

Learning ArcGIS Geodatabases

An all-in-one start up kit to author, manage,
and administer ArcGIS geodatabases

Hussein Nasser

BIRMINGHAM - MUMBAI

Learning ArcGIS Geodatabases

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-864-8

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

Credits

Author
Hussein Nasser

Reviewers
Hani M. Basheer

Frank Donnelly

Venkatesh Merwade

Commissioning Editor
Kunal Parikh

Acquisition Editor
Subho Gupta

Content Development Editor
Akshay Nair

Technical Editor
Ankita Thakur

Copy Editors
Mradula Hegde

Dipti Kapadia

Stuti Srivastava

Project Coordinator
Sageer Parkar

Proofreader
Paul Hindle

Indexer
Rekha Nair

Graphics
Yuvraj Mannari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Hussein Nasser is an Esri award-winning senior GIS solution architect at
Electricity and Water Authority, Bahrain. He was the first author to write about
the ArcGIS for Server technology after its complete revamp in Version 10.1. In 2007,
Hussein won the annual ArcGIS for Server Code Challenge conducted at the Esri
Developer Summit in Palm Springs, California, for using the AJAX technology with
ArcGIS for Server, which was not implemented back then. His eight-year career as
a GIS architect at the leading Middle Eastern engineering company Khatib & Alami
involved implementing various utility GIS systems based on the Esri technology
across the Middle East. After this, Hussein decided to move to a more focused
environment at Electricity and Water Authority, Bahrain, his homeland, where
he could channel his expertise to develop a robust GIS utility solution and fully
integrate it with the e-government project, which would help Bahrain march towards
the smart grid. Beyond GIS, Hussein is fascinated by acute research topics. Among
the papers he is currently working on are The Human API: A Software Interface to
Prevent Cancer, Global Economic Crisis and Natural Disasters Quantum Detector,
and the Stock Market and the Moon Phases.

To Nada: "May all our dreams come true."

About the Reviewers

Hani M. Basheer is a GIS expert and Oracle certified professional DBA. He
graduated in the year 2001 as a surveying engineer with a technical postgraduate
diploma in Esri GIS. He has over 15 years of experience in the field of Geographic
Information Systems (GIS), Esri products.

Throughout his career, he has worked on several enterprise GIS projects in Egypt
and Saudi Arabia; he worked with the Egypt SDI project, which is a project to
establish a GIS system for the NARSS and EMRA authorities in Egypt. He moved
to Saudi Arabia in 2007 to work with a leading GIS company, FarsiGeoTech, which
deals with many GIS projects. Hani moved to National Water Company in 2010 to
establish a GIS unit, GIS model, geodatabase, and GIS application to manage the
water and waste water utility networks of Jeddah city.

Hani has over 10 years of experience as a technical trainer for GIS products.
During this period, he has delivered many successful training sessions in the
Middle East to different sectors such as petroleum, mining, education, electricity,
and municipalities.

Throughout his career, he has worked with most Esri products. He worked with
Oracle databases and earned four DBA OCPs. He has also worked with SAN
storage, GPS, and GPS CORS systems.

He really liked this book. While reviewing, he found it interesting enough to
complete it from start to end. He also felt that the writer succeeded in providing
knowledge to the readers in an easy way. He guarantees the readers that they will
get the best out of their GIS career by reading this book.

I would like to thank my wife, Wegdan, for her love and support.
I also want to acknowledge my loving family, who are always there
for me.

Frank Donnelly is a Geospatial Data Librarian at Baruch College, City University
of New York, where he assists students and faculty with finding and processing
data and using GIS. He holds master's degrees in both Geography and Library and
Information Science. He has been using GIS for over 15 years and has extensive
experience working with the US Census data. He has built several spatial databases
using ArcGIS personal geodatabases and open source SpatiaLite, including a
geodatabase for studying New York City neighborhoods, which is freely available
on his college's website. He has recently published papers on the geography
of public libraries in the United States and the use of the US Census Bureau's
American Community Survey for research.

Venkatesh Merwade is an associate professor at the Lyles School of Civil
Engineering, Purdue University. His research and teaching interests include
solving water resources issues by using GIS, computer modeling, and hydrologic
information systems. His online tutorials, which are available at his website for free,
on GIS applications and hydraulic and hydrologic modeling are used by students,
researchers, and practitioners around the world to address water resource issues.
He has co-authored two chapters in Arc Hydro: GIS for Water Resources, Esri Press;
one chapter in GIS, Spatial Analysis, and Modeling, Esri Press; and one chapter in
Gravel Bed Rivers 7: Developments in Earth Surface Processes, Wiley.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Authoring Geodatabases 7

Bestaurants, the best restaurants in Belize 9
Designing the geodatabase schema 9
Creating the geodatabase 11

The spatial reference 13
Creating the feature classes 13

Editing the geodatabase in ArcMap 19
Summary 23

Chapter 2: Working with Geodatabase Datasets 25
Working with feature classes 25

Adding new attributes 26
Modifying the properties of the attributes 26
Domains 28
Subtypes 32

Working with object tables and relations 33
Working with annotations 43
Importing other datasets 45

Importing shape files 46
Importing the CAD files 47
Importing coverage classes 49

Summary 50
Chapter 3: Modeling Geodatabases 51

The entity relationship diagram for Bestaurants 51
The flaws in the current geodatabase 52
The proposed geodatabase model 54

Implementing the proposed model 56
Authoring the geodatabase 56

Table of Contents

[ii]

Creating geodatabase datasets 57
Assigning domains to the feature class 60
Adding subtypes to the new feature class 61
Enabling attachments in the feature class 62

Testing the new geodatabase in ArcMap 64
Summary 66

Chapter 4: Optimizing Geodatabases 67
Geodatabase indexing 68

Attribute indexing 68
Adding an attribute index 71
Spatial indexing 74
Adding a spatial index 75
Using indexes effectively 76

Geodatabase compression 76
Compressing a file geodatabase 77
Using compression effectively 79

Compacting 80
Compacting a file geodatabase 80
Using compacting effectively 81

Summary 84
Chapter 5: Programming Geodatabases 85

Using Python scripting 86
Creating a geodatabase 89
Creating a feature class 91
Adding and deleting fields 92
Copying features 94
Backing up the Bestaurants_Web geodatabase 95
A list of arcpy commands 100

Using the model builder 102
Creating a model 103
Creating a feature class 107
Running the model 109

Summary 110

Table of Contents

[iii]

Chapter 6: Enterprise Geodatabases 111
The benefits of the enterprise geodatabase 112
Setting up a Microsoft SQL Server Express geodatabase 112

System requirements 113
Installing SQL Server Express 113
Configuring SQL Server Express 118

Enabling TCP remote pipe 118
Enabling the firewall's database port 120
Connecting to the database 123
Connecting to the database from a remote machine 126

Creating an enterprise geodatabase 126
Working with an enterprise geodatabase 129

Adding users 129
Creating a connection to the enterprise geodatabase 132
Migrating a file geodatabase to an enterprise geodatabase 133
Assigning privileges 136

Summary 137
Index 139

Preface
When the publisher asked me to write a book about ArcGIS geodatabases, I was
glad to do so. I have been working with geodatabases since 2005 with eight different
versions of ArcGIS starting from Version 9.1; writing this title was a thrill for me.
When the publisher mentioned that they need it to be a short book, based on the
research done by their strategy team, I had to put in an extra effort and make
tough decisions on what to include in this book and what to discard, without
compromising on the quality of the content. What you are holding in your hands
now is the essence of that work.

Learning ArcGIS Geodatabases was designed for those who want to start using the
ArcGIS technology or those who have been using it and want to learn more about
geodatabases. There are going to be three themes that will run throughout the book.
The first theme covers Chapter 1, Authoring Geodatabases, and Chapter 2, Working
with Geodatabase Datasets, and it is tailored for beginners and readers who are not
familiar with ArcGIS geodatabases. It teaches readers how to author geodatabases
and how to create and work with different datasets in their geodatabase. The
second theme covers Chapter 3, Modeling Geodatabases, and Chapter 4, Optimizing
Geodatabases, and it is targeted for intermediate users. It caters to those who know
about geodatabases already and want to run them better. It is an excellent chapter
for those who want to remodel their existing geodatabase and make it more efficient
and cost less to maintain. They are also presented with new tools to help them
tune and optimize their geodatabase. The last theme covers the last two chapters,
Chapters 5, Programming Geodatabases, and Chapter 6, Enterprise Geodatabases, and it is
designed for advanced readers. It caters to those who want to excel in using ArcGIS
geodatabases with programming and script writing to manage and administer their
geodatabase. They want to upgrade and use enterprise geodatabases instead of using
simple file geodatabases so they can get the benefits of the multiuser environment.

Preface

[2]

All three themes come under the umbrella of a project called Bestaurants, where
the reader helps a client in Belize, a country on the northeastern coast of Central
America. The reader will help improve the Bestaurants project by designing a
geodatabase to visualize the best restaurants, diners, cafes, and so on in Belize.
With each chapter, the Bestaurants client will ask for new requirements that the
reader will try to implement by the end of the chapter. The reader will author the
geodatabase, tune, optimize, and create additional datasets, and so much more as
the requirements of the client increase.

What this book covers
Chapter 1, Authoring Geodatabases, introduces the concept of geodatabases and how
you can design and create one using ArcGIS for Desktop. The chapter discusses a
project, Bestaurants, where you need to create a file geodatabase for the restaurants
in Belize to help the client visualize them on a map.

Chapter 2, Working with Geodatabase Datasets, will bring in new requirements for
the Bestaurants project where you will learn how to create feature classes, tables,
and relations between datasets in the geodatabase you created in Chapter 1,
Authoring Geodatabases.

Chapter 3, Modeling Geodatabases, will show you some flaws of the design used while
creating the geodatabase in Chapter 1, Authoring Geodatabases. It will teach you how
to remodel your Bestaurants geodatabase in a more elegant way. It will also show
you how to cut down the number of datasets to reduce future maintenance on
the geodatabase.

Chapter 4, Optimizing Geodatabases, is where you will be given some new tools to
optimize your Bestaurants geodatabase now that it has been modeled elegantly.
You will learn concepts such as indexing, compacting, and compressing, which will
help you optimize your geodatabase queries and maintain a healthy geodatabase.

Chapter 5, Programming Geodatabases, will take you further along your Bestaurants
geodatabase by writing Python scripts against it. It will also teach you how to use
a model builder to combine different geodatabase tools to save a lot of time in
administering and maintaining your geodatabase.

Chapter 6, Enterprise Geodatabases, introduces the concept of enterprise geodatabases,
an upgraded version of a geodatabase that supports multiple user access, enhanced
security, and higher availability. It will show you how to set up and configure your
enterprise geodatabase from scratch using Microsoft SQL Server Express and
migrate your existing Bestaurants geodatabase to the new geodatabase.

Preface

[3]

What you need for this book
You need Esri ArcGIS for Desktop 10.2.x or 10.1. The book uses ArcGIS 10.2.
You can download a trial at http://www.esri.com/software/arcgis/trial
or order from your local Esri distributor.

Gliffy is an online modeling tool that can be accessed at
http://www.gliffy.com/.

Microsoft SQL Server Express 2012 SP1 can be downloaded for free at
http://qr.net/mssqlexpress.

Microsoft .Net Framework 3.5 SP1 can be downloaded for free at
http://qr.net/dnfm35sp1.

Who this book is for
Whether you are a student, GIS user, analyst, DBA, system administrator,
or programmer with basic or no knowledge of Esri GIS, this book is for you.
The book is tailored for students who want to learn about ArcGIS geodatabase.
However, down the road in the later chapters, the book helps readers who are
looking to improve their existing geodatabases or those who want to use scripting,
model builders, or even migrate to enterprise geodatabases.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Using Windows Explorer, create a folder named c:\gdb."

A block of code is set as follows:

import arcpy
import os
import datetime
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)
sfc_source = "c:/gdb/Bestaurants_new.gdb/Food_and_Drinks"
sfc_dest = sgdb_path + "/" + sgdb_name + "/Restaurants"

Preface

[4]

#Copy features
arcpy.CopyFeatures_management (sfc_source, sfc_dest)
sfield_rating = "RATING"
sfield_desc = "DESCRIPTION"
arcpy.DeleteField_management(sfc_dest, sfield_rating)
arcpy.DeleteField_management(sfc_dest, sfield_desc)
input ("Web Bestaurants geodatabase created successfully, press any
key to continue.")

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

import arcpy
import os
import datetime
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
todaydate = str(datetime.date.today().year) + str(datetime.date.
today().month) + str(datetime.date.today().day)
os.rename (sgdb_path + "/" + sgdb_name , sgdb_path + "/" + "Web_
Bestaurants" + todaydate + ".gdb")

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"In the Type drop-down list, select Point Features to create the feature class
with point geometry."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Authoring Geodatabases
For a very long time, mankind recorded historical events in the form of drawings,
inscriptions, and books. Books were organized into physical volumes, and volumes
were arranged by their topic on shelves in a library. This system worked very well
for centuries. We can place as many books as the shelf space can handle. With
the information age and the invention of the byte, data is stored and retrieved
electronically. It started with simple sequential text files. As more complex
structures were introduced, we started depending on computers to store our data.
This required a completely new system to structure, organize, and manage the
digital data. For this, a system by which computers can efficiently browse and
retrieve stored information was required, which led to the invention of the database.

A database is an organized collection of related data that's designed for
efficient storage and retrieval. In this system, data is stored in a series of
relations called tables. Each table contains a set of related data, where a
row contains one instance of data and a column contains information that
describes that instance.

Many database management systems (DBMS) have been introduced over the years.
They have all been designed to organize digital information. When networking came
into the picture, DBMSs evolved; now, multiple users can read the same piece of
information from different locations (or from different continents). They can update
the same table; therefore, the multiediting environment, database replications, and
other niche technologies spawned from this field.

DBMS is a software that allows multiple users to interact with a database.
They come either in the client-server model or the file-based model.
These may include the server, which manages the database and listens for
incoming client connections, and the client, which connects to the server.

Authoring Geodatabases

[8]

After that short tour of the evolution of databases, we need to focus on the topic of
this book. A database is a fascinating storage system. It allows you to retrieve, store,
and edit different types of information such as text, images, music, and videos.
However, for people like us who work with maps, we feel there is a missing element
in that compound, that is, location. Adding location information to a database helps
applications bring life to the tabular records in the database and make it available
visually. For instance, you can add x and y columns to a Restaurant table in a
database, which represents the coordinate's location of each restaurant in the table.
Then, you can write a custom application to read the coordinates and display the
restaurants in a map. Esri realized the importance of injecting location information
into a database, and created its own standard location-based database; you guessed
it, the ArcGIS geodatabase. An ArcGIS geodatabase offers you a generous number of
geographically enabled objects called datasets.

An ArcGIS geodatabase is the proprietary database for Esri.
All Esri geospatial software is built around this geodatabase.

In this chapter, you will work on a real-life business case study where you will
learn how to create your first ArcGIS geodatabase and add different datasets using
ArcGIS for Desktop, hereafter known simply as Desktop (uppercase). To start with
this chapter, make sure you have a machine with Desktop 10 or higher. You can
work with a 9.2.x or 9.3.x Version of Desktop since the underlying geodatabase is
the same; however, you might be missing some features that are required to perform
the exercises of the book. I will be using Version 10.2; you can download the latest
version of ArcGIS for Desktop for free with a 60 day trial from the Esri website at
http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial.
You will need at least a standard or an advanced license, which will allow you
to edit.

The ArcGIS geodatabases authored in 9.2 and 9.3.x can
be viewed and edited in ArcGIS 10.x. However, it is
recommended that you use 10.x geodatabases during the
course of this book to maintain a consistent flow and error
free exercises.

Chapter 1

[9]

Bestaurants, the best restaurants
in Belize
Belize thrives on tourism. Lots of tourists go there on holiday to enjoy its beautiful
beaches and a wide range of restaurants. The government of Belize is trying to enrich
tourists' experience by helping them to find their favorite restaurants in the country
more effectively. To accomplish that, a new project titled Bestaurants has been
proposed to design a new geodatabase which will have all places to eat and drink in
Belize. Using ArcGIS for Desktop, we will design and create an ArcGIS geodatabase
that can accommodate all diners, cafes, restaurants, bars, and lounges in Belize. You
should be able to use Desktop to populate the geodatabase and add new venues in
the Bestaurants geodatabase.

This project is an example that will be used and will reappear in
later chapters. It is not an actual project and is not related to the
country whatsoever.

