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Test data sets

trackingDB_datasets.zip Test data sets used as reference in the exercises presented in the book.
These include: GPS locations (from 5 GPS sensors); activity data
(from 1 activity sensor); animals; sensors; deployment of sensors on
animals; environmental layers in vector format (limits of the study
area, administrative boundaries, meteorological stations, roads);
environmental layers in raster format (land cover, digital elevation
model, normalized difference vegetation index).

Code

trackingDB_code.zip Plain text files with the commented code (database and R) presented
in Chapters 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (one .txt file per chapter).
The code can be easily copy/pasted by readers to facilitate the
creation of their own database.

Dump of the database

trackingDB_dump.zip Plain SQL dump of the database built in Chapters 2, 3, 4, 5, 6, 7, 8
and 9. This allows users to skip the steps to create the database as
presented through chapters, thus providing the final outcome. This is
needed for readers who buy individual chapters (the code presented
in each chapter makes reference to the database created sequentially
in the previous chapters).

v



Foreword

A group of kindergarten kids are walking in a valley with their teacher. Children,
especially at this early age, have keen eyes and unbounded imagination and
curiosity. They commonly discover interesting objects well before adults do. One
girl discovers an unusual stone and excitedly calls the others to see. The crowd of
kids circles around the object, offering various interpretations. ‘I can see this stone
has lots of iron in it’, says a future geologist. ‘This was left here by ancient
people’, says a boy from a family with a long tradition in the valley. ‘It’s a
‘metarite’ that came from the sky’, says the dreamer. ‘Meteorite, not metarite’
corrects the teacher, and gets closer to figure out what this odd stone is. Suddenly,
the ‘stone’ jumps. ‘It’s alive!’ shout the kids together in surprise, running after the
neatly camouflaged grasshopper as it jumps to escape the crowd.

The movement of organisms, the subject of this book, is the most fundamental
characteristic of life. Most, if not all, species—microorganisms, plants, and
animals—move at one or more stages of their life cycle. These movements affect
individual fitness, determine major evolutionary pathways and trait selection, and
shape key ecological processes, including some of the most stressful global envi-
ronmental and health problems we face today. Humans, including such notable
figures as Aristotle, Heraclitus, Jeremiah, and Lao-tzu, have long recognized the
movement of organisms as a fundamental feature of nature and human life.
Consequently, movement research has been rich and insightful since the early days
of science, with remarkable contributions from such luminaries as Newton, Darwin,
and Einstein. Despite this, progress in movement research has long been hampered
by the immense practical difficulties involved in collecting and analysing
movement data. Furthermore, movement research has long been scattered among
numerous subfields, and until recently lacked a unifying framework to advance our
understanding of all movements types and all organisms.

These obstacles are now being rapidly overcome. We are currently seeing a
golden age of unprecedented progress and discovery in movement research. Three
main processes are responsible for this rapid advancement: (1) the development of
new tracking techniques to quantify movement (Tomkiewicz et al. 2010),
(2) powerful data analysis tools to examine key questions about movement and its
causes and consequences (Schick et al. 2008), and (3) conceptual and theoretical
frameworks for integrating movement research (Nathan et al. 2008). Many new
tools have been developed recently to record the movement of various organisms
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with levels of accuracy, frequency, and duration that are much higher than they
were just a few years ago. This has strongly improved our capacity to track insects,
fish, and other relatively small organisms. However, arguably the most dramatic
development in animal biotelemetry is driven by GPS-based devices, which have
been applied mostly to track mammals and birds of relatively large ([100 g) body
mass. Although such devices remain limited to a small proportion of the world’s
biota, they are now applicable to a large and increasing number of species, and
have caused a dramatic shift of movement ecology from a data-poor to a data-rich
research enterprise. The parallel development of bio-logging techniques that use
accelerometers and various other sensors, as well as GIS and remote sensing
techniques, have further enriched our ability to quantify the internal state,
behaviour, and the external environment of the animal en route. Therefore, this
book’s focus on animal-borne GPS data is important for the advancement of the
most active frontiers of movement research.

A recent prognosis of the state of the art of physics, as an example for scientific
research more generally, has concluded that we are lucky to live in an era when
both tools and ideas are getting strong (Dyson 2012). The same applies to
movement research. Along these lines, the three main processes that drive the
current rapid advancement of movement ecology should be strongly interlinked.
This is precisely the contribution that this book attempts to make. In order to
efficiently utilize the large volume of high-quality GPS data, to take advantage of
the power of advanced data analysis tools, and to facilitate the investigation of key
hypotheses and the promotion of integrative theoretical frameworks, we first need
to properly manage the data sets. Although this requirement holds for data sets of
all sizes, and is therefore relevant to all movement ecology projects, a key chal-
lenge is to manage the large and rapidly growing GPS tracking data sets that have
been collected by many groups studying diverse species across different ecosys-
tems. This marks the entrance of movement ecology to the Big Data era, which
necessitates revolutionary improvements in data management and data analysis
techniques, and resembles the bioinformatics revolution of genomics and proteo-
mics in the previous decade (Mount 2004). Ecologists have been late to enter the
information age, and will need to conquer the strong traditions that have developed
over the long data-poor history of this discipline in order to utilize the huge
scientific opportunities of the Big Data era (Hampton et al. 2013). The integrative,
transdisciplinary approach of movement ecology facilitates this task, and this book
is the most comprehensive attempt to date to guide movement ecologists on how to
deal with their data sets.

The data management challenge involves multiple tasks, including gathering,
processing, storing, searching, organizing, visualizing, documenting, analysing,
retrieving, and sharing the data. Furthermore, the basic features of the data sets—
the data type, the spatial and temporal resolution, the errors, and the biases—tend
to vary across studies, which has created the need for general guidelines on how to
standardize data management in a consistent and robust manner. Furthermore, the
growing availability of complementary quantitative data, both on the internal state
of the focal animal and its biotic and abiotic environment (e.g. Dodge et al. 2013)
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has increased our ability to link movement to fitness, elucidate its proximate
underlying mechanisms, and explore social and other biotic interactions, the
impact of humans on animals, and their response to environmental changes.
Although this progress is desirable, it also amplifies and complicates the Big Data
problem, requiring coordination among different tools, spatial databases, and
approaches. These challenges can be overwhelming, and the current tendency of
individual researchers and research groups to reinvent the wheel with their own
data management tools and protocols should be replaced with generic methods
developed through fruitful joint efforts of the scientific community. Ferdinando
Urbano, Francesca Cagnacci, and their colleagues have performed a tremendous
service in this regard by taking the first steps in this long journey, addressing some
of the major challenges of managing movement data sets in a comprehensive and
useful way.

The book starts with a useful Introduction and includes two theoretical/review
chapters, Chaps. 1 and 13. All other chapters provide clear technical guidelines on
how to create and automatically organize a GPS database, how to integrate
ancillary information and manage errors, and how to represent and analyse GPS
tracking data, as well as a glimpse into complementary data from other bio-logged
sensors. The practical guidelines are implemented in SQL codes for the open
source database management system PostgreSQL and its spatial extension
PostGIS—the software platform recommended here for GPS data sets—as well as
R codes for statistical analysis and graphics. Each technical chapter also includes
hands-on examples of real-life database management tasks based on freely
available data sets, given in a sequential manner to gradually guide the learning
process. The chapters cover a wide range of topics, avoiding the need to provide an
in-depth review and illustration of all state-of-the-art methods and tools; this is a
logical and welcoming strategy given the lack of a basic textbook on this subject.
The book is targeted at biologists, ecologists, and managers working on wildlife
(GPS) tracking data, with special emphasis on wildlife management, conservation
projects and environmental planning. It also provides an excellent reference for the
target groups to establish collaborations with ICT specialists.

I am grateful to this excellent team of authors for sharing their experience and
insights on the critically important technical building blocks of data management
for animal movement research. I am particularly happy to see that such a meth-
odological approach is not presented in a ‘dry’ technical manner, but rather in the
light of key research questions within the broader theoretical background of
movement ecology, in a user-friendly manner, and with clear links to real-life
applications. The authors should be warmly congratulated for producing this
important contribution. This book will provide an important pioneering impetus
for a large and successful research enterprise of a Big Movement Ecology Data
era, which some research groups have already experienced and many others are
likely to experience in the near future.

Jerusalem, December 2013 Ran Nathan
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The Long and Winding Road to Movement Ecology:
Let’s put Things in Order, First

Animal movement is a proximate response to local environmental conditions, such
as climate, chemophysical parameters, resources, and the presence of mates or
predators; in other words, the context in which animals are born, survive,
reproduce, and die. At the same time, movement is the result of complex
evolutionary mechanisms, uniquely blending gene expression into physiological
and behavioural responses. Animal movement has been described as the glue that
ties ecological processes together (Turchin 1998; Nathan et al. 2008) and as an
important mechanistic link between ecology and evolution (Cagnacci et al. 2010).
Moreover, the increasing concern for rapidly changing ecosystems, under climate
and land use change, brings with it an urgent and heightened interest in the
capacity of animals to respond to such changes. An exciting perspective offered by
animal movement is the possibility to understand this phenomenon at different
spatial scales and levels of organisation, from individuals, to populations over
landscapes and to the distribution range of species (Mueller and Fagan 2008). Such
stimulating theoretical framework and widely relevant applied perspective clearly
justify the ever-increasing interest in animal tracking studies, especially those
based on animal-borne data sets, i.e. those obtained through the deployment of
tracking units on individual animals. The innovation in Global Positioning System
(GPS) technology, combined with systems for remote data transfer, has
particularly favored GPS-based animal telemetry to become a standard in wildlife
tracking (Cagnacci et al. 2010).

The advancement of a movement ecology theoretical framework has been
paralleled by technological progress that allows ecologists to obtain a huge amount
and diversity of empirical animal movement data sets. However, this fast-growing
and expanding process has not been followed by an equally rapid development of
procedures to manage and integrate animal movement data sets, thus leaving a gap
between the acquisition of data and the overarching scientific questions they have
the potential to address (Urbano et al. 2010).

The ideal objective of any movement ecology study is rooted in relevant
ecological questions that can contribute to theory and inform conservation and
management actions. For example, a study on natal dispersal can help in identifying
barriers to gene flow, or an analysis on environmental characteristics affecting
population performance can support decisions on protection areas and conservation
corridors. Whatever the question, the second necessary step should be the
evaluation of the appropriate methodology, and specifically deciding whether
individual marking with Global Navigation Satellite Systems (GNSS) devices such
as GPS (or other sensors) is the most effective and informative approach to pursuing
the final goal (see discussion in Hebblewhite and Haydon 2010). If the answer is
yes, GPS units should be ideally deployed according to an a priori sampling design
(e.g. number, sex ratio and spacing of sampled individuals) and relevant
information on marked individuals should be collected (e.g. age and body mass),
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as well as on the population of reference and the environmental context
(e.g. population density, presence of competitor species/predators, human activity
pressure). Collection of GPS locations of marked animals should finally flow, and
can be complemented with environmental parameters (e.g. weather, habitat types
and vegetation indexes based on remote sensing).

The reason for this book comes at this stage of the scientific method: what to do
with these data? How to handle, manage, store and retrieve them, and how to
eventually feed them to analysis tools such as statistics packages or Geographic
Information Systems (GIS) and test scientific hypotheses? These operations, which
might be assumed to be secondary compared to the overarching goal of answering
scientific questions, can instead become overwhelming and hamper the efficiency
and consistency of the whole process. Animal ecologists, wildlife biologists and
managers, to whom this book is mainly addressed, are rarely exposed to the basics
of computer science in their training, and may select common tools such as
spreadsheets, or operate in a ‘flat-files’ fashion. However, the quantity and
complexity of GPS and other bio-logged data require a proper software
architecture to be fully exploited and not wasted or, worse, misused. This book
is a guide to manage and process wildlife tracking data with an advanced software
platform based on a spatial database. It is neither a manual on database
programming nor on wildlife tracking; instead, it aims to fill the gap between the
state-of-the-art knowledge on data management and its application to wildlife
tracking data. This problem-solving oriented guide focuses on how to extract the
most from GPS animal tracking data, while preventing error propagation and
optimizing the performance of analysis. Using databases to manage tracking data
implies a considerable initial effort for those who are not familiar with these tools;
however, the time spent learning will pay off in time saved for the management
and processing of the data, and in the quality of the analysis and final results.
Moreover, once a consistent database structure is built to code the storing and
management of data, more familiar tools can be used as interfaces.

Another important advantage of using a structured and consistent software
platform for management of wildlife tracking data is the ever-increasing
importance of cooperative projects and data sharing. Deploying sensors on
animals can be expensive, both in terms of capture logistics and actual cost of
tracking devices, and implies some amount of stress for the marked animals. These
costs pose financial and even moral incentives to maximize the effective use of
animal-borne data. Moreover, many large-scale questions, such as evaluating the
effects of climate and land use change on animal distributions, can be properly
addressed only by studying multiple populations, or by integrating data from
several species or time periods. Data requirements for such studies are virtually
impossible for any single research institution to meet, and can only be achieved by
cooperative research and data sharing (Whitlock 2011). Spatial databases are
essential tools to assure data standards and interoperability, along with a safe
multiple users operational environment.

In this manual, a sequential set of exercises guides readers step by step through
setting up a spatial database to manage GPS tracking data together with ancillary
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information (e.g. characteristics of animals and sensors), environmental layers
(e.g. land cover, altitude and vegetation index), and data from other bio-logged
sensors (e.g. accelerometers). Data from five GPS and one activity sensors
deployed on roe deer (Capreolus capreolus; Fig. 1) in the Italian Alps (Fig. 2) are
used as the test data set1. In each chapter, data management problems are
contextualized in relation to issues that scientists and wildlife managers face when
they work with tracking data. The goal of the book is to illustrate conceptual and
technical solutions and to offer a practical example of general validity for most of
the animal species target of movement ecology studies.

The world of animal-borne telemetry, or bio-logging, comprises information
not limited to location data of marked animals. The first natural extension is 3D
coordinates, where two-dimensional coordinates (i.e. latitude and longitude) are
complemented by altitude for avian species or depth for marine species. Other
increasingly used parameters are triaxial acceleration (measured by accelerome-
ters) and magnetic bearing (measured by magnetometers), which can integrate the
movement trajectories with information on the type of body movement and
therefore activity of animals. A diversity of other variables can be measured by
bio-logging devices, providing information on the internal state of animals
(biomechanics, energetics), and also their external state, i.e. the environment
(pressure, chemophysical parameters) (see Ropert-Coudert and Wilson 2005 for an

Fig. 1 F10, one of the sample animals studied in this book: an adult female roe deer (Capreolus
capreolus), wearing a Vectronic Aerospace GmbH GPS-Plus yellow collar

1 The test data set (trackingDB_datasets.zip) is available at http://extras.springer.com.
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early review on this topic). When justified by the scientific questions underpinning
the empirical study, the use of multi-sensor platforms deployed on individual
animals can be a powerful tool to obtain a complex and diversified picture of the
animal in its environment. With the miniaturization of technology and adaptation
of devices to an increasing number of species, multi-sensor platforms and their
resulting data sets are likely to be even more common in the future (see, for
example, deployment of miniature video cameras on birds, Rutz and Troscianko
2013). The presence of multiple sources of information (i.e. the sensors) fitted on
the same animal does not represent a challenge per se, if each type of information
is consistently linked to the animal and integrated with the other data sources.
However, this requires a dedicated and consistent management structure, an
expansion of the database requirements for tracking data alone. Although this book
mainly deals with spatial data obtained from individual animals tracked with GPS,
examples are provided to show how most of the conceptual background can be
exported to other sensors or to multi-sensor platforms.

PostgreSQL and its spatial extension PostGIS are the proposed software
platform to build the wildlife tracking database. This spatial database will allow
management of virtually any volume of data from wildlife GPS tracking in a
unique repository, while assuring data integrity and consistency, avoidance of
error propagation, and limiting data duplication and redundancy. Moreover, this
software platform offers the opportunity of automation of otherwise very time-
consuming processes, such as, for example, the association between GPS

Fig. 2 Typical habitat characterizing the alpine area where the sample animals were tracked by
means of GPS collars: open alpine pastures and mixed woodlands
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locations, animals and the environmental variables, and high performance of data
retrieval, which can become cumbersome when data sets are very large. Databases
are designed for being remotely accessed and used concurrently by multiple users,
assuring data integrity and security (i.e. ability to define a diversified access
policy). Last but not least, once the storing and management of data is coded in a
robust database, data can still be visualized and accessed with common tools such
as office packages (e.g. spreadsheets, database front-ends) or GIS desktop.
Therefore, after the initial effort of designing the structure and populating the
database, most users should be able to easily access the data.

The proposed SQL code can be directly used to create an operational test
database and, at a later stage, as a template to create a more customized data
management system. R is used as the reference statistical environment. The
examples, illustrated in a MS Windows environment, can be easily adapted to the
commonly used operating systems, such as Mas OS X and Linux, which are all
supported by both PostgreSQL/PostGIS and R.

Chapter 1 is a review of the opportunities and challenges that are posed by GPS
tracking from a data management perspective, with a brief introduction to (spatial)
databases, which are proposed as the best available tool for wildlife tracking data
management. Chapter 2 guides readers through the initial creation of a (Post-
greSQL) database to store GPS data. Chapter 3 shows how to integrate ancillary
information on both animals and GPS devices. Chapter 4 presents a solution to
associating GPS positions to animals in an automated fashion. Chapter 5 explores
the features offered by PostGIS, the spatial extension of PostgreSQL, transforming
the coordinates received from the GPS sensors into ‘spatial objects’, i.e. points
embedding spatial characteristics. Chapter 6 uses the spatial tools of the database
to add a set of spatial ancillary information in the form of vectors (points, lines,
and polygons) and rasters and to connect these data sets with GPS tracking data.
Chapter 7 focuses on the integration of ancillary information that captures the
temporal variability of the environment, with a practical example based on the
remote sensing image time series of Normalized Difference Vegetation Index
(NDVI), a proxy of vegetation biomass. Chapter 8 is dedicated to the detection and
management of erroneous location and potential outliers. Chapter 9 introduces
methods for representing and analysing tracking data (e.g. trajectories, home range
polygons, probability surfaces) using database functions. Chapter 10 explains how
to connect R, a powerful software environment for statistical computing and
graphics, with the database and describes a set of typical tracking data analyses
performed with R. Chapter 11 introduces a more direct and efficient approach to
integrate R and PostgreSQL: Pl/R. Chapter 12 discusses the integration of GPS
tracking data with other bio-logged sensors, with a practical example based on
accelerometers. Chapter 13 gives an overview of data standards and software
interoperability, with special reference to data sharing.

Apart from Chaps. 1, 12 and 13, which introduce more general and theoretical
topics, each chapter proposes exercises that are developed sequentially. Although
it is possible to perform an exercise from a later chapter on its own by restoring the
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dump of the whole database2, we recommend completing the exercises in the order
in which they are presented in the book to have a full understanding of the whole
process. We also suggest acquiring some general understanding of databases and
spatial databases before reading this book.
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Chapter 1
Wildlife Tracking Data Management:
Chances Come from Difficulties

Holger Dettki, Ferdinando Urbano, Mathieu Basille
and Francesca Cagnacci

Abstract In recent years, new wildlife tracking and telemetry technologies have
become available, leading to substantial growth in the volume of wildlife tracking
data. In the future, one can expect an almost exponential increase in collected data
as new sensors are integrated into current tracking systems. A crucial limitation for
efficient use of telemetry data is a lack of infrastructure to collect, store and
efficiently share the information. Large data sets generated by wildlife tracking
equipment pose a number of challenges: to cope with this amount of data, a
specific data management approach is needed, one designed to deal with data
scalability, automatic data acquisition, long-term storage, efficient data retrieval,
management of spatial and temporal information, multi-user support and data
sharing and dissemination. The state-of-the-art technology to meet these chal-
lenges are relational database management systems (DBMSs), with their dedicated
spatial extension. DBMSs are efficient, industry-standard tools for storage, fast
retrieval and manipulation of large data sets, as well as data dissemination to client
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programs or Web interfaces. In the future, we expect the development of tools able
to deal at the same time with both spatial and temporal dimensions of animal
movement data, such as spatiotemporal databases.

Keywords GPS tracking � Large data set � Database management system �
Spatial database

Introduction

In recent years, new wildlife tracking and telemetry technologies have become
available, allowing remote data capture from a steadily increasing number of taxa,
species and individual animals. This has resulted in a substantial increase in the
volume of data gathered by researchers, environmental monitoring programs and
public agencies. In the future, one can expect an almost exponential increase in
collected data as new sensors, e.g. to monitor health status, interactions among
individuals, or other animal-centred variables, are integrated into current bio-
logging systems on animals. Data can be remotely transferred to operators (e.g.
using Global System for Mobile Communications (GSM) networks or satellite
systems such as Argos, Globalstar and Iridium), making near real-time monitoring
of animals possible. Furthermore, positional information can now be comple-
mented with a wide range of other information about the animals’ environment
made available by satellite remote sensing, meteorological models and other
environmental observation systems.

The information embedded in animal-borne data sets is enormous and could be
made available in a wider societal context than wildlife research or management.
However, there is still a lack of suitable infrastructures to collect, store and effi-
ciently share these data. In this chapter, and in the rest of the book, we offer a
solution for a subset of animal-borne information, i.e. wildlife tracking data. With
this term, we mainly refer to Global Positioning System (GPS)-based radiotelem-
etry (Cagnacci et al. 2010; Tomkiewicz et al. 2010). ‘GPS’ is here a synonym for all
different existing or upcoming global navigation satellite system (GNSS)-based
animal tracking systems. Most of the concepts and tools proposed in this book,
however are also valid for other tracking systems (e.g. very high frequency (VHF)
telemetry, radio frequency identification (RFID) systems, echolocation).

In the past, software tools for wildlife tracking studies were mainly developed
on the basis of VHF radiotracking data, which are characterised by small and
discontinuous data sets, and were focused on data analysis rather than data man-
agement (Urbano et al. 2010). Spatial data, such as animal locations and home
ranges, were traditionally stored locally in flat files, accessible to a single user at a
time and analysed by a number of independent applications without any common
standards for interoperability. Now that GPS-based tracking data series have
become the main reference, data management practices face new challenges.
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As we discuss below, GPS telemetry usually provides locations separated by
constant and short time intervals (varying from a few minutes to several hours) that
accumulate in large data series. Thus, data should be securely, consistently and
efficiently managed in order to minimise errors, increase the reliability and
reproducibility of inferences and ensure data persistence (e.g. access to data on
multiple occasions and by several persons). Further, there is an increasing call for
sharing and distributing data to the global research community, for principle and
opportunity, and wildlife tracking data are no exception. Indeed, deploying
tracking devices and bio-logging sensors on wildlife is costly, and most projects
are local or rely on limited sample sizes. Hence, to realise the full potential of
locally collected data, researchers must be able to share with and distribute their
data to the global research community (see Chap. 13).

Below, we summarise the requirements that wildlife tracking data represent in
terms of data management, and opportunities offered by potential solutions. This
analysis is largely drawn by Urbano et al. (2010), with updated considerations.

Requirements

The methodological approach and software architecture for managing wildlife
tracking data have to meet the specific requirements of spatiotemporal data series
which are the result of individual animals’ behaviour. Thus, the first step is the
definition of both data and marked animals’ characteristics, as well as the users’
needs.

• Scalability: GPS-based devices can currently record thousands of locations per
animal over short time intervals (hours, days, months). The number of moni-
tored individuals and species has steadily increased in recent years, due in part
to decreases in costs, decreases in device size and availability of a growing
range of device models. Data collected by additional bio-logging sensors can
vastly increase the total amount of data collected. Data management methods
must be able to accommodate this growing volume of data.

• Periodic and automatic data acquisition: Automated procedures to receive,
process and store data from GPS telemetry devices are required when a near
real-time data transfer system is provided by the tracking units.

• Long-term storage for data reuse: Data must be consistently stored and
properly documented beyond the period of data collection and analysis to permit
data archiving, reuse and sharing.

• Efficient data retrieval: As the data sets increase in size, effective data analysis
depends on efficient data retrieval tools.

• Management of spatial information: GPS data are by definition spatiotem-
poral data (i.e. usually they represent moving objects). Retrieval, manipulation
and management tools should then be specific to the spatial data domain.
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• Global spatial and time references: The use of global time and spatial ref-
erence systems enables comparison with data sets from different regions and at
different scales.

• Heterogeneity of applications: The complex nature of movement ecology
requires that sensor data are visualised, explored and analysed by a wide range
of task-oriented applications; therefore, the software architecture should support
the integration of different software tools.

• Integration of additional data sources: Animal locations can be enhanced by
other spatial (e.g. remote sensing, socioeconomic) and non-spatial information
(e.g. capture details or life-history traits), as well as data from other bio-logging
sensors; multiple spatial and non-spatial data sets should be correctly managed
and efficiently integrated into a comprehensive data structure.

• Multi-user support: Wildlife tracking data sets are of interest to researchers,
but also to a range of stakeholders, including for example public institutions
(wildlife management offices, national parks), and private organisations (envi-
ronmental groups, hunters). These users might need to access data simulta-
neously, both locally and remotely, with different access privileges.

• Data sharing: There is an increasing call for sharing data publicly or among
research groups. This is discussed in more detail in Chap. 13. Technically, data
sharing requires adherence to standard data formats, definition of metadata and
methods for data storage and management that, in turn, guarantee
interoperability.

• Data dissemination/outreach: Dissemination of data to the scientific com-
munity or outreach activities targeting the general public is important to sup-
porting management decisions, fundraising and promoting a larger awareness of
issues related to ecosystem changes and resilience to changes. This requires the
integration of specific tools to visualise and make data accessible (e.g. Web-
based data interfaces, mapping tools, or search engines).

• Cost-effectiveness: By choosing cost-effective software tools that can meet the
above requirements, funding can be focused on the collection and analysis of
data, rather than on data management.

Chances

All of these requirements must be satisfied to take full advantage of the infor-
mation that wildlife tracking devices can provide. As the volume and complexity
of these data sets increase, the software tools used in the past by most animal
tracking researchers are not sustainable, and thus there is an urgent need to adopt
new software architectures.

Fortunately, software solutions exist and have a large user base. The reference
solutions for data management are relational or object-relational database
management systems (DBMSs), with their dedicated spatial extensions. DBMSs are
efficient tools for storage, fast retrieval and manipulation of data (Urbano et al. 2010).
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From a strictly technical point of view, advantages of DBMSs for tracking and
movement ecology studies include the following:

• Storage capacity: Virtually any potential volume of data from wildlife GPS
tracking or other sensor data can be stored in a DBMS.

• Data integrity: Data entry, changes and deletions can be checked to comply
with specific rules.

• Data consistency: DBMSs fully support reversible transactions and transaction
logging to ensure traceability of data operations and proper data management.

• Automation of processes: DBMSs can be empowered by defining internal
functions and triggers; thus, a wide range of routinely complex work procedures
can be automatically and efficiently performed inside the database itself.

• Data retrieval performance: The use of indexes effectively decreases querying
time.

• Management of temporal data types: Time zones or daylight saving settings
linked to temporal data types are supported and allow time consistency across
study areas and times of year.

• Reduced data redundancy: The use of primary keys avoids data replication
and the adoption of a normalized relational data model reduces data redundancy.

• Client/server architecture: Advanced DBMSs provide data through a central
service, to which many applications can be connected and used as database
front-end clients.

• Advanced exploratory data analysis: Data mining techniques for automatic
knowledge discovery of information embedded in large spatial data sets must be
applied in consistent and structured environments such as DBMSs.

• Data models: Data models are the logical core of DBMSs and allow linking and
integration of data sources by means of complex relationships; this is not only
necessary for consistently structuring the database, but is also an extremely
useful way to force users to clarify the ecological/biological relational links
between groups of data. This will be discussed extensively in Chaps. 2, 3 and 4.

• Multi-user environment: Data can be accessed by multiple users at the same
time, keeping control on the coherence between operations performed by them,
and maintaining a structured data access policy (see below).

• Data security: A wide range of data access controls can be implemented, where
each user is constrained to the use of specific sets of operations on defined
subsets of data.

• Standards: Consolidated industry standards for databases, data structure and
metadata facilitate interoperability with client applications and data sharing
among different research groups (see Chap. 13).

• Backup and recovery: Regular backup and potential disaster recovery pro-
cesses can be efficiently managed.

• Cost-effectiveness: Multiple open source DBMSs software solutions are
available that have large user and development communities, as well as
extensive free and low-cost resources for training and support.
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Spatial and Spatiotemporal Extensions

In addition to the important features listed above, spatial tools are increasingly
integrated within databases that now accommodate native spatial data types (e.g.
points, lines, polygons, rasters). These spatial DBMSs are designed to store, query
and manipulate spatial data, including spatial reference systems. In a spatial
database, spatial data types can be manipulated by a spatial extension of the
Structured Query Language (SQL), where complex spatial queries can be gener-
ated and optimised with specific spatial indexes. Today, all major DBMS providers
offer native spatial capabilities and functions in their products.

Spatial databases can easily be integrated with Geographical Information
System (GIS) software, which can be used as client applications. Further, few
desktop GIS are optimised for managing large vector data sets and complex data
structures. Spatial databases, instead, are the tool of choice for performing simple
spatial operations on a large set of elements. Thus, simple but massive operations
on raw data can be preprocessed within the spatial database itself, while more
advanced spatial analysis on subsequent data sets can rely on GIS and the spatial
statistics packages connected to it.

A further promising extension to spatial data models is the adoption of spa-
tiotemporal data models (e.g. Kim et al. 2000; Pelekis et al. 2004; Güting and
Schneider 2005). In these models, locations are characterised by both a spatial and
a temporal dimension that are combined into one unique, double-faced attribute of
movement. Spatiotemporal databases will extend the spatial data model for ani-
mals by integrating data types and functions specifically related to the spatio-
temporal nature of animal movements (e.g. considering ‘movement’ as an attribute
of the animal instead of relying on clusters of location objects with timestamps).
This approach would help to decipher the relationships between animal movement,
habitat use and environmental conditions. Although commonly used DBMSs do
not yet support an integrated spatiotemporal extension, spatiotemporal databases
(e.g. SECONDO1, Güting et al. 2004), which are undergoing intense development,
will be the natural evolution for wildlife tracking data management tools in the
future.
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Chapter 2
Storing Tracking Data in an Advanced
Database Platform (PostgreSQL)

Ferdinando Urbano and Holger Dettki

Abstract The state-of-the-art technical tool for effectively and efficiently managing
tracking data is the spatial relational database. Using databases to manage tracking
data implies a considerable effort for those who are not already familiar with these
tools, but this is necessary to be able to deal with the data coming from the new
sensors. Moreover, the time spent to learn databases will be largely paid back with the
time saved for the management and processing of the data. In this chapter, you are
guided through how to set up a new database in which you will create a table to
accommodate the test GPS data sets. You create a new table in a dedicated schema.
We describe how to upload the raw GPS data coming from five sensors deployed on
roe deer in the Italian Alps into the database and provide further insight into time-
related database data types and into the creation of additional database users. The
reference software platform used is the open source PostgreSQL with its spatial
extension PostGIS. This tool is introduced with its graphical interface pgAdmin. All
the examples provided (SQL code) and technical solutions proposed are tuned on this
software, although most of the code can be easily adapted for other platforms. The
book is focused on the applications of spatial databases to the specific domain of
movement ecology: to properly understand the content of this guide and to replicate
the proposed database structure and tools, you will need a general familiarity with
GIS, wildlife tracking and database programming.
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Introduction

The first step in the data management process is the acquisition of data recorded by
GPS sensors deployed on animals. This can be a complex process that can also
change depending on the GPS sensor provider and exceeds the scope of this book.
The procedure presented in this chapter assumes that the raw information recorded
by the GPS sensors is already available in the form of plain text (*.txt) or comma
delimited (*.csv) files. In the Special Topic below, we give some insight on how
this can be accomplished.

Special Topic: Data acquisition from GPS sensors

Depending on the GPS sensor provider and the technical solutions for data telemetry
present in the GPS sensor units deployed on the animals, the data can be obtained in
different ways. For near real-time applications it is important to automate the acquisition
process as much as possible to fully exploit the information that the continuous data flow
potentially provides and to avoid delay or even data loss. Other applications may be
satisfied by eventual downloads, which can be handled manually, as long as not too many
sensors are involved over a longer period. Most GPS sensor providers offer a so-called
‘Push’1 solution in combination with proprietary communication software to parse the
incoming data from an encrypted format into a text format. For this, some providers allow
the users to set up their own receiving stations to receive, e.g. data-SMS or data through a
mobile data link, using a local GSM- or UMTS-modem together with the proprietary
software to decode and export the data into a text file, while other providers use a company-
based receiving system and forward the data by simply sending emails with the data in the
email body or as email attachment to the user. The same routine is often chosen by
providers when the original raw data are received through satellite systems (e.g. ARGOS,
Iridium, Globalstar). Many of these communication software tools can be configured easily
to automatically receive data in regular intervals and export it as text files into a pre-defined
directory, without any user intervention. The procedure is slightly more complicated when
emails are used. However, using simple programming languages like Python or Visual-
Basic, any IT programmer can quickly write a program to extract data from an email body
or extract an email attachment containing the data. There are also a number of free pro-
grams on the Internet which can accomplish this task. One of the most elegant ways to push
data from the provider’s database into the tracking database is to enable a direct link
between the two databases and use triggers to move or copy new data. Although this is
rarely a technical problem, unfortunately it often fails due to security considerations on the
provider or user side. Other tracking applications do not need near real-time access to the
data and may therefore handle the data download manually in regular or irregular intervals.
The classical situation is the use of ‘store-on-board’ GPS units, where all data are stored in
internal memory on-board the GPS devices until they are removed from the animal after a
pre-defined period. The user then downloads the stored data using a cable connection
between the GPS unit and the providers’ proprietary communication software to parse and
export a text file for each unit. This is called a typical ‘Pull’2 solution, which is offered by
nearly every GPS unit provider. When the GPS sensor units are equipped with short-range
radio signal telemetry transmitters (UHF/VHF), the user can pull the data manually from

1 The information is ‘pushed’ from the unit or the provider to the user without user intervention.
2 The user ‘Pulls’ the information manually from the unit or the providers’ database without
provider intervention.
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the units using a custom receiver in the field after approaching the animals. Again, the
providers’ proprietary communication software can then be used to manually download,
parse and export a text file for each unit from the custom receiver. When the GPS units are
equipped for automatic data transfer via telemetry into the provider’s database, some
providers offer a manual download option from their database through, e.g. the Telnet
protocol, or from their website. Here usually a manual login is required, after which data for
some or all animals can be downloaded as a text file. While any of the ‘Pull’ options are fine
as long as few GPS units are deployed for a relatively short time period, it is advisable to try
in any tracking application to use ‘Push’ services and automation from the beginning, as
building solutions around manual ‘Pull’ services can become very costly in human
resources when the amount of deployed units increases over time.

As discussed in the previous chapter, the state-of-the-art technical tool to effec-
tively and efficiently manage tracking data is the spatial relational database (Urbano
et al. 2010). In this chapter’s exercise, you will be guided through how to set up a
new database in which you will create a table to accommodate the test GPS data sets.
You will see how to upload data from source files using specific database tools.

The reference software platform used in this guide is PostgreSQL, along with
its spatial extension PostGIS. All the examples provided and the technical solu-
tions proposed are tuned on this software, although most of the code can be easily
adapted for other platforms. There are many reasons that support the choice of
PostgreSQL/PostGIS:

• both are free and open source, so any available financial resources can be used
for customisation instead of software licences, and they can be used by research
groups working with limited funds;

• PostgreSQL is an advanced and widely used database system and offers many
features useful for animal movement data management;

• PostGIS is currently one of the most, if not the most, advanced database spatial
extensions available and its development by the IT community is very fast;

• PostGIS includes support for raster data, a dedicated geography spatial data
type, topology and networks, and has a very large library of spatial functions;

• there is a wide, active and very collaborative community for both PostgreSQL
and PostGIS;

• there is very good documentation for both PostgreSQL and PostGIS (manuals,
tutorials, books, wiki, blogs);

• PostgreSQL and PostGIS widely implement standards, which make them highly
interoperable with a large set of other tools for data management, analysis,
visualisation and dissemination;

• they are available for all the most common operating systems and CPU archi-
tectures, notably x86 and x86_64.

Although we recommend using PostgreSQL/PostGIS to develop your data
management system, a valid open source alternative is SpatiaLite3 if the number of
sensors and researchers involved is small and basic functionality is needed.

3 http://ww.gaia-gis.it/spatialite/.
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SpatiaLite has a more limited set of functions compared with PostgreSQL/PostGIS
and is not designed for concurrent access for multiple users, but it has the
advantage of being a single and portable file with no need for any software
installation. Another option is to use existing e-infrastructures dedicated to wildlife
tracking data, such as WRAM4 or Movebank5. These have the advantage of
offering a Web-based ‘ready to use’ management system, with a lot of additional
features for data sharing. Data are hosted in an external server managed by these
projects, so no database maintenance is needed. Movebank offers also a large set of
tools to support collaborations among scientists with both local and global per-
spectives. On the other hand, these systems are designed for large numbers of users
and have limited support for specific customisation. It is also easy to foresee that in
the future data management will be increasingly provided by GPS sensor vendors
as a basic service.

As mentioned earlier, technical explanations about the basics of GIS, database
programming and wildlife tracking are not covered in these exercises. When
needed, references to specific documentation (e.g. Web pages, books, articles,
tutorials) are given. We recommend that readers become familiar with PostgreSQL
and PostGIS before reading this text. In particular, whenever you need any
information on these two software tools, we suggest you begin by consulting the
official documentation6.

This book is focused on the applications of these technical tools to the specific
domain of movement ecology. We also encourage you to use the database man-
agement interface pgAdmin7 to build and manage PostgreSQL databases. It is
installed automatically with PostgreSQL. It has a user-friendly graphical interface
and a set of tools to facilitate interaction with the database. On the pgAdmin
website, you can find the necessary documentation. In addition, the Web-based
tool phpPgAdmin8 can be used to manage a PostgreSQL database and retrieve data
remotely without installing any software on the client side.

Create a New Database

The first step to create the database is the installation of PostgreSQL. Once you
have downloaded9 and installed10 the software (the release used to test the code in
this guide is 9.2), you can use the ‘Application Stack Builder’ (included with

4 http://www.slu.se/wram/.
5 http://www.movebank.org/.
6 http://www.postgresql.org/docs/, http://postgis.refractions.net/documentation/.
7 http://www.pgadmin.org/.
8 http://phppgadmin.sourceforge.net/.
9 http://www.postgresql.org/download/.
10 http://wiki.postgresql.org/wiki/Detailed_installation_guide/.

12 F. Urbano and H. Dettki

http://www.slu.se/wram/
http://www.movebank.org/
http://www.postgresql.org/docs/
http://postgis.refractions.net/documentation/
http://www.pgadmin.org/
http://phppgadmin.sourceforge.net/
http://www.postgresql.org/download/
http://wiki.postgresql.org/wiki/Detailed_installation_guide/


PostgreSQL) to get other useful tools, in particular the spatial extension PostGIS
(the release used as reference here is 2.0).

During the installation process, you will be able to create the database super-
user (the default ‘postgres’ will be used throughout this guide; don’t forget the
password!) and set the value for the port (default ‘5432’). You will need this
information together with the IP address of your computer to connect to the
database. In case you work directly on the computer where the database is
installed, the IP address is also aliased as ‘localhost’. If you want your database to
be remotely accessible, you must verify that the port is open for external con-
nections. The exercises in this guide use a test data set that includes information
from five GPS Vectronic Aerospace GmbH sensors deployed on five roe deer
monitored in the Italian Alps (Monte Bondone, Trento), kindly provided by
Fondazione Edmund Mach, Trento, Italy. This information is complemented with
a variety of (free) environmental layers (locations of meteorological stations, road
networks, administrative units, land cover, DEM and NDVI time series). The test
data set is available at http://extras.springer.com.

Once you have your PostgreSQL system up and running, you can start using it
with the help of SQL queries. Note that you can run SQL code from a PSQL
command-line interface11 or from a graphical SQL interface. The PostgreSQL
graphical user interface pgAdmin makes it possible to create all the database
objects with user-friendly tools that drive users to define all the required infor-
mation. Figure 2.1 shows an example of the pgAdmin graphical interface.

Fig. 2.1 pgAdmin GUI to PostgreSQL. On the left is the interface to introduce the connection
parameters, and on the right is the SQL editor window

11 http://www.postgresql.org/docs/9.2/static/app-psql.html.
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The very first thing to do, even before importing the raw sensor data, is to create
a new database with the SQL code12

You could create the database using just the first line of the code13. The other lines
are added just to be sure that the database will use UTF8 as encoding system and will
not be based on any local setting regarding, e.g. alphabets, sorting, or number for-
matting. This is very important when you work in an international environment
where different languages (and therefore characters) can potentially be used.

Create a New Table and Import Raw GPS Data

Now you connect to the database (in pgAdmin you have to double-click on the
icon of your database) in order to create a schema (a kind of ‘folder’ where you
store a set of information14). By default, a database comes with the ‘public’
schema; it is good practice, however, to use different schemas to store user data.
Here, you create a new schema called main:

And then you can add a comment to describe the schema:

Comments are stored into the database. They are not strictly needed, but adding
a description to every object that you create is a good practice and an important
element of effective documentation for your system.

Before importing the GPS data sets into the database, it is recommended that you
examine the source data (usually .dbf, .csv, or .txt files) with a spreadsheet or a text
editor to see what information is contained. Every GPS brand/model can produce

CREATE DATABASE gps_tracking_db

  ENCODING = 'UTF8'

  TEMPLATE = template0

  LC_COLLATE = 'C'

  LC_CTYPE = 'C';

12 You can also find a plain text file with the SQL code proposed in the book in the
trackingDB_code.zip file available at http://extras.springer.com.
13 http://www.postgresql.org/docs/9.2/static/sql-createdatabase.html.
14 http://www.postgresql.org/docs/9.2/static/ddl-schemas.html.

CREATE SCHEMA main;

COMMENT ON SCHEMA main IS 'Schema that stores all the GPS tracking core 

data.';
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different information, or at least organise this information in a different way, as
unfortunately no consolidated standards exist yet (see Chap. 13). The idea is to
import raw data (as they are when received from the sensors) into the database and
then process them to transform data into information. Once you identify which
attributes are stored in the original files, you can create the structure of a table with the
same columns, with the correct data types. The list of the main data types available in
PostgreSQL/PostGIS is available in the official PostgreSQL documentation15. You
can find the GPS data sets in .csv files included in the trackingDB_datasets.zip file
with test data in the sub-folder \tracking_db\data\sensors_data.

The SQL code that generates the same table structure of the source files within
the database, which is called here main.gps_data16, is

CREATE TABLE main.gps_data(

  gps_data_id serial,

  gps_sensors_code character varying,

  line_no integer,

  utc_date date,

  utc_time time without time zone,

  lmt_date date,
  lmt_time time without time zone,

  ecef_x integer,

  ecef_y integer,

  ecef_z integer,

  latitude double precision,

  longitude double precision,

  height double precision,

  dop double precision,

  nav character varying(2),

  validated character varying(3),

  sats_used integer,

  ch01_sat_id integer,

  ch01_sat_cnr integer,

  ch02_sat_id integer,

  ch02_sat_cnr integer,

  ch03_sat_id integer,

  ch03_sat_cnr integer,

  ch04_sat_id integer,

  ch04_sat_cnr integer,

  ch05_sat_id integer,

  ch05_sat_cnr integer,

  ch06_sat_id integer,

  ch06_sat_cnr integer,

  ch07_sat_id integer,

  ch07_sat_cnr integer,

  ch08_sat_id integer,

  ch08_sat_cnr integer,

15 http://www.postgresql.org/docs/9.2/static/datatype.html.
16 ‘Main’ is the name of the schema where the table will be created, while ‘gps_data’ is the name
of the table. Any object in the database is referred by combining the name of the schema and the
name of the object (e.g. table) separated by a dot (‘.’).
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In a relational database, each table should have a primary key: a field (or
combination of fields) that uniquely identifies each record. In this case, you added
a serial17 field (gps_data_id) not present in the original file. As a serial data type, it
is managed by the database and will be unique for each record. You set this field as
the primary key of the table:

To keep track of database changes, it is useful to add another field to store the
time when each record was inserted in the table. The default for this field can be
automatically set using the current time using the function now()18:

If you want to prevent the same record from being imported twice, you can add
a unique constraint on the combination of the fields gps_sensors_code and line_no:

  ch09_sat_id integer,

  ch09_sat_cnr integer,

  ch10_sat_id integer,

  ch10_sat_cnr integer,

  ch11_sat_id integer,

  ch11_sat_cnr integer,

  ch12_sat_id integer,

  ch12_sat_cnr integer,

  main_vol double precision,

  bu_vol double precision,

  temp double precision,

  easting integer,

  northing integer,

  remarks character varying

);

COMMENT ON TABLE main.gps_data

IS 'Table that stores raw data as they come from the sensors (plus the ID of

the sensor).';

ALTER TABLE main.gps_data 

  ADD CONSTRAINT gps_data_pkey 

  PRIMARY KEY(gps_data_id);

ALTER TABLE main.gps_data 

  ADD COLUMN insert_timestamp timestamp with time zone

  DEFAULT now();

ALTER TABLE main.gps_data

  ADD CONSTRAINT unique_gps_data_record

  UNIQUE(gps_sensors_code, line_no);

17 http://www.postgresql.org/docs/9.2/static/datatype-numeric.html#DATATYPE-SERIAL.
18 http://www.postgresql.org/docs/9.2/static/functions-datetime.html.

16 F. Urbano and H. Dettki

http://www.postgresql.org/docs/9.2/static/datatype-numeric.html#DATATYPE-SERIAL
http://www.postgresql.org/docs/9.2/static/functions-datetime.html


In case a duplicated record is imported, the whole import procedure fails. You
must verify if the above condition on the two fields is reasonable in your case (e.g.
the GPS sensor might produce two records with the same values for GPS sensor code
and line number). This check also implies some additional time in the import stage.

You are now ready to import the GPS data sets. There are many ways to do it.
The main one is to use the COPY19 (FROM) command setting the appropriate
parameters (COPY plus the name of the target table, with the list of column names
in the same order as they are in the source file, then FROM with the path to the file
and WITH followed by additional parameters; in this case, ‘csv’ specifies the
format of the source file, HEADER means that the first line in the source file is a
header and not a record and DELIMITER ‘;’ defines the field separator in the
source file). Do not forget to change the FROM argument to match the actual
location of the file on your computer:

If PostgreSQL complains that date is out of range, check the standard date
format used by your database:

If it is not ‘ISO, DMY’ (Day, Month, Year), then you have to set the date
format in the same session of the COPY statement:

If the original files are in .dbf format, you can use the pgAdmin tool ‘Shapefile
and .dbf importer’. In this case, you do not have to create the structure of the table
before importing because it is done automatically by the tool, that tries to guess the

COPY main.gps_data(

  gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id, 

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr, 

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id, 

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr, 

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, 

temp, easting, northing, remarks)

FROM

  'C:\tracking_db\data\sensors_data\GSM01438.csv' 

  WITH (FORMAT csv, HEADER, DELIMITER ';')

SHOW datestyle;

SET SESSION datestyle = "ISO, DMY";

19 See http://www.postgresql.org/docs/9.2/static/sql-copy.html or http://wiki.postgresql.org/
wiki/COPY. If you want to upload on a server a file that is located in another machine, you
have to use the command ‘\COPY’; see http://www.postgresql.org/docs/9.2/static/app-psql.html
for more information. pgAdmin offers a user-friendly interface for data upload from text files.
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right data type for each attribute. This might save some time but you lose control
over the definition of data types (e.g. time can be stored as a text value).

Let us also import three other (sensor GSM02927 will be imported in Chap. 4)
GPS data sets using the same COPY command:

Special Topic: Time and date data type in PostgreSQL

The management of time and date is more complicated that it may seem. Often, time and
date are recorded and stored by the sensors as two separate elements, but the information

COPY main.gps_data(

  gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id, 

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr, 

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id, 

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr, 

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, 

temp, easting, northing, remarks)

FROM

  'C:\tracking_db\data\sensors_data\GSM01508.csv' 

  WITH (FORMAT csv, HEADER, DELIMITER ';');

COPY main.gps_data(

  gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id, 

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr, 

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id, 

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr, 

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, 

temp, easting, northing, remarks)

FROM

  'C:\tracking_db\data\sensors_data\GSM01511.csv'

  WITH (FORMAT csv, HEADER, DELIMITER ';');

COPY main.gps_data(

  gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id, 

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr, 

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id, 

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr, 

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, 

temp, easting, northing, remarks)

FROM

  'C:\tracking_db\data\sensors_data\GSM01512.csv' 

  WITH (FORMAT csv, HEADER, DELIMITER ';');
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that identifies the moment when the GPS position is registered is made of the combination
of the two (a so-called ‘timestamp’). Moreover, when you have a timestamp, it always
refers to a specific time zone. The same moment has a different local time according to the
place where you are located. If you do not specify the correct time zone, the database
assumes that it is the same as the database setting (usually derived from the local computer
setting). This can potentially generate ambiguities and errors. PostgreSQL offers a lot of
tools to manage time and date20. We strongly suggest using the data type timestamp with
time zone instead of the simpler but more prone to errors timestamp without time zone.

To determine the time zone set in your database you can run

You can run the following SQL codes to explore how the database manages different
specifications of the time and date types:

In the result below, the data type returned by PostgreSQL are respectively date, time
without time zone and text.

Here you have some examples of how to create a timestamp data type in PostgreSQL:

In this case, the data type of the first two fields returned is timestamp without time zone,
while the third one is timestamp with time zone (the output can vary according to the
default time zone of your database server):

SHOW time zone;

SELECT

  '2012-09-01'::DATE AS date1, 

  '12:30:29'::TIME AS time1,

  ('2012-09-01' || ' ' || '12:30:29') AS timetext;

SELECT

  '2012-09-01'::DATE + '12:30:29'::TIME AS timestamp1,

  ('2012-09-01' || ' ' || '12:30:29')::TIMESTAMP WITHOUT TIME ZONE AS 

timestamp2,

  '2012-09-01 12:30:29+00'::TIMESTAMP WITH TIME ZONE AS timestamp3;

     timestamp1      |     timestamp2      |       timestamp3       

---------------------+---------------------+------------------------

 2012-09-01 12:30:29 | 2012-09-01 12:30:29 | 2012-09-01 12:30:29+00

20 http://www.postgresql.org/docs/9.2/static/datatype-datetime.html, http://www.postgresql.org/
docs/9.2/static/functions-datetime.html.

   date1    |  time1   |      timetext       

------------+----------+---------------------

 2012-09-01 | 12:30:29 | 2012-09-01 12:30:29
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You can see what happens when you specify the time zone and when you ask for the
timestamp with time zone from a timestamp without time zone (the result will depend on
the default time zone of your database server):

The result for a server located in Italy (time zone +02 in summer time) is

You can easily extract part of the timestamp, including epoch (number of seconds from
1st January 1970, a format that in some cases can be convenient as it expresses a time-
stamp as an integer):

The expected result is

In this last example, you set a specific time zone (EST—Eastern Standard Time, which
has an offset of -5 h compared to UTC21) for the current session:

Here you do the same using UTC as reference zone:

SELECT

  '2012-09-01 12:30:29 +0'::TIMESTAMP WITH TIME ZONE AS timestamp1, 

  ('2012-09-01'::DATE + '12:30:29'::TIME) AT TIME ZONE 'utc' AS timestamp2,

  ('2012-09-01 12:30:29'::TIMESTAMP WITHOUT TIME ZONE)::TIMESTAMP WITH TIME 

ZONE AS timestamp3;

       timestamp1       |       timestamp2       |       timestamp3       

------------------------+------------------------+------------------------

 2012-09-01 14:30:29+02 | 2012-09-01 14:30:29+02 | 2012-09-01 12:30:29+02

SELECT

  EXTRACT (MONTH FROM '2012-09-01 12:30:29 +0'::TIMESTAMP WITH TIME ZONE) AS

month1,

  EXTRACT (EPOCH FROM '2012-09-01 12:30:29 +0'::TIMESTAMP WITH TIME ZONE) AS

epoch1;

 month1 |   epoch1   

--------+------------

      9 | 1346502629

SET timezone TO 'EST';

SELECT now() AS time_in_EST_zone;

SET timezone TO 'UTC';

SELECT now() AS time_in_UTC_zone;

21 Coordinated Universal Time (UTC) is the primary time standard by which the world regulates
clocks and time. For most purposes, UTC is synonymous with GMT, but GMT is no longer
precisely defined by the scientific community.
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You can compare the results of the two queries to see the difference. To permanently
change the reference time zone to UTC, you have to edit the file postgresql.conf22. In most
of the applications related to movement ecology, this is probably the best option as GPS
uses this reference.

Finalise the Database: Defining GPS Acquisition
Timestamps, Indexes and Permissions

In the original GPS data file, no timestamp field is present. Although the table
main.gps_data is designed to store data as they come from the sensors, it is
convenient to have an additional field where date and time are combined and
where the correct time zone is set (in this case UTC). To do so, you first add a field
of timestamp with time zone type. Then, you fill it (with an UPDATE statement)
from the time and date fields. In a later exercise, you will see how to automatise
this step using triggers.

Now, the table is ready. Next you can add some indexes23, which are data
structures that improve the speed of data retrieval operations on a database table at
the cost of slower writes and the use of more storage space. Database indexes work
in a similar way to a book’s table of contents: you have to add an extra page and
update it whenever new content is added, but then searching for specific sections
will be much faster. You have to decide on which fields you create indexes for by
considering what kind of query will be performed most often in the database. Here,
you add indexes on the acquisition_time and the sensor_id fields, which are
probably two key attributes in the retrieval of data from this table:

ALTER TABLE main.gps_data 

  ADD COLUMN acquisition_time timestamp with time zone;

UPDATE main.gps_data 

  SET acquisition_time = (utc_date + utc_time) AT TIME ZONE 'UTC';

CREATE INDEX acquisition_time_index

  ON main.gps_data

  USING btree (acquisition_time );

CREATE INDEX gps_sensors_code_index

  ON main.gps_data

  USING btree (gps_sensors_code);

22 http://www.postgresql.org/docs/9.2/static/config-setting.html.
23 http://www.postgresql.org/docs/9.2/static/sql-createindex.html.
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As a simple example, you can now retrieve data using specific selection criteria
(GPS positions in May from the sensor GSM01438). Let us retrieve data from the
collar ‘GSM01512’ during the month of May (whatever the year), and order them
by their acquisition time:

The first records (LIMIT 10 returns just the first 10 records; you can remove this
condition to have the full list of records) of the result of this query are

One of the main advantages of an advanced database management system like
PostgreSQL is that the database can be accessed by a number of users at the same
time, keeping the data always in a single version with a proper management of
concurrency. This ensures that the database maintains the ACID (atomicity,
consistency, isolation, durability) principles in an efficient manner. Users can be
different, with different permissions. Most commonly, you have a single admin-
istrator that can change the database, and a set of users that can just read the data.
As an example, you create here a user24 (login basic_user, password basic_user)
and grant read permission for the main.gps_data table and all the objects that will
be created in the main schema in the future:

SELECT

  gps_data_id AS id, gps_sensors_code AS sensor_id, latitude, longitude, 

acquisition_time

FROM

  main.gps_data

WHERE

  gps_sensors_code = 'GSM01512' and EXTRACT(MONTH FROM acquisition_time) = 5

ORDER BY 

  acquisition_time

LIMIT 10;

24 http://www.postgresql.org/docs/9.2/static/sql-createrole.html.

  id   | sensor_id | latitude | longitude |    acquisition_time    

-------+-----------+----------+-----------+------------------------

 11906 | GSM01512  | 46.00563 |  11.05291 | 2006-05-01 00:01:01+00

 11907 | GSM01512  | 46.00630 |  11.05352 | 2006-05-01 04:02:54+00

 11908 | GSM01512  | 46.00652 |  11.05326 | 2006-05-01 08:01:03+00

 11909 | GSM01512  | 46.00437 |  11.05536 | 2006-05-01 12:02:40+00

 11910 | GSM01512  | 46.00720 |  11.05297 | 2006-05-01 16:01:23+00

 11911 | GSM01512  | 46.00709 |  11.05339 | 2006-05-01 20:00:53+00

 11912 | GSM01512  | 46.00723 |  11.05346 | 2006-05-02 00:00:54+00

 11913 | GSM01512  | 46.00649 |  11.05251 | 2006-05-02 04:01:54+00

 11914 | GSM01512  |          |           | 2006-05-02 08:03:06+00

 11915 | GSM01512  | 46.00687 |  11.05386 | 2006-05-02 12:01:24+00
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Permissions can also be associated with user groups, in which case new users
can be added to each group and will inherit all the related permissions on database
objects. Setting a permission policy in a complex multi-user environment requires
an appropriate definition of data access at different levels and it is out of the scope
of this guide. You can find more information on the official PostgreSQL
documentation25.

Export Data and Backup

There are different ways to export a table or the results of a query to an external
file. One is to use the command COPY (TO)26. An example is

Another possibility is to use the pgAdmin interface: in the SQL console select
‘Query’/‘Execute to file’. Other database interfaces have similar tools.

