

LEARN WITH
ANGULAR, BOOTSTRAP, AND NODEJS

By Jeffry Houser

h�ps://www.learn-with.com

h�ps://www.jeffryhouser.com

h�ps://www.dot-com-it.com

Copyright © 2017 by DotComIt, LLC

https://www.learn-with.com/
https://www.jeffryhouser.com/

About the Author
Jeffry Houser is a technical entrepreneur that likes to share cool stuff with
other people.

In the days before business met the Internet, Jeffry obtained a Computer
Science degree. He has solved a problem or two in his programming career.
In 1999, Jeffry started DotComIt; a company specializing in custom
applica�on development.

During the Y2K era, Jeffry wrote three books for Osborne McGraw-Hill. He
is a member of the Apache Flex Project, and created Flextras; a library of
Open Source Flex Components. Jeffry has spoken all over the US. He has
produced hundreds of podcasts, wri�en over 30 ar�cles, and wri�en a
slew of blog posts.

In 2014, Jeffry created Life A�er Flex; an AngularJS training course for Flex
Developers. In 2016, Jeffry launched the Learn With series with books
focusing on using AngularJS with other technologies. Jeffry has worked
with mul�ple clients building AngularJS applica�ons.

Table of Contents
Learn With Angular, Bootstrap, and NodeJS
About the Author
Preface
Introduc�on

What is this Book Series About?
Who Is This Book for?
How to Read This Book
Common Conven�ons
Caveats
Want More?

Chapter 1: The Applica�on Overview and Setup
Introducing the Task Manager Applica�on
Setup Your Environment

Prerequisites
Get the Project Seed
Understand the Project Seed

Create the Database
Create the NodeJS Applica�on

Create a Web Server in NodeJS
Create a Request Router
Create a Response Handler
Create the Main Applica�on File

Create the Applica�on Skeleton

Start with a Basic HTML Page
Set up the SystemJS Config
Setup the Angular Module

Set up the Routes
Create the Login Component
Create the Tasks Component
Create the Rou�ng Module
Put it all Together

Final Thoughts
Chapter 2: Login

Create the User Interface
Crea�ng Value Objects

The Generic Return Object
Create a User Value Object

Examine the Database
Write the Services

Install MSSQL NodeJS Driver
Crea�ng a DatabaseConnec�on Package
Crea�ng JSON in NodeJS
Create the Authen�ca�onService
Test in a Browser

Access the Services
Hashing the Password with Angular
Create the Service
Implement the authen�cate() method
Turn the Service into a Provider

Wire Up the UI
Crea�ng a UserModel

Accessing Component Values from Within the View
Implemen�ng the Reset Bu�on
Implemen�ng the Login Handler

Final Thoughts
Chapter 3: Displaying the Tasks

Create the User Interface
What Goes in the Grid?
Setup the Grid
Tell Angular how to find the Grid Component
Crea�ng a TaskModel and Other Value Objects
Create a Grid Component
Create the DataGrid
Crea�ng a TaskFilter Object

Examine the Database
Write the Services

Install a DateForma�er
Create the Task Service
Tes�ng the getFilteredTasks() Service
Create the TaskService Stub
Turning the Object into a JSON String
Accessing the loadTask() Service

Wire Up the UI
Validate the User before Loading Data
Loading the Tasks

Final Thoughts
Chapter 4: Filtering the Tasks

Create the User Interface
What Data Do We Filter On?

Setup ng-bootstrap
Tell Angular how to find ng-bootstrap
Modify the TaskFilterVO
Create the TaskFilter component
Create the TaskFilter Template
Popula�ng a Select with Angular
Adding a DateChooser
The Filter Bu�on
Adding Styles

Examine the Database
Write the Service

Revisit the getFilteredTasks() Method
Loading Task Categories
Tes�ng Task Categories

Access the Service
Wire Up the UI

Loading Task Categories
Triggering the Filter
Catching the filterRequest Event
Test the Filtering

Final Thoughts
Chapter 5: Crea�ng and Edi�ng Tasks

Create the User Interface
The Task Window
Create the Popup Component
Populate the Popup Template
Opening the New Task Window
Opening the Edit Task Window

Examine the Database
Write the Services

Modify the getFilteredTasks() method
Crea�ng a New Task
Tes�ng Task Crea�on
Upda�ng a Task
Tes�ng Task Updates

Access the Services
Wire Up the UI

Clicking the Save Bu�on
Handle the updateTask() Result

Final Thoughts
Chapter 6: Scheduling Tasks

Create the User Interface
The Task Scheduler Window
Create the TaskScheduler component
Create the Scheduler Template
Modifying the Main Screen
Clicking the Expand Bu�on
Adding the Schedule Bu�on to the TaskGrid

Examine the Database
Write the Services

Revisit the getFilteredTasks()
Scheduling a Single Task
Tes�ng Scheduling a Single Task
Scheduling a Lot of Tasks
Tes�ng Scheduling a Lot of Tasks

Access the Services

Use the scheduleTask() Service
Use the scheduleTaskList() Service

Wire Up the UI
Loading Tasks when Scheduler is Opened
Loading Tasks when the Scheduler Date Changes
Implement the Delete Task from Scheduler Bu�on
Saving all Scheduled Tasks

Final Thoughts
Chapter 7: Marking a Task Completed

Create the User Interface
The Completed Checkbox
The Checkbox Implementa�on

Examine the Database
Crea�ng the Service

The completeTask() Service Method
Tes�ng the completeTask() service
Complete Tasks from Angular

Wire Up the UI
Final Thoughts

Chapter 8: Implemen�ng User Roles
Review User Roles

Role Review
What UI Changes Are Needed?

Modify the UI
Modifying the UserModel
Disabling the Completed Checkbox
Removing the Show Scheduler Bu�on
Removing the Edit Task Column

Final Thoughts
A�erword

Preface
I was a Flex developer for a long �me; however, Adobe’s Flash Pla�orm is
no longer relevant. A smart developer will spend �me educa�ng himself on
new technologies to keep up with a changing market, and to make sure he
has healthy job prospects in the future. While cul�va�ng these new skills, I
decided to write about my experiences. With this series of books, you can
leverage my experience to learn quickly.

This book is about my experiences building Angular applica�ons. Angular is
a JavaScript framework built by Google for building smart user interfaces. It
is built on TypeScript and allows you to build dynamic views in HTML5. It is
fully testable, which is important to many enterprise-level applica�ons. It
has a large developer community, ready to help with problems. I greatly
enjoy building applica�ons with Angular.

This book will show you how to build a Task Manager applica�on using
Angular and Bootstrap. It uses REST services built with NodeJS, so Angular
can interact with a fully func�onal backend.

Introduc�on

What is this Book Series About?
The purpose of this series is to teach by example. The plan is to build an
applica�on using mul�ple technologies. These books will document the
process, with each book focusing on a specific technology or framework.
This entry will focus on Angular 4 as the applica�on framework, and
Bootstrap as the primary UI component library.

The applica�on built in this book will focus on common func�onality
required when I build applica�ons for enterprise consul�ng clients. You’ll
receive step-by-step instruc�ons on how to build a task manager
applica�on. It will integrate with a service layer. A login will be required.
Func�onality will be turned off or on based on the user’s role. Data will be
displayed in a DataGrid, because all my enterprise clients love DataGrids.
Common tasks will be implemented for crea�ng, retrieving, and upda�ng
data.

Who Is This Book for?
Want to learn about building HTML5 applica�ons? Are you interested in
Angular or Bootstrap? Do you want to learn new technologies by following
detailed examples with runnable code? If you answered yes to any of these
ques�ons, then this book is for you!

Here are some topics we’ll touch on in this book, and what you should
know before con�nuing:

· TypeScript: This is the language behind Angular. TypeScript is a
sta�cally typed language that compiles to JavaScript. The more you
know about it, the be�er. If you are not familiar with it yet, check out
our tutorial lesson on learning the basics of TypeScript.

· NodeJS: We use these scripts to compile our TypeScript into
JavaScript, process CSS, and copy files. We’ll also use NodeJS to build
rest services which the main UI will integrate with. Familiarity with
NodeJS will be beneficial, but is not required.

· JavaScript: TypeScript compiles to JavaScript to run in the browser.
Aside from that, we touch on JavaScript rou�nely through the book
in order to configure NodeJS scripts, and SystemJS; a module loader
used by Angular. You should be familiar with JavaScript.

· Angular: The primary focus of this book is on Angular, so we are
going assuming you have no experience with it. At the �me of this
wri�ng, the most current version is Angular 4. If you’re looking for
informa�on on the AngularJS 1.x code base, check out some of the
other books in this series.

· JSON: The data returned from the services will be done so as JSON
packets. JSON should be easy to understand, but if you have no
experience with it, check out our free introduc�on.

· Bootstrap: This is a CSS framework that helps create things such as
popups and date choosers. We’ll use it in conjunc�on with Angular to
help flesh out the applica�on’s user interface.

· SQL: This is the database Server used as the storage mechanism for
this book. As such, the SQL language will be used to communicate
with the database from NodeJS. There aren’t any advanced SQL

https://www.learn-with.com/freebies/
https://www.learn-with.com/freebies/

concepts in this book, but you should have a general understanding
of this type of database Server.

How to Read This Book
Each chapter of this book represents one aspect of the applica�on’s user
interface; logging in, edi�ng a task, etc. Each chapter is split up into these
parts:

· Building the UI: This sec�on will show you how to create the UI
elements of each chapter.

· The Database: There will be sec�ons to review the data that each
chapter’s func�onality deals with. The database storage tables will
be examined here, as well as an explana�on of the data types.

· The Services: This sec�on will cover the APIs of the services that
need to be interacted with. This book will help you create services
using NodeJS. If you’re feeling adventurous, you should be able to
build out the services to any language of your choice.

· Connec�ng the UI to the Services: This sec�on will show you how
the UI code will call the services and handle the results.

Common Conven�ons
I use some common conven�ons in the code behind this book.

· Classes: Class names are in proper case; the first character of the
class in uppercase, and the start of each new compound word being
in uppercase. An example of a class name is MyClass. When
referencing class names in the book text, the file extension is usually
referenced. For TypeScript files that contain classes the extension will
be “ts”. For JavaScript files, the extension is “js”.

· Variables: Variable names are also in proper case, except the first
le�er of the first compound word; it is always lowercase. This
includes class proper�es, private variables, and method arguments. A
sample property name is myProperty.

· Constants: Constants are in all uppercase, with each word
separated by an underscore. A sample constant may be
MY_CONSTANT.

· Method or Func�on Names: Method names use the same
conven�on as property names. When methods are referenced in
text, open and close parentheses are typed a�er the name. A sample
method name may be myMethodName().

· Package or Folder Names: The package names—or folders—are
named using proper case again. In this text, package names are
always referenced as if they were a directory rela�ve to the
applica�on root. A sample package name may be
com/dotComIt/learnwith/myPackage.

Caveats
The goal of this book is to help you become produc�ve crea�ng HTML5
apps with a focus on Angular. It leverages my experience building business
apps, but is not intended to cover everything you need to know about
building HTML5 Applica�ons. This book purposely focuses on the Angular
framework, not the tool chain. If you want to learn more about the tool
chain, check out our bonus book. You should approach this book as part of
your learning process and not as the last thing you’ll ever need to know. Be
sure that you keep educa�ng yourself. I know I will.

https://www.learn-with.com/angular4bonus/

Want More?
You should check out this book’s web site at www.learn-with.com for more
informa�on, such as:

· Source Code: You can find links to all the source code for this book
and others.

· Errata: If we make mistakes, we plan on fixing them. You can always
get the most up-to-date content available from the website. If you
find mistakes, please let us know.

· Test the Apps: The web site will have runnable versions of the app
for you to test.

· Bonus Content: You can find more ar�cles and books expanding on
the content of this book.

http://www.learn-with.com/

Chapter 1: The Applica�on Overview and Setup
This chapter will examine the full scope of the applica�on this book builds.
It will flesh out the code infrastructure. Each subsequent chapter will dive
deeper into one piece of specific func�onality.

Introducing the Task Manager Applica�on
This book will build a Task Manager applica�on. It will start at ground zero,
and create a finished applica�on. The applica�on will include these
func�onali�es:

· A Login Screen so that different users, or types of users, can have
access to the applica�ons func�onality and data.

· The ability to load tasks and display them to the user.

· The ability to filter tasks so that only a subset of the tasks will be
shown in the UI; such as all tasks scheduled on a certain day.

· The ability to mark a task completed.

· The ability to create or edit tasks.

· The ability to schedule a task for a specific day.

Each chapter of this book will focus on a different aspect of the applica�on.

Setup Your Environment
When crea�ng a JavaScript applica�on, you can write code that will
immediately run in the browser. Although build tools are common in
HTML5 applica�ons, they are not required. However, when wri�ng a
TypeScript applica�on, you need a process to compile the TypeScript into
JavaScript so you can run your code in the browser. This sec�on will tell you
how to set your environment up for wri�ng and compiling our TypeScript
Angular applica�on.

Prerequisites
Before you start you’ll need to install some prerequisites:

· NodeJS: Our build process will make use of NodeJS, so I strongly
recommend you get this set and configured locally. It is necessary for
modern web development. When you install NodeJS, the process will
also install the NodeJS Package Manager; “npm”. This will allow you to
easily install NodeJS modules that someone else created. We’ll use
npm in the next chapter to install a SQL Server driver, as it is the
database behind the app.

· Web Server: I use the Apache Web Server, but you should be fine
using Express, IIS, or any web server of your choice. Just configure the
web root, or a virtual directory, to point to your project files.

· Git: This is a source control. Installing Git is op�onal for this book.
We’ll just use it in this chapter to setup the project seed. If you don’t
want to install Git, you can download the project seed files directly
from our GitHub.com repository.

The installa�on instruc�ons on the related web sites will explain how to
install the so�ware for your environment be�er than anything I could offer
here.

Get the Project Seed
An explana�on of crea�ng the build scripts would be very long. To keep the
discussion relevant to wri�ng code, we’re going to use a project seed to
jump start the process. The Angular team provides a seed project you can
use, and it is great to get started quickly. There is also an Angular CLI project
that is popular. I’m going to use the one I wrote. It combines some NodeJS

https://nodejs.org/
https://httpd.apache.org/
https://expressjs.com/
https://www.iis.net/
https://git-scm.com/
https://github.com/Reboog711/LearnWith
https://github.com/angular/angular-seed
https://cli.angular.io/
https://github.com/Reboog711/DCIProjectSeeds/tree/master/Angular4TypeScript

and Gulp scripts. A full explana�on of how I built the seed project is
available as part of the Angular bonus book to this series.

First, you need to check out the seed. If you have Git installed, you can run
this script from the directory where you plan to write your code:
git init
git remote add origin
https://github.com/Reboog711/DCIProjectSeeds.git
git config core.sparsecheckout true
echo Angular4TypeScript/* >> .git/info/sparse-checkout
git pull --depth=1 origin master

Your command line should look like this:

Now, you have to setup the directory. Run these two NodeJS commands:
npm install -g gulp
npm install

The first will install Gulp as a global install. This is required to run Gulp
commands from the command line. The second will install all the required
NodeJS modules for this project. You’ll see results similar to this:

https://www.learn-with.com/angular4bonus/
https://github.com/Reboog711/DCIProjectSeeds.git

Understand the Project Seed
The seed project comes with some default code, so you can run your first
build now:
gulp build

The command line should show you this:

The gulp build command runs a lot of different commands including
compiling TypeScript, copying Angular libraries and sta�c files, and parsing
CSS. Most of the �me when developing you’ll use the buildWatch script:
gulp buildWatch

This will run in the background and recompile the app whenever there are
code changes:

Check out the directory structure and you’ll see something like this:

The important elements you need to understand:

· Root Directory: Contains a lot of the Node and Gulp configura�on
files. You probably won’t have to worry about this for the most part,
but we’ll modify the config in future chapters as we add more libraries
to the project, such as NG Bootsrap.

· build: Contains the build of the applica�on created by the build
scripts. When tes�ng the code in a browser, you’ll open up the
index.html file in here, but otherwise will not need to modify these.

· node_modules: Contains all the NodeJS modules. You won’t need to
touch this.

· src: This directory contains all your source code files including HTML
Files, TypeScript files, CSS files, image assets, and JavaScript libraries.
You’ll spend a lot of �me edi�ng code here throughout this book.

Create the Database
I built the database behind this applica�on in SQL Server, as that is what
most of my clients have used over the years. If you want to set up your
own local environment, there are two SQL Scripts in the database directory
of the code archive:

· GenerateDatabaseJustSchema.sql: This script will create the
database schema without crea�ng any data.

· GenerateDatabaseSchemaAndData.sql: This script will create the
database schema and pre-populate all tables with some test data.

You can run either file that you desire, though I recommend the second
one. These scripts will not create a database file, so you’ll have to create
the database first and then run these scripts against the database you
create. Table structure details will be covered in future chapters.

Create the NodeJS Applica�on
This sec�on will introduce the architecture of our NodeJS applica�on. It will
show you how to build three NodeJS modules that will work together as the
backbone of our app. The first module is a server module, which will accept
incoming requests. The second is a router module that will be used by the
web server to determine how to handle incoming requests. The third will be
a response handler module, which will be used to determine how to handle
the request, and what data to send back to the browser. Finally, we will
build a main applica�on file to �e everything together.

Create a Web Server in NodeJS
When crea�ng the NodeJS applica�on, I decided to use inspira�on from the
directory structure of the other applica�ons built in this series. Our NodeJS
web server will be in the Server.js file in the
com/dotComIt/learnWith/server directory. The first line of the file loads
the NodeJS h�p library:
var http = require('http');

The “require” statement is a cross between an “import” statement and a
variable defini�on. This code loads the NodeJS h�p module and stores a
reference to it in the h�p variable. The h�p module is one of the modules
that included as part of NodeJS.

Our server will also need access to the NodeJS url library:
var url = require("url");

The url library is another built in NodeJS library, and it will be used to
determine what URL the user requested, along with the query string of the
request.

Next, we can create the HTTP server:
http.createServer(function (request, response) {
 // other code here
}).listen(8080);

To create the server, use the createServer() method on the h�p object. The
method has two values; the request, and response. The request object is
used to determine what the client requested, and the response object is

used to send data back to the client. In a moment, we’ll populate the
contents of the method. First, jump to the last line of the code segment.
The dot syntax is used to call the listen method on the h�p.createServer()
object. It specifies the port that the app will listen at. Port 80 is the common
HTTP port, however on my own machine I have that port �ed up by other
web servers. As such, I chose to use port 8080 for this server.

This code should execute as is. First, add a console log at the end of the file:
console.log('Server running at http://127.0.0.1:8080/');

This will show in the NodeJS console, so you can verify that your code has
run. Now try to run the code, and you should see something like this:

If you were to try to load a page with the current server implementa�on,
the request would eventually �me out without loading anything. This is
because we have not coded the server to respond to any explicit requests.
We need to flesh out the anonymous func�on argument to the
createServer() method.

First, parse the request:
var url_parts = url.parse(request.url,true);

The parse method is on the url object, which we imported into this file
using the require() method. The first argument to the parse() func�on is the
“url”, which we get off the request object. The second method is a Boolean,
which we set to “true”. It will say, "Yes, parse the query string".

Now, get the pathname:
var pathname = url_parts.pathname;
console.log("Request for " + pathname + " received.");

The file path is stored to the local variable, named pathname. The path will
include everything a�er the domain name and port. If you request this:

http://localhost:8080/MyPage.html

Then the pathname will be:
/MyPage.html

If you were to request this, instead:
http://localhost:8080/dotComIt/learnWith/someRandomPage/

Then the pathname would be:
/dotComIt/learnWith/someRandomPage/

The pathname will be used within the router to determine what the
request was for, and how to handle it.

Next, get the query string:
var queryString = url_parts.query;

The query string can be taken off the same url_parts object created by the
parse() func�on.

The last step in the method is to call the request router’s route() method:
route(handlers, pathname, response, queryString);

We have not created the route() method yet, but will in the next sec�on.
The input in the router is a handlers variable—which we also haven’t
created yet. It also takes the pathname, the response, and the queryString.

Place the createServer() method inside another func�on named start:
function start(route, handlers){
 // http.createServer() implementation here
}

The start method has two arguments; a route func�on—which will be
created in the next sec�on—and a handlers structure—which will be
created later in this chapter.

The last line of our server module is:
exports.start = start;

This file is a NodeJS module of our own crea�on. The exports command
defines the API that external modules or NodeJS applica�ons will use to

interface with this custom module. In this case, we are exposing the start()
method. This will all come together a�er we create the index.

Create a Request Router
This sec�on will create a request router file. The purpose of this file is to
take in the requested pathname, the query string, the response object, and
the handlers object. It will determine if a handler exists for the relevant
path. If so, it calls the routers func�on. Otherwise, it will need to return a
404 response.

I created a file RequestRouter.js in the com/dotComIt/learnWith/server
directory. First, create the func�on signature:
function route(handlers, pathname, response, queryString) {
}

This func�on defini�on holds the same signature as the route() func�on call
from the previous sec�on. That is because this file represents the
implementa�on of that func�on.

The handlers variable is like an object we use in client side JavaScript. The
key of the handler will be the request, and the value will be a func�on that
handles the request. The first step is to check for the existence of the
handler func�on:
if (typeof handlers[pathname] === 'function') {
 handlers[pathname](response, queryString);
}

The code uses the JavaScript typeof keyword. It determines if the key—AKA
pathname—in the handlers object is a func�on. If it is, then the func�on is
executed; passing in the response object, and the queryString.

If no handler exists for the pathname—or if the handler is not a func�on—
then the code does not know how to handle the request. In this case, a 404
response must be returned. This can be done in the else condi�on:
else {
 response.writeHeader(404, {"Content-Type": "text/plain"});
 response.write("404 Not found");
 response.end();
}

The response first writes the header, which specifies 404. Then it writes
some body text to the response, which just specifies, "404 Not Found".
Finally, it calls the end() method, which closes the request and sends the
final response back to the browser.

For the RequestRouter to be used as a component, it must export the
func�on:
exports.route = route;

That completes the RequestRouter. Next, we will create a
ResponseHandler, and then we’ll put all the files together into a single app
by through a main index file.

Create a Response Handler
This sec�on will show you how to create a sample response handler for
index.html, and then create a ResponseHandler package. First, create a file
named IndexService.js in the com/dotComIt/learnWith/services directory:
function execute(response, queryString) {
 response.writeHeader(200, {"Content-Type": "text/plain"});
 response.write('The Index');
 response.end();
};
exports.execute = execute;

This file represents the handler for processing a request for "/index.html". It
does not need a query string, so that parameter is ignored in the main
func�on. It uses the response variable to write a text header, some content,
and then close the request. This is similar to how the 404 error was
handled.

This file is used in a response handler file. Create a file named
ResponseHandlers.js in the com/dotComIt/learnWith/server directory. The
purpose of this file is to create the handlers associa�ve array, which will be
passed into the server. First, create the associa�ve array as an object:
var handlers = {};

The handlers associa�ve array is ini�alized as a simple object. Next, load the
index service using the require() method:
var indexService = require("./../services/IndexService");

Add the "/index.html" handler to the handlers object, with the value of
indexService.execute:
handlers["/index.html"] = indexService.execute;

Of course, we have to export the handlers variable:
exports.handlers = handlers;

In previous sec�ons, we have only exported func�ons. However, it is
perfectly valid to export variables, which is what is done in this case. Next,
we must put this all together; crea�ng a main file that can be used to launch
the applica�on.

Create the Main Applica�on File
The main applica�on file is Index.js and can be found in the root directory.
The purpose of this file is to load all the other modules and start the server:
var server = require("./com/dotComIt/learnWith/server/Server");
var requestRouter =
require("./com/dotComIt/learnWith/server/RequestRouter");
var requestHandlers =
require("./com/dotComIt/learnWith/server/ResponseHandlers");
server.start(requestRouter.route, requestHandlers.handlers);

First, the server component is loaded. Then the RequestRouter is loaded.
Next, the ResponseHandlers are loaded. All methods use the require()
method, and store the results in a variable.

The final line of the class calls the start() method on the server variable.
This will start the server and allow it to wait for requests. It passes in two
values; the route func�on—which is retrieved from the requestRouter
instance—and the handlers object—that is retrieved from the
requestHandlers instance.

Once you have this code in place, you should be able to execute it:

Try to load localhost:8080/index.html in the browser, and you’ll see the
request get logged to the console:

In the browser, you should see the results of the request:

You should be all set with the primary infrastructure for the NodeJS service
layer for the Learn With applica�on.

Create the Applica�on Skeleton
In this sec�on, we will create the basic applica�on skeleton of the Angular
applica�on. It will show you how to bootstrap your Angular applica�on and
use the rou�ng modules to create two different screens. For the purposes
of this book, I recommend you start with an empty src directory.

Start with a Basic HTML Page
Start by crea�ng a simple HTML page:
<html>
<head>
</head>
<body>
</body>
</html>

I named this page index.html, and it is in the src directory. This page
doesn’t display anything yet, but is about as simple as they come. As part
of the head, load the style sheet:
<link rel="stylesheet" href="app.min.css">

The app.min.css file will be generated by our build script by compiling all
the relevant CSS. Create a styles directory and put an empty styles.css in
it.

Next, we need to load the JavaScript libraries that power Angular:
<script src="js/core-js/client/shim.min.js"></script>
<script src="js/zone.js/dist/zone.js"></script>
<script src="js/reflect-metadata/Reflect.js"></script>
<script src="js/systemjs/dist/system.src.js"></script>

Our build script will copy these files from the node_modules directory into
the build directory.

Set up the SystemJS Config
In AngularJS 1.x applica�ons, it was important to minimize our libraries and
combine them into a big, �ght file. Angular has moved to a module loading
system. This means that libraries are loaded as needed instead of loading
the whole app at once. This cuts down on load �mes, because less files are

being loaded at once. It also requires some up-configura�on. We’re going
to have to tell SystemJS how to find Angular and related libraries.