Designing the geodatabase schema
Before we start creating the geodatabase, we need to design a template that includes
the tables, fields, and data types for the Bestaurants project. This template is called
the geodatabase schema.

A schema is a metadata template that describes the tables, fields,
and field types in a particular database.

So, let's design the logical schema for the Bestaurants project. We will start with
a very simple design where we create the basic atom dataset in the geodatabase,
the feature class.

The feature class is one of the basic objects in a geodatabase. This
object class is a table with a shape attribute, which could be a
point, line, or a polygon.

Authoring Geodatabases

[10]

According to the case study, we need to create a geodatabase that accommodates
diners, cafes, restaurants, bars, and lounges. So, we can create each one of them in a
separate feature class, and then we need to give appropriate fields for each feature
class. Take a few moments to answer these questions: what feature classes will you
include in the geodatabase? What attributes will you use for each class? What are the
data types for these attributes? Take a look at the following table:

Feature class Field Field type
Diners NAME Text

WEBSITE Text
RATING Short Integer
SHAPE Geometry

Cafes NAME Text
WEBSITE Text
RATING Short Integer
SHAPE Geometry

Restaurants NAME Text
WEBSITE Text
CUISINE Text
RATING Short Integer
SHAPE Geometry

Bars_and_Lounges NAME Text
WEBSITE Text
RATING Short Integer
SHAPE Geometry

There are a lot of ways to design the schema for a geodatabase. There are really good
ways that keep your geodatabase healthy in the long run, and there are bad ways
that are inefficient. This design is a simple one; it is not the ultimate, and you might
come up with a better design. The only reason I selected this is for its simplicity, and
there is definitely plenty of room for improvement. You will learn how to create an
efficient schema design in Chapter 3, Modeling Geodatabases, as you are introduced to
more geodatabase datasets.

As you can see, we have merged the bars and lounges into one single feature class. We
have used point geometry to represent these feature classes since it is easier to sketch,
which could be identified with a Global Positioning System (GPS) device. These
feature classes are also fast to draw, and we don't really care about the boundaries.
However, it all depends on your requirements; whether it is necessary to identify the
boundary of a certain feature or not. You may use polygon geometry if you want to.

Chapter 1

[11]

GPS is a space-based satellite navigation system that provides location
and time information, whereas a feature is a single record or object in a
feature class which has a set of attributes and geometric shapes.

Creating the geodatabase
After we have designed the geodatabase schema, it is now time to author the
geodatabase. In this section, we will use ArcCatalog to create the geodatabase.
ArcCatalog is an application that allows us to author geodatabases, browse through
them, add/delete datasets from geodatabases, and so on. To create your first
geodatabase, perform the following steps:

1. Open ArcCatalog; you can find it in the Start menu under the ArcGIS folder,
as explained in this chapter. The following screenshot illustrates this:

Authoring Geodatabases

[12]

2. Once you start the application, make sure you see the Catalog Tree window.
This is the folder view of your computer, and this is where we will be doing
most of the work.

3. To show the Catalog Tree window, point the cursor to the Windows menu
and then click on Catalog Tree.

4. Next, you need to specify the folder where you will create your
Bestaurants geodatabase.

5. Using Windows Explorer, create a folder named c:\gdb. This is where the
geodatabase will go.

6. From the Catalog Tree window, right-click on the Folder Connections node
and click on Connect to Folder…. This feature allows you to connect to your
Windows folder.

7. Browse to the new folder you just created, c:\gdb, and then click on OK.
8. Select the folder and then right-click on the empty view to the right,

point the cursor to New, then click on File Geodatabase, as shown in
the following screenshot:

Chapter 1

[13]

This will create a file geodatabase in the specified folder with a default name of New
File Geodatabase.gdb; rename the new geodatabase to Bestaurants. The gdb
extension is automatically appended.

A file geodatabase is the proprietary geodatabase for Esri, structured
as a folder with many files that can only be viewed and opened by Esri
products or applications which support the file geodatabase API. This has
an extension of gdb.

The spatial reference
Adding location information to a database requires two parameters, the actual
location coordinates and how these coordinates are supposed to be drawn, which
is also known as the spatial reference. The spatial reference describes whether the
location is projected on a two- or three-dimensional map, and whether it should be
defined for every dataset in the geodatabase that has a spatial component. While
working in ArcMap, all datasets should share the same spatial reference.

A spatial reference is a collection of properties that describe the
system to locate a particular object in a coordinate system. You can
find more information about this topic at http://bit.ly/lag_
spatialreference.

There are a lot of spatial references tailored for different locations on the Earth.
There are some standard references used universally, and among them is the
WGS 84, which we will be continuously using in this book.

Creating the feature classes
In the previous section, we designed the logical schema for our geodatabase. We will
now create the actual datasets, or the physical schema. First, we start by creating the
feature classes as follows:

1. Open ArcCatalog and browse to your Bestaurants geodatabase in the
Catalog Tree window.

Authoring Geodatabases

[14]

2. Click on the Bestaurants file geodatabase, right-click on the empty right
panel, point the cursor to New, and then click on Feature Class…, as shown
in the following screenshot:

This will open up the New Feature Class dialog where you specify the
basic properties of the feature class. In the Name field, type Diners. This is
the physical name of the feature class in the geodatabase, and it should not
contain special characters and should not include any spaces.

Chapter 1

[15]

3. Type Belize Diners in the Alias field. This is a description of the feature
class's name. It can be anything you want. When you add a new layer,
it takes this alias name by default.

4. In the Type drop-down list, select Point Features to create the feature class
with point geometry.
The Geometry Properties section offers advanced options to enable the
feature class. This includes the M value that helps in the route information
for linear features and the Z value that is used for 3D representation, which
enables the elevation and extrusion of features. The Z value can be useful, for
example, if a restaurant is located on the 11th floor of the Ritz Carlton hotel.

Besides X and Y coordinates, the M value can be added to each
vertex on a line to provide more information, such as the direction.
Unlike X and Y coordinates, the Z value can be considered as
the height of a feature upward or downwards. This value can be
assigned to features so they are represented in a 3D plane.

5. Since we don't need to store route or 3D data at this stage, leave the
M and Z values unchecked. Click on Next. This is illustrated in the
following screenshot:

Authoring Geodatabases

[16]

In the next dialog box, you will set the spatial reference for our new feature
class. You will use the WGS_1984_Web_Mercator standard spatial reference,
which is also used by Google Maps.

6. In the spatial reference drop-down list, select WGS_1984_Web_Mercator
and press Enter to find its item.

7. Expand the Projected Coordinate Systems node, then expand the World
node, and then click on the WGS 1984 Web_Mercator (auxiliary sphere)
node, as illustrated in the following screenshot.

Chapter 1

[17]

8. Click on Next to move to the next form.
Next, we set the XY Tolerance value for the feature class. As you start adding
features, you might want to add some features close to each other, but you
don't want them to snap into the same position. In this case, make this
value smaller to get a higher accuracy for each feature position. However,
sometimes, you will need to add features on top of each other, making them
overlap on purpose, especially if you have Z values. Too small a tolerance
value might make it difficult to snap these features into a single location and
might cause problems with shared boundaries.

9. As you can see, this value needs to be carefully planned, but for now, leave
the XY Tolerance value to its default value, which is 0.001 meters, and click
on Next.

The XY Tolerance value is the minimum distance after which
two features will snap together.

In the next form, we select the configuration keyword; choose the Default
configuration keyword and click on Next.

The configuration keyword is a table space in which feature
classes and tables are stored. Each configuration has certain
properties, such as the geometry type and file size, which are
shared by all objects in that keyword.

Finally, we add the fields for our feature class. Note that two fields are already
added for you. The first field is OBJECTID, which is also the primary key;
a sequence number that represents each feature in the feature class uniquely.

The primary key is a column by which a record is uniquely
identified in a table or a dataset.

The second field is SHAPE, which if you remember, we have added by specifying the
geometry type. So, we need to add three more fields: NAME, WEBSITE, and RATING;
click on an empty row in the Field Name column and add the following fields:

Name Data Type
NAME Text
WEBSITE Text
RATING Short Integer

Authoring Geodatabases

[18]

After adding all the fields, your dialog box should look like the following screenshot;
click on Finish to create the feature class:

You just created your first feature class; if you take a look at the icon, you will
see three small dots, which indicates that this feature class has a point geometry.

Using the same approach, create the rest of the feature classes, Cafes,
Restaurants, and Bars_and_Lounges, in your geodatabase based on the
schema we designed earlier.

If you are creating multiple feature classes with similar fields, use
the Import... feature in the fields' page to import the fields from
an existing feature class. This could prove efficient when you are
authoring your geodatabase.

Chapter 1

[19]

After creating all the feature classes, your final geodatabase should look like the
following screenshot:

Editing the geodatabase in ArcMap
We have authored our Bestaurants geodatabase and created the food and drinks
venues' feature classes. However, these classes are empty, and until they have some
features, we can't visualize them; it is time to populate them with features. To do
that, we need an editing tool, and ArcMap can help with this. However, before we
can start editing our geodatabase, we need to know where we can add these features.
We can't just place them anywhere in the world. We need a reference to base our
editing on, Basemap. I have already prepared a map document and saved it to
the extent of Belize. You can find it in the supporting files for this chapter,
8648OT_01_Files, which can be downloaded from www.packtpub.com.

Authoring Geodatabases

[20]

Basemap is a background map that usually references imagery and
land information.

Browse to 8648OT_01_Files\MapDocuments and open the Belize_BaseMap.mxd
file; this will open ArcMap. You will need an Internet connection for this exercise
since the document connects to an online basemap. We will start by adding the
Restaurants feature class. To do this, perform the following steps:

1. From the ArcMap menu, point the cursor to File, then Add Data, and click on
Add Data....

2. From the Add Data dialog box, expand the Look in drop-down list and
select the Bestaurants geodatabase in c:\gdb.

3. Double-click on the Restaurants feature class to add it to ArcMap,
as shown in the following screenshot:

Chapter 1

[21]

Notice that a new layer is added with the alias name of the feature class that we
specified while creating it. Also, a default red point is added as a symbology for
our feature class. Let's change it to a more relevant symbol by performing the
following steps:

A layer is an ArcMap object and a visual representation of a physical
feature class. A layer does not exist by itself and must have a source
dataset to read data from.
A symbology is a notation for the features in a feature class. A given
feature class might have multiple symbologies based on its attributes.

1. Double-click on the Belize Restaurants layer to view the Layer Properties
dialog box.

2. Click on the Symbology tab.
3. In the Symbol section, click on the red dot and select a restaurant icon;

type Restaurant in the filter box. The dialog box will look like the
following screenshot:

4. Close the Layer Properties dialog.

Authoring Geodatabases

[22]

Now, it is time to add some features. Before we do so, make sure that you close
ArcCatalog and that you do not have any connections to your geodatabase.
Now, to display the Editor toolbar, perform the following steps:

1. Right-click on an empty area in the menu and select the Editor toolbar to
activate it.

The Editor toolbar will be displayed only if you have
standard and advanced licenses. For details, refer to
http://www.esri.com/software/arcgis/about/
gis-for-me.

2. On the Editor toolbar, point the cursor to Editor and click on Start Editing.
3. Click on the Create Features button in the Editor toolbar, and you will see

the Create Feature window pop up on the right-hand side.
4. Click on Belize Restaurant and add some restaurants on the Belize map; you

don't have to be accurate at this stage. You should get something like what is
shown in the following screenshot:

Chapter 1

[23]

You can set the attributes for each feature you add by selecting that feature
and clicking on the Attribute tool in the Editor toolbar. You can populate the
rest of your geodatabase feature classes by adding the feature classes to the
same map.

5. From the Editor toolbar, point the cursor to Editor and click on Save Edits if
you wish to save your edits.

6. Close ArcMap.

Summary
In this chapter, you learned how to design, author, test, and edit a complete
geodatabase by following a real-life example. You started with designing the schema
of the geodatabase. You also specified the fields, data types, and geometry type for
the feature classes. You then created the physical file geodatabase using ArcCatalog,
specified the spatial reference, and used the editing tools in ArcMap to populate
the geodatabase with features.

In the next chapter, you will enhance the skills acquired in this chapter to do more
work with geodatabase datasets.

Working with
Geodatabase Datasets

In the previous chapter, we discussed how to design and author an ArcGIS
geodatabase. After reading and analyzing the Bestaurants case study, we created
the geodatabase and populated it with feature classes based on the requirements.
We even defined a spatial reference for the geodatabase so that our data is correctly
projected. We then used ArcMap to edit the geodatabase and add some features
to the feature class. In this chapter, we will delve deeper into the different types
of geodatabase datasets, and work closely with each one and use them to enrich
our Bestaurants geodatabase. Now that you know the basic tools to author
geodatabases, let's equip you with a few more tools to do even more.

Working with feature classes
Let's start with the feature classes. We have already learned how to create a new
feature class. In this section, we will learn how to add and delete attributes and
work with the concept of subtypes and domains.

A subtype is a subset of the features in a given feature class sharing the
same attributes.
A domain is a range of the possible values for a given attribute. It is
usually used to avoid erroneous entries.

Working with Geodatabase Datasets

[26]

Adding new attributes
Your client for the Bestaurants project reviewed your initial geodatabase and
suggested some changes. They noticed that you have a name field for each feature
class, but they need to have the DESCRIPTION and REVIEW attributes, which can
help the customers by giving them more descriptive information about a particular
restaurant. To add these attributes, perform the following steps (make sure all
instances of ArcMap and ArcCatalog are closed):

1. Open a fresh session of ArcCatalog and browse to the Bestaurants
geodatabase. Start adding the two attributes to the Diners feature class.

2. Right-click on the Diners feature class and select Properties.
3. In the Properties ... dialog, select the Fields tab in case it is not

already activated.
4. Click on the first empty row below the last field in the Field Name column

and type DESCRIPTION. Select Text from the Data Type column.
5. Similarly, add the REVIEW attribute of the type Text.
6. Add the two fields to all the feature classes.
7. To delete an attribute, select it and hit the Delete key.

You cannot add or delete a new attribute when the geodatabase is
locked or is currently in use by ArcMap, for instance.

Leave ArcCatalog open as we will use it for the next topic where we will show you
how to modify the properties of the attributes.

Modifying the properties of the attributes
Each attribute has its own properties, which we can change to fit our requirements;
this is what we will be doing in this topic. We have both good and bad news. The
good news is that the client was happy to see the new attributes during the testing
session in ArcMap; however, when they tried to type in a review, they couldn't write
more than 50 characters, which was a bit embarrassing. Also, they want to rename the
attribute to be more descriptive, for instance, REVIEW should be Restaurant's Review or
Diner's Review. We need to fix this. These are things that did not discuss in Chapter 1,
Authoring Geodatabases, which are called field properties or attribute properties.

Field properties are the metadata of a given attribute in a feature
class, such as alias name, field size, and default value.

Chapter 2

[27]

The default length for a text field in a geodatabase file is 50 characters. To modify the
field size for the REVIEW field, perform the following steps:

1. Make sure all instances of ArcMap and ArcCatalog are closed.
2. Open a fresh session of ArcCatalog and browse to your geodatabase.
3. Open the Properties... dialog for the Diner feature class.
4. From the Fields tab, click on the attribute you want to modify; in this case,

it is the REVIEW attribute.
5. Under Field Properties, type Diner's Review in the Alias field, and set the

Length field to 3000 characters instead of 50, as illustrated in the following
screenshot; this field length should be enough for a review:

Working with Geodatabase Datasets

[28]

Let's go through the rest of the feature classes and update them with the latest
changes. Also, make sure to update all the field alias names to initial case.

Domains
Excellent job with the new changes you introduced to the geodatabase! During the
Bestaurant geodatabase's review workshop, the client pinpointed a small possible
area for improvement when entering the rating for restaurants. They noticed that
ArcMap allows any number for the rating without validating it. It would be better
if the geodatabase can handle this kind of validation and allow the rating to be from
1 to 5 only.

To apply such kind of restrictions and ranges to an attribute, we will introduce a
new useful tool to work with feature classes and domains. A domain is a property
of the geodatabase shared by the individual datasets. This means it should be created
on the geodatabase level and used on the datasets. There are two types of domains:
coded values and ranged values. Coded values are discreet values, whereas ranged
values allow a continuous range of values. Both the domain types have their
applications; however, it seems that our case study can be solved with the
coded domain.

