


ebook
GUILFORD PUBLICATIONS



GIS and Public Health





GIS and 
Public Health
SECOND EDITION

Ellen K. Cromley
Sara L. McLafferty

THE GUILFORD PRESS
New York  London



© 2012 The Guilford Press

A Division of Guilford Publications, Inc.

72 Spring Street, New York, NY 10012

www.guilford.com

All rights reserved

No part of this book may be reproduced, translated, stored in a retrieval system, or 

transmitted, in any form or by any means, electronic, mechanical, photocopying, 

microfilming, recording, or otherwise, without written permission from the publisher.

Printed in the United States of America

This book is printed on acid-free paper.

Last digit is print number: 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Cromley, Ellen K.

GIS and public health / by Ellen K. Cromley and Sara L. McLafferty. — 2nd ed.

  p. cm.

Includes bibliographical references and index.

ISBN 978-1-60918-750-7 (hardback)

1. Geographic information systems. 2. Public health—Data processing.

I. McLafferty, Sara, 1951– II. Title.

RA566.C764 2012

610.285—dc23

2012019585



To Robert, Gordon, and Ed

and

Avijit, Smita, and Priya



vi

Acknowledgments

In 2005, The Guilford Press invited us to update the first edition of GIS and 
Public Health. We were grateful for the success of the book and recognized how 
much significant change was occurring in the use of geographic information 
systems (GIS) in the sphere of public health. We set out to capture these new 
developments by building on the framework we adopted in the first edition. The 
second edition expands the scope of the work that motivated us to write about 
GIS and public health in the first place, and we remain grateful to all of the indi-
viduals we previously acknowledged.

We are grateful to Kristal Hawkins, editor at The Guilford Press, for her 
encouragement and support for this project and also thank everyone at Guilford 
who helped us see this project through to completion. In particular, we thank 
Guilford for publishing the online supplement, which is an important feature 
of the second edition. Jared Butler has our thanks for testing the exercises in 
that supplement and suggesting needed corrections and improvements. We also 
thank the reviewers for their careful reading of the first draft of the manuscript 
and their constructive and insightful comments and suggestions.

An important consideration that convinced us to attempt a second edition 
was the prospect of working together again. This edition, like the first, has been a 
true collaboration. We are also grateful to all of the people we have worked with 
for providing us new opportunities in the field to learn how we can work together 
to improve public health.

I (Ellen K. Cromley) especially thank my advisors Allen Fonoroff and Howard 
Biel (Case Western Reserve University), Kevin Cox (The Ohio State University), 
and Gary Shannon (University of Kentucky) for everything they taught me and 
for their contributions to their fields. I also acknowledge Bob Brems, Zanesville/
Muskingum County Health Department; Julia Dickson, Medical College of Wis-
consin; Bill Elwood, OppNet, National Institutes of Health; Dr. Carol Horowitz, 



Acknowledgments vii

Mount Sinai School of Medicine, and colleagues at the Center to IMPACT 
Diabetes in East Harlem; Blair Johnson, Center for Health, Intervention, and 
Prevention (CHIP), University of Connecticut; Stanley Lemeshow, Mary Ellen 
Wewers, and faculty and students at the Summer Program in the College of 
Public Health at The Ohio State University; Patricia Mabry, National Institutes 
of Health; Wendy Nelson and Pat Francis, URISA’s GIS in Public Health Con-
ference; Rachel Pruchno, University of Medicine and Dentistry of New Jersey; 
Lorraine Reitzel, Lorna Haughton McNeill, and Dave Wetter, Department 
of Health Disparities Research, MD Anderson Cancer Center; Timothy Sahr, 
Health Policy Institute of Ohio; Jean Schensul, Marlene Berg, and Emil Coman, 
The Institute for Community Research, and Kamla Gupta and S. K. Singh, Inter-
national Institute for Population Sciences, along with members of the ASHRA 
project team in Mumbai; Philip Troped and Heather Whitcomb, Department of 
Health and Kinesiology, Purdue University; Francine Laden, Channing Labora-
tory, Brigham and Women’s Hospital and Harvard Medical School; Steve Melly, 
Exposure, Epidemiology and Risk Program, Harvard School of Public Health; 
Robin Puett, Department of Environmental Health Sciences, University of South 
Carolina; Joan Twiggs and Darcé Costello, Connecticut Department of Children 
and Families; Margaret Weeks, The Institute for Community Research; and the 
faculty and staff of the Department of Community Medicine and Health Care, 
University of Connecticut School of Medicine. I also thank Emily Marble, at The 
Institute for Community Research in Hartford, Connecticut, for assistance in 
research administration. Rich Mrozinski, Department of Geography, University 
of Connecticut, and Howard Sternberg, Connecticut Department of Environ-
mental Protection, deserve special thanks for their great expertise in GIS and 
their willingness to share it.

I (Sara L. McLafferty) extend thanks to colleagues and current and for-
mer students at the University of Illinois, Hunter College, and elsewhere for 
their many contributions to this book. Many years ago, my PhD advisor, Gerard 
Rushton of the University of Iowa, challenged and encouraged me to explore 
the links between geographical analysis and social and health inequalities. A 
renowned leader in GIS and public health, Gerry’s insights, intellect, and inspi-
ration provided the academic foundation that made this book possible and is 
reflected in so many ways in my contributions to the book. I also consider myself 
fortunate to have worked with many colleagues in investigating diverse health 
issues in Illinois and in the New York metropolitan region. Special thanks to 
Fahui Wang of Louisiana State University; Vince Freeman of the University of 
Illinois at Chicago; Keith Clarke of the University of California at Santa Bar-
bara; Victor Goldsmith of Pace University; Nick Freudenberg of Hunter College; 
Roger Grimson of SUNY Stony Brook; the members of the West Islip Breast 
Cancer Coalition; Dr. Christina Hoven of Columbia University; and Dr. James 
Childs of the Centers for Disease Control and Prevention. The New York City 
Department of Health generously gave permission to use individual-level rat bite 
data to prepare several figures in this book. I am also extraordinarily grateful 
to the many talented graduate students I have worked with on issues related to 



viii Acknowledgments

GIS and health, including Lan Luo, Alisa Shockley, Miriam Cope, Trevor Fuller, 
Ranjana Chakrabarti, Travis Leonard, Jong-Hyung Lee, Carmen Tedesco, John 
Pan, Sue Grady, Doug Williamson, Barbara Tempalski, Henry Sirotin, Cheryl 
Weisner, Linda Timander, Brett Gilman, Delene Pratt, Julie Kranick, Sonia Tat-
lock, Colin Reilly, and Chris Hanson-Sanchez. This book benefited in innumer-
able ways from their insights, expertise, collaboration, and camaraderie as we 
probed the frontiers of GIS and public health.



ix

Preface to the Second Edition

When we wrote the first edition of this book, the field of geographic informa-
tion systems (GIS) and public health was in its infancy, a “new” field that was 
just beginning to attract attention among health researchers and policymakers. 
Hearkening back to that time, we approached the task of preparing the second 
edition as a relatively straightforward process of tweaking and updating. In short 
order, we were overwhelmed by the size of the task at hand. In the past 10 years, 
the field of GIS and public health has flourished to the point where literally 
hundreds of articles appear in the research literature each year. From infectious 
diseases to cancer to obesity to health care, researchers are embracing GIS in 
their efforts to understand health concerns and direct interventions to improve 
public health and reduce health disparities. The rapid expansion of the field is 
also reflected in new journals and conferences that facilitate interaction among 
researchers and practitioners.

In preparing this second edition, we have tried to convey the amazing 
breadth, diversity, and dynamism of these health–GIS applications without losing 
sight of basic concepts and earlier work that laid the foundations for more wide-
spread adoption of GIS. Chapters 1 through 10 have been substantially revised, 
expanded, and updated to reflect developments in the research literature. A new 
chapter on health disparities (Chapter 11) considers neighborhood influences on 
health and the methods used to investigate contextual effects. The final chapter 
of the book (Chapter 12) addresses the institutional context of GIS by focusing on 
public participation GIS, a topic that we feel is of great importance in promoting 
community involvement in efforts to improve public health. We have also sought 
to expand the book’s geographic scope beyond the United States to comprise 
research developments and applications throughout the world, reflected in the 
large section of references. In response to requests from readers of the first edi-
tion, we have prepared a series of GIS laboratory exercises with data to accom-
pany the second edition. These exercises are available as an online supplement 
(at www.guilford.com/p/cromley) to the book.



x Preface to the Second Edition

The past decade has also witnessed major advances in geographic infor-
mation science that are represented in the second edition. Especially notewor-
thy are the emergence of Internet-based geovisualization and mapping systems; 
the enormous increase in availability of georeferenced data from cell phones 
and other GPS-enabled devices; developments in spatial analysis methods that 
emphasize “local” patterns and processes; and the growing use of GIS in pro-
moting community participation. All chapters have been revised to discuss how 
these developments in GIScience can contribute to public health research and 
practice.

Although extensively revised and updated, this book continues to reflect our 
belief that understanding core geographic concepts like space, place, location, 
and distance, and core principles related to spatial data, mapping, and spatial 
analysis, is essential in applying GIS to public health issues. The book retains 
many sections dealing with these topics, illustrated with maps, diagrams, and 
real-world applications, and with material written in a way that we hope is acces-
sible to the diverse audiences interested in public health and GIS.
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Introduction

Geographic information systems (GIS) continue to transform the way we describe 
and study the earth. Throughout history, geographers have attempted to under-
stand the surface of the earth as the living environment of human populations 
and the forces of change that alter the earth’s environments. The environment 
affects our health and well-being, and we, through our activities, reshape the 
environment. GIS provide a digital lens for exploring the dynamic connections 
between people, their health and well-being, and changing physical and social 
environments.

This second edition is an updated introduction to the use of GIS in ana-
lyzing and addressing public health problems. GIS are computer-based systems 
for integrating and analyzing spatial data. Our book considers how GIS can be 
used to map and analyze the geographical distributions of populations at risk, 
health outcomes, and risk factors, to explore associations between risk factors 
and health outcomes, and to address health problems. Targeting public health 
interventions to populations and places with greatest need is an essential and 
effective strategy for improving population health, and GIS are essential tools 
in these efforts.

The book is written for geographers, public health practitioners, epidemi-
ologists, and community members interested in applying GIS to the study of 
human health problems. The main question we seek to answer for the reader 
is “what do I need to know about GIS for public health?” Our answer is that to 
use GIS to establish a geographic foundation for understanding and improving 
public health, we need to know about GIS data and systems, the methods for 
analyzing GIS data, and how and for whom GIS are used.

Geographic Foundations for Public Health

At its most basic level, a geographic foundation for public health looks at the 
question “Where?” Where do people live? Where are the agents of disease? 
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Where can we intervene to eliminate risks or to improve health services deliv-
ery? Both people and the agents that cause disease in humans are dispersed, 
often unevenly, across communities and regions. The processes that bring people 
into contact with disease agents and that impact their access to social and mate-
rial resources are also geographically variable.

Health is not just the absence of disease, but a state of physical, social, and 
emotional well-being. Because people are affected by their environments, health 
has the environment of the person as its geographical context. This environment 
is connected to natural, social, and economic processes that operate on local, 
regional, and global scales. How people behave contributes to their health sta-
tus, but we cannot divorce behavior from the environmental and social contexts 
in which it occurs. Not all of the factors that affect our well-being are under the 
immediate direct control of the individual. The environment of the person is one 
starting point for public health GIS.

Populations at Risk

Geographic information systems are being used in public health studies to model 
where people live and the environments they experience throughout their lives. 
GIS make it possible to view residential distributions in great detail (Figure I.1). 
Because of the economic and social processes that structure residential devel-
opment, age, sex, and race–ethnicity of the population are usually not uniform 
throughout the region of settlement. Instead, different neighborhoods or com-
munities often have different demographic characteristics, and GIS make it pos-
sible to view these differences in detail.

The distribution of population by residence is, perhaps, the most frequently 
considered geographical distribution in public health and epidemiology. Resi-
dence, however, is only one activity site in the environment of the person, albeit 
an important one. The activity space is the area where a person spends time 
(Golledge & Stimson, 1997). It comprises a home base or residence, other activ-
ity sites like workplaces, schools, stores, restaurants, and recreational areas 
that are regularly visited, and the pathways traveled to and from the home and 
other activity sites. The size and shape of an individual’s activity space will vary 
depending on the activities the person is obligated or chooses to perform, the 
modes of transportation available, and the geographical locations where activi-
ties may take place. Individuals sharing the same home base may have very dif-
ferent travel and activity patterns and, as a result, different activity spaces. The 
activity space is important because it represents the zone where the individual 
can be exposed to risks—or resources. In addition to modeling population distri-
bution by residence, GIS are being used to analyze travel diaries (McCormack, 
1999; Kwan, 2000) and represent activity spaces (Figure I.2).

Migration is a process that results in the permanent or semipermanent relo-
cation of the home (Golledge & Stimson, 1997). Although most people who move 
stay within the same community and relocate only a short distance from their 
previous homes, longer distance moves are possible. These moves result in a 
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complete displacement of the individual’s activity space, exposing the person 
to a new set of risks. Furthermore, migration rates are rarely similar across all 
social and demographic groups. Migration complicates the study of disease when 
the time between exposure and onset is long, and it is an important process 
affecting health disparities.

The distributions of population and changes in population due to natural 
increase and aging are relatively easy to model because of the availability of 
census and vital statistics data. Migration flows and changes in population due 
to migration are more difficult to study in the United States because we do not 
normally maintain detailed residential histories for individuals. Nevertheless, 
some health records contain information on place of birth and place of residence 
at the time the health event is registered. Detailed surveys are also conducted to 

FIGURE I.1. GIS can be used to make conventional maps of population distribu-
tion, but they can also display maps showing the locations of buildings where people 
live.
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re-create residential histories. These data can be used to explore differences in 
health outcomes in the context of migration (Greenberg & Schneider, 1992) and 
migration for medical care (Davis & Stapleton, 1991). In places where detailed 
migration data exist, the use of GIS has been proposed to improve estimation of 
populations at risk (Kohli et al., 1997). The use of GIS in public health enables us 
to describe more accurately the environment of the person and its temporal and 
spatial complexity.

Health Outcomes

Although the health event is the outcome of a complex process exposing vulner-
able human populations to risk factors, many public health investigations and 
epidemiological studies start with outcomes. In many sources of data on mor-
tality (death) and morbidity (illness), residential location at the time of death or 
diagnosis is reported. This makes it possible to map cases and rates and to search 
for clusters of health events.

FIGURE I.2. The potential area where an individual could travel on the basis of the 
person’s home location, workplace, and church. From: Gender and individual access to 
urban opportunities: A study using space-time measures, M. P. Kwan, The Professional 
Geographer, 1999. Association of American Geographers, reprinted by permission of 
the publisher.
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Incidence and prevalence of disease vary geographically. Incidence is the 
number of new cases of the disease or health event observed within a specified 
period of time. Prevalence is the number of existing cases of disease at a particu-
lar point in time. Prevalence is related to incidence but is also influenced by the 
duration of the disease. A disease process that results in death shortly after onset 
would have a higher incidence relative to prevalence in a community. Pneumo-
coccal disease, which causes pneumonia, bacteremia, and meningitis, can result 
in death within 10 days and the case-fatality rate among the elderly may be as 
high as 60%. A chronic incurable disease like diabetes resulting in death after 
many years might have higher prevalence than incidence.

Disease mapping has made contributions to public health and epidemiol-
ogy for centuries (Gilbert, 1958; Shannon, 1981). As many of the examples in 
this book illustrate, GIS make it easier to explore and analyze large databases of 
health events at a high level of spatial disaggregation and to link data from sur-
veillance systems to other information about the environment, including infor-
mation on the distribution of risk factors (Figure I.3). These activities have also 

FIGURE I.3. Locations of confirmed pedestrian injuries in the context of reported 
total traffic injuries in a neighborhood in Boston. From Brugge, Leong, and Lai (1999). 
Reprinted by permission of Association of Schools of Public Health.
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driven research on methods to protect the confidentiality of data on the health of 
individuals (Boulos, Curtis, & AbdelMalick, 2009).

A common practice in mapping incidence and prevalence has been to calcu-
late disease rates for political or administrative units like towns or census tracts, 
primarily because population and health outcome data are often reported for 
these areas. A problem with this approach is that the boundaries of these units 
often arbitrarily partition the underlying distribution of population or cases, or 
both. GIS make it possible to overlay the distributions of cases and populations at 
risk and to display multiple views of the distribution of health outcomes.

GIS are also supporting analyses to search for disease clusters using new 
methods that do not rely on aggregated data. Areas of high and low incidence 
can be identified by searching around individual cases to find areas that have 
high numbers of cases relative to the local population. GIS have been important 
in the shift from global to local statistical methods for analyzing clusters of dis-
ease and health disparities.

Risk Factors

Like populations at risk, the risk factors for disease are also not usually con-
centrated at a single point. Contaminants and biological agents of disease are 
present in our ecosystem. GIS have proven to be powerful tools for modeling 
environmental conditions across the full ranges of geographical scales, from 
local to global, and related technologies are aiding in exposure assessment at the 
individual level.

Many GIS applications model temporal and spatial patterns of hazards to 
examine their associations with environmental health problems and infectious 
diseases (Figure I.4). These models are increasingly sophisticated, and the scale 
and quality of the spatially referenced data they incorporate continue to improve. 
Public health GIS applications may model the spread of contaminants and vector 
and host habitats.

The ability to model the distribution of known or potential risk factors for 
health problems is important for public health intervention activities. GIS are 
being used at the community level to notify people living in neighborhoods 
where hazards have been identified so that they can take appropriate action to 
prevent health problems from occurring. Although these analyses can be per-
formed without reference to health outcomes, studies of the geographical pat-
terns of risk factors can also be used to investigate the causes of disease.

Associations between Risk Factors and Outcomes

Epidemiological studies involve comparing the incidence rate of disease 
observed in a study group at risk against the incidence rate of disease in a com-
parison group. A number of measures are used to compare the rate of disease 
observed in the exposed group to the rate of disease observed in the comparison 
group (Woodward, 2004). The relative risk or risk ratio is the ratio of the risk 
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FIGURE I.4. Dry and wet season habitat areas for Anopheles gambiae larva in the 
Western Kenyan highlands based on identification of all identifiable aquatic habitats in 
the region. Each habitat was dipped up to 20 times or as many times as the volume of 
water would permit and the larval occurrence and species in the water samples were 
examined. Sites were coded as positive or negative depending on the presence of the 
Anopheles gambiae larva, the larva of the primary malaria vector species in the region. 
From Li, Bian, Yakob, Zhou, and Yan (2009). Originally published by BioMed Central 
in the International Journal of Health Geographics, Open Access.
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of disease among those who have the risk factor to the risk of disease for those 
without the risk factor (Table I.1). Risk measures the number of times the health 
event occurs relative to the total number of people in the study group. A second 
measure, the odds ratio, is also used by epidemiologists. The odds measures the 
number of times the health event occurs relative to the total number of times 
it does not occur. The numerator of the odds ratio is the ratio of health events/
no health events (odds) in the exposed population. The denominator of the odds 
ratio is the ratio of health events/no events (odds) in the unexposed population. 
Standardized event ratios such as the standardized mortality ratio and the stan-
dardized incidence ratio are statistics frequently used for comparing mortality 
or incidence observed in exposed persons to mortality or incidence previously 
observed in a standard population (Fleiss, 1981; Kelsey, Whittemore, Evans, & 
Thompson, 1996; Selvin, 2004).

Although these measures are well established in epidemiological research, 
it is not always easy to determine meaningful numerators and denominators to 
calculate them. GIS are making it possible to explore some of the most important 
methodological issues in applying these measures to identify significant patterns 
of disease. Epidemiological surveys and case–control studies involve drawing 
samples from the population. Assumptions are made about the probabilities of 
inclusion in the sample. Because populations or population subgroups are not 
distributed evenly across communities, a random sample of all people with the 
demographic and health characteristics of interest will not be a random sample 
of all places (Goodchild, 1984). GIS can provide the means for exploring distri-
butions of populations and health events to develop spatially stratified sampling 
techniques for conducting epidemiological surveys and for selecting cases and 
controls.

In order to obtain enough cases to ensure statistical power, analysts some-
times increase the study population, usually by increasing the geographic area 
of analysis. This approach can be misleading when the underlying geography of 
risk factors, exposure, and health outcomes are ignored. Enlarging the study area 
introduces other geographical differences than the health outcome in question, 
and it becomes difficult to tell whether there is an inherent difference between 
groups or between areas.

These problems are exacerbated by controlling for confounding factors 
through techniques like age standardization. A confounding factor is a variable 
that is causally related to the health problem under study or is a proxy for an 
unknown causal variable but is not a consequence of the exposure of interest. 
Age is a confounding factor commonly controlled for in epidemiological studies 
because “age almost always strongly influences disease risk” (Selvin, 2004). To 
compare disease incidence rates for two groups—say, white women and Afri-
can American women living in a region—age-standardized rates would be cal-
culated to adjust for differences in age between the two groups. As noted, the 
argument for this is that, since disease risk is higher in particular age groups, we 
would expect more cases of disease in a population that contains more people in 
those age groups.
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TABLE I.1. Associations between Risk Factors and Outcomes 
for Disease Incidence in a Population

Risk factor

Disease status

TotalDisease No disease

Exposed a b a + b

Not exposed c d c + d

Total a + c b + d n = a + b + c + d

Risk = (a + c)/(a + b + c + d)

Exposure-specific risk for those with risk factor = a/(a + b)

Exposure-specific risk for those without risk factor = c/(c + d)

Relative risk = a/(a + b) = a(c + d)

c/(c + d) c(a + b)

Odds ratio for those with risk factor compared to those without = a/b = ad

c/d bc

Example for Lyme disease among people who live near wooded areas (exposed) and 
people who live in towns (not exposed)

Disease status

Risk factor Lyme disease No disease Total

Exposed 323 26,677 27,000

Not exposed 38 32,962 33,000

Total 361 59,639 60,000

Risk = 361/60000 = 0.006, or 6 per 1,000

Exposure-specific risk for those with risk factor = 323/27000 = 0.01196

Exposure-specific risk for those without risk factor = 38/33000 = 0.00115

Relative risk = 0.01196 = 10659000 = 10.4
0.00115 1026000

Odds ratio = 0.01211 = 10646726 = 10.5
0.00115 1013726

Note. Adapted from: Epidemiology: Study design and data analysis by Mark Woodward. Copyright 2004 by 

Taylor & Francis Group LLC – Books. Adapted with permission.
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If, however, the cause of the disease is believed to be environmental, then 
we would expect disease risk to be higher in those geographic areas where envi-
ronmental risk is higher. This would be particularly important in comparing 
rates for white and African American women if white and African American 
women of the same age were residentially concentrated in different areas within 
the larger community. Such areas would likely be associated with different lev-
els of exposure to disease risk factors that are unevenly distributed in the envi-
ronment.

An important criticism of adjustment of rates is “that if the specific rates 
vary in different ways across the various strata, then no single method of stan-
dardization will indicate that these differences exist. Standardization will, on 
the contrary, tend to mask these differences” (Fleiss, 1981, p. 239). An empirical 
study of age-specific death rates for males in the United States revealed that, up 
to age 40, rates in metropolitan counties were lower than rates in nonmetropoli-
tan counties (Kitagawa, 1966). After age 40, the reverse was true. A single, sum-
mary comparison would fail to reveal this geographical pattern.

The spatial data-handling capabilities of GIS make it possible to identify 
exposed and unexposed groups and to explore geographical variations in health 
outcomes between those groups. In addition, spatial statistical methods are help-
ing us to identify and account for spatial autocorrelation—spatial dependency or 
correlation among values of a variable in geographic space—in models of health 
outcomes and to investigate spatial variation in the relationships between factors 
contributing to disease and health outcomes. These methods are supporting the 
development of more meaningful comparisons of health outcomes across groups 
and areas.

Health Interventions

The geography of health services has been called “the sine qua non of medical 
geography” (Hunter, 1974). Setting aside the fact that health services utilization 
is one of the main, if biased, sources of information we have about health and 
morbidity in the population, what is the point of studying patterns of environ-
mental contamination or uncovering the causes of disease if we are not will-
ing to go the next step to intervene or to support the education, enforcement, 
environmental modification, and medical care intervention efforts of those com-
mitted to advancing human health? As long as our activities occur in time and 
space, knowing how patterns of health, disease, and health services characterize 
regions will be essential to this effort.

GIS are reviving interest in the location of health care services and the 
development of geographically based public health interventions to improve 
population health. From planning vaccination campaigns to remediating envi-
ronmental hazards to providing social, health, and education services for high-
risk populations, promoting public health involves targeting interventions to the 
places where they are most needed and where effectiveness will be maximized. 
Knowing how the characteristics of places intersect with the health of local pop-
ulations is critically important. As illustrated in many of the chapters in this 
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book, the mapping, spatial analysis, and data management capabilities of GIS are 
essential to these efforts.

The role of GIS in health services delivery and planning, however, is poten-
tially broader than planning health services and public health interventions. 
A geographic foundation for public health also means considering the loca-
tional impacts of health policy. During the debate over health care reform at 
the national level in the 1990s in the United States, managed competition was 
offered as a policy for reorganizing medical care delivery. In “The Marketplace 
in Health Care Reform: The Demographic Limitations of Managed Competition” 
(Kronick, Goodman, Wennberg, & Wagner, 1993), some very straightforward 
concepts of economic geography were used to answer a simple question: Where 
are the places in the United States where managed competition as a market-
driven approach to health care reform can work? Estimates of the minimum 
population required to support several independent competing provider groups 
were based on the extent to which the competing groups were independent, the 
number of organizations needed to provide competition, the threshold popula-
tions for services, and the geographic boundaries of health service markets. The 
results indicated that reform of the U.S. health care system by managed competi-
tion would be feasible only in major metropolitan areas (Figure I.5). More than 
one third of the population lived in places where managed competition could not 
be supported. With passage of the Patient Protection and Affordable Care Act of 

FIGURE I.5. Health markets with populations greater than or equal to the thresh-
old needed to support managed competition. From R. Kronick, D. C. Goodman, 
J. Wennberg, and E. Wagner, Special report: The marketplace in health care reform: 
The demographic limitations of managed competition, The New England Journal of 
Medicine, 328(2), 148–152. Copyright © 1993 Massachusetts Medical Society. All 
rights reserved. Reprinted by permission.
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2010, the United States is making the transition to a national health care system 
requiring people to have health insurance (Kline & Walthall, 2010). The number, 
capacities, and locations of medical care providers will be an important factor 
in the success of this system (Long & Stockley, 2010; MacDowell, Glasser, Fitts, 
Nielsen, & Hunsaker, 2010).

Efforts to improve health care systems illustrate the tensions between top-
down versus bottom-up approaches to public health. In a top-down approach, 
priorities are identified at the national or state level based on aggregated data. 
Because of geographical variations in health problems or access to care, prob-
lems that are important at the state level may not be equally present in every 
community, and health care interventions that might work in some places may 
not work equally well in others. GIS are providing citizens at the local level with 
information to identify health problems of local concern, even if these are not the 
highest priority on a state or national level, and to advocate for public health poli-
cies. And they are creating an opportunity for policymakers at the national level 
to view and analyze health problems and policies in their full complexity.

When we use GIS to understand patterns of ill health and plan public health 
interventions, our efforts are rooted in place and space. Geographers have writ-
ten about the concepts of space and place as overarching themes in the geogra-
phy of health (Kearns, 1993). Space refers to position or location. It describes the 
geographical distributions of constraints and opportunities that influence and 
result from human activities and interactions. In contrast, place is a relational 
concept that addresses the human meanings and experiences associated with 
particular locations. Social relations and the physical sites of everyday life are 
intertwined in the concept of place.

By definition, GIS are concerned with space. The geographical coordinates 
that link diverse data layers together in a GIS identify location in space. How-
ever, GIS are also rooted in place. Each GIS is used in a particular context that 
is a composite of social, political, and historical conditions and trends. When 
people use a GIS, their “sense of place” defines what questions to ask and molds 
their interpretation of results. While our book emphasizes the spatial dimen-
sions of GIS in public health, these cannot be divorced from the place contexts 
in which GIS are used.

The geographic foundations for public health we have briefly summarized 
have been explored in greater depth through the wider application of GIS tech-
nology in public health. People adopting GIS technology for public health need 
to understand GIS materials, GIS methods, and the institutional context of GIS 
in public health practice that affects the kind and quality of GIS data available. 
Our book is organized to foster this understanding.

Organization and Scope

The overall organization of the second edition is similar to the outline of the first 
book. The literature on health applications of GIS has grown considerably over 
the last decade, and individual chapters reflect these developments. A new chap-
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ter on health disparities considers neighborhood influences on health and the 
methods used to investigate contextual influences. The final chapter is devoted 
to the role of public participation in health applications of GIS.

The first section of the book focuses on GIS materials, including spatial data-
bases and the generic hardware and software needed to manage them. Chapter 
1 provides an overview of geographic information systems, their development, 
and their main functions. Chapters 2 and 3 describe important attributes of geo-
graphic databases and the foundation and other databases most commonly used 
in public health GIS.

The emphasis on geographic data is necessary. Many public health ana-
lysts maintain or use large databases of health events or health services. Most 
of these databases have some geographical information like a street address, a 
town name, or a county. Often, however, these databases are not structured in a 
way that makes it possible to map and analyze geographical relationships. GIS 
incorporate the foundation databases that make the mapping of health events 
and health services possible.

GIS implementation requires data, and adopting GIS for public health anal-
ysis therefore requires a commitment to acquiring, managing, and maintaining 
large spatial databases in digital form. Technological advances in computing and 
the growth of the Internet have made foundation databases widely accessible to 
public health organizations, provided they are willing to acquire the hardware 
and software necessary to develop applications or to access them over the Inter-
net.

The second section of the book considers GIS methods for mapping and 
analyzing spatial data on population, health events, risk factors, and health ser-
vices. Chapter 4 provides an overview of the mapping process, the different 
approaches available for mapping and querying health data, and the impact of 
developments in computer-assisted and web-based cartography on the kinds of 
maps that are being developed and published. Chapter 5 reviews the range of 
methods available for identifying areas of high and low incidence of disease, 
including spatial clustering methods. The uses of GIS in analyzing risk factors 
and health outcomes for environmental health problems, communicable, and 
vector-borne diseases are discussed in Chapters 6 through 8.

GIS implementation implies a commitment to spatial analysis methods as 
part of the research approach. Such methods may not always be emphasized in 
traditional public health curricula or research. Our book provides an introduc-
tion to a range of techniques used in spatial data analysis and points the reader 
to more detailed discussions of these techniques. Some of the studies we cite as 
examples use GIS in ways that can be criticized, often as a result of data limita-
tions, but they have been included because they contribute to our understanding 
of GIS and public health in other ways.

The final section of the book deals with the institutional context of public 
health GIS, particularly as it affects public health policy and intervention efforts. 
Chapters 9 and 10 discuss how GIS are used to evaluate accessibility to health 
services and the geographical aspects of health care delivery. Chapter 11 looks at 
the question of health disparities and neighborhood effects on health, as well as 
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the effects of neighborhood change and migration on health disparities. The final 
chapter, Chapter 12, focuses on public participation in health GIS applications.

GIS are being used to study public health issues around the world, and 
we have attempted in this second edition to broaden our coverage beyond the 
United States. Chapter 3, dealing with foundation data, is still focused mainly 
on the United States. The widespread public availability in the United States of 
digital spatial databases creates a foundation for GIS-based analyses of health 
problems that does not exist in many other countries. We are most familiar with 
these data, but we have provided references to selected sources of similar data 
in other countries.

Although the federal government has played a major role in developing these 
foundation databases and others of relevance to public health GIS in the United 
States, state and local governments have the main responsibility for health sur-
veillance, public health intervention, and licensing and regulation of health pro-
viders and health services. As a result, public health GIS applications based in 
any region of the country are highly dependent for their success on the level of 
development of health and other GIS databases and systems in that region and 
state and local policies governing use and distribution of data. Other countries 
may have different policies governing the development and use of foundation 
databases. This is an important reason why our book does not attempt to tell 
readers how to use a particular GIS software package with their own data. We 
offer additional information on using GIS in an online supplement to the book.

GIS and Public Health

Everything that occurs on the earth that can be spatially referenced can be rep-
resented in a GIS. That is, we can use GIS to make maps of almost anything. 
Because of their visual power, GIS maps can become metaphors for the social 
and environmental conditions that are “contained” in geographic space, and we 
are often tempted to look for spatial solutions to problems that arise from these 
conditions. Although health problems have a spatial dimension and many can 
be addressed by changing locational relationships—by closing down a polluting 
manufacturing plant or opening a clinic, for example—GIS may not be an aid to 
analysis for other problems.

During the last decade, the use of GIS in public health has become firmly 
established. As new technologies continue to transform our ability to gather, ana-
lyze, and map health data, new types of GIS-based analyses in public health may 
emerge. In the broadest sense, GIS analyses bring to light places and popula-
tions for which ideas about how improvements in health can occur are—or are 
not—being adopted. GIS, as a means of exploring health problems and finding 
ways to address them, has taken its place in the conceptual and methodological 
foundations of public health.
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CHAPTER 1

Geographic Information Systems

Geographic information systems (GIS) are computer-based systems for the inte-
gration and analysis of geographic data. Geographic data are spatial data that 
“result from observation and measurement of earth phenomena” referenced to 
their locations on the earth’s surface (Tomlinson, 1987, p. 203). Whenever public 
health professionals or epidemiologists use disease registries with address infor-
mation, consider the locations of toxic waste disposal sites, or look at air quality 
and water quality reports from monitoring stations, they are working with geo-
graphic data.

This chapter considers GIS as an “enabling” technology, applicable to the 
integration and analysis of many different types of spatial data—not just health 
data—by people in different organizational settings asking very different ques-
tions. One of the most striking features of GIS is their broad applicability. The 
first two sections of this chapter offer a definition of GIS and describe the major 
functions of GIS software: spatial database management, visualization and map-
ping, and spatial analysis. The last sections of the chapter trace the development 
of GIS and GIS applications in public health, including the role of GIS in distrib-
uted geographic information services on the Internet and wireless networks.

Definitions of GIS

In part because GIS is an enabling technology, a consensus definition of GIS has 
been difficult to achieve. The acronym has several usages: “as a technology, as 
a research field, and as a community” (Goodchild, 1995b, p. 35). In the 1990s, 
the term “GI Science” was coined to distinguish the research field from the 
technology of geographic information systems (Longley, Goodchild, Maguire, & 
Rhind, 2001, p. 438). Developments in GIS technology have clearly built upon 
and revived interest in theories and techniques of spatial analysis and cartog-
raphy relevant long before the innovations in digital computing that made GIS 
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possible. At the same time, technological developments in geographic informa-
tion systems have opened and supported exploration of new avenues of scientific 
inquiry.

As a technology, GIS rely heavily on computer hardware and peripheral 
equipment like large-format scanners and printers that may not be part of the 
hardware configurations available to a public health analyst. The definition of 
GIS as “computer-assisted systems for the capture, storage, retrieval, analysis, 
and display of spatial data” (Clarke, 1986, p. 175) might lead one to assume that 
the acronym “is simply a catch-all for almost any type of automated geographic 
data processing” (Cowen, 1988, p. 1551). In fact, GIS are part of a larger constel-
lation of computer technologies for capturing and processing geographic data as 
discussed in Chapters 2 and 3.

Some of these technologies, like the Global Positioning System (GPS) and 
remote sensing, are used to collect geographic data. The GPS developed by the 
U.S. Department of Defense relies on a series of at least 24 satellites in orbit and 
a network of satellite sensors or tracking devices located on the earth’s surface 
(Laurini, 2001). Portable receivers capture signals from the satellites and calcu-
late very accurate surface positions from the measurement of satellite positions.

Remote sensing is the analysis and interpretation of data gathered by means 
that do not require direct contact with the earth. Aerial photography of the 
earth’s surface, taken with an aircraft-mounted camera, is an important source 
of up-to-date data (Jensen, 2007). Aerial photographs can be scanned and recti-
fied for printing or viewing on a display screen, as described in Chapter 3. In 
addition to aircraft, satellites also serve as platforms for devices that capture 
information about the earth’s surface. Digital image processing for geographic 
data collection involves the use of satellites with sensors capable of detecting 
electromagnetic energy reflected off or emitted from objects on the earth’s sur-
face (Jensen, 2005). The data are then enhanced for viewing and analysis.

Computer technology also plays a part in the collection of secondary geo-
graphic data from existing maps (Chang, 2009). Scanning is a technique for cap-
turing map data in digital form. Scanners use an optical laser or other electronic 
device to “read” a map and convert its features to a computer database of dark 
and light values. To use the scanned image as more than just a backdrop in the 
GIS display, vectorization techniques implemented with GIS software can be 
used to recognize specific elements and convert them to points, lines, and areas 
representing features of interest. Pattern recognition techniques developed in 
artificial intelligence research are used in these processes. With scanning, the 
map manipulation into digital format happens relatively quickly but the process-
ing of the scanned image to recognize cartographic objects takes much more 
time.

Digitizing requires use of a tablet and cursor to record coordinate locations 
of map features from a map placed on a digitizing tablet (Chrisman, 1997, p. 70). 
It is also possible to construct a GIS data layer by screen digitizing. This process, 
also known as heads-up digitizing, uses a pointing device like a mouse to move 
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over and capture coordinate locations from a digital database or image file dis-
played on the monitor. Scanning and vectorization are becoming more important 
as procedures for data acquisition, and there is less emphasis on digitizing, at 
least with tablets. Screen digitizing, however, is still widely used.

Remote sensing, GPS, scanning, and digitizing are the main methods for 
spatial data collection. One or more of these methods may be used, either by 
the person using the GIS or by the government organization or commercial ven-
dor from whom a spatial database is purchased. The nature of spatial data and 
important issues related to scale, resolution, accuracy, storage, and retrieval of 
health and health-related data that must be considered at the data capture stage 
are discussed at length in Chapter 2.

Once spatial data exist in digital form, computer graphics software sup-
ports the creation of cartographic displays. Computer-aided design (CAD) sys-
tems, as used with cartographic data, provide support for drafting and produc-
ing map-like displays of features of interest like roads or land parcels. As they 
originally developed, CAD systems like other computer graphics software made 
use of (X,Y) Cartesian coordinates local to the software rather than geographical 
coordinates like longitude and latitude. Furthermore, CAD systems did not link 
features to databases describing the features’ attributes, so it was difficult to pro-
duce thematic or statistical maps using a CAD system. But developments in com-
puter cartography have created systems for linking geographical and attribute 
databases to produce statistical maps. In computer mapping software systems, 
the ability to manipulate the geographic data—the location information—is usu-
ally quite limited.

The boundaries separating GIS from these other technologies are not rigid—
in part because the technologies continue to evolve. Remote sensing, CAD, and 
the rest are valuable technologies that are related to GIS. But they are not, in 
and of themselves, considered GIS. Most efforts to define GIS as a technology 
emphasize the special nature of GIS software and the data structures on which 
the software is built.

These data structures and software functions are specifically designed to 
integrate and analyze data based on location. Spatial data representation and 
spatial analyses like map overlay have been implemented without the use of 
computer-based systems like GIS (Poiker, 1985; Charles, 2005). People thinking 
about using GIS who are not familiar with basic geographic and cartographic 
concepts and techniques can benefit greatly from learning these concepts before 
and as they become GIS users. The data and modeling requirements of most GIS 
research applications, however, necessitate the use of computers.

We define GIS, as a technology, as computer-based systems for integrating 
and analyzing geographic data. The locations of features on the earth’s surface 
are stored so that neighborhood relationships among features can be analyzed 
and so that groups of different features sharing the same locations can be identi-
fied (Figure 1.1). The following software functions distinguish GIS as a technol-
ogy (Goodchild, 1995b):



18 GIS AND PUBLIC HEALTH

The ability to store or compute and display spatial relationships between 
objects (e.g., the house is adjacent to the toxic waste site, the school is con-
nected to the water supply system).
The ability to store many attributes of objects.
The ability to analyze spatial and attribute data in addition to simply 
managing and retrieving data.
The ability to integrate spatial data from different sources.

Analysis and integration of geographic data requires a wide range of software 
functions.

FIGURE 1.1. Digital geographic databases registered to a common geographic ref-
erence system. A composite of two or more layers can be produced because the geo-
graphic references match.
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GIS Functions

What are the main functions of GIS software? The early lists of integrated soft-
ware functions required to support input, analysis, and output of data (Tomlin-
son & Boyle, 1981; Dangermond, 1984) have been supplanted by textbooks and 
reference guides outlining GIS analytical methods (DiBiase et al., 2006; Chang, 
2009). The applications selected for discussion in this book were intended to 
illustrate how some of the most important generic GIS functions can be used to 
support public health research and policy analysis. The “toolbox approach” to 
defining GIS as a set of software functions is useful for comparing the hundreds 
of software packages on the market, but it says little about the software functions 
in relation to the spatial data they process (Cowen, 1988).

The approach taken here classifies GIS functions in user terms, that is, based 
on what people want to do with spatial data. Three broad categories emerge: spa-
tial database management, visualization and mapping, and spatial analysis. As 
noted earlier, health analysts need and want to manage spatial databases. This 
includes creating databases of health events located on the earth’s surface that 
can be processed and stored by computers, keeping track of changes by adding 
and deleting events from those databases, and editing the location and public 
health attributes of these events, including data describing the contexts in which 
health events occur. Public health professionals and epidemiologists also want to 
visualize and map the spatial data they have acquired. This includes exploring 
visual representations of the patterns of health outcomes and risk factors and 
communicating information in the data to others in the form of maps. Equally 
important, public health researchers want to analyze the spatial relationships 
among the health events stored in the databases and to create new classes of 
health patterns based on those relationships. The development of the Internet 
has made it possible for some of these GIS functions to be supported in a network 
environment.

Spatial Database Management

One important function of GIS is managing spatial data. Identifying sources of, 
collecting, and preprocessing the spatial and health attribute data that would be 
managed in public health GIS are discussed in detail in Chapter 3. Database 
management systems (DBMS) are used to store, retrieve, and manipulate data 
in a database. A GIS software product, like other computer software systems, is 
built on an underlying data model. A data model is a detailed model that captures 
the overall structure of the data, independent of database management or imple-
mentation considerations (Elmasri & Navathe, 2007). A data model includes the 
relevant entities, relationships, and attributes, as well as constraints defining how 
the data are used. In the 1980s, a large body of research on the science of GIS 
explored the nature of spatial data models (Peuquet, 1984; Goodchild, 1992).

Spatial data embody complex and often hierarchical relationships that are 
not easily expressed in tables (Yearsley, Worboys, Story, Jayawardena, & Bofakos, 
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1994). As a result, GIS software packages are different from simple spreadsheets. 
Relational, object, and object-relational database management systems are all 
used in GIS (Longley, Goodchild, Maguire, & Rhind, 2001).

Relational database designs were dominant by the early 1990s (Healey, 
1991; Longley, Goodchild, Maguire, & Rhind, 2001). Relational database man-
agement models organize data in the form of tables (“relations”) where the rows 
or tuples represent units of analysis or objects of interest and the columns rep-
resent attributes (Elmasri & Navathe, 2007). Relational database management 
systems manage data as a collection of tables. Data in different tables can be 
linked when there are common attributes in the tables. In public health applica-
tions, the tables might include individuals diagnosed with a particular type of 
health problem and listed in a disease registry, public drinking water lines, or 
hazardous waste sites (Figure 1.2). The associated attributes may be quantitative 
or qualitative, numeric or alphanumeric, and reported as nominal, ordinal, or 
interval/ratio data.

CONTAMINATION EVENTS

Event ID
Date
Reservoir ID
Type of contaminant
Quantity of contaminant

RESERVOIRS

Reservoir ID
Reservoir name
Water company
Surface elevation
Surface area

DISTRIBUTION LINES

Main ID
Reservoir ID
Line diameter
Line length
Material
Date installed

CUSTOMERS

Account ID
Name
Address
Billing cycle
Main ID

DISEASE REGISTRY

Case
Name
Address
Cancer site
Date of diagnosis

FIGURE 1.2. Tables of data from different sources containing fields that could be 
linked in a relational database to describe health outcomes associated with contamina-
tion events.



Geographic Information Systems 21

The geographic objects whose attributes might be described in a table can 
also be assigned spatial dimensions or topological properties (Laurini & Thomp-
son, 1992). Objects represented as points, like public drinking water well loca-
tions, are zero-dimensional, that is, they have specific locations but no sizes. 
Lines—sometimes called arcs—are one-dimensional objects, like the route of an 
emergency medical response vehicle; they have lengths but no specified widths. 
Areas—also called polygons—are two-dimensional objects enclosing a space, 
like health planning districts. Some GIS are also capable of representing three-
dimensional objects. In a spatial database, the objects in the database have loca-
tions tying them as points, lines, or areas to the earth’s surface (Figure 1.3). 
Thematic attributes, like reservoir yield or distribution line date of completion, 
are also stored and can be retrieved and analyzed.

In a relational database, data in different tables can be linked by match-
ing values in a column in one table to values in another table until the data of 
interest have been retrieved from all tables (Worboys & Duckham, 2004). These 

FIGURE 1.3. Three spatial databases used to model a public drinking water sys-
tem. Active wells are modeled as points. Water mains are modeled as lines. Reservoirs 
are modeled as areas.
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relationships can be one to one, one to many, many to one, or many to many. 
One-to-one relationships occur when a record in one table links to exactly one 
record in another table. For example, one private well serves only one private 
residence, and each such residence is served by only one private well. This kind 
of relationship is simple but rare. One-to-many and many-to-one relationships 
are more common. One water company serves many customers and vice versa. 
These relationships are relatively easy to model in relational databases.

Most spatial relationships are many to many. One point on the earth’s sur-
face can be enclosed in an infinite number of areas, and those areas contain 
many points. Because spatial databases are so large, it is necessary to retrieve 
many rows of data in a matter of seconds for cartographic display of objects on 
the screen. In an “integrated” data model (Healy, 1991; Worboys & Duckham, 
2004), the location information or spatial data and the attribute information are 
stored together in individual rows of the database. The “hybrid” data model
(Healy, 1991; Worboys & Duckham, 2004) separates storage of the location infor-
mation or digital cartographic data (the points, lines, and areas) from the storage 
of the attribute information. The attribute information is stored in a commercial 
relational DBMS, but the digital cartographic data are stored in direct access 
operating system files that speed input and output. The GIS software links the 
two during processing. The integrated data model received renewed attention as 
a model that facilitated the use of Structured Query Language (SQL) and stimu-
lated interest in object-oriented approaches (Worboys, 1999).

In contrast to relational databases, object databases include objects as the 
basic units and all of the properties that define both the state and the behavior of 
the object. An object is recognized by its oid or object identifier, which is always 
retained by the object and is independent of object attribute values. No explicit 
key is needed to identify an object in this type of database. The attribute values 
for a given object constitute the object’s state at a point in time. The behavior
of an object is the set of operations that can be applied to the object. A public 
drinking water service district as a region object in a geographic database might 
have a name, the district’s population, and a set of points defining its bound-
ary as attributes describing its state. The behavior of the district object might 
include operations like calculating the district’s area and perimeter, operations 
that would not be appropriate behavior for a point object like a wellhead.

Objects having the same structure and behavior may be grouped into 
classes. The residence of a drinking water company customer is an object that 
could be in several classes, the customers class and the point class. As part of the 
class customers, the object might have the customer_name as a descriptive string 
attribute. Because the residence is represented as a point feature, its geometry 
attribute would identify it as a point referencing a spatial object belonging to 
the point class. As a member of the point class, the customer’s residence object 
would behave like all points and could support a range of operations that can be 
performed on point features.

Classes are particularly useful for representing spatial hierarchies. Another 
customers attribute, district_in_customer, identifies the water district where the 
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customer’s residence is located. This attribute places the customer’s residence in 
a spatial hierarchy by linking the customers points to the water districts serv-
ing them and the water district areas where they are located. The water district 
is an object in the class districts, and objects in this class can be linked to their 
component customers.

Using the object model (state plus behavior) is a different approach to data-
base design from using the relational model (finite set of rows containing data 
values), and comparing the two approaches reveals their advantages and dis-
advantages for representing spatial data (Rigaux, Scholl, & Voisard, 2002). The 
object-oriented approach has gained some ground recently because of its advan-
tages for managing, querying, and processing complex geographic data, but rela-
tional database systems have begun to incorporate some of the capabilities of 
object database systems. Object-relational database management systems adapt 
relational database management systems to handle objects.

The generic spatial database management functions of GIS include func-
tions to create and maintain spatial databases. These functions enable users to 
add and delete records from databases, to edit information, to join databases, and 
to perform other functions familiar to most users of computer DBMS. The spatial 
database management functions of the GIS allow users to view and manipulate 
data in table format (Table 1.1).

This view of the data is useful for editing and for looking up information in 
a particular record. For example, a health researcher might need to edit informa-
tion on a particular public drinking water main by modifying a field in a table 
(Table 1.1) to show whether the main was constructed before or after a particular 
year. The tabular view is not as useful for exploring the relationships among units 
of observation—for example, examining the spatial pattern of mains constructed 
before or after a particular year to identify patterns of water service at the time 
of a contamination event occurring at a particular location (Figure 1.4).

TABLE 1.1. Attributes of Public Drinking Water Mains

Main ID Length (ft.) Diam. (in.) Date Material

1 1097.51 12.00 Pre-1968 TR

2 2146.09 12.00 Post-1968 TR

3 1916.36 6.00 Pre-1968 DT

4 627.76 8.00 Pre-1968 DT

5 1913.46 6.00 Pre-1968 TR

6 538.11 12.00 Pre-1968 N-L

7 735.26 12.00 Pre-1968 N-L

8 554.65 12.00 Pre-1968 N-L

9 83.64 12.00 Pre-1968 N-L

10 47.63 12.00 Post-1968 N-L

. . . . .

. . . . .

1715 710.64 8.00 Pre-1968 TYT
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Visualization and Mapping

Once the spatial database has been created and can be retrieved, the graphical 
display and mapping functions of GIS come particularly into play. Visualization 
as a form of human cognition—“making things ‘visible in the mind’ ” (Wood, 
1994)—has been considered a key to many important scientific advances. Compo-
nents of this process include visual exploration and confirmation of data (“visual 
thinking”) and synthesis and presentation of information (“visual communica-
tion”) (MacEachren, Buttenfield, Campbell, DiBiase, & Monmonier, 1992).

Today’s statistical graphics have their origins in the products of the late 16th 
century prepared as aids to abstraction in the research process (Buttenfield & 
Mackaness, 1991; Tufte, 2001). Like maps, other graphics were initially prepared 
and printed manually, with the data both stored and displayed in the printed 
product. The development of computers and computer graphics has made it 

N

1:125000

1 0 1 Miles

Town Boundary

Water Main Date of Construction

Pre-1968

Post-1968

FIGURE 1.4. Mapping data on dates of water main construction to aid visualiza-
tion.
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possible to separate storage from display of large quantities of data. Computers 
have also made possible innovative cartographic and other kinds of displays that 
would be difficult or impossible to render by hand, including three-dimensional 
representations, animations, and scene generations. The development of GIS 
coincided with an increased interest in scientific visualization in general, a major 
topic in computing since the National Science Foundation report on “Visual-
ization in Scientific Computing” was published in 1987 (McCormick, DeFanti, 
& Brown, 1987). The links between the visualization functions of GIS and sci-
entific visualization in general are an ongoing area of interest (Hearnshaw & 
Unwin, 1994; Llobera, 2003).

GIS make it possible to view data in the form of tables, graphs, maps, and 
statistics. It is often difficult to compare and see trends in data in the form of 
tables without the use of graphs and maps. This point is illustrated using four 
fictitious data sets, each consisting of the same number of (x,y) pairs, presented 
in tables, statistics, and graphs (Table 1.2). Although statistical analysis of the 
four data sets yields the same standard output (ignoring residuals), the graphs 
highlight differences in the relationship between X and Y in the four data sets 
(Figure 1.5). Admittedly, three of the small data sets were designed to represent 
a particular effect in an extreme form. But the illustration is still effective in 
demonstrating that viewing the data in the form of a graph provides us with 
information that is more difficult to see in the tables or the statistics.

TABLE 1.2. Four Data Sets Each Comprising 11 (x, y) Pairs

Case ID

#1 #2 #3 #4

X Y X Y X Y X Y

1 10.0 8.4 10.0 9.1 10.0 7.5 8.0 6.6

2 8.0 7.0 8.0 8.1 8.0 6.8 8.0 5.8

3 13.0 87.6 13.0 8.7 13.0 12.7 8.0 7.7

4 9.0 8.8 9.0 8.8 9.0 7.1 8.0 8.8

5 11.0 8.3 11.0 9.3 11.0 7.8 8.0 8.5

6 14.0 10.0 14.0 8.1 14.0 8.8 8.0 7.0

7 6.0 7.2 6.0 6.1 6.0 6.1 8.0 5.3

8 4.0 4.3 4.0 3.1 4.0 3.1 19.0 12.5

9 12.0 10.8 12.0 9.1 12.0 5.4 8.0 5.6

10 7.0 4.8 7.0 7.3 7.0 8.2 8.0 7.9

11 5.0 5.7 5.0 4.8 5.0 6.4 8.0 6.9

Number of observations = 11 Sum of squares = 110.0

Mean of X = 9.0 Regression sum of squares = 27.50

Mean of Y = 7.5 Residual sum of squares = 13.75

Regression coefficient of Y on X = 0.5 Standard error of b = 0.118

Equation of regression line Y = 3 + 0.5X R-squared = 0.667

Note. Adapted from Anscombe (1973). Reprinted with permission from The American Statistician. Copy-

right 1973 by the American Statistical Association. All rights reserved.
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The cartographic view also provides us with insights into the data that can-
not be discovered through other means. Two pairs of variables (X1, Y1) and (X2,
Y2) can have identical scatterplots and correlation coefficients, for example, but 
the variables can exhibit distinctly different patterns when mapped, even using 
the same class breaks (Figure 1.6). The statistical correlations are the same, but 
the geographical correlations are quite different. The maps for X1 and Y1 do not 
depict identical geographical distributions for the two variables, but they do 
point to an underlying geographic factor like proximity to a pollution source.

The visualization and mapping functions of GIS help us to see how obser-
vational units and their attributes are located in geographic space (Figure 1.7). 
In this example, the residences where arsenic measurements were taken are 
not evenly spread across the region. Across this set of residences, arsenic values 
could be arranged in many different ways. The map shows the observed pattern 
of arsenic measurement. The mapping and visualization functions of GIS are also 
useful in displaying the results of spatial statistical analyses to assess whether 
or not similar observed values are clustered together (Figure 1.8) (AvRuskin et 
al., 2004). Understanding the spatial distributions of the phenomena of interest 
is important for designing valid spatial sampling and spatial analysis strategies. 

FIGURE 1.5. Scatterplots corresponding to the four data sets in Table 1.2. Adapted 
from Anscombe (1973). Reprinted with permission from The American Statistician.
Copyright 1973 by the American Statistical Association. All rights reserved.
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FIGURE 1.6. Two pairs of variables (X1, Y1 and X2, Y2) for 12 cases have identical 
scatterplots but very different spatial arrangements even when mapped using the same 
class breaks. Adapted from Monmonier (1996). Copyright 1996 by University of Chi-
cago Press. Adapted by permission.

FIGURE 1.7. Each point represents an arsenic measurement in water taken from 
the tap at the current residence of participants in a study of arsenic exposure and blad-
der cancer in towns in Oakland and Genesee counties in Michigan. The map shows the 
spatial arrangement of the measurement sites. The measurement sites are clustered in 
more populated towns. From AvRuskin et al. (2004). Originally published by BioMed 
Central in the International Journal of Health Geographics, Open Access.
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These spatial distributions are not easy to see or likely to be revealed in tabular 
or statistical displays of the data.

The importance of the visualization and mapping functions of a GIS must 
be understood in context. Throughout the development of computer-assisted car-
tography, cartographic research has investigated how traditional map representa-
tions can be accomplished in an automated environment (Buttenfield & Macka-
ness, 1991; Kraak, 1999). Cartographers have criticized GIS software companies 
for “a lack of attention” to principles of graphical design and for failing to adopt 
graphical defaults based on perception research. These problems affect visual 
communication through other types of graphics too (Tukey, 1977; Tufte, 2001). 
The growing importance of geographic visualization is evident in development 
of spatial multimedia and virtual reality systems, but the connections between 
these systems, cartography, and GIS are still being articulated (Thurston, Poiker, 
& Moore, 2003; Slocum, McMaster, Kessler, & Howard, 2009).

FIGURE 1.8. Maps showing the results of spatial statistical analyses to identify 
clusters of high- and low-arsenic measurements in a study of arsenic exposure and 
bladder cancer in southeastern Michigan. Mapping and visualization functions of GIS 
can be used to explore results when different parameters are used in an analysis. Fig-
ure 1.8a shows Local Moran values based on arsenic measurements for five nearest 
neighbors. Figure 1.8b shows the values based on 10 nearest neighbors. Measures of 
local spatial autocorrelation used in cluster analyses are described in detail in Chapter 
5. From AvRuskin et al. (2004). Originally published by BioMed Central in the Inter-
national Journal of Health Geographics, Open Access.
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Setting aside issues related to the quality of the visual display, overreli-
ance on visualization poses its own problems. “While the spatial perspective 
can be very powerful as a source of insight, it can also be highly misleading” 
(Goodchild et al., 1992, p. 409). Perceptions are context-dependent and change 
with experience. Some mechanism must be present for checking our percep-
tions and intuitions against other subjective and objective criteria. For example, 
the problems inherent in detecting and explaining meaningful spatial clusters of 
disease illustrate the tensions between visualization and analysis. A GIS offer-
ing only spatial database management and visualization capabilities would be 
incomplete. Despite these limitations, generic GIS visualization and mapping 
functions enable users to see the spatial relationships present in large and com-
plex databases and to report the results of an analysis in cartographic and other 
graphic displays. Furthermore, GIS allows users to display available spatial data-
bases quickly, easily, and interactively. These functions have provided spatial 
data analysts with a powerful mechanism for exploring spatial data.

Spatial Analysis

GIS software systems enable public health analysts to do more than simply man-
age and map data. GIS support a range of spatial analysis functions (de Smith, 
Goodchild, & Longley, 2007). Spatial analysis refers to “a general ability to 
manipulate spatial data into different forms and extract additional meaning as 
a result” (Bailey, 1994, p. 15). Specifically, spatial analysis comprises a body of 
techniques “requiring access to both the locations and the attributes of objects” 
(Goodchild et al., 1992, p. 409). The results of a spatial analysis are “not invari-
ant” when locations of the objects being analyzed are changed. As such, spatial 
analysis covers a broad range of numerical methods.

The spatial analysis functions of GIS fall into five classes: measurement, 
topological analysis, network analysis, surface analysis, and statistical analy-
sis (Table 1.3). The measurement functions of GIS allow the user to calculate 
straight-line distances between points, distances along curved paths or arcs, 
and areas. Although the measurement functions are relatively few in number, 
they are extremely important. Distance as a measure of separation in space is 
a key variable used in many other kinds of spatial analysis. Distance is often an 
important factor in interactions between people and places. Most GIS can create 
buffers around points, lines, and areas, depicting all of the area within a user-
specified distance of the objects (Figure 1.9).

Topological analysis functions include the software functions used to 
describe and analyze the spatial relationships among units of observation. This 
category also includes spatial database overlay and assessment of spatial relation-
ships across databases, including map comparison analysis. The public health 
analyst could identify the area within a specified distance of a public drinking 
water well or surface source, for example, and overlay the footprint of a pro-
posed building to determine whether or not the building would be located far 
enough from the water source to meet legal requirements (Figure 1.9). Topologi-
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TABLE 1.3. Spatial Analysis Functions of GIS

Function class Function Chapters

Measurement Distance

Length

Perimeter

Area

Centroid

Buffering

Volume

Shape

Measurement scale conversions

Chapter 6, 9, 10, 11

Topological analysis Adjacency

Polygon overlay

Point-in-polygon

Line-in-polygon

Dissolve

Merge

Chapters 4, 5, 6, 8, 11

Network and location 
analysis

Connectivity

Shortest path analysis

Routing

Service areas

Location–allocation modeling

Accessibility modeling

Chapters 9, 10

Surface analysis Slope

Aspect

Filtering

Line of sight

Viewsheds

Contours

Watersheds

Chapter 5

Statistical analysis Spatial sampling

Spatial weights

Exploratory data analysis

Nearest neighbor analysis

Global and local spatial autocorrelation

Spatial interpolation

Geostatistics

Trend surface analysis

Chapters 5, 6, 7, 9, 11
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cal analysis functions can identify features in the landscape that are adjacent or 
next to each other such as adjacent census tracts. They can also be used to model 
containment by identifying features such as residences that are located within 
areas such as census tracts. Topology is also important in modeling connectivity 
in networks.

Network analysis is a branch of spatial analysis that investigates flows 
through a network. The network is modeled as a set of nodes and the links that 
connect the nodes. Once a network has been defined, it is possible to analyze 
the network and flows through it. These analytical models would be used, for 
example, to determine the shortest path through a street network for an emer-
gency medical response (Figure 1.10). Network analysis functions are also used 
to model service areas of facilities and to locate facilities.

Surface analysis techniques are often used to analyze terrain or other data 
that represent a continuous surface. Filtering techniques include smoothing 
and edge enhancement. Smoothing removes “noise” from the data to reveal the 
broader trends. Edge enhancement accentuates contrast and aids in identify-
ing linear features like highways or fault lines. Line-of-sight analysis, viewshed, 
and watershed analyses apply to digital elevation models. Public health analysts 
who need to model environmental conditions related to terrain would make the 
greatest use of these GIS functions.

Spatial data analysis is closely tied to spatial statistics (Haining, 2003), and 
this fifth category of spatial analysis functions is emphasized by researchers with 
an interest in spatial statistics and exploratory data analysis (Fotheringham & 
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FIGURE 1.9. Buffering a polygon representing a public drinking water reservoir to 
show the area within 1,000 feet of the reservoir shoreline.
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Rogerson, 1994; Bailey & Gatrell, 1995). Epidemiologists make extensive use 
of multivariate inferential statistics (Gordis, 2004), but in many instances these 
methods are not forms of spatial statistical analysis because they assume that the 
observational units represent independent pieces of information about the rela-
tionships being modeled and they focus on the attributes of objects and events 
rather than their spatial relationships. The development of GIS has coincided 
with a growing interest in the application of spatial statistical methods in public 
health and epidemiology (Waller & Gotway, 2004; Lawson, 2006).

Software for performing many spatial statistical analyses was not initially 
part of GIS software packages (Goodchild et al., 1992). The measurement, topol-
ogy, and network functions—along with some simple aspatial statistical func-
tions—were more commonly featured. Considerable progress has been made in 
making spatial statistical software available, especially through the World Wide 
Web (WWW). GeoDa, a set of software tools developed by Luc Anselin, is one 
example (Anselin, 2003a). Several options for linking statistical and modeling 
software systems with GIS software are available: loose coupling, moderate cou-
pling, tight/close coupling, or embedding (Goodchild, 1992; Nyerges, 1993).

When the statistical or modeling software and the GIS software systems 
are freestanding, separate software packages are developed for different analy-
sis functions. One argument against this approach is that any spatial statistical 
analysis requires access to spatial data input, editing, management, and display 
functions, and it seems pointless to duplicate this functionality in stand-alone 
software. Loose coupling involves moving output from the GIS software analysis 

0.25 0 0.25 0.5 Miles

Ambulance
Dispatch Site

911 Call

FIGURE 1.10. The shortest path through a street network from an ambulance dis-
patch site to the location of an emergency call.
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(e.g., a measure of whether or not a person is exposed to an environmental con-
taminant based on residential location) into another statistical software package 
where this input might be used to calculate and test the statistical significance 
of risk ratios. The results of the analysis might then be returned to the GIS for 
display and further analysis. Moderate coupling relies on techniques allowing 
indirect communication between systems, like shared database access between 
the systems. Tight/close coupling allows direct communication between the two 
systems during program execution so that the systems are operating simulta-
neously. Medium and tight/close coupling obviously require the necessary pro-
gramming expertise (Westervelt, 2002).

Embedding is an alternative to coupling as an approach for linking GIS soft-
ware to other software systems like those supporting agent-based modeling of 
processes like disease diffusion or other forms of simulation modeling (de Smith, 
Goodchild, & Longley, 2007). This approach chooses the GIS or the other mod-
eling software system as the dominant system and embeds the needed software 
function within the dominant system using that system’s underlying program-
ming language. The Hazard Prediction and Assessment Capability (HPAC) Sys-
tem, an automated software system that predicts the effects of hazardous mate-
rial released into the atmosphere, is an example. Alternatively, the embedding 
approach manages connections between the two systems. The Agent Analyst 
Extension of ArcGIS, an agent-based modeling extension, uses this approach 
(Johnston & Maguire, 2007). Expanding the set of functions available in the GIS 
package makes them available to all users of the software; the likelihood of func-
tions being incorporated into commercial GIS packages is related to the number 
of customers who demand the particular function.

The increasing emphasis on open systems in computing has affected the GIS 
industry. Many software vendors have developed products that make it easier 
for professional software developers or system users within an agency to create 
specially designed GIS applications with modified user interfaces and functions. 
These modifications can be made available to other users by fully incorporat-
ing them into a software update distributed by the vendor, marketing them as 
new software products, or distributing them for free to interested software users 
via the Internet. The “open GIS” movement has been particularly concerned 
with developing a standardized interface to ease data transfer among geographic 
information systems that use different, proprietary, approaches to managing spa-
tial data (Phair, 1997).

Trends in GIS Applications

Although GIS have developed rapidly, the history of the technology “is little 
more than anecdotal” (Coppock & Rhind, 1991, p. 21). An overview of GIS appli-
cations in the United Kingdom, the United States, and Canada gives a sense 
of GIS developments in those countries up to 1989 (Bracken, Higgs, Martin, 
& Webster, 1989). The growth and development of a European GIS commu-
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nity has also been described and analyzed (Masser, Campbell, & Craglia, 1996). 
A formal history considers the many origins of GIS and the various influences 
affecting GIS development (Foresman, 1998), although the work of the military 
is overlooked in this account (Smith, 1992; Cloud, 2002). Some of the earliest sys-
tems were developed for environmental management, particularly of land-based 
resources like forests (Tomlinson, 1987). Many early adopters were large public 
or quasi-public institutions that had access to or were responsible for compiling 
extensive spatial data sets in the form of maps (Coppock & Rhind, 1991). These 
organizations generally also had access to the hardware resources needed to sup-
port storage and analysis of large databases in the mainframe era of the 1960s 
and 1970s.

Adoption of GIS and related technologies also occurred relatively early, but 
selectively, at the local level in the United States. County and local governments 
are responsible for land registration, deed transfers, and property taxation. Local 
governments were interested in GIS for the opportunities they offered to create 
and manage cadastral databases, digital land parcel or property databases. Up 
to the 1990s, effective use of these systems to monitor property changes was pri-
marily at the local level where the databases involved were more manageable in 
terms of size (Dale, 1991; Dale & McLaren, 1999) and directly related to urban 
and regional planning (Parrott & Stutz, 1991; Yeh, 1999).

At the state level in the United States, transportation and environmental 
management agencies were early adopters of GIS. In most states, one of these 
two departments generally took the lead in early GIS implementation. Public 
utilities (Mahoney, 1991; Meyers, 1999) and civil engineering firms were among 
the earliest nongovernmental adopters of GIS. Utilities, transportation, and tele-
communication companies have also been leaders in the development of “mobile” 
GIS, which supports spatial data acquisition and attribute data entry in the field 
(Wilson, 1998).

The rapid diffusion of GIS technology to new application areas has depended 
on a number of developments in hardware, software, and spatial databases. 
Hardware has been recognized as one of the major “drivers” of GIS development 
(Dangermond & Morehouse, 1987). Larger memories for lower costs, worksta-
tions and desktop computers with high levels of graphics performance, network 
architecture as an alternative to multiuser host architecture, and low-cost, reli-
able output devices like the inkjet printer were among the most important hard-
ware developments affecting GIS in the late 1980s and early 1990s.

The higher levels of graphics performance have also made graphical user 
interfaces possible in GIS software (Buttenfield & Mackaness, 1991). Many of the 
software packages initially developed relied on command- or query-based user 
interfaces that presented fairly steep learning curves for the software. Hardware 
and software developments and new operating systems have also forced GIS 
software companies to broaden their product lines to operate on a variety of 
platforms.

Although hardware and software developments have supported the diffu-
sion of GIS technology over the last three decades, development of “foundation” 
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spatial databases was a key to the rapid adoption of GIS technology by the busi-
ness community. Most commercial enterprises sit on large databases contain-
ing location information (e.g., retail outlet locations, customer locations, supplier 
locations, shipment routes) and make decisions about how to manage business 
operations in a geographic context. The development of the U.S. Bureau of the 
Census TIGER/Line® files (Callahan & Broome, 1984), a database covering the 
entire United States, for the 1990 census and their availability to the public at a 
relatively low price helped to create new markets for GIS software among census 
data users in the United States.

The TIGER/Line files, discussed in detail in Chapter 3, are a database con-
taining line segments for streets and other linear features that can be used to 
create digital cartographic databases of census block, census tract, and other 
administrative and political boundaries (Marx, 1986). Address ranges on the 
street segments enable users to translate street addresses to locations on the 
earth’s surface. The digital cartographic databases that could be created from 
TIGER could also be integrated with data from the Census of Population and 
Housing. New GIS-related businesses and products emerged as commercial 
vendors developed upgraded or customized versions of the TIGER/Line files. 
Within the research community, the availability of this database accelerated the 
expansion of GIS technology into the social sciences and public health.

Public Health Applications of GIS

There are only a few examples of GIS applications in public health, epidemi-
ology, or health planning from the 1980s (Bracken et al., 1989). Applications 
expanded rapidly during the 1990s and growth continues into the 21st century 
(de Lepper, Scholten, & Stern, 1995; Gatrell & Löytönen, 1998). The hardware, 
software, and database developments that have brought other new users to GIS 
partly explain this diffusion into the public health sphere. Like many other orga-
nizations, public health agencies and public and private providers or insurers of 
medical care services manage large databases that contain geographic informa-
tion that can be meaningfully integrated based on location.

The primary impetus for the diffusion of GIS technology into the public 
health field in the United States was the federal government. A workshop on 
automated cartography and epidemiology organized by the National Center for 
Health Statistics in 1976 brought together representatives from federal agencies 
and the research community in response to an increasing awareness of computer-
based mapping and geographical analysis (National Center for Health Statistics, 
1979; Aangeenbrug, 1997). In addition to those agencies using computer-based 
systems for mapping and spatial data analysis at the national scale, other federal 
agencies began to adopt GIS technology.

The growing interest in environmental health, including risk assessment, 
created one “market” for GIS applications in public health (Stockwell, Soren-
son, Eckert, & Carreras, 1993). Given that environmental management was an 
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early GIS application area, GIS data layers describing environmental conditions 
were available to support these efforts. In 1994, the Agency for Toxic Substances 
and Disease Registry (ATSDR) held a workshop on GIS applications in public 
health and risk analysis to reinforce its commitment to GIS technology as a key 
tool for assessing “real risks to real people.” The resurgence of infectious disease 
(National Science and Technology Council, 1995), particularly vector-borne dis-
ease, and the international efforts to address health problems like Lyme disease 
and rabies based on an understanding of the ecology of these diseases also led 
public health agencies to GIS.

Through the cooperative agreements that fund state and local health depart-
ments, these agencies stimulated the development of public health GIS applica-
tions at the state and local level and also brought the research community into 
collaboration with public health agencies at every level. By the mid-1990s, GIS 
sessions began to appear on the programs of public health conferences like the 
Public Health Conference on Records and Statistics and the annual meeting 
of the American Public Health Association (National Center for Health Statis-
tics, 1995; American Public Health Association, 1996). Successful conferences 
focused solely on public health GIS, for example, the International Symposium 
on Computer Mapping in Epidemiology and Environmental Health held in 
1995 (Aangeenbrug, 1997) and the Third National Conference on GIS in Public 
Health held in 1999 (Richards, Croner, Rushton, Brown, & Fowler, 1999), were 
supported by a wide range of sponsoring organizations at the national level.

In addition to organizing conferences, federal agencies like ATSDR and 
university-based researchers have taken the lead in developing GIS training 
programs specifically for public health professionals (Rushton, 1997; Richards, 
Croner, Rushton, Brown, & Fowler, 1999). During this period, ATSDR, the Cen-
ters for Disease Control and Prevention, and the National Center for Health 
Statistics initiated a GIS lecture series, an online public health GIS newsletter, 
and other GIS programs (National Center for Health Statistics, 2006a).

While federal leadership in supporting the development of public health 
GIS has continued, private-sector adoption of GIS for health is more difficult 
to track in the United States. The trends in GIS development described in the 
preceding section coincided with a period of increasing privatization of health 
insurance and health services delivery in the United States. Corporate concen-
tration in the medical care industry itself and the movement of the insurance 
industry into managed care created a market for GIS technology (McManus, 
1993). However, analyses of utilization and service organization conducted by 
private or nonprofit health care providers have rarely been shared in the pub-
lished literature.

By 2000, international organizations like the United Nations had initiated 
GIS programs in the World Health Organization and other agencies (Depart-
ment of Public Information, 2000). As in the United States, the use of GIS by 
health agencies in a number of other countries increased rapidly during the 
1990s (Smith, Gould, & Higgs, 2003; Houghton, 2004). Changes in mapping 
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and information technology have affected the development, design, and publica-
tion of international and national mortality and disease atlases. The first national 
small-area cancer mortality atlas of the United States was published in 1975 
(Mason, McKay, Hoover, Blot, & Fraumeni, 1975). In the following decades, 
additional series of U.S. cancer atlases, general mortality atlases, and specialized 
atlases appeared in print and online (Pickle, 2009). The development of these 
atlases was informed by cognitive research on map reading, developments in 
cartographic design, and advances in web-based delivery of GIS-enabled atlases 
(Hermann & Pickle, 1996; Brewer & Pickle, 2002; MacEachern, Crawford, 
Akella, & Lengerich, 2008). Digital spatial data were used to create an innova-
tive mortality atlas for the United Kingdom available in print (Shaw, Thomas, 
Smith, & Dorling, 2008) and online (SASI Group, 2008). Many of these atlases 
like the WHO Global Health Atlas and the CDC Interactive Atlas of Reproduc-
tive Health are interactive and make it possible for users who are not familiar 
with GIS or statistics to analyze demographic data, explore trends, and make 
comparisons across places (Centers for Disease Control and Prevention, 2008a; 
World Health Organization, 2011).

At the same time that the use of GIS in health has increased, applications 
have become more sophisticated. The International Journal of Health Geograph-
ics, an open access journal that began publication in 2002, has documented the 
breadth of GIS applications in health around the world. Nevertheless, there is 
room for expansion in the adoption and use of GIS by health organizations and 
agencies.

The development of public health GIS to date reflects, in part, lags in the 
availability of geocoded health data compared to other health-related GIS data-
bases. Throughout the 1990s, “geocoded public health data have been in relatively 
short supply, limited to states with initiatives to geocode vital statistics data or to 
individual investigators who could geocode their own data” (Richards et al., 1999, 
p. 359). In 1997, only 21 of 49 state directors of vital statistics who responded 
to a survey reported that their states used some type of automated geocoding 
of vital statistics records. As part of its Healthy People 2010 initiative, the U.S. 
Department of Health and Human Services set Objective 23-3 to increase the 
proportion of all major national, state, and local health agencies that use geocod-
ing, which would in turn promote the use of GIS at all levels (U.S. Department 
of Health and Human Services, 2000). The target level for meeting this objective 
was 90% of all public health data systems. At the time of the midcourse review in 
2004, the use of geocoding in major health data systems had not increased signifi-
cantly (U.S. Department of Health and Human Services, 2006).

Not all health agencies or organizations have the trained staff, software, and 
hardware necessary to apply GIS technology. Organizations developing a GIS 
for public health analysis will not necessarily require access to the full range of 
GIS functionality. With Internet tools for managing spatial data, even analysts 
with limited resources can acquire the hardware and software they need to geo-
code data and develop public health applications.
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GIS and the Internet

Maps and geographic data have been an important category of online content 
since the introduction and growth in popularity in the early 1990s of the WWW 
as a tool for accessing the Internet. In addition to the spatial database manage-
ment, visualization and mapping, and spatial analysis functions that in-house 
GIS users call upon, publication and distribution of spatial data are increasingly 
important GIS-supported activities that enable organizations to share data, 
maps, and information as files or images sent over the Internet. Distributed GIS 
systems may rely on the Internet to connect web clients to web, GIS, and data 
servers, or they may support mobile GIS using wireless networks and devices. 
Both forms of distributed GIS make it possible for many more users to obtain 
geographic information. Because geographic information is some of the most 
complex digital information available, distributed GIS services have special 
design requirements for representing and disseminating information.

Distributed GIS support four main applications (Peng & Tsou, 2003):

Data sharing.
Information sharing.
Data processing.
Location-based services.

Data sharing is accomplished in several ways. Data in the original format and 
metadata describing the geographic database may be published for downloading 
on an organization’s website. Metadata are “data about data” (Green & Bosso-
maier, 2002, p. 95). The role of metadata and metadata standards are discussed 
in detail in Chapter 2.

MassGIS, the source of some of the databases used in the online supple-
ment accompanying this book, is an example of a data sharing application (Office 
of Geographic and Environmental Information, 2011). Organizations may put 
data in a standard format like GML (Geography Markup Language), the XML 
(Extensible Markup Language) grammar defined by the Open Geospatial Con-
sortium to express geographic features (Open Geospatial Consortium, 2011a), 
and distribute it on the web, or they may participate in a data clearinghouse net-
work like the NSDI (National Spatial Data Infrastructure) Clearinghouse Net-
work (Federal Geographic Data Committee, 2009) and create a clearinghouse 
node from which their collections can be searched through a portal like geodata.
gov (Geospatial One-Stop, 2011).

A second type of application involves information sharing through an online 
GIS. Agencies can publish and periodically update static maps, or they can main-
tain web-based GIS that allow users to look up information, perform map que-
ries, or obtain real-time information like traffic or weather information. These 
applications rely on a multitiered client–server design (Plewe, 1997; Gao, Mioc, 
Anton, Yi, & Coleman, 2008). In this system design, the public health analyst sit-
ting at a client computer uses a web browser and sends a request to one or more 
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web server computers where a GIS application is running (Figure 1.11). This 
request is translated by programs connecting the web server to the GIS, which 
processes the request and returns a result in the form of a map, text, or data file. 
The result is reformatted by the programs connecting the web server to the GIS 
into a format understood by the web browser and then returned to the public 
health analyst’s client computer, where it is displayed. This pattern of requests 
and responses may be repeated many times during a single session.

A third application of distributed GIS involves serving GIS analysis tools 
themselves. This type of application enables users to edit spatial databases and 
perform analyses even though the databases and GIS software are not installed 
locally on their computers. The South Carolina Department of Health and Envi-
ronmental Control supports a geocoding service accessible through a stand-
alone web interface (Shoultz, 2005). This agency web service geocodes nearly 
100% of all data submitted and outputs data in multiple coordinate systems, with 
variables describing the accuracy level of the geocoded records based on agency 
standards. The service uses the state street centerline database for the emer-
gency 911 system. The service has been incorporated in the state’s system for 
participating in the National Electronic Disease Surveillance System (NEDSS) 
and the state’s Vital Records Reengineering project.

Applications to serve GIS analysis tools are most commonly found within 
agencies, but there are examples of tools that serve extended communities of 
users. The South Carolina Vital Records project makes it possible for all birth-
ing hospitals in the state to register live births electronically (South Carolina 
Vital Record and Statistics Integrated Information Systems Project Team, 2005). 
The Office of Public Health Practice in the Public Health Agency of Canada 
supports both a Map and Data Exchange for networking and sharing informa-
tion. It also developed and maintains the Public Health Map Generator (Public 
Health Agency of Canada, 2007). This tool enables users to link their health data 
to spatial data and to design map displays that can be saved, printed, and pub-
lished in reports and presentations. The spatial data are drawn from the Cana-
dian GeoSpatial Data Infrastructure (CGDI) warehouse of geographic data from 
networked data suppliers across the country.

Finally, location-based services allow users to access information about a 
location and its surrounding area (Boulos, 2003). A person who becomes ill in 
a particular city can use location-based services to find nearby walk-in medical 
care services, for example, and to determine the best route to reach a particular 
destination (Löytönen & Sabel, 2004). These services can also be used for real-
time monitoring of environmental conditions such as air quality and notification 
of individuals suffering from health problems such as asthma.

The development of GIS on the WWW has broadened access to geographic 
data and GIS analyses because users do not necessarily need to have GIS soft-
ware and databases resident on their own computers to access and display the 
information in a GIS application (Cromley, Cromley, & Ye, 2004). Other chapters 
in this book reference a number of websites where maps, text, and databases 
of relevance to public health GIS are distributed. The greater access to health 
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FIGURE 1.11. A client–server model for distributing geographic information over 
the Internet. This model is capable of providing real-time access to geographic data 
served by more than one agency and combined in one GIS application.
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information made possible by delivering GIS over the WWW poses particular 
challenges for public health agencies and analysts because of the confidential 
nature of personal health records and concerns over privacy. These issues are 
discussed in detail in Chapter 3.

Distributed GIS implementation is probably beyond the capabilities of most 
health researchers. It involves partnerships with information technology profes-
sionals and other organizations. Nevertheless, the pace of technological change 
affecting GIS system design is rapid, and it is worth following new developments 
in GIS to consider their possible application in health research and health pro-
motion.

The technological advance that has had the most significant impact on GIS 
since the development of the desktop computer was the launch of Google Earth®

in 2005 (Lipowicz, 2006). Several weeks later, Paul Rademacher, a Dreamworks 
animation programmer, looked at the Google Earth source code written in 
JavaScript and created a demo that enabled users to pin their own information 
(in this case, housing ads) to locations on the map (Ratliff, 2007). Since 2005, 
Google Earth has been downloaded more than 250 million times. Most recently, 
Google has launched Street View, which incorporates street-level photography 
into Google Maps® for a number of cities in the United States.

Millions of individuals, as local observers, are now creating and posting their 
own map data. KML (Keyhole Markup Language) makes it possible for anyone to 
annotate online maps (Google, 2011a). Mashups, web applications that combine 
data from more than one source into a single integrated tool, have become com-
monplace, and mapping mashups integrating data from a content provider or 
other source with Google Maps are a major type of mashup (Cho, 2007).

Mashups related to health and medical care are beginning to appear (Cho, 
2007). Vimo, an integrated portal allowing users to research and compare health 
care providers, products, and services including health insurance, was launched 
in 2006 (Vimo, 2011). HealthMap is a global disease alert map application using 
Google Maps and unstructured Internet media reports on disease outbreaks 
around the world (Freifeld, Mandl, Reis, & Brownstein, 2008).

In addition to the wide range of geographically referenced content and 
maps now available on the Internet, GIS tools themselves are moving to the 
Internet. There are a number of geocoding service sites on the web, for example, 
many enabling users to geocode addresses without charge. The explosion of user-
created map content and GIS services has wide-ranging implications for the geo-
spatial web.

Conclusion

GIS as a technology is not the province of any single organization or group of 
users. Public health professionals and epidemiologists are now an important part 
of the GIS community. As they develop the potential of GIS in their own appli-
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cations, the technology itself continues to evolve in response to the needs of the 
many and varied groups within the GIS community (Sui, 2008).

GIS implementation—even in the web environment—involves organizing 
people to use a collection of computer hardware, software, and spatial data-
bases to answer questions or solve problems (Kessler, 1992). A GIS application 
reflects—at least implicitly—how the GIS user views the world, including what 
are appropriate and meaningful ways to represent reality, what are the subjects 
of interest, and how and by whom information will be used. The technologies of 
GIS and the ideas they represent “are vitally embedded in broader transforma-
tions of science, society, and culture” (Pickles, 1995a, p. 3). At present, these 
include the changes in how human beings communicate with each other through 
the use of electronic technologies and what the impacts of these changes will be 
for access to information, privacy, and individual and collective decision making. 
All of these changes have affected the collection and analysis of data on human 
health problems.

GIS implementation requires a significant commitment of time, money, and 
effort by the individuals and organizations adopting the technology. While the 
adoption of GIS technology has been advocated by public health professionals, 
epidemiologists, and medical care providers who see the value of geographi-
cal analysis of human health problems, the commitment of these resources may 
not seem justified to public health professionals and epidemiologists whose pro-
gram activities and research are not primarily concerned with spatial analysis. 
Even for these public health professionals, however, GIS literacy and some GIS 
capability have become necessary because GIS have become the technology for 
managing and distributing spatial databases and most public health databases 
are spatially referenced. To the extent that census agencies, environmental pro-
tection agencies, vital statistics bureaus and disease registries, and medical care 
providers have adopted GIS technology, analysts who wish to access their data 
even for nonspatial analyses will become part of the GIS community.
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CHAPTER 2

Spatial Data

Spatial data are observations with explicit locations. For geographers—and most 
people interested in studying human health problems—the relevant space is the 
surface of the earth. Geospatial data are obtained by observation and measure-
ment of events or objects referenced to their locations in that space. GIS imple-
mentation requires access to geographic data. “The database is the foundation of 
a GIS” (Worboys & Duckham, 2004, p. 35).

This chapter highlights some of the important attributes of geographic data 
that the GIS user must consider in developing an application. Because analysts 
use GIS to integrate data from different sources based on location, they need to 
have a clear understanding of the data layers they are combining. Data in differ-
ent projections cannot be meaningfully integrated in a GIS without additional 
processing to bring the data layers into a common projection, and data at dif-
ferent scales cannot be meaningfully integrated in a GIS without generalizing 
to the smallest scale. Because it is possible to overlay so many layers of data in a 
GIS display, the symbolization of data elements that produces a legible display 
can be difficult to design.

In the first part of this chapter we consider the two broad models of geo-
graphic data, field and object, and how these models are expressed in tessellation 
and vector databases. Next, we review the basic concept of location and how it is 
determined, either to define the set of locations that provide the spatial frame-
work for field data or to georeference objects on the surface of the earth. Because 
geographic data come from a variety of sources including existing maps, we also 
briefly describe and discuss the importance of scale, projection, and symboliza-
tion. We then consider the quality of geographic data, how it can be assessed, 
and its implications for GIS applications. The last sections of the chapter discuss 
the role of metadata in documenting the characteristics of spatial databases and 
supporting online search and discovery of information.
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Field and Object Data

There are two main approaches to modeling geographic information. From one 
perspective, we can think of phenomena that are continuously distributed just 
above, on, or below the surface. Precipitation, surface elevation, and soil are 
examples of continuous data or field data. It is possible to visit any location on 
the earth’s surface and ask “what is the elevation here?” or “what is the environ-
mental quality here?”

Because these phenomena are continuous and can be observed everywhere, 
they are usually measured based on observations made at a set of sample sites 
on the surface. This network of sites creates a spatial framework for describ-
ing the distribution of the phenomenon. Tessellation is the geometric process of 
partitioning an area into smaller units that do not overlap but completely fill the 
entire area (Arlinghaus, 1994). Squares, triangles, and hexagons can be used as 
the basic units of a tessellation (Figure 2.1). When the units are the same shape 
and size, the tessellation is regular. Of the three, the regular square tesselation 
has probably been the most widely used because it can be represented easily in 
an array structure with row and column numbers identifying particular squares. 
Furthermore, it is compatible with hardware devices used for capture of spatial 
data like remote sensing data or used for output like the inkjet printer (Peuquet, 
1984). Unlike triangles and hexagons, squares can be subdivided into smaller 
units with the same shape, area, and orientation. Irregular tessellations in which 
the partitions do not have the same shape, size, or orientation can also be con-
structed.

In field-based GIS applications, the GIS database generally contains several 
layers to enable comparison and integration of the various fields of information. 
A public health analyst might want to look at land cover in relation to soils to 
find where medium- and low-density residential development relying on septic 
systems is occurring in relation to soils that pose problems for septic system 
functioning. Because the spatial framework represents a set of locations on the 
surface, the observations made at these locations represent a sample of the phe-
nomenon being modeled. Thus sampling error becomes a consideration in the 
GIS application.

FIGURE 2.1. Regular square, triangular, and hexagonal tessellations. The centers 
of the tiles correspond to regular square, hexagonal, and triangular lattices, respec-
tively.
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From the other perspective, we can think of discrete objects that may be 
found on the earth’s surface. A person, a hospital, and a public drinking water 
reservoir are examples of discrete data or object data. Many health databases 
contain object data. Objects are entities that are identifiable, relevant to the par-
ticular public health problem at hand, and describable (Mattos, Meyer-Wegener, 
& Mitschang, 1993). It is possible to consider any object and ask “where is this 
object located?”

Each object of interest that can be located on the earth’s surface has differ-
ent types of attributes that are important for modeling purposes: textual/numeric, 
spatial, temporal, and graphical (Worboys & Duckham, 2004). A public drinking 
water reservoir, for example, will have a set of textual/numeric attributes indicat-
ing its name, surface area, and other attributes (Figure 2.2). The polygon repre-
senting the shoreline or perimeter of the reservoir surface is a spatial attribute. 
Attributes like the time the reservoir was developed as a public drinking water 
supply or the time it was first recorded in the database are temporal attributes. 
The symbol used to represent the reservoir as an object in cartographic displays 
is the graphical attribute of the underlying object. In this case, a solid-filled poly-
gon symbol of a particular hue is used to indicate that the polygon is a reservoir. 
If the reservoir had been represented using a line to show the shoreline, it would 
not be possible to “fill” the area corresponding to the reservoir’s surface. It would 
only be possible to change the style, thickness, and color of the line.

Tesselation and Vector Data Models

The field and object views are expressed in the two main data models used to 
implement GIS: tesselation and vector. These data models have important impli-
cations for the storage and processing of data (Worboys & Duckham, 2004). The 

FIGURE 2.2. Attributes of a public drinking water reservoir as a spatially refer-
enced object in a GIS.
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most commonly used tessellation model is the raster model based on a regular 
tessellation. In a raster model, every raster layer corresponds to a single mea-
surement of a continuous field for a unit of space—for example, elevation or land 
cover at a particular place.

Stored in the computer, raster data are organized as an array of cells cor-
responding to particular places that are called pixels—shortened from “picture 
elements” (Arlinghaus, 1994). A raster cell is typically assigned a real number 
associated with the measurement of the phenomenon at that location. Propri-
etary raster data storage formats may also use grids to represent nominal data 
coded as integers (Price, 2008, p. 524). These nominal data values often result 
from classification of the real number values in raster cells, for example, when a 
reflectance value is classified to represent a particular category of land cover in 
processing remote sensing data.

The GIS user defines the size of each pixel in terms of its area on the earth’s 
surface to match the available data (Figure 2.3). A common ground dimension 
for remote sensing data in the United States is 30 meters × 30 meters, the pixel 
size of Landsat Thematic Mapper (TM) data (Jensen, 2005). The size of the pixel 
affects the size of an object that can be discerned in a digital image, thus deter-
mining the spatial resolution of the data. Some landscape features in an urban 
environment such as a single-family detached residence cannot be discerned in 

Columns

Origin

Rows

Pixel

FIGURE 2.3. A raster data model.
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low-resolution raster images like the 30-meter TM data because the features are 
smaller than the pixel size. On the other hand, such features would be discern-
ible on a high-resolution image that uses a small pixel size. Low resolution is use-
ful for large geographic areas where only limited detail can be represented.

The GIS user can define the geographic extent of the data by specifying 
the number of rows and columns of pixels in the data layer. The location of each 
individual pixel in the raster is given by its particular row and column numbers. 
Raster data structures make it easy to overlay data layers as long as pixel sizes are 
the same and corresponding pixels are registered to exactly the same position on 
the surface of the earth.

Perhaps the most commonly used irregular tessellation is the triangulated 
irregular network (TIN). A data value like elevation is observed at a set of sam-
pling points on the surface. These points form the vertices of triangles in the 
TIN. Each triangle in the TIN connects three neighboring points so that the 
plane of the triangle approximates the surface between the points and calculat-
ing the slope and aspect of the surface is straightforward (Figure 2.4).

In a vector model, every vector layer corresponds to a single class of objects 
that have the same dimensionality (point, line, or area), although data layers of 
different dimensionality can be used in a vector GIS application. A vector is a 
finite straight-line segment that can be described by the locational coordinates of 
its endpoints. In a vector data structure, a point such as a hospital location would 
be represented by a single ordered pair (x,y), a line or an arc such as a meals-

FIGURE 2.4. A triangulated irregular network (TIN) and the corresponding sur-
face representation.
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on-wheels route by a sequence of straight-line segments, and an area or polygon 
such as a health service district by the vectors enclosing it. Every vector layer 
corresponds to a set of objects located in space and described by many attributes 
(Figure 2.5).

Vector data may or may not be topological. A vector database is topologi-
cal if it contains information on the neighborhood relationships among objects 
(Figure 2.6). Specifying a “start node” and an “end node” for each arc indicates 
the direction of the arc. Areas to the left and to the right of a particular directed 
arc can then be identified. The U.S. Census Bureau’s GBF/DIME file was a mile-
stone in the development of topological data structures for digital spatial data 
(Broome & Godwin, 2003).

Network data are a type of vector data that model space as a set of connected 
links and nodes (Rigaux, Scholl, & Voisard, 2002). Network databases consist of 
nodes and arcs (Figure 2.7). A node is a point of connection for two or more arcs 
or an endpoint of an arc. An arc is a link that connects two nodes. The nodes 
and the arcs of the network comprise the entire space of interest and locations of 
interest exist only on the network. In a planar network, a node exists whenever 
two arcs intersect. In a nonplanar network, arcs may cross each other without 
resulting in a node where arcs are connected. Ground transportation networks 
with overpasses and underpasses are examples of nonplanar networks.

GIS designed to model transportation systems (Miller & Shaw, 2001) and 
public utilities use network databases. A table stores the topological relation-
ships among nodes and arcs in the network and a measure of impedance for each 
arc. The impedance value measures the effort associated with moving from one 
endpoint to the other endpoint along the arc. In transportation networks, the 
length of the arc (travel distance), the time required to travel the arc, or the cost 
associated with traveling the arc such as a toll are commonly used impedance 
measures.

FIGURE 2.5. A vector data model.
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Transportation network databases often include a turn table and a reference 
address table. The turn table includes a tuple or row (see Chapter 1) for each 
direction of travel through an intersection from one segment to another segment. 
An impedance measure is associated with each “turn” indicating whether or not 
it is possible to move from one street segment to another in a particular direction. 
Turn and arc impedances provide some measure of the travel cost associated 
with travel in a particular direction. A reference address table stores informa-
tion about address ranges for street segments.

Vector data that are not topological are sometimes referred to as “spaghetti” 
data (Rigaux, Scholl, & Voisard, 2002). In spaghetti data, lines and areas are 
independent features, like strands of spaghetti on a plate, and need not corre-
spond to any actual spatial object. For example, a GIS analyst could digitize 
several lines capturing distinct parts of the boundary of Connecticut. There may 
be enough strands on the plate or lines to represent the boundary, but there is 
no information on how to connect these strands. Intersections or connections 
between the strands of spaghetti are not explicitly modeled. GIS functions make 
it possible to create line and polygon topology for vector data that are not topo-
logical.

FIGURE 2.6. A topological vector data model.
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In a vector system, “resolution” again refers to the smallest feature that can 
be discerned. The minimum length of a line object, the minimum separation 
required to display objects as separate and distinct, and the minimum size below 
which a long narrow area will be represented as a line and a small area will be 
represented as a point are affected by the scale of the database (Veregin & Hargi-
tai, 1995). The extent of a vector data layer is described by a bounding rectangle
within which all of the objects in the database can be placed.

It is possible to represent a range of spatial phenomena—field and object—
with various data models and to convert from raster to vector and vice versa 
(Figure 2.8). Raster/vector conversion is a function commonly found in GIS soft-
ware systems. It is also possible to think of regular square, triangular, or hexago-
nal tessellations in terms of the square, hexagonal, or triangular lattices formed, 
respectively, by their center points (Figure 2.1) (Gold, 1990; Boots, 1999).

The choice of data model is more than just a technical data management 
issue. Spatial statisticians recognize that observations associated with point loca-
tions may have a range of meanings and require different analytical methods 
(Cressie, 1993). Geostatistical data are measured for a sample of points in a fixed 
area, and lattice data are measured for a fixed collection of points or area centers 

FIGURE 2.7. A network data model. The turn table shows that it is very easy to go 
straight from Arc a1 to Arc a2 (no traffic sign or signal). It is more difficult to turn right 
from Arc a1 to Arc a3 (the driver must slow down to make the turn). Because Arc a3 and 
Arc a4 are one way, the turn from Arc a1 to Arc a4 cannot be made.
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(Haining, 2003). In a geostatistical database, the point locations are considered 
to be a sample of the set of all points in an area, and a value for a continuously 
distributed phenomenon is measured at each point. In a lattice database, the 
point locations are fixed points or centers of areas, and the observation describes 
the value of a phenomenon at or aggregated to the discrete location. Lattice data 
are supplemented with information about the neighborhood structure or spatial 
arrangement of the points used in the analysis of the data (Anselin, 1999).

However represented in the GIS, the field and object views of data are rec-
ognized as inverse ways of looking at geographic information (Peuquet, 1984; 
Worboys & Duckham, 2004). The field view starts with a spatial framework over 
which the geographical domain of an attribute like precipitation or environ-
mental quality is represented. The object view starts with objects that can be 
“embedded” in an otherwise empty space based on their locations. Both views 
require us to operationalize location.

Measuring Location

Location means position in space. Location is the basis for integrating geographic 
data in a GIS. Absolute location refers to position with respect to an arbitrary 
grid system like the geographic grid of parallels and meridians. Absolute location 
gives the position of a point so that its unique position on the earth is clear. “The 
burner stack is 41°48 N and 72°15 W” is a statement of absolute location. Rela-
tive location refers to position with respect to other objects in the geographic 
space. “The burner stack is 300  northwest of the intersection of Park and Broad 
Streets” is a statement of relative location.

Positional data in a GIS can come from several sources; these are discussed 
in detail in Chapter 3. Geodetic, photogrammetric, and digital image processing 
data are all primary sources for positional data because positions are determined 
by direct or indirect measurement of the earth’s surface (Drummond, 1995). 
These primary sources of positional data provide an essential and accurate foun-

FIGURE 2.8. A raster database and a vector database representing the same situa-
tion of three reservoirs and an adjoining network of water distribution mains.
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dation for other spatial data. Maps and archival documents like gazetteers are 
secondary sources for positional data.

Geodesy is the science of observation and measurement of the shape, size, 
and dimensions of the earth as a whole and of the earth’s surface (Arlinghaus, 
1994). Position can be measured directly from the earth’s surface by survey-
ing (Moffitt & Bossler, 1998). With the development of satellite technology, the 
Global Positioning System (GPS) is now used to ascertain position and for pri-
mary data capture of spatial data. The GPS was designed and built and is oper-
ated and maintained by the U.S. Department of Defense (Kaplan & Hegarty, 
2006). The primary purpose of GPS was to aid navigation, not to record locations 
per se. In 1978, the first operational GPS satellite was launched. By the mid-
1990s, the system was fully operational with the required 24 satellites.

The system today has several components: 27 satellites orbiting earth at an 
altitude of 12,500 miles, five monitoring stations, and the receivers that individu-
als use to determine their locations. The satellites send continuous radio signals 
and receive correctional data from monitoring stations. Signals are received by 
GPS units held at different locations on the earth. The receiver measures how 
long it takes the signal to travel from the satellites. By measuring the distance 
from three or more satellites, the location of the receiver can be obtained by 
triangulation. Signals from at least three satellites are needed to obtain horizon-
tal positions (lon/lat) at a particular location; a signal from a fourth satellite is 
needed to obtain vertical position.

Until now, GPS has been the only system of its kind, although the former 
Soviet Union developed the GLONASS system that was operational in 1995. 
GLONASS was affected by the collapse of the Soviet Union and the economic sit-
uation in Russia. It is operated for the Russian government by the Russian Space 
Forces. In December 2005, India and Russia agreed that India would share the 
development costs of the newest series of satellites and launch them from India. 
GLONASS was fully restored with 24 operating satellites in September 2010. 
Also in December 2005, the European Union launched the first satellite in the 
Galileo system. Full deployment of the Galileo system is not expected until 2014. 
The Chinese are also moving toward developing a system called BeiDou.

Using GPS, a field researcher can obtain accurate locations for a variety of 
features in the landscape. Many GPS devices allow storage of the coordinates of 
the measured points, and these data can then be loaded directly into the GIS. 
Using the GPS has become a standard method for surveying. Individuals and 
organizations requiring highly accurate positional data usually hire a surveyor or 
GPS technician to make the necessary measurements. Small, inexpensive GPS 
receivers capable of storing up to 1 megabyte of GPS data with 2.5-meter hori-
zontal accuracy and of downloading the data to a computer via the Universal 
Serial Bus (USB) port are making it easier to develop an in-house capability to 
obtain GPS data and to integrate it with other spatial data in a GIS.

Surveying and GPS involve collecting data directly from the surface of the 
earth. Remote sensing is the analysis and interpretation of data gathered by 
means that do not require direct contact with the subject. Aerial photography is 
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a method of photographing the earth’s surface from an aerial platform (Jensen, 
2007). When the photo is taken directly above the surface in the image, the ver-
tical photograph is known as an orthophotograph. Remote sensing images like 
air photos taken at an angle are oblique. Photogrammetry is the measurement of 
aerial photographs to determine locations for mapping.

Digital image processing of geographic data relies on satellites with sensors 
capable of detecting electromagnetic energy reflected or emitted from objects on 
the earth’s surface (Jensen, 2005). The energy detected is converted into a data 
value for a specific location and transmitted to receiving stations either directly 
or via tracking data and relay satellites. The data are then enhanced for viewing 
and subsequent analysis by using digital image processing algorithms. It is pos-
sible to obtain a variety of data from a single flight. Acquisition of photogrammet-
ric and digital image data usually involves purchasing a database from a govern-
ment or quasi-governmental agency that has the means to produce these data.

In many GIS applications, positions are estimated from an existing map of 
the earth’s surface created at a particular scale. For example, we could estimate 
the coordinates of a hospital by digitizing from an appropriately annotated topo-
graphic map. Digitizing requires the use of a tablet and cursor to record Car-
tesian coordinate locations of map features from a map placed on the digitizing 
tablet or the use of a cursor to screen digitize from a visual display. We could also 
estimate the coordinates by using a GIS to address-match geocode the hospital’s 
address against a digital, address-ranged street network database. Geocoding is 
“the process by which an entity on the earth’s surface, a household, for example, 
is given a label identifying its location with respect to some common point or 
frame of reference” (Goodchild, 1984, p. 33). Address-match geocoding as a GIS 
function is described in detail in Chapter 3.

Finally, coordinates for particular places are published in gazetteers and 
other archival sources in both paper and digital formats (Abate, 1991; Armstrong, 
1995; U.S. Geological Survey, 2011; Ordnance Survey, 1999; Ordnance Survey, 
2011a). Many of these gazetteers are available online. When using secondary 
sources of positional data, the GIS analyst should read the database documenta-
tion to understand the primary source of positional information for the published 
data and its accuracy. The scale and projection of the digital model or map and 
the symbols used to represent objects affect the quality and accuracy of the posi-
tional data obtained from it.