Create a file named systemjs.config.js in the js/systemJSConfig directory.
Start by crea�ng an Immediately-Invoked Func�on Expression (IIFE):
(function (global) {
})(this);

The this value is sent into the func�on, represen�ng a reference to the
page’s global space. Next, create the config object inside the IIFE:
System.config({
});

The config is an object which will tell SystemJS how to discover the
libraries. We’re going to set three different values in the config object. The
first is the paths:
paths: {
 'js:': 'js/'
},

The paths object is just an alias that points to the root for all our JavaScript
files. Next is a map object. The map tells SystemJS that when it finds a
specific path—such as @angular/core—it should look for the library at the
specified loca�on—such as “js:@angular/core/bundles/core.umd.js”.
No�ce that the path loca�on makes use of the path alias defined in the
previous code snippet. Here is the map sec�on:
map: {
 app: 'com',
 '@angular/core': 'js:@angular/core/bundles/core.umd.js',
 '@angular/common': 'js:@angular/common/bundles/common.umd.js',
 '@angular/compiler':
'js:@angular/compiler/bundles/compiler.umd.js',
 '@angular/platform-browser':
 'js:@angular/platform-browser/bundles/platform-
browser.umd.js',
 '@angular/platform-browser-dynamic':
 'js:@angular/platform-browser-dynamic/bundles/platform-
browser-dynamic.umd.js',
 '@angular/http': 'js:@angular/http/bundles/http.umd.js',
 '@angular/router': 'js:@angular/router/bundles/router.umd.js',
 '@angular/forms': 'js:@angular/forms/bundles/forms.umd.js',

 'rxjs': 'js:rxjs'
},

This defines our local applica�on’s code—in the com directory—all the
Angular libraries, and rxjs which is used under the hood by Angular.

Finally, the packages are defined:
packages: {
 app: {
 main: './dotComIt/learnWith/main/main.js',
 defaultExtension: 'js'
 },
 rxjs: {
 defaultExtension: 'js'
 }
}

Two packages are defined here. One for the rxjs library. The second is for
our main applica�on’s library. This specifies the default extension of the
code files—js—and the main entry point of the applica�on, placed in the
com/dotComIt/learnWith/main/main.js directory. The defaultExtension
property, and the main property refer to “js”. Our applica�on files will be
TypeScript files with the extension “ts”. However, the compila�on process
will turn them into “js” files, and those need to be referenced here.

Be sure to load the SystemJS config file in the main index.html:
<script src="js/systemJSConfig/systemjs.config.js"></script>

That prepares the SystemJS module loader for finding and loading the
Angular modules, and our custom applica�on files.

Setup the Angular Module
It is �me to build the Angular glue that will create the base of our
applica�on. We’re going to create three files. The first is the applica�on’s
main component, which will contain the main display. The second will set
up the applica�on module, and the third will load the module.

First, create the main component—app.component.ts—in the
com/dotComIt/learnWith/main directory. Next, import the Component
class from the @angular/core library:
import { Component } from '@angular/core';

This makes the Component class available for use. Now, create the
Component:
@Component({
 selector: 'lw-app',
 template: `<h1>Hello World</h1>`,
})

The @Component text is called an annota�on in TypeScript world. An
annota�on adds declara�ve data to the component. In this case, we are
telling Angular that the name of this component is lw-app; short for
LearnWith applica�on. We are also telling it that when it encounters this
selector as part of HTML in our app, it should display the template. In this
case, a simple “Hello World” message. It is analogous to an ngApp direc�ve
of an Angular 1 applica�on.

Finally, export the class:
export class AppComponent { }

The class por�on of the component is where we’d put all our code or
business logic. The class is analogous to the controller of an Angular 1
applica�on. For now, we’re keeping the class empty, but we will populate
them with code throughout this book.

Now, create the Angular module. Create a file named app.module.ts in the
com/dotComIt/learnWith/main directory. To begin, import two Angular
classes:
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

The NgModule class is the one that sets up the main Angular applica�on.
The BrowserModule class is the browser specific module that loads the
Angular applica�on into the browser. It contains shared code and compile
�me. Next, import the custom AppComponent we created earlier:
import { AppComponent } from './app.component';

This is so we can tell the module to load our custom component.

With imports complete, we want to set up the @NgModule annota�on:

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})

There are three aspects of the @NgModule annota�on. First, the
BrowserModule class is imported as part of the module. Then, our
AppComponent is declared. The final step is to bootstrap our
AppComponent. This tells Angular that the AppComponent is the main
entry component of this applica�on. By loading that, it will load all the
relevant pieces of the app as needed.

I wanted to explain the difference between imports and declara�ons. They
are very similar, but subtly different. If we need to use func�onality
wrapped up in its own module, then we must import it into our own
module. If we just need to use a component that’s not in its own module,
then we use the declara�ons tag. When preparing a set of components for
reuse, we’d put them in a module of their own. This way, they live in their
own namespace, independent of our own app. For the most prac�cal
purposes, we won’t need to create our own modules.

The final step in the file is to export the class:
export class AppModule { }

That completes the app.module.ts file.

Finally, create the main.ts file in the com/dotComIt/learnWith/main
directory. This file was men�oned in our SystemJS configura�on file as the
entry point of our applica�on. First, import the Angular
pla�ormBrowserDynamic library:
import { platformBrowserDynamic } from '@angular/platform-browser-
dynamic';

The pla�ormBrowserDynamic library takes care of run-�me processing or
templates including features such as binding other interac�ons. Then, load
the appModule:
import { AppModule } from './app.module';

The last step is to put it all together:

platformBrowserDynamic().bootstrapModule(AppModule);

Call the bootstrapModule() func�on on the pla�ormBrowserDynamic() to
call and pass in the AppModule. This will get the Angular app working to
load views, services, or whatever else is needed.

Before we can compile and run the app, we need to make a few addi�ons
to the index.html in the src directory. First, use the SystemJS library to load
the app:
<script>
 System.import('app').then(null, console.error.bind(console));
</script>

Remember that app is defined in the SystemJS configura�on to point to the
com/dotComIt/learnWith/main/main.js file, and the main.js file is
actually the compiled version of main.ts. The main.ts file references the
app.module.ts, which in turn references the app.component.ts. A real
applica�on will have more files and components.

The last step is to add the app selector to the main body:
<body>
 <lw-app>Loading AppComponent content here ...</lw-app>
</body>

The lw-app tag is our custom HTML tag which was created by the selector
in the app-component.ts. Now you can compile your app and load it in a
browser. If you have the buildWatch script running, everything should
already be compiled. If not, just run this:
gulp build

Then load your browser:

Congratula�ons! You just compiled your first Angular applica�on.

Set up the Routes
With a basic structure in place, you’ll want to create an infrastructure for
building the two main screens of this applica�on. The first will be the login
screen, and the second will be the main task display. For now, we’ll just use
place holder screens and implement them in future chapters.

Create the Login Component
The first step is to create one component for each view, star�ng with the
login component. Each component will have three parts:

· A TypeScript class containing the Angular code.
· An HTML File containing the view template.
· A CSS file containing style specific to this component.

Start by crea�ng a new directory at com/dotComIt/learnWith/views/login.
Create the TypeScript file first; login.component.ts. Import the Component
class from the @angular/core library:
import { Component } from '@angular/core';

Next, create the @Component annota�on:
@Component({
 selector: 'login',
 templateUrl :
'./com/dotComIt/learnWith/views/login/login.component.html',
 styleUrls: [
'./com/dotComIt/learnWith/views/login/login.component.css']
})

This specifies the selector; login. Previously when we created a component
we specified a template value and created an in-line template. In this case, I
specified a templateUrl. It is easier to write and change extended HTML
templates in their own file. The path to the HTML component is rela�ve to
the root directory of the app, where the index.html page will be. A styleUrl
property is also specified. This value is an array; loading all the styles
associated with this component. A cool thing about styleUrls is that Angular
keeps the style sheets separate. This way, if you load two components that
have similarly named styles, they will not overwrite each other.

To finish the component, export the LoginComponent class:

export class LoginComponent { }

Next, create the login.component.css file. For now, it is a placeholder and
will be blank. Create the login.component.html file:
<h1>Login View</h1>
<a [routerLink]="['/tasks']">Go Back to Tasks

This is the simplest template we can create. It includes a header sta�ng
which view is being displayed and includes a link to the tasks view. The a tag
uses a routerLink property instead of the tradi�onal href. Behind the
scenes, Angular automa�cally decides how to direct the anchor to the
proper route.

The Gulp build script automa�cally knows how to copy the new HTML file
and CSS file into the build directory with one caveat. As you create new
HTML pages, the buildWatch task will not automa�cally copy them over. It
only no�ced changed files, not new files. You’ll have to manually rerun the
task for it to be aware of the new files you just added.

The final step is to load the LoginComponent in the app.module.ts file.
Open it up and import the LoginComponent:
import {LoginComponent} from "../views/login/login.component";

The path to find the login.component.ts file is rela�ve to the app.module.ts
file, so it moves a directory up from main to learnWith, and then traverses
down to views/login/. Now, add the LoginComponent to the declara�ons:
declarations: [
 AppComponent,
 LoginComponent
],

The LoginComponent is ready to be used in the app, but nothing is coded to
make it show up yet. We’ll fix that a�er crea�ng the Tasks Component.

Create the Tasks Component
As with the LoginComponent, the TasksComponent will be made up of a
TypeScript file, a CSS file, and an HTML Template file. Create a new directory
at com/dotComIt/learnWith/views/tasks. Add an empty file named
tasks.component.css. CSS will be populated in later chapters as required.

Create the TypeScript file next, tasks.component.ts. Import the Component
class from the @angular/core library:
import { Component } from '@angular/core';

Next, create the @Component annota�on:
@Component({
 selector: ‘tasks',
 templateUrl :
'./com/dotComIt/learnWith/views/tasks/tasks.component.html',
 styleUrls: [
'./com/dotComIt/learnWith/views/tasks/tasks.component.css']
})

This specifies the selector, tasks. The templateUrl is pointed to the
tasks.component.html file, rela�ve to the index.html loca�on. The styleUrl
array points to the tasks.component.css file previously created.

To finish the component, export the TasksComponent class:
export class TasksComponent { }

The third file is the login.component.html file:
<h1>Tasks View</h1>
<a [routerLink]="['/Login]">Go Back to Login

This template parallels the login template. It includes a header sta�ng the
tasks view is being displayed and includes a link to the login view. The
routerLink property is used once again to create the link. The Angular
router will do its magic under the hood to load a new view without
redirec�ng the page.

The final step is to load the TasksComponent in the app.module.ts file.
Open it up and import the TasksComponent:
import { TasksComponent } from "../views/tasks/tasks.component";

The path to find the tasks.component.ts file is rela�ve to the app.module.ts
file, so it moves up a directory from main to learnWith, and then traverses
down to views/login/. Now, add the TasksComponent to the declara�ons:
declarations: [
 AppComponent,
 LoginComponent,

 TasksComponent
],

Now both views are ready to be used in the app, but nothing is coded to
make it show up yet. Next, we’ll write the code to create the rou�ng
module.

Create the Rou�ng Module
The Rou�ng Module is the way the app tells the browser which components
to load based on which view is loaded. Create the file rou�ng.module.ts in
the directory com/dotComIt/learnWith/nav. First, import some Angular
classes:
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

First the NgModule is imported from @angular/core. The route is created
as a module instead of a component. Next, two classes from the
@angular/router are imported; the RouterModule and Routes. The
RouterModule represents the underlying code to change and load routes.
The Routes class represents an array of route objects. Each route will be
defined as a single object. Create the routes array:
const ROUTES : Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'tasks', component: TasksComponent },
 { path: '', redirectTo: 'login', pathMatch: 'full' },
 { path: '**', redirectTo: 'login' }
];

This array is created as a constant using the const keyword. Constants are
like variables, except their values are set once and do not change. The value
of the ROUTES constant is of type Routes, the class we imported. Its value is
an array of objects, each one represen�ng a different route.

The first route is the login route, which will load the LoginComponent. The
second is the tasks route, which will load the TasksComponent. The third
route is where things start to get tricky. The path is an empty string, which
you’ll see on the applica�on’s ini�al load. It does not load a route. Instead,
it redirects to the login path. The final path uses a wild card to discover the
root. If the root is unknown, it also redirects to the login route.

Next, create the @NgModule annota�on:
@NgModule({
 imports: [RouterModule.forRoot(ROUTES)],
 exports: [RouterModule]
})

This defines imports and exports. The imports calls the forRoot() method
on the RouterModule to return a routes module with our defined routes,
and a router service. The exports of the RouterModule means that other
modules which import this new module will have access to use the
RouterModule’s classes and components within their own templates.

Finally, export the class:
export class AppRoutingModule {}

With the rou�ng module created, we must now load it in the app.module.ts
file. First, import the class:
import { AppRoutingModule } from '../nav/routing.module';

Now, inside the @ngModule imports, list the AppRou�ngModule:
imports: [
 BrowserModule,
 AppRoutingModule
],

That is the only change required to the main module. However, I want to
show you one more. The Rou�ngModule modifies the browser’s URL as the
user moves around the app. There are a few different strategies for this
change, and the default one must be done in conjunc�on with server-side
configura�on. Otherwise the user may see 404 errors when reloading a
screen. For example, if we were to load the app, like this—
http://dev.learn-with.com/build/index.html

—it would redirect to the login screen:
http://dev.learn-with.com/build/index.html/login

Now reload the page, and you’ll get a 404. That is because index.html/login
is not a valid directory. The solu�on is to tell Angular to use page anchors as

part of the URL. First, import the HashLoca�onStrategy and
Loca�onStrategy classes from @angular/common:
import { HashLocationStrategy, LocationStrategy } from
'@angular/common';

Then, add a provider as part of the @NgModule annota�on:
providers : [{provide: LocationStrategy,
useClass:HashLocationStrategy}],

This will add anchor tags as part of the URL redirect. So loading this—
http://dev.learn-with.com/build/index.html

—would redirect to the login screen, like this:
http://dev.learn-with.com/build/index.html#/login

This is a perfectly valid URL for reloading without any special web server
configura�on.

Put it all Together
We have to make a few more changes before we’re ready to test the app.
First, open up the app.component.ts file. Change the template to include
the router-outlet tag:
@Component({
 selector: 'lw-app',
 template: `<router-outlet></router-outlet>`,
})

The router-outlet tag is a custom Angular tag, just like our lw-app tag. It
comes from the rou�ng module and tells Angular to put the rou�ng views
here.

Next, open the index.html. We’ll need to add a base href for the router to
correctly change the URL. I use some JavaScript to make it work:
<script>document.write('<base href="' + document.location + '" />');
</script>

The short JavaScript snippet finds the loca�on of the main index file, and
the router modules will use it to change the URL a�er that specified
loca�on.

Now, recompile your app and load it in a browser:

We can see on ini�al load we see the Login view and the URL specifies the
login route. As we expected. Click the “Go Back to Tasks” link:

We can see that the URL has changed to show the tasks route, and the Tasks
template is displayed.

Final Thoughts
This chapter showed you the full scope of the applica�on that will be built,
including screenshots of each main sec�on of the app. It helped you set up
the applica�on infrastructure—including a project seed—and showed you
how to use the build scripts. Finally, it explained how to build the main
applica�on shell; showing you how to create components with templates
and use a rou�ng module to navigate between screens of your applica�on.
The next chapter will implement the login func�onality.

Chapter 2: Login
This chapter will examine the authen�ca�on aspect of the Task Manager
applica�on. It will show you how to build out the User Interface, and how
to connect to a service. It will build upon the applica�on skeleton created
in the previous chapter.

Create the User Interface
This sec�on will build the login form for our applica�on. The finished Login
screen will look like this:

This layout is simple, and should be no problem if you have moderate HTML
skills. Open the login.component.html file from the
com/dotComIt/learnWith/views/login directory. I put the elements in a
two-column table. The table has three rows, with the final one spanning
across both columns:
<table>
 <tr>
 <td>Username</td>
 <td><input type="text"> </td>
 </tr>
 <tr>
 <td>Password</td>
 <td><input type="password"> </td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="button" value="Reset" (click)="onReset()"/>
 <input type="button" value="Login" (click)="onLogin()"
/>
 </td>
 </tr>
</table>

I could have created this layout using CSS, but my goal is to be effec�ve and
quick without obsessing over layouts.

The bu�ons at the bo�om of the template have an Angular direc�ve named
click. The direc�ve is surrounded by parenthesis, which is Angular’s way of

responding to an event. When one of the bu�ons is clicked, this direc�ve
tells Angular to execute the specified func�on in the login component’s
class.

Let’s add some placeholders for each func�on. These func�ons should be
put inside the login.component.ts from the
com/dotComIt/learnWith/views/login directory:
export class LoginComponent {
 onReset(): void {
 console.log('onReset');
 }
 onLogin(): void {
 console.log('onLogin');
 }
}

The func�ons do not return anything, so the return element is void. No
arguments are passed in, so nothing is specified.

If you’re adventurous, you can run the app to see the console output. Open
a browser and bring up some web developer tools. Personally, I use F12 in
Chrome on Windows. Click the bu�ons and you’ll see the console output is
logged:

We now have a login screen, but it isn’t working just yet.

Crea�ng Value Objects
Before jumping into the service code, I wanted to create some value
objects used by the UI. A Value Object is, basically, a data container.

The Generic Return Object
We’ll create a class to encapsulate the values returned from services. That
way the service handlers in the applica�on know to look at the consistent
format and determine whether there is an error or not. I named this object
ResultObjectVO on the server-side entries to this series, and will name the
TypeScript version the same. There are two proper�es in this object:

· error: This is a Boolean value. If the error flag is true, then the UI
needs to stop processing and show an error. If the error flag is false,
then the UI can con�nue processing.

· resultObject: This property is a generic object. If there is an error,
then this property would contain the error text. If there is no error,
then this will contain the result of the service. For our authen�ca�on
service, this would contain the user details that the applica�on
needs.

A sample JSON packet for a successful service may look like this:
{
 “resultObject”:[
 {
 “someData”:1,
 “someOtherData”:”me”,
 },
 {
 “someData”:2,
 “someOtherData”:”you”,
 }
],“error”: 0
}

The error property is set to “0”, meaning no error occurred. The
resultObject is set to an array of objects.

A sample packet from a failed authen�ca�on call may be:
{
 “error”: 1,

 “resultObject”:”Something Bad Happened”
}

The error property on the object is set to “1” and the resultObject contains
a string describing the error.

Let’s create the class. Create a new directory in
com/dotComIt/learnWith/vo. Inside that directory, create a new
TypeScript file—ResultObjectVO.ts. This is the contents of the file:
export class ResultObjectVO {
 resultObject : any;
 error : boolean;
};

The class defini�on for the ResultObjectVO is created, with two proper�es
defined. The resultObject has a type of “any” and the error has a type of
”boolean". This can easily be used by other components.

Create a User Value Object
Since TypeScript is sta�cally typed, I’m also going to create a user object to
represent a user who signed into the app. The user object will contain
these proper�es:

· userID: This property contains a unique ID that represents the user.
· username: This property contains the user’s login in name.
· password: This property contains the user’s passwords. For most

prac�cal purposes, we would not send the password back to the app
a�er authen�ca�on the user.

· role: This property will become relevant in later chapters when we
implement role based authen�ca�on.

Create a file named UserVO.ts in the com/dotComIt/learnWith/vo
directory. This is how to create it:
export class UserVO {
 userID: number;
 username: string;
 password: string;
 role: number;
}

The four proper�es are defined, and the UserVO class is exported. It is a
simple class.

Examine the Database
Applica�ons o�en use a database for permanent storage. Most of my
clients use SQL Server, so I used it here; but any database server of your
choice will work. This applica�on should support role-based authen�ca�on.
This means the user will login and will be assigned a role. Then func�onality
within the app will turn on or off based on those roles. For the sake of this
applica�on, each user will only have a single role. This would be a one-to-
many rela�onship in database-speak.

The data to store for users is this:

· userID: The primary key for this user.
· userName: The name that this user will use to login.
· password: This column will store the user’s hashed password. I’ll

speak more about the password hashing in a bit.
· roleID: This column will be a foreign key; used to associate the user

with their specific permissions from the role table.

The data stored for the user roles is this:

· roleID: The primary key for the role. This field is mirrored in the
users table as a foreign key and is used to relate the two tables.

· role: This is a text field for the role which is any text descriptor you
wish to use.

The table structure looks like this:

In the UI, the user will enter their username and password, which will get
sent to the service. The service will then run a query to select the user
informa�on. The SQL Query will be like this:

select *
from users
where username = ‘inputUsername’ and password =’inputPassword’

The inputPassword will have to be pre-hashed, as we will not be storing
passwords in plain text. The inputUsername can be plain text. For the
purposes of authen�ca�on, we don’t need to join the two tables because
the name of the role is needed. The UI can use only the roleID to control
access to certain features.

For the purposes of this sample, I have created two roles for this
applica�on:

· Tasker: This is the role that can create and edit tasks. In our
imaginary world, this is me.

· Creator: This role can view tasks, and can create tasks. They cannot
edit tasks, schedule tasks, or mark tasks as completed. In our
imaginary world, this is my wife, who wants to know what I’m up to
on any given day.

Following this, I have created two users in the database:

· Me/Me: The user with the RoleID of “1”, who will have full access to
the applica�on.

· Wife/Wife: The wife user will have the RoleID of “2”, and will be
able to view and create tasks, but not edit or schedule tasks.

These two roles allow us to mimic a more complicated system that may
exist within the context of an Enterprise client.

Write the Services
This sec�on will cover the NodeJS code needed for the authen�ca�on. It
will talk about the database driver used to access a Microso� SQL Server
database, and show you how to use that in an item. It will also explain how
to create the JSON results that will be returned from the services. Lastly, it
will cover the actual service code needed to perform authen�ca�on.

Install MSSQL NodeJS Driver
Most of my consul�ng clients over the years have used SQL Server, which is
why I use it here. However, the database structure and SQL is simple
enough that any database should work for your purposes. Se�ng up the
NodeJS connec�on will require a specific package based on the database
server of your choosing.

The package I’m using is named mssql. To install the package for use in
NodeJS, just open up a console window and run this:
npm install mssql

Op�onally, you can use the "-g" flag to install it globally:
npm install mssql –g

You should see a result similar to this:

https://www.npmjs.org/package/mssql

Now you should now be able to use the mssql package inside of your
NodeJS applica�on.

Crea�ng a DatabaseConnec�on Package
When originally architec�ng the NodeJS applica�on, I wanted to try to
encapsulate as much as possible. So, I created a single NodeJS module that
would handle all the database interac�ons. Ideally, this will make it easy to
replace the module with one that uses a different database driver. I created
the file DatabaseConnec�on.js in the folder
com/dotComIt/learnWith/database.

First, we need to load the mssql driver:
var sql = require("mssql");

This uses the require statement to load the package we installed in the
previous sec�on. This package will need a config object that can be used to
tell the driver how to find the database:
var config = {
 user: 'LearnWithUser',
 password: 'password',
 server: 'dev.mySQLServer.com',
 database: 'LearnWithApp',
 port : 1433
};

The config object specifies a username, password, server loca�on, and the
name of the database. You’ll have to replace these values with the ones
from your own setup.

Next create an executeQuery() func�on:
var executeQuery = function(query, resultHandler, failureHandler){
};

The executeQuery() func�on will be the method used by others packages to
execute queries. It accepts three arguments:

· query: This argument is a string that represents the query we want
to execute.

· resultHandler: This argument represents a func�on—or callback—
which will be executed upon successful execu�on of the query.

· failureHandler: This argument represents a func�on—or callback—
to be executed if there is an error running the query.

Populate the body of the executeQuery() method:
var connection = new sql.ConnectionPool(config);
connection.connect(function(){
 new sql.Request(connection).query(query)

.then(resultHandler).catch(failureHandler);
});

First, the connec�on object is created with the Connec�onPool() method of
the sql class. This accepts the config object as an argument. The connect()
func�on is executed off of that connec�on object. It accepts a single
argument; the func�on to run when the connec�on is made.

Inside the func�on, a new instance of sql.Request() is created. The query()
method is run against it. This will execute the query. This is also done
asynchronously. If a successful result is returned from the query, then the
resultHandler callback is executed inside the then() command. If an error
occurs, the catch() func�on is executed, and the failureHandler argument’s
callback is executed. The primary reason for the use of callbacks is so that
we can use the same code to execute the query, but handle results
differently for different types of calls. Service calls that load tasks will handle
results differently than the service call to authen�cate a user. This allows us
a lot of flexibility in our implementa�on, while s�ll encapsula�ng the
database call code.

The final step in this package is to expose the executeQuery func�on:
exports.executeQuery = executeQuery;

This will allow for the executeQuery() method to be called from other
packages.

Crea�ng JSON in NodeJS
In my own development, I o�en return a consistent object from all my
services. This helps when building UI Services because I always have a
conven�on that I can use for the type of data that came back. NodeJS
doesn’t have the concept of classes in the same manner a sta�cally typed

language would, but we can s�ll create a standard to represent a generic
result object.

These are the proper�es of the result object:

· error: This is a Boolean value. If the error flag is “true”, then the UI
will know that there is an error, and to stop further processing. In this
case, it will display a message to the user. If the error flag is “false”,
then the UI should know there is no error and it can con�nue
processing as normal.

· resultObject: This property is a generic object. If there is an error,
then the resultObject will contain a string descrip�on of the error that
the UI can display to the user. If there is no error, then the
resultObject will be the value expected from the service. In our
authen�ca�on service, it will contain user details. When retrieving
task informa�on, it will contain an array of tasks. The UI will know
how to process the resultObject based on the type of call made and
the informa�on expected back.

In NodeJS, we are going to create this as a regular JavaScript object, and
then convert it to JSON before returning it to the user. I created a NodeJS
module to handle the generic conversions. Create the file
JSONResponseHandler.js and put it in the
com/dotComIt/learnWith/server directory.