We will now create a domain called RATING_SYSTEM, which will have the discreet
values 1 to 5. To do this, perform the following steps:

1. Open ArcCatalog if it is not open and browse to the
Bestaurants geodatabase.

2. Right-click on the Bestaurants geodatabase and select Properties.
Make sure the Domains tab is activated.

3. Click on an empty record in the Domain Name column and type
RATING_SYSTEM; optionally, you can type a description of this domain
in the next column.

4. In the Domain Properties section, select Short Integer from the Field Type
property, select Coded Values from the Domain Type property, and leave
the rest as default values.

Chapter 2

[29]

5. Fill the Coded Values section with the values given in the following table
(code is what will be stored in the geodatabase physically, and description
is what the editor will see in ArcMap when editing an attribute):

Code Description
1 Poor
2 Fair
3 Average
4 Good
5 Excellent

Click on Apply and then click on OK to close the dialog.

This will create the domain in the geodatabase, which you can see in the next
screenshot. However, we still have to do some work in the next sections as no
feature class currently knows of this domain. Your end result should look like
the following screenshot:

Working with Geodatabase Datasets

[30]

Next, we need to assign the domain we just created to the RATING field in each
feature class. Right-click on the Diners feature class and select Properties....
In the Fields tab, select the RATING field, and from Field Properties section,
select RATING_SYSTEM in the Domain property.

Note that the domain entry might not appear if the target field is not
of the same data type as the domain.

Click on Apply and then click on OK to close the dialog and save the changes.
The following screenshot explains the steps we just did:

Chapter 2

[31]

Let's test this. Open the Belize_Basemap.mxd file. You can find it in the
supporting files for this chapter, 8648OT_02_Files, which can be downloaded
from www.packtpub.com. Perform the following set of steps in order to test the
new domain we just added:

1. Add the Diners feature class and set the symbology like you did in
Chapter 1, Authoring Geodatabases.

2. Open the Editor toolbar, point the cursor to Editor, and then click on
Start Editing.

3. Add a new diner feature next to Vernon Street.
4. Click on the Attributes tab to set the attributes.
5. Set the Diner's Name field as Ruby's Diner.
6. For the Rating field, select Good; note that a drop-down list pops up for us

to select from, as shown in the following screenshot:

7. Save your edits and then save your Belize_Basemap.mxd file by clicking on
the File menu and then on Save.

8. Close ArcMap.

Now, we can move to the next topic where we will add subtypes to our geodatabase.

Working with Geodatabase Datasets

[32]

Subtypes
Your geodatabase is getting better with each enhancement. We added new
attributes to the feature classes and modified the properties of these attributes.
We even assigned domains to the existing fields in order to reduce errors while
creating features and to preserve data integrity. However, the client has one more
request before we move on to the next phase. In the current geodatabase design,
the bars and lounges were merged into one feature class; this made it difficult to
differentiate bars from lounges. The solution to this might be obvious. We could
add a new field named Category, then create a domain with two coded values,
Bar and Lounge, assign this domain to the CATEGORY field, and we are done. This
could definitely work; however, we will do it in a different way this time. We will
break down the bars and lounges into different subtypes for the parent feature class,
Bars_and_Lounges. Subtypes are helpful, especially while editing, since you can
specify a default subtype with predefined default attributes.

Before we can create a subtype, we need a subtype field; so, we need to add this field.
Unlike domains, a subtype field must be an integer. Perform the following steps to
start adding your subtype:

1. Open ArcCatalog and browse to your geodatabase.
2. Right-click on the Bars_and_Lounges feature class and click on Properties....

Then, select the Fields tab and add a new field of the Short Integer type and
name it CATEGORY.

3. Click on Apply and then click on OK. Close the dialog so that the
geodatabase gets updated with the new field. Don't close ArcCatalog yet;
we still need to use it.

4. Now, we are ready to create our two subtypes. Open the Bars_and_Lounges
properties and select the Subtypes tab.

5. From the Subtype Field drop-down list, select CATEGORY—the field we
have just created.

6. You will notice that an entry is created with the code 0 and a new subtype.
Let's rename the subtype to Bar and add a new entry with code 1 and name
it Lounge.

7. You can click on each subtype and assign default values to them so that
when a new feature of that particular subtype is created, the default values
are automatically populated in the feature, saving a lot of time. See the
following screenshot for more details:

Chapter 2

[33]

8. Click on Apply and then click on OK to close the dialog.
9. Close ArcCatalog.

Working with object tables and relations
A question was raised during the Bestaurants workshop review: what if I want to
write multiple reviews for a given restaurant or diner? Does the geodatabase support
that? The answer is no. We have a single review field for each feature. We can add
another field called REVIEW2, for instance, but it is infeasible as we will end up with
a very rigid geodatabase design. It is not an elegant solution to the multiple reviews
problem. It seems that we can't work out a solution for this with the skills we have
acquired so far while working with feature classes. We need a new tool that can help
us tackle this. Here is where object tables come into the picture.

Working with Geodatabase Datasets

[34]

An object table is a table in the geodatabase that stores only the records
without geometry.

Tables are extremely useful, and yes, we can create them in the geodatabase too!
However, how can we use tables to solve the multiple reviews problem? For each
restaurant, diner, and so on, there might be multiple reviews; so, one feature
can have many reviews. Let's start with Diners; for this, we need to create the
DINERS_REVIEWS table. To create the table, perform the following steps:

1. Open ArcCatalog and browse to your Bestaurants geodatabase.
2. Right-click on the empty area on the right, point the cursor to

New, and then select Table, as shown in the following screenshot:

Chapter 2

[35]

3. Type DINER_REVIEWS in the Name field and Diners' Reviews in the Alias
field, as shown in the following screenshot, and then click on Next:

4. Use the default configurations and click on Next.
5. In the attributes dialog, add the two attributes, REVIEW of the type Text with

a maximum length of 3000 characters, and the REVIEW_DATE attribute of
type Date, which will store the date of when the review was added. The last
attribute is DINER_OBJECTID, which points to the diner for which this review
is created. This is illustrated in the following screenshot:

6. Click on Finish to create the table. Leave ArcCatalog open.

Working with Geodatabase Datasets

[36]

The REVIEWS table is created. This is where our multiple reviews will be stored. Still
some element is missing; we didn't actually link this table to the Diners feature class.
Naming the table Diner's Reviews isn't enough to link it to the Diners feature
class. We should physically create what we call a relationship class.

A relationship class is a class that links two datasets together in a
geodatabase. It has an origin dataset and a destination dataset.

To create a relationship class, perform the following steps:

1. Select your geodatabase from ArcCatalog and right-click on an empty area;
point the cursor to New and then select Relationship Class…, as shown in
the following screenshot:

Chapter 2

[37]

2. In the New Relationship Class dialog, type DINERS_REVIEWS_REL as the
class name. The following screenshot illustrates how to perform this.

3. From the Origin table/feature class list, select the Diners feature class.
4. From the Destination table/feature class list, select the DINER_REVIEWS table,

as shown in the following screenshot, and then click on Next to move to the
next form:

Working with Geodatabase Datasets

[38]

There are two types of bidirectional relationships between two objects:
aggregation and composition. The simplest difference between them is that
the aggregation relationship is independent. This means that deleting the
origin object does not delete the related objects in the destination. It is also
referred to as a simple peer-to-peer relation; for example, a vehicle and its
engine. An engine can exist without a car, which means you can theoretically
install that engine into another vehicle. A composition relationship is where a
destination object cannot exist without an origin object. I don't really encounter
many examples where a destination object cannot exist without an origin
object; even when I do, I usually use an aggregation relation, just to keep my
related records. You wouldn't want to delete related records in a production
environment by deleting a single origin object. You would like to keep your
destination objects so you can refer back to them anytime for the history.
For our reviews object, although this relationship does seem like a
composition relation, we will use a simple peer-to-peer relation so that
we can keep our reviews in case the diner is removed. In this dialog,
select the Simple (peer-to-peer) relationship option and click on Next.
In the next form, we will discuss the messages propagated between the
origin and destination. Note that we have added the diner object ID on
the reviews record, which is the many side of the relationship. Hence, the
DINER_REVIEWS table will need to access the Diners feature class. We refer
to this kind of messaging as backward messaging because the messages are
propagated from the destination to the origin:

5. As illustrated in the following screenshot, select Backward (destination to
origin) and click on Next:

Chapter 2

[39]

6. Select the 1-M (one to many) relation and click on Next.
7. Next, you will be prompted whether you want to add new fields to the

relations; select No, I do not want to add attributes to this relationship
class and then click on Next.

8. This stage is very important. We will now select the fields that link the
Diners feature class with the DINERS_REVIEWS table. The primary key of
the origin (the DINERS feature class) is OBJECTID, and the related foreign
key of the destination (the DINERS_REVIEWS table) is the one we created,
which is DINERS_OBJECTID. Click on Next. All this is illustrated in the
following screenshot:

Working with Geodatabase Datasets

[40]

9. You will be presented with a summary. Click on Finish to create the
relationship class. Your ArcCatalog should look like the one seen in
the following screenshot after you finish:

We just created a relationship between a feature class and an object table. We need
ArcMap to test if the relation works:

1. Close ArcCatalog and open your modified Belize_Basemap.mxd file instead.
2. You should see your Diner's layer on the map as we have saved it before. In

case you didn't save the document, you can add it again, similar to how we
learned, by pointing to the File menu and then clicking on Add Data.... From
the dialog, browse to your geodatabase, select Diners, and click on Add.

3. Bring up your Editor toolbar, point the cursor to Editor, and then click on
Start Editing so that we can add a new diner.

4. From the right panel, activate the Create Feature tab and select Belize Diners.

Chapter 2

[41]

5. Add a new diner next to Ruby's Diner. The new diner is named
Cran Street Diner. Fill it with the attributes as shown in the
following screenshot:

Take a look at the Diner's Reviews – Reviews relation that popped up while editing;
this means that you can add a related review from here. To add a review, perform
the following steps:

1. From the Attributes window, which is shown in the following screenshot,
right-click on Diner's Reviews – Reviews and then click on Add New.
This will add a new related record to the DINER_REVIEWS table.

Working with Geodatabase Datasets

[42]

2. Click on the new object that is created and populate the record with the
review as illustrated in the following screenshot (note how the diner
object's ID is automatically assigned):

3. Point the cursor to Editor and then click on Save Edits to save your changes.
4. In ArcMap, point the cursor to File and then click on Save to save the

Belize_BaseMap.mxd file.

You just finished creating the object tables with the relationship class.

To-do
Add three other reviews to this Diner feature class using the same
approach. You can see your reviews when you identify the diner using
the ArcMap identify tool.

Chapter 2

[43]

Working with annotations
Once you complete the geodatabase, you may want to visualize it by creating a map.
An important element of a map is labeling, where features are labeled based on their
values, giving richness to the map. If you are familiar with ArcMap, you might have
done labeling before. However, labeling is done in the map and labels are generated
and placed dynamically. This might not be efficient for a large set of features.
That's why we are interested in another method of labeling using what we call
the annotation class.

Labeling is a property of a map where a text label is placed on each
feature, pointing to a single or a combination of attribute values in
that feature.
An annotation class is a geodatabase dataset used to label features
in a feature class.

Our Belize client has asked us to label all their venues with their names. For this,
we will use annotation. To do so, perform the following steps:

1. Open your Belize_Basemap.mxd file. You should see the Diner's layers as
we saved it in the previous exercise.

2. Double-click on the Belize Diners layer to open the layer properties and
select the Labels tab.

3. Check the Label Features option in this layer and then select Diner's Name
from the Label drop-down list.
Note how ArcMap displays a label on each feature; this could be enough and
we can stop here. Labeling works on the client side. This puts more work on
ArcMap, as software and the machine's ArcMap is installed only to render,
color, and style the labels. With more features, map labeling is usually not the
optimal way and can result in performance problems. That's why annotation
is recommended. Annotations works on the server side, and they are brought
to ArcMap ready to be displayed, which optimizes the map.

Working with Geodatabase Datasets

[44]

4. Creating an annotation is easy; simply right-click on the Belize Diners
layer and click on Convert Labels to Annotation..., as you can see in the
following screenshot:

5. After this, a new dialog will pop up with details. You have the option to
convert all the labels or just the ones in the current context. Leave the default
options and click on Convert as illustrated in the following screenshot.

This will create the annotation class and the necessary relationship class to link them.
This way, ArcMap does not have to do more work in labeling every single feature
with its different font, color, and style, but instead simply queries the annotation
class, retrieves them, and renders them on the map.

Chapter 2

[45]

Importing other datasets
In real-life scenarios, you will not have to create all the data from scratch; some of the
data will be available for you in different formats such as shape files, images, Excel
sheets, and CAD files. That's why it is important to discuss how to import different
kinds of formats to your geodatabase. In this section, we will discuss importing
shape files, CAD files, and coverage classes that represent the boundary of Belize.

The client has asked us to import their legacy data, which is available in shape files,
CAD files, and coverage feature classes in the geodatabase as well. We will start by
importing the shape file as a geodatabase feature class. All the files are available in
8648OT_02_Files, which can be downloaded from the book's supporting files at
www.packtpub.com. Copy the entire folder to your local drive before you carry on
with the exercises.

Working with Geodatabase Datasets

[46]

Importing shape files
The shape files are in Esri's native file format, which was created a long time ago
and is still being used heavily. Due to its simplicity, it has been adopted by a lot
of GIS software. However, it is not designed for large datasets as it can introduce
performance issues. In this section, we will import Belize shape files to the
geodatabase. In order to do so, perform the following steps:

1. Open ArcCatalog and browse to your Bestaurants geodatabase.
2. Right-click on the geodatabase, point the cursor to Import, and then click on

Feature Class (single)....
3. In the new window, click on the folder icon next to the Input Features field

to browse for the shape file we want to import to this location (8648OT_02_
Files\External_Data\Shape_files\Belize_Boundary.shp).

4. Click on OK to select the location.
5. The output location should already be populated as your geodatabase.

Finally, type in the name of the new imported feature class in the Output
Feature Class field, name it Belize_Boundary_Shape, and then click on OK
to start the importing process.
This is illustrated in the following screenshot:

Chapter 2

[47]

6. In order to see the progress of the importing process, point the cursor to
Geoprocessing and then click on Results. You have now created a new
feature class by importing shape files' data.

To-do
Test your new feature class by adding it to ArcMap.

Importing the CAD files
Now, we will import the CAD data, which was provided by the client, to our
geodatabase. We need a special tool to do this. Perform the following steps to
import a CAD file:

1. From the Geoprocessing menu, select ArcToolbox. This is a list of the rich
tools that are helpful in authoring and working with geodatabases.

2. From the ArcToolbox window, expand Conversion Tools and then
expand To Geodatabase.

3. Double-click on CAD to Geodatabase.
4. From the CAD to Geodatabase window, select Input CAD Datasets by

browsing to the CAD files available in the following path: 8648OT_02_
Files\External_Data\CAD_files\Belize_CAD_Details.DWG.

5. Highlight Belize_CAD_Details.DWG by clicking on it once; then, click
on Add.

6. In the Output Geodatabase field, browse to the Bestaurants geodatabase,
and in the Dataset field, type the name of the new feature class as
Belize_Boundary_CAD.

7. The spatial reference is already available in the CAD file and is imported,
but in case it is not available, you can always set it later as we learned in
Chapter 1, Authoring Geodatabases.

Working with Geodatabase Datasets

[48]

8. Click on OK, as shown in the following screenshot, to start the processing:

Note that the output is not a feature class but a feature dataset; a group of feature
classes. We will discuss feature datasets in detail in the upcoming chapters.

A feature dataset is a dataset container for other geodatabase datasets.
Feature datasets carry the properties (such as the spatial reference) that
all child datasets inherit.

There are three feature classes, Polygon, Polyline, and BelizeBoundary. You can
use the BelizeBoundary feature class and safely delete the other two. To delete a
dataset from a geodatabase, right-click on the dataset and select Delete. You will
be prompted whether you are sure you want to delete the object or not; choose Yes.
Note that you cannot delete a dataset if it is already in use.

To-do
Compare Belize_Boundary_Shape and Belize_Boundary_CAD
layers in ArcMap; are there any differences?

Chapter 2

[49]

Importing coverage classes
Coverage is a geo-relational data model that stores vector data. It is a topological file
whose boundaries are shared rather than repeated for individual features. Like the
regular feature class, it contains both the spatial (location) and attribute (descriptive)
data for geographic features. To import coverage files into a geodatabase, we can use
the same tool we used while importing the shape files. In order to do so, perform the
following steps:

1. From ArcCatalog, browse to geodatabase and right-click on the
Bestaurants geodatabase.

2. Point the cursor to Import and click on Feature Class (Single).
3. In the Input Features field, browse to the coverage feature class in the

following path: 8648OT_02_Files\External_Data\Coverage_files\
belize_shape\region.belize_shape.