Scale, Projection, and Symbols of Cartographic 
Data Sources

As models, maps are generalized representations of reality. Maps distort reality 
by simplifying the complex, three-dimensional surface of the earth for represen-
tation on a flat sheet of paper or video screen. The “cartographic paradox” is that 
“to present a useful and truthful picture, an accurate map must tell white lies” 
(Monmonier, 1996, p. 1). Scale, projection, and symbolization are three basic 
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components of maps. Each is a potential source of distortion. Public health ana-
lysts using GIS need to understand these concepts and how to identify scale, 
projection, and symbols by reading the details of the description printed on a 
paper map or the data description supplied with a digital spatial database.

Scale

Map scale tells the user how much smaller the map is than the reality it repre-
sents. Map scale can be stated as a ratio, a simple bar graph, or a phrase (Fig-
ure 2.9). A ratio scale of 1:5,000 means that one unit on the map represents 
5,000 units on the ground. Ratio scales are particularly useful for comparison. A 
1:5,000 map is a large-scale map, a map of a small area showing high detail. In 
contrast, a 1:1,000,000 map is a small-scale map, a map of a large area showing 
limited detail. The graphical scale is useful for representing scale on paper and 
in digital displays because the scale will be correct even if the map is enlarged 
or reduced during reproduction.

FIGURE 2.9. A map of hospital locations showing different methods for represent-
ing map scale.
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Scale is an important attribute of maps because scale affects the amount 
of detail that can be captured and represented. At the map scale in Figure 2.9, 
the locations of hospitals in Hartford, Connecticut, and the street network can 
be represented. When the map is compiled at a smaller scale to depict the state, 
the street network cannot be shown clearly. Similarly, meanders or curves in the 
Connecticut River are generalized as the scale decreases and areas like the town 
of Hartford shrink to points and eventually disappear. It is important to under-
stand that simply enlarging a small-scale map or zooming in the visual display of 
a spatial database does not enable us to see features that are not present in the 
database. Enlargement by zooming often aids visualization when features are 
clustered together, but it does not affect the level of generalization of the data.

When data layers are at different scales, the larger scale data should be 
recompiled to match the scale of the smallest scale data layer. This is accom-
plished through generalization of the larger scale data layers using techniques 
like line generalization. It is possible to develop GIS applications that call on 
different scale databases for the same region; in this case more detail can be 
observed as the user shifts through to higher scale data sets. Although scale can 
be constant at all points and in all directions on a globe as a true scale model of 
the earth, scale varies on a paper map because map projection stretches some 
distances and shrinks others.

Projection

Projection, a second basic component of maps and spatial databases, refers to 
the mathematical function that transforms locations from the curved, three-
dimensional surface of the earth to a flat, two-dimensional representation (Pear-
son, 1990; Maling, 1992; Iliffe, 2000). There is more than one system for describ-
ing positions of places such as environmental monitoring sites or objects such as 
hospitals. The network of meridians and parallels, which form a geographic grid, 
is used to reference locations on the earth’s surface.

Meridians are true north–south lines connecting the poles. Each is half 
of a great circle, a circle created by passing a plane through the center of the 
earth. They are spaced wide at the equator and converge at the poles. Parallels
are true east–west lines. They intersect meridians at right angles. The equator 
is the only parallel that is a great circle. Longitude is the position of a place east 
or west of the prime meridian, which passes through Greenwich, England. It is 
measured as the arc of the parallel between that place and the prime meridian. 
Longitude ranges from 0° to 180°E or 180°W. Latitude is the position of a place 
north or south of the equator. It is measured as the arc of the meridian between 
the place of interest and the equator. It ranges from 0° to 90°N or 90°S. A merid-
ian is all points having the same longitude; a parallel is all points having the same 
latitude.

Lon/lat can be reported in degrees, minutes, and seconds (DMS), with 60 
minutes in a degree and 60 seconds in minute. Computer processing of lon/lat 
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reported in degrees, minutes, and seconds and by direction poses some prob-
lems. For computer analysis of lon/lat data, the preferred measurement is the 
radian, a unit defined so that there are 2  radians to a circle, with one radian 
equal to approximately 57.296°. The computer functions used to generate trigo-
nometric function values are based on radians and not on degrees. Most users of 
spatial data find it convenient to manage the conversion from degrees to radians 
by converting their data to decimal degrees (DD). This enables storage of the lon 
or lat coordinate as a single real number rather than as separate integer values 
for degrees, minutes, and seconds. But it also retains relevance to the geographic 
grid so that users can easily conceptualize point locations and reference objects 
to paper maps. The GIS software converts the decimal degree lon or lat to its 
radian equivalent internally.

In addition, the computer cannot easily recognize E and W or N and S as 
directions. Instead, + and – are used to indicate directions, with quadrants I, II, 
III, and IV organized around the origin as in a Cartesian coordinate system (Fig-
ure 2.10). Thus, the coordinates for the burner stack would be found in a digital 
spatial database not as 41°48’N 72°15’W but as (–72.25, 41.80), so that the lon-
gitude (east–west or “x” in Cartesian space) is given first (i.e., lon/lat rather than 
lat/lon), values are in decimal form, and directions are correct. For most places in 
North America, longitude will be negative but latitude will be positive.

Because meridians converge at the poles and are spread apart at the equa-
tor, the distance between two meridians is not constant over the range of lati-

FIGURE 2.10. The geographic grid. Positive and negative values of lon/lat in deci-
mal degrees are based on “quadrants” I, II, III, and IV organized around the origin as 
in a Cartesian coordinate system.
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tude. At the equator, the distance between two meridians 1° apart is 69.17 statute 
miles. At 60° it is 34.67 statute miles. Similarly, because the earth flattens near 
the poles, the distance between two parallels is not constant. At the equator, the 
distance between two parallels 1° apart is 68.71 statute miles. At 60° it is 69.23 
statute miles. The geographic grid is not a planar grid like the Cartesian coor-
dinate system, and distances between points on the geographic grid should not 
be calculated using the Euclidean distance metric. Chapter 9 describes different 
measures for calculating distance.

Longitude and latitude defined with reference to a spheroid are geodetic 
coordinates (Iliffe, 2000); some sources also refer to these as geographic coor-
dinates. A spheroid is an approximation of the shape of the earth as a sphere 
flattened at the poles. The combination of shape and size of the earth, as given 
by the spheroid, with a fixed position used as a point of origin defines a datum.
There are global, regional, and local datums used in a range of geographic infor-
mation technologies. Countries may use the same spheroid for mapping, but they 
are on different datums if the systems have different points of origin.

Because the surface of the earth is curved and not flat, lon/lat represents 
location in a three-dimensional space. Direct plotting of lon/lat coordinates 
results in an image that does not match what would be observed on the earth or 
a globe (Figure 2.11). Map projection provides a method for making the transfor-
mation from three dimensions to two. Most paper maps and many digital spatial 
databases represent projected spatial data. Map projection may be a more seri-
ous issue for users of small-scale maps and projected digital spatial databases 
than for users of large-scale paper maps. Distortion will not be as great on large-
scale maps because the areas being mapped are relatively small, covering only a 
small portion of the earth’s curved surface. Because one of the most important 
capabilities of GIS is integrating spatial data, however, a basic understanding of 
map scale and projection and their implications for geodata processing is essen-

FIGURE 2.11. The importance of map projection is demonstrated by displaying a 
view of the unprojected boundary of a study area, the state of Connecticut, and a view 
of the projected boundary. At the latitude of the study area (around 41°N), a direct plot 
of latitude against longitude results in considerable distortion of the study area size 
and shape in the east–west dimension compared to boundary data projected in state 
plane coordinates.
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tial. Databases cannot be properly overlayed or integrated if they are not in the 
same projection. Projecting spatial data from lon/lat or from one projection to 
another is a function commonly found in GIS software.

Three plotting surfaces have been used to develop practical map projec-
tions (Figure 2.12). Map projections based on these objects preserve different 
spatial properties of objects and their relationships. On a perfect map, areas on 
the map would be in correct proportion to corresponding areas on the earth, dis-
tances on the map would be true scale, directions and angles on the map would 
remain true to the corresponding directions and angles on the earth, and shapes 
of objects on the map would not be distorted. Not all of these properties can be 
achieved when we move from three to two dimensions. One way of classifying 
map projections is by the relationship they preserve. Conformal projections pre-
serve shapes but not areas of land masses. Equal area projections preserve areas 
but may distort shapes. Cylindrical projections like the Mercator projection pre-
serve true directions and angles but not shapes and areas.

The usefulness of the conformal projections is evident in the widely used 
State Plane Coordinate System in the United States. The State Plane Coordinate 
System provides a convenient means of locating mapping positions on a two-
dimensional plane. The system is based on a rectangular grid defined for each 
state of the United States (Figure 2.13). The grids permit the methods of plane 
surveying to be extended over great distances at high precision.

In the continental United States, two conformal map projections are used 
for the state plane coordinate systems (Figure 2.14): the transverse Mercator 
secant and the Lambert conformal with two standard parallels (Pearson, 1990). 
The transverse Mercator secant projection defines a grid zone roughly 158 miles 
east–west (Figure 2.15). There are two true-scale lines running north and south 
in each transverse Mercator zone. Between these lines of secancy, the distances 
are less than true scale. Outside of these lines, the distances are greater than true 
scale. The distortion increases with increasing distance east or west from the 
secant lines. Within the zone, distortion is not a function of latitude, so north–

FIGURE 2.12. Three plotting surfaces used to develop practical map projections.
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FIGURE 2.13. The State Plane Coordinate System of 1983 zones. Each zone is 
defined by an origin and a projection system, either a central meridian and scale factor 
if transverse Mercator or standard parallels if Lambert. Zones of the Universal Trans-
verse Mercator projection system differ from the zones of other state plane transverse 
Mercator projections by only the zone-defining constants used. Adapted from Stern 
(1989).

FIGURE 2.14. Surfaces used in state plane coordinate systems. The transverse 
Mercator secant projection provides the closest fit to the datum surface for a rectangu-
lar (ABCD) zone greatest in north–south extent. The Lambert projection provides the 
closest approximation to the datum surface for a rectangular (ABCD) zone greatest in 
east–west extent.
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south extension is unlimited. The transverse Mercator projection is well suited 
for states of major north-to-south extent like Illinois.

The Lambert conformal projection with two standard parallels defines a 
grid zone roughly 158 miles north–south (Figure 2.15). The parallels are two 
true-scale lines running east and west in each zone. Again, between the true-
scale lines, distances are less than true scale. North and south of the lines, the 
distances become more than true scale. Within the zone, distortion is not a func-
tion of longitude, so east–west extension is unlimited. The Lambert conformal is 
suited for states of major east–west extent like Tennessee. For each state plane 
grid, an origin is established to the south and west of all points so that the coor-
dinates can be given as a false easting and a false northing (Figure 2.16). This 
means that none of the coordinates will have negative signs. Distance units in 
state plane coordinate systems are feet or meters depending on the datum plane 
and the data distribution practices in various states.

The planes produced by these projections are like tiles approximating parts 
of a sphere. Because they represent data on a plane, these systems support spa-
tial analysis like the measurement of distance based in Euclidean geometry. Dif-
ferent states in the United States rely on different state plane coordinate systems 
for their paper and digital spatial databases (Warnecke, Johnson, Marshall, & 
Brown, 1992). A number of documents are available that describe the specifics of 
the systems used in each state (Snyder, 1987; Stern, 1989). To make a map of the 
entire state in a state with more than one state plane zone (Figure 2.13), analysts 

FIGURE 2.15. Scale relationships in State Plane Coordinate System projections. 
Along the standard lines of the projection (secants for transverse Mercator or standard 
parallels for Lambert conformal), scale is exact. Between the standard lines, distances 
are less than true scale.
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select one of the zones and project data for the entire state according to that zone 
or they select some other map projection.

In addition to the various projections used in data layers available at the 
local level, other map projections may have been used in the various map series 
published by national governments (Parry & Perkins, 1987; Böhme, 1993). This 
situation poses problems for public health analysts who need to integrate data 
from various sources across jurisdictions. In order to use the GIS software func-
tions to project or to change the projection of a digital spatial database, the ana-
lyst needs to know what projection the data are in to start. GIS software allows 
users to display data in different projections without actually reprojecting the 
data, but GIS spatial analytic procedures may require data layers to have a com-
mon projection or spatial reference. Techniques for integrating data layers are 
discussed in greater detail in Chapter 3, which describes foundation databases 
for public health GIS and how health data can be linked to them.

Symbolization

The visualization and mapping functions of GIS require data objects to be rep-
resented with some kind of graphical symbol. Bertin (1979) identified six dimen-
sions of visual variability of map symbols: size, shape, value, texture, orientation, 
and hue (Figure 2.17). These aspects of symbolization can be and are manipu-
lated to achieve certain objectives in cartographic communication (Monmonier, 
1996). The range of symbols supported will vary from system to system, depend-
ing on software and hardware configurations. Cartographic design is discussed 
in greater detail in Chapter 4. Standard cartography texts provide useful guide-
lines for map compilation and design. One body of cartographic research eval-
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Central Meridian of State Plane Grid
False Easting

P   (state plane x, state plane y)

O
False Northing

FIGURE 2.16. State Plane Coordinate System geometry. The central meridian is 
assigned a false easting. The origin O for measuring the state plane coordinates is 
located where the false easting intersects a false northing. The location of the origin O
forces the eastings (state plane x coordinate values) and northings (state plane y coordi-
nate values) to be positive numbers. The coordinates of point P are both positive.



62 GIS AND PUBLIC HEALTH

FIGURE 2.17. Visual variability of map symbols. Adapted from Slocum, Terry A., 
McMaster, Robert B., Kessler, Fritz C., Howard, Hugh H., Thematic cartography and 
geovisualization, 3rd Edition, © 2009, pp. 82, 83. Adapted by permission of Pearson 
Education, Inc., Upper Saddle River, NJ.
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uates the impact of different symbolizations on the perceptions of map users 
(MacEachern, 1994; Dykes, MacEachern, & Kraak, 2005).

Geographic Data Quality

Because the database is the foundation of any GIS, the quality of the geographic 
data that goes into the system is paramount. The United States established the 
National Committee on Digital Cartographic Data Standards in 1982 (Morrison, 
1995). Its draft report identified five important aspects of spatial data quality 
(Moellering, 1987); these dimensions have since been accorded a degree of inter-
national consensus (Moellering, 1991; Servigne, Lesage, & Libourel, 2006).

Lineage is a “description of the source material from which the data were 
derived, and the methods of derivation, including all transformations involved in 
producing the final digital files” (National Institute of Standards and Technology, 
1994, p. 21). To an extent, lineage is not so much a measure of data quality as the 
information needed to assess data quality based on other factors. The contents 
of a lineage describe data at various stages in its existence. Development of stan-
dards for lineages is an ongoing process. The difficulty of developing useful lin-
eages creates a problem for data suppliers, although the importance of lineages 
to spatial data quality assessment cannot be denied.

Accuracy, in general, refers to the level of error present in a database. An 
“accurate” database is one that is free from error. Because spatial databases 
contain both locational and thematic data (e.g., pixel and elevation, lon/lat and 
health outcome), users must be concerned with both positional accuracy and 
attribute accuracy.

Positional accuracy refers to the nearness of the values describing the posi-
tion of a real-world object to the object’s “true” position. Positional error may 
be introduced at the initial measurement of location. Analysts should pay par-
ticular attention to the precision (the number of significant digits) with which 
geographic coordinates are measured and reported. Rounding the lon/lat of a 
place from (-72.24952,41.80443) to a coordinate pair with fewer decimal places 
(-72.25,41.80) affects position. A second source of error is the chain of processing 
between the initial measurement or observation and its final “resting place” in a 
GIS database (Drummond, 1995). Because GIS analysis involves manipulations 
of databases like projection change and overlay, errors propagate.

The preferred test of positional accuracy is comparison to a data source of 
higher accuracy (Antenucci, Brown, Croswell, Kevany, & Archer, 1991). These 
tests are often made at the time of data capture, for example, when using a GPS 
receiver or digitizing or scanning an existing database. In this approach, posi-
tional accuracy is measured by comparing the final positional information to a 
known higher standard, perhaps a set of geodetically or photogrammetrically 
observed checkpoints. The standard database contains checkpoints whose (x,y)
coordinate values are considered “true” coordinates, having been determined 
using a measurement system of higher quality. For each i of the n checkpoints 
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available, the difference or error measured between the “true,” or accurate coor-
dinate (xia,yia) and the corresponding database coordinate (xid,yid) is recorded. 
The values are used to determine the root mean square error (RSME) as fol-
lows:

n
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i
iaidiaid

1

22

GIS users are familiar with an aspect of RMSE in the digitizing process. 
At the start of the digitizing session, a set of control points whose coordinates 
are known in the map’s projection grid system are marked. From these control 
points, the transformation constants used to convert all digitized coordinates to 
the projection coordinates are produced. The projection coordinates of selected 
control points can then be compared to their known coordinate values, and the 
differences used in the calculation of RMSE. In many GIS systems, the user will 
be presented with this value after digitizing and asked either to accept it or to 
repeat the process. Public health analysts can, then, be able to assess positional 
accuracy of spatial databases in the early stages of developing a GIS applica-
tion, either from the description of positional accuracy accompanying a database 
acquired from another source or during the digitizing process.

Attribute accuracy is an aspect of data quality that considers the near-
ness of the values describing the real-world entity in the database to the entity’s 
“true” attributes. In many public health applications of GIS, the attribute data 
for objects will already have been collected in a disease registry or surveillance 
system. The amount of information available about uncertainty or error in these 
attribute data will vary depending on whether the agency collecting the data has 
carried out and described procedures for determining the level of error in the 
data.

In public health GIS applications, consistent definitions of what constitutes 
a health event or a health service are needed to ensure attribute accuracy. As 
discussed in detail in Chapter 3, it is not always easy to define what is meant by a 
“case”; moreover, case definitions may change over time. Attributes of cases, like 
race, ethnicity, or International Classification of Disease (ICD) diagnosis, also 
need to be coded consistently to meet standards for attribute accuracy.

When the attributes are measured as interval/ratio level data, the normal or 
Gaussian distribution and log normal distribution may be appropriate models of 
the relative frequencies of error. Sometimes these distributions are truncated to 
reflect maximum or minimum possible values. When the attributes are nominal, 
places or objects have been assigned to simple classes, and differences, means, 
and standard deviations are not meaningful. Uncertainty may exist when the 
place or object is assigned to the wrong class, when two or more analysts do not 
agree on the assignment, or, in the case of remotely sensed data, when the class 
does not agree with the class assigned based on direct observation.
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As with positional accuracy, attribute accuracy assessment relies on compar-
ison with a source of higher accuracy. In remote sensing, for example, a sample 
of locations is selected, and the class assigned in the digital image processing is 
compared to the directly observed “ground truth.” The results can then be tabu-
lated in a misclassification matrix where the diagonal represents correct classifi-
cations and the off-diagonal elements record incorrect classifications (Table 2.1). 
A number of indices can be calculated to summarize the overall level of accuracy 
(Congalton, 1991).

A major issue in the assessment of attribute accuracy is the degree to which 
errors are spatially systematic. Spatial dependence measured as spatial auto-
correlation means that there is a correlation between errors for features located 
near each other. In health outcome data, for example, there may be geographi-
cally systematic variations in surveillance or diagnosis. These “errors” are not 
necessarily connected to positional errors in the data. “Unfortunately, we know 
very little about the spatial structure of uncertainty in geographic data” (Good-
child, 1995a, p. 76). Research investigating both the spatial structure of data 
errors and methods of visualizing uncertainty is ongoing.

Completeness as a measure of data quality refers to “the relationship 
between the objects represented in the data set and the abstract universe of all 
such objects” (Brassel, Bucher, Stephan, & Vckovski, 1995, p. 82). Two types of 
completeness can be considered. First, are all of the relevant objects captured in 
the database? Health outcome databases derived from voluntary versus manda-
tory screening programs might have widely varying degrees of completeness in 
representing the true universe of all individuals with a particular health prob-
lem. Second, are all the records for an individual unit in the database complete? 
Completeness as a measure of data quality addresses presence and absence of 
data for the specified universe.

Finally, logical consistency is a measure of data quality that considers the 
“structural integrity” of a database (Kainz, 1995). A spatial database is logically 
consistent when it is compatible with the attribute data and when it complies 

TABLE 2.1. An Example Error Matrix for Classification of Areas 
Based on Land Cover

Data 
classification

Ground truth classification

Row totalDeciduous Conifer Shrub Barren

Deciduous 82 4 16 18 120

Conifer 6 23 6 5 40

Shrub 3 8 97 2 110

Barren 0 3 9 87 99

Column total 91 38 128 112 369

Overall accuracy 289/369 = 78%
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with the requirements of the selected raster or vector data model. The health 
analyst would want to make sure, for example, that all of the health events in a 
database were modeled in the same way—as fields or as objects—and described 
by the same set of attributes. Consistency rules prevent invalid changes to the 
database and ensure consistency in data handling—for example, treatment of 
missing values—throughout a series of transformations.

Most GIS software systems can test for topological consistency in a spatial 
database. In a vector database, this would include checks for missing nodes, dan-
gling arcs, duplicate centroids, and other inconsistencies in the node–arc–area 
relationships depicted in Figure 2.6. For a particular GIS database, the consis-
tency checks would verify that each directed arc or line segment has exactly 
one start and one end node, that each node is a start or end node of at least one 
directed arc, that each area is bounded by one or more directed arc, and so on.

Logical inconsistencies present in a database may not prevent the health 
analyst from producing a graphic display or map of the areas, but would almost 
certainly affect any spatial analysis performed using the database. GIS applica-
tions that involve more spatial data analysis require higher levels of consistency 
in spatial databases. The topological consistency checks can be performed when 
spatial databases are created so that errors can be detected before the public 
health analyst incorporates the database into an application.

A GIS application involving multiple layers of data may meet the test of logi-
cal consistency for every layer but lack consistency across data layers. Data fields 
in vital statistics databases may change over time as fields are added or modified. 
Records from an earlier time period would not, therefore, be logically consis-
tent with records from the later reporting period unless the earlier records were 
modified to reflect the new format with the added or modified fields. Two GIS 
databases collected at different scales or using different projection systems may 
be logically consistent as individual databases, but would cause serious problems 
if they were integrated without appropriate modification. Methods for perform-
ing logical consistency checks across data layers are still being researched and 
have generally not been incorporated into GIS software packages.

A final important issue in assessing the quality of a spatial database is the 
handling of temporal information (Guptill, 1995). Because GIS applications 
involve assembling data from many different sources, information about the tem-
poral attributes of the data is extremely important. Even when each particular 
data layer represents the most current information available, the layers may not 
mesh temporally because census data, land use data, and data on other elements 
in the universe of geographic features are not updated on the same schedules.

An important approach to handling temporal information is to model it as 
an attribute (Table 2.2). Both positional information and attribute information 
can be assigned temporal attributes describing the date when the data were 
observed and the date when the position or attribute “expired.” In Table 2.2, a 
public drinking water well changed from “Active” to “Inactive” status as a source 
of drinking water on October 13, 1997. The importance of historical information, 
as distinct from information just recording change as it occurs, is obvious in the 
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case of process studies. Does the researcher need to reconstruct past patterns of 
land use or public drinking water supply as part of an epidemiologic investiga-
tion?

Aside from the quality of the geographic data itself, there are additional 
desirable properties for digital geographic databases (Worboys, 1995). Secure 
databases prevent unauthorized access or allow different levels of access. Secu-
rity is particularly important for many databases containing health records for 
individuals. The issue of confidentiality of health data and its implications for 
mapping is discussed in greater detail in Chapter 7. Reliability of a database (as 
opposed to reliability of measurement) means that systems and data will be up 
and accessible when users need information. Finally, use of the data is facili-
tated when technological change is transparent to the user. “Technology-proof” 
systems insulate users from the technical aspects of the database system so that 
databases are not required to change with each new technological advance in 
hardware and software.

The Role of Metadata

The characteristics of a spatial database can be described in metadata, “data 
about data” (Green & Bossomaier, 2002, p. 95). Metadata provide information 
in four key areas:

Availability of data including information that makes it possible to search 
for and discover the data.
Fitness for use of data including information on special features of the 
data to allow analysts to assess the appropriateness of data for a given 
use.

TABLE 2.2. Example of Temporal Description Attributes 
for a Public Drinking Water Well

Basic feature Spatial object Attributes

Well Well ID: 101 System Value: Manchester

Feature observed: 07/01/1989 Value observed: 07/01/1989

Feature expired: Current Value expired: Current

Status value: Active

Value observed: 07/01/1989

Value expired: 10/13/1997

Value: Inactive

Value observed: 10/13/1997

Value expired: Current
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Access to data including information on how to acquire the data.
Transfer information including technical specifications for data handing.

Metadata Standards for Geospatial Data

The Federal Geographic Data Committee (FGDC) developed metadata stan-
dards for spatial databases in the United States, and producers of digital spa-
tial databases have been expected to prepare metadata that complies with these 
standards (Federal Geographic Data Committee, 1998). The FGDC standard 
was designed as a content standard. This means that the standard requires cer-
tain kinds of information to be included in the metadata but does not govern 
the format in which the content is presented. According to the standard, there 
are several categories of information covered in a metadata file for a digital spa-
tial database (Table 2.3). Other countries have also developed national metadata 
standards for digital spatial data (Green & Bossomaier, 2002).

International standards for digital geospatial metadata have also been 
developed. In 1995, the Geographic Information Technical Committee (TC 211) 
of the International Organization for Standardization (ISO) set out to develop 
a metadata standard for geographic information. This effort built on the work 
of the FGDC, whose standard was recognized by the American National Stan-
dards Institute (ANSI) under the auspices of the InterNational Committee for 
Information Technology Standards (INCITS). INCITS Technical Committee 
L1 serves as the U.S. advisory group to ISO TC 211 (Hill, 2006). ISO 19115, 
the ISO’s content standard for geographic information metadata, was published 
in 2003 (Table 2.4) (International Organization for Standardization, 2003). In 
addition, ISO 19139 created an XML schema that prescribes the format of the 
metadata record. These standards are part of the general family of ISO 19100 
standards dealing with various aspects of geographic information and transfer 
(Larsgaard, 2005).

Georeferences in Metadata

Metadata are the key to search and discovery of information using the Internet. 
The effort to develop digital libraries of spatial data in initiatives like the Alexan-
dria Project brought together experts from the fields of geographic information 
science, library science, information science, and museum informatics (National 
Research Council Panel on Distributed Geolibraries, 1999; Hill, 2006) An out-
growth of these efforts was the search for a unified georeferencing approach that 
would not limit searching by location to place name-based referencing. In its 
broadest sense, georeferencing is “relating information to geographic location” 
(Hill, 2006, p. 1). The growth of the World Wide Web as a tool supporting the 
distribution of and search for information has led to an interest in using geo-
graphic references as a way of drawing together all kinds of information—not 
just geospatial data—based on location.
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The Dublin Core Metadata Initiative (DCMI) began with a workshop held 
in Dublin, Ohio, in 1995 that brought together experts on web-authoring tools 
and HTML and library science (Dublin Core Metadata Initiative, 2011). DCMI 
promotes widespread adoption of interoperable metadata standards and devel-
ops specialized metadata vocabularies to facilitate the finding, sharing, and man-
agement of information. Subscribers from more than 50 countries participate 
in the organization. The Dublin Core Metadata Element Set used to describe 
resources has 15 elements, and spatial information is included in the coverage 
element. There are four recommended ways for describing a place in a DCMI 
metadata entry: by the ISO 3166 code for the representation of country names, 
by a listing from the Getty Thesaurus of Geographic Names, by a description of 
a point, or by the description of a box (Table 2.5).

TABLE 2.3. FGDC Content Standard for Digital Geospatial 
Metadata

Metadata content area Content Mandatory

Identification 
information

Basic information about the data set 
including citation, description, time period 
of content, status, spatial domain, keywords, 
and access and use constraints

Yes

Data quality information General assessment of the quality of the 
data set including attribute accuracy, logical 
consistency, completeness, and positional 
accuracy

As applicable

Spatial data organization 
information

Representation of spatial information in the 
data set including direct spatial reference 
method and point and vector object 
information or raster object information

As applicable

Spatial reference 
information

Description of the reference frame for and 
means of encoding coordinates in the data 
set including the horizontal and vertical 
coordinate system definitions

As applicable

Entity and attribute 
information

Information content of the data set including 
the entity types, their attributes, and 
attribute domains

As applicable

Distribution information Basic information about the distributor of 
the data set and options for obtaining it

As applicable

Metadata reference 
information

Description of the metadata information 
including metadata date, standard, metadata 
access and use constraints, and identification 
of responsible party for metadata preparation

Yes
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Among producers of information for the web, there has been growing use of 
geotagging, adding geographical identifiers to HTML meta elements for various 
media types including webpages, RSS (Really Simple Syndication) feeds used to 
publish frequently updated digital content like news feeds, blogs, or podcasts, 
and images like map images and photographs. One or more meta elements in 
HTML can be nested inside head elements and can include information that 
browsers use to find information about the web content. Web developers have 
used a variety of formats for geotags (Ruiz, 2005; Bausch & Bumgardner, 2006).

Other types of spatial referencing approaches are tied to national grid sys-
tems. The National Grid in Great Britain systematically breaks down the area 
covering the region into progressively smaller squares identified by letters and 
numbers (Ordnance Survey, 2011b). The largest unit is 500 kilometers, and it 
takes only four of these squares to cover Great Britain. The smallest grid is 1 kilo-
meter. By estimating positions within a cell of this grid, it is possible to develop a 
grid reference accurate to 100 meters on the ground. The National Grid is based 
on the Universal Transverse Mercator projection, and grid lines can be applied 
to all Ordnance Survey maps of Great Britain at all scales.

The U.S. National Grid, also based on the Universal Transverse Mercator, 
is a similar system that can be used to create addresses in the United States 

TABLE 2.4. ISO 19115 Metadata Core Elements

Metadata element Mandatory Metadata element Mandatory

Data set title Yes Spatial representation type

Data set reference date Yes Reference system

Data set responsible party Lineage statement

Geographic location Online resource

Data set language Yes Metadata file identifier

Data set character set Metadata standard name

Data set topic categorya Yes Metadata standard version

Spatial resolution Metadata language

Abstract Yes Metadata character set

Distribution information Metadata point of contact Yes

Additional extent information 
(Vertical, temporal)

Metadata date stamp Yes

aISO 19115 identifies these topic categories: farming, biota, boundaries, climatologyMeteorologyAtmo-

sphere, economy, elevation, environment, geoscientificInformation, health, imageryBaseMapsEarthCover, 

intelligenceMilitary, inlandWaters, location, oceans, planningCadastre, society, structure, transportation, 

utilitiesCommunication. Topics may be entered with the truncation and capitalization shown as theme key-

words in FGDC metadata records to ensure compliance with ISO standards.



Spatial Data 71

TABLE 2.5. Dublin Core Metadata Elements and Spatial Coverage 
Examples

Element Content Example

Contributor An entity responsible for making 
contributions to the resource.

U.S. Geological Survey National 
Mapping Program

Coverage The spatial or temporal topic of the 
resource, the spatial applicability 
of the resource, or the jurisdiction 
under which the resource is 
relevant. Temporal period may be a 
named period, date, or date range.

Spatial: 
ISO 3166 Code: US

Getty Thesaurus: Connecticut

Dublin Core Point:
east = 1006384.471918; 
north = 787698.776589
units = feet; 
projection = Connecticut State Plane 
Coordinate System NAD83 Feet

Dublin Core Box:
northlimit = 944279.125000; 
westlimit = 730512.187500; 
eastlimit = 1263094.375000; 
southlimit = 554854.687500; 
units = feet; 
projection = Connecticut State Plane 
Coordinate System NAD83 Feet

Temporal:
1968–1994

Creator An entity primarily responsible for 
making the resource.

State of Connecticut, Department of 
Environmental Protection

Date A point or period of time associated 
with an event in the life cycle of the 
resource.

2005 edition

Description An account of the resource in 
the form of an abstract, graphical 
representation, or similar 
information.

Town is a 1:24,000-scale, polygon and 
line feature-based layer that includes 
state, county, and town (municipal) 
boundary features.

Format The file format, physical medium, 
or dimensions of the resource.

Shapefile 604Kb distributed online at
www.ct.gov/dep/gis with Zip compression 
1.35Mb

Identifier An unambiguous reference to the 
resource within a given context.

The name Town identifies the data 
sets in the GIS data sets published 
by the Connecticut Department of 
Environmental Protection.

Language A language of the resource. en [English]

Publisher The entity responsible for making 
the resource available.

State of Connecticut, Department of 
Environmental Protection

(cont.)
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(Terry, 2004). GIS software makes it possible to overlay grid lines on layouts in a 
mapping application (Figure 2.18). Like the National Grid in Great Britain, the 
U.S. National Grid has its origins in military mapping. Problems encountered 
in responding to Hurricane Katrina have provided an impetus to use the U.S. 
National Grid in disaster and emergency planning and response, but its use is 
not yet widespread.

Another system that is used to describe the locations of places in selected 
states in the United States is the Public Land Survey System (PLSS). The PLSS 
does not cover the New England states, coastal states from New York to Georgia, 
Kentucky or Tennessee, Texas, or Hawaii. The system is a rectangular survey 
system in which regions are divided into 6-mile square townships subdivided 
into 1-mile square sections. Township designations indicate location north or 
south of a baseline, and range designations indicate location east or west of a 
principal meridian. The full legal description of a property includes the state, 
principal meridian, township and range designations with directions, and sec-
tion number (nationalatlas.gov, 2010). PLSS designations have a wide range of 
uses, including describing the locations of events relevant to public health. The 
California Pesticide Use Reporting program described in Chapter 6 uses PLSS 
designations to identify the locations where pesticides have been used.

Geographic information technologies have made it easier to assign a range 
of spatial identifiers to describe digital spatial databases and to georeference a 
range of media. These identifiers are used in metadata in a variety of ways, and 
metadata standards continue to evolve. The FGDC, DCMI, and other organiza-
tions involved with metadata have developed software and training materials 

TABLE 2.5. (cont.)

Element Content Example

Relation A related resource. Connecticut Department of 
Environmental Protection GIS Base Map 
data sets

Rights Information about rights held in 
and over the resource.

No restrictions or legal prerequisites for 
using the data. The data are in the public 
domain.

Source The resource from which the 
described resource is derived.

USGS 7.5-minute topographic 
quadrangle maps for the state of 
Connecticut

Subject The topic of the resource. Connecticut—Administrative and 
political divisions—Maps

Title A name given to the resource. Town

Type The nature or genre of the resource. Data set
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FIGURE 2.18. The U.S. National Grid location for the Institute for Community 
Research in Hartford, Connecticut, is 18TXM9367325505. The Institute is located 
in Grid 9325 in the 18T UTM grid zone in the XM 100,000 meter square. Measuring 
right from grid line 93 another 673 meters and up from grid line 25 another 505 meters 
results in the full 10-digit designation. This designation locates a point to an area about 
the size of a parking space.
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to assist data producers in preparing metadata files that meet standards. GIS 
software packages now provide support for metadata preparation in a variety of 
formats.

Conclusion

Many public health professionals and epidemiologists analyze databases that 
contain some geographic information, such as a residential location. Use of these 
data in a GIS requires re-creating the database as a spatial database in a format 
that the GIS software can recognize. As GIS technology has developed, concern 
for the accuracy of spatial databases has grown and efforts have been made to 
develop standards for describing spatial databases that enable users to search for 
and access data, assess the appropriateness and accuracy of the data, and decide 
whether the spatial database can be used to answer the questions the user is 
asking.

GIS implementation involves creation, transformation, and analysis of poten-
tially many spatial databases. In most GIS application areas, however, there are 
a number of “foundation” databases commonly used. The next chapter describes 
these databases and how they have been used in public health and epidemiologi-
cal research.
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CHAPTER 3

Spatial Databases for Public Health

Spatial data sets are fundamental components of GIS. The success of health-
related GIS projects depends critically on having access to accurate, timely, and 
compatible spatial data. For organizations embarking on GIS projects, spatial 
data can be viewed as both a cost and a resource. Developing spatial data sets is 
expensive; it is estimated that well over half the cost of GIS projects goes to data-
base creation, updating, and improvement. Yet, database development is also an 
investment that creates long-term value for organizations and the people they 
serve. Spatial data sets are often useful for addressing a wide range of policy and 
planning issues. Their value extends well beyond the scope of the original proj-
ects for which they were created, and it increases as the data sets are used.

This chapter describes the major types of spatial databases for public health 
GIS. We begin by discussing the concept of foundation data and summarizing 
major types of foundation data sets like geodetic control, digital orthorectified 
imagery, and address-ranged street network data files. We then consider the 
diverse types of population and health data sets that can be incorporated in GIS 
by geocoding data on individual health events or by joining aggregated popula-
tion and health data for areas to spatial databases for mapping and analysis. The 
final sections examine issues related to spatial data integration and sharing.

Foundation Spatial Data

In generating spatial databases for public health GIS, the key linkage among 
data layers is the spatial linkage. Layers are tied together by their common geo-
graphical location. If a house is located a quarter-mile east of a park and adjacent 
to a hospital, these features should appear in the same relative positions in a GIS 
that connects data layers of houses, parks, and hospitals. In a GIS, we cannot 
link the locations of features directly to their positions on the earth since we are 
working at a scale much smaller than the earth. Therefore, spatial data layers 
must be connected to a foundation that makes spatial integration and linkage 
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possible. Foundation data provide a geographical frame of reference to which 
other data layers are tied.

Foundation spatial data are “the minimal directly observable or record-
able data to which other data are spatially referenced” (National Academy of 
Sciences, 1995, p. 16). We use the term here to apply to the spatial data layer 
to which other data layers are linked in a public health GIS project. As in con-
structing a building, the foundation supports the other data layers and defines 
the footprint, or geographic extent, of the GIS database. Many different types of 
spatial data can serve as foundation data, for example, digital imagery from aer-
ial photographs or satellites, street centerline data, or property boundary data. 
These databases differ in their scale, resolution, degree of positional accuracy, 
and ease and cost of use. The choice of a foundation data set will be influenced 
by the scale of the analysis. A study of health problems at the neighborhood scale 
requires foundation data at an equivalent spatial scale.

This section explores the various types of foundation data and their char-
acteristics. National mapping agencies guide the development of foundation 
data in different countries of the world. The discussion that follows focuses on 
geodetic control and foundation databases widely used in the United States. 
The International Cartographic Association website provides an interactive 
map to access contact information for national mapping agency members and 
also offers national reports of mapping activities (International Cartographic 
Association/Association Cartographique International, 2010). The African Geo 
Information Research Network (AGIRN), an initiative of the Human Sciences 
Research Council of South Africa and EIS-Africa, maintains a site with links to 
national mapping agencies in Africa (African Geo Information Research Net-
work, 2011).

Geodetic Control

Geodetic control is a system for registering location information to a set of well-
defined points on the earth’s surface. It includes a set of survey monuments on 
the ground and a reference datum that gives geographic coordinates for those 
monuments based on our knowledge of the size and shape of the earth, as dis-
cussed in Chapter 2. The reference datum is a key feature of geodetic control. In 
North America, the currently accepted reference datum is the North American 
Datum, 1983 (NAD-83). This datum is linked to the World Geodetic System, 
1984, a geodetic control system for geographical coordinate use worldwide. The 
reference datum for North America has changed in recent years. For decades, the 
reference datum was the North American Datum of 1927 (NAD-27), replaced by 
NAD-83 after its publication in 1986. Spatial databases that were created in the 
United States, Canada, and Mexico before the mid-1980s often use NAD-27.

In developing GIS databases, it is critically important that all data layers 
use the same reference datum. Longitude/latitude coordinates based on NAD-
27 and NAD-83 can differ by up to 100 meters in the lower 48 states, leading 
to positional errors and inconsistencies (Keating, 1993). When linking different 
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spatial data layers, analysts should check the reference datums associated with 
each data set and, if necessary, convert all data sets to a common datum. Most 
GIS include commands for converting among NAD-27, NAD-83, and other com-
mon reference datums.

In most GIS applications, geodetic control is not used directly as a founda-
tion data layer. Geodetic control is transparent, never displayed or connected 
with attribute information. However, understanding geodetic control and refer-
ence datums is vital for developing GIS data sets and ensuring consistent, accu-
rate data linkage. In addition, the growing use of GPS receivers for generating 
coordinates heightens the importance of geodetic control because GPS coor-
dinates are directly tied to geodetic control. Furthermore, online systems like 
Google Earth® that are used for mapping incorporate imagery that is tied to 
specific reference datums.

Digital Orthorectified Imagery

Digital orthorectified imagery (DOI) comprises pictures of the earth’s surface 
that show the locations of features like roads, coastlines, and buildings. The pic-
tures are raster images generated from aerial photography or satellite data. Digi-
tal images are encoded records of spectral reflectance or emittance intensity for 
objects or areas. Sensors on satellites record energy reflected from the earth’s 
surface for different wavelengths or “bands” of the electromagnetic spectrum. 
For each band, an individual pixel corresponding to a place on the earth’s sur-
face has a digital number representing the intensity of spectral reflectance.

Image files are generally very large and difficult to store. Compression 
reduces the size of the image file. Lossless compression, as the name implies, 
results in a compressed image that can be reconstructed to produce an image 
identical to the original. Its main advantage is the ability to reconstruct the orig-
inal image. Its main disadvantage is limited compression ratio. Wavelet com-
pression is a lossy compression method, which means that some information is 
lost in order to achieve higher compression rates. The compressed image can-
not be used to reconstruct the original image. A wavelet compression method 
commonly used with geographic imagery is MrSID (Multiresolution Seamless 
Image Database) (LizardTech, 2004). JPEG 2000 is another wavelet compres-
sion technique used with geospatial imagery and many other types of images 
(Taubman & Marcellin, 2002).

Tied to geodetic control to permit matching with other spatial data layers, 
the images have the geometric properties of a map. The information necessary to 
make this tie may be stored in separate so-called world files for use with images 
in MrSID or JPEG 2000 format. The Open Geospatial Consortium has also cre-
ated a metadata standard for georeferencing JPEG 2000 images with embedded 
Geography Markup Language (Open Geospatial Consortium, 2011b). Similarly, 
GeoTIFF image metadata allows georeferencing information to be embedded in 
a TIFF file so that the image displays properly when added to a GIS application. 
The GeoTIFF format is being adopted by a wide range of data providers includ-
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ing the U.S. Geological Survey, SPOT Image Corporation, and other agencies in 
the United States and other countries (Ruth, 2010).

DOI does not incorporate specific feature or attribute information: it simply 
provides an image of some part of the earth’s surface. Identifying and recording 
features on the images requires image interpretation, field checking, or linkage 
with an attribute-based spatial data layer for the area. However, many significant 
landscape features are clearly visible on DOI.

An important kind of DOI for public health GIS is the digital orthophoto-
quarterquad (DOQQ). A DOQQ covers a “quarterquad,” an area roughly 4 miles 

 4 miles, at 1:12,000 scale. Produced by the U.S. Geological Survey in conjunc-
tion with other federal agencies, the DOQQs depict roads, houses, trees, and 
other detailed features (Figure 3.1). With their high resolution and high degree 
of positional accuracy, DOQQs form a useful foundation data layer for localized, 
large-scale public health assessments, such as mapping individual exposures to 
environmental contaminants. Other data layers can be matched to the DOQQs 
for detailed mapping and analysis.

The National Agriculture Imagery Program (NAIP), which began in 2003, 
is a source for high-resolution aerial photography imagery acquired during the 

FIGURE 3.1. A portion of a digital orthophotoquad for the area around downtown 
Hartford. The dark area running north–south just east of the center of the view is the 
Connecticut River. The town boundary between Hartford to the west and East Hart-
ford is the center of the river.
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agricultural growing seasons for the continental United States (U.S. Department 
of Agriculture, 2010). NAIP imagery is acquired at one-meter ground sample 
distance. The imagery shows “leaf-on” conditions with no more than 10% cloud 
cover per quarterquad tile. Images correspond to the USGS quadrangles and 
are distributed in GeoTIFF format. The program makes imagery available to 
government agencies and the public within a year of acquisition. Many public 
agencies and private entities at every level are using these data for mapping, land 
classification, environmental monitoring, and a wide range of other activities 
including public health and safety (U.S. Department of Agriculture, 2008).

Smaller scale DOI includes satellite imagery from systems like SPOT and 
Thematic Mapper. Satellite images typically cover scales ranging from 1:50,000 
to 1:100,000 at positional accuracies ranging from ± 25 meters to ±70 meters 
(Keating, 1993). Although scale and positional accuracy vary widely across sat-
ellite imagery, generally the images show major features such as roads, rivers, 
fields, and water bodies (Figure 3.2). As in other forms of imagery, features are 
not labeled or identified. However, methods for digital image interpretation that 

FIGURE 3.2. A portion of the land cover database for the area around downtown 
Hartford derived from Thematic Mapper Imagery. The areas shaded dark gray were 
classified as commercial/industrial/transportation. The areas shaded medium gray 
were classified as residential. The areas shaded light gray were classified as urban/
recreational grasses. The areas shaded white were classified as open water. This figure 
shows roughly the same area as Figure 3.1.
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distinguish land use/land cover features based on their distinct spectral char-
acteristics are well developed and available in specialized computer software 
(Jensen, 2005). Some visible features in a satellite image vary seasonally because 
of changes in vegetation and precipitation. Cloud cover can also obscure fea-
tures, complicating the interpretation of satellite images. In choosing a satellite 
image, the analyst should think through carefully the appropriate time of year 
for the image and the maximum allowable cloud cover. Detailed information is 
available for satellite imagery covering the United States to aid the analyst in 
selecting useful images (U.S. Geological Survey, 2010a).

Satellite images offer an important foundation data layer for regional-scale 
health analyses covering states or parts of states and for local analyses. The 
images have been widely used in displaying and analyzing land use, land cover, 
and natural resource patterns. In the public health field, the images have been 
utilized to analyze and predict outbreaks of vector-borne diseases such as Lyme 
disease (Glass et al., 1995; Ford et al., 2009).

Digital Line Graphs

Vector data also provide a foundation for regional-scale GIS development. Digi-
tal Line Graphs (DLGs) are vector databases that show transportation lines, 
water bodies, political boundaries, and elevation contour lines. Unlike imagery, 
DLGs include attribute information. Attribute codes describe the physical and 
cultural characteristics of points, lines, and areas on the DLG. DLGs are derived 
from the large- and intermediate-scale topographic maps created by the U.S. 
Geological Survey. They exist for all of the United States, excluding Alaska, at a 
scale of 1:100,000 (U.S. Geological Survey, 2010b). Large-scale DLGs, generated 
from the 7.5-minute topographic maps, have been created for many areas of the 
United States (Figure 3.3).

One concern in using DLGs is the accuracy and recency of attribute infor-
mation. The sources of information for DLGs are topographic maps which may 
be years out of date. The Geological Survey has updated its topographic map 
series through a procedure known as “limited update,” focusing on features that 
are most likely to have changed such as roads and hydrography (Lemen, 1999). 
DOQQs from aerial photography are the basis for limited update revisions. 
The efficient, limited-update procedure has generated more timely information 
for topographic maps and DLGs, but time lags, naturally, exist. For GIS, these 
issues are especially relevant in communities experiencing rapid population and 
commercial development where feature and attribute information changes fre-
quently.

As the national topographic mapping program of the United States has 
developed, data in DLG format are being incorporated into a new generation 
of topographic maps and spatial data products built in collaboration with local 
and state agencies. For example, DLG data have been used in the creation of the 
National Hydography Dataset. This and other data layers are available as part of 
The National Map and its developing Digital Map program (U.S. Geological Sur-
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vey, 2010b). These new spatial data products will be, like DLGs, used in health 
applications of GIS in the future.

TIGER/Line® Data

Another form of vector foundation data, compiled at 1:100,000 scale, is TIGER/
Line data. The Topologically Integrated Geographic Encoding and Referenc-
ing (TIGER) data set was developed for the 1990 census (Marx, 1986). Since 
1990, the TIGER/Line database has evolved into the MAF/TIGER® (Master 
Address File/Topologically Integrated Geographic Encoding and Referencing)
database, which is the Census Bureau’s set of digital files storing all of the geo-
graphic and attribute data necessary to conduct the census. The MAF portion 
contains a record for each potential housing unit. The TIGER portion contains 
all of the points and lines identifying the features used to form the areas for 
which the Census Bureau tabulates data. TIGER/Line data are an extract of 
selected geographic and cartographic information from the MAF/TIGER data-
base (U.S. Census Bureau, 2009a). MAF/TIGER also included a redesign of the 
original TIGER/Line files database (U.S. Census Bureau, 2005). Although ear-
lier versions of TIGER/Line data were distributed in Vector Product Format and 

FIGURE 3.3. A portion of the 1:24,000 digital line graph database for the area 
around downtown Hartford, including roads, hydrographic features, and town bound-
aries. This figure shows roughly the same area as Figure 3.1.
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required special utilities to convert them to formats that could be used in GIS 
software, TIGER/Line data have been converted to shapefile format in prepara-
tion for the 2010 census (Table 3.1). Various versions of TIGER/Line data and 
technical documentation can be downloaded from the census website. TIGER/
Line data have been used widely in population, health, political, and transporta-
tion mapping.

TIGER/Line shapefiles may contain landmark point features, line features 
including street centerline data and other line features like political boundaries 
or rivers forming boundaries of census areas, or area features including states, 
counties, and census tracts. Depending on the data, shapefiles can be down-
loaded for the entire nation, a state, or a county within a state. Shapefiles con-
taining line segments are distributed for individual counties (Figure 3.4). For 
TIGER/Line segments that are street centerlines, attributes for the left- and 
right-hand sides of the street segment are coded. These include a wide range of 
attributes for each side: street name, address range, ZIP Code, census and politi-
cal unit identifiers, and congressional district identifiers.

A major benefit of the TIGER/Line files is that they provide a connection 
between street address ranges and locations on the ground. This makes it pos-
sible to locate or geocode address-based information such as hospital discharge 
records, birth certificates, and clinic locations. However, the TIGER/Line files 
do not record a precise location for each address, just an address range along a 
street segment; therefore, address locations can only be approximated by inter-
polation, as described later in this chapter. This may pose a few problems in 
urban and suburban areas where addresses are spread relatively evenly along 
street segments, but in rural areas TIGER/Line files should be used with caution 
for locating addresses if a high degree of positional accuracy is required.

Despite their wide coverage and applicability, the TIGER/Line files have 
had several important limitations. First, street and address coverage is incom-
plete and in some cases inaccurate in earlier versions of the data. Streets may be 
missing or misnamed. Address ranges may be missing, include incorrect values, 
or identify the wrong side of the street. These problems are especially relevant 
in rapidly growing communities where new residential development has taken 

TABLE 3.1. Selected Shapefile Components

File extension Content Status

.shp Geographic feature geometry Mandatory

.shx Index of feature geometry Mandatory

.dbf Attribute table with variables describing features Mandatory

.sbn Spatial index of features Optional

.prj Description of coordinate system and projection Optional

.shp.xml Metadata in XML format Optional
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place. Many local governments enhanced and improved the TIGER/Line files 
for their local areas, and this information has been used to update TIGER in the 
years following its introduction (Sperling, 1995).

A second problem is that the positional accuracy of TIGER files as they were 
originally developed from multiple sources was unknown and varied from place 
to place. Positional accuracy of the original TIGER files was “no greater than the 
established National Map Accuracy Standards for 1:100,000-scale maps” (U.S. 
Census Bureau, 1992), and the files were logically consistent, but positionally 
inaccurate for large-scale mapping in some cases. These positional inaccuracies 
have implications for health studies. They may be of little consequence for a 
study of lead screening programs, for example, but extremely important in ana-
lyzing a problem like radon exposure.

Finally, TIGER data layers often did not match perfectly with layers gener-
ated from DLGs or DOQQs. Rubbersheeting techniques—techniques to adjust 
features to a foundation data layer—were often needed to combine TIGER data 
with data from other sources. Rubbersheeting is discussed in greater detail in 
the section on database integration later in this chapter.

In response to these problems, the Census Bureau has worked with various 
state and local agencies to improve the quality of address range information and 

FIGURE 3.4. A portion of the TIGER/Line database showing road features in the 
area around downtown Hartford. This figure shows roughly the same area as Figure 
3.1.
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the positional accuracy of the TIGER/Line files for the 2010 census (Figure 3.5). 
The MAF/TIGER Accuracy Improvement Project, completed in 2008, resulted 
in the realignment of many, though not all, features based on data submitted by 
local and state agencies, imagery, and GPS data collected in the field (U.S. Cen-
sus Bureau, 2009a). Even before these improvements, the TIGER/Line database 
has been one of the most important and widely used foundations for GIS-based 
health and socioeconomic analysis. Furthermore, the development of TIGER has 
prompted commercial firms to sell corrected and updated versions of the data. 
In fact, many GIS software packages come bundled with TIGER-based spatial 
data to facilitate mapping of census data. In developing a TIGER-based database 
for a GIS, it is well worth seeking out the most accurate and updated version. 
Analysts should also make sure that data used for geocoding health events is 
consistent with the data used for mapping census data by census tracts or other 
units so that health events will be correctly allocated to areas.

Cadastral Data

Another source of address-based spatial data that is generally more accurate than 
TIGER/Line for small geographic areas is cadastral information. Cadastral data
are data associated with land ownership, and they are a matter of public record 

FIGURE 3.5. Overlaying street segments from the 2009 edition of the TIGER/
Line database and street segments from the 2000 edition shows improvements in the 
positional accuracy of the data.
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in the United States. Cadastral features are not visible on the ground, but are 
legally defined to specify ownership and administration of land parcels (Huxhold 
& Levinsohn, 1995). Digital cadastral data files contain property boundaries and 
a wide range of attribute data including land title, address, sale/resale informa-
tion and building type, size, and characteristics (Figure 3.6). Property boundar-
ies are stored in a vector format, with property attributes attached. Because the 
files describe land ownership, they often have a high degree of positional accu-
racy and represent large spatial scales—1:12,000 or larger. Address information 
is generally accurate and complete. Cadastral data also show street widths and 
thus better depict the built environment of a local area than do TIGER/Line 
files.

Despite these advantages, cadastral data have important limitations. 
Although most communities collect and maintain cadastral spatial data, conver-
sion to digital form has been a relatively recent development. Some communi-
ties still rely on paper maps and written descriptions of property boundaries, 
some decades old. Furthermore, the quality and accuracy of cadastral data vary 
widely, depending on the recency and quality of the surveying or historical infor-
mation on which it is based. Errors can creep into cadastral databases over time 

FIGURE 3.6. A portion of a cadastral database for the area around downtown Hart-
ford. The figure shows roughly the same area as Figure 3.1. Property databases are 
generally maintained by local governments, so this database covers only Hartford and 
does not include properties in East Hartford.
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depending on how well the registry is kept as boundaries are resurveyed, land-
scape change occurs, and properties are subdivided. In addition, communities 
use different formatting systems for digital cadastral information and capture 
different attributes, so conducting studies across community boundaries can be 
challenging. Efforts are currently underway to develop common standards for 
cadastral information. Cadastral data files can also be large, unwieldy, expensive 
to create, and unnecessarily detailed for some kinds of spatial analysis. Network 
models such as those discussed in Chapter 10, for example, require transporta-
tion routes to be represented as arcs, as in TIGER, rather than as double lines. 
Still, cadastral data offer an excellent foundation for address-matching and map-
ping in small areas.

Choosing a Foundation Database

The foundation data sets described in this section each offer a unique set of 
advantages and disadvantages for public health GIS. They differ in scale, reso-
lution, positional accuracy, and display of features, as well as in their raster or 
vector structure. They are also evolving over time.

The choice among foundation data sets depends on the scale and scope of 
the project, the resources available for data creation, and the types and scales 
of other data sets to which the foundation data will be linked. Projects that are 
national or regional in scope are more likely to utilize intermediate scale founda-
tion data such as satellite imagery, DLGs, and TIGER/Line data. In contrast, 
studies of single communities or neighborhoods can take advantage of the detail 
and positional accuracy of cadastral data and DOQQs.

Population Data

Foundation data create a platform for integrating spatial data layers that contain 
population and related health, social, and environmental information frequently 
used in health applications of GIS. The TIGER/Line files store spatial informa-
tion for the geographical units the Census Bureau uses in tabulating and pub-
lishing the population data it collects. An understanding of census geography is 
important for any public health analyst who uses data compiled by the Census 
Bureau (U.S. Census Bureau, 2008a). Not all of the population data tabulated by 
the Census Bureau is published for every level of census geography (Peters & 
MacDonald, 2004).

The smallest unit is the census block, and each block is bounded by a set 
of connected street segments or other linear features such as rivers, railroad 
tracks, or municipal boundaries (Figure 3.7). A block group is a cluster of blocks, 
typically containing from 600 to 3,000 people. Census tracts comprise groups of 
contiguous blocks (and block groups) and have populations ranging from 1,200 
to 8,000. TIGER shapefiles are also available for state, county, and local political 
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FIGURE 3.7. Geographic subdivisions for the U.S. Census. The smallest unit is the 
block. Each county is divided into census tracts, which are divided into block groups, 
and then into blocks. The first digit of the census block identifier corresponds to the 
block group.
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boundaries, along with ZIP Code boundaries. As described in another section 
in this chapter, database tables describing the population, health, and socioeco-
nomic attributes of these areas can be joined to databases describing the geog-
raphy of the areas.

The hierarchy of census units in relation to other political and administra-
tive units is complex, given the federal nature of the U.S. system of government 
(Figure 3.8). Census blocks, block group areas, and tracts nest perfectly within 
counties, but other local areas do not necessarily follow this pattern. In addition 
to data provided for counties, data are provided for places or minor civil divisions 
that are legally incorporated and bounded areas such as cities, towns, and vil-
lages. Census blocks nest perfectly within these units. Census block group and 

FIGURE 3.8. Hierarchical relationships of census and political or administrative 
areas in the United States for the 2010 census. Census block group areas and census 
tracts nest within counties, but their boundaries overlap the boundaries of many other 
political and administrative entities.
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tract areas, however, do not always nest perfectly within places or minor civil 
divisions. Places may cut across county boundaries.

In some cases, census tracts may coincide with areas where many residents 
live in group quarters like prisons, military bases, or colleges and universities. 
Because these residents often differ from the general population in terms of age 
and sex and residential mobility, it is important in health applications of GIS to 
make explicit decisions about how to include group quarters populations. The 
population of a college town such as Mansfield, Connecticut, where the main 
campus of the University of Connecticut is located, is very different during the 
academic year than during the summer months (Figure 3.9).

In the United States, a complete enumeration of the population is conducted 
every 10 years, as mandated by the Constitution for the purposes of apportioning 
seats in Congress. Beginning with the 2010 census, the American Community 
Survey, a program initiated after the 2000 census for providing more up-to-date 
census data during the intercensal period, will be fully operational. The Census 
Bureau provides information on the dates of censuses conducted or scheduled in 
other countries from 1945 to 2014 (U.S. Census Bureau, 2008b) and links to sta-
tistical agencies in other countries responsible for population data (U.S. Census 
Bureau, 2010a).

Health Data

This section describes some of the major types of health information that can be 
incorporated in GIS for health planning, evaluation, and research. Our aim is to 
introduce these data sets and highlight geographical issues that affect data use 
and integration in GIS. Detailed discussion of the content of these data sources 
is available elsewhere (Halperin & Baker, 1992; Parrish & McDonnell, 2000; 
Huber, Boorkman, & Blackwell, 2008).

Registration System Data

VITAL STATISTICS

Local governments in the United States and other countries routinely collect 
information on all births and deaths that occur in their jurisdictions. These 
vital records are an important source of spatial data for public health GIS. Birth 
records document a wide range of conditions that affect newborn infants, includ-
ing birthweight, gestational age, congenital malformations and obstetric proce-
dures, along with the mother’s demographic and social characteristics and her 
use of prenatal services (Friis & Sellers, 2009). Information about the infant 
and the birth process is generally accurate, but data for the mother, especially 
data based on recall of timing and events during pregnancy, can have errors and 
inconsistencies. Still, birth data offer a nearly complete summary of basic mater-
nal and infant health indicators for the population.
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FIGURE 3.9. One census tract area from the 2000 census in the town of Mansfield 
has a large group quarters population because the University of Connecticut’s main 
campus is located there. The size and age–sex structure of the town’s population dif-
fers significantly depending on whether the tract where the university is located is 
included.
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Birth records include the mother’s residential address, a geographical iden-
tifier for GIS mapping and analysis. This information has been used to study 
environmental and neighborhood influences on maternal and infant health, for 
example, the effects of proximity to prenatal care services on prenatal care use 
and birth outcomes (McLafferty & Grady, 2004) or the clustering of birth defects 
in relation to hazardous waste sites (Rushton & Lolonis, 1996).

Health departments also collect and report data on deaths in mortality 
records. Generated from death certificates, these data include demographic char-
acteristics of the decedent and information about the cause of death, including 
the immediate cause and contributing factors (Friis & Sellers, 2009). Although 
demographic information is typically accurate, there are well-known problems 
with cause-of-death information stemming from errors and inconsistencies in 
diagnosis and difficulties in assigning causes when multiple causes are present 
(Garbe & Blount, 1992). Death certificates include two types of address-based 
geographic data: the place of death and the usual residence of the decedent. The 
place of death is often a hospital, nursing home, or other health care facility. This 
information can be used in analyzing health outcomes and service utilization by 
facility. In contrast, residential addresses provide a means for linking the resi-
dential environment to mortality outcomes.

Address-based vital statistics information presents several challenges to the 
GIS researcher. Addresses may be incorrectly coded, making it impossible to 
identify geographic locations. In a study of birth defects in Des Moines, Iowa, 
8% of birth records could not be geocoded because of errors in the addresses and 
“P.O. Box” and “rural route” style addresses (Rushton & Lolonis, 1996), although 
geocoding using parcel or E911 data may increase the match rate (Mazumdar, 
Rushton, Smith, Zimmerman, & Donham, 2008). Also, because of privacy and 
confidentiality concerns, many health departments do not release address infor-
mation (Istre, 1992). They only provide data in aggregate form, by ZIP Code, 
district, or census tract, making it impossible to analyze point locations. Finally, 
even if current residential address information is correct, it may not accurately 
represent the environment of the person before and during pregnancy or prior 
to death because the relevant exposure may have occurred someplace other than 
the residence (see Chapter 6). This is particularly problematic for mortality data, 
given that the conditions that lead to death can result from lifelong exposures 
and behaviors.

MORBIDITY DATA FROM SURVEILLANCE SYSTEMS

AND DISEASE REGISTRIES

Looking beyond life’s vital events, morbidity data are an essential source of infor-
mation for public health GIS. Disease surveillance involves monitoring distribu-
tions and trends in morbidity and mortality data collected for a specified popu-
lation and geographical area. There are many kinds of morbidity data, ranging 
from information gathered by government agencies and health care providers to 
information from survey research projects. These data differ greatly in content, 
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coverage of the population, and geographic scale at which they are normally 
available.

Reportable disease data provide information on morbidity and mortality 
for certain “reportable” health conditions. Infectious disease has always been 
an important focus of public health surveillance in the United States (Centers 
for Disease Control and Prevention, 2008b). Authority to require notification 
of cases of disease resides in state legislatures, and there is considerable varia-
tion in state provisions. All 50 states require physicians to report cases of speci-
fied notifiable diseases to state or local health departments. Notifiable disease 
reports and vital records are the two health data sources available at the local 
level in all states.

The National Notifiable Diseases Surveillance System is operated by the 
Centers for Disease Control and Prevention (CDC) in collaboration with the 
Council of State and Territorial Epidemiologists (CSTE). Reporting by the states 
to the national system is voluntary. States generally also report internationally 
quarantinable diseases (cholera, plague, yellow fever) in compliance with World 
Health Organization (WHO) International Regulations. There are approximately 
50 infectious diseases designated as notifiable at the national level (Council of 
State and Territorial Epidemiologists, 2009). The list of nationally reportable 
infectious diseases and other conditions changes periodically, and reporting 
practices may differ from state to state (Roush, Birkhead, Koo, Cobb, & Flem-
ing, 1999).

In addition to notifiable disease reports by providers such as physicians, 
hospitals, and laboratories, key data sources for infectious disease reporting in 
the United States include sentinel systems, hospital surveillance, school surveil-
lance, special surveys at the state and local level, vital records, and vector/host 
surveillance for zoonotic diseases. Sentinel health events are cases of illness 
that signal a need for immediate public health intervention or serve as a warn-
ing of hazardous conditions or poor quality medical care. A case of polio, for 
example, might signal a breakdown in the quality of immunization programs. A 
number of limitations of the current surveillance system have been described 
(Birkhead & Maylahn, 2000). The fragmentation of the system and voluntary 
reporting requirements affect the completeness of surveillance data. Generally 
the reporting system is thought to work well for diseases that are serious, have 
clear symptoms, and require medical attention. However, coverage is incomplete 
for conditions that can be asymptotic (tuberculosis), that do not necessarily com-
pel medical treatment (animal bite, gastroenteritis), or that carry social stigma 
(HIV/AIDS) (Friis & Sellers, 2009).

Underreporting of infectious disease conditions may be explained by a num-
ber of factors, including provider lack of awareness of reporting requirements. 
The level of public concern also affects disease reporting. Infectious diseases 
that carry some social stigma may be concealed. For many infectious diseases, 
symptoms are either too mild to prompt a person to seek medical care or mimic 
flu-like symptoms associated with other common illnesses. For others, particu-
larly emerging infectious diseases, the etiological definition may be incomplete 
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or the case definition for surveillance purposes may be inadequate. “What is a 
case?” is not a trivial question. There may be differences of opinion about the 
criteria for defining a case of a disease. Sometimes, case identification requires 
laboratory confirmation. In addition, case definitions change with changes in sci-
entific knowledge. Changes in case definitions over time have an impact on what 
is included in the surveillance database, as discussed in Chapters 7 and 8.

Active surveillance systems obtain data by searching and periodic con-
tact with providers. Passive surveillance systems rely on reports by providers. 
Because of the costs associated with active surveillance, this type of system is 
often used strategically in limited areas or for limited time periods. Evaluation 
of active surveillance systems indicates two- to fivefold increases in reporting of 
specified diseases and other conditions not subject to active surveillance (Vogt, 
LaRue, Klaucke, & Jillson, 1983; Thacker et al., 1986). Surveillance method, 
therefore, has implications for completeness of the data, an important dimen-
sion of spatial database quality. Active surveillance systems offer a mechanism 
for completing and correcting information from the reportable disease record 
including address data used as geographical identifiers.

To protect privacy and confidentiality, federal agencies only release report-
able disease statistics at the county level. Different policies exist in lower levels of 
government: some state or local health agencies will make information available 
for smaller geographic areas, or even by address, as long as the analyst agrees to 
maintain privacy and confidentiality. When address information exists, its accu-
racy can be problematic. Addresses may be missing or inaccurately coded. In an 
epidemiological study of reported rat bites in New York City, for example, almost 
40% of bite reports had missing or incorrect address information and could not 
be geocoded (Childs et al., 1998).

Disease registries are centralized databases for the collection of informa-
tion on specific diseases, the best examples being the cancer registries managed 
by state and local health authorities (Friis & Sellers, 2009). Disease registries use 
a reporting system similar to that for reportable diseases, with health providers 
reporting occurrences to the appropriate state or local registry. Some disease 
registries actively seek out case information, while others simply gather reports. 
Furthermore, some registries keep longitudinal information, following patients 
after diagnosis in order to track changes in health status and treatment regimes.

Cancer registries, the most extensive disease registries in the United States, 
offer a potentially valuable source of information for GIS analysis. Currently, 
all 50 states and a number of localities in the United States maintain cancer 
registries, some of which have existed for decades, funded through the CDC’s 
National Program of Cancer Registries (NPCR) or the National Cancer Institute’s 
Surveillance, Epidemiology, and End Results (SEER) program, or both (Centers 
for Disease Control and Prevention, 2011a). At the national level, the SEER pro-
gram is an umbrella organization for a network of cancer registries that cov-
ers about 26% of the U.S. population. SEER includes active follow-up of living 
patients and is used to generate national estimates of overall cancer incidence 
and breakdowns by gender, race, age, and geographic location (National Cancer 
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Institute, 2011a). The North American Association of Cancer Registries promotes 
uniform data standards for cancer registration and the use of cancer surveillance 
data (North American Association of Central Cancer Registries, 2011). As with 
the other types of health data, registries include residential address information, 
and organizations like the North American Central Cancer Registries (NAACR) 
have developed valuable guidelines for geocoding health data (Goldberg, 2008).

The information in health databases and disease registries is protected by 
laws governing privacy and confidentiality. Some states will release addresses for 
research studies as long as appropriate measures are taken to ensure confiden-
tiality; however, once again, policies differ among states. Other problems with 
address information arise from changes and errors in the coding and formatting 
of addresses.

Surveillance systems and disease registries have been sources of data for 
many GIS case studies but very few statewide surveillance systems or registries 
have been fully linked to GIS (Devasundaram, Rohn, Dwyer, & Israel, 1998; 
Cromley, 2000; South Carolina Vital Record and Statistics Integrated Informa-
tion Systems Project Team, 2005). Implementation of a statewide or national 
surveillance system in GIS increases the likelihood that the case database will 
include cases identified using different case definitions and surveillance meth-
ods. To address this problem, case definition and surveillance method should be 
included as fields in a surveillance database.

Survey Data

To address a broader range of health issues than covered in standard vital sta-
tistics and morbidity data sets, public health researchers often turn to health 
survey data. Surveys deal with a diverse array of health-related topics, topics 
that are beyond the scope of disease reporting systems and transcend biomedi-
cal concerns. Health surveys investigate health-related behaviors, psychosocial 
well-being, nutritional status, stress, and individual, family, and neighborhood 
circumstances that affect health. The major national surveys in the United States 
include the National Health and Nutrition Examination Survey (NHANES) and 
the National Health Interview Survey (NHIS). These surveys ask a detailed set 
of questions to a small, representative sample of the U.S. population. NHANES 
focuses on physiologic measures, measures of body weight and stature, and nutri-
tional assessments. It has been conducted in several cycles since the early 1970s 
(Centers for Disease Control and Prevention, 2009a). NHIS, administered annu-
ally since 1957 with the U.S. Census Bureau serving as the data collection agent, 
collects information on health risk factors, chronic conditions, injuries, impair-
ments and health service utilization, based on household interviews (Centers for 
Disease Control and Prevention, 2011b).

The purpose of these surveys is to develop a national picture of the health 
status of the population. Not every place is sampled. NHANES uses a four-stage 
sampling procedure. In stage 1, primary sampling units or PSUs are selected. 
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These are usually single counties but may be groups of contiguous counties. 
Samples are selected with probability proportional to size. In stage 2, the PSUs 
are divided into smaller areas called segments generally equivalent to city 
blocks, and segments are selected with probability proportional to size. In stage 
3, within each segment, households are listed and selected by random sample. 
In geographic areas with high proportions of adolescents and elderly, minorities, 
and low-income whites, households are oversampled. In stage 4, individuals are 
chosen from a list of all persons in selected households. The NHIS uses a simi-
lar multistage design to sample individuals in all 50 states and the District of 
Columbia. Given the purpose and sample design of these surveys, they provide 
data primarily at the national level.

By the early 1980s, the need for more data on health risk behaviors at the 
state level led the Centers for Disease Control and Prevention to develop the 
Behavioral Risk Factor Surveillance System (BRFSS) (Centers for Disease Con-
trol and Prevention, 2009b). Initially, 29 states participated in the program and 
conducted telephone surveys of the adult population. By 1994, all states, the 
District of Columbia, and several territories were participating. In addition to a 
core set of questions, BRFSS includes a set of modules addressing specific health 
risk behaviors and provides the opportunity for individual states and territories 
to add state-specific questions.

Although some states from the outset developed telephone sampling designs 
that would make it possible to report results for selected areas below the state 
level, BRFSS provides primarily state-level data. In response to demand for 
more local-level data, the BRFSS SMART program offers data for selected met-
ropolitan areas and small cities with 500 or more BRFSS respondents. Through 
the BRFSS Maps site, users can download shapefiles to which BRFSS data for 
individual survey years have been joined (Centers for Disease Control and Pre-
vention, 2009b).

Other countries have developed and implemented similar health surveys. 
The Health Survey for England, for example, is a series of annual surveys con-
ducted since 1991 (U.K. Department of Health, 2011). Studies comparing these 
surveys have highlighted differences in methodological approaches (Aromaa, 
Koponen, Tafforeau, Vermeire, & the HIS/HES Core Group, 2003). Despite these 
differences, the surveys provide data for international comparative research.

Surveys are also used to screen for problems like lead poisoning, PKU, 
and hypertension. Screening surveys are proactive public health activities that 
attempt to uncover health problems before symptoms appear, when the prob-
lems are difficult and expensive to treat. Screening surveys differ in the range 
and nature of population covered. Some cover the full population, as in screen-
ing of newborns for PKU, and thus can be used to estimate incidence rates and 
create maps of geographic variation in incidence. By contrast, many screening 
surveys only target high-risk populations and people likely not to have been 
screened as part of their regular health care. Estimates and maps prepared from 
such surveys only pertain to the screened population. Reported incidence will 
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naturally be higher in areas where more people were screened, and GIS can be 
used to explore geographic variation in screening penetration, the percent of 
risk population screened.

Health Care and Health Care Utilization Data

Medical care provision generates large quantities of information on patients and 
the treatment they receive, and secondary use of administrative data is made in 
many health studies. Most medical care providers and insurers maintain data 
on residential addresses of patients. The geographical organization of health 
care affects health care utilization, as discussed in Chapters 9 and 10. Neverthe-
less, data on the locations of medical care providers and the health problems of 
patients they treat are important sources of data for GIS applications.

HEALTH PROVIDER DATA

Health service information forms another valuable spatial data layer for pub-
lic health GIS. Most health care providers—hospitals, physicians, clinics—offer 
their services from fixed locations and can be represented as point spatial data. 
A few health services, such as emergency medical services and mobile clinics, 
move from place to place and thus can be modeled as arc or network infor-
mation. Beyond location, many other dimensions differentiate health services, 
including price, capacity, utilization, range of services provided, and the elusive 
quality of care.

Information about the locations and characteristics of health care providers 
is widely available. Gazetteers include geographical coordinates for major health 
facilities such as hospitals. These coordinates can be imported into GIS for map-
ping and display; however, one must be careful that the location coordinates use 
the same scale and projection system as the foundation data layer to which they 
will be linked. One shortcoming of gazetteers is that they do not include data on 
the characteristics of health service facilities. Such information must be brought 
in from other sources and linked to the facility sites.

Detailed information on health care providers comes from professional 
organizations like the American Hospitals Association (AHA) and the American 
Medical Association (AMA) and, increasingly, from commercial marketing data-
base providers like InfoUSA. The AHA publishes an annual directory of hospi-
tals that includes statistics on utilization, personnel, services, and finances for 
hospitals in the United States (American Hospital Association, 2009). Included 
in the directory is each facility’s street address, which can be geocoded to a point 
location. Similar kinds of directories exist for nursing homes and mental health 
facilities.

For physicians, the AMA’s Physician Masterfile offers analogous information 
and includes addresses that can be geocoded to identify point locations (Ameri-
can Medical Association, 2011). A directory of physicians based on data from the 
Masterfile is also available (American Medical Association, 2009). The Master-
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file covers the vast majority of physicians, but certain important subgroups may 
be missing, for example, doctors who earned medical degrees outside the United 
States whose practices are often clustered in immigrant neighborhoods. As with 
other types of health data, the release of data on providers raises privacy and 
confidentiality concerns. Physicians have protested the sale of their data to busi-
nesses, including pharmaceutical companies (Saul, 2006). State laws prohibiting 
the sale of doctor-specific prescription drug data are being tested in the federal 
courts (Saul, 2008).

Data for other types of health care providers are often harder to come by. 
Health clinics, for example, are operated by federal, state, and local governments 
as well as voluntary organizations. Each type of agency maintains a list of its own 
clinics, but there may be no composite listing of facilities in an area. It may be 
necessary to piece together information from multiple sources or conduct field-
work to uncover all health service locations. Despite these challenges, creating 
spatial data layers for health care providers is generally easier than preparing 
health and foundation data layers. Health services are limited in number, exist 
at discrete locations, and change relatively slowly over time, making them more 
manageable to deal with in a GIS context.

HEALTH CARE UTILIZATION DATA

Hospitals generate large quantities of spatial information on patients treated in 
their inpatient and outpatient facilities. These hospital discharge data provide 
an important base for examining hospital utilization and treatment patterns, 
though they are generally inadequate for population-based studies of morbidity 
because they are restricted to patients treated in hospitals. The large literature 
on small-area variations in the rates of medical and surgical procedures relies 
primarily on hospital discharge data (Wennberg & Gittelsohn, 1982), and the 
data sets are widely used in health policy analysis and planning. Included in 
the data sets are demographic information about the patient, primary and sec-
ondary diagnoses, diagnostic procedures, treatment procedures, length of stay, 
and insurance status. Hospital discharge data contain the patient’s residential 
address, but that information is rarely released due to privacy considerations. 
Instead, hospital data can usually be obtained at the ZIP Code level, because 
ZIP Codes are part of the address and thus convenient geographical identifiers 
for the release of hospital information.

This section has described several important, widely available health data 
sets that can be incorporated in public health GIS. The data sets address a cross 
section of public health issues and offer a framework for diverse geographical 
investigations. Increasingly these information resources are available on elec-
tronic media, including Internet, and are readily accessible to users in a wide 
variety of settings (Lacroix & Backus, 2006). Many other health data sets exist. 
We have not even mentioned the vast proprietary databases held by health insur-
ance companies or the specialized data sets in areas such as occupational, veteri-
nary, and environmental health (Weise, 1997).
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Spatial Resolution of Health Data

Regardless of which data sets are used, the spatial resolution of the data is cru-
cial for GIS applications. Although all health data sets deal fundamentally with 
individuals and usually include address information, none routinely release those 
detailed geographical identifiers because of important privacy and confidential-
ity considerations. Thus, the analyst is typically faced with using health data that 
are aggregated to predefined geographical units, such as counties, ZIP Codes, 
or census tracts. This raises important substantive issues, as well as significant 
methodological issues as discussed in Chapter 5. Substantive issues concern the 
validity and usefulness of particular areal units for public health planning and 
analysis.

Most data from federal health agencies are available at the county level. 
Although counties are generally good geographical units for displaying health 
data at the national scale, they have important limitations (Croner, Pickle, Wolf, 
& White, 1992). Counties are administrative, political units that bear little rela-
tionship to areas defined according to socioeconomic, demographic, or environ-
mental criteria. Counties often encompass diverse physical environments and 
heterogeneous populations. Moreover, the areas differ greatly in population size 
and areal extent. Counties large in area visually dominate the national map, 
despite the fact that they may have tiny populations. Small urban counties can 
hardly be seen on a national map, though they have huge populations. Thus, 
counties are not comparable to one another, and they have little basis in popula-
tion and environmental factors relevant to public health. By comparison, census 
tracts, defined by the Census Bureau for tabulation purposes, are more similar 
than counties in population size and follow moderately well the fuzzy boundar-
ies of social, economic, and ethnic areas.

ZIP Codes, commonly used for the tabulation of health data, have prob-
lems analogous to those for counties. Originally, ZIP Codes were devised by 
the U.S. Postal Service to facilitate mail delivery, each ZIP Code representing 
a collection of mail distribution points. The areas have little correlation with 
socially and environmentally defined areas. In cities, some ZIP Codes encom-
pass neighborhoods with highly divergent economic and social characteristics. 
For instance, one ZIP Code in New York City includes census tracts whose 
1990 median incomes ranged from $15,000 to $42,000, a threefold difference. 
A health statistic for such a ZIP Code would represent an “average” of statistics 
for two very different population groups. Another problem is that ZIP Codes 
occasionally cut across political and census boundaries and change over time, 
making it difficult to overlay and integrate ZIP Code data with other socio-
political data (Kirby, 1996; Krieger et al., 2002). Despite these problems, ZIP 
Codes in the United States and postal codes in other countries are often used as 
convenient and practical reporting units for health data in small areas. Analysts 
should be aware of the strengths and limitations of using ZIP Codes for GIS-
based health analysis.



Spatial Databases for Public Health 99

Making Population and Health Data Mappable

In order to use population, health, and health care data sets in GIS, the data sets 
must first be captured and linked to a foundation spatial database. Data capture 
is a complex process that draws on an ever-increasing array of tools including 
scanning, digitizing, downloading from the Internet, and entering data directly 
from the field via the Global Positioning System. This section focuses on the two 
procedures typically used for capturing health information—address matching 
and joining.

Address Matching to Locate Health Events as Points

Health information is often georeferenced by street address. For example, we 
might have information on the residential addresses of people who died of breast 
cancer, or the addresses of hospitals, health clinics, schools, or workplaces. Using 
the process of address-match geocoding, we can convert each address to a point 
on a map. The point is recorded as a pair of geographical coordinates that con-
nect to the foundation database. At its simplest, address matching involves com-
parison of two data sets: one containing the addresses of health events and the 
other a foundation database with its own address information. An address (street 
name, number, and city, ZIP Code, or other zone) from the first database is com-
pared against the full array of addresses in the second, and a “match” occurs 
when the two agree.

Address-match geocoding procedures differ depending on the type of foun-
dation spatial database used in matching. Street centerline, address point, and 
cadastral or property databases have all been used in geocoding (Zandbergen, 
2008). Address point databases are commonly developed as part of E911 systems 
in North America. E911 or Enhanced 911 is a telecommunications system that 
associates a calling party’s telephone number with an address. Address point 
databases can also be created from parcel data. The point may be located at the 
centroid of the parcel or at a location where the driveway serving the property 
intersects with the road. When a match occurs, the health event is assigned the 
geographical coordinates of the corresponding property. Up-to-date property 
databases form an accurate platform for address matching because each address 
is associated with a unique property on the ground. The downside is that such 
databases are typically very large and cumbersome to work with and, like address 
point databases, compiled and maintained at the local level.

Although some GIS analyses have used more than one database to geocode 
addresses (Lovasi et al., 2007), street centerline databases, like TIGER/Line, 
are widely used as a foundation for address matching. Because street centerline 
databases do not include unique street addresses for specific structures, but only 
address ranges along street segments, address matching relies on interpolation. 
We match the particular address to a street segment (street name and address 
range), and we estimate the location of the address along the segment by interpo-
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lating within the corresponding address range. For example, the street address, 
107 Oak Avenue, is assigned to the segment of Oak Avenue with address range 
101–119 (Figure 3.10). By interpolation, the location of 107 Oak Street is esti-
mated to be about one third of the way along the street segment. GIS users can 
specify an offset to take into account the setback of the structure from the street 
centerline.

This form of address matching does not place points at the exact locations of 
the structures, but rather at estimated locations along street segments. In urban 
and suburban areas, where properties are spaced fairly evenly along segments, 
spatial accuracy is generally quite good. In rural areas, the uneven spatial distri-
bution of properties can cause significant spatial error from interpolation.

Address matching is an iterative procedure in which we first attempt to 
match all addresses and then correct those that fail to match. Typically one 
half to two thirds of addresses match in the first attempt. We then examine 
the unmatched addresses for obvious errors or inconsistencies. Often there are 
simple errors in spelling or abbreviation that can easily be corrected. After cor-
recting obvious errors, it is typical to achieve a “match rate” of over 90% in most 
parts of the United States. Anything less calls for an assessment of the quality of 
both the address list and the spatial database used in matching.

Addresses can fail to match because of errors in the address list, errors in 
the street or property database, or inconsistencies between them. Errors in the 
address list are common, and they include misspellings and typographical errors 

FIGURE 3.10. The TIGER/Line files include street centerline and address-range 
information that can be used in geocoding. This segment of Oak Avenue is represented 
by a start node and an end node, each with geographic coordinates. The address range 
for the left side of the segment contains odd-number addresses, while that for the right 
side contains even-number addresses. By interpolation, the location of 107 Oak Avenue 
is estimated to be approximately one third of the distance along the corresponding 
street segment of Oak Avenue. An offset was applied so that the geocoded point would 
not lie on the street centerline.
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in the street number, street name, or zone (Table 3.2). These errors can easily 

be corrected by carefully inspecting and editing the address list. Furthermore, 

most GIS provide the option of automatically correcting the most common types 

of errors using simple rules and conventions. One should approach these auto-

matic correction algorithms with caution, however, because they may falsely 

change the original address data and generate a false sense of accuracy.

Errors in the street or parcel database, including missing street segments 

and incorrect address range information, also create problems for address match-

TABLE 3.2. Sources of Error Affecting Address Match Outcomes

Record content
Street 
numbers

Street 
name

Street 
type

Zone (ZIP 
Code 
example)

Address match 
outcome for 
perfect match

Correct address 16 Main St. 13501 Match at correct 
location

Correct street segment Left 2–20
Right 1–19

Main St. 13501

Error in address record

Incomplete address Main St. 13501 No match

Error in street number 166 Main St. 13501 No match

Error in street name 16 Nain St. 13501 No match

Error in street type 16 Main Rd. 13501 No match

Error in zone 16 Main St. 113501 No match

Address does not correspond to 
a real structure

16 Main St. 13501 Match represents 
a structure that 
does not exist

Error in street segment record
Missing range Left 

Right
Main St. 13501 No match

Error in range Left 2–14
Right 1–19

Main St. 13501 No match

Range applied to wrong side of 
street

Left 1–19
Right 2–20

Main St. 13501 Match represents 
incorrect location

Error in street name Left 2–20
Right 1–19

Nain St. 13501 No match

Error in street type Left 2–20
Right 1–19

Main Rd. 13501 No match

Error in zone Left 2–20
Right 1–19

Main St. 113501 No match

Incomplete street network 
database

No match
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ing. As the accuracy of spatial databases improves, it is less common than in the 
past to find true errors in such databases. Rather, most errors result from the 
time lag between new residential development and database update. Addresses 
fail to match because they are located in newly developed areas that have not 
been mapped or entered into a spatial database. Since these addresses must then 
be geocoded or digitized by hand, it is well worth the investment to use the most 
accurate and up-to-date street or parcel database.

Finally, addresses can fail to match because of inconsistencies between the 
address list and the foundation database. These include differences in street nam-
ing convention—for example, “6th Avenue” versus “Avenue of the Americas”—
or in abbreviation—“St.” versus “Str.” Most GIS automatically correct obvious 
differences in abbreviation.

Although most analysts emphasize the “match rate,” it is important to 
remember that a successful address match does not guarantee accuracy. Even if 
an address is successfully matched, it may not be assigned to the correct location. 
A field check of over 500 geocoded residential addresses to assess spatial accu-
racy uncovered a variety of errors (Cromley, Archambault, Aye, & McGee, 1997). 
The relative locations of 7% of the cases were incorrect. A few cases (less than 
1%) had been geocoded to locations more than 500 feet away from the correct 
location. This type of error would be of particular concern in any study measur-
ing distances from the geocoded location to another location because the true 
distance would be over- or underestimated. The remaining cases were estimated 
to be out of position by less than 500 feet. About half of these cases were on the 
wrong side of the street or on the wrong corner of an intersection. This type of 
error would be of particular concern in any study aggregating cases to an area 
like a census block or block group because census area boundaries often coincide 
with street centerlines, so cases on the wrong side of the street would be aggre-
gated to incorrect spatial units. For 1% of the addresses, no residential structure 
could be found. Either the structure had been removed or the street number was 
incorrect but fell within a valid address range. The type of error—successfully 
geocoding an address that does not exist—may account for the higher match rate 
for street centerline geocoding versus parcel geocoding. Such errors can have 
significant impacts on spatial analyses based on geocoded data (Griffith, Mil-
lones, Vincent, Johnson, & Hunt, 2007).

These findings emphasize the importance of obtaining accurate address 
information and the need to look beyond the match rate in geocoding. Typically, 
the collection of addresses is decentralized. Addresses are entered at the source 
institution, for example, a hospital, doctor’s office, or health clinic. From there, 
the institution transmits the information to a public health agency for mapping. 
Unless the addresses are used for billing or follow-up, the institution will have 
little stake in their accuracy and completeness. Errors emerge much later during 
address matching, and data editing and cleaning are performed by GIS person-
nel far removed from the source of data collection. Improving accuracy in geo-
coded address information requires not just better address-matching algorithms, 
but institutional arrangements that foster accuracy at the source.
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The findings also emphasize the need for field checking of data, particularly 
when research findings are sensitive to the locations of cases in a few places. 
Researchers involved in GIS studies at a community scale can benefit from field 
trips to the study area before data collection and analysis to familiarize them-
selves with residential patterns and other landscape features of relevance to the 
particular study.

The widespread use of geocoded health data has led many health analysts to 
investigate methodological issues in geocoding (Rushton et al., 2008). A relatively 
neglected issue in the study of geocoding methods is the spatial distribution of 
errors. Many analysts have noted that geocoding rates and accuracy are lower in 
rural areas, but more research is needed to model other forms of error and their 
implications for spatial data analysis.

Joining Health Data to Geographical Areas

Many population and health databases only present information for geographical 
areas like counties, ZIP Codes, or census tracts. They include the area name and/
or identifier and a set of variables that describe the health events, population, or 
other attributes of the area—for example, the census tract number and number 
of diagnosed cases of AIDS by tract. Capturing area data in a GIS involves join-
ing. We join the tabular data to a foundation spatial data set of area boundaries 
based on a common field like the census tract identifier. The data for each tract 
are attached to the corresponding tract in the foundation database.

Joining requires that each geographic area have a unique identifier, either a 
name or number. In the United States, state names are unique, as are ZIP Code 
numbers. However, many widely used areal units such as census tracts or blocks 
have identifier numbers that are unique only within larger units of geography. 
Census tract numbers are unique only within counties, and block numbers are 
unique only within tracts. A project that cuts across these larger units must cre-
ate a new field that uniquely identifies each small area. In a tract-level study that 
encompasses many counties in several states, for example, the state number and 
county number must be included along with the tract number to define each 
tract (Figure 3.11).

For more than 30 years, the Census Bureau used the Federal Information Pro-
cessing Standard (FIPS) codes for states, named populated places, primary county 
divisions, and other entities, issued by the National Institute of Standards and Tech-
nology. At the time of preparation for the 2010 census, the NIST standards were 
withdrawn and the Bureau was transitioning to a set of codes issued by the Ameri-
can National Standards Institute (ANSI). Many of the codes adopted by ANSI are 
unchanged, but users need to familiarize themselves with the new standards (U.S. 
Census Bureau, 2010b). The InterNational Committee for Information Technology 
Standards 446-2008 standard is tied to the Geographic Names Information System 
(GNIS) managed by the U.S. Geological Survey. Familiarity with the ANSI and 
Census Bureau identifiers for geographical units within GIS databases is impor-
tant for accurately joining and manipulating geographic databases produced by the 



104 GIS AND PUBLIC HEALTH

federal government (Table 3.3). State governments may have developed additional 
numeric identifiers for geographical units within their states.

Typically, joining links area-based health information to the corresponding 
geographic areas in a foundation spatial database. However, the procedure can 
also be used with address-based health data to find the area in which a health 
event is located. We match the address field in the health data set directly to 
the corresponding address field (street name and address range) in a founda-
tion database table, like TIGER/Line, that contains area identifiers. Two tables, 
one for the health data set and the other for the foundation data set, are joined 
based on common address information. If this approach is used, the ability to 
map address-based health data as points is lost. As a consequence, the methods 
described in Chapters 4 through 10 for analyzing patterns of health data rep-
resented as points cannot be applied. Spatial information is lost when address-
based health data are joined to areas rather than geocoded as points.

Database Integration

The power of a GIS lies in its ability to link, integrate, and manipulate the 
diverse types of spatial data described in this chapter. Integrating such data sets 

FIGURE 3.11. Census identifiers for tracts, block groups, and blocks are unique 
only in the context of the hierarchy of census units. Two tracts in New York City 
have the same tract identifier number, 022500. Use should be made of the full codes, 
36061022500 for the tract in New York County and 36005022500 for the tract in Bronx 
County, to avoid confusion and errors in joining tables of data.
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can be challenging, especially when the data sets differ in scale, resolution, and 
geographic extent. Most GIS packages include a series of cartographic and geo-
graphic procedures for linking and integrating spatial data sets (Table 3.4).

A common data integration problem arises when data layers that will be 
overlayed or linked in a GIS rely on different coordinate systems or different 
map projections. Typically this occurs when a health or an environmental data 
layer is being integrated with a designated foundation data layer. Common in all 
GIS are procedures for transforming coordinates so that they are consistent with 
those of the foundation data layer. Coordinate translation involves computing 
new coordinates as a mathematical function of the original set. Linear trans-
formations, for example, can be used to move, stretch, or twist the coordinate 
axes (Figure 3.12). These simple linear transformations are often necessary when 
integrating spatial data from a digitizing tablet or scanner with existing geospa-
tial foundation data sets like DOQQs or DLGs.

Sometimes geographical errors in overlaying data layers stem from posi-
tional inaccuracies that are unevenly or unpredictably distributed across the 
map. In this case, matching data layers requires nonlinear coordinate transfor-
mations that stretch or shrink different parts of a map until features align cor-
rectly with those on the foundation data layer. Rubbersheeting is the process 
of geometrically adjusting features to force a digital map to fit the designated 
foundation data layer (Antenucci et al., 1991). Rubbersheeting changes the rela-
tive locations of features, thus distorting the original map. Therefore the process 
should be used judiciously to make relatively small changes in map coordinates. 

TABLE 3.3. Comparison of ANSI, Census, and State Identifiers 
for an Area

Hartford 
(Populated place)

Hartford 
(City)

Hartford 
(Town of)

ANSI/Census state code for Connecticut 09 09 09

ANSI/Census county code for Hartford 
County

003 003 003

ANSI GNIS feature identifier 213160 2378277 213442

Census code 37000 37000 37070

State of Connecticut town identifier — — 064

Note. These entries show that there are six different numerical codes for the same geographic area called 

Hartford. The ANSI and Census codes for the state of Connecticut and for Hartford County are the same. 

The ANSI standard using GNIS (Geographic Names Information System) codes has three different feature 

identifiers for Hartford. The census has two different codes for Hartford, one as an incorporated place and 

one as a minor civil division. Under a numerical coding system used by the state, the town of Hartford is 

064. GIS users need to be aware of the coding systems that have been used to assign identifiers to geographic 

areas when joining and linking databases.
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Of course, when the map is being linked to an up-to-date, planimetrically cor-
rect foundation data set, rubbersheeting can partially compensate for positional 
errors in the source map. Distorting an inaccurate source map may be a good 
thing. Rubbersheeting is often required in order to integrate data with low or 
unknown positional accuracy with more accurate foundation data layers, for 
example, in linking the TIGER/Line files, with their variable positional accu-
racy, to a DOQQ base.

Another kind of coordinate transformation is needed when data layers 
are based on different map projections. Map projection transformation is the 
change in coordinates from one map projection to another. Data that come from 
different sources often utilize different map projections, so that coordinates must 
be reprojected for the data to overlay properly. All GIS have built-in functions for 
converting among common map projections.

Another common problem in creating and linking spatial data sets involves 
changing the geographic extent of the data set. The analyst may want to focus 
on one portion of the mapped area—for example, one municipality within a 
county—or to join maps together to create a map layer that covers a larger geo-
graphic area. In GIS, one can extract a portion of a mapped data set by cutting 
out the portion from surrounding areas and saving it in a separate file (Figure 
3.13). These clipping or windowing procedures are easy and efficient in GIS 
where they can be done by using the cursor to define a rectangle or irregular 
shape.

Edgematching is a procedure for joining maps together by matching com-
mon features along the shared map boundary. For example, a particular road 

TABLE 3.4. Spatial Database Collection 
and Preprocessing Operations

Function class Function

Data collection Scanning

Digitizing

Address-match geocoding

Data conversion Importing/exporting

Edgematching

Clipping

Raster/vector conversion

Geometric transformation Translation

Rotation

Map projection

Rubbersheeting

Generalization Line thinning

Line smoothing
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appearing at the edge of one map is matched to its counterpart at the edge of 
the adjacent map (Figure 3.14). Most edgematching procedures also adjust fea-
tures located in the area of overlap between the two adjacent maps to create a 
seamless map. For the procedure to work correctly, the maps being joined must 
have the same scale or resolution and contain comparable features. It is impor-
tant to realize that edgematching creates a new topology for the database as, for 
example, two line segments are joined into one. The new topology enables new 
geographical analyses that address issues within the larger area.

FIGURE 3.12. Coordinate translation of a spatial database of New York State.
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Data Sharing

Assembling diverse spatial data sets and linking them with foundation spatial 
data is a time consuming, labor-intensive, and expensive process. The final prod-
uct—an integrated ensemble of health, environmental, social, and foundation 
data—represents not only a major investment, but also a major resource, with 
value to other users analyzing issues in the same geographic area. Data sharing,
or the transfer of data between two or more organizations, offers many impor-

FIGURE 3.13. A window created around an area of interest can be used to “clip” 
the features of interest for viewing and analysis and for creating new databases con-
taining just the clipped features.



Spatial Databases for Public Health 109

tant benefits to the developers and users of geographic information (Onsrud & 
Rushton, 1995). The value of spatial data derives from its use, so enabling diverse 
groups to draw on the same data creates value by stimulating use. Data sharing 
is also a means for spreading the costs of database creation among multiple users 
and avoiding needless duplication of effort. Finally, there are often synergies in 
multiple use and analysis of a common spatial database. One group’s insights 
spark another’s, resulting in greater value overall.

FIGURE 3.14. Two spatial databases of information for adjoining areas are joined 
by “matching” common features along the boundary to create a single seamless data-
base.
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Organizations at the regional, state, and national levels have increasingly 
recognized these benefits and taken steps to promote spatial data sharing. States 
have taken the lead by creating spatial data clearinghouses or unified state-level 
spatial databases. Most of these efforts involve extensive participation by local 
governments, which provide spatial data and draw upon it for local and regional 
planning purposes. At the federal level, the challenges of developing a national 
spatial data infrastructure in the United States over the last two decades have 
been acknowledged (Goodchild, Fu, & Rich, 2007; Craig, 2009).

Despite the many advantages of data sharing, technical and institutional 
barriers often get in the way. Sharing requires networked systems and agree-
ments and common data formats that permit electronic exchange of information 
among users. Differences in hardware, software, and metadata standards impede 
spatial data sharing. As the volume of spatial data produced and used has grown, 
producers and users of data have needed to confront the legal implications relat-
ing to the dissemination and use of data. Issues of intellectual property rights, 
contract law, and liability affect data sharing in many countries (Cho, 2005).

More fundamentally, sharing requires cooperation among diverse institu-
tions and branches of government and a shared sense of purpose. Differences in 
organizational needs, cultures, and interests make cooperation among organiza-
tions challenging at best (Obermeyer, 1995). Organizations often operate autono-
mously, emphasizing their particular needs and missions. In many cases, accord-
ing to Craig (1995, p. 108), “agencies could share data, but they choose not to do 
so.” Thus, data sharing is an inherently political process reflecting power, inertia, 
and access to resources. These political and institutional factors far outweigh the 
technical barriers to data sharing (Onsrud & Rushton, 1995).

An important barrier to sharing health data is the need to protect the pri-
vacy and confidentiality of health information. Many state and federal agencies 
and health care providers gather health data on individuals and are involved in 
data sharing. The development of health informatics, including electronic and 
personal health records, has raised additional privacy, confidentiality, and secu-
rity concerns (O’Carroll, Yasnoff, Ward, Ripp, & Martin, 2003). A survey of pub-
lic health professionals in Canada and the United Kingdom revealed that 71% 
identified privacy issues as an obstacle to public health practice (AbdelMalik, 
Boulos, & Jones, 2008). In the United States, the Health Insurance Portabil-
ity and Accountability Act (HIPAA) of 1996 established standards for privacy 
of individually identifiable health information (U.S. Department of Health and 
Human Services, 2003). Geographic identifiers are included in the list of iden-
tifiers that must be removed to de-identify data so that an entity that passes 
the data to a third party can be held harmless under the law (Table 3.5). State 
departments of public health in the United States that use GIS are able to use 
individually identifiable health data in their work. Entities covered by HIPAA 
may also create limited data sets for use by other parties who enter into a data 
use agreement prior to the disclosure and use of the limited data. Methods for 
mapping individual geographic data to protect privacy are discussed in Chap-



Spatial Databases for Public Health 111

TABLE 3.5. HIPAA Identifiers

Name

All geographic subdivisions smaller than a state, including:

Street address and equivalent geocodes

City and equivalent geocodes

County and equivalent geocodes

Precinct and equivalent geocodes

ZIP Code and equivalent geocodes

Except for:

The initial three digits of a ZIP Code if, according to publicly available data from the 
Census Bureau;

The geographic unit formed by combining all ZIP Codes with the same three initial 
digits contains more than 20,000 people; and

The initial three digits of a ZIP Code for all such geographic units containing 20,000 or 
fewer people is changed to 000.

All elements of dates (except year) for dates directly related to an individual, including 
birth date, admission date, discharge date, date of death; and all ages over 89 and all 
elements of dates (including year) indicative of such age, except that such ages and 
elements may be aggregated into a single category of age 90 or older.

Telephone numbers

Fax numbers

Electronic mail numbers

Social Security numbers

Medical record numbers

Health plan beneficiary numbers

Account numbers

Certificate/license numbers

Vehicle identifiers and serial numbers, including license plate numbers

Device identifiers and serial numbers

Web Universal Resource Locators (URLs)

Internet Protocol (IP) address numbers

Biometric identifiers, including finger and voice prints

Full-face photographic images and any comparable images

Any other unique identifying number, characteristic, or code, except as permitted
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ter 7. There is growing awareness that advances in technology have made re-
identifying health data easier and that alternatives to standard de-identification 
practices are needed.

Conclusion

This chapter has examined spatial data resources for public health GIS in the 
United States and geographical, technical, and institutional concerns in data 
integration. Investing in a GIS means investing in spatial data. Given the wide 
array of data sets available and the high costs of new database development, 
organizations need to assess carefully their spatial data needs and view develop-
ment as a long-term investment rather than a short-term expense. As developers 
and users of spatial data, it is essential that public health organizations partici-
pate in the emerging efforts to create open, accessible, and integrated spatial 
data resources. Agencies need to plan how spatial data will be used internally, 
how to make it accessible to others, and how to promote spatial data sharing in 
partnership with other organizations.
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CHAPTER 4

Mapping Health Information

Preparing and displaying maps of health information are among the most impor-
tant functions of public health GIS. GIS offer a flexible, computerized environ-
ment that facilitates new forms of data exploration and analysis. One can easily 
pan across a map, zoom in on areas of interest, or query a database to examine 
areas or events of special concern. Health information can be linked with social 
and environmental features to examine geographical associations. The map, then, 
is just one product of a process of exploring, viewing, and analyzing spatial infor-
mation. There is no perfect map; rather, each map is one of an almost infinite 
array of possible representations of spatial information. This chapter describes 
the procedures for displaying spatially referenced health information and pre-
paring maps in GIS. After a general introduction to the mapping process, we dis-
cuss strategies for mapping health information. The next section considers how 
we can move beyond the map to view and explore health information. The final 
section addresses map design—creating a map for presentation or publication.

The Mapping Process

Advances in computer technology and GIS have fundamentally changed the 
process of mapmaking. Traditionally, maps were viewed primarily as tools for 
communication (DeMers, 2000). The main goal was to communicate informa-
tion most effectively by carefully preparing a “finished” map. Issues of design 
and composition were paramount. Today’s GIS and computer technology have 
turned this perspective on its head. The mapping process now emphasizes data 
visualization, exploration, and analysis, rather than the preparation of a finished 
map (Schuurman, 2004).