First, create an execute() func�on:
function execute(response, data, callback){
}

This func�on accepts three parameters. The first, “response”, represents
the response object that can be used to send data back to the user. The
second argument is “data”, which represents the value needed to be sent to
the user. The third argument is “callback”. This is a string argument, which
represents a callback that will wrap the JSON in case we want to use JSONP.
When calling the NodeJS code from the Angular app, JSONP will be used.

Next, populate the response header:
response.writeHead(200, {"Content-Type": "application/javascript"});

The response header is a 200 code, and is of type "applica�on/javascript".
Then convert the data string into JSON:
var json = JSON.stringify(data);

The JSON object is a JavaScript object and the stringify() method is used to
create a JSON string. This will be the results we want to send back to the
user.

Next, check for a callback. If it exists, wrap the JSON string in the callback
func�on call:
if(callback != ''){
 json = callback + "(" + json + ")";
}

Finish off the execute method by wri�ng the final output with the write()
method, and closing the response with the end() method.
response.write(json);
response.end();

The last step in our JSONResponseHandler.js file is to export the execute
method:
exports.execute = execute;

This module exists as a helper func�on used to process the output of our
service calls.

Create the Authen�ca�onService
This sec�on will create the actual login service. Create a file named
Authen�ca�onService.js in the com/dotComIt/learnWith/services
directory. The Authen�ca�onService will make use of the
DatabaseConnec�on module to talk to the database, and the
JSONResponseHandler module to return a JSON result. The first step is to
import those two modules with the require() method:
var databaseConnection =
require("./../database/DatabaseConnection");
var responseHandler = require("./../server/JSONResponseHandler")

Next, create the handler func�on:

function login(response, queryString) {
}

The handler func�on for the authen�ca�on method is named login(). It
accepts a “response” argument, and a “queryString” argument. The first
step inside this method is to ini�alize a response object:
var resultObject = {};

The resultObject variable will represent the ResultObjectVO, which
contains an error property and a resultObject property. Next, see if a
callback is specified as part of the query string:
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

The callback variable is ini�alized to an empty string. Then, we check to see
if the queryString argument contains a callback variable. If it does, then the
callback is copied over to the local func�on. If it is not, then the callback
remains as an empty string.

Next, the method needs to validate the input. If the username and
password are not defined in the queryString, then there is no need to
a�empt authen�ca�on:
if((queryString.username == undefined) ||
 (queryString.password == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
}

If this error occurs, then the resultObject value is given an error property
with the value of “1”. Then the JSONResponseHandler is called to convert
the resultObject into JSON, add the callback—if it exists—and return the
informa�on to the client.
} else {
 query = "select * from users ";
 query = query + "where username = '" + queryString.username + "'
";
 query = query + "and password = '" + queryString.password + "'
";

This uses some string concatena�on to create the database query. No�ce,
the else statement group is not closed with a curly bracket yet. Next, the
databaseConnec�on object is used to execute the query:
 var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 if(result.recordset.length == 1){
 resultObject.error = 0;
 resultObject.resultObject = {};
 resultObject.resultObject.userID =
result.recordset[0].userID;
 resultObject.resultObject.username =
result.recordset[0].userName;
 resultObject.resultObject.role = result.recordset[0].roleID;
 } else {
 resultObject.error = 1;
 }
 responseHandler.execute(response, resultObject, callback);
 },
 function(err){
 console.log('AuthenticationServiceExecuteFailureHandler')
 console.log(err);
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
 });
} // this ends the else statement

The executeQuery() method was the one we created in the
DatabaseConnec�on class. It accepts three arguments; a string argument
represen�ng the query to execute, a result handler func�on, and an error
handler func�on. I created both the result handler and the error handler
func�ons in-line.

First, the result handler func�on checks to see if any items were returned in
the result object’s recordset. If so, then a success object is created, copying
the user data into the resultObject.resultObject property. Finally, the
responseHandler is used to create the JSON result and send that back to
the user. If not, the error property of the resultObject is set. The final
aspect of the result handler method is to use the responseHandler to
return the JSON result to the calling en�ty.

The failure handler method assumes there is an error. It sets the error
property on the result object to “1”, and then returns the JSON to the

calling en�ty.

The last step in this file is to export the login func�on:
exports.login = login;

This completes the Authen�ca�onService. But, we s�ll have to tell our main
app to use it. Open the ResponseHandlers.js class from the
com/dotComIt/learnWith/server directory. Load the
Authen�ca�onService:
var authenticationService =
require("./../services/AuthenticationService");

And add the handler:
handlers["/login"] = authenticationService.login;

Now, restart your NodeJS applica�on and you should be good to go.

Test in a Browser
The easiest way to test this code is to launch a browser and test some URLs.
Try this URL:
http://localhost:8080/login

This should give you an error because it has no query string parameters:
{"error":1}

Try this URL, which should log in the "me/me" user:
http://localhost:8080/login?
username=me&password=AB86A1E1EF70DFF97959067B723C5C24

You should see a result like this:
{
 "error":0,
 "resultObject":{
 "userID":1,
 "username":"me",
 "role":1
 }
}

You can try a few different op�ons to see what the code returns. The next
step is to integrate this service into the Angular applica�on.

Access the Services
This sec�on will create the UI Service code.

Hashing the Password with Angular
Before we examine the UI’s authen�cate() method, we’ll need to setup a
hashing library so that we can hash the password before it is sent over the
wire to the server. We’re going to use ts-md5 library. Install it:
npm install –save-dev ts-md5

You should see something like this:

This library is a TypeScript implementa�on of the md5 hash and can be used
directly from TypeScript.

We’ll have to tell the build scripts how to move the file from the install
loca�on to the build loca�on. Open the config.js file in the project root and
find the angularLibraries variable:
angularLibraries : [
 'core-js/client/shim.min.js',
 'zone.js/dist/**',
 'reflect-metadata/Reflect.js',
 'systemjs/dist/system.src.js',
 '@angular/**/bundles/**',
 'rxjs/**/*.js',
 'angular-in-memory-web-api/bundles/in-memory-web-api.umd.js',
 'ts-md5/dist/**.js'
],

I added a glob to represent the ts-md5 distribu�on folder and related files
at the end. Our build script will know to look for these values in the
node_modules directory and move them to the js library of the build
folder.

Open the SystemJS configura�on file in js/systemJSConfig. We need to tell
SystemJS how to find this library. Find the map object. At the end, add this

https://www.npmjs.com/package/ts-md5

entry:
'ts-md5' : 'js:ts-md5 '

Now add the ts-md5 to the packages object:
'ts-md5': {
 main: '/md5.js'
}

Now, when the app rebuilds, you’ll be able to import this library into the
Authen�ca�onService and hash the password.

Create the Service
The next thing we need to cover is how to access the NodeJS services from
the Angular applica�on. To do this, we will make use of JSONP. Our app
code and service code are located on different domains, since we aren’t
using NodeJS to deliver our build directory to the applica�on.

JavaScript cannot access services on a different domain due to cross site
scrip�ng restric�ons implemented by the browser. We can get around this
a few different ways; JSONP and CORS. JSONP can be done in the calling
code while CORS needs to be set up based on the remote service. We’re
going to use JSONP for this book, as it is easier to set up. JSONP works by
using the HTML script tag to load items from different domains, but
Angular has libraries that handle the complexi�es of it.

Create a file named Authen�ca�onService.ts and put it in the
com/dotComIt/learnWith/services/nodejs directory. We’re going to need
to import a bunch of things. Start with the Injectable library from the
@angular/core:
import {Injectable} from "@angular/core";

This is used to specify that this library can be used as a provider, and that it
may have other providers injected into it upon crea�on. Now, a class from
the @angular/h�p library:
import {Jsonp} from "@angular/http";

The Jsonp class is the Angular library for loading remote data via JSONP.

We’ll need to import a few things from the rxjs library. This is a library that
Angular uses under the hood to help create observables:
import {Observable} from "rxjs/Observable";
import 'rxjs/add/operator/map';

The Observable property is a class. The map import will be used on the
class to process the results of the service call and pass them back to the
invoking code’s success func�on. Finally, import our ResultObjectVO:
import {ResultObjectVO} from "../../vo/ResultObjectVO";

Before we start the class, create a constant for a service URL:
const server : string = 'http://127.0.0.1:8080/';

This points to the loca�on of the NodeJS services.

Now, create the class:
@Injectable()
export class AuthenticationService {
}

This specifies the @Injectable() annota�on. Create the constructor:
constructor(private jsonp: Jsonp) {}

The Jsonp service will be injected into this class via the constructor. This
makes it available later for making the service call.

For the Jsonp service to be injected into this class, we need to set it up as a
provider as part of the main module. Open up app.module.ts in
com/dotComIt/learnWith/main. Import the JsonpModule:
import { JsonpModule } from '@angular/http';

The JsonpModule is a helper module that includes the Jsonp service. Set it
up as an import as part of the @ngModule annota�on:
imports: [
 BrowserModule,
 AppRoutingModule,
 FormsModule,
 JsonpModule
],

Now, the Jsonp service will inject into the Authen�ca�onService class.

Implement the authen�cate() method
Now, implement the authen�cate() method inside the
Authen�ca�onService object:
authenticate(username : string, password : string) :

Observable<ResultObjectVO> {
}

This method accepts two string arguments; a username and a password. It
returns an Observable of type ResultObjectVO.

There are two parameters we need to pass to the remote service; the
username, the password. A third parameter—callback—is included as part
of the string. The value of this is JSONP_CALLBACK, and it is a default
Angular value. The NodeJS code will use the callback to wrap the resul�ng
JSON in the func�on call for JSONP_CALLBACK, and Angular will
automa�cally execute the func�on to get the returned data.

To add these parameters to the call, you’ll need to put them in a string; like
a query string that you may find in a URL:
let parameters : string = "username" + '=' + username + '&';
parameters += "password" + '=' + Md5.hashStr(password) + "&";
parameters += "callback" + "=" + "JSONP_CALLBACK" ;

The code block creates a parameter variable and adds the service method
arguments to it one by one. The username and callback are just used as
strings. However, the password must be encrypted with an MD5 hash
before sending it. This is for security purposes. It is never a good idea to
send a plain text password over the wire. Don’t forget to import the MD5
hash library:
import {Md5} from 'ts-md5/dist/md5';

The final parameter string will look like this:
username=me&password=ab86a1e1ef70dff97959067b723c5c24&method=authen
ticate

Create a variable to hold the URL to make the call:
let url = server + 'login?' + parameters;

The last step is to make the method call.
return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO);

The argument to the post method is the url variable, represen�ng the
endpoint of the service. The Jsonp call returns an Observable, which is
returned from the method. We use the dot nota�on to run a map()
func�on against the results. When something is returned, the map()

func�on will be executed. The results of the map will be returned to the
calling code’s success method. Our map() turns the JSON into a
ResultObjectVO instance. Behind the scenes, Angular will wait for the
service to return data before running the map() func�on.

Turn the Service into a Provider
We want to set up the Authen�ca�onService as a provider for our
applica�on. Open the app.module.ts file in the
com/dotComIt/learnWith/main directory. Import the Authen�ca�on
service:
import {AuthenticationService} from

 "../services/nodejs/authentication.service";

Then load the Authen�ca�onService as a provider:
providers : [
 {provide: LocationStrategy, useClass:HashLocationStrategy},
 UserModel,
 AuthenticationService
],

If you’re reviewing the code archive for this series of books, you’ll no�ce
that the code for this book is shared between other books in this series.
That is because the bulk of it is iden�cal, with a few minor tweaks. I did
create some NodeJS specific files:

· index_NodeJS.html: This is for the main HTML file. It loads a
NodeJS specific version of the SystemJS config, but otherwise is not
changed. For the bulk of this text, I’ll refer to it as index.html.

· systemjs.config.nodejs.js: A NodeJS specific version of the SystemJS
configura�on. It changes the main app to the NodeJS main file. For
the bulk of the text I’ll leave out the nodejs in the file name.

· main.nodejs.ts: This is the NodeJS main applica�on file, used to
load the NodeJS main module. As with other files, I won’t men�on
the nodejs when referring to this file.

· app.module.nodejs.js: This is the applica�on’s main module. It is
used to load specific services and providers for accessing a NodeJS
server and ignore code for other servers.

If you build the app from scratch with the book, which I strongly
recommend, you won’t run into problems. But, when you review the code
archive for each chapter, this is something to be aware of.

Wire Up the UI
This sec�on will demonstrate how to complete the implementa�on of the
login func�onality. It will explain how to wire the service layer up to the
user interface, and successfully authen�cate the user. Along the way, it will
also show you how to share data between mul�ple components, access
user input forms, and condi�onally hide HTML elements.

Crea�ng a UserModel
This sec�on will show you how to create a UserModel. It will be a
TypeScript class that is used for sharing user data between the different
parts of this applica�on.

First, create a new directory at com/dotComIt/learnWith/model. I created
a TypeScript file in this called UserModel.ts.

First, the file requires us to import the UserVO class:
import {UserVO} from "../vo/UserVO";
import {Injectable} from "@angular/core";

I also imported the Injectable class from the @angular/core library. This
will allow us to easily set up this new class as an Angular provider.

Then, create the class defini�on:
@Injectable()
export class UserModel {
 user : UserVO;
};

This is a TypeScript class with no dependencies upon the Angular
framework. It contains a single object; the user. To use this class in our
applica�on, we need to set it up as a provider in the app.module.ts.

First, import it:
import {UserModel} from "../model/usermodel";

Then, modify the providers array of the @NgModule annota�on:
providers : [
 {provide: LocationStrategy, useClass:HashLocationStrategy},
 AuthenticationService,

 UserModel
],

This will make an instance of the UserModel class available to all our
underlying components.

Accessing Component Values from Within the View
Next, we want to associate the input values for username and password to
values in the login component. First, open up the login.component.ts file in
the com/dotComIt/learnWith/views/login directory. Create two proper�es
on the LoginComponent class:
username = '';
password = '';

Then, switch over to the login.component.html template in the same
directory. We are going to use a direc�ve named ngModel:
<input type="text" [(ngModel)]="username">

The ngModel is an Angular direc�ve. It is enclosed in array nota�on—[]—
and parenthesis nota�on—(). This is Angular short form for two-way data
binding. When the value of the input changes, the variable changes in the
component. On the other hand, when the variable changes in the
component, the value displayed in the HTML template changes. Do the
same thing for the password:
<input type="password" [(ngModel)]="password">

The ngModel direc�ve is part of the Angular FormsModule library. That
library will need to be loaded in the app.module.ts class. First, import it:
import { FormsModule } from '@angular/forms';

Then add it to the imports:
imports: [
 BrowserModule,
 AppRoutingModule,
 FormsModule,
],

This step is required, or else the ngModel will throw run�me errors
sugges�ng an unknown property on the input tag.

Implemen�ng the Reset Bu�on
There are two bu�ons to implement in the UI; the reset bu�on and the
login bu�on. The reset bu�on is easier to implement, so let’s start there.
Earlier in the chapter, you saw the click on the reset bu�on and created a
method stub for onReset(). The code for the onReset() func�on is inside the
login.component.ts file. Previously, we had created a method stub.

Here is the full implementa�on:
onReset(): void {
 this.username = '';
 this.password = '';
}

The code inside the bu�on accesses the local username and password
variables and sets them to blank strings. The Angular form of binding
automa�cally knows to update the view template with the new, blank
values.

Implemen�ng the Login Handler
The last step in the Authen�ca�on process is to wire the login bu�on up to
a method, integrate the service call inside the method, and handle the
results. Poten�ally, the results could be errors so we need a way to display
errors to the user. Open the Login.component.html template in the
com/dotComIt/learnWith/views/login directory. Here, we are going to add
more table cells to the layout table.

First, add a new table row to the top of the table:
<tr *ngIf="loginError">
 <td colspan="3">
 <div class="alert alert-danger warningAlert ">
 <h2>{{loginError}}</h2>
 </div>
 </td>
</tr>

This will display any login error returned from the service. It is displayed as a
Bootstrap alert. Bootstrap is a CSS library, so we’ll need to load that in the
main index.html file:
<link rel="stylesheet"
 href="//maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

alpha.6/css/bootstrap.min.css" />

Another thing to no�ce is the *ngIf direc�ve on the tr tag. It is a way for
Angular to condi�onally include a template, or not. In this case, we are
using it to hide the loginError table row when there is no login error, and
show it when there is.

We are also going to include individual errors to make sure that the user
filled out both the username and password:
<td class="error">{{usernameError}}</td>

The userNameError variable is something we’ll define shortly, inside the
login component.

A�er the table cell with the password input, add this:
<td class="error">{{passwordError}}</td>

The passwordError is something we’ll add in the LoginCtrl soon. You’ll
no�ce that the two table cells have a class associated with them; error. This
is a CSS Style. Although the purpose of this book is not to focus on design
aspects of HTML5, I didn’t want to leave the app completely dry. I created a
new directory for styles and put a styles.css file in there. The file contains
one simple CSS class:
.error {
 color: #ff0000;
}

This style will automa�cally be processed by our Gulp build scripts and
turned into a file named app.min.css. This should already be loaded in the
main index.html page. If not, you can add this here:
<link rel="stylesheet" href="app.min.css">

Now open the login.component.ts file to edit the login component’s class.
First, you need to create the three variables to contain the error:
usernameError = '';
passwordError = '';
loginError = '';

I placed them right under the defini�on of the username and password
variables. The login method will require use of our providers, so we need to

make sure they are available to the login component.

Create a constructor:
constructor(
 private authenticationService: AuthenticationService,
 private router: Router,
 private userModel :UserModel
) {}

The constructor defines local private component variables that Angular will
automa�cally inject into the component. The authen�ca�onService and
userModel variables point to shared data sources created as providers on
the @NgModule. The router is just an instance of the Router variable which
can will be used to redirect the user to the tasks view a�er successful sign
in.

Now it is �me to implement the onLogin() method. When we last saw this
method, it had nothing more than an output to the console. Here is the
method signature again:
onLogin(): void {
}

The first step in the method is to perform some error checking. If there are
errors, it populates the error variables, and exits the method. First, create a
Boolean value to determine whether an error was found or not:
let errorFound : boolean = false;

The default value of the errorFound is “false”. If we find errors, the
errorFound variable will change to “true”. Then, default the loginError:
this.loginError = '';

This will reset the loginError variable to an empty string and hide the
display if it is already displayed.

First, check to make sure that a username was entered. Simple condi�onal
logic is used:
if (this.username === '') {
 this.usernameError = 'You Must Enter a Username';
 errorFound = true;
} else {

 this.usernameError = '';
}

The condi�onal checks the username property of the user object on the
userModel variable. If it has no value, change the usernameError variable—
which will, in turn, update the view. It also sets the errorFound variable to
“true”. If a username was entered, then the usernameError value is set to
be blank. This will effec�vely remove the error from the user’s display.

Error checking for the password acts similarly:
if (this.password === '') {
 this.passwordError = 'You Must Enter a Password';
 errorFound = true;
} else {
 this.passwordError = '';
}

The reason that the errorFound is not set to “false” in the else condi�on is
because it is possible the user could have entered a password, but not a
username. In which case, se�ng the errorFound variable to “false” would
essen�ally negate the first round of tests.

Here is the last step in error checking:
if (errorFound === true) {
 return;
}

This code segment checks the errorFound variable. If it is “true”, it uses the
“return” keyword. This keyword tells the method to stop execu�ng, and
return a value. Though, in this case, we aren’t returning any value.

You can test this out in a browser. Click the “Login” bu�on without entering
any values to see this:

The last step is to execute the authen�cate method on the
Authen�ca�onService:
this.authenticationService.authenticate(this.username,
this.password)
 .subscribe(
 result => {
 // result code
 }, error => {
 // error code
 }
)

This calls the authen�cate() method in the service. It passes in the
username and password. The result is an Observable object. The
subscribe() func�on is called on the observable and it contains one func�on
that will execute upon success, and one for failure. Both func�ons are
created with the TypeScript lambda operator and the arguments are passed
into the subscribe func�on.

This is the success code:
if (result.error) {
 this.loginError = 'We could not log you in';
 return;
}
this.userModel.user = result.resultObject as UserVO;
this.router.navigate(['/tasks']);

This code checks for the error property on the result. If it is “true”, then it
displays an error to the user using the loginError variable. If it is “false”,
then we had a successful login. Save the user object the userModel, and
use the router to redirect to the tasks route.

This is the error func�on will execute upon promise rejec�on:
this.loginError = 'There was an authentication service error';

For simplicity, it just sets the loginError value, which in turn will ac�vate the
UI table row and will display the error to the user. Here is an example of the
loginError displayed:

The service integra�on code is setup so that the only way a promise
rejec�on would occur is if there was a network or other unexpected error.
Even a failed login will return a successful result. I worked on one
applica�on where the service layer would return an HTTP status code 403—
meaning forbidden access—if a login failed. That situa�on would execute
the failure method instead of the success method. I’ve grown fond of that
approach. Though, it is uncommon among my clientele.

Final Thoughts
This chapter implemented a login screen which communicated with a
remote service. We created view templates and component classes and
shared data between the two using component variables and the ngModel
direc�ve. If this is your first look at Angular, I wanted to give a full
accoun�ng of what happens when you load the Angular App:

1. The main HTML page loads and all the JavaScript files that
represent Angular dependencies are loaded; Shim.js, Zone.js, Reflect-
Metadata, and SystemJS.

2. Our custom SystemJS config is loaded. It is an Immediately-Invoked
Func�on Expression, so it will run immediately. It tells SystemJS
where to find all the Angular libraries and our custom applica�on.

3. The System.import(‘app’) code is run inside the index.html. This
loads our main Angular file.

4. The main Angular file bootstraps the app module, which loads the
relevant applica�on components and classes.

5. Angular introspects the HTML page, finds lw-app and replaces it
with the appropriate Angular view.

6. The view contains a router, so the router ini�alizes and changes the
URL to load the default login route.

7. The login component template is loaded, wai�ng for user input.
8. User enters creden�als and clicks the login bu�on. This triggers a

service call to the authen�ca�on service. The authen�ca�on service
returns a promise object to the component, and the components
waits for it to resolve or reject.

9. If the promise object resolves, the result is processed and the user
is logged in and redirected to the main tasks view, or shown an error.

10. If the promise object is rejected, the user is shown an error.

The next chapter will focus on loading tasks and displaying them in a
DataGrid.

Chapter 3: Displaying the Tasks
This chapter will focus on loading the task data and displaying it to the
user. An open source Angular grid library—ngx-datatable—will be used for
display. We will also review the services needed to retrieve the data, and
wire up everything to display. Since this is the first screen beyond the login
screen, we will also implement code to make sure the user cannot view the
tasks screen without logging in.

Create the User Interface
This sec�on will show you how to create the grid within the Angular
applica�on. It will review the data to display in the grid, and show you how
to customize a column’s display.

What Goes in the Grid?
This is a review of the data that needs to be displayed in the task grid. The
data is what makes up a task for the context of this applica�on. Here are the
fields:

· Completed: The grid will display whether or not the item was
completed. This column will be displayed as a checkbox. If the item is
checked, that means the item was completed. If the item is not
checked, it is not completed. This will also provide an easy way for the
user to mark the item completed. Chapter 7 will implement the ability
to mark an item completed.

· Descrip�on: This column will contain the details of the task.
· Category: Tasks can be categorized and the grid will display each

task category to the user.
· Date Created: The grid will display the date that the task was

created.
· Date Scheduled: The grid will display the date that the task was

scheduled for. Chapter 5 will show you how to build the interface for
scheduling tasks.

The final grid will look like this:

Setup the Grid
First order of business is to configure out app to load the ngx-datatable. To
do this, first we’ll have to install the libraries via NodeJS. Then, we’ll have to

https://github.com/swimlane/ngx-datatable

modify our Gulp scripts to copy over the related assets. A�er that’s done,
we’ll have to modify our SystemJS config so it knows how to load the ngx-
datatable component.

First, install the grid library by running this Node command on the console:
npm install --save-dev @swimlane/ngx-datatable

You’ll see something like this:

Node will automa�cally download the latest version of the library and
update the package.json which tells Node what libraries it needs.

Next, modify the Gulp scripts to copy the relevant CSS and JavaScript behind
the grid. Open the config.js file in the root directory of the project. The ngx-
datatable was wri�en in TypeScript, but includes the compiled JavaScript
version of it in their release build. We just need to copy that. Find the
angularLibraries variable in the config.js file. It should look like this:
angularLibraries : [
 'core-js/client/shim.min.js',
 'zone.js/dist/**',
 'reflect-metadata/Reflect.js',
 'systemjs/dist/system.src.js',
 '@angular/**/bundles/**',
 'rxjs/**/*.js'
],

This array is a bunch of globs. A glob is a pa�ern that specifies how to find
files. The script uses this variable to copy the relevant libraries from the
node_modules directory to the build/js directory. The node_modules is not
specified, because it is assumed in the copy task. We just need to add the
ngx-datatable library at the end of this array:
'@swimlane/ngx-datatable/release/index.js'

Next, we need to handle the cssSource. This is what it looks like in its
current state:

https://en.wikipedia.org/wiki/Glob_(programming)

cssSource : [baseDirs.sourceRoot + '**/*.css',
 '!' + baseDirs.sourceRoot + baseDirs.codeRoot +
'/**/*.css'
],

The variable looks for all CSS in the source root—src—but avoids anything
that is in the code root—com. The build script assumes anything in the com
directory will be part of an Angular component, and does not need to be
processed into the app’s primary CSS file; Angular will load it when needed.
Two addi�onal globs to this array to accommodate for the ngx-datatable
specific styles:
'node_modules/@swimlane/ngx-datatable/release/**/*.css',
'!node_modules/@swimlane/ngx-datatable/release/**/app.css'

The first glob looks for all the all the CSS files in the ngx-datatable release
directory. The second tells to ignore the app.css file in the same directory.
At the �me of this wri�ng, the ngx-datatable release directory contains a
style sheet for the demo app of the component instead of styles just for the
component itself.

