grass-Mixed Scrub
Desert Scrub Great Basin Greasewood Scrub
Desert Scrub Great Basin Saltbush Scrub
Desert Scrub Great Basin Blackbrush-Mixed Scrub
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Desert Scrub Great Basin Mormon Tea-Mixed Scrub
Desert Scrub Great Basin Winterfat-Mixed Scrub
Desert Scrub Great Basin Mixed Scrub
Desert Scrub Great Basin Mormon Tea/Pinyon-Juniper
Desert Scrub Mohave Creosotebush Scrub
Desert Scrub Mohave Creosotebush-Bursage-Mixed Scrub
Desert Scrub Mohave Creosotebush-Yucca spp. (incl. Joshuatree)
Desert Scrub Mohave Blackbrush-Mixed Scrub
Desert Scrub Mohave Blackbrush-Yucca spp. (incl. Joshuatree)
Desert Scrub Mohave Saltbush-Mixed Scrub
Desert Scrub Mohave Brittlebush-Creosotebush Scrub
Desert Scrub Mohave Creosotebush-Brittlebush/Mohave Globemallow Scrub
Desert Scrub Mohave Catclaw Acacia-Mixed Scrub
Desert Scrub Mohave Joshuatree
Desert Scrub Mohave Mixed Scrub
Desert Scrub Chihuahuan Creosotebush-Tarbush Scrub
Desert Scrub Chihuahuan Mesquite Shrub Hummock
Desert Scrub Chihuahuan Whitethorn Scrub
Desert Scrub Chihuahuan Mixed Scrub
Desert Scrub Sonoran Creosotebush Scrub
Desert Scrub Sonoran Creosotebush-Bursage Scrub
Desert Scrub Sonoran Creosotebush-Mesquite Scrub
Desert Scrub Sonoran Creosotebush-Bursage-Paloverde-Mixed Cacti (wash)
Desert Scrub Sonoran Brittlebush-Mixed Scrub
Desert Scrub Sonoran Saltbush-Creosote Bursage Scrub
Desert Scrub Sonoran Paloverde-Mixed Cacti-Mixed Scrub
Desert Scrub Sonoran Paloverde Mixed Cacti/Sonoran Creosote-Bursage
Desert Scrub Sonoran Paloverde-Mixed Cacti/Semidesert Grassland-Mixed Scrub
Desert Scrub Sonoran Crucifixion Thorn
Desert Scrub Sonoran Smoketree
Desert Scrub Sonoran Catclaw Acacia
Riparian Forest/Woodland Great Basin Riparian/Cottonwood-Willow Forest
Riparian Forest/Woodland Interior Riparian/Cottonwood-Willow Forest
Riparian Forest/Woodland Interior Riparian/Mixed Broadleaf Forest
Riparian Forest/Woodland Interior Riparian/Mesquite Forest
Riparian Forest/Woodland Sonoran Riparian/Cottonwood-Willow Forest
Riparian Forest/Woodland Sonoran Riparian/Cottonwood-Mesquite Forest
Riparian Forest/Woodland Sonoran Riparian/Mixed Broadleaf Forest
Riparian Forest/Woodland Sonoran Riparian/Mesquite Forest
Riparian Scrub Madrean Riparian/Wet Meadow
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15.1 INTRODUCTION

 

Remote sensing technology has advanced markedly during the past decades. Accordingly,
remote sensor data formats have evolved from image (pre-1970s) to digital formats subsequent to
the launch of Landsat (1972), resulting in a proliferation of derivative map products. The accuracy
of these products has become an integral analysis step essential to evaluate appropriate applications
(Congalton and Green, 1999). During the past three decades, accuracy assessment has become
widely applied and accepted. Although methodologies have improved, little attention has been
given to the effects of classification accuracy on the development of landscape metrics or indices. 

Thematic maps derived from image classification are not always the final product from the
user’s perspective (Stehman and Czaplewski, 1998). Because all image processing or classification
inevitably introduces errors into the resultant thematic maps, any subsequent quantitative analyses
will reflect these errors (Lunetta et al., 1991). Landscape metrics are commonly derived from remote
sensing-derived LC maps (O’Neill et al., 1988; McGarigal and Marks, 1994; Frohn, 1998). Metrics
are commonly used to compare landscape configurations through time or across space, or as
independent variables in modeling linking spatial pattern and process (Gustafson, 1998). Therefore,
conclusions drawn directly or indirectly from analyzing landscape metrics contain uncertainties.
The relationships between the accuracy of LC maps and specific derived landscape metrics are
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quite variable (i.e., metric dependent), which complicates assessment efforts (Hess, 1994; Shao et
al., 2001). 

A major obstacle to assessing the accuracy of LC maps is the high cost of generating reference
data or multiple thematic maps for subsequent comparative analysis. Commonly employed solutions
include (1) selecting subsectional maps from a region (Riitters et al., 1995), (2) subdividing regional
maps into smaller maps (Cain et al., 1997), or (3) creating multiple maps using computer simulations
(Wickham et al., 1997; Yuan, 1997). Maps created using the first or second method are spatially
incompatible or incomparable, while maps created using the third method contain errors that do
not necessarily represent those found in actual LC maps. Therefore, it is necessary to create multiple
maps for a specific geographic area using different analysts or different classification methods
(Shao et al., 2001). The approach presented here represents an actual image data analysis and,
therefore, conclusions drawn from the analysis should be broadly applicable. 

Past studies have focused on only a few indices. Hess and Bay (1997) made a breakthrough in
quantifying the uncertainties of adjusted diversity indices. Various statistical models have also been
developed to assess the accuracy of total area (%LAND) for individual cover types (Bauer et al.,
1978; Card, 1982; Hay, 1988; Czaplewski, 1992; Dymond, 1992; Woodcock, 1996). However, few
have used modeling to perform area calibrations (Congalton and Green, 1999). Shao et al. (2003)
derived the Relative Area Error (REA) index, which has causal relationships with area estimates
of LC categories. This study employed multiple classifications and reference maps to demonstrate
how classification accuracy affects landscape metrics. Here the overall accuracy and REA were
compared and a simple method was demonstrated to revise %LAND values using corresponding
REA index values.

 

15.2 METHODS

 

Multiple thematic maps were derived from subscenes of Landsat Thematic Mapper (TM) data
for two sites (A and B) located in central Indiana and the temperate forest zone on the eastern
Eurasian continent (at the border of China and North Korea). LC mapping was performed to
approximate a Level I classification product (Anderson et al., 1976). Site A thematic maps included
the following classes: (1) agriculture (including grassland), (2) forest (including shrubs), (3) urban,
and (4) water. The second site included only forest and nonforest (clear cuts and other open areas)
cover types. A total of 23 independent thematic maps were developed for site A. Analysts (

 

n

 

 = 23)
were allowed to use any method to classify the TM imagery acquired on October 5, 1992. LC maps
were evaluated based on the overall accuracy. All the accuracies were comparable because all
assessments were performed using the same reference data set. Students performed the image
analysis, thus representing work performed by nonprofessionals (Shao et al., 2001).

Eighteen thematic maps were created for site B using a single TM data set acquired on
September 4, 1993, and a stack data set combining the 1993 data with other TM data acquired on
September 21, 1987. Training samples were acquired using three methods, including (1) computer
image interpretation, (2) field observations, and (3) and a combination of the two. Three classifi-
cation algorithms were used, including (1) the minimum distance (MD), (2) maximum likelihood
(ML), and (3) extraction and classification of homogeneous objects (ECHO). Our goal was to make
the classification process repeatable, and therefore to represent a professional work process (Wu
and Shao, 2002). Two additional maps with 94.0% and 94.5% overall accuracy that were created
with alternative approaches were also incorporated into this study. The overall accuracy of these
maps ranged from 82.6% to 94.5% (Wu and Shao, 2002). More importantly, a reference map was
manually digitized for site B. The errors of landscape metrics of each map were computed as:

(15.1)E I I Iindex map ref ref= - ¥( ) / 100
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where 

 

E

 

index

 

 = relative errors (in percentage) of a given landscape index for a given thematic map,

 

I

 

map

 

 = landscape index value derived from a thematic map, and 

 

I

 

ref

 

 

 

= landscape index value derived
from a reference map.

Thematic maps were assigned to three accuracy groups based on the overall accuracy maps at
site A (

 

n

 

 = 23). Landscape metrics were computed for each map with the FRAGSTATS for site A
(McGarigal and Marks, 1994) and with patch analyst (PA) for site B (Elkie et al., 1999). Nine
landscape indices were used for site A: largest patch index (LPI), patch density (PD), mean patch
size (MPS), edge density (ED), area-weighted mean shape index (AWMSI), mean nearest neighbor
distance (MNN), Shannon’s diversity index (SHDI), Simpson’s diversity index (SDI), and contagion
index (CONTAG). Thirteen landscape indices were used for site B: PD, MPS, patch size coefficient
of variance (PSCOV), patch site standard deviation (PSSD), ED, mean shape index (MSI), AWMSI,
mean patch fractal dimension (MPFD), area-weighted mean patch fractal dimension (AWMPFD),
MNN, mean proximity index (MPI), SDI, and%LAND. These landscape indices had broad repre-
sentation within the different cover categories (McGarigal and Marks, 1994). 

 

15.2.1 Relative Errors of Area (REA)

 

If a thematic map

 

 

 

contains 

 

n

 

 classes or types, its accuracy can be assessed with an error matrix
(Table 15.1).

For a given patch type 

 

k 

 

(1 

 

£

 

 

 

k

 

 

 

£

 

 

 

n

 

), the reference value of %LAND (LR

 

k

 

) is computed as:

(15.2)

The classification value of %LAND (LC

 

k

 

) is derived as:

(15.3)

 

Table 15.1 A General Presentation of an Error Matrix 

 

Adapted from Congalton and Green (1999)
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Thus, the difference between 

 

LC

 

k

 

 

 

and 

 

LR

 

k

 

 is: 

(15.4)

If 

 

LC

 

k

 

 

 

– 

 

LR

 

k

 

 = 0, there are two possibilities: classification errors are zero, or commission errors
(CE) and omission errors (OE) are the same for patch type 

 

k

 

. The first possibility is normally untrue
in reality. In many situations, the second possibility is also untrue. If 
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 is overestimated; if 
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 < 0, the value of %LAND
of type 
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 is underestimated. Therefore, the components of 
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and 
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 in Equation 15. 4 determine
the accuracy of %LAND for patch type 
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.
Mathematically, 
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 is just as follows:
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OE

 

k

 

 is just expressed as:
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The balance between 

 

CE

 

k

 

 and 
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 indicates the absolute errors of area estimate for patch type
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. The relative errors of area (REA) are then defined as:

(15.7)
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of sample points that are correctly classified. 
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(15.9)

By substituting Equation 15.8 and Equation 15.9 into Equation 15.7, it is easily derived that:

(15.10)

Thus, REA can be obtained using information on the error matrix or the user’s and producer’s
accuracy.

Under the assumption that the distribution of errors in the error matrix is representative of the
types of misclassification made in the entire area classified, it is easy to calibrate area estimates
with REA or UA and PA as follows:

(15.11)

where 

 

A

 

c,k

 

 = calibrated area in percentage for a given land cover type 

 

k

 

 and 

 

A

 

pc,k

 

 = precalibrated
area in percentage for a given land cover type 

 

k

 

.

 

15.3 RESULTS

 

Figure 15.1 shows the means and standard deviations of nine landscape indices for three
accuracy groups. Except for PD and MPS, landscape indices had < 10% differences in their means
among three accuracy groups. The standard deviations of the landscape indices in the lowest
accuracy group are much higher than those in the higher accuracy groups. The differences in
standard deviations between the lowest accuracy group and other two accuracy groups exceeded
100%, indicating that the uncertainties were higher when classification accuracy was lower.

The statistics of classification accuracy, including the overall accuracy, producer’s accuracy,
and user’s accuracy, all have differences of < 20% among the three accuracy groups (Figure 15.2a).
The standard deviation values for overall accuracy are also about the same among the three accuracy
groups but are clearly different for producer’s accuracy and user’s accuracy (Figure 15.2b). Maps
in the lowest accuracy group have much higher variations in producer’s accuracy and user’s accuracy
than those in the other two accuracy groups. 

For a few indices, such as MPDF, AWMPFD, and SDI at the landscape level, no matter what
the classification accuracy was, the errors of landscape indices were within a range of 10% (Figure
15.3). If classification accuracy was poor, the errors of some other landscape indices exceeded
100%. They include PD, PSCOV, ED, AWMSI, and MPI for entire landscapes or forest patches
(Figure 15.3 and Figure 15.4). Although no constant relationships were found between the overall
accuracy and landscape indices, maps with higher classification accuracy resulted in lower errors
for most landscape indices (Figure 15.3 and Figure 15.4). However, overall accuracy did not have
good control over the variations of landscape index errors and therefore was not a reliable predictor
for the errors of landscape indices. This was particularly true when the overall accuracy was
relatively low.
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The errors of %LAND have a perfect linear relationship with REA (R

 

2

 

 = 0.98), but the errors
of all other indices did not show a simple relationship with REA (Figure 15.5). The REA seemed
to have a better control over landscape indices errors than did overall accuracy; the variations of
landscape index errors corresponding to REA were smaller than those corresponding to overall
accuracy (Figure 15.4 and Figure 15.5). Also, the lowest errors of landscape indices normally
occurred when REA reached zero (Figure 15.5). Both overall accuracy and REA were not reliable
indicators for explaining variations of spatially sophisticated landscape indices, such as MNN
and MPI.

The relative errors of %LAND for the forest from the 20 maps ranged from 12 to 25% before
calibration (Figure 15.6a). Based on Equation 15.11, the values of %LAND for the forest were
calibrated and resulting errors of %LAND for the forest were between 2 and 5% (Figure 15.6b),
much lower than the errors before calibration.

 

15.4 DISCUSSION

 

Methods used for image classification determine thematic maps’ classification content and
quality. Although different statistics are used for assessing the accuracy of image data classifications,
most are derived directly or indirectly from error matrices. Indices of thematic map accuracy indicate
how well image data are classified but do not tell how thematic maps correspond to a landscape’s
structure and function. This is partly because there is no effective approach to quantify classification

 

Figure 15.1

 

The mean and standard deviations for nine selected landscape indices for three accuracy groups;
1 = lowest accuracy, 2 = intermediate accuracy, 3 = highest accuracy.
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errors that have causal relationships with landscape function. Overall accuracy is the most frequently
used accuracy statistics, but it has limited control over the errors of landscape indices. In practice,
greater overall accuracy resulted in more controllable errors associated with landscape indices.
Only an unrealistic, 100% accurate map represents perfect source data for computing landscape
indices. For example, the overall accuracy of LC and LU maps derived from TM data for the eastern
U.S. was 81% for Anderson Level I (i.e., water, urban, barren land, forest, agricultural land, wetland,
and rangeland) and was 60% for Anderson Level II (Vogelmann et al., 2001). Such classification
accuracies are not high enough for ensuring reliable landscape index calculations.

Overall accuracy did not have a causal control over the variability of index accuracies. When
overall accuracy was relatively low, it also lost control over the difference between user’s and
producer’s accuracies. It also appeared that the uncertainties of landscape indices were more
sensitive to the variations in user’s and producer’s accuracies than to overall accuracy values alone.
REA values reflected the differences between user’s and producer’s accuracies and therefore had
a better control over the errors of landscape indices than did overall accuracy, particularly when
overall accuracy was relatively low.

Because REA is derived for assessing the accuracy of %LAND, this index alone can be
used to predict the errors of %LAND. The linear relationship with REA and the area of forested
land verifies the reliability of such predictions with REA. While the overall accuracy is approx-
imately the average of user’s and producer’s accuracy, REA reveals the differences between
user’s and producer’s accuracy. Therefore, the overall accuracy and REA explained different
aspects of classification accuracy. Although the lowest errors of landscape indices often occur
when REA is near zero, variations in the errors of landscape indices still existed. When REA
and the overall accuracy were used together, the errors of landscape indices were better predicted

 

Figure 15.2

 

The mean (a) and standard deviation (b) values for overall and individual classification accuracies;
LA = lowest accuracy, IA = intermediate accuracy, HA = highest accuracy.
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(the greater overall accuracy, the smaller REA). However, overall accuracy and REA explained
some aspects of classification errors but did not explain other possible sources of classification
errors (e.g., the spatial distributions of misclassifications). Therefore, these accuracy measures
alone were not adequate to assess the accuracy of the MNN and MPI, which have particularly
strong spatial features.

The variations of landscape index errors were different among different landscape indices. For
example, the errors of MPDF, AWMPFD, and SDI at the landscape level were within a range of
10%, whereas the errors of PD, PSCOV, ED, AWMSI, and MPI for entire landscapes or forest
patches exceeded 100%. The former group of landscape indices was not as sensitive to image data
classification and the errors of these landscape indices were not controlled by classification accuracy
measures. Landscape indices in this group were unreliable despite the image classification accuracy
values. The latter group of landscape indices was sensitive to image data classifications, and
therefore a small difference in classification accuracy resulted in a large difference in landscape
index values. In this case, classification accuracy was always superior when accuracy-sensitive
landscape indices were used. Intermediate indices exhibited intermediate sensitivity to image data
classifications. The rule of higher overall accuracy and smaller absolute values of REA was
particularly applicable to this intermediate group. Further systematic studies are needed to determine
which landscape index belongs to these sensitive groups.

 

Figure 15.3

 

The relative errors of 12 selected landscape indices for the landscape (y-axis) against the overall
accuracy (x-axis).
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15.5 CONCLUSIONS

 

The uncertainties or errors associated with landscape indices vary in their responses to image
data classifications. Also, the existing statistical methods for assessing classification accuracy have
different controls relative to the uncertainties or errors of landscape indices. Assessing accuracy of
landscape indices requires combined knowledge of the overall accuracy (means of user’s accuracy
and producer’s accuracy) and the REA (differences between user’s accuracy and producer’s accu-
racy). To reliably characterize landscape conditions using landscape indices, our results indicate it
is necessary to use maps with high overall accuracy and low absolute REA. The selections of
landscape indices are also important because different landscape indices have different sensitivities
to image data classifications. Based on commonly achievable levels of classification accuracy, the
magnitudes of errors associated with landscape indices can be higher than the values of landscape
indices. Comparisons between different thematic maps should consider these errors. Assuming that
the distribution of errors identified by the error matrix is representative of the misclassifications
across the area of interest, the total land area of different class categories can be revised with REA
and the errors of this landscape index can be lowered. Revised values of %LAND should be used
when quantifying landscape conditions.

 

Figure 15.4

 

The relative errors of 12 selected  landscape indices for forest class (y-axis) against the overall
accuracy (x-axis).
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Figure 15.5

 

The relative errors of 12 selected landscape indices for forest class (y-axis) against the REA (x-axis).

 

Figure 15.6

 

A comparison of %LAND errors for for-
est class among thematic maps (
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 = 20)
before calibrations (a) and after calibra-
tions (b).
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15.6 SUMMARY

 

A total of 43 LC maps from two study sites were used to demonstrate the effects of classification
accuracy on the uncertainties or errors of 15 selected landscape indices. The measures of classifi-
cation accuracy used in this study were the overall accuracy and REA. The REA was defined as
the difference between the reciprocals of user’s accuracy and producer’s accuracy. Under variable
levels of classification accuracy, different landscape indices had different uncertainties or errors.
These variations or errors were explained by both the overall accuracy and REA. Thematic maps
with relatively high overall accuracy and low absolute REA ensured lower uncertainties or errors
of at least several landscape indices. For landscape indices that were sensitive to classification
accuracy, a small increase in classification accuracy resulted in a large increase in their accuracy.
Assuming that the error matrix truly represents misclassification errors, the total areas of different
class categories can be calibrated using the REA index and the accuracy of quantifying or comparing
relative landscape characteristics can be increased.
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16.1 INTRODUCTION

 

Recent advances in the field of landscape ecology have included the development and application
of quantitative approaches to characterize landscape condition and processes based on landscape
patterns (Turner et al., 2001). Central to these approaches is the increasing availability of spatial
data characterizing landscape constituents and patterns, which are commonly derived using various
remote sensor data (i.e., aerial photography or multispectral imagery). Spatial pattern metrics
provide quantitative descriptions of the spatial composition and configurations of habitat or land-
cover (LC) types that can be applied to provide useful indicators of the habitat quality, ecosystem
function, and the flow of energy and materials within a landscape. Landscape metrics have been
used to compare ecological quality across landscapes (Riitters et al., 1995) and across scales (Frohn,
1997) and to track changes in landscape patterns through time (Henebry and Goodin, 2002). These
comparisons can often provide quantitative statements of the relative quality of landscapes with
respect to some spatial pattern concept (e.g., habitat fragmentation).

Uncertainty associated with landscape metrics has several components, including (1) accuracy
(how well the calculated values match the actual values), (2) precision (how closely repeated
measurements get to the same value), and (3) meaning (how comparisons between metric values
should be interpreted). In practical terms, accuracy, precision, and the meaning of metric values
are affected by several factors that include the definitions of categories on the landscape map, map
accuracy, and validity and uniqueness of the metric of interest. Standard methods for assessing LC
map accuracy provide useful information but are inadequate as indicators of the spatial metric
accuracy because they lack information concerning spatial patterns of uncertainty and the corre-
spondence between the map category definitions and landscape concepts of interest. Further, direct
estimation of the accuracy of landscape metric values is problematic. Unlike LC maps, standard
procedures are currently not available to support landscape metric accuracy assessment. Also, the
scale dependence of landscape metric values complicates comparisons between field observations
and map-based calculations. 

As a transformation process, in which mapped landscape classes are transformed into landscape
measurements describing the composition and configuration of that landscape, landscape metrics
can be evaluated using precision and meaning diagnostics (Figure 16.1). The primary objective is
to acquire a metric with a known and relatively high degree of accuracy and precision that is
interpretable with respect to the landscape characteristic(s) of interest. The research presented in
this chapter addresses the following issues: (1) precision estimates associated with various landscape
metrics derived from satellite images, (2) sensitivity of landscape metrics relative to differences in
landscape class definitions, and (3) sensitivities of landscape metrics to landscape pattern concepts
of interest (e.g., ecotone abruptness or forest fragmentation) vs. potential confounding concepts
(e.g., patchiness or amount of forest).

 

Figure 16.1

 

Illustration of the issues affecting the quality and utility affecting landscape pattern metric values
derived from landscape class maps. The precision and meaning of output values from landscape
metrics are functions of the precision and meaning of the input landscape maps and the effect of
the metric transformation.

   f( PrecisionI , ∆ Precision ) = PrecisionO

   f( MeaningI , ∆ Meaning  ) = MeaningO

Landscape
MetricInput Map Output

Value
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This chapter presents results from recent research that seeks to evaluate uncertainty in landscape
metrics, as defined above. To calculate the precision of landscape metrics, repeated estimates of
metric values are used to observe the variation in the estimates. Because measures of precision are
based on multiple calculations, they are more practical for landscape metric applications than are
measures of accuracy. Here we discuss two different approaches to performing multiple calculations
of landscape metric values. First, redundant mapping of landscapes was used to calculate the
variation in metric values resulting from the redundant maps. Second, spatial simulation was used
to evaluate the response of landscape metric values to repeated landscape mapping under a neutral
model (Gustafson and Parker, 1992). 

Following a general discussion of alternative types of landscape metrics, we compare past
research and our results to illustrate how landscape metric values vary using redundant mapping
and simulation methods. First, the precision of estimates of change in metric values between two
images was investigated using redundant mapping of sample areas that were defined by the overlap
of adjacent satellite scenes (Brown et al., 2000a,b). Next, the variations in metrics were calculated
using landscape maps derived from the same remote sensing source but classified using different
definitions and class. Comparisons illustrating the effects of alternative definitions of “forest” and
the application of LC vs. land-use (LU) classes for calculating metrics are presented. Finally, we
evaluate the use of simulation to investigate the interpretability of the construct being measured,
the degree of similarity among several landscape metrics, and the concept of ecotone abruptness
and present simulations to illustrate the problem of interpreting the degree of fragmentation from
landscape metrics (Bowersox and Brown, 2001).