The mapping process brings together four key elements: the spatial data
that are stored or entered into the GIS, as discussed in Chapters 2 and 3; the rep-
resentations of that information on maps or computer screens; socially defined 
queries about the spatial data; and the analysts who create maps and respond 
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to queries (Figure 4.1). The activities associated with mapping exist in and are 
shaped by the social and economic contexts in which maps are made (Elwood, 
2006; Kitchen & Dodge, 2007). People and organizations involved in the map-
ping process decide what information will be analyzed, the types of queries to 
be made, and how the information is represented on a map. This politics of maps 
and mapping is discussed in Chapter 12 in relation to community-based health 
GIS.

The elements in the mapping process are interconnected. Queries—the 
questions asked about geographical issues and associations—play a central role. 
They define the kinds of data and information that are collected and analyzed, 
and how the analyst represents that information on a map or computer screen. 
Viewing the data spatially often leads to new and revised queries, and, thus, to 
new maps. Viewing data spatially may even provide an impetus for collecting 
new spatial data. Thus, the mapping process links data, representations, queries, 
and people in an iterative and fluid way. It has no clear starting point, no neces-
sary “finished” product, and can lead to many different representations of the 
same information.

The use of mapping in examining the high rates of breast cancer in Long 
Island, New York, illustrates well this new mapping process (National Cancer 
Institute, 2011b). In the 1980s, many women in Long Island expressed concern 
about the high rates of breast cancer in their communities. Taking matters into 
their own hands, the women formed breast cancer coalitions, conducted surveys 
of breast cancer prevalence in their communities, and created simple “pin maps” 
of breast cancer prevalence. Their maps generated a host of hypotheses about the 

FIGURE 4.1. The mapping process.
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links between environmental and social factors and breast cancer (Carlin, 2001). 
Some community groups plotted the locations of environmental features on their 
pin maps of breast cancer cases. At the same time, the New York State Health 
Department conducted a GIS-based investigation into the connections between 
breast cancer risk and exposure to hazardous industrial facilities and high traffic 
density (Lewis-Michl et al., 1996). Data from a case–control interview study of 
breast cancer were overlaid on maps showing the locations of industrial facilities 
and major traffic corridors, and the relationships between health and environ-
mental factors were analyzed.

These investigations did not produce conclusive findings, but they laid the 
groundwork for a much larger GIS and epidemiological study of breast cancer 
and environment on Long Island, sponsored by the National Cancer Institute. 
An Internet-based health GIS was developed to give community groups and 
researchers access to a diverse array of health, social, and environmental data 
sets for the region (National Cancer Institute, 2011b). In addition, a wide variety 
of epidemiological studies were conducted to investigate the links between envi-
ronmental exposures and breast cancer risk. Although these studies provided 
little to no evidence that environmental factors were responsible for the high 
rates of breast cancer (Winn, 2005), researchers continue to explore new pos-
sibilities.

This example is instructive because it illustrates the close ties between 
mapping, analysis, and data exploration. Many different groups, including grass-
roots community groups, researchers, local and state health departments, and 
federal agencies, have viewed and analyzed spatial data for Long Island. They 
have explored hypotheses, prepared maps, and created queries to represent their 
diverse perspectives and concerns about the links between environmental con-
tamination and breast cancer risk. The interplay between people, social institu-
tions, and mapping reveals maps as “emergent” rather than fixed (Kitchen & 
Dodge, 2007). Maps are constructed to solve problems in particular contexts. 
They are viewed and interpreted differently by different audiences, and they 
in turn shape audience understandings. Thus maps both reflect and reproduce 
wider social and political relations. In this dynamic mapping process, how peo-
ple and organizations use GIS to represent and interact with data is critically 
important.

Representing Health Information

A key component of the mapping process is the representation of spatial infor-
mation. Representation is the process of creating symbols to portray objects, 
quantities, or events. Maps are representations, as are the views on a GIS com-
puter screen (MacEachren, 1995). Representations both illuminate and conceal 
information. The symbols on a map or display reveal features and associations, 
while features not represented by symbols are hidden from view. No map could 
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possibly represent the richness of the earth’s surface and its inhabitants, so, as 
Monmonier (1996, p. 1) writes, “the map must offer a selective, incomplete view 
of reality.”

Representing health information on maps requires the intelligent use of sym-
bols. Symbols convey information. They reveal what is important, show contrast, 
and identify patterns. As discussed in Chapter 2, the six visual variables—size, 
shape, orientation, spacing, color hue, and color value—differentiate symbols on 
maps (Bertin, 1979; Slocum et al., 2009). The symbols and mapping strategies 
used in representing health information vary according to the type of spatial 
information that is to be displayed. Point data are often shown on dot or point 
symbol maps, area data on choropleth or dot density maps, and linear data on 
network or flow maps. These are not rigid choices, however. A single map or 
view can combine all three types of information to show complex features and 
patterns; point symbols can effectively show certain kinds of area data. These 
different mapping approaches are discussed in the sections that follow.

Representing Point Information

Much health information consists of point locations—hospitals, residences of 
people who experience particular health problems, accident locations, and haz-

FIGURE 4.2. A point symbol map showing residential locations of survey respon-
dents.
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ardous facilities—that can be represented effectively on dot or point symbol 
maps. On a point symbol map, point symbols correspond to one or more events, 
and concentrations of point symbols reveal clusters of events (Figure 4.2). As the 
number of points varies across the map, the viewer senses the general pattern of 
density change. Point maps are useful devices for viewing health information. As 
noted earlier, during the 1990s, many community-based breast cancer groups in 
Long Island gathered data on the residential locations of women diagnosed with 
breast cancer (Carlin, 2001). Point symbol maps of geocoded locations were used 
to search for clusters of breast cancer and to generate hypotheses about links to 
environmental hazards.

A challenge in using point symbol maps to represent spatial patterns of 
disease is that differences in dot density may simply reflect differences in risk 
population. A cluster of breast cancer cases may coincide with a cluster of women 
whose age and sociodemographic characteristics place them at risk of breast can-
cer. One way to address this issue is to display both the locations of people diag-
nosed with a disease and those at risk by using contrasting point symbols. Differ-
ences in density reveal clusters of one group relative to the other (Figure 4.3).

Creating point maps involves the careful choice of symbols. Symbols differ 
in size, shape, hue, and the other visual variables. Varying symbol size is one 
way to create contrast and show quantity. In a proportional symbol map, symbol 
size is proportional to the number of events at a place. Large dots are highly vis-

FIGURE 4.3. Use of contrasting point symbols to differentiate respondents.
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ible, representing large concentrations of events. Shape also distinguishes sym-
bols, making them easier to perceive and understand. Symbols can be geometric,
involving simple geometric shapes like circles or squares, or pictorial, involving 
simple pictures such as houses or churches (Fry, 1988). Geometric symbols are 
generally easier to read and distinguish on maps, but are not as legible as picture 
symbols.

Color hue and value are also important devices for differentiating symbols 
and other map features. A collaborative research project between the National 
Center for Health Statistics and geographers at Pennsylvania State University 
examined the effectiveness of color for representing public health data on maps 
(Brewer, MacEachren, Pickle, & Herrman, 1997). They concluded that “color 
is clearly worth the extra effort and expense it adds to map making because it 
permits greater accuracy in map reading” (p. 434). The use of color is discussed 
in more detail in the section on choropleth mapping.

The map in Figure 4.3 combines shape and color to create contrast. Small, 
circular gray dots represent women over age 25, and black squares identify 
women diagnosed with breast cancer. The darker shade and contrasting shape 
draw the eye to the places where women diagnosed with breast cancer live, while 
the smaller circles form an almost continuous distribution in the background.

When the density of dots is high, dot maps can become cluttered and diffi-
cult to interpret. Dots hide other dots, obscuring differences in density. In these 
situations, the analyst can use proportional symbols to distinguish areas of high 
and low concentration. Proportional symbols maps can even become cluttered, 
however, and large symbols are not geographically precise. In these cases, the 
analyst can use a density estimation method, like kernel estimation, discussed in 
the next chapter, to create a continuous representation of point density. Another 
strategy is area conversion in which points are grouped into geographic areas, 
and the areas are shaded according to the number of events within them.

Some kinds of health events, such as motor vehicle collisions, are clustered 
along roads or other line segments. In displaying this information, policymakers 
often want to know the density of events by line segment—for example, which 
roads or street segments have the most collisions. To represent such information, 
we can shade line segments based on numbers of events. Varying the color or 
width of the line segment highlights differences in number or density of events. 
Figure 4.4 shows a conventional point symbol map of motor vehicle collisions in 
part of Connecticut and a corresponding shaded line segment map of the same 
information. The second map clearly reveals roads and intersections with high 
collision frequencies.

The GIS analyst must experiment with combinations of symbol size, shape, 
and color, as well as the overall mapping strategy, to create an effective map rep-
resentation of point information. Most GIS systems make this experimentation 
relatively easy, offering an array of options for symbol design. One can create 
alternative layouts in the GIS and view them on the computer screen, making 
adjustments as needed. The map or map series is published in its final version 
only after choosing the most effective design.
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Representing Area Data

Health information is often available for areas—ZIP Codes, counties, states, or 
countries—that form a template for representation. Area health data are spatially 
“filtered” with respect to predefined zones and thus are dependent on the zon-
ing system used. In representing area information, we fill areas with symbols, 
colors, or patterns to show the intensity or number of events within the area. Dot 
density maps use point symbols within areas to depict numbers of events in the 
corresponding areas. In choropleth maps, areas are shaded with different colors, 
patterns, or intensities to display place-to-place variation. These kinds of maps 
are widely used in health mapping for several reasons. First, much health and 
demographic data are only released by area, and, second, by not showing precise 
locations, such maps avoid concerns about privacy and confidentiality. However, 
area-based maps cannot display the detailed geographic patterns that emerge 
from point symbol maps, or maps that show the underlying spatial organiza-
tion of street networks, residences, and other landscape features. They give the 
impression of uniformity within areas and show sharp changes between areas, 
when in fact the underlying distribution may change gradually or continuously. 
They often, therefore, arbitrarily partition the underlying distributions of cases 
and population, affecting the validity of rate calculations for the mapped areas.

The appropriate mapping approach depends on the type of area data being 
represented. If the data refer to counts of events, people, or facilities by geo-
graphic area, dot density mapping is generally the preferred approach. Dots are 
arranged randomly within areas, and the viewer perceives differences in num-
bers in the changing patterns of dot density (Figure 4.5). The number of dots 

FIGURE 4.4. A point symbol map of motor vehicle collision locations on the left was 
converted to a line symbol map as shown on the right.
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is proportional to the number of events, say, one dot representing 300 people. 
Typically dots are arranged randomly within areas to avoid sharp breaks in the 
dot pattern at area boundaries.

CHOROPLETH MAPPING

More commonly, area health data refer to rates or ratios or other statistics that 
apply to areas. In these situations, choropleth mapping is the preferred approach. 
In a choropleth map, the data values that fall within a specific class interval are 
assigned a unique color, shade, or pattern. Differences in intensity are visible in 
the varying colors or patterns across the map.

Class Interval Selection. A key issue in choropleth mapping is the choice 
of class intervals. Changing the class interval scheme can fundamentally change 
how the map looks and the message it sends. Most GIS offer the mapmaker a 
range of options for defining class intervals. A common one is equal interval 
classification, in which the range of the data values (maximum value – minimum 
value) is divided into a fixed number of classes (Figure 4.6). Each class repre-
sents an equal interval of possible data values. Although this method works well 
for some data distributions, it performs poorly if there are extreme values in a 
highly skewed data distribution. In this case, the vast majority of areas will fall 

FIGURE 4.5. A dot density map of population distribution by town in Hartford 
County.
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FIGURE 4.6. Choropleth maps of the same data created using different methods for 
determining class intervals.
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into one or a few classes, while other classes remain empty. The map will show 
little spatial variation in such instances, because the majority of observed val-
ues are very similar. The fact that there are empty classes may be important in 
understanding the data distribution. The equal interval approach was suggested 
by Becker (1994) as a suitable approach for developing classifications to facilitate 
comparison of maps.

Alternatively, the quantile classification method (more generally known 
as the n-tile method) creates an equal frequency of values in each of n classes. 
Values are ranked from low to high, and the ranked values are divided into n
classes each containing an equal number of values. For example, in the quantile 
method using quartiles (where n = 4), a data set of 100 values will be divided 
into four classes with 25 values each. The lowest class will contain the 25 small-
est values—the first quartile—and so on. This method ensures that each class 
is equally represented on the map, but the results can be misleading because 
areas that have very similar data values may be assigned to different classes. 
These areas will appear quite different on the map, even though their actual data 
values are quite close. In addition, areas that have very dissimilar values may be 
assigned to the same class. The quantile method tends to perform better than the 
equal interval method for highly skewed data distributions, because it differenti-
ates values in the bulge of the data distribution. However, the method typically 
does not produce intervals that are similar in size. The first class might include 
data values ranging from 0–2, the second from 3–24, and the third from 25–110. 
Logically one would infer that the classes represent similar data ranges when in 
fact they do not. Quantile maps can be highly misleading unless the viewer care-
fully consults the map legend. If the data distribution is uniform, there will be no 
difference between the equal interval and quantile classifications.

The natural breaks method searches for breaks in the data distribution, 
that is, natural divisions among groups of data values. Classes represent real 
clusters of data values, and class breaks separate the clusters. The advantage of 
this method over the previous one is that it does not arbitrarily divide observa-
tions that have similar values into different classes. However, it produces class 
intervals that are neither of equal width nor with equal numbers of observations, 
so the results are unpredictable and totally dependent on the data. In some GIS 
software, natural breaks are determined statistically as breaks that minimize 
within-class variation (Jenks & Caspall, 1971; Jenks, 1977).

The z-score classification method is often used when choropleth maps are 
compared. For a particular variable, each data value is transformed to a z-score 
that represents the value’s deviation from the mean measured in units of standard 
deviation. A z-score of -1.2 indicates that the data value is 1.2 standard deviations 
below the mean. In classifying z-score maps, we typically create an odd number 
of class intervals, with the middle interval centered on zero. Intervals of equal 
size can be constructed, or one can define intervals based on z-score statistical 
significance levels. Z-score maps are good for visual comparison because the 
maps display each variable in a common metric.
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For a fuller discussion of the strengths and limitations of the many methods 
that exist for defining class intervals, we urge the reader to consult a good cartog-
raphy reference such as Brewer and Pickle (2002) or Slocum et al. (2009), or the 
ChoroWare software toolkit for choropleth map classification, which is available 
online (Xiao, Armstrong, & Bennett, 2005).

Why does the approach to data classification taken matter to the public 
health analyst? Monmonier (1996) points out that many choropleth maps can be 
made from the same data simply by changing the class intervals. It is possible to 
manipulate map readers’ impressions of spatial patterns of health events, simply 
by changing class intervals (Figure 4.6). Viewers’ perceptions and understand-
ings of the patterns and data displayed on choropleth maps differ depending on 
the map classification method used (Brewer & Pickle, 2002).

An innovative method for choropleth mapping that addresses the problem 
of defining class intervals is the classless choropleth map (Tobler, 1973). Instead 
of defining a fixed number of class intervals, areas are shaded on a continuous 
value scale with shading intensity or value proportional to the actual data value 
observed for the geographical unit (Figure 4.7). A detailed legend is required to 
show the actual data values associated with each shade. These maps are visually 
effective, and they avoid somewhat arbitrary decisions about class interval selec-

FIGURE 4.7. In a classless choropleth map, continuous shade tones of a single 
hue correspond monotonically to unique data values within the distribution being 
mapped.
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tion. Classless choropleth maps can now be easily produced using downloadable 
software such as MAPresso (MAPresso, 2011).

The classless map attempts to address one of the major drawbacks of chorop-
leth map classification schemes like the equal interval, quantile, and natural 
breaks methods. The drawback is that these classifications are derived from the 
univariate distribution of values and ignore spatial relationships among the units 
for which data are being mapped. As a result, statistical “cliffs” in the data dis-
tribution may not match with visual “cliffs” or differences between places on the 
map.

Methods for defining optimal class intervals that take into account statistical 
distribution and spatial relationships have been developed for interval/ratio and 
for ordinal level data (Cromley, 1996; Cromley & Mrozinski, 1999). Cromley and 
Cromley (1996) developed a classification method that maximizes spatial simi-
larity among contiguous units in the same class interval and applied the method 
to data published in the German Cancer Atlas. Although the ability to generate 
a matrix that describes spatial contiguity of the mapping area is important in 
implementing these methods and GIS systems can produce this type of matrix, 
most GIS systems, as yet, have not incorporated these approaches to map clas-
sification in their standard options for classifying data for choropleth mapping.

Sometimes a series of choropleth maps is constructed to compare the spatial 
distribution of a health indicator over time or among population groups. When 
a series of maps is being prepared, the choice of class intervals depends on the 
purpose of the map comparison. Using the same class intervals for each map in 
the sequence facilitates direct comparison of maps for different points in time or 
for different groups. Comparing maps is straightforward, because color tones on 
each map represent equivalent data values. It is easy to see whether the health 
outcome of interest has increased or decreased over time. Grauman, Tarone, 
Devesa, and Fraumeni (2000) created a sequence of maps showing cervical can-
cer mortality in the United States for different time periods. The map sequence 
shows the dramatic decline in mortality during the 1960s and 1970s, a result of 
increased cancer screening that led to increased detection of the disease at an 
early stage (Grauman et al., 2000).

If the purpose of the map series is to compare geographic inequality among 
maps, using different class intervals for each map makes sense. The class inter-
vals adjust for differences in the average value of the phenomenon among time 
periods, revealing geographic variation or inequality within each map. Maps of 
cervical cancer mortality over time using different class intervals indicate shifts 
in the geographic location of high and low mortality regions in each time period 
(Grauman et al., 2000).

However, when different class intervals are used in a series of maps, care 
must be taken in map interpretation. For example, maps of male and female lung 
cancer that use different class intervals may give the impression that the disease 
rate associated with the “red” area on the map displaying female lung cancer 
rates is as high as the rate associated with the “red” area on the map displaying 
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male lung cancer rates when, in fact, the highest rates among females are much 
lower than the higher rates observed among males (Becker, 1994).

Color and Choropleth Mapping. Another important issue in choropleth 
mapping is the choice of colors used in area shading. Colors have three dimen-
sions: hue, saturation, and value. Hue is described by the words we commonly 
associate with color tones—for example, red, blue, purple. Saturation refers to 
the dominance of hue in the color, its vividness, and value refers to its lightness 
or darkness. Generally speaking, the best practice is to use a single hue and vary 
its saturation. Less saturated hues typically represent areas with low data values, 
and more saturated hues, higher data values. However, when high data values 
predominate, one may want to reverse these gradients: a general principle is to 
avoid maps that show large areas of highly saturated color (Tufte, 1990). Most 
GIS include standard color ramps for choropleth mapping, but other schemes 
are possible, generating a rich set of options for color selection (Zeileis, Hornik, 
& Murrell, 2009).

In some health-mapping projects, the goal is to show data values in rela-
tion to some average or population value—for example, mortality rates above or 
below the national norm or z-score values. For these types of maps, a diverging 
color scheme is often highly effective. One hue is used to represent data values 
above the norm and another hue represents data values below the norm. For 
each hue, differences in saturation or value reveal the difference from the norm. 
The ColorBrewer 2.0 website is a great tool for exploring and mapping both sin-
gle hue and diverging color schemes (Harrower & Brewer, 2003). Shifting from 
one color scheme to another, the viewer can choose the scheme that represents 
the data clearly and effectively. Guidelines for selecting an effective scheme are 
included.

Choice of color also depends on how and where the map will be viewed 
and by whom. Many colors wash out when viewed via LCD projector; others 
are difficult to reproduce in print; some color schemes are confusing for people 
with color-blindness. The ColorBrewer 2.0 website rates the usability of different 
color schemes in relation to these concerns.

Constructing Legends for Choropleth Maps. The legend on a choropleth 
map links the graphic symbols (e.g., colors) on the map to the corresponding 
data values. Traditional choropleth map legends show the range of data values 
associated with a particular graphic value (Cromley & Cromley, 2009). Stan-
dard cartography texts provide guidance on designing and labeling legends for 
choropleth maps using different map classification methods (Slocum et al., 2009). 
The traditional legend provides essential information for map interpretation, 
but it does not convey the distribution of data values within class intervals. To 
address this issue, Kumar (2004) proposed the use of a frequency histogram leg-
end that shows the frequency distribution of values in relation to class intervals 
(Figure 4.8a). Although the frequency histogram legend is a clear improvement 
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FIGURE 4.8. A choropleth map of low-birthweight rates for towns in Connecticut 
using equal interval classification and five classes. Figure 4.8a shows the map with a 
frequency histogram legend. The legend shows that almost half of the towns fell in the 
4.0 to 7.9% low-birthweight class interval. Figure 4.8b shows the same map with an 
ogive or cumulative frequency legend. The cumulative frequency curve shown on this 
legend would remain the same, regardless of the classification method or number of 
class intervals used in the map of these rates for the 169 towns of Connecticut.



Mapping Health Information 127

over the traditional choropleth map legend, it still involves grouping data val-
ues into intervals so that the appearance of the legend will differ based on the 
number and widths of intervals used. In response, Cromley and Ye (2006) devel-
oped a cumulative frequency (ogive) map legend. This legend is constructed by 
first ranking the data values in ascending order and plotting the corresponding 
cumulative percentage of total value along the y-axis. Color tones associated with 
each value are displayed on the x-axis (Figure 4.8b).

FIGURE 4.8. (cont.)
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For health data, an advantage of cumulative frequency legends is their abil-
ity to display both numerator and denominator values associated with health/dis-
ease rates. The numerator/denominator cumulative frequency legend (Cromley 
& Cromley, 2009) shows both sets of values in a single legend. It starts by placing 
areas in rank order according to incidence rate and plotting the cumulative per-
centages for the respective numerator and denominator values. Thus, the cumu-
lative frequency distributions for the numerator and denominator are superim-
posed. A wider gap between the two cumulative distributions represents greater 
spatial inequality in health/disease rates. Figure 4.9 presents a choropleth map 
of low birthweight by town in Connecticut with a numerator/denominator cumu-
lative frequency legend.

To summarize, health data analysts using GIS to prepare choropleth maps 
need to investigate how data are distributed through their range, how data are 
distributed spatially across the choropleth units, and which class breaks have 
particular substantive value for the analyst and the viewer. Choosing an appro-
priate color scheme and map legend helps improve the map’s legibility. Analysts 
can take advantage of the relative ease of developing a series of maps using differ-
ent classification, legend, and symbolization approaches to evaluate the impacts 
of these choices on the message the map conveys. GIS enables public health 
analysts to produce multiple views of the data in the form of different types of 
maps and charts to support more effective analysis of data and communication 
of results.

THE MODIFIABLE AREA UNIT PROBLEM

In mapping and analyzing area data, analysts also need to be aware of the modi-
fiable area unit problem—the impact of the location and configuration of areal 
units (zones) on the outcomes of the analysis (Openshaw, 1984). In a sense, there 
is no “true” choropleth map. The map’s appearance and the message it conveys 
vary depending on the size, number, and configuration of area units. For exam-
ple, a map showing cancer cases in Illinois by county will look different from a 
map showing the same data by census tract.

The modifiable area unit problem has two dimensions: the zoning (bound-
ary) effect and the scale effect (Wong, 2009). The zoning effect refers to the 
impact of the locations of area boundaries on the appearance of a choropleth map 
and on the analysis of area data. For health data, the location of area boundar-
ies in relation to the underlying distribution of health events and population is 
important. Depending on where boundaries are located, zones can divide clus-
ters of health events or concentrate them in a single zone. For centuries, politi-
cians have exploited the boundary effect to “gerrymander” electoral districts, 
purposely drawing boundaries to achieve a desired electoral outcome. Mon-
monier (1996, p. 158) demonstrates how this works with an example based on 
John Snow’s famous map of cholera in London (Figure 4.10). When Snow’s point 
data are aggregated to zones, the geographical pattern of cholera varies greatly 
depending on how zone boundaries are drawn. On some maps, the cluster of 
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FIGURE 4.9. A choropleth map of low-birthweight rates for towns in Connecticut 
with a numerator/denominator cumulative frequency legend. The towns in the second 
and third class intervals have low-birthweight rates from 3.9 to 11.8 %. The cumulative 
frequency curve of low-birthweight births (the numerator curve) shows that 85.8% of 
all low-birthweight births occurred in towns in the second and third intervals. From 
Cromley and Cromley (2009). Originally published by BioMed Central in the Interna-
tional Journal of Health Geographics, Open Access.
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cases around the Broad Street pump disappears. This issue is discussed in rela-
tion to vector-borne disease in Chapter 8.

Choropleth maps and analytical results also vary with the number and sizes 
of areal units—the spatial scale of data. This is known as the scale effect. Small 
areas capture the underlying pattern of health events, showing fine-grained 
variation over space. In contrast, large areas conceal local differences, reducing 
the variation in values over space. A county-scale map cannot show differences 
among towns and neighborhoods, for example, and state-level data hide dispari-
ties across counties. The scale of areal units affects our perceptions and under-
standing of health inequalities while viewing choropleth maps (Figure 4.11).

Choropleth maps also can mislead the viewer by giving a false impression 
of equivalence among areas. The fact that each area has a data value associated 
with it implies that the areas are comparable in size and significance. A chorop-
leth map by state gives equal significance to the health statistics for Wyoming 
and California despite the vast difference in state populations. Furthermore, less 
populated areas are often larger in size, attracting attention when shaded on the 

FIGURE 4.10. A reconstruction of John Snow’s map of cholera cases in London and 
three choropleth maps produced by different areal aggregations. From Monomonier 
(1996). Copyright 1996 by University of Chicago Press. Reprinted by permission.
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FIGURE 4.11. Maps of Hispanic population by town and census tract show differ-
ent patterns of spatial variation using the same quantile classification method. Spatial 
variation is greater in the census tract map.



132 GIS AND PUBLIC HEALTH

map. On a state map, Montana looks much more prominent than Rhode Island, 
though its population is less.

To tackle this problem, one can create a cartogram in which the sizes of 
areas are proportional to their populations. Places with large populations are 
expanded in size and appear large on the map. Danny Dorling and colleagues 
have used cartograms very effectively to depict global health disparities. Figure 
4.12 shows a cartogram of infant mortality rate by country, and the size of the 
country on the cartogram is proportional to the number of infant deaths. The 
stark concentration of infant deaths in Africa and Asia literally jumps out from 
the map. Cartograms effectively convey the magnitude of health disparities, but 
they can be difficult for viewers to interpret. By distorting traditional geographic 
space, cartograms remove the familiar geographic reference that frames viewers’ 
understandings; however, standard choropleth maps also distort when areas dif-
fer greatly in population size.

When mapping area data, it is essential to analyze the effects of the modifi-
able area unit problem on maps and results. By using small-area data, one can 
always show finer-grained and more detailed spatial patterns than can be shown 
with large-area data. It is often the case, however, that the analyst only has access 
to large-area information. How can this problem be addressed? One approach is to 
use ancillary data to estimate variation within large areas. Ancillary data describe 
geographic features that constrain the distribution of risk population or health 
events. As discussed in Chapter 6, ancillary data can be used to allocate events 
within large areas to subareas in which the events are most likely to occur.

Another approach is to apportion data for large areas based on related data 
for smaller areas. This is the problem of areal interpolation, of estimating values 

FIGURE 4.12. A cartogram of infant deaths. The sizes of the countries show the 
proportion of infant deaths worldwide that occurred in the country. From Dorling 
and Barford (2007). Copyright 2007 by the World Health Organization. Reprinted by 
permission.
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for areas (Goodchild & Lam, 1980). For example, assume that we know from 
hospital discharge data, the number of children by ZIP Code who were hospital-
ized for asthma. Data on risk population, in this case the number of children, 
are available for much smaller geographic units, census blocks. If the blocks nest 
perfectly in ZIP Codes, we can apportion the asthma data for a given ZIP Code 
to blocks within that ZIP Code based on the proportion of children residing in 
each block. This method assumes that the risk of hospitalization for asthma is 
constant within a given ZIP Code. If the small areas do not nest perfectly, the 
most common approach is to allocate the population of split blocks to corre-
sponding ZIP Codes based on the area of overlap—the area weighting method
(Haining, 2003). The area weighting method is discussed in detail in Chapter 
6 and displayed in Figure 6.13. More complex methods that rely on additional 
ancillary information are discussed in Flowerdew and Green (1994) and Hawley 
and Moellering (2005).

By using ancillary data, we can move from small-scale data to a larger-scale, 
more detailed representation of spatial variation. Shifting from one geographic 
scale to another is important in analyzing many kinds of public health issues, for 
example, environmental health and access to health care, as discussed in Chap-
ters 6 and 9. GIS greatly facilitate the use of ancillary data and the matching of 
data across geographical scales. Defining areas of overlap and allocating data 
from one layer to another are standard operations in most GIS.

Despite their advantages for representation, small-area health data pose 
“large statistical problems” (Diehr, 1984). Often there are few health events in 
each small area, making maps and estimates unreliable. This is especially true if 
the data cover a short time period or a rare disease. This small numbers problem 
is discussed further in Chapter 5.

Viewing Health Information

The ability to visualize and explore health data interactively is a main advantage 
of GIS in public health analysis. A view is a graphic representation of data. It is 
the part of the computer display board that one can see on the computer screen. 
The extent of the view is always less than or equal to the addressable space in 
a data set. Simply put, one cannot display a larger geographic area than one 
has data for. In GIS, the spatial objects in the view and the tables of attributes 
describing them can be directly linked. The analyst can access the two together 
and explore the relationships among attribute data in the table and the spatial 
representation of that data in the view.

Public health analysts will typically approach a database with two types of 
questions. What are the health problems of interest, and where do they occur? 
Where are the places of interest, and what kinds of health problems occur there? 
Many public health organizations are organized functionally to address specific 
kinds of health problems: maternal and child health, infectious disease, or injury. 
GIS users in these settings will have already established what kinds of health 
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problems are of interest and may want to use GIS to gain a better understanding 
of the geographical distribution of these health problems. For example, we might 
ask, “Where are the residential locations of all children born with birth defects 
in Arizona?” Here the attribute (children born with birth defects) is given, and 
we want to know where the events that have these attributes occur. We call this 
“viewing by attribute.”

On the other hand, we might be concerned about health events at a par-
ticular place. The environmental health analyst might wish to study a variety of 
health outcomes in an area affected by a contamination event. Individual citi-
zens and community groups are often interested in health problems experienced 
in their own neighborhoods or communities. In these cases, the GIS users have 
already established a place of interest and want to understand the health status 
of the population in that place. We call this “geographical viewing.” For example, 
we might ask, “How many cases of Lyme disease and associated tick-borne dis-
ease occurred in Fairfield County, Connecticut, last year?” Interacting with spa-
tial databases displayed in a GIS view enables public health analysts to answer 
the basic questions of what and where.

Viewing by Attribute

Viewing by attribute starts with the characteristics of events, as described in the 
table, and identifies those events on a map. In the simplest case, we identify the 
location of a single event. For example, assume that we have a database showing 
the locations of all motor vehicle collisions in Connecticut. One particular colli-
sion that resulted in a fatality is of interest. We can select that collision record in 
the table, and its corresponding location will be highlighted in the display (Fig-
ure 4.13). Some systems enable users to pan and zoom to the selected collision 
even if it is not currently in the view at the time the collision is selected.

A more complex operation is to select by attribute, identifying multiple 
records based on their common attributes. We select events that have particular 
characteristics and display their locations on the view. For example, policymak-
ers may want to know the locations of all motor vehicle collisions that involve 
pedestrians. We query the table for all collisions involving pedestrians, select 
those collisions, and their locations will be identified on the view (Figure 4.14).

It is also possible to select events by attribute and location simultaneously. 
For example, we might want to identify all motor vehicle collisions that occurred 
in Hartford, Connecticut, and involved pedestrians. The geographical query is 
to select the town of Hartford, and the attribute query is to select only collisions 
involving pedestrians. We need to find the intersection of these two queries—
events that satisfy both conditions. Depending on how the data set is structured, 
there are several ways to perform these queries. One is first to select Hartford 
in the view, then query the data set for collisions involving pedestrians. Alter-
natively, if the name of the city where the collision occurred is included in the 
data set, it would be possible to query the database to select events where the 
accident town is Hartford and the collision type is pedestrian.
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Most complex queries involve Boolean operations (Table 4.1). Boolean 
operations are operations that are applied to sets and logical propositions. In GIS 
queries, these operations define how the attributes of events are to be combined. 
Two common Boolean operations are AND (intersection) and OR (union). The 
AND operator finds the intersection of two attributes. It identifies events that 
satisfy two conditions simultaneously.

In the above example, we selected collisions based on an AND query. A 
sequence of AND operations finds events that satisfy more than two conditions 
simultaneously. To identify collisions that occurred in Hartford, involved pedes-

FIGURE 4.13. Viewing by attribute allows the user to highlight a motor vehicle 
collision with the attribute “Fatal” from a table of data and find the location of the col-
lision in the GIS display.
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trians, and a school bus, we would create the following query to find every record 
where the accident town is “HARTFORD”, the collision type is “Pedestrian,” 
and the vehicle type is “School Bus.”

The OR operator finds the union of two attributes, that is, events that satisfy 
at least one of the two attributes. To select collisions that involved a pedestrian 
or a school bus, we would create the query to find every record where the col-
lision type is “Pedestrian” OR the vehicle type is “School Bus.” The collisions 
identified in this query would include any collision involving a pedestrian, any 
collision involving a school bus, and any collision involving both. Queries can 
combine Boolean operators to identify detailed subsets of events for display, as 
shown in Table 4.1.

The ability to perform complex queries, both geographical and attribute-
based, is an important feature of GIS. In a real-world setting, the challenge is 
to move from verbal queries like “Show me the fatal collisions that occurred on 
two-lane roads and involved people who were driving while intoxicated (DWI)” 
to the precise logical and geographical statements that are needed to perform 
these queries in GIS. This query looks for events that satisfy three conditions: 

FIGURE 4.14. Viewing by attribute allows queries of a database table to identify 
all collisions that satisfy a set of criteria and highlight the locations of these collisions 
in the GIS display.
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TABLE 4.1. Boolean Operators

Boolean operator Notation Definition Example

Equality S = T A relationship between 
two sets when the sets 
contain precisely the same 
elements.

If S is the set of collisions 
obtained by using the GIS to 
find all collision points within 
the polygon of the Hartford 
town boundary and T is the 
set of collisions obtained 
by using the GIS to query 
the collision attribute table 
to find all collisions with 
AccTown=HARTFORD and 
there are no errors in the spatial 
or attribute information, then the 
two sets would have the same 
collisions as members and the 
sets would be equal.

Subset T  C A relationship between 
two sets where every 
element of S is an element 
of the second set T.

If C is the set of collisions 
occurring in the state of 
Connecticut and T is the set of 
collisions occurring in Hartford, 
then T would be a subset of C. C 
would not be a subset of T.

Intersection P  T A binary operation that 
takes two sets and returns 
the set of elements that 
are members of both the 
original sets.

If P is the set of all pedestrian 
collisions in the state of 
Connecticut and T is the set of all 
collisions in Hartford, then the 
intersection of P and T would be 
the set of all pedestrian collisions 
in Hartford.

Union B  H A binary operation that 
takes two sets and returns 
the set of elements that 
are members of at least 
one of the original sets.

If H is the set of all pedestrian 
collisions in Hartford and B is the 
set of all collisions in Hartford 
involving a school bus, then the 
union of B and H would be the 
set of all collisions in Hartford 
involving either a school bus or a 
pedestrian, or both.

Empty or Null The set contains no 
elements.

No motorcycles were involved in 
collisions in Hartford that also 
involved a pedestrian. A query to 
find the intersection of pedestrian 
and motorcycle collisions in 
Hartford would return an empty 
set.

(cont.)
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fatal collisions, location on two-lane roads, and DWI. In addressing the query, 
we need to satisfy all three conditions and find the intersection among them. 
Creating queries calls for a skilled GIS analyst who can translate verbal state-
ments into logical ones and perform the GIS operations needed to satisfy them.

Geographical Viewing

Geographical viewing starts with a geographic area(s) of interest and asks about 
the attributes of events located within those areas. In a GIS view, the analyst can 
select locations, or pan and zoom to particular locations, and then examine the 
attribute data in the table for those selected events. The map is the starting point, 
and the analyst links back to attribute information in the table.

Using standard query tools in GIS, one can select features according to their 
point or area locations. Figure 4.15 contains a view of point data showing the 
locations where people were bitten by rats in New York City in a certain year. 
We can click on one of those points to view the attribute data associated with the 
particular cases at that point—age of person, location of the bite on the person, 
activity, and so on. GIS users can also select by area. To determine which rat 
bites occurred in the borough of Staten Island, we select that borough by “turn-
ing on” the borough data layer in the display and clicking on the borough of 
Staten Island, then selecting cases occurring within the selected borough. This 
operation gives access to the attribute information for cases in that borough. 
Tables, charts, and statistics can be generated to describe the aggregate charac-
teristics of those selected cases, such as median age, gender, and location (home, 
work, park) where the bites took place.

TABLE 4.1. (cont.)

Boolean operator Notation Definition Example

Difference B\H A binary operation that 
takes two sets and returns 
the set of elements that 
are members of the first 
set but not the second set.

The difference of B and H 
would be the collisions in 
Hartford that involved school 
buses not including any school 
bus collisions in Hartford that 
involved pedestrians.

Complement P A unary operation applied 
to a set that returns the set 
of elements not in the set. 
The complement is always 
taken with reference to a 
universal set.

The complement of P, the set of 
all pedestrian collisions in the 
state of Connecticut, would be 
the set of all other collisions in 
Connecticut.
The complement of T, the set 
of all collisions occurring in 
the town of Hartford, would be 
the set of all other collisions in 
Connecticut.
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Another kind of geographical viewing is a type of windowing in which we 
select events within a user-defined area. Most GIS include a tool that allows 
users quickly to draw a rectangle, circle, or irregularly shaped polygon in the 
view. Events located inside the polygon are selected so that one can explore 
and summarize their characteristics (Figure 4.16). By drawing a window around 
those cases and selecting them, the analyst can generate summary statistics that 
compare events inside and outside the window.

Geographical viewing offers a powerful means of exploring data based on 
geographical location. The map, combined with the viewer’s knowledge and per-
ceptions of places on the map, stimulates queries about what types of health 
problems exist in particular areas and why the problems cluster geographically.

Changing the View

Views are not static. Within the limits defined by the scale and extent of the 
data set, one can change the view, moving across the map or focusing on areas of 
interest. Pan refers to movement across a map, bringing new areas into the view. 
Often the view includes just part of the geographic extent of a data set. Using the 
pan function, we move across that geographic extent to bring another part of the 
map into the view. We can also change the view by zooming in or out. When we 
zoom in to an area, we move toward it, keeping it in focus in the view. Zooming 
in is useful for getting a closer look at areas of special interest. By zooming in to 
a cluster of health events, the detailed geography of the disease cluster becomes 
apparent. Drawing upon other data layers, we can observe the concentration 
of events along roads, or in relation to parks, landfills, and other features. To 

FIGURE 4.15. The geographical viewing capabilities of a GIS enable users to access 
the attributes of an event like a rat bite that occurred at a particular location.
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zoom out is to move away from the map, bringing a larger geographic area into 
the view. Zooming out is useful for examining regional differences, for getting a 
“wide-angle” view of broad spatial patterns.

An important point to remember about changing the view is that the scale 
and extent of data in the GIS limit the view. If our foundation data encompass 
only the state of Iowa, we cannot pan beyond the state to see neighboring areas 
of Minnesota or Nebraska. Similarly, if our original foundation data is at a scale 
of 1:24,000, by zooming in to the map we will not see more detail than exists at 
the 1:24,000 scale. This is one reason why it is so important to think carefully at 
the beginning of a GIS mapping project about the scale and extent of the founda-
tion data to be used.

Viewing and Analyzing Geographical Associations

Another way to change the view is to add or remove features visible on the view. 
Known as cartographic overlay, such procedures involve the overlay of data lay-
ers to show geographical associations. In most GIS, cartographic overlay requires 
a simple click of the mouse to make data layers visible or not visible in the dis-

FIGURE 4.16. Selecting rat bites within a user-defined rectangular window. Attri-
butes of bites inside the window are summarized in tabular form.
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play. For example, we might begin with a crime map that shows locations where 
assaults occurred. To identify places where school children might be at risk of 
assault, we activate the schools’ data layer, overlaying the school locations on the 
view of assaults (Figure 4.17). The overlay reveals that school A is in an area with 
a greater number of assaults than school B, which may mean that students who 
attend school A are at greater risk of assault. By adding and removing data layers 
in this way, we can begin to visualize and explore geographical associations.

Spatial queries are procedures for creating new information about the geo-
graphical relationships among data layers that are visible in cartographic overlay. 
For example, we might want to know how many homes are located in a protected 
watershed region. To answer this question, we need to overlay the point data 
layer showing the locations of homes with the area (polygon) data layer depicting 
the watershed. The spatial query counts the number of homes that fall within the 
watershed. Spatial queries are similar to the queries described earlier, except 
that they (spatial queries) are based on the relative locations of features, rather 
than on their attributes. While cartographic overlay offers a picture of the rela-
tionships among layers, spatial queries provide a quantitative or qualitative sum-
mary of those relationships.

Spatial queries may differ on the type of spatial data—raster or vector—
that one is working with. Raster layers that are registered together and have the 

FIGURE 4.17. Cartographic overlay of a data layer showing high school locations 
with another data layer showing the locations of assaults. The overlay reveals that high 
school A is located in an area with a higher number of assaults than high school B.
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same pixel size will overlay perfectly. Under these circumstances, spatial queries 
can be performed on a pixel-by-pixel basis using map algebra (Tomlin, 1990). 
Map algebra consists of Boolean and algebraic operations to combine and relate 
pixel values. All of the operations described in Table 4.1 can be performed to 
create new raster images based on combinations of data layers. If the pixel values 
are measured on an interval or a ratio scale, they can be combined via algebraic 
operations. For vector-borne diseases, like Lyme disease and hanta virus, such 
operations have been used in estimating vector density as a function of elevation, 
land cover, and vegetation density, as discussed in Chapter 8.

When using vector data, spatial queries are based on comparisons of rela-
tive location as defined by geographical coordinates. The types of spatial queries 
depend on the types of features—point, line, or polygon—being compared. Que-
ries that compare two point data layers typically involve calculating distances 
between points. One can determine both average distances between points on 
different layers and numbers of points in one data layer within a given distance 
of points in the other data layer. These types of queries have many potential 
applications in public health GIS, but they are especially important in analyzing 
locations of health care services and geographical accessibility to those services, 
as discussed in Chapters 9 and 10. For example, health service planners often 
want to know: How far is each town from its nearest hospital? This spatial query 
involves comparing two point data layers, one showing the locations of towns and 
the other the locations of hospitals.

Spatial queries involving point and polygon vector data are also common in 
public health GIS. In this case, the queries involve identifying the areas where 
points are located, or the number of points within areas, or the number of points 
within a distance radius of an area. One of the most common types of queries is 
to determine the area in which a point is located, for example, the political dis-
trict or block in which a residence is located (Figure 4.18). The point data layer 
is superimposed on the polygon data layer that shows area boundaries. Then, 
a point-in-polygon operation is performed to identify the particular area that 
contains the point. Although the human eye can easily visualize and respond to 
a point-in-polygon query, such queries are complex from a technical and com-
putational standpoint and are based on polygon topology. After completing the 
query, the polygon name or number can become a new attribute in the point data 
layer. Alternatively, one can use point-in-polygon operations to identify and char-
acterize the points that fall inside particular polygons. The watershed example, 
mentioned above, exemplifies this type of point-in-polygon query. Note that the 
number of homes located within the watershed becomes a new attribute of the 
watershed polygon.

Another class of spatial queries addresses the associations between linear 
features and point and area features. Line-point queries involve distance rela-
tionships; for example, we might ask, how many homes are located within 500 
meters of a highway? To respond to this query, the GIS computes distances from 
each home to the highway and counts the number of homes that have a distance 
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less than 500 meters. Line-in-polygon queries ask which linear features fall 
within a particular polygon: that is, which highways pass through the Williams-
burg neighborhood? A line-in-polygon operation, similar to the point-in-polygon 
operation noted above, is used in solving these types of spatial queries.

The final class of vector spatial queries involves comparing two or more 
polygon data layers. One can overlay the polygon layers and use Boolean or alge-
braic operations to create new information. For instance, we might want to find 
all census tracts that are located in the service area for Saint Francis Hospital 
and have a median household income under $25,000. We overlay the hospital 
service area data layer with the layer containing census tracts with incomes 
below $25,000 and use the Boolean AND operator to find tracts, or parts of 
tracts, that satisfy both criteria. Polygon overlay can be a time-consuming pro-
cess, especially when it involves large numbers of polygons, because it works 
from the detailed topological relationships among the polygons (DeMers, 2000). 
To save time in polygon overlay, we can often preprocess the polygon data layers 
to remove polygons that are not of interest. In this example, we could eliminate 
census tracts with incomes above $25,000, using only the remaining tracts in 
performing the spatial query.

Spatial queries are an essential component of all GIS systems, enabling the 
user to create new information based on geographical relationships between 
various layers of spatial information. Chapters 5 through 11 consider the use 
of different types of spatial queries in diverse public health GIS applications, 
including environmental health, communicable and vector-borne disease, and 
health services access and location.

FIGURE 4.18. Point-in-polygon operation to find the block in which a point is 
located. The operation involves comparing the geographical coordinates of the point, 
in this case (lon,lat) coordinates, to the coordinates of the vertices of the polygon to 
determine if the point is “inside” the polygon.
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GIS and Map Publication

The mapping process as implemented in a GIS emphasizes the representation 
and analysis of information. Nevertheless, finished maps remain an important 
product of GIS to support the various stages of compilation, exploration, and 
analysis of data and to present results. A single map or a series of maps may be 
prepared for publication, either in traditional printed format or in digital form 
on the Internet. These maps are finished products that may be viewed and ref-
erenced by a diverse audience, and there are a number of design elements worth 
considering in preparing maps for publication.

Key Elements of Thematic Maps

Thematic maps typically contain certain key elements (Table 4.2). These ele-
ments define the nature and source of a map’s contents. They also assist the map 
reader.

The title of the published map describes that major theme of the map. Care-
fully written titles are important for communicating that theme. The legend of 
a thematic map identifies and defines the symbols used on the map. Neatlines
define the borders of the map and areas within it, including insets and legends. 
They can be used effectively to partition the document and draw the eye to dif-
ferent map elements.

Published maps should also include a north arrow and scale. The north 
arrow indicates map orientation. As discussed in Chapter 2, map scale is impor-
tant because it affects the detail that can be portrayed.

Some cartographers have suggested that these are not essential elements for 
thematic map design (Slocum et al., 2009). Given a map of the United States, for 

TABLE 4.2. Elements of Thematic Maps

Element Description

Title Describes major theme of map.

Legend Defines map symbols.

Neatlines Define borders of the map sheet and areas 
within it, including insets and legends.

North arrow Describes map orientation.

Scale Describes map distance in relation to 
earth distance.

Source Describes source, date, and reliability of 
mapped data.

Agency Identifies agency responsible for 
preparing and/or publishing the map.
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example, readers will recognize the map domain and have a sense of the orienta-
tion and scale even if they are not explicit. Many public health GIS applications, 
however, deal with localities or regions that may be less familiar to map readers. 
A north arrow should be included, particularly if the orientation of the map on 
the page is different from north and if direction is important in interpreting the 
map content. This might be the case in mapping the plume from a point source 
of emissions into the atmosphere.

The scale of the map is information that should also be clearly presented. 
Maps have traditionally been compiled at a series of standard scales (1:24,000, 
1:50,000, 1:200,000, and so on), and the scale element assists the reader in plac-
ing the published map along this series. Furthermore, published maps are doc-
uments that are acquired by libraries and research institutes, catalogued, and 
made accessible to a potentially large audience. Inclusion of a map scale assists 
in cataloguing and helps individuals find maps that might reveal the spatial pat-
terns of interest because the maps were prepared at a scale that can display the 
necessary detail.

Published maps may also include the source of the data that are the theme 
of the map. The information might include the date of the data and pertinent 
information about the reliability of the data. Finally, the agency responsible for 
preparing and/or publishing the map should be included.

GIS software packages include a range of functions that help users take the 
information from a cartographic display of data and compose a map document 
for printing or storing in common graphics formats. Text, charts, tables, photo-
graphs, and other elements like the date the map is printed can often be incor-
porated into the map document. Layouts can be stored as templates to preserve 
the standard elements in the design.

Maps on the Internet

Maps, like other documents that traditionally have been printed and distrib-
uted on paper, are now primarily being published in digital form on the Inter-
net (Kraak & Brown, 2000; Kraak, 2004). In the criminal justice field, police 
departments, such as the Chicago Police Department, are posting maps of crime 
occurrence on the Internet to give citizens access to the information for their 
communities (Chicago Police Department, 2011). Public health agencies and 
researchers are increasingly making maps of health events and health care ser-
vices available on the web. A good example is the National Cancer Institute’s 
Cancer Maps and Graphs website that allows users to create their own customi-
zable maps of cancer mortality (National Cancer Institute, 2011c). Many other 
examples of Internet-based mapping of health and health care services are dis-
cussed in Chapters 6 through 12.

Internet mapping has changed greatly in the past decade. Early efforts 
focused primarily on creating static maps, maps viewed as documents on the 
Internet (Peterson, 2005). These maps are created by scanning existing paper 
maps or by saving map layouts in one of a variety of common graphics formats 
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like JPEG (Joint Photographic Experts Group) or GIF (Graphics Interchange 
Format). Static maps can basically be located and viewed. Viewers do not inter-
act with these maps and cannot modify them.

The next generation of web mapping emphasized dynamic or interactive 
maps—maps that allow the user to interact with the map in some way (Plewe, 
2007). These maps may allow viewers to display the map in a different projection, 
pan or zoon, or separate map data layers (Peterson, 2005). Viewers may be able 
to click on an element in the view or pass the mouse over an element to obtain 
further information (Kraak & Brown, 2000). Many interactive maps are also on-
demand maps that are generated from databases according to requests made by 
the viewer. In the cancer mapping site mentioned above, users can choose the 
type of cancer, time period, age group, and scale of data (state, county) for map-
ping. Dynamic maps typically rely on web-based GIS to “serve” maps over the 
Internet.

A good example of an interactive mapping website is the U.S. Centers for 
Disease Control and Prevention’s site for interactive mapping of heart disease 
and stroke (Centers for Disease Control and Prevention, 2011c). For each dis-
ease, users can create customized maps of mortality or hospitalizations and show 
the locations of hospital facilities. Maps can be constructed for different time 
periods and gender and race groups, at county and state geographical scales. 
Sites like this one promote the sharing of health information with researchers, 
community organizations, and the public.

As discussed in Chapter 1, the latest generation of web mapping, focused 
on Google Earth®, has fundamentally changed how maps are viewed and cre-
ated on the Internet (Plewe, 2007). Satellite image data and basic mapping tools 
are freely available to anyone with access to the Internet. Users construct their 
own maps by panning and zooming to areas of interest and controlling the types 
of data to be displayed. Users can contribute their own content to the map and 
share content with others in an open, distributed, and potentially collabora-
tive, mapping process. Boulos and Burden (2007) describe this process as the 
“democratization of GIS”—a shift from proprietary mapping systems to user-
driven, collaborative map production.

Government agencies are also creating similar kinds of mapping systems 
that enable users to construct their own maps and download customized data 
sets. The U.S. Geological Survey’s Digital Map-Beta (U.S. Geological Survey, 
2009a) lets users turn data layers on and off, pan and zoom, and create mashups 
for use with Google Maps®. In the United Kingdom, users can create customized 
maps of specific areas at a range of geographical scales using the Ordnance Sur-
vey’s Get-a-Map system (Ordnance Survey, 2011c). Natural Resources Canada 
provides a wealth of spatial data and maps online (Natural Resources Canada, 
2009). Although most of these systems lack the collaborative feature discussed 
earlier, they typically provide standardized and high-quality data and maps on a 
wide range of environmental and social features.

Map production on the Internet raises many new issues for cartographic 
design and map distribution. New types of symbology and visualization options 



Mapping Health Information 147

are possible on the web. At the same time, map production and distribution 
may be limited by issues such as processing speed and the computer screen as 
a medium. In addition, online map publication involves much more than just 
design questions because the map image has a front end—the user interface for 
the mapping application displayed within the browser—and a back end—the 
digital databases accessed to respond to queries and requests and to produce the 
resulting map.

Web mapping greatly expands the range of cartographic variables and map 
symbols beyond the original set of visual variables proposed by Bertin (see Fig-
ure 2.17). Attributes like transparency, fog, and blur can be used to differen-
tiate features in ways not possible on paper maps (Kraak, 2004). Blur is often 
used to indicate data uncertainty; fog obscures parts of the map, removing them 
from view. Internet mapping also permits use of dynamic symbols such as blink-
ing symbols to show stability over time or draw attention to important features. 
Animated map sequences showing spatial and temporal change (discussed in 
Chapter 7) are easily created in a web environment. The web also provides an 
ideal platform for three-dimensional mapping of health data. Boulos and Burden 
(2007) describe how virtual reality software linked with Google Earth can be 
used to map the movement of diseases over space and time and to depict changes 
in local environments that promote or disrupt disease transmission.

Although web mapping has many advantages, map production and distribu-
tion may be limited by technological barriers. Despite increases in the size and 
resolution of computer screens, the screen still limits the portion of map that can 
be viewed and its level of detail. That portion will be determined by the size of 
the screen and the area inside the web browser. If a map is larger than the avail-
able space, viewers will have to scroll to see every part of the map. Moreover, 
computer screens are raster devices. Screen resolution is generally much lower 
than the resolution of many desktop printers, which are capable of 1,200 dots 
per inch or dpi as a minimum. Viewers’ monitors may have resolutions ranging 
from 60 to 100 dpi. The lower resolution also limits geographic detail, text size, 
and shade patterns.

It is less expensive to publish maps in color online than in printed form. 
However, not all colors are browser independent. Viewers who do not have color 
printers will only be able to print black and white versions of the maps.

In addition to the design of the map, publication of maps online requires 
design of a user interface. The user interface provides the viewer with access to 
tools for map navigation, map display, and map querying and analysis. In intranet 
applications that provide access to maps within organizations, interface design 
can be very simple. For Internet applications where maps will be accessed by a 
potentially large and unknown group of viewers, interface design may be more 
challenging.

A general principle is that the interface design should feel natural and 
intuitive to users (Harrower & Sheesley, 2005). Users are becoming much more 
accustomed to navigating web maps, having interacted with online mapping 
systems in their everyday lives. For basic navigation tasks like pan and zoom, 
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they may expect to find specific symbols in specific positions on the user inter-
face. Harrower and Sheesley (2005) outline detailed criteria to guide the design 
of user-friendly map browsing tools: the interface should facilitate sequential 
and nonsequential browsing, allow precise control over the extent of browsing, 
include local and global orientation cues, and tightly link user commands and 
the map response.

The greater the number of functions available to the user for interacting 
with the map, the greater the number of controls there will be in the interface 
and the more complex it will become. Map images, graphical icons and buttons, 
text with and without hyperlinks, and forms supporting various types of input 
can all be used in interfaces supporting mapping applications (Plewe, 1997). The 
arrangement of elements in the interface is also important. Controls that will be 
used more frequently may be placed in different areas from those that will be 
used only rarely. Map navigation controls for panning and zooming are generally 
placed close to the map image.

As the number of functions increases, processing requirements increase. 
There is a tension between how much of the processing occurs on the server 
versus the client machine. Generally, more functions result in more processing 
on the client. These functions can usually only be supported if the client has or 
can obtain the necessary plug-in or software to support the function.

KML (Keyhole Markup Language) is the current standard for expressing 
annotations, features, and visualizations on web-based two-dimensional maps 
and three-dimensional earth browsers such as Google Earth. It is used to place 
vector objects including points, lines, and polygons on a map or browser and 
to annotate those features with descriptive information such as text or images. 
KML has a tag-based structure in which the tags are used to determine how and 
where features appear (Google, 2011b). Locational information is expressed in 
lat/lon coordinates based on the standard latitude, longitude reference system 
with the WGS84 datum. Altitude can also be included. The format for specify-
ing a point location in KML is: longitude, latitude, altitude. Table 4.3 shows an 
example of a KML script to create a point placemark. Note that the placemark

TABLE 4.3. Sample KML Script to Create a Placemark

<?xml version="1.0" encoding="UTF-8">
<kml xmlns="http://www.www.opengis.net/kml/2.2">

<Placemark>
   <name>UIUC, Geography</name>
   <description>Department of Geography, University of

Illinois</description>
<Point>

    <coordinates>-88.2264606,40.107335,0</coordinates>
</Point>

  </Placemark>
</kml>
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has three elements—a name, a description, and a set of lat/lon coordinates—that 
identify where the point is located and the feature it represents. When KML files 
reference complex features like paths and polygons, and include detailed descrip-
tions, the files can be very large. These large files are typically compressed into 
the KMZ (zipped) format. An advantage of the zipped format is that it allows cus-
tom placemarks or images to be included in feature descriptions. Also, one can 
incorporate network links to data and descriptions on the web in order to access 
data from remote locations and distribute it to a large number of users.

What are the implications of these developments for GIS applications in 
public health? The growing trend toward distributing information on the Inter-
net means that public health organizations need to plan for data distribution. 
Will maps or data, or both, be provided? If publication on the Internet is impor-
tant, the institutional requirements for a successful GIS application increase. In 
addition to staff who can maintain the databases used in-house and design GIS 
applications, staff are needed who have expertise in web and interface design. 
Staff are also needed who can administer and maintain the servers and software 
that support the Internet mapping and data distribution applications. Even if 
the GIS is operated in a self-contained environment, public health analysts will 
need to become familiar with online mapping because much of the foundation 
and other data they will need to access to develop their GIS applications will be 
distributed over the Internet.

Conclusion

GIS has revolutionized the process of mapmaking. From obtaining data to devel-
oping maps, to creating on-demand images on the Internet, the process can be 
accomplished in a fully automated, digital environment. Technological devel-
opments are stimulating a new mapping process that emphasizes exploration 
and visualization of health information in new and innovative ways, rather than 
construction of finished maps. But the ease of operating GIS makes it even more 
imperative that users have a firm understanding of the basic principles of geog-
raphy and cartography. Maps can lie. They can mislead just as easily as they 
can lead (Monmonier, 1996). Successful mapping depends on the knowledge and 
skills of analysts who use the systems and the integration of those systems in 
decision-making processes at the state, local, and community levels. As the links 
between the GIS and public health communities expand, mapping, viewing, and 
analyzing geographically based health information will occupy an even more 
central position in efforts to improve the performance of essential public health 
activities and promote community health and well-being.
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CHAPTER 5

Analyzing Spatial Clustering 
of Health Events

Public health professionals are often faced with the task of investigating disease 
clusters, unusual concentrations of health events in space and time. Clusters 
can come to the attention of public health departments when concerned citizens 
perceive an excess of ill health in their communities or through surveillance 
systems that detect an unusual concentration of health events by searching for 
patterns in routinely collected data (Neutra, Swan, & Mack, 1992). Whether the 
analysis is confirmatory, verifying that a perceived cluster exists, or exploratory,
searching for patterns, GIS can play a crucial role in analyzing spatial clusters. 
As GIS technology develops, innovative spatial statistical methods are being 
linked with GIS to analyze the spatial clustering of disease in populations and to 
assess changes in health status and disease prevalence over time.

This chapter discusses methods for analyzing spatial clustering of health 
events and the use of GIS to implement these methods. We cover a representa-
tive set of methods and explain the procedures and concepts that underpin the 
methods. The emphasis is on GIS operations and applications rather than on 
statistical issues. We divide the methods into two broad categories: field-based 
and object-based approaches.

Spatial clustering methods can help provide answers to an array of funda-
mental public health questions. Do any unusual clusters of health events exist in 
an area? What places have unusually high or low prevalences of disease? Where 
are the risks of ill health highest or lowest? Spatial analysis methods offer a 
means of filtering health information in order to describe geographical patterns 
and identify unusual occurrences of health events.

Figure 5.1a shows the residential locations of children who have leukemia 
in a hypothetical city. A geographical cluster of cases appears in the northwest 
section of the city. Does this area have an unusually high rate of childhood leu-
kemia? Answering this question requires several important bits of information. 
First, we need to examine the number of cases of leukemia in relation to the 



Spatial Clustering of Health Events 151

population at risk. The population at risk is the set of people who, because of 
their age or gender, can contract the health problem of interest. As discussed in 
the Introduction, the larger the risk population, the larger the number of cases 
one would expect to find. By definition, childhood leukemia occurs in children, 
so the risk population comprises all children living in the city or some part of the 
city. Because population is distributed unevenly over space, the density of health 
events will vary even when the underlying rate of ill health is uniform. Figures 
5.1b and 5.1c depict two alternative spatial distributions of risk population for 
the leukemia example. In Figure 5.1c, the leukemia cluster occurs in an area of 
high-risk population density; thus population accounts for the disease “cluster.” 
In Figure 5.1b this is not the case.

FIGURE 5.1. A hypothetical distribution of leukemia cases in relation to two differ-
ent spatial patterns of risk population.
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A second issue in analyzing clustering is to define the geographic extent, or 
scale, at which clustering occurs. A cluster of cases within a 5-square-mile area 
has a very different meaning than a cluster of cases within a 2,500-square-mile 
area. The first indicates a highly localized cluster of disease, whereas the second 
identifies a large region with an elevated disease rate. All clustering methods 
focus on one, or, in some cases, a few, spatial scales. Sometimes the analyst can 
control the choice of spatial scale; however, often the analyst will find scale dic-
tated by the scale of the underlying population or health data. The leukemia 
example addresses clustering at the intraurban scale; that is, it searches for clus-
tering within small neighborhood areas rather than across cities or regions.

Scale critically affects the kinds of inferences that can be drawn from cluster 
studies. Clustering within cities or communities reflects localized factors such 
as point sources of environmental contamination. In contrast, elevated disease 
rates for states or regions result from regionwide factors like climate, culture, 
politics, and legislation, along with more localized factors. The scale at which a 
health problem is studied should reflect an understanding of the disease process 
and likely causative factors. Furthermore, the pattern at one geographical scale 
can be associated with patterns at other scales. A state’s “average” rate of disease 
may result from having some communities with unusually high rates and others 
with unusually low rates, or from having many communities with rates close to 
the state average. These disparate rates are concealed in the statewide average. 
Analyses below the state scale are needed to reveal such high-rate communi-
ties.

Third, analyzing clustering requires a set of criteria for judging how much 
clustering exists. Does an excess of one or two cases constitute a cluster? Where 
do we draw the line in defining “significant” clusters? There is no perfect answer 
to these questions, but geographical and statistical methods can help analysts 
and policymakers make scientifically informed decisions. Many clustering pro-
cedures rely on statistical criteria that describe the likelihood that clusters could 
have arisen by chance in a given population. Such criteria may utilize a known 
probability distribution such as the Poisson distribution, or they may utilize 
Monte Carlo simulation methods, which involve generating a large number of 
random possible outcomes, discussed later in this chapter. Some procedures also 
emphasize the arrangement of health events, not just in relation to population at 
risk, but also in relation to potential sources of contamination or environmental 
hazard—for instance, do the events cluster near a toxic waste facility, or are 
they arranged along roadways or power lines? These methods are discussed in 
Chapters 6 and 8.

This chapter is divided into three sections. The first looks at mapping health 
outcomes within fixed geographic areas, and it raises an important issue that 
underpins all spatial cluster investigations: the small numbers problem. The sec-
ond section highlights methods for cluster detection that are explicitly spatial. 
These methods involve aggregating health information over geographic space 
using field- or object-based approaches. The final section considers the rapidly 
expanding set of methods for examining clustering in space and time.
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Mapping Disease Rates: The Small Numbers Problem

Often cluster investigations begin with data on published rates of disease for geo-
graphical areas such as counties or ZIP Codes. Such data can be displayed on a 
choropleth map, as discussed in Chapter 4. When the areas differ in risk population 
size, however, as is typically the case, the calculated rates of disease for those areas 
have different degrees of variability. Rates for areas with small populations vary 
more and are less reliable than those for more highly populated areas. For small-
population areas, a difference of one or two cases can make a huge difference in 
incidence or prevalence rates. This is known as the small numbers problem.

Figure 5.2 illustrates the small numbers problem with data on low birth-
weight (percent of babies born weighing less than 2,500 grams) for two areas that 
differ in population size. Area 1 averages under 200 births per year, while Area 2 
averages over 1,600 births per year. Note the large variability in low birthweight 
in Area 1 from year to year. The low-birthweight rates fluctuate from 5 to 16% 
and appear unpredictable. In Area 2 the rates are more stable, ranging from 12 
to 16%. A choropleth map of low-birthweight rates by area for a single year does 
not represent their varying degrees of reliability. For small areas like Area 1, the 
map can give a false picture of the level of health depending on which year’s data 
happen to be selected for mapping. Area 2’s mapped value is likely to be closer 
to its “true” underlying value.

Probability Mapping

Probability mapping is a well-established statistical method for addressing the 
small numbers problem (Choynowski, 1959). In probability mapping we map 

FIGURE 5.2. The small numbers problem illustrated with data on low birthweight 
over time for two health areas in New York City. Area 1 is a “small” health area, aver-
aging 200 births per year, and its low-birthweight rates fluctuate greatly from year to 
year. Rates are much more stable in Area 2, a “large” health area with 1,600 births per 
year on average.
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the statistical significance of rates rather than the rates themselves. Statisti-
cal significance is measured by probability values that show the likelihood of 
a rate occurring given the normal rate of disease in the corresponding national 
or regional population. We refer to this rate as the population rate, p. The prob-
ability value for an area indicates the likelihood that the rate observed in that 
area would occur by chance if the underlying risk of disease was equal to p.
Probability values close to 0 or 1 indicate rates that are significantly different 
from the population rate.

There are many statistical methods for computing probability values. One of 
the most common relies on the Poisson distribution, used for modeling the prob-
ability of rare binary (present/absent) events in large populations. Many health 
problems (e.g., cancers, birth defects) fit this definition because they are rare, 
occurring in only a small fraction of the population, and binary, either present 
or absent in an individual. Consider a small area containing a population, n, and 
k cases of disease. We want to find out whether the presence of those k cases in 
a population of size n is unusual. In other words, is the actual number of cases 
significantly higher than expected based on the national or regional prevalence 
rate?

If the national or regional rate is p, the expected number of cases in the 
study area, lambda, is the study area population, n, multiplied by the national or 
regional rate:

np

For example, if the study area contains 40,000 people and the national preva-
lence rate is 1 per 10,000, we would expect four cases in the study area because 

 = 0.0001(40,000) = 4.
If we know the number of cases, k, occurring in a study region population, 

we can use the Poisson distribution to determine the probability, P(k), that the 
observed number of cases would occur in a population of the study region’s size. 
The Poisson distribution states that in a population of size n, the probability of x
cases occurring is P(x)= (e- x )/x!. In this example, the probability of one case 
would be 0.073 (Table 5.1). From this calculation, we can determine the prob-
ability of k or more cases occurring by chance, P(x k), if the true rate of disease 
in the population were p. That probability is calculated as

1

0

)(1)(
k

x

xPkxP

For example, if there are six cases of disease in the study region where only 
four cases were expected based on national or regional rates, the corresponding 
probability value would be 1 – 0.785, or 0.215. Note that the value 0.785 comes 
from summing the Poisson probability values for x = 0 through x = 5. This 
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means that there is a 21% chance of 6 or more cases occurring by chance if the 
underlying prevalence is 1 per 10,000. The closer this probability value is to zero, 
the smaller the likelihood that it would arise by chance alone. In this case, since 
the probability is not particularly small, we infer that the rate of disease is not 
unusually high. In general, probabilities less than 0.05 or 0.01 are considered to 
indicate significantly high prevalence rates.

Comparing choropleth and probability maps of low-birthweight rates for 
Manhattan in New York City that were produced with a GIS illustrates the dif-
ferences in these approaches (Figure 5.3). The map of actual rates shows consid-
erable variation among neighborhoods, with an area of high rates in northern 
Manhattan. In the probability map, some of the areas with exceptionally high 
or low rates disappear. These are low-population areas whose rates are unstable 
owing to the small numbers problem.

Probability mapping is a useful way of addressing the small numbers prob-
lem when mapping area health data, but it has two limitations. First, it does not 
preserve the content of the original data. Instead of mapping health incidence 
rates, it shows probability levels whose only connection to the rates themselves 
is through a statistical computation. Second, probability mapping tends to over-
emphasize the significance of rates in areas with large populations, because sta-
tistical significance is directly related to sample size. For an area with a large 
population, a rate that is slightly higher than the expected rate will often be 
statistically significant because the size of the population increases statistical 
power. This means it is easier to reject the null hypothesis that there is no differ-
ence in rates. Thus, a statistically significant difference may not be substantively 
meaningful. Analysts need to look beyond statistical significance by examining 
the raw diseases rates, the locations of high-rate areas, and any additional infor-
mation that might assist in interpreting high-rate areas. GIS support this more 
comprehensive view of statistical significance.

TABLE 5.1. Poisson Probabilities,  = 4.0

Number of cases (x) Probability P(x) Cumulative probability P( x)

0 .0183 .0183

1 .0733 .0916

2 .1465 .2381

3 .1954 .4335

4 .1954 .6289

5 .1563 .7852

6 .1042 .8894

7 .0595 .9489

8 .0298 .9787

9 .0134 .9919

10 .0053 .9972
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EMPIRICAL BAYES ESTIMATION

Empirical Bayes estimation is a method for addressing some of these issues 
while dealing with the small numbers problem (Clayton & Kaldor, 1987; Lang-
ford, 1994; Waller & Gotway, 2004). It represents a compromise between prob-
ability mapping and simple choropleth mapping of rates. In empirical Bayes 
estimation, rates are adjusted upward or downward, or smoothed, according to 
the size of the population on which they are based. The smoothing process pulls 
rates toward the national or regional rate, making the rates more stable and less 
variable. The rates for small areas are smoothed more than those for large areas, 
reflecting differences in reliability linked to population size.

Three assumptions underlie empirical Bayes methods (Langford, 1994). The 
first is that the smoothing process should not affect the overall rate for the study 
area. We assume that this overall rate is reliable and unbiased. Second, as noted 
earlier, rates for small areas are adjusted more than rates for large areas. Finally, 
we assume that the incidence rates for all areas in the study region follow a 
known probability distribution, called the prior distribution. Some common 
distributions are the gamma, beta, and log normal distributions.

The mathematical details of empirical Bayes estimation are well beyond 
the scope of this book, but by using these three assumptions we can describe 
the conceptual basis for the procedure. Many prior distributions used in empiri-
cal Bayes smoothing have two parameters: , which describes the shape of the 

FIGURE 5.3. A map of incidence rates and a probability map of the same low-
birthweight data for Manhattan show different patterns. On the probability map, areas 
in the high and low categories are places that have rates significantly higher or lower 
than the overall rate. Compared to the incidence rate map, the probability map shows 
fewer areas in the high and low categories. Many areas with small populations drop out 
of those categories on the probability map.
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distribution, and , which indicates the scale of the distribution. These are esti-
mated statistically to “best fit” the distribution of actual health rates. The inci-
dence rate across all areas is / .

Now consider an area i with population Pi and ki cases of disease. The actual 
incidence rate for area i is ki/Pi. Having estimated alpha and beta from the prior 
distribution, the smoothed incidence rate for area i is calculated as

(ki + )/(Pi + )

When area i is small in population size, ki and Pi are small and the smoothed rate 
approaches the overall incidence rate. Conversely, when ki and Pi are large, they 
dominate the smoothing process, and the smoothed rate for area i is very close 
to the actual rate, ki/Pi.

FIGURE 5.4. The choropleth map in Figure 5.4a shows U.S. counties with observed 
fire- and burn-related mortality rates of seven deaths per 100,000 population or higher, 
1979 to 1987. The map in Figure 5.4b shows the empirical Bayes fire- and burn-related 
mortality rates of seven deaths per 100,000 population or higher, 1979 to 1987. The 
choropleth map and the smoothed map show different patterns. From Devine and 
Lewis (1994). Copyright 1994 by John Wiley & Sons, Ltd. Reprinted by permission.
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As a consequence, empirical Bayes smoothing greatly affects rates for areas 
with small populations. Figure 5.4 shows a map of actual death rates from fire 
by county for the United States and a map of smoothed rates for the same data 
(Devine & Lewis, 1994). Counties with rates above 7.0 are shaded on the maps. 
The map of actual rates shows spatial clustering of high rates in the sparsely 
populated counties of the western states. More than 200 counties have rates 
above 7.0. In contrast, the smoothed map shows only 50 counties with high rates. 
Many of the less populated counties in the West moved out of the high-rate cat-
egory. Because of their small populations, their rates were adjusted down toward 
the overall mean. Despite their high actual rates, these counties have such small 
populations that we cannot confidently categorize them as “high-rate” places.

An important issue in empirical Bayes estimation is to define the overall 
rate to which other rates are smoothed. For many kinds of health problems, using 
the same rate for all areas “washes out” the geographical variation and depen-
dence that we know exists. Neighboring areas often have similar rates because of 
similarities in their social, economic, and environmental characteristics. A local-
ized rate for the region in which an area is located serves as a better benchmark 
for smoothing.

Marshall (1991) describes procedures for performing localized empirical 
Bayes smoothing. These procedures recognize and model the spatial depen-
dence that characterizes virtually all health information. Generally the proce-
dures work by computing for each area the localized rate of disease in its neigh-
borhood. Then the disease rate for area i is smoothed toward this neighborhood 
rate rather than the national rate. Both traditional empirical Bayes rates and spa-
tially smoothed rates can be computed using free downloadable software such as 
GeoDa (Anselin, 2003a).

Spatial Clustering Methods

The past two decades have seen major advances in the development of clustering 
methods that are explicitly spatial. These methods evaluate the occurrence of 
health events within neighboring geographic areas or among neighboring point 
locations (e.g., individual people, residences, or towns). Many draw upon GIS to 
provide innovative ways of viewing and analyzing health data that enable public 
health analysts to identify places with elevated disease rates, to gain insights into 
the likelihood that such rates would occur by chance, and to prioritize areas for 
further investigation.

This section considers a representative, but not exhaustive, set of methods. 
For more information on the full suite of methods, the reader can turn to several 
excellent reviews of the literature (Marshall, 1991; Waller & Gotway, 2004; Law-
son, 2006). Cluster detection methods can be divided into three groups: those 
that assess overall clustering in a study area (global methods); those that seek to 
identify cluster locations (local methods); and those that assess clustering around 
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a point source like a hazardous facility ( focused methods). The latter two are of 
more direct interest to GIS because they can take full advantage of the display 
and analytical capabilities of GIS. In this chapter we discuss local methods used 
in identifying cluster locations. Focused tests are considered in Chapter 6, and 
the interested reader can also find useful information in Bithell (1995) and Puett 
et al. (2005).

From a GIS standpoint, the methods described in this section loosely follow 
the field and object data models, discussed in Chapter 2, in analyzing cluster 
locations. Field-based methods scan the study region, searching a geographi-
cal “field” of health data for evidence of clustering. In contrast, object-based 
methods search for clusters by grouping nearby cases of disease (objects) and 
then testing whether the grouped cases are likely to represent a statistically sig-
nificant spatial cluster. Object-based methods start with case locations or, in the 
case of area data, with areas containing concentrations of cases, and attempt to 
build clusters by agglomerating nearby cases or areas.

Both field- and object-based spatial clustering methods require a proce-
dure for defining how close places are in geographical space. Such procedures 
generate spatial weights—numerical values that describe closeness—which are 
then used in spatial clustering methods. We begin by discussing procedures for 
defining these spatial weights and then consider field- and object-based spatial 
clustering methods. The final section discusses methods for analyzing clustering 
in space and time.

Defining Spatial Weights

Methods for analyzing spatial clustering rely on spatial weights that describe the 
proximity of neighboring areas or health events. A spatial weight is a numerical 
value with a higher value indicating greater geographical proximity. Defining 
spatial weights involves operations that can easily be accomplished in GIS.

When using area health data, spatial weights are often defined based on 
contiguity (also known as adjacency), that is, whether or not areas share a com-
mon boundary (Figure 5.5a). If areas i and j border each other, they are consid-
ered to be contiguous/adjacent and are assigned a spatial weight equal to one 
(wij = 1). Areas that are not contiguous are assigned a spatial weight of zero. GIS 
systems include operations for identifying contiguity among areas.

Contiguity can be directly observed for areas like census tracts or counties 
that are polygon features. For point features, one must associate each point with 
a corresponding polygon in order to define contiguity. Analysts can accomplish 
this using Thiessen polygons. A Thiessen polygon is a polygon whose boundaries 
demarcate the area that is closer to a particular point feature than to any other 
point (Figure 5.5b). Thiessen neighbors are points whose Thiessen polygons are 
contiguous (Brassel & Rief, 1979).

Another criterion for identifying spatial weights is proximity, the distance 
between health events or areas. When using point data for health events, the 
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distance between points serves as a convenient measure of proximity. Typically, 
Euclidean distance is used, but network and other distance measures may be 
more appropriate when interactions between people or places are constrained by 
a transportation network. After determining interpoint distances, spatial weights 
can be defined based on a critical cutoff distance, such that the weight equals 
one if two points are located within the critical distance, or zero otherwise (Fig-
ure 5.5d). Alternatively, we can compute spatial weights as an inverse function of 
distance—say, wij = dij

–b—where b represents the rate of decline in the weight 
with increasing distance.

Defining proximity is more complex for area data than for point data, and 
several methods have been proposed (Figure 5.5c). All involve determining the 
centroid, or central location, for each area, and then calculating the distance 
between area centroids. Centroids can also be population-weighted so that they 
more accurately reflect the uneven spatial distribution of population within each 
area (Talbot, Kulldorff, Forand, & Haley, 2000). Most GIS include built-in func-
tions for defining area centroids. Using centroids, we can define spatial weights 
as an inverse function of distance or based on a critical distance. Alternatively, 
we can define spatial weights based on the fraction of area lying within the criti-
cal distance of i’s centroid. Areas j and i are “neighbors” (i.e., wij = 1) if a large 
proportion of j’s territory falls within the critical distance radius. GIS can be 
used to automate these spatial operations for computing spatial weights.

FIGURE 5.5. Defining the spatial neighbors for area and point data based on conti-
guity and proximity. Note how the neighbors differ depending on the criteria used.
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Field-Based Spatial Clustering Methods

Field-based spatial clustering methods search the entire area of interest for 
clusters of health events. The methods involve scanning the study region, mov-
ing from area to area or point to point. At each location, clustering is assessed 
within a local neighborhood according to statistical or mathematical criteria for 
cluster detection. One of the earliest and most influential field methods is the 
Geographical Analysis Machine developed by Stan Openshaw and colleagues 
in the 1980s (Openshaw, Charlton, & Craft, 1988). Although GAM is not widely 
used today, its technique of scanning a space within overlapping spatial win-
dows (also known as spatial filters) has been widely adopted in more recent 
procedures for cluster detection. This section considers a representative set of 
field-based cluster detection methods.

LOCAL MEASURES OF SPATIAL AUTOCORRELATION

An important class of methods for cluster detection includes localized measures 
of spatial dependence such as Getis and Ord’s (1992) Gi* statistic and Anselin’s 
(1995) local indicators of spatial autocorrelation (LISA) statistic. These mea-
sure the association between a value at a particular place and values for nearby 
or adjacent areas. The statistics are useful for finding disease clusters based on 
area data, although they may be applied to point data under some circumstances. 
A cluster is a region that has unusually high counts or rates of disease, that is, a 
local concentration of high values.

Getis and Ord’s Gi* statistic illustrates well the structure of these local-
ized measures of spatial dependence. Consider an area divided into m subareas. 
xi refers to the value of the health indicator (e.g., incidence or prevalence rate 
or standardized mortality ratio) for area i. wij is a spatial weight defining the 
nearness of area i to area j, based either on contiguity or proximity, as discussed 
above. Given these definitions, the standardized Gi* statistic is
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Gi* is positive when high rates of disease cluster in i`s local neighborhood. This 
indicates a disease cluster or geographical grouping of high prevalence rates, a 
hot spot (Figure 5.6). A negative value of Gi* shows a spatial cluster of low rates, 
known as a cold spot.

Although Gi* is a statistical measure, calculating it involves several com-
mon GIS operations. GIS can be used for determining the spatial weights that 
indicate proximity/adjacency and for creating choropleth maps of the Gi* values 
that are useful in identifying cluster locations.

Another widely used measure of local spatial autocorrelation is the LISA 
statistic (Anselin, 1995). The LISA statistic is a local version of the well-known 
global indicator of spatial autocorrelation, Moran’s I. Consider a study region 
that is divided into subareas. The LISA statistic for subarea i is

j
ji

ijii zwzI

where zi represents the standardized value of the health indicator of interest in area 
i and wij is a spatial weight measuring the nearness of subareas i and j. LISA essen-
tially measures the statistical correlation between the value in subarea i and the 
values in nearby subareas. LISA values close to zero indicate little or no statistical 
association among neighboring values. A positive LISA statistic identifies a spatial 
concentration of similar values. These may be high values that represent high rates 
of disease—a high-high cluster or hot spot—or low values representing low rates 

FIGURE 5.6. A map of standardized values of the Gi* statistic, a local measure of 
spatial autocorrelation, showing spatial patterns in SIDS rates in counties of North 
Carolina for 1979 through 1984. The furthest nearest neighbor distance, d, is 33 miles. 
Reprinted from Getis and Ord (1992). Copyright 1992 by John Wiley & Sons, Ltd. 
Reprinted by permission.
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of disease—a low-low cluster or cold spot. When the LISA statistic is negative, we 
have a spatial cluster of dissimilar values, such as an area with a high disease rate 
surrounded by areas with low disease rates. GeoDa software can be used to calcu-
late and map LISA statistics (Anselin, 2003a), as illustrated in Figure 5.7.

How does one determine if an observed LISA statistic is statistically signifi-
cant? Significance testing is accomplished by Monte Carlo methods. Monte Carlo 
significance testing involves simulating the distribution of a test statistic such as 
LISA under a null hypothesis. Known as the reference distribution, this null 
hypothesis distribution is generated via repeated random sampling or random 
reassignment of data values. To evaluate statistical significance, we compare the 
observed value of the test statistic to the simulated values in the reference distri-
bution. If n is the number of simulations and m is the number of simulated values 
that exceed the observed test statistic value, m/(n + 1) provides an estimated 
Monte Carlo p-value for use in significance testing (Waller & Gotway, 2004).

In Monte Carlo significance testing for LISA, the typical null hypothesis 
is that the health outcome of interest has no local spatial association. We then 
ask: “What LISA statistics would we expect to find if data values had no spatial 
association?” To determine the reference distribution of LISA statistics under 
this null hypothesis, the observed data values are randomly redistributed among 
subareas. This random reassignment of data values is performed a large number 
of times, for example, 999 times. For each randomization, the LISA statistic is 
computed for each subarea. These 999 statistics form the reference distribution, 
which describes the LISA values that would be obtained under the null hypoth-
esis of no spatial association. The observed LISA statistic for subarea i is com-
pared with its corresponding reference distribution to determine the statistical 
significance of local spatial clustering.

Two issues arise in the Monte Carlo randomization process when applied 
to local measures of spatial association. First, because the spatial neighborhoods 
around each subarea overlap, the significance tests associated with the LISA val-
ues for each subarea are not independent. This is the problem of multiple testing
(Kulldorff, 1998), and it is important to include a correction for multiple test-
ing in performing significance tests on LISA values (de Castro & Singer, 2006). 
Second, when the health indicator of interest is a disease rate (as opposed to a 
count of health events), the small numbers problem and the associated prob-
lem of variance instability also emerge as important in significance testing. As 
McLaughlin and Boscoe (2007) demonstrate, the end result is overdetection of 
clusters in less populated rural areas, and underdetection in densely populated 
areas. McLaughlin and Boscoe propose an alternative randomization procedure 
to overcome this problem.

KERNEL ESTIMATION

Kernel estimation is not a cluster detection method per se, but a method for 
exploring and displaying spatial patterns of point health data to show areas of 
high concentration. It is a method for generating a map that shows the density of 
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FIGURE 5.7. Low birthweight rate clusters in Connecticut based on LISA. Num-
bers in Figure 5.7a show the percent of low-birthweight births in each town. The clus-
ter in the north-central area is a cluster of towns with similarly high low-birthweight 
rates. The cluster in the northwestern part of the state is a cluster of similarly low rates. 
The hatched areas show towns where the rates are significantly different from rates in 
surrounding towns. Significance values are shown in Figure 5.7b. Data from the Office 
of Policy, Planning and Evaluation (2002).
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health events modeled as a continuous field (Gatrell, Bailey, Diggle, & Rowling-
son, 1996). Although health events occur in particular human or animal hosts, at 
distinct locations, the risk of ill health exists almost everywhere. Thus, we can 
view health risk as being distributed continuously over space, with “peaks” rep-
resenting areas of poor health and “valleys” areas of better health. Kernel estima-
tion is useful for generating such a continuous surface from point data.

In kernel estimation, a spatial window or kernel is moved across the study 
area, and the density of events is computed within this window (Figure 5.8). 
Typically, the window is a circle with a constant radius, or bandwidth. Events 
within the window are weighted according to their distance from the center of 
the window, the point at which density is being estimated (Bailey & Gatrell, 
1995). The kernel function describes mathematically how those weights vary 
over distance. Events located near the center have a greater weight than those 
distant from the center. In this way, kernel estimation reflects the underlying 
geographic locations of events within each window.

After computing kernel estimates of the density of health events within each 
regularly spaced window, one can generate a map of density using standard map 
contouring procedures. The smoothed surface may be displayed as a contour 
map, a three-dimensional surface, or as a continuously shaded map with gray or 
color tones representing density levels (Figure 5.9).

Smoothed maps of health events are useful for showing variation in disease 
intensity, but they do not assess clustering in relation to risk population. How-
ever, we can use kernel estimation for cluster detection by creating a spatially 
smoothed map of risk population similar to the smoothed map of health events. 
At each grid point we compare the disease intensity to the intensity of risk popu-
lation by dividing disease intensity by population intensity using grid calculation 
tools. Clusters exist when the disease intensity greatly exceeds the population 
intensity (Han et al., 2005). Recently, researchers have developed randomization 
procedures for testing the statistical significance of spatial clusters identified 
based on kernel estimation (Wheeler, 2007).

FIGURE 5.8. A schematic of the kernel estimation method.
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A key issue in implementing kernel estimation is selection of the bandwidth. 
Larger bandwidths smooth the data more, removing local variation. In con-
trast, small bandwidths result in very little smoothing, producing an irregular, 
“spiky” map. Generally we seek a compromise between these two extremes. One 
approach is to experiment with different values of the bandwidth and choose 
the one that gives the best balance between smoothing the data and depicting 
local variation. Algorithms for finding the optimal bandwidth are also available 
(Loader, 1999). Another promising approach is to use locally adaptive band-
widths, different bandwidths over different parts of the study area (Brunsdon, 
1995; Benschop et al., 2008). Carlos, Shi, Sargent, Tanski, and Berke (2010) 
describe the use of an adaptive bandwidth that reflects differences in underlying 
risk population. At each location, the bandwidth expands until it encompasses a 
threshold level of population. A similar bandwidth selection method is used in 
SaTScan™ and Disease Mapping and Analysis Program (DMAP) discussed in 
the next section.

Kernel estimation has been widely used in mapping the uneven spatial dis-
tribution of health events and, more recently, in identifying spatial clusters. The 
method is not only highly effective for visualizing geographic patterns of point 
health events, but it also offers a flexible tool for cluster detection. Comparisons 
reveal that kernel estimation is more likely to detect irregularly shaped clus-
ters than are other field-based methods (Wheeler, 2007). Moreover, it can be 

FIGURE 5.9. A contour map, generated by kernel estimation, showing the density 
of rat bites per square mile in the Bronx, New York. Data provided by the New York 
City Department of Health.
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extended for use in case–control study designs and to incorporate individual-
level risk factors (Han et al., 2005).

SPATIAL SCAN STATISTIC (SATSCAN)

Another important and widely used clustering tool is the spatial scan statistic
implemented in SaTScan software (Kulldorff, 1997). SaTScan software is avail-
able for free download from the National Cancer Institute (Kulldorff, 2010). Like 
kernel estimation, the method utilizes a field approach and involves searching the 
entire study region for clusters. The method begins by laying a regularly or irreg-
ularly spaced grid of points across the region. Around each grid point, circular or 
elliptical windows of different sizes are drawn. For circular windows, the radius 
of the circle varies continuously from zero to a maximum limit specified by the 
user, or the radius may be based on risk population size, in which case the radius 
varies across the map. Within each circle, the method computes the likelihood 
that the risk of disease is elevated inside the circle compared to outside the circle 
based on a likelihood ratio test. The circle with the highest likelihood value is 
the circle that has the highest probability of containing a disease cluster. Monte 
Carlo randomization is used to evaluate statistical significance of the likelihood 
ratio for each circle. From the significance tests, SaTScan identifies the most 
likely spatial cluster (circle) in a data set, as well as secondary clusters that have 
lower likelihood ratio values. Clusters can be displayed on a map and/or treated 
as spatial objects for further analysis. Innovative methods have been developed 
for visualizing SaTScan clusters and analyzing the sensitivity of cluster locations 
to the choice of radius (Chen, Roth, Naito, Lengerich, & MacEachern, 2008).

The spatial scan method is highly flexible, providing a wide range of options 
for spatial analysis of public health data. It incorporates alternative statistical 
models of disease risk, including Poisson and Bernoulli distributions (Kulldorff, 
2010). It can adjust for individual-level risk factors (covariates), so that one can 
detect if spatial clusters remain after controlling for risk factors such as age, gen-
der, or risk behaviors. In addition, SaTScan includes procedures for analyzing 
clustering in time and space–time. It also permits scanning for clusters within an 
elliptical window, as opposed to a circle. Clusters that are not compact in shape 
are more likely to be detected using the elliptical window.

Pollack et al. (2006) used the spatial scan method to identify spatial clusters of 
late-stage colorectal cancer in California. Their study relied on data from the Cali-
fornia Cancer Registry from 1996 to 2000 for all persons diagnosed with colorectal 
cancer at age 50 years and older. Data were geocoded to point locations based on 
the residential address at the time of diagnosis. Two spatial clusters emerged from 
the analysis, one a cluster of higher-than-expected risk of late diagnosis located 
northeast of San Francisco and the other a cluster of lower-than-expected risk in 
the San Diego area. High rates of late diagnosis may result from poor access to and 
knowledge of colorectal cancer screening; therefore the high-risk spatial cluster is 
a logical priority area for targeting screening and prevention efforts.
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DISEASE MAPPING AND ANALYSIS PROGRAM

The Disease Mapping and Analysis Program (DMAP), developed by Rushton 
and Lolonis (1996), implements a field-based method that incorporates innova-
tive procedures for visualizing and analyzing cluster significance. Like kernel 
estimation, it uses a window of constant or adaptive size to scan the study area 
for clusters; like the spatial scan statistic, it provides information about the like-
lihood that a cluster might have occurred by chance. The method uses Monte 
Carlo procedures to simulate possible spatial patterns of health events within a 
geographically fixed risk population. In effect, it simulates alternative maps of 
health events that are consistent with a given null hypothesis about disease risk 
in the population. The null hypothesis is that the risk of disease is constant or 
that it can be estimated based on known risk factors. For example, in analyzing 
infant mortality the null hypothesis might be that each infant born has the same 
risk as any other of dying in the first year of life. The simulations provide a null 
hypothesis distribution of possible health outcomes in different parts of the study 
area for comparison with actual patterns. Clusters are places where the actual 
number of health events is significantly larger than the number found in the cor-
responding null hypothesis distribution.

DMAP typically utilizes point location data for both individuals at risk and 
cases of disease to generate simulated patterns of health events. Together, these 
cases and non-cases form the total risk population. If the incidence of ill health 
was the same everywhere, or if it was simply based on known risk factors, then 
each of these individuals would face a predictable risk of ill health. Based on 
this null hypothesis, the method simulates alternative spatial patterns of health 
events to provide a benchmark for comparison. For each individual at risk, the 
method randomly generates an outcome (event/non-event) based on the known 
incidence rate for the study area. This process is repeated for each individual 
at risk, creating a simulated pattern of health events within the risk population. 
The number of events in the simulated pattern need not equal the number of 
events in the actual data set, although the overall risk is constant.

Rushton and Lolonis (1996) recommend generating several thousand of 
these simulated patterns. As with other field methods, a regular grid of points 
is superimposed on the study area each time a simulated pattern is generated. 
Overlapping circular zones are created around each grid point (Figure 5.10). 
Within each of these circular zones an incidence rate is computed for each simu-
lated pattern. The full set of 1,000 or more simulated rates serves as a benchmark 
distribution for that circular zone. The zone’s actual rate is compared to its simu-
lated rates, and the percentage of simulated rates that are less than the actual 
rate provides a measure of significance. A high percentage means that, in that 
zone, the vast majority of simulated rates fall below the actual rate, indicating 
that the actual rate is unusually high. The percentages can be displayed on an 
isarithmic map to show areas with significantly high rates.

This method involves an interplay of GIS operations and statistical simula-
tion procedures. The GIS functions are relatively straightforward: first, create 
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grid points and circles, and second, count the numbers of events and non-events 
within each circle. After that it is necessary to generate the simulated, random 
patterns of health events. Using a random number generator, the analyst gener-
ates a simulated outcome (either event or non-event) for each individual at risk. 
Then the system is used to compute the numbers of simulated events and non-
events within each circle to derive a simulated rate. This is repeated thousands 
of times to determine the benchmark distributions for comparison with actual 
rates. If the GIS software cannot perform statistical simulations, it is necessary 
to use statistical programs or to write specialized software for this purpose.

Rushton and Lolonis (1996) used this method to analyze spatial clustering of 
birth defects in Des Moines, Iowa. Local health officials were concerned about 
poor infant health indicators in the city and wanted to be able to identify neigh-
borhoods where birth defect rates were significantly high. From birth records, 
the researchers knew the residential locations of all births in the city—the risk 
population—as well as the locations of infants born with birth defects—the 
health event. One thousand simulated patterns of birth defects were generated. 
Figure 5.11 shows areas where the actual birth defect rate exceeded 95% of the 
simulated rates. The map depicts an elongated cluster of high rates in the east-
central portion of the city.

The DMAP cluster analysis tool has been extended in several important 
ways since the mid-1990s. DMAP no longer requires a regular point grid for 
estimating health risk. Instead, one can choose to densify the grid—increase the 
density of grid points in some areas—so that highly populated areas contain a 
higher density of grid points than less populated areas (Cai, 2007). This makes 
it possible to observe finer-grained spatial clusters of ill health in densely popu-

FIGURE 5.10. Overlapping circular zones generated around grid points in the 
Rushton and Lolonis method of analyzing clusters. From Rushton and Lolonis (1996). 
Copyright 1996 by John Wiley & Sons, Ltd. Reprinted by permission.
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lated urban areas. DMAP now can implement an adaptive bandwidth in which 
the size of the circular zone at a particular grid point varies inversely with the 
size of the local risk population. The bandwidth is increased until it encompasses 
a certain threshold population. Thus, a smaller bandwidth is applied in highly 
populated urban areas than in rural areas (Figure 5.12). This spatial adaptive 
filtering approach addresses the small numbers problem that arises when using a 
fixed bandwidth in areas of uneven population density. It ensures that each zone 
contains a sufficient number of cases to accurately estimate health risk. The only 
disadvantage is that the spatial scale of analysis varies across the map, which 
complicates interpretation of results.

Object-Based Spatial Clustering Methods

Unlike the methods described in the previous section, which search for clus-
ters by scanning the entire study area, object-based methods attempt to “con-
struct” spatial clusters through a process of aggregation. Nearby cases of disease, 
or nearby areas that have high counts or rates of disease, may be aggregated 
together. Objects—points or areas—serve as the building blocks for identifying 
clusters.

FIGURE 5.11. Areas with statistically significant high rates of birth defects in Des 
Moines, Iowa, based on the Rushton and Lolonis method. From Rushton and Lolonis 
(1996). Copyright 1996 by John Wiley & Sons, Ltd. Reprinted by permission.
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BESAG AND NEWELL’S METHOD

Besag and Newell (1991) devised a spatial clustering method that only searches 
for clusters around cases. Their logical premise is that clustering can only exist in 
places where cases exist, so instead of searching over the entire study region, we 
need only search around cases. This greatly reduces the amount of spatial search 
and computation required over field methods, and it provides a finite limit to the 
number of significant clusters that can be detected.

Assume that we have point data for cases but area data for risk population. 
The actual locations of health events are known, while data on risk population 
are available for areas such as counties, census tracts, or blocks. Let k be the 
minimum number of cases needed to constitute a disease cluster. Besag and 
Newell’s method tests for clustering around a case i by analyzing the number of 
nearest neighbor areas (Mi) needed to accumulate the k cases closest to i. In other 
words, if we rank cases according to their distance from i and identify the k near-
est cases, Mi identifies the geographic areas that contain those k cases (Figure 
5.13). Defining xj as the number of cases in area j and pj as its risk population, 
then the total number of cases in Mi is Xj = xj and the total risk population is 
Pi = pj. To test for clustering around i, we analyze whether the total number of 

FIGURE 5.12. Spatial adaptive filters differ in size, with each filter including the same 
number of expected cases. From Cai (2007). Reprinted by permission of Qiang Cai.
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cases in Mi is large relative to total risk population. Once again the Poisson test 
is used to assess significance, with  set at the incidence rate for the entire study 
area.

Besag and Newell’s method involves a sequence of operations that can be 
implemented in GIS. At each case location, we first compute distances to all 
other cases and rank the distances to determine the k nearest cases. Point-in-
polygon operations identify the areas in which the k nearest cases are located to 
identify the set Mi for case i. We then sum cases and risk population across those 
areas and calculate the statistical test to determine whether the number of cases 
is significantly high relative to the risk population. If prevalence is high, one can 
draw a circle encompassing that cluster and display the cluster on a map. Clus-
ters often appear as overlapping concentrations of circles.

A critical issue in Besag and Newell’s (1991) method is the choice of k, the 
cluster size parameter. The value of k must be large enough to identify real clus-
ters of cases, not just isolated groupings. But it must be small enough to permit 
the identification of distinct clusters within a region. Values of between 2 and 5 
are common, representing clusters of 3 to 6 cases including the centroid case. 
Besag and Newell recommend trying several k values and analyzing the sensitiv-
ity of the results to the choice of k.

A modified version of Besag and Newell’s method was used to search for 
spatial clustering of breast cancer cases among long-term residents of West Islip, 
New York (Timander & McLafferty, 1998). West Islip is a middle-income com-
munity of approximately 40,000 people located on Long Island. As in many com-
munities on Long Island, residents of West Islip were worried about their high 
rates of breast cancer and possible links to environmental factors: hazardous 
waste sites, contaminants in the water supply, and electromagnetic fields. Taking 

FIGURE 5.13. The Besag and Newell method searches around each health event i
to find the k nearest health events. The areas containing those events are shaded. The 
risk population within the shaded areas is the denominator for the Poisson test.
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the matter into their own hands, they conducted a survey of local residents to 
find out about breast cancer prevalence and risk factors (Grimson, 1999).

The survey data were entered into a GIS, geocoded, and displayed on a com-
munity map. To see if cases were clustered within West Islip, a modified version 
of Besag and Newell’s (1991) clustering method was used and implemented in a 
GIS. Because breast cancer takes many years to develop, the research focused on 
long-term residents, survey respondents who had lived at their current addresses 
for more than 25 years. These people would be most affected by hazards in the 
local environment near their homes. The GIS analysis showed no strong evi-
dence of spatial clustering of breast cancer in West Islip. Four significant over-
lapping clusters were uncovered in the south-central portion of the town (Figure 
5.14), but the clusters disappeared when known risk factors for breast cancer, like 
family history and age at first pregnancy, were controlled.

Compared to other widely used methods, Besag and Newell’s (1991) proce-
dure provides a clearer description of cluster locations. Because the method only 
checks for clusters around cases, it is more conservative in detecting clusters and 
is less likely to identify false positives (Fotheringham & Zhan, 1996). By limiting 
the search process, it is not computationally intensive and thus represents an 
efficient option for cluster detection.

AMOEBA METHOD: DETECTING IRREGULARLY SHAPED CLUSTERS

The cluster detection methods discussed so far work well in detecting clusters 
that are compact and regular in shape; however, disease clusters may well be 
irregularly shaped, reflecting the uneven social and environmental geographies 
of risk. Several new methods have been developed which are capable of detect-
ing irregularly shaped clusters (Tango & Takahashi, 2005). These methods are 
object-based in that they detect clusters by agglomerating nearby geographical 
units that have similarly high rates or numbers of health events. This discussion 
focuses on the AMOEBA method developed by Aldstadt and Getis (2006), which 
works with area-based indicators of health or ill health.

Starting from a “seed” area, AMOEBA attempts to grow a cluster outward 
from the seed location. The algorithm checks areas contiguous to the seed to 
determine whether the areas’ health indicators are similar to that of the seed. 
Similarity is defined according to the local Gi* statistic discussed earlier, a widely 
used measure of local spatial autocorrelation. If adding in the contiguous areas 
results in a more extreme value of Gi* (either positive or negative), then the areas 
are grouped with the seed, thus creating a cluster. All combinations of contiguous 
areas are evaluated, and the combination that maximizes the absolute value of the 
local Gi* statistic is preserved as a cluster. This cluster becomes a new seed for 
another iteration of the method. As new areas join the cluster, those areas become 
new starting points for checking contiguous areas. The procedure stops when the 
value of Gi* cannot be improved by adding contiguous areas to the cluster.

At that point, AMOEBA shifts to a different seed location and again tries 
to construct a cluster by agglomerating contiguous areas. The process continues 
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FIGURE 5.14. Spatial clusters of breast cancer in West Islip, New York, based on 
a modified Besag and Newell method, for k = 4, 5, and 6. There were four significant 
circles in the set of circles for which k = 4; there were six significant circles each in the 
sets of circles for which k = 5 and k = 6. Reprinted from Social Science and Medicine, 
46(12), Timander, L., & McLafferty, S., Breast cancer in West Islip, NY: A spatial clus-
tering analysis with covariates, 1623–1635, 1998, with permission from Elsevier. 
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until the entire study region has been scanned for clusters. The method focuses 
on identifying geographically distinct clusters, so clusters are checked for over-
lap. In the end, the nonoverlapping clusters with the highest absolute Gi* values 
are designated as important clusters, and their statistical significance is tested 
using Monte Carlo randomization methods.

The main advantage of AMOEBA is its ability to identify clusters of any shape. 
Comparisons with circle-based methods such as SaTScan reveal that AMOEBA 
is much more effective at identifying noncompact, irregularly shaped clusters 
(Figure 5.15). Furthermore, AMOEBA can incorporate any measure of spatial 
statistical association as the basis for agglomeration, not just the Gi* statistic.

Space–Time Clustering

Time is an important issue in spatial clustering analyses. It is an essential com-
ponent of cluster definition: a cluster only exists with reference to a specific place 
and time. Health surveillance often involves scanning real-time health data to 

FIGURE 5.15. A comparison of statistically significant clusters found by the 
SaTScan procedure and the AMOEBA procedure (p  .05). From Aldstadt (2007). 
Reprinted with Author's permission.
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identify space–time clusters, clusters that emerge during particular time inter-
vals at particular places. One can record time in a variety of ways with respect 
to health data. Typically, time refers to the day/year when a health condition was 
first diagnosed or the day/year of first onset of symptoms. In a GIS database, 
time can be recorded in a time field that contains the year and date of occur-
rence. Other methods for incorporating time in GIS databases are discussed in 
Chapter 7.