The ngx-databable CSS has some references to external font files, so they
will need to be copied from the node_modules directory to the build
directory also. The gulp script isn’t set up to handle font files by default, so
we’ll create a new task strictly for the grid assets. Open the gulpfile.js in
your project’s root directory and add this:
gulp.task('copyGridAssets', function () {
 return gulp.src('node_modules/@swimlane/ngx-
datatable/release/assets/fonts/*.*')
 .pipe(gulp.dest(config.destinationPath + '/fonts'));
});

Add this new copyGridAssets task to the build script:
gulp.task("build", ['buildTS', 'copyJSLibraries',
'copyAngularLibraries',
 'copyHTML','buildCSS','copyStaticAssets',
 'copyGridAssets']);

Now, run your gulp build script. It should copy over the new, relevant files.

Check out the build directory structure:

You’ll see the fonts directory was successfully copied over, as was the
@swimlane/ngx-datatable/release/ JavaScript file. The ngx-datatable’s CSS
was added to app.min.css. With the files handled, the component is ready.
Next, we’ll tell Angular how to find it.

Tell Angular how to find the Grid Component
There are two code changes required to tell Angular about this new
component. The first is to configure SystemJS about the component. The
second is to load the component into the applica�on’s main module.

Open the systemjs.config.js file in the js/systemJSConfig/ directory. Look
for the System.config command. It creates accepts object defining
SystemJS’s config. Look for the map property. This tells SystemJS how to find
all the Angular libraries. We just need to add the new library now:
'@swimlane/ngx-datatable' : 'js:@swimlane/ngx-
datatable/release/index.js'

This is an important step when adding new libraries, but an easy one to
forget.

Open the app.module.ts file and import the ngx-datatable:
import { NgxDatatableModule } from '@swimlane/ngx-datatable';

Then, add it to the import array in the @NgModule annota�on:
imports: [
 BrowserModule,
 AppRoutingModule,
 FormsModule,
 NgxDatatableModule
],

That completes the basic install.

Crea�ng a TaskModel and Other Value Objects
We are going to create a TaskModel for this app. It will be a class that
contains task related data which can be easily shared across mul�ple
components. Create a taskmodel.ts file in the
com/dotComIt/learnWith/model directory.

Start by defining the class:
export class TaskModel {
};

For the moment, the only property we are going to add to the TaskModel is
an array of tasks. This will be used by the grid to display the tasks to the
user. Before we do that, we need a task object. Create a file named TaskVO
in com/dotComIt/learnWith/vo:
export class TaskVO {
 completed : boolean;
 dateCompleted : Date;
 dateCreated : Date;

 dateScheduled : Date;
 description : string;
 taskCategory : string;
 taskCategoryID : number;
 taskID : number;
 userID : number;
};

This class contains all the proper�es we discussed in rela�on to the task grid
earlier; category, completed state, date completed, date scheduled, and
descrip�on. It also contains the date created, the primary ID for the task—
taskID—the primary ID for the user—userID—and the primary key for the
category—taskCategoryID. There is no advanced func�onality in the value
object class; it is just a data container.

Import the TaskVO into the TaskModel:
import {TaskVO} from "../vo/TaskVO";

And create the tasks array as a property on the TaskModel:
tasks : TaskVO[];

Since this is a model class to be used as part of Angular’s dependency
injec�on process, let’s make it injectable with the annota�on. First, import
the Injectable class:
import {Injectable} from "@angular/core";

And add the @Injectable() annota�on before the class defini�on:
@Injectable()
export class TaskModel {

It is considered good prac�ce to set up all our provider classes with the
@Injectable() annota�on.

To make use of the TaskModel in the Angular applica�on, you need to set it
up as a provider in the @NgModule annota�on from the app.module.ts
file. First, import the TaskModel class:
import {TaskModel} from "../model/taskmodel";

Then, add it to the providers array:
providers : [
 {provide: LocationStrategy, useClass:HashLocationStrategy},

 AuthenticationService,
 UserModel,
 TaskModel
],

Now we can use the TaskModel across mul�ple views.

Create a Grid Component
Let’s create a new component to display the task grid. In the
com/dotComIt/learnWith/views/tasks folder, create a file named
taskgrid.component.ts. Import the Angular component library and the
TaskModel:
import {Component} from '@angular/core';
import {TaskModel} from '../../model/taskmodel';

Next, create the @Component annota�on:
@Component({
 selector: 'taskgrid',
 templateUrl :
'./com/dotComIt/learnWith/views/tasks/taskgrid.component.html',
 styleUrls: [
'./com/dotComIt/learnWith/views/tasks/taskgrid.component.css']
})

The component’s name is taskgrid. This is the HTML tag we’ll use in our
views to display the grid. A templateUrl and styleUrls are both specified.
Create two empty files in the same view directory;
taskgrid.component.html and taskgrid.component.css.

Next, create the class:
export class TaskGrid {
 constructor(private taskModel :TaskModel) {
 }
}

The class is named TaskGrid. For now, I just created a constructor, which
includes an instance of the TaskModel.

Let’s add an array of tasks now:
public tasks : TaskVO[];

I defined this below the constructor, not as part of it. With the new class,
also add the import:
import {TaskVO} from "../../vo/TaskVO";

The tasks array will be used to hold the grid’s data.

Be sure to load the TaskGrid component in the app.module.ts file. First,
import it:
import {TaskGrid} from "../views/tasks/taskgrid.component";

Then, add it to the @NgModule’s declara�ons array:
declarations: [
 AppComponent,
 LoginComponent,
 TasksComponent,
 TaskGrid
],

A�er that, open the tasks.component.html in the
com/dotComIt/learnWith/views/tasks directory. Delete all the contents of
the file and replace it with:
<taskgrid></taskgrid>

If you rebuild the app and load it in a browser, the TaskGrid component
should display to the screen. Because it is currently an empty template, you
won’t see anything. Next, we can create the Grid.

Create the DataGrid
Open up the taskgrid.component.html in the
com/dotComIt/learnWith/views/tasks directory. Create an empty div:
<div>
</div>

Then, create the ngx-datatable:
<ngx-datatable #taskGrid
 class="material gridStyle"
 [rows]="tasks"
 [headerHeight]="50"
 [rowHeight]="50"
 [columnMode]="'force'"

>
</ngx-datatable>

The first thing you’ll no�ce is the #taskgrid property. This is not an HTML
property; it is a way for the Angular class to get a hook into grid. We won’t
need that for this chapter, but it will come into play in chapter 6 when we
create the scheduler component.

Next, two CSS classes are specified. The first is material, which is part of the
ngx-datatable styles. The second is gridStyle, and that is something we
need to create. Open the taskgrid.component.css file and add the styles:
.gridStyle {
 border: 1px solid rgb(212,212,212);
 width: 100%;
 height : 100%;
}

This tells the grid to stretch the height and width of its container. It also
adds a border around the grid.

Back to the main grid proper�es. You’ll no�ce that all remaining proper�es
contain square brackets around them. This is Angular nota�on for data
binding to a property, so these proper�es are custom proper�es
implemented as part of the ngx-datatable component. The rows property is
set to the tasks array from the taskgrid component. The headerHeight and
rowHeight are both hard coded to 50 pixels high. The columnMode is set to
force, which means the columns will distribute evenly across the grid.

We’re going to define the columns as part of the HTML file. Start with the
descrip�on:
<ngx-datatable-column name="Description" >
</ngx-datatable-column>

This uses the ngx-datatable-column component to create the descrip�on
column. The component will introspect the tasks array to find this column,
and the word “Descrip�on” will display in the header. If we want to specify
different header text than the property, we can do that too:
<ngx-datatable-column name="Category" prop="taskCategory" >
</ngx-datatable-column>

The name property will show up in the header, while the contents of the
column will show the taskCategory property of the row’s object.

Next, create the completed column. This one requires a custom template:
<ngx-datatable-column name="Completed" >
 <ng-template let-value="value" ngx-datatable-cell-template>
 <input type="checkbox" [checked]="value" />
 </ng-template>
</ngx-datatable-column>

The ngx-datatable-column defini�on is the same as what we used for
previous columns. The header’s name uses the name property for display,
and will introspect the TaskVO objects to find the completed property. The
body of the ngx-datatable-column is no longer empty. It includes an ng-
template direc�ve, along with an ngx-datatable-cell-template dis�nguisher.
The let-value property tells Angular to pass the value for the column—
completed—into the template with the name “value”. Inside the template is
an input checkbox. The checked property is set to “value”. With this done,
when we load the tasks, the completed property will automa�cally check or
uncheck based on value in the object. I put completed as the first column.

Now, create a column for the dateCreated value:
<ngx-datatable-column name="Date Created" prop="dateCreated" >
 <ng-template let-value="value" ngx-datatable-cell-template>
 {{value | date: 'shortDate'}}
 </ng-template>
</ngx-datatable-column>

This uses another template. In this case, we are using an Angular pipe to
format the date. An Angular pipe is analogous to a filter in AngularJS. We
display the data column followed by a ver�cal pipe character. Then the filter
informa�on. In this case, the date pipe is used, along with the default
“shortDate” filter. This will format the date to the common US date format;
month/day/year. Angular does have facili�es for us to create our own
pipes. However, it is not needed in this case.

Finally, create the dateScheduled column:
<ngx-datatable-column name="Date Scheduled" prop="dateScheduled" >
 <ng-template let-value="value" ngx-datatable-cell-template>
 {{value | date: 'shortDate'}}

https://angular.io/docs/ts/latest/api/common/index/DatePipe-pipe.html

 </ng-template>
</ngx-datatable-column>

This mirrors the dateCreated column. For now, that completes our grid.

Crea�ng a TaskFilter Object
Before jumping into the services, I want to create a value object. The service
method we are going to call is a loadTasks() method. It will retrieve tasks
based on specific filter criteria. In our ini�al load of tasks, we only care
about two values in the filter:

· startDate: The start date will filter against the date that an item was
created. For the app’s ini�al load, it will be hard-coded to March 1,
2017 because that was the date the database ini�ally used when
crea�ng a bunch of data for this app. In a real-world app, we’d
probably default it to today’s date.

· completed: The completed property will be used to allow users the
ability to see tasks that are either completed, or those that remain to
be done. When loading the default, it is set to “0” to retrieve all the
incomplete tasks.

There are other values that may be contained in the taskFilter class,
however these are the only two needed for this chapter. We want to
contain these values in a UI object.

Create a new file named TaskFilterVO.ts in the
com/dotComIt/learnWith/vo directory:
export class TaskFilterVO {
 completed : boolean;
 startDate : Date;
};

We’ll create an instance of this class to pass into the service that performs
the filtering.

Examine the Database
The database behind this applica�on is a SQL Server database. Two tables
reside behind the tasks:

The data will support the UI. It also has a few addi�ons to accommodate for
internal values, such as the primary keys, which are not usually explicitly
displayed to the user.

This is the data in the tables:

· taskID: This is the primary key for the task.
· taskCategoryID: This is the primary key for the task category. It

represents a one-to-many rela�onship; meaning that a task can only
be in a single category, but a category can have many tasks associated
with it. This field shows up in two tables.

· taskCategory: This column contains the name of the category that a
task was put into. A category from the TaskCategories table is
connected to the Tasks table using the taskCategoryID.

· userID: This is the user’s primary key. Although the user table is not
shown in the above diagram, this column represents a one-to-many
rela�onship between tasks and users. A user can have many tasks, but
each task is associated with only a single user.

· descrip�on: This is the primary task text.
· dateCreated: This column is a date column that keeps track of when

the task was created.

· dateCompleted: This column keeps track of when a task was marked
as completed. Marking tasks complete will be detailed in a future
chapter.

· dateScheduled: This column keeps track of when the task was
scheduled. A future chapter will focus on how to schedule tasks for a
specific date.

A query with a join can be used to select the data:
select * from tasks
join taskCategories on (tasks.taskCategoryID =
taskCategories.taskCategoryID)

This query will return the data that is needed to populate the columns in
our UI’s DataGrid.

Write the Services
This sec�on will cover the NodeJS services needed to load and filter tasks. It
will teach you how to create a new NodeJS service, and use a new NodeJS
module for date forma�ng purposes.

Install a DateForma�er
The first step is to install a NodeJS forma�er module. The purpose of this is
to format date values before sending them back to the UI. Instead of wri�ng
my own format func�on, I decided to look for a NodeJS package that can do
the same. I found one, node-dateformat. You can install it by running this on
your command line:
npm install --save-dev dateformat

You’ll see the install like this:

Now you should be good to go to import it into a NodeJS module, like this:
var dateFormatter = require('dateformat');

Then you can use it to format dates in your NodeJS code, like this:
dateFormatter (new Date(), "mm/dd/yyyy");

Create the Task Service
The TaskService module that we will create will be the basis for most of our
task related services. This includes loading tasks, edi�ng tasks, and marking
tasks as “completed”. In this sec�on, we will focus on loading tasks. First
create the file—TaskService.js—in the com/dotComIt/learnWith/services
directory.

The file starts with some imports:
var dateFormatter = require("dateformat");
var databaseConnection =
require("./../database/DatabaseConnection");
var responseHandler = require("./../server/JSONResponseHandler");

https://github.com/felixge/node-dateformat

This makes the global dateformat package available for use. It also loads
our local DatabaseConnec�on and JSONResponseHandler modules from
the last chapter.

Next create the func�on signature for loading the tasks:
function getFilteredTasks(response, queryString) {
}

This method uses the same signature as previous handlers we have created.
It accepts the response object and a queryString object.

Inside the getFilteredTasks() method, we are going to see some common
boilerplate:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

This creates a generic resultObject that will contain the results we need to
send back to the applica�on. It also saves the callback func�on name, if
defined. We used similar code in the previous chapter when crea�ng the
authen�ca�on service.

Next comes some error checking. The required argument into this service
call will be a JSON object named filter. Make sure that the filter parameter
is defined:
if((queryString.filter == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
} else {
 // Process the query; we’ll do that next
}

If the filter argument is not defined, add the error value on the resultObject
and return results to the client.

If the filter argument is defined, we need to create the query and process it.
The filter object will come in as a JSON string, so start by turning it into a
na�ve JavaScript object:
var json = JSON.parse(queryString.filter);

The JSON.parse() func�on will turn a JSON string into a JavaScript object.
Next, we’ll start the query crea�on. First, step up a variable named firstOne:
var firstOne = true;

The database query we are going to create has a lot of condi�ons. The
firstOne variable will be used to determine if we need to add the "where"
clause—for the first condi�on—or an "and" clause to append condi�ons.

Start the query:
var query = "select tasks.*, taskCategories.taskCategory
 from tasks left outer join taskCategories on
 (tasks.taskCategoryID =
taskCategories.taskCategoryID)";

This is the base query, and it will return all tasks. However, we need to be
able to limit the number of returned tasks based on the user input. For the
purposes of this sec�on, we’ll implement the completed property to return
completed tasks, and the start date to return tasks created a�er a specific
date.

First, check for the completed property:
if(json.completed != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 if(json.completed == true){
 query = query + " completed = 1 ";
 } else {
 query = query + " completed = 0 ";
 }
}

If the firstOne variable is “true”, then add a "where" clause to the query,
and set the firstOne value to “false”. Otherwise, an "and" is added to
concatenate the new condi�on with the previous condi�ons. The
completed property is a Boolean property, or a bit property in the database.
As such, it always uses a “1” or “0” for the comparison no ma�er what the
value for the completed argument.

Next, we want to use the startDate property to compare against the
dateCreated database value:
if(json.startDate != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 query = query + " dateCreated >= '" + json.startDate + "' ";
}

This assumes that the dates will already be properly forma�ed to be
recognized as dates by the SQL query, so we do not do any processing on
the dates here. The startDate must be before, or equal to the database’s
dateCreated date.

The final aspect of the query is to sort the results:
query = query + " order by dateCreated ";

Next, we can use the databaseConnec�on object to execute the query
against the database:
var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 // Process Query Results here
 },
 function(err) {
 // Process Error Results here
 }
)

If the result handler is executed, then we get back a successful query result
and want to send a successful response to the browser:
resultObject.error = 0;

This sets the error value of the resultObject to “0”, meaning we had a
successful query. Next, you’ll want to format the dates in the result set, so
loop over the returned recordset:
for (var x=0;x < result.recordset.length ; x++){
 result.recordset[x].dateCreated =

dateFormatter(result.recordset[x].dateCreated, "mm/dd/yyyy");

 if(result.recordset[x].dateCompleted){
 result.recordset[x].dateCompleted =

dateFormatter(result.recordset[x].dateCompleted, "mm/dd/yyyy");
 } else {
 result.recordset[x].dateCompleted = '';
 }
 if(result.recordset[x].dateScheduled){
 result.recordset[x].dateScheduled.setDate(

result.recordset[x].dateScheduled.getDate() + 1);
 result.recordset[x].dateScheduled =dateFormatter(

result.recordset[x].dateScheduled, "mm/dd/yyyy");
 } else {
 result.recordset[x].dateScheduled = '';
 }
}

Inside the query loop, each “date” column is replaced with a forma�ed
version of itself, removing the �me stamp. The dateForma�er module is
used to format the date. For the “dateCompleted” and “dateScheduled”
columns, we check to make sure that a value exists before trying to format
it. If the value doesn’t exist, it is set to an empty string. With the
dateScheduled property, I ran into some �me zone related issues which
would set the forma�ed date a day behind the one specified in the UI. As an
ad-hoc solu�on, I added a single day to the dateScheduled before
forma�ng it. I felt this was the best solu�on, as I didn’t want to make
changes and rewrites to exis�ng code in the UI.

Next, add the final recordset to the resultObject:
resultObject.resultObject = result.recordset;

Finally, call the responseHandler to convert the resultObject into JSON and
pass it back to the user:
responseHandler.execute(response, resultObject, callback);

This is the error handler func�on:
resultObject.error = 1;
responseHandler.execute(response, resultObject, callback);

The error handler only executes if something bad happened with the query.
An error response is returned to the client.

That completes the getFilteredTasks() method in the TaskService. We will
expand on this method in future chapters as more filtering criteria is added.
However, we s�ll need to export this method for use by other modules:
exports.getFilteredTasks = getFilteredTasks;

Next, open the ResponseHandlers file from the
com/dotComIt/learnWith/server directory. Import the taskService
method:
var taskService = require("./../services/TaskService");

And add the getFilteredTasks() method into the handlers object:
handlers["/taskService/getFilteredTasks"] =
taskService.getFilteredTasks;

Tes�ng the getFilteredTasks() Service
At this point, you can restart your NodeJS server and the new TaskService
should be ready to accept and respond to getFilteredTasks requests. Try a
few out by loading things in the browser. This URL should load all the tasks
which are not completed:
http://127.0.0.1:8080/taskService/getFilteredTasks?
method=getFilteredTasks
 &filter={"completed":"0"}

You should see results similar to this:
{
 "resultObject":[
 {"taskcategoryID":2,
 "description":"Get Milk",
 "taskcategory":"Personal",
 "dateScheduled":"03\/29\/2016",
 "dateCompleted":"",
 "taskID":1,
 "dateCreated":"03\/27\/2016",
 "completed":0,
 "userID":1
 },
 {"taskcategoryID":1,
 "description":

 "Finish Chapter 2",
 "taskcategory":"Business",
 "dateScheduled":"03\/29\/2016",
 "dateCompleted":"",
 "taskID":2,
 "dateCreated":"03\/28\/2016",
 "completed":0,
 "userID":1
 },
 {"taskcategoryID":1,
 "description":"Plan Chapter 5",
 "dateScheduled":"03\/20\/2016",
 "taskcategory":"Business",
 "dateCompleted":"",
 "taskID":5,
 "dateCreated":"03\/28\/2016",
 "completed":0,
 "userID":1
 }
],
 "error":0.0
}

This URL should show you tasks created a�er March 29, 2017:
http://127.0.0.1:8080/taskService/getFilteredTasks?
method=getFilteredTasks
 &filter={"startDate":"3/29/2017"}

It should show results similar to this:
{
 "resultObject":[
 {"taskcategoryID":1,
 "description":"Write Code for Chapter 3",
 "dateScheduled":"03\/29\/2017",
 "taskcategory":"Business",
 "dateCompleted":"",
 "taskID":3,
 "dateCreated":"03\/29\/2017",
 "completed":0,
 "userID":1
 },
 {"taskcategoryID":1,
 "description":"Write Chapter 4",
 "taskcategory":"Business",
 "dateScheduled":"03\/20\/2017",
 "dateCompleted":"",
 "taskID":4,

 "dateCreated":"03\/30\/2017",
 "completed":0,
 "userID":1
 },
 {"taskcategoryID":1,
 "description":"Learn JQuery",
 "taskcategory":"Business",
 "dateScheduled":"",
 "dateCompleted":"",
 "taskID":6,
 "dateCreated":"03\/31\/2017",
 "completed":0,
 "userID":1
 }
],
 "error":0.0
}

You can tweak the filter parameter to experiment with different values and
their return sets.

Create the TaskService Stub
First, you’ll want to create a stub class for the TaskService. Create the file
TaskService.ts in the com/dotComIt/learnWith/services/nodejs directory,
and add some imports:
import {Injectable} from "@angular/core";
import {Jsonp } from "@angular/http";

This imports the Injectable class so we can have Angular inject providers
into this class.

Add a constant for the server loca�on:
const SERVER : string = 'http://127.0.0.1:8080/';

We’ll use this to tell our service calls how to find the NodeJS source
directory rela�ve to the current Angular applica�on.

Now, create the class stub:
@Injectable()
export class TaskService {
}

This uses the @Injectable() annota�on and defines the class name.

Next, create the constructor:
constructor(private jsonp: Jsonp) {
}

The constructor has an instance of Jsonp service as an argument. This is
already created as provider in the Angular module defini�on.

Now open up the app.module.ts file in the
com/dotComIt/learnWith/main directory. Import the TaskService:
import {TaskService} from "../services/nodejs/task.service";

Now, add both classes as providers as part of the @NgModule annota�on:
providers : [
 {provide: LocationStrategy, useClass:HashLocationStrategy},
 UserModel,
 AuthenticationService,

 TaskModel,
 TaskService
],

This will allow the TaskService class to be used within the applica�on.
However, we s�ll need to implement the loadTasks() method and some
conversion func�ons for turning our objects into HTTP friendly strings.

Turning the Object into a JSON String
Before looking at the method for loading tasks, I want to review a few
important points. First, in Chapter 2, we created a special string to pass
values from the Angular code to the NodeJS Server using JSONP. We did
this for the authen�ca�on service integra�on. For task service integra�on,
we are going to have to take it a step further and perform a transla�on of
our object arguments into something that can be easily sent to NodeJS.
We’re going to create a func�on to convert a TypeScript object into a JSON
String.

Create a new class file named h�pU�ls.ts in the
com/dotComIt/learnWith/services/nodejs directory. Start with two
imports:
import {DatePipe} from "@angular/common";
import {isObject} from "rxjs/util/isObject";

This imports the DatePipe, which will be used for date forma�ng, and an
isObject() func�on which can be used to determine if a variable contains
an object. Create the class stub:
export class HttpUtils {
}

The objToJSONString() func�on will accept an object and turn it into a
JSON string. The service is expec�ng a string which represents a
TaskFilterVO object in JSON form. This is the objToJSONString() signature:
static objToJSONString (obj : any) :string {
}

It accepts a single argument—“obj”—which is the object that needs to be
converted into a JSON string. The first line of the method creates an
instance of the DatePipe:
let datePipe : DatePipe = new DatePipe('en-US');

I’m using an Angular func�onality in a class which otherwise has no
Angular dependencies. The argument into the DatePipe constructor is the
locale. In this case I set it to “en-US”. Now, create a string for the results:

let str = '';

Next, we need to look over all the proper�es in the argument object:
for (var p in obj) {
 if (obj.hasOwnProperty(p)) {
 }
}

The first thing this does is check that the obj has the property “p”. This
check is done for performance reasons, because a for-in loop will include
all values or func�ons in the object’s hierarchy. We only want to check
proper�es on the current object.

First, check if the obj[p] value is numeric:
if (isNumeric(obj[p])) {
 str += "\"" + p + "\":\"" + obj[p] + "\",";
}

This uses the rxjs isNumeric() func�on, so be sure to import it:
import {isNumeric} from "rxjs/util/isNumeric";

The isNumeric() check is performed because if the value is a number, we
want to be sure it is included in the final result. If that number is “0”—
which is en�rely possible given some of our drop-down sources—a
Boolean check or is-defined check will return “false”. We want to avoid that
trap. This check is there primarily because the “all categories” item in the
task drop-down may be “0”.

Next, check if the value is Boolean:
else if (typeof(obj[p]) === "boolean") {
 str += "\"" + p + "\":\"" + obj[p] + "\",";
}

There isn’t a handy rxjs library func�on for checking if a value is a Boolean,
so I fell back on using the JavaScript typeof check. This is there to check the
value of the completed drop-down. If it is “false”; it will fail a “does this
value exist” check. A “false” Boolean value does exist.

Now, check if the value exists:
} else if (obj[p]) {
 if (obj[p] instanceof Date) {

 str += "\"" + p + "\":\"" + datePipe.transform(obj[p], 'yyyy-
MM-dd') +
 "\",";
 } else {
 str += "\"" + p + "\":\"" + obj[p] + "\",";
 }
}

If it does, dig deeper. If the obj[p] is a date object, we want to use the
datePipe to convert it to a date string, removing any �me stamps. If the
obj[p] is not a date object, then translate it into a string with no addi�onal
processing.

Each property name is enclosed in double quotes. A colon is used to
separate the property name and the property value. A�er the colon, the
object’s value is displayed, also surrounded by quotes. To include the quote
as part of the finished string; the forward slash (“\”) had to be used to
escape the quotes.