4. As shown in the following screenshot, type Belize_Boundary_Coverage in
the Output Feature Class field.

5. Click on OK to create the feature class as shown in the following screenshot:

Working with Geodatabase Datasets

[50]

Summary
This chapter was lengthy and full of practical exercises. You have acquired new
skills and tools that will allow you to do more on the geodatabase. You added new
attributes, worked with domains and subtypes, and even created a relationship
class that links multiple datasets together. You were able to create annotation classes
that are useful for labeling maps. Finally, you learned how to import and convert
other data files into your geodatabase and make them consistent in a single spatial
reference so that you have a single geodatabase to manage, which will have all your
data. So far, we have been creating datasets without paying attention to efficiency
and optimization factors.

In the next chapter, we will discuss best practices for modeling the geodatabase in
order to achieve an optimal and consistent design.

Modeling Geodatabases
In the previous chapter, we managed to complete a geodatabase, create feature classes,
add attributes, work with domains, and so much more. However, it was a quick and
rough design, not very efficient. We also had multiple feature classes which are almost
identical. They have some differences, but they share a lot of attributes. You may
imagine that if I ask you to delete an attribute in your geodatabase or change its size,
you will have to do it in all these feature classes. We had to repeat a lot of steps and
duplicate fields between the different feature classes, and that is because we didn't
spend time on designing a proper model for our geodatabase.

Modeling geodatabases is important; it allows you to identify the weak points
in your geodatabase design before implementing it physically. The moment you
commit to a design and start populating your geodatabase, it becomes expensive to
modify the schema. In this chapter, we will work on remodeling the Bestaurant
geodatabase by creating an entity relationship diagram, a powerful modeling tool.

An entity relationship diagram is a modeling tool for designing
a database. It illustrates the different entities in a database and
the relationships between them.

The entity relationship diagram for
Bestaurants
A consultant was hired for the Bestaurants project to advise on the newly created
geodatabase. After taking a look at the geodatabase, the consultant found it a
bit difficult to assess the design by looking at the physical geodatabase. So, she
suggested that we create an entity relationship diagram in order to visualize the
design better and find the bottlenecks, if any.

Modeling Geodatabases

[52]

The flaws in the current geodatabase
We will start by laying out the current entity relationship diagram as the consultant
suggested. This way, we can identify the inefficiencies and flaws in the current
model. There are a lot of tools available that enable you to do database modeling
such as Microsoft Visio and ArcgoUML. I'm using an online tool called Gliffy for
designing and modeling geodatabases. You can access it for free without creating an
account at www.gliffy.com. You don't have to do the modeling part in this chapter;
however, it is recommended that you model your design, even just on paper, before
actually implementing it.

A dataset is modeled in a rectangular shape, with the name of the dataset in the
header and the attributes added beneath it, each with their own type as follows (note
how the OBJECTID attribute is bold and underlined, which indicates a primary key):

The relationship is modeled as a line between the two datasets, and the primary keys
are highlighted in bold. Hence, if we model our current geodatabase, we should have
something similar to the following figure:

Chapter 3

[53]

Now that we have our entity relationship diagram, the consultant is ready to start
working. She first made a note of how attributes are duplicated between all the
feature classes. In case we need to add a new attribute or delete an existing one, we
should make sure that this change is reflected across all the geodatabase datasets to
maintain data integrity. She also mentioned that querying would be more difficult
with this model as you have to hit many tables to search for a record. Finally,
the consultant pointed out that we have so many tables in our design because of
unnecessary relationships. In the upcoming sections, we will learn how to remodel
this design for more efficiency and less maintenance.

Modeling Geodatabases

[54]

The proposed geodatabase model
So, we have some work to be done here. This geodatabase will work, but it will cost
us a lot in the future in terms of maintenance. We can simplify this model by pruning
a few feature classes from our geodatabase. Note that our four feature classes,
Restaurants, Diners, Bars and Lounges, and Cafes, share something in common.
They are all places where you can eat and drink, and all of these have a point type
geometry as we have seen in Chapter 1, Authoring Geodatabases. So, we will start by
merging all of them into a single feature class; let's call it Food_and_Drinks. Next,
we will add the shared attributes, which, not surprisingly, are common between all
four feature classes as follows:

Wait! There's still something missing; how will you distinguish a restaurant from a
diner? You need an extra attribute; this is a perfect example of a subtype. Let's add the
subtype field and name it CATEGORY. Remember, it should be an integer so that we can
assign it as a subtype later. Finally, we need to assign the relationship. Luckily, we have
only one feature class, so only one related table is required to store the reviews. We will
call it Venue_Reviews. The modified model should look like the following figure:

Chapter 3

[55]

This is a much simpler design, and it will be much easier to create and maintain as
well. Before the consultant left the meeting, she threw in another question: "What if
tourists want to look at some pictures of the restaurant or diner?"

As you read the question, you may have figured out the solution to that. We can add
a picture attribute so that we can add a single picture for a given venue. A second
solution might be to create a related table so that we can add multiple pictures for
a single venue. The second solution is better because you will have the luxury to
add multiple photos for a given restaurant, including pictures of popular meals,
the design of the venue, and so on. So, let's update our final design to accommodate
the change as follows:

The concept of adding a picture, video, or file, for that matter, is called geodatabase
attachment. This is a built-in option in ArcGIS that creates all the necessary related
tables, which we will see and work on in the upcoming sections.

Geodatabase attachment is a new feature in ArcGIS, which allows you
to attach files to an existing dataset and store the files in a binary format.
This, in turn, affects the size of the geodatabase depending on the
attached objects.

Modeling Geodatabases

[56]

Implementing the proposed model
We have a new model, so we need to create a new geodatabase. Let's keep our
existing Bestaurants geodatabase and call the new one Bestaurants_new.

Authoring the geodatabase
To create the geodatabase, open ArcCatalog, browse to c:\gdb, and create a
Bestaurants_new file geodatabase (refer to Chapter 1, Authoring Geodatabases, in
case you have forgot how to do this). We need to create the RATING_SYSTEM domain.
Right-click on the new geodatabase and select Properties, and then activate the
Domain tab. We have done this previously in Chapter 2, Working with Geodatabase
Datasets. The following screenshot will remind you how to create the domain:

Chapter 3

[57]

Creating geodatabase datasets
Next, we need to create the Food_and_Drinks feature class and then create the
relationship. Right-click on the Bestaurants_new geodatabase, point the cursor to
New, and then select Feature Class. Name it Food_and_Drinks. Put a proper readable
alias name; make sure that it is a point geometry and click on Next. In this form, we
will select the spatial reference. If you don't remember what the spatial reference we
selected before was, don't worry, you don't have to write it down and browse through
the hundreds of spatial references. You can always import a spatial reference from
an existing dataset (our old Bestaurant geodatabase that you created in Chapter 1,
Authoring Geodatabases), as illustrated in the following screenshot:

Modeling Geodatabases

[58]

Keep the default values until you reach the Attributes page. Click on Import...
so that you can import the attributes from an existing dataset. Browse to the old
geodatabase and select the Diners feature class; then, click on Add.... This will
import all the attributes you need; we still need to go through each attribute and
update the alias name to a proper name. We also need to add the CATEGORY subtype
field of the type Short Integer as explained in the following screenshot:

Chapter 3

[59]

Next, we need to create the venue's review table for the relationship (refer
to Chapter 2, Working with Geodatabase Datasets, in order to follow the steps).
Right-click on the geodatabase and point the cursor to New. Then, select Table.
Name it VENUES_REVIEW; keep the default parameters until you reach the attributes
page where you will add the attributes shown in the following screenshot
(don't forget to set plenty of text length for the REVIEW attribute):

Modeling Geodatabases

[60]

Now that we have created the table and the feature class, we need to join the two
as we learned in the previous chapter. Create a new simple relationship class with
backward messaging. Link the Food_and_Drinks feature class to the VENUES_REVIEW
table. Your new geodatabase should look similar to what is shown in the following
screenshot (refer to Chapter 2, Working with Geodatabase Datasets, for steps on how to
create a relationship class):

Assigning domains to the feature class
In the Authoring the geodatabase section, we created the RATING_SYSTEM domain.
Now, we need to assign it to our RATING field. We have done this before; refer to the
Domains section of Chapter 2, Working with Geodatabase Datasets, to repeat the steps.

Chapter 3

[61]

Adding subtypes to the new feature class
We need subtypes to differentiate between the different types of restaurants.
To add subtypes, perform the following steps:

1. Open ArcCatalog and browse to your Bestaurants_new geodatabase.
2. Right-click on the Food_and_Drinks feature class and select Properties.
3. Activate the Subtype Field tab and select CATEGORY as the subtype field.
4. Add the subtypes, as shown in the following screenshot, and select

Restaurant as your default subtype:

Modeling Geodatabases

[62]

You may have noticed that what was previously a feature class is now being mapped
as a subtype in our new model. This is interesting because we have pruned a number
of feature classes and we are down to only one feature class. This will prove useful
in Chapter 4, Optimizing Geodatabases, where we will learn techniques to optimize
our feature classes. With this model, it will be easier and more convenient to apply
configurations and optimizations mechanisms on a single feature class rather than
on multiple ones.

Enabling attachments in the feature class
At the last minute, the consultant threw in another requirement, which was to add
pictures to the venues. We will do something even better; we will allow any type of
attachment, including pictures, videos, and even documents.

To enable the attachment on the feature class, perform the following steps:

1. Open ArcCatalog and browse to the new geodatabase.
2. Right-click on the Food_and_Drinks feature class, point the cursor

to Manage, and then select Create Attachments, as shown in the
following screenshot:

Chapter 3

[63]

This feature is only available in the ArcEditor (standard) and
ArcInfo (advanced) licenses; you cannot enable attachments
on a basic ArcGIS license.

The last action threw in a couple of datasets and created the relationship,
as you can see in the following screenshot. Take your time and explore
these relationship classes:

Modeling Geodatabases

[64]

Testing the new geodatabase in ArcMap
Our new geodatabase is ready; it is time to put it to the test. Open Belize_Basemap_
new.mxd. You can find it in the supporting files for this chapter, 8648OT_03_Files,
which can be downloaded from www.packtpub.com. Add the Food_and_Drinks
feature class and set a proper symbology for each subtype, as we learned in Chapter
2, Working with Geodatabase Datasets. Start editing; let's add a lounge next to Water
Lane street. If you can't find Water Lane street on the map, you can add it anywhere.
Populate the new feature with the following attributes and any two reviews as shown
in the following screenshot (refer to the Working with object tables and relations section of
Chapter 2, Working with Geodatabase Datasets, to learn how to create related tables):

Now, it's time to test our new attachment option by adding a picture to our
Water Lane Lounge. Can you see an attachment icon of a paperclip in the previous
screenshot? Click on it to open Attachment Manager. In the Attachments dialog,
click on Add... and browse to the Water_Lane.jpeg picture in 8648OT_03_Files,
as shown in the following screenshot:

Chapter 3

[65]

From the Editor toolbar, click on Save Edits to save the changes we have made on
the geodatabase. Similarly, you can view the attachments for a given feature by
using the identify tool in ArcMap. Activate the Identify tool and click on Water Lane
Lounge in the map, and browse through the attributes, reviews, and attachments.
Now, check the Food_and_Drinks feature class and explore how attachments are
stored in the geodatabase.

Modeling Geodatabases

[66]

Use the Editor toolbar to add more restaurants, diners, bars, lounges, and cafes.
Add some pictures and reviews to make your geodatabase rich.

Summary
In this chapter, you learned how to model the geodatabase. Using your newly
acquired skills, you redesigned your model and simplified your geodatabase.
You learned how to enable attachments on a feature class in order to allow attaching
files for individual features. You also added new subtypes, reassigned the domains,
and tested all this by the end of the chapter. In the next chapter, we will take the
geodatabase to the next level by optimizing it to run effectively.

Optimizing Geodatabases
Modeling the geodatabase in the previous chapter helped produce a cleaner schema
and reduced future maintenance costs. It was a necessary step to ensure a proper
design, which in turn contributed directly to optimizing the geodatabase. As the
geodatabase gets populated with features, its performance will naturally decline.
The more features you have, the greater time the geodatabase takes to execute
a query. That is why, in this chapter, you will be equipped with some new tools
to help you tune the geodatabase to perform at its best. Some tools will be used
only at the time of creating the geodatabase, while you will need to run the
others frequently.

This chapter will run you through three themes. First, we will learn about indexing
feature classes and how this can help boost querying. Second, we will introduce the
concept of compressing, where we will learn how this can potentially reduce the size
of the geodatabase. Finally, we will learn how compacting works and help speed up
queries for a frequently edited geodatabase.

Indexing is a feature that helps speed up data retrieval for an
attribute or a collection of attributes in a database table.
Compressing is a process by which the duplicated data in
geodatabase datasets are simplified to decrease their size.
Compacting is a process by which a frequently edited
geodatabase is cleaned from unused and orphan records.

Optimizing Geodatabases

[68]

Geodatabase indexing
Indexing is the de facto optimization standard for databases. It is a very powerful
and effective tool that can help speed up the retrieval of records. Without indexing,
a table is scanned entirely to retrieve a particular record. So, if we have a dataset with
n records, the worst-case scenario is that the record we are trying to locate is the last
record in that table, and thus we need to search through n records in order to reach
it. Imagine a feature class with a million features, and the time taken to visit each
feature is 1 millisecond; this means we need 17 minutes to scan the entire dataset.
Of course, the response time depends on the record you are looking for; if it is
located at the beginning of the feature class, it will take less time to be located.

Attribute indexing
Take a look at the Food_and_Drinks feature class in the following table.
You can find this updated geodatabase in the supporting files for this chapter
in 8648OT_04_Files, which can be downloaded from www.packtpub.com.

OID Venue's Name Venue's Website Rating Description Venue's
Category

8 Water Lane Lounge www.waterlane.bl Good On Water Lane Street Lounge

9 Haulze Restaurant www.haulze.bl Good Located on Haulze Restaurant

10 Haulze Lounge www.haulzelounge.bl Fair Located on Haulze Lounge

11 George Price Cafe www.gp.bl Excellent An excellent cafe Cafe

12 Starbucks Cafe [GP] www.starbucks.bl Good Located on Lopez Cafe

13 Mercy's Bar www.mercys.bl Average On Mercy's Bar

14 Mercy's Lounge www.mercys.bl Average On Mercy's Lounge

15 Croton's www.croton.bl Excellent Excellent diner Diner

16 Fern Diner www.fern.bl Poor Fern Diner Diner

17 Antelope's www.antelepe.bl Excellent On Antelope Restaurant

18 Gordon's www.gordon.bl Good Located on Gordon's Lounge

19 Crown's Cafe www.crown.bl Average Located on Crown's Cafe

20 Starbucks Cafe www.starbucks.bl Excellent At Crown's Cafe

21 Coney's www.coneys.com Excellent Located at Coney's Restaurant

22 Amara's www.amara.bl Good Located at Amara's Restaurant

23 Faber's Bar www.fabers.bl Average Located at Faber's Bar

26 Balan's Diner www.balan.bl Excellent Balan's Diner Diner

27 Cousin's Cafe www.cousin.com Excellent An excellent cafe Cafe

Chapter 4

[69]

Let's say you need to find Croton's diner on the map, and you type in Croton's
and hit Enter. ArcMap, or whichever GIS client you are using, forwards the search
query to the geodatabase, which consequently starts scanning the feature class to
locate the feature. Without indexing, the feature class is scanned feature by feature
on the Venue's Name column to match the search term Croton's, as shown in the
following figure:

As you can see, it takes the geodatabase more time to scan through these records one
by one. Indexing is pretty much similar to how you arrange your files alphabetically
at your desk at work. To enable indexing, the geodatabase creates another structure
for the attribute to be indexed. In this example, we will create an index for the
Venue's Name column, which points all letters to their matching object IDs.
So, when we search for Croton's, this time with indexing, the geodatabase
looks through the index for the letter C and finds only four records to scan.

Optimizing Geodatabases

[70]

Luckily, Croton's is the first feature, as illustrated in the following figure:

Indexing works similarly with almost any field type, text, numbers, date, and even
spatial data types such as the Esri shape geometry type. Indexes created on shape
columns are called spatial indexes, which have the same concept as attribute indexes.
Both of them shrink the query search domain to achieve greater performance.

A spatial index is an index that is used on spatial data type columns such
as geometry. It allows the spatial query to be run on a subset grid instead
of an entire geodatabase grid.