To identify space–time clustering, many of the methods discussed in previ-
ous sections can be and have been extended. Generally, these extensions involve 
the use of a time window—a specified time interval—in addition to the spatial 
neighborhood window used in spatial clustering tests.

SaTScan, for example, offers statistical tests for spatial, temporal and space–
time clustering (Kulldorff, 2010). In the latter, a space–time cylinder scans the 
study area over time in search of unusually high concentrations of health events. 
The base of the cylinder represents the circular spatial window for assessing 
spatial clustering, and the height of the cylinder represents the time interval for 
analyzing temporal clustering. Noncylindrical search windows can also be used 
to incorporate the possibility that the spatial extent of spread varies over time. 
Figure 5.16 shows an application of SaTScan to analyze space–time clustering of 
a particular fine-scaled genetic type (finetype) of meningococcol disease in Ger-
many. A significant cluster of four cases appears in the second time period.

Similar approaches to analyzing space–time clustering involve local varia-
tions of the Knox test which analyzes the number of pairs of cases that are close 
in space and time. Rogerson (2001) developed a method that tests for local clus-
tering within a varying space–time window. The DYCAST model, which has 
been used to examine space–time clustering of dead birds and human infec-
tions in a West Nile Virus outbreak, adopts a similar approach (Theophilides, 
Ahearn, Binkowski, Paul, & Gibbs, 2006). These methods share a set of com-
mon GIS operations. They involve first laying a regular grid across the study 
area or identifying a set of discrete points at which clustering will be assessed, 
then scanning that space to evaluate space–time clustering within a prespecified 
time–space window. Clearly the spatial and temporal dimensions of the win-
dow should reflect knowledge of the underlying disease process. In the West 
Nile Virus (WNV) study, distance parameters were chosen to reflect the limited 
spatial mobility of birds that were infected with WNV, and the time dimen-
sion reflected the disease incubation period (Theophilides et al., 2006). Another 
approach is to vary the spatial and temporal dimensions over a range of values 
and investigate clustering in an exploratory framework.

Space–Time Clustering and Residential Mobility

The methods discussed thus far only associate a single location, usually the resi-
dential location at the time of diagnosis, with each health event. This ignores the 
important concepts of latency and migration, which affect peoples’ exposures to 
social, environmental, and biological risks and the short- and long-term effects 
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on health. Latency refers to the length of time between exposure to a disease-
causing agent and detection or diagnosis. Latency is typically divided into two 
periods: the induction period, which is the time between exposure and initiation 
of disease, and the latent period, which is the time between disease initiation 
and disease detection. While some health problems develop quickly, others (e.g., 
many cancers) take months or years to develop.

Migration bias refers to the effects of migration on the results of a clustering 
analysis. Most cluster methods only work with single addresses at single points 
in time. Yet people in the United States move frequently, and they face different 
environments at each place of residence. A person’s current address may have 
little connection to his or her environmental exposures over the life span. Migra-
tion effects are most relevant for diseases with long latency periods that result 
from environmental, social, behavioral, and genetic factors interacting over long 
periods of time.

One way to address these issues is to analyze spatial clustering at several 
distinct points in the life cycle. For example, Sabel et al. (2003) investigated 
spatial clustering of amylotrophic lateral sclerosis cases in Finland at the time of 

FIGURE 5.16. Using SaTScan for retrospective cluster identification over time. 
Planes A, B, and C show consecutive temporal windows of 30 days in 2003. Planes 
A and C do not show spatial clustering, but Plane B shows an accumulation of four 
cases of meningococcal disease (of the finetype C:P1.5,2:F3–3) in two counties within 
a circular region encompassing a population of 339,185. The counties of Germany are 
shaded according to their population densities. From Elias et al. (2006).
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birth and time of death. The close match between clusters identified based on 
birthplace and place of death led the authors to hypothesize the role of genetic 
or environmental factors in disease causation. An alternative approach is to focus 
selectively on long-term residents and analyze spatial clustering of disease within 
that “immobile” population, as was done in the West Islip breast cancer study. 
However, such an approach relies on a potentially ad hoc definition of “long-
term” resident, and like other methods, it may be affected by selective migration 
out of the study area.

More recently, new methods have been developed that analyze the cluster-
ing of health events in relation to individual space–time life paths (Jacquez et 
al., 2005). These methods make it possible to assess whether people who have a 
disease might have been exposed to a common environmental or infectious agent 
when they lived or worked nearby earlier in their lives. The building block of 
these methods is the space–time path—a three-dimensional representation of 
a person’s movement or migration history through space and time (Figure 5.17). 
Jacquez et al. (2005) proposed a procedure that searches for overlapping segments 
of space–time paths, segments where people lived nearby in time and space. The 
procedure is implemented in a case–control study design that enables evaluation 
of space–time clustering. Overlap is evaluated in relation to a predefined induc-
tion period that defines the interval between exposure and disease initiation. The 
test involves counting the number of nearest neighbors of a particular case whose 
induction periods overlap the case’s induction period. Similar counts are made 
for controls as well, providing a benchmark for comparison. Large numbers of 
nearest neighbor cases, as opposed to controls, signify potential disease cluster-
ing, and conditional randomization procedures enable significance testing.

The methods proposed by Jacquez et al. (2005) have many features that 
enhance public health investigations. They can incorporate individual-level 
information on risk factors, covariates, latency periods, and exposures. They can 
also be used in an exploratory way to identify the induction and latency time 
periods that maximize space–time clustering among cases (Jacquez, Meliker, 
& Kaufmann, 2007). The main challenge in implementing these methods stems 
from data requirements. Detailed migration histories for cases and controls are 
needed for model input, but are rarely available. One can generate such informa-
tion from sample surveys; however, small sample sizes and sampling bias may 
be problematic given the wide range of time periods and geographic areas that 
are likely involved in making inferences about clustering. Another option is to 
make use of the rich data available in countries that have high-quality population 
registries, such as Denmark and Sweden.

Choosing a Clustering Method

How does a public health analyst choose among these diverse methods? Charac-
teristics of the data to be analyzed affect this choice. Spatial data characteristics 
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are important. Some spatial clustering methods like kernel estimation are most 
appropriate for point data, whereas others such as Gi*, LISA, and AMOEBA are 
suitable for area data. However, the lines between area and point methods are 
blurring insofar as area data can be converted to points via area centroids, and 
point data can be converted to area data by Thiessen polygons or by aggregating 
points into user-defined zones. Thus, with a few exceptions, most data sets can be 
made to fit most methods. Of course, data conversion introduces bias and errors 
that may outweigh the benefits of using a particular method. These trade-offs 
need to be carefully considered in selecting a spatial clustering method.

FIGURE 5.17. A topology of residential histories for three people in time and space. 
Person #1 resided in Place A his entire life. Person #1 was Person #2’s neighbor, 
except when Person #2 attended college in Place C about the same time as Person #3 
who grew up in Place B. After college, Person #3 moved to Place D and then to Place 
E. A brief contamination event in Place A from t1 to t2 exposed both Person #1 and 
Person #2. A later contamination event in Place A, which was of greater duration from 
t3 to t4, exposed only Person #1 because Person #2 was away at college. The contami-
nation event at Place E from time t5 to t6 affected only Person #3.
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Software availability is another important factor. A spate of specialized clus-
tering software has been introduced in the past decade, and many programs are 
downloadable at no cost (Table 5.2). Some of these programs include easy-to-use 
interfaces and visual displays, whereas others require import of data from and 
export of results to GIS for mapping and analysis. In addition to these stand-
alone software packages, many methods can be implemented using spatial anal-
ysis tools within the R Project for Statistical Computing (Bivan, Pebesma, & 
Gómez-Rubio, 2008). These are a good option for users with high-level statistical 
knowledge. On the other hand, commercial GIS currently incorporate a limited 
set of spatial clustering methods in their spatial analysis toolkits, with the meth-
ods varying from one commercial GIS software product to another. Users with 
programming skills can write macros in some GIS software to implement more 
advanced clustering procedures. In sum, given the wide and increasing array 
of downloadable tools for spatial cluster analysis, software availability no longer 
poses a major barrier to mapping and analyzing disease clusters.

How well do the various methods perform? Comparisons suggest that each 
method has advantages and disadvantages (Fotheringham & Zhan, 1996; Con-
ley, Gahegan, & Macgill, 2005; Tango & Takahashi, 2005). The methods dif-
fer in their ability to detect clusters of different shapes and sizes and in areas 
of varying risk population density. Some methods include options like adaptive 
bandwidths and adjusting for covariates that may be important for specific kinds 
of public health investigations. There are also important differences in computa-
tional efficiency, technical requirements, and capabilities for data input, output, 
and geovisualization. Clearly, the match between method and requirements or 
capabilities of specific cluster investigations is critically important.

The theoretical basis of clustering methods also underlies the choice of a 
modeling strategy. Most methods make somewhat naive assumptions about the 
environmental or social processes that generate observed patterns. Clusters of 

TABLE 5.2. Software for Spatial and Space–Time Clustering

Program Availability Web Link

GeoDa Shareware geodacenter.asu.edu

SaTScan Shareware www.satscan.org

DMAP Shareware www.uiowa.edu/~gishlth/DMAP4

R Analysis of 
Spatial Data

Shareware www.r-project.org/index.html
cran.r-project.org/web/views/Spatial.html

ClusterSeer Commercial www.terraseer.com/products_clusterseer.php

CrimeStat Shareware www.ojp.usdoj.gov/nij/maps/crimestat.htm

Note. ClusterSeer and CrimeStat are additional software, not discussed in the text, which may 

be of use in analyzing clusters of health events.
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motor vehicle accidents will be arrayed in a linear pattern constrained by the 
road network. Clusters that are environmental in origin may follow contamina-
tion footprints or plumes of air pollution. Communicable disease clusters are 
shaped by human interactions that are unlikely to fit simple geometric forms. 
Spatial clustering methods that incorporate these process-based understandings 
are only beginning to be developed. Use of GIS for investigating specific types 
of health concerns is discussed in Chapters 6 through 8.

Uses of Spatial Clustering Methods

Spatial clustering methods are exploratory tools that help researchers and poli-
cymakers make sense of complex geographic patterns. Knowing whether or not 
clusters exist and where they are located provides an important foundation for 
health research and policy formulation. State health departments receive liter-
ally thousands of requests for spatial cluster investigations from individuals and 
community groups every year (Greenberg & Wartenberg, 1991). The methods 
discussed here can be used to confirm or deny the existence of suspected clusters 
in an efficient and effective manner.

Responding to community concerns, however, only deals with a fraction of 
potential clusters and is likely to miss clusters in communities that lack politi-
cal and economic clout. To overcome this bias, cluster detection methods are 
increasingly being incorporated in ongoing public health surveillance efforts 
(Rushton, 2003). With GIS, health departments can monitor health records as 
they come in and use spatial and space–time clustering methods to search for 
unusual patterns. These systems are being implemented at the local, state, and 
national levels for rapid detection of disease outbreaks (Mandl et al., 2004). Of 
course, once a cluster is identified, only detailed epidemiological investigation 
can determine whether the cluster is a random event or whether it is linked 
to some environmental, occupational, or social cause. A small number of clus-
ters will occur by chance, even if health risks are not elevated. Therefore, it is 
essential that statistically significant clusters be examined in more detail. Spatial 
cluster analysis is not an end in and of itself; it is a screening tool that assists in 
guiding public health surveillance efforts.

Incorporating spatial clustering methods in GIS also makes it possible to 
conduct exploratory analyses to help in identifying the causes and correlates of 
health problems. Overlaying cluster maps with other spatial databases, includ-
ing environmental, social, transportation, and facilities data, can provide clues 
about the causes of disease, while identifying variations in health linked to dif-
ferences in physical and social environments. These map overlays have always 
been important hypothesis-generating tools in public health research and poli-
cymaking (Croner et al., 1992). Now they can be implemented efficiently and 
effectively in an automated GIS environment. These overlay procedures are dis-
cussed in more detail in the chapters that follow.
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CONCLUSION 

The past decade has witnessed major advances in our ability to model and detect 
spatial clusters of health events. In fact, all of the issues presented as challenges 
to spatial cluster analysis in the first edition of this book are currently being 
addressed in development of innovative modeling strategies and software tools. 
There is also a rapidly expanding knowledge base of empirical case studies that 
use clustering methods for formulating and analyzing public health policies and 
for understanding the causes of health inequalities. Analysts who want to embark 
on a spatial cluster investigation have a rich array of resources at their disposal.

This chapter has discussed a representative set of methods for analyzing 
spatial clustering of health events including field- and object-based approaches 
to cluster identification and the analysis of clustering in both space and time. 
Many other methods exist, and we encourage readers to look beyond this chapter 
to find the method that best fits their data and clustering problem. Good general 
references include Kingham, Gatrell, and Rowlingson (1995), Fotheringham, 
Brunsdon and Charlton (2000), Waller and Gotway (2004), and Rogerson and 
Yamada (2009). What does the future hold? Given the rapid advances in meth-
ods and software development and the rapidly emerging geovisualization capa-
bilities of systems like Google Earth, it is likely that analysts will soon be able 
to link spatial cluster investigations to rich and detailed geospatial information 
about the places where clusters occur. This will give public health departments 
an expanded and enhanced set of tools for performing one of their most basic 
surveillance tasks: the search for clusters of health problems.
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CHAPTER 6

Analyzing Environmental Hazards

Environmental health, “the prevention and control of health problems related 
to the environment” (Thacker, Stroup, Parrish, & Anderson, 1996, p. 633), is an 
important function of health organizations at all levels. Environmental health 
problems involve agents that produce adverse health outcomes in humans. These 
agents can be physical (ultraviolet and ionizing radiation), chemical (lead), or bio-
logical (cryptosporidium) in nature. Human populations encounter these agents 
by breathing, eating and drinking, or coming into physical contact with agents 
present in the atmosphere, the food and water supply, and the natural and built 
environments. GIS modeling of health problems involving biological agents is 
discussed in Chapters 7 and 8. This chapter focuses primarily on physical agents 
and on toxicants, natural or synthetic chemicals that produce adverse health 
outcomes.

The process by which an agent in the environment produces an adverse 
health outcome in a person can be modeled as a hazard–exposure–dose–response 
process (Figure 6.1). Information systems for monitoring environmental health 
problems viewed in this way require longitudinal data on the amount, nature, 
and sources of environmental hazards; the environmental quality in the places 
where people live and conduct their daily activities; the presence of the agents in 
human populations; and the adverse health outcomes that can be linked to expo-
sure (Mather et al., 2004; Smolders & Schoeters, 2007). In cases in which these 
data exist for particular agents, exposure, dose, and response data may not always 
be available from the same single data source. Instead, data must be drawn from 
multiple sources and integrated in the surveillance system. Although not always 
explicit, time and space are the basis for data integration in a way that logically 
models hazard–exposure–dose–response processes. Integration of geographic 
data drawn from many sources is one of the main uses of GIS.

This chapter discusses GIS applications in environmental health. GIS have 
been used to display sources of environmental contaminants of concern for 
human health and to model the zones of contamination around these sources. 
Geographic variations in environmental quality measured at monitoring stations 
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have also been modeled using GIS. The geographical distributions of popula-
tions at risk and spatial patterns of health outcomes, reviewed in Chapter 4, have 
also been reported and analyzed using GIS technology.

These applications suggest that complete environmental health surveillance 
systems are in place for only a few of the thousands of potentially hazardous 
agents. We have not identified all hazardous agents with demonstrated links to 
specific diseases, let alone described their presence in the environment in rela-
tion to susceptible populations. Somewhat more complete data are available on 
health outcomes, and these have been used to conduct epidemiological investi-
gations to identify potential hazardous agents. This means that, for particular 
environmental health problems, surveillance systems will differentially empha-
size hazard, exposure, or outcome surveillance.

FIGURE 6.1. A geographic model of the hazard–exposure–dose–response model.
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The first part of this chapter briefly considers how an agent is identified 
as hazardous based on risk assessment and subsequently becomes a focus for 
reporting and regulation. The geography of hazard or potential hazard sources 
and the role of GIS in hazard surveillance are discussed. The following sections 
in the chapter address some of the most challenging aspects of environmental 
health surveillance using GIS: designing environmental health surveillance sys-
tems, modeling exposure of susceptible populations to environmental contami-
nants, and linking dose and health response data to exposure.

The final sections of the chapter consider the role of GIS in risk manage-
ment and issues in mapping environmental hazards. Risk management involves 
the selection and implementation of appropriate strategies for the regulation or 
control of identified hazards based on social and political factors (Ruckleshaus, 
1983). Risk assessment and risk management are complementary.

How Environmental Agents Are Identified as Hazards

Before the source locations of hazards and the associated contamination fields 
can be modeled in a GIS, hazardous agents must be identified. Human experi-
ence has been an important source of awareness of the harmful effects of many 
toxicants. Our recognition of lead, mercury, and other chemicals as hazards to 
human health is centuries-old. The establishment of quantitative standards for 
risk, however, is largely a development of the last 100 years. In part, this reflects 
the growth and geographical dispersion of chemical production on an industrial 
scale (Cutter, 1993). In addition to naturally occurring chemicals, approximately 
4,000 synthetic chemical substances are in commercial use worldwide, account-
ing for more than 99% of the total volume of synthetics (Moochhala, Shahi, & 
Cote, 1997). To cite just one example, thousands of pesticide products contain-
ing at least one of more than 1,000 registered active ingredients are commer-
cially available (U.S. Environmental Protection Agency, 2007). With the produc-
tion, storage, transportation, use, and disposal of all these chemicals have come 
increased risks to workers, other susceptible populations, and the environment.

Quantitative risk assessment is the process of characterizing the health 
effects expected from exposure to an agent, estimating the probability of occur-
rence of health effects, estimating the number of occurrences in a population, 
and recommending acceptable concentrations of the agent in air, water, or food 
(Hallenbeck, 1993). In the United States, the development of quantitative stan-
dards for risk grew out of the Pure Food Act of 1906 (Hattis, 1996). Subsequent 
federal legislation has been the major impetus for conducting risk assessments. 
The statutes and their amendments have not generally defined “acceptable risk”; 
the responsibility for determining acceptable risk was left to the various federal 
regulatory agencies implementing the legislation.

Globalization of economic activity and economic shifts are affecting envi-
ronmental regulation. In the 1970s and 1980s, U.S. environmental laws like the 
Clean Air and Clean Water Acts and the regulations implementing them were 
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taken as models by other countries (Schapiro, 2007). Over the last decade, the 
European Union has emerged as the world leader in setting standards for the 
global economy on issues ranging from financial accounting standards to safety 
to screening for toxic chemicals. The European approach is based on the precau-
tionary principle of European Union law (Fisher, 2007). According to this prin-
ciple, the absence of full scientific certainty is not used as a reason for failing to 
act when there is a body of evidence that the risk of serious or irreversible harm 
to public health or the environment exists. As a result, many substances banned 
in Europe and subsequently banned in other countries adopting European stan-
dards are allowed to be used in the United States, even though agencies in both 
countries have reviewed the same scientific studies and have access to toxicity 
data.

Three basic categories of scientific information are used in quantitative risk 
assessment: toxicological studies, controlled clinical studies, and epidemiologi-
cal studies (Moochhala, Shahi, & Cote, 1997). Each of these approaches has 
advantages and disadvantages. GIS can perhaps provide the greatest support to 
quantitative risk assessment through epidemiological studies. Toxicological and 
controlled clinical studies are conducted in laboratory or clinical settings.

Toxicological studies have been a major and controversial source of infor-
mation for risk assessment. Toxicology is an experimental science that studies 
the effects of toxic substances in selected animals or cells. Toxicological studies 
provide the greatest degree of control over populations exposed, exposure con-
ditions, and measured effects. They are most often used to evaluate agents for 
which epidemiological studies would be premature because of the lags between 
exposure and outcome and for which controlled clinical studies would be unethi-
cal. Animal testing may also be a regulatory requirement, as in the case of pre-
market toxicological testing of pesticides (Alavanja, Hoppin, & Kamel, 2004). 
Aside from the ongoing public debate over the ethical treatment of animals in 
human health research (Rollin, 2003), the major scientific limitation of toxicol-
ogy studies is uncertainty in extrapolating the exposure–outcome relationships 
observed in animals to humans. Screening approaches are clearly needed to 
keep dangerous products from making it to the market, but evidence from epi-
demiological studies suggests that many products that meet regulatory approval 
requirements based on animal testing have significant human health effects (Ala-
vanja, Hoppin, & Kamel, 2004).

Controlled clinical studies, like toxicological investigations, provide the 
opportunity to control and quantify exposure but focus directly on the effects of 
agents on the health of human subjects instead of animals (Holgate, Sandström, 
et al., 2003; Holgate, Devlin, Wilson, & Frew, 2003). The U.S. National Ambi-
ent Air Quality Standards for ozone and sulphur dioxide (SO2) were developed 
in part based on controlled clinical studies of changes in airway resistance of 
asthma sufferers who were exposed while exercising (McDonnell et al., 1991). 
These effects would be difficult to detect in an epidemiological investigation 
of the general population. The major limitation of controlled clinical studies in 
producing data for risk assessment is that, for ethical reasons, research must be 
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limited to exposures producing nothing worse than short-term health effects that 
are reversible. The number of human subjects is generally very small in these 
studies because of the costs of the research. Some susceptible individuals would 
never be considered appropriate human subjects for clinical studies because of 
the potential for harm.

An interesting issue in controlled clinical studies is the extent to which the 
human subjects are homogeneous with respect to housing and other aspects 
of environmental quality. A search of the literature suggests that the residen-
tial locations of participants in controlled clinical studies are rarely considered 
explicitly as part of the study sample design. As noted in the Introduction, a ran-
dom selection of all people will not be a random selection of all places unless the 
population from which the sample is drawn is uniformly distributed (Goodchild, 
1984). Subjects in controlled studies are likely to have a far narrower range of 
susceptibilities than represented in populations of epidemiological studies, and 
it is possible that the results of epidemiological studies are driven by populations 
not included in human clinical studies (Brown et al., 2007). If there are impor-
tant geographical differences in susceptibilities and exposure, these could be 
explicitly considered in a spatially stratified sampling scheme for participants in 
controlled clinical studies.

The method of hazard identification where GIS can make the strongest con-
tribution is environmental epidemiology. Environmental epidemiology research 
attempts to associate adverse health outcomes with environmental exposures. 
Epidemiological investigations are designed to find out whether or not a statisti-
cally significant adverse health outcome is observed in an exposed group. The 
main advantage of these studies is that they measure health effects in people 
based on actual exposure conditions. Epidemiological studies are particularly 
useful in situations where exposure concentrations are relatively high during the 
time period of investigation (e.g., exposure to benzene in workplaces) or when 
exposed populations are very large (e.g., large urban populations exposed to air 
pollution), providing the sample sizes necessary to detect small increases in dis-
ease incidence with exposure.

There are also limitations to epidemiological studies for risk assessment. 
Frequently, high-quality hazard information may not be available to assess expo-
sure, as in the case of indoor air quality or water quality at the tap. Also, effects 
in worker populations may be unsuitable for estimating health effects in the total 
population because occupational exposures generally involve smaller popula-
tions at a limited number of sources and higher doses. Finally, from a public 
health perspective, it is most desirable to identify hazards before exposure has 
produced adverse human health effects. Epidemiological investigations, relying 
as they do on the lagged association between adverse outcomes and exposures, 
are not protective of human health because the adverse impacts have already 
been manifested.

Among the many research, modeling, and evaluation approaches used to 
make links between toxicants and human disease, accountability studies and 
environmental health tracking are emerging as complementary approaches to 
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risk assessment and environmental epidemiology. Accountability studies, which 
are discussed later in this chapter in the section on GIS and environmental risk 
management, focus on the level of health benefits that might accrue from actions 
to reduce toxicants. Environmental public health tracking (EPHT) “is the ongo-
ing systematic collection, integration, analysis, interpretation and dissemina-
tion of data about environmental hazards, exposure to environmental hazards, 
and health effects potentially related to exposure to environmental hazards” 
(McKone, Ryan, & Özkaynak, 2009, p. 32). In 2002, Congress provided the Cen-
ters for Disease Control and Prevention with funding to develop an environ-
mental public health tracking program in the United States (Centers for Disease 
Control and Prevention, 2006).

Environmental public health tracking involves locating sources of poten-
tial toxicants, analyzing the transport and ultimate fate of toxicants released 
from these sources, collecting and analyzing samples that offer a measure of the 
environmental quality at various locations from air, water, and soil, describing 
the locations and demographic characteristics of exposed and susceptible popu-
lations, and modeling the conditions of human exposure. This approach often 
relies on exposure indicators such as proximity to roads as surrogate measures of 
exposure. Temporal and spatial variations in pollutants and in human travel and 
activity patterns are also emphasized in the environmental public health track-
ing approach, and GIS are proving to be useful in many of these analyses.

GIS Analysis of Source Locations 
of Environmental Hazards

One way of classifying hazard sources is based on the geography of the discharge 
process. Point source pollution occurs when contaminants are discharged into 
the environment at a single discharge point, for example, a smokestack or a sewer 
(Puckett, 1994). Many of the air and water pollution control measures adopted in 
the early 1970s were directed at point sources because of the volume of pollut-
ants they discharged and the relative ease of identifying them in the landscape. 
These sources are often modeled as point features in GIS applications.

More recently, pollution control efforts have broadened to include non-
point sources. Nonpoint sources contribute pollutants to the air, water, or soil 
at numerous and widespread locations rather than at a few localized discharge 
points. Motor vehicle emissions are a nonpoint source of air pollution. Commer-
cial fertilizer and animal manure are important nonpoint sources of nitrogen, 
which affects water quality. Nonpoint sources are often modeled as line or area 
features within a GIS.

Some challenges in using GIS to represent the distribution of point and non-
point pollution sources include quality of positional information, completeness 
of data, and acquisition of data from different regulatory agencies or other data 
sources. These factors can make compilation of source data difficult.
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Pollutant Release and Transfer Register Databases

Pollutant release and transfer register (PRTR) programs adopted in more than 
20 countries provide some of the most comprehensive data on pollution releases 
to air, water, and land including off-site transfers for waste management (Table 
6.1). These systems share several basic characteristics:

Standardized data for specific facilities at identified locations.
Standardized data for specific chemicals with data on releases to air, 
water, and land and data on transfers for each chemical.
Periodic reporting, preferably mandatory reporting on an annual basis.
Public access to data, with online access through websites that incorpo-
rate GIS functions.

The Toxics Release Inventory in the United States features many of these char-
acteristics.

THE TOXICS RELEASE INVENTORY

One of the most important sources of information on environmental release 
of toxic substances from point sources in the United States sources is the Tox-
ics Release Inventory (TRI) developed by the U.S. Environmental Protection 
Agency (EPA) in 1986 as part of the Superfund reauthorization. Approximately 
30 states and cities had already enacted some form of pollution disclosure law 
by this time (Hearne, 1996). After Congress passed Section 313 of the Emer-
gency Planning and Community Right-to-Know (EPCRA) law, U.S. manufactur-
ers were required to report to the EPA on an annual basis the amounts of toxic 

TABLE 6.1. Pollution Release and Transfer Registers

Agency Register Online links

U.S. Environmental 
Protection Agency

Toxics Release Inventory www.epa.gov/tri

Environment Canada National Pollutant Release 
Inventory

www.ec.gc.ca/pdb

México SEMARNAT Registro de Emisiones y 
Transferencia de Contaminantes

www.semarnat.gob.mx/
Pages/Inicio.aspx

Australian Department of 
the Environment, Water, 
Heritage and the Arts

National Pollutant Inventory www.npi.gov.au

European Commission European Pollutant Release and 
Transfer Register

prtr.ec.europa.eu
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chemicals they release into the environment or ship off-site as waste (Doa, 1992). 
The EPA required manufacturers to submit complete TRI data forms for each
chemical covered by the TRI if they meet the requirements. For example, a 
facility required to report on three TRI chemicals would submit three separate 
forms. An important component of the law was creation of an unrestricted online 
reporting system. The first year for which TRI data are available is calendar year 
1987.

The Pollution Prevention Act of 1990 broadened the TRI to include reports 
on source reduction, recycling, and treatment. In 2000, more stringent report-
ing thresholds were established for persistent bioaccumulative toxic chemicals
(PBT). These chemicals, including dioxin, lead, mercury, compounds related to 
these three, polychlorinated biphenyls (PCB), and some pesticides, are of special 
concern because they are toxic and not easily mitigated, they remain in the envi-
ronment for long periods of time, and they accumulate in body tissue.

The law initially covered all manufacturing facilities in all U.S. states and 
jurisdictions employing the equivalent of 10 full-time employees in industries 
in Standard Industrial Classification (SIC) codes 20 through 39 that produced, 
imported, or processed 25,000 pounds or more of any of the 600 individual chem-
icals and 28 chemical categories on the TRI list of toxic chemicals or that used in 
any other manner 10,000 pounds or more of a TRI chemical during the reporting 
year (U.S. Environmental Protection Agency, 2010a). In 2005, the EPA proposed 
changing reporting requirements. These proposals were controversial because 
they allowed some facilities to file a brief certification form (Form A) instead of 
a detailed reporting form (Form R), allowed some PBT chemicals to be reported 
using Form A, and proposed changing the frequency of reporting from yearly 
to every other year (Bazilchuk, 2006). The final rule, which was promulgated in 
2006, changed the reporting requirements, but it did not change the reporting 
frequency (U.S. Environmental Protection Agency, 2006). The 2006 TRI data, 
the first to be released under the new regulations, showed a 13% increase in 
Form A reports and a 2% decrease in releases from the levels reported in 2005 
(U.S. Environmental Protection Agency, 2008a). Three percent fewer facilities 
reported in 2006 than in 2005.

In 2006, the EPA adopted the North American Industrial Classification 
System (NAICS) codes for identifying industries required to report (U.S. Envi-
ronmental Protection Agency, 2009a). NAICS has replaced the SIC system for 
classifying industries. It was jointly developed by the U.S. Economic Classifica-
tion Policy Committee, Statistics Canada, and Mexico’s Instituto Nacional de 
Estadística, Geografía e Informática, to promote comparability in business sta-
tistics among the North American countries participating in the North American 
Free Trade Agreement (NAFTA). NAICS was introduced in 1997 and is revised 
every 5 years. Based on these revisions, the EPA updates its list of NAICS codes 
identifying industries required to report.

An important category of reporting information for the purposes of GIS 
analysis is facility information. This category includes lon/lat coordinates that 
identify where the release occurred. In 2005, the EPA modified TRI report-
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ing forms so that facilities were no longer required to report lon/lat and certain 
facility identifier codes assigned by regulators. These data are now managed in 
a separate database, the Facility Registry System (FRS) (U.S. Environmental 
Protection Agency, 2009b). This system was developed to address problems with 
accuracy and consistency of facility and location data across state and federal 
regulatory programs recognized by analysts of the TRI data published in the 
early years of the program (Burke, 1993; Scott, Cutter, Menzel, Minhe, & Wag-
ner, 1997). It maintains data on more than 1.5 million unique facilities. Data 
can be accessed online in cartographic and tabular formats. TRI facilities and 
release data and data on Superfund National Priority List sites can also be 
mapped through the National Library of Medicine’s TOXMAP® site (National 
Library of Medicine, 2010).

The geographic information on TRI facilities has provided a basis for 
describing geographic patterns of TRI facilities and releases (Stockwell et al., 
1993). Considering the use of TRI data in an environmental hazard surveillance 
system, however, it is worth pointing out that TRI reporting requirements cover 
only a selected set of industries that release toxicants in their current operations. 
TRI data cannot be regarded as providing a complete spatial and temporal pic-
ture of environmental contamination.

OTHER POINT SOURCE DATABASES

To create a comprehensive picture of sources of environmental contamination 
in a particular region, public health analysts have to draw on multiple sources 
of information. Many state environmental protection agencies have compiled 
databases of point sources of environmental contamination. In Connecticut, for 
example, the Department of Environmental Protection maintains a Point Source 
Inventory. The Point Source Inventory includes all sources in the state capable 
of emitting more than 5 tons per year of any one of a specified set of pollutants 
including carbon monoxide (CO), volatile organic compounds, lead, and par-
ticulates. Most of the sources are combustion sources, but these are sometimes 
operated by facilities like hospitals or schools that public health analysts might 
not readily think of as sources of environmental contaminants. Health facilities 
have also been identified as point sources discharging chemicals into water by 
their waste disposal practices for unused pharmaceuticals (U.S. Environmental 
Protection Agency, 2008b).

Connecticut’s Point Source Inventory includes state plane coordinate loca-
tions for each stack and a base elevation for the stack. This feature makes it pos-
sible to integrate data from the Point Source Inventory with other GIS databases 
maintained by the Connecticut Department of Environmental Protection. Map-
ping the locations of point sources reveals how widely distributed they are across 
the state (Figure 6.2). State environmental regulations and permitting statutes 
can provide important information on the kinds of sources that are regulated in 
a state and that might be identified in a database compiled by a state regulatory 
agency.
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USING GIS TO DEVELOP DATABASES OF POTENTIAL POINT SOURCES

In some cases, regulatory agencies find it difficult to identify all of the entities 
that may release toxicants and are subject to some kind of permitting or enforce-
ment action. In these cases, GIS analysis has been used as a screening tool to 
identify the locations of industries that might be discharging wastes. An analysis 
taking this approach was conducted in seven counties in Pennsylvania to identify 
industries in the region likely to have shallow injection wells based on their SIC 
codes from the Dun and Bradstreet Baseline database (Davis & Flores, 1992). 
A GIS database of the locations of 14 types of industrial facilities was created 
based on the lon/lat reported in the Dun and Bradstreet database. This database, 
like the TRI, contains a variable describing how the coordinates of the facilities 
were determined. A GIS database of principal sewer systems was also created 
from maps of sewered and unsewered areas provided by local officials in the 
counties.

The analysts were interested in identifying facilities in unsewered areas 
because these facilities would likely be using injection wells to dispose of their 
liquid wastes. The cartographic overlay function of the GIS was used to overlay 
the two databases. “In this way, the facilities outside sewered areas were easily 
identified” (Davis & Flores, 1992, p. 117). Using the GIS functions that enable 
selection of objects by feature attribute, companies that had yearly sales figures 
of more than $1,000,000 were selected and mapped separately because it was 
assumed that they generated higher levels of waste. A second group of compa-

FIGURE 6.2. A map of point sources for air pollution in Connecticut. Data pro-
vided by the Connecticut Department of Environmental Protection.
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nies having 20 or more employees was also selected because their septic systems 
required permitting.

A similar approach was adopted in a study modeling the possible impacts 
of emissions from facilities too small to be required to report to regulatory agen-
cies (Dolinoy & Miranda, 2004). TRI data for Durham County, North Carolina, 
for 2000 when SIC codes were still being used were downloaded from the EPA 
website. Data for facilities that were not required to report to the TRI but had 
TRI-reporting SIC codes were identified from a commercial city marketing data-
base for the same year. A tax parcel database was used to geocode the locations 
of the nonreporting facilities using the addresses of facilities listed in the mar-
keting directory. The TRI data yielded 16 facilities, but more than 400 additional 
facilities were identified from the marketing directory. In addition to increasing 
the number of facilities, incorporating data from the commercial directory sig-
nificantly changed the geographical distribution of facilities. Only three of the 
TRI facilities were located in central Durham, an area of low-income minority 
population, but most of the small nonreporting facilities were concentrated in 
this area (Figure 6.3).

Computer models have been developed to estimate quantities of hazard-
ous wastes generated at industrial facilities based on their number of employees 
and the products they manufacture (Ashact, Ltd. & Dagh Watson, Spa., 1989; 
Dolinoy & Miranda, 2004). These data can be used with the locations of any 
facilities captured from directories, remote sensing data, or field surveys. This 
approach is potentially useful in environmental health analyses conducted in 
situations where facilities are not required to disclose hazardous material inven-
tories (Lowry, Miller, & Hepner, 1995).

Nonpoint Source Data and Modeling

Data on nonpoint pollution sources affecting air and water are challenging to 
assemble because the sources are so numerous and widespread. Air pollution 
comprises gases and particulates, and both types of pollution have been studied 
using GIS. Vehicles are a major source of emissions affecting both human and 
environmental health. The transportation sector accounted for one quarter of the 
increase in greenhouse gas emissions in developed countries between 1990 and 
2004; this share is likely to grow over the next 30 years, with most of the growth 
occurring in developing countries (Walsh, 2008).

To quantify emissions from on-road vehicles in Istanbul, Turkey, devices 
were used to collect emissions data from the exhaust of different types of vehi-
cles operated in real-world conditions (Gumusay, Unal, & Aydin, 2008). Road 
grade and coordinates for the position of the vehicle were captured using GPS 
receivers attached to each vehicle. The location data from the GPS were used to 
create a point database in a GIS application, and the emission data, measured 
every second, were integrated with the corresponding GPS locations.

Agricultural runoff including pesticides is a major source of water pollution. 
California’s pesticide regulatory program is recognized as a model program (Cal-
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ifornia Department of Pesticide Regulation, 2000), and data from the Pesticide 
Use Reporting (PUR) program have been used in many environmental health 
studies. Full use reporting regulations were introduced in 1990, but limited-
use reporting requirements have been enforced since 1950. Home and garden 
use and most industrial and institutional uses are not included in the reporting, 
but uses in parks, golf courses, cemeteries, and transportation rights-of-way are 
included.

Pesticide applicators are required to report month and year of application, 
date and time of application, acres or units treated, amount of product applied, 

FIGURE 6.3. The locations of all TRI and non-TRI reporting facilities in Durham 
County, North Carolina, in all SIC codes required to report. The gray box highlights 
Central Durham County. Including non-TRI reporting facilities significantly changes 
the number and distribution of facilities. The number of facilities increases, as does the 
concentration in the center of the county where low-income and minority populations 
live. From Dolinoy and Miranda (2004).
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and a range of geographic identifiers. These include the county and Public Land 
Survey System section, township, and range, base and longitude, and a site ID. 
California is one of a number of states using the Public Land Survey System 
described in Chapter 2. A site identifier, assigned by county agricultural com-
missioners to a physical plot of land, is also reported.

When these types of data are not available, GIS have also been useful in 
modeling nonpoint pollution sources. Underground, septic system discharge in 
soils unsuitable for waste purification has been identified as an important source 
of groundwater pollution (Bicki & Brown, 1991). In Pennsylvania, where soil 
wetness, shallow bedrock, slow percolation, and steep slopes limit septic system 
performance, a GIS analysis was performed to model nitrogen loadings from 
septic systems on a statewide basis (Nizeyimana et al., 1996). The 1990 Census of 
Population and Housing, however, reports the number of housing units on septic 
tanks or cesspools by census tract. These data were used with data on the num-
ber of persons and housing units to estimate the amount of nitrogen produced in 
each tract. The census tract data were integrated with a database of watersheds 
in the state. This approach was taken as an alternative to pinpointing the loca-
tions of more than one million septic systems on a statewide basis in Pennsyl-
vania (Figure 6.4). In smaller areas or watersheds, however, analysts have used 

FIGURE 6.4. An estimate of persons using septic systems per hectare by watershed 
area in Pennsylvania. From Nizeyimana et al. (1996). Used with permission from Jour-
nal of Environmental Quality (1996).
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parcel data or other information to geocode the locations of septic systems using 
GIS (Stark, Nuckols, & Rada, 1999; Delaware Department of Natural Resources 
and Environmental Control, 2004).

The Changing Geography of Hazards

Hazard geography is not static. The locations of industrial and agricultural activ-
ity change over time, and past patterns of land use may not be evident in the 
current landscape. Modern industrial and agricultural activities involve the 
assembly of raw materials from many sources to production sites as well as the 
distribution of finished products and waste materials to other locations. Acciden-
tal release of contaminants may occur at a variety of places as materials are trans-
ported (Bowen et al., 2000). GIS have been used to document historical patterns 
of contamination and to address transportation of hazardous materials.

HISTORICAL PATTERNS OF ENVIRONMENTAL CONTAMINATION

Local land use and zoning controls provide some basis for evaluating potential 
impacts from new activities making use of toxic substances or generating them 
during the production process. It may be more difficult to detect historical pat-
terns of contamination, particularly when land use change has occurred. Data-
bases like the TRI and the California PUR have been in existence for a sufficient 
number of years that it is possible to track changing patterns of environmental 
hazards over time. It is also possible to reconstruct past community landscapes 
through other sources. Old telephone directories, Sanborn fire insurance maps 
(Geography and Map Division, Library of Congress, 1981; Keister, 1993), reports 
and case studies of contamination events (Colten, 1991), and other archival mate-
rials can be used to identify the locations of tanneries, paint manufacturers, 
metal processors, and other businesses that might have polluted the environment 
or even the geographical patterns of past contamination events.

A historical geographic information system (HGIS) application was devel-
oped for an environmental history project covering the period from 1855 to 2005 
in London, Ontario (Gilliland & Novak, 2006). Scanned fire insurance plans pro-
vided one data series used to identify industrial sites and their proximity to riv-
ers, parks, and open spaces. These tools can enable analysts to document impor-
tant changes in urban morphology. Analysis of past activities is also important in 
less urbanized areas, as research on breast cancer risk and historical exposure to 
pesticides among women living on Cape Cod, Massachusetts, illustrates (Brody 
et al., 2004).

Analysts using GIS to study conversion of industrial sites to other uses in 
New Orleans, Louisiana, found that most sites occupied by polluting activities 
had been converted to other uses (Frickel & Elliott, 2008). The study covered the 
period from 1955 to 2006. The study used the parcel as the basic spatial unit of 
analysis and tracked changes in the uses of the parcels over time. The sites where 
conversion had occurred were not concentrated in minority neighborhoods. A 
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similar pattern was found in a study of contaminated sites in Baltimore showing 
concentrations of sites in white working-class neighborhoods with excess mortal-
ity rates (Litt & Burke, 2002).

Public health professionals have grappled with the issue of converting 
brownfields, defined as chemically, physically, or biologically contaminated aban-
doned or underutilized commercial or industrial properties, for residential use 
(Greenberg, 2002; Greenberg, 2003) even when neighborhood residents are not 
opposed to the development of housing (Greenberg & Lewis, 2000). An assess-
ment of European brownfields evaluated differences in definitions of brown-
fields across countries and regions (Oliver, Ferber, Grimski, Millar, & Nathanail, 
2005). In countries with relatively low population densities, dealing with con-
tamination was the primary issue of concern. In western European countries 
with high population densities, there was more pressure to convert brownfields 
to residential use. The identification and redevelopment of brownfields is also a 
significant issue in developing countries (Moore, Gould, & Keary, 2003).

HAZARDOUS MATERIALS TRANSPORTATION AND DISASTER RELEASES

The Hazardous Materials Transportation Uniform Safety Act of 1990 provides 
a legislative basis for regulating shipments of hazardous materials in the United 
States. To track transportation-related releases of hazardous materials, federal reg-
ulations require reporting to the Pipeline and Hazardous Materials Safety Admin-
istration (PHMSA) (U.S. Department of Transportation, Pipeline and Hazardous 
Materials Safety Administration, 2011). Notice involving infectious substances—
etiologic agents—may be given to the director of the Centers for Disease Control 
and Prevention. The database of Incident Reports can be searched and the search 
results downloaded in comma-delimited textfile format. Geographic identifiers 
include city, county, state, and postal code of the incident, and route information 
with address or intersection data that could be used to geocode the locations of 
incidents associated with highway transportation. Incidents related to other trans-
portation modes including pipeline, air, rail, and water are also included.

Releases of toxicants can be caused by natural disasters such as forest fires, 
floods, and earthquakes (Young, Balluz, & Malilay, 2004). Some of these releases 
are direct, resulting from the event itself. Dioxin produced by forest fires is an 
example of a direct release that cannot be prevented. An indirect release result-
ing from a disaster may be intentional or unintentional. Pesticide spraying to 
control insects following flooding is an example of an indirect release intended 
to prevent a health threat, like vector-borne disease, that is considered more 
serious than the threat from the pesticide. Na-tech event (natural-technologic 
event) releases are also indirect releases, but they are considered unintentional. 
Na-tech events are nevertheless seen as preventable sources of environmental 
contamination because action can be taken to improve the technologies used to 
store and ship toxicants to prevent unintended releases.

GIS and related technologies played a role in assessing the potential impact 
of flooding from heavy rainfall on discharges from waste pits used by confined 
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animal feeding operations in North Carolina (Wing, Freedman, & Band, 2002). 
If the waste pits are breached or flooded, both chemical wastes and pathogens 
can be released. The lon/lat coordinates of more than 2,200 operations in the 
eastern part of the state were checked and corrected to represent the feeding 
operations as point features. The state Division of Water Quality provided infor-
mation on which waste pits were breached or flooded from 15 to 20 inches of 
rainfall caused by Hurricane Floyd in September 1999. The state’s Division of 
Emergency Management provided data on inundated areas derived from satel-
lite imagery approximately one week after the hurricane. More than 10% of feed-
ing operations modeled as points were located in inundated areas. Although not 
all of these experienced breaches or flooding as a result of the rainfall, many are 
at risk for off-site discharge of waste from flooding. This finding has implications 
for the management of hazards because feeding operations are permitted as non-
discharge facilities that retain waste on site. The interaction of natural events, 
production processes, and regulation can lead to complex environmental impacts 
that, in turn, affect human health.

Integrating Databases Describing Sources of Contaminants

GIS applications have used pollutant release and transfer data in conjunction 
with other source data to describe the sources of environmental contaminants 
more completely. As part of a project to monitor environmental conditions within 
the Greenpoint/Williamsburg section of Brooklyn, New York, data on the loca-
tions of approximately 20 TRI sites were integrated with data on the locations of 
other potential sources of environmental contaminants (Osleeb & Kahn, 1999). 
These included a sewage treatment plant and incinerator, a low-level radioac-
tive waste repository, more than 200 hazardous-materials processors, a major 
expressway, and a large number of chemical and petroleum bulk storage tanks.

As these applications show, GIS have been used to describe the sources 
of environmental contaminants. Concerns remain about the accuracy of self-
reported data from pollution release and transfer registers, and new technological 
processes like nanotechnology may not yet be regulated (de Marchi & Hamilton, 
2006; Wardak, Gorman, Swami, & Rejeski, 2007). Even when pollution source 
databases are relatively complete, the location of pollution sources only partially 
describes the geography of environmental hazards. Contamination zones around 
these sources also need to be evaluated.

Modeling Fate and Transport and Environmental 
Quality in a GIS

Fate and Transport Modeling

After the locations of sources of toxicants have been identified and analyzed, it 
is necessary to understand how these agents affect environmental quality in situ
and elsewhere. Fate and transport models are used to investigate what happens 
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to agents that are released into the environment (Dunnivant & Anders, 2006). 
These models require geographic and physical descriptions of the source and 
information on the rate of release into the atmosphere, the hydrosphere (sur-
face water and groundwater), and the lithosphere (land). Given the location of 
the source, the meteorology of the receiving air (including rainfall patterns), the 
hydrology and hydrogeology of the receiving water features, and the physical 
and geologic characteristics of the receiving land can be evaluated.

GIS have often been used for pre- and postprocessing of data used in fate 
and transport models (Pistocchi, 2008). Applications taking this approach to 
describing the areas ultimately impacted by discharges into the air, water, or 
soil generally consist of two major components: a chemical dispersion model and 
a GIS database (Chakraborty & Armstrong, 1995). Given information about the 
types of chemical released and local environmental conditions (Figure 6.5), the 
chemical dispersion model provides the dispersal “footprint.” The plume foot-
print can then be incorporated into a GIS database by locating the source of the 
release as the origin of the footprint and computing the planar coordinates of 
the footprint polygon. By overlaying the plume footprint with census data, the 
characteristics of the population within the footprint area of risk or exposure can 
be modeled.

A variety of dispersion models are available. Some of these are relatively 
simple, while others are complex three-dimensional models capturing vertical as 

FIGURE 6.5. A composite of 12 monthly dispersion footprints generated for the 
same accident location in Des Moines, Iowa, reflects seasonal variations in prevail-
ing wind direction. From Chakraborty and Armstrong (1995). Copyright (1995), with 
permission from Elsevier.
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well as horizontal spread (Brutsaert, 1982). Composite plume models are devel-
oped from a set of dispersion footprints generated for the same source but incor-
porating different air temperatures, relative humidities, cloud covers, and wind 
speeds and directions, reflecting variability in climatic conditions. If the locations 
of releases are known, composite plume models can be developed around each 
origin. By identifying the locations of 45 intersections in Des Moines, Iowa, with 
the highest numbers of truck accidents and then developing composite plume 
models for each intersection based on long-term average monthly climate data, 
Chakraborty and Armstrong (1995) were able to identify residential populations 
most at risk for exposure to gases released following a collision.

Fate and transport modeling is also an important technique for investigat-
ing degradation of water quality. A number of models have been developed to 
study watershed hydrologic processes and nonpoint source pollution (Borah & 
Bera, 2003). Some of these are continuous, and others are designed to measure 
the impacts of single rainfall events like major storms. Most of these models were 
developed in the 1970s and 1980s before the widespread availability of GIS, but 
subsequent research has integrated many of them with GIS.

Solute transport models incorporating GIS for spatial data compilation, 
analysis, and visualization have been developed at a variety of spatial scales from 
the individual farm to the multistate region (Wagenet & Hutson, 1996). In a study 
of a relatively small geographic area (7 kilometers × 10 kilometers in upstate 
New York), a GIS was used to overlay slope, land use, and soils databases to pro-
duce a composite identifying those soils found in agricultural areas with slopes 
less than 10%. The hydraulic properties of the soils were used to identify main 
hydraulic groups. Pesticide data for four chemicals along with pesticide applica-
tion rates and typical corn planting dates and growth patterns were obtained for 
the region. In this application, the GIS was particularly useful for preprocessing 
input data for the solute transport model from a variety of sources and for post-
processing the results of the various simulations and generating maps.

The Soil and Water Assessment Tool (SWAT), was used to investigate two 
subwatersheds in the Sandusky Watershed region in Ohio (Grunwald & Qi, 
2006). This watershed is part of the Great Lakes Basin, and surface runoff of 
suspended sediment and agricultural chemicals is a major source of nonpoint 
source pollution affecting water quality in Lake Erie. The spatially distributed 
modeling approach made it possible to produce maps showing the geographi-
cal patterns of simulated and independently validated suspended sediments 
and nutrients across the watershed. The simulated data were not equally valid 
throughout the study area.

Assessments of environmental conditions resulting from fate and transport 
modeling can be confirmed or contradicted by field measurements. Comparative 
studies of fate and transport for different chemicals across different study sites 
are providing evidence that local conditions affect transport. A study of phospho-
rus, nitrogen, and pesticide transport to streams in five agricultural basins in the 
United States showed that climatic, hydrological, and agricultural management 
practices were geographically variable and affected pesticide loads as a percent 
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of actual use (Domagalski et al., 2008). GIS data and tools are increasingly used 
to develop spatial multimedia fate models (Pennington, Margni, Ammann, & Jol-
liett, 2005). In addition to describing the sources of environmental contaminants 
and their fields of impact, measuring environmental quality is an important com-
ponent of environmental health analysis.

Environmental Quality

The cumulative effects of physical processes and human activities in the envi-
ronment manifest themselves in environmental quality. While the sources of 
environmental contaminants and their dispersion patterns have generally been 
modeled as object data (points, lines, and areas), environmental quality is a 
field variable, as defined in Chapter 2. Dimensions of environmental quality—
atmospheric conditions, water quality, and soils—are continuous and can be 
observed everywhere. These phenomena are usually measured based on a parti-
tioning of the surface that creates a spatial framework for locating monitoring sta-
tions. Sometimes, the observed measures of environmental quality are mapped 
only for the monitoring locations. As part of the CDC’s National Environmental 
Public Health Tracking Program, U.S. Geological Survey and National Water-
Quality Assessment (NAWQA) Program data on domestic well water quality was 
mapped for more than 12,000 domestic wells in private water supply areas across 
16 states (Bartholomay, Carter, Qi, Squillace, & Rowe, 2007). Point data for wells 
were mapped with other GIS data on aquifers, land cover, and population den-
sity to aid interpretation of the water quality data in terms of human health con-
cerns. More commonly, however, monitoring data are interpolated to create sta-
tistical surfaces of environmental quality. These methods contribute information 
to studies of the relationships between environmental quality and human health 
outcomes by modeling environmental quality. Other types of models are used 
to link environmental conditions to exposure and to human health outcomes, as 
discussed later in this chapter and in Chapter 11.

In numerical analysis, interpolation is the process of creating new data 
observations within a discrete set of known observations. Spatial interpolation
involves analyzing measurements at known locations to estimate values of the 
measured phenomenon at other locations where no measurements have been 
taken (Chang, 2009). These points where no values have been measured are gen-
erally modeled by creating a grid that covers the region for which the phenom-
enon is being interpolated and are referred to as grid points. Once the control 
points, the points with known values, are in hand, the analyst must choose an 
interpolation method. Global interpolation methods like trend surface analysis 
use values from all of the known points to estimate the value at each unknown 
point. In most health applications, local interpolation methods are used. These 
methods use values observed for only a sample of neighboring known points to 
estimate the value at each unknown point. The sample of points may be deter-
mined in a number of ways: by finding the closest known points to the unknown 
point, by finding known points within a specified distance of the unknown point, 
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or by finding known points within each of four quadrants around the unknown 
point (Figure 6.6).

Interpolation methods can also be categorized as exact or inexact. Exact 
interpolation methods result in the estimated values at known locations that 
are exactly the same as the known values. Inexact interpolation methods may 
result in estimated values for known locations that are not equal to the known 
values at the locations. Finally, interpolation methods have been classified as 
deterministic and stochastic. Deterministic interpolation methods provide no 
measures of error associated with the estimated values. Stochastic interpola-
tion methods, however, provide information on errors in estimated values with 
estimated variances.

Inverse distance weighted (IDW) interpolation is an exact local interpola-
tion method. The IDW function for estimating values is
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In the equation, zj is the estimated value at point j, zi is the known value at point 
i, s is the number of points with known values used in the estimation, and dij is 
the distance between point j and point i. The weights are inversely proportional 
to the power k of the distance. In this way, the influence of the surrounding 
known values on the unknown value at a point is described. As k increases, less 
weight is given to known values at more distant locations in estimating the value 

FIGURE 6.6. Search methods for identifying control points for local interpolation. 
The analyst can select the k closest points, in this case the five closest points (a). Alter-
natively, a search radius of k units identifies 11 points (b). In both of these approaches, 
the sample control points lie mostly to the south of the location for which a value is 
being estimated. The analyst can use a quadrant requirement (c) to select the k closest 
points within each of four sectors. An octant requirement is similar but would require 
sample points in each of eight sectors.
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at a point. The number of points with known values used in the estimation also 
affects the degree of local influence.

This method of spatial interpolation was used to model patterns of cesium 
deposition on Europe after the Chernobyl disaster (De Cort et al., 1998). Ana-
lysts sampled the six closest neighbors within a maximum radius. Because the 
underlying structure of the deposition pattern was not known, analysts estimated 
the value of k empirically. Data were randomly selected from the complete data 
set and inverse distance weighted using different k values. Estimated values for 
points with known values were then compared to the known values in order to 
assess which exponent best reproduced known values. An exponent value of 2 
provided the best fit over a range of samples.

Kriging is a statistical spatial interpolation method. Unlike IDW, kriging 
considers not only the distances to control points, but also the spatial autocorre-
lation of measurements among the control points. Spatial autocorrelation refers 
to the similarity or association of values over space as measured in statistics like 
the Gi* statistic discussed in Chapter 5.

To measure spatial autocorrelation, kriging uses the measure of semivari-
ance (variance divided by 2). If yi is the measurement at control point i, dij is the 
distance between control points i and j, and h denotes a distance among control 
points, then the semivariance at distance h is
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where n(h) is the number of pairs of control points that are distance h apart. The 
semivariance thus measures the variance of values for control points separated 
by distance h. A small semivariance indicates that measurements at distance h
are similar to each other, whereas a large semivariance indicates a large dispar-
ity in measured values. As h varies, different values for the semivariance will be 
obtained.

The semivariogram is a graph that shows the values of semivariance at 
different values of h (Figure 6.7). In general, the semivariance increases with 
increasing h, reflecting spatial dependence in the phenomena being investi-
gated. Nearby control points will tend to have similar values, and thus a small 
semivariance, whereas distant locations tend to have less similar values and thus 
a larger variance. The nugget is the semivariance where distance equals 0. Semi-
variance at this distance can represent measurement error or variation at a scale 
not captured by the analysis. The range is the distance at which the increase in 
semivariance with increasing distance levels off. The sill is the semivariance 
value reached at the range.

Semivariograms may be used alone, to explore spatial autocorrelation in 
data, or with other methods. The semivariogram range was used to determine 
the maximum search radius for the six neighboring control points used to esti-
mate cesium by the inverse distance-weighted method in the atlas of cesium 
deposition on Europe from Chernobyl (De Cort et al., 1998).
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In kriging, the semivariogram is fitted with a mathematical function and 
used to generate a set of spatial weights or i(s) for each control point i and grid 
point s. Computing these weights involves matrix algebra (Isaaks & Srivastava, 
1989). Once the weights have been computed, we estimate the value y(s) at grid 
point s as a weighted linear combination of the values at various control points 
(Figure 6.8). The estimated value at grid point s is

ii ss )()(y y

Computing these estimated values for all grid points s produces a fine mesh of 
values that appear as a continuous surface when mapped, as in Figure 6.8.

Kriging is a well-developed spatial interpolation method that is widely 
used in the earth sciences and geography (Chang, 2009). It has been used for 
exploring environmental health problems like lead poisoning (Griffith, Doyle, 
Wheeler, & Johnson, 1998), and to model temporal peaks in the spread of infec-
tious disease, as described in Chapter 7. Although complex, kriging is generally 
considered the best method for creating a continuous surface map of estimated 
values from measurements taken at discrete control points. The main advantages 
of kriging are that:

Unlike estimated values from other interpolation methods, the estimated 
values can fall outside the range of the known data values.
Kriging gives a standard error or kriging variance for the estimated grid 
points values (Figure 6.9), making it possible to compute confidence inter-
vals around the predictions.
Kriging incorporates and indeed models the spatial dependence in the 
data.

FIGURE 6.7. The semivariogram graphs the relationship between semivariance 
and distance. The curved line represents the mathematical function fit to the observed 
semivariance values plotted by distance.



Analyzing Environmental Hazards 205

FIGURE 6.8. A schematic example of using kriging to estimate the value at particu-
lar places based on known values at control points. The mathematical function is fit 
to the semivariogram (a). The known values are multiplied by their respective kriging 
weights ( ), which come from the semivariogram (b). Kriging weights are highlighted 
in bold. The results of the kriging analysis can be displayed as a continuous map (c).
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Despite these advantages, kriging, like all statistical methods, requires caution 
in its application. The accuracy of kriging estimates depends heavily on the accu-
racy of the semivariogram that generates them. Before embarking on kriging, it 
is important to check that the semivariogram is properly specified and fits well 
the data being modeled.

SAMPLING NETWORKS FOR MEASURING ENVIRONMENTAL QUALITY

An important issue in describing environmental quality, and ultimately its asso-
ciation with patterns of human health and disease, is the design of the sampling 
network. In a study of outdoor air pollution and asthma in Brooklyn and Queens, 
New York, there were too few air monitoring stations for measuring inhalable 
particulate matter and ozone, and the stations were too clustered in the western 
portion of the study area to interpolate air quality adequately (Weisner, 1994). 
The absence of adequate monitoring networks also affects environmental quality 
measurements for catastrophic events (Service, 2003). Sampling network design 
is also important in studies where watersheds or airsheds span more than one 
country (Miller et al., 2010).

Designing a monitoring network involves defining the number, locations, 
sample pattern, and sample frequency of sampling sites (Olea, 1984). Statistical 
analyses have generally focused on detecting statistically significant variations in 
environmental quality, that is, evaluating the statistical accuracy of the estima-
tions. Some evidence suggests that more frequent sampling does not necessarily 
greatly increase the power of the statistical tests or the precision in the estimates 
(Hsueh & Rajagopal, 1988; Loaiciga, 1989). Redundancy attributable to spatial 
autocorrelation in environmental quality measurements can also inflate variance 
estimates (Griffith, 2008). How many sampling sites are necessary and where 
they should be located to yield an accurate representation of some dimension 
of environmental quality in a region is both a statistical question and a spatial 
question, and environmental analysts recommend using spatial–statistical meth-
ods in the design of sampling networks (Nelson & Ward, 1981; Beach, 1987; de 
Gruijter, Brus, Bierkens, & Knotters, 2006).

In terms of where samples should be taken, a “network of good geographi-
cal coverage is essential, implying the use of tessellation stratified random sam-
pling” (Griffith, 2008, p. 496). One such design is based on a hexagonal tessel-
lation (see Figure 2.1) or partitioning of the continuous environmental quality 
surface over the study area and sampling at a random location within each 
hexagon (Overton & Stehman, 1993). Essentially, then, samples should be taken 
everywhere. As the foregoing discussion of kriging illustrates, environmental 
quality values estimated for points where measurements have not been taken 
have higher error associated with them when there is little local evidence from 
nearby control points for making the estimation. Unfortunately, resource con-
straints and other geographical factors limiting access to potential monitoring 
locations mean that this approach to deciding where samples should be taken 
is rarely used.
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FIGURE 6.9. An analysis of annual effective equivalent dose of radiation, mea-
sured in millisieverts (mSv), from external sources in Mozyrskiy Rayon, Gomel Oblast, 
Belarus. Figure 6.9a shows control points located within and outside of the area with 
the highest dose levels in the southeast in the direction of the Chernobyl nuclear 
power plant. Figure 6.9b shows the results of a kriging analysis using ordinary kriging. 
Figure 6.9c shows the associated standard error map for the predicted values. Error is 
greatest in the areas with fewer control points spaced farther apart. Data from Sere-
briakova (2005).
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The geographical extent of the tessellation unit is determined by the number 
of sample points. If the spatial distribution of the phenomenon of interest were 
known, it would be relatively easy to determine the appropriate number and 
configuration of control points. For purposes of interpolation, a regular tessella-
tion of sampling points can detect only variations in a surface like environmental 
quality with “wave lengths of twice the sampling distance or more” (Tobler, 1969, 
p. 243). But the only way to find out what the spatial patterns of environmental 
quality are is to sample environmental conditions at different places.

It is possible, nevertheless, to explore the issue of the necessary number 
of sample points by modeling hypothetical patterns of environmental quality. 
One such study sought “to demonstrate how sample density affects the spatial 
and statistical representation of a unitless groundwater quality variable in a 
hypothetical basin” (Luzzader-Beach, 1995, p. 384) using a variance reduction 
approach (Rouhani, 1985). The hypothetical basin was designed to approximate 
in size and dimensions a basin that might be found in northern California and 
exhibited three groundwater quality patterns of different geographic extent (one 
large and two small areas). A rectangular grid was overlaid on the hypothetical 
water quality map, and a model well from which water samples could be taken 
was located at each intersection in the grid.

Sections of the grid were grouped into hypothetical “townships” to facili-
tate a spatially stratified random sampling scheme for 22 sample densities rang-
ing from 100% of the hypothetical wells down to 5% of the hypothetical wells. 
In addition, a sample was drawn at 2.8% coverage to simulate a policy recom-
mended by the California Department of Water Resources Task Force to sample 
one well per township. For each level of sampling density, the pattern of water 
quality resulting from the sampled wells was mapped by kriging.

The results of the analysis supported the point that relatively few sample 
sites are required to accurately represent an environmental feature like ambient 
groundwater quality in a hypothetical basin. A standard of one well per town-
ship, however, was inadequate to capture variation in groundwater quality. The 
smaller, more localized groundwater patterns were harder to detect as sampling 
density decreased (Figure 6.10), and a density of five wells per township appeared 
to be the threshold density for ensuring adequate sampling.

Because the sampling networks for measuring environmental quality are 
rarely adequate, it is important to investigate how many statistically independent 
samples have been collected, which is different from determining the number of 
sampling sites needed. A spatial filter binomial regression model can be used to 
determine the number of independent samples in the presence of spatial auto-
correlation (Griffith, 2008). This model was used to analyze a database of more 
than 3,500 soil samples taken in Syracuse, New York, and tested for heavy met-
als. The sample locations were geocoded by GPS. The primary motivation for 
the research was to determine how many locations were necessary to estimate 
parameters of a spatial autoregressive model of soil contaminant level as a func-
tion of a set of attribute variables rather than accurately modeling environmental 
quality per se.
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INTEGRATED INDEX OF ENVIRONMENTAL QUALITY

In the same way that GIS have been used to develop composite databases of the 
sources of environmental contaminants (Osleeb & Kahn, 1999), systems have 
also been developed to integrate data measuring individual components of envi-
ronmental quality. One integrated index of this type was developed in the Neth-
erlands specifically to support land use zoning that was sensitive to environmen-
tal issues (Sol, Lammers, Aiking, De Boer, & Feenstra, 1995). High values of the 
index at a location would be used to support planning restrictions on housing 

FIGURE 6.10. Contour maps of groundwater quality based on diminishing sample 
sizes (expressed as the percent of available sample wells in a hypothetical basin) show 
different patterns of groundwater quality. From Luzzader-Beach (1995). Copyright 
1995 by Springer. Reprinted by permission.
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units, for example, while low values might indicate areas where no restrictions 
on residential development would be needed. The construction of an integrated 
index of environmental quality involves five basic steps: (1) identification of pol-
luting agents, (2) assessment of the magnitude of health effects, (3) summation to 
combine the effects of different agents producing comparable health effects by 
the same mechanism, (4) valuation of combined health effects to express them as 
dimensionless units on an arbitrary numerical scale, and (5) aggregation to com-
bine the values associated with the identified agents. Individual and composite 
index scores can be mapped using a GIS, as in the Netherlands study.

An important advantage of this approach is its integrative aspects. If a regu-
latory system monitors individual pollutants and compares observed levels to a 
corresponding regulatory standard, it may be that no individual pollutant exceeds 
its standard. Use of the integrated index is important in this context because it 
can be used to identify areas where environmental quality as a whole is unac-
ceptable, even though individual pollutants do not exceed their standards. A 
major difficulty of this approach, aside from the uncertainty of risk in the assess-
ment process, is the difficulty of finding suitable methods for modeling of human 
intake and for valuation of health effects.

GIS and Exposure Modeling

Toxicants in the environment can affect a person’s health only if the person is 
exposed. Exposure may consist of a single occurrence, may be repeated, or may 
be long term and continuous. The dose is the quantity of the agent a person is 
exposed to. The effective exposure time is the minimum time interval required 
from exposure to produce a health effect. With exposure to some toxicants, 
the effect may be almost immediate; with other substances, effects may not be 
induced for years. The latent period is the time interval from first exposure to 
observed health effect. The latent period is a function of many factors, includ-
ing the dose and dose rate; characteristics of the person like age, sex, and length 
of time exposed; and the frequency and nature of health observations. Thresh-
old toxicants are substances that are known or believed to cause adverse health 
effects above a specified dose or dose rate. Nonthreshold toxicants are known or 
believed to cause adverse health effects at any dose. In order for adverse health 
effects to be detected, studies must follow subjects for longer than the minimum 
latent period. Studies that do not follow individuals over the lifetime most likely 
underestimate true risk. Risk to human health is not just a function of the toxic-
ity of the agent; it also depends on the likelihood of people coming into contact 
with the agent.

The Agency for Toxic Substances and Disease Registry has developed 
materials for taking an exposure history for use by medical practitioners because 
many environmental diseases have nonspecific symptoms (Yu, 2008). The form 
suggests some of the complexities in developing valid exposure histories for a 
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person. In addition to recording basic demographic information such as age and 
sex, the exposure history form explores the substances someone has come into 
contact with, but does not attempt to quantify the level of exposure. The form 
also asks for an occupational history and a history of the residential environ-
ment.

The basic demographic characteristics are an indicator that individuals vary 
in susceptibility to toxic substances. Questions that probe occupational environ-
ment, residential environment, and recreational activities remind us that the 
home location is not the only place where individuals are exposed to toxicants 
because the home is only one node in a person’s activity space, described in the 
Introduction. Questions detailing employment history highlight the importance 
of assessing exposures throughout the lifetime.

A study of cancer incidence in the population of a mixed residential and 
industrial suburb in Denmark was able to account for individual residential 
mobility during the study period (Poulstrup & Hansen, 2004). The Danish Cen-
tral Population Register provides data on current addresses of residents as well 
as historical addresses and dates that individuals moved to or from the addresses. 
These address data were geocoded to be accurate within several meters. A high 
degree of residential mobility was observed in the study community. At the end 
of the 13-year observation period, only half the population lived at the same 
address and less than one third of the population lived within the study area. 
Although few countries maintain population registers that track residential 
mobility at the individual level, researchers can sometimes collect residential 
data for subjects included in epidemiological studies of adults (Han et al., 2005) 
or of children (Kohli, Noorlind Brage, & Löfman, 2000). As noted in Chapter 5, 
GIS modeling of residential histories is being used to detect clusters of health 
events as well as to model exposure (Jacquez et al., 2006).

Ideally, the environmental health analyst has quantitative data on charac-
teristics of the exposed population, including numbers by age and sex, and on the 
route and duration of exposure along with the concentration of the contaminant. 
In most epidemiological investigations, however, exposure data are “problem-
atic” (Hallenbeck, 1993). Often, no exposure data are available for individuals 
for the locations and time periods of interest or data are of limited validity and 
reliability due to measurement problems.

Susceptible people live and engage in activities in different geographical 
contexts. As the previous sections have illustrated, there is also geographical 
variation in the distribution of pollution sources and environmental quality, 
which means that conditions in these zones differentially expose people to con-
taminants. The intersection of these geographies—the geography of suscepti-
bility and the geography of exposure—has been termed the geography of risk
(Jerrett & Finkelstein, 2005).

Factors that confound or modify the relationship between the toxicant and 
the health outcome may operate both at the individual and the contextual levels. 
When susceptible individuals are concentrated in certain areas, the observed 
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health effects in the areas reflect the composition of the population, the com-
positional effect. When socioeconomic or environmental characteristics of the 
areas themselves influence health, there is a contextual effect. These concepts 
are elaborated further in Chapter 11.

In terms of the geography of exposure, actual exposure data at the indi-
vidual level are rarely available, although there is increasing interest in methods 
of personal exposure assessment and there have been advances in sensors for 
monitoring chemicals in the personal ambient environment (Weis et al., 2005). 
Most exposure assessments involve modeling. A review of models for exposure to 
air pollution within urban areas identified six modeling approaches for assigning 
exposure (Jerrett et al., 2005): proximity-based measures, geostatistical interpo-
lation models; land use regression models (Ryan & LeMasters, 2007); line dis-
persion models; integrated models of emissions and meteorological conditions; 
and hybrid models combining one of the other methods with exposure monitor-
ing at the individual or household level.

GIS applications in environmental health, emphasizing colocation in time 
and space of susceptible populations and facilities that release harmful substances, 
have been open to criticism for apparently substituting proximity to hazardous 
facilities for quantitative data on actual exposure at the individual level. Systems 
like Landview® 6, a joint project of the U.S. Bureau of the Census, the U.S. Geo-
logical Survey, and the Environmental Protection Agency, enabling users to draw 
a circle around a user-selected point and generate a demographic and environ-
mental profile of the area within the circle, may be useful for environmental risk 
management, but they fail to exploit the full capabilities of GIS for more accurate 
modeling of spatial processes in the hazard–exposure–dose–response sequence. 
If, for example, we knew the location of a contaminated public drinking water 
well, we would not want to assess the exposed population based on a circular buf-
fer around the well location. Water from the well is not equally likely to travel in 
every direction around the well, as the circle implies, because the water is deliv-
ered through a distribution network (Aye & Archambault, 1997). GIS can model 
that distribution network to produce a more accurate representation of the areas 
served whose water might be contaminated (Figure 6.11).

Cumulative distribution functions have also been used to explore proximity 
to pollution sources (Zandbergen & Chakraborty, 2006; Chakraborty & Zand-
bergen, 2007). The cumulative distribution function method is a graphical tech-
nique that plots percent of population on the y-axis of the graph and distance to 
nearest hazard on the x-axis of the graph. A cumulative distribution frequency 
function shows, for example, the percent of children in a community who live 
within a specified distance to the nearest TRI facility over the range of all such 
distances.

An important research area in exposure modeling is the analysis of error. 
These errors include not only errors in classifying the level of exposure and the 
health response, but, as highlighted in the discussion of sampling above, spatial 
autocorrelation in measurement and in measurement error.
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Estimating Populations in Hazard Zones

GIS have been used in a wide range of environmental health studies to estimate 
populations in zones of different environmental quality. In some cases, popula-
tion data have been aggregated to areas, usually by residence. In other cases, 
health analysts have had access to disaggregate population data for geocoded 
points representing residences and other locations such as schools or for par-
cels.

One area of environmental health analysis has been the investigation of pos-
sible links between electromagnetic fields (EMFs) and a variety of human health 
problems. EMFs arise from the operation of electrical generators, distributors, 

FIGURE 6.11. Census block areas that received contaminated drinking water from 
wells adjacent to a National Priority List hazardous waste site. A hydrological analysis 
of the water supply system estimated that areas northeast of the contaminated wells 
received the highest exposures. The geographical pattern of water contamination 
impact was influenced by water usage, competing sources of water, and hydrologic 
pressures in the water distribution system, and not simply distance from the contami-
nated wells. From Aye and Archambault (1997).
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and appliances, and are omnipresent in postindustrial societies. Epidemiological 
research has focused attention on the EMFs associated with electrical power 
systems, including generating stations, high-voltage transmission lines, and dis-
tribution lines.

To map and analyze EMFs associated with high-voltage transmission lines 
in Hartford County, Connecticut (Cromley & Joy, 1995), a GIS database of 
transmission lines located in the study area (Figure 6.12) was created by digi-
tizing maps of line location and type obtained from the utility and registering 
the digitized lines to a less complete but more spatially accurate database of 
transmission lines compiled by the Connecticut Department of Environmental 
Protection. The FIELDS program, a software system available from Southern 
California Edison Company, was used to calculate the EMF field around each 
transmission line segment in the study area. The FIELDS program requires 
input on phase coordinates (horizontal and vertical), number of subconductors 
per bundle, conductor diameter, bundle diameter, line kilovolts, phase current in 
amps for the relevant time period, phase angle in degrees, ground wire coordi-
nates (horizontal and vertical), ground wire diameter, ground wire current amps, 
and ground wire phase angle. These data were also obtained from the utility. 
Variables used to calculate the exposure fields were based on what a line was 
rated to carry during the winter and summer months. Actual readings are taken 
along line segments every 15 seconds by the utility, but these data would be too 
voluminous to process.

FIGURE 6.12. Electrical transmission lines in Hartford County. From Joy (1994). 
Copyright 1994 by K. P. Joy. Adapted by permission of the author.
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Based on the results of the analysis for each line segment, the center of 
each line segment right-of-way as represented in the GIS was buffered to the 
distance calculated for an exposure field in excess of 2 milligauss. This buffered 
area minus the line segment right-of-way—where no development can exist—
represented the area of 2 milligauss or greater exposure. This data layer rep-
resented the area where homes or schools might be exposed to EMFs at the 
specified level of interest.

To find out how many children in the study area might live or attend school 
within this zone, two analyses were performed. The first, to estimate the number 
of children living within the zone of interest, used aggregate data on population. 
The second, to estimate the number of children attending school within the zone 
of interest, used point data for school locations.

Working with Area Population Data

The estimate of children exposed by residence involved areal interpolation. 
Areal interpolation refers to a set of techniques to estimate the distribution of a 
phenomenon (in this case the number of children under 18 years of age) across 
a set of spatial units called target units (in this case the 2-milligauss exposure 
zones) based on the observed distribution of the same phenomenon across a set 
of spatial units called source units (in this case 1990 census blocks). A common 
approach to areal interpolation is the area weighting method, relying on the 
concept of map overlay (Lam, 1983). In this approach, the variable “number 
of children under 18 in the census block” is weighted by the proportion of the 
census block’s area that lies in the target EMF zone. The resulting number 
of children is then assigned to the EMF zone as part of that unit’s population 
(Figure 6.13).

Areal interpolation can be enhanced by incorporating ancillary data (Flow-
erdew & Green, 1989). For example, if we know based on the distribution of 
streets or houses that no one actually lives in a certain part of the census block, 
we can remove that uninhabited zone from the source unit to derive a better esti-
mate of the population residing in the area of overlap. This method is sometimes 
referred to as filtered area weighting.

To estimate the number of children under 18 exposed based on residence, 
a database of 1990 census blocks was digitized using coincident features from 
Connecticut Department of Environmental Protection road, stream, and town 
boundary databases to build a census block database of greater positional accu-
racy than could be compiled from the TIGER/Line® files. With this database, it 
was possible to identify by polygon overlay all of the 1990 census blocks in each 
study area town within 1 mile of a transmission line. Clearly, some areas in a town 
are not close to transmission lines, but it may also be that no one actually lives 
in those areas. To develop a better picture of where people actually reside in the 
census blocks, a 300’ buffer was created around the street network—excluding 
major highways—to represent the area in which residential development is most 
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FIGURE 6.13. Areal interpolation by the area-weighting method to determine 
population within a risk area. In the example, 20 % of the population in the source 
zone would be estimated to be within the target zone because the target zone covers 
22/110 or 20% of the source zone. The map shows the complex arrangement of 1990 
census blocks as source zones with target zones determined by modeling the 2 mG 
exposure field around transmission lines excluding the power line right-of-way where 
no development can occur. From Joy (1994). Copyright 1994 by K. P. Joy. Adapted by 
permission of the author.
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likely to occur on the basis of residential setback and lot configurations in the 
study area (Figure 6.14). The 1990 census block population for children under 18 
was assigned uniformly to this buffered street area, and this area was overlaid 
with the database containing the 2-milligauss exposure fields. The estimated 
number of children exposed was calculated by multiplying the total number of 
children in the block by the percentage of the buffered street region in that 
block that coincided with an exposure field (Figure 6.15). Approximately 2% of 
children under age 18 were estimated to be exposed to transmission line EMFs 
based on this analysis, which also revealed the neighborhoods where that expo-
sure was likely to occur.

Excluding population in a region from areas where there are no streets is an 
example of dasymetric mapping. Dasymetric mapping techniques exhaustively 
partition space into zones where the zone boundaries delineate areas where the 
variable value of interest is close to constant (Holt, Lo, & Hodler, 2004). Popula-
tion density in a study region may not be constant across the region if popula-
tion is more likely to be concentrated in some parts of the region than others. 
Land cover is commonly used as an ancillary data layer to identify areas where 
population can be excluded such as areas of surface water (Mennis, 2003). Dasy-
metric mapping combines data from the source zone with the ancillary data 
to produce a map of population distribution by zone within the study region 
(Figure 6.16).

As an alternative to buffering vector street networks and localizing cen-
sus tract or block populations within the buffer areas, GIS and related tech-
nologies have been used to create high-resolution raster population distribution 
databases. LandScan USA, which grew out of earlier modeling efforts, uses a 
wide range of input data sources and dasymetric modeling techniques to create 
daytime and nighttime population distribution data with a spatial resolution of 
3 arc seconds (approximately 90 meters) (Bhaduri, Bright, Coleman, & Urban, 
2007). The LandScan™ data set is a worldwide population distribution data set 
based on a 30-minute by 30-minute lon/lat grid (Oak Ridge National Labora-
tory, 2008). Only the most recent LandScan database is distributed because 
the data are not considered adequate to support studies of migration or change 
detection.

Parcel data have also been used to identify more accurately than other meth-
ods the areas where people actually reside and to eliminate those areas where no 
one lives. Research on the relationships between residential proximity to a vari-
ety of sources of air pollution in the Bronx, New York, and asthma used cadastral 
data, in part because of the extremely high level of land use heterogeneity among 
neighboring parcels in this urban setting (Maantay, Maroko, & Porter-Morgan, 
2008). Results from the analysis using cadastral data were consistent with find-
ings from an analysis using areal interpolation with ancillary data. Both showed 
that proximity to air pollution sources is correlated with hospital admissions for 
asthma in the Bronx. The odds ratios were elevated, however, in the analysis 
using cadastral data, and the difference was especially pronounced for the effect 
of proximity to limited access highways.
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FIGURE 6.14. The buffered street network is a form of ancillary data that can be 
used to localize the population within a source zone like a census block to improve 
estimates based on areal interpolation. From Joy (1994). Copyright 1994 by K. P. Joy. 
Adapted by permission of the author.
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FIGURE 6.15. Areas within a modeled exposure zone where children might live 
based on position of the street network in relation to the exposure zone and the child 
population of the census block where the street segment is located. From Joy (1994). 
Copyright 1994 by K. P. Joy. Adapted by permission of the author.
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FIGURE 6.16. An example of dasymetric mapping to model population distribu-
tion. A census unit with 100 people per square mile (a) has a land use pattern shown 
in the raster land cover data layer (b). Based on these two layers, the number of people 
and the population density of each zone can be estimated (c).
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WORKING WITH POINT, GEOCODED ADDRESS, AND PARCEL DATA

The study of EMFs and child exposure considered exposures at home and at 
school. School lat/lon data were obtained from a gazetteer and projected based 
on the Connecticut State Plane Coordinate System. Information on 1990 school 
enrollment was collected from the Connecticut Department of Education and 
individual schools. To estimate the number of children attending school within 
an EMF exposure zone, a simple point-in-polygon overlay was performed to 
identify schools (points) located within EMF zones (polygons).

Locations of residences or other features such as schools can also be obtained 
from parcel data, address-match geocoding, or address points, as discussed in 
Chapter 3. A body of research has compared the methods for determining point 
locations (Zandbergen, 2007; Zandbergen & Green, 2007; Zandbergen, 2008; 
Whitsel, 2008), specifically in the context of environmental health research. 
Positional accuracy and completeness of point databases are two key measures 
of data quality that can affect detection of relationships between exposures and 
health outcomes.

Simulation studies can be used to investigate the impact of inaccuracies in 
point data in specific study settings. One such study, conducted in a county in 
Iowa, focused on residential addresses in rural areas because there is evidence 
that geocoded points in these areas are less accurate than geocoded points in 
urban communities (Mazumdar et al., 2008). The zone of environmental con-
tamination was given. Health outcome data were generated for hypothetical 
individuals living at residential locations that were geocoded and then validated 
using a properly registered orthophoto image. The relationship between expo-
sure and health outcomes was assessed. Then, the same relationship was esti-
mated using two other commonly used approaches to geocoding health outcome 
data, address-match geocoding using TIGER/Line data from the U.S. Census, 
and geocoding using an E911 database. The E911 database was an address point 
database where the address location corresponded to the location where an 
emergency responder would turn off a public road to the private drive leading 
to the residence associated with the telephone number from which an emer-
gency call originated. Because parcels in rural areas are so large and parcel cen-
troids would have a high positional error, parcel geocoding was not evaluated. 
The results of the simulation show that analyses of the data produced by the 
less accurate geocoding methods were able to reproduce the disease odds ratio 
obtained using the more accurate point data, but the strength of the relationship 
declined with decreasing geocoding accuracy.

Even though the specific results of this research cannot be generalized to 
other study settings, the methods for evaluating the sensitivity of results based on 
different methods of determining point locations can be widely applied. Regard-
less of the methods used, when individual health records are incomplete and a 
matching point location cannot be found, the implications of subject loss also 
need to be evaluated (Gregorio, Cromley, Mrozinski, & Walsh, 1999).
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Assessing Population Characteristics

Many health problems are age and sex specific, and methods that yield an esti-
mate only of the total population within a zone of contamination are insufficient. 
Techniques have also been developed to estimate populations by age and sex. 
One approach uses raster data on population distribution. A total population sur-
face was developed using dasymetric mapping techniques for a 90-meter grid. 
Additional 90-meter grids of age-sex proportions were estimated separately. A 
grid for age–sex proportion for the male cohort aged 55 to 64 was analyzed with 
the grid modeling the total population surface to yield a population surface of 
males aged 55 to 64 (Cai, Rushton, Bhaduri, Bright, & Coleman, 2006). This 
cohort was of interest for studying prostate cancer.

Screening Tools for Disproportionate Environmental Risk

Data on hazards, modeled fate and transport, pollutant health risk, and popula-
tion have been combined in databases that can be used as screening tools in envi-
ronmental studies. These tools are designed to identify which toxicants, emission 
sources, and locations are of greatest concern for human health. The U.S. Envi-
ronmental Protection Agency has developed and updates two screening tools: 
Risk-Screening Environmental Indicators and National Air Toxics Assessments.

Risk-Screening Environmental Indicators (RSEI) incorporate amounts of 
chemical released, fate and transport of the chemical, route and extent of human 
exposure to the chemical, toxicity of the chemical, and the number of people 
affected (U.S. Environmental Protection Agency, 2010b). RSEI is based on TRI-
reported data for release estimates for more than 600 chemicals and more than 
50,000 reporting facilities. The most recent version is based on TRI releases for 
1996 through 2007. Toxicity data for more than 400 chemicals are included in 
the model, along with population data from the U.S. Census. Toxicity weights are 
based on chronic health effects such as cancer rather than acute health effects or 
environmental impacts. The model produces RSEI scores, which are the prod-
ucts of the estimated dose of a chemical multiplied by the toxicity weight mul-
tiplied by the exposed population. Scores can be reported in the form of sorted 
lists, tables, graphs, and maps.

While RSEI includes releases to air, water, and land, the National Air Tox-
ics Assessments (NATA) screening tool focuses on air toxics (U.S. Environmental 
Protection Agency, 2010c). A national inventory of emissions from outdoor sta-
tionary and mobile sources is compiled. From this inventory, ambient concen-
trations of air toxics are estimated along with exposed populations. Toxicity is 
assessed based on chronic exposure. Ambient and exposure concentrations and 
estimates of risk are generated at the census tract level for air toxics in each state. 
The most recent assessment based on data for 2002 was released in 2009.

These screening tools provide an alternative to assessments based on prox-
imity and amount of hazard. Not all chemicals are equally hazardous to human 
health. Relatively small releases or low ambient concentrations may be a concern 
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if the chemicals are highly toxic and the estimated exposed population is large. 
Data from these screening tools have been used in a number of studies address-
ing issues of environmental justice (Ash & Fetter, 2004; Apelberg, Buckley, & 
White, 2005; Morello-Frosch & Jesdale, 2006; Abel, 2007; Linder, Marko, & 
Sexton, 2008; Chakraborty, 2009).

Environmental justice is the fair treatment and meaningful involvement of 
all people with respect to the development, implementation, and enforcement 
of environmental laws, regulations, and policies. Fair treatment means that no 
group should bear a disproportionate share of environmental hazards resulting 
from the operations or policies of industrial, governmental, or commercial enti-
ties. Meaningful involvement means that people have an opportunity to influ-
ence decisions affecting their environment and health. The environmental jus-
tice movement began in the United States in 1990 when the Congressional Black 
Caucus met with EPA officials to discuss evidence that minority and low-income 
communities bore higher environmental risk burdens than the general popu-
lation (U.S. Environmental Protection Agency, 1992). Environmental justice 
concerns have since broadened in scope to include sustainability (Agyeman & 
Evans, 2004), and environmental legal instruments such as the Aarhus Conven-
tion have been developed to address these concerns in other regions (Justice and 
Environment, 2011).

RSEI data were used in a study of the Philadelphia Metropolitan Statistical 
Area, a nine-county region, to characterize who lived near the facilities produc-
ing the worst pollutants (Sicotte & Swanson, 2007). After testing and correcting 
for spatial autocorrelation, researchers developed models to test four hypotheses 
of differential impacts on racial/ethnic minorities, disadvantaged populations, 
working-class populations, and industrial workers. The results supported the 
hypotheses that places with a high percentage of minority populations, who were 
low income, less educated, and unemployed, and a high percentage of industrial 
workers were near the most hazardous facilities. Interestingly, there was evi-
dence of spatial variability in these relationships. The percent black increased 
with the log hazard score in all nine counties together and within areas in three 
counties separately. Within one county, however, there was a negative relation-
ship between percent black and hazard score. Spatially varying processes are 
apparent in many studies of health disparities, as discussed in Chapter 11.

GIS analyses to model exposure often incorporate data on health outcomes. 
The development of biomonitoring data sources may make it possible to investi-
gate, after exposure areas have been identified, which agents and how much of 
the agents are present in people even before the emergence of disease.

GIS and Dose

Biomonitoring involves analyzing the organisms that live in an area to make 
inferences about ecological conditions in the area. Biomonitoring of aquatic 
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invertebrates to assess the water quality of streams, lakes, and wetlands has a 
long history. In a study conducted in Cologne, Germany, analysis of airborne 
pollutants that had accumulated on pine needles demonstrated that passive sam-
pling of natural vegetation could provide environmental monitoring data of high 
temporal and spatial resolution (Urbat, Lehndorff, & Schwark, 2004). Although 
biomonitoring of plants and animals has been used to assess patterns of ecosys-
tem health and environmental quality, human biomonitoring has been adopted 
as a method for documenting how much of various contaminants may actually be 
absorbed by the human body.

Human biomonitoring programs have been established to sample blood, 
urine, breast milk, and body tissue to assess human exposure to natural and 
synthetic chemicals (Angerer, Ewers, & Wilhelm, 2007). When an individual 
is exposed to a contaminant, the potential dose is the amount of the substance 
contained in what is being swallowed, breathed, or touched. The internal or 
absorbed dose is the amount of the substance that passes through the absorption 
barriers of the body through physical and biological processes. Body burden
is the total amount of a substance observed in a body at a given time. To some 
health researchers, a contaminant that is present in large quantities in the envi-
ronment but is less likely to be absorbed may be considered less a concern than 
other contaminants with greater uptake in the body.

In the United States, the Environmental Health Laboratory of the National 
Center for Environmental Health of the Centers for Disease Control and Preven-
tion conducts the National Biomonitoring Program. The program published the 
first National Report on Human Exposure to Environmental Chemicals in 2001. 
The program relies on blood and urine samples collected from the population 
sampled in the National Health and Nutrition Examination Survey (NHANES). 
The fourth report, published in 2009, is based on NHANES data from 1999–
2004 and provides information on more than 200 chemicals (Centers for Disease 
Control and Prevention, 2009c). Data are presented for the total population and 
by age, sex, and race/ethnicity. No data are reported for states or communities. 
The current NHANES sample design does not permit examination of exposure 
levels by locality, state, or region, by proximity to sources of exposure, or by 
season.

After funding planning grants to 25 state and regional organizations, the 
Centers for Disease Control and Prevention funded New Hampshire, New York, 
and the Rocky Mountain Biomonitoring Consortium, including Arizona, Colo-
rado, Montana, New Mexico, Utah, and Wyoming in 2003, to develop biomoni-
toring programs. California established the first state biomonitoring program 
in 2006. The California Environmental Contaminant Biomonitoring Program 
is designed to evaluate the presence of toxicants in a representative sample of 
the state’s population, identify trends in the levels of toxic chemicals over time, 
assess the effectiveness of regulatory and public health programs to decrease 
exposure to specific chemicals, and provide opportunities for public participa-
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tion in environmental health issues (Office of Environmental Health Hazard 
Assessment, 2008).

A number of other countries have established human biomonitoring pro-
grams (Porta et al., 2008). The German Environmental Surveys have been car-
ried out since the mid-1980s (Schulz et al., 2007), and the European Union is 
developing a biomonitoring framework (Smolders & Schoeters, 2007; Smolders, 
Casteleyn, Joas, & Schoeters, 2008). In Canada, a biomonitoring component has 
been added to the Canadian Health Measures Survey carried out from 2007 to 
2009 (Health Canada Santé Canada, 2007).

Biomonitoring data can be used to reconstruct exposure and to assess bio-
logical doses and their effects. Linking biomarker data to exposure data can be 
challenging, especially when there are many potential sources and pathways 
(Georgopoulos et al., 2009). Some databases, like NHANES, include comple-
mentary exposure data. Biomonitoring data have been used with fate and expo-
sure data to evaluate the relative contributions of different organophosphorus 
pesticide exposure pathways in a cohort of pregnant Latina women in Salinas, 
California (McKone et al., 2007). Relative to NHANES data, a statistically sig-
nificant added intake of pesticides was noted and attributed to nondietary expo-
sures from local agriculture.

Analysts have also used GIS modeling to develop measures for compari-
son to biomarker-derived measures of pesticide exposure. California PUR data 
were linked with geocoded residential history data for cases and controls in 
Kern County, California (Ritz & Costello, 2006), using GIS methods for linking 
the data (Rull & Ritz, 2003). Lipid-adjusted dichlorodiphenyldichloroethylene 
(DDE) serum levels were taken for the study subjects. DDE is a metabolite of 
DDT, which has a physiological half-life of sufficient length that it can serve as 
a biomarker for long-term pesticide exposure. The estimate of environmental 
exposure was used along with information on the personal history of loading or 
handling pesticides and use of pesticides in the home to predict DDE level. The 
sensitivity of the GIS model was poor; only 38% of subjects with high serum 
DDE levels were identified. The specificity of the GIS model, however, was 
good; 87% of the unexposed subjects were correctly identified. GIS models may 
be useful in studies where biomonitoring data are not available.

Despite increasing interest in biomonitoring data, health researchers have 
also urged recognition of the limitations of these data (Needham, Barr, & Cala-
fat, 2004; Bhatia, Brenner, Salgado, Shamasunder, & Prakash, 2004). People who 
receive the same exposure may receive different biological doses due to pharma-
cokinetics, differences in absorption, distribution, metabolism, and elimination 
of a chemical. Individuals who receive the same biological dose may experience 
different effects due to pharmacodynamics. Individual factors including age, 
sex, and genetics, environmental factors including geography and housing, and 
behavioral factors may all be important in explaining how environmental expo-
sures affect health outcomes.
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GIS and Outcome Surveillance

Physical and chemical agents like those studied in the earlier examples in this 
chapter may produce several different kinds of adverse health and environmen-
tal effects (Hallenbeck, 1993; Stockwell et al., 1993; Smolders & Schoeters, 
2007). Cancer is an effect due to toxic mechanisms operating in nonreproductive 
cells. Developmental effects, like death of the fetus; structural abnormalities, 
like cleft palate, that are observable at birth; or postnatal functional disabilities 
of the central nervous, respiratory, and intestinal systems can also result from 
toxic mechanisms operating in nonreproductive cells. When DNA-interactive 
mechanisms operate in reproductive cells, hereditary effects can occur. Finally, 
organ and tissue effects, like damage to the liver, kidneys, or lungs or to nerve 
tissue, are due to nongenotoxic mechanisms operating in nonreproductive cells. 
The following sections offer examples of how GIS techniques have been used to 
investigate these various health outcomes.

Cancer

When the sources of toxicants are known, studies of the relationship between 
environmental conditions and health outcomes like cancer have used focused 
cluster methods. Unlike the clustering methods discussed in Chapter 5, which 
are used to investigate general patterns of health outcomes or identify specific 
clusters anywhere in a region of interest, a focused test addresses clustering in 
relation to identified locations where increased disease risk might be expected 
(Waller & Gotway, 2004; Lawson, 2006). In this type of cluster analysis, the 
source locations or foci are identified first, and the analysis then looks for evi-
dence of a high occurrence of disease around the foci.

The null hypothesis is that the locations of cases of disease reflect an under-
lying heterogeneous Poisson distribution with a constant level of individual risk 
from region to region; that is, there is no cluster of cases related to the location 
of the pollution source. The alternative hypothesis is that there is an increase in 
individual risk based on the exposure values assigned to the individual’s region. 
The exposure values can be modeled as binary, with all unexposed regions hav-
ing a value of 0 and all regions within a specified distance having a value of 1, or 
the exposure value can vary as a continuous function of distance from the source 
(Wartenberg & Greenberg, 1990).

Statistical power has been identified as an important issue in cluster detec-
tion. Because the dispersion of contaminants around a pollution source can vary 
in size and shape, the resulting cases of disease may also exhibit a variety of spa-
tial patterns. Depending on the test applied and the size and shape of the cluster, 
the statistical power of focused tests may vary (Puett et al., 2005).

A focused test was used to study a municipal solid waste incinerator in 
Besançon, France, emitting high levels of dioxin, and found significant clus-
ters of both soft-tissue sarcomas and non-Hodgkins lymphomas (Viel, Arveux, 
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Baverel, & Cahn, 2000). In this study, the focused tests were used first to iden-
tify elevated risk around the specific source. Then, a space–time interaction test 
was used to determine whether clustering was in evidence throughout the time 
period of interest. Finally, nonfocused clustering methods were used to identify 
the location and significance of any clusters not located near the facility. Com-
bining these approaches allowed the investigators to identify an elevated risk 
around the facility, to assess whether an observed cluster corresponded to the 
latency period, and to rule out the existence of clusters located elsewhere, pro-
viding support for a relation between plant location and cancer due to dioxide 
emission.

The source locations of interest in health outcome studies may be points, 
lines, or areas. A GIS developed to model household magnetic fields from power 
lines found a significant association with childhood leukemia in Los Angeles 
County after analyzing both exposure measurements based on wire codes and 
24-hour measurements of the magnetic fields taken in the bedrooms of cases and 
controls (Bowman, 2000). To develop the wire code model for magnetic fields 
associated with electric transmission and distribution systems, magnetic field 
measurements were fitted by nonlinear regression to a function of wire configura-
tion attributes (Bowman, Thomas, Jiang, Jiang, & Peters, 1999). These measure-
ments were 24-hour bedroom measurements taken at 288 homes. Case–control 
data on childhood leukemia in Los Angeles County were reanalyzed to investi-
gate associations between observed magnetic fields and the predicted magnetic 
fields and childhood leukemia (Thomas, Bowman, Jiang, Jiang, & Peters, 1999). 
Although the measured fields were not associated with childhood leukemia, the 
risks were significant for predicted magnetic fields above 1.25 milligauss and a 
significant dose–response effect was noted.

Using GIS to display the spatial structure of the transmission system and 
its wire code characteristics appeared to assess the leukemia risk associated 
with a child’s long-term residential magnetic field exposure better than 24-hour 
measurements. The GIS approach enabled assessment of exposure with more 
subjects and more previous residences because it did not entail obtaining mea-
surements in the field at hundreds of homes. This increased the power of the 
analysis. Also, 24-hour EMF measurements are strongly affected by short-term 
fluctuations in usage that do not yield a reliable picture of long-term exposure. 
The GIS model also creates a tool for retrospective studies of exposure because 
it only requires data on the wire code configuration and the locations of resi-
dences. Also, the model can be used to investigate possible links between other 
cancers, like breast cancer, and EMFs.

Developmental Effects

Reproductive outcomes are believed to be sensitive to many environmental influ-
ences (Stallones, Nuckols, & Berry, 1992). A hospital-based case–control study 
of stillbirths in a community in central Texas investigated the effects of chronic 
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inhalation of low levels of arsenic (Ihrig, Shalat, & Baynes, 1998). A plant in the 
community producing arsenic-based agricultural products had been in operation 
for more than 60 years. Arsenic exposure levels were estimated from airborne 
emission estimates by using an atmospheric dispersion model linked to a GIS. 
Exposure was then assessed based on the residential address of the mother at the 
time of delivery. Exposure was included as a categorical variable in a conditional 
logistic regression model. An exposure-and-race/ethnicity interaction variable 
was also included to reflect the fact that members of particular groups within 
the population may be concentrated in certain residential neighborhoods. The 
prevalence of stillbirth was significantly higher among Hispanics living in high 
exposure areas.

A study in Harris County, Texas, used a space–time clustering method 
implemented in SaTScan™ to identify a significant cluster of orofacial cleft palate 
births in the northwestern part of the county (Cech, Burau, & Walston, 2007). In 
this area and some other parts of the county, residents were served by drinking 
water wells, and elevated levels of radon-222 and radium-226 were detected in 
the wells and in tap water. Areas in the county supplied from surface sources 
showed no concentrations of radionuclides above water quality standards.

Hereditary Effects

With research advances in genetics, studies have investigated the potential for 
inducing mutations in the human germline, the sequence of cells containing 
genetic material that can be passed to children (Somers & Cooper, 2009). Stud-
ies have also documented that exposure to air pollution damages DNA in human 
sperm (Rubes et al., 2005) and that a particular genotype influences susceptibil-
ity to the effects of air pollution on sperm (Rubes, Selevan, Sram, Evenson, & 
Perreault, 2007). To date, research on the effects of pollution on germline cell 
damage in animals and humans has not generally incorporated GIS or spatial 
statistical modeling techniques, but GIS has a potential role to play in large-scale 
epidemiological studies of pollution, genetic conditions, and inherited disorders.

Elevated Blood Lead Levels

Data on health problems like cancer or birth defects can be obtained from tumor 
registries or vital statistics registration systems, as discussed in Chapter 3. Data 
on other health effects, like elevated blood lead levels, are often collected as part 
of screening programs. Screening is “the presumptive identification of unrecog-
nized disease or defect by the application of tests, examinations, or other pro-
cedures . . . [that] can be applied rapidly and usually cheaply” (Eylenbosch & 
Noah, 1988, p. 279). Unlike vital statistics databases or tumor registries, which 
are relatively complete, screening databases can be highly biased in representing 
the geographical distribution of a health problem, particularly if screening is not 
mandatory. Figure 6.17 reveals how misleading maps of the distribution of health 
problems can be if spatial biases in screening are not explicitly described.
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For some health problems, like lead poisoning, links to a toxicant have been 
established, and environmental risk factors have been identified based on our 
understanding of the distribution of the toxicant and how people come into con-
tact with it in their daily lives. For these problems, GIS analysis has been used 
to map known risk factors and health outcomes to support the design of public 
health intervention strategies. In New Jersey, analysts mapped data related to 
several known risk factors for lead poisoning (Guthe, Tucker, & Murphy, 1992).

Data from the TRI on industrial sites emitting lead and from a state data-
base of hazardous waste site locations were obtained. Traffic volume estimates 
from the New Jersey Department of Transportation were used to identify seg-
ments in the road network with high traffic volumes. EPA lead emission factors 
were then applied to estimate lead emissions from vehicles. In addition, data 
identifying census tracts exceeding threshold levels for number of structures 

FIGURE 6.17. A mandatory screening system identifies the distribution of health 
problems of interest within the screened population. If the screening system is volun-
tary, fewer people may be screened and the distribution of identified health problems 
of interest may be biased. In the example above, an apparent concentration of cases in 
the north end of town is probably a result of more people having been screened there. 
Cases in the south end of town were not detected because the voluntary system was 
less effective in screening people in that section of town.



230 GIS AND PUBLIC HEALTH

built before 1940 and number of children under 5 years of age were compiled to 
depict exposure to lead paint in residences. The GIS was used to integrate these 
data and display the risk factors in relation to the distribution of children with 
high blood lead levels.

Overall, the results of the analysis showed a spatial correlation among 
sources of lead, susceptible populations, and health outcomes in the study area. 
In addition to identifying neighborhoods where numerous sources of lead and 
high blood lead levels were observed, the analysis highlighted other regions 
within the study area where frequencies of elevated blood lead levels were higher 
or lower than expected based on the sources of lead present. These results sug-
gested limitations in the screening data and in the lead source databases.

The spatial patterns observed aided the New Jersey Department of Health 
in developing soil sampling and lead exposure research and in community out-
reach efforts to prevent lead exposure. There is evidence that uncovering ele-
vated blood lead levels can lead to effective interventions. In the United States, 
the prevalence of elevated blood lead levels in children aged 1 to 5 based on 
NHANES data fell from 8.6% in the 1988–1991 survey period to 1.4% in the 
1999–2004 survey period (Jones et al., 2009).