Each property/value pair combina�on in a JSON string is separated by a
comma. The loop above will add a comma a�er every property. At the end
of the loop, our string will have an extra comma at the end. The next
opera�on of this method is to remove the final comma from the string.
if(str.length > 0){
 str = str.substr(0,str.length-1)
}

It checks the length of the result string. If the length is listed as greater
than “0”, then we can assume that the object had at least one property
and there is a comma at the end. Some string processing removes it.

Finally, return the result string, adding curly brackets on each end of it:
return '{' + str + '}';

I found this method useful when dealing with the back end. In its current
state, this method will not support nested objects. However, it should be
able to be modified easily enough if that is needed.

Be sure to import this class into the task.service.ts:
import {HttpUtils} from "./httpUtils";

So we can access the transformRequest() func�on and objToJSONString()
func�ons when crea�ng our service call.

Accessing the loadTask() Service
We’re going to need some more imports to implement the loadTask()
method:
import {Observable} from "rxjs/Observable";
import {ResultObjectVO} from "../../vo/ResultObjectVO";
import 'rxjs/add/operator/map';
import {TaskFilterVO} from "../../vo/TaskFilterVO";

Here, we import the Observable class, and the ResultObjectVO class. Both
will be part of the return type from the loadTasks() method. The map()
func�on is brought in from the rxjs library to process the results. Finally,
the TaskFilterVO is imported. It will be an argument to the loadTasks()
method.

Here is the method:
loadTasks(taskFilter : TaskFilterVO) : Observable<ResultObjectVO> {
 let parameters : string = "filter" + '=' +

 HttpUtils.objToJSONString(taskFilter) + '&';
 parameters += "callback" + "=" + "JSONP_CALLBACK";
 let url = SERVER + 'taskService/getFilteredTasks?' +
parameters;
 return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO;
}

The first step in the func�on is to create a parameter string with the filter
and callback arguments. The objToJSONString() method turns the
taskFilter into a URL friendly object. The callback argument is not needed
when accessing files from the same domain. It is only needed when
accessing services from a remote domain. The value of the callback
argument is JSONP_CALLBACK, which is a built-in Angular value.

Then, the url string value is created using the SERVER constant, the service
endpoint, and the parameters. A�er that, the jsonp.request() func�on is
called, and its Observable is returned. A map() is called on the observable
to translate results from JSON into a ResultObjectVO before the
subscriber’s result method is called.

Wire Up the UI
This sec�on will show you how to load the task data from the service and
display it in the ngx-datatable. It will also add in a security check so users
can’t open the tasks screen without first logging in.

Validate the User before Loading Data
This sec�on will show you how to check if the user is logged in or not before
a�emp�ng to load the data. To determine whether or not the user is logged
in, you can check to see if the user property of the UserModel has been
ini�alized. If not, redirect the user to the login screen. If so, the user has
logged in fine, and redirec�on is not required.

You can add the method validateUser() to the usermodel.ts file in the
com/dotComIt/learnWith/model/ directory. Add the func�on inside the
UserModel class:
validateUser() : boolean {
 if (!this.user) {
 return false;
 }
 return true;
}

This method performs the check. If the user object is not ini�alized, then it
returns false. Otherwise, it returns true.

Now we want to call this method when the tasks component ini�ally loads.
Open up the tasks.component.ts file in the
com/dotComIt/learnWith/views/tasks directory. To perform our check, we
are going to �e into the Angular component lifecycle. To do that, the
Component will have to implement the OnInit interface. First, import the
interface:
import {Component, OnInit} from '@angular/core';

The Component was already imported from the @angular/core library, but
we can implement both classes from the same library with the same import
statement. While we’re at it, import the Router:
import {Router} from "@angular/router";

The Router will be used to perform the redirect in case the user is not
properly logged in.

Now, add the interface a�er the class defini�on using the implements
keyword:
export class TasksComponent implements OnInit {

An interface is a way to tell other classes that your class implements specific
methods. In this case, we need the ngOnInit() method:
ngOnInit(): void {
 if (!this.userModel.validateUser()) {
 this.router.navigate(['/login']);
 }
}

Because our component implements the OnInit interface, Angular knows to
execute the ngOnInit() method a�er Angular displays the data-bound
proper�es and sets the component’s input. If the user is logged in, nothing
happens here. If the user is not logged in, then they’ll be redirected to the
login screen.

Loading the Tasks
The final step is to load the tasks. Go back to the taskgrid.component.ts
file. Addi�onally, we’re going to set up this component to implement the
OnInit() method. First, perform the import:
import {Component, OnInit} from '@angular/core';

Then, implement the OnInit interface as part of the class defini�on:
export class TaskGrid implements OnInit {

Now, implement the ngOnInit() method:
ngOnInit(): void {
}

The method is empty. Its purpose is to create a TaskFilterVO instance, set
the default proper�es on it for completed and startDate and then load the
tasks. First, create the taskFilter object:
let taskFilter : TaskFilterVO = new TaskFilterVO();

Then, set defaults on it:

taskFilter.completed = false;
taskFilter.startDate = new Date('3/1/2017');

Next, load the tasks:
this.loadTasks(taskFilter);

I decided to encapsulate the method for loading tasks instead of pu�ng it
in ngOnInit(). Before we jump into details of the loadTasks() method, we
need to create a few variables on the TaskGrid class:
public tasks : TaskVO[];
public taskLoadError :string = '';

The tasks variable is an array of TaskVO objects and populates the grid. The
new value is taskLoadError which is a string that will be used to display an
error to the user if there is a problem loading data. Be sure the constructor
injects both the taskModel and the taskService providers:
constructor(private taskModel :TaskModel, private taskService :
TaskService) {}

 Now, let’s look at the loadTasks() method. Here is its signature:
loadTasks(taskFilter:TaskFilterVO):void{
}

The first thing this method will do is set the taskLoadError property to an
empty string:
this.taskLoadError = '';

Then, call the loadTasks() method on the TaskService:
this.taskService.loadTasks(taskFilter).subscribe(
 result => {
 // result code here
 },
 error => {
 // error code here
 }
);

The loadTasks() method on the taskService will return an observable
object. Based on that, we’ll run the first func�on if a successful response is
returned, or the second func�on if an error occurs.

We’ll start by implemen�ng the error() method, because those are easier:
this.taskLoadError = 'We had an error loading tasks.';

This uses the TypeScript lambda operator. If there is an error, it sets the
taskLoadError value and does nothing else.

The result handler does slightly more:
if (result.error) {
 this.taskLoadError = 'We could not load any tasks.';
 return;
}
this.tasks = this.taskModel.tasks = result.resultObject as TaskVO[];

If the result object contains an error, the taskLoadError value is set; thus,
displaying an error to the user. Otherwise, the resultObject—which should
be an array of TaskVO’s already—is set to the local tasks array, which will in
turn update the grid to display the relevant rows.

Let’s make sure we add the warning message to the
taskgrid.component.html template:
<div class="alert alert-danger" *ngIf="taskLoadError">
 <h2>{{taskLoadError}}</h2>
</div>

Put this at the top of the page, above the grid. If an error occurs, it should
show:

If the tasks load successfully, you’ll see something like this:

Final Thoughts
This chapter should have given you an understanding of how to use the
ngx-datatable component with an Angular applica�on, while introducing
how to add and configure new custom components to your applica�on. It
also started the implementa�on of the loadTasks() service method and
made use of an Angular component lifecycle hook, OnInit.

This summarizes the ac�ons from within this chapter:

1. The app loads, and a taskModel and TaskService instances are
created.

2. Then, user logs in. A�er successful login, the TasksComponent
template loads.

3. The ngOnInit() method is executed in the TasksComponent. It
validates that the user has indeed logged in. If not, it redirects them
to the login page. If the user has successfully logged in, then Angular
will process the view, see the TaskGrid component is in the view.

4. The TaskGrid component is ini�alized, the ngOnInit() method is
run. This creates a TaskFilterVO object, and calls a local loadTasks()
method, which, in turn, calls the loadTasks() method in the
taskService.

5. The loadTasks() service method retrieves the tasks based on the
filter, and the success method is executed in Angular. The success
method stores the returned tasks in the TaskModel.tasks array.

6. Using binding, the ngx-datatable will populate itself with the rows
defined in the taskgrid.component.html template.

The next chapter will focus on crea�ng the filter, which will allow for
viewing different tasks based on different criteria.

Chapter 4: Filtering the Tasks
This chapter will demonstrate how to filter the list of tasks in the
applica�on. It will show you how to create the User Interface to allow for
filtering tasks and review the services that power it. This chapter will
explain modifica�ons to the loadTasks() service method covered in the
previous chapter, and introduce a new service to load the task categories.

Create the User Interface
This sec�on will review the user interface that we’re going to build, and
then show you how to build it. It will also show you how to populate a
select box’s data using Angular, and will introduce the ng-bootstrap library
to add a DateChooser to the applica�on.

What Data Do We Filter On?
Chapter 3 integrated with a service method named loadTasks() to populate
the ngx-datatable. At the �me, we only loaded data with some default
values; a completed property, and a start date. However, there are more
fields we want to allow the user to implement to filter the task grid:

· Category: The user should be able to filter the data on a specific
category. Perhaps they want to see all the tasks they can do at home,
all the work-related tasks, all the business tasks, everything related to
clothes shopping, or however they decide to categorize their tasks.

· Date Scheduled: The user should be able to filter the data based on
the date that the task was scheduled for. Two proper�es in the
TaskFilterVO relate here; scheduledStartDate and
scheduledEndDate.

· Completed: The user should be able to filter completed tasks or
incomplete tasks. In Chapter 3, we set the default of this property to
“false”; assuming the user would want to see tasks which that have
not been completed yet.

· Date Created: The user should be able to filter on the date that a
task was created. This relates to two proper�es; the startDate and
endDate.

This is what the final UI will look like:

This grouping will be placed above the ngx-datatable. The completed select
box will be populated with hard-coded data, but the category select box will
be populated with a service call:

This is the date chooser, implemented as a popup:

These represent the UI we’ll build throughout this chapter.

Setup ng-bootstrap
To create the DatePicker, we are going to use the ng-bootstrap library. This
is an Angular version of Bootstrap; a CSS library. We used Bootstrap in
earlier chapters to show fancy warning messages to the user when
something went wrong. For the more advanced components, we are going
to rely on the ng-bootstrap.

First, install it by running this on your command line:
npm install --save-dev @ng-bootstrap/ng-bootstrap

You’ll see something like this:

Next, you need to tell the Gulp script to copy the ng-bootstrap JavaScript
from the node_modules install directory into the build directory. Open the
config.js file and look for the angularLibraries variable:
angularLibraries : [
 'core-js/client/shim.min.js',
 'zone.js/dist/**',
 'reflect-metadata/Reflect.js',
 'systemjs/dist/system.src.js',
 '@angular/**/bundles/**',
 'rxjs/**/*.js',
 '@swimlane/ngx-datatable/release/index.js',
 '@ng-bootstrap/ng-bootstrap/bundles/ng-bootstrap.js'
],

The only thing I added was the final element of the array. That is all that is
needed to copy the ng-bootstrap library.

There is one more thing you need to add. Download this image and put it in
the img directory. We’ll use it as the bu�on to display and hide the calendar
popup. It is not included in the build we downloaded with Node, but is used
in the samples on the ng-bootstrap site.

Tell Angular how to find ng-bootstrap
We need to tell Angular how to find the ng-bootstrap library. There are two
things we need to do. First, configure the SystemJS to be aware of ng-
bootstrap. Second, load the library in the applica�on’s main module.

https://ng-bootstrap.github.io/img/calendar-icon.svg

Open the SystemJS.config.js file in the js/systemJSConfig directory. Look for
the System.config command. It creates and accepts object that defines
SystemJS’s config. Look for the map property. This tells SystemJS how to
find all the Angular libraries. We just need to add the new library:
'@ng-bootstrap/ng-bootstrap': 'js:@ng-bootstrap/ng-
bootstrap/bundles/ng-bootstrap.js'

Next, open the app.module.ts file in the com/dotComIt/learnWith/main/
directory. Import ng-bootstrap:
import {NgbModule} from '@ng-bootstrap/ng-bootstrap';

Then, ini�alize the library as part of the @NgModule’s imports list:
imports: [
 BrowserModule,
 AppRoutingModule,
 FormsModule,
 NgxDatatableModule,
 NgbModule.forRoot()
],

The ng-bootstrap library is ini�alized differently than other libraries we
used in the past. Instead of just lis�ng the module, it calls the forRoot()
sta�c method on the module. The ng-bootstrap library is a complex library
with lots of components and other modules associated together. This
approach just combines them so there is one easy import that gives our app
access to the full library.

Modify the TaskFilterVO
Now we want to add our new proper�es to the TaskFilterVO class. Open
the TaskFilterVO.ts file from the com/dotComIt/learnWith/vo directory:
export class TaskFilterVO {
 completed : boolean;
 endDate : Date;
 scheduledEndDate : Date;
 scheduledStartDate : Date;
 startDate : Date;
 taskCategoryID : number;
};

The class already had the completed property and the startDate property.
We added a property for endDate to represent the end of the date range

for days that the component was created. The scheduledEndDate and
scheduledStartDate proper�es will compare against the date the task was
scheduled. Finally, the taskCategoryID will be to compare against the task’s
categoriza�on.

Create the TaskFilter component
First, we’re going to create a component to contain the filter UI. As with
past components, we’ll create three files for this; A CSS File, an HTML
Template file, and a TypeScript class. Create the CSS file in the
com/dotComIt/learnWith/views/tasks directory and name it
taskfilter.component.css. For now, leave it as an empty file. Create the
HTML template in the same directory and name it
taskfilter.component.html. It can also be kept an empty file.

Now, create the taskfilter.component.ts file. To do this, you’ll first, add
some imports:
import {Component, OnInit} from "@angular/core";
import {TaskService} from "../../services/mock/task.service";
import {TaskModel} from "../../model/taskmodel";

This imports the Component and OnInit classes from @angular/core. It
also includes our custom TaskService and TaskModel classes.

Now, create the @Component annota�on:
@Component({
 selector: 'taskfilter',
 templateUrl :
 './com/dotComIt/learnWith/views/tasks/taskfilter.component.html',
 styleUrls:
['./com/dotComIt/learnWith/views/tasks/taskfilter.component.css']
})

The selector is named taskfilter, and will be used in the main task
component view. The templateUrl and styleUrls values point to the HTML
template and CSS template we just created.

Create the TaskGrid class at the end of the file:
export class TaskFilter implements OnInit {
 constructor(private taskModel :TaskModel,
 private taskService : TaskService) {
 }

 ngOnInit(): void {
 }
}

This class contains implements the OnInit interface. It also injects instances
for the TaskService which we’ll use to call the service to populate the
category drop-down, and the TaskModel will be used to save the category
list for future use. The ngOnInit() method is added, but is le� empty for the
moment.

Now, switch back to the app.module.ts. Import the new class:
import {TaskFilter} from "../views/tasks/taskfilter.component";

And add it to the @NgModule declara�ons:
declarations: [
 AppComponent,
 LoginComponent,
 TasksComponent,
 TaskGrid,
 TaskFilter
],

While we’re at it, open up the tasks.component.html template in the
com/dotComIt/learnWith/views/tasks directory. Add the TaskFilter
component:
<div class="wrapper">
 <taskfilter class="taskFilter"></taskfilter>
 <div class="mainScreenContainer">
 <taskgrid></taskgrid>
 </div>
</div>

This template previously just displayed the taskgrid. Now it has the task
filter, and some div wrappers. First, there is a wrapper class. Put this in the
tasks.component.css file:
.wrapper {
 display: flex;
 height: 100%;
 flex-direction: column;
}

The wrapper sets up a Flexbox display. We are using Flexbox to display the
filter, and have the task grid take up the rest of the remaining height.

This is the taskFilter CSS class:
.taskFilter{
 width:100%;
}

This tells the browser to size the taskFilter component to extend the full
width. No height is specified so it can extend to the height it needs. The
TaskGrid component was wrapped in a maincontainer class:
.mainScreenContainer{
 flex : 1;
 padding-top : 5px;
}

This CSS class specifies the flex value as “1”. This is short hand for se�ng
flex-grow and flex-shrink to “1”. It basically expands the
mainScreenContainer to fill the rest of the height. This also adds some
padding so it doesn’t bump up directly against the filter component. The
mainScreenContainer will have more elements added to it in later chapters;
such as the expand bu�on and the scheduler component, which is why grid
is wrapped in the mainScreenContainer instead of applying directly to the
grid.

For the sake of completeness, let’s set up the same structure in the
TaskGrid component. This component has two elements; the error alert and
the actual grid. Open the taskgrid.component.css in the
com/dotComIt/learnWith/views directory. Add a taskGridWrapper style:
.taskGridWrapper {
 display: flex;
 height: 100%;
 flex-direction: column;
}

Open up the taskgrid.component.html in the same directory. Wrap the full
contents in the taskGridWrapper grid:
<div class="taskGridWrapper">
 <!—- alert Here -->
 <!—- grid Here -->
</div>

This will just help smooth out the layout as needed.

Create the TaskFilter Template
Now we can turn our a�en�on to the taskfilter.component.html template.
We’ll start by displaying an error alert before going into the filter specific UI
elements:
<div class="taskFilterWrapper">
 <div class="alert alert-danger warningAlert taskFilterAlert"
 *ngIf="filterError">
 <h2>{{filterError}}</h2>
 </div>
</div>

The whole template is placed in a div with the CSS class taskFilterWrapper.
Add this to the taskfilter.component.css file:
.taskFilterWrapper {
 display: flex;
 height: 100%;
 flex-direction: column;
}

This sets up the whole task filter for Flexbox sizing, then the div that creates
the alert. It has a custom class a�er the regular classes:
.taskFilterAlert {
 padding: .2rem 1.25rem;
}

This just minimizes the padding so the TaskFilter alert doesn’t take up too
much space. Then, the div uses a *ngIf to hide the alert if the filterError
value is empty. Create the filterError value in the taskfilter.component.ts
file:
filterError : string;

Finally, the alert code displays the alert text, if relevant, and that starts our
task filter template.

Popula�ng a Select with Angular
Two select lists are required; one for completed tasks, and one for
categories. Completed tasks will use a hard-coded data source, and the
category drop-down will be populated from a service call. In both cases, the
data source will be populated with a property from the TaskModel.

For the completed op�ons, let’s create a value object class to contain an
op�on. Create the class CompletedOp�onVO.ts in the
com/dotComIt/learnWith/vo directory:
export class CompletedOptionVO {
 id : number;
 label : string;
 value :boolean;
};

This class contains three separate proper�es. The first is an id property
which will represent a primary key for the value. The second will be a label,
which is the display text. The final property is a value property, which will
represent the actual value sent to the services. Let’s add a constructor here
to make it easy to create an instance of this class:
constructor(id :number, label :string, value:boolean) {
 this.id = id;
 this.label = label;
 this.value = value;
};

This constructor accepts three arguments, and sets all the class proper�es
based on those values.

Now, switch over to the taskmodel.ts in the
com/dotComIt/learnWith/model directory. Import the
CompletedOp�onVO:
import {CompletedOptionVO} from "../vo/CompletedOptionVO";

Inside the class defini�on, create the taskCompletedOp�ons:
taskCompletedOptions : CompletedOptionVO[] = [
 new CompletedOptionVO(-1, 'All', null),
 new CompletedOptionVO(0, 'Open Tasks', false),
 new CompletedOptionVO(1, 'Completed Tasks', true)
];

The array has three elements; each one an instance of the
CompletedOp�onVO. The value of the completed property is actually a tri-
state property. It can be “true” for completed tasks, “false” for open tasks,
or “null” for all tasks. If it is “null”, the condi�on will not be added to the
final class.

Let’s create a TaskCategoryVO class, too. Create the file
TaskCategoriesVO.ts in the com/dotComIt/learnWith/vo directory:
export class TaskCategoriesVO {
 taskCategoryID : number;
 taskCategory : string;
};

This class is simpler than the CompletedOp�onVO. Since we won’t be
crea�ng these instances all at once, I did not add a fancy constructor.

Since the taskCategories won’t be loaded yet, we’ll just populate that with
an empty array inside the TaskModel:
taskCategories : TaskCategoryVO[]

Moving onto the TaskFilter.html template, we can use a table to layout
items. The first row of the table will contain the headers and the second
row will contain the input elements.

This is the start of the table, containing just the top row, and the headers for
the first two drop-down lists:
<table>
 <tr>
 <td>Completed</td>
 <td>Category</td>
 <tr/>
</table>

The second row will contain the select boxes. Before we jump into that, I
want to refresh your memory on how a normal select box would be
populated in HTML:
<select>
 <option value="-1">All</option>
 <option value="0">Open Tasks</option>
 <option value="1">Completed Tasks</option>
</select>

The top-level tag is the select. Each op�on in the drop-down is defined with
an op�on tag. The text between the open and close op�on is displayed in
the drop-down list of the UI. The value is something that can be accessed
through JavaScript.

When crea�ng a select box in Angular, the approach is slightly different:

<tr>
 <td>
 <select [(ngModel)]="completed" >
 <option *ngFor="let task of taskModel.taskCompletedOptions"
 [value]="task.value">
 {{task.label}}
 </option>
 </select>
 </td>

The table row and table data are simple HTML tags. The select merely
specifies the ngModel, which �es to a property on the taskFilter instance in
the TaskFilter component class. Next up is the op�ons tag. It has a new
Angular direc�ve; *ngFor. The *ngFor direc�ve tells Angular to perform a
loop and for each entry in the loop to create a new op�ons tag. This is the
syntax inside the *ngFor:
let task of taskCompletedOptions

It says to loop over the taskCompletedOp�ons array. As you loop, create an
op�on tag for each element in the array. Inside the loop, use the task
variable to access the current element. We do use the task variable in two
places. The first is to set the value of the op�on tag using the task.value
property. The second is to display the label inside the op�on tag. That
creates our select drop-down for completed proper�es.

Where do the completed and taskCompletedOp�ons values come from?
The taskCompletedOp�ons is from the taskModel which is injected into
the constructor. The completed property needs defini�on, though. Create it
in the taskfilter.component.ts file:
completed : string;

Inside the ngOnInit() method, set the completed property to “false”:
this.completed = "false";

If you compile and run the app now, you should see the completed drop-
down populate. However, our code is s�ll in flux for the purposes of this
chapter. Next, create the select for the category drop-down:
 <td>
 <select [(ngModel)]="taskCategoryID" >
 <option *ngFor="let category of taskCategories"

 [value]="category. taskCategoryID">
 {{category.taskCategory}}
 </option>
 </select>
 </td>
<tr>

This uses the same exact approach with slightly different values. The
ngModel a�aches itself to the taskFilter.taskCategoryID, and the op�ons
array is made from taskCategories; a local variable in the TaskFilter class.
The value a�ribute of op�ons points towards the category.taskCategoryID,
and the taskCategory is displayed inside the op�on tag. You won’t be able
to see this drop-down work un�l later in the chapter a�er we implement
and hook up to the service.

Adding a DateChooser
You probably know that a DateChooser is not a na�ve HTML control. We are
going to use the Bootstrap DatePicker from the ng-bootstrap library. Earlier,
we set up UI Bootstrap, so it should be ready to use in our applica�on.

You’ll remember that the TaskFilter.html template is using an HTML table to
lay out items. The first step is to add addi�onal headers:
<td>Created After</td>
<td>Created Before</td>
<td></td>
<td>Scheduled After</td>
<td>Scheduled Before</td>

This table data will go in the first row of the table tag. The empty table data
between “Created A�er” and “Created Before” is just for some space
between the borders, which will be added in the next sec�on.

I want to review the aspects of the DateChooser component before we look
at the code:

There are three different aspects to the DatePicker component. The first is
the text Input. This will display the currently selected item. The second is a
bu�on. The bu�on is used to open and close the date popup. The final
aspect is the actual date popup which is displayed or removed either by
clicking the bu�on or by giving focus to the input. All three aspects could be
used separately, but this project will combine them to a single user
experience.

Now, we need to add the DatePicker components. I’ll start with one, discuss
it in detail, and then give you the code for the other three:
<td>
 <form class="form-inline">
 <div class="form-group">
 <div class="input-group"
 <input class="form-control" placeholder="yyyy-mm-dd"
 name="createdAfterDP" ngbDatepicker
 #createdAfterDP="ngbDatepicker"
 [(ngModel)]="startDate">

 <div class="input-group-addon"
 (click)="createdAfterDP.toggle()" >
 <img src="img/calendar-icon.svg"
class="datePickerImage"/>
 </div>
 </div>
 </div>
 </form>
</td>

The whole thing is wrapped in a td tag, which is in the second table row of
the taskfilter.component.html. The td tag comes a�er the two tags for the
select inputs. Inside the td is a div with the class form-inline, a CSS style
from Bootstrap that is used to display items in a horizontal row. Next is the
form-group, which adds some automa�c spacing to the forms. The input-
group follows, which uses Flexbox to help arrange things to the available
space.

Finally, we get to the text input. It has mul�ple proper�es in it:

· class: This is a standard HTML property and refers to the CSS style
form-control, which is just some Bootstrap styling.

· placeholder: This specifies a prompt to the user. Currently, the date
format is specified.

· name: This property is required if you are going to use ngModel on
the tag, which we do. I gave it a name; createdA�erDP.

· ngbDatePicker: This op�on tells Angular and ng-bootstrap that this
input is part of a DatePicker. It does not have a value.

· #createdA�erDP: This property is a special name which Angular can
use to reference the component inside of code. We gave it a value of
ngbDatepicker, so we know it is a DatePicker component.

· ngModel: This property will be used to save the selected date to a
variable defined in the class. It uses two-way binding, specified by
the square brackets and parentheses. The startDate property has to
be of type ngbDateStruct; which is like a value object with proper�es
for the year, day, and month. I wish the value of this was a date
object, but alas, it isn’t.

Next in the code you’ll no�ce another div. It has the CSS Class of input-
group-addon. This is another Bootstrap style for making the image look like

a bu�on. The div responds to a click event which will call the toggle()
func�on on the createdA�erDP class. This is code behind the scenes to
display the date popup.