Chapter 4

[71]

Adding an attribute index
Suppose your clients started to perform attribute queries on their geodatabase, and
they asked you whether you could tune it for better performance. We will start by
adding an attribute index. However, the question is, on which attribute shall we
create an index? Usually, this question is answered while modeling the geodatabase,
where indexes are added in the entity relationship diagram. Indexes are created on
attributes that are frequently queried. In the Bestaurants geodatabase, the Venue's
Name field is a good candidate to create an index for. To create an attribute index,
perform the following steps:

1. Copy the geodatabase in 8648OT_04_Files\Geodatabase to the c:\gdb
folder. You can create a backup of your geodatabase if you want to.

2. Open ArcCatalog.
3. Browse to the new geodatabases from the Catalog Tree window.
4. Right-click on the Food_and_Drinks feature class and select Properties....
5. In the Feature Class Properties dialog, select the Indexes tab.
6. The Attribute Indexes section shows the existing indexes on the feature class.

As you can see, there is an FDO_OBJECTID index (the primary key), which
is a very important index that cannot be removed. The geodatabase uses this
index to uniquely identify each feature. When you click on FDO_OBJECTID,
in the Fields section, you will see the field on which this index is created for,
as shown in the following screenshot:

Optimizing Geodatabases

[72]

7. Click on Add… to add a new attribute index.
8. In the Add Attribute Index dialog, type in IND_NAME in the Name field.

This is the index name.
9. From the Fields available list, select the NAME field, which is the Venue's

Name column, and click on the right arrow icon to add it to the list, as you can
see in the following screenshot:

The Unique and Ascending checkboxes are disabled by default
for file geodatabases; however, they can be enabled for enterprise
geodatabases depending on the underlying relational database
system. This will be discussed in Chapter 6, Enterprise Geodatabases.

10. Click on OK to close the dialog to return to the indexes form.

Chapter 4

[73]

11. You will see that the IND_NAME index has been created on the NAME
field, and now all queries against the NAME field will be optimized. Click on
Apply and then click on OK to close the dialog and return to ArcCatalog, as
shown in the following screenshot:

Optimizing Geodatabases

[74]

Spatial indexing
Spatial indexes work like attribute indexes, except they use square grids instead of
records. Without a spatial index, retrieving restaurants in a given area takes more
effort. This is because the geodatabase has to scan all the features to find out the ones
that are in the given parameter. This is illustrated in the following figure. The square
is the area we want to find all restaurants. Note how the scanning starts from left to
right until a match is found; this takes a long time. The result will be features 22, 14,
16, 18, 17, and 15, as shown in the following figure:

Spatial indexing creates small square grids in the entire feature class extent and
updates the relationship between each grid and the features inside that grid. This
information is stored in a separate table, which speeds up searching as shown in the
following figure. Geodatabases simply scan the spatial index grid table. Those grids
with no features are automatically skipped, which saves query execution time.
We will get the same result, that is, 22, 14, 16, 18, 17, and 15, but much faster.

Chapter 4

[75]

Adding a spatial index
When you create a feature class, a spatial index is automatically created and
optimized for that feature class. At any time, you can drop and recreate the
spatial index by performing the following steps:

1. Open ArcCatalog and browse to the Bestaurants geodatabase.
2. Right-click on the Food_and_Drinks feature class and select Properties....
3. Click on the Indexes tab.
4. In the Spatial Index section, click on Delete to delete the spatial index.
5. Click on Create if you want to create the spatial index again.
6. Close ArcCatalog.

Deleting and recreating the spatial reference is a good exercise
on a geodatabase that is frequently edited, as that will ensure
consistency in spatial querying.

Optimizing Geodatabases

[76]

Using indexes effectively
Although indexing is a great tool for optimization, it can be harmful if implemented
incorrectly. When you index a column, the geodatabase creates an additional hidden
structure that needs to be managed and refreshed frequently. The more indexes
you have, the more extra work the geodatabase has to endure to update those
indexes. Indexes also slow down update operations such as INSERT, UPDATE, and
DELETE, because the geodatabase has to change the indexes as well. More indexes
mean that geodatabases need to update and, perhaps, even recreate those indexes.
Avoid creating indexes on columns with very few distinct values such as rating and
category because they often won't give you the performance you desire. It is good
to create indexes on unique columns or nearly unique columns—indexes thrive on
uniqueness and will always boost the performance of your geodatabase. You can
calculate the percentage of indexing performance using the following formula:

In the preceding formula, a is the attribute to be indexed and ind(a) is the percentage
of indexing efficiency; 100 percent being the maximum and 0 percent being the
lowest. d(a) is the number of distinct values in the attribute column a and n(a) is the
number of total values in a. Note that if a is a primary key, then ind(a) is 100 percent.
This also explains why the RATING and CATEGORY fields score low on indexing
performance in this formula.

Geodatabase compression
Compressing is an Esri feature that helps reduce the size of a file geodatabase by
finding repetitive patterns in the database and grouping them together. This is a
different concept than compacting, which we will also address later. For example,
if you have your Food_and_Drinks feature class with 10 features, and all of them
have the RATING field set to Good, compressing the feature class will count the Good
values and add the number of occurrences as Good(10). When this feature class is
accessed, the data is unpacked again and queried as desired. You might think that
the processor needs to perform some work before querying and therefore, this might
slow down the performance. However, with the advanced microprocessors and
multithreading, this little extra work is barely noticeable.

Chapter 4

[77]

Compressing a file geodatabase
It is important that you do not confuse the compressing of a file geodatabase with
the compressing of an enterprise geodatabase (which is out of the scope for this
book). Compressing a file geodatabase does not delete any data it maintains. It also
prevents you from editing your file geodatabase. To compress a file geodatabase,
perform the following steps:

1. Open ArcCatalog.
2. Browse and right-click on the file geodatabase, point the cursor to

Administration, and then click on Compress File Geodatabase,
as shown in the following screenshot:

The compress operation can be lossless or lossy. Lossy compression
was the only option available prior to ArcGIS 10.0 file geodatabases.
In geodatabases that run on Versions 10 and higher, you have two
options: lossy and lossless compression.

Optimizing Geodatabases

[78]

Lossy compression is the process by which the content
is compressed while losing some of its content. It is an
irreversible operation.
Lossless compression is compressing the content while
preserving the data. It is a reversible operation.

3. In the Compress File Geodatabase Data dialog, make sure the Lossless
compression checkbox is checked and click on OK, as shown in the
following screenshot:

Chapter 4

[79]

4. While compressed, the geodatabase is labeled as read only. This means you
cannot perform any editing operation on the geodatabase. If you try to use
ArcMap to edit, you will get the following message:

Using compression effectively
Compression can be used to save plenty of disk space, especially for geodatabases
with a large number of features. If the geodatabase is mature enough and is not
edited for a long time, it is healthy to use lossless compression to reduce its size.

Before using compression, always create a backup of your file
geodatabase. This is because compression can sometimes corrupt
the geodatabase and render it inaccessible.

Optimizing Geodatabases

[80]

Compacting
The clients are happy with the new optimization techniques introduced in the
geodatabase. However, they noticed a bit of performance decline after intense
editing sessions, and they asked you whether this can be fixed. We can introduce
the concept of compacting here. Like compression, compacting can reduce the
geodatabase's size and potentially speed up queries. In the database world, this
process is commonly known as vaccuming. However, compacting works differently
as compared to compressing. Except for lossy compression, compression in general
doesn't exactly get rid of any bytes. It merely packs them up by grouping redundant
pieces, while compacting physically deletes and purges unneeded orphan records.
We will demonstrate how compacting works, but we first need to understand what
happens while editing the geodatabase.

Compacting a file geodatabase
It is easy to compact a file geodatabase; actually, it is recommended to compact a
geodatabase after a heavy edit session. To compact a file geodatabase, perform the
following steps:

1. Open ArcCatalog and browse to the Bestaurants geodatabase.
2. Right-click on the Bestaurants geodatabase, point the cursor to

Administration, and then click on Compact Geodatabase, as shown
in the following screenshot:

Chapter 4

[81]

3. Your mouse will change to an hour glass and will return to be a normal
cursor once compacting finishes.

Compacting is only valid for personal and file geodatabases. Enterprise geodatabases
use versioning to perform editing, which has its own optimization techniques.
We will discuss how to install an Enterprise geodatabase from scratch in Chapter 6,
Enterprise Geodatabases.

Using compacting effectively
In this section, we will discuss how compacting a geodatabase works. Compacting
is only effective on a frequently edited geodatabase, so we will start by performing
a few edits. The following figure shows our healthy Bestaurants geodatabase; let's
say that we will delete the objects from 9 to 14:

Optimizing Geodatabases

[82]

Logically, you may think that these records are removed permanently, and the rest
of the features will move up to take their place. However, this is not exactly what
happens; these records are simply marked as deleted in the geodatabase. Imagine
if the geodatabase shuffles all records after each delete operation; editing will be
extremely inefficient. That is why the geodatabase only marks the records as deleted
and discards these records from any future queries. So, what happens when you
try to locate Croton's (object 14)? It just so happens that the geodatabase has to
go through all these records anyway and skip through the ones marked as deleted.
Although they are deleted, they are, in a way, slowing down the query. This is
illustrated in the following figure:

Chapter 4

[83]

So what exactly does compacting do? As you might have guessed, compacting
permanently removes these records and any other orphan records that are not used
or referenced by any other objects. This is why compacting relatively speeds up
queries against file geodatabases. As you can see in the next figure, Croton's
can be found much more efficiently with a compacted geodatabase:

Compacting is similar to the concept of defragmentation on your operating system.
While deleting files on your Windows or Mac, your files become fragmented on the
disc and your hard drive has to work harder to seek them. The defragmentation
process groups the fragmented-free gaps and brings the files near each other so
that they are easier to find. Before defragmentation, the files can be recovered with
third-party applications that scan for patterns in the hard drive. However, after
defragmentation, there is no way to recover these files.

Optimizing Geodatabases

[84]

Summary
In this chapter, you have learned three new optimization techniques that can be
performed to achieve optimal efficiency for file geodatabases. You worked with
both spatial and attribute indexing, and you learned when to use each efficiently.
You also learned that overusing indexing could cause a performance penalty if
planned poorly. Then, you worked with compression, which helps drastically
reduce the geodatabase size and save plenty of disk space. Finally, you learned how
compacting can help speed up queries of a frequently edited geodatabase. The next
chapter will discuss some scripting and programming techniques on how to manage
and administer the geodatabase using the file geodatabase API.

Programming Geodatabases
During the course of this book, you have learned about the key tools to author,
manage, and administer ArcGIS geodatabases. You have learned how to create a
geodatabase, add datasets, create relationships, and much more. In the previous
chapter, you learned some techniques that can be applied to the geodatabase to
optimize and keep your geodatabase healthy. You might have noticed that running
all these tools manually, especially in bulk mode, can be a hectic process. That
is why Esri, the company that created ArcGIS, has made all these geodatabase
functionalities available as geoprocessing tools. These tools can be combined and
joined together to form other tools with different functionalities. They can also be
called from various programming platforms such as Python to solve interesting
problems, as we
will see later in this chapter.

A geoprocessing tool is a component that accepts input parameters and
produces an output by performing operations on a geodatabase.
Python is a high-level programming language used for many
applications. The simplicity, open source standard, and object-oriented
architecture of the language is what makes it popular.

We will discuss two methods for programming geodatabases; the first one is Python
scripting, which is considered the pillar scripting language for ArcGIS, and the
second one is model builder, which is a very effective way to build models from
existing geoprocessing tools.

Model builder is a feature built on top of ArcGIS, which allows the user
to combine multiple geoprocessing tools into a single logical model to
perform a complicated task easily.

Programming Geodatabases

[86]

Using Python scripting
Due to the simplicity of Python, the 23-year-old scripting language has been
widely used to build various applications. Python has also been embedded into
other products as a way to extend its functionality. ArcGIS is one of these products
that adopted Python for this purpose. In this section, we will learn about a basic
Python script to call existing geoprocessing tools, and then we will use these scripts
to create a small tool that automatically backs up our Bestaurant geodatabase on a
daily basis.

To learn more about advanced Python scripting techniques,
you can visit www.Python.org.

You don't have to install Python for the upcoming exercises; if you have ArcGIS for
Desktop 10.x, Python 2.7 is installed and configured and ready for use. Let's do some
basic warm up exercises on Python before we start on the real work:

1. Click on the Start menu, expand the ArcGIS folder, expand Python 2.7,
and then click on IDLE (Python GUI) to open the Python editor,
as shown in the following screenshot:

Chapter 5

[87]

2. If you can't find it on the Start menu, you can access it by typing
c:\Python27\ArcGIS10.2\Pythonw.exe "c:\Python27\ArcGIS10.2\Lib\
idlelib\idle.pyw" in the run command. This is assuming you have ArcGIS
10.2 installed.

3. From the Python Shell window, point the cursor to File and then click on
New Window so that we can start working.
We are going to write a simple script that accepts two integers, sums them,
and prints the answer. I'm going to assume that you know some basic
programming concepts such as variables and functions for this exercise.
In the following example, we are going to build the script in small pieces,
and then, when we're finished, we'll save and run the script.

4. Let's declare a variable, a, and assign it the value of 7, and we will declare
another variable, b, and assign it the value of 13. Type the following code
in the Python editor:
a = 7
b = 13

5. Then, we will declare a new variable, s, which will have the sum of a and b;
you might have guessed how to write it:
a = 7
b = 13
s = a + b

6. This will sum a and b and save the answer in the s integer. We are not
done still; we need to print this result. The print command allows us to
print values and strings. Note that we have to convert s to a string if we are
planning to concatenate it with a string. For this, we use the str command
as follows:
a = 7
b = 13
s = a + b
print "The sum is " + str(s)

7. Before we save this file, we will add one last line. Python scripts execute fast,
and you will barely be able to see the output before the script is terminated.
So, we add a line to pause the script by asking the user to press any key. The
input command asks the user for a value and stores it in a variable. It also
pauses the script until a user takes an action. Go ahead and add the input
statement as you can see in the following code segment:
a = 7
b = 13
s = a + b
print "The sum is " + str(s)
input ("Press any key to continue..")

Programming Geodatabases

[88]

8. We are now ready to save the file. From the File menu, click on Save and
then browse to c:\gdb. Create a new folder called scripts, where we will
be storing our scripts. Name the file sum.py; your file should look like the
following screenshot:

9. It's time to test our script. Close this window and go to c:\gdb\scripts;
then, double-click on the sum.py file. You will get the following result:

Chapter 5

[89]

Let's modify the script so it asks the user for those numbers instead. For this,
we need to use the input command.

Right-click on the sum.py file and click on Edit with IDLE to open the Python editor.
Write the following code:

a = input("Enter the first number: ")
b = input("Enter the second number: ")
s = a + b
print "The sum is " + str(s)
input ("Press any key to continue..")

Save and run the code. Note that now you are prompted to enter the values of a
and b instead of having them hardcoded in the script. We will be using the input
command a lot to ask the user for parameters while working with our geodatabase.

You can find this script along with other scripts that we will be using in
the supporting files for this chapter under 8648OT_05_Files\scripts.

Creating a geodatabase
You now know how to create a basic Python script; let's now learn how to use
Python to create our first file geodatabase programmatically. Esri has created a
Python library called arcpy where all the geodatabase operations can be called.
We need to reference this library using the import keyword in each script we write.

The arcpy library is a Python library created by Esri that can be used to
call ArcGIS geoprocessing tools from within Python.

Close any previously opened scripts and start a new Python script. We will start by
importing the arcpy library and declaring a few variables for the geodatabase name
and path. To start creating the file geodatabase, perform the following steps:

1. Write the following code into the Python editor. The sgdb_path variable is
the path in which we want to create the geodatabase, while sgdb_name is
the name of the geodatabase. Note that paths in Python are written with a
common slash (/):
import arcpy
sgdb_path = "c:/gdb"
sgdb_name = "my_Python_gdb.gdb"

Programming Geodatabases

[90]

2. Executing the preceding code will not give you anything interesting just
yet, as we still have not called the function responsible for creating our
geodatabase. The arcpy.CreateFileGDB_management function accepts
two parameters, the path and the name of the geodatabase. So, go ahead
and write this down and pass in the two variables. Also, make sure to add a
pause command at the end. Python is case sensitive, so you have to write it
exactly as you see it in the following code snippet:
import arcpy
sgdb_path = "c:/gdb"
sgdb_name = "my_Python_gdb.gdb"
arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)
input ("File created successfully, press any key to continue...")