GIS and Environmental Risk Management

GIS can make contributions to risk assessment, primarily by supporting bet-
ter modeling of geographical distributions of hazards, susceptible populations, 
exposures, and health outcomes. GIS also has a role to play in environmental 
risk management, a social and political process that involves the selection and 
implementation of strategies for the regulation or control of identified hazards. 
Once priorities have been set for regulation or control of particular hazards, GIS 
can be used to identify the locations of entities producing toxicants for targeting 
intervention activities.

Clearly, there are opportunities for integrating risk assessment models into 
GIS. More than 1 billion tons of hazardous materials are transported in the 
United States annually across all modes (Lepofsky, Abkowitz, & Cheng, 1993). 
These shipments occur in all regions of the country. A highway transportation 
risk assessment software system uses a GIS to allow analysts to select highway or 
rail routes interactively and obtain a route-specific risk assessment for shipment 
of radioactive materials (Moore, Sandquist, & Slaughter, 1994).

In California, the Highway Patrol developed a GIS to support risk assess-
ment and risk management of hazardous materials shipments (Lepofsky et al., 
1993). Particular attention was paid to poisonous gases. The geographic database 
included a digitized network of all interstates, most federal and state highways, 
and selected county and local roads extracted from the National Highway Plan-
ning Network and augmented to include all highways in the state and some addi-
tional county and local roads.
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Related technologies can also be used to monitor the consequences of regu-
latory actions. The efforts of the Chinese government to address air pollution 
problems in advance of the 2008 summer Olympics created an opportunity for 
using satellites to track the impact of air pollution control measures. Researchers 
from the U.S. National Aeronautics and Space Administration (NASA) were able 
to detect that levels of nitrogen dioxide fell nearly 50% and levels of carbon mon-
oxide fell 20% in the vicinity of Beijing during the two months when factories 
were temporarily closed and travel by car was prohibited (Voiland, 2008). After 
the restrictions were lifted, the levels of pollutants increased again.

During the late 1980s, comparative risk assessment emerged as an approach 
to prioritizing environmental management efforts (Finkel & Golding, 1994). 
The “risk-based” paradigm is concerned with evaluating whether the relative 
efforts—regulation, allocation of resources for monitoring, and mitigation—
devoted to reducing risks are in reasonable proportion to the seriousness of the 
risks being compared.

The EPA’s interest in comparative risk assessment provoked a debate raising 
methodological, procedural, and implementation concerns about adopting com-
parative risk assessment as the basis for environmental protection resource allo-
cation, and a fundamental objection to “ranking” instead of “addressing” envi-
ronmental problems (O’Brien, 1994). Recently, accountability studies, seeking 
to link environmental management actions to outcomes, have been suggested as 
an approach in environmental assessment (McKone, Ryan, & Özkaynak, 2009). 
Respiratory health, for example, may be affected by motor vehicle emissions and 
emissions from specific types of facilities. An accountability study would attempt 
to account for the level of health benefit that would result from actions reducing 
specific types of pollution from specific sources, presumably providing support 
for prioritizing some types of regulatory action over others. This approach seems 
to be a newer version of the comparative risk assessment paradigm.

Although GIS can aid the process of quantitative risk assessment through 
epidemiological investigation and can be used to support targeting geographic 
areas for protection (Habicht, 1994), the role of GIS in risk management is not 
inextricably tied to the risk-based paradigm. GIS can be used to depict the geo-
graphical structure of an environmental problem of interest, for example, delin-
eating watershed and wellhead protection areas (Chernin, 1995; Rifai, Hen-
dricks, Kilborn, & Bedient, 1993; Hammen & Gerla, 1994), regardless of the 
problem’s rank in a list of environmental problems prioritized by risk.

Issues in Environmental Health Mapping and Analysis

GIS have made it easier for environmental analysts to produce hazard maps 
demonstrating the sensitivity of hazard patterns to changes in modeling criteria 
(Tim, 1995). However, “GIS-generated maps may be viewed by users as having 
greater reliability than is warranted” (Wagenet & Hutson, 1996). The U.S. Envi-



232 GIS AND PUBLIC HEALTH

ronmental Protection Agency emphasizes the limitations of screening tools such 
as Risk-Screening Environmental Indicators and National Air Toxics Assess-
ments. Depending on the modeling criteria, vulnerability and hazard maps pro-
duced from the same data may appear very different. It is important to define 
and understand exactly the databases that a particular map displays.

Because maps are often interpreted as precise portrayals of reality rather 
than an analyst’s view of data, efforts to map hazards, environmental quality, 
and community vulnerability should be undertaken with particular care. Many 
residents of environmentally degraded areas do not need analyses and maps 
to describe the hazards in their communities or the adverse psychological and 
financial impacts that may exacerbate both the direct health effects of exposure 
to contaminants and the incidence of stress-related diseases. Community groups 
with vested political and economic interests will not always welcome these maps, 
even when the data are complete and accurate, the analyses are conceptually 
sound, and the results are robust.

Environmental health research seeking to understand the varied settings 
in which people live is inextricably connected to social concerns about environ-
mental quality and to disparities that result in differential burdens on commu-
nities. The collection, interpretation, and communication of data from human 
biomonitoring studies are raising many ethical issues in the United States and 
in other countries (Sepai, Collier, Van Tongelen, & Casteleyn, 2008; Morello-
Frosch et al., 2009). Even in environmental health research that does not rely on 
biomonitoring data, the range of ethical issues is wide (Sharp, 2003): choosing 
toxicants and geographic localities to study, involving members of communities 
of interest, interpreting and disseminating research findings that are sometimes 
ambiguous or inconclusive, assessing biological mechanisms by which toxicants 
affect health, exploring the role of genetics in susceptibility to toxicants, and 
evaluating interventions to improve the health of the environment and the peo-
ple who live in it. In this context, it is important to recognize the role GIS can 
play not just in mapping environmental health problems, but in managing and 
making accessible to the public the large, spatially referenced databases of envi-
ronmental information that citizens have the right to know.

Conclusion

The decline in incidence of infectious disease in many regions in the 1950s and 
1960s shifted the focus of public health and medical research efforts to diseases 
like heart disease, cancer, asthma, and other chronic health problems that were 
increasing in incidence. Many researchers have investigated environmental risk 
factors as explanations for these observed health outcomes. This research is now 
being supported by the use of GIS to model complex hazard–exposure–dose–
response processes in time and space.

GIS is only one technology in a set of emerging technologies leading to per-
sonalized exposure assessment. Over the last decade, in addition to the adoption 
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of macroscale laser and infrared radiation sensors to assess population exposures 
to air pollutants, microscale sensors such as personal dosimeters have been used 
to monitor levels of toxicants in the residence, workplace, and personal envi-
ronment (Weis et al., 2005). These developments and the expansion of human 
biomonitoring are contributing to a shift away from compliance and operational 
monitoring of pollution to exposure assessment in environmental health.

An interesting development in our understanding of chronic disease is a 
growing body of research suggesting that some health problems like arterioscle-
rosis may be partly the result of infectious agents (Ewald & Cochran, 1999). This 
introduces a new level of information that may need to be considered to under-
stand how environmental conditions, human behavior, and infectious agents 
work together to cause disease and how we can design public health interven-
tions to reduce the occurrence of disease. The role of GIS in analyzing infectious 
disease is considered in Chapters 7 and 8.
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CHAPTER 7

Analyzing the Risk and Spread 
of Infectious Diseases

The resurgence of infectious diseases, some new and unfamiliar, others with 
a long history in human populations, has been identified as a global threat to 
human health at the end of a century of scientific and medical advances that had 
seemingly conquered infection as a cause of death (Morens, Folkers, & Fauci, 
2004). In addition to the immediate public health need for improved infectious 
disease surveillance and response, the renewed concern for infectious disease 
has been accompanied by a reevaluation of contemporary risk factor epidemiol-
ogy (Pearce, 1996; Susser & Susser, 1996a; Susser & Susser, 1996b). Although 
the risk factor approach recognizes that many public health problems are mul-
ticausal, critics argue that focusing even on multiple individual risk factors has 
disconnected epidemiology “from an examination of the broader historical and 
social forces that help to shape disease patterns in populations” (Nasca, 1997) and 
from the “way in which people interpret their health-related behavior” (Lawson 
& Floyd, 1996). In response, attention has turned to theories of social epidemi-
ology that emphasize contextual, political-economic, social, and environmental 
influences on health (Krieger, 2001).

Factors cited as contributing to the reemergence of infectious disease 
include land use change affecting vector and host habitats and human interac-
tion with vector and host populations, urbanization, transportation technology 
affecting migration and population mobility, and changes in the ways water and 
food are delivered (Mayer, 2000; Morens, Folkers, & Fauci, 2004). Many of these 
factors have an important geographical dimension.

The biological basis of infectious diseases is crucial for understanding where 
and why the diseases occur. Infectious diseases are caused by living microorgan-
isms, the disease agents or pathogens. They spread among human or animal 
hosts, either by direct transmission or via a vector that transmits the disease 
from host to host. Thus, the occurrence and spread of infectious disease depends 
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on hosts’ exposure and susceptibility to pathogens and interactions among hosts, 
agents, and vectors.

Chapters 7 and 8 explore how geographic information systems have been 
used in the study of emerging and reemerging infectious diseases, particularly 
those transmitted directly from person to person (Chapter 7) and those transmit-
ted by vector (Chapter 8). For many infectious diseases, unlike cancers, birth 
defects, and other health problems associated with exposure to toxicants, etiol-
ogy is known and the diseases spread via contact among hosts or their exposures 
to vectors. These differences in disease process give rise to different modeling 
approaches.

This chapter examines the use of GIS in analyzing infectious diseases that 
spread directly from person to person. These “nonvectored” diseases include 
some of the most significant public health concerns in the United States—HIV/
AIDS, tuberculosis, measles, influenza, and gonorrhea, among others. Their 
uneven geographical distributions reflect the social and environmental condi-
tions that affect risk and susceptibility and the social interactions and behaviors 
that facilitate transmission. A distinctive feature is that the diseases spread over 
time from person to person and place to place, often in epidemic and pandemic 
forms.

Nonvectored diseases spread through a variety of different means. Many, 
like HIV/AIDS, syphilis, and impetigo, spread directly through skin or sexual 
contact. Others can exist in the environment, persisting in air, water, soil, or food. 
These diseases spread via our most basic, everyday behaviors—eating, drinking, 
breathing, and working. Airborne transmission occurs when pathogens spread 
from host to host through the process of respiration, as occurs with influenza, 
tuberculosis, or the common cold. Other diseases, such as cryptosporidiosis and 
cholera, are transmitted through contaminated water or food. Some pathogens 
can persist in soil, giving rise to the transmission of diseases like tetanus.

The mode of transmission is a critical factor in any GIS assessment of non-
vectored diseases. It influences the kinds of geographical questions asked about 
the disease, the types of analyses performed, and the types of data layers that 
need to be included in a GIS. In mapping and analyzing waterborne diseases, for 
example, the water distribution network, including reservoirs, mains, and pri-
vate wells, is crucial. By comparison, airborne diseases emerge out of geographi-
cal patterns of human contact and interaction, as linked to housing conditions, 
crowding, and personal contact in facilities such as schools, daycare centers, jails, 
and workplaces. Sexually transmitted diseases (STDs), on the other hand, reflect 
intimate relations that are embedded in broader concepts of identity, sexuality, 
and gender. The relationships among people that channel disease spread are 
hidden from view, not clearly visible in the day-to-day movements of people that 
comprise traditional spatial patterns of human interaction.

Transmission of infectious diseases also depends on the host’s immunity. 
Immunity is the host’s ability to resist the pathogenic effects of infection. Some 
immunity is acquired in response to repeated infection, as occurs with malaria, 
influenza, or the common cold. Immunization is a way of artificially inducing 
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acquired immunity by injecting small doses of toxins in the host. Innate immu-
nity refers to the body’s ability to harness its own biological resources to ward 
off infection. Although immunity rests partly in biology, for example, the host’s 
genetic makeup, it also has an important social basis. Nutrition and malnutrition, 
exposure to environmental contaminants, and past exposure to infections affect 
the immune response. These reflect people’s access to nutritious food, their 
home and work environments, and the stresses and risks they face in their daily 
lives. Understanding how these social and geographical processes influence the 
immune response, the susceptibility to and risk of infection, and the severity of 
illness is crucial in explaining the geography of infectious diseases.

The spread of infectious diseases among hosts can be described in general 
terms using epidemic models (Thomas, 1992). These models chart the extent of 
disease spread as a function of the sizes of susceptible and infected populations, 
the degree of mixing between them, and the transmission rate and incubation 
period for the disease. The simplest models, SIR models, assume a population 
consisting of three groups: susceptibles (S), infecteds (I), and recovereds (R), and 
even mixing of the S and I populations. According to these models, an epidemic 
begins slowly, but builds up as the number of infecteds increases (Figure 7.1). 
The peak transmission occurs when the S and I populations are approximately 
equal in size. After the peak is reached, the epidemic diminishes as the number 
of susceptibles declines. More complex models have been developed, and these 
have proven fairly accurate in charting the course of epidemics over time. How-
ever, many models are “single region” and thus ignore the geographical dimen-
sions of disease spread (Thomas, 1992).

FIGURE 7.1. An epidemic curve, showing changes in susceptible and infected 
populations.
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Spatial Diffusion

The geographical patterns of interaction between infected and susceptible hosts 
are crucial for understanding how and where infectious diseases spread. Spatial 
diffusion describes the movement of phenomena—people, goods, ideas, innova-
tions, and diseases—through space and time. Spatial diffusion of disease occurs 
when a disease is transmitted to new locations. Sometimes diseases follow a pat-
tern of contagious diffusion, spreading gradually outward from a point of origin 
to nearby locations (Cliff & Haggett, 1988). Contagious diffusion reflects the 
localized nature of human spatial interaction: people are more likely to inter-
act with their neighbors than with those located farther away. Constraints on 
mobility related to age, low income, disability, or poor access to transportation 
may lead to highly localized patterns of spatial interaction. Diseases also spread 
contagiously between cities and surrounding suburbs, following commuting 
flows and social interactions. The prevalence of AIDS in suburban communi-
ties is strongly correlated with the volume of workers who commute to central 
cities (Figure 7.2). These connections among diverse communities are critically 
important for health policy: the health problems of central cities and suburbs are 
inextricably linked by flows of people and interactions among them. Inner city 
clusters of communicable disease can act as epidemic pumps that spread disease 
to suburban areas (Wallace & Wallace, 1998).

FIGURE 7.2. For 10 affluent counties in the New York metropolitan region, cumu-
lative AIDS cases through 1990 per 1,000 people are highly correlated with the per-
centage of workforce commuting into Manhattan. Spatial diffusion of communicable 
diseases is often channeled through commuting flows. From Wallace and Wallace 
(1998). Copyright 1998 by Verso Books. Reprinted by permission.
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Examining disease diffusion patterns, we find that diseases often “jump” 
from place to place, rather than following the gradual outward expansion of con-
tagious diffusion. In hierarchical diffusion, diseases spread via the urban hierar-
chy, starting in large cities and spreading over time to medium-sized cities, then 
to smaller cities and towns. The large populations, strong transportation connec-
tions, and movements of people among large cities channel hierarchical diffu-
sion. Transmission occurs over long distances—for example, from New York City 
to Chicago and Los Angeles—propelled by the strong interactions among large 
urban populations. Network diffusion refers to the spread of disease through 
transportation or social networks. As with the other types of diffusion, network 
diffusion reflects the geographical and social structuring of human interactions. 
The roles of social and spatial interactions in network diffusion vary among 
particular diseases and among geographical and social settings. Analyzing spa-
tial clustering of cholera in Bangladesh, Giebultowicz, Ali, Yunus, and Emch 
(2011) found that geographic clustering was much more prominent than cluster-
ing within social networks. Their findings suggest that in this context, cholera 
diffused mainly through local environments rather than through interpersonal, 
social network-based interactions.

Centuries ago, most diseases spread primarily through contagious diffu-
sion; today, however, patterns of disease spread often show a mix of hierarchi-
cal, network, and contagious diffusion (Figure 7.3). Mixed patterns are clearly 
evident in the spread of diseases such as measles, influenza, and HIV/AIDS, 
both in the United States and worldwide (Gould, 1995; Cliff & Haggett, 2004). 
GIS-based tools for visualizing and modeling spatial diffusion are discussed later 
in this chapter.

Mapping Case Distributions

Where are infectious diseases most prevalent? Which populations and geographic 
areas are most in need of treatment and prevention programs? These questions 
motivate much geographical analysis of diseases that spread directly from per-
son to person. These analyses require data on case locations that come from 
some type of surveillance system as discussed in Chapter 3. Before mapping case 
distributions, we need to consider how cases in the database were identified. 
Changes in case definition over time can affect the stage during an illness when 
disease is diagnosed and the number of individuals eligible for a diagnosis. The 
definition for AIDS originally developed in 1982 was revised in 1985 and 1987 
(Chang, Katz, & Hernandez, 1992). The 1992 definition, which became effective 
January 1993, increased the number of AIDS cases reported significantly, as was 
expected (Centers for Disease Control and Prevention, 2007a). The new defini-
tion brought in many women with AIDS who had been excluded under earlier 
definitions that failed to include “women’s diseases,” like pelvic inflammatory 
disease, as opportunistic infections. These changes underline the need to make 
case definition explicit in GIS databases and metadata.
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A variety of methods, including those discussed in Chapters 4 and 5, can 
be used to create maps of case distributions and rates for infectious diseases. 
One example comes from a study of tuberculosis (TB) in Cologne, Germany. TB 
is a serious contagious disease that spreads via airborne transmission through 
close personal contact. Effective drug treatments are available for most types 
of TB. Concern about the rising incidence of TB in some parts of Germany led 
to an analysis of the spatial clustering of cases using GIS (Kistemann, Munz-
inger, & Dangendorf, 2002). Tuberculosis cases were first identified through a 
retrospective surveillance system and then geocoded using an address-matching 
procedure. The incidence of TB by subdistricts (small administrative areas) was 
computed by overlaying the geocoded cases on a subdistrict map and summing 
cases by area. Age-standardized incidence rates were computed by subdistrict. 
The map of incidence rates revealed clustering of high TB districts in the city 
center, especially in areas of economic disadvantage and immigrant concentra-

FIGURE 7.3. Spatial diffusion patterns.
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tion, suggesting the need for more effective treatment and outreach programs in 
those areas (Figure 7.4).

GIS and Disease Surveillance

Infectious disease surveillance is a critical task for public health departments, 
and surveillance increasingly involves tracking and visualizing disease reports 
and incidence data through space and time. GIS are being used in novel ways 
to support these surveillance efforts. Many geospatial surveillance systems rely 
on web-based tools and components for disease reporting, data integration, and 
geovisualization. One of the most extensive, ProMed, is an e-mail and Internet-
based reporting system for collecting and disseminating information about dis-

FIGURE 7.4. Average annual incidence rate for tuberculosis by subdistrict in 
Cologne, Germany, 1986–1997. Reprinted from Social Science and Medicine, 55(1), 
Kistemann, T., Munzinger, A., & Dangendorf, F. Spatial patterns of tuberculosis inci-
dence in Cologne (Germany). 7-19, (2002), with permission from Elsevier.
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ease outbreaks across the globe (International Society for Infectious Diseases, 
2011). Reports are posted on the organization’s website and disseminated by 
e-mail to a large network of subscribers. The website includes a mapping tool for 
creating “pin-maps” of outbreak locations.

There are also national and regional surveillance systems that enable more 
complex kinds of geovisualization. EpiScanGIS is an online system for menin-
gococcal disease surveillance in Germany (Reinhardt et al., 2008). The system 
incorporates demographic and residential data about the patient and genetic 
information about the disease agent. Linked to this detailed database are a series 
of tools for mapping and spatial analysis, including the SaTScan™ module for 
detecting space–time clusters that was discussed in Chapter 5. EpiScanGIS was 
used to create the map sequences of meningitis clusters in Germany shown in 
Figure 5.16.

With surveillance data for communicable diseases in place, public health 
professionals can use GIS to develop more effective immunization programs. 
During a measles epidemic in Auckland, New Zealand, public health analysts 
displayed measles surveillance data on GIS maps in order to direct epidemic 
control efforts (Jones, Bloomfield, Rainger, & Taylor, 1998). Intensive vaccina-
tion campaigns were targeted to neighborhoods where the incidence of measles 
was highest. In the final phase of the epidemic, mobile vaccinators were sent to 
streets where new cases of measles were occurring.

Although most infectious disease surveillance data include the residential 
address as a geographical identifier, for some diseases transmission can occur 
outside the home. In many countries, the spread of HIV is linked to long-distance 
truck drivers and migrant workers who spend much time away from home (Fer-
guson & Morris, 2007). Their risks of acquiring and transmitting HIV extend 
over a far-flung network in which the home is just a single node. A study of crack 
cocaine in North Carolina found high rates clustered along the main interstate 
highway (Cook, Royce, Thomas, & Hanusa, 1999). For transmission processes 
like these, a map of case locations geocoded to residence, while depicting where 
infected people live, only partially represents the geography of disease risk.

In preparing maps of case locations, analysts must also be sensitive to 
reporting and sampling bias. Surveillance data come from physicians, laborato-
ries, and health care facilities that, though mandated to report, may choose not 
to do so. Significant underreporting exists for diseases that carry social stigma, 
like STDs. The implications for mapping depend on the geographical distribu-
tion of reporting bias. If underreporting is uniform over space, then rates will be 
low across the board. However, research on STDs shows strong class differences 
in underreporting, since high-income people “are more likely to visit a private 
physician and private physicians are more likely than public clinics not to report 
an infection” (Thomas & Tucker, 1996, p. S139). This bias leads to lower rates of 
reporting in high-income areas, and it exaggerates the apparent degree of clus-
tering in low-income areas. The result is an uneven geographical distribution of 
reporting bias and an uneven pattern of error in case maps.
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Mapping Variability in Disease Agents

An important feature of infectious diseases is that the agent is a living organism 
that evolves over time to enhance its reproductive success. A single agent can 
have a multiplicity of genetic forms, and these evolve in response to changes in 
the environment, host, and medical treatments. The best-known example of this 
is the Influenza A virus whose rapid mutation leads to the emergence of new 
epidemic strains on an almost yearly basis (Morens, Folkers, & Fauci, 2004). 
The agents for tuberculosis, malaria, staph, and strep have evolved drug-resistant 
forms that are resistant to conventional treatments. Mapping the genetic diver-
sity of infectious agents is an increasingly important application area for GIS, 
reflecting the growing ties between the genetics and GIS research communities 
(Sloan et al., 2009).

Where are new and resistant strains emerging, and why are they emerging 
in those areas? Many public health agencies are using GIS to track the chang-
ing geographic distribution of infectious agents and their evolution over time. A 
study of tuberculosis in Capetown, South Africa, combined DNA fingerprinting 
with GIS to examine the geographical distributions of TB strains (Richardson et 
al., 2002). Clusters of tuberculosis isolates, each representing a particular strain, 
were identified based on similarity of genetic sequences; then these strains 
were mapped and analyzed in GIS. Although most strains were geographically 
dispersed, some small focal areas of clustering were observed. Mapping of TB 
strains and human contact networks suggested the presence of an endemic strain 
in the region and continuing spread of that strain within and beyond the study 
community through direct contact.

Spatial and temporal variability in disease strains can be analyzed to help 
in understanding the processes by which infectious diseases evolve and how out-
breaks emerge. Carrel, Emch, Jobe, Moody, and Wan (2010) used GIS to con-
struct matrices describing the spatial, temporal, and genetic similarity of strains 
of H5N1 highly pathogenic avian influenza viruses in Vietnam. Correlation tests 
showed a strong association between geographic distances among strains and 
their genetic distances, a finding that highlights the role of geographic location 
in viral evolution. Viruses located nearby in space were more similar genetically 
than those located farther apart. The authors also observed a critical distance 
threshold of 1,100 kilometers, roughly the distance between Hanoi and Ho Chi 
Minh City, beyond which genetic similarity greatly decreased, suggesting dis-
tinct zones of viral evolution in the northern and southern regions of the coun-
try.

The social and environmental reasons why new strains emerge can also be 
explored through GIS. An analysis by van Eldere, Mera, Miller, Poupard, and 
Amrine-Madsen (2007) examined whether drug-resistant Streptococcus pneu-
moniae was more likely to emerge in response to high levels of antimicrobial 
consumption in Belgium. Cases of resistant and nonresistant S. pneumoniae were 
geocoded to postal codes, and rates of multidrug resistance by postal code were 
related to patient and area characteristics using hierarchical modeling methods. 
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Results showed a positive association between antimicrobial consumption and 
the proportion of drug-resistant S. pneumoniae by postal code. Though ecologi-
cal in nature, the findings suggest the links between high usage of antimicrobials 
and the emergence of drug resistance.

Identifying Core Areas

A special application of infectious disease mapping is the analysis of core groups 
and core areas. Studies of sexually transmitted diseases have drawn attention 
to the clustering of cases in “core” population groups. A core group is a “geo-
graphically and socially defined sexual network” (Thomas & Tucker, 1996, p. 
S134) within which the rate of infection is disproportionately high. As concen-
trated, high-risk populations, core groups have great importance in efforts to 
control and prevent STD infection (Bernstein et al., 2004). Core areas are the 
geographical analogues of core groups. They are areas in which STD incidence 
and transmission are unusually high. For diseases like gonorrhea that have an 
effective cure, the high transmission density in core areas maintains infection 
and creates a reservoir for epidemic spread (Zenilman, Ellish, Fresia, & Glass, 
1999). As with core groups, core areas are critically important for planning and 
targeting STD treatment and prevention efforts.

GIS can be used in identifying core areas and analyzing the patterns of 
disease transmission within core groups. This approach was employed in a GIS 
to analyze core areas for gonorrhea in Baltimore, a city with one of the high-
est incidence rates of STDs in the United States (Becker, Glass, Braithwaite, & 
Zenilman, 1998). The GIS worked with disease surveillance data for gonorrhea. 
Residential addresses of persons diagnosed with gonorrhea were geocoded and 
assigned to their corresponding census tract. Using 1990 census data to estimate 
denominator populations, incidence rates were computed by tract. The rates 
were arranged in rank order, and core areas were defined as the 13 tracts in 
the upper quartile of the distribution. Core areas contained 15.5% of gonorrhea 
cases and just 6.5% of population. Incidence rates in the core tracts were more 
than double the citywide rate.

Core areas can also be identified using the spatial clustering methods dis-
cussed in Chapter 5. To delineate core areas for gonorrhea in Baltimore, research-
ers applied the SaTScan method (Jennings, Curriero, Celentano, & Ellen, 2005). 
Gonorrhea cases were geocoded to census block groups, and SaTScan was used 
to identify places where the number of cases was high after adjusting for at-risk 
population. Four statistically significant clusters emerged (Figure 7.5), and these 
core areas accounted for 55% of gonorrhea cases over a 6-year time period. A 
similar approach was adopted by Scribner, Johnson, et al. (2008), who used LISA 
methods in identifying core areas for HIV in New Orleans.

Successful mapping of core areas requires an appropriate definition of core 
incidence. Some researchers have used counts of cases in identifying core areas 
to pinpoint areas of highest incidence (Rothenberg, 1983). When counts are used, 
however, the core areas that emerge may be areas with large populations, but 
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low disease rates. Alternatively, one can use disease rates in defining core areas 
to focus attention on places where the risk of infection is high. The disadvantage 
of emphasizing rates is that high-rate areas may contain relatively few cases. In 
the Baltimore study by Becker et al. (1998), which used rates instead of counts, 
focusing public health resources in core areas would reach just 15.5% of reported 
gonorrhea cases. In some situations neither rates nor counts may be highly effec-
tive in identifying areas of sustained transmission. Bernstein et al. (2004) argue 
that repeat infections (people who have been infected and reinfected) are most 
critical for core area transmission. Places containing a high concentration of 
repeat infections represent a continuing source of infection and thus are impor-
tant for targeting public health interventions.

FIGURE 7.5. Core areas for gonorrhea in Baltimore, 1994–1999. Core areas were 
identified as clusters of census block groups in which there was a significantly elevated 
risk of gonorrhea based on the SaTScan spatial clustering method. From Jennings, 
Curriero, Celentano, and Ellen (2005). Copyright 2005 by Oxford University Press. 
Reprinted by permission.
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Core areas are critical to disease transmission. Their high rates of transmis-
sion are thought to sustain diseases during nonepidemic periods and act as res-
ervoirs for infection to areas outside (Rothenberg, 1983). Given detailed data, the 
geography of STD transmission patterns inside and outside of core areas can be 
explored to describe the densities, locations, and distances between sexual part-
ners. Such issues were examined in a study of sexual partnerships in Baltimore 
(Zenilman et al., 1999). The research involved geocoding residential addresses 
of sexual partners, computing the Euclidean distance between partners, and 
comparing those distances with distances to randomly chosen residential loca-
tions. Residents of core areas lived much closer to their sexual partners than did 
persons living outside the core, and both distances were significantly less than 
random. Sexual partnerships were highly localized, especially in core areas, sug-
gesting the potential benefits of geographically targeted prevention programs.

Identifying and mapping core areas raises several important broader issues. 
Displaying the areas on maps may unfairly stigmatize the residents of core areas 
and lead to place-based redlining and discrimination. The areas can become 
labeled as places where disease risk is high, places to be avoided by businesses, 
service providers, and individuals. Part of the problem stems from defining 
places as either in- or outside the core when in fact disease incidence is not so 
polarized. Typically the vast majority of cases are located outside core areas, and 
the vast majority of core area residents do not have the disease. In the Baltimore 
example (Becker et al., 1998), almost 85% of people with gonorrhea lived out-
side core neighborhoods, and well over 90% of core area residents did not have 
gonorrhea. These patterns are typical of STDs and should be emphasized when 
presenting maps of core areas.

Core area mapping projects also need to recognize the social and eco-
nomic conditions that underpin high prevalence. The higher risk of disease 
in core areas is often rooted in patterns of social deprivation, including high 
unemployment, low incomes, deteriorated housing, and poor access to health 
care. The withdrawal of fire services, housing, and jobs from New York City’s 
inner-city neighborhoods in the 1970s triggered the emergence of core areas 
that then became nodes for the outward spread of HIV/AIDS, tuberculosis, and 
other communicable diseases (Wallace & Wallace, 1998). As the work of Wallace 
and Wallace vividly portrays, core areas are not zones of “deviant” behavior, 
but rather products of a multitude of social and political inequalities and mis-
guided social policies. From this perspective, developing effective intervention 
programs requires an understanding of the social and political ecology of core 
areas and how people’s access to work, housing, and services in core communi-
ties structures their health.

Mapping the Ecology of Risk

The ties between local place environments and the behaviors and interactions 
that sustain infectious disease transmission are increasingly being investigated 
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with the help of GIS. GIS are useful in linking data on environmental condi-
tions and quality as discussed in Chapter 6, along with characteristics of the 
built environment, social and economic characteristics of area populations, and 
information on social institutions and interactions. The specific kinds of social 
and environmental indicators to be included depend on biological and social 
characteristics of the disease and how it is transmitted.

Cryptosporidiosis is a gastrointestinal disease transmitted by direct contact 
and contact with contaminated water. GIS was used to better understand how 
and why the risk of cryptosporidiosis in England and Wales varies geographically 
and the role of environmental factors (Lake et al., 2007). Cases of cryptosporidi-
osis were geocoded to residential postcodes (small geographic zones coded for 
postal delivery) along with a similar number of randomly chosen controls. Using 
GIS, researchers extracted data on a variety of environmental indicators for each 
case and control postcode including drinking water supply, socioeconomic indi-
cators, rural-urban location, and amount of cryptosporidium applied to nearby 
agricultural land through animal manures. Two species of human cryptosporid-
ium, C. homninis and C. parvum, were analyzed, and statistical analysis showed 
important differences in environmental associations. This study is one of many 
illustrating the role of GIS in linking and managing diverse types of environmen-
tal and epidemiological information for infectious disease investigations.

Risk behaviors such as unprotected sex and drug and alcohol use also vary 
from place to place. In understanding these risk behaviors, researchers are 
increasingly focusing on the social production of risk—how social and envi-
ronmental characteristics such as local environmental quality; access to social 
resources, jobs and services; density of social networks and support systems; 
and broader social, economic, and political inequalities influence risk behav-
iors for communicable diseases (Galea, Nandi, & Vlahov, 2004; Rhodes, Singer, 
Bourgois, Friedman, & Strathdee, 2005). Understanding people’s responses to 
and interactions with these local place environments is also critically important 
(McLafferty, 2009).

GIS can assist in documenting where risk behaviors occur and teasing out 
their roles in disease transmission. Spread of HIV/AIDS among women is an 
important but relatively neglected issue in the United States. To better under-
stand how and why women acquire HIV infection, researchers in San Francisco 
utilized sentinel surveillance data for women booked in the county jail systems. 
Women were tested for STDs including HIV and were queried about a variety 
of risk behaviors (Kim et al., 2008). Women’s residential locations were geocoded 
and mapped using GIS. A strong association between injection drug use and 
HIV was observed. A map overlay of the density of women requiring injection 
drug use services with the locations of two women-only syringe exchange pro-
grams (Figure 7.6) revealed that the programs may not be well located to serve 
their target population.

Substance use is an important risk behavior for several infectious diseases, 
and it is a significant health concern in its own right. Using GIS, Mennis and 
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Mason (2011) demonstrated that substance use among a sample of adolescents 
living in west Philadelphia was associated with characteristics of the spaces in 
which adolescents engaged in everyday activities (Mennis & Mason, 2011). The 
adolescents were asked to identify locations in their daily life that they perceived 
as “safe” and “risky,” and locations were geocoded. Locations of other potentially 
important neighborhood features such as bars, liquor stores, and check-cashing 
stores were also recorded. Distances were measured from the respondent’s home 
and other important sites to these facilities. Statistical analysis showed that char-
acteristics of adolescents’ perceived “risky” places enhanced the risk of substance 
use among some age–gender groups.

Social mapping—mapping by participants of their own neighborhoods and 
everyday spaces—is an important tool for examining the relationships between 
local environments and risk behaviors. It is particularly valuable for understand-
ing the geography of risk for disadvantaged and “hidden” populations such as 
injection drug users (Singer et al., 2000). Although most social mapping has 
involved paper maps, use of GIS to represent information from participants 
about their own everyday spaces has increased. A study of HIV/AIDS risk among 
female sex workers in Vancouver used social mapping to explore how women’s 
access to health services was influenced by their perceptions of neighborhood 
risk and violence (Shannon et al., 2007). Women were asked to identify on a 
GIS map: places where they live and work; locations where they access health/
support services and obtain syringes; and places they avoid because of violence 

FIGURE 7.6. Density of women needing services for injection drug use in San 
Francisco and locations of women-only syringe exchange programs. From Kim et al. 
(2008). Copyright 2008 by Springer. Reprinted by permission.
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and fear of local policing. GIS overlays of the information revealed a strong geo-
graphic correspondence between health service availability and violence/polic-
ing. Places where health services were located were also places women avoided 
due to violence and policing. Women’s access to health care and syringe exchange 
services was reduced by their perceptions of fear and violence in the surround-
ing neighborhood. Incorporating data on people’s attitudes and perceptions in 
GIS is an important contribution and one that is relevant in many GIS and public 
health investigations.

Analyzing Temporal and Geographic Trends 
in Disease Outbreaks

An important issue in monitoring communicable diseases and planning inter-
ventions is to understand the patterns of spread through space and time. A pub-
lic health department might want to know when the peak outbreaks of disease 
typically occur and how those peaks move from place to place. In addition, the 
health department may want to know how the incidence of disease in different 
places has changed over time and to forecast future patterns of spread. These 
kinds of questions involve analyzing spatial and temporal information simultane-
ously. Time adds a “third dimension” that does not always fit comfortably in the 
two-dimensional world of GIS. Although challenges remain, GIS capabilities for 
managing and modeling spatiotemporal data have improved greatly in the past 
decade.

GIS typically utilize time-stamp approaches in handling temporal data 
(Yuan, 2009). In the snapshot approach, a time-stamp is applied to each data 
layer (Figure 7.7a). The GIS contains layers of information for different points in 
time, for example, AIDS incidence rates by county for 1990, 1995, and 2000. Dif-
ferent geographic objects can be depicted in each snapshot layer. Snapshot data 
can be analyzed using map sequences and animation as discussed in subsequent 
sections. The time-stamped tuples approach assigns time-stamps to the rows of a 
geographic matrix. For example, in Table 1.1, spatial data on water mains include 
a time-stamp indicating the date of construction. The spatial objects remain con-
stant, but their attributes vary over time. In the time–space composite model,
GIS data comprise combinations of spatial and temporal attributes, with rows 
representing spatial objects and columns representing points in time (Figure 
7.7b). A value in the GIS data matrix indicates the characteristic of a location at 
a particular point in time. The spatiotemporal object model assigns attributes 
of a spatial object to time-stamped individual values (Figure 7.7c). The elements 
of this model are space–time atoms that represent unique combinations of spa-
tial and temporal attributes. More recent approaches involve analysis of events, 
actions, and processes dynamically in GIS via methods like agent-based model-
ing. The methods for visualizing and forecasting the spread of communicable 
diseases discussed in this section grow out of these alternative approaches to 
handling spatiotemporal information.
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FIGURE 7.7. Methods for incorporating time into GIS databases. In Figure 7.7a (snap-
shot model), individual data layers showing areas of no, low, and high disease are “time-
stamped.” In this figure, the geographic unit boundaries (for example, census tracts) do 
not change over time, but they could. In Figure 7.7b, the GIS database is organized 
so that rows represent geographic areas and columns represent time periods or time-
stamped attributes. An attribute value is recorded for each space–time composite. If the 
geographic boundaries of the units did change over time, the rows would represent the 
geographic units resulting from the intersection of all geographic units over time. In Fig-
ure 7.7c, the data on three space–time objects showing areas of no, low, and high disease 
are decomposed into six space–time atoms (two space-time atoms of no disease, three 
space–time atoms of low disease, and one space–time atom of high disease). Adapted 
from Yuan (2009). Copyright 2009 by Elsevier. Reprinted by permission.
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Mapping Peak Incidence

Many communicable diseases like influenza and the common cold show dis-
tinct seasonal patterns of occurrence. For these types of diseases, the patterns of 
spread reflect when and where the disease was introduced, weather conditions, 
and the interactions and movements of infected and susceptible populations. 
One way to visualize temporal and spatial spread is to prepare a map showing 
for each location the date (month or week) of peak disease incidence—that is, 
the week or month when the largest number of cases occurred. Thus, locations 
are time-stamped with the date of peak incidence.

The timing of peak activity for rotavirus infection in the United States was 
mapped in this way (Torok et al., 1997). Rotavirus is a major cause of gastroen-
teritis among children and infants. In the United States, the timing of peak rota-
virus infection shows strong seasonal and geographical trends, with epidemics 
beginning in the Southwest in the fall and spreading north and east. To display 
these trends, data from the National Respiratory and Enteric Virus Surveillance 
system gathered from 69 laboratories in 42 states were analyzed. The weeks of 
the year were represented by numbers (1 to 52), and for each laboratory, the 
week of peak infection was recorded. Kriging, as discussed in Chapter 6, was 
used to display the geographical distribution of peak times (Figure 7.8). The ear-
liest peaks occurred in the Southwest in the late fall, and the peaks spread north 
and west through the winter months. In the eastern and northern United States, 
the epidemic reached its maximum in late spring (Bosley, 1997).

FIGURE 7.8. A kriged map of temporal peaks in rotavirus infection in the United 
States. From Bosley (1997).
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Map Sequences

Map sequences have been widely used in studying the spread of infectious dis-
ease. A map sequence is a series of maps, displayed side-by-side, which show the 
disease distribution at different points in time. Each map represents a cross sec-
tion or slice through time of the geographical pattern of disease, corresponding 
to the snapshot model of space–time data. In their research on the diffusion of 
measles, Cliff and Haggett (1988) created map sequences of measles in Iceland 
during various epidemic periods (Figure 7.9). Patterns of contagious and hierar-

FIGURE 7.9. A sequence of measles cases in Iceland by month from November 
1946 through June 1947. From Cliff and Haggett (1988). Copyright 1988 by A. Cliff 
and P. Haggett. Reprinted by permission.
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chical diffusion were clearly evident. Contagious diffusion dominated the map 
sequences for early epidemics when transportation connections were limited. In 
contrast, map sequences for the 1940s showed increasing evidence of hierarchi-
cal spread, reflecting higher rates of mobility and transportation access. More 
recent examples of map sequences can be found in the public health literature, 
including, for example, map sequences of shigellosis in Chicago (Jones, Libera-
tore, Fernandez, & Gerber, 2006) and of heroin use in Scotland (Field & Beale, 
2004).

Map sequences can be created for almost any type of spatial health infor-
mation that varies over time. The maps can display case locations, incidence 
rates, or rates of change over time. Ancillary features like transportation routes 
or commuting flows can be added to show the connections between transporta-
tion improvements and the spread of disease.

One of the main advantages of map sequences is the ease of comparing 
geographical patterns at various points in time. All maps are on the same page, 
allowing the viewer to shift from one map to the other searching for similarities 
and differences and to focus easily on time periods that hold special interest. At 
the same time, it may be difficult to discern time trends as the viewer shifts his 
or her gaze from one image to another. Despite this shortcoming, map sequences 
offer a useful method for analyzing disease diffusion.

Animated Maps

Animated maps are maps characterized by continuous change while the map is 
viewed (Slocum et al., 2009). Time-snapshot maps are displayed dynamically, 
in sequence, forming a constantly changing image or animation. The field of 
animation has advanced rapidly in recent years, stimulated by developments in 
computer hardware and graphics software. These advances are fueling changes 
in mapmaking as cartographers gain access to one of the first effective tools for 
representing continuous change through space and time.

Use of animated maps to show the spread of infectious diseases has increased 
greatly, and many animated map sequences are available on the web. A recent 
example is a “map movie” depicting the spread of H1N1 Swine Influenza by 
county in the United States beginning in late April 2009 (Macurek, 2010). The 
early maps are very sparse, depicting only small clusters of cases, primarily in 
large cities. Over time, the map “fills in” as the disease spreads to new locations 
through processes of contagious and hierarchical diffusion. At the peak of the 
epidemic there are large geographical concentrations of cases, not only in major 
cities but also along the United States–Mexico border, reflecting the human 
social and spatial interactions that propel influenza transmission.

Designing map animations involves several considerations beyond the tradi-
tional visual variables of static mapping, including duration, rate of change, and 
order (DiBiasi, MacEachern, Krygier, & Reeves, 1992). Duration refers to the 
length of time each map is in view (Slocum et al., 2009). In map animations with a 
short duration, each image disappears quickly, producing a smooth but constantly 
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changing animation. Lengthening the duration gives the viewer more time to 
study each map, but the animation appears choppy. Some map animations allow 
users to control the duration, providing a tool that is customized to individual 
differences in perception and cognition (Slocum, Yoder, Kessler, & Sluter, 2000).

Rate of change describes the smoothness or variability of the animated map 
sequence. It is computed as the amount of change between maps divided by the 
duration. If the positions or attributes of features on the map change substan-
tially during the animation, the animation has a high rate of change. One can 
reduce rate of change by increasing the duration of each map and thus smooth-
ing the transition from map to map. Similarly, reducing the amount of change 
between maps gives a lower rate of change and a smoother animation. One way 
to accomplish this is by using overlapping time intervals for the maps rather than 
discrete intervals. For example, the first map might show disease incidence for 
weeks 1–4, the second for weeks 2–6, the third for weeks 4–8, and so on. The 
two-week overlap means that some of the data on one map also appears on the 
next map in the animated sequence.

Order defines the sequence of maps in the animation. Map animations typi-
cally rely on chronological order—a sensible choice for representing change over 
time. Using criteria other than time for ordering maps makes animations dif-
ficult to interpret. The viewer has to pay close attention to decipher the timing 
and sequencing of events.

Other visual variables mentioned in Chapters 2 and 4 such as hue, size, and 
shape can also be used effectively in map animation. Contrasting colors, changes 
in symbol size, “decay” images, and flashing symbols attract the eye to important 
data events (Harrower, 2003).

Animation is an effective way of displaying the spread of infectious diseases 
through time and space. The smoothly changing patterns of contagious and hier-
archical diffusion and the intensity of epidemic spread are all apparent on map 
animations. As in the H1N1 Swine Influenza example, animated maps reveal 
the expanding contours of disease emergence and the rapidity of spread. Anima-
tions, however, are primarily visual tools. They clearly show regular patterns, 
but if events move or vary in intensity unpredictably over time, the animation 
will be difficult to comprehend. Viewers also have trouble analyzing information 
on animated maps. The images move by quickly and are difficult to compare. 
Although one can often stop the animation to focus on a particularly interesting 
map, the contrast with other maps may not be apparent. New animated mapping 
tools address many of these concerns by incorporating user needs and percep-
tual capabilities in tool design (Harrower, 2003).

Forecasting Spatial Diffusion 
of Communicable Diseases

Our discussion of animation and map sequences has primarily emphasized ret-
rospective mapping; however, prospective mapping—forecasting future patterns 
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of disease spread—is also of great importance as public health departments pre-
pare for future epidemics. GIS can be used to implement spatiotemporal models 
for predicting patterns of disease spread and to manage the complex space–time 
data sets that underpin such predictions.

Efforts are under way to link epidemic models with spatial diffusion models 
to predict the movement of infectious diseases through time and space (Cliff & 
Haggett, 2006). Many of these approaches rely on graphs (networks) to represent 
the spatial interactions between places. The Spatiotemporal Epidemiological 
Modeller (STEM) is a graph-based system that combines an SIR model of dis-
ease transmission with a network representation of contacts/flows among places 
(Ford, Kaufman, & Eiron, 2006). Interactions among places can be expressed 
in different ways, based on proximity or contiguity, or by using data on flows of 
people from place to place. STEM is available for download (The Eclipse Foun-
dation, 2011).

Epigrass is a similar graph-based, open-source platform for simulating the 
spread of disease through complex networks (Coelho, Cruz, & Codeço, 2008). 
In Epigrass, epidemic models of disease spread within and among cities interact 
with network models of the flows of infected and susceptible populations. Nodes 
(cities) and edges (links between cities) are dynamically updated to forecast the 
changing incidence of disease. Loosely coupled with GIS, Epigrass uses GIS 
data as input to the epidemic simulation and then outputs the results in a variety 
of formats including map animations (Figure 7.10).

Agent-Based Models of Disease Spread

An emerging trend in epidemic modeling is to focus on individuals rather than 
larger populations or nodes through the use of agent-based modeling. Agent-
based models (ABMs) simulate the behaviors and interactions of individuals to 
generate insights about populations and communities. Each individual is rep-
resented by an agent, defined as “a piece of computer code capable of autono-
mous, goal-directed actions” (O’Sullivan, 2008, p. 541). In agent-based models 
of disease spread, the agents are individuals who may be infected, susceptible, 
exposed, or recovered. Agents move from place to place and come in contact with 
other agents, providing opportunities for disease transmission. An early model 
developed by Bian (2004) considered people’s interactions between and within 
two levels, homes and workplaces (Figure 7.11). Biological characteristics of the 
disease such as infectivity (the ability of the disease to cause infection) and viru-
lence (the severity of the disease after infection occurs) are incorporated in the 
simulation (Yang & Atkinson, 2008). Individual differences in immune response 
can also be modeled effectively in the agent-based approach. Like graph models, 
typically ABMs are loosely coupled with GIS, relying on GIS primarily for data 
input and updating.

There are many good examples of agent-based epidemic modeling, and the 
ability of models to represent complex social and spatial interactions in diverse 
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FIGURE 7.10. The Epigrass time–space epidemic simulation model imports geo-
spatial data and exports simulation results in diverse formats including map anima-
tions. From Coelho, Cruz, & Codeço, 2008. Originally published by BioMed Central 
in Source Code for Biology and Medicine, Open Access.

FIGURE 7.11. Schematic diagram of a two-layer interaction structure used in an 
agent-based model. The two layers are homes and workplaces. The filled circles repre-
sent people whose interactions occur only at home. The open circles represent people 
who interact at home and at work. The straight lines connect the home and work loca-
tions of these people. People’s movements within and between homes and workplaces 
create opportunities for disease transmission. From Bian (2004). Copyright 2004 by 
Pion, Ltd. Reprinted by permission.



256 GIS AND PUBLIC HEALTH

geographic settings has increased greatly. Yang and Atkinson (2008) devised an 
ABM to predict the spread of an airborne disease through a university cam-
pus. The model incorporates individual time–space activity patterns in simulat-
ing transmission dynamics. Lee, Bedford, Roberts, and Carley (2008) designed 
an agent-based simulation of an influenza epidemic in Norfolk, Virginia, that 
includes detailed geospatial data on schools, workplaces, social and recreational 
facilities, as well as models of social networks based on survey data. Public 
health responses to the epidemic such as school and workplace closings are also 
directly modeled. Although it is difficult to assess the accuracy and validity of 
these models, their effort to simulate real-world behaviors in complex environ-
ments is noteworthy.

Great progress has been made in efforts to simulate the spread of com-
municable diseases through space and time. Harnessing vast GIS data sets and 
advances in computing speed and power, researchers have moved away from the 
more aggregate, network approaches based in spatial diffusion modeling to the 
individual approaches typical of agent-based modeling. As this transition occurs, 
it is important to ask: What is the value of the added complexity of ABMs versus 
aggregate models for accurately predicting disease spread (Hupert, Xiong, & 
Mushlin, 2008)? The predictive power of ABMs rests on their ability to accurately 
model human social and spatial interactions at the individual scale, a daunting 
task. At the same time, aggregate models often rely on critical assumptions about 
population flows, interpersonal contacts, and disease transmissibility. Validation 
studies are sorely needed, and it may be that some kinds of models perform bet-
ter for specific diseases and specific geographic contexts. We are also likely to 
see increasing reliance on real-time data on human movements and interactions 
gleaned from mobile, GPS-enabled devices.

Planning Public Health Interventions

In addition to modeling and analyzing communicable diseases, GIS can play a 
key role in planning policies to prevent and limit disease spread. Many such poli-
cies are distinctly geographical. They involve spatial targeting—directing inter-
ventions to the places and people most in need—and geographically tailoring 
policies to reflect local circumstances, environments, and populations. Research 
shows that spatially targeted health policies are often much more effective than 
those that cover an entire population or region in a uniform manner (Keeling & 
White, 2011). There is also great value in geographically tailoring public health 
policies to reflect local environmental conditions and the socioeconomic and cul-
tural circumstances of local populations. Knowing what exists where is critically 
important.

Policies to limit the spread of communicable diseases can be grouped into 
four broad categories—behavioral, environmental, medical, and mobility—
as listed in Table 7.1 (McLafferty, 2010). Behavioral policies include efforts 
to reduce behaviors that place people at risk of infection. For HIV/AIDS, safe 
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sex education, provision of free condoms, and syringe exchange programs are 
examples of behavioral policies. When risk behaviors vary from place to place, 
spatial targeting of policies and programs to places where people are most likely 
to engage in such behaviors can be effective in curbing disease transmission. 
A study in St. Petersburg, Russia, used GIS to map locations of HIV/AIDS risk 
behaviors among injection drug users and recommended that harm reduction 
efforts be focused in areas where behaviors were spatially clustered (Heimer, 
Barbour, Shaboltas, Hoffman, & Kozlov, 2008).

Environmental policies involve modifying natural and built environmental 
characteristics to reduce the spread of infections. Environmental modifications, 
including provision of clean drinking water and sewage systems, have long been 
and continue to be extraordinarily important in controlling communicable dis-
eases. A team of researchers in Lusaka, Zambia, used GIS to map and analyze 
the locations of cholera cases in relation to the presence of water drainage net-
works in the city. GIS was used to determine the number of cholera cases within 
500-square-meter grid cells and the corresponding length of drainage networks. 
Findings showed a strong inverse association between disease incidence and 
drainage, a correlation that reflected a town planning policy during the colonial 
period that segregated the city’s native population in poorly drained residential 
areas outside the central city. The maps and spatial overlays highlighted the need 
for spatially targeted improvements in drainage infrastructure to reduce the risk 
of future cholera outbreaks (Sasaki, Suzuki, Fujino, Kimura, & Cheelo, 2009).

Environmental modifications may also be used to discourage risk behaviors 
that are important in infectious disease transmission. As noted earlier, recent 

TABLE 7.1. Strategies for Controlling 
Communicable Diseases

Strategy Examples

Medical Vaccination
Treatment of infecteds

Environmental Water supply
Sanitation
Housing improvements
Neighborhood improvements

Mobility/contact Social distancing
Travel restrictions
Isolation
Quarantine

Behavioral Education—for example, safe sex, clean needles
Incentives to change behavior
Legal restrictions on behavior

Note. Adapted from McLafferty (2010). Copyright 2010 by V. H. Winston & Son, 

Inc. Adpated by permission.
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studies suggest that certain kinds of place environments, “risky places,” are con-
ducive to risk behaviors such as substance use, whereas other types of settings 
appear to discourage risky behavior (Rhodes et al., 2005; Mennis & Mason, 2011). 
Modifying such environments by reducing or eliminating the characteristics that 
promote risk may be an effective way to curb the spread of infection. GIS can 
contribute to planning and implementing these environmental modifications. 
For example, GIS can be used to identify potential high-risk locations based on 
specific combinations of environmental characteristics, and to prioritize loca-
tions where environmental changes are most needed. The published literature 
contains few, if any, examples of these types of GIS applications, although their 
potential is evident.

The third broad category of public health strategies—medical policies—
involves the use of biomedical interventions to limit spread of infections. These 
policies include, for example, treatment of the infected, a strategy that simulta-
neously reduces morbidity, mortality, and the number of carriers of infection, 
and vaccination of persons at risk of infection. Mapping is widely used to tar-
get testing and treatment programs for diseases such as gonorrhea, HIV/AIDS, 
and hepatitis C (Trooskin, Hadler, St. Louis, & Navarro, 2005; Jennings et al., 
2006).

Vaccination campaigns can benefit in many ways from application of GIS. 
The history of smallpox eradication shows the importance to vaccination efforts 
of creating geographically based, systematic disease surveillance systems, and 
spatially targeting intensive containment vaccination to places and populations 
at highest risk (Henderson, 1980). Simulation studies confirm the value of spa-
tial targeting. They reveal that during an epidemic, targeting the vaccine to 
regions that are most affected is efficient and effective in curtailing epidemic 
spread (Keeling & White, 2011). Although GIS was not a part of the smallpox 
eradication campaign, the technology can clearly support the rapid, targeted 
vaccination efforts that form the core of the public health response for many 
important communicable diseases. For example, GIS can be used to deploy vac-
cination teams to highly affected areas and to identify suitable locations for stor-
ing and administering vaccines (Khan et al., 2010). Efforts to eradicate polio in 
the Democratic Republic of Congo via an intensive vaccination and treatment 
campaign used Google Earth® to map the spatial distribution of wild poliovirus 
cases along the Congo River (Kamadjeu, 2009). Maps were used to dispatch vac-
cination teams to affected areas, to assist in planning social mobilization efforts, 
and to identify passage points along the river where mobile populations traveling 
on boats, canoes, and rafts could be screened and vaccinated.

In addition to targeting vaccination efforts, GIS can support the many 
research and planning activities that are needed to make vaccination a success. 
Khan et al. (2010) provide a comprehensive summary of the use of GIS in vac-
cine trials. The success of a trial rests on detailed knowledge of the population(s) 
and place(s) within which testing will occur. Population size, characteristics, and 
disease burden are very important in assessing vaccine efficacy. “GIS can help in 
investigating the spatial pattern of the disease burden and then any significant 
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heterogeneity in this indicator can be addressed during data analysis” (Khan et 
al., 2010, p. 307). GIS can also be used during the trial itself to map the spatial 
locations of people who refuse to participate and to plan locations for health 
clinics providing essential services to participants. Finally, GIS provide a tool for 
estimating ecological variables that describe the local environment for each par-
ticipant (Emch et al., 2006). Statistical adjustments for such variables are needed 
in assessing the protective efficacy of the candidate vaccine.

The fourth category of public health interventions is mobility policies—
interventions that aim to restrict the mobility of infected persons and limit 
their social interactions. These policies are especially important for diseases 
that spread rapidly from person to person such as influenza. Social distancing
involves efforts to limit social interactions by closing schools, workplaces, and 
sport/entertainment events. Social distancing is widely credited with limiting 
the spread of H1N1 influenza during the 2009 pandemic (Franco-Paredes, Car-
rasco, & Preciado, 2009). Other mobility policies include travel restrictions such 
as banning certain people from entering a country and the use of thermal scan-
ners at airports to screen entering visitors. Although studies show that travel 
restrictions are largely ineffective, they have been widely adopted by some coun-
tries in recent pandemics (McLafferty, 2010). The most extreme mobility policies 
are isolation and quarantine, efforts to separate infected persons from the rest 
of the population by placing them in a contained and restricted geographic set-
ting.

Examples of the use of GIS for planning and implementing mobility strate-
gies are not presently available in the research literature. However, insofar as 
a GIS provides a set of methods and technologies for visualizing and modeling 
people’s movements and spatial interactions, it may be valuable in supporting 
public health agency efforts to develop and implement effective mobility strate-
gies. Flow data from cell phones and other GPS-enabled devices can be used 
to describe the dynamics of people’s space–time interactions and movements. 
Public health planners can use location–allocation models, discussed in Chapter 
10, to identify critical locations where mobility restrictions would be expected 
to have the maximal impact on limiting disease transmission. Simulation and 
agent-based models, discussed earlier in this chapter, may be used for similar 
purposes. Incorporating dynamic understandings of human mobility in policies 
to limit the spread of communicable diseases poses an important challenge for 
future GIS research investigations.

Privacy and Confidentiality

Mapping communicable diseases at detailed geographic scales raises significant 
concerns about privacy and confidentiality. Just as maps of core areas can be used 
to stigmatize places, maps of case locations reveal personal information that can 
be used to stigmatize or discriminate against infected people. People’s access 
to insurance or to health care and medical treatment may be denied because of 
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geographical location. Curry (1999) calls this the “power of the visual,” the viola-
tion of privacy for individuals or groups that results from creating maps of social 
and spatial information.

Even if health information is not displayed on a map, the spatial data man-
agement capabilities of GIS raise additional privacy concerns. These include 
the rapid growth of unregulated and potentially inaccurate spatial data, and 
the ability to create large dossiers on individuals by linking bits of information 
about people and places (Curry, 1998). GIS are central to these activities as this 
technology can be used to join data from different sources based on a common 
geographical location. Now that many devices offer a variety of location-based 
services, there is concern that service users’ locations can be detected and dis-
closed. Research has shown that landscape or map information can be used by 
third parties to estimate a person’s location, even from spatially perturbed data 
(Ardagna, Cremonini, & Gianini, 2009).

Changing technology has made GIS tools widely available online, increas-
ing the risk that disclosed data on locations can be readily mapped and dissemi-
nated. The development of online GIS services described in Chapter 1 means 
that a database of addresses can be easily geocoded and the lon/lat coordinates 
can be easily mapped and displayed on the web using KML, even by people who 
do not have access to GIS software. Software for converting a database in shape-
file format to KML format for mapping online can also be downloaded.

How can the needs of researchers and policymakers for geographically 
detailed health information be reconciled with the important right to privacy? 
Chapter 3 discusses protections in the collecting and managing of health data. 
In preparing maps, several strategies can be used for avoiding the most obvious 
privacy violations. One is to aggregate health data to larger spatial units. Several 
of the studies mentioned earlier in this chapter began with residential addresses, 
but grouped the data by census tract for analysis and mapping (Becker et al., 
1998). The address information is essentially discarded after assigning the cases 
to tracts. This is not a perfect solution because some of the tracts have such small 
populations that their tract totals might reveal personal information. To address 
this issue, we can omit tracts with small populations from analysis and mapping. 
In the Baltimore study, only tracts with more than 30 cases of gonorrhea were 
included in the GIS analysis (Becker et al., 1998).

Data from the 2001 Canadian census were used to model the relationship 
between geographic area population size and uniqueness for common demo-
graphic variables (El Emam, Brown, & AbdelMalik, 2009). The objective of the 
research was to estimate the minimum population size at which a geographic 
area’s population is sufficiently large so that no further data aggregation is nec-
essary to present the data without suppression. The models were applied to a 
database of prescription records from retail and hospital pharmacies provided to 
commercial research and analysis firms.

Early studies of health using GIS frequently included maps of individ-
ual health events represented as points at residential address locations. Later 
research has demonstrated that, even when there is little detail and the resolu-
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tion of the map image is low, the point locations can be reengineered or reverse 
geocoded to reveal the address (Brownstein, Cassa, & Mandl, 2006; Curtis, 
Mills, & Leitner, 2006).

It is possible to develop geographical masks that preserve the security of 
individual health records while retaining enough location information to make it 
possible to answer questions that can only be answered with some knowledge of 
the geography of health events. Both the validity of these masks and their rela-
tive security have been examined (Armstrong, Rushton, & Zimmerman, 1999). 
The development of methods for anonymizing individuals and the impact on 
detection of spatial clusters has been described (Cassa, Grannis, Overhage, & 
Mandl, 2006).

The extent to which disclosure of metadata about the mask and multiple 
releases of masked data affect the confidentiality of the masked data has also 
been investigated (Zimmerman & Pavlik, 2008). Researchers found that home 
addresses of spatial locations that were de-identified using a nondeterministic 
blurring algorithm could be re-identified from multiple anonymized data sets 
produced from the same set of addresses (Cassa, Wieland, & Mandl, 2008).

In addition to statistical methods of data anonymization, normative model-
ing techniques have been used (Wieland, Cassa, Mandl, & Berger, 2008). These 
methods assign health events from their actual locations to one of a set of loca-
tions to which health events can be moved. The set of locations can be config-
ured so that no health events will be moved to places where no one resides, for 
example, the middle of Central Park in New York City. The assignment is made 
to meet the objective of minimizing the relocation distance needed to assure 
the desired probability of re-identification. The model was tested using data for 
New York County. Compared to aggregating data by ZIP Code, the mathemati-
cal programming model “moved” cases over much shorter distances. The impact 
of the method on the ability to detect clusters in the spatial pattern of cases was 
also evaluated using SaTScan.

None of these strategies deals with issues of stigmatization, data linkage, 
and profiling, issues that are social and political in nature and not easily amena-
ble to technical solutions. Addressing these issues will require multifaceted and 
multidisciplinary approaches (Curry, 1999) that are sensitive to the needs and 
concerns of individuals and communities and that emerge out of a legal, ethical, 
and political framework that is open and participatory.

Maintaining privacy and confidentiality is one of the most significant chal-
lenges in health mapping, especially for nonvectored infectious diseases, but also 
for a wide array of health issues including mental health and cancer. There are no 
easy solutions. Any attempt to address privacy and confidentiality involves bal-
ancing the competing interests of individuals and groups defined by class, eth-
nicity, race, or place, with the interests of protecting public health and providing 
high-quality data for public health research. GIS researchers, through their work 
on privacy and confidentiality, are engaging with other stakeholders in the politi-
cal, legal, and social arenas to advance our ability to use individual-level health 
data for geographical analysis in ways that protect people.
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Conclusion

Infectious diseases that spread directly from person to person are significant 
health concerns nationally and globally. Caused by living organisms that change 
in response to our efforts to control them, such diseases present a continually 
shifting challenge to public health. GIS mapping and analysis have an important 
role in depicting the large disparities among communities in infectious disease 
burden, in understanding how such diseases emerge and evolve, in charting the 
dynamics of epidemics through space and time, and in directing interventions 
to promote health.
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CHAPTER 8

Exploring the Ecology 
of Vector-Borne Diseases

Zoonoses are diseases that are naturally transmissible from vertebrate animals 
to humans. More than 200 zoonotic diseases have been described, some of them 
recognized for hundreds of years. Emerging zoonoses such as avian influenza 
have heightened global public awareness of the importance of diseases linking 
human and animal populations. Because these diseases often involve domestic 
or companion animals, there has been a growing emphasis on veterinary public 
health, improving human health through the application of veterinary science.

A large percentage of zoonotic diseases are vector-borne. Vector-borne infec-
tious disease involves a causative agent—usually some type of microorganism—
that is the direct cause of the disease in the host. Vector-borne disease agents 
may be parasites, bacteria, or viruses. The vector is a living organism—usually 
an insect—involved in the transmission of the disease. For some vector-borne 
diseases, the transmission cycle also involves an intermediate host organism in 
which the agent develops or multiplies and a reservoir population of organisms 
that, in addition to human hosts, maintain the agent.

New technologies in production and transportation, human population pres-
sure, and climate change are transforming ecological systems, even at the global 
scale. These transformations involve changes in land use, vegetation cover, spe-
cies and species locations, and climate. Many of these factors, along with elimi-
nation or decreased support for public health programs to control vector-borne 
diseases, have been suggested as explanations for the resurgence of disease. 
Vector-borne diseases affect both animals and plants. In addition to the effects 
of vector-borne diseases on agricultural production, some diseases infect only 
wild animals and plants. The implications of the resulting changes to ecosystems 
extend, even if indirectly, to human health. Ecoepidemiology has emerged in 
response to a perceived need to broaden the scope of assessment of the impacts 
of environmental change (Hales, Weinstein, & Woodward, 1997, p. 191). This 
approach entails a shift in emphasis from the study of direct, or toxicological, 
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mechanisms to the study of indirect, or ecological, mechanisms and a shift from 
the individual to the region.

GIS applications in the study of zoonotic and vector-borne diseases attempt 
to model some aspect of how people live with animals and vectors in a particu-
lar ecological system. Chapter 8 provides an overview of the global burden of 
zoonotic diseases and examples of GIS analyses of surveillance and detection, 
vector and host population distribution, land use and activity patterns that bring 
people into areas where vectors and hosts are present, outbreak prediction, and 
vector control.

The Global Burden of Zoonotic Diseases 
and the Challenge of Emerging Infectious Diseases

The impact of disease in populations has traditionally been measured in terms of 
mortality, an approach that does not account for the effects of illness or disabling 
injury. The first global burden of disease study, published in 1990 (Murray & 
Lopez, 1996), introduced the disability-adjusted life year (DALY) as a measure 
of disease burden. The DALY for a disease or injury cause is calculated as the 
sum of the years of life lost due to premature mortality in the population and the 
years lost due to disability for incident cases of the disease or injury. One DALY 
corresponds to one lost year of healthy life. The burden of disease in a population 
is the gap between the current years of healthy life and the years of healthy life 
that would be lived if everyone in the population survived the full life span free 
of disease and disability. Although this approach to the measurement of health 
status in populations has been criticized and methods for measuring disease 
burden continue to be refined (Sundby, 1999; World Health Organization, 2008), 
the global burden of disease studies provide a framework for placing vector-
borne diseases in context.

Based on data for 2004, zoonotic diseases are not major contributors to the 
global burden of disease (World Health Organization, 2008). Malaria, caused 
by one of several species of parasites of the genus Plasmodium transmitted to 
humans by Anopheles mosquitoes, ranks twelfth on the list of the leading causes 
of global burden of disease in people of all ages. This ranking is primarily due 
to the high incidence of malaria in low-income countries in Africa. On both the 
list for low-income countries and the list for all countries in Africa, malaria ranks 
fourth in the leading causes of the global burden of disease for people of all ages. 
Worldwide, noncommunicable diseases account for nearly half of the burden 
of disease in people of all ages. Among adults, even in low- and middle-income 
countries, noncommunicable diseases account for 45% of the disease burden.

Given these statistics, what explains the growing concern about zoonotic 
and vector-borne diseases? In any given region, some vector-borne diseases are 
endemic or permanently present even if they are controlled. The reemergence 
of diseases in areas where they have been present, the importation of cases of 
diseases in areas where they have not been present, and the establishment of 
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disease transmission in areas where transmission has not occurred before are all 
causes of concern.

The resurgence of diseases like epidemic yellow fever and dengue fever 
over the last 30 years has contributed to a renewed focus on vector-borne dis-
eases (Gubler, 2004). Dengue fever, also known as “breakbone fever,” is caused 
by a virus that is a member of the Flavirus genus, like the West Nile virus and 
the virus causing Japanese encephalitis. This virus is also known as an arbovi-
rus, shortened from arthropod-borne virus, because it requires a blood-sucking 
arthropod to complete its life cycle. Dengue is different from most flaviruses, 
which depend on animals other than humans to maintain the natural transmis-
sion cycle in which humans are only incidental (Mackenzie, Gubler, & Petersen, 
2004). Although animal reservoirs where dengue is maintained still exist in trop-
ical forests, the virus is adapted to humans and is maintained in urban areas in 
tropical regions. There are four serotypes of the dengue virus. Serotypes are 
groups of closely related microorganisms distinguished by characteristic sets of 
antigens. A case of dengue confers immunity only for that serotype. A person 
could contract the disease four times, once with each serotype, during a life-
time.

In the late 18th century, a disease like dengue was causing epidemics in 
Asia and the Americas (Holmes & Twiddy, 2003). Shortly after World War II, 
an outbreak of hemorrhagic fever in children in Manila was recognized as den-
gue. A small proportion of infected people develop dengue hemorrhagic fever or 
dengue shock syndrome, more lethal than dengue fever, which is a self-limiting 
illness. In 1970, multiple serotypes of the dengue virus were found primarily in 
Southeast Asia where the disease was hyperendemic, exhibiting high and con-
tinued incidence (Mackenzie et al., 2004). In other regions, dengue was hypoen-
demic, affecting only a small proportion of the population at risk, or not endemic. 
By 2007, tropical regions in both hemispheres were hyperendemic with multiple 
serotypes found (Figure 8.1). Disease is holoendemic when almost every person 
in a population is affected.

Transportation systems have made it possible to find cases of diseases in 
countries where these diseases are not usually found. More than 1,000 confirmed 
cases of dengue virus infection were observed in Germany from 2002 through 
2007, making it one of the most common travel-related infections (Jansen, Frank, 
Koch, & Stark, 2008). Only one case was acquired in Germany, the result of a 
needle stick injury in a hospital. Such nosocomial infections, resulting from med-
ical care treatment but secondary to the person’s original condition, laboratory-
acquired infections, and infections resulting from blood transfusion or organ 
donation can be factors in vector-borne diseases (Kotton, 2007). The reported 
countries where dengue infections observed in Germany were acquired are 
spread around the globe (Figure 8.2).

Travelers can be thought of as “interactive biological units that pick up, pro-
cess and drop off microbial genetic material at different times and in different 
places,” acting as sentinels, couriers, or transmitters of disease (Wilson, 2003). 
Travel was a factor in an outbreak of chikungunya documented in Italy, a temper-
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FIGURE 8.1. The global distribution of dengue virus serotypes has changed over 
the last 30 years. By 2004, all four serotypes were present in most tropical regions. 
Mackenzie, Gubler, and Petersen (2004). Reprinted by permission from Macmillan 
Publishers Ltd.: Nature Medicine, copyright (2004).



Ecology of Vector-Borne Diseases 267

ate region, in 2007 (Rezza et al., 2007). Chikungunya is a virus transmitted to 
humans by Aedes mosquitoes, and it was first isolated in Tanzania in 1953. The 
vector in the outbreak in Italy, A. Albopictus, was first documented in the country 
in 1990, and a breeding population was established by 1991. The introduction of 
this competent vector was traced to the warehouse of a tire retreading plant that 
had imported used tires infested with mosquito eggs from a supplier in Georgia 
in the United States. The virus was introduced in 2007 by a man traveling from 
a region in India where a large outbreak had occurred. He was visiting relatives 
in Italy, was probably high viremic at the time of his visit, and developed a fever 
after several days in Italy. The introduction of the agent was then sustained by 
the local vector population. In addition to this man, the index case or first case, 
more than 200 additional cases were identified. Laboratory analysis showed a 
high similarity between the strains found in Italy and those found in an earlier 
outbreak on islands in the Indian Ocean. It is possible that the vector A. albopic-
tus is also establishing itself in the Upper Rhine Valley in Germany (Jansen et 
al., 2008). While some cases of chikungunya occurring in Europe are imported 
due to the return of travelers from regions where the disease is endemic and was 
acquired, other European cases of chikungunya may now be autochthonous,
resulting from transmission in the place where the disease is found.

Along with the resurgence of vector-borne diseases and their introduction 
to different areas, new diseases have emerged. A study of 335 emerging infec-
tious diseases affecting humans and originating between 1940 and 2004 found 
a significant rise in these diseases over time (Jones et al., 2008). These origin 
events were dominated by zoonoses (60.3%), with the majority of these occur-

FIGURE 8.2. The number of dengue cases reported in Germany from 2002 to 2007 
mapped by the country where the infection was acquired. From Jensen, Frank, Koch, 
and Stark (2008). Copyright 2008 by Springer. With kind permission from Springer 
Science+Business Media.
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ring in wildlife (71.2%). Vector-borne diseases accounted for 22.8% of all emerg-
ing infectious diseases studied, and this percentage was higher among diseases 
emerging in the last decade of the study period. “Once introduced and estab-
lished, it is unlikely that zoonotic disease agents can be eliminated from an area” 
(Gubler, 2008, p. 63).

The threat that an emerging or reemerging disease might lead to a pan-
demic, an outbreak of many cases in a large geographic area, has led to calls for 
improved surveillance of vector-borne diseases and for strengthened local pub-
lic health infrastructure to prevent and contain disease outbreaks. GIS analyses 
have been critical to the prevention and control efforts for many vector-borne 
diseases.

Surveillance and Mapping of Vector-Borne Diseases

Designing effective surveillance programs for vector-borne diseases is a chal-
lenging task. Monitoring these diseases requires understanding the distribution 
of disease vectors and the strains of disease they may be carrying, the distribu-
tion of animal and human host populations and their levels of susceptibility, and 
the distribution of animal and human cases. Because vector-borne diseases are 
emerging in areas where they have not been found in the past, surveillance sys-
tems need to be designed to detect the introduction of vectors and diseases and 
to report relevant information so that effective control measures can be under-
taken and evaluated for their effectiveness.

Surveillance of Human Cases

CASE DEFINITION

The distribution of vector-borne infectious diseases is often assessed using 
human case reports, in part because good baseline data on the distribution of 
vectors has sometimes been unavailable. Like the infectious diseases discussed 
in Chapter 7, vector-borne diseases are often complex and difficult to diagnose. 
Lyme disease, the most common tick-borne disease in the United States, illus-
trates this problem.

Lyme disease is a multistage, multisystem disease caused in North Amer-
ica by Borrelia burgdorferi, a spirochete transmitted from mammal to mammal 
by ticks of the genus Ixodes. Humans “are inadvertent hosts of the spirochete” 
(Walker et al., 1996, p. 463). In 60 to 80% of patients, early Lyme disease is indi-
cated by erythema migrans, a characteristic skin rash appearing around the site 
of the tick bite after a week. Late-stage disease affecting the musculoskeletal and 
neurological systems can be more difficult to diagnose, particularly if there is no 
history of erythema migrans in a person who lives in or has visited an area where 
Lyme disease is endemic, or permanently present, and depends on laboratory 
confirmation.
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In 1990, the Centers for Disease Control (CDC) and the Council of State 
and Territorial Epidemiologists published, for the first time, uniform criteria for 
reporting cases (Wharton, Chorba, Vogt, Morse, & Buehler, 1990). At the same 
time, the CDC made Lyme disease nationally notifiable and developed a national 
case definition. In the years after Lyme disease was initially reported in south-
eastern Connecticut (Steere, Broderick, & Malawista, 1978), state criteria for 
defining a Lyme disease case varied (Vogt, 1992). The development of a standard 
definition is important in the design and implementation of a reporting system 
so that the time and expense of reporting will result in consistent information on 
valid cases. Since 1990, the case definition for Lyme disease in the United States 
has been revised twice, in 1996 and in 2008 (Centers for Disease Control and 
Prevention, 2010a). The most recent revision modified language on laboratory 
evidence for diagnosis and case classification, including changing the definition 
for a confirmed case and adding definitions for probable and suspected cases.

The complexity of the case definition reflects the difficulty of diagnosing 
cases of many vector-borne infectious diseases. A case of Lyme disease is con-
firmed if the person has the skin lesion erythema migrans or if at least one late 
manifestation of disease is present and the case is laboratory-confirmed. Ery-
thema migrans must be diagnosed by a physician, and laboratory evidence of 
infection is required for persons with no known exposure and with persons with 
at least one late manifestation of the disease. Exposure is defined as having been 
in a county where Lyme disease is endemic within 30 days before the onset 
of erythema migrans. The Lyme disease case definition contains a geographic 
standard for determining whether disease is endemic to a county: if at least two 
confirmed cases have been previously acquired or established populations of a 
known tick vector are infected with B. burgdorferi. This standard has, however, 
been problematic in some regions like the southeastern United States where 
erythema migrans and other Lyme disease symptoms have been observed in 
patients who live in areas where there is no documentation of transmission of B. 
burgdorferi to humans. Also, a “count by county” standard is not uniform across 
the country because counties vary considerably in land area, habitat area, and 
population size. The county of San Bernardino, California, for example, is larger 
in area than the state of Connecticut (about four times as large, or 20,064 square 
miles compared to 4,872) and Connecticut has eight counties.

Case definitions of vector-borne diseases, though necessary for surveil-
lance, are sometimes controversial. Surveillance case definitions developed for 
reporting may differ from definitions of clinical cases. The actual burden of dis-
ease for many vector-borne diseases is believed to be much higher than reported 
due to surveillance issues. Researchers have argued, for example, that the cur-
rent case definition for dengue hemorrhagic fever contributes to a misperception 
of low disease burden from dengue in the Western Hemisphere (Rigau-Pérez, 
2008). They have proposed defining additional disease endpoints besides dengue 
hemorrhagic fever and improving the sensitivity of tests for dengue hemorrhagic 
fever so that the tests can be applied even in regions of the world where labora-
tory services are limited.
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MAPPING HUMAN CASES

For some emerging infectious diseases, temporal and spatial concentration of 
human health problems with rapid onset may have been the clue that the disease 
was infectious or vector-borne in the first place. For infectious diseases of known 
etiology, the identification of areas of high and low incidence is relevant to the 
design of intervention strategies because high-incidence areas may indicate 
places where many people are being exposed to the disease agent, particularly if 
the time between exposure and onset is short. Areas of low incidence are either 
places where the agent–vector–host cycle is not established, or where people are 
not present, or both.

Case data from a surveillance system can be geocoded using the methods 
described in Chapter 3. Surveillance systems usually report residential address. 
Distribution by residential location is almost always relevant for medical ser-
vices planning, but the residence may not be the relevant location for identifying 
disease clusters. Questions about the relevant locations to map and the impacts 
of aggregating cases or populations at risk to geographic areas have been raised 
for decades (Maxcy, 1926). Spot maps of typhus cases in southeastern U.S. cit-
ies showed no particular concentration by residential neighborhood other than 
a tendency toward localization in the central portions of the cities (Figure 8.3). 
Spot maps by place of employment, however, revealed focal centers. Because 
exposure to Lyme disease in Connecticut is believed to occur primarily on a 
peridomestic basis, looking at residential locations makes sense. In other regions 
of the country or in other countries where exposure to infected ticks may be 
more likely in recreational settings, the residential distribution of cases may not 
be useful in identifying areas where people are at risk for acquiring the disease.

Publishing maps of cases based on actual individual residential location 
may disclose the identities of individuals, as discussed in Chapter 7. In addition, 
studies of zoonoses are increasingly conducted at the global or regional scale, 
and maps of individual case locations at these scales are not useful. For these 
reasons, case data from surveillance systems are usually aggregated for report-
ing purposes. When mapping count data reported for areas, choropleth maps 
with areas shaded based on the count of cases, as discussed in Chapter 4, are not 
always effective in communicating spatial patterns, especially if the geographic 
areas of the map units vary considerably in size (Figure 8.4).

The distribution of cases needs to be understood in the context of the dis-
tribution of the denominator population. One approach for accomplishing this is 
to calculate rates for predetermined geographic areas, like census tracts. Some 
drawbacks to this approach are that the geographic areas used for reporting often 
arbitrarily partition the numerator and the denominator. Places with low rates 
may have large numbers of cases, places with high rates may have small numbers 
of cases, and some places may have no cases because no one lives there. As in 
documenting core areas for communicable disease transmission, GIS analysis 
enables us to look at the joint distributions of cases and population so that we 
can better classify areas.
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FIGURE 8.3. The top map of cases of mild typhus in Montgomery, Alabama, 1922–
1925, according to residence shows no clustering. The bottom map of cases according 
to place of employment shows a concentration of cases near the center of the city. From 
Maxcy (1926).
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FIGURE 8.4. Mapping human cases of Lyme disease. The maps report data at the 
county level in the United States for the same year, 1999. Both maps display counts 
by county. Because counties in some states, especially in the West, are large, the map 
in Figure 8.4a overstates the level of disease in large counties. The dot density map in 
Figure 8.4b offers a more visually accurate picture of the distribution of cases. Figure 
8.4a is from Centers for Disease Control and Prevention (2001). Figure 8.4b is from 
Centers for Disease Control and Prevention (2004).
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Spatial databases can be used in GIS to show various representations of 
population distribution (Figure 8.5): the choropleth map of population counts by 
census tract, the street network representation that shows where structures are 
likely to be located, the land use/land cover representation derived from remote 
sensing data that shows areas of residential development of different density, 
and the grid representation that interpolates population counts for political-
administrative units to a grid based on ancillary data. The street network view 
helps the public health analyst better interpret the meaning of no cases or few 
cases reported from an area by providing a picture of whether or not residential 

FIGURE 8.5. Spatial databases in a GIS provide different kinds of information 
about the population distribution within a town.
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or high-density residential development exists in the area. The land use/land 
cover representation depicts the settings of residential areas—for example, adja-
cent to commercial strips or surrounded by forested zones. As noted in Chapter 
6, grid representations of population are increasingly being used in health stud-
ies to model population density at a variety of scales.

Although we will not observe a case in a place where there is no residence, 
it is not always true that disease patterns “follow” the distribution of residences 
or population. If it were true, there would be no geographical variations in dis-
ease unexplained by the geographical distribution in population. The same case 
distributions can be embedded in different underlying population distributions 
(Figure 8.6). This highlights the need to view the joint distribution of numerator 

FIGURE 8.6. The number of cases of disease and the population size are the same 
in each study area shown above, but similar case distributions can be embedded in 
different underlying population distributions.
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and denominator before calculating rates for areas that might arbitrarily parti-
tion the numerator and denominator or before performing a clustering analysis 
with an arbitrary distance criterion. Maxcy (1926, pp. 2975–2976) recognized 
this problem in his study of typhus: “The question arises whether this apparent 
concentration is merely the result of a greater density of population in that part 
of the city. . . . The division of the city is peculiarly unfavorable for the purposes 
in mind [rate calculation], inasmuch as the wards are arranged radially in such 
manner that all except one include portions of the central part of the city.”

Maps of cases rather than rates also provide useful map sequences showing 
the spread of vector-borne diseases. Maps of West Nile virus cases in the United 
States reported at the state level document the westward spread of the disease 
since the first case was observed in 1999 (Figure 8.7). During the summer and fall 
of 1999, an outbreak of West Nile encephalitis occurred in New York. Although 
West Nile virus had been used in laboratories in the United States and shipped 
to other countries before 1999 (Cromley, 2003), this was the first outbreak of the 
virus in the Western Hemisphere.

West Nile fever is a mosquito-borne flavivirus infection endemic in Africa 
and Asia (Tsai, Popovici, Cernescu, Campbell, & Nedelcu, 1998). Outbreaks 
occurred in southern France in the early 1960s and in Romania in 1996 (Lund-
strom, 1999). The outbreak in Romania resulted in a high fatality/case ratio (Tsai 
et al., 1998). Mosquitoes in the home and, for apartment dwellers, flooded base-
ments, in addition to spending time outdoors, were confirmed as risk factors in 
two case–control studies conducted in Romania (Han et al., 1999).

In New York, 56 cases including seven deaths had occurred by late fall 
of 1999. One of the fatal cases was an international case involving a Canadian 
citizen who had visited New York late in the summer and had onset of encepha-
litis several weeks later. The outbreak of West Nile virus was accompanied by 
intense research efforts to determine the particular strain involved (Anderson et 
al., 1999; Jia et al., 1999; Lanciotti et al., 1999). Along with the human cases dur-
ing the outbreak in New York, West Nile virus contributed to increased deaths in 
wildlife in the area and the early response to the outbreak included surveillance 
of deaths in animal populations (Figure 8.8).

Animal Surveillance

Given the key role of animal populations in zoonotic and vector-borne diseases, 
surveillance of animal host populations is also important. For example, studies 
have attempted to model the distribution of infected deer ticks by collecting 
ticks from deer killed by hunters and hunter-reported location of kill (Kitron, 
Jones, Bouseman, Nelson, & Baumgartner, 1992; Amerasinghe et al., 1992; 
Glass, Amerasinghe, Morgan, & Scott, 1994). These studies are obviously lim-
ited by spatial biases in where deer are killed. Nevertheless, GIS applications 
have been developed to map disease in wild animals, domesticated animals, and 
companion animals.
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FIGURE 8.7. A map sequence of the spread of West Nile cases by state shows the 
original outbreak in New York in 1999. By 2005, the virus had reached the West Coast 
and was endemic in most states. The cases shown are cases of neuroinvasive disease 
because reporting is more complete for the more serious forms of the disease than for 
West Nile fever. Data from Centers for Disease Control and Prevention (2010b).
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WILDLIFE SURVEILLANCE FOR RABIES

Rabies is a zoonotic disease caused by an RNA virus (Krebs, Wilson, & Childs, 
1995). Animal hosts maintain and transmit the disease to humans, usually by 
bites, although nonbite exposures have been documented. Human infections are 
not important in maintaining the virus because humans do not contribute to 
the transmission cycle. Mammalian carnivores are the essential hosts, primarily 
dogs in the developing world and wildlife in developed countries where rabies 
in domesticated dogs has been brought under control through vaccination pro-
grams. In the United States, wildlife has been the principal reservoir since the 
1960s (Krebs, Strine, & Childs, 1993), with different wild terrestrial reservoirs 
in different regions of the country (Blanton, Palmer, Christian, & Rupprecht, 
2008). In humans, the virus affects the central nervous system and results in 
death unless effective postexposure treatment is provided.

Human rabies cases are rare, but the virus that causes rabies is widespread 
globally and many people are exposed annually to animals with suspected rabies 
(Warrell & Warrell, 2004). From 2000 to 2007, only 25 cases were reported in 
the United States (Centers for Disease Control and Prevention, 2008c). Bats are 
recognized as an important wildlife reservoir for variants of the rabies virus that 

FIGURE 8.8. The number of dead wildlife per square mile in Rockland County, 
New York, mapped as part of the surveillance effort for West Nile virus after the 1999 
outbreak. From Rockland County Planning Department GIS (2000). Reproduced 
by permission of Rockland County, New York. We hold Rockland County harmless 
regarding the accuracy of the map.
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are transmitted to humans, accounting for 58% of cases diagnosed in the United 
States from 1980 to 1998 (Centers for Disease Control and Prevention, 1998). Bat 
bites are of particular concern because injury from a bat bite is often more lim-
ited than injury from the bite of a terrestrial carnivore like a raccoon, and people 
may not be aware that they have been bitten. Because “all bites by carnivores 
(especially raccoons, skunks, and foxes) and bats must be considered possible 
exposures” (Krebs et al., 1995, p. 689), understanding the geographical patterns 
of places where human contact with these animals has occurred is important. 
GIS can be used to portray these patterns.

Bretsky (1995) used GIS to map the spread of rabies in Connecticut from 
1991 through 1994, on the basis of reports of human contact with animals. Con-
necticut’s experience during this time was part of the most intense outbreak of 
wildlife rabies ever to occur in the United States (Rupprecht, Smith, Fekadu, & 
Childs, 1995). From the time the index case was reported in West Virginia in 1977, 
it took approximately 14 years for the first case to arrive in the town of Ridgefield, 
Connecticut, on the New York border. Over the next 4 years, the disease spread 
throughout the state from southwest to northeast (Figure 8.9), and a second wave 
was reemerging in the southwestern part of the state. The initial epizootic wave 
had advanced approximately 30 kilometers per year (Wilson et al., 1997).

FIGURE 8.9. Reports of human contact with a confirmed rabid animal during the 
1991–1994 epizootic in Connecticut. Data from Connecticut Department of Environ-
mental Protection.
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LIVESTOCK SURVEILLANCE FOR RIFT VALLEY FEVER

Rift Valley fever is a zoonosis caused by a virus in the Phlebovirus genus. 
Although it primarily affects animals, humans can acquire the disease, in the 
vast majority of cases through direct and indirect contact with organs and blood 
of infected animals. First identified during an outbreak of disease in sheep in the 
Rift Valley of Kenya in 1931, repeated outbreaks have since occurred in North 
Africa and sub-Saharan Africa. In 2000, the first cases were confirmed outside of 
Africa, in Saudi Arabia and Yemen. The disease has not been observed in urban 
areas, and, among humans, agricultural workers, meat processors, and veterinar-
ians are most likely to be affected by the disease.

Because of the economic consequences for livestock herds, Saudi Arabia 
imposed import bans on Somali livestock (Soumare et al., 2007). The Somaliland 
government had a strong interest in developing a surveillance system that would 
comply with World Organisation for Animal Health requirements for random 
sampling. In the study region, pastoral herds of sheep and goats are nomadic.

A GIS application was developed to implement a two-stage random sam-
pling process. First, a set of random sampling sites are identified, and, second, 
the required number of animals are randomly selected from the nearest herds 
to the sites. A GIS extension that generates random coordinates for the required 
number of sample sites within an area was used for the first stage. Then, circular 
buffers were created around each of the sample sites to identify the geographi-
cal area where sampling of animals was carried out. The buffer distance was 
adapted to conditions; a radius less than 10 kilometers in dry areas might result 
in too few animals for sampling but a shorter radius might be appropriate in 
more densely populated areas around permanent watering points. A surplus of 
random points was generated in case target sites could not be accessed due to 
political conflict, the presence of landmines, or other factors.

The sampling scheme was used in Somaliland in 2001 and in Puntland in 
2003. A follow-up survey was conducted in 2004. The results showed the highest 
antibody activity in the Nugal Valley. The research suggests the possible useful-
ness of establishing a resident sentinel herd to monitor future disease outbreaks.

CANINE SURVEILLANCE FOR LYME BORRELIOSIS

B. burgdorferi causes Lyme disease not only in humans but also in domestic 
animals, especially dogs. Dogs are competent reservoirs of the disease, and a 
number of studies have attempted to assess the distribution of Lyme disease 
based on prevalence of the agent in dogs. One study conducted in Wisconsin and 
northern Illinois used a canine survey to assess seroprevalence of antibodies to 
the Lyme disease agent in pet dogs (Guerra, Walker, & Kitron, 2001). Samples 
were obtained from veterinarians in counties with a history of Lyme disease or 
presence of the Ixodes scapularis vector and in adjacent counties.

The residential locations of the dogs were mapped using GIS. Dogs were 
classified as seropositive or seronegative, taking into account whether or not they 
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had been vaccinated. In general, the spatial distribution of canine seropreva-
lence matched the reported distributions of human incidence and vector ticks in 
the study area, but canine seroprevalence was also observed in a county where 
people were not previously considered at risk for Lyme disease. The study dem-
onstrated the potential use of an active surveillance program for pet dogs, espe-
cially for monitoring the spread of disease. A review of animal sentinel studies 
concluded that the use of animal data to predict human risk has been limited to 
date and suggested that increasing attention be given to the use of animal data 
as sentinel information of relevance to human health (Scotch, Odofin, & Rabi-
nowitz, 2009).

Vector Surveillance

The resurgence of vector-borne diseases has been associated with renewed 
efforts to monitor vector distribution directly and to analyze vector infection 
rates. As with other infectious disease surveillance programs, support for vector 
surveillance eroded during the 1970s and 1980s when vector-borne infectious 
disease was not at the forefront of public health concern. Vector surveillance is 
time consuming and expensive, and good baseline data sets are often not avail-
able. Many tick collection studies undertaken in response to the emergence of 
Lyme disease were based on the first reported collection from the site where the 
study took place (Ginsberg, 1993).

SAMPLING FOR VECTOR SURVEILLANCE

To develop a scheme for surveying tick populations on a statewide basis in 
Rhode Island, a GIS analysis partitioned the state into 42 zones 10 kilometers 
square (Nicholson & Mather, 1996). Road, land use, vegetation, and hydrogra-
phy data were included. Forested habitats were identified as areas where more 
than 50% of the cover was tree canopy. Land use/land cover data were derived 
from remote sensing data. Eighty tick collection sites of approximately 4 hectares 
were selected based on location in the state, type and amount of forested habitat, 
and road accessibility. Each large zone had from one to three tick sampling sites 
located within it. After 18 samples were taken from each site, mean tick density 
and mean infection rate were calculated. An entomologic risk index was com-
puted as the product of tick abundance and the local infection rate.

In a study conducted in the Middle Atlantic states, another region of high 
Lyme disease incidence in humans, tick collection sites were randomly selected 
in state parks, state forests, and other large open areas providing access (Bun-
nell, Price, Das, Shields, & Glass, 2003). Flags one square meter in area were 
used to collect ticks, and GPS was used to record lon/lat coordinates of the data 
collection sites. Over 2 years, a total of 320 sites were sampled, including 24 sites 
sampled in both years. GIS analyses were performed to assess the habitat char-
acteristics associated with adult tick density patterns.
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A transect sampling approach was used in an entomological survey of sand-
flies near Mount Vesuvius, an area of intense transmission of leishmaniasis in 
southern Italy (Rossi et al., 2007). Leishmaniasis is caused by protozoan parasites 
transmitted by sandflies of the Phlebotominae subfamily. GIS was used to design 
the sampling procedures to identify 49 sites split approximately evenly on the 
coastal and Apennine sides of the volcano. GPS was used to record the locations 
of the sample sites. Sandfly densities were higher on the coastal side, which is 
also less urban. In addition to research conducted in the field to collect vectors 
and test them for infection, passive surveillance of vectors has also been used.

Passive Surveillance of Vectors

In the late 1980s, following documentation of the presence of I. scapularis ticks 
in Maine and outbreaks of Lyme disease in Massachusetts, the state of Maine 
initiated a statewide tick identification service for the general public (Rand et al., 
2007). Veterinary clinics have also been important contributors to the system. 
During the period 1989–2006, more than 24,000 ticks were submitted to the 
program, representing 14 species. About half of the ticks were I. scapularis.

The availability of these data has made it possible to compare tick abun-
dance and human cases of Lyme disease over multiple years and regions in the 
state during a period when the number of cases increased dramatically. The 
ecological impacts of the advance of I. scapularis into previously uninfested 
areas, including decreases in the population of the common mouse tick I. muris
perhaps due to displacement, have also been investigated. Despite the limita-
tions of passive surveillance, the system has yielded a wealth of data relevant to 
vector-borne diseases.

Temporal and Spatial Integration of Surveillance Data

One of the most important functions of a GIS is data integration. In the case of 
infectious disease epidemiology, GIS can be used effectively to integrate data 
temporally and spatially. In the case of zoonotic diseases, there is a recognized 
need to integrate data on vectors, hosts, and human cases in time and place 
(Brooker & Utzinger, 2007). These efforts include designing integrated surveil-
lance systems mapping human case data in relation to vector and host popula-
tions.

REGIONAL VARIATION IN VECTORS AND DISEASES

Many vector-borne infectious diseases involve the same agent but different vec-
tors and hosts in different regions. In the northeastern United States, the princi-
pal Lyme disease vector is I. scapularis. Lyme disease transmission in California 
is very different from the cycle in the northeastern United States. In that state, 
the pattern has two cycles involving two different ticks (Brown & Lane, 1992). 



282 GIS AND PUBLIC HEALTH

I. neotomae, with higher observed infection rates, was identified as responsible 
for maintaining the disease in the woodrat population but not involved in the 
human disease because it does not bite humans. I. pacificus ticks were infected 
at lower rates, not enough to maintain endemic disease, but enough to transmit 
the disease to humans. The detection of infected woodrats and I. pacificus ticks 
in the mountains near Los Angeles suggests a Lyme disease cycle maintained in 
wildlife in a main recreational area for one of the largest metropolitan areas in 
the country. Subsequent research has identified more than 100 verterbrate spe-
cies, including mammals, birds, and reptiles that serve as host species for at least 
one stage in the I. pacificus life cycle (Castro & Wright, 2007).

While the same disease may be transmitted by different vectors, the same 
vector may transmit more than one disease. Human anaplasmosis, a disease 
formerly known as human granulocytic ehrlichiosis (HGE) and later as human 
granulocytic anaplasmosis (HGA), is a tick-borne disease caused by Anaplasma 
phagocytophilum. The ticks that transmit B. burgdoreferi, the agent for Lyme 
disease (I. scapularis in the eastern and upper midwestern United States, I. paci-
ficus in the western United States, and I. ricinus in Europe), also transmit A. 
phagocytophilum.

At the time Lyme disease became a notifiable disease in the United States, 
HGE was recognized and had an established case definition but it was not a 
reportable disease. Over the last decade, the CDC has broadened its surveil-
lance of human cases of rickettsial vector-borne diseases (Waxman, 2009). There 
has also been additional research to assess the rate of coinfection in vectors 
(Nadelman et al., 1997; Holman et al., 2004), including infection with Babesia 
microti, microscopic parasites that infect red blood cells and cause babesiosis. 
The observed rates of coinfection in vectors have ranged from 2 to 26%. Because 
the diseases may be transmitted by the same tick, testing humans for coinfec-
tions is warranted in patients suspected of having acquired other tick-borne 
diseases. Interventions to control tick populations would obviously have impli-
cations for all of the diseases. The value of monitoring human cases, vectors, 
and host populations together is demonstrated in the ArboNET surveillance 
system.

THE ARBONET SURVEILLANCE SYSTEM

To limit the impact of West Nile virus in the United States after the outbreak in 
1999, the CDC and the U.S. Department of Agriculture cosponsored a meeting 
in November 1999 to develop programs to monitor virus activity and to prevent 
future outbreaks of disease (Centers for Disease Control and Prevention, 2000). 
The New York outbreak had resulted in extensive mortality in crows. Because 
of bird migration patterns, CDC efforts included surveillance of areas from 
Louisiana and Alabama along the Gulf Coast to Massachusetts and Maine. The 
surveillance guidelines called for active bird surveillance in both wild and sen-
tinel populations, active mosquito surveillance to monitor virus activity and to 
identify potential vectors, active veterinary surveillance—particularly for horses 
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(Nolen, 2000), and enhanced passive human surveillance for reporting viral 
encephalitis. The guidelines also described the minimal laboratory diagnostic 
support required and emphasized mosquito control methods for preventing fur-
ther outbreaks of the disease.

The ArboNET was introduced in 2000 as a national electronic surveillance 
system for arboviral diseases in the United States (Institute of Medicine and 
National Research Council, 2008). Although developed in response to the West 
Nile outbreak, more arboviral diseases were added beginning in 2003 and 14 dis-
eases are monitored under the system as of 2008. ArboNET surveillance is broad 
in scope, covering human cases, presumptive viremic blood donors, veterinary 
cases, avian cases, sentinel chickens, and mosquitoes. Health care providers, 
laboratories, and veterinarians report data to state and local health departments 
where the surveillance data are entered into an electronic database. Data are 
reported at the county level. Reports are uploaded to the CDC database, usually 
on a weekly basis. The U.S. Geological Survey prepares weekly updates of maps 
with cases by state and county (U.S. Geological Survey, 2010c).

This system enables analysts to integrate data on human cases with data 
on West Nile activity in host and vector populations (Figure 8.10). An advan-
tage of the system is that human cases are reported using standard case defini-
tions for neuroinvasive West Nile disease (causing meningitis and encephalitis) 
and for nonneuroinvasive West Nile disease (causing fever and other symptoms). 
As noted earlier in the discussion of case definition, there is bias in reported 
West Nile cases. Testing and reporting is more complete and representative for 
the more severe neuroinvasive disease than for West Nile fever. Nevertheless, 
reports of West Nile fever show the presence of disease in areas where no cases 
of the more severe form have been reported. Although only human cases are 
nationally notifiable in the ArboNET system and all surveillance is passive, the 
system has been an important advance in vector-borne diseases surveillance in 
the United States.

EMERGING DISEASES IN A CHANGING EUROPEAN ENVIRONMENT

Integrative work in vector-borne diseases has also proceeded in Eurpe. The 
European Commission funded a program on Emerging Diseases in a Changing 
European Environment (EDEN) as part of its Sixth Framework. The EDEN 
program links 49 partners from 24 countries in Europe and the Mediterranean 
basin in a network of 80 teams (Lancelot, Poncon, Hendrickx, & Fontenille, 
2009). The interdisciplinary teams support close integration of biology, ecology, 
geography, and modeling in the study of vector-borne diseases. By identifying 
ecosystems with a high risk of vector-borne diseases emergence and by model-
ing the associated epidemiological processes, EDEN is intended to support the 
creation of early warning and disease-monitoring systems by public health agen-
cies to prevent and control vector-borne diseases. Because of the difficulties of 
producing a map of infected vectors (or even vectors or hosts), many GIS applica-
tions have been developed to model habitat (Beck, Lobitz, & Wood, 2000).
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Modeling of Vector-Borne Diseases

Environmental modeling of vector-borne diseases is a response, in part, to the 
difficulties of vector and host surveillance, but environmental and ecological 
studies are also necessary because they help us to understand the ecological 
processes involved in vector-borne diseases transmission. Modeling has been 
used to identify areas where disease is endemic. Understanding these processes 
and patterns is essential to intervening in effective ways to address vector-borne 
diseases, including designing meaningful surveillance systems.

GIS analyses have been used to model habitat for mapping the likely dis-
tribution of vectors and hosts, evaluating the environmental characteristics of 
places where human cases, vectors, and hosts are observed, and assessing the 
likely impacts of global climate change. These efforts are important in helping 
public health analysts to predict where disease might occur.

Modeling Habitat and Ecological Processes

Using GIS to model habitat can make an important contribution to understand-
ing current and to predicting future patterns of vector-borne diseases. Habitats 
are significantly affected by land cover change. Residential development or land 

FIGURE 8.10. Data on the incidence of West Nile human neuroinvasive disease 
per 1,000,000 population by county in 2005 are mapped with data on any West Nile 
activity from birds, mosquitoes, horses, or humans drawn from the ArboNET surveil-
lance system. From Centers for Disease Control and Prevention (2007b).
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cover change associated with climate change in an area alters the environment 
in ways that will either increase or decrease exposure.

An ecological niche is the entirety of environmental factors in a microhabitat 
that enables an organism to survive, including the status of the organism within 
that environment, which affects its survival. Environmental niche models have 
been developed to predict the distribution and potential spread of disease and 
invasive species (Guo, Kelly, & Graham, 2005). A study of the potential spread 
of A. Albopictus, which is present in tropical areas, into the United Kingdom 
relied on studies of environmental factors affecting the distribution and seasonal 
activity of the vector as described in other northern regions (Medlock, Avenell, 
Barrass, & Leach, 2006). Strains found in temperate regions are affected by the 
seasonal change in daylight and are adapted to cold temperatures by eggs that 
experience a suspension of development. Relevant databases were integrated in 
a GIS to describe environmental conditions in each 1-kilometer cell of a grid 
covering the United Kingdom over a 52-week period. The model maps zones 
where overwintering is possible and where spring hatching can occur and starts. 
The GIS analysis made can run different scenarios based on the effects of tem-
perature and daylight. The highest chance of establishment was identified as 
southern England and Wales, especially around London and southern coastal 
port cities.