Switch back to the taskfilter.component.ts to create the startDate property.
First, import the class:
import {NgbDateStruct} from "@ng-bootstrap/ng-bootstrap";

Then, inside the class, create the instance:
startDate : NgbDateStruct;

While we’re in there, let’s create the class proper�es for the remaining class
structures:
endDate : NgbDateStruct;
scheduledStartDate : NgbDateStruct;
scheduledEndDate : NgbDateStruct;

The remaining DatePickers are implemented similarly. For completeness,
this is the code:
<td>
 <form class="form-inline">
 <div class="form-group">
 <div class="input-group" >
 <input class="form-control" placeholder="yyyy-mm-dd"
 name="createdBeforeDP"
 ngbDatepicker #createdBeforeDP="ngbDatepicker"
 [(ngModel)]="endDate">
 <div class="input-group-addon"
 (click)="createdBeforeDP.toggle()" >
 <img src="img/calendar-icon.svg"
class="datePickerImage" />
 </div>
 </div>
 </div>
 </form>
</td>
<td></td>
<td>
 <form class="form-inline">
 <div class="form-group">
 <div class="input-group" >
 <input class="form-control" placeholder="yyyy-mm-dd"
 name="scheduledAfterDP"

 ngbDatepicker #scheduledAfterDP="ngbDatepicker"
 [(ngModel)]="scheduledStartDate">
 <div class="input-group-addon"
 (click)="scheduledAfterDP.toggle()">
 <img src="img/calendar-icon.svg"
class="datePickerImage" />
 </div>
 </div>
 </div>
 </form>
</td>
<td>
 <form class="form-inline">
 <div class="form-group">
 <div class="input-group" >
 <input class="form-control" placeholder="yyyy-mm-dd"
 name="scheduledBeforeDP"
 ngbDatepicker
#scheduledBeforeDP="ngbDatepicker"
 [(ngModel)]="scheduledEndDate">
 <div class="input-group-addon"
 (click)="scheduledBeforeDP.toggle()" >
 <img src="img/calendar-icon.svg"
class="datePickerImage" />
 </div>
 </div>
 </div>
 </form>
</td>

Your bootstrap DatePickers should be good to go.

The Filter Bu�on
There is only one more aspect to add to our TaskFilter.html; the filter
bu�on. It will cause the UI to load new tasks with the modified criteria. In
the second row of the filter form’s table, place this at the end:
<td>
 <input type="button" value="Filter" />
</td>

The bu�on doesn’t do anything yet, but we’ll implement the func�onality a
bit later in this chapter.

Adding Styles

The last aspect of crea�ng the user interface for this chapter is to add some
styles. I know this book is not intended to be a design book, but I did want
to add some basic layout and sizing. All styles will be added to the
taskfilter.component.css file from the
com/dotComIt/learnWith/views/tasks directory.

First, I felt the default lengths of the DatePicker input and the select drop-
downs were too large. To address that, I created some styles which would
shorten their widths:
.datePicker {
 width:175px;
}
.completedDropDown {
 width:150px;
}
.taskCategoryDropDown {
 width:150px;
}

These styles can be added to the inputs in the taskfilter.component.html
file. First, here is the completed drop-down:
<select [(ngModel)]="taskFilter.completed" class="completedDropDown"
>

It uses the HTML class a�ribute to refer to the CSS style. The same happens
for the task category drop-down:
<select [(ngModel)]="taskFilter.taskCategoryID"
class="taskCategoryDropDown">

The datePicker style is put on the paragraph which encloses it:
<div class="input-group datePicker">

With the DatePicker code, the internal elements are set to expand to 100%
of their width from using the Bootstrap styles. We control the width of the
DatePicker by controlling the width of the DatePicker’s parent container.
Since the paragraph already had a Bootstrap CSS style on it, I added our
custom style to the class a�er the Bootstrap style, separa�ng it with a
space. The datePicker class is used on all the DatePicker inputs. However,
since the code is iden�cal, you don’t need to see the other three addi�ons.

Next, I added some basic styles to the table and table data. Since these are
generic for the full applica�on, I added them to the styles.css in the styles
directory:
table{
 border-collapse: collapse;
}
td {
 vertical-align: top;
 padding:5px;
}

These are tag-level styles and will be immediately picked up by all table and
table data tags within the applica�on. The border collapse on the table
means that visible borders in the table will ignore any spacing or padding
when crea�ng the visual border. The default td aligns items to the top of the
cell and adds some padding around each cell. This made the TaskFilter
component feel less crowded from a visual perspec�ve.

Now back to the taskfilter.component.css for some task filter specific styles.
There is one table cell where I wanted to align the elements to the bo�om
instead of the top; the bu�on’s table cell:
.alignBottom {
 vertical-align: bottom;
}

It is applied like this:
<td class="alignBottom">
 <input type="button" value="Filter" />
</td>

The final styling step is to add the borders. To do this, we’ll create custom
styles for the table cells that add borders on some combina�on of the top,
bo�om, le�, and/or right. First, let’s look at what is needed:

· To the le� of, and above the completed header cell.
· Above, and to the right of the category header cell.
· To the le� of, and above the created a�er-header cell.
· Above, and to the right of the created before-header cell
· To the le� of, and above the scheduled-a�er cell.
· Above, and to the right of the scheduled-before cell

· To the le�, and below the completed drop-down.
· To the right, and below the category drop-down.
· To the le�, and below the created-a�er DatePicker.
· Below, and to the right of the created-before DatePicker.
· To the le�, and below the scheduled-a�er DatePicker.
· Below, and to the right of the scheduled-before DatePicker.

This is the combina�on of styles that are needed to create the square
borders that span mul�ple table cells. These are the styles:
.border-top-left {
 border-left: solid 2px grey;
 border-top: solid 2px grey;
}
.border-top-right {
 border-right : solid 2px grey;
 border-top: solid 2px grey;
}
.border-bottom-right {
 border-bottom: solid 1px grey;
 border-right : solid 2px grey;
}
.border-bottom-left {
 border-bottom: solid 1px grey;
 border-left : solid 2px grey;
}

This creates six different styles that will add a border to a table cell, div, or
other HTML elements. We’ll use them on td tags in order to create borders
around the date-created proper�es and date-scheduled proper�es.

First, in the header row:
<td class="border-top-left">Completed</td>
<td class="border-top-right">Category</td>
<td></td>
<td class="border-top-left">Created After</td>
<td class="border-top-right">Created Before</td>
<td></td>
<td class="border-top-left">Scheduled After</td>
<td class="border-top-right">Scheduled Before</td>

Finally, this is the bo�om row, which contains the full DatePicker
components:

<td class="border-bottom-left">
 // completed drop down
</td>
<td class="border-bottom-right">
 // category drop down
</td>
<td></td>
<td class="border-bottom-left">
 // created after DatePicker
</td>
<td class="border-bottom-right">
 // created before DatePicker
</td>
<td></td>
<td class="border-bottom-left">
 // scheduled after DatePicker
</td>
<td class="border-bottom-right">
 // scheduled Before DatePicker
</td>

This completes the sec�on on the styling and CSS that we applied to this
app.

Examine the Database
There is no new database structure to examine in this chapter; as the
categories were already shown in the previous chapter. Here is a quick
review:

The focus here is on querying the TaskCategories table. There is no need for
a “where” clause in this query:
select * from taskCategories
order by taskCategory

The SQL will return all items in the TaskCategories table.

Write the Service
This sec�on will cover the NodeJS code needed to load the TaskCategories
from the database and send them to the browser. It will also show you
some new criteria to the method for filtering and loading tasks.

Revisit the getFilteredTasks() Method
Here are the fields that will be used to filter the main task grid:

· taskCategoryID: This property is used to filter the task list based on
a category.

· endDate: This property is used to filter the task list based on the
dateCreated database property. The query should make sure that
the dateCreated is chronologically before the endDate for the task
to show up in the result.

· scheduledEndDate: This is used to filter the task list based on the
dateScheduled column. If this is specified, then the query should
make sure that the dateScheduled property is earlier than the
scheduledEndDate value.

· scheduledStartDate: This compares against the dateScheduled
column. If this is specified, then the query should make sure that
the dateScheduled property is later than the scheduledStartDate
value.

I’m not going to review the full getFilteredTasks() method in the
TaskService.js file. I’m just going to add these new elements to the query.
The TaskService class is in the com/dotComIt/learnWith/services
directory.

First, add a condi�on for the taskCategoryID:
if((json.taskCategoryID != undefined) && (json.taskCategoryID !=
"0")){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 query = query + " taskCategories.taskCategoryID = " +

 json.taskCategoryID + " ";
}

This starts with a condi�on that checks for the existence of the
taskCategoryID property of the json filter object. If the taskCategoryID is
“0”, then the taskCategory parameter is ignored. This is done so that an
"all" category can be added to the “category” drop down in the UI without
having to store an “all” category record in the database. The condi�on
starts by checking the firstOne property, which is used to determine if this
is the first clause of the query or a con�nua�on of exis�ng clauses.

The previous chapter examined the startDate value and compared it to the
dateCreated database column. This new code will also check for an
endDate value, compared against the same column:
if(json.endDate != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 query = query + " dateCreated <= '" + json.endDate + "' ";
}

This assumes that the dates will already be property forma�ed to be
recognized as dates by the SQL query, so we do not do any processing on
the dates here. The endDate must be less than or equal to the database’s
dateCreated. I put this a�er the startDate condi�on which was created for
the query in previous chapters.

The final condi�on of the query relates to the date the task was scheduled.
This uses two separate values to compare against. The scheduledStartDate
and scheduledEndDate are implemented similarly to the startDate and
endDate.
if(json.scheduledStartDate != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }

 query = query + " dateScheduled >= '" + json.scheduledStartDate
+ "' ";
}
if(json.scheduledEndDate != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 query = query + " dateScheduled <= '" + json.scheduledEndDate +
"' ";
}

I placed these condi�ons a�er the end date check in the query.

Loading Task Categories
The method to load task categories will be added to the TaskService.js file
in the com/dotComIt/learnWith/services directory. First, add the method
outline:
function getTaskCategories(response, queryString) {
}

The getTaskCategories() method uses the same method signature of all
our request handler methods. In this case, a queryString will not be
needed, but it is kept there for consistency. The other argument is the
response argument that is used to send data back as part of the request.

Inside the method, we have some boilerplate code to define the
resultObject and callback:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

Next, create the query:
var query = "select * from taskCategories order by taskCategory";

The query is simple without any complicated filtering. It just retrieves all
categories from the TaskCategory table. Next, execute the query using the
databaseConnec�on module:

var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 // query result function here
 },
function(err) {
 // query error function here
 }
)

The databaseConnec�on’s executeQuery() func�on accepts three
arguments; the query, the result handler func�on, and the error handler
func�on.

The result handler needs to process the results. Create the resultObject:
resultObject.error = 0;
resultObject.resultObject = result.recordset;

The error value of the resultObject is “0”, and the resultObject is equal to
the recordset. Finally, return the results to the browser using the
JSONResponseHandler instance:
responseHandler.execute(response, resultObject, callback);

The error handler func�on sets the error property on the resultObject to
“0”, and then returns it to the calling en�ty:
resultObject.error = 1;
responseHandler.execute(response, resultObject, callback);

If an error exists, send back a resultObject to the browser with the error
set to “1”.

That completes the getTaskCategories() method, but don’t forget to export
it:
exports.getTaskCategories = getTaskCategories;

Next, you need to tell the app when to call this method. Open up the
ResponseHandlers file in the com/dotComIt/learnWith/dotComIt/server
directory. Add this line:
handlers["/taskService/getTaskCategories"] =
taskService.getTaskCategories;

Restart your NodeJS applica�on, and whenever a request is received for
"/taskService/getTaskCategories", the getTaskCategories() method will be
executed.

Tes�ng Task Categories
You can test this easily by loading a URL in the browser:
http://127.0.0.1:8080/taskService/getTaskCategories

You should see results similar to this:
{
 "resultObject":
 [
 {"taskCategoryID":0.0, "taskCategory":"All Categories"},
 {"taskCategoryID":1, "taskCategory":"Business"},
 {"taskCategoryID":2, "taskCategory":"Personal"}
],
 "error":0
}

Access the Service
This sec�on will cover the new Angular code needed to retrieve the task
categories from the server. Open the TaskService.ts class in the
com/dotComIt/learnWith/services/nodejs directory.

Create the loadTaskCategories() method:
loadTaskCategories() : Observable<ResultObjectVO> {
 let parameters = "callback" + "=" + "JSONP_CALLBACK" ;
 let url = SERVER + 'taskService/getTaskCategories?' + parameters;
 return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO);
}

No arguments are passed into the loadTaskCategories() func�on. The only
parameter sent to the service is the callback. The URL is created by
concatena�ng the SERVER constant with the method endpoint and the
parameter array. Then, the jsonp service ini�ates the request. The
Observable object is returned, and the map() func�on converts the results
from JSON into an instance of the ResultObjectVO.

That’s it. This one is pre�y simple.

Wire Up the UI
The final step of this chapter is to wire up the services to the user interface
and make everything work. This sec�on will examine the code behind
loading the task categories and will show you how to hook up the “Filter
Tasks” bu�on.

Loading Task Categories
You can create a method in the taskfilter.component.ts file in the
com/dotComIt/learnWith/views/tasks directory:
loadTaskCategories():void {
 this.taskService.loadTaskCategories().subscribe(
 result => {
 },
 error => {
 }
);
};

This will execute the loadTaskCategories() method inside the taskService.
An observable is returned from the service. Based on the observable
resolu�on, the first func�on argument will run if we get a successful result,
and the second func�on will run if there is an error. Both the result and
failure methods are empty stubs using the lambda nota�on to create the
result func�on.

Let’s populate the error func�on first:
this.filterError = 'There was a task category service error';

It just sets the filterError so the user know that something had happened.
Easy enough. Now, the success method:
if (result.error) {
 this.filterError = 'Error loading task Categories';
 return;
}
this.taskModel.taskCategories = result.resultObject as
TaskCategoryVO[];
this.taskCategories = Object.assign([],
this.taskModel.taskCategories);
let allTask = new TaskCategoryVO();
allTask.taskCategoryID = 0;
allTask.taskCategory = "All Categories";

this.taskCategories.unshift(allTask);
this.taskFilter.taskCategoryID = 0;

This method does a few things. First, it checks the result.error property. If
the property is true, then an error occurred, so the filterError value is set.
This causes the alert to show in the view, and processing stops. If there is no
error, then the TaskCategoryVO array is saved to the taskModel. This is for
future reference when we are crea�ng and edi�ng new tasks.

Next, I copy the taskModel.taskCategories array using the Object.assign().
This is a way to deep copy objects built into the ES6 specifica�on of
JavaScript. Most browsers support it na�vely, but the Polyfill library
included as an Angular requirement should make it work universally
without issues.

The reason for crea�ng a deep copy of the task category array is to add a
new item. Create a new instance of the TaskCategoryVO. Give its
taskCategoryID the value of “0”, and the taskCategory the value of “All
Categories”. It is important in the UI to be able to select the all categories
op�on when viewing tasks. Then, use unshi�() to add the new category
onto the local taskCategories array. Finally, this method sets the default
taskCategoryID in the taskFilter instance. We created the taskFilter
instance earlier in this chapter.

Now, make sure that the new method is called from the ngOnInit():
ngOnInit(): void {
 this.taskFilter.completed = false;
 this.loadTaskCategories();
};

We were already se�ng the completed property to “false”. This is all we
need to load and use the categories.

Triggering the Filter
The final step for this chapter is to implement the code behind the filter
bu�on. The bu�on is inside the taskfilter.component.html template in the
com/dotComIt/learnWith/views/tasks directory. It needs to respond to the
click event:
<input type="button" value="Filter" (click)="filter()"/>

A click direc�ve was added. When clicked, the method filter() will be
executed inside the taskfilter.component.ts file. The purpose of the filter()
method is to put together a filter object and call the loadTasks() method.
We already implemented a loadTasks() method inside the
taskgrid.component.ts file, so we need to trigger that somehow.

We will add a taskFilter argument now. This will, in turn, be passed onto the
loadTasks() method in the TaskService:
function loadTasks(taskFilter){
 TaskService.loadTasks(taskFilter)
 .then(onTaskLoadSuccess, onTaskLoadError);
}

Make sure to go to the onInit() method and modify the ini�al loadTasks()
trigger:
loadTasks($scope.taskModelWrapper.taskModel.taskFilter);

The architecture of the components is like this:

The TaskGrid and the TaskFilter components are children of the
TasksComponent. Using standard encapsula�on principles, the two children
should not be allowed to talk to each other, so how does the TaskFilter
trigger a method call inside the TaskGrid? We’ll declare an output property
of the TaskFilter. This is like crea�ng our own event to dispatch, similar to
how a click works on bu�ons. The TasksComponent will listen to the event
on the TaskFilter, then execute a method on the TaskGrid.

First let’s setup the TaskFilter to dispatch the event. First, import the
Output class from the @angular/core library:
import {Component, EventEmitter, OnInit, Output} from
"@angular/core";

The EventEmi�er class is also imported. Output is used to define the
external event name while EventEmi�er is used to dispatch the event.
Create the output event:
@Output() filterRequest = new EventEmitter<TaskFilterVO>();

This uses the @output() annota�on before the event name. The name of
the event is filterRequest and it represents an EventEmi�er of type
TaskFilterVO.

Before the event is dispatched, we need to create the TaskFilterVO
instance. Create the filter() method:
filter():void {
}

Inside the method, create the new variable:
let taskFilter : TaskFilterVO = new TaskFilterVO();

We need to copy the input values from the view into the proper�es of this
new instance. Start with the startDate:
if (this.startDate) {
 taskFilter.startDate = new Date(this.startDate.month + '/' +
 this.startDate.day + '/' +
 this.startDate.year) ;
} else {
 taskFilter.startDate = null;
}

If the startDate is ini�alized, then we need to copy over the value.
Remember, the DatePicker’s selected value is of type NgbDateStruct, not
Date, so we have to convert it. I did that by crea�ng a date string and
sending that to the Date constructor. If no startDate is specified, the
taskFilter property is set to null, which will tell the service to ignore the
property.

The other date proper�es are created similarly:
if (this.endDate) {
 taskFilter.endDate = new Date(this.endDate.month + '/' +
 this.endDate.day + '/' +
 this.endDate.year) ;
} else {
 taskFilter.endDate = null;
}
if (this.scheduledStartDate) {
 taskFilter.scheduledStartDate = new
Date(this.scheduledStartDate.month +
 '/' +
this.scheduledStartDate.day +
 '/' +
this.scheduledStartDate.year) ;
} else {
 taskFilter.scheduledStartDate = null;
}
if (this.scheduledEndDate) {
 taskFilter.scheduledEndDate = new
Date(this.scheduledEndDate.month + '/' +
 this.scheduledEndDate.day
+ '/' +

 this.scheduledEndDate.year) ;
} else {
 taskFilter.scheduledEndDate = null;
}

The completed value was a different challenge. It should have three
possible values; true, false, or undefined. However, those values were being
translated into strings. As such, I had to do some fancy conversion:
if (this.completed === "null") {
 taskFilter.completed = null;
} else if (this.completed === "false") {

 taskFilter.completed = false;
} else {
 taskFilter.completed = true;
}

I was hoping for an easier approach, but this suffices.

The taskCategoryID had a similar problem regarding strings and numbers. I
formally converted the selected value to the taskFilter property:
taskFilter.taskCategoryID = Number(this.taskCategoryID);

The last step is to emit the event. This is done by calling the emit() func�on
on the filterRequest EventEmi�er instance:
this.filterRequest.emit(taskFilter);

That ends the filter() method.

Catching the filterRequest Event
Handling the filterRequest event is no different than handling a built in
Angular event; such as the click. Open the tasks.component.html in
com/dotComIt/learnWith/views/tasks directory.
<taskfilter class="taskFilter"
(filterRequest)="filterRequest($event)">
</taskfilter>

The filterRequest is added as an a�ribute to the taskfilter tag. It is
surrounded by parentheses, meaning it is being bound to an event handler.
The method filterRequest() is called, and the event is passed in.

While we’re in the tasks.component.html template, add a name to the
taskgrid:
<taskgrid #taskgrid></taskgrid>

The hash tag name allows us to access this view inside the TasksComponent
class. Open that up now, from the file tasks.component.ts. Import the
ViewChild class from @angular/core:
import {Component, OnInit, ViewChild} from '@angular/core';

Inside the class, get a hook to the instance of the TaskGrid:
@ViewChild(TaskGrid)
private taskgrid : TaskGrid;

The @ViewChild annota�on tells Angular to look for a view child of the type
TaskGrid in this component’s view template. The private variable name tells
it to look for the TaskGrid instance named taskgrid. Once we have this
reference, the TasksComponent can execute public methods or proper�es
on the TaskGrid.

Now, create the filterRequest() method:
filterRequest(filter:TaskFilterVO):void {
 this.taskgrid.loadTasks(filter);
}

The event argument is an instance of the TaskFilterVO, which is the input to
the loadTasks() method in the TaskGrid. This method is just a pass through.

This is the process we’ve developed in this sec�on:

1. User clicks the filter bu�on.
2. The TaskFilter component creates an instance of the TaskFilterVO

and emits an event with the taskfilter as event data.
3. The TasksComponent listens to the event and executes an event

handler; requestFilter().
4. The TasksComponent uses the @ViewChild declara�on to access an

instance of the taskGrid.
5. The requestFilter() method, executes the loadTasks() method on the

taskGrid child, sending it to the TaskFilterVO instance created in the
TaskFilter, and passed as part of the event mechanism.

6. The TaskFilter component’s loadTask() methods calls the loadTask()
service, processes the data, and updates the grid.

It is good to understand how these things are structured.

Test the Filtering
This completes the method and the code I wanted to cover in this chapter. I
want to show you some different screenshots of the grid with different
proper�es. First, this is a default load of the grid:

Now, change the category to “Personal”, and press the Filter bu�on:

Finally, try changing the category to “Business”, and se�ng the “Created
A�er” date to 4/21:

These are just a few different op�ons on how you can filter the tasks that
are displayed to the user.

Final Thoughts
A�er this chapter, you should have an understanding of how to setup the
ng-bootstrap project for use within your Angular applica�on, and how to
create a DatePicker component. We also used Angular to populate select
boxes. We covered how to communicate between components using
events and ViewChildren annota�ons. Some services were reviewed, a
new one created, and everything was wired up to create a working and
func�onal UI.

The next chapter will focus on the system for crea�ng and edi�ng task.

Chapter 5: Crea�ng and Edi�ng Tasks
This chapter will show you how to create and edit tasks. It will present the
user interface that we will create with Angular, and show you how to
create a modal popup using ng-bootstrap and Angular. We’ll create new
service methods for saving and upda�ng a task. Finally, it will show you
how to �e everything together by wiring up the UI to the services.

Create the User Interface
This sec�on helps you create a popup window that can be used for both
crea�ng new tasks, and edi�ng exis�ng ones. It will start by showing you
what the UI popup should look like. Next, it will expand on the
implementa�on details behind that UI, and how to create the popup within
the Angular applica�on.

The Task Window
There are two elements that are important to create a new task:

· Task Descrip�on: This element is the main text which makes up the
task.

· Task Category: This element contains the categoriza�on that the
task will be put in.

Other task-related data—such as the completed status, task crea�on date,
and task scheduled date—will not be edited manually when crea�ng the
task. These extra fields are kept out of this UI in order to keep things simple.
Marking a task completed and scheduling a task are both important but will
be addressed in future chapters.

This is the popup screen for crea�ng a new task:

The edit task window is almost iden�cal, except the input fields will be
populated with data based on the selected task. So, instead of reading,
“Create a New Task,” the window �tle will now say, “Edit Task.”

Create the Popup Component
The first thing that you need to do is to create a new component to
represent the popup. As with past Angular components we’ve created, it
will contain a CSS file, an HTML template, and a TypeScript file. Create the
three files in the com/dotComIt/learnWith/views/tasks directory;
taskcu.component.html, taskcu.component.css, and taskcu.component.ts.

Start in the TypeScript file and add a few imports:
import {Component, Input, OnInit} from '@angular/core';
import {NgbActiveModal} from "@ng-bootstrap/ng-bootstrap";

This imports the Component class, the Input class, and the OnInit class
from @angular/core. Next, the NgbAc�veModal class is imported from
@ng-bootstrap/ng-bootstrap. The NgbAc�veModal is a reference to the
current popup, and we will use this to close it a�er processing is complete.

Now, import a few of our own classes:
import {TaskVO} from "../../vo/TaskVO";
import {TaskService} from "../../services/mock/task.service";
import {TaskModel} from "../../model/taskmodel";
import {UserModel} from "../../model/usermodel";

We’ll use these classes to implement the popup’s func�onality. Now, create
the @Component annota�on:
@Component({
 selector: 'taskcu',
 templateUrl :
'./com/dotComIt/learnWith/views/tasks/taskcu.component.html',
 styleUrls: [
'./com/dotComIt/learnWith/views/tasks/taskcu.component.css']
})

This gives the Component a selector of taskcu, defines the HTML template,
and references the CSS Stylesheet.

Finally, we can create the class:

export class TaskCU implements OnInit {
}

The class is named TaskCU. The CU in the name is an acronym for create
and update. The class requires two input values:
@Input()
title : string;
@Input()
task :TaskVO;

The �tle will be displayed as part of the modal’s header. It will change
dependent upon whether we are edi�ng a class, or crea�ng a class. The
other element is the task we are edi�ng. If it is blank, the component will
assume we are crea�ng a new task. No�ce that each input value has the
annota�on @Input(). This is how Angular says it is expec�ng these values to
be provided to the component.