 

16.2 BACKGROUND

 

Several approaches to characterizing landscape pattern are available, each with its own impli-
cations for the accuracy, precision, and meaning of a landscape pattern analysis. With the goal of
quantitatively describing the landscape structure, landscape metrics provide information about both
landscape composition and configuration (McGarigal and Marks, 1995). The most common
approach to quantifying these characteristics has been to map defined landscape classes (e.g., habitat
types) and delineate patches of representative landscape classes. Patches are then defined as
contiguous areas of homogenous landscape condition. Landscape composition metrics describe the
presence, relative abundance, and diversity of various cover types. Landscape configuration refers
to the “physical distribution or spatial character of patches within the landscape” (McGarigal and
Marks, 1995). Summaries of pattern can be made at the level of the individual patch (e.g., size,
shape, and relative location), averaged across individual landscape classes (e.g., average size, shape,
and location), or averaged across all patches in the landscape (e.g., average size, shape, and location
of all patches). 

An alternative to patch-based metrics are metrics focused on identifying transition zone bound-
aries that are present in continuous data. This approach has not been used as extensively as the
patch approach in landscape ecology (Johnston and Bonde, 1989; Fortin and Drapeau, 1995). One
approach to using boundaries is to define “boundary elements,” defined as cells that exhibit the
most rapid spatial rates of change, and “subgraphs,” which are strings of connected boundary
elements that share a common orientation (direction) of change (Jacquez et al., 2000). The landscape
metrics characterize the numbers of boundary elements and subgraphs and the length of sub-graphs,
which is defined by the number of boundary elements in a subgraph. An important advantage is
that boundary-based statistics can be calculated from images directly, skipping the classification
step through which errors can propagate. Throughout this chapter, we refer to patch-based metrics,
which were calculated using Fragstats (McGarigal and Marks, 1995), and boundary-based metrics
calculated using the methods described by Jacquez et al. (2000). 
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16.3 METHODS

16.3.1 Precision of Landscape Change Metrics

 

To measure imprecision in metric values, overlapping Landsat Multi-Spectral Scanner (MSS)
path/row images were redundantly processed for two different study areas in the Upper Midwest
to create classifications representing forest, nonforest, water, and other and maps of the normalized
difference vegetation index (NDVI). Images on row 28 and paths 24–25 overlapped in the northern
Lower Peninsula of Michigan and on row 29 and paths 21–22 overlapped on the border between
northern Wisconsin and the western edge of Michigan’s Upper Peninsula (Brown et al., 2000a). 

The georeferenced MSS images at 60-m resolution were acquired from the North American
Landscape Characterization (NALC) project during the growing seasons corresponding to three
periods: 1973–1975, 1985–1986, and 1990–1991 (Lunetta et al., 1998). Subsequent LC classifica-
tions of the four images resulted in accuracies ranging from 72.5% to 91.2% (average 80.5%),
based on comparison with aerial photograph interpretations. 

For landscape pattern analysis, the two study areas were partitioned into 5- 

 

¥

 

 5-km

 

2

 

 cells. A
total of 325 cells in the Michigan site and 250 in the Wisconsin-Michigan site were used in the
analysis. The partitions were treated as separate landscapes for calculating the landscape metric
values. The values of eight pattern metrics, four patch-based and four boundary-based, were
calculated for each partition using each of two overlapping images at each of three time periods
in both sites. 

The precision of landscape metric values was calculated using the difference between metric
values calculated for the same landscape partition within the same time period. For each metric,
these differences were summarized across all landscape partitions using the root mean squared
difference (RMSD). To standardize the measure of error for comparison between landscape metrics,
the relative difference (RD) was calculated as the RMSD divided by the mean of the metric values
obtained in both images of a pair. 

 

16.3.2 Comparing Class Definitions

 

16.3.2.1 Landsat Classifications

 

To evaluate the sensitivity of maps to differences in class definitions we calculated landscape
metric values from two independent LC classifications derived from Landsat Thematic Mapper
(TM) imagery of for the Huron River watershed located in southeastern Michigan. The only
significant difference between the two LC maps was the class definitions. Accuracy assessments
were not performed for either map. Therefore, the analysis serves only as an illustration for
evaluating the importance of class definitions. 

For the first map, Level I LU/LC classes were mapped for the early 1990s using the National
Land Cover Data (NLCD) classification for the region. We developed the second data set using
TM imagery from July 24, 1988. It was classified to identify all areas of forest, defined as pixels
with 

 

>

 

 40% canopy cover, vs. nonforest. Spectral clusters, derived through unsupervised classifi-
cation (using the ISODATA technique), were labeled through visual interpretation of the image
and reclassified. Landscape metrics were computed using Fragstats applied to the forest class from
both data sets across the entire watershed. Also, the two data sets were overlaid to evaluate their
spatial correspondence.

 

16.3.2.2 Aerial Photography Interpretations

 

We also compared two classifications of aerial photography over a portion of Livingston County
in southeastern Michigan. The first data set consisted of a manual interpretation of LU and LC
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using color infrared (CIR) aerial photographs (1:24,000 scale) collected in 1995 (SEMCOG, 1995).
The classes were based on a modified Anderson et al. (1976) system, which we reclassified to high-
density residential, low-density residential, other urban, and other. The second was a LC classifi-
cation created through unsupervised clustering and subsequent cluster labeling of scanned color-
infrared photography (1:58,000-scale) collected in 1998. The LC classes were forest, herbaceous,
impervious, bare soil, wetland, and open water. The two maps were overlaid to identify the
correspondence between the LC classes and the urban LU classes. The percentages of forest and
impervious cover were calculated within each of the urban LU types.

 

16.3.3 Landscape Simulations

 

16.3.3.1 Ecotone Abruptness

 

An experiment was designed in which 25 different landscape types were defined, each repre-
senting a combination of among five different levels of abruptness and five levels of patchiness
(Bowersox and Brown, 2001). Ecotone abruptness (i.e., how quickly an ecotone transitioned from
forest to nonforest) was controlled by altering the parameters of a mathematical function to model
the change from high to low values along the gradient representing forested cover. Patchiness was
introduced by combining the mathematical surface with a randomized surface that was smoothed
to introduce varying degrees of spatial autocorrelation. Once the combined gradient was created,
all cells with a value above a set threshold were classified as forest, and those below were classified
as nonforest. The threshold was set so that each simulated landscape was 50% forested and 50%
nonforested.

For each type of landscape, 50 different simulations were conducted. The ability of each
landscape metric to detect abruptness was then tested by comparing the values of the 50 simulations
among the different cover types. The landscape metric values were compared among the abruptness
and patchiness levels using analysis of variance (ANOVA). The ANOVA results were analyzed to
identify the most suitable metrics for measuring abruptness (i.e., those exhibiting a high degree of
variation between landscape types with variable abruptness levels but a low degree of variation
between landscape types with variable patchiness).

In addition to several patch-based metrics (including area-weight patch fractal dimension, area-
weighted mean shape index, contagion, and total edge), boundary-based metrics were used, includ-
ing (1) number of boundary elements, (2) number of subgraphs, and (1) maximum subgraph length.
The analysis compared the ability of two new boundary-based metrics designed specifically to
measure ecotone abruptness and distinguish different levels of abruptness. These new metrics
characterize the dispersion of boundary elements around an “average ecotone position,” calculated
as the centroid of all boundary elements, and the area under the curve of the number of boundary
elements vs. the slope threshold level.

 

16.3.3.2 Fragmentation

 

The sensitivity of several potential measures of forest fragmentation to the amount of forest
was also investigated through simulation. The simulation included: (1) generating a random map
for 100- 

 

¥

 

 100-grid cells with pixel values randomly drawn from a normal distribution (mean = 0,
standard deviation = 1), (2) smoothing with a five-by-five averaging filter to introduce spatial
autocorrelation, and (3) creating maps (

 

n

 

 = 10) by classifying cells as forest or nonforest based on
different threshold levels. The threshold levels were defined so that the different maps had a
uniformly increasing amount of forest from about 9% to about 91% (Figure 16.2). By extracting
the maps with different proportions of forest from the same simulated surface, patterns were
controlled and the dominant difference among maps was the amount forested. The simulation
process was repeated 10 times to produce a range of output values at each landscape proportion level.
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16.4 RESULTS 

16.4.1 Precision of Landscape Metrics 

 

Comparison among the patch-based metrics indicated that the number and size of patches were
much less precise than the area of forest and the edge density (Table 16.1). A likely explanation
is that the number of patches and mean patch size metrics required that the pixel classification and
patch aggregation processes be consistent. Both of these can be sensitive to spatially patterned
classification error, thus suggesting that there are differences among metrics in the 

 

D

 

 precision
described in Figure 16.1.

 

Figure 16.2

 

One of 10 realizations of landscape simulations created to illustrate the influence of the proportion
of the landscape covered by a class on the values of landscape pattern metrics. The number
indicates the percentage of the landscape in forest (shown in black). 
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Comparing the patch- vs. boundary-based metrics indicated that the majority of boundary
metrics had greater precision than the patch-based statistics (Table 16.1). This can best be explained
by the way in which changes in

 

 

 

precision were affected by the procedures used to calculate the
metric values. All of the patch-based metrics involved an image classification step, and two of them
added a patch identification step. Both of these steps are sensitive to spatial variations in image
quality and to the specific procedures used. Because the boundary-based metrics were calculated
directly from the NDVI images, there was less opportunity for propagation of the spatial pattern
of error. Further, the boundary-based metrics used only local information to characterize pattern,
but the patch-based metrics used global information (i.e., spectral signatures from throughout the
image). This use of global information introduced more opportunities for error in metric calculation. 

Additionally, we evaluated the effects of various processing choices on the precision of metrics
(Brown et al., 2000a). The results of this work suggest that haze in the images and differences in
seasonal timing were important determinants of metric variability. Specifically, less precision
resulted from hazier images and image pairs that were separated by more Julian days, irrespective
of the year. Also, summarizing landscape metrics over larger areas (i.e., using larger landscape
partitions) increased the precision of the estimates, although it reduced the spatial resolution.
Further, postclassification processing, such as sieving and filtering, did not consistently increase
the precision, and can actually reduce the precision.

The obvious cost associated with obtaining precise estimates through the empirical approach
of redundant mapping is that the areas need to be mapped twice. However, the costs may be lower
than the costs of obtaining reference data for accuracy assessment, and redundant mapping can
provide reasonable estimates of precision in a pattern analysis context, where comparison with a
reference data set is much more problematic. Guindon et al. (2003) used a similar approach to
dealing with the precision of LC maps. 

 

16.4.2 Comparing Class Definitions

 

16.4.2.1 Comparing TM Classifications

 

Across all landscape metrics tested, our forest cover classification of the Huron River watershed
suggested that the landscape was much less fragmented than did the NLCD forest class (i.e., that
there was more forest, in fewer but larger patches, with less forested/nonforested edge and more
core area) (Table 16.2). Comparisons of forested cells indicated that forest cover occurred in several
of the nonforest NLCD classes. The definitions of NLCD classes allowed for substantial amounts
of forest cover in nonforest classes. For example, in the low-density residential class “vegetation”
could account for 20 to 70% of the cover (USGS, 2001). Also, the NLCD forest classes were not
100% forested. Although 65% of the forested cover in the region (by our definition) was contained

 

Table 16.1 The Average Relative Error for Eight 
Different Landscape Metrics, Four 
Based on Identifying Landscape 
Patches and Four Based on Description 

 

of Boundaries in a Continuous Image

Metric Average Relative Error

 

Percentage forest 0.23
Edge density 0.35
No. of patches 0.75
Mean patch size 1.52
No. of boundary elements 0.02
No. of subgraphs 0.11
No. of singletons 0.24
Max subgraph length 0.40

 

L1443_C16.fm  Page 227  Saturday, June 5, 2004  10:43 AM



 

228 REMOTE SENSING AND GIS ACCURACY ASSESSMENT

 

within forest classes as defined by NLCD, 25% was located in agricultural areas and 

 

<

 

 6% in urban
areas (Table 16.3). 

These findings indicate that landscape metrics are sensitive to the definitions of the input classes.
This sensitivity is a result of differences in the meaning of the classes themselves rather than the
lack of classification detail or because of inaccuracy in the classification. For some landscape
analysis purposes (e.g., habitat of a wildlife species), accounting for forested urban areas may be
important. Therefore, some LC classifications, while not necessarily inaccurate, may be inadequate
for some purposes.

 

16.4.2.2 Comparing Photographic Classifications

 

Urban LU classes, as identified from aerial photographs, all had some amount of forest and
impervious cover (Table 16.4). This comparison again illustrated the importance of class definitions
but raised the additional issue of class definitions based on LC vs. LU. In the case of LU, the
diversity of cover types that made up residential areas was lumped together to map the LU type
termed “residential.” Cover types contained within urban LU regions included impervious surfaces,
forest, and others (e.g., grasslands).

 

Table 16.2 Patch-Based Landscape Metrics Describing Forest in 
Michigan’s Huron River Watershed as Mapped in the NLCD 
Data Compared with a Separate Classification of Forested 
Cover Derived from Landsat TM; All Metrics Are Summarized 

 

at the Class Level for the Forest Patches

Metric NLCD Forest Data Forest Cover Classification

 

Percentage forest
No. of patches
Mean patch size (ha)
Edge density (m/ha)
Mean shape index
Total core area index

28.1
28857

2.17
106.05

1.37
37.33

31.1
19137

3.62
85.33

1.37
50.53

 

Table 16.3  Percentage of Generalized NLCD Forest Classes Based on 
the Classification of Landsat TM data and the Percentage 

 

of the Total Forested Cover within each NLCD Class 

Generalized NLCD Class % Forest Cover % Forest Cover Total

 

Urban 5.6 5.6
Forest 57.1 65.1
Agriculture and Herbaceous 13.2 25.8
Other 17.5 3.5

 

Total 100.0

 

Note:

 

The first column indicates how much forested cover was contained
within each NLCD class. The second indicates the amount of the
forested cover within each class.

 

Table 16.4 The Percentage of Impervious Surface 
and Forested Cover within Three Urban 

 

Land-Use Classes

Land-Use Class % Impervious % Forest

 

High-density residential 36.1 15.4
Low-density residential 23.1 16.8
Other urban 45.4 19.1
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16.4.3 Landscape Simulations

 

16.4.3.1 Ecotone Abruptness

 

The results of the analysis of metric sensitivity to the abruptness of ecotones suggested that
existing landscape metrics were not as useful for quantifying ecotone abruptness as were the new
metrics specifically designed for that purpose (Bowersox and Brown, 2001). Some metrics (e.g.,
total edge, maximum subgraph length) were not sensitive to abruptness. Those sensitive to abruptness
were also sensitive to landscape patchiness, which confounded their interpretation (i.e., numbers of
boundary elements and subgraphs, area-weight mean shape index). The new metrics, dispersion of
boundary elements and cumulative boundary elements, were most consistently related to abruptness
while not exhibiting the confounding effects of sensitivity to patchiness. There was not a clear
indication that patch- or boundary-based metrics were more or less sensitive to abruptness. 

 

16.4.3.2 Forest Fragmentation

 

Using simulated landscapes, each of several patch-based metrics exhibited a significant degree
of variation when calculated at different levels of percent forested (Figure 16.3, top panel). Edge
density was clearly highest when the landscape was 50% forest and lowest when the landscape
was either 100% or 0% forest. The largest patch index and the total core area index both increased
with increasing percentage of forest. The number of patches decreased with increasing forest
percentage, after an initial increase. 

The number of patches exhibited the highest degree of variation across different simulation
runs (Figure 16.3, top panel). The coefficient of variation across simulation runs varied at different
levels of percentage forest, depending on the average value of the metric and its variance (Figure

 

Figure 16.3

 

Top panel: The relationships between mean landscape pattern metric values across 10 simulations
and the proportion of the landscape covered by forest. The error bars show the two times the
standard deviation across the 10 runs. Bottom panel: The coefficient of variation of the metric
values across simulations, indicating their relative errors.
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16.3, bottom panel). The largest patch index and the number of patches exhibit the highest coefficient
of variation across the runs, indicating a higher degree of relative error and lower precision. This
finding was consistent with the redundant mapping work described above, and it highlights the
relative instability of metrics that require patch delineation. Both the empirical and simulation work
show that slight changes in the maps of a landscape, as the result of remote sensing image quality
issues or just random perturbations, can result in relatively large variations in the number of patches
identified and, as a result, in the mean patch size. 

 

16.5 DISCUSSION 

 

The results indicated the difficulty involved in distinguishing the effects of changes in the
amount of forest from changes in the pattern of forest. The question is relevant in attempts to
understand the effects of landscape structure on ecological processes. Some have argued that the
concept of fragmentation is meant to include both the amount of forest and its spatial configuration
(Forman, 1997). Others define fragmentation to mean a spatial pattern characteristic of the forest,
independent of the effects of how much forest there is (Trzcinski et al., 1999). If the latter definition
is used, then a measure of forest fragmentation that is not sensitive to the amount of forest is
required. For example, do changes in the pattern of forest have impacts on ecological processes
beyond the effects resulting from changes in the amount of forest? Trzcinski et al. (1999) dealt
with this question by first evaluating the correlation between bird populations and forest amount,
then correlating bird populations with the residuals that resulted from the regression of forest
amount vs. forest pattern. The results indicated that there was little effect of forest pattern on bird
populations independent of forest amount. However, more work is needed to understand the
interactions of land-cover amount and pattern from both the perspective of how to measure pattern
independently and how to understand its independent effects.

 

16.6 CONCLUSIONS

 

This chapter summarizes work on the precision and meaning of landscape pattern metrics derived
from remote sensing. The transformations involved in calculating landscape metrics are complex,
and analytical approaches to estimating their uncertainty are likely not to be practical. For that
reason, this study has focused on two approaches to evaluating this propagation. First, we used
redundant mapping of areas and evaluation of the variation in metric values derived from different
imagery acquired near to each other in time. Second, simulation was used to explore the sensitivity
of various metrics to differences in landscapes by controlling certain landscape characteristics.

We determined that uncertainty in input data propagates throughout the calculations and ulti-
mately affects landscape metric precision. The precision of landscape metric values calculated to
measure forest fragmentation is affected by the similarity in seasonal date of the imagery, atmospheric
disturbances in the imagery (clouds and haze), and the amount of forest in the landscape. Metrics
calculated for larger landscapes tend to exhibit less variation, but postprocessing of imagery (e.g.,
through seiving to remove small patches) did not result in increased precision. Landscape metrics
whose calculation required more steps (e.g., image classification and patch delineation) were more
likely to be susceptible to slight variations in the input data. Therefore, patch-based metrics (e.g.,
number of patches and mean patch size) tend to be less precise than boundary-based metrics.

Landscape class definitions, whether intentionally different or different because of the mapping
method used, are important determinants of landscape pattern. It is possible to achieve significantly
different landscape pattern metric values based on different class definitions. This suggests extreme
caution should be used when attempting to compare pattern metric values for landscape maps
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derived from different sources and methods. For example, urban areas typically contain significant
forest cover that is not represented in LU class definitions. Also, landscape metric values describing
fragmentation of forest calculated from a LU/LC map were found to be different from those
calculated from a classification specifically designed to map forest and nonforest. Applications that
target the habitat quality for specific animal species, especially small animals, may not be well
served by aggregated LU classes. 

Landscape pattern metrics transform spatial data in complex ways and users need to exercise
caution when interpreting the calculated values. Spatial simulation was a valuable tool for evaluating
the behavior of landscape metrics and their sensitivity to various inputs. Ecotone abruptness can
be detected using existing landscape metrics, but simulation illustrates that new metrics that measure
the variation in boundary element locations are more sensitive to abruptness than existing metrics.
Most measures of spatial pattern are also sensitive to both the composition and configuration of
the landscape. More work is needed to evaluate the various influences of landscape configuration
and composition on metric values.

The results presented here raise several issues for both the users and producers of remote
sensing-based LU and LC products for landscape ecology investigation. First, in addition to the
issue of data accuracy, the user is well advised to consider the appropriateness of class definitions
for a specific application. For example, a general LU/LC classification may not be appropriate for
calculation of landscape metrics in a study of habitat quality for a specific species. For this type
of application, landscape maps may need to be developed specifically for the intended application.
Second, the nature of the spatial transformations taken to compute pattern metrics can have dramatic
implications for the precision of the estimated values. Metrics that require image classification and
patch delineation are subject to greater imprecision than those based on local characterizations of
pattern. Third, the meaning of metric values can be confounded and difficult to interpret. Applica-
tions of landscape metrics that seek empirical relationships between metric values and ecosystem
characteristics may be able to bypass concerns about meaning and instead focus on correlations
with ecosystem outcomes of interest (e.g., based on independent measurements of ecosystem
characteristics). However, when directed toward spatial land management goals (e.g., a less frag-
mented forest), understanding the meaning of metrics is important to improve the probability of
achieving the desired objectives.

 

16.7 SUMMARY

 

Landscape pattern metrics have been increasingly applied in support of environmental and
ecological assessment for characterizing the spatial composition and configuration of landscapes
to relate and evaluate ecological function. This chapter summarizes a combination of previously
published and new work that investigates the precision and meaning of spatial landscape pattern
metrics. The work was conducted on landscapes of the upper midwestern U.S. using satellite images,
aerial photographs, and simulated landscapes. By applying a redundant mapping approach, we
assessed and compared the degree of precision in the values of landscape metrics calculated over
landscape subsets. While increasing landscape size had the effect of increasing precision in the
landscape metric estimates, by giving up spatial resolution, postprocessing methods such as filtering
and sieving did not have a consistent effect. Comparing multiple classifications of the same area
that use different class definitions, we demonstrate that conclusions about landscape composition
and configuration are affected by how the landscape classes are defined. Finally, using landscape
simulation experiments, we demonstrate that metric sensitivity to a pattern characteristic of interest
(e.g., ecotone abruptness of forest fragmentation) can be confounded by sensitivitiy to other
landscape characteristics (e.g., landscape patchiness or amount of forest), making direct measure-
ment of the desired characteristic difficult. 

 

L1443_C16.fm  Page 231  Saturday, June 5, 2004  10:43 AM



 

232 REMOTE SENSING AND GIS ACCURACY ASSESSMENT

 

ACKNOWLEDGMENTS

 

NASA’s Land Cover and Land Use Change Program, the National Science Foundation, the
USGS’s Global Change Program, and the USDA’s Forest Service North Central Forest Experiment
Station funded the research described in this chapter. 

 

REFERENCES

 

Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer, A Land Use and Land Cover Classification System
for Use with Remote Sensing Data, U.S. Geological Survey, professional paper 964, U.S. Government
Printing Office, Washington, DC, 1976. 

Bowersox, M.A. and D.G. Brown, Measuring the abruptness of patchy ecotones: a simulation-based compar-
ison of patch and edge metrics, 

 

Plant Ecol.

 

, 156, 89–103, 2001.
Brown, D.G., J.-D. Duh, and S. Drzyzga, Estimating error in an analysis of forest fragmentation change using

North American Landscape Characterization (NALC) data, 

 

Remote Sens. Environ.

 

, 71, 106–117, 2000a.
Brown, D.G., G.M. Jacquez, J.-D. Duh, and S. Maruca, Accuracy of remotely sensed estimates of landscape

change using patch- and edge-based pattern statistics, in 

 

Spatial Accuracy 2000

 

, Lemmens, M.J. et
al., Eds., Delft University Press, Amsterdam, 2000b, pp. 75–82.

Forman, R.T.T., 

 

Land Mosaics: The Ecology of Landscapes and Regions,

 

 Cambridge University Press, New
York, 1997.