Ecological studies are also valuable because they may give insight into fac-
tors that affect temporal cycles in infectious disease risk. Acorns from oak trees 
are an important source of food for the white-footed mouse Peromyscus leuco-
pus, which is the principal reservoir in the Lyme disease cycle in the northeast-
ern United States (Jones, Ostfeld, Richard, Schauber, & Wolff, 1998). A large 
autumn crop of acorns also draws the white-tailed deer into oak forests. Large 
crops are not produced every autumn, however. Instead, large crops are pro-
duced every 2 to 5 years, with few or no acorns produced during the intervening 
years. Experimental addition of acorns resulted in increased density of mice and 
of ticks. These experiments suggest that it “may be feasible to predict the risk 
of contracting Lyme disease from infected nymphal ticks in oak forests on the 
basis of masting events, with the risk being greater 2 years after an abundant 
acorn crop” (Jones et al., 1998, p. 1025). Acorn masting was identified as a factor 
influencing the outcome of control programs of targeted acaricide applications to 
white-tailed deer (Stafford, Denicola, Pound, Miller, & George, 2009).

Modeling environmental risk based on habitat alone without follow-up data 
on the distribution of vectors and human cases is problematic. Statistical meth-
ods to predict the distribution of species generally require both presence and 
absence data for calibration, and collection of absence data is often infeasible 
(Guo, Kelly, & Graham, 2005). To test the adequacy of environmental risk mea-
sures, the geographical distribution of risk areas needs to be compared either 
to the distribution of vectors and hosts or to the distribution of human cases, 
and preferably both (Mather, Nicholson, Donnelly, & Matyas, 1996; Nicholson 
& Mather, 1996). GIS analyses have been used to evaluate the environmental 
characteristics of case locations.
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Evaluating the Environmental Characteristics 
of Case Locations

A number of GIS applications have evaluated the local and neighborhood envi-
ronmental characteristics of case locations, generally through point-in-polygon 
analysis (discussed in Chapter 4). Through this type of analysis, it is possible to 
take a point in one data layer and compare its location to a set of areas in another 
data layer to determine which area the point lies within (Figure 8.11). Once 
this determination is made, the attributes of the area can be associated with 
the point. Points can then be selected on the basis of the attributes of the areas 
they lie within. Also, once the polygon in which the point lies is determined, the 
characteristics of adjacent areas can be evaluated and associated with the point 
(Figure 8.12), including reporting distance to adjacent areas.

FIGURE 8.11. A point-in-polygon analysis identifies the land cover of the polygon 
where the case is located and assigns that land cover type as an attribute of the case 
through a spatial join procedure.
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In this way, the local and neighborhood characteristics of places with a high 
frequency of cases can be assessed. Once the characteristics of areas where many 
cases are observed have been determined, it is possible to develop maps showing 
regions with similar environmental conditions regardless of disease incidence. 
Maps of this type can be important for suggesting areas where disease may be 
underreported, where disease incidence may increase if people move in and 
local environmental conditions remain unchanged or where disease may spread 
or emerge in the future. Evaluating the environmental characteristics of loca-
tions where cases are observed and then comparing them with the character-
istics of places where people live or engage in activities but do not acquire the 
disease can offer additional insights into the disease process.

This approach has been used not only to investigate environmental char-
acteristics of human cases, but also to assess the environments where exposure 

FIGURE 8.12. The land cover of the adjacent polygon is assigned as an attribute of 
the case.
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occurs and the environments where infected vectors may be found. Studies of 
this type are also important for validating risk indices based on habitat model-
ing.

ENVIRONMENTAL CHARACTERISTICS

OF HUMAN CASES

In the analysis of Lyme disease, case databases have been integrated with other 
GIS data layers describing environmental characteristics like elevation, vegeta-
tion, and soils that may influence tick distribution. The relations between 127 
environmental variables and Lyme disease incidence were explored in Balti-
more County, Maryland (Glass et al., 1992). Empirical data on tick density and 
tick infection rates were not included. These data are difficult to collect for large 
geographic areas. Based on an overlay analysis of the distribution of cases and 
controls to determine the environmental characteristics of their residential loca-
tions, several environmental variables were found to be associated with increased 
risk, including location in one of two watersheds, on loamy soils, and in forested 
areas. Residence in highly developed areas was associated with a decreased risk. 
Only 14% of the land area in the county had environmental characteristics asso-
ciated with increased risk for Lyme disease; approximately 8% of the county’s 
population resided in these high-risk areas.

A 1992 case–control study of Lyme disease in southeastern Connecticut 
found that the only variable significantly associated with the incidence of Lyme 
disease was self-reported residence in a “village” or higher density residential set-
ting. In the study area, these settings are usually surrounded by wooded zones. 
Villages do not correspond to census tracts or other political administrative units 
for reporting aggregate population. The hypothesis was tested using GIS (Crom-
ley, Cartter, Mrozinski, & Ertel, 1998). Rather than calculating rates for admin-
istrative units, the analysts calculated rates for regions defined by residential 
density. Geocoded cases acquired by active surveillance were classified as being 
located inside or outside of a village setting. “Village setting” was operational-
ized as any area of contiguous medium- or high-density residential development 
that was at least 30 acres in size. The study area population residing inside and 
outside villages was also estimated. The analysis confirmed a lower relative risk 
for people living in villages. A review of research on spatial patterns and human 
correlates of Lyme disease in the United States found that “the only environmen-
tal variable consistently associated with increased LD risk and incidence was the 
presence of forests” (Killea, Swei, Lane, Briggs, & Ostfeld, 2008, p. 167). Settle-
ment density has also been identified as a risk factor for vector-borne diseases in 
tropical settings (Laveissiere & Meda, 1999).

Studies of the environmental contexts of human cases have also been con-
ducted in urban settings. Variables measuring natural and anthropogenic land-
scape characteristics conducive to the transmission of West Nile virus were 
analyzed for the urban areas of Chicago and Detroit (Ruiz, Walker, Foster, Hara-
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mis, & Kitron, 2007). The analysis yielded a set of five urban landscape classes 
mapped for both cities. The distribution of human cases in each city was mapped 
against the landscape classes (Figure 8.13), and the rate of West Nile per 100 
people was assessed by zone. These analyses contributed to the development of 
hypotheses about West Nile transmission in urban centers in the Midwest, and 
they also provide a rigorous basis for selecting field sites for avian and mosquito 
collection.

FIGURE 8.13. Human cases of West Nile neuroinvasive disease and West Nile 
fever reported by the Michigan Department of Community Health, mapped with five 
urban landscape classes based on factor analysis of housing, vegetation, elevation, land 
use, and socioeconomic characteristics of census tracts. Incidence rates were highest 
in inner suburbs in areas of relatively low relief and elevation with less vegetation 
than in other areas where the housing stock dates to the 1940s and 1950s. From Ruiz, 
Walker, Forster, Haramis, and Kitron (2007). Originally published by BioMed Central 
in the International Journal of Health Geographics. Open Access.
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Environmental Characteristics of Exposure

A similar conceptual approach was used to investigate the epidemiology of rodent 
bite and the distribution of the rat population in New York City (Childs et al., 
1998). Rat bite fever, unlike Lyme disease, is a relatively rare but potentially fatal 
infection. Few epidemiological studies of rat bite have been conducted. More-
over, there have been very few attempts to describe the distribution of rat or 
mouse populations in urban centers by direct field observation. Like the data on 
rabies discussed in this chapter which was based on cases of human contact with 
animals that might have rabies, data on where people come into contact with 
rats can be analyzed to investigate the environmental contexts of contact. In the 
New York study, a GIS was developed to determine the city block where the bite 
occurred and the environmental and social characteristics of the blocks (Figure 
8.14). A set of control blocks where no bite had been reported was selected for 
comparison.

GIS analysis was used to produce maps of the distribution of blocks with 
different probabilities for rodent bite in each of the five boroughs. The predictive 
power of the maps was evaluated by comparing reports of rodent bite from a later 
year with the maps and by environmental sampling of randomly selected blocks 
in Manhattan and Brooklyn for evidence of rat infestation. Blocks where rodent 
bites occurred tended to be closer to subways, railroads, and parks. These places 

FIGURE 8.14. A point-in-polygon analysis to identify the local census block char-
acteristics of a rat bite case and assign them as attributes of a case through a spatial 
join procedure.
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are potential sources of exposed ground, providing rats with burrow sites and 
sites where human refuse accumulates and where rats might forage.

For diseases like rabies or rat bite fever, an individual is likely to be aware 
of the circumstances of exposure. Even for tick-borne diseases, individuals may 
find a tick on their bodies and be able to report when and where they acquired it. 
For other diseases, like those borne by mosquitoes or acquired through contact 
with water, exposure is more difficult to pinpoint, and geospatial technologies 
are being used to investigate exposure.

Schistosomiasis or snail fever, also known as bilharzia or bilharziosis, is a 
parasitic disease caused by several species of worms of the genus Schistosoma.
Snails are natural reservoirs of the agent, and humans acquire the disease by 
wading or swimming in bodies of water that are infested with infected snails. 
When infected humans urinate or defecate in freshwater, the water body is con-
taminated with Schistosoma eggs. When the eggs hatch, they release miracidia, 
worms in the larval stage. The miracidia penetrate the snails where they form 
sporocysts. Germ cells from the sporocysts divide to produce cercariae, the lar-
vae capable of infecting humans. Cercariae emerge from infected snails on a 
daily basis. When they come into contact with human skin in the water, they 
can attach to and penetrate the skin. The parasites mature in 6 to 8 weeks and 
then begin producing eggs that are shed by humans into freshwater sources by 
urination and defecation.

The mortality rate is low for schistosomiasis. It is primarily a chronic dis-
ease that affects the growth and development of children and causes abdominal 
pain, cough, diarrhea, and fatigue in adults. The disease can also cause geni-
tal sores that may persist even after successful treatment of the schistosomia-
sis infection and may increase HIV transmission (Hotez, Fenwick, & Kjetland, 
2009). Although schistosomiasis is not found in the United States, it is endemic 
to more than 70 countries, and people who travel can import the disease to areas 
where it has not been or once was endemic (Meltzer et al., 2006).

Assessing human exposure to infectious cercariae has traditionally been 
accomplished by direct observation or through self-reports. In the same way that 
researchers are using personal monitoring devices to assess exposure to environ-
mental contaminants (Elgethun, Fenske, Yost, & Palcisko, 2003) as discussed in 
Chapter 6, devices for monitoring activity patterns in time and space are also 
being used to investigate exposure to vector-borne diseases. A study carried out 
in a village in Sichuan province in China, where schistosomiasis is endemic, 
provided GPS receivers—worn in vests borrowed from a children’s pesticide 
exposure study—to a random sample of 12 people who provided informed con-
sent to monitoring of their activities (Seto, Knapp, Zhong, & Yang, 2007). The 
individuals wore the vests for 98 hours during the day on two separate days. The 
GPS data could only show where and when individuals spent time during the 
day, so the number and locations of water contacts could only be determined 
from interviews. Maps of the individuals’ activity patterns can be an aid in recall 
of these patterns of contact. Furthermore, the study yielded important insights 
into the participants’ high level of mobility. It suggested that agricultural labor 
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was shared across villages and that water contact probably occurs on a regional 
and not just a local basis. These exchanges could sustain transmission of the dis-
ease and make control efforts more difficult.

Environmental Characteristics of Infected Hosts

Hantavirus pulmonary syndrome is a severe illness affecting the cardiovascular 
system and resulting in death in slightly less than half the cases (Centers for 
Disease Control and Prevention, 1999). The most frequently seen agent of the 
four different hantaviruses in North America is Sin Nombre virus, transmitted 
to humans from the deer mouse Peromyscus maniculatus by direct contact with 
infected mice, their droppings, or their nests, or by inhalation of virus particles 
from mouse excrement. Residence in a dwelling with substantial rodent infesta-
tions has been identified as an important source of exposure.

Environmental data from remote sensing and GIS analysis have been used 
to predict host infection status for the Sin Nombre virus (Boone et al., 2000). 
Vegetation type and density, elevation, slope, and hydrology were character-
ized for 144 field observation sites in the Walker River basin along the Nevada–
California border. Deer mice were trapped at field sites, and blood samples were 
taken to determine current or past infection with the virus. Field sites were clas-
sified as positive or negative based on the infection status of the mice captured. 
Discriminant analysis was then used to examine relationships between the envi-
ronmental variables characterizing each site and the site’s infection status. Com-
binations of environmental variables were found that could correctly predict the 
infection status of deer mice with 80% accuracy.

In reviewing the literature on studies looking at spatial patterns in the envi-
ronmental correlates of disease, specifically Lyme disease, Killea et al. (2008) 
found that studies of the environmental correlates of disease do not always pro-
duce consistent results. This is also true in studies of the influences of neighbor-
hood characteristics on health in the health disparities literature discussed in 
Chapter 11. These inconsistencies are not necessarily the result of differences in 
data collection and methods. Disease processes themselves are likely to be spa-
tially varying processes, in which relationships are conditioned on parameters 
defined by spatial dependencies. It is not just a question of documenting geo-
graphical variation in soil moisture, for example, as it explains the geographical 
distribution of a vector. The relationship between soil moisture and vector popu-
lations may itself be spatially variable. Progress in understanding the determi-
nants of spatial variation in disease risk and incidence depends on incorporating 
knowledge of the biology of individual components of regionally variable disease 
systems, collecting data over longer periods of time, achieving greater standard-
ization of data collection and analysis across regions, and testing the effect of the 
same environmental variables at multiple spatial scales (Killea et al., 2008). The 
importance of working across multiple scales in studies of vector-borne diseases 
is highlighted by two studies, one of Chagas disease in Argentina and another 
of schistosomiasis in Kenya (Kitron et al., 2006). “Spatial heterogeneity on the 
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micro-scale may not be detected using coarse spatial resolution, and conversely, 
general patterns on the macro-scale may not be detected using fine spatial reso-
lution” (p. 49).

Modeling and Mapping Prevalence: 
The Malaria Atlas Project

The Malaria Atlas Project was initiated in 2006 to advance the science of malaria 
cartography (Hay & Snow, 2006). Mapping malaria is challenging because trans-
mission intensity is geographically heterogeneous. From the outset, the intent 
was to develop a global map of malaria, to apply strict inclusion criteria for preva-
lence rate reports (reports of the proportion of a sampled population that is con-
firmed positive for malaria parasites), to collect data on both Plasmodium vivax
and P. falciparum, and to place the final peer-reviewed database into the public 
domain (Malaria Atlas Project, 2011).

The project focused on developing a global continuous P. falciparum
malaria endemicity surface for the year 2007 (Hay et al., 2009). Four main steps 
were involved in meeting this objective. First, analysis searched for and pro-
cessed prevalence rate reports (Guerra et al., 2007). These reports were geo-
referenced. Second, a prevalence rate database was used to make a continuous, 
age-standardized, urban-corrected malaria prevalence surface using geostatisti-
cal modeling techniques. Third, validation procedures were applied to assess 
the accuracy of the endemicity predictions and the uncertainty associated with 
them. Fourth, populations at risk were estimated.

Geostatistical models, including models that incorporate time, are being 
used to predict and map vector-borne diseases prevalence. Expanding on a 
modeling approach developed and applied by Diggle and others (Diggle, Tawn, 
& Moyeed, 1998; Diggle, Moyeed, Rowlingson, & Thomson, 2002), the MAP 
researchers worked with a global database of almost 8,000 survey reports to 
model a continuous endemicity surface on a 5  5 kilometers grid based on ini-
tial work to define the global spatial limits of malaria transmission (Hay et al., 
2009). The methodology allowed for the use of Bayesian methods in statistical 
inference. Model-based geostatistics are useful because they allow analysts to 
address uncertainty in different stages of the modeling process. In addition to 
predicting the endemicity at each location, the method provides a measure of 
confidence that can be associated with each prediction.

In assembling the prevalence reports for the mapping project, the research-
ers noted an increasing tendency for national surveys to be conducted so that 
they would be representative of all areas within a country, not just areas of 
high prevalence. There were also many zero prevalence values recorded in the 
reports analyzed (Hay et al., 2009). The prevalence rate is acknowledged to be a 
less direct measure of malaria transmission than other measures like the ento-
mological inoculation rate, which is the number of infective bites per capita over 
a time period, or the basic reproduction number or basic reproductive rate, R0,
which is the mean number of secondary cases that a single typical infected case 
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will cause in a population with no immunity in the absence of interventions to 
control the disease.

Researchers used a combination of data provided by the source of reports, 
an online database of geographic names, online gazetteers, and paper maps to 
create lon/lat point references for the reports. Surveys that could not be geo-
referenced or that could be georeferenced only to larger areas (greater than 25 
km2) were excluded (Guerra et al., 2007). The data were recorded using decimal 
degrees with a precision of no less than 2 decimal places. The administrative 
regions in which the points were located were also coded. Surveys were also 
classified as urban, peri-urban, or rural depending on their location with respect 
to areas of population density based on data from the Gridded Population of the 
World version 3 (Center for International Earth Science Information Network, 
Socioeconomic Data and Applications Center, 2011).

The georeferenced, validated, and age-standardized reports were used to 
model the endemicity surface (Hay et al., 2009). The prediction of the prevalence 
rate at a given unsampled point is dependent on the spatial distribution of survey 
points around the unsampled point, the spatial variation evident in the values for 
sampled points, and the number of people sampled in each survey referenced 
to a sampled point. Heterogeneity in space was modeled using semivariograms 
as discussed in Chapter 6. The temporal structure of the data was also taken 
into account. The reports covered different times throughout a period from 1985 
to 2009. A report was referenced temporally by the midpoint in decimal years 
between the start and end months of the report. The final database was strati-
fied into three global regions: the Americas, Africa (including Yemen and Saudi 
Arabia), and Central, South, and East Asia.

For each region, a Bayesian geostatistical model was developed to predict 
the value of the prevalence rate in the 2–10 cohort in 2007. Distances were mea-
sured as spherical distances, described in Chapter 9. At the scale of the analysis, 
the earth’s curvature needs to be taken into account in distance calculations. 
The predictions were made at points on a regular 5  5 kilometer grid of the 
areas earlier modeled to be within the spatial limits of stable P. falciparum trans-
mission.

Once the prevalence rate map was created and the model was validated by 
assessing its ability to predict known values of the prevalence rate at reported 
locations, the map of prevalence rates was compared with a population den-
sity surface to assess population at risk. Data from the Gridded Rural–Urban 
Mapping Project (GRUMP) (Center for International Earth Science Information 
Network, Socioeconomic Data and Applications Center, 2011) for 2000, adjusted 
to the United Nations’ national population estimates, were projected to 2007. To 
assess risk to children, the national population counts were stratified by age to 
obtain 0–4, 5–14, and less than 15 years population cohorts. Areas with different 
levels of endemicity from the model of prevalence rates were overlaid with the 
GRUMP data. Approximately 1.4 billion people were estimated to live in stable 
risk areas for P. falciparum transmission. In the American and Asian regions, a 
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third of children 0–4 and 5–14 years of age were exposed; in the African region, 
43% of children were exposed.

Although the mapping effort was based on prevalence reports, data on the 
entomological infection rates and basic reproductive rate can be used to inform 
the modeling process (Hay & Snow, 2006). These measures are metrics of the 
force of infection, the rate at which susceptible individuals acquire an infec-
tion. A study of the entomological inoculation rate and P. falciparum infection 
in children in Africa found evidence of heterogeneous biting and heterogeneous 
susceptibility (Smith, Dushoff, Snow, & Hay, 2005). Some people are bitten more 
than others, and some people are more susceptible to infection each time they 
are bitten. The study found that 20% of people received 80% of all infections. 
This heterogeneity has implications for studying disease transmission and for 
assessing the effectiveness of vaccines.

By mapping the survey report data and providing open access to the meth-
ods used to collect, analyze, and map the data, the project is creating a frame-
work for ongoing collection and analysis of malaria on a global scale. Because 
the researchers have provided so many people with a way of viewing these data 
in time and space, there is an increased incentive to improve surveillance and 
reporting. The 2007 global malaria endemicity map is the first of a planned series 
designed to make it possible to monitor and evaluate the progress of efforts to 
control and eliminate the disease.

Modeling Immunity to Disease

An emerging area of research in disease surveillance is modeling immunity to 
disease. The level of immunity within a population is an important factor affect-
ing disease transmission, and it must also be taken into account in designing 
programs to control the spread of disease. Researchers reanalyzed data from a 
killed cholera oral vaccine trial conducted at a research site in Bangladesh in 
1985 (Ali, Emch, Yunus, & Clemens, 2009). Outbreaks of cholera occur when 
Vibrio cholerae, the bacterium that causes the disease, is sufficiently present in 
drinking water or in food to provide an infective dose if ingested. Cholera causes 
acute diarrheal illness which, if of sufficient severity, can be fatal. The source 
of contamination of water bodies is feces from an infected person. Sewage and 
water treatment systems are effective in controlling cholera, along with mea-
sures for preventing food-borne disease.

The analysis conducted in Bangladesh integrated the database from the vac-
cine trial with a longitudinal health and demographic database of the study area 
population, including data on hospitalization for cholera and a spatial database 
of the study area. Specifically, the analysis focused on whether disease transmis-
sion changed after the mass vaccination campaign and whether the vaccine had 
a greater impact in areas with a lower force of infection.

Spatial autoregressive lag models of the cholera hospitalization rate were 
estimated using GeoDA. One model was for the prevaccination period and one 
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for the postvaccination period. Although cholera hospitalization in the study 
region increased after the vaccination period due to temporal fluctuations in 
cholera in Bangladesh, villages with higher vaccine coverage had significantly 
lower hospitalization rates for cholera. Changes in the locations of clusters of 
high cholera hospitalization between pre- and postvaccination periods support 
the hypothesis that spatial differences in vaccine coverage can change the spatial 
structure of the disease. The impact of the vaccine was affected by the force of 
infection, with a steeper descending trend in cholera hospitalization in areas 
with low force of infection than in areas with high force of infection in the post-
vaccination period. Efforts to control the spread of disease through methods like 
vaccination are occurring at a time of global climate change.

Global Climate Change and Vector-Borne Diseases

GLOBAL CLIMATE CHANGE

In addition to biological and ecological determinants of vector-borne diseases, 
climate factors have been studied as influences on the worldwide spread of infec-
tious diseases. Scientists have identified upward trends in global mean tempera-
tures, sea level, and ocean heat content over the last 50 years (Patz & Olson, 
2008). Although a wide range of health outcomes are sensitive to climate includ-
ing heat-related morbidity and mortality (Curriero et al., 2002), there is concern 
that climate change could directly influence vector-borne diseases transmis-
sion by affecting the vector’s geographic range, increasing rates of reproduction, 
affecting biting behavior, and shortening incubation periods of the pathogen. 
Equally significant indirect effects of climate could occur through land cover 
changes affecting microclimates. The effects of climate change on the occur-
rence and prevalence of disease in livestock have also been considered (Gale, 
Drew, Phipps, David, & Wooldridge, 2009). A growing body of literature is 
investigating the connections between climate and infectious disease using cli-
mate change models, remote sensing data, and GIS.

GEOGRAPHIC RANGE OF VECTORS

Due to the expansion of the range of I. scapularis, Lyme disease is an emerging 
disease in central and eastern Canada (Ogden et al., 2008). Risk maps for range 
expansion of the vector based on current conditions and with climate change 
were developed for census subdivisions in the region. Ambient air temperature, 
habitat, and numbers of ticks immigrating on migratory birds were selected as 
components of a risk model. Remote sensing data from the Advanced Very High 
Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric 
Administration’s satellite were used to model forest cover as a measure of habitat. 
A map of U.S. counties with populations of I. scapularis was used with knowl-
edge of distances that passerines fly per day to develop a measure of larval tick 
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immigration. The index of tick immigration was validated in the field at sites in 
southern Quebec. Predicted increases in temperature are expected to increase 
bird migration speed in North America, and the algorithm was used to predict 
the expansion of the range under changing temperature conditions.

TRANSMISSION AND BITING

The dynamics of vector-borne diseases transmission associated with specific 
climate events like the El Niño Southern Oscillation (ENSO) have also been 
investigated using climate modeling techniques (Lemon et al., 2008). The ENSO 
of 1991–1992 has been suggested as a major climate factor in the southwest-
ern United States, creating favorable conditions for an increase in the rodent 
population, thereby leading to the outbreak of hantavirus pulmonary syndrome. 
Springtime precipitation in 1992 and 1993 at 28 sites with confirmed human 
cases of hantavirus pulmonary syndrome and 170 control sites was estimated 
and compared to precipitation during the previous 6 years (Glass et al., 2000). 
Elevation and Landsat Thematic Mapper data collected the year before the out-
break were also used to estimate disease risk. The study showed an association 
between elevation and satellite data and hantavirus pulmonary syndrome risk 
the following year. There is a clear need for long-term studies to identify trends 
resulting from periodic phenomena like ENSO (Calisher et al., 2005).

Many vector-borne diseases processes show seasonal variation along with 
large within-year variation of incidence. Variability in weather patterns has been 
investigated for possible associations with variability in entomological param-
eters like biting rates. A soil moisture model of surface water availability com-
bined with land cover and soil features improved prediction of biting rates for 
two Anopheles mosquitoes associated with malaria outbreaks in an endemic 
region of Kenya (Patz et al., 1998). Modeling soil moisture and lagged soil mois-
ture substantially improved prediction of variability in bite rates over the predic-
tions made from modeling rainfall alone.

Environmental Impacts of Controlling 
Vector-Borne Diseases

Vector-borne infectious disease transmission depends on ecological systems that 
may be complex—involving more than one agent, vector, or host—and region-
ally variable. This complexity is reflected in efforts to control vector-borne dis-
eases. In some cases, efforts are made to prevent the introduction of disease into 
a new area by restricting migration and trade. In the case of West Nile virus, 
for example, international restrictions on the movement of horses were put into 
effect. Attempts to control a disease once it has become established in an area 
can conflict with efforts to protect the environment.
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Failure to control disease can directly affect the health of wild animal popu-
lations. During the rabies epizootic in the 1980s and 1990s in the northeastern 
United States, for example, more than 20,000 rabies cases were reported in rac-
coons (Bretsky, 1995). For some diseases, like Lyme disease, direct effects of the 
disease in wildlife populations have not been reported, and animal populations 
are significantly impacted not by the disease itself, but by control measures that 
affect their habitat. Conflicts also arise when wildlife hosts seed epidemics of 
disease in domesticated animals like cattle that can then pose a threat to human 
health. An example is bovine tuberculosis (TB) in Great Britain. The likeliest 
source of infection of cattle is the badger, although this has not been fully proved 
(Krebs et al., 1998). Natural habitat for badgers is often found in or around cattle 
pasture areas. Different strategies ranging from severe culling to only partial 
removal of badgers have been implemented for the last two decades to control 
bovine TB. Because these strategies were implemented in succession rather than 
in parallel, it has been difficult to assess their relative effectiveness.

Controlling disease in livestock is also challenging from a public health per-
spective. Global changes in poultry production and transportation, especially in 
Asia, contributed to the outbreak of H5N1 avian influenza in southern China in 
2003 (Sims, 2007). Backyard poultry production was also identified as an impor-
tant but overlooked factor in the outbreaks in Nigeria in 2006, the first outbreaks 
reported in Africa (Cecchi, Ilemobade, Le Brun, Hogerwerf, & Slingenbergh, 
2008).

TABLE 8.1. Intervention Options for Vector-Borne Disease Control 
and Potential Environmental Impacts

Control method Environmental effects

Self-protection 
precautions

Negligible; possible health effects of vaccines, repellents on 
user

Habitat manipulation Powerful effects in areas where habitat disrupted (can be 
limited to areas with high human presence)

Manipulation of host 
populations

Powerful effects on host species and associates (efficacy not 
always established)

Manipulation of vector 
population genetics

Vector competence may contribute little to force of 
transmission; new pest species might emerge

Biological control Depends on species utilized (efficacy not always established)

Broadcast pesticide 
applications

Powerful effects on nontarget species in application areas

Targeted pesticide 
applications

Main effects confined to nest associates of targeted species (can 
be limited to areas with high human presence)

Note. Adapted from Ginsberg (1994, p. 347). Copyright 1994, reprinted by permission of John Wiley & 

Sons.
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Seven control methods for dealing with vector-borne infectious disease 
problems have been identified (Table 8.1). Only self-protection measures can 
be associated with minimal environmental impacts. Efforts to control vector-
borne infectious disease by intervening in an ecological system are bound to 
have impacts on other aspects of the environment and may produce unintended, 
undesirable consequences. The ethical, legal, and social implications of geneti-
cally modifying vectors to make them less competent are of great concern (Spiel-
man, 1994; Macer, 2005). This approach seems out of step with the rich and 
broadly focused research on vector-borne diseases being carried out at a variety 
of scales around the world and the efforts at disease control this type of research 
is beginning to support (Childs, 2009).

A major unanswered question in vector-borne diseases control is how much 
reservoir or vector populations have to be reduced before there is an impact 
on human health. Total elimination is usually out of the question, but partial 
elimination may be ineffective: lowering vector abundance or agent prevalence 
may not produce equivalent declines in human exposure risk (Ginsberg, 1993) or 
may instead exacerbate the infectious disease problem by disrupting territorial 
systems and decreasing diversity (Krebs et al., 1998). When ecosystem diversity 
decreases, the disease transmission cycle may actually become more efficient 
(Ostfeld, 2009).

A Syndemic Perspective on Disease

The resurgence of interest in vector-borne diseases no doubt reflects their emer-
gence or reemergence in populations and areas of the world where it was believed 
these problems had been conquered. Vector-borne diseases have remained “com-
mon among populations lacking basic human rights such as control over their 
land, political rights and access to water and sanitation” (Winch, 1998, p. 47). 
The global distribution of many of the same diseases—cholera, malaria, enceph-
alitis—that are now the subject of interest was studied in the late 1940s as part of 
a disease atlas project supervised by Dr. Jacques May under the auspices of the 
American Geographical Society (American Geographical Society, 1944).

The research on climate change and vector-borne diseases does not suggest 
that increases in vector-borne diseases risk can be attributed to climate trends 
alone. Although vector populations are sensitive to climate trends, there are mul-
tiple factors underlying the emergence and reemergence of vector-borne dis-
eases. Housing conditions, public health resources, and access to medical care 
are among the factors that are likely to influence the emergence of vector-borne 
diseases even in areas where the potential for transmission may be increasing in 
response to climate change (Martens, 2000).

By examining temporal and spatial patterns, a study of the increase in tick-
borne encephalitis in the Baltic region concluded that climate change alone could 
not account for the rapid increase in the incidence of the disease over the last 
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two decades (Sumilo et al., 2007). Tick-borne encephalitis is caused by a virus 
transmitted in the region principally by I. ricinus and I. persulcatus among mice 
of the genus Apodemus. Tick-borne encephalitis and Lyme disease, vectored 
by the same species, are among the most significant vector-borne diseases in 
Europe. Systematic surveillance of tick-borne encephalitis has been conducted 
for 30 to 50 years within the region.

Changing patterns of incidence at the county level were investigated for 
the period 1970–2006. Dekadal (10-day) mean daily minimum and maximum 
temperatures were analyzed because this time scale is appropriate to onset of 
tick activity in the spring. No spatial pattern in the overall pattern of tempera-
ture change during spring, or any other time of the year, was found that could be 
related to the variable patterns of tick-borne encephalitis incidence observed in 
each county in each time period. The analysis also investigated spatial and tem-
poral patterns in rainfall and snow cover. These could not be related to spatial 
and temporal patterns of change in tick-borne encephalitis incidence.

The results indicated that climate change observed over the last 35 years 
has contributed to a more permissive background for transmission of the disease. 
Important human-induced changes in the environment also took place during 
the study period. The collapse of industrial production in the region in the post-
communist period significantly reduced environmental pollution and increased 
solar radiation input. At the same time, dislocations in the agricultural sector led 
to changes in land cover from fields and pasture to woods, with probable effects 
on rodent abundance.

Human exposure to infected ticks and acquisition of disease depend on a 
wide range of environmental factors. These factors may be abiotic (climate and 
landscape), biotic (tick and host distributions and abundance), and socioeconomic 
(human behavior and access to vaccines). Biological factors determining virus 
transmission potential are the “submerged bulk” of a zoonotic iceberg (Sumilo et 
al., 2007). Socioeconomic factors cause an increase in relative exposure and work 
with the underlying factors in the spread of disease. These factors are linked in 
a hypothetical model of tick-borne encephalitis epidemiology in the study region 
(Figure 8.15).

This research and other studies referenced in this chapter are representa-
tive of an emerging approach to the study of health: the syndemic perspective 
(Baer & Singer, 2009). The syndemic perspective is distinguished by three prem-
ises: the complex interactions among comorbid health conditions in a population, 
especially the biological linkages; the social and environmental conditions that 
interact to promote the emergence and transmission of disease, especially as 
they lead to disease clustering; and the environment as an encompassing biocul-
tural environment, wherein the natural environment is not separate or indepen-
dent from human action. In this view, “diseases do not simply coexist with other 
diseases in overlapped space within the same population, the bodies of their 
individual members, or the organs of individual sufferers. Rather, diseases inter-
act synergistically in substantial ways that impact the health of the individuals 
and populations they infect” (Baer & Singer, 2009, p. 135).
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Conclusion

Emerging and reemerging vector-borne infectious diseases are challenges 
requiring new responses from public health and medical care systems. These 
diseases are often undiagnosed, untreated, and unreported, a situation of special 
concern because delays in diagnosis and treatment often result in severe chronic 
health problems or death. Ecological studies of agent–vector–host relationships 
and improved surveillance methods have been cited as important priorities for 
addressing these infectious disease problems.

A view of key tasks necessary to reduce the burden of vector-borne diseases 
is emerging (Scott & Morrison, 2008). Research is needed to develop methods for 
assessing risk of disease transmission that are operationally feasible and epide-
miologically effective and to set goals for disease prevention. Sensitive, specific, 
and inexpensive ways to estimate herd immunity—to specific serotypes depend-
ing on the disease—are needed because immunity affects epidemic transmis-
sion. The use of vaccines to elevate immunity artificially can be coordinated 
with vector control so that effective vector control efforts can be sustained over 
time. Methods for reducing vectors and reducing human contact with vectors 
that are specific to the needs and possibilities in particular community settings 

FIGURE 8.15. A hypothetical model of the epidemiology of tick-borne encephalitis 
in the Baltic region showing factors contributing to the emergence of disease. From 
Sumilo et al. (2007). Originally published in PLOS One. Open Access.
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are needed (Spielman, 1994). Field-based prospective longitudinal cohort stud-
ies in endemic locations are needed to develop and assess locally adaptive inter-
ventions based on entomologic and epidemiologic risk and disease incidence and 
severity.

GIS analysis is playing an important role in the renewal of efforts to view 
the problems of vector-borne diseases at a variety of geographic scales, includ-
ing the global scale. As many of these studies point out, however, the important 
issue from a human health perspective is how our better understanding of the 
disease process leads to better prevention and intervention and improves access 
to health services.
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CHAPTER 9

Analyzing Access 
to Health Services

Fiscal and administrative pressures are transforming health care delivery in the 
United States. Changes in technology, shifts in medical practice, and the ever-
present pressure to contain health care costs are reshaping how health care is 
provided, where, and for whom. Millions of Americans lack health insurance (an 
estimated 43.8 million in 2008), including 9% of all children (Cohen & Martinez, 
2009), and the population is becoming more diverse in terms of class, culture, 
and ethnic background. These changes are having profound effects on access 
to health services. Some health care facilities are closing their doors, others are 
relocating or expanding, and most are offering different types of services, in 
different settings. Moreover, despite the rhetoric of choice, health care access is 
increasingly regulated by health insurers and managed care providers and con-
strained by lack of insurance coverage. This chapter discusses the use of GIS to 
analyze access to health services in this dynamic context. We consider the role 
of GIS in providing and managing information about health service locations, 
the measurement of geographical access to services, and the analysis of changing 
service distribution patterns.

The aim of health services is to improve health and well-being. Although 
we typically think of biomedical health service providers such as physicians and 
hospitals, a much broader array of activities contribute to health, including edu-
cation services, water supply and sanitation facilities, mental health care, and 
social services. There are two general ways of providing health care. Informal 
health care is care provided by families and communities in a home or commu-
nity setting (Moon & Gillespie, 1995). The vast majority of health care is provided 
informally. Informal care is neither monetized nor assigned a value through mar-
ket mechanisms or budgeting processes. Women provide well over half of infor-
mal health care delivered in the United States and worldwide (Timyan, Griffey 
Brechin, Measham, & Ogunleye, 1993; Navaie-Waliser, Spriggs, & Feldman 
2002).
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In contrast, formal health care is care provided by public, private, and 
voluntary organizations, through providers such as hospitals or physicians. 
Formal care takes place in a variety of settings, including clinics, workplaces, 
schools, and, increasingly, individuals’ homes. In the formal sector, carers typi-
cally receive a monetary wage for their services, and government regulation of 
services is common. This chapter focuses primarily on formal health services; 
however, there are important links between the two types of health care that 
can be examined geographically. Changes in the intensity and structures of for-
mal health care affect the need for informal health services, and vice versa. In 
many countries, hospitals are sending patients home earlier, changing the locus 
of patient care from formal to informal settings.

Access

Access is a multidimensional concept that describes people’s ability to use health 
services when and where they are needed (Aday & Anderson, 1981). It describes 
the relationship between attributes of service need and the characteristics of 
service delivery systems. Penchansky and Thomas (1981) identify five impor-
tant dimensions of access. Availability defines the supply of services in relation 
to needs: Are the capacity and types of services adequate to meet health care 
needs? Accessibility describes geographical barriers including distance, trans-
portation, travel time, and cost. It highlights the geographical location of services 
in relation to population in need. Accommodation identifies the degree to which 
services are organized to meet clients’ needs, including hours of operation, appli-
cation procedures, and waiting times. Affordability refers to the price of ser-
vices in regards to people’s ability to pay. Income levels and insurance coverage 
are critical aspects of affordability. Finally, acceptability describes clients’ views 
of health services and how service providers interact with clients. Acceptability 
encompasses barriers linked to gender, culture, ethnicity, and sexual orientation 
that affect willingness to use particular health services and the sense of comfort 
and satisfaction in receiving services. Services are acceptable if clients are well 
treated and satisfied, if providers and clients communicate openly, and if clients 
are confident about the quality of care delivered.

Geographical Accessibility

GIS necessarily emphasize geographical or spatial accessibility, the geographi-
cal dimensions of access. People’s access to health services is rooted in their daily 
activity patterns in time and space. The framework of time geography, discussed 
in the Introduction, offers important insights into individual health care decision 
making. With the home as a base, people move about in space to conduct various 
activities including work, school, shopping, and the care of children or elderly 
dependents. These activities form an activity space, a geographically defined 
zone typically centered on the home, within which everyday life unfolds. Access 
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to health care is both an important component of and constrained by activity 
spaces. Such spaces emerge from people’s socially defined roles and responsibili-
ties that reflect the needs of the individual and the household and community 
context of which she or he is a part. For many women, the “double day” of paid 
work outside the home and domestic work in the home reduces the time avail-
able for taking care of personal health care needs. Women with limited time, 
resources, and access to transportation may choose to neglect their own health 
care while prioritizing the needs of others around them (Young, 1999). These 
time–space constraints clearly have a central role in shaping geographical access 
to health care.

After making a decision to utilize health care services when a perceived 
need exists, an individual must choose a health care provider. In making that 
choice, the person weighs the advantages and disadvantages of alternative pro-
viders, who typically are located in or near his or her activity space. Provider 
characteristics including quality, availability, and cultural appropriateness of 
care also come into play, as do barriers such as insurance coverage (Rosenberg 
& Hanlon 1996). The alternative that best satisfies perceived health care needs, 
within the time–space constraints of daily life, is often chosen. When aggregated 
together, these individual choices form spatial patterns of health care utiliza-
tion—the flows of people over space to health services.

A fundamental aspect of health care utilization patterns is distance decay,
or the tendency for interaction with service facilities to decrease with increas-
ing distance (Figure 9.1). For a wide range of services, including many types of 

FIGURE 9.1. Distance decay in the utilization of health services. The frictional 
effect of distance varies, depending on the severity of the health concern for which an 
individual seeks care.
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health services, we find that utilization decreases as distance increases. Studies 
in a variety of contexts, for different types of health services, confirm the signifi-
cant effect of distance on utilization and its persistence after controlling for age, 
illness, and other known risk factors (Joseph & Phillips, 1984; Seidel et al., 2006; 
Hiscock, Pearce, Blakely, & Witten, 2008). Distance decay is a consequence of 
the added time, cost, and effort of traveling long distances. As costs increase, the 
ability and willingness to travel decrease. People’s knowledge of and familiarity 
with service opportunities also decline with distance, exacerbating the pattern 
of distance decay. In addition, physicians may be less willing to refer patients 
who live far from health facilities for treatment (Lin, Allan, & Penning, 2002).

The frictional effect of distance varies among health services. Studies reveal 
a pronounced decline in utilization with distance for hospital-based elective and 
psychiatric procedures, even after controlling for medical need. For example, a 
recent study in Britain found that eligible women living far from a plastic surgery 
center were less likely to undergo breast reduction surgery than were eligible 
women living nearby (Nair, Richardson, Thompson, Shortt, & Stewart, 2009). In 
contrast, acute emergency procedures show little or no distance decay (Joseph 
& Phillips, 1984; Haynes, Bentham, Lovett, & Gale, 1999). Goodman, Fisher, 
Stukel, and Chang (1997) found no decrease in utilization with increasing travel 
time for conditions in which there is strong medical consensus on the need for 
hospitalization, but significant decreases with distance for conditions in which 
outpatient treatment is a reasonable alternative. Thus, the severity and urgency 
of the health episode and medical practice decisions about how and where such 
episodes should be treated all play a role in distance decay. The policy implica-
tions of distance-related differences in health care utilization are complex. Are 
rates of utilization excessive among those living near health facilities, or do those 
living far away forgo the use of essential services? Do individuals distant from 
services rely more on informal care or on formal home-based care? Regardless, 
geographical access has significant and varying effects on health care utilization 
patterns.

The role of geographical accessibility in service utilization also depends 
on population characteristics. People differ in their abilities to overcome dis-
tance and in how locational constraints affect service use. Travel for health care 
is strongly affected by demographic and socioeconomic characteristics such 
as income, occupation, age, and gender. Research indicates that people whose 
mobility is limited by low incomes, age, or poor access to transportation are more 
sensitive to distance and thus more likely to use the nearest health care provider 
or to forgo care altogether (Haynes & Bentham, 1982; Arcury, Preisser, Gesler, 
& Powers, 2005). A study in Savannah, Georgia, found that distance is a more 
important factor in health care-seeking behavior for inner-city residents than for 
those living in the suburbs or on the urban fringe (Gesler & Meade, 1988). Insur-
ance coverage confounds these relationships. Uninsured patients may bypass 
nearby hospitals or physicians because the services are not affordable or do not 
accept people without insurance.
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Socially and culturally defined roles and activities complicate the ties 
between geographical proximity and health care utilization. Proximity to work-
places and other sites that are important in people’s daily lives plays an impor-
tant role in health care decisions. These time–space activity patterns vary by 
gender, stage in life cycle, and socioeconomic position (Kwan, 1999). Complex 
and geographically dispersed daily routines have been observed even among 
highly disadvantaged populations (Matthews, Detwiler, & Burton, 2005). Cul-
tural differences come into play as well. For immigrant groups, language and 
cultural barriers inhibit utilization of health services, even when those services 
are geographically accessible (Dyck, 1990). Chinese immigrants in Toronto had 
a strong preference for Chinese-speaking family physicians regardless of loca-
tion (Wang, Rosenberg, & Lo, 2008). Perceptions of place and location, and the 
meanings attached to them, vary through time and space, affecting peoples’ 
willingness to seek out particular kinds of services and health care providers 
(Kearns, 1993). Thus, social and geographical dimensions of accessibility are 
closely intertwined.

Characteristics of the local environment also affect the role of distance in 
people’s use of health services. Crime, lack of safety, and environmental pollution 
can inhibit people’s use of health services even when services are located nearby. 
Tarlov and others (Tarlov, Zenk, Campbell, Warnecke, & Block, 2009) used GIS 
to integrate data on distance to mammography screening facilities, local crime 
rates, and stage at diagnosis for breast cancer patients in Chicago. Statistical anal-
ysis showed that the number of homicides in the area near the closest mammog-
raphy facility was associated with a higher risk of late-stage diagnosis, whereas 
distance to mammography had no effect. They hypothesized that fear of crime 
deterred women from receiving timely mammography screenings.

This brief discussion of accessibility highlights the interrelationships among 
the many dimensions of access to health care. Location and distance have sig-
nificant effects on people’s willingness and ability to use services, but these 
geographical effects vary in importance and meaning among places, popula-
tions, times, and individuals. In emphasizing the spatial aspects of accessibility, 
geographic information systems can easily hide or ignore the important social 
dimensions. This means that particular care needs to be taken in structuring 
GIS-based studies of access and interpreting the findings.

Mapping Service Locations

Preparing maps of health service locations is an important application area for 
GIS. Such maps can be used to display service location patterns, to provide 
information to residents about service locations and availability, and to visual-
ize the spatial match between service needs and resources. Information about 
health services typically exists in tabular form, as lists of service providers and 
their addresses. Local, state, and federal agencies often maintain separate lists of 
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their own services, as do private and voluntary organizations, leading to multiple 
lists that must be linked and collated for assessing service availability and acces-
sibility. From this tabular information, finding out what types of services exist in 
an area, and where they are located, is a difficult task.

Many health agencies now use GIS to manage spatial information about 
services. Addresses of health services are geocoded and then displayed on a map. 
Storing service data in a GIS can be beneficial for both service providers and 
the people who need services. Providers can quickly view their service port-
folio to visualize areas of over- and undersupply. They can also query the GIS 
to examine types of services offered, utilization levels, staffing, and financial 
performance. For service clients, GIS offers a tool for identifying nearby service 
providers and finding out their attributes—services offered, hours of operation, 
and so on. Easy-to-use web-based systems are being developed to facilitate these 
querying and mapping functions.

Often health planners want to know not just about one type of service, but 
about an array of services that support health and well-being—education, child-
care, jobs, mental health, substance abuse, and social welfare. GIS is being used to 
map the uneven spatial distributions of health-related community resources and 
services and to examine the associations between service needs and resources 
(Pearce, Witten, Hiscock, & Blakely, 2007; Macintyre, Macdonald, & Ellaway, 
2008).

To better integrate diverse health-related services, planners advocate the 
creation of service hubs (Wolch, 1996)—sites with health and social service 
agencies located in close proximity. The geographical concentration of inter-
related agencies maximizes accessibility for service clients and promotes coor-
dination among service providers. To analyze accessibility to service hubs and 
the full set of services that enhance health, one can overlay geocoded data for 
diverse services, displaying multiple layers of access to multiple service agencies. 
Morrison, Alexander, Fisk, and McGuire (1999) developed a GIS to allow wel-
fare recipients to pinpoint the locations of essential health and social services, 
including job centers, childcare facilities, and primary health care centers. Bus 
routes were also displayed, along with the residential locations of employable 
welfare recipients.

Mapping Health Care Needs and Services

Service location information is particularly relevant when analyzed along with 
data on health care needs. Fundamentally, need describes the prevalence of 
health conditions that should be addressed by health care services. It can be 
measured and analyzed in many different ways. Typically, health planners use 
a combination of demographic, socioeconomic, and health outcome indicators, 
both quantitative and qualitative, in defining need. For example, in describing 
the need for prenatal care services, one would want to consider the number of 
pregnant women or number of women in the childbearing age groups. In addi-
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tion, because women who have high-risk pregnancies require more intensive 
and frequent prenatal services, indicators of pregnancy outcome or risk, such as 
low birthweight or maternal age, are also relevant (McLafferty & Grady, 2004). 
When examining need for particular health care services, characteristics of the 
service may be important, as services may be targeted to particular population 
groups or restricted to individuals who meet certain eligibility criteria.

In North Carolina, Hanchette (1999) used GIS to identify communities 
in need of universal lead screening. CDC guidelines recommended universal 
screening in areas where either a large fraction of young children had elevated 
blood lead, or more than 27% of the housing stock was built before 1950. Using 
ZIP Code areas as a base, data layers were created depicting the age of housing 
and the prevalence of elevated blood lead in earlier screening tests. ZIP Codes 
that met the CDC guidelines were selected by querying the data layers and then 
targeted for universal screening.

Researchers are increasingly relying on statistical methods to create mul-
tidimensional indicators of health care need and socioeconomic deprivation. 
Analyzing heart disease in Kentucky, Barcus and Hare (2007) constructed a 
socioeconomic deprivation index based on census indicators including poverty, 
education, housing quality, and unemployment. The statistical method of factor 
analysis yielded a single important factor representing socioeconomic depriva-
tion. GIS maps of factor scores show a concentration of disadvantage in south-
eastern Kentucky (Figure 9.2), an area with high heart disease incidence and 
mortality.

FIGURE 9.2. Geographic variation in socioeconomic deprivation, an important 
indicator of health care need, by county, in Kentucky. From Southeastern Geogra-
pher, Volume 47, no. 2. Copyright © 2007 by Southeastern Division, Association of 
American Geographers. Published by the University of North Carolina Press. Used by 
permission of the publisher.
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Creating multidimensional indicators of need for services often involves link-
ing variables measured over different geographies—for example, census tracts, 
point locations, and ZIP Codes. The linking process requires that each variable 
be estimated for a set of consistent zones or other common geographical units. 
Spatial interpolation methods, such as areal interpolation and dasymetric map-
ping discussed in Chapters 4 and 6, are invaluable in this estimation process.

Need also has qualitative dimensions, as described by “perceived” need. 
When available, data from health surveys can be incorporated to capture indi-
viduals’ views of their health care needs and their perceptions of health-related 
resources (Macintyre, Ellaway, & Cummins, 2002). In examining access to care 
at a community health care center in Missouri, data from a needs assessment sur-
vey were geocoded and mapped to better understand spatial variation in health-
related behaviors and perceived barriers to care (Phillips, Kinman, Schnitzer, 
Lindblom, & Ewigman, 2000).

Analyzing service needs in a GIS environment poses many challenges. For 
most health services the dimensions of need are not well defined; they may vary 
from person to person or by population group and may be challenging to mea-
sure. Combining and comparing indicators of need across individuals, groups, or 
areas are challenging tasks. Here the visualization and data layering capabilities 
of GIS can be exploited to view and analyze different dimensions of need among 
different population groups.

Assessing Potential Access to Health Services

Which communities and populations have poor geographical access to health 
services? Since the early 1900s, health planners in the United States have been 
concerned about this question, especially in rural areas. Efforts have been 
made to identify communities with poor access (shortage areas) and to imple-
ment policies for improving service availability. These efforts focus on potential 
accessibility, the geographical match between people and essential health care 
services. At its core, the concept refers to the separation between services and 
population—how much distance, cost, time and effort are involved in reaching 
service facilities. It may also incorporate service capacity constraints, or restric-
tions on the number of people who can be served at each facility. There are many 
ways of characterizing potential access, and most can easily be implemented in 
GIS (Higgs, 2004).

Distance and Travel Time Measures

One of the simplest ways of measuring potential access is to calculate the dis-
tance from the population in need of service to the nearest service provider. 
Assume that we have a data set containing the point locations of all service pro-
viders—for example, the locations of all hospitals in the state of Wyoming. We 
also have a spatial data set that describes the population in need of service. This 
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population data set can be either a point data set that contains residential loca-
tions of people in need of service or an area data set with counts of population 
by area. The latter must be converted to a point data set by finding the centroid 
of each populated area (zone), as described in Chapter 5, or by allocating the 
population to point locations within each area as discussed later in this chapter. 
To estimate distance, we first identify the service provider closest to each popu-
lation point/centroid and then calculate the distance to that service provider. 
The average of those distances provides a widely used measure of geographi-
cal access to services. The larger the average distance, the farther people must 
travel, on average, to their closest service facility, and the poorer the geographi-
cal accessibility. When population data are aggregated to geographic zones, the 
population-weighted average distance, in which distances are weighted accord-
ing to zonal populations, is an appropriate measure of access.

Differences in average distance to health facilities highlight inequalities in 
geographical access to care. In most countries, rural residents travel significantly 
farther for care than their urban counterparts (Probst, Laditka, Wang, & John-
son, 2007). To examine geographical access to pediatric medical services in the 
United States, Mayer (2006) used GIS to geocode provider locations by subspe-
cialty. Distances from each ZIP Code centroid to the nearest provider were cal-
culated and weighted by the under-18 population. Comparisons of population-
weighted average distance across pediatric subspecialties showed substantial 
variations in access to care.

In addition to average distance, examining the frequency distribution of 
distances can shed light on geographical access to services. The frequency dis-
tribution of distances is a graph that shows the number of people living within 
a distance range (e.g., 5–10 kilometers) of their nearest service facility. Because 
people and health services typically cluster in urban areas, the frequency dis-
tribution of distances is often skewed, with a large proportion of the population 
close to services, and a significant minority quite distant from services. Figure 
9.3 shows the frequency distribution of distances for the adult female population 
in Illinois to the closest mammography facility. Nearly 37% of adult women live 
within 2 kilometers of a mammography facility, a reflection of the high concen-
trations of people and facilities in the Chicago area. Seven percent of women 
live more than 20 kilometers from a facility and are thus disadvantaged by long 
travel distances.

These kinds of analyses are important for providing population-based eval-
uations of geographical access to health services at the national and regional 
scales. Onega et al. (2008) used GIS to estimate travel times to the nearest can-
cer center in the United States, and they compared travel time statistics among 
sociodemographic population groups. Excessive travel burdens for Native Amer-
icans and nonurban populations were highlighted. To compare spatial access to 
health care among population groups in Wales, Christie and Fone (2003) created 
travel-time frequency distributions for each group for three travel speed sce-
narios. Geographical access problems were most acute among rural residents 
and, under certain scenarios, among the elderly and residents of deprived areas. 
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Analyzing the distribution of distances can offer potent insights into the equality 
and inequality of geographical access among population groups.

Distance measurements can also be used in defining catchment areas (dis-
cussed later in this chapter) for health service providers. A maximum distance 
or travel time threshold delineates the area in which people have reasonable 
access to care. Schuurman, Fiedler, Gryzbowski, and Grund (2006) employed a 
1-hour travel time threshold to identify catchment areas for hospitals in British 
Columbia.

MEASURING DISTANCE

Inherent in any assessment of geographical access is a measure of distance that 
represents the geographical separation, in distance, time, or cost, between peo-
ple and services. There are many ways of measuring distance. For small-scale 
investigations—those at a national or regional scale—or when using unprojected 
coordinates such as lat/lon, distance is calculated along the curved surface of 
the earth. This is referred to as spherical distance, and it measures the distance 
along a great circle connecting two points. The spherical distance in kilometers 
between points i and j can be estimated as:

dij = arccos(z) 6371.11

z = sin(Yi)sin(Yj) + cos(Yi)cos(Yj)cos(Xi – Xj)

FIGURE 9.3. Frequency distribution of travel distances (in kilometers) to the near-
est mammography facility for the adult female population in Illinois. The y-axis shows 
the percent of adult women who live within a particular distance range of a mammog-
raphy facility.
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where Y is the latitude (in radians) and X is the longitude (in radians).
In analyzing geographical access to services in relatively small areas, such 

as cities, metropolitan areas, and small states, the earth’s curvature does not 
present a major problem.

A more common measure of spatial separation is the Euclidean (straight-
line) distance. If the projected coordinate locations of points A and B are (XA,YA)
and (XB,YB) respectively, the Euclidean distance between A and B is

( ) ( )22

BABA YYXX

Euclidean distances are appropriate if one is working with projected geographi-
cal coordinates, as in the state plane or UTM coordinate systems; however, it is 
important to keep in mind that Euclidean distances do not take into account the 
curvature of the earth’s surface. Most GIS use the Euclidean distance metric as 
the default in all distance calculations (i.e., in computing buffers and interpoint 
distances). In many situations, however, the Euclidean metric poorly represents 
travel patterns and travel potential.

One weakness of Euclidean distance is that it fails to take into account 
transportation routes and barriers to movement. Only rarely can people move 
from place to place along straight lines. In areas where the road network follows 
a grid pattern, one can approximate network distances by using the Manhattan 
metric to calculate distance. The Manhattan metric measures distance along the 
axes of a coordinate grid

|XA – XB| + |YA – YB|

Since the distance measurements vary depending on the orientation of the grid, 
it is important that the grid be oriented along the main axes of the road net-
work (Figure 9.4). Although Manhattan distances are not as accurate as distances 
measured along a transportation network, they can be computed very efficiently 
and work well as a surrogate for network distances in places where streets follow 
a grid pattern.

Most GIS include tools for calculating network distances that follow a 
street, bus, or rail network. Given a starting node and an ending node, the GIS 
will compute the length of the shortest path (see Chapter 10) along the transport 
network, and the result can be used as the network distance. Such distances 
offer a better approximation of the actual distances people must travel to obtain 
health services.

Convenient tools for estimating network distances and driving times (dis-
cussed below) are also available in Internet-based systems such as MapQuest®, 
Google Maps®, and Bing®. In these systems, a pair of origin and destination 
locations is input, and network distance and estimated driving time between 
the two locations are output. For public health analysts, the main disadvantage 
of using these systems for distance/time estimation is that the systems are set 
up to handle one origin-destination query at a time. For multiple origins and 
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destinations, it is necessary to write customized computer code to automate the 
querying process.

MEASURING TRAVEL TIME

Although distance is a fundamental indicator of geographical access, travel time, 
cost, transportation access, and perceived distance are often much more rele-
vant to health care utilization. Using GIS, one can estimate travel time along 
road networks, taking into account average speeds and speed limits on different 

FIGURE 9.4. The calculation of Manhattan metric distance between an origin and 
a destination.
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classes of roads and physical barriers to travel (Schuurman et al., 2006; Appari-
cio, Abdelmajid, Riva, & Shearmur, 2007). To determine the travel time between 
two points, we identify the route connecting those points and sum the estimated 
travel times along each road segment in the route (Figure 9.5). Travel time pro-
vides a better indication of geographical barriers to health services than does 
travel distance, since by definition travel times incorporate access to transporta-
tion.

Mode of transportation is also important in estimating travel times. Vul-
nerable populations—people with low incomes, the aged, and others—often 
must rely on public transportation, walking, and taxis to access health services. 
Lovett, Haynes, Sunnenberg, and Gale (2002) analyzed access to general prac-
titioner services in East Anglia, England, an area where travel by both bus and 
car is common. For those traveling by car, travel times were estimated along the 
road network from each postcode area to the nearest service provider. Car travel 

FIGURE 9.5. The measurement of travel time between an origin and a destination 
can be implemented in a GIS provided that data are available on the amount of time it 
takes to traverse a segment along the route of travel. For an automobile user traveling 
the speed limit, the 1.6-mile trip from the primary care clinic to the residence using 
the highlighted route would take about 3 minutes.
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times were mapped as a continuous field by generating a triangulated irregular 
network (TIN) of the nodal travel time values. To evaluate accessibility by bus, 
researchers focused on the frequency of bus service and whether or not resi-
dents could walk to a bus route that went to a particular provider. Spatial buf-
fer functions in GIS were used to identify areas within walking distance of bus 
routes (Figure 9.6). Analyzing combinations of car and bus access, Lovett and 
others found pockets of rural deprivation characterized by high health care need 
and low transportation mobility, and these areas were targeted for bus service 
improvements.

Walking and use of public transportation are especially important in devel-
oping countries where access to private transportation is limited. Speed of walk-
ing varies with slope, topography, quality of road or track and other environmen-
tal and social factors. In analyzing accessibility to primary health care clinics in 
rural South Africa, Tanser, Gijbertsen, and Herbst (2006) used GIS to estimate 
walking times from rural homesteads to the nearest clinic. Different speeds were 
assigned to different paths based on the quality and distribution of the road/path 
network and the presence of natural barriers.

Density Measures

Rather than focusing only on distance or travel time to the nearest service pro-
vider, one can compute density measures that describe the full range of provid-
ers in an area. Density refers to the number of providers available in relation to 
local population or geographic area. One can define density in relation to pre-
defined geographic zones such as states or counties—the container approach—
or within a fixed buffer distance of a point of origin—the coverage approach
(Higgs, 2004). A well-known container measure is the physician to population 
ratio, which is widely used in analyzing accessibility to care.

Although container approaches have traditionally been used for computing 
density measures of access to health care, such approaches have major limitations. 
The geographic zones that underpin density calculations are often arbitrarily 
defined, political units that differ in size, shape, and socioenvironmental char-
acteristics. All people living within a zone are assumed to have equal access to 
care; this is a weak assumption, especially when zones are large (Hewko, Smoyer-
Tomic, & Hodgson, 2002). Moreover, container measures ignore the availability 
of services across area boundaries. To address these limitations, it is better to use 
coverage approaches that estimate density within overlapping, analyst-defined 
coverage zones. Coverage measures are easily computed in GIS.

Meersman, Breen, Pickle, Meissner, and Simon (2009) used a GIS-based 
coverage measure in investigating variations in mammography use among women 
in Los Angeles County. The project involved geocoding residential locations for 
women surveyed in the California Health Interview Survey and geocoding loca-
tions of mammography facilities. For each woman, researchers computed the 
number of mammography facilities within spatial buffers of varying sizes. The 
density of facilities within a 2-mile buffer was positively associated with mam-
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FIGURE 9.6. GIS procedures for evaluating accessibility to general practitioners’ 
offices on the basis of the use of car and bus transportation. This figure shows the pro-
cedures used in modeling travel by bus. Reprinted from Social Science and Medicine, 
55(1), Lovett, A., Haynes, R., Sunnenberg, G., & Gale, S., Car travel time and acces-
sibility by bus to general practitioner services: A study using patient registers and GIS, 
97–111, copyright 2002, with permission from Elsevier.
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mography use, suggesting that geographical access is a barrier to mammography 
screening.

KERNEL ESTIMATES OF SERVICE DENSITY

When analyzing geographical access to health care in densely populated urban 
areas, kernel estimation, discussed in Chapter 5, can be employed in estimat-
ing service density (McLafferty & Grady, 2004). We begin by geocoding service 
providers to point locations. A circular window scans the map, and the kernel 
density of service providers is computed within each circular window. Kernel 
estimation depicts the density of service providers (number per unit area) as a 
continuous spatial variable, with peaks representing areas of high geographi-
cal access to providers and valleys indicating areas of poor access. Guagliardo 
and others used kernel density estimation to investigate children’s geographi-
cal access to primary care physicians in Washington, D.C. (Guagliardo, Ronzio, 
Cheung, Chacko, & Joseph, 2004). The map of physician density revealed huge 
social and spatial inequalities in access to primary care physicians (Figure 9.7). 

FIGURE 9.7. Ratio of density of pediatric service providers to density of children 
in Washington, D.C. Densities were calculated using kernel estimation. Note the 
absence of providers in southeast Washington, a low-income area. From Guagliardo 
(2004). Originally published by BioMed Central in the International Journal of Health 
Geographics. Open Access.
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Physician density was highest in the affluent neighborhoods of northwest Wash-
ington and extremely low in the low-income neighborhoods of southeast Wash-
ington.

Kernel estimation has several advantages. The kernel weighting function 
incorporates a decline in access with increasing distance consistent with dis-
tance decay. Density estimates can be assigned to individuals and aggregated 
to show differences in access among population groups, or they can be used in 
individual-level statistical models (McLafferty & Grady, 2004). By computing 
a kernel density surface to represent population, and dividing provider density 
by population density, one can investigate the availability of services in relation 
to population—a provider to population ratio (Bailey & Gatrell, 1995). Despite 
these advantages, kernel methods have important limitations. The mathematical 
form of the kernel weighting function is somewhat arbitrary. Kernel methods 
perform poorly in rural areas where few providers exist, and one can debate 
whether having more providers (a higher density) nearby is necessarily better.

TWO-STEP FLOATING CATCHMENT AREA METHOD

To assess the local availability of services in relation to population need, Luo and 
Wang (2003) developed the two-step floating catchment area method (2SFCA).
The method requires two point data sets: data on the locations and capacities of 
service providers and data on the locations of population in need of services. The 
2SFCA moves between these two data sets in a two-step process. First, we con-
struct a threshold distance or travel time window around each service provider j
and compute the provider to population ratio Rj within that window (Figure 9.8). 
Second, for each population location i, we search all provider locations within a 
threshold travel distance/time and sum up the Rj values for those providers. The 
resulting value is the accessibility score for the population at place i. Higher val-
ues indicate better spatial access to health care providers. The 2SFCA method 
can easily be implemented in GIS using join and sum functions (Wang, 2006). 
Although the original 2SFCA method assumed that access is constant within the 
threshold distance/time window, a recent enhanced version incorporates dis-
tance decay (Luo & Qi, 2009). Other recent enhancements include incorporating 
differences in health needs and permitting the threshold distance/time to vary 
among population areas (McGrail & Humphreys, 2009).

McGrail and Humphreys (2009) used an enhanced 2SFCA method to eval-
uate the spatial accessibility of primary care physicians in Victoria, Australia. All 
general practitioners in Victoria and within 1 hour of the provincial border were 
geocoded to their practice locations. Resident population was geocoded to col-
lection districts (CDs), small, census-defined zones averaging 500 in population 
size. GIS was used to compute travel times between CD centroids and physi-
cian locations, and the modified 2SFCA method was implemented. The map of 
spatial access to primary care (Figure 9.9) reveals large regions of poor spatial 
access in rural areas, particularly in areas with high-need populations.
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Potential Accessibility Measures

Accessibility measures based on travel time, distance, or density offer only a par-
tial view of access to services. In reality, people trade off geographical and non-
geographical factors in making decisions about health service use. The widely 
used gravity model and potential model offer a method for modeling these trade-
offs in defining service access. The gravity model is based on an analogy with 
Newtonian physics in which the interaction between places is directly related to 
their relative sizes or attractiveness, and inversely proportional to the distance 
between them. People are willing to travel farther to obtain better (more “attrac-
tive”) health care services. Attractiveness depends on price, quality of services, 
accommodation, cultural appropriateness, and a host of service-related factors. 
Different population groups typically evaluate service attractiveness differently, 
depending on the service qualities that are most relevant to their own needs. 
Gravity models belong to a more general class of spatial interaction models,
tools for modeling interactions between places. We discuss the models later in 
this chapter as methods for predicting flows of people to health services.

FIGURE 9.8. Schematic diagram of the first step of the two-step floating catch-
ment area method. Locations A, B, and C represent health care facilities; numbers 
1–14 identify demand area centroids. A catchment area around each facility is defined 
on the basis of a maximum travel time. The supply/population ratios (R) for each of 
the three facility catchment areas are shown. Facility A’s catchment area contains one 
facility and six population demand points. In the second step of the two-step FCA, 
travel time windows are constructed around each demand point. R values within each 
catchment are summed, providing an index of spatial access for the population resid-
ing at that demand point.



Access to Health Services 321

The potential model uses gravity concepts to describe patterns of accessi-
bility to services. Potential access is calculated for a particular individual or area, 
i, and it measures the area’s overall accessibility to services. Defining Aj as the 
attractiveness of health service j, and dij as the distance (or travel time or cost) 
from i to j, we can compute the potential accessibility of individual or neighbor-
hood i to health services as

ij
j

j dA /

Higher values reflect higher levels of potential accessibility, which occurs when 
people live close to high-quality service facilities.

The distance exponent, , describes the frictional effect of distance on ser-
vice accessibility. When  = 0, distance has no impact on service utilization 
or access, and access depends only on the attractiveness of service providers. 
Conversely, when  is large, distance has a strong frictional effect, and access 
depends only on the distance to service facilities. Large values clearly give more 
weight to nearby services in computing potential accessibility.

FIGURE 9.9. Spatial access to general practitioners in Victoria, Australia, was cal-
culated using an improved two-step floating catchment area method. The map of spa-
tial access shows strong urban-rural inequalities in access and disparities based on 
health care needs. From McGrail and Humphreys (2009). Originally published by 
BioMed Central in BMC Health Services Research. Open Access.
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Estimating potential accessibility is greatly simplified in a GIS environ-
ment. Distances between people or communities and service facilities are easily 
computed, and service attractiveness data can be tied to geographic locations. 
For each person or community i, one can calculate the potential accessibility to 
health services using GIS spreadsheet operations (Wang, 2006).

Figure 9.10 shows a map of potential accessibility to hospitals. Accessibility 
values were calculated for census tracts, with several simplifying assumptions. 
First, straight-line Euclidean distances from the centroid of the census tract to 
each hospital were used to represent geographical separation, and second, hos-
pital size (number of beds) was employed as a surrogate for attractiveness. The 
differential shading of the census tracts reflects their varying levels of potential 
accessibility. Note the high levels of accessibility for census tracts located near 
the cluster of large hospitals in the center of the region.

In the classic gravity model, accessibility is inversely related to distance 
squared (  = 2)—a direct analogy with Newtonian physics. However, there is 
no reason to assume that the Newtonian distance exponent necessarily applies 
in modeling access to health care. Research shows that the appropriate distance 
exponent varies among populations and research contexts (Kwan, 1998; Lin, 
Allen, & Penning, 2002). Furthermore, the power function (d– ) may be inappro-
priate (Thill & Kim, 2005). A more general expression for potential accessibility 
is

j
ijj TfA )(

where (Tij) is distance or travel time and f(Tij ) is an impedance function that 
represents the decrease in access with increasing distance or travel time. Imped-
ance functions can have different functional forms including power, exponential, 
Gaussian, and log-logistic (s-shaped) (Thill & Kim, 2005; DeVries, Nijkamp, & 
Rietveld, 2009). Kwan (1998) argues that a Gaussian impedance function fits 
real-world travel patterns. The Gaussian function depicts a gradual decline in 
access with distance close to the facility, and a steeper decline far from the facil-
ity (Figure 9.11). Note that the Gaussian function is also frequently used in ker-
nel estimation. As shown in Figure 9.11, for a given problem, the appropriate 
distance impedance parameter  will depend on the impedance function used.

Researchers have used statistical methods to find an appropriate imped-
ance function (Thill & Kim, 2005; Wang, 2007; Scott & Horner, 2008). Using 
empirical data on patient travel to health services, one can determine the expo-
nent that best fits actual travel patterns. Analyzing Chinese immigrants’ spatial 
access to physicians in Toronto, Wang (2007) used data from a survey of Chinese 
immigrants to determine an appropriate impedance function. Differences in 
transportation and mobility can also be incorporated. The research on physician 
accessibility in East Anglia, England, discussed earlier in this chapter (see Fig-
ure 9.6) calculated potential accessibility based on network travel times.
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FIGURE 9.10. The top map shows the locations of community hospitals in a region. 
The bottom map shows potential accessibility to hospitals based on the number of 
licensed beds as a measure of hospital attractiveness and distance from hospital to 
census tract centroid. Census tracts in the center of the study region close to large 
hospitals have the highest potential accessibility. Census tracts close to small hospitals 
and census tracts located far from hospitals have lower potential accessibility.
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Another approach is to use an impedance function calibrated for one study 
area to predict potential accessibility in another study area. Knox (1978) did this 
in estimating intraurban patterns of potential accessibility to general practitio-
ner services. The precise form of the distance function (e–1.52dij) came from an 
earlier study of general practitioner use. Applying impedance functions from one 
study area to another has certain limitations, however. The effects of distance 
can vary over time and space, leading to errors in estimating potential acces-
sibility. Similarly, the frictional effect of distance can differ substantially among 
population groups, reflecting differences in income, access to transportation and 
sociocultural factors.

Another problem is that the distance exponent depends in part on the 
spatial configuration of service opportunities (Haynes & Fotheringham, 1984). 
Research indicates that the distance exponent tends to be closer to zero for cen-
trally located zones that are accessible to a large number of service facilities 
than for peripheral zones located distant from service opportunities. If this is 
the case, the distance exponent will not be transferable from one study area 
to another unless the two areas contain similar geographical arrangements of 
service opportunities and population groups—a highly unlikely situation. To 
address this problem, one can calculate potential accessibility over a range of 
exponent values and explore the stability of the observed accessibility patterns.

Defining and measuring the attractiveness term is also an important issue 
in applying potential models. Attractiveness is a multidimensional concept that 
describes the range and number of services offered, appropriateness, price, and 
quality of treatment. To define attractiveness, researchers have used service 
capacity—number of physicians, number of hospital beds—as a surrogate mea-
sure (Morrill & Earickson, 1968), but clearly this approach is limited. A better 

FIGURE 9.11. Different spatial impedance functions. Tij is a measure of travel time 
or distance.
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approach is to use a set of variables describing attributes of the health care pro-
vider and the range and quality of care delivered (Hyndman & Holman, 2001). 
Cultural characteristics of providers such as languages spoken can also be incor-
porated (Wang, 2007).

Visualizing Accessibility

Regardless of how it is measured, potential accessibility to health services is 
distributed unevenly over space, reflecting the way most health services are 
provided—at fixed sites, serving a dispersed population. Some individuals will 
always live closer to the service sites than others. GIS provides a tool for viewing 
and summarizing geographical inequalities in accessibility and seeing if differ-
ences in accessibility stem from obvious gaps in service coverage or are struc-
tured along class, ethnic, or racial lines (Talen, 1998; Pearce, Witten, Hiscock, & 
Blakely, 2007; Macintyre, Macdonald, & Ellaway, 2008). Talen (1998) describes a 
GIS for “visualizing fairness” in service distribution patterns. The system incor-
porates a variety of accessibility measures including average travel distance and 
population coverage. GIS maps of accessibility are produced that can be viewed 
individually and related to maps that show the distributions of populations 
groups, housing values, and environmental features. Maps and graphs reveal the 
differential patterning of accessibility. Figure 9.12 presents an example of an 
equity map that describes patterns of accessibility to health care services for 
residents of public housing in Montreal, Quebec (Apparicio & Seguin, 2006).

Representing Population in Potential 
Accessibility Modeling

An important issue in accessibility modeling is the underlying geographic repre-
sentation of population in need of service. Ideally one would know the residen-
tial location of each person or household in the population, but such point data 
are rarely available. Instead population data are aggregated to predefined zones 
such as blocks or census tracts. Doing so leads to spatial aggregation error when 
distance or travel time measures are calculated. Research indicates that spatial 
aggregation error has significant effects on measurement of spatial accessibility, 
especially when using large geographic zones (Hewko, Smoyer-Tomic, & Hodg-
son, 2002; Langford & Higgs, 2006). This error is also important in determining 
optimal locations for new health care services, as discussed in Chapter 10. There 
are several strategies to reduce the impacts of spatial aggregation error, and GIS 
is critical to their implementation. A naïve approach is to redistribute population 
evenly within each zone; a much better method is dasymetric mapping, which 
redistributes the population unevenly based on ancillary data such as road or 
building locations (Langford & Higgs, 2006). Another recent method involves 
constructing travel time zones around service facilities and distributing popula-
tion among those zones based on ancillary data (Shi & Berke, 2009).
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Accessibility and Activity Spaces

Accessibility can also be assessed in relation to activity spaces, or the spaces that 
enclose daily travel patterns. As noted earlier, an individual’s activity space con-
sists of the set of locations that are visited regularly in everyday life—workplaces, 
schools, and shopping centers. It is the space that an individual travels within on 
a daily or weekly basis (Cromley & Shannon, 1986). Health care services located 
in or near an individual’s activity space are more accessible and conveniently 
reached than those located far away. The accessibility measures discussed up to 
this point in this chapter all measure access with respect to residential (home) 
locations; yet people may travel to health care services from the workplace and 
other daily activity sites. Research shows that activity spaces extend well beyond 
the home location, even among disadvantaged populations. For example, in a 

FIGURE 9.12. An equity map showing average network distances to health services 
for residents of public housing in different rental areas and rental districts in Montreal, 
Quebec. Each dot represents a public housing building. The dark-shaded dots indicate 
poor geographical access to health care. From Apparicio and Sequin (2006). Copyright 
2006 by Urban Studies Journal Limited. Reprinted by permission of Sage.
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study of low-income families in three U.S. cities, Matthews, Detwiler, and Bur-
ton (2005) found that 90% of daily activities occurred outside the census tract of 
residence. Varying in size and location among people and places, activity spaces 
are important in understanding spatial access to health care.

Using travel diary data to describe activity spaces, Sherman, Spencer, Pre-
isser, Gesler, and Arcury (2005) devised a suite of GIS-based indicators of acces-
sibility to health care providers. Respondents in a rural region of North Carolina 
were asked about routine activity and health care provider locations. Household 
locations were geocoded via GPS and merged with activity locations and trans-
portation data. For each individual respondent, the authors measured an activity 
space using three alternative methods: a standard deviational ellipse, a road net-
work buffer, and a standard travel time polygon. Figure 9.13 shows an example of 
a road network buffer activity space, created by buffering the roads that connect 
the person’s home and activity locations.

FIGURE 9.13. GIS representation of an individual activity space based on a road 
network buffer. The activity space includes the home location and other regular activ-
ity sites. For this person, the regular primary care site lies outside the regular activity 
space, although there are a number of other primary care opportunities located within 
the person’s activity space.
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The Global Positioning System is increasingly being used to record people’s 
everday movement patterns in time and space (Troped, Wilson, Matthews, Crom-
ley, & Melly, 2010). GPS identifies individual locations at regular time intervals, 
recording a dense set of space–time location points. These points can be used 
in creating three-dimensional space–time aquaria to visualize people’s activity 
locations throughout the course of a typical day or week (Kwan, 2000). Simpler 
spatial measures of activity space can also be constructed from GPS-recorded 
activity points (Rainham, McDowell, Krewski, & Sawada, 2010). Although inno-
vative and efficient for representing activity patterns, GPS data also present a 
series of methodological challenges, including difficulties in analyzing the very 
large number of track points and signal gaps caused by human or device error. 
Also, methods for aggregating individual activity spaces to generate population-
level estimates are not well developed.

After delineating activity spaces based on travel diary or GPS data, one can 
compute indicators of accessibility to health care such as the number of provid-
ers within the activity space, the travel time from the activity space to the near-
est provider, the overall size of the space, or the amount of time available during 
the day for accessing care. The advantage of these approaches is that accessibility 
is defined in relation to the routine patterns of everyday life, instead of focusing 
solely on the home location.

Analyzing Service Utilization

GIS are also valuable tools for analyzing revealed accessibility to health care ser-
vices—that is, patterns of health service utilization. Such patterns are the result 
of individual choices about when and where to use services, the geographical 
configuration of health care opportunities, and the mediating effects of medical 
referrals and regulations. This section examines GIS-based methods for investi-
gating several key questions relating to utilization: What is the service area for a 
health care facility? How will changes in health care delivery, for instance, the 
closing of hospitals, affect market areas and utilization? Are services and proce-
dures over- or underutilized in particular areas?

Identifying Service Areas

The service area or catchment area for a health care provider is the geographic 
area that contains the bulk of population served. For a health care provider, the 
service area ties the client population to a geographic area, a neighborhood or 
community or set of communities. Some health facilities have mandated service 
areas in that they are required to serve the population living within a particular 
region, say, a county or set of ZIP Codes. Public schools often have mandated 
catchment areas, as all children who live within a given area are required to 
attend a particular school. Such mandated areas are less common in the case 
of health services in the United States, although some publicly provided ser-
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vices have mandated catchment areas. Furthermore, many managed care plans 
restrict health care choices to a given set of providers, resulting in mandated 
service areas for those who belong to a managed care plan.

When choice of providers is not mandated, health care services have natu-
ral service areas that arise through individual decisions and medical referral 
patterns. The service areas for different health care providers typically overlap, 
reflecting the diversity of health care needs and choices among people living in 
the same area. Patient origin information is essential for identifying “natural” 
service areas. The GIS analyst geocodes the addresses of patients who use the 
health care facility, and plots those address locations on a map (Parker & Camp-
bell, 1998). The resulting geographical distribution of addresses defines the nat-
ural service area for the health care facility (Figure 9.14). The map of addresses 
may reveal outlier patients who reside very far from the service facility. To focus 
on the primary service area, we can plot the 80 or 90% of clients who live closest 
to the facility and identify the service area this way (Figure 9.14).

If client data are not available by residential address, but only by area, one 
can construct service area maps in several different ways. One is to rank the 
areas based on their respective shares of the health facility’s clients and define 
the service area as those areas that make up a prespecified percentage of the 
facility’s clients (Figure 9.15). Alternatively, one can use a plurality rule that 
defines the service area as the set of places in which a plurality of patients utilize 
the particular health care facility (Wennberg, 1999).

An understanding of service areas is important for health care providers 
because it ties the client population to a particular area or set of communities. 
This area can be examined in its own right to see if all populations are being ade-
quately served and to assess the diversity of population health needs. Analyzing 
the social and demographic characteristics of service areas may reveal popula-
tions with unmet needs. Providers who want to expand their client base can use 
the service area map to identify places and populations that are not being well 
served and to chart out areas for future expansion.

Spatial Interaction Models of Health Care Utilization

Although maps of service areas are useful descriptive tools, they do not address 
the determinants of service utilization patterns and thus have limited value for 
forecasting and planning. What are the effects of distance, facility size, and ser-
vice level on utilization? Spatial interaction models provide an essential tool for 
examining this question. The models describe and explain the movements or 
interactions between places as a function of distance and other factors. As noted 
earlier, spatial interaction models were first developed based on an analogy to 
Newtonian physics. However, they have been extended and enhanced greatly 
over the past decades, and there is now a suite of methods that can be applied to 
a variety of health planning problems (Lowe & Sen, 1996).

A particular form of spatial interaction model—the origin-constrained 
model—has been widely used in the United States for health care planning 
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FIGURE 9.14. The primary service area of a health care facility identified by map-
ping patient residential locations in the region. When the locations of all patients are 
considered, the entire study region will be included in the service area. When we 
define the service area in terms of the closest 90% of patients, the primary service area 
is smaller. Boundaries of towns within the study area are shown for reference.
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(Martin & Williams, 1992). This model assumes that the number of trips from 
an origin area—for example, a town, ZIP Code, or census tract—is known and 
fixed. Interaction with health care facilities results from decisions in which peo-
ple compare available facilities and select the one that is best in terms of dis-
tance, quality, and other characteristics. The gravity model models the allocation 
of those trips among health care facilities. For residents of area i, one can express 
the “utility” or value (Uij) of health care facility j as a function of the distance or 
travel time to that facility (dij) and other attributes (k) of the facility that represent 
its attractiveness Akj

1/ kk b

ij

b

kjij dAU
k

FIGURE 9.15. The primary service area of a health care facility identified by map-
ping the areas that account for the largest shares of hospital patients. In this case, 23 
towns in the region each accounted for less than 5% of the total number of patients 
served by the hospital. About 60% of the patients served by the hospital resided in one 
of four towns.



332 GIS AND PUBLIC HEALTH

The likelihood that an individual i will utilize facility j, Iij, depends on the utility 
of that facility compared to the total utility of all facilities that could have been 
chosen, expressed as

m
imijij UUI /

The parameters bk measure the relative effects of service attributes Akj and 
distance on utilization decisions. As with the potential model discussed earlier, 
the larger the parameter value, the more weight given to that particular factor in 
hospital choice. Parameter values can be estimated empirically via multivariate 
statistical methods (Congdon, 2001). Given data on flows of patients from origin 
areas to health care facilities, we find the parameter values that best describe 
these actual patient flows. Different functional forms for distance impedance 
can also be incorporated in estimating parameter values (DeVries, Nijkamp, & 
Reitveld, 2009).

Tai, Porell, and Adams (2004) analyzed hospital choices of rural Medicare 
beneficiaries using an origin-constrained spatial interaction model. The model 
included variables representing patient characteristics such as age and gender 
and hospital characteristics such as number of beds. Results confirmed that dis-
tance was a key determinant of hospital choice. Over half the rural Medicare 
patients in the sample relied on the nearest hospital facility. Patients with higher 
levels of income and education were more likely to bypass the closest rural hospi-
tal than were more disadvantaged patients. Results also confirmed the attraction 
of larger hospitals offering more complex services.

There are several other types of spatial interaction models. The destination-
constrained model assumes that the total capacity of each facility (destination) is 
fixed, so each facility can only serve a predefined number of clients. Given this 
constraint, the model describes the flows of patients to facilities. These types of 
models have been widely used in Great Britain where health care is centrally 
planned and financed, and planning authorities often dictate the capacities of 
health care facilities (Mayhew, Gibbard, & Hall, 1986).

The value of gravity models for public health analysis lies in their ability to 
explain and predict health service utilization patterns. Researchers have used 
gravity models to estimate the changes in service areas that might occur when 
health facilities close, new facilities open, or other policy changes take place. 
Lowe and Sen (1996) examined a range of spatial interaction model applications 
in health care, including the impacts of hospital closure and universal health 
insurance on utilization and access. A key factor in their models was insurance 
match or the willingness of a hospital to accept the patient’s insurance. Health 
care choices were strongly conditioned by the availability and type of insurance. 
In exploring the impacts of universal health insurance, the authors assumed that 
insurance barriers would disappear and that hospital utilization would be based 
solely on distance and attractiveness. The gravity model predictions revealed a 
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marked increase in geographical access to hospitals for residents of high-poverty 
ZIP Codes, following the adoption of universal insurance coverage.

To predict shifts of patients following the reconfiguration of hospital emer-
gency services in northeast London, Congdon (2001) proposed an innovative 
Bayesian modeling framework using an unconstrained gravity model. A poten-
tial measure of accessibility to hospitals, similar to the potential measures dis-
cussed earlier in this chapter, was used in modeling patient flows. The model 
also included ward-level indicators of deprivation and age structure. Predicted 
patient flows were compared with actual flows that were recorded after the 
reconfiguration of hospital services took place. Observed and predicted flows fit 
quite well, indicating the utility of the model for forecasting purposes.

These studies illustrate the range of gravity model applications in the 
context of changing health care delivery systems. As health facilities open and 
close, and as managed care and other new forms of health care delivery affect 
affordability and access to care, gravity models offer a valuable forecasting tool. 
Using the models in a predictive context raises several important issues, how-
ever. Because geographical patterns of health care utilization vary for diverse 
population groups, for different types of health services, and in different places, 
it is crucial that the models be tailored to the particular study context (Handy 
& Niemeier, 1997). In general, a gravity model should fit as closely as possible 
the type of service, population, and geographical area in which it is applied. The 
accuracy of gravity models also depends on the level of aggregation of the data 
on which they are calibrated. Models estimated from individual or small-area 
data are generally thought to be more accurate for prediction since they bet-
ter describe the forces that influence individual health care choices (Handy & 
Niemeier, 1997). However, many gravity models used in health planning rely on 
patient origin data at the county or ZIP Code level or on individual data geo-
coded to large geographic zones. Errors arising from spatial and nonspatial data 
aggregation effects reduce the accuracy and utility of model forecasts.

Small-Area Variation in Health Care Utilization

A large body of research demonstrates that rates of utilization for specific types 
of health services or medical-surgical procedures vary substantially from place 
to place in the United States (Wennberg, Fisher, & Skinner, 2004). The authors 
of the Dartmouth Atlas of Health Care 1998 (Wennberg, 1998, p. 2) go so far as 
to say that “in health care, geography is destiny.” For many Americans, the quan-
tity, quality, and type of health care received depend greatly on the capacities 
and practices of local health service providers. Substantial geographic inequali-
ties in health care spending have also been documented.

The Dartmouth project on small-area variations uses GIS to create geo-
graphic areas for the comparison of utilization rates. Starting with Medicare data 
by ZIP Code, the ZIP Codes are grouped into hospital service areas, areas in 
which the Medicare population primarily uses a particular hospital. In turn, hos-
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pital service areas are aggregated into hospital referral regions, regions in which 
the bulk of population was referred to the given hospital for high-level surgi-
cal procedures like neurosurgery. The regions reflect actual patterns of hospital 
utilization (Figure 9.16) with adjustments to ensure contiguity and minimum 
population size. These regions form the base for statistical analysis and mapping 
of geographical variations in service utilization at the national scale.

Their mapping of health care utilization patterns of Medicare recipients 
reveals for some types of procedures, a two- or threefold variation in hospital-
ization rates among geographic areas, even after adjusting for age, gender, and 
race. Spatial variation is less for medical and surgical procedures for which there 
is consensus among medical specialists on appropriate treatments; procedures 
for which there is less consensus exhibit much more spatial variation (Figure 
9.17). The authors attribute much of the latter geographical variation to hospital 
capacity, as the pressure to fill beds stimulates utilization. Practice variations—
differences in medical decision making—are also shown to be important. Dif-
ferences in population need related to age, wellness, and socioeconomic depriva-
tion account for roughly one-fourth of the regional disparities in utilization and 
spending (Wennberg, Fisher, & Skinner, 2004). By documenting the significance 
of local variations in health care supply and practice decisions in explaining geo-
graphic differences in costs and utilization, this research highlights the need for 
supply-side interventions to control health care costs (Gawande, 2009).

Although the Dartmouth research has been highly influential, by focusing 
on Medicare recipients, it considers a population that faces few economic bar-
riers to accessing health care. Utilization patterns are likely to differ for other 
population groups. In addition, although the Medicare program removes most 
economic barriers to health care, social, cultural and geographical barriers may 
limit utilization by Medicare recipients. These other types of barriers need to be 
carefully examined before any conclusions can be drawn about geographic varia-
tion in health care utilization among Medicare recipients.

For other population groups, economic, social, and geographical access bar-
riers can lead to substantial differences in rates of health care utilization. Such 
variations have been documented for a wide range of health care procedures in 
a variety of contexts. Important findings have come from research on ambula-
tory care sensitive conditions (ACSC)—medical conditions that generally can 
be treated successfully in an ambulatory care setting (Billings et al., 1993). Hos-
pitalization should only be required in the case of severe illness or emergency. 
Although there is some disagreement on which conditions should be considered 
as ambulatory care sensitive, the list generally includes asthma, diabetes, and 
hypertension, among others. Small-area variations in hospital use rates for these 
conditions reflect both underlying differences in illness, poor access to primary 
care, or poor quality of preventive care (Probst, Laditka, & Laditka, 2009). Indi-
viduals who have no health insurance or no regular source of primary care do 
not get early, preventive treatment and are more likely to end up in the hospital 
acutely ill. Hospitalization rates for ACSC differ sharply among small areas and 
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FIGURE 9.16. The inset shows a hospital service area (HSA) defined by patterns 
of utilization of Medicare enrollees by ZIP Code area. Medicare enrollees in five ZIP 
Code areas most often used the Mt. Ascutney Hospital in Windsor, Vermont. To pre-
serve geographic contiguity in hospital service areas, ZIP Code area 05053 was reas-
signed to a different hospital service area. The service areas of community hospitals 
like the Mt. Ascutney Hospital are nested within the larger service areas of referral 
hospitals like the Mary Hitchock Memorial Hospital in Lebanon, New Hampshire, as 
shown in the main map. From Wennberg. (1998). Copyright 1998 by The Trustees of 
Dartmouth College. Reprinted by permission.
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FIGURE 9.17. Utilization rates for different surgical procedures vary in relation 
to the U.S. average. Rates of colectomy for colon cancer showed little variation. As 
the map legend for Figure 9.17a shows, no regions had rates 30% or more above the 
national average, and only 15 regions – mostly in the West – had rates more than 25% 
below the national average. Rates of mastectomy for breast cancer in Figure 9.17b 
showed greater variation, with 26 regions in the upper central United States having 
rates 30% or more above the national average and 19 regions having rates more than 
25% below the national average. From Wennberg. (1998). Copyright 1998 by The 
Trustees of Dartmouth College. Reprinted by permission.



Access to Health Services 337

are strongly correlated with socioeconomic status. The risk of hospitalization for 
ACSC is much higher in low-income areas and among people who have no health 
insurance (Pappas, Hadden, Kozak, & Fisher, 1997). Hospitalization for these 
chronic health problems can be viewed as a failure of the medical care system.

As in research on geographic variations, GIS can be used in studies of 
ACSC for managing the large spatial data sets that are required for examining 
small-area variations, for creating meaningful geographic areas to analyze, for 
modeling the impacts of geographical barriers on utilization, and for presenting 
display and visualization. The sensitivity of findings to scale and area boundaries 
(the modifiable area unit problem) can also be examined. The biggest challenge 
is interpretation—how to make sense of the geographic variations in health ser-
vice use evident on the map. Geographic variation by itself is not surprising; the 
essential question is what processes give rise to it. The ACSC and Medicare liter-
atures offer sharply different interpretations of similar patterns, the one empha-
sizing overreliance on hospitals caused by poor access to health care, and the 
other excess utilization caused by provider decisions. Research on individual and 
provider behaviors in varying geographical and health care contexts is needed to 
sort out these different interpretations.

Conclusion

Differential access to health care has been an important theme in public health 
policy in the United States and other countries for many years. The access prob-
lems of rural residents who often travel long distances to the nearest health care 
provider are well documented, as are the problems of low-income urban resi-
dents whose choices are limited by time–space constraints, lack of insurance, 
and poor transportation access. The restructuring of health care and efforts to 
control health care costs will continue to alter these patterns, yet the implications 
are poorly understood. By documenting changes in service accessibility in their 
geographical and social contexts, and by analyzing the differential impacts on 
population groups and places, GIS can play an important role in understanding 
evolving patterns of access and their consequences for health and well-being.
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CHAPTER 10

Locating Health Services

The geography of health services delivery is an essential component of GIS 
applications in public health. To the extent that our information about health 
problems is obtained through medical care contact, our understanding of the 
distribution of health problems is filtered by the geographical distribution of 
health services and geographical factors that affect their functioning and utiliza-
tion (Shannon, 1980). In addition to documenting the geographical variations in 
access to health services described in Chapter 9, GIS analyses have addressed 
issues in health services planning (McLafferty, 2003). Concern for the organiza-
tion of health services is a logical outgrowth of the study of health and disease. 
Describing patterns of environmental contamination or uncovering the causes of 
disease leads us to intervention and prevention. Activities designed to prevent 
or address health problems include education, enforcement, and environmental 
modification, in addition to medical care delivery. As long as our activities occur 
in time and space, knowing how patterns of health, disease, and health services 
characterize regions will be essential to our efforts to advance human health. 
Like the environmental systems through which human populations are exposed 
to disease, health service systems have important geographies that can be effec-
tively modeled using GIS.

As discussed in Chapter 9, the location of health services is a key factor 
affecting accessibility to care. The way we choose to model the distribution of 
health services influences the identification of underserved areas. It also influ-
ences our decisions about where additional health professionals and facilities 
should be located.

This chapter considers the basic components and dimensions of health ser-
vice delivery systems and how they can be modeled. Given a geographical dis-
tribution of people who need access to some type of health service and a set of 
objectives for providing that service, patterns of health service organization can 
be evaluated and managed. Location–allocation models have been developed 
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and applied to the problems of health services delivery. This chapter reviews 
some basic models and their use in health services research. Issues in integrating 
these models into a GIS are also considered. GIS can become spatial decision 
support systems in the health services planning process, allowing decision mak-
ers to explore complex, multiobjective problems. These techniques have been 
used to design and evaluate preventive health services, health services for acute 
and chronic health problems, and health services needed to respond to emergen-
cies and disasters.

The development of GIS has coincided with important changes in health 
services delivery in the United States. Throughout the 1960s and 1970s, the fed-
eral government’s role in health services delivery expanded dramatically even 
as many public health programs like infectious disease surveillance experi-
enced funding cuts. In 1965, the Heart Disease, Cancer and Stroke Amendment 
authorized the establishment and maintenance of Regional Medical Programs, 
introducing the concept of regionalizing medical care in the United States. The 
programs were intended to promote cooperative arrangements among medical 
schools, research institutions, and hospitals for research and training. Fifty-six 
regions were established, covering the entire country, with most programs based 
at or near university medical schools. Federal financial support for graduate 
medical education increased, and the federal government became a major pur-
chaser of health services through Medicare and Medicaid (Kovner & Knickman, 
2008). The Health Care Planning and Development Act, passed in 1976, marked 
the culmination of almost two decades of federal support for health services by 
creating health system agencies across the United States. At the beginning of the 
1980s, that federal support was eliminated, and the federal focus on health ser-
vices shifted from subsidizing the expansion of hospital services in communities 
to cost containment, deregulation, and privatization.

Major insurers and providers of medical care services in the private sec-
tor in the United States have used GIS technology for institutional health ser-
vices planning (Sandrick, 1998; Kennedy, 1999), but these applications have not 
generally been described in the research literature. The reason is partly that 
the locations of service centers, the structure of provider networks, and patient-
origin patterns represent important business information that would be of value 
to competitors in a privatized system. At the same time, agencies in the public 
sector have recognized weaknesses in methods developed in the 1970s to iden-
tify underserved areas.

At the beginning of the 21st century, reform of the U.S. health care system 
again moved to the forefront of the national political agenda (Mitka, 2009), given 
the weaknesses in the U.S. system compared to the systems of other countries 
(Nuwer, 2008). Although approaches to paying for health care have dominated 
the debate, inequalities in the geographical supply, cost, and distribution of 
health providers have also been highlighted (Goodman & Fisher, 2008). Loca-
tion modeling based in GIS can contribute to health system management and 
reform efforts.
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Health Care Shortage Areas

During the period of the expanding federal role in health services financing and 
delivery, the federal government adopted two main systems for identifying loca-
tions where barriers to obtaining primary health care exist (General Accounting 
Office, 1995). The system for designating Health Professional Shortage Areas 
(HPSAs) was first used in 1978 to direct placements of National Health Service 
Corps employees to counties or facilities with a critical shortage of physicians. 
By the mid-1990s, close to 30 other federal programs had adopted the HPSA 
approach. The Medically Underserved Areas (MUAs) system was developed in 
1976 to identify areas eligible for federally funded community health centers; the 
Community Health Center program was the system’s main user. The definition 
was later expanded to include Medically Underserved Populations (MUPs).

An evaluation of these approaches to identifying underserved areas con-
ducted in 1995 concluded that these methods did not effectively identify areas 
with primary care shortages or target resources to benefit the underserved (Gen-
eral Accounting Office, 1995). Instead of identifying specific populations in need 
of care and the system resources available to meet that need, these approaches 
began with a place—a geographic area like a county or a specific facility like a 
prison—and characterized the place based on medical resource availability and 
population characteristics. The data used to describe the number of available 
physicians in a place were often neither timely nor accurate, especially when 
compared with information in health directories like those discussed in Chapter 
3. As a result, analysts relying on these methods were not able to identify who 
was underserved and why.

Since the late 1990s, federal agencies have been involved in an effort to 
improve the designation of areas and populations that are underserved, and there 
is a continuing emphasis on calculating provider/population ratios for adminis-
trative units like counties or census tracts (Ricketts et al., 2007). Geographic 
information systems have been used to demonstrate methods for improving the 
designation of health professional shortage areas and medically underserved 
areas, especially with respect to primary care physician services (Juarez, Robin-
son, & Matthews-Juarez, 2002). Circular buffers of census tract centroids were 
used to model floating catchment areas representing the possible movement of 
patients to physicians across the boundaries of census tracts in a nine-county 
study area in northern Illinois (Luo, 2004). Physician/population ratios were cal-
culated for areas defined using different buffer distances. The larger the radius, 
the fewer areas were identified as shortage areas. This occurs because the physi-
cian/population ratio is scale dependent and the greatest variability in the ratio 
occurs at the local scale. As the radius increases, more physicians and popula-
tion are located within the catchment area, and the physician/population ratio 
converges to the ratio for the study area as a whole. A subsequent study applied 
similar techniques to identify physician shortage areas in the entire state (Wang 
& Luo, 2005).
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In 2008, the Health Resources and Services Administration proposed a new 
rule for revising and consolidating criteria and procedures for designating Medi-
cally Underserved Populations and Health Professional Shortage Areas. The 
proposed rule describes a two-step process. First, states must identify so-called 
rational service areas defined in terms of U.S. Census Bureau geographical units. 
Once the service areas are defined, the data on providers and populations within 
the areas are collected and evaluated. This rule was not adopted, and a new 
notice of proposed rulemaking will likely be issued. In the meantime, an interac-
tive website enables users to search for shortage areas by state and county and to 
identify whether or not an address entered by the user is within a shortage area 
(Health Resources and Services Administration, 2010). A search returns a list of 
geographic areas like census tracts included in the selected shortage areas.

Efforts to address concerns about physician shortages in the United States 
are being made, primarily at the institutional and state levels (Iglehart, 2008). 
Workforce issues affect the health care systems of many countries (World Health 
Organization, 2006). Increasingly, national physician supplies are linked by phy-
sician migration (Onyebuchi, Ogbu, & Okeke, 2008). The United States, Canada, 
Australia, and the United Kingdom are four major destinations for migrating 
physicians, and international medical graduates account for roughly a quarter of 
the physicians in these countries. Of this group of international medical gradu-
ates, 40 to 75% came from countries with lower incomes.

GIS provide the means to capture and verify health service capacity in 
locally defined service areas using data that may not be available at the national 
level. In some cases, health care facility service areas are defined based on utili-
zation patterns as described in Chapter 9 (see Figure 9.10). In a study of regional 
variations in neonatalogists, beds, and low-birthweight newborns, neonatal 
intensive care regions in the United States were defined to represent markets 
for neonatal intensive care services (Goodman, Fisher, Little, Stukel, & Chang, 
2001). Counties were assigned to regions with at least one neonatal intensive 
care unit based on the birth locations of very-low-birthweight infants. Regional 
boundaries were adjusted to minimize cross-boundary flows for care, resulting 
in a set of regions matching neonatal intensive care resources to the newborn 
populations needing care. Other research has tested methods for defining local 
regions for health care planning that yield nonoverlapping regions for general 
practitioner services based on defined population size and containment criteria 
(Shortt, Moore, Coombes, & Wymer, 2005). A challenge in defining regions for 
health care planning and analysis is that one set of regions may not be equally 
meaningful for all age groups and all health services (Guagliardo, Jablonski, 
Joseph, & Goodman, 2004). Regardless of how the region that a health services 
system serves and zones within it are defined, GIS functions can be used to 
display the components of health service systems, to investigate the distribu-
tions of specific client populations affected by different barriers to care, and to 
incorporate location models that assess how well the distribution of services fits 
the distribution of populations in need.
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Components and Dimensions of Health Service 
Delivery Systems

Technological advances in communication have made it possible to distribute 
information about health, disease, and health services through the mass media 
and the Internet (Andreassen et al., 2007; Atkinson, Saperstein, & Pleis, 2009; 
Moreno, Ralston, & Grossman, 2009), and have even made it possible for patients 
and providers to consult in real time over long distances (Balas et al., 1997; Wilson 
& Branigan, 1999; Scott et al., 2007; Lam & Poropatich, 2008; McGeady, Kujala, 
& Ilvonen, 2008). Nevertheless, the delivery of many health services still requires 
some form of direct contact between the provider of the service and the person 
who benefits from it. As outlined in the Introduction, direct personal contact can 
only be achieved if people’s activities can be coordinated in time and space.

A service delivery system is “a cluster of diverse agencies within an orga-
nizational network that provides services to a common client population” (Alter, 
1988, p. 91). The components of a health services delivery system include the 
client or patient population, the provider agencies, and the relationships that 
connect clients to providers. An early application of GIS technology (Achabal, 
Moellering, Osleeb, & Swain, 1978) illustrates how interactive computer graph-
ics can be used to display the locations of hospitals within a service area, the 
spatial distribution of the residential population, and the allocation of patients to 
service centers when patients are assigned to the hospitals so that no individual 
is required to travel more than a prespecified distance and no hospital is over-
utilized (Figure 10.1).