3. Save the file as create_gdb.py in c:\gdb\scripts and run it. You can also
run the script from the Run menu and then select Run Module or simply
press F5.

4. Open ArcCatalog and browse to the c:\gdb folder. You should see the new
file geodatabase, as shown in the following screenshot:

Chapter 5

[91]

Creating a feature class
Python has helped us create a geodatabase; however, this geodatabase is empty,
and we need more tools to help us populate it. For this, we will introduce the new
arcpy.CreateFeatureclass_management command, which takes a minimum of
three parameters: the full path of the geodatabase you want to create the feature
class in, the name of the feature class, and the geometry type. To create a feature
class, perform the following steps:

1. Open a new Python editor session and type the following lines of code:
import arcpy
sgdb_fullpath="c:/gdb/my_Python_gdb.gdb"
sfc_name = "my_Python_featureclass"
sgeometry = "POLYGON"
arcpy.CreateFeatureclass_management(sgdb_fullpath,sfc_
name,sgeometry)
input ("Feature class created successfully, press any key to
continue...")

2. Save the file as create_fc.py under the scripts folder and then run it.
3. Right-click on the geodatabase and click on Refresh. You should see your

feature class created as well in the same geodatabase, as shown in the
following screenshot:

4. Close ArcCatalog.

Programming Geodatabases

[92]

All these operations, which require modifying the schema of the geodatabase, will
throw an error if someone is already using the geodatabase. This is called a schema
lock error.

Best practice
Python will throw a schema lock error if it is trying to change the schema
of the geodatabase while it is in use by someone else. Always close all
connections to the geodatabase before running your script.

Adding and deleting fields
Python has created a geodatabase and a feature class; however, this feature class has
only the default attributes, the OBJECTID and SHAPE fields. It is time to learn how to
let Python add fields to an existing feature class. This is done through the arcpy.
CreateFileGDB_management command. The function takes a minimum of three
parameters: the full path of the feature class, the name of the field to be added, and
the type of the field. The full path to the feature class is basically the full path to the
file geodatabase followed by a slash (\) and then the feature class name.

To add fields to a feature class, perform the following steps:

1. Close all other sessions, open a new Python editor session, and write the
following code:
import arcpy
sfc_fullpath = "c:/gdb/my_Python_gdb.gdb/my_Python_featureclass"
sfield_name = "my_Python_field"
sfield_type = "LONG"
arcpy.AddField_management(sfc_fullpath, sfield_name, sfield_type)
input ("Field added successfully, press any key to continue..")

2. Save the file as add_field.py under the scripts folder and then run it.
3. To verify that the field is added, open ArcCatalog and browse to the

geodatabase. Right-click on the feature class and click on Properties. As
you can see in the following screenshot, the field was successfully created:

Chapter 5

[93]

Similarly, you can delete a field with the arcpy.DeleteField_management
command. This function takes the full path to the feature class and the name
of the field to be deleted. To delete a field, type the following lines of code:

import arcpy
sfc_fullpath = "c:/gdb/my_Python_gdb.gdb/my_Python_featureclass"
sfield_name = "my_Python_field"
arcpy.DeleteField_management(sfc_fullpath, sfield_name)
input ("Field has been deleted successfully, press any key to
continue..")

Programming Geodatabases

[94]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Copying features
This one is an interesting geoprocessing tool and probably the most widely used
one. It allows you to copy features from one feature class to another feature class. It
accepts two parameters: the source feature class and the full path of the destination
feature class. You do not need to create the new feature class as this tool creates it
for you. Perform the following steps to copy features from one feature class to
another feature class:

1. Open a new Python editor session and write the following code:
import arcpy
sfc_source = "c:/gdb/my_Python_gdb.gdb/my_Python_featureclass"
sfc_dest = "c:/gdb/my_Python_gdb.gdb/my_Python_featureclass_copy"

arcpy.CopyFeatures_management (sfc_source, sfc_dest)
input ("Feature class copied successfully, press any key to
continue...")

2. Save your file as copy_features.py under the scripts folder and then run
your script.

3. You will see that the feature class is copied and a new feature class is
automatically created, as shown in the following screenshot:

Chapter 5

[95]

Backing up the Bestaurants_Web
geodatabase
Earlier in this chapter, you acquired certain programming skills to help you work
with geodatabases using Python. You will now use these skills to write a full script
for a new assignment. Going back to our Belize client and the Bestaurants project,
the geodatabase you created is growing and is becoming rich. It has reached a stage
where it is ready to be published on the Web to be accessed by mobile. However,
before doing that, the geodatabases have to be frequently backed up and some
changes have to be made to the schema. The client asked you to create a new
geodatabase called Bestaurants_Web, which is a lighter version of the geodatabase
so it can be accessed swiftly. They suggested to remove some fields and the reviews.
This geodatabase should be updated on a daily basis and a daily backup of the
geodatabase should be kept, labeled by the date.

This is obviously a tedious job to be done manually. Therefore, we will use Python
to help us in this assignment. According to the client, the Bestaurants_Web
geodatabase should have only one feature class, named Restaurants, and no
reviews or attachments. The following fields should be in the Restaurants table:

Field Name Field Type
NAME Text
WEBSITE Integer
CATEGORY Integer

We will break this assignment into three parts. First, we need to create the
Bestaurants_Web geodatabase. Second, we need to copy the Food_and_Drinks
feature class to the new geodatabase, and finally, we need to delete unwanted fields
from the new feature class. The client also asked to create a daily backup of the
Bestaurants_Web geodatabase, so our script should take care of that as well. This is
an iterative process. We'll build the code piece by piece before saving and running
the whole thing:

1. Create a new folder named Web under the c:\gdb folder.
2. Open a new Python editor session, save the file as Web_Bestaurants.py

under the scripts folder, and let's start by creating a new Bestaurants_Web
geodatabase. You should know how to create a file geodatabase by now:
import arcpy
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)

Programming Geodatabases

[96]

We didn't add the pause command because we will continue
writing some code after that.

3. Save the file and continue writing. Next, we need to copy the Food_and_
Drinks feature class from Bestaurants to the new geodatabase as follows:
import arcpy
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)
sfc_source = "c:/gdb/Bestaurants_new.gdb/Food_and_Drinks"
sfc_dest = sgdb_path + "/" + sgdb_name + "/Restaurants"
arcpy.CopyFeatures_management (sfc_source, sfc_dest)

4. Next, we need to delete a few fields that are not necessary for the web
version of the geodatabase. The RATING and DESCRIPTION fields should be
deleted. We terminate the script with a message, letting the user know that
the process has been completed. Add the following lines to your code:
import arcpy
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)
sfc_source = "c:/gdb/Bestaurants_new.gdb/Food_and_Drinks"
sfc_dest = sgdb_path + "/" + sgdb_name + "/Restaurants"
#Copy features
arcpy.CopyFeatures_management (sfc_source, sfc_dest)
sfield_rating = "RATING"
sfield_desc = "DESCRIPTION"
arcpy.DeleteField_management(sfc_dest, sfield_rating)
arcpy.DeleteField_management(sfc_dest, sfield_desc)
input ("Web Bestaurants geodatabase created successfully, press
any key to continue.")

We have used the # character. This indicates that the text
after # will be treated as a comment.

5. Save the Python script and run it.

Double-check that you have correct paths to avoid any
possible errors in your Python script.

Chapter 5

[97]

6. The output should look like the following screenshot after successfully
running the script:

There is one step missing, the backup. In order to back up this geodatabase
on a daily basis, we could rename the existing Web_Bestaurants geodatabase
to Web_Bestaurants_TodayDate, and then run the script normally. Since the
Web_Bestaurants geodatabase is no longer available (it has been renamed),
the script will create a fresh geodatabase. We will need to add additional Python
libraries, os and datetime. A Python library, such as arcpy, is a collection of useful
methods that can be imported and used throughout the script. For instance, the
os.rename method is used to rename a folder name, and datetime.date.today
gives you the year, month, and day of the current date. Add the following lines to
your code to do so:

1. Import the os and datetime libraries right after the arcpy library as follows:
import arcpy
import os
import datetime
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)
sfc_source = "c:/gdb/Bestaurants_new.gdb/Food_and_Drinks"
sfc_dest = sgdb_path + "/" + sgdb_name + "/Restaurants"
#Copy features

Programming Geodatabases

[98]

arcpy.CopyFeatures_management (sfc_source, sfc_dest)
sfield_rating = "RATING"
sfield_desc = "DESCRIPTION"
arcpy.DeleteField_management(sfc_dest, sfield_rating)
arcpy.DeleteField_management(sfc_dest, sfield_desc)
input ("Web Bestaurants geodatabase created successfully, press
any key to continue.")

2. Write the following code snippet in your script after the sgdb_name line and
before creating the file geodatabase:
import arcpy
import os
import datetime
sgdb_path = "c:/gdb/web"
sgdb_name = "Web_Bestaurants.gdb"
todaydate = str(datetime.date.today().year) + str(datetime.date.
today().month) + str(datetime.date.today().day)
os.rename (sgdb_path + "/" + sgdb_name , sgdb_path + "/" + "Web_
Bestaurants" + todaydate + ".gdb")

arcpy.CreateFileGDB_management(sgdb_path, sgdb_name)

3. Finally, run the command and make sure it works.
4. This step is optional; we could add this script in Windows Scheduler for it to

run. The following steps are necessary to do so:

1. From the Start menu, type taskschd.msc to open up Task Scheduler.
2. From the Actions panel, click on Create Basic Task... and type in the

name of the task, Web_Bestaurants_Backup, and then click on Next.
3. Select Daily, so the task runs on a daily basis. Click on Next.
4. Select the time you want this task to run, leave it at midnight,

and click on Next.
5. Select Start a program and then click on Next. This way, we let

Windows start our script.
6. Browse to your web_bestaurants.py file.
7. Click on Finish.

Chapter 5

[99]

Note that if you have run the command multiple times,
you will get an error. The reason is that the geodatabase
is created on the first run, so when you try to run the
script again it will create the geodatabase with the same
name raising an error. To solve that you can delete the
geodatabase before running the script.

As shown in the following screenshot, Windows will now run your script on
a daily basis and create a copy of your Web_Bestaurants geodatabase:

Windows Scheduler is a service in Windows that allows the user to
schedule applications to run at an event, such as at the startup of the
computer or on a particular date or time.

Make sure to delete this scheduled task from your Windows after finishing the
testing, else it will continue to run every day.

You can find a lot of the arcpy geoproessing commands at http://qr.net/packt_
lag_dm. You can use them in a way that is similar to how we used the geoprocessing
commands in this chapter. The Esri link also explains how to use them with a sample
Python script.

Programming Geodatabases

[100]

A list of arcpy commands
This section includes a list of a lot of useful commands that you can use to work with
geodatabases. This list has been compiled from www.esri.com.

Tool Description Python script example
Create
File GDB

Creates file
geodatabases

Create file geodatabase bestaurants.gdb in c:\gdb
path.
arcpy.CreateFileGDB_management
(
"c:/gdb",
"bestaurants.gdb"
)

Create
Feature
class

Creates a
feature class
in an existing
geodatabase

Creates the VENUE_BOUNDARY feature class of type
polygon; this can be used to highlight the boundary of
a given restaurant.
arcpy.CreateFeatureclass_management
(
"c:/gdb/bestaurants.gdb",
"Venue_Boundary",
"POLYGON"
)

#Creates the VENUE_FENCE feature class of type
polyline; this can be used to draw a fence around a
restaurant if it has one.
arcpy.CreateFeatureclass_management
(
"c:/gdb/bestaurants.gdb",
"Venue_Fence",
"POLYLINE"
)

#Creates a landmark feature class in the bestaurants
geodatabase of type point. This feature class is used
to indicate a landmark such as a building, a mall, or
a train station.
arcpy.CreateFeatureclass_management
(
"c:/gdb/bestaurants.gdb",
"Landmark",
"POINT"
)

#Creates the VENUE_BOUNDARY feature class of type
polygon using Food_and_Drinks as a template feature
class; this will import all fields and spatial
references to this feature class.

arcpy.CreateFeatureclass_management
(
"c:/gdb/bestaurants.gdb",
"Venue_Boundary",
"POLYGON"
"c:/gdb/bestaurants.gdb/Food_and_Drinks",
)

Chapter 5

[101]

Tool Description Python script example
Add Field Adds a new

field to an
existing
feature class

#Adding a Number_Of_Tables long field which will have
the number of tables in a given restaurant.

arcpy.AddField_management

(

"c:/gdb/bestaurants.gdb/Food_and_Drinks",

"Number_of_Tables",

"LONG"

)

#Adding a HAS_WIFI text field which will have YES or
NO as a value. This indicates whether this restaurant
has Wi-Fi or not.

arcpy.AddField_management

(

"c:/gdb/bestaurants.gdb/Food_and_Drinks",

"Has_WIFI",

"TEXT"

)

#Adding a CREATIONDATE field of type date, which will
have the date on which this feature has been added or
when this restaurant has been opened.

arcpy.AddField_management

(

"c:/gdb/bestaurants.gdb/Food_and_Drinks",

"CreationDate",

"DATE"

)

Delete
Field

Deletes an
existing field
from a feature
class

#Delete the HAS_WIFI field.

arcpy.DeleteField_management

(

"c:/gdb/bestaurants.gdb/my_point_featureclass",

"Has_WIFI"

)

Copy
Features

Copies
features from
one feature
class to
another

#Copy all features in the feature class Food_and_
Drinks from an existing geodatabase to another
existing geodatabase. This tool will automatically
create a new feature class.

arcpy.CopyFeatures_management

(

"c:/gdb/bestaurants_old.gdb/Food_and_Drinks",

"c:/gdb/bestaurants_new.gdb/Food_and_Drinks"

)

Programming Geodatabases

[102]

Tool Description Python script example
Calculate
Field

Fills a field
with values
based on a
formula

#Populates the CreateDate field in the food_and_drinks
feature class with today's date.

import datetime

d = datetime.date.today()

arcpy.CalculateField_management

(

"c:/gdb/bestaurants.gdb/Food_and_Drinks",

"CreationDate",

"'" + str(d) + "'",

"PYTHON"

)

Compact Compacts
a personal
or file
geodatabase

#Compacts the geodatabase located on c:\gdb\
bestaurants.gdb.

arcpy.Compact_management

(

"c:/gdb/bestaurants.gdb"

)

Compress Compresses
a file
geodatabase

#Compresses the geodatabase located on c:\gdb\
bestaurants.gdb.

arcpy.CompressFileGeodatabaseData_management

(

"c:/gdb/bestaurants.gdb"

)

Uncompress Uncompresses
a file
geodatabase
that is already
compressed

#Uncompresses the geodatabase located on c:\gdb\
bestaurants.gdb; must be already compressed to be
successful.

arcpy.UncompressFileGeodatabaseData_management

(

"c:/gdb/bestaurants.gdb"

)

Using the model builder
Besides Python scripting, the model builder is a nice way to aggregate multiple
geoprocessing tools without the need to have programming skills. If you found it
difficult to write Python scripts, you can always use the model builder to create
interesting models. In this section, we will use the model builder to build a sample
model to create a file geodatabase and a feature class.

Chapter 5

[103]

Creating a model
You can create a model from either ArcMap or ArcCatalog. To create a model,
perform the following steps:

1. Create a folder in the c:\gdb folder and name it myTools.
2. Open ArcCatalog, point the cursor to the Geoprocessing menu, and then

click on ModelBuilder.

You can also use ArcMap to work with ArcToolbox.

3. Bring up the ArcToolbox window as well since we will use both. Keep both
windows next to each other.

4. In the ArcToolbox window, expand Data Management Tools and
Workspace, and then drag the Create File GDB tool to the Model
window as illustrated in the following screenshot:

Programming Geodatabases

[104]

The Create File GDB tool is represented as a rounded rectangle, which indicates
a geoprocessing tool with a single rounded oval, representing a variable. There
are many variable types supported by the model builder. Some are native, such as
String, and some are ArcGIS-related, such as FeatureClass and Workspace. In this
case, the Output File GDB variable is of the Workspace type, which is essentially
a geodatabase.