Fortin, M.J. and P. Drapeau, Delineation of ecological boundaries: comparison of approaches and significance
tests, 

 

Oikos

 

, 72, 323–332, 1995.
Frohn, R.C., 

 

Remote Sensing for Landscape Ecology: New Metric Indicators for Monitoring, Modeling, and
Assessment of Ecosystems

 

, Lewis, Boca Raton, FL, 1997.
Guindon, B. and C.M. Edmonds, Using Classification Consistency in Inter-scene Overlap Regions to Model

Spatial Variation in Land-Cover Accuracy over Large Geographic Regions, in Geospatial Data Accu-
racy Assessment

 

, 

 

Lunetta, R.S. and J.G. Lyon, Eds

 

.

 

, U.S. Environmental Protection Agency, report
no. EPA/600/R-03/064, 2003.

Gustafson, E.J. and G.R. Parker, Relationships between land cover proportion and indices of landscape spatial
pattern, 

 

Landsc. Ecol.

 

, 7, 101–110, 1992.
Henebry, G.M. and D.G. Goodin, Landscape trajectory analysis: toward spatio-temporal models of biogeo-

physical fields for ecological forecasting, Workshop on Spatio-temporal Data Models for Biogeophys-
ical Fields, La Jolla, CA, April 8–10, 2002, available at http://www.calmit.unl.edu/BDEI/papers/
henebry_goodin_position.pdf.

Jacquez, G.M., S.L. Maruca, and M.J. Fortin, From fields to objects: a review of geographic boundary analysis,

 

J. Geogr. Syst.

 

, 2, 221–241, 2000.
Johnston, C.A. and J. Bonde, Quantitative analysis of ecotones using a geographic information system,

 

Photogram. Eng. Remote Sens.

 

, 55, 1643–1647, 1989.
Lunetta, R.S., J.G. Lyon, B. Guindon, and C.D. Elvidge, North American Landscape Characterization dataset

development and data fusion issues, 

 

Photogram. Eng. Remote Sens.

 

, 64, 821–829, 1998.
McGarigal, K. and B.J. Marks, FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape

Structure, technical report PNW-GTR-351, USDA Forest Service, Pacific Northwest Research Station,
Portland, OR, 1995

 

.

 

Riitters, K.H., R.V. O’Neill, C.T. Hunsaker, J.D. Wickhan, D.H. Yankee, S.P. Timmins, K.B. Jones, and B.L.
Jackson, A factor analysis of landscape pattern and structure metrics, 

 

Landsc. Ecol.

 

, 10, 23–39, 1995.
SEMCOG (Southeastern Michigan Council of Governments), Land Use/Land Cover, Southeast Michigan,

digital data product from SEMCOG, Detroit, MI, 1995.
Trzcinski, M.K., L. Fahrig, and G. Merriam, Independent effects of forest cover and fragmentation on the

distribution of forest breeding birds, 

 

Ecol. Appl.

 

, 9, 586–593, 1999.
Turner, M. G., R. H. Gardner, and R. V. O’Neill, 

 

Landscape Ecology in Theory and Practice

 

, Springer-Verlag,
New York, 2001.

Turner, M.G., R.V. O’Neill, R.H. Gardner, and B.T. Milne, Effects of changing spatial scale on the analysis
of landscape pattern, 

 

Landsc. Ecol.

 

, 3, 153–162, 1989.
USGS (United States Geological Survey). National Land Cover Data,

 

 

 

2001, product description available at
http://landcover.usgs.gov/prodescription.html.

 

L1443_C16.fm  Page 232  Saturday, June 5, 2004  10:43 AM



 

233

 

CHAPTER

 

 17

Components of Agreement between Categorical
Maps at Multiple Resolutions

 

R. Gil Pontius, Jr. and Beth Suedmeyer

 

CONTENTS

 

17.1 Introduction...........................................................................................................................233
17.1.1 Map Comparison ......................................................................................................233
17.1.2 Puzzle Example ........................................................................................................234

17.2 Methods ................................................................................................................................236
17.2.1 Example Data ...........................................................................................................236
17.2.2 Data Requirements and Notation .............................................................................236
17.2.3 Minimum Function...................................................................................................239
17.2.4 Agreement Expressions and Information Components ...........................................239
17.2.5 Agreement and Disagreement ..................................................................................242
17.2.6 Multiple Resolutions ................................................................................................244

17.3 Results...................................................................................................................................245
17.4 Discussion.............................................................................................................................248

17.4.1 Common Applications ..............................................................................................248
17.4.2 Quantity Information ................................................................................................249
17.4.3 Stratification and Multiple Resolutions ...................................................................250

17.5 Conclusions...........................................................................................................................250
17.6 Summary...............................................................................................................................251
Acknowledgments ..........................................................................................................................251
References ......................................................................................................................................251

 

17.1 INTRODUCTION

17.1.1 Map Comparison

 

Map comparisons are fundamental in remote sensing and geospatial data analysis for a wide
range of applications, including accuracy assessment, change detection, and simulation modeling.
Common applications include the comparison of a reference map to one derived from a satellite
image or a map of a real landscape to simulation model outputs. In either case, the map that is
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considered to have the highest accuracy is used to evaluate the map of questionable accuracy.
Throughout this chapter, the term 

 

reference map

 

 refers to the map that is considered to have the
highest accuracy and the term 

 

comparison map

 

 refers to the map that is compared to the reference
map. Typically, one wants to identify similarities and differences between the reference map and
the comparison map.

There are a variety of levels of sophistication by which to compare maps when they share a
common categorical variable (Congalton, 1991; Congalton and Green, 1999). The simplest method
is to compute the proportion of the landscape classified correctly. This method is an obvious first
step; however, the proportion correct fails to inform the scientist of the most important ways in
which the maps differ, and hence it fails to give the scientist information necessary to improve the
comparison map. Thus, it would be helpful to have an analytical technique that budgets the sources
of agreement and disagreement to know in what respects the comparison map is strong and weak.
This chapter introduces map comparison techniques to determine agreement and disagreement
between any two categorical maps based on the quantity and location of the cells in each category;
these techniques apply to both hard and soft (i.e., fuzzy) classifications (Foody, 2002).

This chapter builds on recently published methods of map comparison and extends the concept
to multiple resolutions (Pontius, 2000, 2002). A substantial additional contribution beyond previous
methods is that the methods described in this chapter support stratified analysis. In general, these
new techniques serve to facilitate the computation of several types of useful information from a
generalized confusion matrix (Lewis and Brown, 2001). The following puzzle example illustrates
the fundamental concepts of comparison of quantity and location.

 

17.1.2 Puzzle Example

 

Figure 17.1 shows a pair of maps containing two categories (i.e., light and dark). At the simplest
level of analysis, we compute the proportion of cells that agree between the two maps. The
agreement is 12/16 and the disagreement is 4/16. At a more sophisticated level, we can compute
the disagreement in terms of two components: (1) disagreement due to quantity and (2) disagreement
due to location. A disagreement of quantity is defined as a disagreement between the maps in terms
of the quantity of a category. For example, the proportion of cells in the dark category in the
comparison map is 10/16 and in the reference map is 12/16; therefore, there is a disagreement of
2/16. A disagreement of location is defined as a disagreement such that a swap of the location of
a pair of cells within the comparison map increases overall agreement with the reference map. The
disagreement of location is determined by the amount of spatial rearrangement possible in the
comparison map, so that its agreement with the reference map is maximized. In this example, it
would be possible to swap the #9 cell with the #3, #10, or #13 cell within the comparison map to
increase its agreement with the reference map (Figure 17.1). Either of these is the only swap we

 

Figure 17.1

 

Demonstration puzzle to illustrate agreement of location vs. agreement of quantity. Each map
shows a categorical variable with two categories: dark and light. Numbers identify the individual
grid cells.

  1   2   3   4 

  5   6   7   8 

  9  10  11  12 

 13  14  15  16 

  1   2   3   4 

  5   6   7   8 

  9  10  11  12 

 13  14  15  16 

Comparison (forgery) Reference (masterpiece)
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can make to improve the agreement, given the quantity of the comparison map. Therefore, the
disagreement of location is 2/16. The distinction between information of quantity and information
of location is the foundation of this chapter’s philosophy of map comparison. 

It is worthwhile to consider in greater detail this concept of separation of information of quantity
vs. information of location in map comparison before introducing the technical methodology of
the analysis. The remainder of this introduction uses the puzzle example of Figure 17.1 to illustrate
the concepts that the Methods section then formalizes in mathematical detail.

The following analogy is helpful to grasp the fundamental concept. Imagine that the reference
map of Figure 17.1 is an original masterpiece that has been painted with two colors: light and dark.
A forger would like to forge the masterpiece, but the only information that she knows for certain
is that the masterpiece has exactly two colors: light and dark. Armed with partial information about
the masterpiece (reference map), the forger must create a forgery (comparison map).

To create the forgery, the forger must answer two basic questions: What proportion of each
color of paint should be used? Where should each color of paint be placed? The first question
requires information of quantity and the second question requires information of location.

If the forger were to have perfect information about the quantity of each color of paint in the
masterpiece, then she would use 4/16 light paint and 12/16 dark paint for the forgery, so that the
proportion of each color in the forgery would match the proportion of each color in the masterpiece.
The quantity of each color in the forgery must match the quantity of each color in the masterpiece
in order to allow the potential agreement between the forgery and the masterpiece to be perfect.
At the other extreme, if the forger were to have no information on the quantity of each color in
the masterpiece, then she would select half light paint and half dark paint, since she would have
no basis on which to treat either category differently from the other category. In the most likely
case, the forger has a medium level of information, which is a level of information somewhere
between no information and perfect information. Perhaps the forger would apply 6/16 light paint
and 10/16 dark paint to the forgery, as in Figure 17.1.

Now, let us turn our attention to information of location. If the forger were to have perfect
information about the location of each type of paint in the masterpiece, then she would place the
paint of the forgery in the correct location as best as possible, such that the only disagreement
between the forgery and the masterpiece would derive from error (if any) in the quantity of paint.
If the forger were to have no information about the location of each color of paint in the masterpiece,
then the she would spread each color of paint evenly across the canvas, such that each grid cell
would be covered smoothly with light paint and dark paint. In the most likely case, the forger has
a medium level of information of location about the masterpiece, so perhaps the forgery would
have a pair of grid cells that are incorrect in terms of location, as in Figure 17.1. However, in the
case of Figure 17.1, the error of location is not severe, since the error could be corrected by a swap
of neighboring grid cells.

After the forger completes the forgery, we compare the forgery directly to the masterpiece in
order to find the types and magnitudes of agreement between the two. There are two basic types
of comparison, one based on information of quantity and another based on information of location.
Each of the two types of comparisons leads to a different follow-up question.

First, we could ask, Given its medium level of information of quantity, how would the forgery
appear if the forger would have had perfect information on location during the production of the
forgery?  For the example, in Figure 17.1, the answer is that the forger would have adjusted the
forgery by swapping the location of cell #9 with cell #3, #10, or #13. As a result, the agreement
between the adjusted forgery and the masterpiece would be 14/16, because perfect information on
location would imply that the only error would be an error of quantity, which is 2/16.

Second, we could ask, Given its medium level of information of location, how would the forgery
appear if the forger would have had perfect information of quantity during the production of the
forgery?  In this case, the answer is that the forger would have adjusted the forgery by using more
dark paint and less light paint, but each type of paint would be in the same location as in Figure
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17.1. Therefore, the adjusted forgery would appear similar to Figure 17.1; however, the light cells
of Figure 17.1 would be a smooth mix of light and dark, while the dark cells would still be completely
dark. Specifically, the light cells would be adjusted to be 2/3 light and 1/3 dark; hence, the total
amount of light and dark paint in the forgery would equal the total amount of light and dark paint
in the masterpiece. As a result, the agreement between the adjusted forgery and the masterpiece
would be larger than 12/16. The exact agreement would require that we define the agreement between
the light cells of the masterpiece and the partially light cells of the adjusted forgery.

The above analogy prepares the reader for the technical description of the analysis in the
Methods section. In the analogy, the reference map is the masterpiece that represents the ground
information, and the comparison map is the forgery that represents the classification of a remotely
sensed image. The classification rule of the remotely sensed image represents the scientist’s best
attempt to replicate the ground information. In numerous conversations with our colleagues, we
have found that it is essential to keep in mind the analogy of painting a forgery. We have derived
all the equations in the Methods section based on the concepts of the analogy.

 

17.2 METHODS

17.2.1 Example Data

 

Categorical variables consisting of “forest” and “nonforest” are represented in three maps of
example data (Figure 17.2). Each map is a grid of 12 

 

¥

 

 12 cells. The 100 nonwhite cells represent
the study area and the remaining 44 white cells are located out of the study area. We have purposely
made a nonsquare study area to demonstrate the generalized properties of the methods. The methods
apply to a collection of any cells within a grid, even if those cells are not contiguous, as is typically
the case in accuracy assessment. Each map has the same nested stratification structure. The coarser
stratification consists of two strata (i.e., north and south halves) separated by the thick solid line.
The finer stratification consists of four substrata quadrates of 25 cells each, defined as the northeast
(NE), northwest (NW), southeast (SE), and southwest (SW). The set of three maps illustrates the
common characteristics encountered when comparing map classification rules. Imagine that Figure
17.2 represents the output maps from a standard classification rule (COM1), alternative classification
rule (COM2), and the reference data (REF). Typically, a statistical test would be applied to assess
the relative performance of the two classification approaches and to determine important differences
with respect to the reference data. However, it would also be helpful if such a comparison would
offer additional insights concerning the sources of agreement and disagreement.

Table 17.1a and Table 17.1b represent the standard confusion matrix for the comparison of
COM1 and COM2 vs. REF. The agreement in Table 17.1a and Table 17.1b is 70% and 78%,
respectively. Note that the classification in COM2 is identical to the reference data in the south
stratum. In the north stratum, COM2 is the mirror image of REF reflected through the central
vertical axis. Therefore, the proportion of forest in COM2 is identical to that in REF in both the
north and south strata. For the entire study area, REF is 45% forest, as is COM2. COM1 is 47%
forest. A standard accuracy assessment ends with the confusion matrices of  Table 17.1.

 

17.2.2 Data Requirements and Notation

 

We have designed COM1, COM2, and REF to illustrate important statistical concepts. However,
this chapter’s statistical techniques apply to cases that are more general than the sample data of
Figure 17.2. In fact, the techniques can compare any two maps of grid cells that are classified as
any combination of soft or hard categories.

This means that each grid cell can have some membership in each category, ranging from no
membership (0) to complete membership (1). The membership is the proportion of the cell that
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Figure 17.2

 

Three maps of example data.

 

Table 17.1a
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Table 17.1b

 

 

 

Confusion Matrix for COM2 vs. Reference
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45 55 100
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belongs to a particular category; therefore, the sum of the membership values over all categories
is 1. In addition, each grid cell has a weight to denote its membership in any particular stratum,
where the stratum weight can also range from 0 to 1. The weights do not necessarily need to sum
to 1. For example, if a cell’s weights are 0 for all strata, then that cell is eliminated from the
analysis. These ideas are expressed mathematically in Equation 17.1 through Equation 17.4, where

 

j

 

 is the category index, 

 

J

 

 is the number of categories, 

 

R

 

dnj

 

 is the membership of category 

 

j

 

 in cell

 

n

 

 of stratum 

 

d

 

 of the reference map,

 

 S

 

dnj

 

 is the membership of category 

 

j

 

 in cell 

 

n

 

 of stratum 

 

d

 

 of
the comparison map, and 

 

W

 

dn

 

 is the weight for the membership of cell 

 

n

 

 in stratum 

 

d

 

:

(17.1)

(17.2)

(17.3)

(17.4)

Just as each cell has some proportional membership to each category, each stratum has some
proportional membership to each category. We define the membership of each stratum to each
category as the proportion of the stratum that is covered by that category. For each stratum, we
compute this membership to each category as the weighted proportion of the cells that belong to
that category. Similarly, the entire landscape has membership to each particular category, where
the membership is the proportion of the landscape that is covered by that category. We compute
the landscape-level membership by taking the weighted proportion over all grid cells. Equation
17.5 through Equation 17.9 show how to compute these levels of membership for every category
at both the stratum scale and the landscape scale. These equations utilize standard dot notation to
denote summations, where 

 

N

 

d

 

 denotes the number of cells that have some positive membership in
stratum 

 

d

 

 of the map and 

 

D

 

 denotes the number of strata. Equation 17.5 shows that 

 

W

 

d·

 

 denotes
the sum of the cell weights for stratum 

 

d

 

. Equation 17.6 shows that 

 

R

 

d·j

 

 denotes the proportion of
category 

 

j 

 

in stratum 

 

d

 

 of the reference map. Equation 17.7 shows that 

 

R

 

··j

 

 denotes the proportion
of category

 

 j

 

 in the entire reference map. Equation 17.8 shows that 

 

S

 

d·j

 

 denotes the proportion of
category 

 

j

 

 in stratum 

 

d

 

 of the comparison map. Equation 17.9 shows that 

 

S

 

··j

 

 denotes the proportion
of category 

 

j

 

 in the entire comparison map:

(17.5)

(17.6)

(17.7)
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(17.8)

(17.9)

 

17.2.3 Minimum Function

 

The Minimum function gives the agreement between a cell of the reference map and a cell of
the comparison map. Specifically, Equation 17.10 gives the agreement in terms of proportion correct
between the reference map and the comparison map for cell 

 

n

 

 of stratum 

 

d

 

. Equation 17.11 gives
the landscape-scale agreement weighted appropriately with grid cell weights, where M(

 

m

 

) denotes
the proportion correct between the reference map and the comparison map:

(17.10)

(17.11)

The Minimum function expresses agreement between two cells in a generalized way because
it works for both hard and soft classifications. In the case of hard classification, the agreement is
either 0 or 1, which is consistent with the conventional definition of agreement for hard classifica-
tion. In the case of soft classification, the agreement is the sum over all categories of the minimum
membership in each category. The minimum operator makes sense because the agreement for each
category is the smaller of the membership in the reference map and the membership in the
comparison map for the given category. If the two cells are identical, then the agreement is 1.

 

17.2.4 Agreement Expressions and Information Components

 

Figure 17.3 gives the 15 mathematical expressions that lay the foundation of our philosophy
of map comparison. The central expression, denoted M(

 

m

 

), is the agreement between the reference
map and the comparison map, given by Equation 17.11. The other 14 mathematical expressions
show the agreement between the reference map and an “other” map that has a specific combination
of information. The first argument in each Minimum function (e.g., 

 

R

 

dnj

 

) denotes the cells of the
reference map and the second argument in each Minimum function (e.g., 

 

S

 

dnj

 

) denotes the cells of
the other map. The components of information in the other maps are grouped into two orthogonal
concepts: (1) information of quantity and (2) information of location.

There are three levels of information of quantity no, medium, and perfect, denoted, respectively,
as 

 

n

 

, 

 

m

 

, and 

 

p

 

. For the five mathematical expressions in the “no information of quantity” column,
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the other maps are derived from an adjustment to the comparison map, such that the proportion of
membership for each of the 

 

J

 

 categories is 1/

 

J

 

 in the other maps (Foody, 1992). This adjustment
is necessary to answer the question, What would be the agreement between the reference map and
the comparison map, if the scientist who created the comparison map would have had no information
of quantity during its production? The adjustment holds the level of information of location constant
while adjusting each grid cell such that the quantity of each of the 

 

J

 

 categories in the landscape is 1/

 

J

 

.
Equations 17.12 and 17.13 give the necessary adjustment to each grid cell in order to scale the

comparison map to express no information of quantity:

(17.12)

(17.13)

 

Figure 17.3

 

Expressions for 15 points defined by a combination of the information of quantity and location. The
vertical axis shows information of location and the horizontal axis shows information of quantity.
The text defines the variables.
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Equation 17.12 performs the scaling at the grid cell level, and hence creates an “other” map,
denoted 

 

A

 

dnj

 

. Equation 17.13 performs the scaling at the stratum level, and hence creates an “other”
map, denoted 

 

E

 

d

 

◊

 

j

 

.
The logic of the scaling is as follows, where the word “paint” can be substituted for the word

“category” to continue the painting analogy. If the quantity of category 

 

j

 

 in the comparison map
is less than 1/

 

J

 

, then more of category 

 

j

 

 must be added to the comparison map. In this case, category

 

j

 

 is increased in cells that are not already 100% members of category 

 

j

 

. If the quantity of category

 

j

 

 in the comparison map is more than 1/

 

J

 

, then some of category

 

 j

 

 must be removed from the
comparison map. In that case, category 

 

j

 

 is decreased in cells that have some of category 

 

j

 

.
For expressions in the “medium information” column of Figure 17.3, the other maps have the

same quantities as the comparison map. For the expressions in the “perfect information” column,
the other maps are derived such that the proportion of membership for each of the 

 

J

 

 categories
matches perfectly with the proportions in the reference map. This adjustment is necessary to answer
the question, What would be the agreement between the reference map and the comparison map,
if the scientist would have had perfect information of quantity during the production of the
comparison map? The adjustment holds the level of information of location constant while adjusting
each grid cell such that the quantity of each of the 

 

J

 

 categories in the landscape matches the
quantities in the reference map. The logic of the adjustment is similar to the scaling procedure
described for the other maps in the “no information of quantity” column of Figure 17.3.

Equation 17.14 and Equation 17.15 give the necessary mathematical adjustments to scale the
comparison map to express perfect information of quantity:

(17.14)

(17.15)

Equation 17.14 performs this scaling at the grid cell level, and hence creates an “other” map,
denoted 

 

B

 

dnj

 

. Equation 17.15 performs this scaling at the stratum level, and hence creates an “other”
map, denoted 

 

F

 

d·j

 

.
There are five levels of information of location: no, stratum, medium, perfect within stratum,

and perfect, denoted, respectively, as N(

 

x

 

), H(

 

x

 

), M(

 

x

 

), K(

 

x

 

) and P(

 

x

 

). Figure 17.3 shows the
differences in the 15 mathematical expressions among these various levels of information of
location. In N(

 

x

 

), H(

 

x

 

), and M(

 

x

 

) rows, the mathematical expressions of Figure 17.3 consider the
reference map at the grid cell level, as indicated by the use of all three subscripts: 

 

d
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n

 

, and 

 

j

 

. In
the K(

 

x

 

) row, the mathematical expressions consider the reference map at the stratum level, as
indicated by the use of two subscripts: 
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 and 

 

j

 

. In the P(
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) row, the expressions consider the reference
map at the study area level, as indicated by the use of one subscript: 
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. In the M(
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) row, the
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expressions consider the other maps at the grid cell level, as indicated by the use of all three
subscripts: 

 

d

 

, 

 

n

 

, and 

 

j

 

. In the H(

 

x

 

) and K(

 

x

 

) rows, the expressions consider the other maps at the
stratum level, as indicated by the use of two subscripts: 

 

d

 

 and 

 

j

 

. In the N(

 

x

 

) and P(

 

x

 

) rows, the
expressions consider the other maps at the study area level, as indicated by the use of one subscript: 

 

j

 

.
The concepts behind these combinations of components of information of location are as

follows. In row N(

 

x

 

), the categories of the other maps are spread evenly across the landscape, such
that every grid cell has an identical multinomial distribution of categories. In row H(

 

x

 

), the
categories of the other maps are spread evenly within each stratum, such that every grid cell in
each stratum has an identical multinomial distribution of categories. In row M(

 

x

 

), the grid cell level
information of location in the other maps is the same as in the comparison map. In row K(

 

x

 

), the
other maps derive from the comparison map, whereby the locations of the categories in the
comparison map are swapped within each stratum in order to match as best as possible the reference
map; however, this swapping of grid cell locations does not occur across stratum boundaries. In
row P(

 

x

 

), the other maps derive from the comparison map, whereby the locations of the categories
in the comparison map are swapped in order to match as best as possible the reference map, and
this swapping of grid cell locations can occur across stratum boundaries.

Each of the 15 mathematical expressions of Figure 17.3 is denoted by its location in the table.
The 

 

x

 

 denotes the level of information of quantity. For example, the overall agreement between
the reference map and the comparison map is denoted M(

 

m

 

), since the comparison map has a
medium level of information of quantity and a medium level of information of location, by
definition. The expression P(

 

p

 

) is in the upper right of Figure 17.3 and is always equal to 1, because
P(

 

p

 

) is the agreement between the reference map and the other map that has perfect information
of quantity and perfect information of location.