A proper backup policy for a database is important to securing all your valuable
data and the information that you have derived through data processing. In general,
it is recommended to have frequent (scheduled) backups (e.g. once a day) for
schemas that change often and less frequent backups (e.g. once a week) for
schemas (if any) that occupy a larger disk size and do not change often. In case of

CREATE ROLE basic_user LOGIN

  PASSWORD 'basic_user'

  NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION;

GRANT SELECT ON ALL TABLES 

  IN SCHEMA main 

  TO basic_user;

ALTER DEFAULT PRIVILEGES 

  IN SCHEMA main 

  GRANT SELECT ON TABLES 

  TO basic_user;

COPY (
  SELECT gps_data_id, gps_sensors_code, latitude, longitude, acquisition_time, 
 insert_timestamp 
  FROM main.gps_data) 
TO
  'C:\tracking_db\test\export_test1.csv' 
  WITH (FORMAT csv, HEADER, DELIMITER ';');

25 http://www.postgresql.org/docs/9.2/static/user-manag.html.
26 http://www.postgresql.org/docs/9.2/static/sql-copy.html, http://wiki.postgresql.org/wiki/COPY.
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ad hoc updates of the database, you can run specific backups. PostgreSQL offers
very good tools for database backup and recovery27. The two main tools to backup
are as follows:

• pg_dump.exe: extracts a PostgreSQL database or part of the database into a
script file or other archive file (pg_restore.exe is used to restore the database);

• pg_dumpall.exe: extracts a PostgreSQL database cluster (i.e. all the databases
created inside the same installation of PostgreSQL) into a script file (e.g.
including database setting, roles).

These are not SQL commands but executable commands that must run from a
command-line interpreter (with Windows, the default command-line interpreter is
the program cmd.exe, also called Command Prompt). pgAdmin also offers a
graphic interface for backing up and restoring the database. Moreover, it is also
important to keep a copy of the original raw data files, particularly those generated
by sensors.
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Chapter 3
Extending the Database Data Model:
Animals and Sensors

Ferdinando Urbano

Abstract GPS positions are used to describe animal movements and to derive a
large set of information, for example, about animals’ behaviour, social interactions
and environmental preferences. GPS data are related to (and must be integrated
with) many other sources of information that together can be used to describe the
complexity of movement ecology. This can be achieved through proper database
data modelling, which depends on a clear definition of the biological context of a
study. Particularly, data modelling becomes a key step when database systems
manage many connected data sets that grow in size and complexity: it permits easy
updates of the database structure to accommodate the changing goals, constraints
and spatial scales of studies. In this chapter’s exercise, you will extend your
database (see Chap. 2) with two new tables to integrate ancillary information
useful to interpreting GPS data: one for GPS sensors and the other for animals.

Keywords Data modelling � GPS tracking � Data management � Spatial database

Introduction

GPS positions are used to describe animal movements and to derive a large set of
information, for example, on animals’ behaviour, social interactions and envi-
ronmental preferences. GPS data are related to (and must be integrated with) many
other information that together can be used to describe the complexity of move-
ment ecology. This can be achieved through proper database data modelling.
A data model describes what types of data are stored and how they are organised.
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It can be seen as the conceptual representation of the real world in the database
structures that include data objects (i.e. tables) and their mutual relationships.
In particular, data modelling becomes a key step when database systems grow in
size and complexity, and user requirements become more sophisticated: it permits
easy updates of the database structure to accommodate the changing goals, con-
straints, and spatial scales of studies and the evolution of wildlife tracking systems.
Without a rigorous data modelling approach, an information system might lose the
flexibility to manage data efficiently in the long term, reducing its utility to a
simple storage device for raw data, and thus failing to address many of the nec-
essary requirements.

To model data properly, you have to clearly state the biological context of your
study. A logical way to proceed is to define (1) very basic questions on the sample
unit, i.e. individual animals and (2) basic questions about data collection.

1. Typically, individuals are the sampling units of an ecological study based on
wildlife tracking. Therefore, the first question to be asked while modelling the
data is: ‘What basic biological information is needed to characterise individuals
as part of a sample?’ Species, sex and age (or age class) at capture are the main
factors which are relevant in all studies. Age classes typically depend on the
species1. Other information used to characterise individuals could be specific to
a study, for example in a study on spatial behaviour of translocated animals,
‘resident’ or ‘translocated’ is an essential piece of information linked to indi-
vidual animals. All these elements should be described in specific tables.

2. A single individual becomes a ‘studied unit’ when it is fitted with a sensor, in
this case to collect position information. First of all, GPS sensors should be
described by a dedicated table containing the technical characteristics of each
device (e.g. vendor, model). Capture time, or ‘device-fitting’ time, together
with the time and a description of the end of the deployment (e.g. drop-off of
the tag, death of the animal), are also essential to the model. The link between
the sensors and the animals should be described in a table that states
unequivocally when the data collected from a sensor ‘become’ (and cease to be)
bio-logged data, i.e. the period during which they refer to an individual’s
behaviour. The start of the deployment usually coincides with the moment of
capture, but it is not the same thing. Indeed, moment of capture can be the ‘end’
of one relationship between a sensor and an animal (i.e. when a device is taken
off an animal) and at the same time the ‘beginning’ of another (i.e. another
device is fitted instead).

1 Age class of an animal is not constant for all the GPS positions. The correct age class at any
given moment can be derived from the age class at capture and by defining rules that specify
when the individual changes from one class to another (for roe deer, you might assume that on 1st
April of every year each individual that was a fawn becomes a yearling, and each yearling
becomes an adult).
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Thanks to the tables ‘animals’, ‘sensors’, and ‘sensors to animals’, and the
relationships built among them, GPS data can be linked unequivocally to indi-
viduals, i.e. the sampling units.

Some information related to animals can change over time. Therefore, they
must be marked with the reference time that they refer to. Examples of typical
parameters assessed at capture are age and positivity of association to a disease.
Translocation may also coincide with the capture/release time. If this information
changes over time according to well-defined rules (e.g. transition from age clas-
ses), their value can be dynamically calculated in the database at different
moments in time (e.g. using database functions). You will see an example of a
function to calculate age class from the information on the age class at capture and
the acquisition time of GPS positions for roe deer in Chap. 9.

The basic structure ‘animals’, ‘sensors’, ‘sensors to animals’, and, of course,
‘position data’, can be extended to take into account the specific goals of each
project, the complexity of the real-world problems faced, the technical environment
and the available data. Examples of data that can be integrated are capture meth-
odology, handling procedure, use of tranquilizers and so forth, that should be
described in a ‘captures’ table linked to the specific individual (in the table ‘ani-
mals’). Finally, data referring to individuals may come from several sources, e.g.
several sensors or visual observations. In all these cases, the link between data and
sample units (individuals) should also be clearly stated by appropriate relationships.

At the moment, there is a single table in the test database that represents raw
data from GPS sensors. Now, you can start including more information in new
tables to represent other important elements involved in wildlife tracking. This
process will continue throughout all the following chapters.

In this chapter’s exercise, you will include two new tables: one for GPS sensors
and one for animals, with some ancillary tables (age classes, species).

Import Information on GPS Sensors and Add Constraints
to the Table

In the subfolder \tracking_db\data\animals and \tracking_db\data\sensors of the
test data set2, you will find two files: animals.csv and gps_sensors.csv. Let us start
with data on GPS sensors. First, you have to create a table in the database with the
same attributes as the .csv file and then import the data into it. Here is the code of
the table structure:

2 The file with the test data set trackingDB_datasets.zip is part of the Extra Material of the book
available at http://extras.springer.com.
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The only field that is not present in the original file is gps_sensors_id. This is an
integer3 used as primary key. You could also use gps_sensors_code as primary
key, but in many practical situations it is handy to use an integer field.

You add a field to keep track of the timestamp of record insertion:

Now, you can import data using the COPY command:

At this stage, you have defined the list of GPS sensors that exist in your
database. To be sure that you will never have GPS data that come from a GPS
sensor that does not exist in the database, you apply a foreign key4 between
main.gps_data and main.gps_sensors. Foreign keys physically translate the con-
cept of relations among tables.

CREATE TABLE main.gps_sensors(

  gps_sensors_id integer,

  gps_sensors_code character varying NOT NULL,

  purchase_date date,

  frequency double precision,

  vendor character varying,

  model character varying,

  sim character varying,

  CONSTRAINT gps_sensors_pkey 

    PRIMARY KEY (gps_sensors_id ),

  CONSTRAINT gps_sensor_code_unique 

    UNIQUE (gps_sensors_code)

);

COMMENT ON TABLE main.gps_sensors

IS 'GPS sensors catalog.';

COPY main.gps_sensors(

  gps_sensors_id, gps_sensors_code, purchase_date, frequency, vendor, model,

sim)

FROM

  'C:\tracking_db\data\sensors\gps_sensors.csv' 

  WITH (FORMAT csv, DELIMITER ';');

3 In some cases, a good recommendation is to use a ‘serial’ number as primary key to let the
database generate a unique code (integer) every time that a new record is inserted. In this
exercise, we use an integer data type because the values of the gps_sensors_id field are defined in
order to be correctly referenced in the exercises of the next chapters.
4 http://www.postgresql.org/docs/9.2/static/tutorial-fk.html.

ALTER TABLE main.gps_sensors 

  ADD COLUMN insert_timestamp timestamp with time zone DEFAULT now();
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This setting says that in order to delete a record in main.gps_sensors, you first
have to delete all the associated records in main.gps_data. From now on, before
importing GPS data from a sensor, you have to create the sensor’s record in the
main.gps_sensors table.

You can add other kinds of constraints to control the consistency of your
database. As an example, you check that the date of purchase is after 2000-01-01.
If this condition is not met, the database will refuse to insert (or modify) the record
and will return an error message.

Import Information on Animals and Add Constraints
to the Table

Now, you repeat the same process for data on animals. Analysing the animals’
source file (animals.csv), you can derive the fields of the new main.animals table:

As for main.gps_sensors, in your operational database, you can use the serial
data type for the animals_id field. Age class (at capture) and species are attributes
that can only have defined values. To enforce consistency in the database, in these
cases, you can use lookup tables. Lookup tables store the list and the description of
all possible values referenced by specific fields in different tables and constitute the

ALTER TABLE main.gps_data

  ADD CONSTRAINT gps_data_gps_sensors_fkey 

  FOREIGN KEY (gps_sensors_code)

  REFERENCES main.gps_sensors (gps_sensors_code) 

  MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE main.gps_sensors

  ADD CONSTRAINT purchase_date_check 

  CHECK (purchase_date > '2000-01-01'::date);

CREATE TABLE main.animals(

  animals_id integer,

  animals_code character varying(20) NOT NULL,

  name character varying(40),

  sex character(1),

  age_class_code integer,

  species_code integer,

  note character varying,

  CONSTRAINT animals_pkey PRIMARY KEY (animals_id)

);

COMMENT ON TABLE main.animals

IS 'Animals catalog with the main information on individuals.';
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definition of the valid domain. It is recommended to keep them in a separated
schema to give the database a more readable and clear data structure. Therefore,
you create a lu_tables schema:

You set as default that the user basic_user will be able to run SELECT queries
on all the tables that will be created in this schema:

Now, you create a lookup table for species:

You populate it with some values (just roe deer code will be used in our test
data set):

You can do the same for age classes:

CREATE SCHEMA lu_tables;

  GRANT USAGE ON SCHEMA lu_tables TO basic_user;

COMMENT ON SCHEMA lu_tables

IS 'Schema that stores look up tables.';

ALTER DEFAULT PRIVILEGES 

  IN SCHEMA lu_tables 

  GRANT SELECT ON TABLES 

  TO basic_user;

CREATE TABLE lu_tables.lu_species(

  species_code integer,

  species_description character varying,

  CONSTRAINT lu_species_pkey 

  PRIMARY KEY (species_code)

);

COMMENT ON TABLE lu_tables.lu_species

IS 'Look up table for species.';

INSERT INTO lu_tables.lu_species 

  VALUES (1, 'roe deer');

INSERT INTO lu_tables.lu_species 

  VALUES (2, 'rein deer');

INSERT INTO lu_tables.lu_species 

  VALUES (3, 'moose');

CREATE TABLE lu_tables.lu_age_class(

  age_class_code integer, 

  age_class_description character varying,

  CONSTRAINT lage_class_pkey 

  PRIMARY KEY (age_class_code)

);

COMMENT ON TABLE lu_tables.lu_age_class

IS 'Look up table for age classes.';
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You populate it with some values5:

At this stage, you can create the foreign keys between the main.animals table
and the two lookup tables:

For sex class of deer, you do not expect to have more than the two possible
values: female and male (stored in the database as ‘f’ and ‘m’ to simplify data
input). In this case, instead of a lookup table you can set a check on the field:

Whether it is better to use a lookup table or a check must be evaluated case by
case, mainly according to the number of admitted values and the possibility that
you will want to add new values in the future.

You should also add a field to keep track of the timestamp of record insertion:

INSERT INTO lu_tables.lu_age_class 

  VALUES (1, 'fawn');

INSERT INTO lu_tables.lu_age_class 

  VALUES (2, 'yearling');

INSERT INTO lu_tables.lu_age_class 

  VALUES (3, 'adult');

ALTER TABLE main.animals

  ADD CONSTRAINT animals_lu_species 

  FOREIGN KEY (species_code)

  REFERENCES lu_tables.lu_species (species_code) 

  MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE main.animals

  ADD CONSTRAINT animals_lu_age_class 

  FOREIGN KEY (age_class_code)

  REFERENCES lu_tables.lu_age_class (age_class_code) 

  MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE main.animals

  ADD CONSTRAINT sex_check 

  CHECK (sex = 'm' OR sex = 'f');

ALTER TABLE main.animals 

  ADD COLUMN insert_timestamp timestamp with time zone DEFAULT now();

5 These categories are based on roe deer; other species might need a different approach.

3 Extending the Database Data Model: Animals and Sensors 31



As a last step, you import the values from the file:

To test the result, you can retrieve the animals’ data with the extended species
and age class description:

The result of the query is:

You can also create this query with the pgAdmin tool ‘Graphical Query
Builder’ (Fig. 3.1).

First Elements of the Database Data Model

In Fig. 3.2, you have a schematic representation of the tables created so far in
the database, and their relationships. As you can see, the table animals is linked
with foreign keys to two tables in the schema where the lookup tables are stored.
In fact, the tables lu_species and lu_age_class contain the admitted values for the
related fields in the animals table. The table gps_data, which contains the raw data

COPY main.animals(

  animals_id,animals_code, name, sex, age_class_code, species_code)

FROM

  'C:\tracking_db\data\animals\animals.csv' 

  WITH (FORMAT csv, DELIMITER ';');

 id | code |    name    | sex | age_class | species  

----+------+------------+-----+-----------+----------

  1 | F09  | Daniela    | f   | adult     | roe deer

  2 | M03  | Agostino   | m   | adult     | roe deer

  3 | M06  | Sandro     | m   | adult     | roe deer

  4 | F10  | Alessandra | f   | adult     | roe deer

  5 | M10  | Decimo     | m   | adult     | roe deer

SELECT

  animals.animals_id AS id, 

  animals.animals_code AS code, 

  animals.name, 

  animals.sex, 

  lu_age_class.age_class_description AS age_class, 

  lu_species.species_description AS species

FROM

  lu_tables.lu_age_class, 

  lu_tables.lu_species, 

  main.animals

WHERE

  lu_age_class.age_class_code = animals.age_class_code 

  AND

  lu_species.species_code = animals.species_code;
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coming from GPS sensors, is linked to the table gps_sensors, where all the existing
GPS sensors are stored with a set of ancillary information. A foreign key creates a
dependency, for example, the table gps_data cannot store data from a GPS sensor
if the sensor is not included in the gps_sensors table.

Note that, at this point, there is no relation between animals and the GPS data.
In other words, it is impossible to retrieve positions of a given animal, but only of a
given collar. Moreover, you cannot distinguish between GPS positions recorded
when the sensors were deployed on the animals and those that were recorded for
example, in the researcher’s office before the deployment. You will see in the
following chapter how to associate GPS positions with animals.

Fig. 3.1 pgAdmin GUI interface to create queries

Fig. 3.2 Tables stored in the database at the end of the exercise for this chapter. The arrows
identify links between tables connected by foreign keys
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Chapter 4
From Data to Information: Associating
GPS Positions with Animals

Ferdinando Urbano

Abstract When position data are received from GPS sensors, they are not
explicitly associated with any animal. Linking GPS data to animals is a key step in
the data management process. This can be achieved using the information on the
deployments of GPS sensors on animals (when sensors started and ceased to be
deployed on the animals). In the case of a continuous data flow, the transformation
of GPS positions into animal locations must be automated in order to have GPS
data imported and processed in real-time. In the exercise for this chapter, you
extend the database built in Chaps. 2 and 3 with two new tables, gps_sensors_
animals and gps_data_animals, and a set of dedicated database triggers and
functions that add the necessary tools to properly manage the association of GPS
positions with animals.

Keywords Automated data flow � Triggers � Real-time data processing

Introduction

When position data are received from GPS sensors, they are not explicitly asso-
ciated with any animal.1 Linking GPS data to animals is a key step in the data
management process. This can be achieved using the information about the
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deployments of GPS sensors (tags) on animals (when sensors started and ceased to
be deployed on the animals). If the acquisition time of a GPS position is recorded
after the start and before the end of the deployment of the sensor on an animal, the
position is associated with that animal. This process not only links the GPS sensor
to the animal that is wearing it, but also excludes the positions recorded when the
sensor was not deployed on the animal. In the case of a large number of sensors
and animals, this process cannot be managed manually, but requires some dedi-
cated, and possibly automated, tools. Moreover, the process of associating GPS
positions and animals must be able to manage changes in the information about
sensor deployment. For example, hours or even days can pass before the death of
an animal tagged with a GPS sensor is discovered. During this time, the GPS
positions acquired in near real-time are associated with the animal. This is an error,
as the positions recorded between the death and its detection by researchers are not
valid and must be ‘disassociated’ from the animal. This approach also efficiently
manages the redeployment of a GPS sensor recovered from an animal (because of,
e.g. the end of battery or death of the animal) to another animal, and the
deployment of a new GPS sensor on an animal previously monitored with another
GPS sensor.

The key point is to properly store the information on the deployment of sensors
on animals in a dedicated table in the database, taking into consideration that each
animal can be monitored with multiple GPS sensors (most likely at different times)
and each sensor can be reused on multiple animals (no more than one at a time).
This corresponds to a many-to-many relationship between animals and GPS sen-
sors, where the main attribute is the time range (the start and end of deployment2).
Making reference to the case of GPS (but with a general validity), this information
can be stored in a gps_sensors_animals table where the ID of the sensor, the ID of
the animal and the start and end timestamps of deployment are stored.

A possible approach to store the records that are associated with animals is to
create a new table, which could be called gps_data_animals, where a list of
derived fields can be eventually added to the basic animals ID, GPS sensors ID,
acquisition time and coordinates. Figure 4.1 illustrates a general picture of this
database data model structure. This new table duplicates part of the information
stored in the original gps_data table, and the two tables must be kept synchronised.
On the other hand, there are many advantages of this structure over the alternative
approach with a single table (gps_data) where all the original data from GPS
sensors (including GPS positions not associated with animals) are stored together
with other information (e.g. the animal ID, environmental attributes, movement
parameters):

• gps_data cannot be easily synchronised with the data source if too many
additional fields (i.e. calculated after data are imported into the database) are
present in the table;

2 When the sensor is still deployed on the animal, the end of deployment can be set to null.
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• if sensors from different vendors or different models of the same vendor are
used, you might have file formats with a different set of fields; in this case, it is
complicated to merge all the information from each source in a single gps_data
table;

• in a table containing just those GPS positions associated with animals, perfor-
mance improves because of the reduced number of records and fields (the fields
not relevant for analysis, e.g. the list of satellites can be kept only in the
gps_data table);

• with the additional gps_data_animals table, it is easier and more efficient to
manage a system of tags to mark potential outliers and to share and disseminate
the relevant information (you would lose the information on outliers if gps_data
is synchronised with the original data set, i.e. the text file from the sensors).

In this book, we use the table gps_data as an exact copy of raw data as they come
from GPS sensors, while gps_data_animals is used to store and process the

animals_id
(...)

animals

gps_sensors_id
(...)

gps _s ens ors

gps_data_id
gps_sensors_id
acquisition_time
longitude
latitude
(...)

gps _data

animals_id
gps_sensors_id
acquisition_time
longitude
latitude
(...)

gps _data_animals

gps _s ens ors _animals
gps_sensors_id
animals_id
start_timestamp
end_timestamp

SPATIAL DATABASE
Real World

GPS sensor

Fig. 4.1 Core database data model structure. Devices are associated with animals for defined
time ranges in the table ‘gps_sensors_animals’, which depends on the tables ‘animals’ and
‘gps_sensors’ (dependencies are represented by dashed arrows). Once GPS position data are
uploaded into the database in the ‘gps_data’ table, they are assigned to a specific animal (i.e. the
animal wearing the sensor at the acquisition time of the GPS position) using the information from
the table ‘gps_sensors_animals’. Thus, a new table (‘gps_data_animals’) is filled (solid arrow)
with the identifier of the individual, its position, the acquisition time and the identifier of the GPS
device. The names of the fields that uniquely identify a record are marked in bold
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information that is used to monitor and study animals’ movements. In a way,
gps_data is a ‘system’ table used as an intermediate step for the data import process.

Storing Information on GPS Sensor Deployments
on Animals

The first step to associating GPS positions with animals is to create a table to
accommodate information on the deployment of GPS sensors on animals:

CREATE TABLE main.gps_sensors_animals(

  gps_sensors_animals_id serial NOT NULL, 

  animals_id integer NOT NULL, 

  gps_sensors_id integer NOT NULL,

  start_time timestamp with time zone NOT NULL, 

  end_time timestamp with time zone,

  notes character varying, 

  insert_timestamp timestamp with time zone DEFAULT now(),

  CONSTRAINT gps_sensors_animals_pkey 

    PRIMARY KEY (gps_sensors_animals_id ),

  CONSTRAINT gps_sensors_animals_animals_id_fkey 

    FOREIGN KEY (animals_id)

    REFERENCES main.animals (animals_id) 

    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE,

  CONSTRAINT gps_sensors_animals_gps_sensors_id_fkey 

    FOREIGN KEY (gps_sensors_id)

    REFERENCES main.gps_sensors (gps_sensors_id) 

    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE,

  CONSTRAINT time_interval_check 

    CHECK (end_time > start_time)

);

COMMENT ON TABLE main.gps_sensors_animals

IS 'Table that stores information of deployments of sensors on animals.';

Now, your table is ready to be populated. The general way of populating this
kind of table is the manual entry of the information. In our case, you can use
the test data set stored in the .csv file included in the test data
set3 \tracking_db\data\sensors_animals\gps_sensors_animals.csv:

COPY main.gps_sensors_animals(

  animals_id, gps_sensors_id, start_time, end_time, notes)

FROM

  'c:\tracking_db\data\sensors_animals\gps_sensors_animals.csv' 

  WITH (FORMAT csv, DELIMITER ';');

3 The file with the test data set trackingDB_datasets.zip is part of the Extra Material of the book
available at http://extras.springer.com.
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Once the values in this table are updated, you can use an SQL statement to
obtain the id of the animal related to each GPS position. Here, an example of a
query to retrieve the codes of the animal and GPS sensor, the acquisition time and
the coordinates (to make the query easier to read, aliases are used for the name of
the tables and of the attributes):

SELECT

  deployment.gps_sensors_id AS sensor, 

  deployment.animals_id AS animal,

  data.acquisition_time, 

  data.longitude::numeric(7,5) AS long, 

  data.latitude::numeric(7,5) AS lat

FROM

  main.gps_sensors_animals AS deployment,

  main.gps_data AS data,

  main.gps_sensors AS gps

WHERE

  data.gps_sensors_code = gps.gps_sensors_code AND

  gps.gps_sensors_id = deployment.gps_sensors_id AND

  (

    (data.acquisition_time >= deployment.start_time AND 

     data.acquisition_time <= deployment.end_time)

    OR 

    (data.acquisition_time >= deployment.start_time AND 

     deployment.end_time IS NULL)

  )

ORDER BY 

  animals_id, acquisition_time

LIMIT 10;

In the query, three tables are involved: main.gps_sensors_animals, main.-
gps_data, and main.gps_sensors. This is because in the main.gps_data, where raw
data from the sensors are stored, the gps_sensors_id is not present, and thus, the
table main.gps_sensors is necessary to convert the gps_sensors_code into the
corresponding gps_sensors_id. You can see that in the WHERE part of the state-
ment two cases are considered: when the acquisition time is after the start and
before the end of the deployment, and when the acquisition time is after the start of
the deployment and the end is NULL (which means that the sensor is still deployed
on the animal). The first 10 records returned by this SELECT statement are

 sensor | animal |    acquisition_time    |   long   |   lat    

--------+--------+------------------------+----------+----------

      4 |      1 | 2005-10-18 20:00:54+00 | 11.04413 | 46.01096

      4 |      1 | 2005-10-19 00:01:23+00 | 11.04454 | 46.01178

      4 |      1 | 2005-10-19 04:02:22+00 | 11.04515 | 46.00793

      4 |      1 | 2005-10-19 08:03:08+00 | 11.04567 | 46.00600

      4 |      1 | 2005-10-20 20:00:53+00 | 11.04286 | 46.01015

      4 |      1 | 2005-10-21 00:00:48+00 | 11.04172 | 46.01051

      4 |      1 | 2005-10-21 04:00:53+00 | 11.04089 | 46.01028

      4 |      1 | 2005-10-21 08:01:42+00 | 11.04429 | 46.00669

      4 |      1 | 2005-10-21 12:03:11+00 |          |         

      4 |      1 | 2005-10-21 16:01:16+00 | 11.04622 | 46.00684
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From GPS Positions to Animal Locations

Now, you can permanently store this information in a new table
(main.gps_data_animals) that is used as reference for data analysis, visualisation
and dissemination. Below is the SQL code that generates this table:

CREATE TABLE main.gps_data_animals(

  gps_data_animals_id serial NOT NULL, 

  gps_sensors_id integer, 

  animals_id integer,

  acquisition_time timestamp with time zone, 

  longitude double precision,

  latitude double precision,

  insert_timestamp timestamp with time zone DEFAULT now(), 

  CONSTRAINT gps_data_animals_pkey 

    PRIMARY KEY (gps_data_animals_id),

  CONSTRAINT gps_data_animals_animals_fkey 

    FOREIGN KEY (animals_id)

    REFERENCES main.animals (animals_id) 

    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION,

  CONSTRAINT gps_data_animals_gps_sensors 

    FOREIGN KEY (gps_sensors_id)

    REFERENCES main.gps_sensors (gps_sensors_id) 

    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION

);

COMMENT ON TABLE main.gps_data_animals 

IS 'GPS sensors data associated with animals wearing the sensor.';

CREATE INDEX gps_data_animals_acquisition_time_index

  ON main.gps_data_animals

  USING BTREE (acquisition_time);

CREATE INDEX gps_data_animals_animals_id_index

  ON main.gps_data_animals

  USING BTREE (animals_id);

At this point, you can feed this new table with the data in the table gps_data and
use gps_sensors_animals to derive the id of the animals:

  gps_sensors_animals.gps_sensors_id,

  gps_data.acquisition_time, gps_data.longitude,

  gps_data.latitude

FROM

  main.gps_sensors_animals, main.gps_data, main.gps_sensors

WHERE

  gps_data.gps_sensors_code = gps_sensors.gps_sensors_code AND

  gps_sensors.gps_sensors_id = gps_sensors_animals.gps_sensors_id AND

  (

    (gps_data.acquisition_time>=gps_sensors_animals.start_time AND 

     gps_data.acquisition_time<=gps_sensors_animals.end_time)

    OR 

    (gps_data.acquisition_time>=gps_sensors_animals.start_time AND 

     gps_sensors_animals.end_time IS NULL)

  );

INSERT INTO main.gps_data_animals (

  animals_id, gps_sensors_id, acquisition_time, longitude, latitude) 

SELECT

  gps_sensors_animals.animals_id,
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Another possibility is to simultaneously create and populate the table
main.gps_data_animals by using ‘CREATE TABLE main.gps_data_animals AS’
instead of ‘INSERT INTO main.gps_data_animals’ in the previous query and then
adding the primary and foreign keys and indexes to the table.

Timestamping Changes in the Database Using Triggers

In the case of a continuous data flow, it is useful to automatise this step in order to
have GPS data imported in real time into gps_data_animals. To achieve these
results, you can use two powerful tools: functions and triggers. It might be con-
venient to store all functions and ancillary tools in a defined schema:

CREATE SCHEMA tools

  AUTHORIZATION postgres;

  GRANT USAGE ON SCHEMA tools TO basic_user;

COMMENT ON SCHEMA tools 

IS 'Schema that hosts all the functions and ancillary tools used for the 

database.';

ALTER DEFAULT PRIVILEGES 

  IN SCHEMA tools 

  GRANT SELECT ON TABLES 

  TO basic_user;

Special Topic: PostgreSQL functions and triggers

A function4 is a program code that is implemented inside the database using SQL or a set
of other languages (e.g. PSQL, Python, C). Functions allow you to create complex pro-
cesses and algorithms when plain SQL queries alone cannot do the job. Once created, a
function becomes part of the database library and can be called inside SQL queries. Here
is a simple example of an SQL function that makes the sum of two input integers:

CREATE FUNCTION tools.test_add(integer, integer) 

  RETURNS integer AS 'SELECT $1 + $2;'

LANGUAGE SQL

IMMUTABLE

RETURNS NULL ON NULL INPUT;

The variables $1 and $2 are the first and second input parameters. You can test it with

4 For those who are interested in creating their own functions, many resources are available on
the Internet, e.g.:
http://www.postgresql.org/docs/9.2/static/sql-createfunction.html
http://www.postgresql.org/docs/9.2/static/xfunc-sql.html.
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The result is ‘9’.
In the framework of this guide, you do not necessarily need to create your own functions,

but you must be aware of the possibility offered by these tools and be able to understand and
use existing functions. Advanced users can adapt them according to their specific needs.

A trigger5 is a specification that the database should automatically execute a particular
function whenever a certain type of operation is performed on a particular table in the
database. The trigger fires a specific function to perform some actions BEFORE or AFTER
records are DELETED, UPDATED, or INSERTED in a table. The trigger function must be
defined before the trigger itself is created. The trigger function must be declared as a
function taking no arguments and returning type trigger. For example, when you insert a
new record in a table, you can modify the values of the attributes before they are uploaded
or you can update another table that should be affected by this new upload.

As a first simple example of a trigger, you add a field to the table
gps_data_animals where you register the timestamp of the last modification
(update) of each record in order to keep track of the changes in the table. This field
can have now() as default value (current time) when data are inserted the first time:

ALTER TABLE main.gps_data_animals 

  ADD COLUMN update_timestamp timestamp with time zone DEFAULT now();

Once you have created the field, you need a function called by a trigger to
update this field whenever a record is updated. The SQL to generate the function is

CREATE OR REPLACE FUNCTION tools.timestamp_last_update()

RETURNS trigger AS

$BODY$BEGIN

IF NEW IS DISTINCT FROM OLD THEN

  NEW.update_timestamp = now();

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.timestamp_last_update() 

IS 'When a record is updated, the update_timestamp is set to the current 

time.';

Here is the code for the trigger that calls the function:

CREATE TRIGGER update_timestamp

  BEFORE UPDATE

  ON main.gps_data_animals

  FOR EACH ROW

  EXECUTE PROCEDURE tools.timestamp_last_update();

SELECT tools.test_add(2,7);

5 http://www.postgresql.org/docs/9.2/static/triggers.html.
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You have to initialise the existing records in the table, as the trigger/function
was not yet created when data were uploaded:

UPDATE main.gps_data_animals 

  SET update_timestamp = now();

You can now repeat the same operation for the other tables in the database:

  FOR EACH ROW

  EXECUTE PROCEDURE tools.timestamp_last_update();

CREATE TRIGGER update_timestamp

  BEFORE UPDATE

  ON main.animals

  FOR EACH ROW

  EXECUTE PROCEDURE tools.timestamp_last_update();

UPDATE main.gps_sensors 

  SET update_timestamp = now();

UPDATE main.gps_sensors_animals 

  SET update_timestamp = now();

UPDATE main.animals 

  SET update_timestamp = now();

ALTER TABLE main.gps_sensors 

  ADD COLUMN update_timestamp timestamp with time zone DEFAULT now();

ALTER TABLE main.animals 

  ADD COLUMN update_timestamp timestamp with time zone DEFAULT now();

ALTER TABLE main.gps_sensors_animals 

  ADD COLUMN update_timestamp timestamp with time zone DEFAULT now();

CREATE TRIGGER update_timestamp

  BEFORE UPDATE

  ON main.gps_sensors

  FOR EACH ROW

  EXECUTE PROCEDURE tools.timestamp_last_update();

CREATE TRIGGER update_timestamp

  BEFORE UPDATE

  ON main.gps_sensors_animals

Another interesting application of triggers is the automation of the acquisi-
tion_time computation when a new record is inserted into the gps_data table:

CREATE OR REPLACE FUNCTION tools.acquisition_time_update()

RETURNS trigger AS

$BODY$BEGIN

  NEW.acquisition_time = ((NEW.utc_date + NEW.utc_time) at time zone 'UTC');

  RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.acquisition_time_update() 

IS 'When a record is inserted, the acquisition_time is composed from 

utc_date and utc_time.';
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CREATE TRIGGER update_acquisition_time

  BEFORE INSERT

  ON main.gps_data

  FOR EACH ROW

  EXECUTE PROCEDURE tools.acquisition_time_update();

Automation of the GPS Data Association with Animals

With triggers and functions, you can automatise the upload from gps_data to
gps_data_animals of records that are associated with animals (for sensors
deployed on animals). First, you have to create the function that will be called by
the trigger:

CREATE OR REPLACE FUNCTION tools.gps_data2gps_data_animals()

RETURNS trigger AS

$BODY$ begin

INSERT INTO main.gps_data_animals (

  animals_id, gps_sensors_id, acquisition_time, longitude, latitude)

SELECT

  gps_sensors_animals.animals_id, gps_sensors_animals.gps_sensors_id, 

NEW.acquisition_time, NEW.longitude, NEW.latitude

FROM

  main.gps_sensors_animals, main.gps_sensors

WHERE

  NEW.gps_sensors_code = gps_sensors.gps_sensors_code AND 

  gps_sensors.gps_sensors_id = gps_sensors_animals.gps_sensors_id AND

  (

    (NEW.acquisition_time >= gps_sensors_animals.start_time AND 

     NEW.acquisition_time <= gps_sensors_animals.end_time)

    OR 

    (NEW.acquisition_time >= gps_sensors_animals.start_time AND 

     gps_sensors_animals.end_time IS NULL)

  );

RETURN NULL;

END

$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.gps_data2gps_data_animals() 

IS 'Automatic upload data from gps_data to gps_data_animals.';

Then, you create a trigger that calls the function whenever a new record is
uploaded into gps_data:

44 F. Urbano



CREATE TRIGGER trigger_gps_data_upload

  AFTER INSERT

  ON main.gps_data

  FOR EACH ROW

  EXECUTE PROCEDURE tools.gps_data2gps_data_animals();

COMMENT ON TRIGGER trigger_gps_data_upload ON main.gps_data

IS 'Upload data from gps_data to gps_data_animals whenever a new record is 

inserted.';

You can test this function by adding the last GPS sensor not yet imported:

COPY main.gps_data(

  gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x, 

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id, 

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr, 

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id, 

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr, 

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, 

temp, easting, northing, remarks)

FROM

  'C:\tracking_db\data\sensors_data\GSM02927.csv' 

  WITH (FORMAT csv, HEADER, DELIMITER ';');

Data are automatically processed and imported into the table gps_data_animals
including the correct association with the animal wearing the sensor.

Consistency Checks on the Deployments Information

The management of the association between animals and GPS sensors can be
improved using additional, more sophisticated tools. A first example is the
implementation of consistency checks on the gps_sensors_animals table. As this is
a key table, it is important to avoid illogical associations. The two most evident
constraints are that the same sensor cannot be worn by two animals at the same
time and that no more than one GPS sensor can be deployed on the same animal at
the same time (this assumption can be questionable in case of other sensors, but in
general can be considered valid for GPS). To prevent any impossible overlaps in
animal/sensor deployments, you have to create a trigger on both insertion and
updates of records in gps_animals_sensors that verifies the correctness of the new
values. In case of invalid values, the insert/modify statement is aborted and an
error message is raised by the database. Here is an example of code for this
function:
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CREATE OR REPLACE FUNCTION tools.gps_sensors_animals_consistency_check()

RETURNS trigger AS

$BODY$

DECLARE

  deletex integer;

BEGIN

SELECT

  gps_sensors_animals_id 

INTO

  deletex 

FROM

  main.gps_sensors_animals b

WHERE

  (NEW.animals_id = b.animals_id OR NEW.gps_sensors_id = b.gps_sensors_id)

  AND

  (

  (NEW.start_time > b.start_time AND NEW.start_time < b.end_time)

  OR

  (NEW.start_time > b.start_time AND b.end_time IS NULL)

  OR

  (NEW.end_time > b.start_time AND NEW.end_time < b.end_time)

  OR

  (NEW.start_time < b.start_time AND NEW.end_time > b.end_time)

  OR

  (NEW.start_time < b.start_time AND NEW.end_time IS NULL )

  OR

  (NEW.end_time > b.start_time AND b.end_time IS NULL)

);

IF deletex IS not NULL THEN

  IF TG_OP = 'INSERT' THEN

    RAISE EXCEPTION 'This row is not inserted: Animal-sensor association not 

valid: (the same animal would wear two different GPS sensors at the same 

time or the same GPS sensor would be deployed on two animals at the same 

time).';

    RETURN NULL;

  END IF;

  IF TG_OP = 'UPDATE' THEN

    IF deletex != OLD.gps_sensors_animals_id THEN

      RAISE EXCEPTION 'This row is not updated: Animal-sensor association 

not valid (the same animal would wear two different GPS sensors at the same 
time or the same GPS sensor would be deployed on two animals at the same 

time).';

      RETURN NULL;

    END IF;

  END IF;

END IF;

RETURN NEW;

END;

$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.gps_sensors_animals_consistency_check() 

IS 'Check if a modified or insert row in gps_sensors_animals is valid (no 

impossible time range overlaps of deployments).';

Here is an example of the trigger to call the function:
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CREATE TRIGGER gps_sensors_animals_changes_consistency

  BEFORE INSERT OR UPDATE

  ON main.gps_sensors_animals

  FOR EACH ROW

  EXECUTE PROCEDURE tools.gps_sensors_animals_consistency_check();

You can test this process by trying to insert a deployment of a GPS sensor in the
gps_sensors_animals table in a time interval that overlaps the association of the
same sensor on another animal:

INSERT INTO main.gps_sensors_animals

  (animals_id, gps_sensors_id, start_time, end_time, notes)

VALUES

  (2,2,'2004-10-23 20:00:53 +0','2005-11-28 13:00:00 +0','Ovelapping 

sensor');

You should receive an error message like:

Synchronisation of gps_sensors_animals
and gps_data_animals

In an operational environment where data are managed in (near) real-time, it
happens that the information about the association between animals and sensors
changes over time. A typical example is the death of an animal: this event is usually
discovered with a delay of some days. In the meantime, GPS positions are received
and associated with the animals in the gps_data_animals table. When the new
information on the deployment time range is registered in gps_sensors_animals, the
table gps_data_animals must be changed accordingly. It is highly desirable that any
change in the table gps_sensors_animals is automatically reflected in
gps_data_animals. It is possible to use triggers to keep the two tables automatically
synchronised. Below you have an example of a trigger function to implement this
procedure. The code manages the three possible operations: delete, insert and
modification of records in the gps_sensors_animals table. For each case, it checks
whether GPS positions previously associated with an animal are no longer valid
(and if so, deletes them from the table gps_data_animals) and whether GPS
positions previously not associated with the animal should now be linked (and if so,
adds them to the table gps_data_animals). The function is complex because the
process is complex. You can use as it is, or go through it if you need to adapt.

********** Error **********

ERROR: This row is not inserted: Animal-sensor association not valid: (the same
animal would wear two different GPS sensors at the same time or the same GPS
sensor would be deployed on two animals at the same time).

SQL state: P0001
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CREATE OR REPLACE FUNCTION tools.gps_sensors_animals2gps_data_animals()

RETURNS trigger AS

$BODY$ BEGIN

IF TG_OP = 'DELETE' THEN

  DELETE FROM 

    main.gps_data_animals 

  WHERE 

    animals_id = OLD.animals_id AND

    gps_sensors_id = OLD.gps_sensors_id AND

    acquisition_time >= OLD.start_time AND

    (acquisition_time <= OLD.end_time OR OLD.end_time IS NULL);

  RETURN NULL;

END IF;

IF TG_OP = 'INSERT' THEN

  INSERT INTO 

    main.gps_data_animals (gps_sensors_id, animals_id, acquisition_time, 

longitude, latitude)

  SELECT 

    NEW.gps_sensors_id, NEW.animals_id, gps_data.acquisition_time, 

gps_data.longitude, gps_data.latitude

  FROM 

    main.gps_data, main.gps_sensors

  WHERE 

    NEW.gps_sensors_id = gps_sensors.gps_sensors_id AND

    gps_data.gps_sensors_code = gps_sensors.gps_sensors_code AND

    gps_data.acquisition_time >= NEW.start_time AND

    (gps_data.acquisition_time <= NEW.end_time OR NEW.end_time IS NULL);

  RETURN NULL;

END IF;

IF TG_OP = 'UPDATE' THEN

  DELETE FROM 

    main.gps_data_animals 

  WHERE

    gps_data_animals_id IN (

      SELECT 

        d.gps_data_animals_id 

      FROM

          gps_data_animals_id, gps_sensors_id, animals_id, acquisition_time 

        FROM 

          main.gps_data_animals

        WHERE 

          gps_sensors_id = OLD.gps_sensors_id AND

          animals_id = OLD.animals_id AND

          acquisition_time >= OLD.start_time AND

          (acquisition_time <= OLD.end_time OR OLD.end_time IS NULL)

        ) d

        (SELECT 
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      LEFT OUTER JOIN

        (SELECT 

          gps_data_animals_id, gps_sensors_id, animals_id, acquisition_time 

        FROM 

          main.gps_data_animals

        WHERE 

          gps_sensors_id = NEW.gps_sensors_id AND

          animals_id = NEW.animals_id AND

          acquisition_time >= NEW.start_time AND

          (acquisition_time <= NEW.end_time OR NEW.end_time IS NULL) 

        ) e

      ON 

        (d.gps_data_animals_id = e.gps_data_animals_id)

      WHERE e.gps_data_animals_id IS NULL);

  INSERT INTO 

    main.gps_data_animals (gps_sensors_id, animals_id, acquisition_time, 

longitude, latitude) 

  SELECT 

    u.gps_sensors_id, u.animals_id, u.acquisition_time, u.longitude, 

u.latitude

  FROM

    (SELECT 

      NEW.gps_sensors_id AS gps_sensors_id, NEW.animals_id AS animals_id, 

gps_data.acquisition_time AS acquisition_time, gps_data.longitude AS 

longitude, gps_data.latitude AS latitude

    FROM 

      main.gps_data, main.gps_sensors

    WHERE 

      NEW.gps_sensors_id = gps_sensors.gps_sensors_id AND 

      gps_data.gps_sensors_code = gps_sensors.gps_sensors_code AND

      gps_data.acquisition_time >= NEW.start_time AND

      (acquisition_time <= NEW.end_time OR NEW.end_time IS NULL)

    ) u

  LEFT OUTER JOIN

    (SELECT 

      gps_data_animals_id, gps_sensors_id, animals_id, acquisition_time 

    FROM 

      main.gps_data_animals

    WHERE 

      gps_sensors_id = OLD.gps_sensors_id AND

      animals_id = OLD.animals_id AND

      acquisition_time >= OLD.start_time AND

      (acquisition_time <= OLD.end_time OR OLD.end_time IS NULL)

    ) w

  ON 
    (u.gps_sensors_id = w.gps_sensors_id AND 

    u.animals_id = w.animals_id AND 

    u.acquisition_time = w.acquisition_time )

  WHERE 

    w.gps_data_animals_id IS NULL;

  RETURN NULL;

END IF;
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END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.gps_sensors_animals2gps_data_animals() 

IS 'When a record in gps_sensors_animals is deleted OR updated OR inserted, 

this function synchronizes this information with gps_data_animals.';

Here is the code of the trigger to call the function:

CREATE TRIGGER synchronize_gps_data_animals

  AFTER INSERT OR UPDATE OR DELETE

  ON main.gps_sensors_animals

  FOR EACH ROW

  EXECUTE PROCEDURE tools.gps_sensors_animals2gps_data_animals();

In Fig. 4.2, you have a complete picture of the part of the database data model
related to GPS data.

It is important to emphasise that triggers are powerful tools for automating the
data flow. The drawback is that they will slow down the data import process. This
note is also valid for indexes, which speed up queries but imply some additional
computation during the import stage. In the case of frequent uploads (or modifi-
cation) of very large data sets at once, the use of the proposed triggers could
significantly decrease performance. In these cases, you can more quickly process
the data in a later stage after they are imported into the database and are therefore
available to users. The best approach must be identified according to the specific
goals, constraints and characteristics of your application. In this guide, we use as
reference the management of data coming from a set of sensors deployed on
animals, transmitting data in near real time, where the import step will include just
a few thousand locations at a time.
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Fig. 4.2 Schema of the database data model related to GPS data
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Chapter 5
Spatial is not Special: Managing Tracking
Data in a Spatial Database

Ferdinando Urbano and Mathieu Basille

Abstract A wildlife tracking data management system must include the capability
to explicitly deal with the spatial properties of movement data. GPS tracking data
are sets of spatiotemporal objects (locations), and the spatial component must be
properly managed. You will now extend the database built in Chaps. 2, 3 and 4,
adding spatial functionalities through the PostgreSQL spatial extension called
PostGIS. PostGIS introduces spatial data types (both vector and raster) and a large
set of SQL spatial functions and tools, including spatial indexes. This possibility
essentially allows you to build a GIS using the capabilities of relational databases. In
this chapter, you will start to familiarise yourself with spatial SQL and implement a
system that automatically transforms the GPS coordinates generated by GPS sensors
from a pair of numbers into spatial objects.

Keywords PostGIS � Spatial data � GPS tracking � Animal movement

Introduction

A wildlife tracking data management system must include the capability to
explicitly deal with the spatial component of movement data. GPS tracking data
are sets of spatiotemporal objects (locations) that have to be properly managed.

At the moment, your data are stored in the database and the GPS positions are
linked to individuals. While time is correctly managed, coordinates are still just
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two decimal numbers (longitude and latitude) and not spatial objects. It is therefore
not possible to find the distance between two points, or the length of a trajectory,
or the speed and angle of the step between two locations. In this chapter, you will
learn how to add a spatial extension to your database and transform the coordinates
into a spatial element (i.e. a point).

Until a few years ago, the spatial information produced by GPS sensors was
managed and analysed using dedicated software (GIS) in file-based data formats
(e.g. shapefiles). Nowadays, the most advanced approaches in data management
consider the spatial component of objects (e.g. a moving animal) as one of its
many attributes: thus, while understanding the spatial nature of your data is
essential for proper analysis, from a software perspective, spatial is (increasingly)
not special. Spatial databases are the technical tools needed to implement this
perspective. They integrate spatial data types (vector and raster) together with
standard data types that store the objects’ other (non-spatial) associated attributes.
Spatial data types can be manipulated by SQL through additional commands and
functions for the spatial domain. This possibility essentially allows you to build a
GIS using the existing capabilities of relational databases. Moreover, while
dedicated GIS software is usually focused on analyses and data visualisation,
providing a rich set of spatial operations, few are optimised for managing large
spatial data sets (in particular, vector data) and complex data structures. Spatial
databases, in turn, allow both advanced management and spatial operations that
can be efficiently undertaken on a large set of elements. This combination of
features is becoming essential, as with animal movement data sets the challenge is
now on the extraction of synthetic information from very large data sets rather than
on the extrapolation of new information (e.g. kernel home ranges from VHF data)
from limited data sets with complex algorithms.

Spatial databases can perform a wide variety of spatial operations, typically

• spatial measurements: calculate the distance between points, polygon area, etc.;
• spatial functions: modify existing features to create new ones, for example, by

providing a buffer around them, intersecting features, etc.;
• spatial predicates: allow true/false queries such as ‘is there a village located

within a kilometre of the area where an animal is moving?’;
• constructor functions: create new features specifying the vertices (points of

nodes) which can make up lines, and if the first and last vertexes of a line are
identical, the feature can also be of the type polygon (a closed line);

• observer functions: query the database to return specific information about a
feature such as the location of the centre of a home range.

Spatial databases use spatial indexes1 to speed up database operations and
optimise spatial queries.

Today, practically all major relational databases offer native spatial information
capabilities and functions in their products, including PostgreSQL (PostGIS),

1 http://workshops.opengeo.org/postgis-intro/indexing.html.
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IBM DB2 (Spatial Extender), SQL Server (SQL Server 2008 Spatial), Oracle
(ORACLE Spatial), Informix (Spatial Datablade), MYSQL (Spatial Extension)
and SQLite (Spatialite), while ESRI ArcSDE is a middleware application that can
spatially enable different DBMSs.

The Open Geospatial Consortium2 (OGC) created the Simple Features speci-
fication and sets standards for adding spatial functionality to database systems. The
spatial database extension that implements the largest number of OGC specifica-
tions is the open source tool PostGIS for PostgreSQL, and this is one of the main
reasons why PostgreSQL has been chosen as the reference database for this book.
A good reference guide3 for PostGIS can be found in Obe and Hsu (2011) and
Corti et al. (2014).

In this chapter, you will extend your database with the spatial dimension of GPS
locations and start to familiarise yourself with spatial SQL. You will implement a
system that automatically transforms coordinates from a pair of numbers into
spatial objects. You are also encouraged to explore the PostGIS documentation
where the long list of available tools is described.

Spatially Enable the Database

You can install PostGIS using the Application Stack Builder that comes with the
PostgreSQL, or directly from the PostGIS website4. Once PostGIS is installed,
enable it in your database with the following SQL command:

CREATE EXTENSION postgis;

Now, you can use and exploit all the features offered by PostGIS in your
database. The vector objects (points, lines and polygons) are stored in a specific
field of your tables as spatial data types. This field contains the structured list of
vertexes, i.e. coordinates of the spatial object, and also includes its reference
system. The PostGIS spatial (vectors) data types are not topological, although, if
needed, PostGIS has a dedicated topological extension5. As you will explore in
Chaps. 6 and 7, PostGIS can also manage raster data.

2 http://www.opengeospatial.org/.
3 There are also many online resources where you can find useful introductions to get started
(and become proficient) with PostGIS. Here are some suggestions:
http://postgis.refractions.net/
http://postgis.net/docs/manual-2.0/
http://postgisonline.org/tutorials/
http://trac.osgeo.org/postgis/wiki/UsersWikiTutorials.
4 http://postgis.net/install.
5 http://postgis.refractions.net/docs/Topology.html.
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An important setting is the reference system used to store (and manage) your
GPS position data set. In PostGIS, reference systems are identified with a spatial
reference system identifier (SRID) and more specifically the SRID implementation
defined by the European Petroleum Survey Group6 (EPSG). Each reference system
is associated with a unique code. GPS coordinates are usually expressed from
sensors as longitude/latitude, using the WGS84 geodetic datum (geographic
coordinates). This is a reference system that is used globally, using angular
coordinates related to an ellipsoid that approximates the earth’s shape. As a
consequence, it is not correct to apply functions that are designed to work on
Euclidean space, because on an ellipsoid, the closest path between two points is
not a straight line but an arc. In fact, most of the environmental layers available in
a given area are projected in a plane reference system (e.g. Universal Transverse
Mercator, UTM).

PostGIS has two main groups of spatial vector data types: geometry, which
works with any kind of spatial reference, and geography, which is specific for
geographic coordinates (latitude and longitude WGS84).

Special Topic: Geometry and geography data type

The PostGIS geography data type7 provides native support for spatial features represented
in ‘geographic’ coordinates (latitude/longitude WGS84). Geographic coordinates are
spherical coordinates expressed in angular units (degrees). Calculations (e.g. areas,
distances, lengths, intersections) on the geometry data type features are performed using
Cartesian mathematics and straight line vectors, while calculations on geography data type
features are done on the sphere, using more complicated mathematics. For more accurate
measurements, the calculations must take the actual spheroidal shape of the world into
account, and the mathematics become very complicated. Due to this additional com-
plexity, there are fewer (and slower) functions defined for the geography type than for the
geometry type. Over time, as new algorithms are added, the capabilities of the geography
type will expand. In any case, it is always possible to convert back and forth between
geometry and geography types.

It is recommended that you not store GPS position data in some projected reference
system, but instead keep them as longitude/latitude WGS84. You can later project
your features in any other reference system whenever needed. There are two options:
they can be stored as geography data type or as geometry data type, specifying the
geographic reference system by its SRID code, which in this case is 4236. The natural
choice for geographic coordinates would be the geography data type because the
geometry data type assumes that geographic coordinates refer to Euclidean space.
In fact, if you calculate the distance between two points stored as geometry data
type with SRID 4326, the result will be wrong (latitude and longitude are not planar
coordinates so the Euclidean distance between two points makes little sense).

6 http://www.epsg.org/.
7 http://postgis.refractions.net/docs/using_postgis_dbmanagement.html#PostGIS_Geography.
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At the moment, the geography data type is not yet supported by all the PostGIS spatial
functions8; therefore, it might be convenient to store GPS locations as the geometry
data type (with the geographic reference system). In this way, you can quickly convert
to the geography data type for calculation with spherical geometry, or project to any
other reference system to use more complex spatial functions and to relate GPS
positions with other (projected) environmental data sets (e.g. land cover, digital
elevation model, vegetation indexes). Moreover, not all the client applications are
able to deal with the geography data type. The choice between the geometry and
geography data types also depends on general considerations about performance
(geography data type involves more precise but also slower computations as it uses a
spherical geometry) and data processes to be supported.

Exploring Spatial Functions

Before you create a spatial field for your data, you can explore some very basic
tools. First, you can create a point feature:

These coordinates are longitude and latitude, although you have not specified
(yet) the reference system. The result is

The long series of characters that are returned depends on how the point is
coded in the database. You can easily and transparently see its textual represen-
tation (ST_AsEWKT or ST_AsText):

In this case, the result is

8 For the list of functions that support the geography data type see http://postgis.refractions.net/docs/
PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions.