The Create File GDB tool accepts a number of variables that are not exposed by
the model builder by default; we need to add these variables. The first one is the
path where we want to create the geodatabase and the second variable is the name
of the file geodatabase. To add an input parameter, right-click on the Create File
GDB rectangle, point the cursor to Make Variable, then point the cursor to From
Parameter and select the variable name. You will have a list of all possible input
parameters as shown in the following screenshot:

Chapter 5

[105]

Similarly, add the File GDB Location and File GDB Name variables. Once you add
the second one, they will be drawn on top of each other. Move them around so they
don't overlap. These variables are still not exposed to the user as input. To do so, we
need to make them a model parameter. Right-click on File GDB Location and then
click on Model Parameter. The letter P will be displayed on that variable, which
means that this variable is exposed as a parameter in the model interface. Make File
GDB Name a model parameter as well, as shown in the following screenshot:

Now it is time to save the model before we add more tools. To save the model,
perform the following steps:

1. Click on the Model menu and then click on Save.
2. Browse to c:\gdb\MyTools and click on the New ToolBox icon to create a

new toolbox where we will be storing our model.

Programming Geodatabases

[106]

3. Name it Web_Bestaurants, as shown in the following screenshot (note that
this is not our model, it is just a container that will contain our model):

4. Double-click on the Web_Bestaurants toolbox to open it.
5. In the Name field, type CreateWebBestaurantsGDB, and then click on

Save to save your model.
6. Close the model.
7. To open the model from the Catalog Tree window, browse to the

CreateWebBestaurantsGDB model in c:\gdb\MyTools and then
right-click on it and click on Edit..., as shown in the following screenshot:

Chapter 5

[107]

8. Close the model but keep ArcCatalog opened.

Creating a feature class
To create a feature class, we need to specify a few parameters such as the feature
class name and geodatabase location. We previously created a geodatabase; we will
now learn how to link that output and serve it as an input to our new tool. To do so,
perform the following steps:

1. Browse to the Create Feature Class tool from ArcToolbox; you can find it
under Data Management Tools | Feature Class.

2. Drag Create Feature Class to the model.
3. Add Feature Class Name as a model parameter for the Create Feature Class

tool, as explained previously.

Programming Geodatabases

[108]

4. Use the Connect tool in the model builder to connect Output File GDB
to the Feature Class Location variable in the Create Feature Class tool,
as illustrated in the following screenshot:

5. Save the model and close it.

Chapter 5

[109]

Running the model
Finally, we have completed our simple model, and now it is time to test it. To run a
model, perform the following steps:

1. Browse to c:\gdb\myTools\Web_Bestaurants.tbx from the Catalog Tree
window and double-click on CreateWebBestaurantsGDB. You will get a
dialog box with three kinds of input. Remember that these are our model
parameter variables in the model: File GDB Location, File GDB Name,
and Feature Class Name.

2. In the File GDB Name field, type my_model_gdb.
3. Set the File GDB Location field to c:\gdb.
4. Finally, type my_model_fc in the Feature Class Name field, as illustrated in

the following screenshot:

5. Click on OK.

Programming Geodatabases

[110]

After the process is completed, you can see that your geodatabase and feature class
are created. You can start mashing up multiple tools to create fascinating customized
geodatabase tools.

Summary
In this chapter, we discussed some programming flavors. You perceived working
with geodatabases from a completely different angle. The chapter demonstrates two
methods for programming geodatabases, Python and model builder. Python took
the lion's share in this chapter; at first, you learned how to work with basic Python
scripting. Then, you were introduced to the arcpy module built by Esri, which
allows Python to tap into the power of ArcGIS and do much more. You dove deep
into Python by solving a real-world problem from the ground up using Python.
Then, you learned about the model builder and how you can combine and mash up
multiple geoprocessing tools to create more sophisticated tools. Unlike Python, the
model builder requires no programming skills to work on, which makes it desirable
for many users.

In the next chapter, we will discuss how to install, configure, and administer an
enterprise geodatabase with Microsoft SQL Server Express from scratch. Enterprise
geodatabases are powerful, support multiusers, and are recommended for a large
number of users.

Enterprise Geodatabases
In the previous chapters, we worked with file geodatabases. File geodatabases
are easy to use, convenient, and portable. You can work with them in a completely
disconnected environment. You can also transfer a file geodatabase with a map
document in a thumb drive, work on it, and make changes. For personal use and
work, file geodatabases work great.

However, they cannot fit your solution every time. There are cases where you need
multiple users to access and edit data. You might need to view the geographic data
from another computer on the network without actually copying the data to that
machine. Then there is, of course, the security and integrity of the data. There is no
access control on a file geodatabase; anyone with a hold on the file can do whatever
they want with it. You don't know who deleted, edited, or modified the schema on
a file geodatabase. When you find yourself in this situation, this is when you are in
need of an enterprise geodatabase.

Although I wouldn't be able to do justice to enterprise geodatabases in a single
chapter, I will try my best to cover the vital points of this interesting topic. This topic
alone requires a dedicated book just to write about all the benefits, configurations,
when and when not to use them, and best practices that can be applied during the
implementation of enterprise geodatabases. In this chapter, we will install, configure,
and work with a complete enterprise geodatabase using Microsoft SQL Server
Express 2012 SP1.

An enterprise geodatabase is a geodatabase that is built and
configured on top of a powerful relational database management
system. These geodatabases are designed for multiple users
operating simultaneously over a network.

Enterprise Geodatabases

[112]

The benefits of the enterprise
geodatabase
Although an enterprise geodatabase requires you to invest in the management and
administration, the benefits can be highly rewarding. Enterprise geodatabases are
built on top of relational database management systems such as Microsoft SQL
Server, Oracle, and DB2. These systems are powerful and are wired to sustain
constant editing and multiple accesses. With enterprise geodatabases, you can
do the following tasks:

• Set up access control
• Build a centralized geodatabase which can be accessed from

multiple terminals
• Restrict certain users from viewing a feature class or table
• Restrict certain users from editing a feature class or table
• Restrict users from changing the geodatabase schema
• Edit tracking to know who added a new feature or edited an existing one

In the next section, we will start with the installation of Microsoft SQL Server
Express 2012 Service Pack 1.

Setting up a Microsoft SQL Server
Express geodatabase
SQL Server Express is a lightweight, free database management system that is
provided by Microsoft. We are going to use it for our enterprise geodatabase. For the
production environment, you will need something stronger than this database, such
as SQL Server, Oracle, DB2, or PostgreSQL. For the purpose of demonstration, we
will use SQL Server Express. It is a good test case as it's easy to set up and use, and
since it's a Microsoft product, it integrates well with ArcGIS.

Chapter 6

[113]

System requirements
Before we start, we will need a new machine to work on. This will be our
geodatabase server. You can use the machine you are working on now, but I
recommend that you use another machine to see the complete benefits of enterprise
geodatabases. A virtual machine with 2 GB RAM, 50 GB of hard drive space,
and either a 64-bit Windows 7 SP1 or Windows Server 2008 R2 SP1 or higher is
recommended. I'm running on a 2 GB Windows Server 2008 R2 SP1 virtual machine.
SQL Server Express also requires Microsoft .NET Framework 3.5 Service Pack 1;
make sure it is installed on your machine before you proceed. The .NET Framework
can be found in the supporting files under 8648OT_06_Files\installers or can
be downloaded from http://www.microsoft.com/en-us/download/details.
aspx?id=25150. You can also install the Application Server role if you have
Windows Server 2008 R2 SP1 or higher, which installs the framework by default.

If you have a fresh machine, name it GDBSERVER; this is the name of my machine.
However, you can pick any other name you want as long as you keep using
it consistently.

You will require an ArcGIS for Server license to start working on this
chapter and to create an enterprise geodatabase. You can ask your
local Esri distributor for a trial version.

Installing SQL Server Express
First, we will install the database software. You can find the SQLEXPRWT_x64_ENU.
exe installer file in the 8648OT_06_Files\installers supporting files. The file can
also be downloaded from http://qr.net/mssqlexpress. Click on Download then
select the SQLEXPRWT_x64_ENU.exe file. This installer is for Microsoft SQL Server 2012
Service Pack 1 (SP1) Express. This is a large file (1 GB) as it has the database and the
management tools.

Enterprise Geodatabases

[114]

If your computer fits the requirement, you will be prompted with the SQL Server
Installation Center dialog. We are now in the installation stage; perform the
following steps to install SQL Server Express:

1. Click on the New SQL Server stand-alone installation or add features
to an existing installation link as shown in the following screenshot:

2. You will be prompted with the SQL Server 2012 setup licenses' terms and
conditions. If you have the time, you can always read through the agreement.

3. After this, check the I accept the license terms checkbox and click on Next.
4. If you are prompted with the Product Updates page, uncheck the Include

SQL Server Product Updates checkbox and click on Next. Note that you
might not get this page when you are not connected to the Internet.

5. The setup will scan for existing products already installed on the system,
and then it will commence installing the setup files. Wait until you get the
Feature Selection form.

6. The setup will now ask you to select the features for your installation.

Chapter 6

[115]

7. Select the following features and then click on Next as shown in the
following screenshot (note that you can always add more features later
when you require them):

 ° Database Engine Services: This will install the basic database engine
only, which will allow us to create the database. However, this will
not allow us to manage the database.

 ° Management Tools – Basic: This will install the Studio Management
tool that will allow us to interact with the DBMS, create databases,
drop databases, add users, and so on.

Enterprise Geodatabases

[116]

8. Next, we need to set up the database instance. In the Instance Configuration
dialog, select the Named instance option and then type sdedb; use the same
name for the Instance ID field. You may not have any installed instances,
and that's fine. This will also show you the existing instances if you already
created ones before. As you can see in the following screenshot, I currently
have an existing instance called SQLEXPRESS installed on this machine:

9. Click on Next to move to the next page. In this page, we can use specific
Windows user accounts to manage the database. It is recommended that
you use a dedicated Windows account to manage the database and all other
database services. However, for simplicity, we will leave this to the default
values as applied in the following screenshot and then click on Next:

The following screenshot illustrates the database engine configuration. It is a
very important step. This is where you set the authentication mode: whether
you want to allow access control using Windows authentication or SQL
Server authentication.

Chapter 6

[117]

10. Select the Mixed Mode option as it gives us better control.
11. Enter a password for the default sa user, which is the master system

administrator user that we will use to manage and add users. Make
sure that you remember the password because we will use it later.

12. Leave the rest of the configurations to their default settings and then
click on Next, as shown in the following screenshot:

13. In the Error Reporting dialog, use the default values and click on Next
to commence the installation. This will take a while; once it is complete,
you will see the following status messages:

14. Click on Close; you have finished installing SQL Server Express.

Enterprise Geodatabases

[118]

Configuring SQL Server Express
You just installed SQL Server Express; you now have a database server running
on this machine. Now, it is time to configure the database so that we can remotely
connect to it and add users.

Enabling TCP remote pipe
TCP remote pipe is another term for the networking capability that is available
in SQL Server. This feature allows remote connection from other machines to the
database server in order to manage and control the database. By default, remote
connections are disabled for Express, so we can't connect to the database unless we
enable the remote connections. In the Start menu, point the cursor to Microsoft SQL
Server 2012, Configuration Tools, and then click on SQL Server Configuration
Manager, as seen in the following screenshot:

Now, we need to configure the TCP remote pipe to enable remote access. To do this,
perform the following steps:

1. From the tree nodes, expand SQL Server Network Configuration.
2. Click on the Protocols for SDEDB option; this is the instance we created.
3. From the panel on the right-hand side, enable TCP/IP by right-clicking on

the node and selecting Enable. You will be notified to restart your service—
we will get to that in a bit. Click on OK to close the message.

Chapter 6

[119]

4. Right-click on TCP/IP and select Properties.
5. In the TCP/IP Properties dialog, activate the IP Addresses tab.
6. Scroll down to the IPAll section.
7. Set the TCP Dynamic Ports field to blank and the TCP port field to 1433.
8. Click on OK to save the changes.

Look at the following screenshot for details:

Enterprise Geodatabases

[120]

After making these changes, we have to restart the service so that it takes effect.
In the Configuration Manager, click on SQL Server Services, right-click on SQL
Server (SDEDB), and then click on Restart, as illustrated in the following screenshot:

You have now enabled remote access to your database. Next, you will learn how to
connect and manage your database.

Make a note of how I keep saying database and not geodatabase.
The reason is that this database is not yet enabled for geographical
operations. We will learn how to enable it later in this chapter.

Enabling the firewall's database port
As you must have noticed in the previous section, the port 1433 is responsible for
exchanging information between the client and database server. So, naturally, this
port should be enabled on the server machine for packets to pass through it. I really
hope you are not one of those users who disable the firewall completely just to allow
a single application to pass through. Disabling the firewall is never a good idea
unless you know what you are doing; always spend more time to configure your
firewall rather than taking the easy way out by shutting down the entire protection.

Chapter 6

[121]

Perform the following steps to enable the SQL Server port on the database server:

1. In GDBServer, click on Start, type the WF.msc command, and then hit the
Enter key.

2. In Windows Firewall with Advanced Security, click on Inbound Rules.
3. From the Action menu, click on New Rule.
4. In New Inbound Rule Wizard, select Port and then click on Next, as shown

in the following screenshot:

5. Select TCP protocol and set the Specific local ports option to 1433 as shown
in the following screenshot; then, click on Next:

Enterprise Geodatabases

[122]

6. As seen in the following screenshot, select Allow the connection to allow all
connections coming from port 1433 and then click on Next:

7. Apply the connection to all workspaces, Domain, Private, and Public, and
then click on Next. You can put some restrictions to avoid public connections
so that people from outside your network cannot connect to your database.
This is clearly described in the following screenshot:

Chapter 6

[123]

8. Finally, give a name and description to the port rule and click on Finish,
as shown in the following screenshot:

We have enabled the firewall port; now, we can safely connect to the database.

Connecting to the database
During the SQL Server Express setup, you have also installed the SQL Studio
Management tool. This tool allows you to connect to the database using the
administrator credentials you specified during the setup. In the Studio
Management tool you can manage the database, create databases,
manage logins, grant privileges, and so much more.

Enterprise Geodatabases

[124]

We will now connect to the database server, GDBServer, from within the same
machine. So, it should work even without the firewall rule. From the Start menu,
expand Microsoft SQL Server 2012 then click on SQL Server Management Studio,
as illustrated in the following screenshot:

You will be prompted with a Connect to Server dialog; in the Server name field,
type your database server's name—mine is GDBServer. Then, select SQL Server
Authentication from the Authentication drop-down list. In the Login field, type
sa—this is our system administrator. I hope you remember the password you set in
the setup because you are going to use it now. Type the password and then click on
Connect. The following screenshot illustrates this:

Chapter 6

[125]

Once you are successfully connected, the Object Explorer tab in the left-hand side
will be populated as you can see in the following screenshot. The Databases node
contains a list of databases configured on this instance whereas the Logins node
contains the users who have access to this instance. We will learn later how to
add a user.

Enterprise Geodatabases

[126]

Connecting to the database from a remote machine
The steps for connecting to the database server are exactly the same as the steps
explained in the previous section. However, in order to connect to the database, you
will need the SQL Server Management Studio tool. You can use the same installer,
SQLEXPRWT_x64_ENU.exe, on the machine you want to connect from and then specify
the Management Tools – Basic feature as explained in the following screenshot:

Creating an enterprise geodatabase
This is the step we have all been waiting for; now that our database is fully
configured and ready, it is time to coat it with the geodatabase flavor. For this, we
need a machine with ArcGIS for Desktop installed; you can use the same machine
you worked on during the course of this book. You will need to install the basic
management tools from the Microsoft SQL Server Express 2012 installer.
For details, refer to the Connecting to the database from a remote machine section.

Chapter 6

[127]

You can also install ArcGIS for Desktop on your database server
and carry on with the exercises.

After installing SQL Server Management Studio, make sure you can connect to
the database at GDBServer. Once you are able to connect successfully, we can
start creating the geodatabase. To do so, perform the following steps:

1. Open ArcCatalog and activate ArcToolbox.
2. Expand Data Management Tools and Geodatabase Administration and

then double-click on Create Enterprise Geodatabase, as illustrated in the
following screenshot:

3. In the Create Enterprise Geodatabase dialog, select SQL Server from the
Database Platform drop-down list because we are creating a SQL Server
Express geodatabase.

4. The instance is the server name. Type in the machine name of your database
server; mine is GDBServer.

Enterprise Geodatabases

[128]

5. Type in the name of the database; if you remember, our database was created
during the setup, and it was SDEDB.

6. Leave the Operating System Authentication (optional) checkbox as
unchecked because we will connect with named database users.

7. In the Database Administrator (optional) field, type sa and enter the
password in the Database Administrator Password (optional) field.

8. Make sure that you check Sde Owned Schema (optional); by doing this,
we ensure that our geodatabase is owned by the SDE user that this process
will automatically create.