There are seven mathematical expressions that are especially interesting and helpful. They are
N(

 

n

 

), N(

 

m

 

), H(

 

m

 

), M(

 

m

 

), K(

 

m

 

), P(

 

m

 

), and P(

 

p

 

). For N(

 

n

 

), each cell of the other map is the same
and has a membership in each category equal to 1/

 

J

 

. For N(

 

m

 

), each cell of the other map is the
same and has a membership in each category equal to the proportion of that category in the
comparison map. For H(

 

m

 

), each cell within each stratum of the other map is the same and has a
membership in each category equal to the proportion of that category in each stratum of the
comparison map. For M(

 

m

 

), the other map is the comparison map. For K(

 

m

 

), the other map is the
comparison map with the locations of the grid cells swapped within each stratum, so as to have
the maximum possible agreement with the reference map within each stratum. For P(

 

m

 

), the other
map is the comparison map with the locations of the grid cells swapped anywhere within the map,
so as to have the maximum possible agreement with the reference map. For P(

 

p

 

), the other map
is the reference map, and therefore the agreement is perfect.

 

17.2.5 Agreement and Disagreement

 

The seven mathematical expressions N(

 

n

 

), N(

 

m

 

), H(

 

m

 

), M(

 

m

 

), K(

 

m

 

), P(

 

m

 

), and P(

 

p

 

) constitute
a sequence of measures of agreement between the reference map and other maps that have
increasingly accurate information. Therefore, usually 0 < N(

 

n

 

) < N(

 

m

 

) < H(

 

m

 

) < M(

 

m

 

) < K(

 

m

 

)
< P(

 

m

 

) < P(

 

p

 

) = 1. This sequence partitions the interval [0,1] into components of the agreement
between the reference map and the comparison map. M(

 

m

 

) is the total proportion correct, and 1
– M(

 

m

 

) is the total proportion error between the reference map and the comparison map. Hence,
the sequence of N(

 

n

 

), N(

 

m

 

), H(

 

m

 

), and M(

 

m) defines components of agreement, and the sequence
of M(m), K(m), P(m), and P(p) defines components of disagreement. 

Table 17.2 defines these components mathematically. Beginning at the bottom of the table and
working up, the first component is agreement due to chance, which is usually N(n). However, if
the agreement between the reference map and the comparison map is less than would be expected
by chance, then the component of agreement due to chance may be less than N(n). Therefore, Table
17.2 defines the component of agreement due to chance as the minimum of N(n), N(m), H(m),
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and M(m). The component of agreement due to quantity is usually N(m) – N(n); Table 17.2 gives
a more general definition to account for the possibility that the comparison map’s information of
quantity can be worse than no information of quantity. The component of agreement at the stratum
level is usually H(m) – N(m); Table 17.2 gives a more general definition to restrict this component
of agreement to be nonnegative. Similarly, the component of agreement at the grid cell level is
usually M(m) – H(m); Table 17.2 restricts this component of agreement to be nonnegative. Table
17.2 also defines the components of disagreement. It is a mathematical fact that M(m) £ K(m) £
P(m) £ P(p); therefore, the components of disagreement are the simple definitions of Table 17.2.

The partition of the components of agreement can be performed for any stratification structure.
Table 17.2 shows the results for the comparison of REF and COM1 at both the stratum level and
the substratum level. Figure 17.4 shows this information in graphical form. The stratum bar shows
the components at the stratum level and the substratum bar shows the components at the substratum
level. Since the substrata are nested within the strata, it makes sense to overlay the stratum bar on

Table 17.2 Definition and Values of Seven Components of Agreement for COM1 vs. Reference Derived 
from the Mathematical Expressions of Figure 17.3

Name of Component Definition

Percentage of Each 
Component

Stratum Substratum

Disagreement due to 
quantity

P(p) – P(m) 2.0 2.0

Disagreement at stratum 
level

P(m) – K(m) 8.0 8.0

Disagreement at grid cell 
level

K(m) – M(m) 20.0 20.0

Agreement at grid cell level MAX [M(m) – H(m), 0] 12.2 11.5
Agreement at stratum level If MIN [N(m), H(m), M(m)] = N(m),

then MIN [H(m) – N(m), M(m) – N(m)],
else 0

7.5 8.2

Agreement due to quantity If MIN [N(n),N(m), H(m), M(m)] = N(n), 
then MIN [N(m) – N(n), H(m) – N(n), M(m) – N(n)],
else 0

0.3 0.3

Agreement due to chance MIN [N(n),N(m), H(m), M(m)] 50.0 50.0

Figure 17.4 Stacked bars showing components of agreement between COM1 and REF. The vertical axis shows
the cumulative percentage of cells in the study area. The nested bar is the stratum bar overlaid
on top of the substratum bar to show agreement at both the stratum and substratum levels. Table
17.2 gives the numerical values for the components in the stratum and substratum bars.
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top of the substratum bar to produce the nested bar. Depending on the nature of the maps, the
nested bar could show nine possible components listed in the legend. In the comparison of REF
and COM1, the bar shows eight nested components.

17.2.6 Multiple Resolutions

Up to this point, our analysis of the maps of Figure 17.2 has been based on a cell-by-cell
analysis with hard classification. The advantage of cell-by-cell analysis with hard classification is
its simplicity. The disadvantage of cell-by-cell analysis with hard classification is that if a specific
cell fails to have the correct category, then it is counted as complete error, even when the correct
category is found in a neighboring cell. Therefore, cell-by-cell analysis can fail to indicate general
agreement of pattern because it fails to consider spatial proximity to agreement. In order to remedy
this problem we perform multiple resolution analysis.

The multiple resolution analysis requires a new set of maps for each new resolution. Figure
17.2 shows maps that are hard classified, whereas Figure 17.5 shows the COM1 map at four coarser
resolutions. Each cell of each map of Figure 17.5 is an average of neighboring cells of the original
COM1 map of Figure 17.2. For example, for resolution 2, four neighboring cells become a single
coarse cell; therefore, the 12 ¥ 12 map of original cells yields a 6 ¥ 6 map. At resolution three,
we obtain a 4 ¥ 4 map of coarse cells, in which the length of the side of each coarse cell is three
times the length of the side of each original fine-resolution cell. At resolution four, we obtain a 2
¥ 2 map of coarse cells, where each coarse cell is its own substratum. At resolution 12, the entire
map is in one cell. For each coarse cell, the membership in each category is the average of the
memberships of the contributing cells. When using this aggregation technique, the lack of a square
study area can result in an unequal number of fine-resolution cells in each of the coarser cells. This

Figure 17.5 Map COM1 at four different resolutions. On the legend, 0 means completely forest, 1 means
completely nonforest, and white is outside of the study area.
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is taken into consideration by the weights that give each cell’s membership in the study area. This
characteristic of the technique allows the method to apply to accuracy assessment where the grid
cells of interest are not contiguous.

Figure 17.5 shows the cell configuration. The darker shading shows stronger membership in
the nonforested category. Figure 17.6 shows this same type of aggregation for the REF map. For
each resolution, we are able to generate a bar similar to the nested bar of Figure 17.4, because the
equations of Figure 17.3 allow for any cell to have partial membership in any category.

17.3 RESULTS

Figure 17.7 shows the components of agreement and disagreement between REF and COM1
at all resolutions. Figure 17.8 shows analogous results for the comparison between REF and COM2.
The overall proportion correct is the top of the component of agreement at the grid cell level and
the overall proportion correct at the coarser resolutions is the top of the component of agreement
due to quantity. Proportion correct tends to rise as resolution becomes coarser; however, the rise
is not monotonic. Proportion correct rises for each resolution that is nested within finer resolutions.
That is, the proportion correct for resolution 1 < proportion correct for resolution 2 < proportion
correct for resolution 6 < proportion correct for resolution 12. In addition, the proportion correct
for resolution 1 < proportion correct for resolution 3 < proportion correct for resolution 6 <
proportion correct for resolution 12. However, the proportion correct for resolution 2 > proportion
correct for resolution 3. Note that resolution 2 is not nested within resolution 3.

The largest component is agreement due to chance, which is 50% at the finest resolution since
there are two categories. Agreement due to chance rises as resolution becomes coarser. Besides the
component due to chance, the largest components at the finest resolution are agreement at the grid

Figure 17.6 Map REF at four different resolutions. On the legend, 0 means completely forest, 1 means
completely nonforest, and white is outside of the study area.
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cell level and disagreement at the grid cell level. As resolution becomes coarser, the grid cell level
information becomes less important, relative to information of quantity. At the coarsest resolution,
where the entire study area is in one cell, the concept of location has no meaning; hence, the only
components are agreement due to chance, agreement due to quantity, and disagreement due to
quantity. COM1 has a component of disagreement due to quantity, which does not change as
resolution changes, since quantity is a concept independent of resolution. COM2 has no disagree-
ment in quantity.

Figure 17.9 shows that at a fine resolution the agreement between COM2 and REF is greater
than the agreement between COM1 and REF. The components that account for the greater agreement
are the agreement at the stratum level and at the grid cell level.

Table 17.3 and Table 17.4 display contingency tables that show the nested stratification structure
of strata and substrata. These tables are another helpful way to present results. The information on
the diagonal indicates the number of cells for each substratum that are in agreement. Therefore,
the number of correct cells may be calculated for each substratum by summing the diagonal for
each subset of the table. Furthermore, the row and column totals indicate stratum-level agreement.
For example, Table 17.3 shows disagreement at the stratum level, since there are 31 forested cells
in COM1 vs. 35 in REF for the north stratum and there are 16 forested cells in COM1 vs. 10 in

Figure 17.7 Stacked bars showing agreement between COM1 and REF. The vertical axis shows the cumulative
percentage of the total study area. The numbers on the horizontal axis give the resolutions.

Figure 17.8 Stacked bars showing agreement between COM2 and REF. The vertical axis shows the cumulative
percentage of the total study area. The numbers on the horizontal axis give the resolutions.
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Figure 17.9 Stacked bars showing comparison of COM1 and COM2 with the REF map at the finest resolution.
The vertical axis shows the cumulative percentage of the total study area.

Table 17.3 Confusion Matrix for COM1 vs. REF by Strata and Substrata; F Denotes Forest Cells and N 
Denotes Nonforest Cells
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REF for the south stratum. This disagreement at the stratum level is reflected in the component of
disagreement at the stratum level in Figure 17.7. In contrast, Table 17.4 shows perfect agreement
at the stratum level; hence, Figure 17.8 shows no component of disagreement between COM2 and
REF at the stratum level.

17.4 DISCUSSION

17.4.1 Common Applications

The three maps in Figure 17.2 represent a common situation in map comparison analysis. There
are many applications where a scientist wants to know which of two maps is more similar to a
reference map. Three likely applications are in remote sensing, simulation modeling, and land-
change analysis.

In remote sensing, when a scientist develops a new classification rule, the scientist needs to
compare the map generated by the new rule to the map generated by a standard rule. Two
fundamental questions are (1) Did the new method perform better than the standard method
concerning its estimate of the quantity of each category? and (2) Did the new method perform
better than the standard method concerning its specification of the location of each category? The
format of Figure 17.9 is an effective way to display the results, because it conveys the answer to
both of these questions quickly. Specifically, COM1 makes some error of quantity while COM2

Table 17.4 Confusion Matrix for COM2 vs. REF by Strata and Substrata; F Denotes Forest Cells and N 
Denotes Nonforest Cells
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does not. COM2 shows a better specification of location than does COM1. When the analysis is
stratified, the scientist can see whether errors of location exist at the stratum level, substratum level,
or grid cell level. For example, Figure 17.9 shows that COM1 has errors at the stratum level and
not the substratum level, while COM2 has errors at the substratum level and not at the stratum
level. In another application from remote sensing, we could examine the influence of a hardening
rule, since the techniques work for both hard and soft classification. For example, COM1 could
show the soft category membership before a hardening rule is applied, and COM2 could show the
hard category membership after the hardening rule is applied. The format of Figure 17.9 would
then summarize the influence of the hardening rule.

In simulation modeling, a scientist commonly builds a model to predict how land changes over
time (Veldkamp and Lambin, 2001). The scientist performs validation to see how the model
performs and to obtain ideas for how to improve the model. When the model is run from T1 to T2,
the scientist validates the model by comparing the simulated landscape of T2 with a reference map
T2. A null model would predict no change between T1 and T2. In other words, if the scientist had
no simulation model, then the best guess at the T2 map would be the T1 map. Therefore, to see
whether the simulation model is performing better than a null model, the scientist needs to compare
(1) the agreement between the T2 simulation map and the T2 reference map vs. (2) the agreement
between the T1 map and the T2 reference map. In this situation, the format of Figure 17.9 is perfectly
suited to address this question because the analogy is that COM1 is the T1 map, COM2 is the T2

simulation map, and REF is the T2 reference map.
The methods described here are particularly helpful in this case since land-cover and land-use

(LCLU) change models are typically stratified according to political units because data are typically
available by political unit and because the process of land change often happens by political unit.
For example, land-use activities in Brazil are planned at the regional and household scales, where
the household stratification is nested within the regional stratification. Researchers are dedicating
substantial effort to collecting data at a relevant scale in order to calibrate and to improve change
models. Therefore, it is essential that statistical methods budget the components of agreement and
disagreement at relevant scales, because researchers want to collect new data at the scale at which
the most uncertainty exists.

In land-change analysis, the scientist wants to know the manner in which land categories change
and persist over time. For this application, the methods of this chapter would use COM1 as the T1

map and REF as the T2 map. Figure 17.7 would supply a multiple-resolution analysis of LCLU
change, where agreement means persistence and disagreement means change. A disagreement in
quantity indicates that a category has experienced either a net gain or a net loss. Disagreement at
the stratum level means that a loss of a category in one stratum is accompanied by gain in that
category in another stratum. Disagreement at the grid cell level means that a loss of a category at
one location is accompanied by a gain of that category at another location within the same stratum.
Therefore, Figure 17.7 would show at what scales LCLU change occurs.

17.4.2 Quantity Information

We focus primarily on the center column of mathematical expressions of Figure 17.3, because
those expressions give the components of agreement. However, the other two columns can be
particularly helpful depending on the purpose of map comparison. In the case of remote sensing,
guidance is needed to improve the classification rules. For simulation modeling, guidance is required
to improve the simulation model’s rules. It would be helpful to know the expected improvement
if the rule’s specification of quantity changes, given a specific level of information of location. The
mathematical expressions in the rightmost column of Figure 17.3 show the expected results when
the rule specifies the quantity of each category perfectly with respect to the reference quantities.
At the other end of the spectrum, the mathematical equations of the leftmost column show the
expected results when the rule uses random chance to specify the quantities of each category.
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For example, M(n) expresses the agreement that a scientist would expect between the reference
map and the other map when the other map is the adjusted comparison map that is scaled to show
the quantity in each category as 1/J. M(p) expresses the agreement that a scientist would expect
between the reference map and the other map when the other map is the adjusted comparison map
that is scaled to show the quantity in each category as matching perfectly the reference map.

The definitions of M(n) and M(p) in Table 17.2 are slightly different from the definitions of
M(n) and M(p) in Pontius (2000, 2002). Table 17.2 gives expressions for M(n) and M(p) that
depend on the scaling given by Equation 17.12 through Equation 17.15. The method of scaling
simulates the change in quantity spread evenly across the grid cells as one moves from M(m) to
M(p) or from M(m) to M(n). In contrast, Pontius (2000, 2002) does not scale the comparison map
and does not represent an even spread of the change in quantity across the cells. The methods of
Pontius (2000, 2002) define M(n) and M(p) in a manner that makes sense for applications of land-
cover change simulation modeling and slightly confounds information of quantity with information
of location. Table 17.2 defines M(n) and M(p) in a manner that is appropriate for a wider variety
of applications, since it maintains complete separation of information of quantity from information
of location.

17.4.3 Stratification and Multiple Resolutions

If we think of grid cells as tiny strata, then the maps of Figure 17.2 show a three-tiered, nested
stratification structure. The cells are 100 tiny strata that are nested within the four substrata that
are nested within the two broadest strata. The multiple-resolution procedure grows the cells such
that at the resolution of 6 the four coarse grid cells constitute the four quadrants of the substrata.
Another similarity between strata and cells is that they both can indicate information of location;
hence, they both appear on the vertical axis of Figure 17.3.

However, there are three major conceptual differences between grid cells and strata. First, the
concept of location within a grid cell does not exist because category membership within a grid
cell is completely homogenous. By definition, we cannot say that a particular category is concen-
trated at a particular location within a cell. In contrast, the concept of location within a stratum
does exist because we can say that a particular category is concentrated at a particular location
within a stratum, since strata usually contain numerous cells. Second, the multiple-resolution
procedure increases the lengths of the sides of the grid cells and  thus reduces the number of coarse
grid cells within each stratum, but the multiple-resolution analysis does not change the number of
strata. Third, each cell is a square patch, whereas a stratum can be nonsquare and noncontiguous.
As a consequence of these differences, analysis of multiple resolutions of cells shows how the
landscape is organized in geographic space, whereas analysis of multiple strata shows how the
landscape is organized with respect to the strata definitions.

17.5 CONCLUSIONS

The profession of accuracy assessment is advancing past the point where assessment consists
of only a calculation of percentage correct or Kappa index of agreement (Foody, 2002). Now,
measures of agreement are needed that indicate how to create more-accurate maps. Here we
presented novel methods of accuracy assessment to budget the components of agreement and
disagreement between any two maps that show a categorical variable. The techniques incorporate
stratification, examine multiple resolutions, apply to both hard and soft classifications, and compare
maps in terms of quantity and location. Perhaps most importantly, this chapter shows how to present
the results of a complex analysis in a simple graphical form. We hope that this technique of accuracy
assessment will soon become as common as today’s use of percentage correct.

L1443_C17.fm  Page 250  Saturday, June 5, 2004  10:45 AM



COMPONENTS OF AGREEMENT BETWEEN CATEGORICAL MAPS AT MULTIPLE RESOLUTIONS 251

17.6 SUMMARY

This chapter presented novel methods of accuracy assessment to budget the components of
agreement and disagreement between a reference map and a comparison map, where each map
shows a categorical variable. The measurements of agreement can take into consideration soft
classification and can analyze multiple resolutions. Ultimately, the techniques express the agreement
between any two maps in terms of various components that sum to 1. The components may be
agreement due to chance, agreement due to quantity, agreement due to location at one of the
stratified levels, agreement due to location at the grid cell level, disagreement due to location at
the grid cell level, disagreement due to location at one of the stratified levels, and/or disagreement
due to quantity. These techniques can be used to compute components of agreement at all resolutions
and to present the results of a complex analysis in a simple graphical form.
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18.1 INTRODUCTION

 

The aquatic plant communities within the coastal wetlands of the Laurentian Great Lakes (LGL)
are among the most biologically diverse and productive ecosystems in the world (Mitsch and
Gosselink, 1993). Coastal wetland ecosystems are also among the most fragmented and disturbed,
as a result of impacts from land-use mediated conversions (Dahl, 1990; Dahl and Johnson, 1991).
Many LGL coastal wetlands have undergone a steady decline in biological diversity during the
1900s, most notably within wetland plant communities (Herdendorf et al., 1986; Herdendorf, 1987;
Stuckey, 1989). Losses in biological diversity can often coincide with an increase in the presence
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and dominance of invasive (nonnative and aggressive native) plant species (Bazzaz, 1986; Noble,
1989). Research also suggests that the establishment and expansion of such opportunistic plant
species may be the result of general ecosystem stress (Elton, 1958; Odum, 1985). 

Reduced biological diversity in LGL coastal wetland communities is frequently associated with
disturbances such as land-cover (LC) conversion within or along wetland boundaries (Miller and
Egler, 1950; Niering and Warren, 1980). Disturbance stressors may include fragmentation from
road construction, urban development, or agriculture or alterations in wetland hydrology (Jones et
al., 2000, 2001; Lopez et al., 2002). Specific ecological relationships between landscape disturbance
and plant community composition are not well understood. Remote sensing technologies offer
unique capabilities to measure the presence, extent, and composition of plant communities over
large geographic regions. However, the accuracy of remote sensor-derived products can be difficult
to assess, owing both to species complexity and to the inaccessibility of many wetland areas. Thus,
coastal wetland field data, contemporaneous with remote sensor data collections, are essential to
improve our ability to map and assess the accuracy of remote sensor-derived wetland classifications. 

The purpose of this study was to assess the utility and accuracy of using airborne hyperspectral
imagery to improve the capability of determining the location and composition of opportunistic
wetland plant communities. Here we specifically focused on the results of detecting and mapping
dense patches of the common reed (

 

Phragmites

 

 

 

australis)

 

. 

 

18.2 BACKGROUND 

 

Phragmites 

 

typically

 

 

 

spreads as monospecific “stands” that predominate throughout a wetland,
supplanting other plant taxa as the stand expands in area and density (Marks et al., 1994). It is a
facultative-wetland plant, which implies that it usually occurs in wetlands but occasionally can be
found in nonwetland environments (Reed, 1988). Thus, 

 

Phragmites

 

 can grow in a variety of wetland
soil types, in a variety of hydrologic conditions (i.e., in both moist and dry substrate conditions).
Compared to most heterogeneous plant communities, stands tend to provide low-quality habitat or
forage for some animals and thus reduce the overall biological diversity of wetlands. The estab-
lishment and expansion of 

 

Phragmites 

 

is difficult to control because the species is persistent,
produces a large amount of biomass, propagates easily, and is very difficult to eliminate with
mechanical, chemical, or biological control techniques. 

The differences in spectral characteristics between the common reed and cattail (

 

Typha

 

 sp.) are
thought to result from differences between their biological and structural characteristics. 

 

Phragmites

 

has a fibrous main stem, branching leaves, and a large seed head that varies in color from reddish-
brown to brownish-black; 

 

Typha

 

 are primarily composed of photosynthetic “shoots” that emerge
from the base of the plant (at the soil surface) with a relatively small, dense, cylindrical seed head
(Figure 18.1). Distinguishing between the two

 

 

 

in mixed stands can be difficult using automated
remote sensing techniques. This confusion can reduce the accuracy of vegetation maps produced
using standard broadband remote sensor data.

This chapter explores the implications of the biological and structural differences, in combina-
tion with differing soil and understory conditions, on observed spectral differences within 

 

Phrag-
mites

 

 stands and between 

 

Phragmites

 

 and 

 

Typha

 

 using hyperspectral data. We applied detailed
ground-based wetland sampling to develop spectral signatures for the calibration of airborne
hyperspectral data and to assess the accuracy of semiautomated remote sensor mapping procedures.
Particular emphasis was placed on linkages between field-based data sampling and remote sensing
analyses to support semiautomated mapping. Field data provided a linkage to extrapolate between
airborne sensor data and the physical structure of 

 

Phragmites

 

 stands, soil type, soil moisture content,
and the presence and extent of associated plant taxa. This chapter presents the wetland mapping
techniques and results from one of the 13 coastal wetland sites currently undergoing long-term
assessment by the EPA at the Pointe Mouillee wetland complex (Figure 18.2).
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18.3 METHODS

 

Thirteen coastal wetland sites were selected from a group of 65 potential coastal locations to
support the EPA’s wetland assessment efforts in western Lake Erie, Lake St. Clair, Lake Huron, and
Lake Michigan (Lopez and Edmonds, 2001). These sites were selected after visual inspection of
aerial photographs, topographic and National Wetland Inventory (NWI) maps, National Land Cover
Data (NLCD) data, input from local wetland experts, and review of published accounts at each
wetland (Lyon, 1979; Herdendorf et al., 1986; Herdendorf, 1987; Stuckey, 1989; Lyon and Greene,
1992). The study objectives required that each site (1) generally spanned the gradient of current
LGL landscape conditions, (2) consisted of emergent wetlands, and (3) included both open lake and
protected wetland systems. LC adjacent to the 13 selected study sites included active agriculture,
old-field agriculture, urban areas, and forest in varying amounts (Vogelmann et al., 2001).