SELECT

ST_MakePoint(11.001,46.001) AS point;

                   point                    

--------------------------------------------

 01010000008D976E1283002640E3A59BC420004740

SELECT ST_AsEWKT(

  ST_MakePoint(11.001,46.001)) AS point;

       point         

----------------------

 POINT(11.001 46.001)
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You can specify the reference system of your coordinates using ST_SetSRID:

SELECT ST_AsEWKT(

  ST_SetSRID(    ST_MakePoint(11.001,46.001),  4326))AS point;

This query returns

             point              

--------------------------------

 SRID=4326;POINT(11.001 46.001)

You can project the point in any other reference system. In this example, you
project (ST_Transform) the coordinates of the point in UTM32 WGS84 (SRID
32632):

SELECT

  ST_X(

    ST_Transform(

      ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),    32632))::integer 

  ST_y(

    ST_Transform(

      ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),    32632))::integer 

AS x_utm32,

AS y_utm32;

The result is

 x_utm32   y_utm32 | 

---------+---------

  654938   5096105| 

Here, you create a simple function to automatically find the UTM zone at
defined coordinates:

  lon := longitude;

CREATE OR REPLACE FUNCTION tools.srid_utm(longitude double precision,latitude 

double precision)

RETURNS integer AS

$BODY$

DECLARE

  srid integer;

  lon float;

  lat float;

BEGIN

  lat := latitude;
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IF ((lon > 360 or lon < -360) or (lat > 90 or lat < -90)) THEN 

  RAISE EXCEPTION 'Longitude and latitude is not in a valid format (-360 to 

360; -90 to 90)';

ELSEIF (longitude < -180)THEN 

  lon := 360 + lon;

ELSEIF (longitude > 180)THEN 

  lon := 180 - lon;

END IF;

IF latitude >= 0 THEN 

  srid := 32600 + floor((lon+186)/6); 

ELSE

  srid := 32700 + floor((lon+186)/6); 

END IF;

RETURN srid;

END;

$BODY$

LANGUAGE plpgsql VOLATILE STRICT

COST 100;

COMMENT ON FUNCTION tools.srid_utm(double precision, double precision) 

IS 'Function that returns the SRID code of the UTM zone where a point (in 

geographic coordinates) is located. For polygons or line, it can be used 

giving ST_x(ST_Centroid(the_geom)) and ST_y(ST_Centroid(the_geom)) as 

parameters. This function is typically used be used with ST_Transform to 

project elements with no prior knowledge of their position.';

Here is an example to see the SRID of the UTM zone of the point at coordinates
(11.001, 46.001):

SELECT TOOLS.SRID_UTM(11.001,46.001) AS utm_zone;

The result is

 utm_zone 

----------

    32632

You can use this function to project points when you do not know the UTM
zone:

SELECT

  ST_AsEWKT(

    ST_Transform(

      ST_SetSRID(ST_MakePoint(31.001,16.001), 4326),

      TOOLS.SRID_UTM(31.001,16.001))

  ) AS projected_point;
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The result is

                   projected_point                   

-----------------------------------------------------

 SRID=32636;POINT(286087.858226893 1770074.92410008)

If you want to allow the user basic_user to project spatial data, you have to
grant permission on the table spatial_ref_sys:

GRANT SELECT ON TABLE spatial_ref_sys TO basic_user;

Now, you can try to compute the distance between two points. You can try with
geographic coordinates as geometry data type:

SELECT

  ST_Distance(

    ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),

    ST_SetSRID(ST_MakePoint(11.03,46.02), 4326)) AS distance;

The result is

      distance      

--------------------

 0.0346698716467224

As you can see, the result is given in the original unit (decimal degrees) because
the geometry data type, which is the standard setting unless you explicitly specify
the geography data type, applies the Euclidean distance to the points in geographic
coordinates. In fact, distance between coordinates related to a spheroid should not
be computed in Euclidean space (the minimum distance is not a straight line but a
great circle arc). PostGIS offers many options to get the real distance in meters
between two points in geographic coordinates. You can project the points and then
compute the distance:

SELECT

  ST_Distance(

    ST_Transform(

      ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 32632),

    ST_Transform(

      ST_SetSRID(ST_MakePoint(11.03,46.02), 4326),32632)) AS distance;
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The result (in meters) is

     distance     

------------------

 3082.64215399684

You can also use a specific function to compute distance on a sphere
(ST_Distance_Sphere):

SELECT

  ST_Distance_Sphere(

    ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),

    ST_SetSRID(ST_MakePoint(11.03,46.02), 4326)) AS distance;

The result (in meters) is

    distance     

-----------------

 3078.8604714608

A sphere is just a rough approximation of the earth. A better approximation, at
cost of more computational time, is given by the function ST_Distance_Spheroid
where you have to specify the reference ellipsoid:

SELECT

  ST_Distance_Spheroid(

    ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 

    ST_SetSRID(ST_MakePoint(11.03,46.02), 4326),

    'SPHEROID["WGS 84",6378137,298.2257223563]') AS distance;

The result is

     distance     

------------------

 3082.95263824183

One more option is to ‘cast’ (transform a data type into another data type using ‘::’)
geometry as geography. Then, you can compute distance and PostGIS will execute
this operation taking into account the nature of the reference system:

SELECT

  ST_Distance(

    ST_SetSRID(ST_MakePoint(11.001,46.001), 4326)::geography,

    ST_SetSRID(ST_MakePoint(11.03,46.02), 4326)::geography) AS distance;
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The result is

     distance     

------------------

 3082.95257067079

You can compare the results of the previous queries to see the different outputs.
They are all different as a result of the different methods (and associated
approximation) used to calculate them. The slowest and most precise is generally
thought to be ST_Distance_Spheroid.

Another useful feature of PostGIS is the support of 3D spatial objects, which
might be relevant, for example, for avian or marine species, or terrestrial species
that move in an environment with large altitudinal variations. Here is an example
that computes distances in a 2D space using ST_Distance and in a 3D space using
ST_3DDistance, where the vertical displacement is also considered:

SELECT

  ST_Distance(
    ST_Transform(

      ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 32632),
    ST_Transform(

      ST_SetSRID(ST_MakePoint(11.03,46.02), 4326),32632)) AS distance_2D,
  ST_3DDistance(

    ST_Transform(
      ST_SetSRID(ST_MakePoint(11.001,46.001, 0), 4326), 32632),

    ST_Transform(
  ST_SetSRID(ST_MakePoint(11.03,46.02, 1000), 4326),32632)) AS distance_3D;

The result is

   distance_2d        distance_3d    |

------------------+------------------

 3082.64215399684   3240.78426458755|

Not all PostGIS functions support 3D objects, but the number is quickly
increasing.

Transforming GPS Coordinates into a Spatial Object

Now, you can create a field with geometry data type in your table (2D point feature
with longitude/latitude WGS84 as reference system):

ALTER TABLE main.gps_data_animals 

  ADD COLUMN geom geometry(Point,4326);
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You can create a spatial index:

CREATE INDEX gps_data_animals_geom_gist

  ON main.gps_data_animals

  USING gist (geom );

You can now populate it (excluding points that have no latitude/longitude):

UPDATE

  main.gps_data_animals

SET

  geom = ST_SetSRID(ST_MakePoint(longitude, latitude),4326)

WHERE

  latitude IS NOT NULL AND longitude IS NOT NULL;

At this point, it is important to visualise the spatial content of your tables.
PostgreSQL/PostGIS offers no tool for spatial data visualisation, but this can be
done by a number of client applications, in particular GIS desktop software like
ESRI ArcGIS 10.* or QGIS. QGIS9 is a powerful and complete open source
software. It offers all the functions needed to deal with spatial data. QGIS is the
suggested GIS interface because it has many specific tools for managing and
visualising PostGIS data. Especially remarkable is the tool ‘DB Manager’. In
Fig. 5.1, you can see a screenshot of the QGIS interface to insert the connection
parameters to the database.

Now, you can use the tool ‘Add PostGIS layer’ to visualise and explore the GPS
position data set (see Fig. 5.2). The example is a view zoomed in on the study area
rather than all points, because some outliers (see Chap. 8) are located very far from
the main cluster, affecting the default visualisation. In the background, you have
OpenStreetMap layer loaded using the ‘Openlayer’ plugin.

You can also use ArcGIS ESRI 1010.* to visualise (but not edit, at least at the
time of writing this book) your spatial data. Data can be accessed using ‘Query
layers’11. A query layer is a layer or stand-alone table that is defined by an SQL
query. Query layers allow both spatial and non-spatial information stored in a
(spatial) DBMS to be integrated into GIS projects within ArcMap. When working
in ArcMap, you create query layers by defining an SQL query. The query is then
run against the tables and viewed in a database, and the result set is added to
ArcMap. Query layers behave like any other feature layer or stand-alone table, so
they can be used to display data, used as input into a geoprocessing tool or
accessed using developer APIs. The query is executed every time the layer is
displayed or used in ArcMap. This allows the latest information to be visible

9 http://www.qgis.org/.
10 http://www.esri.com/software/arcgis.
11 http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Connecting_to_a_database/.
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Fig. 5.1 Connection to the database from QGIS

Fig. 5.2 GPS positions visualised in QGIS, zoomed in on the study area to exclude outliers
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without making a copy or snapshot of the data and is especially useful when
working with dynamic information that is frequently changing.

Automating the Creation of Points from GPS Coordinates

You can automate the population of the geometry column so that whenever a new
GPS position is uploaded in the table main.gps_data_animals, the spatial geometry
is also created. To do so, you need a trigger and its related function. Here is the
SQL code to generate the function:

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

thegeom geometry;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

  thegeom = ST_SetSRID(ST_MakePoint(NEW.longitude, NEW.latitude),4326);

  NEW.geom = thegeom;

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals() 

IS 'When called by a trigger (insert_gps_locations) this function populates 

the field geom using the values from longitude and latitude fields.';

And here is the SQL code to generate the trigger:

CREATE TRIGGER insert_gps_location

  BEFORE INSERT

  ON main.gps_data_animals

  FOR EACH ROW

  EXECUTE PROCEDURE tools.new_gps_data_animals();

You can see the result by deleting all the records from the
main.gps_data_animals table, e.g. for animal 2, and reloading them. As you have
set an automatic procedure to synchronise main.gps_data_animals table with the
information contained in the table main.gps_sensors_animals, you can drop the
record related to animal 2 from main.gps_sensors_animals, and this will affect
main.gps_data_animals in a cascade effect (note that it will not affect the original
data in main.gps_data):
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DELETE FROM 

  main.gps_sensors_animals 

WHERE

  animals_id = 2;

There are now no rows for animal 2 in the table main.gps_data_animals. You
can verify this by retrieving the number of locations per animal:

SELECT

  animals_id, count(animals_id) 

FROM

  main.gps_data_animals

GROUP BY 

  animals_id

ORDER BY 

  animals_id;

The result should be

 animals_id   count |

------------+-------

          1    2114

          3    2106

          4    2869

          5    2924

|

|

|

|

Note that animal 2 is not in the list. Now, you reload the record in the
main.gps_sensors_animals:

INSERT INTO main.gps_sensors_animals 

  (animals_id, gps_sensors_id, start_time, end_time, notes) 

VALUES

  (2,1,'2005-03-20 16:03:14 +0','2006-05-27 17:00:00 +0','End of battery life.

Sensor not recovered.');

You can see that records have been readded to main.gps_data_animals by
reloading the original data stored in main.gps_data, with the geometry field cor-
rectly and automatically populated (when longitude and latitude are not null):

SELECT

  animals_id, count(animals_id) AS num_records, count(geom) AS 

num_records_valid

FROM

  main.gps_data_animals

GROUP BY 

  animals_id

ORDER BY 

  animals_id;
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The result is

 animals_id   num_records   num_records_valid |

------------+-------------+-------------------

         1          2114                1650

         2          2624                2196

         3          2106                1828

         4          2869                2642

         5          2924                2696

|

|

|

|

| |

|

|

|

|

|

You can now play around with your spatial data set. For example, when you
have a number of locations per animal, you can find the centroid of the area
covered by the locations:

SELECT

  animals_id, 

  ST_AsEWKT(

    ST_Centroid(

     ST_Collect(geom))) AS centroid 

FROM

  main.gps_data_animals 

WHERE

  geom IS NOT NULL 

GROUP BY 

  animals_id 

ORDER BY 

  animals_id;

The result is

 animals_id                        centroid                      

------------+----------------------------------------------------

          1   SRID=4326;POINT(11.056405072 46.0065913348485)

          2   SRID=4326;POINT(11.0388902698087 46.0118316898451)
          3   SRID=4326;POINT(11.062054399453 46.0229784057986)

          4   SRID=4326;POINT(11.0215063307722 46.0046905791446)

          5   SRID=4326;POINT(11.0287071960312 46.0085975505935)

|

|

|
|

|

|

In this case, you used the SQL command ST_Collect12. This function returns a
GEOMETRYCOLLECTION or a MULTI object from a set of geometries. The
collect function is an ‘aggregate’ function in the terminology of PostgreSQL. This
means that it operates on rows of data, in the same way the sum and mean
functions do. ST_Collect and ST_Union13 are often interchangeable. ST_Collect is
in general orders of magnitude faster than ST_Union because it does not try to
dissolve boundaries. It merely rolls up single geometries into MULTI and MULTI

12 http://postgis.refractions.net/docs/ST_Collect.html.
13 http://postgis.refractions.net/docs/ST_Union.html.
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or mixed geometry types into Geometry Collections. The contrary of ST_Collect is
ST_Dump14, which is a set-returning function.

Creating Spatial Database Views

Special Topic: PostgreSQL views

Views are queries permanently stored in the database. For users (and client applications),
they work like normal tables, but their data are calculated at query time and not physically
stored. Changing the data in a table alters the data shown in subsequent invocations of
related views. Views are useful because they can represent a subset of the data contained
in a table; can join and simplify multiple tables into a single virtual table; take very little
space to store, as the database contains only the definition of a view (i.e. the SQL query),
not a copy of all the data it presents; and provide extra security, limiting the degree of
exposure of tables to the outer world. On the other hand, a view might take some time to
return its data content. For complex computations that are often used, it is more convenient
to store the information in a permanent table.

You can create views where derived information is (virtually) stored. First, create a
new schema where all the analysis can be accommodated:

ALTER DEFAULT PRIVILEGES 

  IN SCHEMA analysis  

  GRANT SELECT ON TABLES 

  TO basic_user;

CREATE SCHEMA analysis

  AUTHORIZATION postgres;

  GRANT USAGE ON SCHEMA analysis TO basic_user;

COMMENT ON SCHEMA analysis 

IS 'Schema that stores key layers for analysis.';

You can see below an example of a view in which just (spatially valid) posi-
tions of a single animal are included, created by joining the information with the
animal and lookup tables.

CREATE VIEW analysis.view_gps_locations AS 

  SELECT 

    gps_data_animals.gps_data_animals_id, 

    gps_data_animals.animals_id,

    animals.name,

    gps_data_animals.acquisition_time at time zone 'UTC' AS time_utc, 

    animals.sex, 

    lu_age_class.age_class_description, 

    lu_species.species_description,

    gps_data_animals.geom

14 http://postgis.refractions.net/docs/ST_Dump.html.
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  FROM 

    main.gps_data_animals, 

    main.animals, 

    lu_tables.lu_age_class, 

    lu_tables.lu_species

  WHERE 

    gps_data_animals.animals_id = animals.animals_id AND

    animals.age_class_code = lu_age_class.age_class_code AND

    animals.species_code = lu_species.species_code AND 

    geom IS NOT NULL;

COMMENT ON VIEW analysis.view_gps_locations

IS 'GPS locations.';

Although the best way to visualise this view is in a GIS environment (in QGIS,
you might need to explicitly define the unique identifier of the view, i.e.
gps_data_animals_id), you can query its non-spatial content with

SELECT

  gps_data_animals_id AS id, 

  name AS animal,

  time_utc, 

  sex, 

  age_class_description AS age, 

  species_description AS species

FROM

  analysis.view_gps_locations

LIMIT 10;

The result is something similar to

 65 | Agostino | 2005-03-21 04:01:45 | m   | adult | roe deer

 67 | Agostino | 2005-03-21 12:02:19 | m   | adult | roe deer

 68 | Agostino | 2005-03-21 16:01:12 | m   | adult | roe deer

 69 | Agostino | 2005-03-21 20:01:49 | m   | adult | roe deer

 70 | Agostino | 2005-03-22 00:01:24 | m   | adult | roe deer

 71 | Agostino | 2005-03-22 04:02:51 | m   | adult | roe deer

 72 | Agostino | 2005-03-22 08:03:04 | m   | adult | roe deer

 73 | Agostino | 2005-03-22 12:01:42 | m   | adult | roe deer

 id |  animal  |      time_utc       | sex |  age  | species  

----+----------+---------------------+- -- --+-------+----------

 62 | Agostino | 2005-03-20 16:03:14 | m   | adult | roe deer

 64 | Agostino | 2005-03-21 00:03:06 | m   | adult | roe deer

Now, you create view with a different representation of your data sets. In this
case, you derive a trajectory from GPS points. You have to order locations per
animal and per acquisition time; then, you can group them (animal by animal) in a
trajectory (stored as a view):
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CREATE VIEW analysis.view_trajectories AS 

  SELECT 

    animals_id, 

    ST_MakeLine(geom)::geometry(LineString,4326) AS geom 

  FROM 

    (SELECT animals_id, geom, acquisition_time 

    FROM main.gps_data_animals 

    WHERE geom IS NOT NULL 

    ORDER BY 

    animals_id, acquisition_time) AS sel_subquery 

  GROUP BY 

    animals_id;

COMMENT ON VIEW analysis.view_trajectories

IS 'GPS locations - Trajectories.';

In Fig. 5.3, you can see analysis.view_trajectories visualised in QGIS.
Lastly, create another view to spatially summarise the GPS data set using

convex hull polygons (or minimum convex polygons):

CREATE VIEW analysis.view_convex_hulls AS

  SELECT 

    animals_id,

    (ST_ConvexHull(ST_Collect(geom)))::geometry(Polygon,4326) AS geom

  FROM 

    main.gps_data_animals 

  WHERE 

    geom IS NOT NULL 

  GROUP BY 

    animals_id 

  ORDER BY 

    animals_id;

COMMENT ON VIEW analysis.view_convex_hulls

IS 'GPS locations - Minimum convex polygons.';

The result is represented in Fig. 5.4, where you can clearly see the effect of the
outliers located far from the study area. Outliers will be filtered out in Chap. 8.

This last view is correct only if the GPS positions are located in a relatively
small area (e.g. less than 50 km) because the minimum convex polygon of points
in geographic coordinates cannot be calculated assuming that coordinates are
related to Euclidean space. At the moment, the function ST_ConvexHull does not
support the geography data type, so the correct way to proceed would be to project
the GPS locations in a proper reference system, calculate the minimum convex
polygon and then convert the result back to geographic coordinates. In the
example, the error is negligible.
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Fig. 5.3 Visualisation of the view with the trajectories (zoom on the study area)

Fig. 5.4 Visualisation of the view with MCP (zoom on the study area)
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Vector Data Import and Export

There are different ways to import a shapefile. Compared to the use of tabular data,
e.g. in .csv format, the procedure is even easier because users do not have to create
an empty table before loading the data. The existing import tools do this job
automatically (although in this way you lose control over the data type definition).
In QGIS there are two plugins that support shapefile import into PostGIS. The
QGIS plugin ‘PostGIS Manager’ can do the job with a drag-and-drop procedure.
Together with the PostGIS installation, a useful tool is automatically created:
‘PostGIS Shapefile Import/Export Manager’ (located in the PostGIS installation
folder). The same kind of tool can also be called from within pgAdmin (in the
‘plugin’ menu). The same result can be achieved using shp2pgsql15, a command
line tool. If the original file uses some specific encoding with characters not
supported by standard encoding, the option ‘-W’ can be used to solve the problem.
Another way to import shapefiles is with the GDAL/OGR16 library. In general,
with any tool, when you load the data, you have to correctly define the reference
system, the target table name and the target schema. If the original layer has errors
(e.g. overlapping or open polygons, little gaps between adjacent features) it might
not be correctly imported and in any case it will probably generate errors when
used in PostGIS. Therefore, we strongly recommend that you control the data
quality before importing layers into your database.

If you want to export your (vector) spatial layer stored in the database, the
easiest way is to load the layer in a GIS environment (e.g. QGIS, ArcGIS) and then
simply export to shapefile from there. The ‘PostGIS Manager’ plugin in QGIS
offers advanced tools to perform this task. You can export part of a table or a
processed data set using an SQL statement instead of just the name of the table.
You can also use the tools mentioned above for data import (pgsql2shp, GDAL/
OGR library (ogr2ogr), PostGIS Shapefile Import/Export Manager).

Connection from Client Applications

One of the main advantages of storing and managing your data in a central
database is that you can avoid exporting and importing your data back and forth
between different programs, formats or files. Some client applications commonly
used in connection with PostgreSQL/PostGIS have specific tools to establish the
link with the database (e.g. pgAdmin, QGIS, ArcGIS 10.x). However, as you are
likely using different programs to analyse your data, you need to be able to access
the database from all of them. This problem can be solved using the Open
DataBase Connection (OBDC) which is a protocol to connect to a database in a

15 http://www.bostongis.com/pgsql2shp_shp2pgsql_quickguide_20.bqg.
16 http://www.gdal.org/ogr2ogr.html.
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standardised way independent from programming languages, database systems and
operating systems. ODBC works as a kind of universal translator layer between
your program and the database. Virtually any program that is able to handle data
today supports ODBC in one way or another.

In Chap. 10, you will see how to use a PosgreSQL/PostGIS database in
connection with R.

Special Topic: Create an ODBC driver in MS Windows

In the Windows operating system, you can easily create an ODBC connection to your
PostgreSQL database. First, you have to install the PostgreSQL ODBC driver on your
computer17. Then you go to ‘Control Panel—Date Sources (ODBC)’ or ‘Microsoft ODBC
Administrator’ (according to Windows version), select ‘System DSN’ tag and click
‘Add’)18. Select ‘PostgreSQL Unicode’ and the appropriate version (32 or 64 bit,
according to PostgreSQL and ODBC Administrator versions), and fill the form with the
proper connection parameters. You can check whether it works by clicking ‘Test’, then
click ‘Save’. Now you have the ODBC connection available as system DSN. ‘Data
Source’ is the name that identifies the ODBC driver to your database. Once created, you
can access your database by calling the ODBC driver through its name. You can test your
ODBC connection by connecting the database from, e.g. MS Excel. Sometimes a
spreadsheet is useful to produce simple graphics or to use functions that are specific to this
kind of tool. To connect to your database data you have to create a connection to a table.
Open Excel and select ‘Data—Connection’ and then ‘Add’. Click on the name of the
ODBC driver that you created and select the table you want to open in MS Excel. Go to
‘Data—Existing connections’ and select the connection that you just established. You’ll
be asked where to place this data. You can choose the existing worksheet or specify a new
worksheet. Take your decision and press OK. Now you have your database data visualised
in an Excel spreadsheet. Spatial data are visualised as binary data format, and therefore
they cannot be properly ‘read’. If you want to see the coordinates of the geometry behind,
you can use a PostGIS function like ST_AsText or ST_AsEWKT. Tables are linked to the
database. Any change in Excel will not affect the database, but you can refresh the table in
Excel by getting the latest version of the linked tables.

References

Corti P, Mather SV, Kraft TJ, Park B (2014) PostGIS Cookbook. Packt Publishing LTD.,
Birmingham, UK

Obe OR, Hsu LS (2011) PostGIS in action. Manning Publications Company, Greenwich

17 http://www.postgresql.org/ftp/odbc/versions/msi/.
18 This process might vary according to the Windows version.

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 73

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://www.postgresql.org/ftp/odbc/versions/msi/


Chapter 6
From Points to Habitat: Relating
Environmental Information to GPS
Positions

Ferdinando Urbano, Mathieu Basille and Pierre Racine

Abstract Animals move in and interact with complex environments that can be
characterised by a set of spatial layers containing environmental data. Spatial
databases can manage these different data sets in a unified framework, defining
spatial and non-spatial relationships that simplify the analysis of the interaction
between animals and their habitat. A large set of analyses can be performed
directly in the database with no need for dedicated GIS or statistical software. Such
an approach moves the information content managed in the database from a
‘geographical space’ to an ‘animal’s ecological space’. This more comprehensive
model of the animals’ movement ecology reduces the distance between physical
reality and the way data are structured in the database, filling the semantic gap
between the scientist’s view of biological systems and its implementation in the
information system. This chapter shows how vector and raster layers can be
included in the database and how you can handle them using (spatial) SQL. The
database built so far in Chaps. 2, 3, 4 and 5 is extended with environmental
ancillary data sets and with an automated procedure to intersect these layers with
GPS positions.
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Introduction

Animals move in and interact with complex environments that can be character-
ised by a set of spatial layers containing environmental data. In traditional
information systems for wildlife tracking data management, position data are
stored in some file-based spatial format (e.g. shapefile). With a multi-steps process
in a GIS environment, position data are associated with a set of environmental
attributes through an analytical stage (e.g. intersection of GPS positions with
vector and raster environmental layers). This process is usually time-consuming
and prone to error, implies data replication and often has to be repeated for any
new analysis. It also generally involves different tools for vector and raster data.
An advanced data management system should achieve the same result with an
efficient (and, if needed, automated) procedure, possibly performed as a real-time
routine management task. To do so, the first step is to integrate both position data
and spatial ancillary information on the environment in a unique framework. This
is essential to exploring the animals’ behaviour and understanding the ecological
relationships that can be revealed by tracking data. Spatial databases can manage
these different data sets in a unified framework, defining spatial and non-spatial
relationships that simplify the analysis of the interaction between animals and their
habitat. A large set of analyses can be performed directly in the database with no
need for dedicated GIS or statistical software. This also affects performance, as
databases are optimised to run simple processes on large data sets like the ones
generated by GPS sensors. Database tools such as triggers and functions can be
used, for example, to automatically intersect positions with the ancillary infor-
mation stored as raster and vector layers. The result is that positions are trans-
formed from a simple pair of numbers (coordinates) to complex multi-dimensional
(spatial) objects that define the individual and its habitat in time and space,
including their interactions and dependencies. In an additional step, position data
can also be joined to activity data to define an even more complete picture of the
animal’s behaviour (see Chap. 12). Such an approach moves the information
content managed in the database from a ‘geographical space’ to an ‘animal’s
ecological space’. This more comprehensive model of the animal movement
ecology reduces the distance between physical reality and the way data are
structured in the database, filling the semantic gap between the scientist’s view of
biological systems and its implementation in the information system. This is not
only interesting from a conceptual point of view, but also has deep practical
implications. Scientists and wildlife managers can deal with data in the same way
they model the object of their study as they can start their analyses from objects
that represent the animals in their habitat (which previously was the result of a
long and complex process). Moreover, users can directly query these objects using
a simple and powerful language (SQL) that is close to their natural language.
All these elements strengthen the opportunity provided by GPS data to move from
mainly testing statistical hypotheses to focusing on biological hypotheses. Scien-
tists can store, access and manipulate their data in a simple and quick way, which
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allows them to formulate biological questions that previously were almost
impossible to answer for technical reasons.

This chapter shows how vector and raster layers can be included in the data-
base, how you can handle them using (spatial) SQL and how you can associate
with the GPS locations. In the next chapter, we will focus on raster time series
using remote sensing images.

Adding Ancillary Environmental Layers

In the exercise, you will see how to integrate a number of spatial features (see
Fig. 6.1).

• Points: meteorological stations (derived from MeteoTrentino1).
• Linestrings: roads network (derived from OpenStreetMap2).
• Polygons: administrative units (derived from ISTAT3) and the study area.
• Rasters: land cover (source: Corine4) and digital elevation models (source:

SRTM5, see also Jarvis et al. 2008).

Each species and study have specific data sets required and available, so the
goal of this example is to show a complete set of procedures that can be replicated
and customised on different data sets. When layers are integrated into the database,
you can visualise and explore them in a GIS environment (e.g. QGIS).

Once data are loaded into the database, you will extend the gps_data_animals
table with the environmental attributes derived from the ancillary layers provided
in the test data set. You will also modify the function tools.new_gps_data_animals
to compute these values automatically. In addition, you are encouraged to develop
your own (spatial) queries (e.g. detect how many times each animal crosses a road,
calculate how many times two animals are in the same place at the same time).

It is a good practice to store your environmental layers in a dedicated schema in
order to keep a clear database structure. Let us create the schema env_data:

CREATE SCHEMA env_data

  AUTHORIZATION postgres;

GRANT USAGE ON SCHEMA env_data TO basic_user;

COMMENT ON SCHEMA env_data 

IS 'Schema that stores environmental ancillary information.';

ALTER DEFAULT PRIVILEGES IN SCHEMA env_data 

  GRANT SELECT ON TABLES TO basic_user;

1 Provincia autonoma di Trento—Servizio Prevenzione Rischi—Ufficio Previsioni e pianifi-
cazione, http://www.meteotrentino.it.
2 http://www.openstreetmap.org.
3 http://www.istat.it/it/strumenti/cartografia.
4 http://www.eea.europa.eu/data-and-maps/data/
corine-land-cover-2006-clc2006-100-m-version-12-2009.
5 http://srtm.csi.cgiar.org/.
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Importing Shapefiles: Points, Lines and Polygons

Now you can start importing the shapefiles of the (vector) environmental layers
included in the test data set. As discussed in Chap. 5, an option is to use the
drag-and-drop function of ‘DB Manager’ (from QGIS Browser) plugin in QGIS
(see Fig. 6.2).

Alternatively, a standard solution to import shapefiles (vector data) is the
shp2pgsql tool. shp2pgsql is an external command-line tool, which cannot be run
in an SQL interface as it can for a regular SQL command. The code below has to
be run in a command-line interpreter (if you are using Windows as operating
system, it is also called Command Prompt or MS-DOS shell, see Fig. 6.3). You
will see other examples of external tools that are run in the same way, and it is very
important to understand the difference between these and SQL commands. In this
guide, this difference is represented graphically by white text boxes (see below) for
shell commands, while the SQL code is shown in grey text boxes. Start with the
meteorological stations:

Fig. 6.1 Environmental layers that will be integrated into the database
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"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 

C:\tracking_db\data\env_data\vector\meteo_stations.shp

env_data.meteo_stations | "C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 

5432 -d gps_tracking_db -U postgres -h localhost 

Note that the path to shp2pgsql.exe and psql.exe can be different according to
the folder where you installed your version of PostgreSQL. If you connect with the
database remotely, you also have to change the address of the server (-h option). In
the parameters, set the reference system (option -s) and create a spatial index for
the new table (option -I). The result of shp2pgsql is a text file with the SQL that
generates and populates the table env_data.meteo_stations. With the symbol ‘|’ you
‘pipe’ (send directly) the SQL to the database (through the PostgreSQL interactive
terminal psql6) where it is automatically executed. You have to set the port (-p), the
name of the database (-d), the user (-U), and the password, if requested. In this way,
you complete the whole process with a single command. You can refer to
shp2pgsql documentation for more details. You might have to add the whole path
to psql and shp2pgsql. This depends on the folder where you installed PostgreSQL.
You can easily verify the path searching for these two files. You also have to check
that the path of your shapefile (meteo_stations.shp) is properly defined.

You can repeat the same operation for the study area layer:

Fig. 6.2 Loading data into PostgreSQL using the drag-and-drop tool in QGIS

6 http://www.postgresql.org/docs/9.2/static/app-psql.html.
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"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 

C:\tracking_db\data\env_data\vector\study_area.shp env_data.study_area | 

"C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 5432 -d gps_tracking_db -U

postgres -h localhost 

Next for the roads layer

"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 

C:\tracking_db\data\env_data\vector\roads.shp env_data.roads | "C:\Program 

Files\PostgreSQL\9.2\bin\psql.exe" -p 5432 -d gps_tracking_db -U postgres -h

localhost

And for the administrative boundaries

"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 
C:\tracking_db\data\env_data\vector\adm_boundaries.shp
env_data.adm_boundaries | "C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 
5432 -d gps_tracking_db -U postgres -h localhost 

Now the shapefiles are in the database as new tables (one table for each
shapefile). You can visualise them through a GIS interface (e.g. QGIS). You can
also retrieve a summary of the information from all vector layers available in the
database with the following command:

SELECT * FROM geometry_columns;

Fig. 6.3 The command shp2pgsql from Windows command-line interpreter
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Importing Raster Files

The primary method to import a raster layer is the command-line tool
raster2pgsql7, the equivalent of shp2pgsql, but for raster files, that converts
GDAL-supported rasters into SQL suitable for loading into PostGIS. It is also
capable of loading folders of raster files.

Special Topic: GDAL

GDAL8 (Geospatial Data Abstraction Library) is a (free) library for reading, writing and
processing raster geospatial data formats. It has a lot of simple but very powerful and fast
command-line tools for raster data translation and processing. The related OGR library
provides a similar capability for simple vector data features. GDAL is used by most of the
spatial open source tools and by a large number of commercial software programs as well.
You will probably benefit in particular from the tools gdalinfo9 (get a layer’s basic
metadata), gdal_translate10 (change data format, change data type, cut), gdalwarp11

(mosaicing, reprojection and warping utility).

An interesting feature of raster2pgsql is its capability to store the rasters inside
the database (in-db) or keep them as (out-db) files in the file system (with the
raster2pgsql -R option). In the last case, only rasters as metadata are stored in the
database, not pixel values themselves. Loading out-db rasters as metadata is much
faster than loading them completely in the database. Most operations at the pixel
values level (e.g. ST_SummaryStats) will have equivalent performance with out-
and in-db rasters. Other functions, like ST_Tile, involving only the metadata, will
be faster with out-db rasters. Another advantage of out-db rasters is that they stay
accessible for external applications unable to query databases (with SQL). How-
ever, the administrator must make sure that the link between what is in the db (the
path to the raster file in the file system) is not broken (e.g. by moving or renaming
the files). On the other hand, only in-db rasters can be generated with CREATE
TABLE and modified with UPDATE statements. Which is the best choice depends
on the size of the data set and on considerations about performance and database
management. A good practice is generally to load very large raster data sets as out-
db and to load smaller ones as in-db to save time on loading and to avoid
repeatedly backing up huge, static rasters.

The QGIS plugin ‘Load Raster to PostGIS’ can also be used to import raster
data with a graphical interface. An important parameter to set when importing
raster layers is the number of tiles (-t option). Tiles are small subsets of the image
and correspond to a physical record in the table. This approach dramatically

7 http://postgis.net/docs/manual-2.0/using_raster.xml.html#RT_Raster_Loader.
8 http://www.gdal.org/.
9 http://www.gdal.org/gdalinfo.html.
10 http://www.gdal.org/gdal_translate.html.
11 http://www.gdal.org/gdalwarp.html.
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decreases the time required to retrieve information. The recommended values for
the tile option range from 20 9 20 to 100 9 100. Here is the code (to be run in the
Command Prompt) to transform a raster (the digital elevation model derived from
SRTM) into the SQL code that is then used to physically load the raster into the
database (as you did with shp2pgsql for vectors):

"C:\Program Files\PostgreSQL\9.2\bin\raster2pgsql.exe" -I -M -C -s 4326 -t 

20x20 C:\tracking_db\data\env_data\raster\srtm_dem.tif env_data.srtm_dem | 

"C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 5432 -d gps_tracking_db -U

postgres -h localhost

You can repeat the same process on the land cover layer:

"C:\Program Files\PostgreSQL\9.2\bin\raster2pgsql.exe" -I -M -C -s 3035 

env_data.corine_land_cover | "C:\Program Files\PostgreSQL\9.2\bin\psql.exe" 

-p 5432 -d gps_tracking_db -U postgres -h localhost

-t 20x20 C:\tracking_db\data\env_data\raster\corine06.tif

The reference system of the Corine land cover data set is not geographic
coordinates (SRID 4326), but ETRS89/ETRS-LAEA (SRID 3035), an equal-area
projection over Europe. This must be specified with the -s option and kept in mind
when this layer will be connected to other spatial layers stored in a different
reference system. As with shp2pgsql.exe, the -I option will create a spatial index
on the loaded tiles, speeding up many spatial operations, and the -C option will
generate a set of constraints on the table, allowing it to be correctly listed in the
raster_columns metadata table. The land cover raster identifies classes that are
labelled by a code (an integer). To specify the meaning of the codes, you can add a
table where they are described. In this example, the land cover layer is taken from
the Corine project12. Classes are described by a hierarchical legend over three
nested levels. The legend is provided in the test data set in the file ‘corine_leg-
end.csv’. You import the table of the legend (first creating an empty table, and then
loading the data):

CREATE TABLE env_data.corine_land_cover_legend(

  grid_code integer NOT NULL,

  clc_l3_code character(3),

  label1 character varying,

  label2 character varying,

  label3 character varying,

  CONSTRAINT corine_land_cover_legend_pkey 

    PRIMARY KEY (grid_code ));

COMMENT ON TABLE env_data.corine_land_cover_legend

IS 'Legend of Corine land cover, associating the numeric code to the three 

nested levels.';

12 http://www.eea.europa.eu/publications/COR0-landcover.
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Then, you load the data:

COPY env_data.corine_land_cover_legend 

FROM

  'C:\tracking_db\data\env_data\raster\corine_legend.csv' 

  WITH (FORMAT csv, HEADER, DELIMITER ';');

You can retrieve a summary of the information from all raster layers available
in the database with the following command:

SELECT * FROM raster_columns;

To keep a well-documented database, add comments to describe all the spatial
layers that you have added:

COMMENT ON TABLE env_data.adm_boundaries 

IS 'Layer (polygons) of administrative boundaries (comuni).';

COMMENT ON TABLE env_data.corine_land_cover 

IS 'Layer (raster) of land cover (from Corine project).';

COMMENT ON TABLE env_data.meteo_stations 

IS 'Layer (points) of meteo stations.';

COMMENT ON TABLE env_data.roads 

IS 'Layer (lines) of roads network.';

COMMENT ON TABLE env_data.srtm_dem 

IS 'Layer (raster) of digital elevation model (from SRTM project).';

COMMENT ON TABLE env_data.study_area 

IS 'Layer (polygons) of the boundaries of the study area.';

Querying Spatial Environmental Data

As the set of ancillary (spatial) information is now loaded into the database, you
can start playing with this information using spatial SQL queries. In fact, it is
possible with spatial SQL to run queries that explicitly handle the spatial rela-
tionships among the different spatial tables that you have stored in the database. In
the following examples, SQL statements will show you how to take advantage of
PostGIS features to manage, explore, and analyse spatial objects, with optimised
performances and no need for specific GIS interfaces. You start by asking for the
name of the administrative unit (‘comune’, Italian commune) in which the point at
coordinates (11, 46) (longitude, latitude) is located. There are two commands that
are used when it comes to intersection of spatial elements: ST_Intersects and
ST_Intersection. The former returns true if two features intersect, while the latter
returns the geometry produced by the intersection of the objects. In this case,
ST_Intersects is used to select the right commune:
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SELECT

  nome_com

FROM

  env_data.adm_boundaries 

WHERE

  ST_Intersects((ST_SetSRID(ST_MakePoint(11,46), 4326)), geom);

The result is

 nome_com 

----------

 Cavedine

In the second example, you compute the distance (rounded to the metre) from the
point at coordinates (11, 46) to all the meteorological stations (ordered by distance)
in the table env_data.meteo_stations. This information could be used, for example,
to derive the precipitation and temperature for a GPS position at the given acqui-
sition time, weighting the measurement from each station according to the distance
from the point. In this case, ST_Distance_Spheroid is used. Alternatively, you could
use ST_Distance and cast your geometries as geography data types.

SELECT

  station_id, ST_Distance_Spheroid((ST_SetSRID(ST_MakePoint(11,46), 4326)), 

geom, 'SPHEROID["WGS 84",6378137,298.257223563]')::integer AS distance

FROM

  env_data.meteo_stations

ORDER BY 

  distance;

The result is

 station_id | distance 

------------+----------

          1 |     2224

          2 |     4080

          5 |     4569

          4 |    10085

          3 |    10374

          6 |    18755

In the third example, you compute the distance to the closest road:

SELECT

  ST_Distance((ST_SetSRID(ST_MakePoint(11,46), 4326))::geography, 

geom::geography)::integer AS distance

FROM

  env_data.roads

ORDER BY 

  distance 

LIMIT 1;
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The result is

 distance 

----------

     1560

For users, the data type (vector, raster) used to store spatial information is not so
relevant when they query their data: queries should transparently use any kind of
spatial data as input. Users can then focus on the environmental model instead of
worrying about the data model. In the next example, you intersect a point with two
raster layers (altitude and land cover) in the same way you do for vector layers. In the
case of land cover, the point must first be projected into the Corine reference system
(SRID 3035). In the raster layer, just the Corine code class (integer) is stored while
the legend is stored in the table env_data.corine_land_cover_legend. In the query,
the code class is joined to the legend table and the code description is returned. This is
an example of integration of both spatial and non-spatial elements in the same query.

The result is

 altitude | land_cover | label2  |      label3       

--------------------------------------------------

      956 |         24 | Forests | Coniferous forest

Now, combine roads and administrative boundaries to compute how many
metres of roads there are in each administrative unit. You first have to intersect the
two layers (ST_Intersection), then compute the length (ST_Length) and summarise
per administrative unit (sum associated with GROUP BY clause).

  ST_Intersects(srtm_dem.rast,(ST_SetSRID(ST_MakePoint(11,46), 4326))) AND

  grid_code = ST_Value(corine_land_cover.rast,

    ST_Transform((ST_SetSRID(ST_MakePoint(11,46), 4326)), 3035));

SELECT

  ST_Value(srtm_dem.rast,

  (ST_SetSRID(ST_MakePoint(11,46), 4326))) AS altitude,

  ST_value(corine_land_cover.rast,

  ST_transform((ST_SetSRID(ST_MakePoint(11,46), 4326)), 3035)) AS land_cover, 

  label2,label3 

FROM

  env_data.corine_land_cover, 

  env_data.srtm_dem, 

  env_data.corine_land_cover_legend

WHERE

  ST_Intersects(corine_land_cover.rast,

    ST_Transform((ST_SetSRID(ST_MakePoint(11,46), 4326)), 3035)) AND
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SELECT

  nome_com, 

  sum(ST_Length(

    (ST_Intersection(roads.geom, adm_boundaries.geom))::geography))::integer

AS total_length

FROM

  env_data.roads, 

  env_data.adm_boundaries 

WHERE

  ST_Intersects(roads.geom, adm_boundaries.geom)

GROUP BY 

  nome_com 

ORDER BY 

  total_length desc;

The result of the query is

   nome_com    | total_length 

-----------------------------

 Trento        |        24552

 Lasino        |        15298

 Garniga Terme |        12653

 Calavino      |         6185

 Cavedine      |         5802

 Cimone        |         5142

 Padergnone    |         4510

 Vezzano       |         1618

 Aldeno        |         1367

The last examples are about the interaction between rasters and polygons. In
this case, you compute some statistics (minimum, maximum, mean and standard
deviation) for the altitude within the study area:

SELECT

  (sum(ST_Area(((gv).geom)::geography)))/1000000 area,

  min((gv).val) alt_min, 

  max((gv).val) alt_max,

  avg((gv).val) alt_avg,

  stddev((gv).val) alt_stddev

FROM

  (SELECT 

    ST_intersection(rast, geom) AS gv

  FROM 

    env_data.srtm_dem,

    env_data.study_area 

  WHERE 

    ST_intersects(rast, geom)

) foo;

The result, from which it is possible to appreciate the large variability of
altitude across the study area, is
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       area       | alt_min | alt_max |     alt_avg      |   alt_stddev    

------------------+---------+---------+------------------+-----------------

 199.018552456188 |     180 |    2133 | 879.286157704969 | 422.56622698974

You might also be interested in the number of pixels of each land cover type within
the study area. As with the previous example, you first intersect the study area with
the raster of interest, but in this case, you need to reproject the study area polygon into
the coordinate system of the Corine land cover raster (SRID 3035). With the fol-
lowing query, you can see the dominance of mixed forests in the study area:

SELECT (pvc).value, SUM((pvc).count) AS total, label3

FROM

  (SELECT ST_ValueCount(rast) AS pvc

  FROM env_data.corine_land_cover, env_data.study_area

  WHERE ST_Intersects(rast, ST_Transform(geom, 3035))) AS cnts, 

  env_data.corine_land_cover_legend

WHERE grid_code = (pvc).value

GROUP BY (pvc).value, label3

ORDER BY (pvc).value;

The result is

 lc_class | total |                     label3                     

----------+-------+------------------------------------------------

        1 |   114 | Continuous urban fabric

        2 |   817 | Discontinuous urban fabric

        3 |   324 | Industrial or commercial units

        7 |   125 | Mineral extraction sites

       16 |   324 | Fruit trees and berry plantations

       18 |   760 | Pastures

       19 |   237 | Annual crops associated with permanent crops

       20 |  1967 | Complex cultivation patterns

       21 |  2700 | Land principally occupied by agriculture

       23 |  4473 | Broad-leaved forest

       24 |  2867 | Coniferous forest

       25 |  8762 | Mixed forest

       26 |   600 | Natural grasslands

       27 |   586 | Moors and heathland

       29 |  1524 | Transitional woodland-shrub

       31 |   188 | Bare rocks

       32 |   611 | Sparsely vegetated areas

       41 |   221 | Water bodies

The previous query can be modified to return the percentage of each class over
the total number of pixels. This can be achieved using window functions13:

13 http://www.postgresql.org/docs/9.2/static/tutorial-window.html.
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SELECT

  (pvc).value, 

  (SUM((pvc).count)*100/    SUM(SUM((pvc).count)) over ())  ::numeric(4,2) 

FROM

  (SELECT ST_ValueCount(rast) AS pvc

  FROM env_data.corine_land_cover, env_data.study_area

  WHERE ST_Intersects(rast, ST_Transform(geom, 3035))) AS cnts, 

  env_data.corine_land_cover_legend

WHERE grid_code = (pvc).value

GROUP BY (pvc).value, label3

ORDER BY (pvc).value;

AS total_perc, label3

The result is

 value | total_perc |                     label3                     

-------+------------+------------------------------------------------

     1 |       0.42 | Continuous urban fabric

     2 |       3.00 | Discontinuous urban fabric

     3 |       1.19 | Industrial or commercial units

     7 |       0.46 | Mineral extraction sites

    16 |       1.19 | Fruit trees and berry plantations

    18 |       2.79 | Pastures

    19 |       0.87 | Annual crops associated with permanent crops

    20 |       7.23 | Complex cultivation patterns

    21 |       9.93 | Land principally occupied by agriculture

    23 |      16.44 | Broad-leaved forest

    24 |      10.54 | Coniferous forest

    25 |      32.21 | Mixed forest

    26 |       2.21 | Natural grasslands

    27 |       2.15 | Moors and heathland

    29 |       5.60 | Transitional woodland-shrub

    31 |       0.69 | Bare rocks

    32 |       2.25 | Sparsely vegetated areas

    41 |       0.81 | Water bodies

Associate Environmental Characteristics
with GPS Locations

After this general introduction to the use of spatial SQL to explore spatial layers,
you can now use these tools to associate environmental characteristics with GPS
positions. You can find a more extended introduction to spatial SQL in Obe and
Hsu (2011). The goal here is to automatically transform position data from simple
points to objects holding information about the habitat and conditions where the
animals were located at a certain moment in time. You will use the points to
automatically extract, by the mean of an SQL trigger, this information from other
ecological layers. The first step is to add the new fields of information into the
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main.gps_data_animals table. You will add columns for the name of the admin-
istrative unit to which the GPS position belongs, the code for the land cover it is
located in, the altitude from the digital elevation model (which can then be used as
the third dimension of the point), the id of the closest meteorological station and
the distance to the closest road:

ALTER TABLE main.gps_data_animals 

  ADD COLUMN pro_com integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN corine_land_cover_code integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN altitude_srtm integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN station_id integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN roads_dist integer;

These are several common examples of environmental information that can be
associated with GPS positions, and others can be implemented according to spe-
cific needs. It is important to keep in mind that these spatial relationships are
implicitly determined by the coordinates of the elements involved; you do not
necessarily have to store these values in a table as you can compute them on the fly
whenever you need. Moreover, you might need different information according to
the specific study (e.g. the land cover composition in an area of 1 km around each
GPS position instead of the value of the pixel where the point is located). Com-
puting these spatial relationships on the fly can require significant time, so in some
cases, it is preferable to run the query just once and permanently store the most
relevant parameters for your specific study (think about what you will most likely
use often). Another advantage of making the relations explicit within tables is that
you can then create indexes on columns of these tables. This is not possible with
on-the-fly sub-queries. Making many small queries and hence creating many tables
and indexing them along the way is generally more efficient in terms of processing
time than trying to do everything in a long and complex query. This is not nec-
essarily true when the data set is small enough, as indexes are mostly efficient on
large tables. Sometimes, the time necessary to write many SQL statements and the
associated indexes exceed the time necessary to execute them. In that case, it
might be more efficient to write a single, long and complex statement and forget
about the indexes. This does not apply to the following trigger function, as all the
ecological layers were well indexed at load time and it does not rely on inter-
mediate sub-queries of those layers.

The next step is to implement the computation of these parameters inside the
automated process of associating GPS positions with animals (from gps_data to
gps_data_animals). To achieve this goal, you have to modify the trigger function
tools.new_gps_data_animals. In fact, the function tools.new_gps_data_animals is
activated whenever a new location is inserted into gps_data_animals (from
gps_data). It adds new information (i.e. fills additional fields) to the incoming

6 From Points to Habitat: Relating Environmental Information to GPS Positions 89



record (e.g. creates the geometry object from latitude and longitude values) before
it is uploaded into the gps_data_animals table in the code, NEW is used to ref-
erence the new record not yet inserted). The SQL code that does this is below. The
drawback of this function is that it will slow down the import of a large set of
positions at once (e.g. millions or more), but it has little impact when you manage
a continuous data flow from sensors, even for a large number of sensors deployed
at the same time.

    ORDER BY ST_Distance_Spheroid(thegeom, geom, 'SPHEROID["WGS 84",

6378137,298.257223563]')

    LIMIT 1);

  NEW.roads_dist = 

    (SELECT ST_Distance(thegeom::geography, geom::geography)::integer 

    FROM env_data.roads 

    ORDER BY ST_distance(thegeom::geography, geom::geography) 

    LIMIT 1);

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals() 

IS 'When called by the trigger insert_gps_positions (raised whenever a new 

position is uploaded into gps_data_animals) this function gets the longitude

and latitude values and sets the geometry field accordingly, computing a set

of derived environmental information calculated intersecting or relating the

position with the environmental ancillary layers.';

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

  thegeom geometry;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

  thegeom = ST_SetSRID(ST_MakePoint(NEW.longitude, NEW.latitude), 4326);

  NEW.geom =thegeom;

  NEW.pro_com = 

    (SELECT pro_com::integer 

    FROM env_data.adm_boundaries 

    WHERE ST_Intersects(geom,thegeom)); 

  NEW.corine_land_cover_code = 

    (SELECT ST_Value(rast,ST_Transform(thegeom,3035)) 

    FROM env_data.corine_land_cover 

    WHERE ST_Intersects(ST_Transform(thegeom,3035), rast));

  NEW.altitude_srtm = 

    (SELECT ST_Value(rast,thegeom) 

    FROM env_data.srtm_dem 

    WHERE ST_Intersects(thegeom, rast));

  NEW.station_id = 

    (SELECT station_id::integer 

    FROM env_data.meteo_stations 
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As the trigger function is run during GPS data import, the function only works on
the records that are imported after it was created, and not on data imported pre-
viously. To see the effects, you have to add new positions or delete and reload the
GPS positions stored in gps_data_animals. You can do this by saving the records in
gps_sensors_animals in an external .csv file, and then deleting the records from the
table (which also deletes the records in gps_data_animals in a cascade effect).
When you reload them, the new function will be activated by the trigger that was
just defined, and the new attributes will be calculated. You can perform these steps
with the following commands.

First, check how many records you have per animal:

SELECT animals_id, count(animals_id) 

FROM main.gps_data_animals 

GROUP BY animals_id;

The result is

 animals_id | count 

------------+-------

          4 |  2869

          5 |  2924

          2 |  2624

          1 |  2114

          3 |  2106

Then, copy the table main.gps_sensors_animals into an external file.

COPY

  (SELECT animals_id, gps_sensors_id, start_time, end_time, notes 

FROM main.gps_sensors_animals)

TO

  'c:/tracking_db/test/gps_sensors_animals.csv' 

  WITH (FORMAT csv, DELIMITER ';');

You then delete all the records in main.gps_sensors_animals, which will delete
(in a cascade) all the records in main.gps_data_animals.

DELETE FROM main.gps_sensors_animals;

You can verify that there are now no records in main.gps_data_animals (the
query should return 0 rows).

SELECT * FROM main.gps_data_animals;

The final step is to reload the .csv file into main.gps_sensors_animals. This will
launch the trigger functions that recreate all the records in main.gps_data_animals,
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in which the fields related to environmental attributes are also automatically
updated. Note that, due to the different triggers that imply massive computations,
the query can take several minutes to execute14.

COPY main.gps_sensors_animals 

  (animals_id, gps_sensors_id, start_time, end_time, notes) 

FROM

  'c:/tracking_db/test/gps_sensors_animals.csv' 

  WITH (FORMAT csv, DELIMITER ';');

You can verify that all the fields are updated:

SELECT

  gps_data_animals_id AS id, acquisition_time, pro_com, 

corine_land_cover_code AS lc_code, altitude_srtm AS alt, station_id AS 

meteo, roads_dist AS dist

FROM

  main.gps_data_animals 

WHERE

  geom IS NOT NULL

LIMIT 10;

The result is

  id   |    acquisition_time    | pro_com | lc_code | alt  | meteo | dist 

-------+------------------------+---------+---------+------+-------+------

 15275 | 2005-10-23 22:00:53+02 |   22091 |      18 | 1536 |     5 |  812

 15276 | 2005-10-24 02:00:55+02 |   22091 |      18 | 1519 |     5 |  740

 15277 | 2005-10-24 06:00:55+02 |   22091 |      18 | 1531 |     5 |  598

 15280 | 2005-10-24 18:02:57+02 |   22091 |      23 | 1198 |     5 |  586

 15281 | 2005-10-24 22:01:49+02 |   22091 |      25 | 1480 |     5 |  319

 15282 | 2005-10-25 02:01:23+02 |   22091 |      18 | 1531 |     5 |  678

 15283 | 2005-10-25 06:00:53+02 |   22091 |      18 | 1521 |     5 |  678

 15284 | 2005-10-25 10:01:10+02 |   22091 |      23 | 1469 |     5 |  546

 15285 | 2005-10-25 14:01:26+02 |   22091 |      23 | 1412 |     5 |  571

 15286 | 2005-10-25 18:02:29+02 |   22091 |      23 | 1435 |     5 |  465

You can also check that all the records of every animal are in
main.gps_data_animals:

SELECT animals_id, count(*) FROM main.gps_data_animals GROUP BY animals_id;

14 You can skip this step and speedup the process by simply calculating the environmental
attributes with an update query.
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The result is

 animals_id | count 

------------+-------

          4 |  2869

          5 |  2924

          2 |  2624

          1 |  2114

          3 |  2106

As you can see, the whole process can take a few minutes, as you are calcu-
lating the environmental attributes for the whole data set at once. As discussed in
the previous chapters, the use of triggers and indexes to automatise data flow and
speedup analyses might imply processing times that are not sustainable when large
data sets are imported at once. In this case, it might be preferable to update
environmental attributes and calculate indexes in a later stage to speed up the
import process. In this book, we assume that in the operational environment where
the database is developed, the data flow is continuous, with large but still limited
data sets imported at intervals. You can compare this processing time with what is
generally required to achieve the same result in a classic GIS environment based
on flat files (e.g. shapefiles, .tif). Do not forget to consider that you can use these
minutes for a coffee break, while the database does the job for you, instead of
clicking here and there in your favourite GIS application!
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Chapter 7
Tracking Animals in a Dynamic
Environment: Remote Sensing Image
Time Series

Mathieu Basille, Ferdinando Urbano, Pierre Racine,
Valerio Capecchi and Francesca Cagnacci

Abstract This chapter looks into the spatiotemporal dimension of both animal
tracking data sets and the dynamic environmental data that can be associated with
them. Typically, these geographic layers derive from remote sensing measurements,
commonly those collected by sensors deployed on earth-orbiting satellites, which
can be updated on a monthly, weekly or even daily basis. The modelling potential for
integrating these two levels of ecological complexity (animal movement and envi-
ronmental variability) is huge and comes from the possibility to investigate processes
as they build up, i.e. in a full dynamic framework. This chapter’s exercise will
describe how to integrate dynamic environmental data in the spatial database and join
to animal locations one of the most used indices for ecological productivity and
phenology, the normalised difference vegetation index (NDVI) derived from
MODIS. The exercise is based on the database built so far in Chaps. 2, 3, 4, 5 and 6.
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Keywords NDVI � Raster time series � Spatial database � Spatiotemporal
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Introduction

The advancement in movement ecology from a data perspective can reach its full
potential only by combining the technology of animal tracking with the technology
of other environmental sensing programmes (Cagnacci et al. 2010). Ecology is
fundamentally spatial, and animal ecology is obviously no exception (Turchin
1998). Any scientific question in animal ecology cannot overlook its spatial
dimension, and in particular the dynamic interaction between individual animals or
populations, and the environment in which the ecological processes occur.
Movement provides the mechanistic link to explain this complex ecosystem
interaction, as the movement path is dynamically determined by external factors,
through their effect on the individual’s state and the life history characteristics of
an animal (Nathan et al. 2008). Therefore, most modelling approaches for animal
movement include environmental factors as explanatory variables. As illustrated in
earlier portions of this book, this technically implies the intersection of animal
locations with environmental layers, in order to extract the information about the
environment that is embedded in spatial coordinates. It appears very clear at this
stage, though, that animal locations are not only spatial, but are also fully defined
by spatial and temporal coordinates (as given by the acquisition time).

Logically, the same temporal definition also applies to environmental layers.
Some characteristics of the landscape, such as land cover or road networks, can be
considered static over a large period of time (of the order of several years), and
these static environmental layers are commonly intersected with animal locations
to infer habitat use and selection by animals (e.g. Resource Selection Functions,
RSF, Manly et al. 2002). However, many characteristics relevant to wildlife, such
as vegetation biomass or road traffic, are indeed subject to temporal variability
(of the order of hours to weeks) in the landscape and would be better represented
by dynamic layers that correspond closely to the conditions actually encountered
by an animal moving across the landscape (Moorcroft 2012). In this case, using
static environmental layers directly limits the potential of wildlife tracking data,
reduces the power of inference of statistical models and sometimes even intro-
duces sources of bias (Basille et al. 2013).

Nowadays, satellite-based remote sensing can provide dynamic global coverage
of medium-resolution images that can be used to compute a large number of
environmental parameters very useful to wildlife studies. Through remote sensing,
it is possible to acquire spatial time series which can then be linked to animal
locations, fully exploiting the spatiotemporal nature of wildlife tracking data.
Numerous satellites and other sensor networks can now provide information on
resources on a monthly, weekly or even daily basis, which can be used as
explanatory variables in statistical models (e.g. Pettorelli et al. 2006) or to
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parameterise Bayesian inferences or mechanistic models. One of the most
commonly used satellite-derived environmental time series is the normalised
difference vegetation index (NDVI) but other examples include data sets on ocean
primary productivity, surface temperature or salinity, all available in equally fine
spatial and temporal scales (McClain 2009), and, in North America, snow depth
data at daily scales (SNODAS, at 1-km resolution), spatial temperature and pre-
cipitation at monthly scales (PRISM data model, at 1-km resolution), and mete-
orological data on wind and pressure (ESRL1). Snow cover, NDVI and sea surface
temperature are some examples of indices that can be used as explanatory vari-
ables in statistical models (e.g. Pettorelli et al. 2006) or to parameterise Bayesian
inferences or mechanistic models. Moreover, there are user-friendly spatial tools to
acquire (LPDAAC NASA website 20082) and process (e.g. Marine Geospatial
Ecology Tools—MGET3, a plugin for the proprietary software ESRI ArcGIS and
the free Movebank tool Env-DATA System4) data from the moderate-resolution
imaging spectroradiometer (MODIS), a major provider of NDVI.