Then, add a local variable:
taskUpdateError :string;

This will be used to display an alert error to the user in case there are
service problems saving or update the task. Now, add the constructor:
constructor(private activeModal: NgbActiveModal,
 private taskService:TaskService,
 private userModel:UserModel,
 private taskModel:TaskModel) {
}

Though the constructor does not have any func�onality, it does pass three
services into this component’s class. To update or create the task upon save,
the taskService will be used. The taskModel will be used to populate the
task categories drop-down in the view template. Finally, should the need
arise, the ac�veModal—which comes from ng-bootstrap—will be used to
close the modal.

Finally, add the ngOnInit() method:
ngOnInit(): void {
 if (!this.task) {
 this.task = new TaskVO;
 }
};

This is a quick check to see if the task input is defined or not. If not, then
create a new empty TaskVO instance.

While we are in here, let’s create a stub for the save method:
onSave():void {
}

We’ll loop back to this method later in the chapter a�er we created the
service.

Populate the Popup Template
The file has three parts; a header, a content area, and a footer area. Open
the taskcu.component.html file in the
com/dotComIt/learnWith/views/tasks directory.

This is the header:
<div class="modal-header">
 <h4 class="modal-title">{{title}}</h4>
 <button type="button" class="close" aria-label="Close"
 (click)="activeModal.dismiss('Cross click')">
 ×
 </button>
</div>

The header is represented by a div, and it is given a Bootstrap CSS class:
modal-header. The content of the header is a variable �tle which will
reference the property inside the TaskCU class. This also includes an “X”
bu�on, which calls the ac�veModal service to dismiss the popup.

The next element of the popup is the content area of the form. It starts out
with a div:
<div class="modal-body">
</div>

The class name for the content area is called modal-body; a special
Bootstrap style. Within the content area of the form is the error alert, the
descrip�on text area, and the category drop-down. First, the error alert:
<div class="alert alert-danger" *ngIf="taskUpdateError">
 <h2>{{taskUpdateError}}</h2>
</div>

The editable content is in a table for easy layout. Next, the descrip�on:
<table>
 <tr>
 <td>Description</td>
 <td>
 <textarea [(ngModel)]="task.description"></textarea>
 </td>
 </tr>

The text area is a simple HTML tag. It uses the ngModel tag to bind the
value of the TextArea to a value inside class’s task object.

Lastly, is the category drop-down. This implementa�on is similar to the
category drop-down used in the task filter component:
<tr>
 <td>Category</td>
 <td>
 <select [(ngModel)]="task.taskCategoryID"
 class="taskCUDropDown">
 <option *ngFor="let category of
taskModel.taskCategories"
 [value]="category.taskCategoryID">
 {{category.taskCategory}}
 </option>
 </select>
 </td>
</tr>
</table>

Now, the table row contains a label—“Category”—and an HTML select box.
The HTML select box is populated with Angular, using the
taskModel.taskCategories array that was loaded from the service layer in
the previous chapter. The data was cached in the taskModel class and
referenced here. Bound to the taskVO.taskCategoryID value in the
controller using the ngModel tag, is the selected value of the category
select box. You’ve seen all of this before.

The category select uses a new CSS style. Create it in the
taskcu.component.css file:
.taskCUDropDown{
 width:100%
}

It stretches the width of the drop-down to 100% of the table cell it is in.

The final sec�on of the TaskCU.html file is the footer. It contains the cancel
and save bu�ons:
<div class="modal-footer">
 <button class="btn btn-primary" type="button"
 (click)="activeModal.dismiss('Close click')">
 Cancel
 </button>
 <button class="btn btn-warning" type="button"
 (click)="onSave()">
 Save
 </button>
</div>

The class for the footer div is modal-footer. Once again, this refers to a
Bootstrap CSS class. Two bu�ons are defined here; one for the cancel
bu�on, and one for the save bu�on. Both bu�ons are styled using
Bootstrap styles. Each bu�on has a generic bu�on style named btn. There
are two secondary styles—one on each bu�on. The cancel bu�on uses btn-
warning as the style, while the save bu�on uses btn-primary. The HTML
blocks combine to create the popup. Addi�onally, the close bu�on calls on
the ac�veModal instance to close the popup, while the save bu�on will call
the onSave() method inside the TaskCU component.

Opening the New Task Window
There are two different ways to open the create task popup. One is going to
be with an edit bu�on in the uiGrid. That will be examined in the next
sec�on. The other is going to be with a new task bu�on in the
TaskFilter.html, which I’ll show you now.

This is the bu�on:

The bu�on implementa�on is fairly simple. Open up the
taskfilter.component.html file from the
com/dotComIt/learnWith/views/tasks directory. At the bo�om of the file,
edit the table cell that contains the filter bu�on to add the new task bu�on
above it:
<td class="alignBottom">
 <input type="button" value="New Task" (click)="newTask()"/>
 <input type="button" value="Filter" (click)="filter()"/>
</td>

The new task bu�on uses the click direc�ve to call the newTask() method
inside the TaskFilter class:
newTask() : void {
 this.newTaskRequest.emit();
}

All this does is emit a new task request. Be sure to define that new output
event in the class:
@Output()
newTaskRequest = new EventEmitter();

None of the code to maintain the popup is in the TaskFilter component; it is
in the TaskComponent. No�ce the newTaskRequest has an @Output()
annota�on. Just like @Input()defines a value intended to be sent into the
component, @Output() defines an event which will be sent out of the
component. Be sure to import the Output class from the @angular/core
library:
import {Component, EventEmitter, OnInit, Output} from
"@angular/core";

Now, open the tasks.component.html file:
<taskfilter class="taskFilter"
 (filterRequest)="filterRequest($event)"
 (newTaskRequest)="newTask()">
</taskfilter>

The filterRequest was already there, but now we’ve added a
newTaskRequest which will call the newTask() method inside the
tasks.component.ts file. Here is the newTask() method:

newTask() : void {
 this.openTaskWindow('Create a New Task');
}

This is just a proxy to a secondary method named openTaskWindow():
private openTaskWindow(title:string, task:TaskVO = null) {
}

The openTaskWindow() method accepts two arguments; each one, a
parallel to the two input arguments of the TaskCU component. They are the
�tle, and the task to be edited. No�ce that the task argument is op�onal
and will default to a null string if not specified.

Now, create the popup:
const modalRef = this.modalService.open(TaskCU);

What is the modalService? We haven’t injected it into this class yet. Do so
as part of the constructor:
constructor(private userModel :UserModel,
 private router: Router,
 private modalService: NgbModal) {
}

And you’ll have to import the NgbModal class:
import {NgbModal} from "@ng-bootstrap/ng-bootstrap";

Import the TaskCU component while you’re dealing with imports:
import {TaskCU} from "./taskcu.component";

Back to the openTaskWindow() method. We call an open() method on the
modalService component and pass in the actual component type—not an
instance of the component. The ng-bootstrap library will create an instance
of this component at run�me.

To allow Angular to create component instances at run�me, they must be
defined as such when we set up the module. So, open up the
app.module.ts file from the com/dotComIt/learnWith/main directory.
Import the TaskCU:
import {TaskCU} from "../views/tasks/taskcu.component";

Add it to the declara�ons array of the @NgModule:

declarations: [
 AppComponent,
 LoginComponent,
 TasksComponent,
 TaskGrid,
 TaskFilter,
 TaskCU
],

Then, add an entryComponents array top the @NgModule:
entryComponents: [TaskCU]

The entryComponents is how we tell Angular we may be crea�ng instances
of this at run�me.

Go back to the openTaskWindow() method in the tasks.component.ts file.
We created the modal reference, but s�ll need to pass in our �tle and task:
modalRef.componentInstance.title = title;
modalRef.componentInstance.task = task;

At this point, you should be able to run the app, click the new task bu�on,
and see the popup. It should even close if you click the cancel—or “X”—
bu�on.

Opening the Edit Task Window
The edit bu�on is going to be placed inside the task grid with a new
column:

To create this, we will create a new column template similar to how we
created the completed checkbox, or forma�ed the date. Open up the
taskgrid.component.html file. Add the new column to the end of the ngx-
datatable:
<ngx-datatable-column maxWidth="150" >
 <ng-template let-row="row" ngx-datatable-cell-template>
 <button (click)="onEditTask(row)">Edit Task</button>
 </ng-template>
</ngx-datatable-column>

The column starts with the ngx-datatable-column list. I specified a
maxWidth for the column at 150 pixels on the column. The ng-template
defines the bu�on container. In the past, we specified a let-value to pass a
value into the template. This �me, we specified a let-row property. This will
pass the full row object into the template. The bu�on just executes a click
to run the onEditTask() method. The row value, which represents a TaskVO
instance, is passed to the onEditTask() method.

In the taskgrid.component.ts file, create the onEditTask() method:
onEditTask(value:any) :void {
 this.editTaskRequest.emit(value);
}

This just emits the editTaskRequest @output event. Create it as part of the
class:
@Output() editTaskRequest = new EventEmitter<TaskVO>();

The TaskVO is passed as part of the event. Make sure that this component
imports Output and EventEmi�er:
import {Component, EventEmitter, OnInit, Output} from
'@angular/core';

To respond to the editTaskRequest event, open the tasks.component.html
file:
<taskgrid #taskgrid (editTaskRequest)="editTask($event)"></taskgrid>

The taskgrid component now has calls the editTask() method in response to
the editTaskRequest event.

Go to the tasks.component.ts file to find the editTask() method:
editTask(task:TaskVO) : void {
 this.openTaskWindow('Edit Task', Object.assign({}, task));
}

This is a pass-through for the openTaskWindow() method we created
earlier in this chapter. This �me, instead of passing in a null task, we pass in
the value that was propagated up from the TaskGrid. No�ce that we use
Object.assign() to create a deep copy of the task. If we do not create a copy,
then the grid may be updated before the service updates the task. This way,

we do not have to worry about rolling back UI visual changes if the user
decides to cancel the opera�on and not save their task updates.

A�er implemen�ng this last bit, the app should run and open the dialog
popup for both a new task, and edi�ng an exis�ng one. The next steps in
this chapter are to review the services that we need to integrate with, and
to hook up the save bu�on in order to complete the UI.

Examine the Database
Before delving into the service code, I wanted to provide you a refresher on
the database tables behind the tasks. You have seen this diagram used in
previous chapters, but here it is again:

This chapter will only be dealing with the Tasks table, and only a few
columns at that. This table shows the list of columns, and how they are
affected by the create task or update task:

Data On Create On Update
taskID Created by the database Passed along by the UI with no

user input
taskCategoryID User editable User editable
userID Passed along by the UI with

no user input
Not changed during update

Descrip�on User editable User editable
completed Defaulted to false Not changed during a task update,

although this func�onality to
toggle this value will be added to
the app in later chapters

dateCreated Defaulted to current date
with no user input

Not changed during update

dateCompleted Set to null with no user
input

Not changed during a task update,
although this func�onality will be
added to the app in later chapters

dateScheduled Set to null with no user
input

Not changed during task update,
although this func�onality will be
added to the app in later chapters

These are the columns that get updated when we implement the services
which create and update our task data.

Write the Services
This sec�on will explain the NodeJS code needed for the services. It will
show you how to create methods in the TaskService for crea�ng, and
upda�ng the task. It will show some test URLs you can use to create or
update tasks.

Modify the getFilteredTasks() method
Before looking at the code to update or create, a task we need to make
another change to is the getFilteredTasks() method. The getFilteredTasks()
method was originally created in Chapter 3, and expanded upon in Chapter
4. It loads an array of tasks based on some specified filters. We are going to
add a new filter for the TaskID. This will make it easy to return the new or
updated task a�er the process is completed.

Open up the TaskService.js in the com/dotComIt/learnWith/services
directory. Add this new clause as part of the database query:
if(json.taskID != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 query = query + " taskID = " + json.taskID + " ";
}

If the firstOne variable is “true”, then add a "where" clause to the query,
and set the firstOne value to “false”. Otherwise, an "and" is added to
concatenate the new condi�on with the previous condi�ons. Finally, the
taskID check is added. This is an equality comparison of the taskID in the
database with the taskID passed in as part of the filter.

Crea�ng a New Task
Open up the TaskService class in the com/dotComIt/learnWith/services
directory, then create a method stub for the createTask() method:
function createTask(response, queryString) {
}

The createTask() method will be one of our URL handlers. Therefore, it
accepts a response object to send informa�on back to the user, and a
queryString object that contains the informa�on that the user sent in to
the method.

First in the method is some boilerplate code:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

This creates a generic return object—resultObject—and also saves the
callback string, if available, in a callback variable.

Next, make sure that the relevant URL variables are present in the
queryString value:
if((queryString.taskCategoryID == undefined) ||
 (queryString.userID == undefined) ||
 (queryString.description == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
} else {
 // process query here
}

The variables needed for this method are the taskCategoryID, the userID,
and the descrip�on. If none of those are defined, then the error response
is sent back to the user. If all values are defined as needed, it is �me to
create the query:
query = "insert into tasks(taskCategoryID, userID, description,
completed,
 dateCreated) values(";
if(queryString.taskCategoryID != 0) {
 query = query + " " + queryString.taskCategoryID + ", ";
} else {
 query = query + " null, ";
}
query = query + " " + queryString.userID + ", ";
query = query + " '" + queryString.description + "', ";
query = query + " 0, ";
query = query + " GETDATE()) ";
query = query + " SELECT SCOPE_IDENTITY() as taskID ";

The query starts with an insert statement, lis�ng out all the values;
taskCategoryID, userID, descrip�on, completed, and dateCreated. Three
of these values will be sent in by the UI and available as part of the URL’s
query string. The completed value will be set to “0” when the task is
ini�ally created; meaning it will be “not complete”. The dateCreated value
will be set to the current date and �me, using the SQL Server getDate()
func�on.

The final line of the query retrieves the unique ID of the task that was just
created. This will be returned in the recordset variable of the database
connec�on’s result handler:
var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 var queryStringData = {};
 queryStringData.taskID = result.recordset[0].taskID;
 queryStringData = JSON.stringify(queryStringData);
 mockQueryString = {};
 mockQueryString.filter = queryStringData;
 mockQueryString.callback = callback;
 getFilteredTasks(response, mockQueryString)
 },
 function(err) {
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
 }
);

The result handler makes use of the getFilteredTasks() method that we
created in previous chapters to return the updated task. It manually
creates a query string object with a filter property set to the taskID.
Passing our fake query string object and the response object into the
getFilteredTasks() method allows this method to do the rest of the work
for us, and a result object is returned to the browser with no addi�onal
work needed in the createTask() method.

The third argument of the executeQuery() method is the error handler. It
sets the error property on the resultObject object to “1”, then returns it to
the invoking client. The last thing to do in this file is to export the
createTask() method:
exports.createTask = createTask;

Then, add the exported handler into the ResponseHandler file in the
com/dotComIt/learnWith/server directory:
handlers["/taskService/createTask"] = taskService.createTask;

Restart the app, and you’ll be ready to accept task crea�on service calls.

Tes�ng Task Crea�on
To test the ability to create a task, just load this URL in your browser:
http://localhost:8080/taskService/createTask?
 taskCategoryID=1&
 userID=1&
 description=Created by Test Harness

Remove the line breaks, of course. The URL contains the file loca�on of the
request that was specified in the ResponseHandler file in the previous
sec�on. It also contains three URL arguments; the taskCategoryID, the
userID, and the descrip�on. You should see a result in the browser similar
to this:
{
 "resultObject":
 [
 {
 "taskCategoryID":1,
 "description":"Created by Test Harness",
 "dateScheduled":"",
 "taskCategory":"Business",
 "dateCompleted":"",
 "taskID":13,
 "dateCreated":"05\/14\/2016",
 "completed":0,
 "userID":1
 }
],
 "error":0
}

This response object returns an updated task object inside the
resultObject instance. The error is set to “0”.

Upda�ng a Task
Next, we want to create a method for upda�ng a task. Once again, open up
the TaskService class in the com/dotComIt/learnWith/services directory.

Create a method stub for the updateTask() method:
function updateTask(response, queryString) {
}

The updateTask() method is a URL handler and accepts a response object
to send informa�on back to the user, and a queryString object that
contains the informa�on that the user sent in to the method.

The method opens with some boilerplate code:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

This creates a generic return object—resultObject—and also saves the
callback string, if available, in a callback variable.

Next make sure that the relevant URL variables are present in the query
string:
if((queryString.taskCategoryID == undefined) ||
 (queryString.taskID == undefined) ||
 (queryString.description == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
} else {
 // process query here
}

The variables needed for this method are the taskCategoryID, the taskID,
and the descrip�on. If none of those are defined, then the error response
is sent back to the user. If all values are defined as “needed”, it is �me to
create the query:
query = "update tasks set ";
if(queryString.taskCategoryID != 0) {
 query = query + " taskCategoryID = " +
queryString.taskCategoryID + ", ";
} else {
 query = query + " taskCategoryID = null, ";
}
query = query + " description='" + queryString.description + "' ";
query = query + " where taskID = " + queryString.taskID;

The query represents an update statement. It starts with the update
keyword, and then provides a list of columns to be updated and their new
values. The taskCategoryID and descrip�on are updated. The
taskCategoryID could be set to “null” if the value is “0”, meaning the "All
Categories" op�on was selected in the UI. The taskID property used to
determine which task is updated with a “where” clause on the query.

Next, use the dataConnec�on object to execute the query:
var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 var queryStringData = {};
 queryStringData.taskID = queryString.taskID;
 queryStringData = JSON.stringify(queryStringData);
 mockQueryString = {};
 mockQueryString.filter = queryStringData;
 mockQueryString.callback = callback;
 getFilteredTasks(response, mockQueryString)
 },
 function(err) {
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
 }
);

The result handler makes use of the exis�ng getFilteredTasks() method to
return the updated task. It manually creates a query string object with a
filter property set to the taskID. Passing the fake query string object and
the response object into the getFilteredTasks() method lets this method to
do the rest of the work for us. A result object is returned to the browser
with no addi�onal work needed in the createTask() method.

The error handler adds the error property to the resultObject with a value
of “1” to depict that there is an error. Then it returns it with the browser.

The last thing to do in this file is to export the updateTask() method:
exports.updateTask = updateTask;

Be sure to add the updateTask() handler into the ResponseHandler file in
the com/dotComIt/learnWith/server directory:
handlers["/taskService/updateTask"] = taskService.updateTask;

Restart the app and you’ll be ready to update tasks.

Tes�ng Task Updates
To test the ability to create a task, just load this URL in your browser:
http://localhost:8080/taskService/updateTask?
 taskCategoryID=1&
 taskID=13&
 description=Updated by Test Harness

Remove the line breaks when you put together the URL. The URL contains
the file loca�on of the request that was specified in the ResponseHandler
file in the previous sec�on, which is "taskService/updateTask". It also
contains three URL arguments; the taskCategoryID, the taskID, and the
descrip�on. You should see a result in the browser similar to this:
{
 "resultObject":
 [
 {
 "taskCategoryID":1,
 "description":"Updated by Test Harness",
 "dateScheduled":"",
 "taskCategory":"Business",
 "dateCompleted":"",
 "taskID":13,
 "dateCreated":"05\/14\/2016",
 "completed":0,
 "userID":1
 }
],
 "error":0
}

This response object returns an updated task object inside the
resultObject instance. The error is set to “0”.

Access the Services
This sec�on will examine the Angular code needed to talk to the NodeJS
services for saving and upda�ng tasks. We’ll use a single method—
updateTask()—for both saving and upda�ng tasks from the Angular app.
That method is in the TaskService.ts class in the
com/dotComIt/learnWith/services/nodejs directory:
updateTask(task :TaskVO, user :UserVO): Observable<ResultObjectVO>
{
};

The method accepts two arguments; the task that is being created or
updated, and the user who is doing the updates. The method returns an
Observable commitment for a ResultObjectVO.

This method is going to have to determine whether the createTask() or
updateTask() service method is called. It can do so by checking the taskID
value of the taskVO object. If the taskID is “0”, then you’ll need to call the
createTask() service method. Otherwise, you’ll have to call the
updateTask() service method.

First, we want to make sure that the taskCategoryID was selected:
if(!isNumeric(task.taskCategoryID)){
 task.taskCategoryID = 0;
}

This uses the rxjs isNumeric() func�on, so be sure to import it:
import {isNumeric} from "rxjs/util/isNumeric";

In certain situa�ons, the UI may not force the user to select a task, and the
taskCategoryID will therefore be empty. We want to make sure we send
the service layer a “0” taskCategoryID in those situa�ons, not an empty
string.

Next, create a parameter query string:
let parameters = "taskCategoryID" + "=" + task.taskCategoryID +
'&';
parameters += "description" + "=" + task.description + '&';
parameters += "callback" + "=" + "JSONP_CALLBACK" + '&';

The query string contains the taskCategoryID, the descrip�on, and the
callback. All three items are required for both “create” and “update” calls.

Now, determine which service method to call:
let method : string = "createTask";
if (task.taskID) {
 method = "updateTask";
 parameters += "taskID" + "=" + task.taskID + '&';
} else {
 parameters += "userID" + "=" + user.userID + '&';
};

The code creates a variable named “method”. The default value is
createTask, for crea�ng a new task. If the task’s taskID value is defined,
then change it to updateTask. This code also adds the op�onal parameters.
If we are upda�ng the task, then add the taskID to the parameter string.
On the other hand, if we are crea�ng a new item, add the userID.

Now, put together the final URL:
let url = SERVER + 'taskService/' + method + '?' + parameters;

This code uses the server, method, and parameter variables to piece
together the URL. The final step in the method is to trigger the remote call:
return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO);

The Angular jsonp variable triggers the call. The Observable object is
returned from the service. This is so that the invoking code can call a
“result” or “failure” func�on when the asynchronous call is completed.
Finally, using the dot nota�on, the map() func�on is called to parse the
JSON results into a ResultObjectVO before sending them back.

Wire Up the UI
The final sec�on of this chapter will wire up the popup dialog to the
services. This will allow for the crea�on and update of the tasks. It will also
determine how to update the main task grid with the results of the popup
interac�ons.

Clicking the Save Bu�on
To start, we will flesh out the onSave() method in the taskcu.component.ts
file. This method is executed when the save bu�on is clicked inside the task
popup. This method calls the updateTask() method in the TaskService and
processes the results. Here is the method outline:
onSave():void {
 this.taskUpdateError = '';
 this.taskService.updateTask(this.task,
this.userModel.user).subscribe(
 result => {
 },
 error => {
 }
);
}

First, the error message is cleared. The updateTask() service method
returns an observer, and the subscribe() method is executed upon it. We
line up two result methods; the first for success, and the second to handle
errors. Upon failure, we just set the taskUpdateError value:
this.taskUpdateError = 'There was a problem saving the task.';

This will update the alert method in the popup, warning the user that
something bad happened.

The result method is similar to what we’ve seen before:
if (result.error) {
 this.taskUpdateError = 'There was a problem saving the task.';
 return;
}
this.activeModal.close(result.resultObject);

If an error is returned, then update the taskUpdateError so the user is
no�fied. If no error exists, then the ac�veModal service is used to close

the dialog. The returned task object is passed as an argument to the close
method. The next step is to execute methods when the popup is closed or
dismissed.

Handle the updateTask() Result
It is �me to implement the close() and dismiss() func�ons for the modal.
Open up the tasks.component.ts file in the
com/dotComIt/learnWith/views/tasks directory. Find the
openTaskWindow() method. At the end, add the result handlers to the
modalRef:
modalRef.result.then(
 (result) => {
 }
).catch(
 (result) => {
 }
);

The modalRef.result is a promise object, similar to the observable we used
when processing service responses. The then() method will execute when
the window is closed. The catch() method will execute when the window is
dismissed. The dismiss() method can be kept blank; if the user cancels any
updates in the modal, the app doesn’t need to address any func�onality.

The close() method needs some more work. There are two op�ons. If we
have a new task, we need to add it to the current tasks array in the
TaskGrid component so that it will immediately display. If a task was
updated, we need to update the tasks array in the TaskGrid.

We can check whether a task was created or updated by checking the task
argument into the openTaskWindow() method. If it is a null, we created a
new task:
if (!task) {
 this.taskgrid.tasks.push(result[0]);
}

If no task is defined, then add the result array onto the taskgrid.tasks
property. Remember, earlier we exposed the TaskGrid’s proper�es using
the @ViewChild() annota�on.

If the task is defined, we are performing an update. This is done with a loop
over that TaskGrid’s tasks array:
else {
 for (let index = 0; index < this.taskgrid.tasks.length; ++index) {
 if (this.taskgrid.tasks[index].taskID === result[0].taskID) {
 this.taskgrid.tasks[index].description =
result[0].description;
 this.taskgrid.tasks[index].taskCategory =
result[0].taskCategory;
 this.taskgrid.tasks[index].taskCategoryID =
result[0].taskCategoryID;
 break;
 }
 }
}

Instead of replacing the item, I had to change the proper�es individually or
else the grid would not refresh. I would have preferred to reference the
tasks array in the TaskModel, however that was not upda�ng, either.

Final Thoughts
This is the process going on with the popup:

1. User loads app and logs in.
2. They click the “Edit Task” in the TaskGrid, or “New Task” bu�on in

the TaskFilter.
3. Events are emi�ed from their respec�ve components up to the

TaskComponent.
4. The TaskComponent will open the popup dialog. If crea�ng a new

task, then an empty TaskVO object is created. The �tle value and
the task object are passed into the dialog.

5. If the user clicks the “cancel” bu�on, then the dismiss() func�on is
called; closing the popup and performing no other ac�ons.

6. If the user performs edits and clicks the “save” bu�on, then the
popup calls the service to save—or update—the task.

7. The results come back and the popup is closed, passing the new
task as an argument.

8. The TaskComponent executes the successful method for upda�ng
or crea�ng the task. If a new task was created, that new task is
added to the task grid. If the task is updated, the grid task
proper�es are changed so that the grid can update its display to
reflect new values.

The next chapter will implement the ability to schedule tasks.