 

18.3.1 Remote Sensor Data Acquisition and Processing

 

Airborne imagery data were collected over the Pointe Mouillee study area using both the
PROBE-1 hyperspectral data and the Airborne Data Acquisition and Registration system 5500

 

Figure 18.1

 

Illustrations of 

 

Phragmites australis

 

 and 

 

Typha

 

. With permission from the Institute of Food and
Agricultural Sciences, Center for Aquatic Plants, University of Florida, Gainesville.
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(ADAR). The ADAR sensor enabled remote sensing of materials at the site of 

 

<

 

 5 m, which is the
nominal spatial resolution of the PROBE-1 sensor. The ADAR system is a four-camera, multispec-
tral airborne sensor that acquires digital images in three visible and a single near-infrared band.
ADAR

 

 

 

data acquisition occurred on August 14, 2001, at an altitude of 1900 m above ground level
(AGL), providing an average pixel resolution of 75 

 

¥

 

 75 cm. Using ENVI software, a single ADAR
scene in the vicinity of the initial 

 

Phragmites 

 

sampling location was georeferenced corresponding

 

Figure 18.2

 

Thirteen wetland study sites in Ohio and Michigan coastal zone, lettered A–M. Sites were initially
sampled during July–August 2001. Inset image is magnified view of Pointe Mouillee wetland
complex (Site E). White arrows indicate general location of both field sampling sites for 

 

Phragmites
australis

 

 (i.e., the northernmost stand and the southernmost stand). Field-sampled site location
legend: Pa = 

 

Phragmites australis

 

; Ts = 

 

Typha 

 

sp.; Nt = nontarget plant species; Gc = ground
control point. Inset image is a grayscale reproduction of false-color infrared IKONOS data acquired
in August 2001.
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to a root mean square (RMS) error of < 0.06 using digital orthorectified quarter quadrangles
(DOQQs) and ground control points from field surveys. 

The PROBE-1 scanner system has a rotating axe-head scan mirror that sequentially generated
crosstrack scan lines on both sides of nadir to form a raster image cube. Incident radiation was
dispersed onto four 32-channel detector arrays. The PROBE-1 data were calibrated to reflectance
by means of a National Institute of Standards (NIS) laboratory radiometric calibration procedure,
providing 128 channels of reflectance data from the visible through the short-wave infrared wave-
lengths (440– 2490 nm). The instrument carried an on-board lamp for recording in-flight radiometric
stability along with shutter-closed (dark current) measurements on alternate scan lines. Geometric
integrity of recorded images was improved by mounting the PROBE-1 on a three-axis, gyro-
stabilized mount, thus minimizing the effects in the imagery of changes in aircraft pitch, roll, and
yaw resulting from flight instability, turbulence, and aircraft vibration. Aircraft position was assigned
using a nondifferential global positioning system (GPS), tagging each scan line with the time,
which was cross-referenced with the time interrupts from the GPS receiver. An inertial measurement
unit added the instrument attitude data required for spatial geocorrection.

During the Pointe Mouillee overflight the PROBE-1 sensor had a 57 instantaneous field of view
(IFOV) for the required mapping of vertical and subvertical surfaces within the wetland. The typical
IFOV of 2.5 mrad along track and 2.0 mrad across track results in an optimal ground IFOV of 5
to 10 m, depending on altitude and ground speed. PROBE-1

 

 

 

data at Pointe Mouillee were collected
on August 29, 2001, at an altitude of 2170 m AGL, resulting in an average pixel size of 5 m 

 

¥

 

 5
m. The data collection rate was 14 scan lines per second (i.e., pixel dwell time of 0.14 ms), and
the 6.1-km flight line resulted in total ground coverage of 13 km

 

2

 

. The PROBE-1 scene covering
Pointe Mouillee was then georeferenced (RMS error < 0.6 pixel) using the vendor-supplied on-
board GPS data, available DOQQs, and field-based GPS ground control points provided from
August 2001 field surveys. Georeferencing was completed using ENVI image processing software. 

The single scene of PROBE-1 data covering Pointe Mouillee was initially visually examined
to remove missing or noisy bands. The resulting 104 bands of PROBE-1 data were then subjected
to a minimum noise fraction (MNF) transformation to first determine the inherent dimensionality
of the image data, segregate noise in the data, and reduce the computational requirements for
subsequent processing (Boardman and Kruse, 1994). MNF transformations were applied as mod-
ified from Green et al. (1988). The first transformation, based on an estimated noise covariance
matrix, decorrelated and rescaled the noise in the data. The second MTF step was a standard
principal components transformation of the “noise-whitened” data. Subsequently, the inherent
dimensionality of the data at Pointe Mouillee was determined by examining the final eigen values
and the associated images from the MNF transformations. The data space was then divided into
that associated with large eigen values and coherent eigen images and that associated with near-
unity eigen values and noise-dominated images. By using solely the coherent portions, the noise
was separated from the original PROBE-1 data, thus improving the spectral processing results of
image classification (RSI, 2001).

A supervised classification of the PROBE-1

 

 

 

scene was performed using the ENVI

 

 

 

Spectral
Angle Mapper (SAM) algorithm. Because the PROBE-1 flights occurred 3 weeks after

 

 

 

field
sampling, there was a possibility that trampling from the field crew could have altered the physical
structure of the vegetation stands. For this reason, and due to the inherent georeferencing inaccu-
racies, spectra were collected over a 3 

 

¥

 

 3-pixel area centered on the single pixel with the greatest
percentage of aerial cover and stem density within the vegetation stand (Figure 18.3 and Figure
18.4). The SAM algorithm was then used to determine the similarity between the spectra of
homogeneous 

 

Phragmites

 

 and other pixels in the PROBE-1

 

 

 

scene by calculating the spectral angle
between them (spectral angle threshold = 0.07 rad). SAM treats the spectra as vectors in an 

 

n

 

-
dimensional space equal to the number of bands.

The SAM classification resulted in the detection of 18 image endmembers, each with different
areas mapped as potentially homogeneous regions of dense 

 

Phragmites

 

. The accuracy of the 18
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endmembers was determined based on reference data derived from the interpretation of 1999
panchromatic aerial photography and field observation data collected in 2001. Additional accuracy
checking of mapped areas of 

 

Phragmites 

 

was accomplished using ENVI Mixture Tuned Matched
Filtering (MTMF) algorithms. Visual interpretation of the MTMF “infeasibility values” (noise sigma
units) vs. “matched filtering values” (relative match to spectrum) further aided in the elimination
of potential endmembers. The matched filtering values provided a means of estimating the relative
degree of match to the 

 

Phragmites 

 

patch reference spectrum and the approximate subpixel abun-
dance. Correctly mapped pixels had a matched filter score above the background distribution and

 

Figure 18.3

 

Field sampling activities were an important part of calibrating the hyperspectral data and assessing
map accuracy. (A) dense 

 

Phragmites 

 

canopy and (B) dense 

 

Phragmites 

 

understory layer in the
northernmost stand. The edges of the stand and the internal transects were mapped using a real-
time differential global positioning system.

 

Figure 18.4

 

Magnified view of northernmost field-sampled vegetation stands to the east and west of Pointe
Mouillee Road. Two methods were used to quadrat-sample vegetation stands: (a) edge and interior
was sampled if the stand was small enough to be completely traversed (left, 

 

Phragmites

 

) or (b)
solely the interior was sampled if the stand was too large to be completely traversed (right, 

 

Typha

 

).
This example shows a 

 

Typha

 

 stand that extended approximately 0.75 km east of Pointe Mouillee
Road. Thus, the field crew penetrated into the stand but did not completely traverse the stand.
Black squares = nested quadrat sample locations. Image is a grayscale reproduction of a natural-
color spatial subset of airborne ADAR data acquired August 14, 2001.
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a low infeasibility value. Pixels with a high matched filter result and high infeasibility were “false
positive” pixels that did not match the 

 

Phragmites 

 

target.

 

18.3.2 Field Reference Data Collection

 

To minimize ambiguous site identifications, specific definitions of wetland features were pro-
vided to field investigators (Table 18.1). Vegetation was sampled on August 7–8, 2001, to provide
training data for the semiautomated vegetation mapping (Table 18.2) and subsequent accuracy
assessment effort. Prior to field deployment, aerial photographs were used along with on-site
assessments to locate six large stands of vegetation at the site. They included (1) two stands of

 

Phragmites, 

 

(2) two stands of 

 

Typha, 

 

and (3) two nontarget vegetation stands for comparison to
the target species (Figure 18.2). Digital video of each vegetation stand was recorded to fully
characterize the site for reference during image processing and accuracy assessment. Additional
field data used to support accuracy assessment efforts included vegetation stand sketches, notes of
the general location and shape of the vegetation stand, notes of landmarks that might be recognizable
in the imagery, and miscellaneous site characterization information.

 

Table 18.1

 

Definition(s) of Terms Used during Field Sampling Protocol at Pointe Mouillee

Term Definition(s)

 

Wetland Transitional land between terrestrial and aquatic ecosystems where the water table 
is usually at or near the surface, land that is covered by shallow water, or an area 
that supports hydrophytes, hydric soil, or shallow water at some time during the 
growing season (after Cowardin et al., 1979)

Target plant species

 

Phragmites australis 

 

or 

 

Typha 

 

spp. (per Voss, 1972; Voss, 1985)
Nontarget plant species Any herbaceous vegetation other than target plant species
Vegetation stand A relatively homogeneous area of target plant species with a minimum approximate 

size of 0.8 ha
Edge of vegetation stand Transition point where the percentage canopy cover ratio of target:nontarget species 

is 50:50

 

Table 18.2 Nonspectral Data Parameters Collected (

 

�

 

) along Vegetation Sampling Transects 

 

at Pointe Mouillee

Parameter Description 1.0 m

 

2

 

 quadrat 3.0 m

 

2

 

 quadrat

 

Number of live target species stems

 

�

 

Number of senescent target species stems

 

�

 

Number of flowering target species stems

 

�

 

Water depth

 

�

 

Litter depth

 

�

 

Mean stem diameter (

 

n

 

 = 5)

 

�

 

Percentage cover live target species in canopy

 

�

 

Percentage cover senescent target species in canopy

 

�

 

Percentage cover live nontarget species in canopy

 

�

 

Percentage cover senescent nontarget species in canopy

 

�

 

Percentage cover live nontarget species in understory

 

�

 

Percentage cover senescent nontarget species in understory

 

�

 

Percentage cover senescent target species in understory (i.e., 
senescent material that is not litter)

 

�

 

Percentage cover exposed moist soil

 

�

 

Percentage cover exposed dry soil

 

�

 

Percentage cover litter

 

�

 

Percentage cover water

 

�

 

General dominant substrate type (i.e., sand, silt, or clay)

 

�

 

Distance to woody shrubs or trees within 15 m

 

�

 

Direction to woody shrubs or trees within 15 m

 

�

 

Total canopy cover (area) of woody shrubs

 

�
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Transects along the edges of target-species stands were recorded using a real-time differential
GPS for sampled target species (Figure 18.3). Each of the two nontarget stands of vegetation was
delineated with a minimum of four GPS points, evenly spaced around the perimeter. Five GPS
ground control points (GCPs) were collected at Pointe Mouillee, generally triangulating on the
sampled areas of the wetland (Figure 18.2). GPS location points were recorded along with multiple
digital photographs, as necessary, to provide multiple angle views of each sample location. The
edge polygons, GPS points, GCPs, field notes, and field-based images (camera) were used to provide
details about ground data for imagery georeferencing, classification, and accuracy assessments.

A quadrat sampling method was used within each target-species stand to sample herbaceous
plants, shrubs, trees, and other characteristics of the stand (Mueller-Dombois and Ellenberg, 1974;
Barbour, 1987). Depending on stand size, 12 to 20 (nested) 1.0-m

 

2

 

 and 3.0-m

 

2

 

 quadrats were evenly
spaced along intersecting transects (Figure 18.4). The approximate percentage of cover and taxo-
nomic identity of trees and shrubs within a 15-m radius were also recorded at each quadrat. Where
appropriate, the terminal quadrat was placed outside of the target-species stand perimeter to
characterize the immediately adjacent area. This placement convention improved the accurate
determination of vegetation patch edge locations. The location of SAM classification output was
accomplished partly by identifying a uniform corner of each quadrat with the real-time differential
GPS to provide a nominal spatial accuracy of 1 m. Field data were collected to characterize both
canopy and understory in targeted wetland plant communities (Table 18.2).

Reflectance spectra were measured in the field for each of the target species at four selected
wetland sites (Site A, Site B, Site F, and Site J; Figure 18.2) on August 14–17, 2001, using a field
spectroradiometer (Figure 18.5). Field spectra collected from 1 m above the top of the 

 

Phragmites

 

canopy were compared to PROBE-1 to confirm target species spectra at Pointe Mouillee and were
archived in a wetland plant spectral library. 

 

18.3.3 Accuracy Assessment of Vegetation Maps

 

A three-tiered approach was used to assess the accuracy of PROBE-1 vegetation maps. This
approach included unit area comparisons with (1) photointerpreted stereo panchromatic (1999)
aerial photography (1:15,840 scale), (2) GPS vector overlays and field transect data from 2001
(Congalton and Mead, 1983), and (3) field measurement data (2002). 

Pointe Mouillee 2002 sampling locations were based on a stratified random sampling grid and
provided to a field sampling team as a list of latitude and longitude coordinates along with a site
orientation image, which included a digital grayscale image of the site with the listed coordinate

 

Figure 18.5

 

Field spectroradiometry sampling conducted August 14–17, 2001, at 4 of 13 wetland sites for
comparison to the PROBE-1 reflectance spectra. The procedure involved recording (A) reference
spectra and (B) vegetation reflectance spectra during midday solar illumination. Vegetation spectra
were recorded from 1 m above the vegetation canopy.
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points displayed as an ArcView point coverage. Stratification of samples was based on Universal
Transverse Mercator (1000 m) grid cells (

 

n

 

 = 17), from which the total number of potential sampling
points were selected (

 

n

 

 = 86). The supplied points represented the center point of mapped areas of
dense 

 

Phragmites 

 

(> 25 stems/m

 

2

 

 and > 75% cover). Accordingly, the 86 sampling points selected
to support the validation and accuracy assessment effort contained no “false positive” control
locations. At each field validation sampling location, both 1-m

 

2 

 

and 3-m

 

2 

 

quadrats were used. Five
differentially corrected GPS ground control points were collected to verify the spatial accuracy of
field validation locations.

 

18.4 RESULTS

18.4.1 Field Reference Data Measurements

 

The northernmost 

 

Phragmites

 

 stand sampled at Pointe Mouillee was bounded on the eastern
edge by an unpaved road with two small patches of dogwood and willow in the north and a single
small patch of willow in the south (Figure 18.4). A mixture of purple loostrife (

 

Lythrum salicaria

 

)
and 

 

Typha

 

 bounded the eastern edge of the stand. Soil in the 

 

Phragmites 

 

stand was dry and varied
across the stand from clayey-sand to sandy-clay, to a mixture of gravel and sandy-clay near the
road. Litter cover was a constant 100% across the sampled stand; nontarget plants in the understory
included smartweed (

 

Polygonum

 

 spp.), jewel weed (

 

Impatiens

 

 spp.), mint (

 

Mentha

 

 spp.), Canada
thistle (

 

Cirsium arvense

 

), and an unidentifiable grass. Cattail was the sole additional plant species
in the 

 

Phragmites 

 

canopy.
The southernmost Pointe Mouillee 

 

Phragmites

 

 stand was completely bounded by manicured
grass or herbaceous vegetation, with dry and clayey soil throughout. Litter cover was 100% and
nontarget plants in the understory included smartweed, mint, purple loosestrife, and an unidentifi-
able grass. Nontarget plants were not observed in the canopy. Comparisons of the two field-sampled
stands indicated that quadrat-10 region of the northernmost stand was the most homogeneous of
all sampled quadrats. Accordingly, field transect data were used to determine which pixel(s) in the
PROBE-1

 

 

 

data had the greatest percentage of cover of nonflowering 

 

Phragmites

 

 and the greatest
stem density (Figure 18.6).

 

18.4.2 Distinguishing between 

 

Phragmites

 

 and 

 

Typha

 

Phragmites 

 

and 

 

Typha 

 

are often interspersed within the same wetland, making it difficult to
distinguish between the two species. Because plant assemblage uniformity was measured in the field
(Figure 18.6), we could compare the PROBE-1 reflectance spectra of 

 

Phragmites 

 

within a single stand
of 

 

Phragmites

 

 (Plate 18.1) and with 

 

Typha 

 

(Figure 18.7). There was substantial spectral variability
among pixels within the northernmost stand of 

 

Phragmites

 

 (Plate 18.1). The greatest variability for

 

Phragmites corresponded to the spectral range associated with plant pigments (470 to 850 nm) and
structure (740 to 840 nm). Comparison of reflectance characteristics in the most homogeneous and
dense regions of Phragmites (quadrat-10) and Typha (quadrat-8) (Figure 18.4) indicated that Phrag-
mites was reflecting substantially less energy than Typha in the near-infrared (NIR) wavelengths and
reflecting substantially more energy than Typha in the visible wavelengths (Figure 18.7).

18.4.3 Semiautomated Phragmites Mapping

Based on the analyses of field measurement data, digital still photographs, digital video images,
field sketches, and field notes, we selected nine relatively pure pixels of Phragmites centered on
quadrat-10 in the northernmost stand (Figure 18.4). A supervised SAM classification of the PROBE-
1 imagery, using precision-located field characteristics, resulted in a vegetation map indicating the
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likely locations of homogeneous Phragmites stands (Plate 18.2). Several of the mapped areas were
within the drier areas of the Pointe Mouillee wetland complex, which was typical of Phragmites
observed in other diked Lake Erie coastal wetlands.

18.4.4 Accuracy Assessment

Tier-1 accuracy assessments that compared Phragmites maps to photointerpreted reference data
supplemented with field notes resulted in an estimated accuracy of 80% (n = 11) for the presence

Figure 18.6 The heterogeneity of canopy, stem, understory, water, litter, and soil characteristics in the north-
ernmost Phragmites stand was used to calibrate the PROBE-1 data for the purpose of detecting
relatively homogeneous areas of Phragmites throughout the Pointe Mouillee wetland complex. The
most homogeneous area of Phragmites in the northernmost stand was in the vicinity of quadrat-
10. These pixels were used in the Spectral Angle Mapper (supervised) classification of PROBE-1
reflectance data.
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or absence of Phragmites. Tier-2 assessments resulted in an approximate ± 1-pixel accuracy relative
to the actual location of Phragmites on the ground. Tier-3 field-based accuracy assessments resulted
in 91% accuracy (n = 86). Eight of the sampling points were located in vegetated areas other than
Phragmites (i.e., either Typha or other mixed wetland species), resulting in an omission error rate
of 9%. Because the analyses presented here solely pertain to locations of relatively dense Phragmites
(> 25 stems/m2 and > 75% cover), errors of commission were not calculated.

Plate 18.1 (See color insert following page 114.) Comparison of Phragmites australis among 10 field-sampled
quadrats using spectral reflectance of PROBE-1 data (480 nm–840 nm). Pixel locations were in
the approximate location of quadrats in the northernmost Phragmites stand at Pointe Mouillee.

Figure 18.7 Comparison of Phragmites australis and Typha sp. spectral reflectance in separate relatively
homogeneous stands (5 m ¥ 5 m). Pixel locations were in the northernmost Phragmites (quadrat-
10) and Typha (quadrat-8) field sites.
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18.5 DISCUSSION

The nominal spatial resolution associated with the ADAR data acquired at Pointe Mouillee was
ideal for viewing field GPS overlays and for ensuring the accuracy of coarser-resolution PROBE-
1 data. The ADAR data were also easily georeferenced using DOQQ image-based warping tech-
niques. However, these four-band data were limited in their usefulness for developing Phragmites
spectral signatures. 

Field data from quadrat sampling was an essential part of effectively assessing the accuracy of
PROBE-1 Phragmites maps. The nominal 1-m spatial accuracy associated with field data collections
at vegetation sampling sites provided essential information to support the accuracy assessment at
Pointe Mouillee. The observed heterogeneity in Phragmites stands was likely the result of variability
within underlying vegetation, litter, and soil conditions, as evidenced by field data and PROBE-1
spectral variability within stands. The use of precision-located field data enabled the selection of
specific pixels within the imagery that contained the highest densities of Phragmites. Additionally,
the ground imagery data (i.e., video and digital still images) corresponding to individual quadrats
improved the decision-making processes for identifying which specific stand locations were dom-
inated by high-density plant assemblages. 

Plate 18.2 (See color insert following page 114.) Results of a Spectral Angle Mapper (supervised) classifica-
tion, indicating likely areas of relatively homogeneous stands of Phragmites australis (solid blue)
and field-based ecological data. Black arrows show field-sampled patches of Phragmites. Areas
of mapped Phragmites are overlaid on a natural-color PROBE-1 image of Pointe Mouillee wetland
complex (August 29, 2001). Yellow “P” indicates location of generally known areas of Phragmites,
as determined from 1999 aerial photographs.
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Pointe Mouillee field results demonstrated that a major impediment to the automated detection
of wetland vegetation can be the inaccurate assessment of mixtures of biotic and abiotic wetland
characteristics, even when wetland vegetation is predominated by a single taxon, such as Phragmites
(Figure 18.6). For example, those bands observed in the near-infrared wavelengths for Phragmites
may have caused image classification confusion (Plate 18.1). Heterogeneity and interspersion of
different wetland species are also thought to contribute to a relatively wide range of reflectance
values observed within wetland stands. Although water was not present at the selected Pointe
Mouillee sample locations in 2001, changes in hydrology and variability in soil moisture could
also contribute to inaccurate wetland classification. Thus, the biological and physical characteristics
of wetland plant communities at the time of imagery collection must be factored into the analysis.

To improve the accuracy of PROBE-1–derived maps we accounted for plant community het-
erogeneity by: (1) selecting plant taxa that were least likely to exist in diverse, heterogeneous plant
communities; (2) using GPS points with a nominal spatial accuracy that exceeds that of the imagery
data for locating sampled quadrats, stand edges, and ground control points; (3) acquiring a variety
of remote sensing data types to provide a range of spectral and spatial characteristics; (4) collecting
relevant ecological field data most likely to explain the differences in spectral reflectance charac-
teristics among pixels; (5) using archived aerial photography to assess and understand site history;
and (6) collaborating with local wetland experts to better understand the ecological processes at
the site and the historical context of changes.

18.6 CONCLUSIONS

The use of hyperspectral data at Pointe Mouillee demonstrated the spectral differences between
Phragmites and Typha. Spectral differences between taxa are likely attributable to differences in
chlorophyll content, plant physical structure, and water relations of the two taxa. The combined
use of detailed ecological field data, field spectrometry data, and multiscalar accuracy assessment
approaches were instrumental to our ability to validate mapping results for Phragmites and provide
important information to assess the future coastal mapping efforts in the LGL. Additional classi-
fication and accuracy assessment procedures are ongoing at 12 other wetland study sites to determine
the broader applicability of these techniques and results (Lopez and Edmonds, 2001; Figure 18.2).
Other important ongoing research related to advanced hyperspectral wetland remote sensing
includes: (1) improving techniques for separating noise from signal in hyperspectral data, (2)
determining the relevant relationships between imagery data and field data for other plant species
and assemblages, (3) calibrating sensor data with field spectral data, (4) merging cross-platform
data to improve detection of plant taxa; and (5) employing additional assessment techniques using
field reference data.

The results of this study describe the initial steps required to investigate the correlations between
local landscape disturbance and the presence of opportunistic plant species in coastal wetlands.
These results support general goals to develop techniques for mapping vegetation in ecosystem
types other than wetlands, such as upland herbaceous plant communities. The results of this and
other similar research may help to better quantify the cost-effectiveness of semiautomated vegetation
mapping and accuracy assessments so that local, state, federal, and tribal agencies in the LGL can
decide whether such techniques are useful for their monitoring programs.