The main shortcoming of such remote sensing layers is the relatively low
spatial resolution (e.g. 250 m for MODIS, e.g. Cracknell 1997; 1 km for SPOT
vegetation, e.g. Maisongrande et al. 2004), which does not fit the current average
bias of wildlife tracking GPS locations (less than 20 m, see Frair et al. 2010 for a
review), thus potentially leading to a spatial mismatch between the animal-based
information and the environmental layers (note that the resolution can still be
perfectly fine, depending on the overall spatial variability and the species and
biological process under study). Yet, this is much more desirable than using static
layers when the temporal variability is an essential component of the ecological
inference (Basille et al. 2013). Higher resolution images and new types of infor-
mation (e.g. forest structure) are presently provided by new types of sensors, such
as those from LIDAR, radar or hyper-spectral remote sensing technology. How-
ever, the use of these images for intersection with wildlife tracking data sets is still
limited by the high cost of source data, including direct costs such as flights of
aircrafts, that restricts the collection of comprehensive high-resolution time series.
In the case of animals that move over large distances (regions, nations, continents),
these limitations are even greater. Few software packages provide the function-
alities to handle time series of images easily (Eerens et al. 2014), while at the same
time offering a complete set of the tools required by movement ecology in general
and tracking data in particular.

In this chapter, we discuss the integration in the spatial database of one of the most
used indices for ecological productivity and phenology, i.e. NDVI, derived from
MODIS images. The intersection of NDVI images with GPS locations requires a

1 http://www.esrl.noaa.gov/.
2 https://lpdaac.usgs.gov/.
3 http://mgel.env.duke.edu/mget.
4 http://www.movebank.org/node/6607.
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system that is able to handle large amounts of data and explicitly manage both spatial
and temporal dimensions, which makes PostGIS an ideal candidate for the task.

MODIS NDVI Data Series

The MODIS instrument operates on NASA’s Terra and Aqua spacecraft. The
instrument views the entire earth’s surface every 1–2 days and captures data in 36
spectral bands ranging in wavelengths from 0.4 to 14.4 lm and at varying spatial
resolutions (250 m, 500 m and 1 km). The global MODIS vegetation indices
(MODIS 13 products, MODIS 1999) are designed to provide consistent spatial and
temporal comparisons of vegetation conditions. Red and near-infrared reflec-
tances, centred at 645 and 858 nm, respectively, are used to determine vegetation
indices, including the well-known NDVI, at daily, 8 d, 16 d and monthly scales.
This index is calculated by contrasting intense chlorophyll pigment absorption in
the red against the high reflectance of leaf mesophyll in the near infrared. It is a
proxy of plant photosynthetic activity and has been found to be highly related to
the green leaf area index (LAI) and to the fraction of photosynthetically active
radiation absorbed by vegetation (FAPAR; see for instance Bannari et al. 1995).

Past studies have demonstrated the potential of using NDVI data to study
vegetation dynamics (Townshend and Justice 1986; Verhoef et al. 1996). More
recently, several applications have been developed using MODIS NDVI data such
as land cover change detection (Lunetta et al. 2006), monitoring forest phenophases
(Yu and Zhuang 2006), modelling wheat yield (Moriondo et al. 2007) and other
applications in forest and agricultural sciences. However, the utility of the MODIS
NDVI data products is limited by the availability of high-quality data (e.g. cloud
free), and several processing steps are required before using the data: acquisition
via Web facilities, reprojection from the native sinusoidal projection to a standard
latitude–longitude format, eventually the mosaicking of two or more tiles into a
single tile. A number of processing techniques to ‘smooth’ the data and obtain a
cleaned (no clouds) time series of NDVI imagery have also been implemented.
These kinds of processes are usually based on a set of ancillary information on the
data quality of each pixel that is provided together with MODIS NDVI.

In the framework of the present project, a simple R5 procedure has been adapted
in order to download, reproject and mosaic the NDVI data. The procedure is
flexible and can be modified to work with other MODIS data (snow, land surface
temperature, etc.). It is dependent on the MODIS Reprojection Tool (MRT), a set
of tools developed by the NASA to manipulate MODIS files. MRT enables users
to read data files in the native HDF-EOS format, specify a geographic subset or
specific science data sets as input to processing, perform geographic

5 http://www.r-project.org/.
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transformation to a different coordinate system/cartographic projection and write
the output to a GDAL-compatible file format.

A preliminary visual examination of the available NDVI images indicates that
they may contain a variable number of pixels with erroneous values. Several
techniques have been developed to remove these pseudo-hikes and drops in the time
series (probably due to clouds) and substitute the missing data with a reliable value.
In the present case, we applied a very simple but efficient procedure, first developed
and described by Escadafal et al. (2001), for the 10-day NOAA-AVHRR NDVI
images. The procedure was also applied in other similar cases in the European
context (Maselli et al. 2006) with the 10-day NOAA-AVHRR and SPOT-VGT
NDVI images. Here, we adapted the procedure to work with the 16-day MODIS
images. The procedure simply consists of a preliminary filtering in order to remove
isolated pixels with anomalous NDVI values and replace them with local (5-point)
averages. The final result of such a procedure is shown in Fig. 7.1, which displays
NDVI values extracted before and after the smoothing for a location in the
municipality of Terlago (46.10�N, 11.05�E, northern Italy). Note that, for conve-
nience purposes, NDVI values have been multiplied by 10,000 to be stored as
integers with a maximum value of 10,000 (you will have to keep this in mind when
presenting NDVI values).

Dealing with Raster Time Series

Raster time series are quite common from medium- and low-resolution data sets
generated by satellites that record information at the same location on earth at
regular time intervals. In this case, each pixel has both a spatial and a temporal
reference. In this exercise, you integrate an NDVI data set of 92 MODIS images
covering the period 2005–2008 (spatial resolution of 1 km and temporal resolution
of 16 days). In this example, you will use the env_data schema to store raster time
series, in order to keep it transparent to the user: all environmental data (static or
dynamic) are in this schema. However, over larger amounts of data, it might be
useful to store raster time series in a different schema to support an easier and more
efficient backup procedure.

When you import a raster image using raster2pgsql, a new record is added in
the target table for each raster, including one for each tile if the raster was tiled
(see Chap. 6). At this point, each record does not consider time yet and is thus
simply a spatial object. To transform each record into a spatiotemporal object, you
must add a field with the timestamp of the data acquisition, or, better, the time
range covered by the data if it is related to a period. The time associated with each
raster (and each tile) can usually be derived from the name of the file, where this
information is typically embedded. In the case of MODIS composite over 16 days,
this is the first day of the 16-day period associated with the image in the form
‘MODIS_NDVI_yyyy_mm_dd.tif’ where yyyy is the year, mm the month, and dd
the day.
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Time Ranges in PostgreSQL

A new data type was introduced in PostgreSQL 9.2 to facilitate storage and
manipulation of ranges, i.e. an interval of values with a beginning and an end. The
range type6, stored in a single column, eliminates the need to store the beginning
and end values in two separate columns and allows for much simpler comparisons
as there is no longer a need to check for both bounds. Ranges can be discrete (e.g.
every integer from 0 to 10 included) or continuous (e.g. all real numbers between
0 and 10 included, or any point in time between 1 January and 30 January 2013).

The simplest example would be a series of integers, say from 1 to 10:

SELECT int4range(1, 10);

Fig. 7.1 Temporal profiles of raw (black line) and cleaned (red line) MODIS NDVI data over a
5-year period (2000–2004) for a location in the municipality of Terlago (46.10�N, 11.05�E,
northern Italy)

6 http://www.postgresql.org/docs/9.2/static/rangetypes.html.
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The result is

 int4range 

-----------

 [1,10)

A range is defined solely by its lower and upper bounds, and, by default, assumes
that the lower bound is included, but the upper bound is excluded. In other words,
the former query defined the series 1, 2, 3, 4, 5, 6, 7, 8, 9 and did not include 10. As
can be seen from the output, the convention used by PostgreSQL is a square bracket
for an inclusion and a parenthesis for an exclusion. Each range type has a con-
structor function with the same name as the range type (e.g. int4range, numrange,
or daterange), and accepts as a third argument the specification of the bound (e.g.
‘[)’, which is the default setting). Hence, a range of dates (from 20 March 2013 to
22 September 2013 inclusive) would be constructed like this:

SELECT daterange('2013-03-20', '2013-09-22', '[]');

The result is

        daterange        

-------------------------

 [2013-03-20,2013-09-23)

Note that in this case, PostgreSQL transformed the result with the default ‘[)’
notation, which excludes the upper bound, using the next day. The same result can be
achieved by the use of an explicit formulation ‘casted’ to the range type of interest:

SELECT '[2013-03-20, 2013-09-22]'::daterange;

This query results in the exact same output, i.e. the period containing all days
from 20 March 2013 (included) to 22 September 2013 (included), which defines
the period between the two equinoxes when days are longer than nights in the
northern hemisphere in 2013. To avoid any confusion, it might be a good practice
to use explicit formulas, which forces the declaration of the bounds, and are hence
less error prone. You could be even more precise and specify the exact times
between the two equinoxes using the tsrange type:

SELECT '[2013-03-20 11:01:55, 2013-09-22 20:44:08)'::tsrange;

The result is

                    tsrange                    

-----------------------------------------------

 ["2013-03-20 11:01:55","2013-09-22 20:44:08")
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The main interest of using a range is to easily check whether a value (or another
range) is included in it. Note that only elements from the same type can be
compared (e.g. dates with dates, timestamps with timestamps). You thus need to
use explicit casting when necessary. Let us check for instance whether you are
currently between the two equinoxes of 2013, using the operator ‘@[’
(containment):

SELECT '[2013-03-20, 2013-09-22]'::daterange @> now()::date AS in_range;

If you run this query after 22 September 2013, the output of the last query is
likely to be false. Other useful operators include equality (=), union (+), inter-
section (*) or overlap (&&)7:

SELECT
  '[2013-03-20, 2013-09-22]'::daterange = daterange('2013-03-20',

'2013-09-22', '[]') AS equal_range;

SELECT
  '[2013-03-20, 2013-09-22]'::daterange + '[2013-06-01, 2014-01-01)'

::daterange AS union_range;

SELECT
  '[2013-03-20, 2013-09-22]'::daterange * '[2013-06-01, 2014-01-01)'

::daterange AS intersection_range;

SELECT
  '[2013-03-20, 2013-09-22]'::daterange && '[2013-06-01, 2014-01-01)'

::daterange AS overlap_range;

While the first two return ‘t’, the union range is ‘[2013-03-20,2014-01-01)’ and
the intersection is ‘[2013-06-01,2013-09-23)’.

Finally, note that a range can be infinite on one side and thus does not have a
lower or a upper bound. This is achieved by using the NULL bound in the con-
structor or an empty value in the explicit formulation, for example

SELECT
  '[2013-01-01,)'::daterange;

or

SELECT
  '[2013-01-01,)'::daterange @> now()::date AS after_2013;

7 See the full list of operators and functions here: http://www.postgresql.org/docs/9.2/static/
functions-range.html.
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Import the Raster Time Series

With this data type, you can now associate each image or tile with the correct time
reference, that is, the 16-day period associated with each raster. This will make the
spatiotemporal intersection with GPS positions possible by allowing direct com-
parisons with GPS timestamps.

To start, create an empty table to store the NDVI images, including a field for
the temporal reference (of type daterange) and its index:

CREATE TABLE env_data.ndvi_modis(

  rid serial NOT NULL, 

  rast raster, 

  filename text,

  acquisition_range daterange,

  CONSTRAINT ndvi_modis_pkey

    PRIMARY KEY (rid));

CREATE INDEX ndvi_modis_wkb_rast_idx 

  ON env_data.ndvi_modis 

  USING GIST (ST_ConvexHull(rast));

COMMENT ON TABLE env_data.ndvi_modis

IS 'Table that stores values of smoothed MODIS NDVI (16-day periods).';

Now, the trick is to use two arguments of the raster2pgsql command (see also
Chap. 6): -F to include the raster file name as a column of the table (which will
then be used by the trigger function) and -a to append the data to an existing table,
instead of creating a new one. Another aspect is the absence of a flagged ‘no data’
value in the MODIS NDVI files. In these rasters, -3000 represents an empty pixel,
but this information is not stored in the raster: you will have to declare it explicitly
using the ‘-N’ argument. The NDVI data used here consist of 92 tif images from
January 2005 to December 2008, but you can import all of them in a single
operation using the wildcard character ‘*’ in the input filename. You can thus run
the following command in the Command Prompt8 (warning: you might need to
adjust the rasters’ path according to your own set-up):

C:\Program Files\PostgreSQL\9.2\bin\raster2pgsql.exe -a -C -F -M -s 4326 -t

20x20 -N -3000 C:\tracking_db\data\env_data\raster\raster_ts\*.tif

env_data.ndvi_modis | psql -p 5432 -d gps_tracking_db -U postgres 

You can confirm that the raster was properly loaded with all its attributes by
looking at the raster_columns view, which stores raster metadata (here, you only
retrieve the table’s schema, name, SRID and NoData value, but it is a good
practice to examine all information stored in this view):

8 Note that this is not an a SQL code and cannot be run in an SQL interface.
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SELECT

  r_table_schema AS schema, 

  r_table_name AS table, 

  srid, 

  nodata_values AS nodata

FROM raster_columns

WHERE r_table_name = 'ndvi_modis';

  schema  |   table    | srid | nodata 

----------+------------+------+--------

 env_data | ndvi_modis | 4326 | {-3000}

Each raster file embeds the acquisition period in its filename. For instance,
‘MODIS_NDVI_2005_01_01.tif’ is associated with the period from 1 January
2005 (included) to 17 January 2005 (excluded). As you can see, the period is
encoded on 10 characters following the common prefix ‘MODIS_NDVI_’. This
allows you to use the substring function to extract the year, the month and the
starting day from the filename (which was automatically stored in the filename
field during the import). For instance, you can extract the starting date from the
first raster imported (which should be ‘MODIS_NDVI_2005_01_01.tif’):

SELECT filename, 

  (substring(filename FROM 12 FOR 4) || '-' || 

    substring(filename FROM 17 FOR 2) || '-' || 

    substring(filename FROM 20 FOR 2))::date AS start

FROM env_data.ndvi_modis LIMIT 1;

         filename          |   start    

---------------------------+------------

 MODIS_NDVI_2005_01_01.tif | 2005-01-01

The same approach can be used to define the ending date of the period, by
simply adding 16 days to the previous date (remember that this day will be
excluded from the range). Note that adding 16 days takes into account the addi-
tional day at the end of February in leap years:

SELECT filename, 

  (substring(filename FROM 12 FOR 4) || '-' || 

    substring(filename FROM 17 FOR 2) || '-' ||

    substring(filename FROM 20 FOR 2))::date + 16 AS end

FROM env_data.ndvi_modis LIMIT 1;

         filename          |    end     

---------------------------+------------

 MODIS_NDVI_2005_01_01.tif | 2005-01-17

In the case of more complex filenames with a variable number of characters,
you could still retrieve the encoded date using the substring function, by extracting
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the relevant characters relative to some other characters found first using the
position function. Let us now update the table by converting the filenames into the
date ranges according to the convention used in file naming (note that there is an
additional constraint that selects 1 January when the start date ? 16 days exceeds
the beginning of the year):

UPDATE env_data.ndvi_modis

SET acquisition_range = daterange(

  (substring(filename FROM 12 FOR 4) || '-' || 

    substring(filename FROM 17 FOR 2) || '-' || 

    substring(filename FROM 20 FOR 2))::date,

  LEAST((substring(filename FROM 12 FOR 4) || '-' || 

      substring(filename FROM 17 FOR 2) || '-' || 

      substring(filename FROM 20 FOR 2))::date + 16,

    (substring(filename FROM 12 FOR 4)::integer + 1  

      || '01')::date)); || '-' || '01' || '-'

As for any type of column, if the table contains a large number of rows
(e.g. [10,000), querying based on the acquisition_range will be faster if you first
index it (you can do it even if the table is not that big, as the PostgreSQL planner
will determine whether the query will be faster by using the index or not):

CREATE INDEX ndvi_modis_acquisition_range_idx 

ON env_data.ndvi_modis (acquisition_range);

Now, each tile (and therefore each pixel) has a spatial and a temporal component
and thus can be queried according to both criteria. For instance, these are the 10 first
tiles corresponding to 1 March 2008, using the ‘@[’ operator (‘contains’). Note
that this is a leap year so that the corresponding period ends on 5 March:

SELECT rid, filename, acquisition_range

FROM env_data.ndvi_modis

WHERE acquisition_range @> '2008-03-01'::date

LIMIT 10;

 rid  |         filename          |    acquisition_range    

------+---------------------------+-------------------------

 3889 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3890 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3891 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3892 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3893 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3894 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3895 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3896 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3897 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3898 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)
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Based on this, you can now create a trigger and its associated function to auto-
matically create the appropriate date range during the NDVI data import. Note that
the ndvi_acquisition_range_update function will be activated before an NDVI tile is
loaded, so that the transaction is aborted if, for any reason, the acquisition_range
cannot be computed, and only valid rows are inserted into the ndvi_modis table:

CREATE OR REPLACE FUNCTION tools.ndvi_acquisition_range_update()

RETURNS trigger AS

$BODY$

BEGIN

  NEW.acquisition_range = daterange(

    (substring(NEW.filename FROM 12 FOR 4) || '-' || 

      substring(NEW.filename FROM 17 FOR 2) || '-' || 

      substring(NEW.filename FROM 20 FOR 2))::date,

    LEAST((substring(NEW.filename FROM 12 FOR 4) || '-' || 

        substring(NEW.filename FROM 17 FOR 2) || '-' || 

        substring(NEW.filename FROM 20 FOR 2))::date + 16,

      (substring(NEW.filename FROM 12 FOR 4)::integer + 1 

        || '-' || '01' || '-' || '01')::date));
RETURN NEW;

END;

$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.ndvi_acquisition_range_update() 

IS 'This function is raised whenever a new record is inserted into the MODIS 

NDVI time series table in order to define the date range. The 

acquisition_range value is derived from the original filename (that has the 

structure MODIS_NDVI_YYYY_MM_DD.tif)';

CREATE TRIGGER update_ndvi_acquisition_range

BEFORE INSERT ON env_data.ndvi_modis

  FOR EACH ROW EXECUTE PROCEDURE tools.ndvi_acquisition_range_update();

Every time you add new NDVI rasters, the acquisition_range will then be
updated appropriately. At this stage, your database contains all environmental data
proposed for the database in this book and should look like Fig. 7.2 (using the DB
Manager in QGIS).

Intersection of Locations and NDVI Rasters

To intersect a GPS position with this kind of data set, both temporal and spatial
criteria must be defined. In the next example, you retrieve the MODIS NDVI value
at point (11, 46) using the ST_Value PostGIS SQL function and for the whole year
2005 with the ‘&&’ operator (‘overlap’):

106 M. Basille et al.



SELECT

  rid,

  acquisition_range,

  ST_Value(rast, ST_SetSRID(ST_MakePoint(11, 46), 4326)) / 10000     AS ndvi

FROM env_data.ndvi_modis

WHERE ST_Intersects(ST_SetSRID(ST_MakePoint(11, 46), 4326), rast)

  AND acquisition_range && '[2005-01-01,2005-12-31]'::daterange

ORDER BY acquisition_range;

The result gives you the complete NDVI profile at this location for the year 2005:

 rid  |    acquisition_range    |  ndvi  

------+-------------------------+--------

   31 | [2005-01-01,2005-01-17) | 0.7047

   85 | [2005-01-17,2005-02-02) | 0.6397

  139 | [2005-02-02,2005-02-18) | 0.5974

  193 | [2005-02-18,2005-03-06) | 0.5645

  247 | [2005-03-06,2005-03-22) | 0.5745

  301 | [2005-03-22,2005-04-07) | 0.6076

  355 | [2005-04-07,2005-04-23) |  0.649

  409 | [2005-04-23,2005-05-09) | 0.8086

  463 | [2005-05-09,2005-05-25) | 0.8511

  517 | [2005-05-25,2005-06-10) | 0.8935

  571 | [2005-06-10,2005-06-26) | 0.8935

  625 | [2005-06-26,2005-07-12) | 0.8951

  679 | [2005-07-12,2005-07-28) | 0.8979

  733 | [2005-07-28,2005-08-13) | 0.9006

  787 | [2005-08-13,2005-08-29) |  0.907

  841 | [2005-08-29,2005-09-14) | 0.8682

  895 | [2005-09-14,2005-09-30) | 0.8441

  949 | [2005-09-30,2005-10-16) | 0.7556

 1003 | [2005-10-16,2005-11-01) | 0.6895

 1057 | [2005-11-01,2005-11-17) | 0.6979

 1111 | [2005-11-17,2005-12-03) | 0.7291

 1165 | [2005-12-03,2005-12-19) | 0.7778

 1219 | [2005-12-19,2006-01-01) | 0.9654

In Fig. 7.3, the NDVI variation for the year is displayed in graphical format
(screenshot taken from QGIS).

You can now retrieve NDVI values at coordinates from real animals:

SELECT

  animals_id AS ani_id,

  ST_X(geom) AS x,

  ST_Y(geom) AS y,

  acquisition_time, 

  ST_Value(rast, geom) / 10000 AS ndvi

FROM main.gps_data_animals, env_data.ndvi_modis

WHERE ST_Intersects(geom, rast)

  AND acquisition_range @> acquisition_time::date
ORDER BY ani_id, acquisition_time

LIMIT 10;
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Fig. 7.3 Example of complete NDVI profile for the year 2005 in a pixel in the study area.
Remember that NDVI values have been multiplied by 10,000

Fig. 7.2 Summary of the different environmental layers using the DB Manager in QGIS,
showing the type of data in the database (lines, polygons, raster or simple tables)
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 ani_id |   x    |   y    |    acquisition_time    |  ndvi  

--------+--------+--------+------------------------+--------

      1 | 11.044 | 46.011 | 2005-10-18 16:00:54-04 | 0.5426

      1 | 11.045 | 46.012 | 2005-10-18 20:01:23-04 | 0.5426

      1 | 11.045 | 46.008 | 2005-10-19 00:02:22-04 | 0.6566

      1 | 11.046 | 46.006 | 2005-10-19 04:03:08-04 | 0.5839

      1 | 11.043 | 46.010 | 2005-10-20 16:00:53-04 | 0.5528

      1 | 11.042 | 46.011 | 2005-10-20 20:00:48-04 | 0.5528

      1 | 11.041 | 46.010 | 2005-10-21 00:00:53-04 | 0.5429

      1 | 11.044 | 46.007 | 2005-10-21 04:01:42-04 | 0.6566

      1 | 11.046 | 46.007 | 2005-10-21 12:01:16-04 | 0.6566

      1 | 11.038 | 46.009 | 2005-10-21 16:01:23-04 | 0.5252

Now, as an example of the capabilities of PostGIS, let us try to retrieve NDVI
values in animal home ranges during a whole season. In habitat selection studies,
the habitat used by an individual is generally compared to the habitat that is
considered available to the individual. In this example, we assume that the convex
polygon encompassing all locations of the winter 2005–2006 defines the area
available during this season. In contrast, the exact locations determine what was
used by the animals. You will then, for each animal monitored during the winter
2005–2006, compute the average NDVI value at all locations and the average
NDVI value in the area covered during the same season. The following query uses
the WITH9 syntax, which allows you to break down a seemingly complex query: in
this case, you first compute the convex polygons during winter (in mcp), then
extract the NDVI values in these polygons (in ndvi_winter_mcp), and then extract
NDVI values at the GPS locations (in ndvi_winter_locs). Finally, in the last part of
the query, you just display the relevant information:

WITH

  mcp AS (

    SELECT 

      animals_id,

      min(acquisition_time) AS start_time,

      max(acquisition_time) AS end_time,

      ST_ConvexHull(ST_Collect(geom)) AS geom

    FROM main.gps_data_animals

    WHERE acquisition_time >= '2005-12-21'::date 

      AND acquisition_time < '2006-03-21'::date

    GROUP BY animals_id),

  ndvi_winter_mcp AS (

    SELECT 

      animals_id, 

      start_time, 

      end_time, 

      ST_SummaryStats(ST_Clip(ST_Union(rast), geom)) AS ss, 

9 http://www.postgresql.org/docs/9.2/static/queries-with.html.
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  avg((m.ss).mean) / 10000 AS mean_mcp,  l.mean AS mean_loc

FROM ndvi_winter_mcp AS m, ndvi_winter_locs AS l

WHERE m.animals_id = l.animals_id

GROUP BY m.animals_id, m.start_time, m.end_time, l.mean

ORDER BY m.animals_id;

      acquisition_range
    FROM mcp, env_data.ndvi_modis

    WHERE ST_Intersects(geom, rast) 

      AND lower(acquisition_range) >= '2005-12-21'::date 

      AND lower(acquisition_range) < '2006-03-21'::date

    GROUP BY animals_id, start_time, end_time, geom,
      acquisition_range),
  ndvi_winter_locs AS (

    SELECT

      animals_id,

      avg(ST_Value(rast, geom)) / 10000 AS mean

    FROM main.gps_data_animals, env_data.ndvi_modis

    WHERE acquisition_time >= '2005-12-21'::date 

      AND acquisition_time < '2006-03-21'::date

      AND ST_Intersects(geom, rast)

      AND acquisition_range @> acquisition_time::date

    GROUP BY animals_id)

SELECT

  m.animals_id AS id,

  m.start_time::date,

  m.end_time::date, 

Note that this complex query takes less than one second! The results indicate
that three out of four roe deer actually use greater NDVI values in winter than
generally available to them:

 id | start_time |  end_time  | mean_mcp | mean_loc 

----+------------+------------+----------+----------

  1 | 2005-12-21 | 2006-03-20 |    0.424 |    0.454

  2 | 2005-12-21 | 2006-03-20 |    0.276 |    0.333

  3 | 2005-12-21 | 2006-03-20 |    0.436 |    0.452

  4 | 2005-12-21 | 2006-03-20 |    0.538 |    0.510

Automating the Intersection

The last step is now to automate the intersection of the GPS locations and the
NDVI data set. The approach is similar to the automatic intersection with other
environmental layers (e.g. elevation or land cover) described in Chap. 6; however,
the dynamic nature of the NDVI time series makes it slightly more complex. In the
case of near real-time monitoring, you will generally acquire GPS data before the
NDVI rasters are available. As a consequence, two automated procedures are
necessary to update the table main.gps_data_animals: one after the import of new
GPS locations and one after the import of new NDVI data.
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First of all, you need a new column in the gps_data_animals table to store the
NDVI values:

ALTER TABLE main.gps_data_animals 

ADD COLUMN ndvi_modis integer;

Now, let us first update this column manually for those locations that actually
correspond to an NDVI tile in the database:

UPDATE

  main.gps_data_animals

SET

  ndvi_modis = ST_Value(rast, geom)

FROM

  env_data.ndvi_modis 

WHERE ST_Intersects(geom, rast)  

  AND acquisition_range @> 

  acquisition_time::date 

  AND gps_validity_code = 1 AND

  ndvi_modis IS NULL;

You can verify that the fields are updated:

SELECT

  gps_data_animals_id AS id, acquisition_time, 

  ndvi_modis / 10000.0 AS ndvi

FROM

  main.gps_data_animals 

WHERE

  geom IS NOT NULL

ORDER BY

  acquisition_time

LIMIT 10;

The result is the following:

  id   |    acquisition_time    | ndvi  

-------+------------------------+-------

 39212 | 2005-03-20 11:03:14-05 | 0.447

 39214 | 2005-03-20 19:03:06-05 | 0.505

 39215 | 2005-03-20 23:01:45-05 | 0.505

 39217 | 2005-03-21 07:02:19-05 | 0.431

 39218 | 2005-03-21 11:01:12-05 | 0.431

 39219 | 2005-03-21 15:01:49-05 | 0.480

 39220 | 2005-03-21 19:01:24-05 | 0.480

 39221 | 2005-03-21 23:02:51-05 | 0.480

 39222 | 2005-03-22 03:03:04-05 | 0.541

 39223 | 2005-03-22 07:01:42-05 | 0.541
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Now, the last, more complicated step, is to use triggers to automate the process.
Exactly as in Chap. 6, you need to extend the trigger function new_gps_data_
animals that will be automatically triggered every time you add new GPS locations
to the database:

    LIMIT 1);

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

  thegeom geometry;

  thedate date;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

  thegeom = ST_SetSRID(ST_MakePoint(NEW.longitude, NEW.latitude), 4326);

  thedate = NEW.acquisition_time::date;

  NEW.geom = thegeom;

  NEW.pro_com = 

    (SELECT pro_com::integer 

    FROM env_data.adm_boundaries 

    WHERE ST_Intersects(geom, thegeom)); 

  NEW.corine_land_cover_code = 

    (SELECT ST_Value(rast,ST_Transform(thegeom, 3035)) 

    FROM env_data.corine_land_cover 

    WHERE ST_Intersects(ST_Transform(thegeom, 3035), rast));

  NEW.altitude_srtm = 

    (SELECT ST_Value(rast, thegeom) 

    FROM env_data.srtm_dem 

    WHERE ST_Intersects(thegeom, rast));

  NEW.station_id = 

    (SELECT station_id::integer 

    FROM env_data.meteo_stations 

    ORDER BY ST_Distance_Spheroid(thegeom, geom, 'SPHEROID["WGS 84",

6378137,298.257223563]')

  NEW.roads_dist = 

    (SELECT ST_Distance(thegeom::geography, geom::geography)::integer 

    FROM env_data.roads 

    ORDER BY ST_distance(thegeom::geography, geom::geography) 

    LIMIT 1);

  NEW.ndvi_modis = 

    (SELECT ST_Value(rast, thegeom)

    FROM env_data.ndvi_modis 

    WHERE ST_Intersects(thegeom, rast)

      AND acquisition_range @> thedate);

  END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals() 

IS 'When called by the trigger insert_gps_positions (raised whenever a new 

position is uploaded into gps_data_animals) this function gets the longitude 

and latitude values and sets the geometry field accordingly, computing a set 

of derived environmental information calculated intersecting or relating the 

position with the environmental ancillary layers.';
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However, note that the update process will be limited by the availability of
NDVI data at the time of the GPS data import (NDVI data are generally available
two weeks after the period considered, which might then be later than the GPS data
import). In order to have a complete database, you thus also need to update the
table when new NDVI data are added. You can do it by running the UPDATE
query every time new images are imported or by creating another trigger function
that will automatically update the GPS locations that correspond to the NDVI
temporal range in main.gps_data_animals. Here is the trigger function:

CREATE OR REPLACE FUNCTION tools.ndvi_intersection_update()

RETURNS trigger AS

$BODY$

BEGIN

  UPDATE main.gps_data_animals

  SET ndvi_modis = 

    (SELECT ST_Value(NEW.rast, geom)

      FROM env_data.ndvi_modis 

      WHERE ST_Intersects(geom, NEW.rast)

AND NEW.acquisition_range @> NEW.acquisition_time::date)

  WHERE ST_Intersects(geom, NEW.rast)

   AND NEW.acquisition_range @> acquisition_time::date

   AND ndvi.modis IS NULL;
END;

$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.ndvi_intersection_update ()

IS 'When new NDVI data are added, the ndvi_modis field of 

main.gps_data_animals is updated.';

The functions will be activated each time new data are loaded into
env_data.ndvi_modis. The function ndvi_intersection_update will be activated
after an NDVI tile is loaded, because we want the final version of the NDVI tiles
before propagating the updates to other tables. Here is the trigger to achieve this:

CREATE TRIGGER update_ndvi_intersection

AFTER INSERT ON env_data.ndvi_modis

  FOR EACH ROW EXECUTE PROCEDURE tools.ndvi_intersection_update();

From now on, every time you collect NDVI data and feed them into the
database using raster2pgsql, the magic will happen!
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Chapter 8
Data Quality: Detection and Management
of Outliers

Ferdinando Urbano, Mathieu Basille and Francesca Cagnacci

Abstract Tracking data can potentially be affected by a large set of errors in
different steps of data acquisition and processing. Erroneous data can heavily affect
analysis, leading to biased inference and misleading wildlife management/
conservation suggestions. Data quality assessment is therefore a key step in data
management. In this chapter, we especially deal with biased locations, or ‘outliers’.
While in some cases incorrect data are evident, in many situations, it is not possible
to clearly identify locations as outliers because although they are suspicious
(e.g. long distances covered by animals in a short time or repeated extreme values),
they might still be correct, leaving a margin of uncertainty. In this chapter, different
potential errors are identified and a general approach to managing outliers is
proposed that tags records rather than deleting them. According to this approach,
practical methods to find and mark errors are illustrated on the database created in
Chaps. 2, 3, 4, 5, 6 and 7.
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Introduction

Tracking data can potentially be affected by a large set of errors in different steps
of data acquisition and processing, involving malfunctioning or poor performance
of the sensor device that may affect measurement, acquisition and recording;
failure of transmission hardware or lack of transmission due to network or physical
conditions; and errors in data handling and processing. Erroneous location data can
substantially affect analysis related to ecological or conservation questions, thus
leading to biased inference and misleading wildlife management/conservation
conclusions. The nature of positioning error is variable (see Special Topic), but
whatever the source and type of errors, they have to be taken into account. Indeed,
data quality assessment is a key step in data management.

In this chapter, we especially deal with biased locations or ‘outliers’. While in
some cases incorrect data are evident, in many situations it is not possible to
clearly identify locations as outliers because although they are suspicious (e.g.
long distances covered by animals in a short time or repeated extreme values), they
might still be correct, leaving a margin of uncertainty. For example, it is evident
from Fig. 8.1 that there are at least three points of the GPS data set with clearly
incorrect coordinates.

In the exercise presented in this chapter, different potential errors are identified.
A general approach to managing outliers is proposed that tags records rather than
deleting them. According to this approach, practical methods to find and mark
errors are illustrated.

Review of Errors that Can Affect GPS Tracking Data

The following are some of the main errors that can potentially affect data acquired
from GPS sensors (points 1 to 5), and that can be classified as GPS location bias,
i.e. due to a malfunctioning of the GPS sensor that generates locations with low
accuracy (points 6 to 9):

1. Missing records. This means that no information (not even the acquisition time)
has been received from the sensor, although it was planned by the acquisition
schedule.

2. Records with missing coordinates. In this case, there is a GPS failure probably
due to bad GPS coverage or canopy closure. In this case, the information on
acquisition time is still valid, even if no coordinates are provided. This cor-
responds to ‘fix rate’ error (see Special Topic).

3. Multiple records with the same acquisition time. This has no physical meaning
and is a clear error. The main problem here is to decide which record (if any) is
correct.

4. Records that contain different values when acquired using different data transfer
procedures (e.g. direct download from the sensor through a cable vs. data
transmission through the GSM network).
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5. Records erroneously attributed to an animal because of inexact deployment
information. This case is frequent and is usually due to an imprecise definition
of the deployment time range of the sensor on the animal. A typical result is
locations in the scientist’s office followed by a trajectory along the road to the
point of capture.

6. Records located outside the study area. In this case, coordinates are incorrect
(probably due to malfunctioning of the GPS sensor) and outliers appear very far
from the other (valid) locations. This is a special case of impossible movements
where the erroneous location is detected even with a simple visual exploration.
This can be considered an extreme case of location bias, in terms of accuracy
(see Special Topic).

7. Records located in impossible places. This might include (depending on species)
sea, lakes or otherwise inaccessible places. Again, the error can be attributed to
GPS sensor bias.

8. Records that imply impossible movements (e.g. very long displacements,
requiring movement at a speed impossible for the species). In this case, some
assumptions on the movement model must be made (e.g. maximum speed).

9. Records that imply improbable movements. In this case, although the move-
ment is physically possible according to the threshold defined, the likelihood of
the movement is so low that it raises serious doubts about its reliability. Once
the location is tagged as suspicious, analysts can decide whether it should be
considered in specific analyses.

Fig. 8.1 Visualisation of the GPS data set, where three points are evident erroneous positions
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GPS sensors usually record other ancillary information that can vary according
to vendors and models. Detection of errors in the acquisition of these attributes is
not treated here. Examples are the number of satellites used to estimate the
position, the dilution of precision (DOP), the temperatures as measured by the
sensor associated with the GPS and the altitude estimated by the GPS. Temper-
ature is measured close to the body of the animal, while altitude is not measured on
the geoid but as the distance from the centre of the earth: thus in both cases the
measure is affected by large errors.

Special Topic: Dealing with localisation errors associated with the GPS sensor

A source of uncertainty associated with GPS data is the positioning error of the sensor. GPS
error can be classified as bias (i.e. average distance between the ‘true location’ and the
estimated location, where the average value represents the accuracy while the measure of
dispersion of repeated measures represents the precision) and fix rate, or the proportion of
expected fixes (i.e. those expected according to the schedule of positioning that is pro-
grammed on the GPS unit) compared to the number of fixes actually obtained. Both these
types of errors are related to several factors, including tag brand, orientation, fix interval (e.g.
cold/warm or hot start), and topography and canopy closure. Unfortunately, the relationship
between animals and the latter two factors is the subject of a fundamental branch of spatial
ecology: habitat selection studies. In extreme synthesis, habitat selection models establish a
relationship between the habitat used by animals (estimated by acquired locations) versus
available proportion of habitat (e.g. random locations throughout study area or home range).
Therefore, a habitat-biased proportion of fixes due to instrumental error may hamper the
inferential powers of habitat selection models. A series of solutions have been proposed. For
a comprehensive review see Frair et al. (2010). Among others, a robust methodology is the
use of spatial predictive models for the probability of GPS acquisition, usually based on
dedicated local tests, the so-called Pfix. Data can then be weighted by the inverse of Pfix, so
that positions taken in difficult-to-estimate locations are weighted more. In general, it is
extremely important to account for GPS bias, especially in resource selection models.

A General Approach to the Management of Erroneous
Locations

Once erroneous records are detected, the suggested approach is to keep a copy of
all the information as it comes from the sensors (in gps_data table), and then mark
records affected by each of the possible errors using different tags in the table
where locations are associated with animals (gps_data_animals). Removing data
seems often not so much a problem with GPS data sets, since you probably have
thousands of locations anyway. Although keeping incorrect data as valid could be
much more of a problem and bias further analyses, suspicious locations, if correct,
might be exactly the information needed for a specific analysis (e.g. rutting
excursions). The use of a tag to identify the reliability of each record can solve
these problems. Records should never be deleted from the data set even when they
are completely wrong, for the following reasons:
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• If you detect errors with automatic procedures, it is always a good idea to be
able to manually check the results to be sure that the method performed as
expected, which is not possible if you delete the records.

• If you delete a record, whenever you have to resynchronise your data set with
the original source, you will reintroduce the outlier, particularly for erroneous
locations that cannot be automatically detected.

• A record can have some values that are wrong (e.g. coordinates), but others that
are valid and useful (e.g. timestamp).

• The fact that the record is an outlier is valuable information that you do not want
to lose (e.g. you might want to know the success rate of the sensor according to
the different types of errors).

• It is important to differentiate missing locations (no data from sensor) from data
that were received but erroneous for another reason (incorrect coordinates). As
underlined in the Special Topic, the difference between these two types of error
is substantial.

• It is often difficult to determine unequivocally that a record is wrong, because
this decision is related to assumptions about the species’ biology. If all original
data are kept, criteria to identify outliers can be changed at any time.

• What looks useless in most cases (e.g. records without coordinates) might be
very useful in other studies that were not planned when data were acquired and
screened.

• Repeated erroneous data are a fairly reliable clue that a sensor is not working
properly, and you might use this information to decide whether and when to
replace it.

In the following examples, you will explore the location data set hunting for
possible errors. First, you will create a field in the GPS data table where you can
store a tag associated with each erroneous or suspicious record. Then, you will
define a list of codes, one for each possible type of error. In general, a preliminary
visual exploration of the spatial distribution of the entire set of locations can be
useful for detecting the general spatial patterns of the animals’ movements and
evident outlier locations.

To tag locations as errors or unreliable data, you first create a new field
(sensor_validity_code) in the gps_data_animals table. At the same time, a list of
codes corresponding to all possible errors must be created using a lookup table
gps_validity, linked to the sensor_validity_code field with a foreign key. When an
outlier detection process identifies an error, the record is marked with the corre-
sponding tag code. In the analytical stage, users can decide to exclude all or part of the
records tagged as erroneous. The evident errors (e.g. points outside the study area) can
be automatically marked in the import procedure, while some other detection algo-
rithms are better run by users when required because they imply a long processing
time or might need a fine tuning of the parameters. First, add the new field to the table:

ALTER TABLE main.gps_data_animals 

  ADD COLUMN gps_validity_code integer;
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Now create a table to store the validity codes, create the external key and insert
the admitted values:

CREATE TABLE lu_tables.lu_gps_validity(

  gps_validity_code integer,

  gps_validity_description character varying,

  CONSTRAINT lu_gps_validity_pkey 

    PRIMARY KEY (gps_validity_code));

COMMENT ON TABLE lu_tables.lu_gps_validity

IS 'Look up table for GPS positions validity codes.';

ALTER TABLE main.gps_data_animals

  ADD CONSTRAINT animals_lu_gps_validity 

  FOREIGN KEY (gps_validity_code)

  REFERENCES lu_tables.lu_gps_validity (gps_validity_code)

  MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (0, 'Position with no coordinate');

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (1, 'Valid Position');

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (2, 'Position with a low degree of reliability');

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (11, 'Position wrong: out of the study area');

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (12, 'Position wrong: impossible spike');

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (13, 'Position wrong: impossible place (e.g. lake or sea)');

INSERT INTO lu_tables.lu_gps_validity 

  VALUES (21, 'Position wrong: duplicated timestamp');

Some errors are already contained in the five GPS data sets previously loaded
into the database, but a new (fake) data set can be imported to verify a wider range
of errors. To do this, insert a new animal, a new GPS sensor, a new deployment
record and finally import the data from the .csv file provided in the test data set.

Insert a new animal, called ‘test’:

INSERT INTO main.animals

  (animals_id, animals_code, name, sex, age_class_code, species_code, note) 

  VALUES (6, 'test', 'test-ina', 'm', 3, 1, 'This is a fake animal, used to 

test outliers detection processes.');

Insert a new sensor, called ‘GSM_test’:

INSERT INTO main.gps_sensors 

  (gps_sensors_id, gps_sensors_code, purchase_date, frequency, vendor, model, 

 sim) 

  VALUES (6, 'GSM_test', '2005-01-01', 1000, 'TNT', 'top', '+391441414');
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Insert the time interval of the deployment of the test sensor on the test animal:

INSERT INTO main.gps_sensors_animals 

  (animals_id, gps_sensors_id, start_time, end_time, notes)

  VALUES (6, 6, '2005-04-04 08:00:00+02', '2005-05-06 02:00:00+02', 'test 

deployment');

The last step is importing the data set from the .csv file:

COPY main.gps_data(

  gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,
ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id, 
ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr, 

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id, 
ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr, 

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, temp, 
easting, northing, remarks)

FROM
  'C:\tracking_db\data\sensors_data\GSM_test.csv' 

    WITH (FORMAT csv, HEADER, DELIMITER ';');

Now you can proceed with outlier detection, having a large set of errors to hunt
for. You can start by assuming that all the GPS positions are correct (value ‘1’):

UPDATE main.gps_data_animals 

  SET gps_validity_code = 1;

Missing Records

You might have a missing record when the device was programmed to acquire the
position but no information (not even the acquisition time) is recorded. In this
case, you can use specific functions (see Chap. 9) to create ‘virtual’ records and, if
needed, compute and interpolate values for the coordinates. The ‘virtual’ records
should be created just in the analytical stage and not stored in the reference data set
(table gps_data_animals).

Records with Missing Coordinates

When the GPS is unable to receive sufficient satellite signal, the record has no
coordinates associated. The rate of GPS failure can vary substantially, mainly
according to sensor quality, terrain morphology and vegetation cover. Missing
coordinates cannot be managed as location bias, but have to be properly treated in
the analytical stage depending on the specific objective, since they result in an
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erroneous ‘fix rate’ (see Special Topic—how to deal with erroneous fix rates is
beyond the scope of this chapter). Technically, they can be filtered from the data set,
or an estimated value can be calculated by interpolating the previous and next GPS
positions. This is a very important issue, since several analytical methods require
regular time intervals. Note that with no longitude/latitude, the spatial attribute (i.e.
the geom field) cannot be created, which makes it easy to identify this type of error.
You can mark all the GPS positions with no coordinates with the code ‘0’:

UPDATE main.gps_data_animals 

  SET gps_validity_code = 0 

  WHERE geom IS NULL;

Multiple Records with the Same Acquisition Time

In some (rare) cases, you might have a repeated acquisition time (from the same
acquisition source). You can detect these errors by grouping your data set by
animal and acquisition time and asking for multiple occurrences. Here is an
example of an SQL query to get this result:

SELECT

  x.gps_data_animals_id, x.animals_id, x.acquisition_time 

FROM

  main.gps_data_animals x, 

  (SELECT animals_id, acquisition_time 

  FROM main.gps_data_animals

  WHERE gps_validity_code = 1

  GROUP BY animals_id, acquisition_time

  HAVING count(animals_id) > 1) a 

WHERE

  a.animals_id = x.animals_id AND 

  a.acquisition_time = x.acquisition_time 

ORDER BY 

  x.animals_id, x.acquisition_time;

This query returns the id of the records with duplicated timestamps (having
count(animals_id) [ 1). In this case, it retrieves two records with the same
acquisition time (‘2005-05-04 22:01:24+00’):

 gps_data_animals_id | animals_id |    acquisition_time    

---------------------+------------+------------------------

               28177 |          6 | 2005-05-05 00:01:24+02

               28176 |          6 | 2005-05-05 00:01:24+02

At this point, the data manager has to decide what to do. You can keep one of the
two (or more) GPS positions with repeated acquisition time, or tag both (all) as
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unreliable. The first possibility would imply a detailed inspection of the locations at
fault, in order to possibly identify (with no guarantee of success) which one is correct.
On the other hand, the second case is more conservative and can be automated as the
user does not have to take any decision that could lead to erroneous conclusions. As
for the other type of errors, a specific gps_validity_code is suggested. Here is an
example:

UPDATE main.gps_data_animals 

  SET gps_validity_code = 21 

  WHERE 

    gps_data_animals_id in 

      (SELECT x.gps_data_animals_id 

      FROM 

        main.gps_data_animals x, 

        (SELECT animals_id, acquisition_time 

        FROM main.gps_data_animals 

        WHERE gps_validity_code = 1 

        GROUP BY animals_id, acquisition_time 

        HAVING count(animals_id) > 1) a 

      WHERE 

        a.animals_id = x.animals_id AND 

        a.acquisition_time = x.acquisition_time);

If you rerun the above query to identify locations with the same timestamps, it
will now return an empty output.

Records with Different Values When Acquired Using
Different Acquisition Sources

It may happen that data are obtained from sensors through different data transfer
processes. A typical example is data received in near real time through a GSM
network and later downloaded directly via cable from the sensor when it is phys-
ically removed from the animal. If the information is different, it probably means
that an error occurred during data transmission. In this case, it is necessary to define
a hierarchy of reliability for the different sources (e.g. data obtained via cable
download are better than those obtained via the GSM network). This information
should be stored when data are imported into the database into gps_data table.
Then, when valid data are to be identified, the ‘best’ code should be selected,
paying attention to properly synchronise gps_data and gps_data _animals. Which
specific tools will be used to manage different acquisition sources largely depends
on the number of sensors, frequency of updates and desired level of automation of
the process. No specific examples are provided here.
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Records Erroneously Attributed to Animals

This situation usually occurs for the first and/or last GPS positions because the
start and end date and time of the sensor deployment are not correct. The con-
sequence is that the movements of the sensor before and after the deployment are
attributed to the animal. It may be difficult to trap this error with automatic
methods because incorrect records can be organised in spatial clusters with a
(theoretically) meaningful pattern (the set of erroneous GPS positions has a high
degree of spatial autocorrelation as it contains ‘real’ GPS positions of ‘real’
movements, although they are not animal’s movements). It is important to stress
that this kind of pattern, e.g. GPS positions repeated in a small area where the
sensor is stored before the deployment (e.g. the researcher’s office) and then a long
movement to where the sensor is deployed on the animal, can closely resemble the
sequence of GPS positions for animals just released in a new area.

To identify this type of error, the suggested approach is to visually explore the
data set in a GIS desktop interface. Once you detect this situation, you should
check the source of information on the date of capture and sensor deployment and,
if needed, correct the information in the table gps_sensors_animals (this will
automatically update the table gps_data_animals). In general, a visual exploration
of your GPS data sets, using as representation both points and trajectories, is
always useful to help identify unusual spatial patterns. For this kind of error, no
gps_validity_code are used because, once detected, they are automatically
excluded from the table gps_data_animals.

The best method to avoid this type of error is to get accurate and complete
information about the deployment of the sensors on the animals, for example,
verifying not just the starting and ending date, but also the time of the day and time
zone.

Special attention must be paid to the end of the deployment. For active
deployments, no end is defined. In this case, the procedure can make use of the
function now() to define a dynamic upper limit when checking the timestamp of
recorded locations (i.e. the record is not valid if acquisition_time [ now()).

The next types of error can all be connected to GPS sensor malfunctioning or
poor performance, leading to biased locations with low accuracy, or a true ‘out-
lier’, i.e. coordinates that are distant or very distant from the ‘true location’.

Records Located Outside the Study Area

When the error of coordinates is due to reasons not related to general GPS
accuracy (which will almost always be within a few dozen metres), the incorrect
positions are often quite evident as they are usually very far from the others
(a typical example is the inversion of longitude and latitude). At the same time, this
error is random, so erroneous GPS positions are hardly grouped in spatial clusters.
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When a study area has defined limits (e.g. fencing or natural boundaries), the
simplest way to identify incorrect GPS positions is to run a query that looks for
those that are located outside these boundaries (optionally, with an extra buffer
area). Though animals have no constraints to their movements, they are still
limited to a specific area (e.g. an island), so you can delineate a very large
boundary so that at least GPS positions very far outside this area are captured. In
this case, it is better to be conservative and enlarge the study area as much as
possible to exclude all the valid GPS positions. Other, more fine-tuned methods
can be used at a later stage to detect the remaining erroneous GPS positions. This
approach has the risk of tagging correct locations if the boundaries are not properly
set, as the criteria are very subjective. It is important to note that erroneous
locations will be identified in any case as impossible movements (see next sec-
tions). This step can be useful in cases where you don’t have access to movement
properties (e.g. VHF data with only one location a week). Another element to keep
in mind, especially in the case of automatic procedures to be run in real time on the
data flow, is that very complex geometries (e.g. a coastline drawn at high spatial
resolution) can slow down the intersection queries. In this case, you can exploit the
power of spatial indexes and/or simplify your geometry, which can be done using
the PostGIS commands ST_Simplify1 and ST_SimplifyPreserveTopology2. Here is
an example of an SQL query that detects outliers outside the boundaries of the
study_area layer, returning the IDs of outlying records:

SELECT

  gps_data_animals_id 

FROM

  main.gps_data_animals 

LEFT JOIN 

  env_data.study_area 

ON

  ST_Intersects(gps_data_animals.geom, study_area.geom) 

WHERE

  study_area IS NULL AND 

  gps_data_animals.geom IS NOT NULL;

There result is the list of the six GPS positions that fall outside the study area:

 gps_data_animals_id 

---------------------

               15810

               27945

               28094

               28111

               20540

               23030

1 http://www.postgis.org/docs/ST_Simplify.html.
2 http://www.postgis.org/docs/ST_SimplifyPreserveTopology.html.
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The same query could be made using ST_Disjoint, i.e. the opposite of
ST_Intersects (note, however, that the former does not work on multiple poly-
gons). Here is an example where a small buffer (ST_Buffer) is added (using
Common Table Expressions3):

WITH area_buffer_simplified AS 

  (SELECT 

    ST_Simplify(

      ST_Buffer(study_area.geom, 0.1), 0.1) AS geom 

  FROM 

    env_data.study_area)

SELECT

  animals_id, gps_data_animals_id 

FROM

  main.gps_data_animals 

WHERE

  ST_Disjoint(

    gps_data_animals.geom,     (SELECT geom FROM area_buffer_simplified));

The use of the syntax with WITH is optional, but in some cases can be a useful
way to simplify your queries, and it might be interesting for you to know how it
works.

In this case, just five outliers are detected because one of the previous six is
very close to the boundaries of the study area:

 animals_id | gps_data_animals_id 

------------+---------------------

          3 |               15810

          6 |               27945

          6 |               28111

          1 |               20540

          5 |               23030

This GPS position deserves a more accurate analysis to determine whether it is
really an outlier. Now tag the other five GPS positions as erroneous (validity code
‘11’, i.e. ‘Position wrong: out of the study area’):

UPDATE main.gps_data_animals 

  SET gps_validity_code = 11 

  WHERE 

    gps_data_animals_id in 

    (SELECT gps_data_animals_id 

    FROM main.gps_data_animals, env_data.study_area 

    WHERE ST_Disjoint(

      gps_data_animals.geom,

      ST_Simplify(ST_Buffer(study_area.geom, 0.1), 0.1)));

3 http://www.postgresql.org/docs/9.2/static/queries-with.html.
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Using a simpler approach, another quick way to detect these errors is to order
GPS positions according to their longitude and latitude coordinates. The outliers
are immediately visible as their values are completely different from the others and
they pop up at the beginning of the list. An example of this kind of query is:

SELECT

  gps_data_animals_id, ST_X(geom) 

FROM

  main.gps_data_animals 

WHERE

  geom IS NOT NULL 

ORDER BY 

  ST_X(geom) 

LIMIT 10;

The resulting data set is limited to ten records, as just a few GPS positions are
expected to be affected by this type of error. From the result of the query, it is clear
that the first two locations are outliers, while the third is a strong candidate:

 gps_data_animals_id |    st_x    

---------------------+------------

               15810 |  5.0300699

               23030 | 10.7061637

               27948 | 10.9506126

               17836 | 10.9872122

               17835 | 10.9875451

               17837 | 10.9876942

               17609 | 10.9884574

               18098 | 10.9898182

               18020 | 10.9899461

               20154 | 10.9900441

The same query can then be repeated in reverse order, and then doing the same
for latitude:

SELECT gps_data_animals_id, ST_X(geom) 

FROM main.gps_data_animals 

WHERE geom IS NOT NULL 

ORDER BY ST_X(geom) 

DESC LIMIT 10;

SELECT gps_data_animals_id, ST_Y(geom) 

FROM main.gps_data_animals 

WHERE geom IS NOT NULL 

ORDER BY ST_Y(geom) 

LIMIT 10;

SELECT gps_data_animals_id, ST_Y(geom) 

FROM main.gps_data_animals 

WHERE geom IS NOT NULL 

ORDER BY ST_Y(geom) DESC 

LIMIT 10;
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Records Located in Impossible Places

When there are areas not accessible to animals because of physical constraints
(e.g. fencing, natural barriers) or environments not compatible with the studied
species (lakes and sea, or land, according to the species), you can detect GPS
positions that are located in those areas where it is impossible for the animal to be.
Therefore, the decision whether or not to mark the locations as incorrect is based
on ecological assumptions (i.e. non-habitat). In this example, you mark, using
validity code ‘13’, all the GPS positions that fall inside a water body according to
Corine land cover layer (Corine codes ‘40’, ‘41’, ‘42’, ‘43’ and ‘44’):

UPDATE main.gps_data_animals 

  SET gps_validity_code = 13 

  FROM 

    env_data.corine_land_cover 

  WHERE

    ST_Intersects(

      corine_land_cover.rast,

      ST_Transform(gps_data_animals.geom, 3035)) AND

    ST_Value(

      corine_land_cover.rast, 

      ST_Transform(gps_data_animals.geom, 3035)) 

      in (40,41,42,43,44) AND 

    gps_validity_code = 1 AND 

    ST_Value(

      corine_land_cover.rast, 

      ST_Transform(gps_data_animals.geom, 3035)) != 'NaN';

For this kind of control, you must also consider that the result depends on the
accuracy of the land cover layer and of the GPS positions. Thus, at a minimum, a
further visual check in a GIS environment is recommended.