FIGURE 10.1. Allocation of residents to existing hospitals so that no individual must 
travel more than 6 kilometers and no hospital is overutilized. Reprinted from Social 
Science and Medicine, 12(1D), Achabal, D., Moellering, H., Osleeb, J. and Swain, R., 
Designing and evaluating a health care delivery system through the use of interactive 
computer graphics, 1-6, Copyright (1978), with permission from Elsevier.
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As this example shows, the components of a health service system are usu-
ally modeled in GIS as objects (see Chapter 2). At the community scale, health 
service facilities are represented as point features, populations served are rep-
resented as points or aggregated as count data for areas, and the assignments of 
service users to service providers are represented as lines. These points, lines, 
and areas form a network space (see Chapter 2) for evaluating locational equity 
and efficiency in an existing or planned service delivery system.

Health service organizations must coordinate their activities in time and 
space as much as individuals do. Some organizations, such as testing and coun-
seling centers, operate at one or more fixed locations. These service centers rep-
resent nodes in the activity spaces of service providers and service users who 
travel to service sites. Other individuals or organizations that provide services 
to people move around or circulate (the visiting nurse or physician making a 
house call, the emergency medical response team, the home-delivered meals 
service). The activity patterns of the services can be evaluated using time bud-
get approaches like those described in the Introduction for analyzing individual 
travel and activity patterns. In addition to the location or set of locations where 
services are provided, there are other dimensions of community institutions 
(Alter, 1988) that have geographical implications.

Size can be interpreted as the number of service sites. In the case of the 
system modeled by Achabal et al. (1978), the hospital service system included 
nine major hospitals in the Columbus, Ohio, metropolitan area. The relation-
ships between total size of a system (measured as the number of service sites) 
and capacity, or volume of service, are not always straightforward. Service cen-
ters located in communities of similar size can have different capacities and can 
provide varying volumes of service depending on eligibility requirements and 
intake.

Threshold requirements, capacity constraints, and minimum standards are 
important characteristics of health services. A threshold requirement represents 
the minimum demand or volume of service needed to sustain service delivery. 
For example, the minimum number of deliveries in a community hospital obstet-
rics unit needed to make the provision of quality service viable is a threshold 
requirement. A capacity constraint is a maximum limit on the volume of service 
that can be provided. For example, the total number of hospital beds limits the 
number of patients who can be accommodated at any one time. An example of a 
minimum standard for service delivery would be that no person should live more 
than 10 minutes travel time from a first-response emergency service provider.

When there are threshold requirements, capacity constraints, and minimum 
standards for planned facilities, the optimal number, location, and capacities of 
service centers will be strongly influenced by the underlying geographical dis-
tribution of the population to be served. In fact, depending on the distribution of 
that population, it may be geographically infeasible to meet the threshold, capac-
ity, and minimum service standards identified. This would happen if there were 
a small residential neighborhood that had too few people to meet the threshold 
requirement for a local facility and the neighborhood was located more than 
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the desired travel distance or time from an existing provider. If provision of the 
service were necessary, one of the requirements would have to be broken. Either 
taxpayers would pay a subsidy to run a small health service center or patients 
would pay in excessive travel distance or time.

Centrality is another dimension of social service organizations. When the 
total volume of users flows through a single organization, that organization has a 
high degree of centrality. There is a strong relationship between differentiation 
of a service organization’s functions and its degree of centrality.

The geographical relationships among service centers with varying degrees 
of centrality is the focus of central place theory (Christaller, 1933; King, 1984) 
and subsequent research on human settlement systems and public and private 
service systems (Foot, 1981; Ghosh & Rushton, 1987). When a population is uni-
formly distributed, those service centers with smaller threshold requirements—
for example, physicians’ offices—will be more common in the landscape and 
spaced relatively close together. Those service centers with larger threshold 
requirements—for example, tertiary care centers—will be less common in the 
landscape and spaced relatively far apart. The service areas of small activity sites 
are commonly nested in the service areas of larger activity sites.

The relationships between the number of service sites and the number and 
level of services provided at each site have been explored using GIS. A study of 
the provision of mental health advocacy services in London, England, mapped 
the locations of service sites and their catchment areas as well as the provision of 
advocacy services in acute care and community settings (Foley & Platzer, 2007). 
Although each borough was served by at least one local service and by specialist 
service covering all of London, no single borough had the full range of provi-
sion and no single organization offered a full range of services or delivered its 
services in the full range of settings. The study also identified significant changes 
in the organization of services over time. Close to a quarter of organizations pro-
viding advocacy in 1998 were operating differently or were no longer delivering 
services at all in 2002.

The changing pattern of service provision at locations was analyzed in a 
study of the spread of health services and fertility change in rural Nepal from 
1945 to 1995 (Brauner-Otto, Axinn, & Ghimire, 2007). A GIS application modeled 
accessibility to four types of maternal and child health services—child immu-
nization, family planning, prenatal care, and pregnancy/delivery assistance—
provided by a range of organizations at different locations at different points in 
time. Different women had different levels of access to different combinations 
of services over their lifetimes. The analysis uncovered significant independent 
relationships between the availability of maternal and child health services and 
family planning services and fertility limitation. The pathways individuals follow 
to access services are also important.

Integration refers to the relationships or forward and backward linkages 
among units within a system. In the case of health services systems in the United 
States, alternative pathways through the service hierarchy have generally been 
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very common. Residents of a particular neighborhood are not usually “assigned” 
to a particular service center, although managed care systems may attempt to 
direct patients through the health service hierarchy of providers.

GIS have been used to investigate integration in health service systems. 
Researchers in Japan studied patterns of pediatric inpatient referral from sec-
ondary care hospitals to a tertiary care university hospital (Toyabe & Kouhei, 
2006). The analysis showed that the university hospital functioned as both a sec-
ondary and tertiary level facility. Patients who lived near the hospital were often 
directly admitted to the hospital, and patients who lived farther away from the 
hospital were more likely to use the hospital as a tertiary care provider. Spa-
tial differences in referral to care after discharge were also observed among the 
patient population.

Service linkages are especially important in planning for special popula-
tions recently released from inpatient treatment programs or prisons. A study 
using GIS modeling and logistic regression analysis found that discharge of 
patients with mental health and substance use disorders from an acute inpatient 
unit to the preadmission address, along with other individual and neighborhood 
factors, reduced the likelihood of attending a program of postdischarge outpa-
tient treatment (Stahler et al., 2007). Analysts in New Jersey used GIS to assess 
the number, demographic characteristics, and needs of a parolee population in 
Newark, New Jersey, in light of the availability, location, and characteristics of 
health and human services agencies providing services that would assist prisoner 
reintegration into society (Mellow, Schlager, & Caplan, 2008). Spatial distribu-
tion of services and the degree of spatial overlap in service provision to the client 
population were documented.

Client Population Distribution

An important geographical pattern to investigate in planning and evaluating 
health services delivery systems is the distribution of the population who will be 
receiving care. The residential distribution of the population is usually consid-
ered the most relevant in health services planning, especially for home-delivered 
services, but also for services requiring the help seeker to travel to a fixed service 
delivery site. As noted in earlier chapters, the residential distribution of popula-
tion is rarely uniform. GIS are effective tools for developing useful representa-
tions of population distribution.

This is particularly important for services designed to meet health problems 
affecting particular age or age/sex cohorts because these groups are probably 
not distributed equally across the distribution of the total residential popula-
tion. Mammography, for example, is recommended for women aged 40 years and 
older on a regular basis. A map of the distribution of women aged 40 and older 
shows that the distribution of this age/sex group differs from the distribution of 
the total population (Figure 10.2).
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Travel distance is an important consideration in locating health service cen-
ters. Time spent in travel—either by providers or by help seekers—increases 
the cost of providing care and decreases accessibility. For some types of care, 
like emergency medical service or home-delivered meals, there may be critical 
service response times after which the service is of little or no value. The impor-
tance of avoiding unnecessary travel means that opening service or dispatch sites 
at central locations within the distribution of the client population is a key objec-
tive of health services planning.

The Meaning of “Centrality” in Health Service 
Facility Location

The different operational meanings of a “central” location within a distribution 
of points can be explored through a simple example. In this hypothetical setting, 
the planning task is to open a single service center to meet the needs of nine peo-
ple requiring care. The residential distribution of the population is shown in Fig-
ure 10.3. Again, to simplify, the population is distributed in a one-dimensional 
space, along a hypothetical coastline or the foothills of a mountain range. In the 

FIGURE 10.2. Mapping the age–sex specific need for mammography services. The 
map shows that older women are concentrated in towns in the northwest, along the 
coast, and near Hartford. These towns have a higher percent of women 40 or older in 
their populations than in the population of the state as a whole. The towns with the 
highest concentrations have 21% of the state’s total population, based on data from the 
2000 census, but they have 24% of the state’s population of women 40 or older.
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example, location is measured in absolute terms from an arbitrary origin located 
outside the range of the data. Distance is calculated as difference between the 
starting and ending points along the number line.

Four measures of central tendency are available to define the “center” of 
this distribution of population: mean, median, mode, and midpoint of the range. 
To calculate the mean as the center of the distribution of residential locations, 
we would sum the distances of each residence to the origin and divide by the 
total number of residential locations. In this case, the mean is 6 and the “central 
facility” would be located at position 6, a place where no one actually resides. 
The mean —and therefore its associated location — has the special property of 
minimizing variance in travel distance. Position 6 is the location ensuring that 
the variation in distances people must travel to receive service is minimized; 
that is, the sum of the squared distances from each residence to position 6 is a 
minimum. Locating the facility at any other position would result in a greater 
sum of squared distances from the facility location.

To calculate the median, we can arrange the distances from the origin in 
order from lowest to highest and identify the distance value in the middle of 
the distribution. In this example, the median position is position 5. The median 
has the special property of minimizing total distance. That is, the sum of the 
absolute differences between position 5 and the other locations is a minimum. 
Locating the facility at any other position would result in a greater total distance 
traveled to the facility location.

To calculate the mode, we would identify the location that occurs most fre-
quently in the residential distribution. This is position 2. The mode has the spe-
cial property of maximizing access to the facility by locating it most conveniently 

FIGURE 10.3. An example showing the location of a single central facility to serve 
nine clients distributed along a single dimension. The location of the facility changes 
depending on how centrality is defined.
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for the greatest number of people. Position 2 is the location where the population 
to be served is concentrated.

Finally, to calculate the midpoint of the range, we would first calculate the 
range of the distribution. The range is a measure of dispersion and is the differ-
ence between the highest and lowest values in the ordered distribution. In this 
case, the range is 14. The midpoint of the range is calculated by dividing the 
range in half and adding that value to the lowest value in the distribution. When 
these calculations are performed for the hypothetical example, the midpoint of 
the range is 8. Locating the facility at position 8 minimizes the maximum dis-
tance that any single person would have to travel to obtain care—in this case, 7 
units of distance. Locating the facility at any other position would increase the 
maximum travel distance for the most remotely located individual.

These measures can also be computed in the bivariate space of the map 
(Figure 10.4) (Ebdon, 1985; Wong & Lee, 2005). As these hypothetical examples 

FIGURE 10.4. An example showing the location of a single central facility to serve 
nine clients distributed in a two-dimensional space. The location of the facility changes 
depending on how centrality is defined.
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illustrate, there is more than one way to define a “central” location for a single 
facility depending on the particular travel distance function that the selected 
measure of centrality maximizes or minimizes. Facility locations based on mea-
sures of central tendency like the median or mode emphasize locational effi-
ciency in the delivery of services because these measures minimize total travel 
effort or maximize accessibility (Morrill & Symons, 1977). Facility locations 
based on the mean or midpoint of the range emphasize locational equity in the 
delivery of services because these measures minimize variation in travel effort 
or reduce travel distances for those farthest from population centers.

Normative Models of Facility Location 
and Service Delivery

Normative Models and Mathematical 
Programming Methods

Normative models of facility location or service delivery do not seek to describe 
existing facility locations or flows. Instead, they are designed to identify the 
facility locations or flows that maximize or minimize a mathematical function 
that expresses the objective of the decision maker. Allocation models assume 
that facility locations are fixed—as they are in the short term—and identify the 
assignment of patients to facilities that maximizes or minimizes the objective 
function—for example, the assignment that minimizes total distance traveled 
to service sites. Location models seek the set of locations from among a set of 
candidate sites that maximize or minimize the objective function. Location–
allocation models identify the optimal locations and assignments.

Location–allocation problems are solved through the application of math-
ematical programming techniques (Greenberg, 1978). Mathematical program-
ming is a set of numerical methods for solving optimization problems. These 
methods are not based in multivariate inferential statistics. Most public health 
professionals have probably not received intensive training in these methods. 
Mathematical programming techniques, however, are applied in industrial and 
business planning to optimize various aspects of production, including facility 
location. They have also been used in choropleth map classification (Cromley, 
1996) and health data anonymization (Wieland et al., 2008). Although other 
numerical methods, like calculus, can be used to solve an optimization problem 
(e.g., finding the minimum of an average cost function), mathematical program-
ming methods are used when optimization problems involve quantities that can-
not be negative. All location–allocation problems have these nonnegativity con-
straints. We cannot travel a negative number of miles to an outpatient facility or 
assign a negative number of patients to a hospital. Location–allocation models 
have been used within medical geography since the 1960s when the algorithms 
for solving them could be run on mainframe computers (Godlund, 1961; Gould 
& Leinbach, 1966; Rushton, 1975; Bennett, 1981; Mohan, 1983).
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The Transportation Problem

A mathematical programming model is specified by an objective function and a 
set of constraints. One of the most commonly modeled problems is the transpor-
tation problem (Scott, 1970). It is an assignment or allocation problem because 
the geographical distributions of supply and demand are known and fixed. The 
objective of the transportation problem is to assign demand associated with a set 
of demand points to facilities that can supply the needed service (supply sites) so 
that the total cost of the assignment (total distance or travel time) is minimized 
(Table 10.1). This assignment is subject to the constraints that all demand must 
be served and the capacity of a supply site cannot be exceeded.

Mohan (1983) used the transportation problem to assess strategies for hos-
pital location in the Durham Health District in England (Figure 10.5). The 
demand sites were represented by grid cells 1 kilometer square superimposed 
over the Durham Health District area; the volume of demand was total popula-
tion per grid cell. In the initial analysis, the two existing supply sites (hospitals) 
were used, and the minimum aggregate travel distance and the average travel 
distance for each hospital were calculated based on an optimal assignment of 
demand sites to service sites. Once the minimum aggregate travel achievable 
with optimal use of the existing hospital system was established as a bench-
mark, the impact of adding or modifying the existing hospital system could be 
evaluated. Two alternatives were examined. In the first, a third hospital facility 

TABLE 10.1. Mathematical Programming Formulation 
of the Transportation Problem

Objective function: Minimize Z = i I j J dij xij

Subject to the constraints:
All demand at a demand site must be served. j Jxij ri for all i

The capacity at a supply site cannot be exceeded. i Ixij qj for all j

The number of people assigned from a particular 
demand site to a particular facility site cannot be 
negative.

xij  0 for all (i, j)

Where:
Z is the objective function.

I is the set of demand areas, usually nodes on a network, and the subscript i is an index 
denoting a particular demand area.

J is the set of candidate facility sites, usually nodes on a network, and the subscript j is 
an index denoting a particular facility site.

dij is the distance or time (travel cost) separating place i from candidate facility site j.

xij is the number of people from demand site i assigned to receive service at facility site 
j.

ri is the total number of people to be served at demand site i.

qj is the total capacity of facility site j to provide service.
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was “added.” In the second, one of the two existing hospitals was retained, but 
the second existing hospital was “closed” and replaced with a facility at another 
location, Peterlee. Both of the alternative configurations resulted in substantial 
reductions in total travel time to obtain hospital service (Table 10.2). Locating a 
hospital at Peterlee instead of Chester-le-Street decreased aggregate travel dis-
tance by a third, from 1,570,021 to 1,054,316 kilometers.

As this research illustrates, total travel distance generally decreases as the 
number of service sites increases. But locating facilities in sparsely settled areas 
remote from large population centers may lead to facilities that are underuti-
lized. The bounded transportation problem is a variant of the transportation 
problem that places a lower bound or service population threshold on each sup-
ply site as well as an upper bound on each site’s capacity (Table 10.3). When a 
minimum level of service must be provided to ensure quality of care or economic 
viability, adding more service centers may actually increase the total travel cost 
of assigning patients to providers. This will happen if patients must be diverted 
to more distant service centers to ensure that threshold requirements are met 
there (Green, Cromley, & Semple, 1980).

FIGURE 10.5. Hospital location in the Durham Health District showing the loca-
tion of Peterlee New Town in relation to existing hospitals. Reprinted from Social 
Science and Medicine, 17(8), Mohan, J., Location-allocation models, social science and 
health services planning: An example from North East England, 493–499, Copyright 
(1983), with permission from Elsevier.
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Facility Location

MINIMIZING TRAVEL EFFORT

One of the most commonly modeled location problems is the p-median problem
(ReVelle & Swain, 1970; Church & Sorensen, 1996). The objective of the p-median 
problem is to locate a given number of facilities among a set of candidate facility 
sites so that the total travel distance or time to serve the population assigned to 
the facilities is minimized, using the median as the measure of central tendency. 
Unlike the transportation problem, in which the number and locations of supply 
sites are known in advance, the p-median problem specifies only the number of 
facilities, p, to be located from a larger set of possible facility sites.

The solution is subject to a set of constraints. Every place where users of the 
service originate (every demand site) must be assigned to one and only one facil-
ity, ensuring that all service needs will be met. Each potential facility site must 
either receive or not receive a facility in the solution. The number of facilities 
located must equal the given number p exactly. These concepts can be written 
using mathematical programming notation (Table 10.4).

The following input is required to solve a p-median problem: the number 
of demand sites and the volume of demand at each site; the number of possible 
supply sites; the per-unit distance, time, or cost of travel from every demand site 
to every potential supply site; and p, the number of facilities to be opened.

TABLE 10.2. Aggregate and Average Travel Statistics for Various 
Combinations of Hospital Locations

Hospital locations
Population 

served
Aggregate travel 

distance (km)
Average travel 
distance (km)

Two existing sites
Dryburn 162,606 1,431,227 8.80
Chester-le-Street 49,442 138,794 2.80
Total 212,048 1,570,021 7.40

Two Existing Sites and One New Site
Dryburn 9,194 457,905 4.76
Chester-le-Street 49,439 138,745 2.80
Optimal site for third facility 

(Peterlee)
66,415 197,656 2.97

Total 212,048 794,306 3.74

One Existing Site and One New Site
Dryburn 144,485 845,021 8.85
Optimal site for second facility 

(Peterlee)
67,363 209,295 3.09

Total 212,048 1,053,316 4.97

Note. Reprinted from Social Science and Medicine, 17(8), Mohan, J., Location-allocation models, social sci-

ence and health services planning: An example from North East England, 493-499, Copyright (1983), with 

permission from Elsevier.
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The formulation of the problem reveals an important difference between 
the transportation problem and the p-median problem. All the variables in the 
transportation problem are continuous, but some of the variables in the p-median 
problem are discrete. The number of facilities to be located is an integer. It would 
not be possible to open half a facility. Similarly, a demand site is either assigned 
to a facility or it is not, so the decision variable to assign demand to a site is a 
zero–one integer variable. Integer programming problems are solved with dif-
ferent algorithms than those used to solve linear programming problems like the 
transportation problem.

In the research on evaluating hospital locations in Columbus mentioned 
earlier in this chapter, the optimal location for a new hospital among five candi-
date locations was identified by finding the location that minimized total travel 
distance for all user areas (Achabal et al., 1978). The candidate locations were 
concentrated in the north end of town after a model allocating population to 
the existing hospitals revealed that patients in that part of the city could not be 
allocated to existing hospitals.

TABLE 10.3. Mathematical Programming Formulation 
of the Bounded Transportation Problem

Objective function: Minimize Z = i I j J dij xij

Subject to the constraints:
All demand at a demand site must be served. j Jxij = ri for all i

The capacity at a facility site cannot be exceeded. i Ixij qj for all j

The minimum level of service provided at a facility 
site must exceed a threshold level.

i Ixij tj for all j

The number of people assigned from a particular 
demand site to a particular facility site cannot be 
negative.

xij  0 for all (i, j)

Where:
Z is the objective function.

I is the set of demand areas, usually nodes on a network, and the subscript i is an index 
denoting a particular demand area.

J is the set of candidate facility sites, usually nodes on a network, and the subscript j is 
an index denoting a particular facility site.

dij is the distance or time (travel cost) separating place i from candidate facility site j.

xij is the number of people from demand site i assigned to receive service at facility site 
j.

ri is the total number of people to be served at demand site i.

qj is the total capacity of facility site j to provide service.

tj is the minimum amount of service (the threshold) that must be provided at facility site 
j.
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For some facility location problems, however, the p-median problem may 
not be appropriate. The optimal solution minimizes total travel effort but it does 
not necessarily limit the travel effort of an individual service user. For many 
health services, critical travel or response time standards have been established. 
How can facilities be located to ensure that all users or as many users as possible 
will be served within the critical travel or response time?

One approach involves adding a constraint to the original p-median for-
mulation to require that each demand site be served by a supply site within the 
critical distance or time. This formulation is known as the p-median with maxi-
mum distance constraints (Khumawala, 1973; Hillsman & Rushton, 1975). In 
the research on hospital locations in Columbus just mentioned, the researchers 
applied a maximum service distance of 6 kilometers in an urban area (Achabal et 
al., 1978). In the study of hospital location in rural Ohio, a maximum service dis-
tance of 40 miles was used (Green et al., 1980). Once these distance constraints 
were added, the question arose as to whether p facilities—the number specified 
at the outset of analysis—would be sufficient to ensure that all users could be 
covered within the maximum service distance. If not, the problem would have 
an infeasible solution. The need to determine the minimum number of facilities 

TABLE 10.4. Mathematical Programming Formulation 
of the p-Median Problem

Objective function: Minimize Z = i I j J ai dij xij

Subject to the constraints:
An individual demand site must be assigned to a 
facility.

j J xij = 1 for all i

Demand must be assigned to an open facility. xij xjj for all (i, j)

Exactly p facilities must be located (the number 
of communities assigned to themselves equals the 
number of facilities to be located).

j J xjj = p

All demand from an individual demand site is 
assigned to only one facility.

Xij = (0,1) for all (i, j)

Where:
Z is the objective function.

I is the set of demand areas, usually nodes of a network, and the subscript i is an index 
denoting a particular demand area.

J is the set of candidate facility sites, usually nodes of a network, and the subscript j is 
an index denoting a particular facility site.

ai is the number of people from demand site i.

dij is the distance or time (travel cost) separating place i from candidate facility site j.

xij is 1 if demand at place i is assigned to a facility opened at site j or 0 if demand at 
place i is not assigned to that site.

p is the number of facilities to be located.
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that would be required to cover a set of demand sites gave rise to the location set 
covering problem (Church & ReVelle, 1976).

MAXIMIZING COVERAGE AND EMERGENCY SERVICE LOCATION

The location set covering problem (LSCP) identifies the minimal number and 
the locations of facilities required to “cover,” or provide service to all users, 
within a prespecified critical travel distance or time (Toregas, Swain, ReVelle, 
& Bergman, 1971). The objective function of the LSCP is to minimize the total 
number of facilities to be “opened” from a set of potential facility locations (Table 
10.5). This solution is subject to the constraint that every demand site must be 
within the critical distance or time of at least one open facility.

GIS tools have been used to model coverage areas of facilities. These analy-
ses are useful in identifying areas that are not currently covered by an existing 
facility within the specified critical distance or time. Coverage areas for metha-
done clinics in Hong Kong were identified using a 1.5-kilometer straight-line 
buffer (Pang & Lee, 2008). It is also possible to identify coverage zones based 
on street network distance, as described later in this chapter and in Figure 10.8. 
GIS analyses also show the trade-off between the critical service time or dis-
tance and the number of facilities required to cover a population. When the ser-
vice standard was relaxed from 5 miles to 10 miles in a study of dental facilities 
in Ohio, the number of areas not served by dentists fell from 307 to 45 (Horner 

TABLE 10.5. Mathematical Programming Formulation 
of the Location Set Covering Problem

Objective function: Minimize Z = j J xj

Subject to the constraints:
An individual demand site must be within the critical service 
distance or time of at least one open facility site.

j Ni
xj  1 for all i

A candidate facility site must be either opened or closed. xj = (0, 1) for all j

Where:
Z is the objective function.

I is the set of demand areas, usually nodes of a network, and the subscript i is an index 
denoting a particular demand area.

J is the set of candidate facility sites, usually nodes of a network, and the subscript j is 
an index denoting a particular facility site.

xj is 1 if a facility is opened at candidate site j or 0 if a facility is not opened at candidate 
site j.

Ni is the set of facilities where the distance between demand site i and candidate 
facility site j is less than the critical distance or time, or dij s.

dij is the distance between a demand site i and a candidate facility site j.

s is the critical service response distance or time.
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& Mascarenhas, 2007). It was estimated that covering the 45 sites would require 
as few as 24 additional service sites.

The mathematical formulation of the LSCP reveals that it, like the p-median 
problem, is an integer programming problem because the decision variable xj is a 
zero–one integer variable: a candidate facility site will either be opened or it will 
not be opened in the solution. The following input is required to solve a LSCP: 
the number of demand sites, the number and location of possible supply sites, the 
critical service distance or time, and the distance or time from each demand site 
to each possible supply site. The last-named makes it possible to identify the set 
of all possible supply sites that can serve an individual demand site within the 
critical service constraint.

An obvious limitation of the LSCP is that the number of facilities required 
to cover 100% of the population may be beyond the budget available for provid-
ing the service. To address this problem, analysts developed the maximal cov-
ering problem, incorporating elements of both the p-median problem and the 
LSCP (Church & ReVelle, 1974). The objective function of the maximal covering 
problem is to locate p facilities within a set of possible supply sites so that the 
number of users receiving service at a facility located within a critical service 
distance or time is as large as possible, or maximized, which is equivalent to 
minimizing the number of users beyond the critical distance (Table 10.6). The 
data required to solve a maximal covering problem are the same as for the LSCP, 
with the addition of the volume of demand at each demand site and the number 
of facilities to be opened.

Maximal covering problems are particularly appropriate for planning and 
evaluating the location of emergency service facilities. Emergency medical ser-
vice (EMS) delivery is only effective if the response can be made within a critical 
time period. The maximal covering formulation was used as part of a study con-
ducted in Austin, Texas, to determine what EMS services should be provided, by 
whom, using what numbers and types of equipment, and sited at which locations 
(Eaton, Daskin, Simmons, Bulloch, & Jansma, 1985). A software package to per-
form analyses of emergency call histories from various zones in the city, com-
puter mapping programs, and a program to solve the maximal covering problem 
were used in the study.

Data from the call history analysis became inputs to both the computer 
mapping programs and the location model. Eight surrogates for EMS demand 
were modeled: total calls, critical calls, noncritical calls, total population, black 
population, Hispanic population, Anglo population, and elderly population. 
These were modeled with a range of vehicle fleet sizes and a variety of criti-
cal response times. Clear trade-offs in service became apparent. Locating 12 
vehicles to maximize coverage of black residents allowed for 97% of the black 
population to be served within 5 minutes. The 12 vehicle sites that best covered 
the Anglo population would reach only 60% of the black population within 5 
minutes. After decision makers considered a variety of options, the final plan 
agreed upon deployed 12 vehicles in a two-tiered advanced and basic life-
support system.
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Research on emergency services response recognizes that response time 
has several components in addition to travel time from the response vehicle 
departure point to the scene. Responders need time to prepare to leave after a 
call is received. In rural areas where personnel are volunteers, additional time 
may be needed. In urban areas, response times need to take into account the 
time it takes to travel through multistory buildings to reach an individual in need 
or vertical response time. A prospective observational study of response times 
in the New York City 911 emergency medical services system found that time 
intervals from on-scene arrival to patient ranged from 0.5 minute for outdoor 
scenes to 2.8 minutes for residential buildings (Silverman et al., 2007). Overall, 
28% of the actual response time was accounted for by time to reach the patient 
after arrival at the scene.

MAXIMIZING MEDICAL OUTCOMES

When the underlying distribution of demand for health services is not uniform, 
siting facilities to ensure coverage within the desired travel distance or time may 

TABLE 10.6. Mathematical Programming Formulation 
of the Maximal Covering Problem

Objective function: Minimize Z = i I ai yi

Subject to the constraints:
An individual demand site must be within the critical 
service distance or time of at least 1 open facility site or it is 
not covered.

j Ni
xj + yi  1 for all i

Exactly p facilities must be located j J xj = p

A candidate facility site must be either opened or closed. xj = (0, 1) for all j

A individual demand site is either covered within the 
critical service distance of a facility or it is not.

yi = (0, 1) for all i

Where:
Z is the objective function.

I is the set of demand areas, usually nodes of a network, and the subscript i is an index 
denoting a particular demand area.

J is the set of candidate facility sites, usually nodes of a network, and the subscript j is 
an index denoting a particular facility site.

ai is the number of people at demand site i.

Ni is the set of facilities where the distance between demand site i and candidate 
facility site j is less than the critical distance or time, or dij s

s is the critical service response distance or time.

xj is 1 if the facility is opened at site j or 0 if the facility at site j is not opened.

yi is 1 if the demand site i is not covered by an open facility within s and 0 if the 
demand site i is covered by an open facility within s.

p is the number of facilities to be located.
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lead to low utilization of facilities in less densely populated regions. Aside from 
the economic implications of this situation, there are also implications for health 
outcomes. The “patient volume effect . . . refers to the relationship between the 
number of patients treated in a facility and the rates of mortality and morbidity 
among those patients” (McLafferty & Broe, 1990, p. 298). Enhancing coverage 
by ensuring geographical accessibility and raising the level of care by central-
izing services are two desirable objectives for the spatial organization of a health 
service system to improve patient outcomes. In some regions, however, satisfac-
tion of both objectives may not be feasible.

In a study of coronary care services in upstate New York, the trade-offs 
between geographical accessibility and centralization of services were explored 
through the application of a location–allocation model designed to locate coro-
nary care units to maximize patient survival (McLafferty & Broe, 1990). The 
objective function maximizes the difference between two terms. The first term 
shows the number of coronary care patients surviving after travel to the hospital, 
which is a function of distance to the hospital. The second term indicates the 
number of those patients who die in the coronary care unit (CCU), which is a 
function of the volume of care provided. The difference between the two terms 
is the total number of patients who survive, an important measure of health out-
comes.

The results of the analysis suggested that the number of CCUs in the study 
region could be reduced and that a system with fewer but better located CCUs 
could provide better outcomes than the current system that has a greater number 
of dispersed units. Closing CCUs in small rural hospitals might, however, under-
mine the viability of those hospitals and result in an adverse effect on health if 
hospital closure leads to a loss of other services. This research underscores the 
point that health care facilities are part of a hierarchical system.

MODELING OPTIMAL HIERARCHICAL FACILITY SYSTEMS

Normative modeling techniques that explicitly address the need to determine 
both the locations of facilities and the levels of care they provide have also been 
developed. One model addressed the development of a system of facilities in 
which each facility offered one of three levels of care to serve 150 demand sites 
in the Suhum District of Ghana (Yasenovskiy & Hodgson, 2007). The assign-
ment of clients to facility sites was enhanced by incorporating spatial interac-
tion modeling formulations so that the attractiveness of the high- and mid-level 
facilities influencing client choice could be taken into account as well as the 
disutility of travel. In this approach, clients need not be strictly assigned to the 
closest facility. A study of patient choice in eastern England found that only 56% 
of the population had registered with the general practice closest to their home 
(Haynes, Lovett, & Sunnenberg, 2003). Spatial interaction models, as discussed 
in Chapter 9, are also used to measure accessibility to health services.

The objective of the hierarchical location–allocation spatial interaction 
model was to maximize overall client benefit, which depends on the spatial 
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benefit function (Table 10.7). This function depends on the level of the facility 
(higher-level facilities are more attractive), the distance the client must travel to 
the facility, and the attractiveness of all potential destinations in the neighbor-
hood of the facility, operationalized as the population size of the neighborhood. 
The constraints ensure that all demand at all levels is served and that demand 
at a particular level will be served only by facilities providing an equal or higher 
level of care. No location can have more than one open facility. The number of 
facilities that can be opened at each level given the budget is also modeled as a 
constraint.

The model can be adapted to explore other aspects of facility location. It 
can be modified to analyze situations where spacing facilities far apart would be 
desirable. Also, characteristics of the facility neighborhood other than popula-
tion size can be modeled. There is evidence that the characteristics of the facil-
ity neighborhood, as opposed to the residential neighborhood of the client, may 
be important factors affecting health care accessibility and health outcomes, as 
discussed in Chapter 9.

As noted, health services delivery most commonly involves travel on the 
part of either the service provider or the patient. Most location models do not 
address the specific routes that patients might take in traveling for medical care, 
although GIS functions have made it easier to model travel based on specific 
routes. In applying location–allocation models in Ghana, Oppong (1996) dem-
onstrated the impact of road closures during the rainy season on the optimal 
pattern of facility location.

Finding Optimal Routes for Service Delivery

SHORTEST PATH ANALYSIS

For services like EMS which require service providers to travel to the person in 
need, the optimal route for the service provider to take from the dispatch site 
to the location where care will be delivered may also be an important issue. In 
general, this has been treated more as an operational issue than as a planning 
issue.

In location analysis, shortest path algorithms are used to find the shortest 
distance (or least cost) path from one point in a transportation network to another 
point. “The computation of shortest paths is an important task in many network 
and transportation related analyses” (Zhan & Noon, 1998, p. 65). Since the intro-
duction of the problem in the late 1950s (Dijkstra, 1959), the development, test-
ing, and application of shortest path algorithms has been a research focus in 
geography, transportation, operations research, and management science (Gallo 
& Pallottino, 1988). Like most location–allocation models, shortest path algo-
rithms assume a network that consists of a set of nodes or points connected by 
paths or arcs. Each arc begins at one node and ends at another. Each arc also has 
associated with it a numerical value representing the distance or cost incurred 
when the arc is traversed. These kinds of networks are easily modeled in a vec-
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TABLE 10.7. Mathematical Programming Formulation 
of a Hierarchical Location– Allocation Problem

Objective function: Maximize Z = i I j J c C k K(k c)WiUcBij
ckXij

ck

where Bij
ck = Sj

k / exp( cdij)

Subject to the constraints:
All demand at all levels is served. k K(k c) j J Xij

ck = 1 for all i, for all c

Demand at a particular level of 
service is served by a facility at the 
same or higher level.

Yj
k Xij

ck for all i, for all j, for all k, for all c k

A candidate site may have only one 
facility of any level.

k KYj
k  1 for all j

Exactly pk must be located for each 
level k.

j J Yj
k = pk for all k

Xij
ck is 1 if demand at place i for 

service level c is assigned to a level 
k facility opened at site j or 0 if 
demand at place i for service level c
is not assigned to that site.

Xij
ck = (0, 1) for all i, for all j, for all c, for all k

A level k facility at candidate site j
must be either opened or closed.

Yj
k = (0, 1) for all j, for all k

Where:
Z is the objective function.

I is the set of demand areas, usually nodes of a network, and the subscript i is an index 
denoting a particular demand area.

J is the set of candidate facility sites, usually nodes of a network, and the subscript j is 
an index denoting a particular facility site.

C is the set of service levels, and the subscript c is an index denoting a particular 
service level.

K is the set of facility levels, and the subscript k is an index denoting a particular facility 
level; in the hierarchy of facility levels, higher level facilities provide all of the services 
of lower level facilities; k c indicates that a particular demanded service level c is only 
provided within the range offered at the particular facility level k.

Wi is the number of people at demand site i.

Uc is the portion of total demand for all service levels accounted for by service level c.

Bij
ck is the total benefit to patrons from the assignment of patron demand for services 

at particular levels to facilities providing the appropriate levels of service; Sj
k is the 

attractiveness of a level k facility at site j; c is the distance impedance parameter for 
service level c; dij is the distance between demand site i and facility site j.

Xij
ck is 1 if the demand for service c at site i is served by level k facility at site j and 0 if 

it is not.

Yj
k is 1 if a level k facility is located at site j and 0 if it is not.

pk is the number of facilities of level k to be located.
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tor GIS. As a consequence, shortest path algorithms, more than other types of 
normative models, have been incorporated into GIS software packages.

ROUTING PROBLEMS

For some types of service delivery, the design of effective systems is more com-
plex than finding the shortest path between two points through a network. Home-
delivered care, like the services provided by visiting nurses, requires the service 
provider to make a series of stops along a route. In rural areas, where travel times 
between stops are likely to be longer, less service can be delivered by a single 
provider because more time must be devoted to travel. In this case, the locations 
of the stops that have to be made are known, and the distances between each 
pair of stops can be readily determined. Finding the order in which the stops 
are made that minimizes the total distance traveled is an optimization problem 
known as the “Traveling Salesman Problem” (Lawler, Lenstra, Rinnooy Kan, & 
Shmoys, 1987).

This problem is one in an extended set of vehicle routing and scheduling 
problems that have been formulated for problems with multiple routes and 
dispatch sites. If a large number of homebound people require care, the home 
health agency likely has more than one nurse to schedule. This means that the 
agency will need to identify multiple routes, one for each provider, and assign 
each person needing care to a particular place on a particular route. Although 
the locations of the people who need care are fixed, at least in the short term, 
the agency needs to evaluate the best location for one or more dispatch sites. 
Variations in the length of time required to make each stop or visit can also be 
incorporated into these models.

Incorporating Normative Models of Facility Location 
and Service Delivery into GIS

Normative models of facility location and service delivery have been developed 
to address a wide range of health services delivery problems over the last sev-
eral decades (Walsh, Page, & Gesler, 1997). Some software systems include algo-
rithms to solve mathematical programming problems. Several themes related to 
the integration of normative modeling methods and GIS have been identified 
(Church & Sorensen, 1996):

Representing demand for services and the implications of demand aggre-
gation.
Identifying feasible sites for facility location.
Modeling coverage areas based on the road network.
Modeling service delivery routes.
Finding solution methodologies that can be implemented in the GIS.
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Approaches addressing these themes are evident in a variety of GIS applica-
tions.

Representing Demand for Services 
and Demand Aggregation

An emerging role for GIS in health services planning lies in defining and char-
acterizing localities that represent demand areas for health planning purposes. 
In Delaware, a GIS application mapped counts and rates for census tracts for 
10 factors related to community health needs: teen mothers, prenatal care, pov-
erty, employment, public assistance, transportation, home ownership, education, 
language, and children in single-parent house holds (Berry & Jarrell, 1999). A 
composite score was calculated, and then the scores were mapped to identify 
communities with the greatest need for a new service initiative integrating state 
departments, school districts, and nonprofit organizations in service delivery 
partnerships. Similar research is being conducted in the United Kingdom to 
define catchment areas for various health service providers; to generate demo-
graphic, social, and residential profiles for patients who use particular providers; 
and to examine patient travel patterns for other activities like work and school 
(Hirschfield, Brown, & Bundred, 1995; Bullen, Moon, & Jones, 1996; Nigge-
brugge, Haynes, Jones, Lovett, & Harvey, 2005).

In the development of service area or neighborhood profiles and the iden-
tification of demand sites for services, the people requiring services are usu-
ally grouped together by residence. Distances to care are usually not calculated 
from individual residential locations to service centers. Instead, demand or need 
is aggregated to a set of area centroids or other central points. For example, 
the number of children requiring immunization might be aggregated to census 
tract areas, or the number of motor vehicle collisions requiring an emergency 
response might be aggregated to the nearest intersection. Demand aggregation 
reduces the complexity of location and routing problems, but it has some impor-
tant implications for location modeling.

When demand is aggregated (Current & Schilling, 1990), the true distance 
to accomplish health service delivery to an individual is replaced by the distance 
from the point of aggregation (Figure 10.6). In some cases, the true distance 
exceeds the modeled distance; in other cases, the true distance will fall short 
of the modeled distance. For models like the p-median problem, this will result 
in under- or overestimation of the true travel distance or cost, and the modeled 
optimal facility location pattern may not be optimal in fact. For covering prob-
lems, demand aggregation may result in an under- or overestimation of coverage. 
If the location of a person needing care is translated to an aggregate demand site 
that is closer to a proposed facility than the person’s residence, the person’s resi-
dence may lie outside the critical service distance or time even when the aggre-
gate demand site can be served within the critical service distance or time.

Given the ability of GIS to manage large volumes of spatial data, one solu-
tion to this problem might be more disaggregate representations of demand. This 
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would increase the number of demand sites as well as the computational effort 
required to solve most location–allocation problems. Analysts have also inves-
tigated the use of dasymetric mapping techniques, discussed in Chapter 6, to 
improve the representation of population distribution and modeling of demand 
locations (Langford, Higgs, Radcliffe, & White, 2008). Alternatively, GIS can 
be used to assist health service analysts make intelligent choices in aggregat-
ing demand. Analysts who have studied the problems of demand aggregation 
suggest several strategies for reducing its effects (Daskin, Haghani, Khanal, & 
Malandraki, 1989; Current & Schilling, 1990). First, demand should only be 
aggregated to places where some demand is actually present (Figure 10.7). Sec-
ond, demand should only be aggregated to a location if the demand would be 
covered by a facility located at the aggregate site. Finally, analysts might wish 
to aggregate only those individuals covered by the same set of potential service 
sites. The literature addressing demand aggregation issues for a range of loca-
tion problems is growing, but there continues to be a lack of consensus on the 
most appropriate methods for measuring error resulting from demand aggrega-

FIGURE 10.6. A schematic example of demand aggregation shows clients a, b, c, 
and d aggregated from their actual location to location A and clients e, f, g, and h 
aggregated from their actual locations to location B. The true travel distance for cli-
ent h to Potential Facility Site 1 would likely be underestimated by this aggregation 
because location B is closer to Facility Site 1 than client h is. The true travel distance 
for client e would likely be overestimated as a result of this aggregation because loca-
tion B is farther from Facility Site 1 than client e is. The true coverage would also be 
misrepresented by this aggregation on the basis of the critical coverage distance radius 
shown for Potential Facility Site 1. Clients e and f are actually within the critical dis-
tance from Facility Site 1, but this would not be apparent if they were aggregated to 
location B.
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tion and the most useful methods for dealing with these errors (Francis, Lowe, 
Rayco, & Tamir, 2009).

Identifying Feasible Sites for Potential Facility Location

In addition to describing and analyzing the demand for health services, GIS 
analysis also has a role to play in identifying candidate facility locations. Most 
network models of facility location work with a set of potential facility sites from 
which the facilities to be opened are selected. In the traditional formulation of 
location–allocation models, candidate facility sites are usually nodes in the net-
work space; they are included because they are also demand sites or because of 
their relative location to demand sites. Site characteristics affecting the feasibil-
ity of actually constructing a facility at the candidate supply site are generally 
ignored.

GIS, through its ability to integrate data layers spatially, provides an oppor-
tunity to take both location and site characteristics into account in identifying 
candidate facility locations. A team of planners from Maryland used a GIS to 
identify and rank sites for new primary medical care facilities (Marks, Thrall, 
& Arno, 1992). The GIS application included data layers describing parcel size, 

FIGURE 10.7. Error resulting from demand aggregation can be reduced by aggre-
gating demand to locations where some clients are actually located and by aggregating 
demand only if the distance between the actual client location and the aggregated 
location is less than the critical distance specified in a covering problem.
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distance to facilities and demand centers, percent of local population older than 
65 years, existing land use on the site, site availability, percent slope on the site, 
and availability of infrastructure like water and sewer systems.

Modeling Coverage Areas Based on Road Networks

Many early location–allocation models implemented outside a GIS environment 
required distances between demand and supply sites as direct data input. These 
distances might frequently be measured as straight-line Euclidean distances 
between sites. GIS provides an opportunity to improve measurement of cover-
age areas based on travel over actual street networks. Network analysis functions 
in the GIS make it possible to identify a node in the street network as a starting 
point and to identify the portions of street network segments within a specified 
travel distance from the starting point (Figure 10.8).

FIGURE 10.8. GIS network functions identify street network segments within a 
specified travel distance or travel time from a starting point. For comparison, a 2.0-
mile circular buffer around the ambulance dispatch site is also shown. The area cov-
ered based on network distance is smaller than the area covered within the circular 
buffer based on Euclidean distance, as discussed in Chapter 9.
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A standard of 30-minutes travel time to a primary care physician or a stan-
dard of 8 minutes for EMS response, for example, could be effectively mod-
eled in a GIS using these techniques, leading to more accurate descriptions of 
underserved areas. Mapping coverage areas would indicate regions and popula-
tions in the larger study region that probably cannot be served at the minimum 
standard with the existing arrangement of resources. Utilization data showing 
longer actual travel or response times than expected based on the modeled cov-
erage area would indicate neighborhoods where barriers to service delivery exist 
(Peters & Hall, 1999).

Accurate modeling of road travel time response areas using GIS can be used 
as a basis for site selection. In a study designed to identify which of two tertiary 
care hospitals in British Columbia would be the best choice for expanding a heli-
copter emergency services program (Schuurman, Bell, L’Heureux, & Hameed, 
2009), network analysis was used to model one-hour service areas for each facil-
ity based on road travel. Once these areas were identified, population and histor-
ical usage within the modeled catchment areas suggested that the Royal Inland 
Hospital would be the best site for an expanded helicopter EMS.

A different approach to modeling travel time for site selection was devel-
oped to locate new primary health care facilities in KwaZulu-Natal, South Africa 
(Tanser, 2006). This model used a 30 meters  30 meters grid of the study area 
and created cost surfaces based on the least travel time from every cell to the 
most accessible target clinic site based on walking and public transport. These 
surfaces incorporate spatial impedance, the difficulty people have traveling from 
a given origin to a given destination, into the model. By mapping total person 
impedance by km2, the largest contiguous area of high spatial impedance was 
identified. This area would be an attractive site for locating a new clinic.

Modeling Service Delivery Routes

GIS applications have also been useful for evaluating optimal routes for services 
delivered to those in need. The network analysis functions of GIS can be used 
to display stops and identify optimal routes. Analysts can specify whether or not 
the route must begin or end at a particular site and model the impact of barriers 
(Figure 10.9).

GIS routing functions were used to evaluate the optimality of delivery 
routes in a meals-on-wheels program in southeastern Connecticut (Wong & 
Meyer, 1993). Five vans were used to deliver meals, with each van covering a 
particular route after it departed from the main kitchen. A single-depot vehicle 
routing problem with time windows to account for meal delivery time was solved 
using the GIS. The application required a street network database. Residential 
locations of delivery stops were geocoded using the GIS and assigned to nodes 
on the street network. The routing procedure was used to allocate clients to five 
routes to minimize the time required to serve all clients, an important consid-
eration in home-delivered meal service. Four of the five routes described in the 
results of the GIS analysis differed from the five actual routes.
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FIGURE 10.9. Using GIS to model service delivery routes. Figure 10.9a shows a 
set of five service delivery stops including the dispatch location at Stop 1, mapped on 
a network of links and nodes. Stops 2, 3, 4, and 5 are numbered in the order in which 
they were entered into a database of clients needing the service. Figure 10.9b shows 
the optimal route to serve the stops if the service vehicle must depart from Stop 1. 
Note that the stop numbers have changed to correspond to the optimal order of service 
stops on the shortest path. Figure 10.9c shows how the shortest path would change if 
an event like a flood made two road segments impassable. The optimal route shifts and 
the order of stops also changes for the last two stops.
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Solution Methodologies

Exact solutions to optimization problems can be found through linear program-
ming or integer programming algorithms. These algorithms guarantee an opti-
mal solution if one can be found. These methods, however, are computationally 
intensive, especially for real-world problems like a p-median problem involving 
many demand and supply sites. Integer and mixed-integer programming solu-
tions are more computationally complex than linear programming solutions, even 
for problems of the same size. Hardware and software developments have made 
it possible to more easily solve large problems, like the hierarchical location–
allocation model with 150 nodes and three levels described in a previous section 
of this chapter (Yasenovskiy & Hodgson, 2007).

The alternative to mathematical programming solutions is heuristics. A 
heuristic is an algorithm that finds an approximate solution to an optimization 
problem in a reasonable amount of computation time. The solution is not guar-
anteed to be optimal, but it may indeed be optimal. Benchmarking studies have 
evaluated the most commonly used heuristics for solving complex problems. 
Research investigating the most appropriate heuristics for integration into GIS 
is ongoing.

Although most GIS packages do not yet include functions to determine loca-
tions for new facilities or to select facilities for closure, data on distances between 
demand and supply sites can be exported from a GIS and imported into spread-
sheets where simple calculations can be performed to compare the average travel 
distances of clients to services sites so that the facility patterns that minimize 
travel distances can be identified. Rushton (1999) illustrates this approach for 
closing some existing facilities and reopening them at other locations, for locat-
ing facilities in an unserved area, and for evaluating changing patterns of utiliza-
tion associated with changes in the location and number of clinics.

The mathematical structure of shortest path problems makes solution by 
exact methods more practical. As a result, shortest path algorithms are commonly 
found in many GIS software packages. Many of these algorithms, however, were 
developed using hypothetical street networks. The development of GIS provides 
an opportunity to test them using real road networks. Real street networks differ 
from many of the hypothetical networks used in testing shortest path algorithms 
because road density is variable in real-world networks. Density is higher in 
urban centers that are in turn surrounded by suburban areas with distinct sub-
networks, further surrounded by sparse rural roads. A test of 15 shortest path 
algorithms on two real road networks modeled in a GIS indicated that different 
algorithms would be preferred for different kinds of problems (Zhan & Noon, 
1998).

Clearly, the effective integration of normative models of facility location 
and routing into a GIS would give the analyst the opportunity to select from a 
variety of problems and solutional techniques. Much of the literature emphasizes 
the value of altering estimates of demand, the set of candidate supply sites, criti-
cal service distances, and solutional techniques to evaluate alternatives (Birkin, 



Locating Health Services 369

Clarke, Clarke, & Wilson, 1996). Increasingly, GIS for health services delivery 
are being viewed as spatial decision support systems.

Spatial Decision Support Systems

The concept of the spatial decision support system (SDSS) grew out of the deci-
sion support system (DSS) first championed by Geoffrion (1983). SDSS has the 
following in common with DSS: (1) an explicit approach to solving ill-defined 
problems, (2) easy-to-use interfaces, (3) flexibility in combining analytical mod-
els with data, (4) ability to evaluate alternatives, (5) models reflecting a variety 
of decision-making styles, and (6) support for interactive and recursive problem 
solving (Malczewski, 1999). Densham (1991) identified some distinguishing fea-
tures of the SDSS, including (1) support for spatial data input, (2) representation 
of spatial relations and structures, (3) availability of spatial analytic techniques, 
and (4) support for output in a variety of forms, including maps. The components 
of an SDSS include a geographic database, a set of models, a database manage-
ment system (DBMS), and a user interface (Figure 10.10). The DBMS manages 
spatial and attribute data and provides the GIS with capabilities for data input, 
storage, retrieval, and manipulation. The user interface can provide access to 
data and tools through the web (Schuurman, Leight, & Berube, 2008). An SDSS 
called DOCLOC was designed to assist health practitioners make decisions 
about practice locations in Idaho (Jankowski & Ewart, 1996).

A DSS approach was used to identify routes for high-level radioactive waste 
shipments. The system was designed to address the multiple facets of route choice 

FIGURE 10.10. The components of a spatial decision support system.
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and emergency response team siting comprising the waste shipment problem 
(List & Turnquist, 1998). Each of these facets had multiple objectives associated 
with it. For route choice, the objectives included finding the routes that would 
minimize population at risk, probability of an accident, and delays. For emer-
gency response team siting, the objectives included minimizing distance to road 
links with the highest shipment volumes and minimizing the maximum distance 
a team would have to travel to reach any possible accident location. The siting 
of the response teams depends, in part, on the choice of routes. The system was 
tested using the anticipated shipments of waste from around the country to a 
Waste Isolation Pilot Project site in southeastern New Mexico. Health services 
delivery needs in response to disasters are increasingly modeled using GIS.

Health Services Delivery in Response to Disasters

The public health community recognizes the important role of public health in 
managing emergencies and disasters (Landesman, 2005). Emergency manage-
ment encompasses a wide range of activities. GIS are recognized by response 
agencies at all levels as playing a critical role in data management. In the con-
text of disaster and emergency services, an emergency is an event or a series of 
events that endanger or adversely affect people, the environment, or property. A 
disaster is an emergency of such scope that the management capability of local 
resources is exceeded. Disasters usually result in great damage, destruction, or 
loss. As discussed in Chapter 6, emergencies may be natural in origin, human in 
origin (planned or unplanned), or mixed. Emergencies of human origin cover a 
wide range of events—everything from chemical spills to utility failures to air-
plane crashes, from riots to warfare to terrorism.

Emergency management activities take place in five phases. Planning
includes analyzing and documenting the possibility of an emergency and its con-
sequences. Modeling areas vulnerable to flooding and assessing the potential 
impacts on people, their residences and other properties, human service facili-
ties, and the environment is a planning activity. Mitigation involves taking action 
to eliminate or reduce the probability of a disaster, including long-term activities 
designed to reduce the damaging effects of unavoidable disasters. Preparedness
includes developing plans to save lives and minimize damage in the event that 
mitigation measures do not or cannot prevent disasters. This includes compil-
ing resource inventories, conducting drills, installing warning systems, develop-
ing and testing evacuation plans, and training responders. Activities may also 
include measures to enhance response, for example, stockpiling supplies.

Even when effective planning, mitigation, and preparedness efforts have 
been made, emergencies and disasters will occur. The response and recovery 
phases complete the integrated cycle of disaster and emergency management. 
Response activities following an emergency or a disaster provide immediate 
assistance to victims, stabilize the situation, reduce the probability of additional 
damage (for example, patrols to prevent individuals from entering unsafe struc-
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tures or areas), and speed recovery (for example, damage assessment). Recovery
activities include activities necessary to return all systems to normal or to a state 
that improves upon predisaster conditions. Short-term recovery includes activi-
ties such as cleanup, whereas long-term recovery includes services such as rede-
velopment loans, community planning, and legal assistance.

Activities in all phases of the disaster and emergency management process 
require data. Geospatial data held at the local level are especially important 
during the response and recovery phases (Napier, 2003). Because disasters, by 
definition, overwhelm the capabilities of local responders, people from outside 
the local community are involved in response and recovery. They may not be as 
knowledgeable as local residents about the community affected, so geospatial 
data and flexible systems for making data available in the field are needed.

GIS applications have been developed to serve information needs in every 
phase of the disaster and emergency services management process. GIS applica-
tions in planning have identified both vulnerable environments and vulnerable 
communities of people. At the global scale, research has used GIS to investigate 
urban settlement in low elevation coastal zones. These settlements are growing 
and are especially vulnerable to a range of environmental risks (McGranahan, 
Balk, & Anderson, 2007). Research is increasingly recognizing the importance 
of integrating information on the built environment with information on envi-
ronmental risks. International teams have partnered in using GIS technology 
to investigate earthquake hazards and the structural vulnerability of building 
stock in historical areas in San Giuliano di Puglia, Italy, and in Valparaiso, Chile 
(Indirli, 2009). In the context of risk from wildfire, the wildland–urban inter-
face has been the focus of vulnerability assessments. The spatial organization of 
dwellings—isolated, scattered, or clustered—has a major impact on fire occur-
rence (Lampin-Maillet, Jappiot, Long, Morge, & Ferrier, 2009).

Equally important is research documenting the vulnerability of particu-
lar populations, showing the relationship between increased hazard risk and 
socioeconomic characteristics of communities (Morrow, 1999). In many com-
munities, limited economic and material resources limit people’s ability to mit-
igate, prepare for, respond to, and recover from disasters. A substantial body 
of research has documented significant inequalities among social groups with 
respect to exposure to natural disasters (Fielding, 2007; Neumayer & Plumper, 
2007). Community vulnerability maps show where at-risk groups, including the 
elderly, female-headed households, homeless, renters, and others, are concen-
trated. A Social Vulnerability Index based on county-level socioeconomic and 
demographic data for the United States found the most vulnerable counties 
clustered in metropolitan counties in the East, south Texas, and the Mississippi 
Delta region (Cutter, Boruff, & Shirley, 2003). Temporal and spatial changes 
in patterns of vulnerability in the United States over several decades have also 
been observed (Cutter & Finch, 2008).

GIS-based community vulnerability analyses have also been conducted at 
the local scale. In a study of areas within Hillsborough County, Florida, where 
Tampa and St. Petersburg are located, social vulnerability was assessed in the 
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context of geophysical risk of hurricanes and flooding (Chakraborty, Tobin, & 
Montz, 2005). The number of occupied housing units without telephones or 
vehicles and the size of the institutionalized population and the population over 
5 years of age with disabilities were mapped at the block group level to iden-
tify areas where it might be difficult to evacuate people. Research conducted 
in Georgetown County, South Carolina, assessed the vulnerability of places to 
12 environmental threats; described the population and social characteristics of 
places with different levels of vulnerability to hazards; and mapped place vul-
nerability against emergency response lifelines and infrastructure (Figure 10.11) 
(Cutter, Mitchell, & Scott, 2000). The degree of vulnerability to hazards depends 
on the severity of biophysical risk, the size and characteristics of the population, 
and the level of resources available for response in particular places.

A study of the population of New Orleans in the aftermath of Hurricane 
Katrina extended the concept of vulnerability mapping to include all phases 
of emergency management (Curtis, Mills, & Leitner, 2007). Low-income and 
minority residents were not only more likely to live in areas likely to be affected 
by flooding, but they were also less likely to have been evacuated, so they experi-
enced the stress of the storm directly. They also lived in neighborhoods that had 
the worst prospects for recovery after the disaster.

GIS was used in an investigation of the effectiveness of a grassed waterway 
developed to mitigate a muddy flood hazard affecting villages in the Belgian 
loam belt (Evrard, Persoons, Vandaele, & van Wesemael, 2007). Muddy floods 
occur when runoff from agricultural catchments after intense rainfall accumu-
lates in dry valleys downstream, causing damage to housing and infrastructure. 
After an extreme flooding event in 2002, a grassed waterway and retention dam 
were built as mitigation measures. A hydrological model used with a GIS simu-
lates discharge at various points in the catchment and makes it possible to model 
the effectiveness of the mitigation effort in preventing another extreme event of 
the same magnitude as transportation and land use patterns in the area continue 
to change.

Public health professionals have responded to recent natural and technolog-
ical disasters by providing tools for public health preparedness. The Agency for 
Healthcare Research and Quality in the United States has developed the Emer-
gency Preparedness Resource Inventory (EPRI) as a tool for local, regional, and 
state planners (Agency for Healthcare Research and Quality, 2005). EPRI is a 
downloadable tool enabling local or regional planners to assemble an inventory 
of critical resources that would be useful in responding to bioterrorism or other 
public health emergencies.

The ability of maps to identify a community's vulnerability to disaster and 
available community resources was evaluated in a study conducted in New York 
(Zarcadoolas, Boyer, Krishnaswami, & Rothenberg (2007). Researchers con-
ducted interviews with 178 English- and Spanish-speaking residents of east and 
central Harlem and presented participants with a map used in the City’s Office 
of Emergency Management Storm Surge Report. A majority of adults who had 
not completed high school were not able to read the map to identify whether they 



Locating Health Services 373

FIGURE 10.11. Mapping place vulnerability based on the spatial distribution of 
overall hazard scores shows that many important resources for emergency response 
are located in highly vulnerable areas. From Cutter, Mitchell, and Scott (2000). Copy-
right 2000 by the Association of American Geographers. Reprinted by permission of 
the Taylor and Francis Group.
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lived in a hurricane evacuation zone or to identify the evacuation center that was 
nearest to their home. This research raises important questions about how best 
to communicate with the public for emergency preparedness.

Evacuation planning is an emerging focus of research on disasters. Studies 
have investigated ways to identify neighborhoods facing transportation difficul-
ties during evacuation (Cova & Church, 1997) and transportation networks that 
might lead to significant problems in evacuation (Church & Cova, 2000). For 
example, a traffic simulation study for a canyon community near Salt Lake City, 
Utah, which was prone to wildfires investigated subneighborhood variation in 
household evacuation travel times. GIS was used to map the effects on evacua-
tion times of adding a second access road to the community (Cova & Johnson, 
2002). Traffic signal timing on urban streets has been investigated as a factor 
affecting evacuation (Chen, Chen, & Miller-Hooks, 2007).

Even with the best of planning and preparation, disasters will occur. Public 
health response following a disaster such as a tropical storm is one important 
part of the total response to disasters. GIS have been used to support rapid epi-
demiological assessments following weather-related disasters. In Texas, follow-
ing landfall of a tropical storm near Galveston in 2001, the most severe flood-
related damage observed to date was recorded in the Houston metropolitan area 
(Waring et al., 2005). The GIS application was used to facilitate a modified clus-
ter sample of households in the areas most affected by flooding. A total of 420 
households participated in the survey, which was accomplished within one week 
following the storm. A sizeable number of households reported serious damage 
to their homes, and more than a third of these were outside the 500-year flood-
plain zone. Significant increases in illness were noted in residents of flooded 
homes compared to those in homes that were not flooded.

Health information collected in the aftermath of disasters is important not 
just for response to immediate needs; these data also help us to understand the 
health consequences of disasters. A study of fatal and inpatient injuries due to 
the 1994 Northridge Earthquake in California used GIS to map all injury loca-
tions (Peek-Asa, Ramirez, Shoaf, Seligson, & Kraus, 2000). Injuries were studied 
in relation to the distance from the earthquake’s epicenter, the intensity of the 
earthquake, peak ground acceleration, and damaged residential buildings. Seis-
mic hazard and building damage did not completely predict injury incidence or 
severity. Injuries caused by falling parts of buildings were, on average, closer to 
the epicenter, but injuries caused by falls and cutting or piercing were spread 
over a larger geographic area. This research, like the research on flooded resi-
dences, suggests that GIS can help provide a better picture of the spatial extent 
of health problems following a disaster.

Maps and data have been used effectively in the recovery phase by the 
Greater New Orleans Community Data Center (Nonprofit Knowledge Works, 
2011). The Center was in existence and providing information to the community 
before Hurricane Katrina came ashore in August 2005. The site’s server and data 
and several key staff were located outside of the community in different states, 
and so the site remained in operation during the disaster and early recovery 
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period. Because so many other organizations and institutions were affected by 
the hurricane, the Community Data Center site was one of the few sources of 
information documenting the state of the city before the disaster occurred.

The Center became a key source of information on the recovery of New 
Orleans. Innovative approaches to mapping included working with the postal 
service to map postal deliveries as a way of helping service providers to visualize 
which areas of the city were experiencing the return of population. Thanks to 
data compiled by the Center, the city of New Orleans was able to challenge the 
Census Bureau’s initial estimate of the city’s population. The Census Bureau’s 
decision to revise its estimate upward by almost 50,000 people resulted in an 
increase of federal funds to the city amounting to $45 million.

Conclusion

GIS are reviving interest in the application of normative modeling techniques 
in services delivery planning, operation, and evaluation. These techniques have 
sometimes been criticized because they do not attempt to describe observed 
patterns of behavior, but there are also drawbacks to relying solely on utilization 
data or manifest patterns of travel in planning health services. First, utilization 
patterns for existing services may be of little use in planning for new services 
because the new sites will alter the geographical set of opportunities for receiv-
ing care. If the service becomes more accessible through the addition or reloca-
tion of resources, then the true cost of the service will decrease and individuals 
will be able to utilize more of the service without increasing total out-of-pocket 
expenditures. Second, for some health services, like EMS, geographic areas 
must be covered whether or not there has been high utilization. Finally, given 
that utilization data are not always available, normative methods make it possible 
to study the pattern of health services that would result if particular objectives 
were desired. Even if conflicts in the multiple objectives that decision makers 
want to achieve make it difficult to implement optimal solutions in practice, the 
results of location–allocation models and the output from SDSS can establish 
quantitative benchmarks for what it is possible to achieve in designing a service 
delivery system.

In developing meaningful analyses of health services delivery systems, it is 
important to recognize that the location, hours of operation, and scale of service 
are not simply matters of convenience or economics. They truly affect the quality 
of care provided and the medical outcomes that result. In addition to the studies 
described in this chapter on the impact of distance on whether care can actually 
be provided, the research reviewed in Chapter 9 on the links between distance 
and utilization indicates that the geography of health services influences health 
status. Numerous studies have shown that the volume of care provided is related 
to the quality of the care and the pattern of health outcomes.

More research is needed on the relationships between the timing of care 
and health outcomes. The medical research literature is showing an increasing 
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interest in the relationships between biological clocks and human health (Hrush-
esky, 1985). Strokes and heart attacks are more likely to occur during the morn-
ing hours. What are the implications for EMS provision? The effectiveness of 
treatments like chemotherapy may be a function of when they are administered. 
Are health services designed so that therapy can be provided at the optimal time 
and place?

The consequences of natural and technological disasters in vulnerable com-
munities and for health service delivery systems themselves are of increasing 
concern in all countries. The aging of the world population and the redistribu-
tion of population into urban environments are reshaping patterns of vulnerabil-
ity. GIS can support health services planning efforts to make sure that quality 
health services are available when and where we need them.
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CHAPTER 11

Health Disparities

Variations in the health of populations are apparent at the global, regional, and 
local scales, and these patterns have been observed for centuries (Vallin & Meslé, 
2004; Gibbons, 2005). As the preceding chapters show, spatial variations in the 
distributions of disease agents and environmental toxicants explain some of the 
differences in health from place to place. In the decades after World War II, 
however, health disparities—differences in health status among social groups—
came to be seen as a public health issue that was as important as the overall level 
of health in a population. In countries where the life span was increasing and the 
overall incidence of specific diseases was declining, improvements in health did 
not always occur equally among all groups (Figure 11.1). Recognition of these 
differences in health status by class, race or ethnicity, gender, and geography 
has fostered the study of health disparities, especially in countries with high per 
capita national incomes, although inequalities in health also exist in less afflu-
ent countries (Braveman & Tarimo, 2002). In the last several decades, observed 
declines in health status even in wealthier countries and the emergence of new 
health problems like HIV/AIDS have also affected different groups dispropor-
tionately. The size of these inequalities has led some to rank health disparities 
as the most important public health problem (Graham, Boyle, Curtis, & Moore, 
2004).

This chapter considers the role of geography in the study of health dispari-
ties in terms of theory and methodology. In the first section, we consider the 
various levels at which health status and factors influencing health are measured, 
and we discuss the concepts of contextual and compositional factors. The next 
section reviews how GIS have been used to visualize differences in income and 
environmental conditions across a range of spatial contexts. Because poverty has 
been identified as an important individual and contextual variable in health dis-
parities research (Krieger, Chen, Waterman, Rehkopf, & Subramanian, 2003), 
the geography of income in relation to health is discussed. Environmental con-
ditions also contribute to health disparities. In this section, we pay particular 
attention to how GIS have been used to measure characteristics of the built 
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environment that may influence health and review some of the evidence on the 
relationships between these characteristics and health.

The third section reviews the role GIS can play in defining neighborhoods. 
How the areas or neighborhoods used to represent the contexts for individual 
health are defined is an important conceptual and methodological issue. In some 
cases, data are reported for political and administrative units like census tracts, 
and GIS functions are used to place individuals in these neighborhoods. In other 
cases, GIS functions are used to create neighborhoods based on individual resi-
dential, school, or workplace locations. It is also possible to use GIS to map the 
area that a person considers to be within his or her neighborhood.

GIS plays a role in implementing analytic methods used to investigate health 
disparities, including multilevel modeling. In many studies, area-level variables 
are used to investigate health disparities. Spatial statistical models help analysts 
to account for spatial dependencies across neighborhoods and to explore spa-
tial variability in the relationships between neighborhood conditions and health 
outcomes. Finally, the role of location processes such as migration in creating 
and maintaining the socioeconomic and neighborhood inequalities that give rise 
to health disparities is discussed. These processes explain how regions come 
to differ in terms of the resources and risks that affect their populations and 
in the composition of their populations. In efforts to understand the relation-
ships between people, where they live, and their health, geographical analysis is 

FIGURE 11.1. Age-adjusted death rates for diseases of the heart declined for blacks/
African Americans and whites in the United States from 1950 through 2004. The rate 
declined more rapidly for whites than for blacks, resulting in a disparity. Individuals in 
both groups may be of Hispanic origin. Rates for Asians/Pacific Islanders and Native 
Americans are not graphed because they are known to be underestimated and were 
not reported for all years. Data from National Center for Health Statistics (2006b).
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helping to provide answers to the question “Does where you live matter to your 
health?”

Context and Composition

Health problems can be studied at multiple levels. Lower level units, sometimes 
called micro units, are nested within units at a higher level, macro units. In an 
analysis of children in schools, for example, individual participants in the study 
would be the lower level units, and the studies themselves would be the higher 
level units. If the analysis involved measurements made for each participant over 
three points in time, the measurements would be lower level units nested within 
individuals as the next higher level, and individuals would be nested in schools at 
the highest level. In many studies of health disparities, macro units correspond 
to geographical areas or neighborhoods.

The idea that characteristics of individuals in a population cannot alone 
explain the distribution of health problems within the population is a key prem-
ise of social epidemiology (Krieger, 2002). Ecological studies of health compare 
large groups of people rather than individuals. Although the social epidemiologic 
perspective has been controversial within the discipline of epidemiology itself 
(Krieger, 1994, 2001; Krieger & Zierler, 1996, 1997; Kaufman, 2001; Macdonald 
2001; McPherson, 2001; Savitz, 1997; Siegrist, 2001; Zielhus & Kiemeney, 2001), 
the connections between poverty, social and occupational class, housing and liv-
ing conditions, and health have been widely studied in the social sciences and 
addressed in public health policy. Taking the milieu of the person into account 
in studies of health involves using analytic methods that extend models based 
on individual characteristics to include variables measuring family, social group, 
neighborhood, and regional contexts and the composition of the populations in 
these settings.

Contextual effects are differences in an outcome observed at a lower level 
that can be attributed to the effects of variables observed at a higher level after 
controlling for individual-level confounders (Diez Roux, 2003a). If mean income 
observed at the neighborhood level has an effect on an individual level outcome 
such as diabetes after controlling for individual income, this is considered a con-
textual effect. Compositional effects are differences in an outcome—for example, 
the diabetes rate—that can be attributed to the characteristics of the individuals 
comprising the different family, neighborhood, or regional groups or contexts 
rather than to the nature of the setting (Duncan, Jones, & Moon, 1998).

For geographers, these higher levels have spatial dimensions, and the meth-
ods of geography provide guidance in defining the spatial aspects of a particular 
context. How contexts are defined is important because, in addition to hetero-
geneity among individuals, contextual analysis emphasizes heterogeneity among 
contexts (Duncan, Jones, & Moon, 1998). Heterogeneity means that individuals 
or contexts are diverse in kind or nature. Exploring heterogeneity among indi-
viduals, contexts, and individuals within contexts is also important because there 
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may be different degrees of individual heterogeneity within contexts (Bullen, 
Jones, & Duncan, 1997). Two communities may have the same mean income, but 
in one of the communities everyone has roughly the same as the mean income 
and in the other community there is high variance in individual incomes.

Conceptualizing what is an attribute of the individual and what is an attri-
bute of the context is not always easy in contextual analysis. Individual-level 
variables like age or income are measures that characterize individuals. Group-
level variables are measures that describe groups. This distinction is blurred 
when a group-level variable is used as a proxy for an individual-level measure 
because data at the individual level are not reported or are not reliable (Bassett 
& Krieger, 1986). Research has shown that area-level measures may not be valid 
as substitutes for individual-level data (Hanley & Morgan, 2008). In multilevel 
analysis, group-level variables are intended to measure group-level constructs.

Different types of group-level or contextual variables have been described 
(Diez Roux, 2003b). Derived group-level variables mathematically summarize 
characteristics of individuals in the group. Mean income is an example. It is cal-
culated from the incomes of individuals in the group. Integral group-level vari-
ables also measure characteristics of the group, but they are not derived from 
the characteristics of individuals in the group, and they have no individual-level 
analogues. Variables measuring laws governing tobacco use in the contextual set-
ting or population density to classify the context as urban or rural are examples. 
Characteristics of social interactions among members of the group are also con-
sidered integral group-level variables and sometimes called structural group-
level variables (Diez Roux, 2004). The term “environmental variables” has been 
used by some to refer to area-level characterizations of physical and chemical 
conditions that are used exclusively as proxies for individual-level exposure to 
environmental conditions (Diez Roux, 2003b). These variables have traditionally 
been derived by sampling conditions at particular places and modeling surfaces 
of environmental quality, as described in Chapter 6. Environmental variables
are not mathematically derived from measures of individual people but from 
measures of a sample of individual places. Increasingly, however, technology is 
being used to assess environmental quality in the places where an individual 
person actually circulates. Thus, it is possible that an individual’s exposure to air 
pollution could be different from the characterization of the level of air pollution 
in the general area where the person lives.

Explaining the role of contextual and compositional effects in the health of 
populations has been a challenge in research on health disparities. A measure 
like the age structure of the population in a place might be conceived of as a com-
positional variable or a contextual variable (Cagney, 2006). Rather than focusing 
on rigid distinctions between contextual and compositional effects, research is 
increasingly concerned with the relationships between people and where they 
live (Macintyre, Ellaway, & Cummins, 2002; Cummins, Curtis, Diez-Roux, & 
Macintyre, 2007). The idea that where we live affects our well-being has face 
validity. Our sense of place consists, in part, of our assessments of the connec-
tions between place and well-being, about whether particular dwellings and 
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neighborhoods are supportive and safe. Individuals and groups are not indif-
ferent to neighborhood changes—either the movements of residents or the land 
use changes that occur when businesses and institutions relocate. How place 
contributes to health and well-being, how to uncover these effects, and how to 
assess whether these effects vary from place to place over time are questions that 
have engaged health analysts in many countries. Whether there is something 
about the setting itself that affects the health of individuals and social groups or 
whether there is something in the characteristics of the people who comprise the 
community of interest that explains their health or both, place differences are a 
central element in health disparities research.

Visualizing and Measuring Area Characteristics

GIS provide a useful tool for visualizing area differences in income and measur-
ing and visualizing area characteristics, particularly characteristics of the built 
environment. An important step in studying health disparities is explicitly inves-
tigating spatial patterns of community characteristics by mapping them and, as 
discussed later in the chapter, by assessing the degree of spatial dependency 
using statistical methods. Variations in income and other area characteristics are 
apparent at a variety of spatial scales. It is not just the degree of variability that 
is a concern; the spatial arrangement of areas with high and low incomes or high 
and low environmental quality is also important.

The Geography of Socioeconomic Inequality

Income is one of the most widely used variables in health disparities research 
in the United States, as an individual-level variable and as a contextual variable 
explaining mortality and differences in self-reported health (Pickett & Pearl, 
2001). Income contributes to well-being because it provides the means to com-
mand resources, including housing, food, education, and medical care. Some-
times, the level of resources at the individual’s disposal is measured in terms of 
poverty (Krieger et al., 2003), wealth (Duncan, Daly, McDonough, & Williams, 
2002), or occupation and education rather than income. The literature generally 
supports the conclusion that individual or household income is inversely related 
to poor health in a nonlinear way and that the income level of the local area also 
affects the health of individuals (Jones, Duncan, & Twigg, 2004).

Variations in income are apparent at the global, regional, and local scales 
(Figure 11.2). Furthermore, there are spatial patterns in income at every scale. 
These patterns can be visualized using GIS and analyzed using spatial statistical 
methods.

Income inequality within places has also attracted attention as a factor in 
population health (Kawachi & Kennedy, 1999; Subramanian & Kawachi, 2003; 
Jones, Duncan, & Twigg, 2004; Ross, Wolfson, Berthelot, & Dunn, 2004). 
Inequality in income and inequality in wealth have increased substantially in the 
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FIGURE 11.2. Variations in income at the global, regional, and local scales.
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United States over the last 30 years (Subramanian & Kawachi, 2004). Research 
to date has highlighted a number of issues in exploring the possible relationship 
between income inequality and health.

Relative income inequality may be as important as overall income inequality. 
A study of the incidence of Type 2 diabetes was conducted in Tayside, Scotland, 
using data reported for Output Areas, the smallest reporting areas for census data 
(Cox, Boyle, Davey, Feng, & Morris, 2007). Area deprivation was positively related 
to diabetes incidence, and the inequality in deprivation between areas and their 
neighbors was negatively related to diabetes incidence. Although the disease was 
more common in deprived areas, incidence was lower in deprived areas that were 
surrounded by relatively less deprived areas, and less deprived areas surrounded 
by relatively more deprived places had higher diabetes incidence than would be 
expected based on the level of deprivation in the area itself.

There is also evidence that income inequality may affect the health of dif-
ferent population subgroups differently. For example, there may be a cross-level 
interaction—a modification of the effects of lower-level variables by character-
istics of the higher-level units to which they belong or vice versa—such that 
income inequality has particularly harmful effects among those of low income. 
Geographic scale also matters in research on income inequality and health. For 
smaller geographic areas that may be more homogeneous in terms of income, 
social segregation might be more important than income inequality (Ross, et al., 
2004). More longitudinal research is needed to investigate the possible temporal 
lag effects of increasing income inequality. In addition, occupation, race and 
ethnicity, and gender are all associated with income and may confound the rela-
tionship between income and health.

Occupation, along with income and education, are components of socio-
econonomic status. Although these measures are related, they are not inter-
changeable (Braveman et al., 2005). In the United States, ethnic and racial 
groups have different levels of income for a given level of education, different 
levels of wealth for a given level of income, and different levels of neighbor-
hood socioeconomic status for given levels of individual socioeconomic status. 
Income and education are the most commonly used measures of socioeconomic 
status in the United States, in part because of the way occupations are classi-
fied in U.S. data systems. Studies on the relationships between occupation and 
health disparities conducted in western European countries have found strong 
relationships between occupation and health (Kunst, Groenhof, Mackenbach, 
& EU Working Group on Socioeconomic Inequalities in Health, 1998), even in 
studies that have controlled for income and education. Employment in hazard-
ous occupations exposes individuals to health risks. To the extent that hazardous 
industries are concentrated in particular places, there are likely to be geographic 
variations in health tied to occupation and to individual behaviors like smoking 
or drinking alcohol that are often more prevalent among individuals in particular 
occupations (Stirling, 1978).

Area-based measures of material deprivation have also been used in health 
disparities research (Townsend, Phillimore, & Beattie, 1988; Carstairs, 1995; Cox 
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et al., 2007). A deprivation index measures the absence of resources needed for 
survival. Indices like those developed in the United Kingdom by Townsend and 
Carstairs relied on census data, some using surveys of health experts to weight 
the census variables included in the index (Jarman, 1983). GIS and multicriteria 
analysis have also been used to identify patterns of social deprivation in British 
Columbia (Bell, Schuurman, & Hayes, 2007). As with occupation, income, and 
education, the components of a deprivation index may not be interchangeable 
and the resources of an individual or household living within an area may not 
match the resources measured at the area level (Macintyre, Hiscock, Ellaway, & 
Kearns, 2004).

In the United States, race and ethnicity have received particular attention 
in the investigation of health disparities. An analysis of the effects of income 
inequality on mortality in cities and states in the United States found no relation-
ships in 1980 or in 1990 between income inequality and mortality across cities or 
states once the fraction of the population that was black was controlled (Deaton 
& Lubotsky, 2003). The analysis found that white mortality rates were higher in 
places where a higher fraction of the population was black, and this relationship 
also held within large regions of the country. A replication of the study essen-
tially confirmed the findings and uncovered evidence of spatial variability in the 
relationship between inequality and health (Ash & Robinson, 2009). Both black 
mortality and white mortality were negatively affected by the fraction of popula-
tion in metropolitan areas that was black, reflecting the presence of detrimental 
social and environmental determinants of health. The racial composition of the 
area was seen, in the American context, as evidence of inequality in political and 
economic power (Williams & Collins, 2001).

Gender is also related to health, although attention to the role of gender 
in relation to income, education, and occupation in health disparities is more 
recent than research focusing on gender and health alone (Macintyre & Hunt, 
1997). Data from the First National Health and Nutrition Examination Survey 
(1971–1993) including baseline data for men and women on educational attain-
ment and household income were analyzed with data on incident coronary heart 
disease drawn from hospital records and death certificates over 22 years of fol-
low-up (Thurston, Kubzansky, Kawachi, & Berkman, 2005). Although the asso-
ciation between income and education and health was traditionally believed to 
be weaker for women than for men, the study found that having less than a high 
school education was associated with a stronger risk of coronary heart disease 
for women than for men.

Income, wealth, and other measures of socioeconomic status such as occu-
pation and education that differ by race, ethnicity, and gender are important 
factors in individual well-being, but characteristics of the environment are also 
important. People in the same income group may live in settings that are very 
different in terms of the built environment. Characteristics of areas other than 
the socioeconomic status of their residents have also been studied in relation to 
health disparities.
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The Geography of the Built Environment

The neighborhoods where we live are created by people. The built environment
is everything that is made or maintained by humans to fulfill human purposes 
(Bartuska, 2007). Much of the built environment mediates or changes envi-
ronmental conditions for human comfort or well-being, with results that have 
positive and negative effects on ecosystems and the human–environment rela-
tionships that they comprise. When population density is used as a measure, 
variations in human impact on the environment are, like variations in income, 
apparent at the global, regional, and local scales (Figure 11.3).

The development of GIS technology and spatially referenced databases has 
had a significant impact on studies of the relationships between the built envi-
ronment and health because they have provided support for creating objective 
measures of the built environment and modeling neighborhood conditions across 
a wide range of settings. Nevertheless, research on the quality of the built envi-
ronment and health emerged in the 19th century in response to the dramatic 
changes in the built environment associated with the Industrial Revolution 
(Chadwick, 1965; Davis, 1973). In 1889, the British Medical Association mapped 
the principal concentrations of rickets in England and Scotland, showing their 
correlation with industrial areas where smoke and overcrowding limited expo-
sure to sunlight (Owen, 1889; Loomis, 1970). Rickets was then seen as a disease 
tied to the environment rather than individual behavior, given that diets in the 
urban industrial areas were generally better than those in poorer rural com-
munities. Interestingly, there is renewed interest in the role of vitamin D in 
health (Holick, 2009). Recognition of the links between the built environment 
and health has continued in the decades since.

In 1948, the American Public Health Association published a set of stan-
dards highlighting “the basic health criteria which should guide the planning 
of residential neighborhood environment” (Committee on the Hygiene of Hous-
ing, American Public Health Association, 1948, p. v). The standards cover many 
aspects of the built environment: essential physical characteristics of housing 
sites; availability of water supply and sewage disposal, solid waste removal, 
power, fuel, and communications, fire and police protection; freedom from acci-
dent hazards, noise and vibration, odors, smoke, and dust, disease hazards, and 
moral hazards; access to community facilities by pedestrian, automobile, and 
public transit, and bicycle ways; and the availability of essential city and district 
facilities including education, retail, employment, outdoor recreation, and health 
services. Detailed quantitative standards are provided for many features. For 
example, tables show the total neighborhood park size in acres recommended 
for neighborhoods based on their type of housing and population size and the 
recommended distances for access to neighborhood facilities.

In the 1960s, as part of the Detroit Geographical Expedition and Insti-
tute, geographers and community residents of neighborhoods in Detroit docu-
mented characteristics of the built environment (Bunge, 1971; Horvath, 2006). 
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FIGURE 11.3. Variations in population density at the global, regional, and local 
scales.
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Their research yielded information on the location of neighborhood recreational 
facilities (Figure 11.4). They also found that the prices of milk, peanut butter, 
and other foods were 25 to 79% higher in the inner city compared to the suburbs 
in Detroit chain stores. These earlier efforts, however, did not benefit from the 
spatial data handling, measurement, and analysis capabilities of GIS, which have 
made it possible to measure and analyze characteristics of the built environment 
in health studies involving large numbers of people and many regions.

MEASURES OF THE BUILT ENVIRONMENT

Like income, which can be measured in a number of ways, the built environment 
is a multidimensional concept. It encompasses both the local physical infra-
structure such as roads, sidewalks, residences, and facilities and the local social 
infrastructure such as networks of community support, social order, and social 
capital, both as objectively measured and as subjectively perceived (Macintyre, 
Ellaway, & Cummins, 2002). Objective measures of the built environment are 
based on measurements of geographic features—for example, the density of the 
street network in an area or the number of parks within a certain distance from a 
residence. Subjective measures of the built environment are based on residents’ 

FIGURE 11.4. Recreational facilities for children and adults in the Fitzgerald 
neighborhood of Detroit, Michigan, 1966. The neighborhood had more facilities for 
adults than for children. From Bunge (1971, 2011). Copyright (2011) by University of 
Georgia Press. Reprinted by permission.
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perceptions of environmental conditions—for example, how many parks a per-
son believes to be within a specified distance from the residence.

Geographic information systems have proven highly useful in developing 
objective measures of the built environment for health research. Many of these 
measures such as population density, street network connectivity, land use mix, 
and facility density were first developed in urban planning and transportation, 
and the formulas for calculating the measures were published before the wide-
spread adoption of GIS. Features of the built environment have been used in 
studies of specific health outcomes like overweight and obesity or substance use 
and in relation to general health.

THE BUILT ENVIRONMENT AND OBESITY

The rapid increase in overweight and obesity in the populations of high-income 
countries has been one of the most notable public health problems of the last 
two decades (Caballero, 2007; Friel, Chopra, & Satcher, 2007). Overweight and 
obesity in individuals are tied to energy balance, the difference between the 
calories consumed in food and drink and the energy expended through physical 
activity. Food environments and physical activity environments have both been 
studied in relation to overweight and obesity.

The community nutrition environment is described by the number, type, 
and location of food sources, including groceries, convenience stores, restaurants, 
farmer’s markets, and other outlets (Glanz, 2009). Communities with limited 
access to grocery stores and other retail outlets offering nutritious foods at rea-
sonable prices have been labeled food deserts (Reisig & Hobbiss, 2000; Walker, 
Keane, & Burke, 2010). Data on the location of food outlets can be obtained 
by neighborhood survey and from license records, directories, and commer-
cial databases like Dun & Bradstreet or InfoUSA (Wang, Gonzalez, Ritchie, & 
Winkleby, 2006). Commercial databases of facilities with geographical coordi-
nates are sometimes bundled with GIS software. Otherwise, spatial databases 
of facility locations are developed from surveys, license records, or directors by 
address-match geocoding, as discussed in Chapter 3.

Increasingly, efforts are being made to validate data on facilities used to 
characterize community nutrition environments and environments for physi-
cal activity (Boone, Gordon-Larsen, Stewart, & Popkin, 2008a; Bader, Ailshire, 
Morenoff, & House, 2010). The methods used to assess completeness and posi-
tional accuracy of the data on facilities and facility locations have been criticized 
(Zandbergen, 2008; Boone, Gordon-Larsen, Stewart, & Popkin, 2008b). How-
ever, an equally serious weakness of these studies is that not enough attention 
is paid to the spatial distribution of the errors. If errors are concentrated in par-
ticular places, then the measure of neighborhood environmental quality will be 
more valid for some individuals than for others.

With these caveats, these databases have been useful for describing the 
locations of food outlets. GIS have been used to map the locations of food outlets 
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in relation to overweight and obesity and to measure accessibility to and density 
of food outlets in different neighborhoods. Accessibility can be measured using 
techniques described in Chapter 9. Density of food outlets can be derived by 
performing a point-in-polygon analysis to determine the area where a facility is 
located, summarizing the data by area, and then joining a table of facility counts 
by area to a GIS database of area features. GIS software functions can return the 
geographic area of each polygon as an attribute, and density can be calculated by 
dividing the count of facilities in a polygon by the length of the street network in 
the zone or by the area of the polygon (Figure 11.5). Density can also be calcu-
lated in relation to local population size.

There is less information in facility databases, however, about the character-
istics of facilities, for example, the kinds of food actually available in the outlets. 
This information usually requires community surveys of the types of food for 
sale, because the purchasing and sales records of the stores are proprietary data. 
The consumer nutrition environment includes what people encounter in and 
near the places where they buy food (Glanz, 2009). The connections between the 
locations of food outlets, what people actually eat, and their weight are complex 
(Lytle, 2009).

As an example, research in a number of countries has demonstrated that 
disadvantaged areas have better geographic accessibility to fast-food outlets and 
are likely to lack supermarkets (Block, Scribner, & DeSalvo, 2004; Cummins, 
McKay, & Macintyre, 2005; Burns & Inglis, 2007). Yet, a national study of the 
association between neighborhood access to fast-food outlets, diet, and weight 
found that residents who were furthest from multinational fast-food outlets 
were more likely to have the recommended intake of vegetables but were also 
more likely to be overweight, controlling for individual and area characteristics 
(Pearce, Hiscock, Blakely, & Witten, 2009). With the growing number of stud-
ies conducted in a wide range of community settings, variations in these effects 
among regions within countries have been noted. A study conducted in a range 
of community settings in Scotland found that the most deprived areas had the 
highest access measured in terms of travel time to grocery stores and stores 
selling fresh produce (Smith et al., 2010). Access to fresh produce was lowest 
among affluent island communities. A study conducted in census tracts located 
in Mississippi, North Carolina, Maryland, and Minnesota found that people liv-
ing in areas with particular combinations of food stores had higher obesity and 
overweight (Morland, Diez Roux, & Wing, 2006). In particular, people in areas 
with grocery and/or convenience stores but no supermarkets were at risk. People 
who lived in areas with only supermarkets were less likely to be overweight or 
obese.

Measures of the built environment have also been used in studies of physical 
activity (Sallis, 2009). Data on the locations of parks and recreation facilities are 
compiled in some of the same ways as data on food sources, from neighborhood 
survey, from public records, from directories, and from commercial databases. 
As with food sources, the databases on parks and recreation facilities gener-
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FIGURE 11.5. GIS can be used to map facilities in the built environment. A point-
in-polygon analysis can be used to identify the area, like a census tract, within which 
each facility is located. GIS functions can be used to summarize the table of individual 
facility points and their census tract locations to obtain a count of facilities in each 
area. The density of facilities per square kilometer of area is calculated by dividing the 
facility count by the area of the tract in square kilometers. Because facilities are usu-
ally located on streets, facility density by area road length might also be calculated by 
dividing the facility count by the total road length in the area in kilometers. Note that 
facility density per square kilometer is the same in Figures 11.a and 11.b above, but 
the facility density based on the road network is about 30% higher in the area shown 
in Figure 11.b above, because there are fewer roads. Two census tracts with the same 
number of facilities and same area can have different facility densities depending on 
the road network.
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ally provide little information on the attributes of these places. The same kind 
of distinction between community nutrition environment and consumer nutri-
tion environment applies to the community built environment and community 
physical activity environments. Because physical activity can take place almost 
anywhere, research on the built environment and physical activity encompasses 
a wide range of measures beyond the presence of parks and recreation facilities.

Three main approaches to collecting data on the built environment as it 
relates to physical activity have been identified: reports from individuals sur-
veyed by telephone or self-administered questionnaires on their perceptions of 
features in the environment; systematic field audits of neighborhoods and recre-
ational facilities; and geographic databases compiled using GIS (Brownson, Hoe-
hner, Day, Forsyth, & Sallis, 2009). Many of the audit tools have been validated 
(Sallis, 2009). The validity and reliability of geographic databases used to derive 
measures of the built environment are more difficult to assess, although studies 
are being conducted in the field to validate data on facilities, as noted above.

Nevertheless, geographic databases have been particularly useful in studies 
that cover a large number of dispersed neighborhoods. Five main classes of mea-
sures derived from spatial databases have been used in physical activity research: 
population density, land use and land use mix, access to recreational facilities, 
street network characteristics, and attributes of the street network environment 
that may enhance or discourage physical activity such as presence of sidewalks, 
levels of traffic, and crime. Sometimes, composite variables or indices are devel-
oped from these measures.

As discussed in Chapters 2 and 3, the foundation databases available for 
deriving measures of the built environment vary widely from place to place, 
and the costs of collecting and processing the required data can be high. Data 
on the availability of sidewalks, for example, are often difficult to obtain. It may 
not be possible to replicate studies conducted in one setting in other places or 
to find comparable data for studies conducted across a wide range of communi-
ties. Also, analytic procedures can be implemented in different ways depending 
on the software and on the analyst affecting the reliability and validity of the 
measures. To begin addressing these issues, attention has been paid to develop-
ing standards for documenting GIS procedures and data in research on food and 
physical activity environments (Forsyth, 2007).

A study of recreational cycling in Melbourne, Australia, examined associa-
tions between cycling, individual characteristics, area socioeconomic character-
istics, and objectively measured built environment characteristics assessed by 
audits (Kamphuis et al., 2008). The built environment characteristics included 
design features (cycling paths, street width), safety (lighting, traffic control), 
facilities (bicycle parking, retail stores, recreational facilities), and aesthetics 
(views, maintenance). Residents of deprived areas were less likely to cycle for 
recreation, and aesthetics were worse in deprived areas. Two safety characteris-
tics, the level of surveillance and the absence of driveway intersections, were sig-
nificantly associated with recreational cycling after adjusting for safety features 
and compositional factors.
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THE BUILT ENVIRONMENT AND SUBSTANCE USE

Built environment measures have also been used in research on substance use, 
especially tobacco and alcohol. In these studies, the focus is primarily on density 
of outlets and accessibility to outlets. The density of tobacco retail outlets around 
schools has been linked to adolescent smoking initiation and purchasing habits 
(Leatherdale & Strath, 2007; McCarthy et al., 2009). For adults, the density of 
tobacco outlets around the home, as well as the proximity of tobacco outlets to 
the home, has been associated with the number of cigarettes consumed per day 
among adult smokers (Chuang, Cubbin, Ahn, & Winkleby, 2005).

The picture with alcohol use is more complex, in part because of the array 
of outlets for alcohol sales and connections between drinking setting and drink-
ing behavior. Higher densities of off-campus alcohol outlets allowing on-premise 
drinking were strongly related to drinking outcomes in college students, control-
ling for individual predictors of college drinking (Scribner, Mason, et al., 2008). 
The structure of drinking opportunities may also affect other health outcomes. 
Declines in gonorrhea rates from 1988 to 1996 were steeper in Los Angeles neigh-
borhoods where more alcohol outlets closed following a period of social unrest in 
1992 (Cohen et al., 2006). Even after controlling for the effects of property dam-
age, the number of alcohol outlets per roadway mile was positively associated 
with gonorrhea rates. It is possible, however, that community efforts to prevent 
closed alcohol outlets from reopening were associated with other changes in the 
neighborhoods that influenced sexual risk taking in the local population.

Distinct patterns of drinking outlet utilization were found among age, gen-
der, and ethnic subgroups in a study of 25,000 drinkers in communities in Cali-
fornia and South Carolina. These patterns were differentially linked to acute 
drinking problems (Treno, Alaniz, & Gruenewald, 2000). Reasons for drinking 
and drinking setting together influenced consumption in a study of more than 
8,000 students at 18 universities (Kairouz, Glicksman, Demers, & Adlaf, 2002). 
Students drank for different reasons in different contexts. A comparative multi-
level analysis of contextual drinking in American and Canadian adults concluded 
that interactions between locations and demographic variables of individuals 
may differ in different societies (Kairouz & Greenfield, 2007).

THE BUILT ENVIRONMENT AND GENERAL HEALTH

Efforts have also been made to develop more comprehensive sets of built envi-
ronment measures that might be linked to health. One innovative yet vital 
approach begins with a set of human needs, including air, water, food, shelter, 
security, education, information, social relationships, political capital, and play 
(Cummins, Macintyre, Davidson, & Ellaway, 2005). Approaches to finding and 
collecting data to operationalize community characteristics that meet these 
needs are described.

A study using specific measures hypothesized to be important for a healthy 
life found that a number of features were associated with self-rated health (Cum-
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mins, Stafford, Macintyre, Marmot, & Ellaway, 2005). The study used data from 
the Health Survey for England and the Scottish Health survey for almost 14,000 
men and women 16 years of age or older. Six neighborhood attributes were sig-
nificantly associated with fair to very bad self-ratings of health. Poor physical 
quality of the residential environment, lower political engagement, higher unem-
ployment, and lower access to private transportation were among the attributes 
associated with poorer health after adjusting for individual age, sex, social class, 
and economic activity. The associations were larger for unemployed residents 
than for employed residents, suggesting that the effect of some built environment 
characteristics, like neighborhood income, may differ across groups.

INCOME, RACE AND ETHNICITY, GENDER, 

AND THE BUILT ENVIRONMENT

Relationships between income and built environment characteristics were inves-
tigated in a cross-sectional study of 32 neighborhoods in Seattle, Washington, 
and Baltimore, Maryland (Sallis et al., 2009). Daily minutes of moderate to vig-
orous physical activity measured by accelerometer were greater in areas with 
high walkability, and the relationship did not differ by income. Walkability was 
measured through an index based on built environment features including inter-
section density, net residential density, retail floor area ratio, and land use mix.

Without measuring any area characteristics directly, the effects of race 
and ethnicity as opposed to area characteristics were investigated in the United 
States by using dummy variables for each place (Do et al., 2008). Data on self-
rated health from the National Health Interview Survey were used. Controlling 
for residential context reduced disparities in self-rated health among blacks and 
whites that could not be accounted for by individual-level controls by 15 to 76%. 
The contribution of residential context to explaining disparities between blacks 
and whites declined with age and was smaller among females than males.

A study conducted using health survey data for England and Scotland found 
that contextual effects including measures of the built environment were related 
to self-reported health for men and women (Stafford, Cummins, Macintyre, 
Ellaway, & Marmot, 2005). The study included measures of the built environ-
ment, including access to food stores, number of public recreation sites, health 
services providers, and vacant and derelict land. The size of the effects was larger 
in every case for women than for men.

Summary

There is clearly evidence that the socioeconomic and environmental characteris-
tics of areas affect the health of the people who live in them, although the results 
of individual studies conducted in different settings using different measures and 
methods vary. It is important to include a range of community characteristics in 
studies of health disparities. The poorest residents do not always have the worst 
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access to facilities (Macintyre, Macdonald, & Ellaway, 2008; Smith et al., 2010), 
in part because higher incomes enable people to live in low-density residential 
areas distant from facilities. Not all deprived areas have high levels of pollution 
and not all polluted areas have poor populations, but some places have a “double 
burden” of economic deprivation and poor environmental quality (Crouse, Ross, 
& Goldberg, 2009). The fact that some health patterns are not fully explained by 
the composition of areas or available measures of area conditions (Riva, Curtis, 
Gauvin, & Fagg, 2009) is leading researchers to develop better ways of concep-
tualizing neighborhoods and to investigate spatially varying processes.

Defining Neighborhood Contexts

One of the most challenging aspects of exploring the effects of neighborhoods on 
health is defining the neighborhood (Spielman & Yoo, 2009). In general, there 
are three approaches to defining neighborhoods in research concerned with con-
textual effects. First, reporting units like census tracts or postal code areas can 
be used. Second, GIS functions can be used to create neighborhoods that reflect 
some kind of spatial process. Finally, individuals’ reports of conditions in their 
neighborhoods can be used, although these reports are usually collected without 
obtaining an explicit description of the spatial extent of the perceived neighbor-
hood.

For contextual variables such as income and measures of socioeconomic 
status which are usually aggregated from individual census returns, the fact that 
data are reported for political/administrative units like states, counties, or cen-
sus tracts often leads analysts to define the “neighborhood” contexts in terms 
of these units (Krieger et al., 2003). The advantages and disadvantages of some 
units over others—for example, census tracts versus ZIP Codes—have been con-
sidered (Krieger et al., 2002). Whatever reporting unit is used, the neighborhood 
of the individual is determined by performing a point-in-polygon analysis in GIS 
to identify the areal unit within which the individual resides or engages in some 
other activity.

Data reported for political/administrative zones are subject to the modi-
fiable areal unit problem (MAUP), also discussed in Chapter 4. Flowerdew, 
Manley, and Sabel (2008) investigated the issue of neighborhood definition by 
creating several sets of “pseudo-wards,” essentially redrawing existing ward 
boundaries in communities in England. The different sets of alternative zones 
had approximately the same number of zones, but the zones were drawn with 
different boundaries designed to reflect different properties, including equality 
of size, regularity of shape, and internal homogeneity. Each of these proper-
ties can be measured for a set of zones using the statistical formulas given. The 
impact of using different zonation schemes, including the actual ward zones, 
on the observed relationships between neighborhood contextual characteristics 
and health outcomes was modeled by analyzing the relationships for each of the 
zonal schemes. The actual ward boundaries, like most administrative bound-
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aries, were found to have been drawn in a way that arbitrarily partitions the 
underlying distribution of interest, and the conclusion from the initial analysis 
was that there was no apparent neighborhood effect on health. When other zonal 
systems were used, significant neighborhood effects on health were uncovered. 
This analysis provided clear evidence that where the boundaries of political/
administrative units are drawn matters.

The socioeconomic perspective is only one way of looking at neighborhoods 
(Lebel, Pampalon, & Villeneuve, 2007). For contextual variables such as many 
of the built environment variables that are not reported in the census, GIS have 
been used to develop neighborhoods whose boundaries do not necessarily cor-
respond to reporting units but instead reflect some underlying process. Some 
studies have used circular buffers around people’s homes to describe the neigh-
borhood of interest, but the network analysis capabilities of GIS discussed in 
Chapters 9 and 10 have made it possible to model so-called network buffers
based on distance measured along the street network (Figure 11.6). These buf-
fers may more accurately reflect how people actually travel in the environment, 
although care must be taken in choosing the buffer distance. Population density, 

FIGURE 11.6. The consequences of using a circular buffer versus a network buf-
fer to define the neighborhood around a residence. The Euclidean distance between 
Home and Store 2 is just under a quarter of a mile (1,296 feet) so the store would be 
considered within the neighborhood of the home as defined by the circular buffer area. 
The network distance from Home to Store 2 is 3,609 feet. Store 1 is actually closer to 
Home than Store 2 by almost a quarter of a mile, but it would be outside the neighbor-
hood defined by the circular buffer.
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number and density of retail outlets, land use, and other measures of the built 
environment can then be derived for these areas.

In addition to modeling the area within a certain street network distance 
from a person’s home, school, or workplace, geospatial technologies are being 
used to identify the actual neighborhoods where people engage in activities of 
interest. GPS receivers have been used with accelerometers to monitor individu-
als’ levels of physical activity and where the activity actually occurs (Troped 
et al., 2010). An accelerometer is an electromagnetic instrument that measures 
acceleration. Measurements from these devices, which can be worn by study 
participants, are analyzed to assess when participants are engaged in low, mod-
erate, or vigorous physical activity. These studies are useful in identifying where 
physical activity actually occurs and suggesting what the appropriate buffer dis-
tances might be to capture the characteristics of neighborhoods as contexts for 
physical activity.

In addition to their social, spatial, and statistical definitions, neighborhoods 
have a perceptual dimension. Our cognitive maps include our perceptions of 
districts or neighborhoods (Lynch, 1960). When people are asked in surveys to 
assess conditions in their neighborhoods, they are rarely asked to describe what 
they perceive as the boundaries of the neighborhood. Nevertheless, GIS can 
be used to document these neighborhoods, too. The boundaries of an individu-
al’s perceived neighborhood can be represented on a map either by translating 
the person’s description to the map or having the person draw the limits of the 
neighborhood on the map (Figure 11.7). These maps can be scanned, and the 
neighborhood boundaries can be screen digitized or acquired by vectorization 
of the raster image. To identify the area that most people who live in the same 
place would consider as their neighborhood, a union operation can be performed 
on the individual data layers. Similar techniques can be used to investigate the 
spatial coincidence of various historical zones used to define neighborhoods 
over time (Lebel, Pampalon, & Villeneuve, 2007). It may not always be practi-
cal in large-scale studies to investigate participants’ perceived neighborhoods in 
this way, and there is likely to be disagreement about neighborhood boundaries 
(Flowerdew, Feng, & Manley, 2007). Neighborhood defined according to peo-
ple’s activity spaces or their perceptions will likely vary among individuals living 
in the same place in terms of age, gender, social roles, and mobility (Cummins 
et al., 2007). Nevertheless, these techniques can be useful in incorporating local 
knowledge into studies modeling neighborhood effects on health.