18.7 SUMMARY

The accuracy of airborne hyperspectral PROBE-1 data was assessed for detecting dense patches
of Phragmites australis in LGL coastal wetlands. This chapter presents initial research results from
a wetland complex located at Pointe Mouillee, Michigan. This site is one of 13 coastal wetland
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field sites currently undergoing long-term assessment by the EPA. Assessment results from wetland
field sampling indicated that semiautomated mapping of dense stands of Phragmites were 91%
accurate using a supervised classification approach. Results at Pointe Mouillee are discussed in the
larger context of the long-term goal of determining the ecological relationships between landscape
disturbance in the vicinity of wetlands and the presence of Phragmites.
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19.1 INTRODUCTION

 

An emerging area in remote sensing science is subpixel image processing (Ichoku and Karnieli,
1996). Subpixel algorithms allow the characterization of spatial components at resolutions smaller
than the size of the pixel. Recent studies have shown the general effectiveness of these techniques
(Huguenin, 1994; Huguenin et al., 1997). The importance of subpixel methods is particularly
relevant to the field of impervious surface mapping where the predominance of the “mixed pixel”
in medium-resolution imagery forces the aggregation of urban features such as roadways and
rooftops into general “developed” categories (Civco and Hurd, 1997; Ji and Jensen, 1999; Smith,
2001). The amount of impervious surface in a watershed is a landscape indicator integrating a
number of concurrent interactions that influence a watershed’s hydrology, stream chemical quality,
and ecology and has emerged as an important landscape element in the study of nonpoint source
pollution (NPS) (USEPA, 1994). As such, Schueler (1994) proposed that impervious surfaces should
be the single unifying environmental theme for the analysis of urbanizing watersheds. Effectively
extracting the percentage of impervious surface from medium-resolution imagery would provide
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a time and cost savings as well as allowing the assessment of these landscape features over extensive
geographic areas such as the Chesapeake Bay. As part of the Multi-Resolution Landscape Charac-
terization 2000 program (MRLC 2000, 2002), the United States Geological Survey (USGS) has
embarked on an effort to map impervious surfaces across the conterminous U.S. utilizing subpixel
techniques. This study proposes to produce a spatial and statistical framework from within which
we can investigate subpixel-derived estimates of a material of interest (MOI) utilizing multiple
accuracy assessment strategies.

Traditional map accuracy assessment has utilized a contingency table approach for assessing
the per-pixel accuracy of classified maps. The contingency table is referred to as a confusion matrix
or error matrix (Story and Congalton, 1986). This type of assessment is a “hit or miss” technique
and produces a binary output in that a pixel is either “correct” or “not correct.” The generally
accepted overall accuracy level for land-use (LU) maps has been 85% with approximately equal
accuracy for most categories (Jensen, 1986). While alternative techniques to assess the accuracy
of land-cover (LC) maps using measurement statistics such as the Kappa coefficient of agreement
have been proposed, most methods still rely on the contingency table and use per-pixel assessments
of the thematic map class compared to “truth” sample points (Congalton and Green, 1999). However,
as noted by Ji and Jensen (1999), this classic “hit or miss” approach is problematic with respect
to assessing the accuracy of a subpixel-derived classification. A subpixel algorithm allows the pixel
to be classified based on the percentage of a given MOI such that for any given pixel the “fit” to
truth can be assessed. A level of accuracy can be still be obtained from a pixel that “misses” the
truth. The derivation of a percentage of a MOI per-pixel allows for alternative accuracy assessment
approaches such as aggregate whole-area assessments (i.e., watershed) and correlations (Ji and
Jensen, 1999). These alternative approaches may produce adequate accuracies despite the fact that
a lower per-pixel accuracy is derived from the standard error matrix.

An accuracy assessment of subpixel data is largely dependent upon high-resolution planimetric
maps or images to provide reference data. Concurrent with the emergence of subpixel techniques
has been a trend in the production of high-resolution data sets, including high-resolution multispectral
satellite imagery, GIS planimetric data, and USGS Digital Ortho Quarter Quads (DOQQs). All these
data sources can be readily processed within standard GIS software packages and used to assess the
accuracy of subpixel estimates, as derived from Landsat data, over large geographic regions.

In this study we compared classified subpixel impervious surface data derived from Landsat
TM imagery and planimetric impervious surface maps produced from photogrammetric mapping
processes. Comparisons were performed on the classified subpixel (30 m) using planimetric refer-
ence data in a raster GIS overlay environment. Our goal was to produce a spatial framework in
which to test the accuracy of subpixel-derived estimates of impervious surface coverage. In addition
to a traditional per-pixel assessment of accuracy, our technique allowed for a correlation assessment
and an assessment of the whole-area accuracy of the impervious surface estimate per unit area (i.e.,
watershed). The latter is important for ecological and water quality models that have percentage
of impervious surface as a variable input.

 

19.2 METHODS

19.2.1 Study Area

 

Our study area was the Dead Run watershed, a small, 14-km

 

2

 

 subwatershed located 9 km west
of Baltimore, Maryland (Figure 19.1). The Dead Run subwatershed is a portion of the greater
Baltimore Long Term Ecological Research (LTER) area located in Baltimore County, Maryland,
and resides within the coastal plain and piedmont geologic areas of the Mid-Atlantic physiographic
region. Previously produced planimetric and subpixel data sets were available for the area.
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19.2.2 Data

 

Subpixel impervious surface cover data derived from TM imagery were provided by the
University of Maryland’s Mid-Atlantic Regional Earth Sciences Application Center (RESAC)
impervious surface mapping effort (Mid-Atlantic RESAC, 2002). The Mid-Atlantic RESAC process
utilized a decision tree classification system to map 11 different levels of impervious surface
percentage per 30-m pixel (Table 19.1) (Smith, 2001). Reference data were obtained using photo-
grammetrically derived GIS planimetric vector data provided by Baltimore County, Maryland. The
vector data included anthropogenic features such as roads, parking lots, and rooftops but did not
include driveways associated with single-family homes. The lack of compiled driveways was a
limitation of the truth set and has the potential to be a source of error.

The Dead Run subwatershed was delineated using USGS Digital Raster Graphics (DRG) and
“heads-up” digital collection methods. The compiled Dead Run subwatershed was subsequently
utilized to clip both the Mid-Atlantic RESAC raster data and the Baltimore county impervious
surface planimetric data. This produced a spatially coincident Dead Run 30-m subpixel estimate
GRID and a Dead Run impervious surface truth vector file (Figure 19.2). All data were processed
in the UTM Zone 18, NAD83 projection. The respective data sets were independently registered
(prior to our study) and no attempt was made to coregister the data via image-to-image methods.

 

19.2.3 Spatial Processing

 

GIS raster overlay techniques were utilized to compute the reference values for percentage of
impervious surface for each 30-m grid cell within the Dead Run subwatershed. The process was a
modified form of zonal analysis. Here, however, the zones are the individual 30-m classified pixels
as opposed to individual land LU/LC zones. This method was a variation of the overlay processes
reported by Prisloe et al. (2000) and Smith (2001) and included the following analysis procedures:

 

• A vector-to-raster conversion of the Dead Run impervious surface reference data was performed to
produce a high-resolution (3-m) impervious surface grid cell (0 = nonimpervious, 1 = impervious). 

• A comparison of the classified 30-m Dead Run data with the 3-m impervious surface reference
data was performed using an overlay process, which calculated the number of reference data cells
spatially coincident with the classified data (Plate 19.1). The count of coincident reference data
cell percentage for each Dead Run grid cell was tallied.

 

Table 19.1 The University of Maryland 
Mid-Atlantic RESAC Impervious 

 

Surface Percentage per Pixel Classes 

Impervious Class

 

0
1–10

11–20
21–30
31–40
41–50
51–60
61–70
71–80
81–90
91–100

 

Note:

 

Classes are represented in the raster data
as 10, 20, etc., such that class 1–10 = 10,
11–20 = 20, etc.
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• A vector point file was created based on the Dead Run cell centroids. Table 19.2 summarizes the
percentage of impervious reference data (REFERENCE_IS%) and associated subpixel impervious
surface estimate (SUBPIXEL_IS%) for each Dead Run cell record. Reference data were “rounded
up” to coincide with the subpixel estimate class structure implemented by the Mid-Atlantic RESAC
(1–10 = 10, 11–20 = 20, etc.). Table 19.2 was used to derive per-pixel or aggregate watershed
error assessment statistics. 

 

19.2.4 Statistical Processing

 

We tested the overall classification accuracy of the subpixel derived impervious surface estimates
by comparing “per-pixel” measures of accuracy with whole-area measures of accuracy for a series
of simple random samples (with replacement). A range of sample sizes corresponding to various
unit areas were utilized to determine whether the calculated accuracies were dependent on sample
size. Sample sizes ranged from the entire Dead Run watershed (15,651 pixels) to simple random
samples of 225 pixels. We wanted to achieve an absolute ± 95% confidence interval of < 5% and
found that six replicates per unit area provided that level of accuracy for every sample size except
the smallest. Given the incomplete nature of the planimetric truth data set, a more rigorous sampling
scheme was considered to be unnecessary. To explore the issue of spatial autocorrelation of subpixel
classified imagery, we sampled a series of discrete pixel blocks without replacement and compared
“per-pixel” measures of accuracy with whole-area measures of accuracy. Six replicates per block
sizes 3 

 

¥

 

 3, 5 

 

¥

 

 5, 9 

 

¥

 

 9, 15 

 

¥

 

 15, and 25 

 

¥

 

 25 were used.
To assess pixel accuracy, we processed the reference and subpixel classified data within an 11-

category contingency table and calculated a per-pixel overall accuracy value and a Kappa coefficient
of agreement (Khat) value. To assess the whole-area accuracy, we compared the subpixel derived
impervious estimates with the reference data estimates per unit area and calculated the absolute
value of the relative error ([abs(REFERENCE_IS% – SUBPIXEL _IS%)]/(REFERENCE_IS%))

 

Plate 19.1 

 

(See color insert following page 114.) An approximately 15-ha portion of the Dead Run subwater-
shed showing (a) truth vector file (roads and rooftops) overlain on a USGS DOQQ and (b) rasterized 3-m
reference GRID overlain on the 30-m subpixel estimate grid.
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for each of the six sample replicates. From the six replicates we computed the mean and coefficient
of variation (defined as the standard deviation divided by the mean, expressed as a percentage) at
both the pixel and whole-area measures of accuracy for each of the unit areas. 

Additionally, per Ji and Jensen (1999), we performed a per-pixel rank Spearman correlation
test between the subpixel estimates and the reference data for all cells in the Dead Run watershed
(no smaller unit areas were processed for the rank test). 

 

19.3 RESULTS AND DISCUSSION

 

We wish to stress that this study is not

 

 

 

an accuracy assessment of the Mid-Atlantic RESAC
subpixel classification, but rather a discussion of alternative assessment methodologies that may
be more compatible with the characteristics of subpixel classified data. 

The classified data utilized for this study were in preliminary form and were not meant for
external distribution for use in watershed assessments. Although we did not quantitatively assess
the registration displacement of the two datasets, a manual review showed an approximate and
unsystematic 1-m difference throughout the Dead Run subwatershed. 

Our results indicated that the pixel-based methods of determining the accuracy of the subpixel
estimates yielded results that were consistently lower than the whole-area method of determining
accuracy (Table 19.3 and Table 19.4). The whole-area estimate of impervious surface percentage

 

Table 19.2 Attribute Table Produced from the 
Overlay of the Truth and Subpixel 

 

Classified Data Sets (Plate 19.1) 

POINT_ID SUBPIXEL_IS% REFERENCE_IS%

 

24944 100 7
24945 20 11
24946 20 0
24947 20 0
24948 40 39
24949 40 30
24950 40 8
24951 40 43
24952 40 27
24953 30 0
24954 90 63
24955 90 82
25093 40 28
25094 90 36
25095 40 16
25096 50 0
25097 100 45
25098 50 31
25099 30 4
25100 100 34
25101 90 31
25102 50 5
25103 90 56
25104 90 93

 

Note:

 

The continuous REFERENCE_IS% field data
are subsequently “rounded up” to coincide with
the Mid-Atlantic RESAC classification structure
(Table 19.1). Data from the SUBPIXEL_IS%
and REFERENCE_IS% fields are utilized in the
accuracy assessment.
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for the entire Dead Run watershed was approximately 71% accurate. Also, the whole-area estimates
were robust with respect to the size of the sample subset, although the variability of the estimate
increased with smaller sample sizes. The per-pixel assessments of accuracy for the same unit-area
data sets were approximately 28% (Kappa 0.19) for the error matrix overall accuracy measurement.
For simple random sampling, the per-pixel assessments of accuracy showed less variability with
smaller sample sizes than the whole-area method, with the error matrix overall accuracy measure-
ment being particularly stable in this regard (Table 19.3). For pixel block sampling, measured
accuracy declined with smaller block sizes when considering both the whole area and per-pixel
methods of accuracy assessment (Table 19.4).

 

Table 19.3 A Comparison of Accuracy Assessment Statistics Derived at Different Spatial Scales of 
Analysis Using Per-Pixel and Whole-Area Assessment Comparisons of the Classified and 

 

Planimetric Reference Data Sets Based on Simple Random Samples of the Data 

Portion of
Watershed

Sampled (with
Replacement)

Pixels
Sampled
per Run

Area
Analyzed

(km

 

2

 

)

Relative
Percentage

Correct
(± 95% CI)

Relative
Percentage

Correct
CV (%)

Error 
Matrix 
Overall 

Accuracy 
(± 95% CI)

Error
Matrix
Overall

Accuracy
CV (%)

K

 

hat

 

(± 95% 
CI)

K

 

hat 

 

CV
(%)

 

Full 15,651 14.086 70.85 (–) — 28.41 (–) — 0.1853 
(–)

—

Half 7,825 7.0425 70.61 (0.39) 1.65 28.31 (0.30) 1.31 0.1846 
(0.0027)

1.85

Quarter 3,913 3.5217 71.18 (0.63) 2.74 28.72 (0.71) 3.08 0.1871 
(0.0060)

3.98

Eighth 1,956 1.7604 72.33 (2.47) 11.16 29.12 (0.44) 1.87 0.1928
(0.0033)

2.11

Sixteenth 978 0.8802 71.67 (2.33) 10.26 27.74 (0.91) 4.12 0.1774 
(0.0078)

5.48

1/25th 625 0.5625 67.20 (4.38) 16.67 27.79 (0.81) 3.65 0.1787 
(0.0085)

5.93

1/40th 400 0.36 73.92 (3.06) 14.65 28.50 (2.13) 9.35 0.1899 
(0.0197)

12.99

1/70th 225 0.2025 71.43 (5.74) 25.13 27.31 (2.43) 11.13 0.1780 
(0.0244)

17.15

 

Note:

 

The relative percentage correct column lists the whole-area accuracy and the error matrix overall accuracy
and the Khat columns list pixel-based accuracy estimate values. CI = confidence interval; CV = coefficient
of variation.

 

Table 19.4 A Comparison of Accuracy Assessment Statistics Derived at Different Spatial Scales of 
Analysis Using Per-Pixel and Whole-Area Assessment Comparisons of the Classified and 

 

Planimetric Reference Data Sets Based on Pixel Blocks Sampled without Replacement 

Block Size
Sampled
(without

Replacement)

Pixels
Sampled
per Run

Area
Analyzed
(km

 

2

 

) per
Block

Relative
Percentage

Correct 
(± 95% CI)

Error Matrix 
Overall 

Accuracy 
(± 95% CI)

Error
Matrix

CV

K

 

hat

 

(± 95% 
CI)

K

 

hat

 

CV

 

25 

 

¥

 

 25 blocks 625 0.5625 63.68 
(13.43)

26.75 (4.48) 20.91 0.1593
(0.0439)

34.47

15 

 

¥

 

 15 blocks 225 0.2025 54.67 
(13.33)

23.78 (8.42) 44.24 0.1214 
(0.0751)

77.30

9 

 

¥

 

 9 blocks 81 0.0729 51.47 
(17.21)

21.81 (8.04) 46.08 0.1018 
(0.0730)

89.66

5 

 

¥

 

 5 blocks 25 0.0225 48.05 
(26.33)

17.33 (7.75) 55.90 0.0455 
(0.0576)

158.06

3 

 

¥

 

 3 blocks 9 0.0081 –17.81 
(114.25)

18.52 (7.26) 48.99 0.0732 
(0.0742)

126.71

 

Note:

 

The relative percentage correct column lists the whole-area accuracy and the error matrix overall
accuracy and the Khat columns list pixel-based accuracy estimate values. CI = confidence interval;
CV = coefficient of variation.
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The Spearman correlation results were 0.609, suggesting an increased estimate of accuracy
compared to the result from the contingency table assessment. Ji and Jensen (1999) also noted an
increase in accuracy when utilizing the rank correlation test. Of particular benefit would be subpixel
classifications that yield continuous data estimates as opposed to rank order data. These data would
allow for regression modeling that could be applied to the individual per-pixel errors.

The results presented here would have greatly benefited from a more accurate reference data
set. The lack of driveways in the planimetric data set affected a large proportion of the pixels and
probably served to underreport the actual truth for any given pixel. Intuitively, we feel that this
“lack of truth” probably had a greater effect on the per-pixel assessments (error matrix) than on
either the Spearman correlation or the whole-area approaches. This probably explains a portion of
the low per-pixel accuracy. However, all three approaches have been affected by the inaccuracies
in the truth set. For example, using nonrandom techniques, we sampled 50 driveway areas to derive
a total driveway area in the subwatershed. Summing the driveway area to the previously compiled
planimetric impervious surface area increased the accuracy of the whole-area approach to approx-
imately 85%. This underscores the need for high-quality reference data when assessing subpixel
estimates. However, reference data sets in the “real world” will always contain a certain proportion
of error. The GIS overlay framework effectively extrapolated the reference impervious surface to
correspond to the classified 30-m Dead Run cell. These spatial overlay methods provided here may
be repeated over any region to assess the accuracy of any pixel-based product.

The overlay framework also allows for the analysis of the spatial distribution of errors. Figure
19.3 is an error grid showing the absolute error per 30-m cell for the entire Dead Run subwatershed.
A cursory review of the error grid reveals that approximately 66% of the errors exist within the
1–20% (absolute error) range, signifying that a majority of cells (within the two data sets) are in
close agreement. This explains why the correlation assessment outperformed the assessment from
the contingency matrix. We can also discern that the contiguous blocks of error in the 90–100%
range are primarily due to areas not compiled in the truth data but present in the Landsat data. This
would include anthropogenic areas of interest such as parking lots as well as bare soil areas not
included in the truth data. Generally, in these contiguous areas of large error, the subpixel classi-
fication outperformed the truth data. We feel that this is in part due to a temporal disconnection
between the two data sets. Areas that were not included in the truth data set as of the date of the
imagery acquisition were actually present and imaged by the sensor. Misregistration between the
two data sets can also be observed in the error grid. Linear patterns appear to be associated with
the large roadways that traverse the area and are generally associated with the middle range of
error (30–80%). Spatial aggregation of error also contributes to decreased measures of accuracy
when using sample blocks of pixels compared to a simple random sampling scheme.

 

19.4 CONCLUSIONS

 

Results indicate that accuracy assessments of subpixel derived estimates based on per-pixel
sampling strategies may underestimate the overall accuracy of the map product. We believe this is
because per-pixel assessments of subpixel estimates are sensitive to registration accuracies, the
accuracy of the truth data, and classification variability at the pixel scale. A more robust subpixel
assessment may be achieved by applying whole-area (aggregate) or correlation-based approaches.
These approaches are less sensitive to differences in image registrations as well as errors in the
truth set and, in certain large-area applications such as watersheds, are probably a more realistic
indicator of the subpixel classification map accuracy. 

With respect to impervious surfaces, we believe this technique has considerable merit when
considering water quality and watershed runoff models that require, as an input, the percentage of
impervious surface area above a given gauge or “pour point.” Our analysis shows that whole-area
scale estimates of a subpixel derived MOI can be relatively accurate even when the per-pixel
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measurement of accuracy, derived from the contingency table, is very low. Furthermore, the
assessment of accuracy of subpixel estimates over large areas using a sampling scheme based on
sampled unit areas (i.e., 5 

 

¥

 

 5 or 9 

 

¥

 

 9 windows) may not be as accurate as one based on the simple
random sampling of individual pixels to derive a whole-area estimation of an MOI. For applications
over large geographic regions, high-resolution, multispectral satellite data could provide an optimal
data source for these sampling situations. Further investigation is necessary to corroborate these
results over multiple watershed areas using more accurate reference data.

The spatial and statistical techniques reported here provide an analytical tool that can be used
to make per-pixel, unit-area, or correlation-based accuracy assessments of subpixel derived classi-
fication estimates easily. In addition, these techniques allow the spatial relationship of the per-pixel
error to be explored. The raster overlay technique easily extracted the data necessary to derive these
assessments. The ArcView Avenue format script used here, although primarily suited for the
assessment of data at the subpixel level, can be utilized (or altered) to derive the accuracy of any
classified data set in which higher-resolution truth data are available.

 

19.5 SUMMARY

 

This chapter presents a technique for assessing the accuracy of subpixel derived estimates of
impervious surface extracted from Landsat TM imagery. We utilized spatially coincident subpixel

 

Figure 19.3

 

An error grid showing the absolute per-pixel error between the truth and subpixel estimates.
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derived impervious surface estimates, high-resolution planimetric GIS data, vector-to-raster con-
version methods, and raster GIS overlay methods to derive a level of agreement between the subpixel
classified estimates and the planimetric truth in the Dead Run watershed, a small (14-km

 

2

 

) sub-
watershed in the Mid-Atlantic physiographic region. From the planimetric data we produced a per-
pixel reference data estimate of impervious surface percentage as a means for assessing the accuracy
of preliminary subpixel estimates of impervious surface cover derived from TM imagery. The spatial
technique allows for multiple accuracy assessment approaches. Results indicated that even though
per-pixel-based estimates of the accuracy of the subpixel data were poor (28.4%, Kappa = 0.19),
the accuracy of the impervious surface percentage estimated using whole-area and rank correlation
approaches was much improved (70.9%, Spearman correlation = 0.608). Our findings suggest that
per-pixel-based approaches to the accuracy assessment of subpixel classified data need to be
approached with some caution. Per-pixel-based approaches may underestimate the actual whole-
area accuracy of the MOI map, as derived from subpixel methods, when applied over large
geographic areas. The raster overlay technique easily extracted the data necessary to derive these
assessments. Although the ArcView Avenue script used here was primarily suited for the assessment
of data at the subpixel level, it can be utilized to derive the accuracy of any classified data set in
which higher-resolution digital truth data are available.
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20.1 INTRODUCTION

 

The Operational Linescan System (OLS)

 

 

 

is an

 

 

 

oscillating scan radiometer designed for cloud
imaging with two spectral bands (visible and thermal) and a swath of approximately 3000 km. The
OLS is the primary imager flown on the polar orbiting Defense Meteorological Satellite Program
(DMSP) satellites. The OLS nighttime visible band straddles the visible and near-infrared (NIR)
portion of the spectrum from 0.5–0.9 µm and has six-bit quantitization, with digital numbers (DNs)
ranging from 0 to 63. The thermal band has eight-bit quantitization and a broad band-pass from
10–12 µm. The wide swath widths provide for global coverage four times a day: dawn, daytime,
dusk, and nighttime. DMSP platforms are stabilized using four gyroscopes (three-axis stabilization)
and platform orientation is adjusted using a star mapper, Earth limb sensor, and a solar detector.