Records that Would Imply Impossible Movements

To detect records with incorrect coordinates that cannot be identified using clear
boundaries, such as the study area or land cover type, a more sophisticated outlier
filtering procedure must be applied. To do so, some kind of assumption about the
animals’ movement model has to be made, for example, a speed limit. It is
important to remember that animal movements can be modelled in different ways
at different temporal scales: an average speed that is impossible over a period of 4
h could be perfectly feasible for movements in a shorter time (e.g. 5 minutes).
Which algorithm to apply depends largely on the species and the environment in
which the animal is moving and the duty cycle of the tag. In general, PostgreSQL
window functions can help.
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Special Topic: PostgreSQL window functions

A window function4 performs a calculation across a set of rows that are somehow related
to the current row. This is similar to an aggregate function, but unlike regular aggregate
functions, window functions do not group rows into a single output row, hence they are
still able to access more than just the current row of the query result. In particular, it
enables you to access previous and next rows (according to a user-defined ordering cri-
teria) while calculating values for the current row. This is very useful, as a tracking data
set has a predetermined temporal order, where many properties (e.g. geometric parameters
of the trajectory, such as turning angle and speed) involve a sequence of GPS positions. It
is important to remember that the order of records in a database is irrelevant. The ordering
criteria must be set in the query that retrieves data.

In the next example, you will make use of window functions to convert the
series of locations into steps (i.e. the straight-line segment connecting two suc-
cessive locations), and compute geometric characteristics of each step: the time
interval, the step length, and the speed during the step as the ratio of the previous
two. It is important to note that while a step is the movement between two points,
in many cases, its attributes are associated with the starting or the ending point. In
this book, we use the ending point as reference. In some software, particularly the
adehabitat5 package for R (see Chap. 10), the step is associated with the starting
point. If needed, the queries and functions presented in this book can be modified
to follow this convention.

SELECT

  animals_id AS id, 

  acquisition_time, 

  LEAD(acquisition_time,-1) 

    OVER (

      PARTITION BY animals_id 

      ORDER BY acquisition_time) AS acquisition_time_1,

  (EXTRACT(epoch FROM acquisition_time) - 

  LEAD(EXTRACT(epoch FROM acquisition_time), -1) 

    OVER (

      PARTITION BY animals_id 

      ORDER BY acquisition_time))::integer AS deltat,

  (ST_Distance_Spheroid(

    geom, 

    LEAD(geom, -1) 

      OVER (

        PARTITION BY animals_id 

        ORDER BY acquisition_time), 

4 http://www.postgresql.org/docs/9.2/static/tutorial-window.html.
5 http://cran.r-project.org/web/packages/adehabitat/index.html.
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    'SPHEROID["WGS 84",6378137,298.257223563]'))::integer AS dist,

  (ST_Distance_Spheroid(

    geom, 

    LEAD(geom, -1) 

      OVER (

        PARTITION BY animals_id 

        ORDER BY acquisition_time), 

    'SPHEROID["WGS 84",6378137,298.257223563]')/

  ((EXTRACT(epoch FROM acquisition_time) - 

  LEAD(

    EXTRACT(epoch FROM acquisition_time), -1) 

    OVER (

      PARTITION BY animals_id 

      ORDER BY acquisition_time))+1)*60*60)::numeric(8,2) AS speed

FROM main.gps_data_animals 

WHERE gps_validity_code = 1

LIMIT 10;

The result of this query is

 id |    acquisition_time    |   acquisition_time_1   | deltat | dist | speed  

----+------------------------+------------------------+--------+------+--------

  1 | 2005-10-18 22:00:54+02 |                        |        |      |       

  1 | 2005-10-19 02:01:23+02 | 2005-10-18 22:00:54+02 |  14429 |   97 |  24.15

  1 | 2005-10-19 06:02:22+02 | 2005-10-19 02:01:23+02 |  14459 |  430 | 107.08

  1 | 2005-10-19 10:03:08+02 | 2005-10-19 06:02:22+02 |  14446 |  218 |  54.40

  1 | 2005-10-20 22:00:53+02 | 2005-10-19 10:03:08+02 | 129465 |  510 |  14.17

  1 | 2005-10-21 02:00:48+02 | 2005-10-20 22:00:53+02 |  14395 |   97 |  24.22

  1 | 2005-10-21 06:00:53+02 | 2005-10-21 02:00:48+02 |  14405 |   69 |  17.26

  1 | 2005-10-21 10:01:42+02 | 2005-10-21 06:00:53+02 |  14449 |  478 | 119.20

  1 | 2005-10-21 18:01:16+02 | 2005-10-21 10:01:42+02 |  28774 |  150 |  18.77

  1 | 2005-10-21 22:01:23+02 | 2005-10-21 18:01:16+02 |  14407 |  688 | 172.02

As a demonstration of a possible approach to detecting ‘impossible move-
ments’, here is an adapted function that implements the algorithm presented in
Bjorneraas et al. (2010). In the first step, you compute the distance from each GPS
position to the average of the previous and next ten GPS positions, and extract
records that have values bigger than a defined threshold (in this case, arbitrarily set
to 10,000 m):

SELECT gps_data_animals_id 

FROM

  (SELECT 

    gps_data_animals_id, 

    ST_Distance_Spheroid(geom, 

      ST_setsrid(ST_makepoint(

        avg(ST_X(geom)) 

          OVER (
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            PARTITION BY animals_id 

            ORDER BY acquisition_time rows 

              BETWEEN 10 PRECEDING and 10 FOLLOWING), 

        avg(ST_Y(geom)) 

          OVER (

            PARTITION BY animals_id 

            ORDER BY acquisition_time rows 

          BETWEEN 10 PRECEDING and 10 FOLLOWING)), 4326),'SPHEROID["WGS 

     6378137,298.257223563]') AS dist_to_avg 
  FROM 

    main.gps_data_animals 

  WHERE 

    gps_validity_code = 1) a 

WHERE

  dist_to_avg > 10000;

84",

The result is the list of IDs of all the GPS positions that match the defined
conditions (and thus can be considered outliers). In this case, just one record is
returned:

 gps_data_animals_id 

---------------------

               27948

This code can be improved in many ways. For example, it is possible to con-
sider the median instead of the average. It is also possible to take into consider-
ation that the first and last ten GPS positions have incomplete windows of 10 ? 10
GPS positions. Moreover, this method works fine for GPS positions at regular time
intervals, but in the case of a change in acquisition schedule might lead to
unexpected results. In these cases, you should create a query with a temporal
window instead of a fixed number of GPS positions.

In the second step, the angle and speed based on the previous and next GPS
position are calculated (both the previous and next location are used to determine
whether the location under consideration shows a spike in speed or turning angle),
and then GPS positions below the defined thresholds (in this case, arbitrarily set as
cosine of the relative angle \-0.99 and speed [2,500 m per hour) are extracted:

SELECT

  gps_data_animals_id 

FROM

  (SELECT gps_data_animals_id, 

  ST_Distance_Spheroid(

    geom, 

'SPHEROID["WGS 84",6378137,298.257223563]') /

    (EXTRACT(epoch FROM acquisition_time) - EXTRACT (epoch FROM 

(lag(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY 

    LAG(geom, 1) OVER (PARTITION BY animals_id ORDER BY acquisition_time), 
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acquisition_time))))*3600 AS speed_FROM,

  ST_Distance_Spheroid(

geom,LEAD(geom, 1) OVER (PARTITION BY animals_id ORDER BY acquisition_time),  

'SPHEROID["WGS 84",6378137,298.257223563]') /

    ( - EXTRACT(epoch FROM acquisition_time) + EXTRACT (epoch FROM 

(lead(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))))*3600 AS speed_to,

  cos(ST_Azimuth((

    LAG(geom, 1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))::geography,

    geom::geography) - 

  ST_Azimuth(

    geom::geography, 

    (LEAD(geom, 1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))::geography)) AS rel_angle

  FROM main.gps_data_animals 

  WHERE gps_validity_code = 1) a 

WHERE

  rel_angle < -0.99 AND 

  speed_from > 2500 AND 

  speed_to > 2500;

    

The result returns the list of IDs of all the GPS positions that match the defined
conditions. The same record detected in the previous query is returned. These
examples can be used as templates to create other filtering procedures based on the
temporal sequence of GPS positions and the users’ defined movement constraints.

It is important to remember that this kind of method is based on the analysis of
the sequence of GPS positions, and therefore results might change when new GPS
positions are uploaded. Moreover, it is not possible to run them in real time
because the calculation requires a subsequent GPS position. The result is that they
have to be run in a specific procedure unlinked with the (near) real-time import
procedure.

Now you run this process on your data sets to mark the detected outliers
(validity code ‘12’):

UPDATE
  main.gps_data_animals 
SET
  gps_validity_code = 12 
WHERE
  gps_data_animals_id in
    (SELECT gps_data_animals_id 
    FROM 
      (SELECT 

132 F. Urbano et al.



gps_data_animals_id, 
ST_Distance_Spheroid(geom, lag(geom, 1) OVER (PARTITION BY animals_id  
ORDER BY acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') / 

(EXTRACT(epoch FROM acquisition_time) - EXTRACT (epoch FROM 
(lag(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY 
acquisition_time))))*3600 AS speed_from,
ST_Distance_Spheroid(geom, lead(geom, 1) OVER (PARTITION BY animals_id  
order by acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') / 

( - EXTRACT(epoch FROM acquisition_time) + EXTRACT (epoch FROM 
(lead(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY 
acquisition_time))))*3600 AS speed_to,

acquisition_time))::geography, geom::geography) - ST_Azimuth(geom::geography,  
(lead(geom, 1) OVER (PARTITION BY animals_id ORDER BY  
acquisition_time))::geography)) AS rel_angle

FROM main.gps_data_animals 
WHERE gps_validity_code = 1) a 

WHERE 
rel_angle < -0.99 AND 
speed_from > 2500 AND 
speed_to > 2500);

cos(ST_Azimuth((lag(geom, 1) OVER (PARTITION BY animals_id ORDER BY 

Records that Would Imply Improbable Movements

This is similar to the previous type of error, but in this case, the assumption made
in the animals’ movement model cannot completely exclude that the GPS position
is correct (e.g. same methods as before, but with reduced thresholds: cosine of the
relative angle\-0.98 and speed[300 m per hour). These records should be kept as
valid but marked with a specific validity code that can permit users to exclude
them for analysis as appropriate.

UPDATE

  main.gps_data_animals 

SET

  gps_validity_code = 2 

WHERE

  gps_data_animals_id IN 

    (SELECT gps_data_animals_id 

    FROM 

      (SELECT 

        gps_data_animals_id, 

        ST_Distance_Spheroid(geom, lag(geom, 1) OVER (PARTITION BY animals_id  
ORDER BY acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') /

(lag(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))))*3600 AS speed_FROM,

(EXTRACT(epoch FROM acquisition_time) - 

ST_Distance_Spheroid(geom, lead(geom, 1) OVER (PARTITION BY animals_id  

EXTRACT (epoch FROM 

ORDER BY acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') /

(lead(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY 

( - EXTRACT(epoch FROM acquisition_time) + EXTRACT (epoch FROM 
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acquisition_time))))*3600 AS speed_to,

acquisition_time))::geography, geom::geography) -   
(lead(geom, 1) OVER (PARTITION BY animals_id ORDER BY  

acquisition_time))::geography)) AS rel_angle

FROM main.gps_data_animals 

WHERE gps_validity_code = 1) a 

cos(ST_Azimuth((lag(geom, 1) OVER (PARTITION BY animals_id ORDER BY 

WHERE 

 rel_angle < -0.98 AND 

 speed_from > 300 AND 

 speed_to > 300);

ST_Azimuth
::geography,

(geom

The marked GPS positions should then be inspected visually to decide if they
are valid with a direct expert evaluation.

Update of Spatial Views to Exclude Erroneous Locations

As a consequence of the outlier tagging approach illustrated in these pages, views
based on the GPS positions data set should exclude the incorrect points, adding a
gps_validity_code = 1 criteria (corresponding to GPS positions with no errors
and valid geometry) in their WHERE conditions. You can do this for
analysis.view_convex_hulls:

CREATE OR REPLACE VIEW analysis.view_convex_hulls AS 

SELECT

  gps_data_animals.animals_id,

  ST_ConvexHull(ST_Collect(gps_data_animals.geom))::geometry(Polygon,4326) 

FROM

  main.gps_data_animals

WHERE

  gps_data_animals.gps_validity_code = 1

GROUP BY 

  gps_data_animals.animals_id

ORDER BY 

  gps_data_animals.animals_id;

AS geom

You do the same for analysis.view_gps_locations:

CREATE OR REPLACE VIEW analysis.view_gps_locations AS 

SELECT

  gps_data_animals.gps_data_animals_id,

  gps_data_animals.animals_id, 

  animals.name, 
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  timezone('UTC'::text, gps_data_animals.acquisition_time) AS time_utc, 

  animals.sex, 

  lu_age_class.age_class_description, 

  lu_species.species_description, 

  gps_data_animals.geom

FROM

  main.gps_data_animals, 

  main.animals, 

  lu_tables.lu_age_class, 

  lu_tables.lu_species

WHERE

  gps_data_animals.animals_id = animals.animals_id AND

  animals.age_class_code = lu_age_class.age_class_code AND 

  animals.species_code = lu_species.species_code AND 

  gps_data_animals.gps_validity_code = 1;

Now repeat the same operation for analysis.view_trajectories:

CREATE OR REPLACE VIEW analysis.view_trajectories AS 

SELECT

  sel_subquery.animals_id,

  st_MakeLine(sel_subquery.geom)::geometry(LineString,4326) AS geom

FROM

  (SELECT 

    gps_data_animals.animals_id, 

    gps_data_animals.geom, 

    gps_data_animals.acquisition_time

  FROM main.gps_data_animals

  WHERE gps_data_animals.gps_validity_code = 1

  ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time) 

sel_subquery

GROUP BY sel_subquery.animals_id;

If you visualise these layers in a GIS desktop, you can verify that outliers are
now excluded. An example for the MCP is illustrated in Fig. 8.2, which can be
compared with Fig. 5.4.

Update Import Procedure with Detection of Erroneous
Positions

Some of the operations to filter outliers can be integrated into the procedure that
automatically uploads GPS positions into the table gps_data_animals. In this
example, you redefine the tools.new_gps_data_animals() function to tag GPS
positions with no coordinates (gps_validity_code = 0) and GPS positions outside
of the study area (gps_validity_code = 11) as soon as they are imported into the
database. All the others are set as valid (gps_validity_code = 1).
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CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

thegeom geometry;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

  thegeom = ST_setsrid(ST_MakePoint(NEW.longitude, NEW.latitude), 4326);

  NEW.geom =thegeom;

  NEW.gps_validity_code = 1;

    IF NOT EXISTS (SELECT study_area FROM env_data.study_area WHERE 

ST_intersects(ST_Buffer(thegeom,0.1), study_area.geom)) THEN

      NEW.gps_validity_code = 11;

    END IF;

  NEW.pro_com = (SELECT pro_com::integer FROM env_data.adm_boundaries WHERE 

ST_intersects(geom,thegeom));

  NEW.corine_land_cover_code = (SELECT ST_Value(rast, ST_Transform(thegeom, 

3035)) FROM env_data.corine_land_cover WHERE 

ST_Intersects(ST_Transform(thegeom,3035), rast));

  NEW.altitude_srtm = (SELECT ST_Value(rast,thegeom) FROM env_data.srtm_dem 

Fig. 8.2 Minimum convex polygons without outliers
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WHERE ST_intersects(thegeom, rast));

  NEW.station_id = (SELECT station_id::integer FROM env_data.meteo_stations 

ORDER BY ST_Distance_Spheroid(thegeom, geom, 'SPHEROID["WGS 

84",6378137,298.257223563]') LIMIT 1);

  NEW.roads_dist = (SELECT ST_Distance(thegeom::geography, 

geom::geography)::integer FROM env_data.roads ORDER BY 

ST_Distance(thegeom::geography, geom::geography) LIMIT 1);

  NEW.ndvi_modis = (SELECT ST_Value(rast, thegeom)FROM env_data_ts.ndvi_modis

WHERE ST_Intersects(thegeom, rast) 

AND EXTRACT(year FROM acquisition_date) = EXTRACT(year FROM 

NEW.acquisition_time)

AND EXTRACT(month FROM acquisition_date) = EXTRACT(month FROM 

NEW.acquisition_time)

AND EXTRACT(day FROM acquisition_date) = CASE

WHEN EXTRACT(day FROM NEW.acquisition_time) < 11 THEN 1

WHEN EXTRACT(day FROM NEW.acquisition_time) < 21 THEN 11

ELSE 21

END);

ELSE

NEW.gps_validity_code = 0;

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals() 

IS 'When called by the trigger insert_gps_locations (raised whenever a new GPS

position is uploaded into gps_data_animals) this function gets the new 

longitude and latitude values and sets the field geom accordingly, computing a

set of derived environmental information calculated intersection the GPS 

position with the environmental ancillary layers. GPS positions outside the 

study area are tagged as outliers.';

You can test the results by reloading the GPS positions into gps_data_animals
(for example, modifying the gps_sensors_animals table). If you do so, do not
forget to rerun the tool to detect GPS positions in water, impossible spikes, and
duplicated acquisition time, as they are not integrated in the automated upload
procedure.
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Chapter 9
Exploring Tracking Data:
Representations, Methods and Tools
in a Spatial Database

Ferdinando Urbano, Mathieu Basille and Pierre Racine

Abstract The objects of movement ecology studies are animals whose move-
ments are usually sampled at more-or-less regular intervals. This spatiotemporal
sequence of locations is the basic, measured information that is stored in the
database. Starting from this data set, animal movements can be analysed (and
visualised) using a large set of different methods and approaches. These include
(but are not limited to) trajectories, raster surfaces of probability density, points,
(home range) polygons and tabular statistics. Each of these methods is a different
representation of the original data set that takes into account specific aspects of the
animals’ movement. The database must be able to support these multiple repre-
sentations of tracking data. In this chapter, a wide set of methods for implementing
many GPS tracking data representations into a spatial database (i.e. with SQL code
and database functions) are introduced. The code presented is based on the data-
base created in Chaps. 2, 3, 4, 5, 6, 7 and 8.
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Introduction

The objects of movement ecology studies are animals whose movements are
usually sampled at more-or-less regular intervals. This spatiotemporal sequence of
locations is the basic, measured information that is stored in the database. Starting
from this data set, animal movements can be analysed (and visualised) using a
large set of different methods and approaches. These include (but are not limited
to) trajectories, raster surfaces of probability density, points, (home range) poly-
gons and tabular statistics. Each of these methods is a different representation of
the original data set that takes into account specific aspects of the animals’
movement. The database must be able to support these multiple representations of
tracking data.

Although some very specific algorithms (e.g. kernel home range) must be run in
a dedicated GIS or spatial statistics environment (see Chaps. 10 and 11), a number
of analyses can be implemented directly in PostgreSQL/PostGIS. This is possible
due to the large set of existing spatial functions offered by PostGIS and to the
powerful but still simple possibility of combining and customising these tools with
procedural languages for applications specific to wildlife tracking. What makes the
use of databases to process tracking data very attractive is that databases are
specifically designed to perform a massive number of simple operations on large
data sets. In the recent past, biologists typically undertook movement ecology
studies in a ‘data poor, theory rich’ environment, but in recent years this has
changed as a result of advances in data collection techniques. In fact, in the case of
GPS data, for which the sampling interval is usually frequent enough to provide
quite a complete picture of the animal movement, the problem is not to derive new
information using complex algorithms run on limited data sets (as for VHF or
Argos Doppler data), but on the contrary to synthesise the huge amount of
information embedded in existing data in a reduced set of parameters.

Complex models based on advanced statistical tools are still important, but the
focus is on simple operations performed in near real time on a massive data flow.
Databases can support this approach, giving scientists the ability to test their
hypotheses or provide managers the compact set of information that they need to
take their decisions. The database can also be used in connection with GIS and
spatial statistical software. The database can preprocess data in order to provide
more advanced algorithms the data set requires for the analysis. In the exercise for
this chapter, you will create a number of functions1 to manipulate and prepare data
for more complex analysis. These include functions to extract environmental

1 The concepts behind many of the tools presented in this chapter derive from the work of
Clement Calenge for Adehabitat (cran.r-project.org/web/packages/adehabitat/index.html), an R
package for tracking data analysis.
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statistics from a set of GPS positions; create (and store) trajectories; regularise
trajectories (subsample and spatially interpolate GPS positions at a defined time
interval); define bursts; compute geometric parameters (e.g. spatial and temporal
distance between GPS positions, relative and absolute angles, speed); calculate
home ranges based on a minimum convex polygon (MCP) algorithm; and run and
store analyses on trajectories. These are examples that can be used to develop your
own tools.

Extraction of Statistics from the GPS Data Set

A first, simple example of animal movement modelling and representation based
on GPS positions is the extraction of statistics to characterise animals’ environ-
mental preferences (in this case, minimum, maximum, average and standard
deviation of altitude, and the number of available GPS positions):

SELECT

  animals_id, 

  min(altitude_srtm)::integer AS min_alt, 

  max(altitude_srtm)::integer AS max_alt,
  avg(altitude_srtm)::integer AS avg_alt,

  stddev(altitude_srtm)::integer AS alt_stddev, 

  count(*) AS num_loc

FROM main.gps_data_animals 

WHERE gps_validity_code = 1 

GROUP BY animals_id 

ORDER BY avg(altitude_srtm);

The result is

 animals_id | min_alt | max_alt | avg_alt | alt_stddev | num_loc 

------------+---------+---------+---------+------------+---------

          6 |     678 |     989 |     774 |         58 |     278

          5 |     596 |    1905 |    1323 |        337 |    2695

          1 |     686 |    1816 |    1337 |        356 |    1647

          3 |     588 |    1567 |    1350 |        257 |    1826

          4 |     688 |    1887 |    1364 |        332 |    2641

          2 |     926 |    1816 |    1519 |        206 |    2194 

It is also possible to calculate similar statistics for categorised attributes, like
land cover classes:
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SELECT

  animals_id, (count(*)/tot::double precision)::numeric(5,4) AS percentage,
  label1

FROM

  main.gps_data_animals, 

  env_data.corine_land_cover_legend, 

  (SELECT     animals_id AS x, count(*) AS tot  
  FROM main.gps_data_animals 

  WHERE gps_validity_code = 1 

  GROUP BY animals_id) a 

WHERE

  gps_validity_code = 1 AND 

  animals_id = x AND 

  corine_land_cover_code = grid_code 

GROUP BY animals_id, label1, tot 

ORDER BY animals_id, label1;

The result is

 animals_id | percentage |            label1             

------------+------------+-------------------------------

          1 |     0.3036 | Agricultural areas

          1 |     0.6964 | Forest and semi natural areas

          2 |     0.0251 | Agricultural areas

          2 |     0.9749 | Forest and semi natural areas

          3 |     0.4578 | Agricultural areas

          3 |     0.5422 | Forest and semi natural areas

          4 |     0.3268 | Agricultural areas

          4 |     0.6732 | Forest and semi natural areas

          5 |     0.3662 | Agricultural areas

          5 |     0.6338 | Forest and semi natural areas

          6 |     0.5791 | Agricultural areas

          6 |     0.0108 | Artificial surfaces

          6 |     0.4101 | Forest and semi natural areas

A New Data Type for GPS Tracking Data

Before adding new tools to your database, it is useful to define a new composite
data type2. The new data type combines the simple set of attributes animals_id (as
integer), acquisition_time (as timestamp with time zone), and geom (as geometry)
and can be used by most of the functions that can be developed for tracking data.
Having this data type, it becomes easier to write functions to process GPS loca-
tions. First create a data type that combines these attributes:

2 http://www.postgresql.org/docs/9.2/static/sql-createtype.html.
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CREATE TYPE tools.locations_set AS (

  animals_id integer,

  acquisition_time timestamp with time zone,

  geom geometry(point, 4326));

You can also create a view where this subset of information is retrieved from
gps_data_animals:

CREATE OR REPLACE VIEW main.view_locations_set AS 

  SELECT 

    gps_data_animals.animals_id, 

    gps_data_animals.acquisition_time, 

    CASE

      WHEN gps_data_animals.gps_validity_code = 1 THEN 

        gps_data_animals.geom

      ELSE NULL::geometry

    END AS geom

  FROM main.gps_data_animals

  WHERE gps_data_animals.gps_validity_code != 21

  ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time;

COMMENT ON VIEW main.view_locations_set

IS 'View that stores the core information of the set of GPS positions (id of

the animal, the acquisition time and the geometry), where non valid records 

are represented with empty geometry.';

The result is the complete set of GPS locations stored in main.gps_data_ani-
mals with a limited set of attributes. As you can see, for locations without valid
coordinates (gps_validity_code ! = 1), the geometry is set to NULL. Records with
duplicated acquisition times are excluded from the data set. This view can be used
as a reference for the functions that have to deal with the locations_set data set.

Representations of Trajectories

You can exploit the locations_set data type to create trajectories and permanently
store them in a table. For a general introduction to trajectories in wildlife ecology,
see Calenge et al. (2009), which is also a major reference for a review of the
possible approaches in wildlife tracking data analysis. First, you can create the
table to accommodate trajectories (see the comment in the function itself for more
details):
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CREATE TABLE analysis.trajectories (

  trajectories_id serial NOT NULL, animals_id integer NOT NULL,

  start_time timestamp with time zone NOT NULL,

  end_time timestamp with time zone NOT NULL,

  description character varying, ref_user character varying,
  num_locations integer, length_2d integer,

  insert_timestamp timestamp with time zone DEFAULT now(),

  original_data_set character varying,geom geometry(linestring, 4326),
  CONSTRAINT trajectories_pk 

    PRIMARY KEY (trajectories_id),

  CONSTRAINT trajectories_animals_fk 

    FOREIGN KEY (animals_id)

    REFERENCES main.animals (animals_id) MATCH SIMPLE

    ON UPDATE NO ACTION ON DELETE NO ACTION

);

COMMENT ON TABLE analysis.trajectories

IS 'Table that stores the trajectories derived from a set of selected 

locations. Each trajectory is related to a single animal. This table is 

populated by the function tools.make_traj. Each element is described by a 

number of attributes: the starting date and the ending date of the location 

set, a general description (that can be used to tag each record with specific

identifiers), the user who did the analysis, the number of locations (or 

vertex of the lines) that produced the analysis, the length of the line, and

the SQL that generated the dataset.';

Then, you can create a function that produces the trajectories and stores them in
the table analysis.trajectories. This function creates a trajectory given an SQL
code that selects a set of GPS locations (as locations_set object) where users can
specify the desired criteria (e.g. id of the animal, start and end time). It is also
possible to add a second parameter: a text that is used to comment the trajectory.
A trajectory will be created for each animal in the data set.

CREATE OR REPLACE FUNCTION tools.make_traj (

  locations_set_query character varying DEFAULT 

'main.view_locations_set'::character varying, 

  description character varying DEFAULT 'Standard trajectory'::character 

varying)

RETURNS integer AS

$BODY$

DECLARE

  locations_set_query_string character varying;

BEGIN

  locations_set_query_string = (SELECT replace(locations_set_query, '''',''''''));

  EXECUTE

    'INSERT INTO analysis.trajectories (animals_id, start_time, end_time, 

description, ref_user, num_locations, length_2d, original_data_set, geom) 

SELECT sel_subquery.animals_id, min(acquisition_time), 

max(acquisition_time), ''' ||description|| ''', current_user, count(*), 

ST_length2d_spheroid(ST_MakeLine(sel_subquery.geom),

''SPHEROID("WGS84",6378137,298.257223563)''::spheroid), '''|| 
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locations_set_query_string ||''', ST_MakeLine(sel_subquery.geom) AS geom

      FROM 

        (SELECT * 

        FROM ('||locations_set_query||') a 

        WHERE a.geom IS NOT NULL

        ORDER BY a.animals_id, a.acquisition_time) sel_subquery

        GROUP BY sel_subquery.animals_id;';

  raise notice 'Operation correctly performed. Record inserted into 

analysis.trajectories';

  RETURN 1; 

END;

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.make_traj(character varying, character varying) IS

'This function produces a trajectory from a locations_set object (animals_id,  

acquisition_time, geom) in the table analysis.trajectories. Two parameters are

accepted: the first is the SQL code that generates the locations_set object,  

the second is a string that is used to comment the trajectory. A trajectory  

will be created for each animal in the data set and stored as a new record in 

the table. If you need to include a single quote in the SQL that selects the  

locations (for example, when you want to define a timestamp), you have to use  

an additional single quote to escape it.';

Note that in PostgreSQL, if you want to add a single quote in a string (‘), which
is usually the character that closes a string, you have to use an escape character
before3. This can be done using two single quotes (‘‘): the result in the string will
be a single quote. Here are two examples of use. The first example is

SELECT

  tools.make_traj(

    'SELECT * FROM main.view_locations_set WHERE acquisition_time > ''2006-

01-01''::timestamp AND animals_id = 3',     'First test');

The second example is

SELECT

  tools.make_traj(

    'SELECT animals_id, acquisition_time, geom FROM main.gps_data_animals 

WHERE gps_validity_code = 1 AND acquisition_time <''2006-01-01''::
  'Second test');timestamp',

The outputs are stored in the analysis.trajectories table. You can see the results
in tabular format with

SELECT * from analysis.trajectories;

3 http://www.postgresql.org/docs/9.2/static/sql-syntax-lexical.html.
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A subset of the fields returned from this query is reported below.

 trajectories_id | animals_id | description | num_locations | length_2d 

-----------------+------------+-------------+---------------+-----------

               1 |          3 | First test  |          1426 |    288928

               2 |          1 | Second test |           332 |     70043

               3 |          2 | Second test |          1614 |    307836

               4 |          3 | Second test |           400 |     73284

               5 |          4 | Second test |           424 |     72499

               6 |          6 | Second test |           278 |     40602

You can compare the length calculated on a 2D trajectory and on a 3D tra-
jectory (i.e. also considering the vertical displacement). This is the code for the 2D
trajectory:

SELECT

  sel_subquery.animals_id, 

  ST_length(

    ST_MakeLine(sel_subquery.geom)::geography)::integer AS lengt_line2d,

  ST_numpoints(

    ST_MakeLine(sel_subquery.geom)) AS num_locations

FROM

  (SELECT 

    gps_data_animals.animals_id, 

    gps_data_animals.geom, 

    gps_data_animals.acquisition_time

  FROM main.gps_data_animals

  WHERE gps_validity_code = 1

  ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time)

  sel_subquery

GROUP BY 

  sel_subquery.animals_id;

The result is

 animals_id | length_line2d | num_locations 

------------+---------------+---------------

          1 |        287284 |          1647

          2 |        433959 |          2194

          3 |        362232 |          1826

          4 |        480911 |          2641

          5 |        628674 |          2695

          6 |         40602 |           278
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This is the code for the 3D trajectory:

SELECT

  animals_id, 

  ST_3DLength_Spheroid(

    ST_SetSrid(ST_MakeLine(geom), 4326),

   'SPHEROID("WGS84",6378137,298.257223563)'::spheroid)::integer AS 

length_line3d, 

  ST_NumPoints(ST_SetSrid(ST_MakeLine(geom), 4326)) AS num_locations

FROM

  (SELECT 

    gps_data_animals.animals_id, 

    gps_data_animals.acquisition_time, 

    ST_SetSRID(ST_makepoint(

      ST_X(gps_data_animals.geom), 

      ST_Y(gps_data_animals.geom), 

      gps_data_animals.altitude_srtm::double precision,

      date_part('epoch'::text, gps_data_animals.acquisition_time)), 4326)  

     AS geom

  FROM main.gps_data_animals

  WHERE gps_validity_code = 1

  ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time) a

GROUP BY animals_id;

The result is

 animals_id | length_line3d | num_locations 

------------+---------------+---------------

          1 |        296676 |          1647

          2 |        448134 |          2194

          3 |        374117 |          1826

          4 |        491886 |          2641

          5 |        639680 |          2695

          6 |         43372 |           278

You can see how in an alpine environment the difference can be relevant. Many
functions in PostGIS support 3D objects. For a complete list, you can check the
documentation4. You can also store points as 3DM objects, where not just the
altitude is considered, but also a measure that can be associated with each point.
For tracking data, this can be used to store, embedded in the spatial attribute, the
acquisition time. As the timestamp data type cannot be used directly, it can be
transformed to an integer using epoch5, an integer that represents the number of
seconds since 1 January 1970.

4 http://www.postgis.org/docs/PostGIS_Special_Functions_Index.html#PostGIS_3D_Functions.
5 http://www.postgresql.org/docs/9.2/static/functions-datetime.html.
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Regularisation of GPS Location Data Sets

Another useful tool is the regularisation of the location data set. Many times the
acquisition time of the GPS sensor is scheduled at a varying frequency. The
function introduced below transforms an irregular time series into a regular one,
i.e. with a fixed time step. Records that do not correspond to the desired frequency
are discharged, while if no record exists at the required time interval, a (virtual)
record with the timestamp but no coordinates is created (see the comments
embedded in the function for more information on input parameters). Note that this
function does not perform any interpolation, but simply resamples the available
locations adding a record with NULL coordinates where necessary.

CREATE OR REPLACE FUNCTION tools.regularize(

  animal integer, 

  time_interval integer DEFAULT 10800, 

  buffer double precision DEFAULT 600, 

  starting_time timestamp with time zone DEFAULT NULL::timestamp with time zone,

  ending_time timestamp with time zone DEFAULT NULL::timestamp with time zone)
RETURNS SETOF tools.locations_set AS

$BODY$

DECLARE

  location_set tools.locations_set%rowtype;

  cursor_var record;

  interval_length integer;

  check_animal boolean;

BEGIN

-- Error trapping: if the buffer is > 0.5 * time interval, I could take 2 

times the same locations, therefore an exception is raised

IF buffer > 0.5 * time_interval THEN

  RAISE EXCEPTION 'With a buffer (%) > 0.5 * time interval (%), you could get

twice the same location, please reduce buffer or increase time interval.',  

buffer, time_interval;

END IF;

-- If the starting date is not set, the minimum, valid timestamp of the data

set is taken

IF starting_time IS NULL THEN

  SELECT 

    min(acquisition_time) 

  FROM 

    main.view_locations_set

  WHERE 

    view_locations_set.animals_id = animal

  INTO starting_time;

END IF;
-- If the ending date is not set, the maximum, valid timestamp of the data set

is taken

IF ending_time IS NULL THEN

  SELECT max(acquisition_time) 
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  FROM main.view_locations_set

  WHERE view_locations_set.animals_id = animal

  INTO ending_time;

END IF;

-- I define the interval time (number of seconds between the starting and 

ending time)

SELECT extract(epoch FROM (ending_time-starting_time))::integer + buffer

INTO interval_length;

-- I create a 'virtual' set of records with regular time intervals (from 

starting_time to ending_time, with a step equal to the interval length; then I

go through all the elements of the virtual set and check whether a real record

exists in main.view_locations_set that has an acquisition_time closer then the

defined buffer. If more then 1 record exists in the buffer range, then I take

the 'closest'.
FOR location_set IN 

  SELECT 

    animal, 

    (starting_time + generate_series (0, interval_length, time_interval) * 

interval '1 second'), 

    NULL::geometry

LOOP

  SELECT geom, acquisition_time

  FROM main.view_locations_set 

  WHERE 

    animals_id = animal AND 

    (acquisition_time < (location_set.acquisition_time + interval '1 second'

* buffer) AND 

    acquisition_time > (location_set.acquisition_time - interval '1 second' 

* buffer)) 

  ORDER BY 

    abs(extract (epoch FROM (acquisition_time – location_set.acquisition_time)))

  LIMIT 1 

  INTO cursor_var;

-- If I have a record in main.view_locations_set, I get the values from 

there, otherwise I keep my 'virtual' record

  IF cursor_var.acquisition_time IS NOT NULL THEN

    location_set.acquisition_time = cursor_var.acquisition_time;

    location_set.geom = cursor_var.geom;

  END IF;

  RETURN NEXT location_set;

END LOOP;

RETURN;

END;
$BODY$

LANGUAGE plpgsql;
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COMMENT ON FUNCTION tools.regularize(integer, integer, double precision, 

timestamp with time zone, timestamp with time zone) 

IS 'This function creates a complete, regular time series of locations from 

main.view_locations_set using an individual id, a time interval (in 

seconds), a buffer time (in seconds, which corresponds to the  accepted 

delay of GPS recording), a starting time (if no values is defined, the first

record of the animal data set is taken), and an ending time (if no value is 

defined, the last record of the animal data set is taken). The function 

checks at every time step whether a real record (with or without coordinates)  

in the main.view_locations_set table exists (which is the 

locations_set object of the "main.gps_data_animals table): if any real data 

exist (inside a defined time interval buffer from the reference timestamp 

generated by the function) in main.view_locations_set, the real record is 

used, otherwise a virtual record is created (with empty geometry). The 

output is a table with the structure "location_set" (animals_id integer, 

acquisition_time timestamp with time zone, geom geometry).';

You can test the effects of the function, comparing the different results with the
original data set. For instance, let us extract a regular trajectory for animal 6 with a
time interval of 8 h (i.e. 60 9 60 9 8 s):

SELECT animals_id, acquisition_time, ST_AsText(geom) 

FROM tools.regularize(6, 60*60*8) 

LIMIT 15;

The first 15 results (out of a total of 96) are

 animals_id |    acquisition_time    |          st_astext           

------------+------------------------+------------------------------

          6 | 2005-04-04 08:01:41+02 | POINT(11.0633742 46.0649085)

          6 | 2005-04-04 16:03:08+02 | POINT(11.0626891 46.0651272)

          6 | 2005-04-05 00:03:07+02 | 

          6 | 2005-04-05 08:01:50+02 | POINT(11.063423 46.0648249)

          6 | 2005-04-05 16:01:41+02 | POINT(11.0653331 46.0655397)

          6 | 2005-04-06 00:02:22+02 | POINT(11.0612517 46.0644381)

          6 | 2005-04-06 08:01:18+02 | POINT(11.0656213 46.0667145)

          6 | 2005-04-06 16:03:08+02 | 

          6 | 2005-04-07 00:03:08+02 | 

          6 | 2005-04-07 08:01:42+02 | POINT(11.0632025 46.0663228)

          6 | 2005-04-07 16:01:41+02 | POINT(11.0643889 46.0661862)

          6 | 2005-04-08 00:01:41+02 | POINT(11.063448 46.0640128)

          6 | 2005-04-08 08:02:21+02 | POINT(11.0659235 46.0660545)

          6 | 2005-04-08 16:03:01+02 | POINT(11.0627981 46.0660227)

          6 | 2005-04-09 00:01:41+02 | POINT(11.0618669 46.0646442)
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The same with a time interval of 4 h

SELECT animals_id, acquisition_time, ST_AsText(geom) 

FROM tools.regularize(6, 60*60*4) 

LIMIT 15;

The first 15 results (out of a total of 191) are

 animals_id |    acquisition_time    |          st_astext           

------------+------------------------+------------------------------

          6 | 2005-04-04 08:01:41+02 | POINT(11.0633742 46.0649085)

          6 | 2005-04-04 12:03:04+02 | 

          6 | 2005-04-04 16:03:08+02 | POINT(11.0626891 46.0651272)

          6 | 2005-04-04 20:01:17+02 | POINT(11.0645187 46.0646995)

          6 | 2005-04-05 00:03:07+02 | 

          6 | 2005-04-05 04:01:03+02 | POINT(11.0622415 46.065877)

          6 | 2005-04-05 08:01:50+02 | POINT(11.063423 46.0648249)

          6 | 2005-04-05 12:03:03+02 | POINT(11.0639178 46.0640381)

          6 | 2005-04-05 16:01:41+02 | POINT(11.0653331 46.0655397)

          6 | 2005-04-05 20:02:48+02 | POINT(11.0634889 46.0651745)

          6 | 2005-04-06 00:02:22+02 | POINT(11.0612517 46.0644381)

          6 | 2005-04-06 04:01:46+02 | POINT(11.0639874 46.0651024)

          6 | 2005-04-06 08:01:18+02 | POINT(11.0656213 46.0667145)

          6 | 2005-04-06 12:01:48+02 | POINT(11.0632134 46.0632785)

          6 | 2005-04-06 16:03:08+02 | 

And finally, with a time interval of just 1 h

SELECT animals_id, acquisition_time, ST_AsText(geom) 

FROM tools.regularize(6, 60*60*1) 

LIMIT 15;

The first 15 results (out of a total of 762) are

 animals_id |    acquisition_time    |          st_astext           

------------+------------------------+------------------------------

          6 | 2005-04-04 08:01:41+02 | POINT(11.0633742 46.0649085)

          6 | 2005-04-04 09:01:41+02 | 

          6 | 2005-04-04 10:02:24+02 | POINT(11.0626975 46.0637534)

          6 | 2005-04-04 11:01:41+02 | 

          6 | 2005-04-04 12:03:04+02 | 

          6 | 2005-04-04 13:01:41+02 | 

          6 | 2005-04-04 14:00:54+02 | POINT(11.0619604 46.0632978)

          6 | 2005-04-04 15:01:41+02 | 

          6 | 2005-04-04 16:03:08+02 | POINT(11.0626891 46.0651272)

          6 | 2005-04-04 17:01:41+02 | 

          6 | 2005-04-04 18:03:08+02 | POINT(11.0633284 46.0649574)

          6 | 2005-04-04 19:01:41+02 | 

          6 | 2005-04-04 20:01:17+02 | POINT(11.0645187 46.0646995)

          6 | 2005-04-04 21:01:41+02 | 

          6 | 2005-04-04 22:02:51+02 | POINT(11.0626356 46.0633533)
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Interpolation of Missing Coordinates

The next function creates the geometry for the records with no coordinates. It
interpolates the positions of the previous and next record, with a weight propor-
tional to the temporal distance. Before you can define the function, you have to
create an index that is a sequence number generator6. This is used to create
temporary table with a name that is always unique in the database:

CREATE SEQUENCE tools.unique_id_seq;

COMMENT ON SEQUENCE tools.unique_id_seq

IS 'Sequence used to generate unique numbers for routines that need it (e.g.

functions that need to generate temporary tables with unique names).';

You can now create the interpolation function. It accepts as input animals_id
and a locations_set (by default, the main.view_locations_set). It checks for all
locations with NULL geometry to be interpolated. You can also specify a threshold
for the allowed time gap between locations with valid coordinates, where the
default is two days. If the time gap is smaller, i.e. if you have valid locations before
and after the location without coordinates at less than two days of time difference,
the new geometry is created, otherwise the NULL value is kept (it makes no sense
to interpolate if the closest points with valid coordinates are too distant in time).

CREATE OR REPLACE FUNCTION tools.interpolate(

  animal integer,  locations_set_name character varying DEFAULT  

'main.view_locations_set'::character varying, 

  limit_gap integer DEFAULT 172800)

RETURNS SETOF tools.locations_set AS

$BODY$

DECLARE

  location_set tools.locations_set%rowtype;

  starting_point record;

  ending_point record;

  time_distance_tot integer;

  perc_start double precision;

  x_point double precision;

  y_point double precision;

  var_name character varying;

BEGIN

IF NOT locations_set_name = 'main.view_locations_set' THEN

-- I need a unique name for my temporary table

  SELECT nextval('tools.unique_id_seq') 

  INTO var_name;

  EXECUTE 

    'CREATE TEMPORARY TABLE 

      temp_table_regularize_'|| var_name ||' AS SELECT animals_id,

6 http://www.postgresql.org/docs/9.2/static/sql-createsequence.html.
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      acquisition_time, 

      geom 

    FROM 

      ' || locations_set_name || ' 

    WHERE 

      animals_id = '|| animal;

  locations_set_name = 'temp_table_regularize_'|| var_name;

END IF;

-- I loop though all the elements of my data set

FOR location_set IN EXECUTE 

  'SELECT * FROM ' || locations_set_name || ' WHERE animals_id = ' || animal

LOOP

-- If the record has a NULL geometry values, I look for the previous and 

next valid locations and interpolate the coordinates between them

  IF location_set.geom IS NULL THEN

-- I get the geometry and timestamp of the next valid location

    EXECUTE 

      'SELECT 

        ST_X(geom) AS x_end, 

        ST_Y(geom) AS 2y_end, 

        extract(epoch FROM acquisition_time) AS ending_time, 

        extract(epoch FROM $$' ||location_set.acquisition_time || '$$

::timestamp with time zone) AS ref_time 

      FROM 

        ' || locations_set_name || ' 

      WHERE 

        animals_id = ' || animal || ' AND 

        geom IS NOT NULL AND 

        acquisition_time > timestamp with time zone $$' ||

location_set.acquisition_time || '$$ 

      ORDER BY acquisition_time 

      LIMIT 1'

    INTO ending_point;

-- I get the geometry and timestamp of the previous valid location

    EXECUTE

      'SELECT 

        ST_X(geom) AS x_start, 

        ST_Y(geom) AS y_start, 

        extract(epoch FROM acquisition_time) AS starting_time, 

        extract(epoch FROM $$' ||location_set.acquisition_time || '$$

::timestamp with time zone) AS ref_time 

      FROM 
        ' || locations_set_name || ' 

      WHERE 

        animals_id = ' || animal || ' AND 

        geom IS NOT NULL AND 

        acquisition_time < timestamp with time zone $$' ||

location_set.acquisition_time || '$$ 

      ORDER BY acquisition_time DESC 

      LIMIT 1'

    INTO starting_point;
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previous and next locations with the buffer (from the previous location) at 

the given distance.

    IF (starting_point.x_start IS NOT NULL AND ending_point.x_end IS NOT 

NULL) THEN

      time_distance_tot = (ending_point.ending_time - 

starting_point.starting_time);

      IF time_distance_tot <= limit_gap THEN

        perc_start = (starting_point.ref_time - 

starting_point.starting_time)/time_distance_tot;

        x_point = starting_point.x_start + (ending_point.x_end - 

starting_point.x_start) * perc_start;

        y_point = starting_point.y_start + (ending_point.y_end - 

starting_point.y_start) * perc_start;

        SELECT ST_SetSRID(ST_MakePoint(x_point, y_point),4326) 

        INTO location_set.geom;

      END IF;

    END IF;

  END IF;

RETURN NEXT location_set;

END LOOP;

-- If I created the temporary table, I delete it here.

IF NOT locations_set_name = 'main.view_locations_set' THEN

  EXECUTE 'drop table ' || locations_set_name;

END IF;

return;

END;

-- If both previous and next locations exist, I calculate the interpolated 

point, weighting the two points according to the temporal distance to the 

location with NULL geometry. The interpolated geometry is calculated 

considering lat long as a Cartesian reference. If needed, this approach can 

be improved casting geometry as geography and intersecting the line between 

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.interpolate(integer, character varying, integer) 

IS 'This function accepts as input an animals_id and a locations_set (by 

default, the main.view_locations_set). It checks for all locations with NULL

geometry. If these locations have previous and next valid locations 

(according to the gps_validity_code) with a gap smaller than the defined 

threshold (default is 2 days), a new geometry is calculated interpolating 

their geometry.';

The locations which were interpolated are not marked. You can identify the
interpolated locations by joining the result with the original table and see where
records originally without coordinates were updated. You can test it comparing the
results of the next two queries. In the first one, you just retrieve the original data set:

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM main.view_locations_set 

WHERE animals_id = 1 and acquisition_time > '2006-03-01 04:00:00'

The first 15 rows of the result (1,486 rows including 398 NULL geometries) are
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 animals_id |    acquisition_time    |          st_astext           

------------+------------------------+------------------------------

          1 | 2006-03-01 05:00:55+01 | POINT(11.0843483 46.010765)

          1 | 2006-03-01 09:02:37+01 | POINT(11.0843323 46.0096131)

          1 | 2006-03-01 13:03:07+01 | POINT(11.0833019 46.0089774)

          1 | 2006-03-01 17:01:55+01 | POINT(11.0831218 46.0090902)

          1 | 2006-03-01 21:02:00+01 | POINT(11.0817527 46.0107692)

          1 | 2006-03-02 01:01:46+01 | POINT(11.0835032 46.0099274)

          1 | 2006-03-02 05:01:12+01 | POINT(11.0830181 46.0101219)

          1 | 2006-03-02 09:01:52+01 | POINT(11.0830582 46.0096292)

          1 | 2006-03-02 13:03:04+01 | 

          1 | 2006-03-02 17:01:54+01 | POINT(11.0832821 46.0091515)

          1 | 2006-03-02 21:02:25+01 | POINT(11.0833299 46.0096407)

          1 | 2006-03-03 01:01:18+01 | POINT(11.0847085 46.0105706)

          1 | 2006-03-03 05:01:51+01 | POINT(11.0830901 46.0107184)

          1 | 2006-03-03 09:01:53+01 | POINT(11.0827015 46.0097167)

          1 | 2006-03-03 13:02:40+01 | POINT(11.0831431 46.0088521)

In the second query, you can fill the empty geometries using the tools.inter-
polate function:

SELECT animals_id, acquisition_time, ST_AsText(geom) 

FROM

  tools.interpolate(1, 

    SELECT * 

    FROM main.view_locations_set 

    WHERE acquisition_time > ''2006-03-01 04:00:00'')as a')

LIMIT 15;

'(

The first 15 rows of the result (same number of records, but NULL geometries
have been replaced by interpolation) are reported below. You can see that there are
no gaps anymore.

          1 | 2006-03-03 09:01:53+01 | POINT(11.0827015 46.0097167)

          1 | 2006-03-03 13:02:40+01 | POINT(11.0831431 46.0088521)

 animals_id |    acquisition_time    |             st_astext              

------------+------------------------+------------------------------------

          1 | 2006-03-01 05:00:55+01 | POINT(11.0843483 46.010765)

          1 | 2006-03-01 09:02:37+01 | POINT(11.0843323 46.0096131)

          1 | 2006-03-01 13:03:07+01 | POINT(11.0833019 46.0089774)

          1 | 2006-03-01 17:01:55+01 | POINT(11.0831218 46.0090902)

          1 | 2006-03-01 21:02:00+01 | POINT(11.0817527 46.0107692)

          1 | 2006-03-02 01:01:46+01 | POINT(11.0835032 46.0099274)

          1 | 2006-03-02 05:01:12+01 | POINT(11.0830181 46.0101219)

          1 | 2006-03-02 09:01:52+01 | POINT(11.0830582 46.0096292)

          1 | 2006-03-02 13:03:04+01 | POINT(11.0831707019 46.0093891724)

          1 | 2006-03-02 17:01:54+01 | POINT(11.0832821 46.0091515)

          1 | 2006-03-02 21:02:25+01 | POINT(11.0833299 46.0096407)

          1 | 2006-03-03 01:01:18+01 | POINT(11.0847085 46.0105706)

          1 | 2006-03-03 05:01:51+01 | POINT(11.0830901 46.0107184)

You can also use this function in combination with the regularisation function
to obtain a regular data set with all valid coordinates. In this query, first you
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regularise the function using a time interval of 4 h (for the animal 4), and then, you
fill the gap in records with no coordinates:

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM

  tools.interpolate(4, 

    SELECT * 

    FROM tools.regularize(4, 60*60*4)) a')

LIMIT 15;

'(

The first 15 records of the result (now 2,854 records with no NULL geometries) are

 animals_id |    acquisition_time    |             st_astext              

------------+------------------------+------------------------------------

          4 | 2005-10-21 22:00:47+02 | POINT(11.036965 46.0114269)

          4 | 2005-10-22 02:01:24+02 | POINT(11.0359003 46.009527)

          4 | 2005-10-22 06:01:23+02 | POINT(11.0358821 46.0095878)

          4 | 2005-10-22 10:03:07+02 | POINT(11.0363444328 46.0101559523)

          4 | 2005-10-22 14:02:56+02 | POINT(11.0368031 46.0107196)

          4 | 2005-10-22 18:00:43+02 | POINT(11.0358562 46.0093984)

          4 | 2005-10-22 22:01:18+02 | POINT(11.04381 46.0166923)

          4 | 2005-10-23 02:01:41+02 | POINT(11.046664 46.015754)

          4 | 2005-10-23 06:01:24+02 | POINT(11.0467839 46.013193)

          4 | 2005-10-23 10:01:12+02 | POINT(11.0464346 46.0154818)

          4 | 2005-10-23 14:01:42+02 | POINT(11.0467205 46.0155253)

          4 | 2005-10-23 18:00:47+02 | POINT(11.046328920 46.015740574)

          4 | 2005-10-23 22:00:47+02 | POINT(11.0459358396 46.0159566734)

          4 | 2005-10-24 02:00:47+02 | POINT(11.045542758 46.0161727728)

          4 | 2005-10-24 06:00:47+02 | POINT(11.0451496779 46.0163888723)

In fact, both functions (as with many other tools for tracking data) have the
same information (animal id, acquisition time, geometry) as input and output, so
they can be easily nested.

Detection of Sensors Acquisition Scheduling

Another interesting piece of information that can be retrieved from your GPS data
set is the sampling frequency scheduling. This information should be available as
it is defined by GPS sensors’ managers, but in many cases it is not, so it can be
useful to derive it from the data set itself. To do so, you have to create a function
based on a new data type:

 animals_id integer,

 starting_time timestamp with time zone,

 ending_time timestamp with time zone,

 num_locations integer,

 num_locations_null integer,

 interval_step integer);

CREATE TYPE tools.bursts_report AS (
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This function gives the ‘bursts’ for a defined animal. Bursts are groups of
consecutive locations with the same frequency (or time interval). It requires an
animal id and a temporal buffer (in seconds) as input parameters and returns a table
with the (supposed) schedule of acquisition frequency. The output table contains
the fields animals_id, starting_time, ending_time, num_locations, num_loca-
tions_null and interval_step (in seconds, approximated according to multiples of
the buffer value). A relocation is considered to have a different interval step if the
time gap is greater or less than the defined buffer (the buffer takes into account the
fact that small changes can occur because of the delay in reception of the GPS
signal). The default value for the buffer is 600 (10 min). The function is directly
computed on main.view_locations_set (locations_set structure) and on the whole
data set of the selected animal. Here is the code of the function:

CREATE OR REPLACE FUNCTION tools.detect_bursts(

  animal integer, 

  buffer integer DEFAULT 600)

RETURNS SETOF tools.bursts_report AS

$BODY$

DECLARE

  location_set tools.locations_set%rowtype;

  cursor_var tools.bursts_report%rowtype;

  starting_time timestamp with time zone;

  ending_time timestamp with time zone;

  location_time timestamp with time zone;

  time_prev timestamp with time zone;

  start_burst timestamp with time zone;

  end_burst timestamp with time zone;

  delta_time integer;

  ref_delta_time integer;

  ref_delta_time_round integer;

  n integer;

  n_null integer;

BEGIN

SELECT min(acquisition_time) 
FROM main.view_locations_set

WHERE view_locations_set.animals_id = animal

INTO starting_time;

SELECT max(acquisition_time) 

FROM main.view_locations_set
WHERE view_locations_set.animals_id = animal

INTO ending_time;
time_prev = NULL;

ref_delta_time = NULL;

n = 1;
n_null = 0;

FOR location_set IN EXECUTE 

  'SELECT animals_id, acquisition_time, geom 

  FROM main.view_locations_set 
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  WHERE animals_id = '''|| animal ||''' ORDER BY acquisition_time'

LOOP

  location_time = location_set.acquisition_time;

  IF time_prev IS NULL THEN

    time_prev = location_time;

    start_burst = location_time;

  ELSE

    delta_time = (extract(epoch FROM (location_time - time_prev)))::integer;

    IF ref_delta_time IS NULL THEN

      ref_delta_time = delta_time;

      time_prev = location_time;

      end_burst = location_time;

    ELSIF abs(delta_time - ref_delta_time) < (buffer) THEN

      end_burst = location_time;

      time_prev = location_time;

      n = n + 1;

      IF location_set.geom IS NULL then

        n_null = n_null + 1;

      END IF;

    ELSE

      ref_delta_time_round = (ref_delta_time/buffer::double 

precision)::integer * buffer;

      IF ref_delta_time_round = 0 THEN

        ref_delta_time_round = (((extract(epoch FROM (end_burst - 

start_burst)))::integer/n)/60.0)::integer * 60;

      END IF;

    RETURN QUERY SELECT animal, start_burst, end_burst, n, n_null, 

ref_delta_time_round;

    ref_delta_time = delta_time;

    time_prev = location_time;

    start_burst = end_burst;

    end_burst = location_time;

    n = 1;

    n_null = 0;

    END IF;

  END IF;

END LOOP;

END IF;

RETURN QUERY SELECT animal, start_burst, end_burst, n , n_null, 

ref_delta_time_round;

RETURN;

END;

$BODY$

LANGUAGE plpgsql;

ref_delta_time_round = (ref_delta_time/buffer::double precision)::integer * 

buffer;

IF ref_delta_time_round = 0 THEN

  ref_delta_time_round = ((extract(epoch FROM end_burst - start_burst))::

  integer/n)::integer; 

158 F. Urbano et al.



COMMENT ON FUNCTION tools.detect_bursts(integer, integer) 

IS 'This function gives the "bursts" for a defined animal. Bursts are groups

of consecutive locations with the same frequency (or time interval). It 

receives an animal id and a buffer (in seconds) as input parameters and 

returns a table with the (supposed) schedule of location frequencies. The 

output table has the fields: animals_id, starting_time, ending_time, 

num_locations, num_locations_null, and interval_step (in seconds, 

approximated according to multiples of the buffer value). A relocation is 

considered to have a different interval step if the time gap is greater or 

less than the defined buffer (the buffer takes into account the fact that 

small changes can occur because of the delay in receiving the GPS signal). 