Modeling Neighborhood Effects on Health

Multilevel modeling, spatial modeling and analysis in GIS, and other techniques 
are commonly used to assess neighborhood effects on health (Luke, 2005). These 
methods have been employed in cross-sectional research on the relationships 
between health and area characteristics. Studies using multilevel modeling 
techniques have raised important conceptual and methodological issues about 
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FIGURE 11.7. Using GIS to model perceived neighborhoods of individuals at a 
common workplace. The individual perceived neighborhood areas were screen dig-
itized from scanned maps as shown in Figure 11.7a. The individual polygons were 
combined using GIS polygon overlay procedures to find the union of the first pair of 
neighborhoods, the union of the result with the next neighborhood, and so on, carrying 
forward the ID numbers of each individual as shown in the table and in Figure 11.7b. 
The number of individuals who counted the area of a union polygon as part of their 
perceived neighborhood of the workplace can be summed and mapped to identify the 
areas of agreement for all individuals.
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how neighborhoods are defined and about spatial dependencies across neighbor-
hoods. Research has shown that the relationships between neighborhood char-
acteristics and health may themselves be spatially variable. Finally, there is a 
growing body of work that considers how change in the locations of individuals 
through migration and changes in neighborhood areas over time affect health 
disparities.

Multilevel Modeling and Health Disparities

Multilevel modeling is one of the most widely used methods for studying health 
disparities (Diez Roux, 2000). For health research, multilevel models view indi-
vidual health outcomes as influenced by factors at different levels. For example, 
individual health disease risk is influenced by individual characteristics such as 
age and gender and characteristics of the census tract of residence. A two-level 
multilevel model is generally formulated as follows:

Yij = 00 + Cj + 10Iij + 11CijIij + U0j + U1jIij + eij

where Yij is the health outcome for the ith individual in the jth context or group, 

00 is the common intercept across contexts, 01 is the fixed effect of group-level 
variable Cj, 10 is the fixed effect of individual-level variable Iij, and 11 is the 
effect of their interaction CijIij on the individual outcome. The remaining terms 
specify a complex error structure where U0j is a random intercept, U1j is a ran-
dom slope, and eij are individual errors. The random intercept and random slope 
components of the error for observations within groups are correlated, and error 
variance is not constant.

This formulation is for a simple model, but more complex models with dif-
ferent assumptions about the distribution of the dependent variable, fixed and 
random effects, nonlinear relationships, and overlapping or cross-classified con-
texts are possible. Software functions for solving multilevel models have not been 
incorporated into most GIS packages. Instead, GIS are used for deriving neigh-
borhood environment characteristics and for determining which neighborhood 
contexts a person falls within.

Multilevel modeling was used to investigate whether or not characteristics 
of the neighborhood internal housing and the external built environments were 
related to depression in an analysis of 1,355 residents of New York City (Galea, 
Ahern, Rudenstine, Wallace, & Vlahov, 2005). The 59 community districts in the 
city were used as the neighborhoods in the study. The New York City Housing 
and Vacancy Survey provided data on internal characteristics of housing units 
in neighborhoods and on external characteristics of properties in each neigh-
borhood, along with some additional information on the external environment 
provided by the Fire Department and the Department of Sanitation. Data on 
neighborhood socioeconomic characteristics were also included. Adjusting for 
an individual’s age, race/ethnicity, sex, and income and for the neighborhood’s 
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level of income, the research showed that people who lived in neighborhoods 
with poorer quality internal and external built environments were more likely to 
report having symptoms of depression in the last 6 months and lifetime depres-
sion. A review of cross-sectional and longitudinal studies of depression and 
neighborhoods found that many, but not all, confirmed associations between at 
least one built environment characteristic and depression, despite the variability 
in neighborhood definitions and measures, study populations, and study design 
(Mair, Diez Roux, & Galea, 2008).

Modeling Spatial Effects

A key weakness of multilevel modeling as an approach to studying health dispar-
ities is that spatial effects are not always explicitly addressed. In studies where 
neighborhoods are contiguous, spatial autocorrelation may be present, as dis-
cussed in Chapter 5. The maps in Figures 11.2 and 11.3 suggest that there often 
are spatial patterns in income and built environment characteristics at all scales. 
For example, poor neighborhoods may be clustered together within a metro-
politan region. Spatial regression models have been used in research on health 
disparities to account for spatial autocorrelation.

A typical model in an ordinary least squares regression specification takes 
the general form

i
k

ikki exy

where yi is the observed outcome for i,  is the intercept (a constant), xik is the 
value of the independent variable k for observation i, k is the estimated param-
eter for variable k, and ei is error (the difference between the observed and 
expected values for yi). In ordinary least squares regression, e is random error. If 
spatial autocorrelation is present, the error terms are correlated with each other 
and nonrandom, therefore violating one of the basic assumptions of the regres-
sion model and resulting in incorrect parameter estimates.

Spatial regression models incorporate direct modeling of spatial autocorre-
lation (Anselin, 2003b). The model includes a spatial weights matrix (see Chap-
ter 5) describing neighborhood relationships among the set of observations I in 
relation to the set of observations as neighbors J. A spatial errors model takes the 
general form

ij
j

ij
k

ikki ewxy

Here, the nonrandom spatial error terms are incorporated into the third term, 
which captures the spatial structure of the spatially dependent error, where 
is the spatial autoregressive coefficient or error parameter and jwijej is the sum 
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of the spatial weights multiplied by the spatially dependent error with respect 
to observation i. The last term, i, is the random error. The spatial error model 
formulation addresses the situation of spatial autocorrelation in the error term 
alone. It is also possible to design spatial lag models that include a term for 
spatial autocorrelation in the dependent variable as mentioned in Chakraborty 
(2009).

A spatial error model estimated using GeoDa software (Anselin, 2003a) was 
used to predict neighborhood scores on a hazard density index tied to the pres-
ence of maquiladoras (final assembly manufacturing plants) in Ciudad Juárez, 
Mexico (Grineski & Collins, 2008). Independent variables included neighbor-
hood-level social class measured using a combination of variables, the percent of 
children under 14 years of age in the neighborhood, and the neighborhood level 
of formal housing development measured using a combination of variables mea-
suring the quality of residential construction and availability of water and sewer. 
Because the neighborhood units were heterogeneous in size and shape, distance 
rather than contiguity (see Chapter 5) was used to define neighbors in develop-
ing the spatial weights. In the inverse distance weighting procedure, neighbors 
of a given neighborhood unit were defined as units whose centroids were within 
3,000 meters of the centroid of the given neighborhood unit. The percent of 
children under 14 was a significant positive predictor of hazard, but social class 
was not. When housing quality was included, however, all three variables were 
significant, indicating that neighborhoods of lower social class, better quality 
housing, and higher percentages of children had significantly higher scores on 
the hazard density index.

Spatial error models are global in scope because the regression parameters 
are interpreted to be constant across the study space, with variation resulting 
from the spatial heterogeneity of the variables alone. Local spatial statistics have 
been developed for situations where there is spatial variability in the parameters 
as well as in the explanatory variables (Fotheringham, Brunsdon, & Charlton, 
2002). Investigations of spatially varying processes are also relevant to research 
on health disparities.

Spatially Varying Processes

Global statistics summarize data for entire regions yielding a single statistic. As 
such, they may mislead analysts about the nature of relationships in particu-
lar places. Local statistics summarize data for individual places within entire 
regions. They yield multiple statistics, one for each place, and these statistics can 
be mapped using GIS. Global and local statistical methods for studying clusters 
of health events are discussed in Chapter 5.

Local statistics are useful in exploratory data analysis, confirmatory analy-
sis, and the development of global models. The measured particulates at indi-
vidual air monitoring stations are local statistics, whereas the mean level of par-
ticulates across a state is a global statistic. When data are compiled and reported 
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at a disaggregate level, local statistics can be calculated. When data are reported 
only for a single entity, such as for states or the nation as a whole, local statistics 
cannot be calculated and GIS can have only a limited role.

Geographically weighted odds ratios and geographically weighted regres-
sion are local statistics that have been used to study health problems. In a study of 
individual, behavioral, and environmental factors contributing to motor vehicle 
collisions in Connecticut, geographically weighted odds ratios were calculated 
for areas where high numbers of collisions occurred (Cromley, 2007). In the state 
as a whole, fixed object crashes (striking an object like a telephone pole or a tree) 
accounted for 19% of crashes. In some of the high-frequency collision zones, the 
local proportion of fixed object crashes was significantly higher. In the state as 
a whole, 65% of crashes occurred on dry roads. At some of the high-frequency 
sites, weather was a greater factor, with only 10% of crashes occurring when 
roads were dry. Local odds ratios for the role of weather differed significantly 
from the global odds of weather contributing to a collision. This suggests that, in 
addition to weather conditions themselves being spatially variable, the connec-
tion between weather and crashes is different in different places.

Geographically weighted regression (GWR) extends the basic regression 
model to provide locally varying parameter estimates (Fotheringham, Charlton, 
& Brunsdon, 1998). The model takes the form

iikii
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where yi is the predicted value of the dependent variable for location i, xik is the 
value of the independent variable k at point i, 0 and k are continuous functions 
of (ui,vi), the spatial coordinates of the ith point, and ei is the error at point i.

GWR was used in a study of mortality in the Atlanta metropolitan area 
(Holt & Lo, 2008). Socioeconomic status, race, and urbanization were signifi-
cantly associated with standardized mortality rates across 431 census tracts in 
the area. Local parameter estimates were mapped. Low socioeconomic status, 
for example, was found to be particularly significant in estimating mortality in 
the northern suburbs of Atlanta, but had much less significant effect in the south-
ern region of the study area (Figure 11.8).

GWR has also been used to explore environmental inequities in the density 
of air toxic releases in New Jersey (Mennis & Jordan, 2005). In some areas, the 
association between minority populations and concentration of air toxic releases 
was mediated by high poverty rates. In other areas, the presence of industrial 
and commercial land uses was a factor.

Like spatial error and spatial lag models, GWR can be performed using 
freestanding software (Fotheringham, Charlton, & Brunsdon, 2009). GWR func-
tions have also been fully coupled with some GIS software packages. These anal-
yses show the important role of GIS in investigating the links between location 
and well-being.



402 GIS AND PUBLIC HEALTH

Location Processes and the Link between Location 
and Well-Being

Location processes are the mechanism by which the income and neighborhood 
environmental inequalities underlying health disparities are created and main-
tained (Cox, 1979). In a very real sense, we create each other’s environments 
through our locational choices and our behavior in the environment. Our activi-
ties generate externalities, unpriced costs and benefits for our neighbors. The 
location of a plant for incinerating municipal solid waste generates pollution that 
also generates external income and environmental quality effects if it lowers the 

FIGURE 11.8. Geographically Weighted Regression (GWR) parameter estimates 
for the socioeconomic status variable in a model predicting mortality reveal that the 
relationship between socioeconomic status and mortality varied in the Atlanta metro-
politan area. Low socioeconomic status was significant in predicting mortality in the 
northern suburbs but had a lower and less significant impact in the southern parts of 
the area. Reprinted from Holt and Lo (2008). Copyright 2008 by Elsevier. Reprinted 
by permission.
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value of neighboring properties and exposes their residents to a health hazard. 
These are examples of negative asymmetric externalities. The location of a park, 
on the other hand, enhances the value of neighboring properties and provides 
easy access to recreational facilities, an example of positive asymmetric exter-
nalities, if the area also has low levels of crime. These external effects are asym-
metric because the costs and benefits are not shared. Some positive and negative 
externalities are symmetric. When individuals in a community are immunized, 
there is an individual benefit, and the increase in immunity in the population as 
a whole makes it less likely that an outbreak of infectious disease will occur—a 
positive symmetric externality. Congested highways generate negative symmet-
ric external effects in that all of the vehicles are contributing to the problem they 
are experiencing.

All activities generate positive and negative effects. Even facilities or activi-
ties that are seen as goods are not necessarily good neighbors. Most of us want 
to know that an emergency medical vehicle can reach us within several minutes, 
but we would not want to live next door to a fire department or an ambulance 
station. Often negative external effects are highly localized in space while the 
benefits are more diffuse. “Neighborhoods” can be thought of as the resources 
and risks associated with particular locations (Bernard et al., 2007).

Locational conflict occurs when differences of opinion arise about how 
location and flows of goods and people should be regulated. In federal states 
like the United States, these conflicts can lead to considerable geographical 
variation in the juridical context, the existing laws and their administration, at 
state and local levels. Geographical differences in fatal occupational injury rates 
are significant in the United States, ranging from 1.7 per 100,000 in Connecticut 
to 24.3 per 100,000 in Alaska (Loomis et al., 2009). After controlling for differ-
ences in industry and workforce composition, higher rates of fatal occupational 
injury in 1980 and 1995 were associated with state policies favoring business 
over labor.

When external effects decrease income or environmental quality sufficiently, 
people have two choices. They can move, or they can take action to regulate the 
location choices and behaviors of others. Because moving is expensive and there 
is no guarantee that neighborhood quality will be preserved in the new location, 
people and institutions frequently engage in the political process to regulate the 
location and movement of others, including government institutions that them-
selves locate facilities. These regulations, at all levels of government and affect-
ing all scales, are directed at controlling the locations and activities of other 
actors to improve the real or perceived local welfare advantage. Research has 
examined the effect of migration and neighborhood change on health.

Migration

One response to research showing contextual effects on health, especially built 
environment effects, is that studies do not control for self-selection (Riva, Gauvin, 
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& Barnett, 2007). If physically active people choose to move to areas with more 
parks, for example, then it is the composition of the area and not the qualities 
of the physical environment that lead to higher levels of physical activity. One 
approach to addressing this issue is to collect data on the self-reported reasons 
people give for having moved to their current location, although adjustments for 
self-selection may show only minor changes in the relationships between place 
and health (Sallis et al., 2009).

Self-selection would most likely be a factor in situations where people have 
high mobility and everyone who wants to move to a particular housing unit 
that best matches their desired unit and neighborhood characteristics can do 
so. Research on residential mobility shows this is rarely the case, especially for 
people with limited incomes who experience housing discrimination. Even in a 
fast-growing region where government programs designed to broaden housing 
options for low-income households are in place, half of the low-income units 
ended up being highly clustered in areas of high poverty, concentrated minority 
populations, poor educational programs, and high crime (Van Zandt & Mhatre, 
2009).

Longitudinal analysis investigating the relationships between health and 
place is needed. The relationships between health and place over time are diffi-
cult to uncover because some people move and “migration and health are jointly 
dependent events” (Boyle & Duke-Williams, 2004, p. 131). Some people may 
move because of their health, but the move may also positively or negatively 
affect health status over time.

Analysis of data for England and Wales revealed notable patterns in the 
health of migrants (Norman, Boyle, & Rees, 2004). Over a 20-year period, the 
largest absolute migration stream involved relatively healthy individuals moving 
away from more deprived areas to less deprived areas, raising rates of morbidity 
and mortality in the origin areas and lowering rates in the destination zones. A 
significant group of people in poor health relocated from less deprived to more 
deprived areas, but there was also a counterflow of unhealthy people who moved 
into less deprived areas. Migration, rather than changes in the characteristics of 
places that people who did not move lived in, accounted for most of the observed 
increase in health inequalities across areas over the time of the study.

Neighborhood Change

Neighborhood change, especially change in characteristics of the built environ-
ment, is difficult to measure over time. Many GIS databases describing built 
environment characteristics, especially at the local level, are developed by gov-
ernment agencies to describe current conditions. Reconstructing where side-
walks were or water and sewer lines were 10 years ago may be difficult if spatial 
databases describing earlier conditions have not been saved. Neighborhood his-
tory calendars have been proposed as a method using GPS and GIS for collect-
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ing and integrating event histories of neighborhood changes over time (Axinn, 
Barber, & Ghimire, 1997).

The level of deprivation in an area may change over time. A study of people 
in England and Wales who had not moved between 1971 and 1991 and who 
lived in households that were not deprived over the time period was conducted 
to investigate whether the change in deprivation in the area where they were 
living influenced health (Boyle, Norman, & Rees, 2004). People living in areas 
that become less deprived during the study period had lower standardized ill-
ness ratios, and changing conditions in the most deprived areas had a clear effect 
on morbidity.

Not only the characteristics of places but also the boundaries of areas used 
to assess effects on health may change. Here, too, political forces come into play. 
A study using GIS to analyze changes in municipal boundaries in small towns in 
the South due to annexation found that blacks living in areas adjacent to munici-
palities that might be candidates for annexation were systematically excluded 
from incorporation (Lichter, Parisi, Grice, & Taquino, 2007).

Location processes work to produce and reproduce living environments 
over time, often in ways that reinforce health disparities. GIS was used to digi-
tize Booth’s 1896 map of social class and aggregate the data to London’s ward 
structure in the 1990s (Dorling, Mitchell, Shaw, Orford, & Smith, 2000). The 
index of poverty derived from Booth’s data contributed more to explaining some 
health problems observed among neighborhood residents in the 20th century 
than the more recent data. Research using GIS to investigate health disparities 
is only beginning to address key issues of longitudinal effects and the pathways 
by which environmental conditions affect health.

Conclusion

Health disparities are an important public health issue. The differences among 
groups of people in different places are not trivial. The gap between the highest 
and lowest life expectancies observed among people grouped by race and county 
in the United States was more than 35 years in 2001 (Murray et al., 2006). In 
many settings, disparities in income, environmental quality, and health status 
are widening. Nevertheless, it is possible to address health disparities, and the 
techniques for investigating the connections between health and place have also 
been used to evaluate the success of interventions to promote health (Meersman, 
Breen, Pickle, Meissner, & Simon, 2009).

Measures of individual and neighborhood-level income and environmen-
tal quality are key variables associated with health disparities in many places. 
Research has revealed the importance of including both measures of economic 
power and environmental quality. Not all deprived areas have poor environmen-
tal quality and not all places with poor environmental quality have poor popula-
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tions. Furthermore, the relationships between income, environmental quality, 
and health appear to be themselves spatially variable.

The links between location and health raise important public policy ques-
tions. Who has power to influence the location processes of land use change, 
trade, and migration that affect the neighborhoods where we live? Several stud-
ies discussed in this chapter considered the role that information and political 
participation play in health disparities. GIS are widely used by government agen-
cies, private enterprises, and research scientists, but public access to spatial data 
and the tools needed to analyze and map them is often limited. The final chapter 
in our book discusses public participation GIS and its role in public health.
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CHAPTER 12

Public Participation GIS 
and Community Health

The themes, concepts, and applications discussed in this book demonstrate how 
to develop a geographic foundation for the study of health problems using GIS. 
The examples in the preceding chapters illustrate the different kinds of spatial 
data and spatial methods available for health-related GIS analyses. Many of the 
examples are drawn from the research of health geographers, epidemiologists, 
and medical and public health professionals working in universities or federal 
and state agencies. These settings represent particular institutional contexts for 
GIS implementation that in turn influence the outcomes of GIS analyses. Some 
critiques of GIS emphasize the potentially harmful social consequences of the 
diffusion of GIS technology, including reinforcing the power of state agencies, 
facilitating surveillance, and promoting an at-best naive, technocratic view of 
social problems (Pickles, 1995b; Sheppard, 2005; Schuurman & Pratt, 2002). At 
the same time, the development of GIS and the hardware, software, databases, 
and networking systems they rely on, coupled with the expansion and develop-
ment of the World Wide Web, have given the general public greater access to 
health and environmental information and the ability to visualize and analyze 
that information in new and innovative ways.

This chapter explores the role of GIS in community-based efforts to improve 
health and well-being. To provide a framework for understanding the role of 
GIS in community organizations, we begin by examining the links between GIS 
and society and the ways that GIS can be “structured” by diverse organizations 
and stakeholders. We then consider the concepts that underpin the develop-
ment of community-based, “participatory” or “public participation” GIS (PPGIS) 
and how these GIS differ from the systems implemented in other institutional 
contexts. We examine PPGIS as a means of increasing community participation 
in public health planning, the kinds of data and technologies used in PPGIS, 
and the advantages and challenges of various strategies for implementing PPGIS 
including university–community group partnerships.
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GIS and Society

The previous chapters in this book highlight the dynamic nature of GIS tech-
nologies and the wide range of application areas. This suggests that GIS is not 
a fixed or unchanging technology but rather one that both emerges from and 
is embedded in wider social contexts. Investigating the interplay between GIS 
and society—how society influences GIS and how GIS technologies influence 
societies—has emerged as an important theme in GIS research since the mid-
1990s (Pickles, 1995). Referred to as “GIS and society” (Sheppard, Couclelis, 
Graham, Harrington, & Onsrud, 1999), “critical GIS” (Sheppard, 2005) or “het-
erodox GIS” (St. Martin & Wing, 2007), this research takes a critical look at the 
use and design of GIS while pointing to new areas of innovation and develop-
ment. Themes raised in these debates have important implications for the use of 
GIS by community groups and others interested in improving health and access 
to health care.

One of the key insights from the GIS and society literature is that GIS is a 
socially constructed technology, a social practice (Sieber, 2000). It represents a 
combination of hardware, software, institutions, and people who interact in spe-
cific geographical and historical settings and whose activities influence how GIS 
is created and used and for what purposes. Attributes of GIS technology play a 
role in how GIS applications are structured. GIS is clearly a digital technology 
that has emerged and expanded in the digital era. As discussed in Chapter 1, 
changes in GIS technologies have been closely linked to advances in data stor-
age and computing. As a digital technology, GIS also privileges particular ways 
of understanding the world. GIS is rooted in Cartesian conceptions of space in 
which places, and the relationships among them, are referenced according to a 
two- or three-dimensional coordinate system (Sheppard et al., 1999). It is diffi-
cult to include and model nonspatial (non-Cartesian) relationships—for example, 
those based on social or political networks—in GIS, without reference to loca-
tions on the earth. In general, quantitative approaches are privileged in GIS, 
although qualitative data and methodologies are increasingly being incorporated 
(Matthews, Detwiler & Burton, 2005; Cope & Elwood, 2009).

Within the broad technological constraints of GIS, users construct the tech-
nology in different ways that reflect their own goals, opportunities, and con-
straints in particular contexts. In planning a GIS, an organization makes a series 
of decisions about which GIS platform to use, the types of data and spatial ana-
lytic tools to be included in the GIS, and so on (Table 12.1). One of the most 
important decisions concerns the spatial data to be included or excluded in a 
GIS. Which specific data layers are incorporated, at which geographical scales? 
As discussed in earlier chapters, scale limits the spatial variation that can be 
observed and mapped in a data set, thus limiting the kinds of conclusions that 
can be drawn. Data access is also important. Organizations decide who will have 
access to GIS data and create procedures for granting access.

The social construction of GIS also involves decisions about the kinds of 
analytic tools to be included in the GIS and descriptions and guidelines for their 
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use. Although most commercial GIS come with a predefined analysis toolkit, 
organizations may want to develop customized tools for particular applications. 
Which tools are included or excluded in a GIS? There are also key decisions about 
whether or not to distribute GIS data and tools over the Internet, the design of 
the user interface, and the administration and updating of the system. Thus, the 
characteristics and operations of a health GIS will differ in different contexts.

Questions about the use of GIS—who uses the technology, how, and for 
what purposes—are also central to understanding the relationship between GIS 
and society. Like all technologies, GIS is supported and shaped by powerful 
economic and political interests (Pickles, 1995b). Examining the rapid expan-
sion of GIS in the late 1980s and 1990s, critics have described the role of GIS 
in military operations and in resource extraction and geodemographic mapping 
activities by large corporations. The needs and goals of these powerful institu-
tions are reflected, in part, in the development and rapid expansion of the GIS 
market. In the health arena, little is known about GIS use by large, health care 
firms. However, in the United States we know that health insurance companies, 
pharmaceutical companies, and health service providers control large, propri-
etary geospatial databases, and it is likely that they are using GIS to support 
their commercial activities.

Even within a particular type of GIS application, who uses the technology 
and how can vary (Table 12.1). Most public health applications of GIS involve a 

TABLE 12.1. The Social Construction of GIS

Main element Element Considerations

GIS Design Data Types of data included and excluded
Spatial and temporal scales of data
Geographic extent of study area
Metadata
Data access restrictions and procedures

Spatial analysis Types of tools included and excluded
Ease and clarity of use
Tool descriptions and instructions for use
Access to tools

User interface Ease and clarity of use
Graphical features

Platform Web- versus computer-based

Actors Designers of the GIS
Users of the GIS
People with access to GIS data, tools, and results
Participants in GIS deliberations

Use Organizations sponsoring and directing the GIS
Goals of GIS use
Types of activities supported by the GIS
Impacts of GIS on communities
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diverse array of stakeholders, including public health officials, GIS experts, com-
munity members, and health service providers. What role, if any, do these groups 
have in designing the GIS, proposing GIS queries, and viewing and discussing 
the outcomes of GIS? The technical complexity of GIS means that experts are 
often involved, but their roles can range from facilitating community or agency 
goals and queries to, on the other extreme, completely directing the GIS investi-
gation with limited input from other stakeholders.

The role(s) of community groups and individual residents in public health 
GIS is a critically important dimension of the social construction of GIS. Top-
down GIS are systems directed and implemented by planners and decision mak-
ers with limited community input. In contrast, bottom-up GIS have substan-
tial community involvement in all aspects of GIS design and implementation, 
enabling residents to characterize their local neighborhoods and specify GIS 
queries (Talen, 2000). Historically, community involvement in health GIS has 
been relatively limited. Although residents and community groups often draw 
attention to perceived health issues in their neighborhoods, the subsequent GIS 
analysis of those issues is often conducted with limited community input. In 
many cases this is intentional: community input is viewed as potentially compro-
mising the scientific validity of the GIS analysis (Neutra, Swan & Mack, 1992). 
Yet, in a few notable cases, community groups have implemented their own GIS 
and conducted their own GIS investigations, typically with the assistance of sci-
entific experts (Brody et al., 2004). Thus, there are diverse models for GIS use 
and implementation ranging from top-down, expert-driven systems to bottom-
up, community-based systems.

To illustrate various dimensions of the social construction of health GIS, 
consider the case of the GIS for Breast Cancer Studies on Long Island (LI-GIS) 
(National Cancer Institute, 2010b). As discussed in Chapter 4, the LI-GIS was 
established by the National Cancer Institute in response to a federal mandate 
(PL 103-43) calling for the creation of a “geographic system” to evaluate “envi-
ronmental and other potential risk factors contributing to the incidence of breast 
cancer in Nassau and Suffolk counties in New York.” Although delayed for sev-
eral years, the system is now easily accessible on the Internet (National Cancer 
Institute, 2010b).

The LI-GIS has several notable features. First, it incorporates a wide range 
of social and environmental data layers including data on medical facilities, air 
and water quality, hazardous sites, and population characteristics. It also includes 
a diverse set of GIS-based tools, including tools for detecting spatial clusters. 
Some tools include an easy-to-follow description for the nonexpert user, while 
others assume scientific expertise. The system also contains links to numerous 
scientific studies on breast cancer and the environment, thus serving as an edu-
cational and a translational tool.

Although the LI-GIS contains diverse health and environmental data sets, 
accessing the data is complex, requiring submission of a research proposal that 
describes research goals and hypotheses to be tested. Obtaining geospatial data 
on breast cancer incidence involves a separate request to the New York State 
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Health Department. It is unclear if cancer data are available below the ZIP Code 
scale. In sum, this top-down system is set up to facilitate hypothesis-driven aca-
demic research as opposed to exploratory, community-based mapping and analy-
sis. As might be expected in a system directed by a prominent federal health 
agency, scientific and biomedical approaches to understanding breast cancer are 
privileged. Thus, the LI-GIS’s “social construction” contrasts sharply with that of 
breast cancer GIS developed earlier by community advocacy groups to explore 
environmental associations (Carlin, 2002; McLafferty, 2002).

Public Participation GIS

The expanding role of GIS in community-based health initiatives in places like 
Long Island is connected to the broader movement to develop public partici-
pation GIS. Public participation GIS (PPGIS) are systems that facilitate and 
enhance the participation of individuals and community groups around issues of 
local concern (Sheppard et al., 1999). PPGIS aim to bring GIS tools to community 
groups and residents and incorporate their concerns and knowledge in decision 
making. Such systems enable communities to explore and visualize local con-
cerns and resources, to contribute their own local knowledge of important issues, 
and to participate in identifying effective solutions. A “tool for the empowerment 
of social movement groups” (Sieber, 2000, p. 775), PPGIS is a means for giving 
communities control over issues that affect them. Community groups, academic 
researchers, and public health agencies are increasingly embracing PPGIS in 
their efforts to improve health and access to health care in local communities. 
The expansion of PPGIS in public health reflects not only increasing interest in 
GIS use among community groups, but also increasing awareness of the need 
for community input in understanding health issues and planning public health 
interventions (Partridge & Fouad, 2010). The past decade has witnessed a resur-
gence of interest in community-based health research and planning, and the 
growth of PPGIS mirrors this trend.

One cornerstone of PPGIS is “to accommodate an equitable representation 
of diverse views” (Sheppard et al., 1999, p. 811). Historically, most GIS were 
developed for use by government agencies and private firms with relatively nar-
rowly defined programmatic or commercial interests. Designed to facilitate spa-
tial database management and to support decision making, the systems included 
powerful tools for managing the large spatial databases these organizations often 
rely on and for solving well-defined geographical problems, as described in ear-
lier chapters of this book. In contrast, PPGIS are designed to accommodate a 
much more diverse set of participants and viewpoints. This implies enhance-
ments to GIS design and functionality, as well as an understanding of the socio-
political contexts of community participation.

Despite general agreement about the value of PPGIS, its features are difficult 
to pin down. Sieber (2006, p. 292) describes PPGIS as a “co-produced concept 
composed of multiple disciplinary approaches and actors, rapidly changing tech-
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nologies, and numerous as well as occasionally transgressive goals.” This diver-
sity, however, encompasses certain guiding principles, as shown in Table 12.2 
(Aberley & Sieber, 2002). These principles relate to the overall goals of PPGIS 
and the contexts in which it is used; access and participation; PPGIS design 
including platform, data and tools; and PPGIS deliberations and outcomes.

To provide an overarching framework, we can view PPGIS as a set of inter-
connected processes aimed at enhancing community participation and empow-
erment (Figure 12.1). These processes are clustered in three phases (Jankowski 
& Nyerges, 2003). The convening phase comprises processes that bring together 
stakeholders in a PPGIS or inhibit their participation. Social, cultural, and insti-
tutional influences on participation are important in this phase, as are the plan-
ning, designing, and scheduling of the PPGIS. The deliberation phase encom-
passes activities, discussions, and debates among participants and facilitators 
during PPGIS sessions. Processes that influence interactions between people 
and groups, and the role of GIS in shaping these processes, are key components 
of the deliberation phase. Finally, the outcomes phase focuses on the results of 
the PPGIS and on how outcomes translate into community improvements and 

TABLE 12.2. Selected Principles of Public Participation GIS

Is an interdisciplinary research, community development, and environmental 
stewardship tool.

Is practiced in diverse contexts relating to place, organizations, government, or sector.

Endeavors to involve people and groups traditionally marginalized from decision-making 
process.

Can be used to help solve problems in particular sectors of society or provide broader 
regional assessments of place-based or bioregional identity.

Is best applied via partnerships between individuals, community organizations, academic 
institutions, social or religious organizations, governments, and the private sector.

Is linked to social theories and methods.

Is linked to applied qualitative research tools, including participatory action research.

Is applied using a wide variety of data formats, qualitative and quantitative.

Enables public access to cultural, economic, and biophysical data generated by public, 
voluntary, and private institutions.

Supports a range of interactive approaches from face-to-face contacts and web-based 
applications.

Promotes development of software that is accessible to broad acquisition and ease of use.

Supports lifelong learning of its practitioners in a manner that helps bridge divides 
between cultures, academic disciplines, gender, and class.

Is about sharing the challenged and opportunities of place and situation in a transparent 
and celebratory manner.

Note. Adapted from Aberley and Sieber (2002). Reprinted by permission.
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empowerment. There is also an important feedback from the outcomes phase to 
the convening phase: outcomes in turn affect community resources and organi-
zations as well as the everyday lives of participants, thus influencing the social, 
political, and geographical contexts for implementing new PPGIS. According to 
Jankowski and Nyerges (2003), these interlinked processes depict technology, 
people, and institutions as mutually dependent, continually shaping and reshap-
ing each other—a perspective known as adaptive structuration.

PPGIS can be structured and implemented in a number of different ways. In 
one model, the PPGIS is created by public or nonprofit organizations or academic 
researchers who implement the PPGIS at meetings with community participants. 
Participants respond to GIS maps, but they have little or no say in how the GIS is 
constructed. A second type of PPGIS involves partnerships between community 
organizations and GIS experts in academia or government. Although commu-
nity participants make key decisions, implementing those decisions falls on GIS 
facilitators, or “chauffeurs” who provide technical support (Nyerges, Jankowski, 
Tuthill, & Ramsey, 2006). These are termed chauffeur-driven PPGIS. GIS part-
ners implement and operate the PPGIS, but with substantial input and direction 
from community participants. The third model involves creating a stand-alone 

FIGURE 12.1. A PPGIS comprises three interconnected processes: the convening 
phase, the deliberations phase, and the outcomes phase. Adapted from Jankowski & 
Nyerges (2003). Copyright 2003 by P. Jankowski.
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GIS for a community organization. The organization has full control over the 
GIS and can use and modify the system to suit its needs. Typically, education and 
training are provided to community group participants so that after an initial 
learning period, the group can sustain the GIS without relying on experts. This 
model clearly requires a significant and continuing commitment of staff, time, 
and resources by a community organization (Ghose, 2001).

The following sections discuss some of the core elements of PPGIS and their 
relevance for community health applications of PPGIS. The core elements are 
grouped into three categories, loosely following Sieber (2006): participation, data 
and technology, and implementation and outcomes.

Participation

A key element of PPGIS is community involvement and participation. Participa-
tion can take on different forms as depicted in the ladder of participation (Fig-
ure 12.2). Arnstein (1969) described eight levels of participation ranging from 
nonparticipation to full citizen control. The lowest rungs of the ladder comprise 
top-down strategies in which powerful decision makers coopt or coerce citizens 
to agree to particular policies. In contrast, the highest rungs are associated with 
direct citizen control over policy decisions. Ignoring the nonparticipation sce-

FIGURE 12.2. Arnstein’s ladder of citizen participation. From Arnstein (1969). 
Copyright 1969 by the Tyalor & Francis Group, LLC. Reprinted by permission.
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narios that contradict the very definition of PPGIS, the forms of participation 
displayed in Figure 12.2 suggest a range of scenarios for participatory GIS.

On the one hand, PPGIS can be a tool for informing residents about health 
concerns in their communities and providing education about health promo-
tion and prevention. The informing and consultation forms of participation are 
emphasized. Many public health applications of PPGIS are structured this way. 
To engage diverse stakeholders in developing a cancer control strategy for col-
orectal cancer in Iowa, Beyer and Rushton (2009) created spatially smoothed 
maps (see Chapter 5) of cancer incidence, late-stage risk and mortality in Iowa. 
The maps were used in a community interaction session in which residents 
responded to the maps and related observed patterns of cancer incidence to their 
own knowledge of the area. Information gleaned from the community responses 
was used in targeting and planning interventions to improve cancer awareness 
and screening. This case study provides a good example of a PPGIS that informs 
and engages community residents.

On the other hand, PPGIS can be structured to promote higher levels of 
participation and empowerment by directly involving community groups and 
residents in data acquisition, mapping, analysis, and decision making (Ghose, 
2001). In such systems, community stakeholders are active participants in con-
structing and using the GIS for their own purposes. Because of the technical 
expertise required in preparing GIS databases and operating GIS software, 
many of these PPGIS are chauffeur-driven. A PPGIS created for the West Islip, 
New York Breast Cancer Coalition in the mid-1990s illustrates the chauffeur-
driven concept (Timander & McLafferty, 1998). Although the PPGIS was cre-
ated and managed by GIS researchers, coalition members contributed data and 
posed community queries for investigation. For example, they asked: “Are breast 
cancer cases clustered among people who live at the ends of water mains?” The 
GIS team analyzed this query using GIS and presented the findings to the coali-
tion.

Who participates is also a key dimension of PPGIS (Dunn, 2007). Incor-
porating diverse viewpoints and giving marginalized groups a voice are hall-
marks of PPGIS, but how can these be accomplished? Participation is the result 
of a conscious decision by an individual or group to engage with a PPGIS. For 
individual residents, many barriers to participation exist. Willingness and abil-
ity to participate are influenced by the person’s interest in the issue, as well 
as economic, social, and cultural factors. Time–space constraints and language 
and economic barriers may limit participation, particularly among individuals 
already marginalized by class, race or ethnicity. Research indicates that willing-
ness to be involved in participatory decision making is often lacking, and PPGIS 
deliberations are frequently dominated by a vocal minority (Carver, 2003).

Effective and equitable participation also depends on the definition of the 
“community” of interest. Communities can be geographic, economic, occupa-
tional, social, or political (Schlossberg & Shuford, 2005). They are defined in 
relation to the health issue of interest, and they change over time in response 
to changing political and economic conditions and policy implementations. In 
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many PPGIS, the community of interest is defined as a geopolitical unit—a state, 
county, or town. However, such places encompass diverse populations and envi-
ronments, and health concerns spill across geopolitical boundaries. Therefore 
how the community is framed can affect the outcomes of PPGIS deliberations 
(Schlossberg & Shuford, 2005). Identifying the community of interest is a critical 
first step in developing PPGIS.

Some PPGIS, such as the West Islip system, emerge at the request of a 
particular community group. In these cases, participation in the PPGIS is com-
pletely tied to participation in the group; some populations and voices may be 
excluded. Moreover, for community groups there are also substantial economic, 
technological, and social barriers to adoption and use of GIS. Lack of knowl-
edge and technological expertise, lack of computer resources, and day-to-day 
decisions about GIS implementation can limit groups’ involvement in PPGIS 
(Elwood, 2006a).

PPGIS emerge in particular geographical and historical contexts that influ-
ence who participates and how. The health topic of concern and people and 
places of interest play a key role in shaping participation. At the same time, par-
ticipation is the result of individual and community group decisions that reflect 
interest in and willingness and ability to get involved in PPGIS deliberations. 
Social, economic, and institutional factors constrain and/or enhance participa-
tion differently in different contexts. To be effective, a PPGIS must be positioned 
within community social networks in a way that gives voice to marginalized and 
underrepresented community interests. The design and implementation of the 
PPGIS are also important in efforts to promote participation.

Data and Technology

LOCAL KNOWLEDGE AND PPGIS DATA

A key element of PPGIS is community involvement in the creation, evaluation, 
and analysis of spatial data. Local knowledge of environmental or health prob-
lems can be an important source of information for PPGIS, providing a more 
detailed, grounded summary of local conditions than can be gleaned from sec-
ondary data (Harris, Weiner, Warner, & Levin, 1995). Local knowledge refers to 
contextual knowledge that people gain through everyday activities and experi-
ences. It includes information about, perceptions of, and attitudes toward spe-
cific places and concerns. Local knowledge can be incorporated in PPGIS in 
several ways. One option is to administer a questionnaire to elicit local knowl-
edge that is then incorporated as data layers or features in the GIS. A PPGIS 
from Hamilton, Ontario, discussed later in this chapter, illustrates this strategy 
(Maclachlan, Jerrett, Abernathy, Sears, & Bunch, 2007). A second option is to 
acquire local knowledge electronically. Volunteered geographic information—
reports submitted electronically by residents and other stakeholders—is increas-
ingly important in PPGIS (Elwood, 2008). During Hurricane Katrina, reports 
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of flooding from people on the ground were used in targeting rescue and relief 
efforts. Nuisance complaints from residents concerning, for example, noise, rub-
bish and rats, have long been important in public health planning. Now they can 
be submitted electronically and represented seamlessly on GIS maps. The maps 
are emergent, actively constructed through residents’ participation.

A third source of local knowledge is PPGIS deliberations and discussions. 
Viewing GIS maps and images can encourage people to express local knowl-
edge and pose hypotheses about the causes and consequences of health con-
cerns. PPGIS can serve as a tool for eliciting local knowledge as people respond 
to maps and images of their local areas (Elwood, 2006b). In Long Island, GIS 
maps of breast cancer triggered hypotheses among residents about potential 
links between environmental contamination and cancer incidence (McLafferty, 
2002).

Beyer, Comstock, and Seagren (2010) developed a participatory GIS appli-
cation to ascertain local knowledge about colorectal cancer risk in a northwest 
Iowa community where colorectal cancer incidence, mortality, and late-stage risk 
were high. Focus groups and interviews were conducted with diverse commu-
nity residents. Activities included a mapping exercise where participants viewed 
Google Earth® maps of the study area and were asked to identify features per-
ceived as “positive” and “negative” on the map. Participants were also asked to 
provide descriptions about why they felt the feature was relevant for cancer risk. 
Through PPGIS-based conversations, participants generated hypotheses about 
the causes of high colorectal cancer risk and suggested policies and approaches 
for reducing risk.

Local knowledge is often in the form of narratives, photos, sketch maps, or 
audio/video clips that may be linked to and integrated with foundation spatial 
data (Cope & Elwood, 2009). Such data represent how a place looks and how 
residents’ perceive and experience the place. Although these are not traditional 
GIS data formats, many GIS are now able to handle such diverse types of spa-
tial information. Known as qualitative GIS, these systems enable users to view 
and explore the multidimensional and perceptual characteristics of a place. Pho-
tos and audio and video clips can be tagged to their corresponding locations 
enabling users to view them as a part of GIS-based data exploration. In a study 
of community gardens in a Buffalo, New York, neighborhood, Knigge and Cope 
(2006) developed a qualitative GIS that incorporated photographs, field notes, 
and oral history recordings (Figure 12.3). The GIS served to represent the socio-
spatial contexts of community gardens and the meanings associated with them. 
The fusion of qualitative and quantitative information is important, because it 
enables nonexpert, community-based users to link traditional map-based GIS 
data with more familiar images and sensory information about their communi-
ties.

Local knowledge also includes participants’ attitudes and preferences about 
the characteristics of public health policy options. As in the spatial decision sup-
port systems described in Chapter 10, preference data can be used in PPGIS to 
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generate policy options that reflect the attitudes and beliefs of participants. In 
Bangladesh, a PPGIS was implemented to involve local communities in plan-
ning arsenic mitigation strategies (Hassan, 2005). Arsenic, a poison and known 
carcinogen, has been found in high concentrations in groundwater in some areas 
of rural Bangladesh. Impacts on human health arise when people consume con-
taminated groundwater, and many cases of arsenic poisoning have been reported. 
One way to combat this problem is to construct deep tubewells that tap drinking 
water below the zone of contamination. Hassan (2005) used PPGIS to integrate 
community residents’ local knowledge in identifying locations for new deep 
tubewells in the study region. Much of the knowledge concerned the choice of 
a threshold distance—the maximum distance people were willing and able to 

FIGURE 12.3. A qualitative GIS representing residents’ local knowledge of the 
Lower West Side neighborhood in Buffalo, New York. The GIS combines diverse types 
of data, including photographs, field notes, audio recordings, and hyperlinked infor-
mation. From Knigge and Cope (2006). Copyright 2006 by Pion Ltd. Reprinted by 
permission of LaDonna Knigge.
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travel to obtain uncontaminated drinking water. Focus groups with three stake-
holder groups—farmers, teachers, and local political leaders—revealed different 
opinions about the maximum travel distance resulting in different spatial plans 
for locating new deep tubewells (Figure 12.4).

PPGIS DESIGN AND TECHNOLOGY

In PPGIS, participant involvement also extends into analysis and interpretation 
of spatial data. This requires systems that permit multiple users and diverse 
forms of querying and that facilitate communication among users in the analysis 
process. With its emphasis on community empowerment, PPGIS needs to be 
designed for the nonexpert user; yet most commercial GIS require considerable 
knowledge and expertise. Such GIS “present major obstacles to the non-expert 
user in terms of navigating a language, worldview and interface that supports the 
system’s architecture rather than the user’s work view” (Haklay & Tobon, 2003, 
p. 577). Drawing on knowledge about human–computer interactions and tests 
with community participants, researchers have studied design factors that limit 
the usability of PPGIS for nonexpert users (Haklay & Tobon, 2003). Difficulties 
in navigating maps and understanding technical terms and symbology limited 
nonexperts’ interactions with PPGIS.

Increasingly, the Internet is being used as a platform for PPGIS develop-
ment. The Internet offers several advantages over traditional freestanding GIS 
for enhancing citizen involvement in PPGIS: It enables asynchronous communi-
cation, freeing participants from space–time constraints; it provides an effective 
tool for acquiring data and local knowledge from participants; and it supports 
new kinds of dynamic geovisualization and analysis (Nuojua, 2010).

FIGURE 12.4. Participatory location plans for deep tubewells developed by three 
stakeholder groups: (a) farmers, (b) school teachers, and (c) local political officials. From 
Hassan (2005). Copyright 2005 by Elsevier. Reprinted by permission.
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To understand residents’ perceptions and experiences of environmental 
health hazards in Hamilton, Ontario, Maclachlan and others (2007) developed 
a participatory Internet-based GIS. The GIS included standard environmental 
data on environmental hazards and pollution levels, but also incorporated infor-
mation from a phone survey in which residents reported respiratory symptoms, 
asthma, and environmental exposures. Data were compiled in a web GIS that 
included tools for data exploration and mapping. For example, participants can 
zoom in to small areas and obtain local air pollution information and also per-
form multilayer queries. Researchers concluded that the web GIS was an effec-
tive and affordable means of providing communities with access to data and tools 
enabling them to conduct their own environmental investigations.

Web 2.0 holds great promise for the development of interactive, web-based 
PPGIS for public health that reach a broad audience. Its interactive, collabor-
ative, and visualization capabilities make it an innovative platform for public 
participation (Nuojua, 2010). SafeRoadMaps is a web-based participatory GIS, 
developed in Web 2.0, that represents geographic variation in traffic safety 
across the United States (Hilton, Horan & Schooley, 2009). The system relies 
on GIS map-mashups to integrate diverse types of data including traffic fatal-
ity data, imagery, video clips, and news reports of traffic accidents. Users can 
view maps of traffic fatalities and create dynamically updated maps showing 
changes in public policies to improve traffic safety. In the future, users will be 
able to contribute volunteered geographic data such as photos, memorials, and 
biographies of those impacted by traffic accidents. Geocoded hyperlinks to con-
gressional representatives enable users to e-mail elected officials about needed 
improvements in traffic safety. Thus, SafeRoadMaps harnesses Web 2.0 to create 
“a platform for mass collaboration” around issues of traffic safety (Hilton, Horan 
& Schooley, 2009). It demonstrates the potential for developing PPGIS-based 
networks of collaboration among geographically dispersed individuals and com-
munity groups to address health issues of mutual interest.

Implementation and Outcomes

PPGIS implementation involves decisions about who participates, how delib-
erations among participants take place, how the system is funded and admin-
istered, and how decisions are made. Many of these issues are closely tied to 
PPGIS design and participation, as discussed in preceding sections. This section 
examines PPGIS implementation in relation to policy outcomes and community 
impacts.

Because maintaining and operating GIS requires technical expertise, most 
PPGIS involve partnerships between community groups and academic research-
ers, students, or trained public health professionals (Ghose & Huxhold, 2001). 
Effective partnerships benefit all participants, providing teaching opportunities 
and grounded research applications for academic participants, and technical 
assistance and training for community groups. Stakeholders also include indi-
viduals and institutions with a direct interest in the process and outcome of the 
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GIS analysis—representatives of private industry, as well as representatives of 
the diverse groups and interests that exist in a particular community.

The very diversity of these interests, however, means that there are poten-
tial conflicts among the goals of the stakeholders involved in a partnership. The 
Community University Consortium for Regional Environmental Justice devel-
oped a partnership between community groups and Cornell University to docu-
ment water and air quality conditions and potential hazards in neighborhoods 
(Larsen, 1999). The purpose of the partnership was to create a sustainable GIS 
website to provide demographic, commercial, and up-to-date environmental 
information. The maps and information produced by the GIS would assist com-
munity groups in their organizing and advocacy efforts. Because of the different 
institutional settings and priorities among program participants, one conclusion 
drawn from the project was that “the process and purpose of academic involve-
ment in community organizations can be problematic” (Larsen, 1999, p. 147).

Questions have also been raised about the sustainability of PPGIS imple-
mented through university-community partnerships. Such partnerships often 
revolve around key individuals. Involvement of academic participants is con-
strained by teaching, research, and service commitments that vary throughout 
the year (Ghose & Huxhold, 2001). Involvement of interested community partici-
pants is similarly constrained by the demands of work and family commitments. 
Many PPGIS partnerships diminish over time as key individuals turn to other 
important obligations. If the PPGIS were focused on a particular community 
issue, this might be appropriate. If, however, the PPGIS is intended to provide 
an ongoing information resource for the community, then planning for how the 
PPGIS will be sustained is necessary in the early stages of its development.

Concerns about participation also arise in PPGIS implemented by public 
health agencies to inform and educate community residents and elicit their local 
knowledge. Typically GIS maps and queries are shared with community par-
ticipants in chauffeur-driven PPGIS sessions in which participants discuss and 
query maps, describe hypotheses, and comment on needed public health inter-
ventions. Because community concerns and local knowledge are expressed by 
participants in the session, the processes affecting participation are critically 
important. PPGIS sessions often attract few participants (Carver, 2003). Local 
politics and power relations can create formidable barriers to effective and equi-
table participation at PPGIS sessions. GIS exist in webs of social and political 
relations, and those relations shape GIS outcomes just as they affect other types 
of local decision making. Most communities are heterogeneous, consisting of 
diverse groups with differing needs, interests, and levels of political and eco-
nomic clout. Little is known about the performance and outcomes of PPGIS in 
diverse communities and the varying capacities of diverse groups to ensure that 
their health interests and needs are addressed (Sheppard et al., 1999). These are 
very real concerns for groups disadvantaged on the basis of class, race, disability, 
or some other dimension of social exclusion. Without full and democratic par-
ticipation, PPGIS may become an additional force of marginalization for these 
groups, rather than a progressive source of empowerment.
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Participation is also important during PPGIS deliberations. Effective delib-
erations are those in which knowledge is freely and openly shared. In some con-
texts, participants may be reluctant to express their opinions in the presence of 
more powerful participants. Case studies show that PPGIS conversations are 
often dominated by a small number of participants (Carver, 2003). Differences 
in participation based on gender, race, age, class, and culture mean that some 
voices are less likely to be expressed than others. A well-trained facilitator can 
mitigate some of these issues by strategically soliciting input from nonactive par-
ticipants or initiating small-group discussions, but barriers often persist.

Web-based PPGIS overcome some of these problems by diminishing social, 
spatial, and temporal barriers to participation. However, these systems pose a 
new set of challenges. Anyone, anywhere, can participate, often anonymously, 
so it is difficult to know whose opinions are being expressed (Dunn, 2007). The 
digital divide, though shrinking, continues to constrain participation in web-
based initiatives. Lack of interest, knowledge, and expertise also limit web-based 
PPGIS use by nonexperts, and impacts on web-based collaborations and out-
comes are poorly understood. In the extreme, web-based PPGIS can easily be 
coopted by powerful interests who stand to benefit (or lose) from the resulting 
decisions.

In evaluating PPGIS implementation, it is critically important to focus on 
outcomes: Do the systems foster improvements in community health and more 
effective public health policies? The research literature provides few examples of 
the impacts of PPGIS deliberations and planning activities on community health, 
because few published studies cover a sufficient time period for assessing health 
impacts. Case studies that track the health impacts associated with PPGIS-based 
public health interventions are sorely needed.

A study conducted in Flint, Michigan, illustrates the potential for linking 
PPGIS, public health interventions, and improvements in health outcomes. GIS 
and participatory research methods were used to investigate spatial and social 
inequalities in diabetes prevalence in Flint and to design interventions to reduce 
the disease burden (Kruger, Brady, & Shirey, 2008). A survey developed col-
laboratively between researchers and community partners was conducted to 
estimate diabetes risk and screening rates. Maps of the survey data revealed 
areas where estimated risk was high and use of screening was low. Additional 
focus groups and needs assessment surveys were conducted in these high-need 
areas to uncover behavioral and contextual risk factors, and local interventions 
were implemented. Data collected after the interventions showed that diabetes 
screening rates increased in the areas targeted for intervention.

Although PPGIS facilitate community participation in identifying and ana-
lyzing local health problems, implementing PPGIS does not guarantee that those 
problems will be addressed. Achieving positive health benefits requires that 
local knowledge and insights gained through PPGIS be translated into effective 
public health policies. This translation process is rarely easy or straightforward. 
It entails actions on the part of public health organizations and individuals that 
fall beyond the scope of PPGIS implementation. Moreover, many types of health 
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problems have multiple, interrelated, and unknown causes for which there is no 
obvious public health solution. GIS analysis serves a useful purpose by identify-
ing the health problem of interest and tracing its geographical distribution, but 
the analysis rings hollow when there are no prospects for improvement. As noted 
earlier, GIS maps can also lead to stigmatization or redlining, to the detriment 
of local residents. When health problems have solutions, the outcome of PPGIS 
will depend on whether the GIS analysis is tied to an effective public health 
response.

Conclusion

This book has demonstrated the use of GIS in creating a geographic foundation 
for the study of human health problems and planning effective public health 
interventions. GIS is much more than a tool for making maps. It involves a com-
plex set of practices ranging from data collection and analysis to implementation 
and community partnerships. The design of a public health GIS raises a greater 
range of issues than conventional, nonspatial health data collection and analysis 
and involves a greater number of actors. Developing meaningful GIS applica-
tions for public health requires an understanding of geographic data and meth-
ods and the social and political contexts in which they are applied.

The geographic foundation for public health advanced in this book empha-
sizes the importance of “where.” Where are particular health issues most con-
centrated? What health problems occur in particular places? How and where 
do diseases emerge, and how do they spread through space and time? How do 
social and environmental conditions in a place affect the health of local popula-
tions? How does the uneven location of health care services affect health and 
well-being? How can local environments and health care services be improved 
to enhance public health? We have shown that the geospatial data, methods, 
and technologies that comprise GIS have a key role in addressing these essential 
questions.

Wide inequalities in population health persist among countries, regions, 
and neighborhoods, despite advances in biomedical technologies and increased 
availability of health services. These health inequalities are continually shaped 
and reshaped by environmental, social, and economic transformations. From 
environmental health to infectious diseases to the delivery of health care, the 
diverse applications discussed in this book show that GIS can assist in providing 
better understandings of health inequalities and teasing out their relationships 
to social and environmental change.

At the same time, better understandings of health inequalities ring hollow 
if they are not accompanied by effective interventions to improve population 
health. The geographical foundation for public health advanced in this book 
extends to the public health policy arena where, we have argued, GIS-enabled 
data, visualizations, models, and interactions are key to policy formulation. Geo-
graphically targeting public health interventions to the places and populations 
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of greatest need, geographically tailoring policies to reflect local environments, 
populations, and cultures, and geographically generating policies based on inter-
actions with local stakeholders will promote policy interventions that achieve 
more effective and long-lasting improvements in health.

GIS applications in public health require institutional settings that foster 
the conceptual understanding of geographic data and methods. The lack of this 
understanding is at least as important a barrier to the diffusion of GIS in pub-
lic health as the technological issues raised by GIS implementation. Collabora-
tive efforts between practitioners in public health agencies, researchers based 
in institutions of higher education, and community groups need to address both 
the conceptual and the technological issues in GIS implementation, despite the 
different primary interests of participants. Researchers and public health prac-
titioners who are concerned about GIS as a surveillance technology, who see 
manipulation of service delivery systems by for-profit providers as decreasing 
access to care, and who decry the absence of interventions to address some of the 
world’s most pressing health problems can make a contribution by engaging with 
the forces that are shaping GIS applications in public health.

We hope that we have conveyed the amazing breadth of public health appli-
cations in GIS. While we have focused somewhat narrowly on the causes of ill 
health and the effective delivery of services to address health problems in most 
of the examples discussed in this book, the material in this concluding chapter 
suggests that GIS will continue to play an important and expanding role in our 
society. “Public health officials have the responsibility to continue to ensure that 
the promise of this wonderful new tool is realized” (Melnick & Fleming, 1999, 
p. x).
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Absorbed dose, defined, 224

Accelerometer, 393
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measures of, 310–325

potential, 320
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spatial, 304

Accidents. See Motor vehicle accidents
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attribute accuracy, 64
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positional accuracy, 63. See also

Geocoding, positional accuracy
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and accessibility to health services, 

304–305, 307, 326–328

and exposure, 211–212, 291
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GIS measures of, 327–328
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Address-match geocoding. See Geocoding
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Advanced Very High Resolution Radiometer. 
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Affordability, of health services, 304
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and disease, 8, 380

and sex distribution, 90, 222, 345–346, 380

standardization of rates, 8, 10

Agency for Toxic Substances Disease 

Registry. See ATSDR
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disease, 234, 242–243

environmental, 183–188

in agent-based modeling, 254

Agent-based modeling, 33, 254–256

AIDS. See HIV/AIDS

Allocation models, 349

Ambulatory care sensitive conditions, 334

American National Standards Institute. See

ANSI.

AMOEBA clustering method, 173–175, 179
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132–133, 215, 217–218, 325

Animal surveillance, 275–280
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Demand aggregation
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interpolation, 133, 215–216
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Arsenic, 26–28, 227–228, 417–419
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Attribute accuracy, of digital spatial data, 64

Attribute data. See Geographic data, attribute 

data
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Availability, of health services, 304
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Bangladesh, 238, 295–296, 417–419
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Behavioral Risk Factor Surveillance System. 

See BRFSS
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Block group, census, 86–89, 102–104, 
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BRFSS (Behavioral Risk Factor Surveillance 

System), 95
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Buffalo, New York, 417–418
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food environment, 388–389
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measures of, 387–388, 390–391

obesity, 388–389

physical activity, 389, 391

substance use, 392

vulnerability to hazards, 371

Burden of disease, defined, 258, 264, 269

C

CAD (computer-aided design), described, 17

Cadastral data, 34, 84–86, 91, 99, 101–102, 

193, 196, 217, 221

California, 72, 167, 193–195, 208, 214, 

224–225, 230, 281, 292, 374, 392
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260, 296–297, 341

Cancer

access to services, 307, 311, 336

atlases and mapping, 37, 114–115, 117, 

124–125, 145–146, 154, 410–411, 

415, 417
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breast, 114–115, 117–118, 172–174, 178, 

197, 307, 334, 336, 410–411, 415, 

417

cervical, 124

colorectal, 167, 336, 415–417
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lung, 124–125

prostate, 222

registries, 93–94

spatial analysis, 167, 172–174, 178, 222, 
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Capacity, of a health services provider, 343

Capacity constraint, in health services 

delivery, 332, 343, 350, 353

Cape Cod, Massachusetts, 196

Capetown, South Africa, 242
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Cartographic overlay, 140–141, 192

Case definition, 64, 93–94, 238, 268–269, 
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Catchment area, health service. See also

Service areas

and demand for health services, 362

and emergency medical services, 366

and health shortage areas, 340

and mental health services, 344
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defining, 312, 319–321

CDC (Centers for Disease Control and 

Prevention), 37, 92–93, 201, 269, 

282–283, 309

Census. See also block, census; block group, 

census; tract, census

information for countries, 89

United States

population data, 86–90, 103–105

geographic data, 35, 81–84, 86–90, 

103–105

Centers for Disease Control and Prevention. 

See CDC
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in health services delivery, 344

measures of, 346–349

Central place theory, 344

Centroid

defined 99

in spatial data and analysis, 66, 99, 160, 

172, 179, 221, 311, 319–320, 322–323, 

340, 362, 400

Cervical cancer, 124

Chauffeur-driven PPGIS, 413, 415, 421

Chemical dispersion model, 199–200. See 

also Fate and transport model

Chernobyl, 203, 207

Chicago, Illinois, 145, 252, 288–289, 307, 311

Chikungunya, 265, 267

Chile, 371

China, 52, 291, 298

Cholera, 128, 130, 238, 257, 295–296, 299
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area shading, 125

class interval selection, 120–124

classless, 123–124

color, 125
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legends for, 125–128

modifiable area unit problem (MAUP), 
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ChoroWare website, 123

Class, of an object, 22

Classless map, 123–124

Client-server model, 38–40, 148

Climate modeling, 200, 285, 296–297

Clip operation, 106, 108

Close coupling, of GIS and statistical 

software, 32–33

Clustering. See Spatial clustering

Clusters
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focal, 226–227, 242, 270

hot spot, 162

irregular, 166, 173, 175

Colectomy, 336

Cologne, Germany, 239–240

Color, in map design, 61–62, 116, 118, 125, 

147

ColorBrewer website, 125

Colorectral cancer, 167, 336, 415–417

Columbus, Ohio, 343

Community-based health applications of 

GIS, 114–115, 117, 374–375, 410–411, 

413–414, 417–418

Community queries, 415

Community resources, mapping of, 308, 

372–375, 417–418

Completeness, of digital spatial data, 65

Compositional effect, 212, 379–380

Computer-aided design. See CAD

Confidentiality, of health data, 6, 93–94, 

110–111, 259–261

Confirmatory cluster analysis, 150

Conformal map projection, 58–59

Confounding factors, 8
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Connecticut, 126–127, 129, 164, 191–192, 

278

Consistent zones, for linking data, 310. See 

also Interpolation, areal

Contamination, of public water supplies, 

26–28, 198, 208–209, 227–228, 213, 

246, 417–419

Content standards, for metadata, 68–72

Contagious diffusion, 237, 239

Contiguity, 124, 159–160, 334

Continuous data, 44

Control points, in spatial interpolation, 

201–202

Controlled clinical studies, described, 186

Coordinate systems

Cartesian, 17, 53, 57, 60–61

geographic (latitude/longitude), 55–57

national grids, 70–71, 73

State Plane, 58–61

Coordinate translation, 105

Core area, in disease clusters, 243–245

Core group, in disease clusters, 243

Correlations, graphing and mapping, 26–27

Coupling, of software, 32–33

Coverage areas of facilities, 316, 355–358, 

361, 365–366

Crime, mapping of, 141, 145, 180, 307

Critical GIS, 408

Cryptosporidiosis, 246

Culture

and access to health care, 307

and PPGIS, 422

Cumulative distribution function, 213

Cumulative frequency map legend, 126–129

Cylindrical map projection, 58

D

DALY, 264

Dasymetric mapping, 217, 220, 222, 310, 325, 

363

Data model

defined, 19

geographic, 45–51

hybrid, 22

integrated, 22

object, 22–23

object-relational, 23

relational, 20–21

spatiotemporal object, 248–249

Data sharing, 38–39, 108–112

Database integration, 18, 83, 104–108, 198

Database management systems. See DBMS

Database objects

behavior, 22

class, 22

state, 22

Datum, 57, 76–77

DBMS (database management systems), 19

Decimal degrees, 56

Delaware, 362

Demand aggregation, 325, 361, 362–364

Democratic Republic of Congo, 258

Democratization, of GIS, 146. See also

PPGIS

Dengue fever, 265–267, 269

Denmark, 211

Density measures, of accessibility, 316–320

Deprivation

and access to health services, 316, 

333–334

and health disparities, 245, 309, 383, 394, 

405

index, 309, 384

Des Moines, Iowa, 91, 168–170, 199–200

Destination-constrained spatial interaction 

model, 332

Deterministic interpolation, 202

Detroit, Michigan, 288–289, 385, 387

Diabetes, 383, 422

Diffusion. See Spatial diffusion

Digital image processing

classification error, 65

described, 16, 53

Digital line graph. See DLG

Digital orthorectified imagery. See DOI

Digital orthophotoquarterqad. See DOQQ

Digitizing, 16–17, 53, 64

Direct release, of a toxicant, 197

Directed arcs. See Arcs, directed

Disability-adjusted life year. See DALY

Disaster

defined, 370

releases of toxic substances, 197–200

Discrete data, 45

Disease. See Health outcomes

Disease control policies

behavioral, 256–257

environmental, 257–258, 288–289

medical, 258–259

mobility, 259
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Disease mapping. See Mapping, health 

outcomes

Disease Mapping and Analysis Program. See

DMAP

Disease registries, 93–94

Disease surveillance. See Surveillance, 

health outcomes

Distance

and spatial weights, 159–160

decay, 305–306, 319, 322, 324, 332

exponents in spatial interaction models, 

322, 324, 332

impacts of demand aggregation, 362–364

measures, 312–314

Distributed GIS, 38–41, 145–149. See also

Web-based GIS applications

Distribution, population, 3, 120–121, 131, 

217, 220, 222, 273–274, 345–346

Diverging color scheme, in mapping, 125

DLG (digital line graph), 80–81

DMAP (Disease Mapping and Analysis 

Program), 168–170, 180

DOI (digital orthorectified imagery), 77–80

DOQQ (digital orthophotoquarterquad), 78

Dose, defined, 210, 224

Dot density map, 119–120, 272

DPI (dots per inch), 147

Drinking water. See Public water systems

Dublin Core Metadata Initiative, 69, 71–72

Duration, of animated map, 252–253

Durham County, North Carolina, 193–194

Durham, England, 350–352

DYCAST space-time clustering model, 176

Dynamic maps, 146

E

E911, 32, 39, 91, 99, 221, 357

East Anglia, England, 315, 322

Ecoepidemiology, 263–264

Ecological niche, 285

Ecological studies, in epidemiology, 379

Edgematching, 106–107

Effective exposure time, defined, 210

El Niño southern oscillation. See ENSO

Electromagnetic field. See EMF

Embedding, of software, 33

Emergency, defined, 370

Emergency medical services, 31–32, 306, 

333, 343, 356–357, 366

Emergency Preparedness Resource 

Inventory. See EPRI

Emergency response and management

mitigation, 370, 372–373

planning, 370–373

preparedness, 370, 374

recovery, 371, 374

response, 370–371, 374–375

Emerging Diseases in a Changing European 

Environment (EDEN), 283

Emerging infectious diseases, 264–268

EMF (electromagnetic field), 213–217, 221, 227

Empirical Bayes estimation, 156–158

Endemic disease, 265–266

Enhanced 911. See E911

ENSO (El Niño southern oscillation), 297

Entomological inoculation rate, 293, 295

Environmental epidemiology, described, 

187–188

Environmental health, defined, 183

Environmental impacts, of vector control, 

297–299

Environmental justice, 223

Environmental monitoring

for electromagnetic fields, 213–217, 221, 

227

for groundwater quality, 195, 208–209, 

417–418

sampling networks, 206–209

Environmental public health tracking, 188

Environmental quality

index of, 209–210

modeling, 201–210

Environmental risk assessment

defined, 185–186

issues in, 211, 231–232

quantitative, 185–186

sources of data for, 185–186, 222–226

Environmental risk management, 230–232

Epidemic models, 236

Epidemiological measures

odds, 8

odds ratio, 8–9

relative risk, 6, 9

risk ratio, 6

standardized incidence ratio, 8

standardized mortality ratio, 8

Epidemiological studies, discussed, 6

Epigrass, 254–255

EPRI (Emergency Preparedness Resource 

Inventory), 372
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Equal area map projection, 58

Equal interval classification, 120–121

Equity

locational, 349

map, 325–326

Error matrix, for land cover classification, 65

Ethical issues, 110–111, 259–261, 186, 232, 

261, 299

Euclidean distance, 57, 60, 160, 245, 

313–314, 322, 365, 395

Europe, 52, 186, 189, 197, 225, 267, 283, 383

Exploratory cluster analysis, 150

Exposure

effective exposure time, defined, 210

indicators, described, 188

personal exposure measurement, 212, 233, 

291

to toxicants, described, 210–223

Exposure history, of an individual, 210–211

Externalities

defined, 402–403

role in health disparities, 402–404

F

False easting, 60–61

False northing, 60–61

Fate and transport models

contaminated wells, 213

described, 198–200

Federal Geographic Data Committee. See

FGDC

FGDC (Federal Geographic Data 

Committee), 68–69

Federal Information Processing Standard 

codes. See FIPS codes.

Field databases, 44

Field-based clustering methods, 161–170

Filtered area weighting, in areal 

interpolation, 215

Filters. See Spatial filters

Finland, 177–178

FIPS (Federal Information Processing 

Standard) codes, 103. See also ANSI.

Flint, Michigan, 422

Focused clustering methods, 226–227

Fog, of map image, 147

Footprint, of a geographic database, 76

Force of infection, defined, 295

Forecasting, of disease spread, 253–258, 

296–297

Formal health care, 304

Foundation spatial data, 75–86. See also

Geographic data

Free-standing GIS and statistical software, 

32, 401, 419

Frequency distribution of distances to health 

services, 311–312

Frequency histogram map legend, 125–126

Front end, of map image, 147

G

Gi* statistic, 161–162, 173–175, 179

Gazeteers, as data sources, 53, 96, 221, 294

Genesee County, Michigan, 27–28

Genetics and disease, 176–177, 228, 232, 236, 

241–242, 265, 298–299

Geocoding

address-match

errors, 91, 100–103, 221, 388

match rate, 100, 102

procedures, 99–100

defined, 53

positional accuracy, 39, 102–103, 221, 388

reverse, 261

GeoDa, 32, 158, 163, 180, 295, 400

Geodesy, defined, 52

Geodetic control, 76–77

Geodectic coordinates, defined, 57

Geographic coordinates, defined, 56–57

Geographic data

analysis. See Spatial analysis

attribute data

accuracy, 64

described, 20, 45

cadastral, 34, 84–86, 99, 217

compression, 77

conversion, 50, 106 

defined, 15, 43

digital line graph, 80–81

digital orthorectified imagery, 77–80

foundation, 75–86

integration, 18, 83, 104–108, 198

lattice, 44

local knowledge, 396–397, 411, 416–419, 

421

mapping, 24–29, 113–133, 144–149

methods for acquiring, 16–17, 99–100

models

network, 48–49

raster, 46–47, 51. See also Tessellation
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spaghetti, 49

tessellation, 44–47

topological, 48–49

vector, 47–51

objects

defined, 21, 44

dimensionality, 21

attributes, 22

types of, 21 

positional data

sources, 51–53

accuracy, 63–64

quality, 63–67

resolution, 46 

temporal, 45, 66–67, 248–249

TIGER/Line, 35, 81–84, 100

types of

continuous, 44

discrete, 45

field data, 46

object data, 45

Geographic data analysis. See Spatial analysis

Geographic grid, 49–50

Geographic information systems. See GIS

Geographical masks, for protecting data 

privacy, 261

Geographical accessibility, 304. See also

Spatial accessibility

Geographically weighted odds ratios, 401

Geographically weighted regression. See

GWR

Geographic objects. See Geographic data, 

objects

Geographical viewing, in a GIS, 138–140

Geography Markup Language. See GML

Geography of exposure, 211

Geography of risk, 211

Geography of susceptibility, 211

Geometric map symbols, 118

Geostatistical data, 50

Geotagging, 70

GeoTIFF, 77–78

Germany, 124, 176, 241, 265, 267

Getis-Ord G* statistic. See Gi* statistic

Ghana, 358–359

GIF (Graphic Interchange Format), 146

GIS (geographic information systems)

and society, 42, 408–411

bottom-up, 410

defined, 15

distributed, 38–41, 145–149

functions, 19–33

hardware, 16, 34, 37, 42, 44, 67

historical, 196

history, 33–37

public participation, 411–423

qualitative, 417–418

top-down, 410

GI Science (geographic information science), 

15

Global climate change, 296

Global clustering methods, 158. See also

Spatial clustering

Global interpolation methods, 201

Global Positioning System. See GPS

GML (Geography Markup Language), 38

Gonorrhea, 243–245, 258, 260, 392

Google Earth, 41, 146–148, 258, 417

Google Maps, 41, 313

GPS (Global Positioning System)

defined, 16

development of, 52

use in health research, 193, 208, 256, 259, 

280–281, 291, 327, 328, 396, 404

Graphs

for data display, 25–27 

for representing map scale, 54. See also

Scale, map

Gravity model, 320, 332–333

Grid

geographic, 51–52, 56

national grid systems, 70–71, 73

raster storage format, 46

representing population data with grids, 

217, 222, 273, 294

Grid points

in spatial clustering, 168–171

in spatial interpolation, 201–206

Gridded Population of the World, 294

Gridded Urban-Rural Mapping Project, 294

Ground truth, 65

GWR (geographically weighted regression), 

401–402

H

Habitat

mapping, 7

modeling, 283–285

Hamilton, Ontario, 416, 420

Hantavirus pulmonary syndrome, 292, 297

Harris County, Texas, 228

Hartford County, Connecticut, 105, 120, 214
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Hazards. See also Environmental risk 

assessment

changing geography of, 196–198

described, 183–184, 197–198, 370–372, 

374, 416

historical patterns, 196–197

mapping, 27, 192, 194–195, 199, 207, 213, 

216, 219, 231–232

Hazardous materials transport, 196–198, 

230–232

Heads-up digitizing, 16

Health, defined, 2

Health care. See also Health services

formal, 304

informal, 303

markets, 11–12

need, 247, 304, 308–310, 320–321, 334, 

340, 346, 362, 392, 422

shortage areas, 310, 340–341

utilization, 10, 36, 94, 96–97, 305–307, 

328–337, 358, 366, 368, 375

Health data

birth records, 89, 91, 169

case definition, 64, 93–94, 238, 268–269, 

282–283

confidentiality, 6, 93–94, 110–111, 259–261

morbidity, 91–94

mortality, 91

privacy, 91, 93–94, 110–111

provider, 96–97

screening, 94–95

survey, 94–95

utilization, 97

Health disparities

gender, 384, 392–393, 396, 398

income, 377, 381–384, 393

modeling, 398–402

race and ethnicity, 384, 393

Health Insurance Portability and 

Accountability Act. See HIPAA

Health outcomes

control policies, 256–259

data. See Health data

disparities. See Health disparities

environmental health, 226–230

incidence, defined, 5

mapping. See Mapping, health outcomes

maximizing, 357–358

prevalence, defined, 5

surveillance. See Surveillance, health 

outcomes

See also Health data

Health Professional Shortage Areas. See

HPSAs

Health services 

areas, 328–337, 340–341

characteristics of, 304, 324–325, 342–345

data, 96–97, 307–309

delivery systems

components of, 342–345

defined, 342

facilities location, 308, 323, 347–361, 

364–367

federal role in provision of, 11, 339

formal, 304

importance in health research, 10

informal, 303

utilization, 10, 36, 94, 96–97, 305–307, 

328–337, 358, 366, 368, 375

Health Survey for England. See HSE

Heterodox GIS, 408

Heuristic, defined, 368

HGA (human granulocytic anaplamosis), 282

HGE (human granulocytic ehrlichiosis), 282

Hierarchical diffusion, 238–239

Hillsborough County, Florida, 371–372

HIPAA, 110–111

Hispanic population, 121, 131, 328, 356

Historical geographic information systems, 

196

HIV/AIDS, 92, 235, 238, 241, 245–248, 

256–258

Holoendemic, defined, 265

Hospital discharge data, 97, 336

See also Health data; Health services, 

data

Hospitals

accessibility to, 322–323

closings, 332–333, 358

data on, 96–97

location of, 342, 350–354

patient flows, 332–333, 345, 350–354, 

358, 366

utilization, 332, 334–337

Host

defined, 234, 263

habitat of, 292–293

HPSAs (Health Professional Shortage Areas), 

340–341

HSE (Health Survey for England), 95, 393

Hue, as a visual variable, 61–62, 125

Human anaplasmosis, 282

Human granulocytic anaplamosis. See HGA

Human granulocytic ehrlichiosis. See HGE
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Human germline, 228

Hyperendemic, defined, 265

Hypoendemic, defined, 265

I

Iceland, 251

Idaho, 369

Illinois, 279, 311–312, 340

Image processing. See Digital image 

processing

Immigrant populations, 307, 322

Impedance function, 322–324

Immunity, defined, 235

Immunization

campaigns, 241, 258, 302

defined, 235–236

services, 344

trials, 258, 295

Incidence, disease, 5, 250

INCITS (InterNational Committee for 

Information Technology), 68

Index case, 267, 278

Indirect release, of a toxicant, 197

Induction period, 177–178

Inexact interpolation, 202

Infant mortality, 132, 168–170

Infectivity, defined, 254

Influenza, 235, 238, 242, 252–253, 256, 259, 

298

Informal health care, 303

Injection drug use, 246–247, 257

Innate immunity, defined, 236

Institutional factors, in GIS implementation, 

12, 110, 149, 412–413

Integration, of health services, 344–345

Interactive maps, 146

Interface, in online mapping, 147–148

Intermediate host, defined, 263

Internal dose, defined, 224

International Organization for 

Standardization. See ISO

InterNational Committee for Information 

Technology. See INCITS

Internet. See also Web-based GIS 

applications

data distribution, 37–40, 97

health applications, 37–41, 115, 240–241, 

342, 409–410, 420

map design for publication, 146–147

mapping, 124, 144–149

Interpolation. See also Spatial interpolation

areal, 132–133, 215–220, 310

defined, 201

in address-match geocoding, 82, 99–100

spatial, 201–206, 208, 212

Intersection, as a Boolean operation, 

134–135, 137

Inverse distanced weighted interpolation, 

202–203

Iowa, 221, 415, 417

ISO (International Organization for 

Standardization), 68, 70

Istanbul, Turkey, 193

Italy, 265–267, 281, 371

J

Japan, 345

Joining. See Join operation

Join operation

table, 103–104

spatial, 286–288, 290

JPEG (Joint Photographic Experts Group), 

77, 146

K

Kentucky, 309

Kenya, 279, 292, 297

Kern County, California, 225

Kernel estimation

of access to services, 318–319

of density, 163, 165–167, 179

Kernel function, 165

Keyhole Markup Language. See KML

KML (Keyhole Markup Language), 41, 148, 

260

KMZ (Keyhole Markup Zipped), file format, 

149

Kriging, 203–207, 250

L

Ladder of participation, 414

Lambert conformal map projection, 58–60

Land cover, 46, 65, 79–80, 142, 201, 217, 220, 

273, 280, 284–287, 296–298, 300

Landsat Thematic Mapper. See TM 

Landview, 212
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Large-scale map, 54. See also Scale, map

Latency, 177–178, 227

Latent period, 177–178, 227

Latitude, defined, 55–56

Lattice data, 50–51

Lead, 183, 185, 190–191, 204, 228–230, 309

Legend, map, 125–128, 144

Leukemia, 151–152, 227

Lineage, of digital spatial data, 63

Line-in-polygon operation, 143

Lines, as geographic objects, 21. See also arcs

LISA (local indicator of spatial 

autocorrelation) statistic, 161–164, 

179, 243

Local clustering methods, 158, 161–164, 

167–175

Local indicator of spatial autocorrelation 

statistic. See LISA statistic

Local interpolation methods, 201–202

Local knowledge, 396–397, 411, 416–419, 

421

Localized empirical Bayes smoothing, 158

Locally adaptive bandwidths, 166, 171, 180

Location, defined, 51

Location-allocation models

described, 349

used in health research, 350–360

Location-based services, 38–39

Location models, described, 349

Location Set Covering Problem, 355–356

Locational efficiency, 349

Locational equity, 349

Logical consistency, of digital spatial data, 

65–66

London, England, 128, 130, 285, 333, 344, 

405

London, Ontario, 196

Long Island, New York, 114–115, 117, 

172–173, 410–411, 415, 417

Longitude, defined, 55–56

Loose coupling, of GIS and statistical 

software, 32–33

Los Angeles, California, 227, 282, 316, 392

Lossless compression, 77

Lossy compression, 77

Low birthweight, 126, 128–129, 153–156, 

164, 309, 341

Lung cancer, 124–125

Lusaka, Zambia, 257

Lyme borreliosis

canine surveillance, 279–280

case definition, 268–269

ecology, 281–282, 285, 296–297

etiology, 268–269

maps of, 270, 272

risk assessment, 9

vector surveillance, 280–281

M

MAF/Tiger data, 81, 84. See also TIGER/

Line data

Malaria, 7, 235, 242, 264, 293–295, 297, 299

Malaria Atlas Project, 293–295

Mammography services

need, 345–346

spatial access to, 307, 311–312, 316, 318

Mandated service areas, 328

Manhattan metric distance, 313–314

Map

animated, 147, 252–253

comparisons, 29, 124

dynamic, 146, 408

elements, 144–145

on-demand, 146

projection. See Projection, map

scale. See Scale, map

sequence, 124, 147, 177, 241–242, 

251–252, 275–276

symbols. See Symbolization, map

Map algebra, 142

Mapping

area data, 119–128. See also Choropleth 

mapping

community resources, 308, 372–375, 

417–418

community vulnerability, 232, 371–373

crime, 141, 145, 180, 307

critical perspectives on, 114–115

dasymetric, 217, 220, 222, 310, 325, 363

disease cases, 117–118, 130, 151, 177, 

250–251, 267, 271–272, 276, 289

disease rates, 126–127, 129, 153–157, 162, 

164, 170, 244, 284, 336

ethical issues, 232, 261

health outcomes, 5, 117–118, 126–127, 129, 

130, 139, 142, 151, 153–157, 162, 174, 

177, 229, 244, 250–251, 267, 271–272, 

276, 278, 284, 336

health service providers, 54, 307–308, 

317–318, 321, 323, 330, 335, 342, 351, 

365, 367

Internet, 124, 144–149
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line data, 22, 24, 118–119, 214, 218, 315, 

317, 343, 365, 367, 390, 395

parameter estimates, 402

point data, 5, 7, 22, 27–28, 54, 116–118, 

130, 142, 174, 192, 194, 207, 390

probability, 153–156

process of, 113–115

MAPresso software, 124

Map projection transformation, 55–61

Map sequence, 124, 147, 177, 241–242, 

251–252, 275–276

Mashup, 41, 146, 420

Mastectomy, 336

Maternal and infant health, 89, 91, 126, 

128–129, 132, 153–156, 164, 168–170, 

250, 309, 341, 344

Mathematical programming

defined, 349

incorporating into GIS, 361–370

method for data anonymization, 261

models, 349–361

MAUP (Modifiable Area Unit Problem), 

128–130, 132, 337, 394

Maximal Covering Problem, 356–357

Meals-on-wheels, 346, 366–367

Mean, as a measure of centrality, 347–348

Measles, 238, 241, 251

Median, as a measure of centrality, 347–348

Medical services. See Health services

Medically Underserved Areas. See MUAs

Medically Underserved Populations. See MUPs

Melbourne, Australia, 391

Meningococcal disease, 176–177, 241

Meridian, defined, 55

Metadata, 38, 43, 67–72, 74, 77, 82, 110, 238, 

261, 409

Midpoint of the range, as a measure of 

centrality, 347–348

Migration

bias, 177

defined, 2

importance in health research, 2–4, 

176–178, 234, 297, 341, 403–404

Minimum bounding rectangle. See Bounding 

rectangle

Minimum standard, in health services 

delivery, 343

Mobility, 89, 176–178, 211, 234, 237, 

256–257, 259, 306, 316, 396, 404

Mode, as a measure of centrality, 347–348

Moderate coupling, of GIS and statistical 

software, 32–33

Modifiable area unit problem. See MAUP

Monte Carlo methods, 152, 163, 167–168, 175

Montgomery, Alabama, 271

Montreal, Quebec, 325–326

Moran’s I, 162

Morbidity data, 91–94

Mortality records, 91

Motor vehicle accidents, 5, 119, 135, 401

MrSID (multiresolution seamless image 

database), 77

MUAs (Medically Underserved Areas), 340

Multilevel modeling, 380, 392, 396, 398–399

Multiple tests of significance, 163

Multiresolution seamless image database. See

MrSID

MUPs (Medically Underserved Populations), 

340

N

NAD 27 (North American Datum of 1927), 

76–77

NAD 83 (North American Datum of 1983), 

76–77

NAICS (North American Industrial 

Classification System), 190. See also

SIC

National Agricultural Imagery Program 

(NAIP), 78–79

National Cancer Institute. See NCI

National Center for Health Statistics. See 

NCHS

National Grid, Great Britain, 70

National Health and Nutrition Examination 

Survey. See NHANES

National Health Interview Survey. See NHIS

National mapping agencies, 76

National Notifiable Diseases Surveillance 

System, 92

National spatial data infrastructure, 38, 110

Natural breaks classification, 121–122

Natural service areas, 329

NCHS (National Center for Health Statistics), 

35–36, 118

NCI (National Cancer Institute), 115, 145

Nearest neighbor, 28, 160, 162, 171, 178

Neatlines, 144

Need, health care

as a component of access, 304, 320–321, 

334, 340

defined, 308
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Need, health care (cont.)

indicators of, 309–310, 362, 392

mapping of, 247, 308–309, 346, 362, 422

perceived, 310

Neighborhood

change, 245, 392, 404–405

characteristics of, 247, 286, 393, 385–387, 

400, 403, 417–418

contextual effects, 211–212, 379–381

definitions of, 394–397

field surveys, 389, 391

in health disparities research, 378, 

392–393, 396–401

in spatial analysis, 10, 28, 65, 159–164, 

173–175, 203–205, 223, 399–402

perceived, 396–397

Nepal, 344

Nevada, 292

Network

analysis, 31

buffer, 215, 219, 273, 327, 395

data, 48–50

diffusion, 238–239, 254

distance, 313, 326, 355, 359, 365–367, 395, 

397

for location analysis, 365–367, 390

travel time, 314–316, 322

New Jersey, 229–230, 345, 401

New Mexico, 370

New Orleans, Louisiana, 196, 243, 372, 

374–375

New York City, 93, 98, 104, 155, 166, 198, 

217, 237, 245, 290, 357, 372, 398

New York State, 115, 153, 155, 200, 275, 277, 

358, 410, 415, 417–418

NHANES (National Health and Nutrition 

Examination Survey), 94, 224–225

NHIS (National Health Interview Survey), 

94–95

Nodes

network, 31, 48, 359, 367

start and end, 48, 359

Nonpoint source pollution, 200

Nonthreshold toxicant, 210

Norfolk, Virginia, 256

Normative models, of facility location, 

349–369

North American Association of Central 

Cancer Registries (NAACCR), 94

North American Datum of 1927. See NAD 

27

North American Datum of 1983. See NAD 

83

North American Industrial Classification 

System. See NAICS

North arrow, 144

North Carolina, 162, 193–194, 198, 241, 309, 

327

Nosocomial infection, 265

Nuclear facilities, 207

Nugget, in a semivariogram, 203–204

Numerator/denominator cumulative 

frequency legend, 128–129

O

Oakland County, Michigan, 27

Object-based clustering methods, 153, 

170–175

Object databases, 22, 45

Object identifier, 22

Object-relation database management 

systems, 23

Objects, database. See Database objects

Objects, geographic. See Geographic data, 

objects

Oblique imagery, 53

Odds, 8

Odds ratio, 8–9, 217, 401. See also

Geographically weighted odds ratio

Ogive map legend, 126–127

Ohio, 354–355

OID. See Object identifier

On-demand map, 146

Optimization models, 349–369

Order, of an animated map, 253

Origin-constrained spatial interaction model, 

329–331

Orthophotograph, described, 53

Overlay operation

cartographic, 140–141

errors in, 84, 105, 142

examples of, 29, 84, 141, 192, 199, 239, 

246, 288, 308, 397

polygon, 143, 215

P

p-Median Problem, 352–355

Pandemic, 268
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Pan operation, 139

Parallel, defined, 55–57

Parcel data. See Cadastral data

Participation, and PPGS, 414–416, 421–422

Participatory GIS. See PPGIS

Passive surveillance, 93, 224, 281, 283

Pathogen, 234

Patient Protection and Affordable Care Act, 

11–12

Patient volume effect, 358

Peak disease incidence, 236, 250

Pedestrian injury, 5, 134–136

Pediatric medical services, 311, 318

Pennsylvania, 192, 195

Personal exposure assessment, 212, 233, 

291

Pesticide Use Reporting. See PUR

Pesticides, 193–194, 196, 200, 225

Pharmacodynamics, 225

Pharmacokinetics, 225

Philadelphia, Pennsylvania, 223, 247

Photogrammetry, defined, 53

Physicians

access to, 307, 315–316, 318–319, 322

data on, 96–97

practice location, 315, 359

shortage areas, 340–341

Pictorial map symbols, 118

Pixel, defined, 46–47

Place, defined, 12

Placemark, in online mapping, 148

PLSS (Public Land Survey System), 72, 195

Plume models, discussed, 199–200

Point source pollution, 188–193

Point symbol map, 116–117, 119

Point-based health data, 159–160, 165, 179

Point-in-polygon operation, 142–143, 172, 

221, 286–287, 290, 389, 394

Points

as geographic objects, 21–22

mapping, 5, 7, 22, 27–28, 54, 116–118, 130, 

142, 174, 192, 194, 207, 390

Poisson distribution, 154–155, 172, 226

Polio, 258

Pollutant release and transfer register, 189, 

198

Pollution

air, 206, 217, 228, 231, 420

exposure to, 210–223, 394, 400

health effects of, 226–230

maps of, 199, 207, 209

nonpoint source, defined, 188

perceptions of, 420

point source, defined, 188

water, 195, 200

Polygons, as geographic objects, 21

Population. See also Migration

at risk, 2–4, 151

data, 86–90

distribution, 120, 131, 270–271, 274, 386

estimating for an area, 215–220, 278

Population-weighted average distance, as a 

measure of accessibility, 311

Positional accuracy

as an element of data quality, 63–64

of imagery, 78–79

of TIGER/Line data, 82–84

Positional data. See geographic data, 

positional data

Potential models, of accessibility, 320–325

Power and GIS use, 409, 421

PPGIS (public participation GIS)

barriers to participation, 415, 421

contextual influences on, 415–416

defined, 411

implementation, 412–413

principles, 412

technological challenges, 419

web-based, 419–420, 422

Prevalence, disease, 5

Primary sampling units, in NHANES, 94

Prior distribution, in empirical Bayes 

method, 156

Privacy, of health data, 119, 259–261

Probability mapping, 153–156

Projection, map

defined, 55

transformation, 106

types of, 56–61

ProMed, 240

Proportional symbol map, 117

Provider to population ratio, 316, 319

Proximity. See also Distance

defined, 160–161

to hazards, 212, 217

Public Land Survey System. See PLSS

Public participation GIS. See PPGIS

Public water systems

attributes, 21, 23, 45, 67, 228

maps of, 21, 24, 27, 31, 51, 209, 213

PUR (Pesticide Use Reporting), California, 

72, 193–194, 225
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Q

Qualitative GIS, 417–418

Quantile classification, 121–122

Quantitative risk assessment, 185–186, 

231. See also Environmental risk 

assessment

Query

Boolean, 135–138, 142

role in mapping process, 134

spatial, 141–143

R

Rabies, 277–278, 298

Radian, defined, 56

Randomization, 163

Range

as a measure of dispersion, 348

in a semivariogram, 203–204

of disease vectors, 297–298

Raster/vector conversion, 50

Rat bite, 166, 290

Rate of change, of animated map, 253

Ratio, as an epidemiological measure

geographically weighted odds, 401

odds, 8, 9

risk, 6, 9

standardized incidence, 8

standardized mortality, 8

Ratio scale, 54. See also Scale, map

Really Simple Syndication. See RSS

Reference address table, 49. See also

Geocoding, address-match

Reference datum, 76–77

Reference distribution, in cluster analysis, 163

Relational approaches to health and place, 12

Relational database management models, 

21–23

Relative location, 51

Relative risk, 6, 9

Reliability, of geographic data, 67

Remote sensing

data, 53, 296

defined, 16

described, 52–53

Repeat infection, 244

Reportable disease data, 92

Reporting of diseases, 92–94, 241, 269, 283

Representation, of geographic data, 115

Reproductive health outcomes, 37, 91, 132, 

169, 227

Reservoir, of disease, 263

Residential location. See Population, 

distribution

See also Geocoding, address-match

Resolution, of geographic data, 46–47, 50

Revealed accessibility, 328

Rhode Island, 280

Risk assessment. See Environmental risk 

assessment.

Risk, ecology of, 245–248

Risk factors. See also Confounding factors

data on, 95

described, 6

maps of, 230, 289

Risk management. See Environmental risk 

management

Risky places, 246, 258

Risk ratio, 6

Rockland County, New York, 277

Root mean square error, 64

Rotavirus, 250

Routing, vehicle, 361, 366

RSS (Really Simple Syndication), 70

Rubbersheeting, 105

Rural areas

access to health care, 311, 316, 321, 332, 

344, 358

and cluster detection, 170, 319

geocoding accuracy in, 91, 221

Rushton and Lolonis clustering method. See

DMAP

S

Salinas, California, 225

Salt Lake City, Utah, 374

Sampling

BRFSS, 95

for environmental monitoring, 206, 208

for vector surveillance, 280–281

NHANES, 94–95

spatial, 8, 26, 187, 206, 208, 279, 380

Sandusky, Ohio, 200

Satellite imagery. See DOI

SaTScan

applications of, 228, 241, 243–244, 261

described, 166–167, 175–177

software, 180
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Saturation, as a visual variable, 125

Scale

defined, 54

importance of, 57, 60, 107, 130, 152, 293, 

340, 408

in GIS displays, 140

map

described, 54–55, 145

methods for representing, 54

Scale effect, in modifiable area unit problem, 

130

Scanning, described, 16

Scatterplots, 26–27

Schistosomiasis, 291

Scotland, 252, 383, 389

Screen digitizing, 16

Screening

bias, 229

defined, 228

penetration, 96, 422

surveys, 95

tools for environmental risk, 222–223

SDSS (spatial decision support systems)

described, 369–370

components of, 369

Security, of geographic data, 67, 261

SEER (Surveillance, Epidemiology and End 

Results), 93

Select operation, 133–139

Semivariance, 203

Semivariogram, 203–204

Sensitivity, defined, 225

Sentinel

health events, 92

surveillance, 92, 246, 265, 279, 280, 

282–283

Septic systems, 192–193, 195–196. See also

Public water systems

Serotype, 265–266

Service areas, 312, 319–321, 328–329, 335. See 

also Catchment area, health services

Service delivery system, 342

Service hubs, 308

Sex workers, 247

Sexually transmitted diseases. See STD

Shapefile, 82

Shigellosis, 252

Shortage areas, 340–341

Shortest path analysis, 359

SIC (Standard Industrial Classification), 190, 

192–194. See also NAICS

SIR model of infectious disease spread, 236

SIDS (Sudden Infant Death Syndrome), 162

Sill, in a semivariogram, 203–204

Simulation models

epidemic disease, 254–256

groundwater quality monitoring, 200

Sin Nombre virus, 292

Sites, for health services facilities, 349

Size, of a health services delivery system, 343

Slope, of a surface, 47

Small area

statistical issues, 163

variations in health care use, 333–337

Small numbers problem

described, 153, 163

methods for addressing, 154–156, 170

Smallpox, 258

Small-scale map, 54. See also Scale, map

Smoothed rates, 156–158

Smoothing methods, 156–158, 163–167

Snapshot, temporal data, 248

Snow, John, 128, 130

Social construction of GIS, 408–410

Social distancing, 259

Social mapping, 247–248

Social networks and disease spread, 238, 256

Social production of risk, defined, 246

Soil and Water Assessment Tool (SWAT), 200

Somalia, 279

Source, of map data, 19–20, 51–53, 72

Source units, in areal interpolation, 215

South Africa, 242, 316, 366

South Carolina, 39, 94, 242, 316, 366, 372, 

392

Space

continuous, 46

defined, 12

network, 48

Space-time aquaria, 328

Space-time atoms, 248

Space-time clustering methods, 175–178

Space-time constraints, 305, 307, 328

Space-time paths, 2–3, 179, 326–328

Spaghetti data, 49. See also Geographic data, 

models

Spatial accessibility

defined, 305

inequalities in, 306, 325

measurement of, 310–325

Spatial aggregation error, 260, 325. See also

Demand aggregation
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Spatial analysis

defined, 29

described, 29–33

measurement, 29

network analysis, 31

spatial data analysis, 31

spatial statistical analysis, 32

surface analysis, 31

topological analysis, 29

Spatial autocorrelation

defined, 65, 203

implications for sampling, 208

in kriging, 203

in regression analysis, 399–400

local measures of, 161–163

Spatial clustering. See also Space-time 

clustering methods

choice of methods, 178–181

defined, 151–152

community concerns about, 181

criteria, 152

detection methods, 161–175

AMOEBA, 173–175

Besag and Newell, 171–173

DMAP, 168–170

Getis-Ord Gi*, 161–162

LISA (local indicators of spatial 

autocorrelation), 162–163

SaTScan (Spatial Scan Statistic), 167

field-based methods, 159, 161–170

focused, 159, 226–227

global methods, 158

local methods, 156

migration and, 177–178

object-based methods, 159, 170–175

scale of, 152

software for cluster detection, 180

Spatial database. See also Geographic data

design, 20, 23

management, 19–23

Spatial decision support systems. See SDSS

Spatial dependence, 65. See also Spatial 

autocorrelation

Spatial diffusion, 237–239, 252–252

Spatial filters, 119

Spatial interaction models, 320, 330–333

Spatial interpolation, 201, 203–204. See also

Interpolation

Spatial query, 141–143

Spatial regression

Spatial error model, 399–400

Spatial lag model, 400

Spatial sampling. See Sampling, spatial

Spatial scan statistic, 167. See also SaTScan

Spatial statistical analysis, 32

Spatial targeting, of health interventions, 

256, 258, 422

Spatial weights, 159–160, 162, 204, 399

Spatial window, 161

Spatially-varying processes, 282, 400–402

Spatiotemporal Epidemiological Modeller 

(STEM), 253

Spatio-temporal object model, 248

Specificity, defined, 225

Spherical distance, 312

Spheroid, 57

Standard Industrial Classification. See SIC. 

See also NAICS

Standardization of rates, 8, 10

State, of an object, 22

State Plane Coordinate System, 57–61

Statistical significance, in cluster analysis, 

154–155

STD (sexually transmitted disease), 243–245

Stigmatization, and mapping, 245, 258–259, 423

Stochastic interpolation, 202

Street centerline data, 82

Streptococcus pneumoniae, 242

Sudden Infant Death Syndrome. See SIDS

Substance use, 246–247, 257, 383, 392

Surveillance

active, 93

animal, 275–280

hazard, 189–193

health outcomes, 91–94, 226–230, 

240–241

passive, 93

vector and host, 268–269, 280–283

Surveillance, Epidemiology and End Results. 

See SEER

Survey data. See Health data, survey

Survey monuments, 76

Susceptability, 211, 228, 235

Symbolization, map, 116–118, 253

Syndemic, 299–301

T

Tables

for data display and management, 19–22

in a relational database, 20–22

joining, 103–104

turn, 49
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Target units, in areal interpolation, 215

Temporal information

and geographic data quality, 66–67

in GIS databases, 45, 66–67, 248–249

Tessellation. See also Geographic data, 

models

data models, 44–45

irregular, 47

regular, 44

TIN (triangulated irregular network), 47

Texas, 227–228, 356, 371, 374

Thematic Mapper. See TM

Threshold distance to health services, 312, 418

Threshold requirement, in health services 

delivery, 11, 343–344

Threshold toxicant, 210

TIGER/Line data

accuracy of street information, 82

address-match geocoding, 82, 99–101

described, 81–84

history of, 35, 81

MAF/TIGER, 81, 84

positional accuracy, 82–84

Tight coupling, of GIS and statistical 

software, 33

Time geography, 304

Time-space composite model, 248

Time stamp, temporal data, 242

Time-stamped tuples, 248

Time window, 176

TIN (triangulated irregular network)

defined, 47

use of, 316

Title, map, 144

TM (Thematic Mapper), 46, 65, 79, 297

Top-down GIS, 410

Topology, 31

Toronto, Ontario, 307–322

Toxicant

defined, 183

nonthreshold, 210

threshold, 210

Toxicology, defined, 186

Toxics Release Inventory. See TRI

Tract, census, 86–90, 98, 103–104, 131, 

195, 222, 229–230, 243, 260, 273, 

289, 322–323, 327, 340–341, 362, 

389–390, 394, 401

Transparency, of map image, 147

Transportation

and built environment, 390

and disease spread, 238, 252, 265, 298

and evacuation planning, 374

modes, 315–316

networks, 48, 314–315

of hazardous materials, 197–198, 230

Transportation Problem, 350–352

Transverse Mercator map projection, 58–60

Travel and activity patterns. See also Activity 

space

importance in health studies, 2, 188, 

305–306

maps of, 4, 327

Traveling Salesman Problem, 361

Travel time

and accessibility to health services, 304, 

312–316, 319–320

and utilization of health services, 331

as a constraint in health services delivery, 

346, 354–357

estimating, 315

in models of accessibility, 321–322, 324

in models of utilization, 331–332

TRI (Toxics Release Inventory)

data combined with other data, 193–194, 

198

described, 189–191

facility and location information, 190–191

Triangulated irregular network. See TIN

Tuberculosis

bovine, 298

human, 239–240, 242, 245

Tuple

defined, 20

time-stamped, 248

in turn tables, 49

Turn table, 49–50

Two-step floating catchment area method 

(2SFCA), 319–321

U

Uninsured population, 306, 332, 334

Union, as a Boolean operation, 136

Universal Serial Bus. See USB

Universal Tranverse Mercator projection. See 

UTM projection

USB (Universal Serial Bus), 52

U.S. Census

GBF/DIME file, 48

geographic areas, 86–88

Landview, 212

MAF/TIGER data, 81, 84
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U.S. Census (cont.)

population data, 86–89

TIGER/Line data, 35, 81–84, 100

U.S. Geological Survey, 80, 103, 146, 201, 

212, 283

U.S. National Grid, 70–71, 73

Utilization, of health care. See Health care, 

utilization. See also Health data, 

utilization

UTM (Universal Transverse Mercator) 

projection, 59, 70

V

Vaccination. See Immunization

Vaccine trials, 258–259, 295–296

Value, as a visual variable, 62, 125

Vancouver, British Columbia, 247

Variance reduction model, for groundwater 

monitoring, 208

Vector, as a line segment, 47

Vector-borne diseases

case data, 268–270

maps of, 266–267, 271–272, 276, 284, 289, 

293–295

spread of, 265–268

Vector data. See Geographic data, models

Vector model, of geographic data, 47–48

Vector, of disease

control methods, 297–299

described, 233, 263

geographic range, 296–297

surveillance, 280–281

transmission and biting rates, 297

Vectorization, of images, 16

Vector/raster conversion, 50

Vertical response time, 357

Veterinary public health, 263

Victoria, Australia, 319, 321

Vietnam, 242

View, in a GIS display

changing, 139–140

selecting features in, 134–143

Viewing data in a GIS

by attribute, 134–138

by location, 138–139

Virulence, defined, 254

Visual variables, in mapping, 62, 116

Visualization. See also Mapping

and GIS functions, 24–29

and PPGIS, 420

and web-based mapping, 146–147

Vital records, 89–91

Volunteered geographic information, 

416–417

Vulnerability

maps, 232, 371

to hazards, 371–373

W

Wales, 246, 285, 311, 404–405

Walking, as a mode of travel to health 

services, 315–316, 366

Washington, D.C., 318–319

Web 2.0, 420

Web-based GIS applications, 38–41, 

145–149, 420, 422

Weights. See Spatial weights

West Islip, New York, 172–174, 178, 415–416

West Nile virus, 176, 265, 275–277, 282–284, 

288–289, 297

Wildlife, 268–269, 275–278, 282, 298

Window operation, 106, 108. See also Spatial 

window, Time window

Wisconsin, 279

Z

Zambia, 257

Zoning effect, in modifiable area unit 

problem, 128

Zoom operation, 139–140

Zoonoses, 263

Z-score classification, in mapping, 122
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