At night the OLS visible band is intensified using a photomultiplier tube (PMT), enabling the
detection of clouds illuminated by moonlight. With sunlight eliminated, the light intensification results
in a unique data set in which city lights, gas flares, lightning-illuminated clouds, and fires can be
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observed (Figure 20.1). The OLS visible band sensor system is designed to produce visually consistent
imagery of clouds at all scan angles for use by U.S. Air Force meteorologists with a minimal amount
of ground processing. The visible band base gain is computed on-board based on scene source
illumination predicted from solar elevation and lunar phase and elevation. This automatic gain setting
can be overridden or modified by commands transmitted from the ground. The automatic gain is
lowest when lunar illuminance is high. As lunar illuminance wanes, the gain gradually rises. The
highest visible gain settings occur when lunar illumination is absent. The combination of high gain
settings and low lunar illuminance provides for the best detection of faint light sources present at the
Earth’s surface. The drawback of these high gain setting observations is that the visible band data of
city centers are typically saturated. Data acquired under a full moon when the gain is turned to a
lower level are generally not as useful for nighttime lights product generation since they exhibit fewer
lights and have the added complication of bright clouds and terrain features.

In addition to tracking lunar illuminance, gain changes occur within scan lines with the objective
of making visually consistent cloud imagery, regardless of scan angle. The base gain is modified
every 0.4 ms by an on-board along-scan-gain algorithm. A bidirectional reflectance distribution
function (BRDF) algorithm further adjusts the gain to reduce the appearance of specular reflectance
in the scan segment where the solar or lunar illumination angle approaches the observation angle.

The OLS design provides imagery with a constant ground-sample distance (GSD) both along-
and across-track. The along-track GSD is kept constant through a sinusoidal scan motion, which
keeps the track of the scan lines on the ground parallel. The analog-to-digital conversion within
individual scan lines is timed to keep the GSD constant from the nadir to the edge of scan. OLS
data can be acquired in two spatial resolution modes corresponding to fine-resolution data (0.5-km

 

Figure 20.1

 

Visible and thermal NIR nighttime OLS images over California. With sunlight eliminated, the OLS’s
light intensification results in the detection of lights present at the Earth’s surface.

PMT Shift Point PMT Shift Point

Thermal Band

Visible Band
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GSD) and smoothed data (2.7-km GSD). All data are acquired in fine resolution mode, but in most
cases the recorded data are converted to the smoothed resolution by averaging of 5 

 

¥

 

 5 pixel blocks. 
While the GSD of OLS data is kept constant, the instantaneous field of view (IFOV) gradually

expands from the nadir to the edge of the scan (Figure 20.2). At nadir the low-light imaging IFOV
of the fine resolution data is 2.2 km and it expands to 4.3 km 800 km out from the nadir. At this
point in the scan the electron beam within the OLS PMT automatically shifts to constrain the
enlargement of pixel dimensions, which normally occurs as a result of cross-track scanning (Lieske
, 1981). This reduces the IFOV to 3 km. The IFOV then expands to 5.4 km at the edge of the scan,
1500 km out from the nadir. Thus, the IFOV is substantially larger than the GSD in both the along-
track and along-scan directions. At the nadir the smoothed OLS low-light imaging pixel has an
IFOV of 5 km and at the edge of the scan the IFOV is approximately 7 km.

In order to build cloud-free global maps of nighttime lights and to separate ephemeral lights
(e.g., fires) from persistent lights from cities, towns, and villages, a compositing procedure is used
to aggregate lights from cloud-free portions of large numbers of orbits, spanning months or even
multiple years (Elvidge et al., 1997, 1999, 2001). To avoid the inclusion of moonlit clouds in the
products, only data from the dark half of the lunar cycle are composited. The lights in the resulting
composites are known to overestimate the actual size of lighting on the ground. 

The objective of this chapter is to document the area and positional accuracy of OLS nighttime
lights and to examine the causes for the area overestimation of OLS lighting. We have done this
using light from isolated sources located in southern California. The analyses were conducted using
data from four OLS sensors spanning a 10-year time period. 

 

20.2 METHODS

20.2.1 Modeling a Smoothed OLS Pixel Footprint 

 

A scaled model of an OLS PMT smoothed pixel IFOV at nadir was built by placing 25 fine-
resolution pixel footprints onto a 5 

 

¥

 

 5 grid, each displaced by a 0.5-km GSD. The number of
times a light would get averaged into a smoothed pixel was tallied for each of the resulting polygon
outlines (Figure 20.3). A similar model was built to show the IFOV overlap between adjacent PMT
smoothed pixels. This model was constructed by placing nine of the smoothed pixel footprints from
Figure 20.5 onto a 3 

 

¥

 

 3 grid using a scaled GSD of 2.7 km. The number of smoothed pixel
detection opportunities was then tallied for each polygon zone (Figure 20.4).

 

Figure 20.2

 

The OLS fine-resolution nighttime visible band instantaneous field of view (IFOV) data starts at
2.2 km at the nadir and expands to 4.5 km at 766 km out from the nadir. After the PMT electron
beam is switched the IFOV is reduced to 3 km and expands to 4.8 km at the far edges of the scan. 

Nadir

4.3 km pixel

FOV switching position
766 km from nadir

PMT
center

2.2 km pixel 3.0 km pixel
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20.2.2 OLS Data Preparation

 

Nighttime DMSP-OLS data from 2210 orbits acquired between April 26, 1992, and April 4,
2001, were processed to produce georeferenced images of lights and clouds of the southern
California region. The data were initially processed for the NOAA National Marine Fisheries
Service to determine the locations and temporal patterns of squid fishing activities conducted using
heavily lit boats offshore from the Channel Islands. Data were included from four day–night DMSP
satellites: F-10, F-12, F-14, and F-15. DMSP data deliveries to the archive were irregular during
1992, resulting in gaps in the early part of our time series. 

Orbits were selected from the archive based on their acquisition time to include nighttime data
over California. The orbits were automatically suborbited based on the nadir track to 32˚–42˚ north
latitude. Lights and clouds were identified using the basic algorithms described in Elvidge et al.
(1997). The next step in the processing was to geographically locate (geolocate) the suborbits. The
geolocated images covered the area from 32˚–36˚ north latitude and 117˚–122˚ west longitude. The
OLS geolocation algorithm uses satellite ephemeris (latitude, longitude, and altitude at nadir)
generated by the SPEPH (Special Ephemeris) orbital model developed by the U.S. Air Force
specifically for the DMSP platforms. The orbital model was parameterized by bevel vectors derived
from daily RADAR sightings of each DMSP satellite. Ephemeris data were calculated for each

 

Figure 20.3

 

Scaled model of a PMT smoothed pixel at the nadir composed of 25 fine-resolution pixel footprints.
The overlap between IFOVs of adjacent fine-resolution pixels results in the possibility that lights
present on the Earth’s surface will be averaged into the smoothed pixels multiple times. The number
labels marked on the polygons indicate the number of times lights present in the polygons would
be averaged into the resulting smoothed pixel.
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scan line. The geolocation algorithm calculates the position of each OLS pixel center using the
satellite ephemeris, a calculation of the scan angle, an earth geode model, and a terrain correction
using GTOPO30. The pixel center positions were used to locate the corresponding 30 arc second
grid cells, which are filled with the OLS DN values. This generates a sparse grid, having DN data
only in cells containing OLS pixel centers. The complete 30 arc second grids were then filled to
form a continuous image using nearest-neighbor resampling of the sparse grids. 

 

20.2.3 Target Selection and Measurement

 

A composite of cloud-free light detections was produced using data from the entire time series.
The composite values indicated the number of times lights were detected for each 30 arc second
grid cell. These were then filtered to remove single-pixel light detections, a set that contains most
of the system noise (Figure 20.5). The cloud-free composites were then used to identify persistent
light sources (present through the entire time series) for potential use in the study. Two types of
persistent lights were selected: (1) isolated point sources with lighting ground areas much smaller
than the OLS pixel, such as oil and gas platforms in the Santa Barbara Channel (Figure 20.6) and
(2) isolated lights with more extensive areas of ground lighting. We identified five point sources:
four oil and gas platforms (Channel Islands 1–3 and Gaviota 1) and a solitary light present at an
airfield on San Nicolas Island. Calibration targets with more extensive area of lighting included a
series of cities, towns, and facilities found on land (Table 20.1). 

 

Figure 20.4

 

Scaled model of a three-by-three block of smoothed OLS PMT pixels. The dashed line indicates
the boundary of a single smoothed pixel IFOV at the nadir, as modeled in Figure 20.3. Because
of the substantial overlap between adjacent smoothed pixel IFOVs it is possible for point sources
of light to show up in more than one smoothed pixel. The number of overlapping smoothed OLS
pixel IFOVs for each polygon is indicated using the grayscale. Additional levels of overlap are
encountered in actual OLS imagery as the pattern is extended beyond this three-by-three example
and as the IFOV expands at off-nadir scan angle conditions. 

1 2 3 4

Number of Overlapping Smooth Pixels
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The area of each of the lighting sources was estimated using Landsat Enhanced Thematic
Mapper plus (ETM

 

+

 

) data from 2000 by manually drawing a polygon around each of the targets
using ENVI software. The number of ETM

 

+

 

 pixels in the polygon was then multiplied by the pixel
area to estimate the total target size (km

 

2

 

). For the point sources lights, locations and area estimates
were performed using the 15-m panchromatic data. Area extraction for the onshore targets was
based on visual interpretation of an ETM

 

+

 

 color composite formed using bands 2, 4, and 5 as blue,
green, and red. The ETM

 

+

 

 color composite was individually contrast-enhanced for each target prior
to the manual polygon generation.

 

20.3 RESULTS

20.3.1 Geolocation Accuracy

 

Light detections of the point sources from individual suborbits in the time series were examined
to determine the geolocation accuracy of OLS nighttime visible band data. The latitude/longitude
locations of the five point sources of light were extracted for the center of each feature using the
15-m panchromatic ETM

 

+

 

 data. Vector shorelines were overlain on the panchromatic data to
confirm that the geolocation accuracy of the ETM

 

+

 

 data was in the range of ± one or two pixels.
This was deemed fully adequate for use as a geolocation accuracy reference source for the 2.7-km
GSD OLS data.

We followed the geolocation accuracy assessment procedures outlined by the U.S. Federal
Geographic Data Committee (FGDC, 1998). This procedure used the root-mean-square error
(RMSE) to estimate positional accuracy. RMSE was calculated as the square root of the average
of the set of squared differences between data set coordinate values and coordinate values from an
independent source of higher accuracy for identical points. 

 

Figure 20.5

 

Image indicating the number of time lights were detected for each 30 arc second grid cell. 
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Figure 20.6

 

Oil and gas platforms detected by the OLS are approximately 0.01 km

 

2

 

. This represented approx-
imately 0.2% of the IFOV of a smoothed PMT pixel from the OLS.

 

Table 20.1

 

List of Calibration Target Characteristics

Name Latitude Longitude
ETM

 

+

 

 Area
(km

 

2

 

)
OLS Area

(km

 

2

 

)

 

Gaviota 1 34.3506 –120.2806 0.00765 20.445
Channel Island 3 34.1253 –119.401 0.008325 15.51
Gaviota 2 West 34.3768 –120.1688 0.00855 18.33
Gaviota 2 East 34.3907 –120.1218 0.009 17.625
Structure East of CA City 35.1583 –117.8585 0.318375 41.595
Gaviota Plant 34.4751 –120.2084 0.348075 39.48
Avalon 33.3501 –118.3251 1.133 40.185
San Nicolas 33.2584 –119.4918 1.417 21.15
California Correctional Institute 35.1169 –118.5718 1.834 38.775
Johannesburg 35.3667 –117.6502 2.13 23.265
Helendale 34.7584 –117.3419 8.614 34.545
Lake Los Angeles 34.6224 –117.8329 20.961 51.465
California City 35.1333 –117.9668 36.126 67.68
Edwards AFB 34.925 –117.9002 37.597 174.135
Ridgecrest 35.6418 –117.6751 73.644 169.2
Santa Barbara 34.4334 –119.7084 147.188 425.82
Santa Clarita 34.4521 –118.5418 197.802 457.545
Bakersfield 35.3667 –119.0418 333.866 763.515
Lancaster/Palmdale 34.625 –118.1252 357.979 661.995
Victorville 34.4917 –117.3085 369.411 719.1
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For the OLS geolocation accuracy assessment we compared the latitude/longitude position of
the centroid of OLS detected lights against the latitude/longitude position extracted from the ETM

 

+

 

panchromatic band. We tested the geolocation accuracy of lights detected for the five point sources.
The analysis was performed for the data from the individual satellites.

For each image in the time series an automated process searches for a light near the specified
latitude/longitude position from the ETM

 

+

 

 data. The algorithm looks for the presence of cloud-free
lights in an 11 

 

¥

 

 11 box of 30 arc second grid cells centered on the ETM

 

+

 

 latitude/longitude. When
a light was found the algorithm identified the full the extent of the light (extending beyond the
initial 11 

 

¥

 

 11 box as needed). Valid lights for the analysis were limited to those no larger than 50
grid cells in extent. A bounding rectangle of 30 arc second grid cells was established for each of
the valid lights. The 30 arc second grid cell representing the centroid of the light was identified
through a separate analysis of the DN values in both the x and y directions inside the bounding
rectangles. Two arrays were generated containing the average DN of the grid cells for the lines and
columns. The centroid x,y was identified based on the average DN peak found in the two arrays.
The centroid x,y was then converted to a latitude/longitude for the center of the identified 30 arc
second grid cell. The algorithm then calculated the positional offset between the centroid and the
ETM

 

+

 

 derived latitude/longitude of the light. The process was repeated for each of five point sources
and each of the images in the time series. The resulting lists of offsets were used to calculate
RMSEx, RMSEy and accuracy in accordance with the FGDC procedure.

The geolocation accuracy assessment results for lights detected in F-10, F-12, F-14, and F-15
satellite data are shown in Figure 20.7. The white triangles indicate the 30 arc second grid cell
containing the ETM

 

+

 

 latitude/longitude of the light sources. The RMSEx and RMSEy values ranged
from 0.74 to 1.13 km. RMSEx was lower than RMSEy for each satellite. This indicates that there
is more dispersion in the along-track geolocation accuracy than in the cross-track direction. The
satellite F-14 data yielded the highest geolocation accuracy (1.55 km). The satellite F-12 and F-
15 data had nearly identical RMSEx, RMSEy, and geolocation accuracy results. Satellite F-10 data
had the lowest geolocation accuracy (2.36 km). Data from all four satellites produced geolocation
accuracies of less than one pixel. 

 

20.3.2 Comparison of OLS Lighting Areas and ETM

 

+

 

 Areas

 

The area of OLS lighting was extracted for each of the targets from the F-14 cloud-free
composite from 2000. This composite was selected because it had large numbers of cloud-free
observations and was most contemporaneous with the ETM

 

+

 

 data from 2000. The composite was
filtered to remove light detections that occurred only once. Figure 20.8 shows the area of OLS
lighting vs. ETM

 

+

 

 area for 20 light sources, indicating that the OLS overestimated the area of
lighting. However, the OLS lighting area was highly correlated to the area of lighting estimated
from the daytime ETM

 

+

 

 data. Regression analysis indicated that the OLS lighting areas were
approximately twice the size of the area of ground lighting for lights ranging from 20–400 km

 

2

 

.
This overestimation was substantially higher for lighting sources that were smaller than the OLS
IFOV. The OLS was able to detect lights as small as 0.01 km

 

2

 

, representing approximately 0.01%
of an OLS smoothed pixel IFOV (Table 20.1).

 

20.3.3 Multiplicity of OLS Light Detections

 

The multiplicity of OLS light detections was examined by tallying the number of OLS pixels
detected as lights for the point sources. For this test we pooled the data from all four sensors and
five point sources of light. For each point source we tallied the number of OLS light pixels present
(1, 2, 3, etc.) on nights with light detection and zero lunar illuminance. From this we calculated
the percentage of observations resulting in single OLS light detections, double, triple, and higher.
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The results (Figure 20.9) show that point sources of light were detected in solitary OLS pixels 38%
of the time, in two OLS pixels in 28% of the detections, and in three OLS pixels for 13% of the
observations. This phenomenon was caused by the substantial overlap in the footprints of adjacent
OLS pixels (Figure 20.3 and Figure 20.4). 

 

20.4 CONCLUSIONS

 

The DMSP-OLS provides a global capability to detect lights present at the Earth’s surface. This
chapter provides the first quantitative assessment of the area and positional accuracy of DMSP-
OLS–observed nighttime lights. 

Light sources from isolated oil and gas platforms with areas as small as 0.1 km

 

2

 

 were detected
in this study. Since these platforms are heavily lit, the 0.1-km

 

2

 

 area approximates the detection
limits of the OLS for other heavily lit sources. For detection, the aggregated radiances within an
OLS pixel must produce a DN value that exceeds the background noise present in the PMT data.
A larger area of lighting would be required for OLS detection of more dimly lit features than the

 

Figure 20.7

 

Geolocation accuracy of the centroid positions of OLS lights from DMSP satellites F-10, F-12, F-14,
and F-15. The numbers printed on the grid cells indicate the percentage of observations in which
the OLS light centroids were found in that grid cell position relative to the actual location of the light. 
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oil and gas platforms. Based on preflight calibrations of the OLS, the oil and gas platforms produce
a top-of-atmosphere brightness of approximately 10

 

–9

 

 watts/cm

 

2

 

/sr. 
Using isolated point sources of light we have tested the geolocation accuracy of nighttime lights

data from the four day–night DMSP satellites for which there is a digital archive. This includes
satellites F-10, F-12, F-14, and F-15. The OLS lights from single orbits have geolocation accuracies
ranging from 1.55 to 2.36 km. This was less than the GSD of the raw data (2.7 km). This subpixel
geolocation accuracy is achieved without use of ground control points. Being able to position lights
with comparable geolocation accuracy from the multiple satellites will be crucial to the analysis
of changes in the extent of development from the DMSP-OLS time series. While further testing
will be required, the geolocation accuracy results reported here are encouraging in terms of the
prospects for using nighttime OLS data to analyze changes in the extent of lighting over time.

 

Figure 20.8

 

Area of OLS lighting vs. area of lighting estimated from Landsat 7 ETM

 

+

 

 imagery.

 

Figure 20.9

 

Multiplicity of OLS light detections from point sources of surface lighting. 
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In examining the relationship between the area of OLS lighting and the area of lighting present
on the ground our study confirms that cloud-free composited DMSP nighttime lights overestimated
the area of lighting on the ground. This overestimation was the result of a combination of factors,
including (1) the large OLS pixel size; (2) the OLS’s capability to detect subpixel light sources;
(3) overlap in the IFOV footprints of adjacent pixels, resulting in multiple pixel detections from
subpixel-sized lights; and (4) geolocation errors. These effects, present in data from single obser-
vations, were accumulated during the time-series analysis. 

Three other mechanisms that may have enlarged OLS lights beyond the extent of surface lighting
under certain conditions were not explicitly explored in the current study. One was the scattering
of light in the atmosphere as it was transmitted from the Earth’s surface to space. The second was
the reflection of lights off surface waves in cases where bright city lights were adjacent to water
bodies. The third possible mechanism was the detection of terrain illuminated by downward-
scattered light arising from very bright urban centers or gas flares.

Imhoff et al.

 

 

 

(1997) developed thresholding techniques to accurately map urban areas. The
disadvantage of these techniques is that they eliminate lights from small towns owing to their low
frequency of detection. We believe that it would be possible to reduce the overestimation of the
area of lighting based on an empirical calibration to the extent of surface lighting or via the
modulation transfer function (MTF) of the OLS nighttime visible band imagery.

 

20.5 SUMMARY

 

The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS)
has a unique low-light imaging capability developed for the detection of moonlit clouds. In addition
to moonlit clouds, the OLS also detects lights from human settlements, fires, gas flares, heavily lit
fishing boats, lightning, and the aurora. Because all these lights are detected in a single spectral
band, and to remove the effects of cloud cover, time-series compositing is used to make stable light
products that depict the location and area of persistent light sources. This compositing is done
using data collected on nights with low lunar illumination to avoid the detection of moonlit clouds
and the lower number of lights detected due to the OLS gain settings during periods of high lunar
illumination. A number of studies have found that these stable lights products overestimate the size
of light sources present on the Earth’s surface. This overestimation is due to a combination of
factors: the large OLS pixel size, the OLS’s capability to detect subpixel light sources, and
geolocation errors. These effects, present in data from single observations, are accumulated during
the compositing process.
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A

 

Above ground level (AGL), 256
Accumulated confidence layer, 139
Accuracy

assessment(s)
confusion-matrix-based, 146
core challenge facing, 25
cost of, 21
DOQQ-based, 126
full-scale, 21
fuzzy, 164
methodology, ideal, 133
need for, 2
objectives, 14
positional error and, 19
quantitative, 2
reference data, 112, 117
remote sensing, 81
reporting, timeliness of, 25
statistics, comparison of, 276
Tier-1, 262
vegetation maps, 260

fuzzy spatial view of, 204
geolocation, 286, 288, 290
groups, 214
MRLC, 176
per-pixel measures of, 274
producer’s class, 168
ranks, frequency histogram of, 200
statistics, 146
user, 135
value, 158, 160

ADAR,

 

 see 

 

Airborne Data Acquisition and Registration 
system 5500

Aerial photography, 2
color infrared, 224–225
historical, 

 

see

 

 Historical aerial photography, digital 
orthophoto quadrangles, and airborne video 
data

interpretation, 124, 134, 224
Aggregate site profiles, 64
AGL,

 

 see 

 

Above ground level
Agreement, Kappa index of, 250
Agricultural Land Cover Change, 105, 107
Agriculture, scattered polygons of, 170

Airborne Data Acquisition and Registration system 5500 
(ADAR), 255–256, 264

Airborne video data, 

 

see

 

 Historical aerial photography, 
digital orthophoto quadrangles, and airborne 
video data

Airborne videography
method, map accuracy, 124
random frame selection and evaluation, 123
video and GIS data preparation, 122
video sample point selection, 122–123

Albemarle-Pamlico Basin (APB), 42, 43, 54
ALCC project, 

 

see

 

 Australian Agricultural Land Cover 
Change project

Analysis of variance (ANOVA), 225
Anderson Level I classification, 187
Anderson Level II thematic detail, 102
ANOVA,

 

 see 

 

Analysis of variance
APB,

 

 see 

 

Albemarle-Pamlico Basin
Area

estimation, 22
frequency sampling, 62
-stratified sampling, 119

Arizona GAP analysis classification system, 206–207
Atmospheric chemistry, 32
At-satellite reflectance, 79
Australian Agricultural Land Cover Change (ALCC) 

project, 105–114
discussion, 111–112
methods, 108–109
results, 109–111

AVHRR imagery, 2
AZ-GAP LC map, 192, 194, 203

 

B

 

Barren-to-forested upland map, 180
Bayes’ rule, 146, 150, 160
Bidirectional reflectance distribution function (BRDF), 46, 

54, 282
Binary analysis, 196
Binomial model, 138
Biometric mensuration, 48
Boundary

-based metrics, 227, 230
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elements, 223
pixel problem, 99

Brazilian Amazonia, 77
BRDF,

 

 see 

 

Bidirectional reflectance distribution function

 

C

 

Camera orientation, canopy openness and, 54
Canopy

extinction coefficient expression, 63
gap fraction, 43–44, 61
light attenuation, 61, 66
light penetration measurements, normalization of, 67
nonrandomness in, 45–46
openness, 51, 54
PAR penetration measurements, 69
profile sampling frequencies, 60
reflectance, 60

relation of canopy structure to, 71
variability, 71

structures, atypical, 65
Cash crops, 75
CE,

 

 see 

 

Commission error

 

Cedrela odorata

 

, 85
Cell

-by-cell analysis, advantage of, 244
configuration, 244, 245
fine-resolution, 244

Center for Earth Observation (CEO), 92
CEO,

 

 see 

 

Center for Earth Observation
CEOS, 

 

see

 

 Committee on Earth Observation Satellites
CEOS LAI Inter-comparison activity, 36, 37
Change detection

accuracy assessment, 8
methods, 8

Change map(s)
sample unit, 111
true, 112

Chlorophyll, 60
Citizen participation data collection programs, 22
Class

-conditional independence, 151
confusion, 125
definitions

photographic classifications, 228
TM classifications, 227

Classification(s)
accuracy(ies), 125, 158, 160

assessment of, 71
measure of, 33
model-based inference of, 35

assessment, most common approach to, 134
cluster-based, 136
consistence, link between accuracy and, 134
errors, 18, 84, 212
fragmented, 148
Gaussian maximum likelihood, 153
Landsat, 224
photographic, 228

reference, 154
rules, NIMA GeoCover project, 172
schemes, hierarchical, 14
subpixel, 275
TM, 227