9. Type the password of your SDE user and select the authorization file.
The default password settings require the user to create a challenging
password, and to avoid throwing an error, they must use a mix of
alphanumeric characters. For instance, try Sd3P@$$w0rd. All this is
illustrated in the following screenshot:

Chapter 6

[129]

You should get a clean Completed dialog with no red messages, which
looks like the dialog in the following screenshot. This indicates that your
geodatabase has been created.

Working with an enterprise geodatabase
We can start working on our geodatabase after we have successfully created it.
In this section, we will add some database users, create a geodatabase connection,
and then migrate a file geodatabase to the new enterprise geodatabase.

Adding users
Now that we have successfully created the geodatabase, it is time to create some
users. We will use these users to connect later. To create a user on the database,
perform the following steps:

1. Connect to the database using SQL Management Studio.
2. Expand Security, right-click on the Logins node, and then click on

New Login.
3. In the New Login form, type robb in the Login name field.
4. Select SQL Server Authentication and type the password for robb.
5. Uncheck the Enforce password policy checkbox so that we can use

simpler passwords.

Enterprise Geodatabases

[130]

6. In the Default database drop-down list, select sdedb. Don't click on OK
yet; we still have to map robb to sdedb so that the user is able to access
the database. This is illustrated in the following screenshot:

Chapter 6

[131]

7. From the pane on the left-hand side of the dialog, click on User Mapping.
8. Check the sdedb record and type sde in the Default schema column as

shown in the following screenshot:

9. Click on OK to save the changes. Similarly, add the users Joffrey, Tyrion,
and Dany.

Enterprise Geodatabases

[132]

Creating a connection to the enterprise
geodatabase
A geodatabase connection is a channel that is established between ArcGIS and the
enterprise geodatabase. To create a connection, we need to specify the database
server and the user credentials. Without this information, we will not be able to
create a connection. To create a geodatabase connection using the SDE user,
perform the following steps:

1. Open ArcCatalog and expand the Database Connections dialog from the
Catalog Tree window.

2. Double-click on Add Database Connection.
3. From the Database Platform drop-down list, select the database; ours is

SQL Server.
4. In the Instance field, type the name of the server; here, it is GDBServer.
5. Select the Database authentication option from the Authentication Type

drop-down list and type in the SDE credentials.
6. Click on the Database drop-down list. This should be populated

automatically as you leave the password field. Select your geodatabase.
7. Click on OK and rename the connection to sde@gdbserver. This is

illustrated in the following screenshot:

Chapter 6

[133]

The type of geodatabase connection depends on the roles assigned to the user.
Connecting with the sde user will grant you full access to the geodatabase,
where you can copy, delete, and change almost anything.

Use the skills you have acquired to create a feature class, add attributes,
and work with a geodatabase as if it is a file geodatabase. Refer to
Chapter 1, Authoring Geodatabases, for a walkthrough.

Create four more database connections with the users Robb, Joffrey, Tyrion,
and Dany. Give them proper names so we can use them later.

Migrating a file geodatabase to an enterprise
geodatabase
We have our enterprise geodatabase. You might have created a few feature classes
and tables. But eventually, our clients at Belize need to start working on the new
geodatabase. So, we need to migrate the Bestaurants_new.gdb file to this enterprise
geodatabase. This can be done with a simple copy and paste operation. Note that
these steps work in the exact same way on any other DBMS once it is set up. You
can copy and paste from a file geodatabase to any enterprise geodatabase using the
following steps:

1. Open ArcCatalog and browse to your Bestaurants_new.gdb geodatabase.
2. Right-click on the Food_and_Drinks feature class and select Copy, as seen in

the following screenshot:

Enterprise Geodatabases

[134]

3. Now, browse and connect to sde@gdbserver; right-click on an empty area
and click on Paste, as seen in the following screenshot:

4. You will be prompted with a list of datasets that will be copied as shown in
the following screenshot. Luckily, all the configurations will be copied. This
includes domains, subtypes, feature classes, and related tables as follows:

Chapter 6

[135]

5. After the datasets and configurations have been copied, you will see all
your data in the new geodatabase. Note that in an SQL Server enterprise
geodatabase, there are two prefixes added to each dataset. First, the database
is added, which is sdedb, followed by the schema, which is SDE, and finally
the dataset name, as shown in the following screenshot:

Enterprise Geodatabases

[136]

Assigning privileges
Have you tried to connect as Robb or Tyrion to your new geodatabase? If you
haven't, try it now. You will see that none of the users you created have access to the
Food_and_Drinks feature class or any other dataset. You might have guessed why.
That is because SDE has created this data, and only this user can allow other users to
see this data. So, how do we allow users to see other users' datasets? This is simple:
just perform the following steps:

1. From ArcCatalog, connect as sde@gdbserver.
2. Right-click on the sdedb.SDE.Food_and_Drinks feature class, point

the cursor to Manage, and then click on Privileges as shown in the
following screenshot:

3. In the Privileges... dialog, click on Add.
4. Select all four users, Robb, Joffrey, Tyrion, and Dany, and click on OK.

Make sure that the Select checkbox is checked for all four users, which means
they can see and read this feature class.

Chapter 6

[137]

5. For Dany, assign Insert, Update, and Delete so that she can also edit this
feature class, as shown in the following screenshot.

6. Apply the same privileges to all other datasets as follows and click on OK.

Try connecting with Robb; you will now be able to view all datasets. You can use
Dany's account to edit your geodatabase using ArcMap. You can create more viewer
users who have read-only access to your geodatabase but cannot edit or modify it in
any way.

Summary
This was a lengthy and rich chapter full of practical exercises. Enterprise
geodatabases are an excellent choice when you have a multiuser environment.
In this chapter, you learned how to set up, configure, and fully build your own
enterprise geodatabase. You have used SQL Server Express as a relational database
management system's backend, enabled remote access, and configured a number
of users. Then, you created your geodatabase on top of the database instance.
You then learned how to create a geodatabase connection using ArcCatalog to the
new enterprise geodatabase. You migrated your file geodatabase, which you have
authored during your journey through Learning ArcGIS Geodatabases, into a fresh
enterprise geodatabase. Finally, you assigned different privileges to each user and
access control to your new enterprise geodatabase.

Enterprise Geodatabases

[138]

This is the end of the book; let's recap what we have done during the course of this
journey. We started with learning the concept of geodatabases. You might have
noticed that we focused on file geodatabases and not the personal MS Access. The
reason I made this decision is because file geodatabases will have more support
and you can work with them even after a number of years, whereas personal
geodatabases are being discontinued in the next releases of ArcGIS because of
their dependency on Microsoft Office 2003 32-bit and their size limitation, which
cannot exceed 2 GB. It has already been discontinued from ArcGIS for Server, and
I doubt that if you picked up this book after three years, you will have the option
to use personal geodatabases.

In Chapter 1, Authoring Geodatabases, we worked with a case study project called
Bestaurants, created a geodatabase from scratch, added feature classes and
attributes, and set the spatial reference so that we project our data correctly.
We edited the geodatabase and populated these feature classes using ArcMap.
In Chapter 2, Working with Geodatabase Datasets, we introduced new dataset types
such as subtypes, domains, and relationship classes and used them to make our
geodatabase richer. Then, we completely remodeled our geodatabase in Chapter
3, Modeling Geodatabases, where we learned that our initial design was a bit rigid
and complex, so we simplified it using the UML visualization tool. We created a
completely new simplified Bestaurants geodatabase. Our geodatabase became sturdy
and consistent, and the client has been using it and adding features to it. That's why
we had to introduce some optimization tools in Chapter 4, Optimizing Geodatabases,
that will help us maintain a good and healthy geodatabase. We have been using the
graphical user interface in ArcMap and ArcCatalog to work with our geodatabase;
it was time to dive into more advanced tools. This is when we introduced scripting
in Chapter 5, Programming Geodatabases, where we used Python to programmatically
work with geodatabases. Using Python, we built a complete script to back up our
Bestaurant geodatabase on a daily basis. Finally, in Chapter 6, Enterprise Geodatabases,
we took a leap by using an upgraded version of a geodatabase, which is called an
enterprise geodatabase. While setting up and configuring an enterprise geodatabase
is challenging, working with the enterprise geodatabases in ArcCatalog and ArcMap
is similar to working with file geodatabases, with minor differences that were
highlighted throughout the chapter.

Index
A
Add Field tool 101
aggregation relationship 38
annotation

about 43
using 43, 44

ArcGIS geodatabase 8
ArcMap

geodatabase, editing in 19-22
geodatabase, testing 64-66

arcpy library 89
attribute index

about 68-70
adding 71-73

attributes properties
modifying 26, 27

B
backward messaging 38
Belize_Basemap.mxd file 31
Bestaurants

about 9
entity relationship diagram 51

bidirectional relationships
aggregation 38

C
CAD files

importing 47, 48
Calculate Field tool 102
compacting

about 67, 80
file geodatabase 80, 81
using 81-83

working 83
Compact tool 102
composition relationship 38
compressing

about 67, 76
cons 79
file geodatabase 77-79
lossless compression 78
lossy compression 78
using 79

Compress tool 102
Copy Features tool 101
coverage classes

about 49
importing 49

Create Feature class tool 100
Create File GDB tool 100, 104

D
database 7
database management systems. See DBMS
database server

connecting, from remote machine 126
connecting to 124, 125

datasets
about 8
CAD files, importing 47, 48
coverage classes, importing 49
importing 45
shape files, importing 46, 47

DBMS 7, 8
Delete Field tool 101
domain 25
domain, feature class

creating 28-31

[140]

E
enterprise geodatabase

about 111
benefits 112
connection, creating to 132, 133
creating 126-129
file geodatabase, migrating to 133-135
privileges, assigning 136, 137
tasks 112
users, adding 129-131

entity relationship diagram 51
entity relationship diagram, Bestaurants

geodatabase, flaws 52, 53
proposed geodatabase model 54, 55

Esri website
URL 8

F
feature classes

attribute properties, adding to 28
attribute properties, modifying 26-28
domain, creating 28-31
new attributes, adding to 26
subtype, adding 32

feature class, model builder
creating 107, 108

feature dataset 48
features, Python scripting

creating 94
field properties 26
fields, Python scripting

adding, to feature class 92, 93
file geodatabase

compacting 80, 81
compressing 77-79
cons 111
migrating, to enterprise

geodatabase 133-135
firewall database port

enabling 120-123

G
GDBServer. See database server
geodatabase

creating 11-13

editing, in ArcMap 19-23
Feature Classes, creating 13-18
modeling 51
schema, designing 10
spatial reference 13
testing 64-66

geodatabase attachment 55
geodatabase connection

creating, to enterprise geodatabase 132, 133
geodatabase indexing

about 68
attribute index 68

geodatabase, Python scripting
creating 89, 90

geodatabase schema
about 9
designing 10, 11

geoprocessing tool 85
Gliffy 52
Global Positioning System (GPS) 10

I
indexing

about 67, 68
drawbacks 76
geodatabase indexing 68

installing
SQL Server Express 114-117

L
labeling 43
layer 21
lossless compression 78
lossy compression 78

M
Microsoft SQL Server Express geodatabase.

See SQL Server Express
model

creating 103
running 109, 110

model builder
about 85, 102
feature class, creating 107, 108

[141]

model, creating 103-107
model, running 109

N
new attributes

adding, to feature classes 26

O
object tables

about 34
creating 34-38

P
proposed geodatabase model

about 54, 55
attachments in feature class,

enabling 62, 63
authoring 56
datasets, creating 57-60
geodatabase attachment 55
subtypes, adding 61
subtypes, types 61, 62

Python 85
Python scripting

arcpy commands 100-102
feature class, creating 91, 92
features, copying 94
fields, adding 92, 93
fields, deleting 92, 93
geodatabase, creating 89, 90
URL 86-89
using 86
web Bestaurants geodatabase,

backing up 95-99

R
relations

review, adding 41, 42
working with 38-41

relationship class
about 36
creating 36, 38

S
schema 9
shape files

importing 46, 47
Simple peer-to-peer relation 38
spatial index

about 70, 74
adding 75

spatial reference
about 13
URL 13

SQL Server Express
configuring 118
system requirements 113

SQL Server Express configuration
database connection 123, 124, 125
database connection, from remote machine

126
firewall database port, enabling 120-123
TCP remote pipe 118-120

SQL Server Express geodatabase
installing 114-117

subtype, feature class
about 25
adding 32

symbology 21

T
TCP remote pipe

enabling 118-120

U
Uncompress tool 102
users

adding, to enterprise geodatabase 129-131
users' datasets

performing 136, 137

W
web Bestaurants geodatabase

backing up 95-99

Thank you for buying
Learning ArcGIS Geodatabases

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Web and Mobile
ArcGIS Server Applications
with JavaScript
ISBN: 978-1-84969-796-5 Paperback: 274 pages

Master the ArcGIS API for JavaScript, and build
exciting, custom web and mobile GIS applications
with the ArcGIS Server

1. Develop ArcGIS Server applications with
JavaScript, both for traditional web browsers
as well as the mobile platform.

2. Acquire in-demand GIS skills sought by
many employers.

3. Step-by-step instructions, examples, and hands-
on practice designed to help you learn the key
features and design considerations for building
custom ArcGIS Server applications.

Programming ArcGIS 10.1 with
Python Cookbook
ISBN: 978-1-84969-444-5 Paperback: 304 pages

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems for ArcGIS
with Python

1. Learn how to create geoprocessing scripts
with ArcPy.

2. Customize and modify ArcGIS with Python.

3. Create time-saving tools and scripts for ArcGIS.

Please check www.PacktPub.com for information on our titles

Google Maps JavaScript
API Cookbook
ISBN: 978-1-84969-882-5 Paperback: 316 pages

Over 50 recipes to help you create web maps and
GIS web applications using the Google Maps
JavaScript API

1. Add to your website's functionality by utilizing
Google Maps' power.

2. Full of code examples and screenshots for
practical and efficient learning.

3. Empowers you to build your own mapping
application from the ground up.

Administering ArcGIS for Server
ISBN: 978-1-78217-736-4 Paperback: 246 pages

Installing and configuring ArcGIS for Server to
publish, optimize, and secure GIS services

1. Configure ArcGIS for Server to achieve
maximum performance and response time.

2. Understand the product mechanics to build up
good troubleshooting skills.

3. Filled with practical exercises, examples, and
code snippets to help facilitate your learning.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Authoring Geodatabases
	Bestaurants, the best restaurants in Belize
	Designing the geodatabase schema
	Creating the geodatabase
	The spatial reference
	Creating the feature classes

	Editing the geodatabase in ArcMap
	Summary

	Chapter 2 : Working with Geodatabase Datasets
	Working with feature classes
	Adding new attributes
	Modifying the properties of the attributes
	Domains
	Subtypes

	Working with object tables and relations
	Working with annotations
	Importing other datasets
	Importing shape files
	Importing the CAD files
	Importing coverage classes

	Summary

	Chapter 3 : Modeling Geodatabases
	The entity relationship diagram for Bestaurants
	The flaws in the current geodatabase
	The proposed geodatabase model

	Implementing the proposed model
	Authoring the geodatabase
	Creating geodatabase datasets
	Assigning domains to the feature class
	Adding subtypes to the new feature class
	Enabling attachments in the feature class

	Testing the new geodatabase in ArcMap
	Summary

	Chapter 4 : Optimizing Geodatabases
	Geodatabase indexing
	Attribute indexing
	Adding an attribute index
	Spatial indexing
	Adding a spatial index
	Using indexes effectively

	Geodatabase compression
	Compressing a file geodatabase
	Using compression effectively

	Compacting
	Compacting a file geodatabase
	Using compacting effectively

	Summary

	Chapter 5 : Programming Geodatabases
	Using Python scripting
	Creating a geodatabase
	Creating a feature class
	Adding and deleting fields
	Copying features
	Backing up the Bestaurants_Web geodatabase
	A list of arcpy commands

	Using the model builder
	Creating a model
	Creating a feature class
	Running the model

	Summary

	Chapter 6 : Enterprise Geodatabases
	The benefits of the enterprise geodatabase
	Setting up a Microsoft SQL Server Express geodatabase
	System requirements
	Installing SQL Server Express
	Configuring SQL Server Express
	Enabling TCP remote pipe
	Enabling the firewall's database port
	Connecting to the database
	Connecting to the database from a remote machine

	Creating an enterprise geodatabase

	Working with an enterprise geodatabase
	Adding users
	Creating a connection to the enterprise geodatabase
	Migrating a file geodatabase to an enterprise geodatabase
	Assigning privileges

	Summary

	Index