The default value for the buffer is 600 (10 minutes). The function is 

directly computed on main.view_locations_set (locations_set structure) and 

on the whole data set for the selected animal.';

Here, you can verify the results. You can use the function with animal 5:

SELECT

  animals_id AS id, 

  starting_time, 

  ending_time, 

  num_locations AS num, 

  num_locations_null AS num_null, 

  (interval_step/60.0/60)::numeric(5,2) AS hours 

FROM

  tools.detect_bursts(5);

The result is

 id |     starting_time      |      ending_time       | num  | nulls | hours 

----+------------------------+------------------------+------+-------+-------

  5 | 2006-11-12 13:03:04+01 | 2007-10-28 05:01:17+01 | 2098 |   193 |  4.00

  5 | 2007-10-28 05:01:17+01 | 2007-10-29 13:01:23+01 |    1 |     0 | 32.00

  5 | 2007-10-29 13:01:23+01 | 2008-03-07 05:00:49+01 |  778 |    29 |  4.00

  5 | 2008-03-07 05:00:49+01 | 2008-03-07 21:03:07+01 |    1 |     0 | 16.00

  5 | 2008-03-07 21:03:07+01 | 2008-03-15 09:01:37+01 |   45 |     5 |  4.00

In this case, the time interval is constant (14,400 s, which means 4 h). The
second and fourth bursts are made of a single location. This is because you have a
gap greater than the temporal buffer with no records, not a real new burst.

Now run the same function on animal 6:

  animals_id AS id, 

  starting_time, 

  ending_time, 

  num_locations AS num, 

  num_locations_null AS num_null, 

  (interval_step/60.0/60)::numeric(5,2) AS hours 

FROM

  tools.detect_bursts(6);

SELECT
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The result is reported below. In this case, a more varied scheduling has been
used (1, 2 and 4 h):

 id |     starting_time      |      ending_time       | num | nulls | hours 

----+------------------------+------------------------+-----+-------+-------

  6 | 2005-04-04 08:01:41+02 | 2005-04-13 06:00:48+02 | 107 |    16 |  2.00

  6 | 2005-04-13 06:00:48+02 | 2005-04-13 10:02:24+02 |   1 |     0 |  4.00

  6 | 2005-04-13 10:02:24+02 | 2005-04-14 02:02:18+02 |   8 |     0 |  2.00

  6 | 2005-04-14 02:02:18+02 | 2005-04-29 02:00:54+02 |  90 |     3 |  4.00

  6 | 2005-04-29 02:00:54+02 | 2005-05-04 22:01:23+02 |  70 |     1 |  2.00

  6 | 2005-05-04 22:01:23+02 | 2005-05-05 03:01:46+02 |   1 |     0 |  5.00

  6 | 2005-05-05 03:01:46+02 | 2005-05-06 01:01:47+02 |  22 |     2 |  1.00

Representations of Home Ranges

Home range is another representation of animal movement and behaviour that can
be derived from GPS tracking data. Home range is roughly described as the area in
which an animal normally lives and travels, excluding migration, emigration or
other large infrequent excursions. There are different ways to define this concept
and different methods for computing it. A common approach to modelling home
ranges is the delineation of the boundaries (polygons) of the area identified
(according to a specific definition) as home range. The simplest way to create a
home range is the MCP approach. PostGIS has a specific function to compute
MCP (ST_ConvexHull). In this example, you can create a function to produce an
MCP using just a percentage of the available locations, in order to exclude the
outliers which are far from the pool of locations, based on a starting and ending
acquisition time. First, you can create a table where data can be stored. This table
also includes some additional information that describes the result and can be used
both to document it and to run meta-analysis. In this way, all the results of your
analysis are permanently stored, accessible, compact and documented.

  end_time timestamp with time zone NOT NULL,

  description character varying,

  ref_user character varying,

  num_locations integer,

  area numeric(13,5),

  geom geometry (multipolygon, 4326),

  percentage double precision,

  insert_timestamp timestamp with time zone DEFAULT timezone('UTC'::text, 

('now'::text)::timestamp(0) with time zone),

  original_data_set character varying,

  CONSTRAINT home_ranges_mcp_pk 

    PRIMARY KEY (home_ranges_mcp_id),

CREATE TABLE analysis.home_ranges_mcp (

  home_ranges_mcp_id serial NOT NULL,

  animals_id integer NOT NULL,

  start_time timestamp with time zone NOT NULL,
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  CONSTRAINT home_ranges_mcp_animals_fk 

    FOREIGN KEY (animals_id)

    REFERENCES main.animals (animals_id) 

    MATCH SIMPLE

    ON UPDATE NO ACTION ON DELETE NO ACTION);

COMMENT ON TABLE analysis.home_ranges_mcp

IS 'Table that stores the home range polygons derived from MCP. The area is 

computed in hectars.';

CREATE INDEX fki_home_ranges_mcp_animals_fk

  ON analysis.home_ranges_mcp

  USING btree (animals_id);

CREATE INDEX gist_home_mcp_ranges_index

  ON analysis.home_ranges_mcp

  USING gist (geom);

This function applies the MCP algorithm (also called convex hull) to a set of
locations. The input parameters are the animal id (each analysis is related to a
single individual), the percentage of locations to be considered and a locations_set
object (the default is main.view_locations_set). An additional parameter can be
added: a description that will be included in the table home_ranges_mcp, where
the result of the analysis is stored. The parameter percentage defines how many
locations are included in the analysis: if, for example, 90 % is specified (as 0.9),
the 10 % of locations farthest from the centroid of the data set will be excluded. If
no parameters are specified, the percentage of 100 % is used and the complete data
set (from the first to the last location) are considered. The following creates the
function:

zone)

RETURNS integer AS

$BODY$

DECLARE

  hr record;

  var_name character varying;

  locations_set_name_input character varying;

BEGIN

locations_set_name_input = locations_set_name;

CREATE OR REPLACE FUNCTION tools.mcp_perc(

  animal integer, 

  perc double precision DEFAULT 1, 

  description character varying DEFAULT 'Standard analysis'::character 

varying,locations_set_name character varying DEFAULT 

'main.view_locations_set'::character varying,starting_time 

   timestamp with time zone DEFAULT NULL::timestamp with time zone, 

ending_time timestamp with time zone  DEFAULT NULL::timestamp with time 
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IF NOT locations_set_name = 'main.view_locations_set' THEN

  SELECT nextval('tools.unique_id_seq') INTO var_name;

  EXECUTE 

    'CREATE TEMPORARY TABLE temp_table_mcp_perc_'|| var_name ||' AS 

      SELECT * 

      FROM ' || locations_set_name || ' 

      WHERE animals_id = '|| animal;

  locations_set_name = 'temp_table_mcp_perc_'|| var_name;

END IF;

IF perc <= 0 OR perc > 1 THEN

  RAISE EXCEPTION 'INVALID PARAMETER: the percentage of the selected 

(closest to the data set centroid) points must be a value > 0 and <= 1';

END IF;

IF starting_time IS NULL THEN

  EXECUTE 

    'SELECT min(acquisition_time) 

    FROM '|| locations_set_name ||'

    WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '|| 

locations_set_name ||'.geom IS NOT NULL '

  INTO starting_time;

END IF;

IF ending_time IS NULL THEN

  EXECUTE 

    'SELECT max(acquisition_time) 

    FROM '|| locations_set_name ||'

    WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '|| 

locations_set_name ||'.geom IS NOT NULL '

  INTO ending_time;

END IF;

    (SELECT '|| locations_set_name ||'.animals_id, '|| locations_set_name 

||'.geom, acquisition_time, ST_Distance('|| locations_set_name ||'.geom, 

      (SELECT ST_Centroid(ST_collect('|| locations_set_name ||'.geom))

      FROM '|| locations_set_name ||'

      WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||
locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name || 

'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time 

 zone AND '|| locations_set_name ||'.acquisition_time <= $$' ||  

ending_time || '$ $::timestamp with time zone 

      GROUP BY '|| locations_set_name ||'.animals_id)) AS dist

EXECUTE

  'SELECT 

    animals_id, 

    min(acquisition_time) AS start_time, 

    max(acquisition_time) AS end_time, 

    count(animals_id) AS num_locations, 

    ST_Area(geography(ST_ConvexHull(ST_Collect(a.geom)))) AS area, 

    (ST_ConvexHull(ST_Collect(a.geom))).ST_Multi AS geom

  FROM 
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    FROM '|| locations_set_name ||'

    WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '|| 

locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name 

||'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time 

zone and '|| locations_set_name ||'.acquisition_time <= $$' || 

ending_time || '$ $::timestamp with time zone 

    ORDER BY 

      ST_Distance('|| locations_set_name ||'.geom, 

     (SELECT ST_Centroid(ST_Collect('|| locations_set_name ||'.geom))

     FROM '|| locations_set_name ||'

     WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '|| 

locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name 

||'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time 

zone and '|| locations_set_name ||'.acquisition_time <= $$' || 

ending_time || '$ $::timestamp with time zone 

     GROUP BY '|| locations_set_name ||'.animals_id))LIMIT ((

     (SELECT count('|| locations_set_name ||'.animals_id) AS count

  FROM '|| locations_set_name ||'

  WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '|| 

locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name 

||'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time 

zone AND '|| locations_set_name ||'.acquisition_time <= $$' || 

ending_time  || '$ $::timestamp with time zone ))::numeric * ' 

 || perc || ')::integer) a

  GROUP BY a.animals_id;'

  INTO hr;

  IF hr.num_locations < 3 or hr.num_locations IS NULL THEN

    RAISE NOTICE 'INVALID SELECTION: less then 3 points or no points at all 

match the given criteria. The animal % will be skipped.', animal;

RETURN 0;

END IF;

INSERT INTO analysis.home_ranges_mcp (animals_id, start_time, end_time, 

percentage, description, ref_user, num_locations,area, geom, 

 original_data_set)values (animal, starting_time, ending_time , perc ,

 description,current_user, hr.num_locations, hr.area/1000000.00000, hr.geom,
locations_set_name_input);

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.mcp_perc(integer, double precision, character 

varying, character varying, timestamp with time zone, timestamp with time 

zone)

IS 'This function applies the MCP (Minimum Convex Polygon) algorithm (also 

called convex hull) to a set of locations. The input parameters are the 

IF NOT locations_set_name = 'main.view_locations_set' THEN

EXECUTE 'drop table ' || locations_set_name;

END IF;

RAISE NOTICE 'Operation correctly performed. Record inserted into 

analysis.home_ranges % ', animal;

RETURN 1; 

END;
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animal id (each analysis is related to a single individual), the percentage 

of locations considered, a locations_set object (the default is 

main.view_locations_set). An additional parameter can be added: a description

that will be included in the table home_ranges_mcp, where the result of  the 

analysis is stored. The parameter "percentage" defines how many locations are 

included in the analysis: if for example 90% is specified (as 0.9),  the 10%

of locations farthest from the centroid of the data set will be excluded.If  

no parameters are specified, percentage of 100% is used and the complete data 

set (from the first to the last location) are considered. The function, once  

computed the MCP and stored the result in home_range_mcp, does not return any 

thing. A few constraints to prevent errors are included (no points selected, 

percentage out of range). Note that this function works with a fixed centroid,

computed at the beginning, so the distance is calculated on this basis   for 

the entire selection process.';

You can create the MCP at different percentage levels:

SELECT tools.mcp_perc(1, 0.1, 'test 0.1');

SELECT tools.mcp_perc(1, 0.5, 'test 0.5');

SELECT tools.mcp_perc(1, 0.75, 'test 0.75');

SELECT tools.mcp_perc(1, 1, 'test 1');

SELECT tools.mcp_perc(1, 1, 'test start and end', 'main.view_locations_set',

'2006-01-01 00:00:00', '2006-01-10 00:00:00');

SELECT tools.mcp_perc(animals_id, 0.9, 'test all animals at 0.9') FROM 

main.animals;

The output is stored in the table. You can retrieve part of the columns of the
table with

SELECT

  home_ranges_mcp_id AS id, animals_id AS animal, description, num_locations

AS num, area, percentage

FROM

  analysis.home_ranges_mcp;

The result is

 id | animal |       description       | num  |  area   | percentage 

----+--------+-------------------------+------+---------+------------

  1 |      1 | test 0.1                |  165 | 0.91037 |        0.1

  2 |      1 | test 0.5                |  824 | 3.12442 |        0.5

  3 |      1 | test 0.75               | 1235 | 4.52416 |       0.75

  4 |      1 | test 1                  | 1647 | 8.08596 |          1

  5 |      1 | test start and end      |   37 | 0.18170 |          1

  6 |      1 | test all animals at 0.9 | 1482 | 5.25487 |        0.9

  7 |      2 | test all animals at 0.9 | 1975 | 9.03271 |        0.9

  8 |      3 | test all animals at 0.9 | 1643 | 8.93319 |        0.9

  9 |      4 | test all animals at 0.9 | 2377 | 9.74893 |        0.9

 10 |      5 | test all animals at 0.9 | 2426 | 6.57880 |        0.9

 11 |      6 | test all animals at 0.9 |  250 | 0.13362 |        0.9
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Note that the last statement generates the MCP for all the animals with a single
command.

A further example of synthetic representation of the GPS location set is illus-
trated in the view below: for each GPS position, you can compute a buffer (a circle
of 0.001 degrees, which at this latitude corresponds to about 100 meters), and then,
all the buffers of the same animal are merged together:

CREATE VIEW analysis.view_locations_buffer AS

  SELECT 

    animals_id, 

    ST_Union(ST_Buffer(geom, 0.001))::geometry(multipolygon, 4326) AS geom 

  FROM main.gps_data_animals 

  WHERE gps_validity_code = 1

  GROUP BY animals_id

  ORDER BY animals_id;

COMMENT ON VIEW analysis.view_locations_buffer

IS 'GPS locations - Buffer (dissolved) of 0.001 degrees.';

As you can see, when you visualise it (Fig. 9.1), the view, which is a query run
every time you access the view, takes some time, as quite complex operations must
be performed. If used often, it could be transformed into a permanent table (with
CREATE TABLE command). In this case, you might also want to add keys and
indexes.

Fig. 9.1 Layer with dissolved buffers around GPS locations
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Geometric Parameters of Animal Movements

Another type of analytical tool that can be implemented within the database is the
computation of the geometric parameters of trajectories (e.g. spatial and temporal
distance between locations, speed and angles). As the meaning of these parameters
changes with the time step, you will create a function that computes the parameters
just for steps that have a time gap equal to a value defined by the user. First, you
must create the new data type tools.geom_parameters:

  deltat_t_2 integer,

  deltat_start integer,

  dist_t_1 integer,

  dist_start integer,

  speed_mh_t_1 numeric(8,2),

  abs_angle_t_1 numeric(7,5),

  rel_angle_t_2 numeric(7,5));

CREATE TYPE tools.geom_parameters AS(

  animals_id integer,

  acquisition_time timestamp with time zone,

  acquisition_time_t_1 timestamp with time zone,

  acquisition_time_t_2 timestamp with time zone,

  deltat_t_1 integer,

Now you can create the function tools.geom_parameters. It returns a table with
the geometric parameters of the data set (reference: previous location): time gap
with the previous point, time gap with the previous–previous point, distance to the
previous point, speed of the last step, distance to the first point of the data set,
absolute angle (from the previous location), relative angle (from the previous and
previous–previous locations). The input parameters are the animal id, the time gap
and a buffer to take into account possible time differences due to GPS data
reception. The time gap parameter selects just locations that have the previous
point at the defined time interval (with a buffer tolerance). All the other locations
are not taken into consideration. A locations_set class is accepted as the input
table. It is also possible to specify the starting and ending acquisition time of the
time series. The output is a table with the structure geom_parameters. If you want
to calculate the geometric parameters of an irregular sequence (i.e. the parameters
calculated in relation to the previous/next location regardless of the regularity of
the time gap), you can use a plain SQL based on window functions7 with no need
for customised functions. It is important to note that while a step is the movement
between two points, in many cases the geometric parameters of the movement
(step) are associated with the starting or the ending point. In this book, we use the

7 http://www.postgresql.org/docs/9.2/static/tutorial-window.html.
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ending point as reference. In some software, particularly the adehabitat8 package
for R (see Chap. 10), the step is associated with the starting point. If needed, the
queries and functions presented here can be modified to follow this convention.
The code of the function is

DECLARE

  cursor_var tools.geom_parameters%rowtype;

  check_animal boolean;

  var_name character varying;

BEGIN

EXECUTE

  'SELECT ' || animal || ' IN 

    (SELECT animals_id FROM main.animals)' INTO check_animal;

IF NOT check_animal THEN

  RAISE EXCEPTION 'This animal is not in the data set...';

END IF;

IF starting_time IS NULL THEN

  SELECT min(acquisition_time) 

  FROM main.view_locations_set

  WHERE view_locations_set.animals_id = animal

  INTO starting_time;

END IF;

IF ending_time IS NULL THEN

  SELECT max(acquisition_time) 

  FROM main.view_locations_set

  WHERE view_locations_set.animals_id = animal

  INTO ending_time;

END IF;

IF NOT locations_set_name = 'main.view_locations_set' THEN

  SELECT nextval('tools.unique_id_seq') into var_name;

  EXECUTE 

    'CREATE TEMPORARY TABLE temp_table_temp_table_geoparameters_'|| var_name

||' AS 

      SELECT animals_id, acquisition_time, geom 

      FROM ' || locations_set_name || ' 

      WHERE animals_id = '|| animal;

  locations_set_name = 'temp_table_temp_table_geoparameters_'|| var_name;

END IF;

CREATE OR REPLACE FUNCTION tools.geom_parameters(

  animal integer, 

  time_interval integer DEFAULT 10800, 

  buffer double precision DEFAULT 600, 

  locations_set_name character varying DEFAULT 

'main.view_locations_set'::character varying, 

starting_time timestamp with time zone DEFAULT NULL::timestamp with time zone,
ending_time timestamp with time zone DEFAULT NULL::timestamp with time zone)

RETURNS SETOF tools.geom_parameters AS

$BODY$

8 http://cran.r-project.org/web/packages/adehabitat/index.html.
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    ELSE 

      NULL

    END

  FROM 

    (SELECT 

      animals_id, 

      acquisition_time, 

      lead(acquisition_time,-1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time) AS acquisition_time_t_1,

      lead(acquisition_time,-2) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time) AS acquisition_time_t_2,

      rank() OVER (PARTITION BY animals_id ORDER BY acquisition_time), 

      (extract(epoch FROM acquisition_time) - lead(extract(epoch FROM 

acquisition_time), -1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))::integer AS deltat_t_1,

      (extract(epoch FROM acquisition_time) - lead(extract(epoch FROM 

acquisition_time), -2) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))::integer AS deltat_t_2,

      (extract(epoch FROM acquisition_time) - first_value(extract(epoch FROM

acquisition_time)) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))::integer AS deltat_start,

      (ST_Distance_Spheroid(geom, lead(geom, -1) OVER (PARTITION BY 

animals_id ORDER BY acquisition_time), ''SPHEROID["WGS 

84",6378137,298.257223563]''))::integer AS dist_t_1,

      ST_Distance_Spheroid(geom, first_value(geom) OVER (PARTITION BY 

animals_id ORDER BY acquisition_time), ''SPHEROID["WGS 

84",6378137,298.257223563]'')::integer AS dist_start,

      (ST_Distance_Spheroid(geom, lead(geom, -1) OVER (PARTITION BY 

animals_id ORDER BY acquisition_time), ''SPHEROID["WGS 

84",6378137,298.257223563]'')/(extract(epoch FROM acquisition_time) - 

lead(extract(epoch FROM acquisition_time), -1) OVER (PARTITION BY 

animals_id ORDER BY acquisition_time))*60*60)::numeric(8,2) AS 

      speed_Mh_t_1, ST_Azimuth(geom::geography, (lead(geom, -1) OVER 

(PARTITION BY animals_id ORDER BY acquisition_time))::geography) AS 

      abs_angle_t_1, ST_Azimuth(geom::geography, (lead(geom, -1) OVER 

(PARTITION BY  animals_id ORDER BY acquisition_time))::geography) - 

 ST_Azimuth((lead(geom, -1) OVER (PARTITION BY animals_id ORDER BY 

acquisition_time))::geography, (lead(geom, -2) OVER (PARTITION BY

 animals_id ORDER BY acquisition_time))::geography) AS rel_angle_t_2

    FROM 

FOR cursor_var IN EXECUTE 

  'SELECT 

    animals_id, 

    acquisition_time, 

    acquisition_time_t_1, 

    acquisition_time_t_2, 

    deltaT_t_1, 

    deltaT_t_2, 

    deltaT_start, 

    dist_t_1, 

    dist_start, 

    speed_Mh_t_1, 

    abs_angle_t_1, 

    CASE WHEN (deltaT_t_2 < ' || time_interval * 2 + buffer || ' and 

deltaT_t_2 > ' || time_interval * 2 - buffer || ') THEN 

      rel_angle_t_2
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  EXECUTE 'drop table ' || locations_set_name;

END IF;

RETURN;

END;

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.geom_parameters(integer, integer, double 

precision, character varying, timestamp with time zone, timestamp with time 

zone)

IS 'This function returns a table with the geometric parameters of the data 

set (reference: previous location): time gap with the previous point, time 

gap with the previous-previous point, distance to the previous point, speed 

of the last step, distance from the first point of the data set, absolute 

angle (from the previous location), relative angle (from the previous and 

previous-previous locations). The input parameters are the animal id, the 

time gap, and the buffer. The time gap selects just locations that have the 

previous point at a defined time interval (with a buffer tolerance). All the

other points are not taken into consideration. A locations_set class is 

accepted as the input table. It is also possible to specify the starting and

ending acquisition time of the time series. The output is a table with the 

structure geom_parameters.';

    FROM 

      '|| locations_set_name ||'

    WHERE 

      animals_id = ' || animal ||' AND 

      geom IS NOT NULL AND 

      acquisition_time >= ''' || starting_time || ''' AND 

      acquisition_time <= ''' || ending_time || ''') a

  WHERE 

    deltaT_t_1 <' || time_interval + buffer || ' AND 

    deltaT_t_1 > '|| time_interval - buffer

LOOP

RETURN NEXT cursor_var;

END LOOP;

IF NOT locations_set_name = 'main.view_locations_set' THEN

To test how the function works, you can run and compare the function applied
to the same animal 6 at different time steps. In the first case, you can use 2 h:

SELECT * FROM tools.geom_parameters(6, 60 * 60 * 2, 600);

A subset of the columns of the first 10 rows returned by the function is
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   acqtime   |  acqtime_1  |  acqtime_2  | d_1 | d_start | abs_ang | rel_ang 

-------------+-------------+-------------+-----+---------+---------+---------

 94 10:02:24 | 94 08:01:41 |             | 139 |     139 |    0.39 |        

 94 16:03:08 | 94 14:00:54 | 94 10:02:24 | 211 |      58 |    3.41 |        

 94 18:03:08 | 94 16:03:08 | 94 14:00:54 |  53 |       6 |    5.08 |    1.66

 94 20:01:17 | 94 18:03:08 | 94 16:03:08 |  96 |      92 |    5.01 |   -0.06

 94 22:02:51 | 94 20:01:17 | 94 18:03:08 | 209 |     182 |    0.77 |   -4.24

 95 04:01:03 | 95 02:01:40 | 94 22:02:51 | 179 |     139 |    3.19 |        

 95 06:02:15 | 95 04:01:03 | 95 02:01:40 | 218 |     171 |    4.70 |    1.52

 95 08:01:50 | 95 06:02:15 | 95 04:01:03 | 174 |      10 |    0.82 |   -3.89

 95 10:01:49 | 95 08:01:50 | 95 06:02:15 | 266 |     272 |    0.47 |   -0.34

 95 12:03:03 | 95 10:01:49 | 95 08:01:50 | 218 |     105 |    3.96 |    3.49

The real results include a longer list of parameters that is not possible to report
because of space constraints. To save space, the dates have been transformed into
Julian day of the year (DOY, in the range 1–365).

You can apply the function with an interval step of 4 h:

SELECT * FROM tools.geom_parameters(6, 60 * 60 * 4, 600);

A subset of the result is reported below:

   acqtime   |  acqtime_1  |  acqtime_2  | d_1 | d_start | abs_ang | rel_ang 

-------------+-------------+-------------+-----+---------+---------+---------

 94 14:00:54 | 94 10:02:24 | 94 08:01:41 |  76 |     210 |    0.84 |        

 95 02:01:40 | 94 22:02:51 | 94 20:01:17 | 109 |     119 |    2.78 |        

 96 18:01:50 | 96 14:01:24 | 96 12:01:48 | 216 |      44 |    3.37 |        

 97 02:02:08 | 96 22:01:48 | 96 20:02:20 | 233 |     302 |    0.11 |        

 97 12:01:55 | 97 08:01:42 | 97 06:00:54 | 327 |     179 |    0.17 |        

 97 20:01:00 | 97 16:01:41 | 97 14:01:52 | 182 |      20 |    0.48 |        

 98 12:02:56 | 98 08:02:21 | 98 02:01:54 | 338 |     108 |    0.88 |        

 99 04:02:13 | 99 00:01:41 | 98 22:01:22 |  87 |      83 |    3.70 |        

 99 12:03:07 | 99 08:03:06 | 99 06:02:17 |  87 |     288 |    1.76 |        

 99 16:00:54 | 99 12:03:07 | 99 08:03:06 | 428 |     146 |    3.29 |    1.54

As you can see, there are very few sequences of at least three points at a regular
temporal distance of 4 h in the original data set (at least in the first records).

Now apply the function with 8 h interval step:

SELECT * FROM tools.geom_parameters(6, 60*60*8, 600);

The result is reported below. Just 3 records are retrieved because the scheduling
of 8 h is not used in this data set.

   acqtime    |  acqtime_1   |  acqtime_2   | d_1 | d_start | abs_ang |rel_ang

--------------+--------------+--------------+-----+---------+---------+-------

 108 18:01:45 | 108 10:02:18 | 108 06:02:52 |  53 |    114  |   0.09  |       

 112 22:01:59 | 112 14:03:04 | 112 10:01:46 | 252 |    121  |    3.42 |       

 117 10:01:01 | 117 02:03:05 | 116 22:00:53 | 181 |     53  |    2.88 |       
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An Alternative Representation of Home Ranges

In the next example of possible methods to represent and analyse GPS locations
using the tools provided by PostgreSQL and PostGIS, you can create a grid surface
and calculate an estimation of the time spent in seconds by each animal within
each ‘pixel’. There are many existing approaches to producing this information; in
this case, you will use an algorithm that is conceptually similar to a simplified
Brownian bridge method (Horne et al. 2007) and to the method proposed in
(Kranstauber et al. 2012). In this example, you can assume that the animal moves
with along the trajectory described by the temporal sequence of locations and that
the speed is constant along each step. You can create a grid with the given
resolution that is intersected with the trajectory. For each segment of the trajectory
generated by the intersection, the time spent by the animal is calculated (consid-
ering the time interval of that step and the relative length of the segment compared
to the whole step length). Finally, you can sum the time spent in all the segments
inside each cell. You can implement this method using a view and a function that
creates the grid, which is based on a new data type that you create with the code

CREATE TYPE tools.grid_element AS (  cell_id integer,  geom geometry);

Then, you can create the grid function:

CREATE OR REPLACE FUNCTION tools.create_grid(

  locations_collection geometry, xysize integer) 
RETURNS SETOF tools.grid_element AS

$BODY$

WITH spatial_object AS

  (SELECT

    ST_Xmin(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)), 

ST_Y(ST_Centroid($1)))))::integer AS xmin,

    ST_Ymin(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)), 

ST_Y(ST_Centroid($1)))))::integer AS ymin,

    ST_Xmax(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)), 

ST_Y(ST_Centroid($1)))))::integer AS xmax,

    ST_Ymax(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)), 

ST_Y(ST_Centroid($1)))))::integer AS ymax,

    tools.srid_utm(ST_X(ST_Centroid($1)), ST_Y(ST_Centroid($1))) AS sridset)

  SELECT 

    (ROW_NUMBER() OVER ())::integer, 

    ST_Translate(cell, i , j)

  FROM 

    generate_series(

      ((((SELECT xmin FROM spatial_object) - $2/2)/100)::integer)*100, 

      (SELECT xmax FROM spatial_object) + $2, $2) AS i,

    generate_series(
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      ((((SELECT ymin FROM spatial_object) - $2/2)/100)::integer)*100, 

      (SELECT ymax FROM spatial_object) + $2, $2) AS j, spatial_object, 
    (SELECT       ST_setsrid(ST_GeomFROMText('POLYGON((0 0, 0 '||$2||', '||$2||'

$2||', '||$2||' 0,0 0))'),

      (SELECT sridset FROM spatial_object)) AS cell) AS foo;

$BODY$

LANGUAGE sql;

COMMENT ON FUNCTION tools.create_grid(geometry, integer) 

IS 'Function that creates a vector grid with a given resolution that 

contains a given geometry.';

 '||

Now, you can create the view that generates the probability surface (in this
example, for the animal 1 with a grid with a resolution of 100 m):

    SELECT 

      gps_data_animals.gps_data_animals_id,

      gps_data_animals.animals_id, 

      ST_MakeLine(gps_data_animals.geom, 

      lead(gps_data_animals.geom, (-1)) OVER (PARTITION BY 

gps_data_animals.animals_id ORDER BY gps_data_animals.acquisition_time))

 AS geom, ST_Length(ST_MakeLine(gps_data_animals.geom, 

lead(gps_data_animals.geom, (-1)) OVER (PARTITION BY 

gps_data_animals.animals_id ORDER BY 

gps_data_animals.acquisition_time))::geography) AS line_length, 

CREATE OR REPLACE VIEW analysis.view_probability_grid_traj AS 

  WITH 

  setx AS (

      CASE WHEN (date_part('epoch'::text, gps_data_animals.acquisition_time)

- date_part('epoch'::text, lead(gps_data_animals.acquisition_time, (-1))

OVER (PARTITION BY gps_data_animals.animals_id ORDER BY 

gps_data_animals.acquisition_time))) < (60 * 60 * 24)::double precision 

THEN date_part('epoch'::text, gps_data_animals.acquisition_time) - 

date_part('epoch'::text, lead(gps_data_animals.acquisition_time, (-1)) 

OVER (PARTITION BY gps_data_animals.animals_id ORDER BY 

gps_data_animals.acquisition_time))

      ELSE 

        0::double precision

      END AS time_spent

    FROM 

      main.gps_data_animals

    WHERE 

      gps_data_animals.gps_validity_code = 1 AND 

      (gps_data_animals.animals_id = 1)

    ORDER BY 

      gps_data_animals.acquisition_time),

  gridx AS (

    SELECT 
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setx.animals_id, 

tools.create_grid(ST_Collect(setx.geom), 100) AS cell

FROM setx

GROUP BY setx.animals_id)
  SELECT 

      END AS segment_time_spent, 

      (gridx.cell).geom AS geom

    FROM gridx, setx

    WHERE ST_Intersects(ST_Transform(setx.geom, ST_SRID((SELECT 

(gridx.cell).geom AS geom FROM gridx LIMIT 1))), (gridx.cell).geom) AND 

setx.time_spent > 0::double precision AND setx.animals_id = 

gridx.animals_id) a

    GROUP BY a.animals_id, a.cell_id, a.geom

    HAVING sum(a.segment_time_spent) > 0::double precision;

COMMENT ON VIEW analysis.view_probability_grid_traj

IS 'This view presents the SQL code to calculate the time spent by an animal

on every cell of a grid with a defined resolution, which corresponds to a 

probability surface. Trajectories (segments between locations) are considered. 

 Each segment represents the time spent between the two locations. This view 

 calls the function tools.reate_grid. This is a view with pure SQL, but this 

 tool can be coded into a function that uses temporary tables and some other 

 optimized approaches in order to speed up the processing time. In this case, 

 just animal 1 is returned.';

    a.animals_id * 10000 + a.cell_id AS id, 

    a.animals_id, 

    a.cell_id, 

    ST_Transform(a.geom, 4326)::geometry(Polygon,4326) AS geom, 

    (sum(a.segment_time_spent) / 60::double precision / 60::double 

precision)::integer AS hours_spent

  FROM 

    (SELECT 

      gridx.animals_id, 

      (gridx.cell).cell_id AS cell_id, 

      CASE setx.line_length WHEN 0 THEN 

        setx.time_spent

      ELSE 

        setx.time_spent * ST_Length(ST_Intersection(ST_Transform(setx.geom, 

ST_SRID((SELECT (gridx.cell).geom AS geom FROM gridx LIMIT 1))), 

(gridx.cell).geom)) / setx.line_length

This process involves time-consuming computation and you might need to wait
several seconds to get the result (Fig. 9.2).

This approach has a number of advantages:

• it is implemented with SQL, which is a relatively simple language to modify/
customise/extend;

• it is run inside the database, so results can be directly stored in a table, used to
run meta-analysis, and extended using other database tools;

• it is conceptually simple and gives a ‘real’ measure (time spent in terms of
hours);

• no parameters with unclear physical meaning have to be set; and
• it handles heterogeneous time intervals.
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Fig. 9.2 Probability surface with analysis.view_probability_grid_traj (a DEM is visualised in
the background)

Fig. 9.3 Spatial content of the database as seen from DB Manager in QGIS
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On the other hand, it implicitly relies on a very simplified movement model (the
animal moves along the segment that connects two locations with a constant speed).

Figure 9.3 shows a picture of the spatial content of the database in QGIS (DB
Manager).

Dynamic Age Class

While age class is stored in the animals table with reference to the capture time, it can
change over time. If this information must be associated with each location (according
to the acquisition time), a dynamic calculation of the age class must be used. We
present here an example valid for roe deer. With a conservative approach, we can
consider that on 1 April of each year, all the animals that were fawns become year-
lings, and all the yearlings become adults. Adults remain adults. The function below
requires an animal id and an acquisition time as input. Then, it checks the capture date
and the age class at capture. Finally, it compares the capture time to the acquisition
time: if 1 April has been ‘crossed’ once or more, the age class is increased accordingly:

CREATE OR REPLACE FUNCTION tools.age_class(

  animal_id integer, 

  acquisition_time timestamp with time zone)

RETURNS integer AS

$BODY$

DECLARE

  animal_age_class_code_capture integer;

  add_year integer;

  animal_date_capture date;

BEGIN

-- Retrieve the age class at first capture

animal_age_class_code_capture = (SELECT age_class_code FROM main.animals 

WHERE animals_id = animal_id);

-- If the animal is already an adult then all locations will be adult

IF animal_age_class_code_capture = 3 THEN

  RETURN 3;

END IF;

-- In case the animal at capture was not an adult, the function checks if 

the capture was before or after April. 

-- In the second case, the age class will increase the April of the next 

year.

animal_date_capture = (SELECT age_class_code FROM main.animals 

IF EXTRACT(month FROM animal_date_capture) > 3 THEN

  add_year = 1;

ELSE

  add_year = 0;

END IF;

WHERE animals_id = animal_id);
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    RETURN 3;

  ELSEIF acquisition_time > ((extract(year FROM animal_date_capture) + add_year)

|| '/4/1')::date THEN

    RETURN 2;

  ELSE

    RETURN 1;

  END IF;

END IF;

END;

 $BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.age_class(integer, timestamp with time zone) 
IS 'This function returns the age class at the acquisition time of a location. 

It has two input parameters: the id of the animal and the timestamp. According 

 to the age class at first capture, the function increases the class by 1 every

 time the animal goes through a defined day of the year (1st April).';

  IF acquisition_time > ((extract(year FROM animal_date_capture) + add_year + 1)

|| '/4/1')::date THEN

-- If the animal was an yearling at capture, the function checks if it went 

through an age class increase.

IF animal_age_class_code_capture = 2 THEN

  IF acquisition_time > ((extract(year FROM animal_date_capture) + 

add_year)|| '/4/1')::date THEN

    RETURN 3;

  ELSE

    RETURN 2;

  END IF;

END IF;

-- If the animal was a fawn at capture, the function checks if it went 

through two and then one age class increase.

IF animal_age_class_code_capture = 1 THEN

Unfortunately, all the animals in the database are adults, so no change in the age
class is possible. In any case, as an example of usage, we report the code to
retrieve the dynamic age class:

SELECT 

  animals_id, 

  acquisition_time, 

  tools.age_class(animals_id, acquisition_time) 

FROM main.gps_data_animals 

ORDER BY animals_id, acquisition_time 

LIMIT 10;
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The result is

 animals_id |    acquisition_time    | age_class 

------------+------------------------+-----------

          1 | 2005-10-18 22:00:54+02 |         3

          1 | 2005-10-19 02:01:23+02 |         3

          1 | 2005-10-19 06:02:22+02 |         3

          1 | 2005-10-19 10:03:08+02 |         3

          1 | 2005-10-20 22:00:53+02 |         3

          1 | 2005-10-21 02:00:48+02 |         3

          1 | 2005-10-21 06:00:53+02 |         3

          1 | 2005-10-21 10:01:42+02 |         3

          1 | 2005-10-21 14:03:11+02 |         3

          1 | 2005-10-21 18:01:16+02 |         3

Generation of Random Points

In some cases, it can be useful to generate a determined number of random points
in a given polygon (e.g. resource selection function, in order to get a representation
of the available habitat). This can be done using the database function reported
below. It requires a polygon (or multipolygon) geometry and the desired number
of points as input. The output is the set of points:

CREATE OR REPLACE FUNCTION tools.randompoints(

  geom geometry, 

  num_points integer,

  seed numeric DEFAULT NULL) 

RETURNS SETOF geometry AS 

$$

DECLARE

  pt geometry; 

  xmin float8; 

  xmax float8; 

  ymin float8; 

  ymax float8; 

  xrange float8; 

  yrange float8; 

  srid int; 

  count integer := 0; 

  bcontains boolean := FALSE; 

  gtype text; 

BEGIN

SELECT ST_GeometryType(geom) 

INTO gtype; 

IF ( gtype != 'ST_Polygon' ) AND ( gtype != 'ST_MultiPolygon' ) THEN 

  RAISE EXCEPTION 'Attempting to get random point in a non polygon 

END IF; 

SELECT ST_XMin(geom), ST_XMax(geom), ST_YMin(geom), ST_YMax(geom), 
INTO xmin, xmax, ymin, ymax, srid; ST_SRID(geom)

geometry';
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  IF bcontains THEN 

    count := count + 1; 

    RETURN NEXT pt; 

  END IF; 

END LOOP; 

RETURN;

END;

$$

LANGUAGE 'plpgsql'; 

COMMENT ON FUNCTION tools.randompoints(geometry, integer, numeric) 

IS 'This function generates a set of random points into a given polygon (or 

multipolygon). The number of points and the polygon must be provided as 

input. A third optional parameter can define the seed, and thus generate a 

consistent (random) set of points.';

SELECT xmax - xmin, ymax - ymin 

INTO xrange, yrange; 

IF seed IS NOT NULL THEN 

  PERFORM setseed(seed); 

END IF; 

WHILE count < num_points LOOP 

  SELECT 

    ST_SetSRID(ST_MakePoint(

      xmin + xrange * random(), ymin + yrange * random()), srid)  
  INTO pt; 

  SELECT ST_Contains(geom, pt) 

  INTO bcontains; 

It can be used in a view to generate a set of points automatically whenever the
view is called. In this example, the study area is used as input geometry to generate
100 random points:

CREATE VIEW analysis.view_test_randompoints AS

  SELECT

    row_number() over() AS id,

    geom::geometry(point, 4326)

  FROM 

    (SELECT

      tools.randompoints(

        (SELECT geom FROM env_data.study_area),         100)AS geom) a;
COMMENT ON VIEW analysis.view_test_randompoints

IS 'This view is a test that shows 100 random points (generated every time 

that the view is called) into the boundaries of the first polygon stored in 

the home_ranges_mcp table.';

The row_number() is added to generate a unique integer associated with each
point; otherwise, some of the client applications will not be able to deal with this
view. If you visualise the view in a GIS environment (e.g. in QGIS), you will
notice that the set of points changes every time that you refresh your GIS interface.
This is because the view generates a new set of points at every call. If you need to
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consistently generate the same set of points for reproducibility, you can specify a
third parameter that defines the seed9 (a numeric value in the range from -1 to 1)
based on the PostgreSQL setseed10 function. The seed option allows you to
reproduce the same results while keeping the generation process random.
Changing the seed will generate another set of random locations. Another option is
to make the random points permanent and upload the result into a permanent table
that can then be processed further (e.g. intersected with environmental layers):

CREATE TABLE analysis.test_randompoints AS

  SELECT

    row_number() over() AS id,

    geom::geometry(point, 4326)

  FROM 

    (SELECT

      tools.randompoints(

        (SELECT geom FROM env_data.study_area),         100)AS geom) a;

ALTER TABLE analysis.test_randompoints

  ADD CONSTRAINT test_randompoints_pk PRIMARY KEY(id);

COMMENT ON TABLE analysis.test_randompoints

IS 'This table is a test that permanently stores 100 random points into the 

boundaries of the first polygon stored in the home_ranges_mcp table.';

A graphical illustration of the result is illustrated in Fig. 9.4.

Fig. 9.4 Random points generated in a polygon

9 http://en.wikipedia.org/wiki/Random_seed.
10 http://www.postgresql.org/docs/9.2/static/sql-set.html.
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Chapter 10
From Data Management to Advanced
Analytical Approaches: Connecting
R to the Database

Bram Van Moorter

Abstract The previous chapters explored the wide set of tools that PostgreSQL and
PostGIS offer to manage tracking data. In this chapter, you will expand database
functionalities with those provided by dedicated software for statistical computing
and graphics: the R programming language and software environment. Specifically,
you will use the advanced graphics available through R and its libraries (especially
‘adehabitat’) to perform exploratory analysis of animal tracking data. This data
exploration is followed with two short ecological analyses. These ecological anal-
yses are discussed in the context of two central concepts in animal space use: geo-
graphic versus environmental space, and the spatiotemporal scale of the research
question. In the first analysis, you investigate the animal’s home range, which is its
use of geographic space. In the second, to explore an animal’s use of environmental
space we introduce briefly the study of both use and selection of environmental
features by animals. For both demonstrations we consider explicitly the temporal
scale of the study through the seasonal changes introduced by seasonal migration.

Introduction: From Data Management to Data Analysis

In previous chapters, you explored the wide set of tools that PostgreSQL and PostGIS
offer to process and analyse tracking data. Nevertheless, a database is not specifically
designed to perform advanced statistical analysis or to implement complex analytical
algorithms, which are key elements to extract scientific knowledge from the data for
both fundamental and applied research. In fact, these functionalities must be part of
an information system that aims at a proper handling of wildlife tracking data. The
possibility of a tighter integration of analytical functions with the database is
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particularly interesting because the availability of large amounts of information from
the new generation sensors blurs the boundary between data analysis and data
management. Tasks like outlier filtering, real-time detection of specific events (e.g.
virtual fencing), or meta-analysis (analysis of results of a first analytical step,
e.g. variation in home range size in the different months of a year) are clearly in the
overlapping area between data analysis and management.

Background for the Analysis of Animal Space Use Data

Two questions need to be answered to move from an ecological question on animal
space use to the analysis of those data: first, which is the relevant space (geo-
graphic versus environmental space), and second, which is the relevant spatio-
temporal scale? Animals occupy a position in space at a given time t, which is
called geographic space, and many ecological questions are related to this space:
e.g. ‘How large of an area is used by an animal during a year’? or ‘How fast can an
animal travel?’. Notably, the question on the area traversed by the animal has
received much research interest, and this area is often called a ‘home range’. The
home range has been defined by Burt (1943) as ‘the area traversed by the indi-
vidual in its normal activities of food gathering, mating, and caring for young’.
Many statistical approaches have been developed to use sets of location ‘points’ to
estimate a home range area, from convex polygons to kernel density estimators
(and many variants; for a review, see Kie et al. 2010).

On the other hand, by being in a certain geographic location, the animal
encounters a set of environmental conditions, which are called environmental
space, and questions related to the animal’s ecological relationships are to be
answered in this space: e.g. ‘Which environmental characteristics does the animal
prefer’? or ‘How does human land use affect the animal’s space use?’. These
questions are the main topic of habitat selection studies. In general, in these
studies, one compares the environmental conditions used by the animal to those
available to the animal. An important challenge is to decide ‘What environmental
conditions were available to the animal’? This issue is tightly linked to the next
question to be answered about scale.

The second important question for animal space use studies is about the rele-
vant scale for the analysis. Small-scale studies can focus on the spatial behaviour
of animals within a day or even an hour, whereas large-scale studies can look at
space use over a year or even an animal’s lifetime. The required scale of the study
leads to certain demands on the data as well: a small-scale study requires high-
resolution collection of precise locations, whereas a large-scale study will require a
sufficient tracking duration to allow inferences over this long period. It seems
obvious that any description of the area traversed by an individual must specify the
time period over which the traversing occurred. Only for stable home ranges is it
so that after a certain amount of time the size of the range no longer increases and
the area becomes no longer time-dependent. Although often assumed, the stability
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of a home range should be tested as often this is not the case. Also the distance
travelled is very sensitive to the scale of the study, see Fig. 10.1.

For habitat selection studies—i.e. studies in environmental space—scale not only
affects the sampling of the animal’s space use, but even more important also the
sampling of the environmental conditions available to the animal to choose from.
Areas available to an animal in the course of several days may not be reachable
within the time span of a few hours. This behavioural limitation has led several
studies to consider availability specific to each used location (e.g. step-selection
functions, Fortin et al. (2005)), instead of considering the same choice set available
for all locations of a single individual (or even population). Thus, how the researcher
defines the available choice set should be informed by the scale of the study.

The Tools: R and Adehabitat

R is an open source programming language and environment for statistical com-
puting and graphics (http://www.r-project.org/). It is a popular choice for data
analysis in academics, with its popularity for ecological research increasing rap-
idly. This popularity is not only the result of R being available for free, but also
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Fig. 10.1 This simulated trajectory clearly illustrates that reducing the number of acquired fixes
within a time period can alter substantially the properties of the trajectory. The dashed line is the
original trajectory, sampling with a ten times coarser resolution leads to a shorter trajectory in
black, and a further reduction results in an even shorter trajectory in gray. Even though the total
length of the trajectory decreases with a reduction in resolution, the distance between the
consecutive points increases. It is thus very important for the researcher to be aware of such
effects of sampling scale on trajectory characteristics
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due to its flexibility and extendibility. The large user base of R has developed an
extensive suite of libraries to extend the basic functionalities provided in the
R-base package. Before going into some of these really fantastic features, it is
good to point out that R’s flexibility comes at a cost: a rather steep-learning curve.
R is not very tolerant to small human mistakes and demands of the first-time user
some initial investment to understand its sometimes cryptic error messages. For-
tunately, there are many resources out there to help the novice on her way (look on
the R website for more options): online tutorials (e.g. ‘R for Beginners’ or
‘Introduction to R’), books (a popular choice is Crawley’s (2005) ‘Statistics: An
Introduction using R’), extensive searchable online help (e.g. http://www.rseek.
org/), and the many statistics courses that include an introduction to R (search the
Internet for a course nearby; some may even be offered online).

One of the main strengths of R is the availability of a large range of packages or
libraries for specific applications; by 2013, more than 4,000 libraries were pub-
lished on CRAN. There are libraries for advanced statistical analysis (e.g. ‘lme4’
for mixed-effects models or ‘mgcv’ for general additive models), advanced
graphics (e.g. ‘ggplot2’), spatial analysis (e.g. ‘sp’), or database connections (e.g.
‘RPostgreSQL’). Many packages have been developed to allow the use of R as a
general interface to interact with databases or GIS. Other packages have gone even
further and increase the performance of R in fields for which it was not originally
developed such as the handling of very large data sets or GIS. Hence, many
different R users have come into existence: from users relying on specific software
for specific tasks who use R exclusively for their statistical analysis and use
different files to push data through their workflow, to the other extreme of users
who use R to control a workflow in which R sometimes calls on external software
to get the job done, but more often with the help of designated libraries, R gets the
job done itself. Instead, the approach advocated in this book is not centred around
software, but places the data in the centre of the workflow. The data are stored in a
spatial database, and all software used interacts with this database. You have seen
several examples in this book using different software (e.g. pgadmin or QGIS); in
this chapter, you will use R as another option to perform some additional specific
tasks with the data stored in the database.

For the analysis of animal tracking data, we often use functions from adehabitat
(Calenge 2006), which today consists of ‘adehabitatLT’ (for the analysis of tra-
jectories), ‘adehabitatHR’ (for home range estimation), ‘adehabitatHS’ (for hab-
itat-selection analysis), and ‘adehabitatMA’ (for the management of raster maps).
For the general management of spatial data, we rely on the ‘sp’- and ‘rgdal’-
libraries, for the advanced management of raster data; the ‘raster’-library is
becoming the standard. We recommend as a general introduction to the use of
spatial data in R the book by Bivand et al. (2008). To install a package with a
library in R, you use the install.packages command, as illustrated here for the
‘adehabitat’-libraries:
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# comments in R start with a '#', and what follows will be ignored by R
# to install the adehabitat packages:
install.packages("adehabitatLT")
install.packages("adehabitatHR")
install.packages("adehabitatHS")
install.packages("adehabitatMA")

The different adehabitat packages come with extensive tutorials, which are
accessible in R through

vignette("adehabitatLT")
vignette("adehabitatHR")
vignette("adehabitatHS")
vignette("adehabitatMA")

Before using the database to analyse your animal tracking data with R, you can
use adehabitat to replicate Fig. 10.1:

library(adehabitatLT)
set.seed(0) #this allows you to replicate
# the exact same 'random' numbers as we did for the figure
simdat <- simm.crw(c(1:501))[[1]]
plot(simdat$x, simdat$y, type = "l", lty = "dashed", xlab = "x", ylab = "y",

asp = T)
lines(simdat$x[seq(1, 501, by = 10)], simdat$y[seq(1, 501, by = 10)], lwd = 2)
lines(simdat$x[seq(1, 501, by = 100)], simdat$y[seq(1, 501, by = 100)], lwd = 4,

col = "grey")

The simm.crw function simulates a random walk. A random walk is a move-
ment where the direction and the distance of each consecutive location are ran-
domised; it is therefore also referred to as a ‘drunkard’s walk’. It is beyond the
scope of this chapter to give an introduction to random walks (see e.g. Turchin
1998 for more on random walks to model movement of organisms).

You can find more information on a function with a ‘?’ in front of the function;
this will access its associated help pages with explanation and working examples
of the function’s uses:

`?`(simm.crw)

You can see in these help pages that there are several parameters that can be
altered to make the random walk behave differently.

10 From Data Management to Advanced Analytical Approaches 185



Connecting R to the Database

To use R for the analysis of the data stored and managed within the database, there
are two approaches: first, connect from R to the database, and second, connect
from the database to R with the Pl/R-interface. We will start by demonstrating the
first approach and using it for some exercises. In the next chapter, you will see how
this approach can be extended to connect from within the database to R with the
PostgreSQL procedural language Pl/R (www.joeconway.com/plr/doc/).

First, to connect from R to the database, we make use of the ‘RPostgreSQL’
library. It is possible with ‘rgdal’ to read spatial features from PostGIS directly in
R into ‘sp’’s spatial classes. However, using ‘rgdal’, it is no longer possible to
perform SQL operations (such as SELECT) on these data. One solution could be to
create in the database a temporary table with the selected spatial features and then
use ‘rgdal’ to read the spatial features into R. However, the performance of ‘rgdal’
is considerably lower—it can be 100 times slower for certain operations—than for
the database libraries, such as ‘RPostgreSQL’. Unfortunately, to date, there is no
straightforward way for Windows users to read spatial data into R using SQL
statements from a PostgreSQL-database. Thus, when you want to include an SQL
statement, you will have to convert the data to non-spatial classes and then sub-
sequently convert them back to spatial features in R. In the next chapter, we will
discuss the pros and cons of the use of R within the database through Pl/R.

To connect to a PostgreSQL-database, we use the ‘RPostgreSQL’ library. The
driver is ‘PostgreSQL’ for a PostgreSQL-database as yours. The connection
requires information on the driver, database name, host, port, user, and password.
Except from the driver, all other parameters may have to be adjusted for your own
specific case. If you have the database on your own machine, then the host and port
will likely be ‘localhost’ and 5432, respectively, as shown here. You can see the
tables in the database with the dbListTables command:

library(RPostgreSQL)
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname="gps_tracking_db", host="localhost",

port="5432", user="postgres", password="********")
dbListTables(con)
## Loading required package: DBI

## [1] "lu_species" "lu_age_class"
## [3] "gps_data_animals" "gps_sensors"
## [5] "gps_data" "gps_sensors_animals"
## [7] "spatial_ref_sys" "meteo_stations"
## [9] "study_area" "roads"
## [11] "adm_boundaries" "srtm_dem"
## [13] "corine_land_cover" "corine_land_cover_legend"
## [15] "lu_gps_validity" "ndvi_modis"
## [17] "trajectories" "animals"
## [19] "home_ranges_mcp" "test_randompoints"
## [21] "activity_sensors_animals" "activity_data"
## [23] "activity_sensors" "activity_data_animals"
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The following code retrieves the first five lines from the gps_data_animals
table:

fetch(dbSendQuery(con, "SELECT * FROM main.gps_data_animals LIMIT 5;"), -1)

## gps_data_animals_id gps_sensors_id animals_id acquisition_time
## 1 28250 6 6 2005-04-08 10:01:24
## 2 28344 6 6 2005-04-18 14:00:47
## 3 28396 6 6 2005-04-27 06:01:54
## 4 26109 1 2 2005-08-01 21:00:30
## 5 26684 1 2 2005-10-15 20:32:17
## longitude latitude insert_timestamp update_timestamp
## 1 10.95 45.97 2013-09-12 18:45:17 2013-10-10 16:08:23
## 2 11.04 46.06 2013-09-12 18:45:17 2013-10-10 16:08:44
## 3 11.10 46.07 2013-09-12 18:45:17 2013-10-10 16:08:44
## 4 11.03 46.03 2013-09-12 09:56:38 2013-10-10 16:08:44
## 5 11.02 46.02 2013-09-12 09:56:38 2013-10-10 16:08:44
## geom pro_com
## 1 0101000020E6100000C054D8B1B6E62540169C6626BDFB4640 NA
## 2 0101000020E6100000D9EBDD1FEF15264043812D65CF074740 22205
## 3 0101000020E610000099BDC7F4DF3226409FD9BFFC5F094740 22205
## 4 0101000020E6100000CA6E66F4A30D2640CA0E3B9D75034740 22101
## 5 0101000020E61000000C186E0A750A2640AF04F7A864024740 22101
## corine_land_cover_code altitude_srtm station_id roads_dist ndvi_modis
## 1 21 411 1 119 NA
## 2 25 884 3 2167 NA
## 3 25 357 3 1243 NA
## 4 24 1681 5 372 NA
## 5 24 1666 5 1173 NA
## gps_validity_code
## 1 12
## 2 2
## 3 2
## 4 2
## 5 2

You can see that R did not understand the geom column correctly.
Now, you want to retrieve all the necessary information for your analyses of roe

deer space use. You first send a query to the database:

rs <- dbSendQuery(con, "SELECT animals_id, acquisition_time,longitude, latitude,
ST_X(ST_Transform(geom, 32632)) as x32,
ST_Y(ST_Transform(geom, 32632)) as y32, roads_dist,
ndvi_modis, corine_land_cover_code, altitude_srtm
FROM main.gps_data_animals where gps_validity_code = 1;" )

locs <- fetch(rs,-1)
dbClearResult(rs)
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You then need to fetch those data (with the -1, you indicate that you want all
data), and then ‘clear’ the result set. Virtually all spatial operations (such as
projection) could also be done in R; however, it is faster and easier to have the
database project the data to UTM32 (which has the SRID code 32632).

head(locs)

## animals_id acquisition_time longitude latitude x32 y32
## 1 2 2005-03-21 01:03:06 11.07 45.99 660151 5095008
## 2 2 2005-03-21 13:02:19 11.07 46.00 660004 5095733
## 3 2 2005-03-21 21:01:49 11.07 46.00 659954 5095673
## 4 2 2005-03-21 05:01:45 11.07 45.99 660104 5095155
## 5 6 2005-04-05 20:02:48 11.06 46.07 659592 5103359
## 6 6 2005-04-06 04:01:46 11.06 46.07 659631 5103352
## roads_dist ndvi_modis corine_land_cover_code altitude_srtm
## 1 682 5048 23 1085
## 2 1139 4314 25 1378
## 3 1214 4797 25 1401
## 4 834 5048 23 1201
## 5 1205 5793 19 740
## 6 1168 5793 19 740

The head function allows us to inspect the first lines (by default six) of a
dataframe. You see that you have successfully imported your data into R.

For dates, you should always carefully inspect their time zone. Due to the
different time zones in the world, it is easy to get errors and make mistakes in the
treatment of dates:

head(locs$acquisition_time)

## [1] "2005-03-21 01:03:06 CET" "2005-03-21 13:02:19 CET"
## [3] "2005-03-21 21:01:49 CET" "2005-03-21 05:01:45 CET"
## [5] "2005-04-05 20:02:48 CEST" "2005-04-06 04:01:46 CEST"

The time zone is said to be CEST and CET (i.e. Central European Summer
Time and Central European Winter Time), note that the time zone will depend
upon the local settings of your computer. However, we know that the actual time
zone of these data is UTC (i.e. Universal Time or Greenwich Mean Time).