Clumping index, 43–44
Cluster(s)

-based classification, 136
consistency analyses, 140
influence of, 150
label quality, grading of, 137
nonhomogeneous character of, 18
sampling

one-stage, 16
rationale for, 15
two-stage, 16

Clustering algorithm, ISODATA, 152, 153
Coastal marshes, structural changes in, 

 

see

 

 Light 
attenuation profiling

Coastal wetland ecosystems, 253

 

Coffea

 

 

 

robusta

 

, 83
Coffee trees, changing areas with old, 86
Color infrared aerial photographs, 225
Commission error (CE), 164, 212
Committee on Earth Observation Satellites (CEOS),

31–40
approaches to land-cover validation, 32–33
CEOS land product validation subgroup, 36–39

fine-resolution image quality and availability, 37
local knowledge requirements, 37
resource requirements, 39

lessons learned from IGPB DIScover, 34
validation of European Commission’s Global Land 

Cover 2000, 34–35
validation of MODIS global land-cover product,

35–36
Comparison map, 234, 238
Components of agreement, 243, 245
Confidence

-building sites, 37
layer, accumulated, 139
overlay, 139, 140
values, per-pixel, 35

Confidentiality agreements, 24
Confusion

identifying sources of, 163
matrix, 145, 237, 247,

 

 see also 

 

Error matrix
Conservative bias, 176
Contingency table, 171
Co-ordination of Information on the Environment 

(CORINE) database, 35

 

Cordia

 

 

 

goeldiana

 

, 85
CORINE,

 

 see 

 

Co-ordination of Information on the 
Environment database

Correspondence error, 98
Cost vs. precision paradox, strata vs. clusters, 15
Covariance model, 149
Cover

class, accuracy analysis by interpreted, 98, 99
type, fuzzy rules for, 179

CPS,

 

 see 

 

Current Population Survey
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Crown closure
estimation, 49
measurement of, 48

Current Population Survey (CPS), 23

 

D

 

Data set, random variability present in, 195
Decision tree classifier, 35
Defense Meteorological Satellite Program (DMSP)

Operational Linescan System, 281, 291
satellites, 281

Deforestation rate, 83
DEMs,

 

 see 

 

Digital elevation models
Design-based inference, 33
Difference images, 2
Digital data sets, 112
Digital elevation models (DEMs), 117
Digital numbers (DNs), 281
Digital orthophoto quadrangles (DOQQs), 117, 256–257, 

270, 

 

see also

 

 Historical aerial photography, 
digital orthophoto quadrangles, and airborne 
video data

-based accuracy assessment, 126
extraction of image chips from, 122
interpreter calibration, 121
pixels examined in, 124
reference, 129
sample point selection, 122

Digital Raster Graphics (DRG), 272
Direct destructive sampling, 45
Discrete multivariate analysis, 4
DMSP,

 

 see 

 

Defense Meteorological Satellite Program
DMSP nighttime lights data, 281–292

methods, 283–286
modeling of smoothed OLS pixel footprint, 283
OLS data preparation, 284–285
target selection and measurement, 285–286

results, 286–289
comparison of OLS lighting areas and ETM

 

+

 

 areas, 
288

geolocation accuracy, 286–288
multiplicity of OLS light detections, 288–289

DOQQs,

 

 see 

 

Digital orthophoto quadrangles
DRG,

 

 see 

 

Digital Raster Graphics

 

E

 

Earth limb sensor, 281
Earth Resources Observation Systems (EROS) Data Center, 

153
Earth Satellite Corporation, 164
ECHO,

 

 see 

 

Extraction and classification of homogeneous 
objects

Ecosystem function, 222
ED,

 

 see 

 

Edge density
Edge density (ED), 211

Effective leaf area index, 45
El Niño–Southern Oscillation (ENSO), 126
Enhanced Thematic Mapper Plus (ETM

 

+

 

), 34, 35
capabilities, degradation of, 34
digital images, 78
images, acquisition of, 46

ENSO,

 

 see 

 

El Niño–Southern Oscillation
ENVI

Mixture Tuned Matched Filtering algorithms, 258
Spectral Angle Mapper, 257

Environmental conditions, evaluation of, 116
Environmental monitoring, 15
EPA,

 

 see 

 

U.S. Environmental Protection Agency
ERDAS Imagine, 94
EROS Data Center,

 

 see 

 

Earth Resources Observation 
Systems Data Center

Error(s)
budget analysis, 2, 8, 9
classification, 212
commission, 164, 212
correspondence, 98
landscape index, 216, 217
matrix, 5, 84, 173

biases introduced into, 5
binary analysis using, 198
computation of, 179
construction of, 120
definition of, 3
deterministic, 168
example, 165
factors affecting compilation of, 3
format, 8
fuzzy, 168, 171
limitations of using only, 7
map accuracy and, 7
MRLC data, 97, 98
REA and, 213
use of, 164

omission, 164, 212, 262–263
sources, 8
verbal confirmation of, 85

ETM

 

+

 

,

 

 see 

 

Enhanced Thematic Mapper Plus
European Commission’s Global Land Cover, 34, 39
European Union’s Co-ordination of Information on the 

Environment, 35
Extraction and classification of homogeneous objects 

(ECHO), 210

 

F

 

FAO,

 

 see 

 

Food and Agricultural Organization
fAPAR,

 

 see 

 

Fraction of absorbed photosynthetically active 
radiation

Farmer(s)
associations, small-scale, 77
systematic data collection among, 87

FIA,

 

 see 

 

Forest Inventory and Analysis
Field reference data collection, 259
Fish-eye camera images, 45, 51
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Foliage element clumping index, 43–44
Foliar biomass prediction, LAI estimates for, 42
Food and Agricultural Organization (FAO), 35
Forest

canopy architecture, derived parameters describing, 
43–44

conversion, 86
deciduous, 170
floor, photographs taken from, 45
fragmentation, 229
Inventory and Analysis (FIA), 7, 21
LAI, errors in optical measurements of, 52
measurements, 

 

in situ

 

, 43
mensuration measurements, 51
reserves, importance of common, 86
stand, canopy architecture in, 51 
structural attributes, sampling of, 49
uneven-aged, 5

Forested land, FIA and, 21
Forested upland accuracy map, 182
Forgery, 235
Fraction of absorbed photosynthetically active radiation 

(fAPAR), 43
Freshwater coastal wetlands, mapping of opportunistic 

plant species in, 253–267
background, 254
discussion, 264–265
methods, 255–261

accuracy assessment of vegetation maps,
260–261

field reference data collection, 259–260
remote sensor data acquisition and processing, 

255–259
results, 261–263

accuracy assessment, 262–263
distinguishing between 

 

Phragmites

 

 and 

 

Typha

 

,
261

field reference data measurements, 261
semiautomated 

 

Phragmites

 

 mapping, 261
Fusion equation, 151
Fuzzy accuracy assessment, 

 

see

 

 NIMA GeoCover
project

Fuzzy assessment, 7
class accuracies, 170
methodology, 8

Fuzzy classification scheme, 13
Fuzzy error matrix, 168, 171
Fuzzy forested upland map, 184
Fuzzy logic matrix, 167
Fuzzy membership rules, 78
Fuzzy set(s), 8

accuracy, 199–200
analysis techniques, 191, 203 

 

see

 

 

 

also

 

 Thematic 
accuracy, fuzzy set and spatial analysis 
techniques for evaluating

assessment, 204
ranking system, 192
reference data, 196

Max statistic for, 196
semivariogram of, 202

Fuzzy set theory, mapping spatial accuracy and
estimating landscape indicators using, 
173–188

methods, 174–180
degrees of fuzzy membership, 177–178
deriving landscape indicators, 180
fuzzy land-cover maps, 180
fuzzy membership rules, 178–180
multilevel agreement, 176–177
spatial accuracy map, 177

results, 180–186

 

G

 

Gap Light Analyzer (GLA), 45, 51
Gaussian maximum likelihood (GML), 148, 153, 161
GCPs,

 

 see 

 

Ground control points
GEOCover programs, 133
Geographic information systems (GIS), 1, 116, 189

availability of, 189
data preparation, 122
overlay, 279
raster overlay techniques, 272
software packages, 270

Geolocation accuracy, 286, 288, 290
GIS,

 

 see 

 

Geographic information systems
GLA,

 

 see 

 

Gap Light Analyzer
GLC 2000,

 

 see 

 

Global Land Cover 2000
Global Land Cover (GLC) 2000, 34, 39

design-based inference planned for, 37
program, 32

Global land-cover products, 

 

see

 

 Committee on Earth 
Observation Satellites

Global land product validation, 32
Global mapping, 25
Global Observation of Forest Cover/Land Dynamics 

(GOFC/GOLD) program, 37, 39
Global positioning system (GPS), 79, 191, 257

ground control points, 260, 261
overlays, 264

GML,

 

 see 

 

Gaussian maximum likelihood
GOFC/GOLD program,

 

 see 

 

Global Observation of Forest 
Cover/Land Dynamics program

Gopal–Woodcock fuzzy set ranking system, 192
Government sampling programs, 23
GPS,

 

 see 

 

Global positioning system
Graham vegetation types, 198
Grasslands, 127, 170
Greenhouse gas emissions, 105
Green-up, 71
Grid cell(s), 236

adjustment to, 240
difference between strata and, 250
level, disagreement at, 245–246

Ground
control points (GCPs), 79, 260
coordinate grid, 118
measurements, 7–8
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-sample distance (GSD), 282
sampling, 2, 128

GSD,

 

 see 

 

Ground-sample distance

 

H

 

Habitat quality, 222, 231
Hemispherical photography, 45, 51

chronosequence of, 53
measurement estimates performed using, 49
quality assurance, 52

 

Hevea brasiliensis

 

, 85
Historical aerial photography, digital orthophoto 

quadrangles, and airborne video data, 
115–131

background, 116–118
reference data sources for accuracy assessment, 

117–118
reporting accuracy assessment results, 118
upper San Pedro watershed study area, 116–117

discussion, 125–128
class confusion, 125–127
future research, 128
map accuracies, 125

methods, 118–123
airborne videography, 122–123
digital orthophoto quadrangles, 121–122
historical aerial photography, 120–121
image classification, 118–119
sampling design, 119–120

results, 123–124
aerial photography method, 123–124
airborne videography method, 124
digital orthophoto quadrangle method, 124

Horvitz-Thompson estimation, 14
Household socioeconomic surveys, 87
Human-induced stresses, 59
Hurricane, 68

 

I

 

IDW interpolation,

 

 see 

 

Inverse distance weighted 
interpolation

IFOV,

 

 see 

 

Instantaneous field of view
IGBP,

 

 see 

 

International Geosphere/Biosphere Project
IKONOS, 46, 47, 256
Image

acquisition dates, temporal discrepancies between 
photograph and, 99

chips, extraction of from DOQQs, 122
classification, 81, 118
enhancement techniques, 108
quality, fine-resolution, 37

 

Impatiens 

 

spp., 261
Indicator covariance models, 154
Information of location, 241
Infrared and visible optical sensors (IVOS), 32

Instantaneous field of view (IFOV), 257, 283
Interclass boundaries, pixels along, 139
International civil space-borne missions, 31
International Geosphere/Biosphere Project (IGBP), 33
Inverse distance weighted (IDW) interpolation, 177
ISODATA clustering algorithm, 152, 153
IVOS,

 

 see 

 

Infrared and visible optical sensors

 

J

 

Juncus roemerianus

 

, 61, 70, 71

 

K

 

Kappa coefficients, 118, 158
Kappa equation, 4
Kappa index of agreement, 250
Kappa statistics, 168
Kriging

data-driven, 194
equations, 196
ordinary indicator, 149
predicted accuracy ranks produced from, 196–198

 

L

 

LAI,

 

 see 

 

Leaf area index
Lake water-quality monitoring program, 22
Land cover (LC), 116, 165

accuracy, 

 

see

 

 Large geographic regions, modeling 
of spatial variations in land-cover accuracy 
over

change
agricultural, 106
detection methods, 107
estimates, total potential error in, 110
matrix, 83
remote sensing of, 76
sampling strategy for estimating, 108

class(es)
cross-classification of, 15
interpretations, 121
maps developed using, 118
pattern of misclassification between, 85
sample size for, 18

conversion, 254
data product, documentation of, 36
heterogeneity, 174
products, 134, 139, 142
type(s)

boundaries between, 191
fuzzy logic matrix, 167
fuzzy set accuracy by, 199–200
producer’s and user’s accuracies by, 197–198

validation, 37, 39
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Land-cover change maps, participatory reference data 
collection methods for accurate assessment of, 
75–90

methods, 78–82
accuracy assessment, 81–82
data processing, 80–81
image classification, 81
imagery, 78–79
reference data collection, 79–80

results and discussion, 82–86
bringing users into map, 85–86
classified imagery and land-cover change, 82–83
map accuracy assessment, 84–85

study area, 77–78
study objectives, 77

Land-cover/land-use (LCLU) change, 77, 249
Land-cover map(s), 4, 13, 91

applications for, 173
AZ-GAP, 192, 194, 203
classification scheme compatibility with, 21
error matrix for, 84
fuzzy, 176, 180
obstacle to assessing accuracy of, 210
project, errors occurring throughout, 190
quantitative accuracy assessment of, 92
remote sensing-derived, 209
visual inspection of, 86

Land-cover maps, sampling design for accuracy assessment 
of large-area, 13–29

cost-effective sampling design, 15–20
comparison of three options, 17–18
flexibility of NLCD design, 16–17
strata vs. clusters, 15–16
stratification and local spatial control, 18–20

discussion, 25–26
existing data, 21–22
nonprobability sampling, 22–23
practical realities of sampling design, 24–25
statistical computing, 23–24

Land product validation (LPV), 36
mission of, 32
subgroup, 37, 39

Landsat
LAI map, 54
Multi-Spectral Scanner, 78, 116, 128
Thematic Mapper (TM), 5, 35, 61, 78, 116, 128

classifications, comparing, 227
composite images, 167
data, spatial resolution of, 99
NLCD program use of, 91
satellite imagery, 192
scenes, change maps for, 106
site data, subscenes of, 210

Landsat TM imagery, 269–280
classification of, 210
methods, 270–275

data, 272
spatial processing, 272–274
statistical processing, 274–275
study area, 270

results, 275–277

simulated, 153
subpixel derived estimates, 278

Landscape(s)
configuration, 209, 223
flow of energy within, 222
index errors, variations of, 216
indicators, 174, 180, 

 

see

 

 

 

also

 

 Fuzzy set theory, mapping 
spatial accuracy and estimating landscape 
indicators using

computation of, 186
forested, 185, 186

-level membership, computing of, 238
measurements, 222
metrics, uncertainties in, 209
pattern, determinants of, 230
redundant mapping of, 223
simulations

ecotone abruptness, 225, 229
fragmentation, 225, 229

Landscape indices, effects of classification accuracy on, 
209–220

discussion, 214–216
methods, 210–213
results, 213–214

Land use (LU)
classes, 223
practice, 75
zone, 105

Land–water boundaries, 32
Large geographic regions, modeling of spatial variations in 

land-cover accuracy over, 133–143
Great Lakes results, 137–142

accumulated confidence layer, 139
relationship of accumulated confidence and user’s 

accuracy, 141–142
scene-based consistency overlays, 139
variation of consistency among clusters of given 

class, 138
link between classification consistency and accuracy, 

134–135
using consistency within classification methodology, 

135–137
Largest latch index (LPI), 211
Laurentian Great Lakes (LGL), 253, 254, 265
LC,

 

 see 

 

Land cover
LCLU change,

 

 see 

 

Land-cover/land-use change
Leaf area index (LAI), 41, 60, 

 

see also

 

 MODIS data 
validation, 

 

in situ

 

 estimates of forest LAI
for

accuracy assessment, 52
approximation of true, 43
canopy structure variable of, 60
with clumping index, 43–44
direct estimates of, 43
map, Landat, 54
measurements, 

 

in situ

 

, 46
MODIS, 46
:NDVI relationship, 48
products, MODIS, 42
study, Siberian, 48
validation site, 48
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LGL,

 

 see 

 

Laurentian Great Lakes
LiCOR Plant Canopy Analyzer, 43
Light attenuation profiling, 59–73

discussion, 69–71
marsh canopy descriptions, 60–61
methods, 61–64

area frequency sampling, 62
atypical canopy structures, 62–63
changing sun zenith, 63–64
vertical frequency sampling, 62

results, 64–69
atypical canopy structures, 65–67
changing sun zenith, 67–69
vertical frequency sampling, 64

Lightning-illuminated clouds, 281
Light recordings, above-canopy, 70
LOI, subpixel derived, 277
Long Term Ecological Research (LTER), 270
LPI,

 

 see 

 

Largest patch index
LPV,

 

 see 

 

Land product validation
LTER,

 

 see 

 

Long Term Ecological Research
LU,

 

 see 

 

Land use
Lunar illuminance, 282, 288

 

Lythrum salicaria

 

, 261

 

M

 

Map(s), 

 

see also

 

 Land-cover map
accuracy

airborne videography method, 124
error matrix and, 7
statistics describing, 125
traditional measures of, 192

barren-to-forested upland, 180
bringing farmers into, 79
bringing users into, 85
cells, 242
change

sample unit, 111
true, 112

comparison, 234, 238
analysis, common situation in, 248
philosophy of, 235

data, reference data and, 10
deciduous forest, 170
forested upland accuracy, 182
fuzzy cover-type-conversion, 183
fuzzy forested upland, 184
grid cells, 236
label, 8, 167
merged, 180
meso-scale, 190
MOI, 279
National Wetland Inventory, 255
polygon, 19
reference, 234, 236, 238
remotely sensed, 8
satellite-based, 7
spatial accuracy, 177

validation, pixels sampled and, 81
vegetation, accuracy assessment of, 260

Map accuracy assessment, 1–11
current issues and needs, 6–9

change detection accuracy assessment, 8–9
edge and boundary effects, 6–7
error budget analysis, 8
fuzzy assessment, 7–8
reference data collection, 7
sampling issues, 6

overview, 2–6
discrete multivariate analysis, 4
error matrix, 3–4
established techniques and considerations, 3
historical review, 2–3
sampling size and scheme, 4–6
spatial autocorrelation, 6

remote sensing, 84
Mapping

global, 25
redundant, 223
semiautomated 

 

Phragmites

 

, 261
system, prototype, 142

MAP selection,

 

 see 

 

Maximum a posteriori selection
Maps at multiple resolutions, components of agreement 

between categorical, 233–251
discussion, 248–250

common applications, 248–249
quantity information, 249–250
stratification and multiple resolutions, 250

map comparison, 233–234
methods, 236–245

agreement and disagreement, 242–244
agreement expressions and information 

components, 239–242
data requirements and notation, 236–238
example data, 236
minimum function, 239
multiple resolutions, 244–245

puzzle example, 234–236
results, 245–248

MARGFIT technique, 4
Markov random field models (MRFs), 148
Material of interest (MOI), 270, 279
Maximum a posteriori (MAP) selection, 148
Maximum likelihood (ML), 147, 210
MD,

 

 see 

 

Minimum distance
Mean patch fractal dimension (MPFD), 211
Mean patch size (MPS), 211
Mean proximity index (MPI), 211
Mean shape index (MSI), 211

 

Mentha 

 

spp., 261
Meso-scale maps, 190
Mesquite woodland, 127
Microwave sensors subgroup (MSSG), 32
Minimum distance (MD), 210
Minimum function, 239
Minimum mapping unit (MMU), 20, 192
Minimum noise fraction (MNF), 257
Misclassification probability, 174
Mixture Tuned Matched Filtering (MTMF) algorithms, 258
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ML,

 

 see 

 

Maximum likelihood
MMU,

 

 see 

 

Minimum mapping unit
MNF,

 

 see 

 

Minimum noise fraction
Model(s)

-based inference, 33, 35
binomial, 138
covariance, 149
digital elevation, 117
indicator covariance, 154
land-cover and land-use change, 249
Markov random field, 148
rangeland indicator covariance, 154
SPEPH orbital, 284

Moderate Resolution Imaging Spectroradiometer 
(MODIS), 33, 42

data from, 34
design-based inference planned for, 37
Global LC product, 39
instrument, data from, 35
LAI products, 46, 47
launch of, 46
LC product, 33
products, 42
team plans, 36

MODIS,

 

 see 

 

Moderate Resolution Imaging 
Spectroradiometer

MODIS data validation, 

 

in situ

 

 estimates of forest LAI for, 
41–57

background, 43–47
combining TRAC and hemispherical photography, 

45–46
hemispherical photography measurements, 45
MODIS LAI and NDVI products, 46–47
satellite data, 46
TRAC measurements, 43–45

discussion, 52–54
hemispherical photography, 52–54
LAI accuracy assessment, 52
satellite remote sensing issues, 54

methods, 47–52
biometric mensuration, 48–50
hemispherical photography, 51, 52
sampling frame design, 47–48
TRAC measurements, 50–51

study area, 43
MOI,

 

 see 

 

Material of interest
MPFD,

 

 see 

 

Mean patch fractal dimension
MPI,

 

 see 

 

Mean proximity index
MPS,

 

 see 

 

Mean patch size
MRFs,

 

 see 

 

Markov random field models
MRLC,

 

 see 

 

Multi-Resolution Land Characteristics
MSI,

 

 see 

 

Mean shape index
MSS,

 

 see 

 

Multi-Spectral Scanner
MSSG,

 

 see 

 

Microwave sensors subgroup
MTMF algorithms,

 

 see 

 

Mixture Tuned Matched Filtering 
algorithms

Multilevel agreement definitions, 176
Multiple resolution analysis, 244
Multi-Resolution Land Characteristics (MRLC), 133

accuracy, 176
classification values, 94, 96

consortium, 91, 175
data, error matrix for, 97, 98
database, 35

Multi-Spectral Scanner (MSS), 78, 116, 128, 135, 224

 

N

 

NALC,

 

 see 

 

North American Landscape Characterization
NAPP,

 

 see 

 

National Aerial Photography Program
NASA,

 

 see 

 

National Aeronautics and Space Administration
National Aerial Photography Program (NAPP), 16, 92, 93, 

117
National Aeronautics and Space Administration (NASA), 

42
Earth Observing System Land Validation Core Sites, 37
MODIS Global LC product, 39

National Center for Environmental Assessment, 54
National Forest Inventory (NFI), 105
National Greenhouse Gas Inventory (NGGI), 105
National Health and Nutrition Examination Survey 

(NHANES), 23
National Imagery and Mapping Agency (NIMA), 164, 

 

see 
also

 

 NIMA GeoCover project
National Institute of Standards (NIS), 257
National Land Cover Data (NLCD), 133, 255

accuracy assessment, 25
classes, 227
clustering, 17
creation of, 175
definition of, 174–175
design

alternatives, criteria used to compare, 17
flexibility of, 16

map, 16
two-stage protocol, 19

National Resources Inventory (NRI), 21
National Technical Means (NTM), 166
National Wetland Inventory (NWI) maps, 255
Natural resource policy applications, 26
NDVI,

 

 see 

 

Normalized Difference Vegetation Index
Near-infrared (NIR) wavelengths, 261
NFI,

 

 see 

 

National Forest Inventory
NGGI,

 

 see 

 

National Greenhouse Gas Inventory
NHANES,

 

 see 

 

National Health and Nutrition Examination 
Survey

Nighttime data, 284
NIMA,

 

 see 

 

National Imagery and Mapping Agency
NIMA GeoCover project, 163–172

background, 164–165
classification rules, 172
discussion, 170–171
methods, 165–168

classification scheme, 166
compilation of deterministic and fuzzy error matrix, 

168
sampling design, 166–167
site labeling, 167–168

results, 168–170
NIR wavelengths,
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