Let us then inspect whether the issue is an automatic transformation of the time
zone, or whether the time zone was not correctly imported. With the library
‘lubridate’, you can easily access the hour or month of a POSIXct-object:
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library(lubridate)
table(month(locs$acquisition_time), hour(locs$acquisition_time))

##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 1 0 152 0 0 36 118 0 35 0 126 33 0 0 149 0 0 35
## 2 0 121 0 0 33 97 0 31 0 95 34 0 0 116 0 0 42
## 3 0 129 21 0 0 122 23 0 0 127 24 0 0 114 20 0 0
## 4 9 0 168 0 10 0 171 0 11 0 164 0 11 0 156 0 11
## 5 5 1 158 1 6 1 147 1 6 1 122 0 5 1 149 0 5
## 6 0 0 125 0 0 0 107 0 0 0 100 0 0 0 107 0 0
## 7 2 2 144 2 2 2 114 1 1 2 128 2 2 2 110 2 2
## 8 10 8 137 7 8 8 131 7 9 8 126 7 8 8 112 9 9
## 9 10 10 136 7 10 9 142 8 8 7 112 8 6 7 99 4 7
## 10 8 16 161 8 8 23 154 8 8 20 132 8 8 18 128 7 7
## 11 0 181 0 0 0 182 0 0 0 167 0 0 0 166 0 0 0
## 12 4 196 6 6 6 193 5 5 6 178 5 6 5 183 6 5 6
##
## 17 18 19 20 21 22 23
## 1 118 0 33 0 118 35 0
## 2 95 0 31 0 103 33 0
## 3 130 27 0 0 123 30 0
## 4 0 175 0 12 0 180 0
## 5 1 128 1 5 1 151 1
## 6 0 102 0 0 0 125 0
## 7 2 103 2 0 0 131 1
## 8 7 104 6 8 8 139 9
## 9 10 117 8 9 7 145 10
## 10 17 138 8 7 20 161 8
## 11 179 0 0 0 184 0 0
## 12 197 5 5 6 198 6 5

The table shows us that there is a clear change in the frequency of the daily
hours between March–April and October–November, which indicates the presence
of daylight saving time. You can therefore safely assume that the UTC time in the
database was converted to CEST/CET time.

To prevent mistakes due to daylight saving time, it is much easier to work with
UTC time (UTC does not have daylight saving). Thus, you have to convert the
dates back to UTC time. With the aforementioned‘lubridate’ library, you can do
this easily: The function with_tz allows you to convert the local back to the UTC
zone:

locs$UTC_time <- with_tz(locs$acquisition_time, tz = "UTC")
head(locs$acquisition_time)

## [1] "2005-03-21 01:03:06 CET" "2005-03-21 13:02:19 CET"
## [3] "2005-03-21 21:01:49 CET" "2005-03-21 05:01:45 CET"
## [5] "2005-04-05 20:02:48 CEST" "2005-04-06 04:01:46 CEST"

head(locs$UTC_time)

## [1] "2005-03-21 00:03:06 UTC" "2005-03-21 12:02:19 UTC"
## [3] "2005-03-21 20:01:49 UTC" "2005-03-21 04:01:45 UTC"
## [5] "2005-04-05 18:02:48 UTC" "2005-04-06 02:01:46 UTC"
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Indeed, the UTC_time-column now contains the time zone: ‘UTC’. You can run
the command ‘table(month(locs$UTC_time), hour(locs$UTC_time))’ to verify that
no obvious shift in sampling occurred in the data. From personal experience, we
know that many mistakes happen with time zones and daylight saving time, and
we therefore recommend that you use UTC and carefully inspect your dates and
ensure that they were correctly imported into R.

Data Inspection and Exploration

Before you dive into the analysis to answer your ecological question, it is crucial to
perform a preliminary inspection of the data to verify data properties and ensure
the quality of your data. Several of the following functionalities that are imple-
mented in R can also easily (and more quickly) be implemented into the database
itself. The main strength of R, however, lies in its visualisation capabilities. The
visualisation of different aspects of the data is one of the major tasks during an
exploratory analysis.

The basic trajectory format in adehabitat is ltraj, which is a list used to store
trajectories from different animals. For more details on the ltraj-format, you refer
to the vignettes (remember: vignette(adehabitatLT)) and the help pages for the
‘adehabitatLT’-library. An ltraj-object requires projected coordinates, a date for
each location, and an animal identifier:

library(adehabitatLT)
ltrj <- as.ltraj(locs[, c("x32", "y32")], locs$UTC_time, locs$animals_id)
class(ltrj)

## [1] "ltraj" "list"

class(ltrj[[1]])

## [1] "data.frame"

The class-function shows us that ltraj is an object from the class ltraj and list.
Each element of an ltraj-object is a data.frame with the trajectory information for
each burst of each animal. A burst is a more or less intense monitoring of the
animal followed by a gap in the data. For instance, animals that are only tracked
during the day and not during the night will have for each day period a burst of
data. The automatic schedule used for the GPS tracking of the roe deer in your
database did not contain any intentional gaps; we therefore consider all data from
an animal as belonging to a single burst.
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head(ltrj[[1]])

## x y date dx dy dist dt
## 1549 658249 5097296 2005-10-18 20:00:54 29.89 92.04 96.77 14429
## 1720 658279 5097388 2005-10-19 00:01:23 57.87 -426.16 430.07 14459
## 1025 658337 5096962 2005-10-19 04:02:22 46.07 -213.36 218.27 14446
## 1402 658383 5096749 2005-10-19 08:03:08 -229.96 454.70 509.55 129465
## 1298 658153 5097204 2005-10-20 20:00:53 -88.91 38.42 96.86 14395
## 1839 658064 5097242 2005-10-21 00:00:48 -63.56 -27.02 69.06 14405
## R2n abs.angle rel.angle
## 1549 0 1.257 NA
## 1720 9365 -1.436 -2.6927
## 1025 119334 -1.358 0.0777
## 1402 317634 2.039 -2.8860
## 1298 17847 2.734 0.6947
## 1839 37195 -2.740 0.8099

The head function shows us that the data.frames within an ltraj object have ten
columns. The first three columns define the location of the animal: the x and y
coordinate and its date. The following columns describe the step (or change in
location) toward the next location: the change in the x and y coordinates, the
distance, the time interval between both locations, the direction of the movement,
and the change in movement direction. The R2n is the squared displacement from
the start point (or the net squared displacement [NSD]); we will discuss this metric
in more detail later (see Calenge et al. 2009, and Fig. 10.2 for more explanation on
these movement metrics).

Note that the animal’s identifier is not in the table. As all locations belong to the
same animal, there is no need to provide this information here. To obtain the
identifiers of all the data.frames in an ltraj, you use the id function:

id(ltrj)

## [1] "1" "2" "3" "4" "5" "6"

Or, to obtain the id of only one animal,

id(ltrj[1])

## [1] "1"

The summary function gives some basic information on the ltraj-object:

(sumy <- summary(ltrj))

## id burst nb.reloc NAs date.begin date.end
## 1 1 1 1647 0 2005-10-18 20:00:54 2006-10-29 12:00:49
## 2 2 2 2194 0 2005-03-20 16:03:14 2006-05-27 16:02:25
## 3 3 3 1826 0 2005-10-23 20:00:53 2006-10-28 12:01:18
## 4 4 4 2641 0 2005-10-21 20:00:47 2007-02-09 08:11:24
## 5 5 5 2695 0 2006-11-13 00:02:24 2008-03-15 08:01:37
## 6 6 6 278 0 2005-04-04 06:01:41 2005-05-05 23:01:47
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Note that it marks 0 for missing values (i.e. NAs). However, this is not correct;
you will see below how to tell R that there are missing observations in the data.

You see also that the total tracking duration is highly variable among indi-
viduals; notably Animal 6 was tracked for a much shorter time than the other
animals. To ensure homogeneous data for the following analyses, you will only
keep animals that have a complete year of data (i.e. number of days C365):

(duration <- difftime(sumy$date.end, sumy$date.begin, units = "days"))

## Time differences in days
## [1] 375.67 433.00 369.67 475.51 488.33 31.71
## attr(,"tzone")
## [1] "UTC"

ltrj <- ltrj[duration >= 365]

Moreover, for animals that were tracked for a longer period than one year, you
remove locations in excess. Of course, if your ecological question is addressing
space use during another period (e.g. spring) than you would want to keep all
animals that provide this information, and Animal 6 may be retained for analysis,
while removing all locations that are not required for this analysis.

ltrj <- cutltraj(ltrj,"difftime(date, date[1], units='days')>365")

summary (ltrj)

## id burst nb.reloc NAs date.begin date.end
## 1 1 1.01 1603 0 2005-10-18 20:00:54 2006-10-19 00:00:49
## 2 2 2.001 1894 0 2005-03-20 16:03:14 2006-03-20 20:02:06
## 3 3 3.01 1804 0 2005-10-23 20:00:53 2006-10-23 20:00:54
## 4 4 4.001 2009 0 2005-10-21 20:00:47 2006-10-21 20:00:54
## 5 5 5.001 1990 0 2006-11-13 00:02:24 2007-11-13 04:00:56
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NSD(t=3)

NSD(t=4)

Fig. 10.2 The common trajectory characteristics stored in an ltraj. Panel a Shows the properties
of one step from t to t ? 1, and panel b the NSD of a series of locations (t = 1–5). The relative
(rA) and absolute (aA) angles are also called the turning angle and direction of a step, respectively
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Now, all animals are tracked for a whole year.
With the plot function, you can show the different trajectories (see the result in

Fig. 10.3):

par(mfrow = c(1, 2))
plot(ltrj[1])
plot(ltrj[2])

The plotltr function allows us to show other characteristics than the spatial
representation of the trajectory. For instance, it is very useful to get an overview of
the sampling interval of the data. We discussed before how the sampling interval
has a large effect on the patterns that you can observe in the data.

plotltr(ltrj[1], which = "dt/60/60", ylim = c(0, 24))
abline(h = seq(4, 24, by = 4), col = "grey")

Figure 10.4 shows that the time gap (dt) is not always constant between con-
secutive locations. Most often there is a gap of 4 h; however, there are several
times that data are missing, and the gap is larger. Surprisingly, there are also
locations where the gap is smaller than 4 h. We wrote a function to remove
locations that are not part of a predefined sampling regime:
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Fig. 10.3 Plot of the trajectories for the two first animals. You could have plotted all animals by
simply running plot(ltrj)
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removeOutside <- function(x, date.ref, dt_hours = 1, tol_mins = 5)
require(adehabitatLT)
x <- ld(x)
tmp <- x$date + tol_mins * 60
tmp_h <- as.POSIXlt(tmp)$hour
tmp_m <- as.POSIXlt(tmp)$min
hrs <- as.POSIXlt(date.ref)$hour
hrs <- seq(hrs, 24, by = dt_hours)
x <- x[tmp_h %in% hrs & tmp_m < (2 * tol_mins), ]
x <- dl(x)
return(x)

}
}

You now use this function on the ltraj; you specify a reference date at midnight,
and the expected time lags in hours (dt_hours) is 4, and you set a tolerance of
±3 min (tol_mins):

ltrj <- removeOutside(ltrj, dt_hours = 4, tol_mins = 3,
date.ref=as.POSIXct("2005-01-01 00:00:00", tz="UTC"))

You can now inspect the time lag for each animal again:

plotltr(ltrj[1], which = "dt/60/60", ylim = c(0, 24))
abline(h = seq(4, 24, by = 4), col = "grey")

You see in Fig. 10.5 that there are no longer observations that deviate from the
4-hour schedule we programmed in our GPS sensors, i.e. all time lags between
consecutive locations are a multiple of four. You still see gaps in the data, i.e. some
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Fig. 10.4 The time interval
between locations for animal 1
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gaps are larger than 4 h. Thus, there are missing values. The summary did not
show the presence of missing data in the trajectory; you therefore have to specify
the occurrence of missing locations.

The setNA function allows us to place the missing values into the trajectory at
places where the GPS was expected to obtain a fix but failed to do so. You have to
indicate a GPS schedule, which is in your case 4 h:

ltrj <- setNA(ltrj, as.POSIXct("2004-01-01 00:00:00", tz="UTC"),
dt=4*60*60)

summary(ltrj)

## id burst nb.reloc NAs date.begin date.end
## 1 1 1.01 2192 942 2005-10-18 20:00:54 2006-10-19 00:00:49
## 2 2 2.001 2189 758 2005-03-21 04:01:45 2006-03-20 20:02:06
## 3 3 3.01 2191 726 2005-10-23 20:00:53 2006-10-23 20:00:54
## 4 4 4.001 2191 492 2005-10-21 20:00:47 2006-10-21 20:00:54
## 5 5 5.001 2192 325 2006-11-13 00:02:24 2007-11-13 04:00:56

Indeed, now you see that the trajectories do contain a fair number of missing
locations.

If locations are missing randomly, it will not bias the results of an analysis.
However, when missing values occur in runs, this may affect your results. In
adehabitat, there are two figures to inspect patterns in the missing data. The
function plotNAltraj shows for a trajectory where the missing values occur and can
be very instructive to show important gaps in the data:

da <- ltrj[[1]]$date
# the vector with dates allows us to zoom in on a range of dates in the plot
plotNAltraj(ltrj[1], xlim = c(da[1], da[500]))
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Fig. 10.5 The time interval
between locations for animal
1 after the removal of
locations outside the base
sampling interval
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Figure 10.6 reveals that the missing values in November and December are not
likely to occur independent of each other (you can verify this yourself for other
periods by changing the limits of the x-axis with the xlim argument). You can test
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Fig. 10.7 Testing the
temporal independence
among missing locations. The
histogram represents the
expected distribution of
missing values if they
occurred independently. The
pin on the left shows the
observed distribution, which
shows that missing values did
not occur independently from
each other
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missing values are 1 and
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with the runsNAltraj function whether there is statistical significant clustering of
the missing values:

runsNAltraj(ltrj[1]) #indeed, as the figures showed, it is not random

Indeed, Fig. 10.7 shows that for this trajectory, there is significant clustering of
the missing fixes (you can test yourself whether this is also the case for the other
animals). Thus, when you have one missing location, it is more likely that the next
location will be missing too. Such temporal dependence in the probability to obtain
fixes is not surprising, because the conditions affecting this probability are likely
temporally autocorrelated. For instance, it is known that for a GPS receiver, it is
more difficult to contact the satellites within dense forests, and so when an animal
is in such a forest at time t, it is more likely to be still in this forest at time t ? 1
than at time t ? 2, thus causing temporal dependence in the fix-acquisition
probability. Unfortunately, as said, this temporal dependence in the ‘missingness’
of locations holds the risk of introducing biases in the results of your analysis.

Visual inspection of figures like Fig. 10.6 can help the assessment of whether
the temporal dependence in missing locations will have large effects on the
analysis. Other figures can also help this assessment. For instance, you can plot the
number of missing locations for each hour of the day, or for periods of the year
(e.g. each week or month):

par(mfrow=c(1,2))
plot(c(0, 4, 8, 12, 16, 20),

tapply(ltrj[[1]]$x, as.POSIXlt(ltrj[[1]]$date)$hour,
function(x)mean(is.na(x))),
xlab="hour", ylab="prop. missing", type="o", ylim=c(0,1), main="a")

periods <- trunc(as.POSIXlt(ltrj[[1]]$date)$yday/10)
plot(tapply(ltrj[[1]]$x, periods, function(x)mean(is.na(x))),

xlab="period", ylab="prop. missing", type="o", ylim=c(0,1), main="b")

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hour

pr
op

. m
is

si
ng

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

period

pr
op

. m
is

si
ng

(a) (b)

Fig. 10.8 Plot with the proportion missing locations for each hour of the day (panel a) and for
each period of 10 days (panel b)

10 From Data Management to Advanced Analytical Approaches 197



Figure 10.8 shows that there is no strong bias in the time of the day; you can
therefore be fairly confident that additional results will not be biased regarding the
diurnal cycle. However, there are four consecutive blocks of 10 days with low fix-
acquisition rate, which could be an issue. Fortunately, the other periods during the
winter are providing us with enough data. You therefore expect bias on your
results to be minimal. In cases when there are longer periods with missing data, it
can be necessary to balance the data. It is obviously not straightforward to create
new data; however, you can remove random locations in periods when you have
‘too many’ observations. In our demonstration, we will proceed without further
balancing the data.

The NSD is a commonly used metric for animal space use; it is the squared
straight-line distance between each point and the first point of the trajectory (see
Fig. 10.2b). It is a very useful metric to assess, for instance, the occurrence of
seasonal migration patterns. An animal that migrates between summer and winter
ranges will often show a characteristic hump shape in the NSD, as exemplified
clearly in Fig. 10.9:
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plotltr(ltrj, which = "R2n")

The NSD profiles in Fig. 10.9 strongly suggest the occurrence of seasonal
migration in all five animals. During the summer (from May till November), the
animals seem to be in one area and during the winter (from December till April) in
another. The NSD is a one-dimensional representation of the animal’s space use,
which facilitates the inspection of it against the second dimension of time. On the
other hand, it removes information present in the two-dimensional locations pro-
vided by the GPS. Relying exclusively on the NSD can in certain situations give
rise to wrong inferences; we therefore highly recommend also inspecting the
locations in two dimensions. One of the disadvantages of the NSD is that the
starting point is often somewhat arbitrary. It can help to use a biological criterion
such as the fawning period to start the year.

As an alternative for (or in addition to) the NSD, you can plot both spatial
dimensions against time as in Fig. 10.10:

par(mfrow=c(1,2))
plot(ltrj[[1]]$date, ltrj[[1]]$x, pch=19, type="o", xlab="Time",

ylab="x", main="a")
plot(ltrj[[1]]$date, ltrj[[1]]$y, pch=19, type="o", xlab="Time",

ylab="y", main="b")

To avoid the intrinsic reduction of information by collapsing two dimensions
into one single dimension, you also plot both spatial dimensions and use colour to
depict the temporal dimension:
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Fig. 10.10 The x- and y-axis against time in panel a and b, respectively, for the first individual
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ltrj2

{

}

<- na.omit.ltraj(ltrj)
par(mfrow=c(3,2))
for (i in c(1:5))
plot(ltrj2[[i]][c("x","y")], col=rainbow(12)[as.POSIXlt(ltrj2[[i]]$date)$mon+1],

pch=19, asp=T)
segments(ltrj2[[i]]$x[-nrow(ltrj[[i]])], ltrj2[[i]]$y[-nrow(ltrj2[[i]])],

ltrj2[[i]]$x[-1],ltrj2[[i]]$y[-1],
col=rainbow(12)[as.POSIXlt(ltrj2[[i]]$date[-1])$mon+1])

title(c("a", "b", "c", "d", "e")[i])

plot(c(0:100),c(0:100), type="n", xaxt="n", yaxt="n", xlab="", ylab="", bty="n")
mon <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",

"Oct", "Nov", "Dec")
legend(x=20, y=90, legend=mon[c(0:5)+1], pch=19, col=rainbow(12)[1:6], bty="n")
legend(x=60, y=90, legend=mon[c(6:11)+1], pch=19, col=rainbow(12)[7:12], bty="n")

Figure 10.11 confirms our interpretation of Fig. 10.9. All five animals have at
least two seasonal centres of activity: winter versus summer. The movement
between these centres occurs around November and around April. The comparison
of Figs. 10.9 and 10.11 reveals easily the respective strengths of both figures. It is
easier to read from Fig. 10.9 the timing of events, but it is easier to read from
Fig. 10.11 the geographic position of these events. This demonstrates the impor-
tance of making several figures to explore the data.

Now that you have familiarised yourselves with the structure of the data and
have ensured that your data are appropriate for the analysis, you can proceed with
answering your ecological questions in the following sections.

Home Range Estimation

A home range is the area in which an animal lives. In addition to Burt’s (1943)
aforementioned definition of the home range as ‘the area an animal utilizes in its
normal activities’, Cooper (1978) pointed out that a central characteristic of the
home range is that it is temporally stable. Our previous exploration of the data has
shown that the space use of our roe deer is not stable. Instead, it seems to consist of
a migration between two seasonal home ranges. Figures 10.9 and 10.10 suggest
that space use within these seasonal ranges is fairly stable. It is thus clear that the
concept of a home range is inherently tied to a time frame over which space use
was fairly stable, in our case two seasons.

An animal’s home range has been quantified by the concept of the ‘utilization
distribution (UD)’. Van Winkle (1975) used the term UD to refer to ‘the relative
frequency distribution for the points of location of an animal over a period of
time’. The most common estimator for the UD is the kernel density estimator. In
Fig. 10.12, we remind the reader of the general principle underlying such analysis.
Several methods for home range computation are implemented in the
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‘adehabitatHR’ library; the kernelUD function calculates the kernel utilization
density from 2D locations:

library(adehabitatHR)
library(sp)
trj <- ld(ltrj)
trj <- trj[!is.na(trj$x),]
(kUD <- kernelUD(SpatialPointsDataFrame(trj[c("x","y")],

data=data.frame(id=trj$id)),h=100,grid=200,kern="epa"))

image(kUD[[1]])

The function kernelUD requires a SpatialPoints object or a SpatialPointsDa-
taFrame, and it returns a SpatialPixel object, adehabitat relies on the spatial
classes from the ‘sp’ library. A familiarity with the spatial classes from ‘sp’ will
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Fig. 10.11 Coloured trajectories for all individuals, locations from each month are coloured
differently
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therefore be helpful for your analysis of animal space use data in R (see Bivand
et al. 2008, or the vignettes available for ‘sp’). You create the SpatialPointsDa-
taFrame from a dataframe, which you obtained from the ltrj using the ld function
(i.e. list to dataframe). Note: ‘SpatialPoints’ cannot contain missing coordinates;
therefore, you keep only those rows where you have no missing values for the x
coordinate (i.e. !is.na(trj$x), the ‘!’ means ‘not’ in R). The resulting pixel map in
Fig. 10.13 shows the areas that are most intensely used by this individual.

During our data exploration, we found that our roe deer occupy a separate
summer and winter range: Are both ranges of similar size? For this, you have to
compute the home range separately for summer and winter. In Fig. 10.9, you can
see that the summer range is occupied at least from day 150 (beginning of June) to
day 300 (end of October) and that the winter range is occupied from days 350
(mid-December) till 100 (end of March). You can use these dates to split compute
the kernel for summer and winter separately; the function kernel.area computes
the area within a percentage contour. We demonstrate the computation for the 50,
75 and 95 %:
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Fig. 10.12 A one-dimensional example of a kernel density estimator for three points. For each of
the observations (i.e. 3, 4 and 7), a distribution (e.g. Gaussian curve) is placed over them (the
dashed lines); these distributions are aggregated to obtain the cumulative curve (the full black
line). This cumulative curve is the kernel density estimator of these points. The width of initial
distributions used is the smoothing factor and is a parameter the researcher has to select. Kernel
home range estimation works in a similar way in 2D with for instance a bivariate normal
distribution to smooth the locations
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trj$yday <- yday(trj$date)
trj$season <- ifelse(trj$yday>150 & trj$yday<300, "summer", NA)
trj$season <- ifelse(trj$yday>350 | trj$yday<100, "winter", trj$season)

trj <- trj[!is.na(trj$season),]
(kUD <- kernelUD(SpatialPointsDataFrame(trj[c("x","y")],

data=data.frame(id=paste(trj$id, trj$season))),
h =100, grid=200, kern = "epa"))

## ********** Utilization distribution of several Animals ************
##
## Type: probability density
## Smoothing parameter estimated with a specified smoothing parameter
## This object is a list with one component per animal.
## Each component is an object of class estUD
## See estUD-class for more information

area <- kernel.area(kUD, percent = c(50, 75, 95), unin = "m", unout = "ha")
(areas <- data.frame(A50=unlist(area[1,]), A75=unlist(area[2,]),

A95=unlist(area[3,]), id=rep(c(1:5), each=2),
seas=rep(c("S", "W"), 5)))

## A50 A75 A95 id seas
## X1.summer 9.931 22.51 52.30 1 S
## X1.winter 6.902 14.19 33.06 1 W
## X2.summer 10.915 21.92 40.47 2 S
## X2.winter 11.277 27.07 62.65 2 W
## X3.summer 12.977 30.24 62.96 3 S
## X3.winter 7.873 19.79 50.84 3 W
## X4.summer 10.230 24.25 83.17 4 S
## X4.winter 5.747 11.14 28.43 4 W
## X5.summer 12.498 24.31 49.14 5 S
## X5.winter 18.344 41.74 112.72 5 W

You can visualise these results clearly with boxplots:

par(mfrow = c(1, 3))
boxplot(areas$A50 ~ areas$seas, cex = 2, main = "a")
boxplot(areas$A75 ~ areas$seas, cex = 2, main = "b")
boxplot(areas$A95 ~ areas$seas, cex = 2, main = "c")

Figure 10.14 shows that more than a change in the mean range size, there seems
to be a marked change in the individual variation between seasons. During the
winter season, there seems to be much larger individual variation in range size than
there is in summer; however, more data will be required to further investigate this
seasonal variation in range sizes.

Fig. 10.13 Kernel UD of the
first individual, in yellow, is
the intensely used areas
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Habitat Use and Habitat Selection Analysis

In the previous exercise, you saw that roe deer change the location of their
activities from summer to winter. Such seasonal migrations are often triggered by
changes in the environment. You can then wonder which environmental conditions
are changing when the animal moves between its seasonal ranges. For instance,
snowfall is a driver for many migratory ungulates in northern and alpine envi-
ronments, and winter ranges are often characterised by less snow cover than the
summer ranges in winter (e.g. Ball et al. 2001). Thus, you would expect that roe
deer will be moving down in altitude during the winter to escape from the snow
that accumulates at higher altitudes.

If roe deer move to lower altitudes during winter, then they probably also move
closer to roads, which are usually found in valley bottoms. You would not nec-
essarily expect roe deer to show a seasonal response directly toward roads, but you
do expect this as a side effect from the shift in altitude. Such closer proximity to
roads can have substantial effects on road safety, as animals close to roads are at a
higher risk of road crossings and thus traffic accidents. Ungulate vehicle collisions
are an important concern for road safety and animal welfare. From an applied
perspective, it is thus an interesting question to see whether there is a seasonal
movement closer to roads, which could partly explain seasonal patterns often
observed in ungulate vehicle collisions.

You first add the environmental data to your inspected trajectory with the merge
function:

trj <- ld(ltrj)
trj <- merge(trj, locs, by.x=c("id", "date"),

by.y=c("animals_id", "UTC_time"), all.x=T)
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Fig. 10.14 The boxplots of the areas (in ha) of the seasonal ranges from left to right the 50, 75
and 95 % kernel contours. Each panel depicts summer (S) on the left, and winter (W) on the right
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You inspect then whether there is a relationship between the distance to the
roads and the altitude:

library(lattice)
xyplot(roads_dist ~ altitude_srtm| factor(id),

xlab = "altitude", ylab = "dist. road", col = 1,
strip = function(bg = "white", ...) strip.default(bg = "white", ...),
data = trj)

Figure 10.15 shows an interesting relationship between altitude and distance to
roads. Each individual shows two clusters, which are possibly corresponding with
the two seasonal ranges you detected before. Within each cluster, there is a
positive relationship between altitude and distance to roads; i.e. at higher altitudes,
the distance to roads is greater. However, when you compare both clusters, it
seems that the cluster at higher altitude is often also closer to roads (except for
Animal 1). Overall, it seems that in your data, there is no obvious positive rela-
tionship between altitude and distance to roads.

Let us now investigate the hypothesis that there is a seasonal change in roe deer
altitude:

xyplot(altitude_srtm ~ as.POSIXlt(acquisition_time)$yday | factor(id),
xlab = "day of year", ylab = "altitude", col = 1,
strip = function(bg = "white", ...) strip.default(bg = "white", ...),

data = trj)

Figure 10.16 shows that there are marked seasonal changes in the altitude of the
roe deer positions. As you expected, roe deer are at lower altitudes during
the winter than they are during the summer. This pattern explains the occurrence of
the two clusters of points for each individual in Fig. 10.15.

You can now proceed by testing the statistical significance of these results. You
use the same seasonal cutoff points as before:

trj$yday <- yday(trj$date)
trj$season <- ifelse(trj$yday > 150 & trj$yday < 300, "summer", NA)
trj$season <- ifelse(trj$yday > 350 | trj$yday < 100, "winter", trj$season)
trj2 <- trj[!is.na(trj$season), ]
fit <- lm(altitude_srtm ~ as.factor(season), data = trj2)

The function lm is used to fit a linear model to the data (note: for this simple
case a Student’s t test would have been sufficient).

These results show that as expected the roe deer move to lower altitudes during
the winter:

Estimate Std. error t value Pr([|t|)

(Intercept) 1,581.6609 2.6212 603.41 0.0000
as.factor(season)winter -572.3900 4.2519 -134.62 0.0000
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In winter, the roe deer are on average 572 m lower than during the summer,
which is a 33 % decrease.

A treatment on model validation falls outside the scope of this book. We refer
the reader to introductory books in statistics; several such books are available
using examples in R (e.g. Crawley 2005; Zuur et al. 2007).

In this example, you have focused on the habitat use of roe deer. Often
researchers are not only interested in the habitat characteristics used by the ani-
mals, but also in the comparison between use and availability—i.e. habitat
selection. In habitat-selection studies, the used habitat characteristics are compared
against the characteristics the animal could have used or the available habitat.
Thus, to perform habitat-selection analysis, you have to sample from the available
points and obtain the habitat characteristics for these points.
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Fig. 10.15 The changing distance to roads as a function of the altitude for each individual
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The available locations are commonly sampled randomly at two scales: within
the study area to study home range placement, or within the individual home range
to study home range use (respectively, called second- and third-order habitat
selection following Johnson 1980). We will demonstrate third-order habitat
selection and use a minimum convex polygon (MCP) to characterise the area
available for each roe deer, from which we sample 2,000 random locations. The
mcp-function in R requires the use of a SpatialPointsDataFrame when using
multiple animals (for a single animal a SpatialPoints object suffices):

trj2 <- na.omit(trj[,c("id", "x","y")])
sptrj <- SpatialPointsDataFrame(SpatialPoints(trj2[,c("x","y")]),

data=data.frame(id=trj2$id))
ranges <- mcp(sptrj, percent=100)
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Fig. 10.16 The altitude of roe deer locations as a function of the day of the year. You see marked
seasonal changes
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Then, you sample for each individual randomly from its available range, and
you place the coordinates from these sampled locations together with the animal’s
id in a data.frame. Operations like this, in which something needs to be repeated
for a number of individuals, are easily performed using the list format, which is
also the reason that ‘adehabitatLT’ uses a list to store trajectories. However, a
database works with data.frames; therefore, you will have to bind the data.frames
in the list together in one large data.frame.

set.seed(0) #to ensure replication of the same randomly sampled points
rndpts

}

<- lapply(c(1:5),
function(x, ranges) spsample(ranges[ranges@data$id==x,], n=2000,

type="random", iter=100) ,ranges=ranges)
{

rndpts <- lapply(c(1:5),}{function(x,rndpts)data.frame(rndpts[[x]]@coords,id=x),

rndpts=rndpts)
rndpts <- do.call("rbind", rndpts)

Figure 10.17 shows the areas you considered available for each individual roe
deer, from which you sampled the random locations:

plot(ranges)
points(rndpts[c(1:100), c("x", "y")], pch = 16) #shows the first 100 random points

The easiest way to obtain the environmental data for these random points is to
simply upload them into the database and extract the required information from
there. To facilitate the ordering of your random locations, you add a column nb
numbered 1 to the number of random points. The function dbWriteTable writes a
table to the database; you can specify a schema (analysis) in addition to the table
name (rndpts_tmp):

rndpts$nb <- c(1:nrow(rndpts))
dbWriteTable(con, c("analysis", "rndpts_tmp"), rndpts)

## [1] TRUE

Next, you use the database to couple the locations in this table to the envi-
ronmental data stored in the database. The easiest way to do this is by first adding a
geometry column for the random locations:

## <PostgreSQLResult:(6096912,1,8)>

dbSendQuery(con,
"ALTER TABLE analysis.rndpts_tmp ADD COLUMN geom geometry(point, 4326);")

## <PostgreSQLResult:(6096912,1,7)>

dbSendQuery(con,
"UPDATE analysis.rndpts_tmp
SET geom = st_transform((st_setsrid(st_makepoint(x,y),23032)),4326);" )
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You extract the altitude and land cover for the random locations from the rasters
stored in the database with the following queries (the details of these SQL queries
were discussed earlier in this book):

altitude <- fetch(dbSendQuery(con,
"SELECT st_value(srtm_dem.rast, geom) as altitude
FROM env_data.srtm_dem, analysis.rndpts_tmp
WHERE st_intersects(srtm_dem.rast,geom) ORDER BY nb;"), -1)

landcover <- fetch(dbSendQuery(con,
"SELECT st_value(corine_land_cover.rast, st_transform(geom,3035)) as landcover
FROM env_data.corine_land_cover, analysis.rndpts_tmp
WHERE st_intersects(corine_land_cover.rast, st_transform(geom,3035))

ORDER BY nb;"), -1)

You extract the distance to the closest road for the random locations from the roads
stored in the database with the following query (this query can require a few minutes):

mindist <- fetch(dbSendQuery(con,
"SELECT min(distance) as dist_roads

st_distance(roads.geom::geography,
rndpts_tmp.geom::geography)::integer as distance
FROM env_data.roads, analysis.rndpts_tmp) AS a
GROUP BY a.nb ORDER BY nb;"), -1)

FROM (SELECT nb,

You add these environmental data to the randomly sampled available locations:

rndpts <- cbind(rndpts, altitude, landcover, mindist)
head(rndpts)

## x y id nb altitude landcover dist_roads
## 1 660909 5097377 1 1 940 23 30
## 2 657779 5096660 1 2 1650 25 1555
## 3 658739 5096304 1 3 1778 24 1500
## 4 657638 5097232 1 4 1678 25 1135
## 5 658984 5097551 1 5 1510 18 289
## 6 659459 5097810 1 6 1459 18 82

Fig. 10.17 The available
areas for each roe deer
estimated by a MCP. The first
100 locations sampled
randomly from the area of
individual 1 are represented
by black dots
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Now that you no longer need these locations in the database, you can remove
the table:

dbRemoveTable(con, c("analysis", "rndpts_tmp"))

## [1] TRUE

A discussion on habitat selection falls outside the scope of this chapter. More
information on exploratory habitat selection using R can be found in the
vignette(adehabitatHS); for a general discussion on the use of resource selection
functions on habitat selection, we refer the reader to the book by Manly et al.
(2002). We will merely visualise the difference in the habitat types between the
used and the available locations.

To ensure proper comparison of used and available habitats, you provide the
same levels to both data sets. Moreover, to allow our seasonal comparison, you
also need to allocate the random locations to the summer and winter season:

trj <- na.omit(trj[,c("id", "x", "y", "roads_dist","corine_land_cover_code",
"altitude_srtm", "season")])

names(trj) <- c("id", "x", "y", "dist_roads", "landcover", "altitude", "season")
trj$landcover <- factor(trj$landcover, levels=c(18, 21, 23:27, 29, 31, 32))
#allocate the random locations to each season
rndpts$season <- c("summer", "winter")
rndpts$landcover <- factor(rndpts$landcover, levels=c(18, 21, 23:27, 29, 31, 32))

Now, you will compute for each individual the number of locations inside each
habitat type:

library(adehabitatHS)
sr_win <- widesIII(use_win,ava_win, avknown = FALSE, alpha = 0.05)
sr_sum <- widesIII(use_sum,ava_sum, avknown = FALSE, alpha = 0.05)

use_win <- table(trj$id[trj$season=="winter"],
trj$landcover[trj$season=="winter"])

ava_win <- table(rndpts$id[rndpts$season=="winter"],
rndpts$landcover[rndpts$season=="winter"])

use_sum <- table(trj$id[trj$season=="summer"],
trj$landcover[trj$season=="summer"])

ava_sum <- table(rndpts$id[rndpts$season=="summer"],
rndpts$landcover[rndpts$season=="summer"])

#determine the proportions of each class
calc.prop <- function(x){(x/sum(x))}
use_win <- t(apply(use_win, 1, calc.prop))
ava_win <- t(apply(ava_win, 1, calc.prop))
use_sum <- t(apply(use_sum, 1, calc.prop))
ava_sum <- t(apply(ava_sum, 1, calc.prop))
#to avoid division by zero, we add a small number to each element in the table
use_win <- use_win+0.01
ava_win <- ava_win+0.01
use_sum <- use_sum+0.01
ava_sum <- ava_sum+0.01
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The function widesIII in the ‘adehabitatHS’ library computes the selection
ratios for individually tracked animals; it also provides a number of statistical tests.

plot(c(1:10)-0.1, sr_win$wi, xaxt="n", ylab="Selection Ratio",
xlab="Habitat type", col="blue", ylim=c(0,4))

axis(1, at=c(1:10), labels=c(18, 21, 23:27, 29, 31, 32))
abline(h=1, col="dark grey")
points(c(1:10)+0.1, sr_sum$wi, col="red")
segments(c(1:10)-0.1, sr_win$ICwiupper, c(1:10)-0.1, sr_win$ICwilower,col="blue")
segments(c(1:10)+0.1, sr_sum$ICwiupper, c(1:10)+0.1, sr_sum$ICwilower,col="red")

For a more extensive discussion of selection ratios, we refer you to the
aforementioned references. Here, you limit yourselves to visualising the selection
ratios for both seasons. Figure 10.18 shows that the roe deer seems to select more
for pastures (class 18) during summer, whereas for most roe deer, their use of
broad-leaved forests seem to be higher during the winter months (class 23). Great
care should be taken not to over-interpret the unreliable results from classes that
are hardly present in the study area (e.g. classes 26–31). These types of figures and
tables are highly suitable to inspecting categorical data such as land cover. Con-
tinuous data such as altitude are better represented using histograms.

In the previous demonstrations, you have been using R to visualise and analyse
data stored in the database, and you also used R as an interface to interact with the
database. An alternative approach is to use R from within the database, which we
will demonstrate in the next chapter.
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Fig. 10.18 The ratio of the proportion used and the proportion available (known as the selection
ratio). Values above 1 are used more than their availability and vice versa. Blue points are for
winter and red for summer. You can find the corresponding habitat types in the co-
rine_land_cover_legend table from your database
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Chapter 11
A Step Further in the Integration of Data
Management and Analysis: Pl/R

Mathieu Basille, Ferdinando Urbano and Joe Conway

Abstract This chapter introduces the Pl/R extension, a very powerful alternative
to integrate the features offered by R in the database in a gapless workflow. Pl/R is
a loadable procedural language that allows the use of the R engine and libraries
directly inside the database, thus embedding R scripts into SQL statements and
database functions and triggers. Among many advantages, Pl/R avoids unneces-
sary data replication, allows the use of a single SQL interface for complex scripts
involving R queries and offers a tight integration of data analysis and management
processes into the database. In this chapter, you will have a basic overview of the
potential of Pl/R for the study of GPS locations. You will be introduced to the use
of Pl/R, starting with exercises involving simple calculations in R (logarithms,
median and quantiles), followed by more elaborated exercises designed to com-
pute the daylight times of a given location at a given date, or to compute complex
home range methods.

Keywords R � Pl/R � Database functions � Statistics

M. Basille (&)
Fort Lauderdale Research and Education Center, University of Florida,
3205 College Avenue, Fort Lauderdale, FL 33314, USA
e-mail: basille@ase-research.org

F. Urbano
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

J. Conway
credativ LLC, 270 E Douglas Avenue, El Cajon, CA 92020, USA
e-mail: joe.conway@credativ.com

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_11, � Springer International Publishing Switzerland 2014

213



Introduction

In Chap. 9, you discovered the importance of a tight integration of management
and analysis tools for a proper handling of wildlife tracking data. In Chap. 10, you
have seen how R can be connected to the database as a client application to
perform advanced analysis algorithms and complex data processing steps. There is
a very powerful alternative to integrate the features offered by R and by Post-
greSQL/PostGIS in a unique workflow, one that dissolves the boundaries between
management and analysis as required by the processing of data from the new
generation of wildlife tracking sensors.

This advanced approach is offered by Pl/R1, a loadable procedural language that
enables users to write PostgreSQL functions and triggers in the R programming
language. In short, Pl/R integrates R into the database. In fact, it is a PostgreSQL
extension that you can install and enable in the database, similarly to how you
integrated PostGIS (see Chap. 5). Operationally, this tool allows the use of the R
engine and libraries directly inside the database, thus embedding R scripts into
SQL statements and database functions. This is to be compared with using R as a
client application connected to the database (as in Chap. 10): in this case, data are
physically imported into R, where R functions can be run in a dedicated envi-
ronment. The use of R through Pl/R has therefore many advantages, for example:

• no physical replication of data in the two software programs (i.e. no import/
export procedures are needed), thus allowing for better performance and lower
memory requirements;

• a single interface (SQL) to access the features offered by both the database and
R;

• gapless integration of data analysis and management processes into the data-
base, with the possibility to directly store, manage, and reuse results of analysis
to enable meta-analysis.

The integration of R inside the database also opens the door to the automation
of real-time analysis performed routinely on massive sets of data. For instance, this
gapless framework could be used to set up early warning systems that detect
behaviours of the animals that can be potentially dangerous or of particular
importance for researchers.

In this chapter, you will be introduced to the use of Pl/R in the context of
PostGIS. You will start by exercises involving simple calculations in R (loga-
rithms, median and quantiles) to understand how Pl/R works. More elaborated
exercises designed to compute the daylight times of a given location at a given
date or to compute complex home range methods will then give you a basic
overview of the potential of Pl/R for the study of GPS locations.

1 See the official website here: http://www.joeconway.com/web/guest/pl/r.
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Getting Started with Pl/R

Pl/R, like PostGIS, is an extension of PostgreSQL. The installation procedure is thus
similar to PostGIS itself, but will not be covered in this book2. However, be sure to have
R installed first3 and that the database user has read access to the directory where R is
installed. Once Pl/R is installed, it must be enabled in your database with the command

CREATE EXTENSION plr;

You can test that it is correctly installed:

SELECT * FROM plr_version();

Now you can create functions in Pl/R procedural language pretty much the
same way you write functions in R. Indeed, the body of a Pl/R function uses the R
syntax, because it is actually pure R code! A generic R code snippet such as

x <- 10
4/3*pi*x^3

can be directly embedded into a Pl/R function in PostgreSQL using a generic
function skeleton with the Pl/R language:

CREATE OR REPLACE FUNCTION tools.plr_fn ()

RETURNS float8 AS

$BODY$

  x <- 10

  4/3*pi*x^3

$BODY$

LANGUAGE 'plr';

The function can then be used in an SQL statement:

SELECT tools.plr_fn ();

A critical point is to communicate data from the database to and from R. In this
simple example, R returns a numeric which is recognised by Pl/R as a float8. Pl/R
can natively handle several types, including booleans (converted to logical in R),
all forms of integer (converted to integer) or numeric (converted to numeric) and
all forms of text (converted to character)4.

2 See http://www.joeconway.com/plr/doc/plr-install.html for more details.
3 To download and install R, check your preferred CRAN mirror: http://cran.r-project.org/mirrors.html.
4 See http://www.joeconway.com/plr/doc/plr-data.html.
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You will now start exploring the potential of Pl/R by writing a function r_log to
calculate the logarithm of a sample of numbers:

CREATE OR REPLACE FUNCTION tools.r_log(float8, float8)

RETURNS float AS

$BODY$

  log(arg1, arg2)

$BODY$

LANGUAGE 'plr';

Note that functions to compute logarithms already exist in PostgreSQL, so that you
can immediately compare the results given by R and PostgreSQL (remember that with
a Pl/R function, the R engine does the computation, and PostgreSQL only handles the
input and output). In this example, you calculate the natural and the common (base 10)
logarithm of the area of the Minimum Convex Polygons (MCP) created in Chap. 9:

SELECT 

  area, log(area), tools.r_log(area, 10), ln(area), tools.r_log(area, exp(1)) 

FROM analysis.home_ranges_mcp

WHERE description = 'test all animals at 0.9';

The result is

Fortunately, the results are consistent whether the logarithms are computed by
R or PostgreSQL.

Sample Median and Quantiles

Now, let us go one step further and fill a gap of a missing feature of PostgreSQL,
namely the ability to calculate the median, and more generally a given quantile, of
a sample. Let us start by the median, which will naturally use the median function
from R. In this example, you need to pass a sample of values in an array (rep-
resented by float8[]) to the function tools.median:

CREATE OR REPLACE FUNCTION tools.median(float8[])

RETURNS float AS

$BODY$

  median(arg1, na.rm = TRUE)

$BODY$

LANGUAGE 'plr';
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The trick here is that median is actually an aggregate function5 that works on
several rows at once. Pl/R provides a set of dedicated support tools6, such as the
plr_array_accum function which you will use to write the aggregate function:

CREATE AGGREGATE tools.median (float8)

(

  sfunc = plr_array_accum,

  stype = float8[],

  finalfunc = tools.median

);

You can test the function on the same set of data used for the previous example,
with comparison to the mean:

SELECT count(area), avg(area), tools.median(area)

FROM analysis.home_ranges_mcp

WHERE description = 'test all animals at 0.9';

The result is

One of the most interesting features of aggregate functions is that they can be
used on distinct groups as defined by the GROUP BY clause. Let us see a working
example, which retrieves the average and median elevation for each monitored
animal and computes the difference:

SELECT 

  animals_id, avg(altitude_srtm), tools.median(altitude_srtm), tools.median 

(altitude_srtm) - avg(altitude_srtm) AS diff

FROM main.gps_data_animals

WHERE animals_id != 6 AND gps_validity_code = 1

GROUP BY animals_id

ORDER BY animals_id;

The result shows that the median is systematically higher than the mean, which
is indicative of a distribution skewed towards low elevations:

5 http://www.postgresql.org/docs/9.2/static/functions-aggregate.html.
6 http://www.joeconway.com/plr/doc/plr-pgsql-support-funcs.html.
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You will now proceed with the more general quantile function. The approach is
slightly more complicated, since the function requires both the sample on which to
compute the quantile, and a number to indicate which quantile to compute
(between 0 and 1). The aforementioned plr_array_append function only works on
an array; you will thus first create a new plr_array_val_append function to work
on an array together with a value (the probability of the quantile), and its asso-
ciated array_val type (note that you store both in the tools schema):

CREATE TYPE tools.array_val AS (arr float8[], val float8);

CREATE OR REPLACE FUNCTION tools.plr_array_val_append(

  array_val tools.array_val, new_val float8, keep_val float8)

RETURNS tools.array_val CALLED ON NULL INPUT AS

$BODY$

  DECLARE

    arr float8[];

    out record;

  BEGIN

    IF array_val IS NULL THEN

      arr := ARRAY[new_val];

    ELSE

      arr := array_val.arr || new_val;

    END IF;

    out = row(arr, keep_val)::tools.array_val;

    RETURN out;

  END;

$BODY$ 

LANGUAGE plpgsql;

The new tools.quantile will now work on a array_val object, and the associated
aggregate function will use the newly created tools.plr_array_val_append
function:

CREATE OR REPLACE FUNCTION tools.quantile(tools.array_val)

RETURNS float AS

$BODY$

  quantile(unlist(arg1$arr), probs = arg1$val, na.rm = TRUE)

$BODY$

LANGUAGE 'plr';

CREATE AGGREGATE tools.quantile (float8, float8) 

(
  sfunc = tools.plr_array_val_append,

  stype = tools.array_val,

  finalfunc = tools.quantile

);

You can now try to use the quantile function with different probabilities, and
check that the 50 % quantile actually corresponds to the median:
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SELECT 

  count(area), avg(area), tools.median(area), tools.quantile(area, 0.5) AS 

quant50, tools.quantile(area, 0.1) AS quant10, tools.quantile(area, 0.9) AS

quant90

FROM analysis.home_ranges_mcp

WHERE description = 'test all animals at 0.9';

The result is

Of course, given that you just created an aggregate function, there is no reason
not to use the GROUP BY clause, for instance to calculate the 5 and 95 % quantiles
of the elevation for each animal:

SELECT 

  animals_id, avg(altitude_srtm), tools.median(altitude_srtm), 

tools.quantile(altitude_srtm, 0.05) AS quant05, 

tools.quantile(altitude_srtm, 0.95) AS quant95

FROM main.gps_data_animals

WHERE animals_id != 6

GROUP BY animals_id

ORDER BY animals_id;

This gives the following result:

In the Middle of the Night

One of the most powerful assets of R is its broad and ever-growing package
ecosystem (4919 packages at the time of writing7). If a statistical method has been
developed, it most likely exists for R in a given package. In this example, you are
going to implement a useful feature concealed in the maptools package, which
provides a set of functions able to deal with the position of the sun and compute
crepuscule, sunrise and sunset times for a given location at a given date8. Although

7 See the list on CRAN: http://cran.r-project.org/web/packages/available_packages_by_name.html.
8 This example is based on, and extends, a tutorial from George MacKerron: http://blog.
mackerron.com/2012/10/15/sunrise-sunset-postgis-plr/.
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the computation of these times depends on the definition you use (e.g. the defi-
nition of the horizon, the angle of the sun below or above the horizon), it is beyond
the aim of this chapter to enter into details, and you will just use the standard
maptools approach, which relies on algorithms from the National Oceanic and
Atmospheric Administration (NOAA9).

For this example, you will need the R packages rgeos, maptools and rgdal: make
sure to install them first in R. All these packages will be loaded on demand in the
function, but note that Pl/R can also load a list of packages at start-up10. As seen
earlier, Pl/R can communicate basic data types from PostgreSQL and R, but cannot
handle spatial objects. However, both PostgreSQL and R can handle well-known
text (WKT) representations, which are simply passed as text strings. The only
drawback of this approach is that the standard WKT approach does not include the
projection, so that you need to explicitly pass it. Here is the daylight function, which
returns the sunrise and sunset times (as a text array) for a spatial point expressed as a
WKT, with its associated SRID, a timestamp to give the date and a time zone:

CREATE OR REPLACE FUNCTION tools.daylight(

  wkt text, 

  srid integer, 

  datetime timestamptz, 

  timezone text)

RETURNS text[] AS

$BODY$

  require(rgeos)

  require(maptools)

  require(rgdal)

  pt <- readWKT(wkt, p4s = CRS(paste0("+init=epsg:", srid)))

  dt <- as.POSIXct(substring(datetime, 1, 19), tz = timezone)

  sr <- sunriset(pt, dateTime = dt, direction = "sunrise",

      POSIXct.out = TRUE)$time

  ss <- sunriset(pt, dateTime = dt, direction = "sunset",

      POSIXct.out = TRUE)$time

  return(c(as.character(sr), as.character(ss)))

$BODY$

LANGUAGE 'plr';

Let us try to get the sunrise and sunset times for today, near the municipality of
Terlago, northern Italy. Because R and PostgreSQL use different time zone for-
mats, you need to pass the time zone to R literally as ‘Europe/Rome’11:

SELECT tools.daylight('POINT(11.001 46.001)', 4326, '2012-09-01'

::timestamp, 'Europe/Rome');

The results indicate a sunrise at 07:26 and a sunset at 18:39, as seen below:

9 For more details, see: http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html.
10 See: http://www.joeconway.com/plr/doc/plr-module-funcs.html.
11 See ?timezone in R for more details on the time zone format.
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You can now modify this function to return a boolean value (TRUE or FALSE)
indicating whether a given time of the day at a given location corresponds to
daylight or not. This is the purpose of the is_daylight function, which will prove
useful to test the daylight for animal locations:

CREATE OR REPLACE FUNCTION tools.is_daylight(

  wkt text, 

  srid integer, 

  datetime timestamptz, 

  timezone text)

RETURNS boolean AS

$BODY$

  require(rgeos)

  require(maptools)

  require(rgdal)

  pt <- readWKT(wkt, p4s = CRS(paste0("+init=epsg:", srid)))

  dt <- as.POSIXct(substring(datetime, 1, 19), tz = timezone)

  sr <- sunriset(pt, dateTime = dt, direction = "sunrise",

      POSIXct.out = TRUE)$time

  ss <- sunriset(pt, dateTime = dt, direction = "sunset",

      POSIXct.out = TRUE)$time

  return(ifelse(dt >= sr & dt < ss, TRUE, FALSE))

$BODY$

LANGUAGE 'plr';

This function can be used on a single point, e.g. with the same coordinates as
above:

SELECT tools.is_daylight('POINT(11.001 46.001)', 4326, '2013-10-10 

12:34:56'::timestamp, 'Europe/Rome');

The result is

Since the function seems to work, you can apply it to GPS locations. Let us run
it for the first 10 valid locations:

WITH tmp AS (SELECT ('Europe/Rome')::text AS tz)

SELECT 

ST_AsText(geom) AS location, 

acquisition_time AT TIME ZONE tz AS acquisition_time,

tools.is_daylight(ST_AsText(geom), ST_SRID(geom), acquisition_time 

AT TIME ZONE tz, tz)

FROM main.gps_data_animals, tmp

WHERE gps_validity_code = 1

LIMIT 10;

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 221



The results directly provide the daylight boolean for each location:

Extending the Home Range Concept

In Chaps. 5 and 8, the MCP method was introduced, and Chap. 9 described how it can
be used to define the notion of home ranges. In this section, you will first reproduce
the MCP home ranges, using the mcp function from the R package adehabitatHR12.
To do this, you first create a new type hr that stores a polygon as a WKT, together
with its associated percentage, and the function mcp_r to compute the MCP:

CREATE TYPE tools.hr AS (percent int, wkt text);

CREATE OR REPLACE FUNCTION tools.mcp_r (wkt text, percent integer)

RETURNS SETOF tools.hr AS

$BODY$ 

  require(rgeos)

  require(adehabitatHR)

  geom <- readWKT(wkt)

  return(data.frame(percent = percent, wkt = sapply(percent, function(x)  

      writeWKT(mcp(geom, x)))))

$BODY$ 

LANGUAGE plr;

The function can be simply called on a collection of points as a WKT and an
integer between 0 and 100 (as the percentage of locations kept for the
computation):

SELECT (tools.mcp_r(ST_AsText(ST_Collect(geom)), 90)).*

FROM main.gps_data_animals

WHERE gps_validity_code = 1 AND animals_id = 1;

12 http://cran.r-project.org/web/packages/adehabitatHR/.
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The result is thus a combination of the percentage and the WKT representation
of the MCP:

To make sure that the function works correctly, you can compare the outputs
with the home ranges created in Chap. 9 and stored in analysis.home_ranges_mcp,
using an MCP with 90 % of the relocations:

WITH 
  mcpr AS (

    SELECT 

      animals_id,(tools.mcp_r(ST_AsText(ST_Collect(geom)), 90)).* 

    FROM main.gps_data_animals

    WHERE gps_validity_code = 1 AND animals_id <> 6

    GROUP BY animals_id)

SELECT 

  mcpr.animals_id, mcpr.percent,

  ST_Area(geography(wkt)) / 1000000 AS area_r, mcp.area AS area_pg 

FROM mcpr, analysis.home_ranges_mcp AS mcp

WHERE mcpr.animals_id = mcp.animals_id 

 AND mcp.description = 'test all animals at 0.9' 

GROUP BY mcpr.animals_id, mcpr.wkt, mcp.area, percent

ORDER BY mcpr.animals_id;

As you can see in the following results, the computations are very similar and
only slight discrepancies are visible, caused by using different approaches in
selecting a given percentage of locations to compute the MCP:

Let us now introduce a different approach of defining a home range. Instead of a
mere polygon, a home range can be defined by the probability that an animal is
found at a given point, which is called a utilisation distribution (UD). The core
areas of the home range, which are used more often, are then associated with a
higher probability; as a consequence, it is also possible to derive the polygon that
corresponds to the minimum area in which an animal has a given probability of
being located. The simplest UD approach relies on the kernel method, which
basically applies a bivariate normal distribution around each location and sums
these distribution over the landscape. As no function in PostGIS enables the
computation of kernel home ranges, you will wrap the kernelUD function from
adehabitatHR into a new function kernelud, following an approach very similar to
the mcp_r function:
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CREATE OR REPLACE FUNCTION tools.kernelud (wkt text, percent integer)

RETURNS SETOF tools.hr AS

$BODY$ 

  require(rgeos)

  require(adehabitatHR)

  geom <- readWKT(wkt)

  kud <- kernelUD(geom)

  return(data.frame(percent = percent, wkt = sapply(percent, function(x)  

      writeWKT(getverticeshr(kud, x)))))

$BODY$ 

LANGUAGE plr;

You can thus query the table with all animal locations to compute the kernel
home range, for instance for animal 1 at 50, 90, and 95 %:

WITH tmp AS (SELECT unnest(ARRAY[50,90,95]) AS pc)

SELECT (tools.kernelud(ST_AsText(ST_Collect(geom)), pc)).*

FROM main.gps_data_animals, tmp

WHERE gps_validity_code = 1 AND animals_id = 1

GROUP BY pc

ORDER BY pc;

The result is a list of hr objects:

You will now create a table analysis.home_ranges_kernelud to store the dif-
ferent kernel home ranges, exactly as the analysis.home_ranges_mcp stores the
MCP home ranges:

CREATE TABLE analysis.home_ranges_kernelud(

  home_ranges_kernelud_id serial NOT NULL,

  animals_id integer NOT NULL,

  start_time timestamp with time zone NOT NULL,

  end_time timestamp with time zone NOT NULL,

  num_locations integer,

  area numeric(13,5),

  geom geometry (multipolygon, 4326),

  percentage double precision,

  insert_timestamp timestamp with time zone 

    DEFAULT now(),

  CONSTRAINT home_ranges_kernelud_pk 

    PRIMARY KEY (home_ranges_kernelud_id),

  CONSTRAINT home_ranges_kernelud_animals_fk 

    FOREIGN KEY (animals_id)

    REFERENCES main.animals (animals_id) MATCH SIMPLE

    ON UPDATE NO ACTION ON DELETE NO ACTION);

COMMENT ON TABLE analysis.home_ranges_kernelud
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IS 'Table that stores the home range polygons derived from kernelUD. The 

area is computed in squared km.';

CREATE INDEX fki_home_ranges_kernelud_animals_fk

  ON analysis.home_ranges_kernelud

  USING btree (animals_id);

CREATE INDEX gist_home_ranges_kernelud_index

  ON analysis.home_ranges_kernelud

  USING gist (geom);

Let us now populate this table using 50 and 90 % kernels for all animals (see
the graphical results in Fig. 11.1):

WITH 

  tmp AS (SELECT unnest(ARRAY[50,90,95]) AS pc),

  kud AS (

    SELECT 

      animals_id, 

      min(acquisition_time) AS start_time,

      max(acquisition_time) AS end_time,

      count(animals_id) AS num_locations,

      (tool.kernelud(ST_AsText(ST_Collect(geom)), pc)).*

    FROM main.gps_data_animals, tmp

Fig. 11.1 Kernel home ranges at 50, 90 and 95 %
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    WHERE 

      gps_validity_code = 1 AND animals_id <> 6

    GROUP BY animals_id,pc

    ORDER BY animals_id,pc)

INSERT INTO analysis.home_ranges_kernelud (animals_id, start_time, end_time,

num_locations, area, geom, percentage)

SELECT

  animals_id, 

  start_time,

  end_time,

  num_locations,

  ST_Area(geography(wkt)) / 1000000, 

  ST_GeomFromText(wkt, 4326),

  percent / 100.0

FROM kud

ORDER BY animals_id, percent;

You can now compare the outputs from the MCP and the kernel home ranges.
You thus retrieve the results from the MCP and the kernel table, using the home
ranges estimated at 90 %. For each animal, you also compute the area of the home
range overlap as estimated by both methods (using ST_Intersection to define the
shared area), and the proportion of common area (using ST_Union) that it represents:

Fig. 11.2 Comparison between kernel and MCP home range at 90 %
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SELECT 

  mcp.animals_id AS ani_id, 

  mcp.area AS mcp_area, 

  kud.area AS kud_area, 

  ST_Area(geography(ST_Intersection(mcp.geom, kud.geom))) / 1000000 AS 

overlap,

  ST_Area(geography(ST_Intersection(mcp.geom, kud.geom))) / 

ST_Area(geography(ST_Union(mcp.geom, kud.geom))) AS over_prop

FROM 

  analysis.home_ranges_mcp AS mcp, 

  analysis.home_ranges_kernelud AS kud

WHERE 

  mcp.animals_id = kud.animals_id AND 

  mcp.percentage = kud.percentage AND 

  mcp.percentage = 0.9;

Note that the percentage in each function is not exactly the same, which should
prevent any conclusion from the comparison: for the MCP, it relates to the pro-
portion of locations used in the computation, while for the kernel, it relates to the
density of the UD. Nevertheless, they provide polygons with very similar areas,
which is surprising! But, as you can see from the proportion of overlap, and in
Fig. 11.2, the areas depicted by both methods are actually very different and
highlight the different philosophies underlying each method:

As a final note, beware that projections were purposely ignored in this exercise.
In particular, the kernulUD function from adehabitatHR assumes that you are
using planar coordinates (from a Cartesian coordinate system such as UTM), but
not geographic coordinates (longitude, lattitude), and does not check for it. Indeed,
using geographic coordinates could result in inaccurate results because they are
processed as planar coordinates. More accurate results would be achieved by first
reprojecting the data in a planar coordinate system, e.g. in UTM, and converting
the results back into geographic coordinates. Here is such an example on animal 1,
using the tools.srid_utm function, presented in Chap. 9, that calculates the SRID of
the UTM zone where the centroid of the data set is located:
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WITH 

  srid AS (

    SELECT tools.srid_utm(

      ST_X(ST_Centroid(ST_Collect(geom))),

      ST_Y(ST_Centroid(ST_Collect(geom)))) AS utm

    FROM main.gps_data_animals

    WHERE gps_validity_code = 1 AND animals_id = 1),

  kver AS (

    SELECT (tools.kernelud(ST_AsText(

      ST_Transform(ST_Collect(geom), srid.utm)), 90)).*

    FROM main.gps_data_animals, srid

    WHERE gps_validity_code = 1 AND animals_id = 1

    GROUP BY srid.utm)

SELECT

  kver.percent AS pc,

  ST_AsEWKT(

    ST_Transform(

      ST_GeomFromText(kver.wkt, srid.utm),

      4326)) AS ewkt

FROM kver, srid;

This gives the following result:

Conclusions and Perspectives

In this chapter, you only briefly tackled the possibilities of Pl/R. In Chap. 10, you
were presented an extensive overview of the use of R in the field of animal
ecology, and how R can nicely complement PostGIS for the study of animal
locations. However, you saw that the flow between PostGIS and R is not always
linear: it is sometimes required to send data from R back to PostGIS, run some
further spatial queries and retrieve the results again in R. PostGIS offers some very
useful features that R does not, such as the online publication and interactive
mapping of spatial data13. Lastly, it might be necessary to use only one language in
order to evaluate complex scripts. For all these reasons, the potential of Pl/R for
the biologist is immense, but you have barely scratched the surface of the possi-
bilities here and the development of Pl/R in the context of spatial data will likely
grow in the coming years.

As you could see in the few examples provided in this chapter, the main
challenge in using Pl/R is to communicate data from PostGIS to R, and back.
While Pl/R can only handle basic data types (all kinds of numeric, text and
boolean), it cannot directly handle spatial and temporal objects. Fortunately, you

13 See for instance MapServer: http://mapserver.org/.
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saw that the WKT representation could be used to this end and allows you to
handle vector features (points, lines and polygons) in a straightforward manner.
Other possibilities exist too. For simple cases, you could also pass directly spatial
coordinates, using for instance ST_X(geom) or ST_Y(geom), and passing them to R
as numbers, which would then be converted to spatial objects in R (exactly as was
done in Chap. 10, but wrapped in a Pl/R function). This is perfectly valid for
simple geometries (i.e. a set of points or segments) for which it is easy to manually
handle the coordinates, but more complex geometries (a collection of multilines or
multipolygons) would rather quickly become intractable, in which case the WKT
approach offers a robust and flexible standard approach. Pl/R also offers a function
(pg.spi.exec) to directly evaluate SQL code from the body of the function, which
can be very useful in some cases, especially when the data would be too com-
plicated to pass in the arguments (in essence, it is similar to the dbGetQuery
function from the R package RpostgreSQL).

The last two things to consider involve the most complex data types. First of all,
Pl/R is also able to handle binary data types (bytea objects). This can be very
useful in many cases, when the object of interest computed in R has no corre-
spondence to PostgreSQL objects, but you still would like to store it in the
database. Imagine, for instance, a ltraj object (see Chap. 10), or a PNG figure that
you would like to communicate to a Web server for display in a browser14. It
would be immensely complex to convert these objects using PostgreSQL data
types. However, using bytea objects allows you to store them when necessary, and
to use them again in a software able to deal with them (e.g. R for ltraj objects or
any Web server for an image). Finally, there was no example in this chapter
dealing with rasters, because there is no simple way to deal with them in a Pl/R
function. At the moment of writing, there is no way to pass a raster in the argu-
ments, as WKT representations of rasters are not standardised yet. Possible
solutions involve the use of the package rgdal (i.e. readGDAL to import a raster to
R, and writeGDAL to send it back to the database), or directly raster2pgsql in a
system call to write rasters into the database15. Unfortunately, both approaches
require you to pass credentials to access the database as arguments, or, worse, to
directly include them in the function (which is definitely not a good practice).
However, progress in this area can only improve the situation in the coming years.

14 See an example here: http://www.joeconway.com/web/guest/pl/r/-/wiki/Main/Bytea+
Graphing+Example.
15 Another solution might be to use the TerraLib library, which involves another set of
dependencies: http://www.terralib.org/.
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Chapter 12
Deciphering Animals’ Behaviour: Joining
GPS and Activity Data

Anne Berger, Holger Dettki and Ferdinando Urbano

Abstract In the previous chapters, you have exclusively worked with GPS position
data. We showed how to organise these data in databases, how to link them to
environmental data and how to connect them to R for further analysis. In this
chapter, we introduce an example of data recorded by another type of sensor:
acceleration data, which can be measured by many tags where they are associated
with the GPS sensors and are widely used to interpret the behaviour of tagged
animals. The general structure of these data and an overview of possibilities for
analysis are given. In the exercise for this chapter, you will learn how to integrate an
acceleration data set into the database created in the previous chapters and link it
with other information from the database. At the end, the database is extended with
acceleration data and with an automated procedure to intersect these layers with
GPS positions.
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Introduction

In the previous chapters, you learned how to correlate GPS positions with other
spatiotemporal information such as NDVI values and DEMs. However, many
kinds of bio-logging sensors are available to record a large set of information
related to animals. In fact, we are quickly moving from animals monitored by one
single sensor, usually a GPS receiver, to animals monitored by multiple, integrated
sensors that register spatial (i.e. GPS positions) and non-spatial measurements such
as acceleration, temperature or GSM signal quality. In recent years, commercial
solutions have emerged to deploy a camera on animals, or even internal sensors in
the animals’ body to register heartbeat and body temperature. These sensors are
usually integrated on a unique physical support (the collar or tag). Data from all
these different sensors can be related to the spatial position of the animal and to
each other on the basis of the acquisition time of the recorded information, thus
giving a complete picture of the animal at a certain time. This integrated set of
information can be used to fully decipher the animals’ behaviour in space and
time. The opportunity to answer new biological questions through the information
derived from these multi-sensor monitoring platforms implies a number of further
challenges in terms of data management. To be able to explore the multifaceted
aspects of animals’ behaviour, researchers must deal with even bigger and more
diverse sets of data that require a more complex database data model and data
acquisition procedures.

A complete discussion of methods to integrate data from all the available bio-
logging sensors is outside the scope of this book. We will use acceleration data as
an example to illustrate how you can include other sensor data into the database.
One of the most-used non-spatial sensors in animal ecology is the acceleration
sensor (accelerometer), often called an ‘activity’ sensor, which measures the
acceleration of the body where the sensor is fixed. In wildlife telemetry studies, the
activity data measured by these accelerometers, in combination with the spatial
position of the animal, are widely used for a range of purposes:

• To detect time of death (being the original function of activity sensors in
wildlife GPS devices).

• In life-strategy investigations, to find general species-specific annual patterns and
seasonal levels of activity parameters such as mean activity, day–night patterns,
and the number and duration of activity or resting phases (e.g. Krop-Benesch
et al. 2013).

• To distinguish behaviours by identification of behaviour-specific animal
movement patterns using triaxial, or 3D, accelerometry (Shepard et al. 2008).
Past studies have shown that triaxial accelerometry data collected from sensors
on animals can be used to detect very subtle differences in the patterns of
movement such as step counts, the distinction between different gaits (e.g. jump,
gallop, trot and pace) or lameness and handicaps (Scheibe and Gromann 2006).

• To automatically detect specific behaviours such as calving, resting, fast loco-
motion or hunting (Löttker et al. 2009; Fröhlich et al. 2012). In combination
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with the knowledge of the GPS position of the animal, it then will be possible to
create a so-called functional habitat use map that says not only which places are
used by the animal, but also what the animal is doing at those places or habitats.
Since activity data typically have a higher temporal resolution than GPS posi-
tions, they also give more detailed information about the behaviour during the
time between two GPS positions (e.g. resting behaviour, fast or slow locomo-
tion) and a significantly finer movement pattern of the animal can be calculated
than by using only GPS positions.

• To calculate energy expenditure and metabolic projections using 3D acceler-
ometry and calibration for different conditions (Qasem et al. 2012).

• To non-invasively detect stress conditions on free-running wild animals through
chronobiological time series analysis (Berger et al. 2003) or to quantify anthro-
pogenic disturbances by controlled disturbance trials (Reimoser 2012).

Acceleration sensors measure acceleration by using mass inertia, sensing how
much a mass presses on something when a force acts on it. In general, piezo-
electric accelerometers are used in wildlife telemetry in which a crystal is attached
to a mass, so when the accelerometer moves, the mass squeezes the crystal and
generates a tiny electric voltage. Although this measurement procedure is essen-
tially identical in all accelerometers that are used on animals, the acceleration
sensors of various devices differ widely due to internal data processing methods,
resolution and sensitivity. In addition, sensors can measure in one, two or three
axes, with triaxial accelerometers providing three output signals—x, y and z—
each for one of the three perpendicular axes.

Hence, the data obtained from accelerometers of different devices differ cru-
cially from each other (e.g. 1D or 3D, different time intervals for measurements,
recording absolute or mean values per time unit) and researchers must think
carefully about what kind of measuring system, what measuring interval and what
analysis should be used to properly address the study question. For instance, some
specific analysis tasks (e.g. distinguishing between different behaviours) require
high-resolution triaxial acceleration measurements that not all devices are capable
of. The most important selection criteria between the different ‘activity’ sensors
from different brands are the number of the measuring axes, the options for
recording and storage interval settings, the type of internal data processing and the
capabilities of data storage or data transmission. This means that for the practical
management of a database, activity data vary greatly in their structure, depending
on the used device or its sensor settings: they may have been measured at one, two
or three axes, or by an all-round sensor, resulting in one, two or three values at
measurement. Furthermore, there are activity data recorded and stored at the
millisecond scale without any data processing (e.g. e-obs GPS devices1) and there
are activity measurements for which the original data are processed within the tag

1 e-Obs GmbH, http://www.e-obs.de/.
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and the data output is in minutes (e.g. Vectronic Aerospace2 or Lotek3 devices).
Regardless, no matter what activity sensors were used, you will always get the
following output: for each measurement time (which could be milliseconds,
seconds or minutes), there are one to three activity values (depending on the
number of axes) that vary within their measurement range.

Import the Activity Data into the Database

The general structure of activity sensors and activity sensor data is similar to that
of data from GPS sensors (see Chaps. 2, 3 and 4). The sensor is associated with
(deployed on) an animal for a defined time range. In most of the cases, GPS and
activity sensors are attached to the same support (e.g. a collar). In your data model,
you have to clearly identify collars and sensors as separate (but related) objects.
Different sensors attached to the same collar might have different activation
periods, e.g. one sensor can stop working, while the other(s) continues to record
information. In our case, we do not include the objects ‘collars’ in the database, in
order to simplify the data model and because they have no additional interesting
information associated with them. Other approaches are possible—see, for
example, the data model proposed by Kranstauber et al. (2011).

The size of activity data sets can be orders of magnitude greater than GPS data
sets. This might imply performance issues in terms of processing time and storage,
which can suggest a different data management approach. For example, you might
decide to keep a single table for activity data, joining together raw data and
derived information (e.g. the identifier of the animal). You can also use raw data
just in the import stage and then delete them from the database, using the plain text
file downloaded from the sensors as backup. The best choice depends on the size
of the database, the desired performance, the specific goals and the operational
environment. In any case, as activity data are generally acquired periodically by
radio (monthly or weekly) or just once per sensor through a cable when the sensor
is physically recovered after being removed from (or falling off) the animal, you
do not necessarily need to set up automatic, real-time procedures for data import
(e.g. association with animal, creation of an acquisition timestamp from the time
and date received from the collar, quality check). Finally, data often come in
different formats from different activity sensors; thus, a specific data process might
be necessary for each type of activity sensor.

For operational databases, keep in mind that when the size of a single table is
very big, for example bigger than the RAM of your computer, it might be con-
venient to use partitioned table functionalities that split (behind the scenes) what is

2 Vectronic Aerospace GmbH, http://www.vectronic-aerospace.com/wildlife.php.
3 Lotek Inc., http://www.lotek.com/.
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logically one large table into smaller physical pieces4. Another issue related to
large tables is the use of external keys and indexes. These can result in a significant
slowdown of the time necessary to import data. Again, you have to evaluate the
best solution according to the size of your database, the frequency of updates and
routine analysis, and the goals of your information system. In this exercise, we will
keep it simple and use the same approach as for GPS data. Now, you have to
extend the database structure to accommodate this new information. The tables
needed are

• a table for information about activity sensors;
• a table for information about the deployment of the activity sensors on animals;
• a table for the raw data coming from activity sensors;
• a table for activity data associated with animals.

In the test data set (\tracking_db\data\sensors_data), you have a .csv file
(ACTIVITY01508.csv) with the data collected by a Vectronic Aerospace GmbH
activity sensor (ACTIVITY01508). It contains more than 100,000 records. You
can explore the file content with a text editor. As you can see, you have eight
attributes: the code of the activity sensor (created in the data acquisition step), the
UTC and LMT time and date, the activity along the x- and y-axes, and the
temperature. The x-axis measures acceleration in forward/backward motions as
well as pitch angle by gravitational acceleration; the y-axis measures sideward as
well as rotary motion using gravitational acceleration. Sensors are queried four
times per second simultaneously on both axes. All measurements of each of the
x- and y-axes are averaged over the user-selected sampling interval (here over
5 min) and given a value within a relative range between 0 and 255, characterising
the mean x- and y-activities of each 5-min interval. Both sensors were physically
associated with the same collar of the GPS sensor GPS01508. When you define the
link between the activity sensor and the animal (deployment time range), this
relationship will be explicitly defined by the fact that both GPS and activity
sensors are activated on the same animal at the same time.

First of all, you create a new table to accommodate information about activity
sensors:

CREATE TABLE main.activity_sensors(
  activity_sensors_id integer,
  vendor character varying,
  activity_sensors_code character varying
  model character varying,
  insert_timestamp timestamp with time zone DEFAULT now(),

,

4 http://www.postgresql.org/docs/9.2/static/ddl-partitioning.html.
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  update_timestamp timestamp with time zone DEFAULT now(),
  CONSTRAINT activity_sensors_pkey
    PRIMARY KEY (activity_sensors_id),
  CONSTRAINT activity_sensors_code_unique
    UNIQUE (activity_sensors_code)
);
COMMENT ON TABLE main.activity_sensors
IS 'Catalogue of activity sensors.';

CREATE TRIGGER update_timestamp
  BEFORE UPDATE
  ON main.activity_sensors
  FOR EACH ROW
  EXECUTE PROCEDURE tools.timestamp_last_update();

Now, you can populate it. As you have a single activity sensor, you can directly
insert the record:

INSERT INTO main.activity_sensors (activity_sensors_id, vendor, 
activity_sensors_code, model)
  VALUES (1, 'Vectronic', 'ACTIVITY01508', 'Basic model');

You must now define a table to store the deployment time range of the activity
sensor on an animal:

CREATE TABLE main.activity_sensors_animals(
  activity_sensors_animals_id serial,
  animals_id integer NOT NULL,
  activity_sensors_id integer NOT NULL,

  start_time timestamp with time zone NOT NULL,
  end_time timestamp with time zone,
  notes character varying,
  insert_timestamp timestamp with time zone DEFAULT now(),
  update_timestamp timestamp with time zone DEFAULT now(),
  CONSTRAINT activity_sensors_animals_pkey
    PRIMARY KEY (activity_sensors_animals_id ),
  CONSTRAINT activity_sensors_animals_animals_id_fkey
    FOREIGN KEY (animals_id)
    REFERENCES main.animals (animals_id)
    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE,
  CONSTRAINT activity_sensors_animals_activity_sensors_id_fkey
    FOREIGN KEY (activity_sensors_id)
    REFERENCES main.activity_sensors (activity_sensors_id)
    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE,
  CONSTRAINT time_interval_check
    CHECK (end_time > start_time)
);
COMMENT ON TABLE main.activity_sensors_animals
IS 'Table that stores information of deployments of activity sensors on 
animals.';

CREATE TRIGGER update_timestamp
  BEFORE UPDATE
  ON main.activity_sensors_animals
  FOR EACH ROW
  EXECUTE PROCEDURE tools.timestamp_last_update();
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As said previously, the association between activity data and animals will be
performed by the operators; thus, no automatic procedure for the synchronisation
of the content of this table to the activity data table is needed.

You can now populate the table (with a single record):

INSERT INTO main.activity_sensors_animals(animals_id, activity_sensors_id, 
start_time, end_time, notes)

  VALUES (3,1,'2005-10-23 20:00:53 +0','2006-10-28 13:00:00 +0','Death of 
animal. Sensor recovered.');

Next, you create the table to host the raw data coming from the activity sensor,
replicating the structure of the .csv file. You add a field to store the complete
acquisition time, joining time and date coming from the sensor. This process relies
on the function tools.acquisition_time_update() already created for GPS data:

CREATE TABLE main.activity_data(
  activity_data_id serial NOT NULL,
  activity_sensors_code character varying,
  utc_date date,
  utc_time time without time zone,
  lmt_date date,
  lmt_time time without time zone,
  activity_x integer,
  activity_y integer,
  temp double precision,
  insert_timestamp timestamp with time zone DEFAULT now(),
  acquisition_time timestamp with time zone,
  CONSTRAINT activity_data_pkey
    PRIMARY KEY (activity_data_id ),
  CONSTRAINT activity_data_sensors_fkey
    FOREIGN KEY (activity_sensors_code)
    REFERENCES main.activity_sensors (activity_sensors_code)
    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION
);
COMMENT ON TABLE main.activity_data
IS 'Table that stores raw data as they come from the activity sensors (plus 
the ID of the sensor).';

CREATE INDEX activity_acquisition_time_index
  ON main.activity_data
  USING btree (acquisition_time );
CREATE INDEX activity_sensors_code_index
  ON main.activity_data
  USING btree (activity_sensors_code);
CREATE TRIGGER update_acquisition_time
  BEFORE INSERT
  ON main.activity_data
  FOR EACH ROW
  EXECUTE PROCEDURE tools.acquisition_time_update();
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Finally, you have to create a table to store activity data associated with animals:

CREATE TABLE main.activity_data_animals(
  activity_data_animals_id serial,
  activity_sensors_id integer,
  animals_id integer,
  acquisition_time timestamp with time zone,
  activity_x integer,
  activity_y integer,
  temp double precision,
  insert_timestamp timestamp with time zone DEFAULT now(),
  CONSTRAINT activity_data_animals_pkey
    PRIMARY KEY (activity_data_animals_id),
  CONSTRAINT activity_data_animals_animals_fkey
    FOREIGN KEY (animals_id)
    REFERENCES main.animals (animals_id)
    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION,
  CONSTRAINT activity_data_animals_sensors_fkey
    FOREIGN KEY (activity_sensors_id)
    REFERENCES main.activity_sensors (activity_sensors_id)
    MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION
);
COMMENT ON TABLE main.activity_data_animals
IS 'Table that stores activity data associated with animals.';

CREATE INDEX activity_animals_acquisition_time_index
  ON main.activity_data_animals
  USING btree (acquisition_time );
CREATE INDEX activity_animals_id_index
  ON main.activity_data_animals
  USING btree (animals_id);

You can see a schematic representation of the relations between these new
tables in Fig. 12.1.

You are now ready to import the raw data:

COPY main.activity_data(
  activity_sensors_code, utc_date, utc_time, lmt_date, lmt_time, activity_x, 

activity_y, temp)
FROM
  'C:\tracking_db\data\sensors_data\ACTIVITY01508.csv'
  WITH CSV HEADER DELIMITER ';';

The last step is the association of activity data with the animal in the table
main.activity_data_animals. The SQL code is similar to that used for GPS data:
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INSERT INTO main.activity_data_animals (

  animals_id,

  activity_sensors_id,

  acquisition_time,

  activity_x,

  activity_y,

  temp)

SELECT

  activity_sensors_animals.animals_id,

  activity_sensors_animals.activity_sensors_id,

  activity_data.acquisition_time,

  activity_data.activity_x,

  activity_data.activity_y,

  activity_data.temp

FROM

  main.activity_sensors_animals,

  main.activity_data,

  main.activity_sensors

WHERE

  activity_data.activity_sensors_code = 

activity_sensors. activity_sensors_code AND

  activity_sensors.activity_sensors_id = 

activity_sensors_animals.activity_sensors_id AND

  activity_data.acquisition_time >= activity_sensors_animals.start_time AND

  activity_data.acquisition_time <= activity_sensors_animals.end_time;

Exploring Activity Data and Associating with GPS
Positions

Now, acceleration data are stored in the database and are ready to be analysed. If
you explore the data set, you will notice that data are affected by many errors.
Activity data error handling requires complex procedures. You could follow an
approach similar to that used for GPS data, adding a validity code field and then
running function to detect and tag outliers. For example, during pre-analysis data
exploration, one should first look for activity data outside the measurement range
(in our case greater than 255) and outside the time range during which the activity
device was carried by the animal (this error should be filtered by the information
on the time range of sensor deployment). These ‘impossible’ data will have to be
excluded from the analysis. In addition, you should look for large data gaps
(greater than four measurement intervals) within the data set. The frequency of
occurrence and the length of gaps in the data set should be considered in the data
analysis (some studies are able to cope with data gaps, and some studies need an
interpolation to estimate missing measurements or even the exclusion of the whole
data set). Faulty activity sensors can produce many or large data gaps. These
devices should be recognised and replaced as soon as possible. We are not going
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into the details of these operations of quality check and outlier filtering because
they are out of the scope of this guide.

You can now join activity and GPS data. In our activity data set, activity data
are recorded with a frequency of 5 min, thus much more often than GPS positions
(with a frequency of 4 h). Hence, you need to combine the two data sets in a way
that makes sense for the specific scientific question to be asked. The most simple
approach is to sub-sample the activity data to the same temporal resolution as the
GPS positions. This can be done by a simple JOIN between the GPS data and the
activity data, where you combine the data from the two sensors on the same animal
at the same time. The result is that you associate the activity data record (what the
animal is doing) with each GPS position (where the animal is doing it). You look
for the activity data that are in a 5-min interval (2 min and 30 s after and before)
from the GPS position acquisition time. The option LIMIT 10 limits the result to

Fig. 12.1 Tables related to activity data management
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the first 10 records. You can see that with large amounts of data, the processing
time can increase considerably:

SELECT
  gps_data_animals.animals_id AS id,
  gps_data_animals.acquisition_time AS acquisition_time_gps,
  activity_data_animals.acquisition_time::time AS time_act,
  ST_X(gps_data_animals.geom)::numeric(7,5) AS gps_x,
  ST_Y(gps_data_animals.geom)::numeric(7,5) AS gps_y,
  activity_data_animals.activity_x AS act_x,
  activity_data_animals.activity_y AS act_y
FROM
  main.gps_data_animals
INNER JOIN
  main.activity_data_animals
ON
  gps_data_animals.animals_id = activity_data_animals.animals_id AND
  ((gps_data_animals.acquisition_time - 
activity_data_animals.acquisition_time) < interval '150 second') AND
  ((gps_data_animals.acquisition_time - 
activity_data_animals.acquisition_time) > interval '-150 second') AND
  gps_validity_code = 1
LIMIT 10

The result is

In the next query, you retrieve the average and standard deviation value for
activity in the different land cover types. In this way, you can see whether the data
indicate an obvious effect of the environment on the activity of the animal:
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SELECT

  label3 AS land_cover,

  avg(activity_data_animals.activity_x)::numeric(5,2) AS avg_x,

  stddev(activity_data_animals.activity_x)::numeric(5,2) AS stddev_x,

  avg(activity_data_animals.activity_y)::numeric(5,2) AS avg_y,

  stddev(activity_data_animals.activity_y)::numeric(5,2) AS stddev_y,

  count(label3) AS num

FROM

  main.gps_data_animals,

  main.activity_data_animals,

  env_data.corine_land_cover_legend

WHERE

  gps_data_animals.animals_id = activity_data_animals.animals_id AND

  ((gps_data_animals.acquisition_time - 

activity_data_animals.acquisition_time) < interval '150 second') AND

  ((gps_data_animals.acquisition_time - 

activity_data_animals.acquisition_time) > interval '-150 second') AND

  gps_validity_code = 1 AND

  gps_data_animals.corine_land_cover_code = corine_land_cover_legend.grid_code

GROUP BY

  label3;

The result reported is

        land_cover        | avg_x | stddev_x | avg_y | stddev_y | num 

--------------------------+-------+----------+-------+----------+-----

 Mixed forest             | 18.05 |    32.87 | 22.72 |    32.18 | 378

 Broad-leaved forest      | 13.08 |    20.27 | 22.07 |    25.43 | 431

 Sparsely vegetated areas | 13.82 |    12.44 | 29.44 |    23.44 | 101

 Coniferous forest        |  1.00 |          |  1.00 |          |   1

 Pastures                 | 29.81 |    37.71 | 36.74 |    35.38 | 772

As you can see, the highest activity rate is recorded in pasture lands, which
might lead to interesting considerations on the behaviour of the animal.

In the last example, you retrieve the average activity value of the 6 activity
records that are closest in time to each GPS position, which means 15 min after
and before.

SELECT
  gps_data_animals.gps_data_animals_id AS gps_id,
  gps_data_animals.animals_id AS animal,
  gps_data_animals.acquisition_time,
  avg(activity_data_animals.activity_x)::numeric(5,2) AS avg_act_x,
  avg(activity_data_animals.activity_y)::numeric(5,2) AS avg_act_y
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FROM
  main.gps_data_animals
INNER JOIN
  main.activity_data_animals
ON
  gps_data_animals.animals_id = activity_data_animals.animals_id AND
  ((gps_data_animals.acquisition_time - 

activity_data_animals.acquisition_time) < interval '15 minute') AND
  ((gps_data_animals.acquisition_time - 

activity_data_animals.acquisition_time) > interval '-15 minute') AND
  gps_validity_code = 1
GROUP BY
  gps_data_animals.gps_data_animals_id,
  gps_data_animals.animals_id,
  gps_data_animals.acquisition_time
ORDER BY
  gps_data_animals.acquisition_time
LIMIT 10;

The result is

 gps_id | animal |    acquisition_time    | avg_act_x | avg_act_y 

--------+--------+------------------------+-----------+-----------

  15275 |      3 | 2005-10-23 20:00:53+00 |     27.67 |     56.33

  15276 |      3 | 2005-10-24 00:00:55+00 |     34.17 |     66.00

  15277 |      3 | 2005-10-24 04:00:55+00 |     16.00 |     33.83

  15280 |      3 | 2005-10-24 16:02:57+00 |      5.17 |     16.33

  15281 |      3 | 2005-10-24 20:01:49+00 |     15.83 |     29.83

  15282 |      3 | 2005-10-25 00:01:23+00 |     22.67 |     37.00

  15283 |      3 | 2005-10-25 04:00:53+00 |     58.50 |     55.33

  15284 |      3 | 2005-10-25 08:01:10+00 |      0.17 |      4.17

  15285 |      3 | 2005-10-25 12:01:26+00 |      0.00 |      1.83

  15286 |      3 | 2005-10-25 16:02:29+00 |     18.00 |     35.40
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A Bigger Picture: Data Standards,
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Abstract Data sharing is of growing interest in science and in ecology. Many
research questions in ecology, particularly those addressing global change, require
large, long-term data sets that cannot be collected by any one research group alone.
Moreover, an increasing number of funding providers and publishers require that
researchers make their data available in some form to other researchers or to the
public. Benefits to sharing your data can include new collaborations and publi-
cations, increased citations of your research, expansion of successful wildlife
management strategies to new areas or species, and fulfillment of journal and
funding requirements for data sharing and management plans. As you develop
your database, it is worth considering ways to share your data, either with specific
collaborators or with the public, and to at minimum make a description of your
data set publicly available. And, as we have emphasised throughout this book, the
data organisation and documentation required for sharing data should be a standard
part of data collection regardless of the end uses of your data. The goal of this
chapter is to introduce you to existing ecological data standards and a variety of
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Introduction

Data sharing is of growing interest in science and in ecology (Vision 2010;
Reichman et al. 2011). Many research questions in ecology, particularly those
addressing global change, require large, long-term data sets that cannot be col-
lected by any one research group alone (Wolkovich et al. 2012). Therefore, sci-
entists may wish to combine some or all of their data with those of collaborators,
or with archived data collected in the past, to complete a new analysis. Moreover,
an increasing number of funding providers and publishers require that researchers
make their data available in some form to other researchers or to the public. Lastly,
when designing and managing a database, it is important to remember that the
specific study for which the database was created will one day be finished, and
those who developed it will no longer be spending their days (and nights) thinking
about all the details of the study. In order for a database to remain meaningful for
possible future use, it is important to consider possibilities for long-term data
preservation.

Benefits to sharing your data can include new collaborations and publications
(Lacher et al. 2012), increased citations of your research (Piwowar et al. 2007),
expansion of successful wildlife management strategies to new areas or species,
and fulfillment of journal and funding requirements for data sharing and man-
agement plans (Whitlock 2011). In addition, it is our responsibility as scientists to
promote new knowledge by making data available, as appropriate, to the rest of the
scientific community and even to the public, who fund many wildlife tracking
programmes and research studies.

As you develop your database, it is worth considering ways to share your data,
either with specific collaborators or with the public, and to at minimum make a
description of your data set publicly available. The goal of this chapter is to
introduce you existing ecological data standards and ways to make your database
archivable and usable for additional analyses.

Although shared data from many other fields, such as hydrology, meteorology
and genetics, have been widely used for many years, many wildlife tracking
researchers remain reluctant to share data. Common concerns are that data will be
misunderstood or used without proper acknowledgment, that sensitive data will get
into the wrong hands or that they do not have enough time or resources to properly
share data. These concerns highlight the need for appropriate methods for sharing
data, combined with good data management and thorough documentation. As is
described in this chapter, existing methods for sharing data address each of these
concerns, from enabling data citation, to limiting sharing to trusted users, to
encouraging communication between data owners and users, to providing free
tools and support. And, as we have emphasised throughout this book, data orga-
nisation and documentation is not only needed when data will be shared with
others, but also should be a standard part of data collection regardless of the end
uses of your data.
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An essential component of data sharing is the use of standards. Given the
heterogeneity of methods, data sets and software used in the field of wildlife
tracking, combined with the potential benefits of collaboration, there is a need for
internationally recognised standards for describing and sharing data. Several
examples of existing standards are described later in this chapter. These standards
can help to ensure compatibility between different software platforms, research
groups and databases. In addition, data standards play an important role in
improving data quality and can liberate data from the specific aim for which they
were collected. Adhering to such standards ensures that data can be reused for a
wide range of purposes, maximising the returns of research funding and facili-
tating multi-species, large-scale and long-term ecological studies.

Describing Data

In order for raw data files to be understandable to others, they need to be well
described. The meaning and format of each term used in your database should be
defined, including the following:

• terms describing the actual data set attributes, e.g. the reference coordinate
system of locations, timestamp format, units and precision;

• terms describing entities like sensors and animals, such as sex, serial number or
species name; and

• terms describing the entire database or discrete subsets of it, such as the title,
authors, keywords, time and geographic range of the data set used in a particular
analysis.

There are several general rules to follow when describing terms in a data set:

• Use controlled vocabularies (a set of predefined words or terms) where possible.
For example, if you are classifying migration stage for each record in your data
set, allow only a discrete list of terms, such as ‘stopover’, ‘northward migration’
and ‘breeding grounds’. This supports consistent classification, prevents spelling
errors and allows for easier analysis. Database tools such as lookup tables and
constraints can be helpful in implementing these vocabularies.

• Never use a term twice if the definition is not exactly the same. If you are using
two types of sensors, label them ‘GPS sensor’ and ‘activity sensor’, for example,
rather than calling them both ‘sensor’ and risking confusion or errors, even if it
is clarified by contextual information (e.g. the name of the table or of the schema
where the information is stored).

• Where possible, data values should follow common standards—for example,
providing timestamps in Coordinated Universal Time (UTC) and using species
names from a published taxonomy.
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• If you use codes or ambiguous shortened names (e.g. ‘CC’ for ‘Capreolus
capreolus’), be sure to include tables that provide a full translation of codes used
and that these tables are always included with any data transfer.

• To the extent possible, rely on standard database design approaches. Consider
using the data and metadata standards described below, and follow generic table
formats like those we present in this guidebook. If data structure and definition
are unnecessarily complex or specific to the original context for which a data-
base was developed, merging data sets and linking your data to external analysis
tools becomes more complicated.

• Most importantly, make sure to maintain a written definition of all terms in your
database that is available to all users. The definition should have a text
description of the term along with any units, valid ranges, example values or
controlled lists. The written definitions should explain where the values come
from, such as the source of altitude estimates that may come from a DEM or
from the GPS unit, or the method for determining habitat or behaviour. You
could create this as a separate table in the database or as a plain text file.

Data and Metadata Standards

Several standards or schemas have been designed to deal specifically with
describing ecological and geospatial data. These standards support description,
discovery and integration of biological and geospatial data and are used by a wide
range of research institutes, universities, museums, government agencies and other
organisations. Standards provide relevant terms and definitions, have policies
governing how to maintain and use the terms and document the history of changes
to the standard. Where possible, it may be helpful to use terms from one or more of
these standards in your database. This allows you to use and reference existing
definitions, rather than writing your own, and would make it easier to share your
data or metadata with databases such as the Global Biodiversity Information
Facility (GBIF1) or the earth observation database DataONE2.

Note that the difference between ‘data’ and ‘metadata’ is not clearly defined and
will vary depending on the context. In general, metadata refers to ‘data about data’
or information that describes a data set. For example, descriptions of study animals
might be considered ‘metadata’ describing your tracking data in one context, while
in another, this information might be a part of your data set, with ‘metadata’
referring to a description of the entire study (such as title, authors and the time
period of data collection). For our purposes, it may be helpful to think of metadata
standards as useful for finding data and data standards as useful for integrating or
combining data.

1 http://www.gbif.org/.
2 http://www.dataone.org/.
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Three metadata standards specific to biology are Darwin Core, Access to
Biological Collections Data (ABCD) and Ecological Metadata Language (EML).
These standards are currently in use around the world and are freely available. In
addition, they have support for geographic and temporal information.

The Darwin Core and ABCD standards are developed by Biodiversity Infor-
mation Standards or TDWG (formerly the Taxonomic Database Working Group).
Initially developed for use with natural history collections, Darwin Core3 is
widely used and includes terms for describing species occurrence data, including
physical specimens, observations and digital records. It is focused primarily on
terms that are generically applicable to natural history collections4.

The ABCD standard5 supports species occurrence data and includes around
1,200 terms (they refer to these as ‘concepts’). It includes a larger number of terms
and a more complex structure than Darwin Core, making it able to describe data
and relationships between them more thoroughly, but requiring more technical
expertise to fully implement (Wieczorek et al. 2012)6.

EML7 is a metadata standard developed by the Knowledge Network for Bio-
complexity for describing ecological data (Higgins et al. 2002; Fegraus et al.
2005). It is open source and implemented by voluntary project members. It was
designed primarily to describe data sets and other digital resources. EML consists
of several modules that can be adopted by users as needed, including modules to
support detailed descriptions of methods, attributes, tables in relational databases,
and raster and vector geographic information8.

In addition, the following other data and metadata standards may be useful:

The Content Standard for Digital Geospatial Metadata (CSDGM9), devel-
oped by the US Federal Geographic Data Committee (FGDC), is the current
Federal metadata standard in the USA for geospatial data. This standard has a
Biological Data Profile to provide additional support for biological data. Although
it has been widely used throughout the USA, the FGDC now supports the tran-
sition to the ISO 19115 standard (see below).

The ISO 19115 standard is the International Organization for Standardization’s
(ISO10) metadata standard for describing geographic data. Unlike the other resources
listed here, ISO standards are not freely available (i.e. must be paid for).

3 http://rs.tdwg.org/dwc.
4 Terms are currently described at http://rs.tdwg.org/dwc/terms/index.htm.
5 http://www.tdwg.org/activities/abcd.
6 Terms are currently described at http://wiki.tdwg.org/twiki/bin/view/ABCD/AbcdConcepts.
7 http://knb.ecoinformatics.org/software/eml.
8 Terms and modules are described at http://knb.ecoinformatics.org/software/eml/eml-2.1.1/
index.html.
9 http://www.fgdc.gov/metadata/geospatial-metadata-standards#csdgm, http://www.fgdc.gov/
metadata/csdgm/.
10 http://www.iso.org.
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The Open Geospatial Consortium (OGC11) provides publicly available
interoperability standards (see below). While these are not specifically data or
metadata standards, some of their standards do include relevant data/metadata
terms and schema that are used to implement interoperability.

In addition to these resources, manufacturers of tagging equipment typically
provide data using fairly standardised formats and data attributes. Simply fol-
lowing the format delivered by popular manufacturers or other data providers,
such as Argos, may be a simple way to make large amounts of data easy to share
and compile. However, keep in mind that formats, attributes and units differ
between manufacturers and sensors and that these companies are in the business of
selling equipment, not maintaining databases. Combining data from different
manufacturers and sensor types, each with their own specialised terms and data
structure, can require significant effort. In addition, you will find that manufac-
turer-provided data formats often change over time and can be ambiguous,
resulting in data files that misleadingly appear to be in the same format—for
example, in some cases, users are allowed to choose a time zone in which data are
delivered, although this choice is not indicated anywhere in the data file.

Lastly, you may want to look at data formats used by existing online animal
tracking databases, such as those listed at the end of this chapter, in particular if
you intend to use one of these databases for sharing or analysis. For example, see
the Movebank Attribute Dictionary12. While these do not constitute official stan-
dards, the managers of these databases have developed data formats that are shared
by large groups of data owners and could be extended or modified to meet your
specific requirements.

Interoperability

Data that use shared metadata and data standards may be stored in diverse data
formats and in online and offline databases. To allow others to locate and access
metadata in a shared format, there must be ways to search metadata for species
name, location, time period of data collection, etc., using Web-based databases or
search engines. To actually combine multiple data sets for analysis requires
additional work and may be time-consuming or impossible to do manually. In
order to properly and efficiently search for or integrate data sets, we require
interoperability.

In this context, interoperability can be generally defined as the ability for
multiple databases, analysis software or other relevant systems to work together.

11 http://www.opengeospatial.org/.
12 https://www.movebank.org/node/2381.
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For example, consider the interoperability of your database with an external client
software for analysis:

• Not interoperable: Your data are stored in a proprietary format that cannot be
read by the analysis software, and there is no easy way to export the data for use
with the software.

• Somewhat interoperable: You can easily export all or part of your database as a
.csv file, which can be read by the software.

• Very interoperable: You can query your database directly from the software, run
an analysis and automatically store the results in your database.

There are several general ways in which you can make your database more
interoperable with other systems. For example, you may use database software like
PostgreSQL and PostGIS, which are open source, widely support international
standards, and are likely to be maintained in the future. Using common non-
proprietary file formats such as .csv rather than .xlsx when needed will minimise
the chances of files becoming unreadable by contemporary software. Lastly, using
established data and metadata standards such as those described above will make it
more likely that your data can be understood and integrated with other data sets
and software in the future.

Full interoperability with software tools, other databases and search engines
requires implementation of more specific technical standards, which is beyond the
scope of this guide. These include specifications for exchanging information using
data/metadata exchange file formats, such as Extensible Markup Language (XML)
or Resource Description Framework (RDF), and transfer protocols, such as
TAPIR13. These standards are necessary, for example, to allow computers to
automatically read data or metadata, retrieve search results, and present them in a
way understandable to the user.

The OGC14 is an international consortium that develops voluntary standards for
interoperability of GIS data. PostGIS, used in this guide, follows the OGC’s
‘Simple Feature Access—Part 2: SQL Option’ specification15 and has been cer-
tified compliant with the ‘Simple Features—SQL—Types and Functions 1.1’
specification.

Publish Your Metadata

An alternative to publishing a data set in full is to make a description, in the form
of metadata about your data set, available to a wider community. This makes it
easier for other researchers to find out about your research and contact you about

13 http://www.tdwg.org/activities/tapir/specification.
14 http://www.opengeospatial.org/.
15 http://www.opengeospatial.org/standards/sfs.
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possible collaborations. Databases with searchable study metadata often exist at
the level of the research group, university, region or country. To be broadly useful,
these typically require only a minimal number of descriptive terms that are
applicable to all studies in the database.

To reach the widest possible audience, here are two global online databases
where metadata about your wildlife tracking database could be shared:

• GBIF (Global Biodiversity Information Facility) publishes metadata about
primary biodiversity occurrence data.16 A list of contacts is available at http://
www.gbif.org/communications/directory-of-contacts/regional-nodes

• DataONE (Data Observation Network for Earth) publishes metadata about
earth observational data17. A list of member nodes is available at www.dataone.
org/current-member-nodes

To contribute, you must be associated with a member node. Member nodes may
include research institutes, government agencies and other organisations. In the
case of GBIF, most countries also have a national node, and so if you are not
affiliated with an existing member organisation, you could contact your national
node to find out how to get involved.

It is relatively easy to store metadata within your PostgreSQL database. In
addition to storing definitions for each term in the database (see Describing data
above), you can create descriptive metadata for the database itself and for subsets
within it, such as the set of records used for a specific publication or analysis.
These metadata can include required terms for external databases and can be
stored within your database in an XML format that complies with XML schema
for the metadata standards described above using the XML data type in
PostgreSQL.

In addition, many software programs exist to help researchers write and publish
metadata in interoperable formats. One example is Morpho18, a free, user-friendly
software tool developed to help researchers write and publish metadata without
special knowledge of technical interoperability requirements. Morpho allows you
to write detailed metadata about ecological data sets and individual data tables that
comply with the EML standard in XML format. After creating metadata, you can
store files locally or upload the metadata, and even data tables, to the Knowledge
Network for Biocomplexity, where they are searchable and available to other
registered members (it is possible to restrict access to specific collaborators). This
program is available from the Knowledge Network for Biocomplexity19 (Higgins
et al. 2002).

16 http://www.gbif.org.
17 http://www.dataone.org.
18 https://knb.ecoinformatics.org/morphoportal.jsp.
19 https://knb.ecoinformatics.org.
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Publish and Share Your Data

Publishing your data allows you to share them in a more formal and structured way
than exchanging files individually with collaborators and can make it accessible to
a much wider research community. It also makes it easier for others to properly
cite your data and allows you to list these citations in your CV as valuable research
products in their own right. Depending on how you publish your data, you can
make them available to the public or to specific user groups, define explicit terms
of use, and ensure that some or all of a data set is permanently archived and
remains accessible. Publishing data commonly involves the following:

• a review process to ensure the quality of data and related documentation;
• assignment of a persistent identifier such as a Digital Object Identifier (DOI) or

Life Science Identifier (LSID) to ensure that the item will remain permanently
available; and

• data licences that provide explicit conditions for reuse, such as those offered by
Creative Commons20 and Open Data Commons21, 22.

If you have a completed data set that you would like to make available to the
public and scientific community, you can submit it for review and publication.
Several journals publish ‘data papers’, which include a biological data set along
with a written description of the data, for research in biology and ecology. These
include Biodiversity Data Journal, Dataset Papers in Science, Ecological
Archives, and Scientific Data. In addition, there are databases that publish ‘data
packages’ or sets of non-proprietary files associated with a written publication (see
Penev et al. 2011). These include Data Dryad23, which publishes data sets in the
life sciences, and the Movebank Data Repository24, which publishes animal
tracking data in a standardised format.

Share Your Data Without Publishing

In some cases, the formality and permanence of publishing your data as described
will not be the best option. For example, publicly revealing precise breeding or
foraging locations of endangered populations may put them at risk. More commonly,

20 http://www.creativecommons.org.
21 http://opendatacommons.org.
22 Note that making data files available as supplementary material along with a written article in
general does not fit this definition of publication. In most cases the files are not part of the review
process, and there is no guarantee by the publisher that the files will remain available (Anderson
et al. 2006).
23 http://www.datadryad.org.
24 http://datarepository.movebank.org.
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when research is ongoing and results of analysis are unpublished, you will likely
want to share data only with specific people, such as collaborators or funding pro-
viders. Data sharing for the purpose of ongoing collaborative analysis requires
different tools. These tools should allow you to define access rights to specific
people, allowing them to view and/or add and edit data, and provide an infrastructure
that helps multiple researchers to put their data into the same format.

In Chap. 2 and elsewhere in this guide, we have briefly described how you can
use PostgreSQL to define multiple users and distinct access rights for each within
your database25 and allow remote connections. These features can support data
sharing with colleagues, along with all the analysis and database design options
PostgreSQL provides.

In addition, there are many existing online databases for sharing animal
tracking data. One or more of these databases could provide a useful resource to
complement your personal research database. These databases have varying Data-
sharing options and are available to different sets of users and study types. They
provide a way for a wide range of researchers, educators and conservation groups
to find out about your research. Some of these databases also provide data-sharing
and data-collection services, as well as a visualisation and analysis tools, that
could be particularly useful for those with limited technical facilities. Brief
descriptions of several of these are given in Table 13.1.

References

Anderson NR, Tarczy-Hornoch P, Bumgarner RE (2006) On the persistence of supplementary
resources in biomedical publications. BMC Bioinf 7:260. doi:10.1186/1471-2105-7-260

Fegraus EH, Andelman S, Jones MB, Schildhauer M (2005) Maximizing the value of ecological
data with structured metadata—an introduction to Ecological Metadata Language (EML) and
principles for metadata creation. Bull Ecol Soc Am 86(3):158–168. doi:10.1890/0012-
9623(2005)86[158:MTVOED]2.0.CO;2

Higgins D, Berkley C, Jones MB (2002) Managing heterogeneous ecological data using Morpho.
In: Proceedings of the 14th international conference on scientific and statistical database
management, pp 69–76. doi:10.1109/SSDM.2002.1029707

Lacher TE, Boitani L, da Fonseca GAB (2012) The IUCN global assessments—partnerships,
collaboration and data sharing for biodiversity science and policy. Conserv Lett 5:327–333.
doi:10.1111/j.1755-263X.2012.00249.x

Penev L, Mietchen D, Chavan V, Hagedorn G, Remsen D, Smith V, Shotton D (2011) Pensoft
data publishing policies and guidelines for biodiversity data. Pensoft Publishers. www.
pensoft.net/J_FILES/Pensoft_Data_Publishing_Policies_and_Guidelines.pdf

Piwowar HA, Day RS, Fridsma DB (2007) Sharing detailed research data is associated with
increased citation rate. PLoS ONE 2(3):e308. doi:10.1371/journal.pone.0000308

Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in
ecology. Science 331(703):703–705. doi:10.1126/science.1197962

Vision TJ (2010) Open data and the social contract of scientific publishing. Bioscience
60(5):330–331. doi:10.1525/bio.2010.60.5.2

25 http://www.postgresql.org/docs/9.2/static/user-manag.html.

256 S. C. Davidson

http://dx.doi.org/10.1007/978-3-319-03743-1_2
http://dx.doi.org/10.1186/1471-2105-7-260
http://dx.doi.org/10.1109/SSDM.2002.1029707
http://dx.doi.org/10.1111/j.1755-263X.2012.00249.x
http://www.pensoft.net/J_FILES/Pensoft_Data_Publishing_Policies_and_Guidelines.pdf
http://www.pensoft.net/J_FILES/Pensoft_Data_Publishing_Policies_and_Guidelines.pdf
http://dx.doi.org/10.1371/journal.pone.0000308
http://dx.doi.org/10.1126/science.1197962
http://dx.doi.org/10.1525/bio.2010.60.5.2
http://www.postgresql.org/docs/9.2/static/user-manag.html


Whitlock MC (2011) Data archiving in ecology and evolution—Best practices. Trends Ecol Evol
26(2):61–65. doi:10.1016/j.tree.2010.11.006

Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Roberson T, Vieglais D
(2012) Darwin Core—An evolving community-developed biodiversity data standard. PLoS
ONE 7(1):e29715. doi:10.1371/journal.pone.0029715

Wolkovich EM, Regetz J, O’Connor MI (2012) Advances in global change research require open
science by individual researchers. Glob Change Biol 18:2102–2110. doi:10.1111/j.1365-2486.
2012.02693.x

13 A Bigger Picture: Data Standards Interoperability and Data Sharing 257

http://dx.doi.org/10.1016/j.tree.2010.11.006
http://dx.doi.org/10.1371/journal.pone.0029715
http://dx.doi.org/10.1111/j.1365-2486.2012.02693.x
http://dx.doi.org/10.1111/j.1365-2486.2012.02693.x

	Extra Materials on http://extras.springer
	Foreword
	Acknowledgments
	Contents
	Introduction
	1 Wildlife Tracking Data Management: Chances Come from Difficulties
	Abstract
	Introduction
	Requirements
	Chances
	Spatial and Spatiotemporal Extensions
	References

	2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL)
	Abstract
	Introduction
	Create a New Database
	Create a New Table and Import Raw GPS Data
	Finalise the Database: Defining GPS Acquisition Timestamps, Indexes and Permissions
	Export Data and Backup
	Reference

	3 Extending the Database Data Model: Animals and Sensors
	Abstract
	Introduction
	Import Information on GPS Sensors and Add Constraints to the Table
	Import Information on Animals and Add Constraints to the Table
	First Elements of the Database Data Model

	4 From Data to Information: Associating GPS Positions with Animals
	Abstract
	Introduction
	Storing Information on GPS Sensor Deployments on Animals
	From GPS Positions to Animal Locations
	Timestamping Changes in the Database Using Triggers
	Automation of the GPS Data Association with Animals
	Consistency Checks on the Deployments Information
	Synchronisation of gps_sensors_animals and gps_data_animals

	5 Spatial is not Special: Managing Tracking Data in a Spatial Database
	Abstract
	Introduction
	Spatially Enable the Database
	Exploring Spatial Functions
	Transforming GPS Coordinates into a Spatial Object
	Automating the Creation of Points from GPS Coordinates
	Creating Spatial Database Views
	Vector Data Import and Export
	Connection from Client Applications
	References

	6 From Points to Habitat: Relating Environmental Information to GPS Positions
	Abstract
	Introduction
	Adding Ancillary Environmental Layers
	Importing Shapefiles: Points, Lines and Polygons
	Importing Raster Files
	Querying Spatial Environmental Data
	Associate Environmental Characteristics with GPS Locations
	References

	7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series
	Abstract
	Introduction
	MODIS NDVI Data Series
	Dealing with Raster Time Series
	Time Ranges in PostgreSQL
	Import the Raster Time Series
	Intersection of Locations and NDVI Rasters
	Automating the Intersection
	References

	8 Data Quality: Detection and Management of Outliers
	Abstract
	Introduction
	Review of Errors that Can Affect GPS Tracking Data
	A General Approach to the Management of Erroneous Locations
	Missing Records
	Records with Missing Coordinates
	Multiple Records with the Same Acquisition Time
	Records with Different Values When Acquired Using Different Acquisition Sources
	Records Erroneously Attributed to Animals
	Records Located Outside the Study Area
	Records Located in Impossible Places
	Records that Would Imply Impossible Movements
	Records that Would Imply Improbable Movements
	Update of Spatial Views to Exclude Erroneous Locations
	Update Import Procedure with Detection of Erroneous Positions
	References

	9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database
	Abstract
	Introduction
	Extraction of Statistics from the GPS Data Set
	A New Data Type for GPS Tracking Data
	Representations of Trajectories
	Regularisation of GPS Location Data Sets
	Interpolation of Missing Coordinates
	Detection of Sensors Acquisition Scheduling
	Representations of Home Ranges
	Geometric Parameters of Animal Movements
	An Alternative Representation of Home Ranges
	Dynamic Age Class
	Generation of Random Points
	References

	10 From Data Management to Advanced Analytical Approaches: Connecting R to the Database
	Abstract
	Introduction: From Data Management to Data Analysis
	Background for the Analysis of Animal Space Use Data
	The Tools: R and Adehabitat
	Connecting R to the Database
	Data Inspection and Exploration
	Home Range Estimation
	Habitat Use and Habitat Selection Analysis
	Acknowledgments
	References

	11 A Step Further in the Integration of Data Management and Analysis: Pl/R
	Abstract
	Introduction
	Getting Started with Pl/R
	Sample Median and Quantiles
	In the Middle of the Night
	Extending the Home Range Concept
	Conclusions and Perspectives

	12 Deciphering Animals’ Behaviour: Joining GPS and Activity Data
	Abstract
	Introduction
	Import the Activity Data into the Database
	Exploring Activity Data and Associating with GPS Positions
	References

	13 A Bigger Picture: Data Standards, Interoperability and Data Sharing
	Abstract
	Introduction
	Describing Data
	Data and Metadata Standards
	Interoperability
	Publish Your Metadata
	Publish and Share Your Data
	Share Your Data Without Publishing
	References