Chapter 6: Scheduling Tasks
This chapter will implement the ability to schedule tasks inside an app.
That means being able to assign a task to a specific day. It will show you
the user interface for this, and discuss the services required. Then, it will
show you how to wire everything up to make things work, and revisit the
service method for loading task data. This chapter will also introduce a few
new angular direc�ves; hidden will show or hide aspects of the UI, ngClass
will dynamically change style sheets, and ngModelChange will execute a
func�on when the ngModel value changes.

Create the User Interface
This sec�on will show you the user interface for scheduling tasks. It will
demonstrate to you the implementa�on, and we’ll also revisit some of our
past CSS Styles to tweak the layouts.

The Task Scheduler Window
The scheduler will be shown—or hidden—based on a bu�on click. The first
change to the Main screen is to add that bu�on:

The bu�on to show the scheduler is on the right of the screen. A�er
pressing the bu�on, you’ll see this:

The grid shrinks down to half the screen. Here, the Scheduler is shown with
the date chooser, and the list of tasks to be scheduled. There is a “save”
bu�on now below the scheduler, and a row of “+” bu�ons added into the

grid beside each “edit” bu�on. This “+” bu�on only shows up when the
scheduler is displayed. It is used to add an item to the scheduler.

These are the screens and func�onality that you’ll implement in this
chapter.

Create the TaskScheduler component
The TaskScheduler component will be fueled by three files;
taskscheduler.component.css, taskscheduler.component.html, and
taskscheduler.component.ts. Create all of them in the
com/dotComIt/learnWith/views/tasks directory. Let’s start with the
TypeScript file:
import {Component, OnInit} from '@angular/core';
import {TaskService} from "../../services/mock/task.service";
import {TaskVO} from "../../vo/TaskVO";
import {NgbDateStruct} from "@ng-bootstrap/ng-bootstrap";

This imports the Component and OnInit from @angular/core, the
NgbDateStruct from @ng-bootstrap/ng-bootstrap, and our local
TaskService and TaskVO libraries. Now, create the @Component defini�on:
@Component({
 selector: 'taskscheduler',
 templateUrl :
'./com/dotComIt/learnWith/views/tasks/taskscheduler.component.html',
 styleUrls: [
'./com/dotComIt/learnWith/views/tasks/taskscheduler.component.css']
})

The selector is named taskscheduler, and that is the tag we’ll use in HTML
to show the component. The templateUrl and styleUrl values point to the
empty HTML template and CSS files we just created.

Now, create the class:
export class TaskScheduler implements OnInit {
 schedulerDate : NgbDateStruct;
 schedulerError : string;

 constructor(private taskService :TaskService,
 private taskModel :TaskModel) {
 }

 ngOnInit(): void {

 }

 onSchedulerDateChange():void {
 }

 onTaskUnschedule(): void {
 };
}

The class is named TaskScheduler, and implements the OnInit interface.
We’ll use the ngOnInit() method to load the tasks scheduled for the current
date.

Two proper�es are created on the class. The schedulerDate will contain the
current selected date. The schedulerError will contain the text of an error to
be displayed to the user, most likely coming from a service call.

The constructor injects the TaskService into the component and the
TaskModel. We need to add two variables to the taskmodel.ts file in
com/dotComIt/learnWith/model directory:
scheduledTasks: TaskVO[] = [];
addedTasks: TaskVO[]= [];

The scheduledTasks value will contain an array of tasks scheduled for the
selected date. The addedTasks array will be tasks added to the selected
date, but not yet scheduled. If the day changes before items are saved, we
don’t want to erase the currently added—but unsaved—items. It would be
a frustra�ng user experience to remove all items the user just added before
realizing they had selected the wrong date. The addedTasks array is used to
keep track of these extra items and show them in the list a�er the date
changes and new results are retrieved from the server.

A method was added for when the selected scheduler date changes, and
one for when a task was removed from the current date. For the moment
that is it. We’ll fill the method func�onality in later on in this chapter.

Make sure you load this component in the app.module.ts from the
com/dotComIt/learnWith/main directory. First, import it:
import {TaskScheduler} from
"../views/tasks/taskscheduler.component";

Then, add the TaskScheduler to the declara�ons:

declarations: [
 AppComponent,
 LoginComponent,
 TasksComponent,
 TaskGrid,
 TaskFilter,
 TaskCU,
 TaskScheduler
],

This makes the new component ready to use within the applica�on.

Create the Scheduler Template
Let’s turn our a�en�on to the taskscheduler.component.html file in the
com/dotComIt/learnWith/views/tasks directory. This template includes
four separate parts. First is the text header which is trivial to create. Second
is the date chooser template, which is almost iden�cal to what we used in
the TaskFilter template. Next up is the list of tasks that are scheduled—or
need to be scheduled—for the current selected day. We’ll spend some �me
going over this. The final piece is the “save” bu�on. We’ve seen a lot of
Angular powered bu�ons, so this should be simple enough.

Start with a div wrapper:
<div class="taskSchedulerWrapper">
 <h1>Scheduler</h1>
</div>

I added a header too. Be sure to define the taskSchedulerWrapper in the
taskscheduler.component.css file:
.taskSchedulerWrapper {
 display: flex;
 height: 100%;
 flex-direction: column;
}

This sets up this component for a Flexbox display similar to what we’ve used
elsewhere in the app. It is interes�ng to note that Angular prevents similarly
named styles across mul�ple components from interfering with each other.

Back to the HTML template. Add the error alert:
<div class="alert alert-danger" *ngIf="schedulerError">
 <h2>

 {{schedulerError}}
 </h2>
</div>

We’ve seen this approach in previous chapters, so not much new content to
point out here. Then, add in the Bootstrap DatePicker:
<form class="form-inline">
 <div class="form-group">
 <div class="input-group"
 <input class="form-control" placeholder="yyyy-mm-dd"
 name="schedulerDP" ngbDatepicker
 #schedulerDP="ngbDatepicker"
 [(ngModel)]="schedulerDate"
 (ngModelChange)="onScheduleDateChange()">
 <div class="input-group-addon"
(click)="schedulerDP.toggle()" >
 <img src="img/calendar-icon.svg"
class="datePickerImage"/>
 </div>
 </div>
 </div>
</form>

We’ve used DatePicker’s in the chapter on filtering, so this should be
familiar. There are a bunch of layout elements before ge�ng to the actual
input. The input is named schedulerDP and the ngModel binds to the
schedulerDate property inside the component class. Something new here is
the ngModelChange direc�ve. Whenever the model changes, this method
will be executed. We’ll use this to trigger the loading of tasks scheduled for
the current date.

Next, we want to show a list of all the tasks scheduled for the current date:
<div class="border-top-left-bottom-right">
 <div *ngFor="let task of taskModel.scheduledTasks"
class="width100">
 <div class="horizontal-layout-94">{{task.description}}</div>
 <div class="horizontal-layout-4">
 <button (click)="onTaskUnschedule(task)">X</button>
 </div>
 </div>
</div>

Each list item is a div element, and each contains two divs inside it. The first
div encompasses the task descrip�on, while the second includes the “X”

bu�on—which is used for dele�ng a task. The whole thing is wrapped in a
div that provides the border.

The first div has a new style which gives it a border all around. Put the style
in the taskscheduler.component.css file:
.border-top-left-bottom-right {
 border : solid 1px grey;
}

The internal div uses the *ngFor direc�ve to loop over the scheduled tasks.
This direc�ve is like an HTML for loop, and we used it to create select boxes
in previous chapters. It tells Angular that for every task in the
scheduledTasks array, it will create an instance of the div. The div has a CSS
class of width100:
.width100 {
 width:100%
}

As always, put the CSS informa�on inside the taskscheduler.component.css
file. This sets the width of the div to “100%” of its parent container. Inside
the wrapper are two more div layers. The first one displays the task
descrip�on. The task variable referenced inside the repeat loop refers to the
task defini�on defined in the *ngFor. You reference it the same way you
would a value in the templates controller.

The second internal div contains the “delete” bu�on. This new bu�on is
used to remove an item from the scheduled task list. It will, essen�ally, null
out the tasks scheduled date. If the task was already scheduled, it will have
to call a service to fix it. The final two internal div layers have their own
custom styles:
.horizontal-layout-94{
 position: relative;
 display: inline-block;
 vertical-align: top;
 width:94%;
 height : 100%;
}
.horizontal-layout-4{
 display: inline-block;
 vertical-align: top;
 width:4%;

 height:100%;
}

These two will be reused elsewhere, so I put them in styles.css in the styles
directory. This would be a no-go if I were trying to op�mize the components
for reuse. However, in this case, I did not want to have duplicate versions of
mul�ple styles.

For details on the style, set the posi�on to “rela�ve”. This means that the
element will be posi�oned based on its parent container. It also sets the
display to “inline-block”. Div elements are usually placed as ver�cal
elements; one on top of the other. By se�ng the display style to “inline-
block”, they can be put side by side. The ver�cal-align is set to “top”, so the
grid will be posi�oned at the top of the container. The width is set to “94%”
for the text, and 4% for the bu�on. This leaves some room for padding in
the display. Finally, the height is set to “100%”. This will expand the height
of the grid to fill up the available space.

The final piece of the scheduler is the “save” bu�on:
<button class="width100" ng-
click="onTaskListSchedule()">Save</button>

The save bu�on uses the width100 CSS class which extends the bu�on to
“100%” width. It also calls a method, onTaskListSchedule(), which will save
all items in the current scheduler list to the current date. A�er reviewing
the services, we’ll explore this method in a bit more detail.

Modifying the Main Screen
Let’s modify the main tasks screen to include the scheduler component and
a bu�on to expand or collapse the screen. Open the tasks.component.html
file in the com/dotComIt/learnWith/views/tasks directory. This is the
template that is displayed a�er the user logs in. It already displays the
TaskFilter TaskGrid components.

Let’s review the current component:
<div class="wrapper">
 <taskfilter class="taskFilter"
(filterRequest)="filterRequest($event)"
 (newTaskRequest)="newTask()"></taskfilter>
 <div class="mainScreenContainer">

 <taskgrid #taskgrid (editTaskRequest)="editTask($event)">
</taskgrid>
 </div>
</div>

The whole component is wrapped in a div; used to set up the flexbox
posi�oning. There is a TaskFilter component instance up top, and the
TaskGrid instance is on the bo�om. TaskGrid is wrapped in a div with the
class, mainScreenContainer. Our new components will go inside this div;
below the TaskGrid.

First, I’m going to wrap the TaskGrid in its own container:
<div [ngClass]="gridContainerStyle">
 <taskgrid #taskgrid (editTaskRequest)="editTask($event)" >
</taskgrid>
</div>

This introduces a brand new angular direc�ve; ngClass. The ngClass
direc�ve allows you to set a style class on the div by using a variable
defined in the component class. There are two different CSS classes that will
be switched between—each represen�ng a different width. The first is
named horizontal-layout-94, which we defined earlier. This will be used
when the component is in the expanded, or normal state. A similar style,
horizontal-layout-60 will be used when the TaskGrid is shortened in the
scheduler state:
.horizontal-layout-30{
 position: relative;
 display: inline-block;
 vertical-align: top;
 width:30%;
 height:100%;
}

Create the gridContainerStyle variable inside the TasksComponent class so
it has a default value:
public gridContainerStyle : string = 'horizontal-layout-94';

While we’re at it, create two other variables required to maintain the state:
public schedulerState : boolean = false;
public schedulerShowButtonLabel : string = "<";

The schedulerState value will be used to show or hide the TaskScheduler
component. The schedulerShowBu�onLabel will be used as the text inside
the bu�on.

This expand/collapse bu�on comes next in the file:
<div class="horizontal-layout-4">
 <button class="height100" (click)="onToggleScheduler()" >
 {{schedulerShowButtonLabel}}
 </button>
</div>

The bu�on is in a div which uses the class horizontal-layout-4, created
earlier in the chapter. The bu�on itself has a simple style:
.height100 {
 height:100%
}

The style stretches the height of the bu�on to the full height of the div
which it is enclosed in. The bu�on’s label is the variable inside the
component we defined a few pages ago. It defaults to the less-than sign;
“<”. When the bu�on is clicked and the screen is re-oriented, the label will
change to the greater-than sign; “>”. This is intended to symbolize that
clicking the bu�on will expand things to the le�, because the less-than sign
looks like a le� poin�ng arrow. Clicking the bu�on in the expanded state will
expand things to the right because the greater-than sign resembles an
arrow poin�ng right.

The bu�on will execute the onToggleScheduler() method in the
TasksComponent class. We’ll examine it shortly.

The last element of the mainScreenContainer div is the scheduler
component:
<div class="horizontal-layout-30" [hidden]="!schedulerState">
 <taskscheduler></taskscheduler>
</div>

The div is styled with a CSS class named horizontal-layout-30. This is similar
to the other sizing classes we have used:
.horizontal-layout-30{
 position: relative;
 display: inline-block;

 vertical-align: top;
 width:30%;
 height:100%;
}

The final element of the div is the hidden direc�ve. This direc�ve
determines whether the div should be shown or hidden based on the
schedulerState variable in the controller. The scheduler is hidden by
default.

Clicking the Expand Bu�on
What happens when the expand bu�on is clicked? Well, a method in the
TasksComponent is executed when this happens—onToggleScheduler().
This method will perform four tasks:

· Changes the gridContainerStyle to shrink or expand the task grid
accordingly.

· Changes the bu�on’s label to display one that represents “expand”,
or the one that represents “collapse”.

· Changes the schedulerState variable, which will display or hide the
scheduler component.

· Forces the TaskGrid to resize itself so columns fit into the available
width.

All in all, the method is fairly simple:
onToggleScheduler(): void {
 if (this.schedulerState === true) {
 this.schedulerState = false;
 this.gridContainerStyle = 'horizontal-layout-94';
 this.schedulerShowButtonLabel = "<";
 } else {
 this.schedulerState = true;
 this.gridContainerStyle = 'horizontal-layout-60';
 this.schedulerShowButtonLabel = ">";
 }
 setTimeout(() => this.taskgrid.taskGrid.recalculate(), 100);
}

The method is toggling a bunch of different variables here. First, it checks
the current scheduler state. If the value is “true”, it is changed to “false”.
Then, the method changes the gridContainerStyle to the longer style, and
changes the scheduler bu�on’s label to “<”. If the current scheduler state is

“false”, then it changes to “true”, sets the gridContainerStyle to the smaller
width style, and sets the bu�on’s label to “>”. If the scheduler is being
shown, a method needs to be called to load the tasks, but we’ll get to that
later.

Finally, the setTimeout() is used to call the recalculate() method to resize
the taskGrid. The taskgrid variable was already setup as a @ViewChild to
the current component. We drill down three levels to get to the actual grid.
I delayed the recalculate() call so that the grid would have �me to resize
before we forced it to redraw. Ideally, the grid should update automa�cally
—as it does when the browser resizes—but at the �me of this wri�ng, we
had to force it to prevent the grid columns from expanding beyond the grid
container.

Adding the Schedule Bu�on to the TaskGrid
In the expanded scheduler state, the task grid shows a “+” bu�on in the last
column instead of the edit bu�on. This new bu�on will add the current task
into the scheduler. The bu�on is defined as part of the ngx-datatable
column template. This is the updated column:
<ngx-datatable-column>
 <ng-template let-row="row" ngx-datatable-cell-template>
 <button (click)="onEditTask(row)" [hidden]="schedulerState">
 Edit Task
 </button>
 <button (click)="onScheduleTaskRequest(row)"
[hidden]="!schedulerState">
 +
 </button>
 </ng-template>
</ngx-datatable-column>

It is in the taskgrid.component.html file from the
com/dotComIt/learnWith/views/tasks directory.

The bu�on uses the hidden direc�ve to determine when it should be
hidden or displayed. The “Edit” bu�on and the “+” bu�on both use the
same variable, but with condi�ons reversed. This �es into a schedulerState
variable. Add one to the taskgrid.component.ts file:
public schedulerState :boolean = false;

This variable is not inherently �ed to the one in the TasksComponent. Go to
the onTogglerScheduler() method in the tasks.component.ts file. Each �me
we set the schedulerState, we also want to drill down to the taskgrid to set
the schedulerState. This will do it when schedulerState is being set to false:
this.schedulerState = this.taskgrid.schedulerState = false;

And this sets it to true:
this.schedulerState = this.taskgrid.schedulerState = true;

This state variable is used to hide the bu�on when the scheduler template
is hidden, or show it when the scheduler template is displayed. The bu�on
also has an click handler to call the onScheduleTaskRequest() method when
the bu�on is clicked.

The purpose of the click handler is to add the task to the currently displayed
schedule. Since it does not rely on a remote service, let’s look at the code
behind the onScheduleTaskRequest() method now:
onScheduleTaskRequest(task:any):void {
 this.taskModel.onScheduleTaskRequest(task);
}

I decided to put the actual func�onality inside of the TaskModel, so the
TaskGrid component is just like a pass through. This is the TaskModel
func�on:
onScheduleTaskRequest(task:TaskVO) {
 let found :boolean = false;
 for (let index :number = 0; index < this.scheduledTasks.length;
index++) {
 if (this.scheduledTasks[index].taskID === task.taskID) {
 found = true;
 break;
 }
 }
 if (!found) {
 this.scheduledTasks.push(task);
 this.addedTasks.push(task);
 }
}

The first step in the method is to verify that the item being added to the
scheduledTasks list is not already in there. If it is, it should not be added

again. This is done by looping over the scheduledTasks array and comparing
the taskID values. If they are equal, then a Boolean value is set to “true”,
indica�ng that the item was found.

A�er the loop, if the item was not found, then it is added to both the
scheduledTasks array and the addedTasks array. If the item was found, then
nothing happens. This approach allows you to easily add tasks to the
currently scheduled list.

Examine the Database
The code in this chapter does not need any new tables, but I wanted to
refresh your memory of the database structure:

The new services needed for this chapter deal with upda�ng the
dateScheduled property in the Tasks table. Two service methods will be
created; one for edi�ng a single task, and one for edi�ng mul�ple tasks.

This is the SQL behind the edi�ng of a single task:
update tasks
set dateScheduled = someDate
where taskID = someTaskID

This is the SQL behind edi�ng mul�ple tasks:
update tasks
set dateScheduled = someDate
where taskID in (someCommaSeparatedListOfTasks)

The two SQL procedures are very similar, but the “where” clause is
different.

Write the Services
This sec�on will delve into the NodeJS code for scheduling or canceling a
single task. It will also introduce a method for scheduling a lot of tasks at
once, and the URLs that will be used to call the service. For generic tes�ng,
we’ll call the URL in the browser. Later on, we’ll call them programma�cally
from Angular.

Revisit the getFilteredTasks()
For this chapter, we need to add one more filter to the code for loading up
tasks. Open up the TaskService.js file from the
com/dotComIt/learnWith/services folder. Look at the getFilteredTasks()
method. This method creates a query based on mul�ple criteria and
returns a list of all relevant tasks.

We need to add a new condi�on to this query; one for the
scheduledEqualDate. The scheduledEqualDate will retrieve all the tasks
scheduled on a certain day. This is the code:
if(json.scheduledEqualDate != undefined){
 if(firstOne){
 query = query + "Where "
 firstOne = false;
 } else {
 query = query + "and "
 }
 query = query + " dateScheduled = '" + json.scheduledEqualDate
+ "' ";
}

This code makes the assump�on that the scheduledEqualDate will already
be forma�ed for use in the query before the service call is made. If the
scheduledEqualDate value is undefined, then this condi�on is not added to
the final query. Otherwise, the condi�on is added to the query. The
firstOne variable is used to determine if this is the first query clause, or if
the condi�on should be appended to other queries. I put this condi�on at
the end of the query a�er the scheduledEndDate check, but before the
order by statement.

Scheduling a Single Task

The first method to inves�gate is the one for scheduling a single task. Open
up the TaskService class in the com/dotComIt/learnWith/services
directory. Scroll to the end of the file and create the new handler method:
function scheduleTask(response, queryString) {
}
exports.scheduleTask = scheduleTask;

The scheduleTask() method signature follows the pa�ern of our previous
handler methods, accep�ng a response and a queryString. I also added the
line that exports the method so it can be called from other components.
Now let’s start filling in the method’s implementa�on:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

The method starts with the boilerplate code that defines the resultObject
and takes note of the callback, if specified.

The next step is to check to make sure that the taskID is defined. If it isn’t,
an error response needs to be sent back to the browser:
if((queryString.taskID == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
} else {
 // Complete request here
}

This request requires two separate query string parameters. The taskID
relates to the task being scheduled. The other is the dateScheduled.
However, if the dateScheduled is le� out, then it’s database column will be
set to “null”; essen�ally canceling the task. That is why we check for the
taskID to be defined here, but do not check for the dateScheduled.

Assuming the taskID is defined, go into the else condi�on and create the
query:
query = "update tasks set ";
if(queryString.dateScheduled != undefined) {
 query = query + " dateScheduled = '" +
queryString.dateScheduled + " ' ";

} else {
 query = query + " dateScheduled = null ";
}
query = query + " where taskID = " + queryString.taskID;

The query is a typical SQL update statement. It sets the dateScheduled
property based on the taskID. If the dateScheduled property is defined,
then it is specified. Otherwise, the dateScheduled column is set to “null”.

Next, execute the query:
var dataQuery = databaseConnection.executeQuery(query,
 function(result){
 var queryStringData = {};
 queryStringData.taskID = queryString.taskID;
 queryStringData = JSON.stringify(queryStringData);
 mockQueryString = {};
 mockQueryString.filter = queryStringData;
 mockQueryString.callback = callback;
 getFilteredTasks(response, mockQueryString)
 },
 function(err){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
 },
);

Our custom databaseConnec�on object is used to run the query. We send
in the query string, the result func�on, and a failure func�on. The result
func�on creates a mock query string, then calls the getFilteredTasks()
method to retrieve the single task and return it to the calling en�ty. The
error handler sends an error response back to the client.

The last thing to change is in the ResponseHandlers class in the
com/dotComIt/learnWith/services directory. Add this code:
handlers["/taskService/scheduleTask"] = taskService.scheduleTask;

This tells the app to call the taskService.scheduledTask() method when the
"taskService/scheduledTask" is requested.

Tes�ng Scheduling a Single Task
To test this, just start your node applica�on, and then load some URLs in
the browser. This URL will schedule the taskID of “1” for March 29, 2016:

http://127.0.0.1:8080/taskService/scheduleTask
 ?taskID=1
 &dateScheduled=3/29/2016

You should get a result similar to this:
{
 "resultObject":
 [
 {"taskCategoryID":2,
 "description":"Get Milk",
 "dateScheduled":"03\/29\/2013",
 "taskcategory":"Personal",
 "dateCompleted":"",
 "taskID":1,
 "dateCreated":"03\/27\/2013",
 "completed":0,
 "userID":1
 }
],
 "error":0
}

You can cancel a task by removing the dateScheduled from the above URL:
http://127.0.0.1:8080/taskService/scheduleTask?taskID=1

You should see JSON results that look like this:
{
 "resultObject":
 [
 {"taskCategoryID":2,
 "description":"Get Milk",
 "dateScheduled":"",
 "taskcategory":"Personal",
 "dateCompleted":"",
 "taskID":1,
 "dateCreated":"03\/27\/2013",
 "completed":0,
 "userID":1
 }
],
 "error":0.0
}

In the first set the dateScheduled had a value. In the second set, it did not,
proving that the method can be used to cancel tasks.

Scheduling a Lot of Tasks
The second service method needed to support the UI for scheduling tasks
is one that will schedule a lot of tasks at once. This method is named
scheduledTaskList() and you can find it in the TaskService file in the
com/dotComIt/learnWith/services directory. Here is the method
signature and its import statement:
function scheduleTaskList(response, queryString) {
}
exports.scheduleTaskList = scheduleTaskList;

The method accepts a response object and a queryString object, as with all
other handler methods we have seen in this book. The method starts with
some boilerplate code; crea�ng a resultObject object, and storing the
callback value in a local variable:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

This method requires two arguments; a taskIDList, and the dateScheduled.
The taskIDList will be a comma-separated list of taskIDs. The
dateScheduled argument will be the date that we need to schedule those
tasks on. This method does not support canceling a lot of tasks at once
because that func�onality was not implemented in the UI code. As such, it
is assumed that a dateScheduled property will be present in the
queryString:
if((queryString.taskIDList == undefined) ||
 (queryString.dateScheduled == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
} else {
 // Execute Query Here
}

If the taskIDList or the dateScheduled are missing from the queryString,
then an error response is returned to the user. Otherwise, the query is
created and executed, with the results being returned to the user.

First, create the query:

query = "update tasks set ";
query = query + "dateScheduled = '" + queryString.dateScheduled + "
' ";
query = query + "where taskID in (" + queryString.taskIDList + ")";

The query updates the dateScheduled property. Next, execute the query
with the databaseConnec�on object:
var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 resultObject.error = 0;
 responseHandler.execute(response, resultObject, callback);
 },
 function(err) {
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
 return;
 },
);

In the success handler, a success result is sent back to the UI. In this case,
no modified data is included in the return request. It merely sends back the
error property with a value of “0”. When the scheduleTaskList() method is
called, the UI already has everything it needs to update the UI based data,
so the service does not need to return anything new. The error handler
sends a result to the browser, with the error property of the resultObject
set to “1”.

The final thing we need to do is register the scheduleTaskList() method as
a handler in the ResponseHandlers file of the
com/dotComIt/learnWith/server directory:
handlers["/taskService/scheduleTaskList"] =
taskService.scheduleTaskList;

Restart your node applica�on and you should be good to go.

Tes�ng Scheduling a Lot of Tasks
You can test out this new method by loading a URL in your browser. Here is
a sample URL:
http://127.0.0.1:8080/taskService/scheduleTaskList
 ?taskIDList=1,2,3
 &dateScheduled=3/29/2013

This URL will tell the service to schedule the tasks with taskID’s—“1”, “2”,
and “3”—for March 29, 2013. Load this in the browser, and you’ll see this:
{
 "error":0
}

The error return “0” means that the code is working as expected.

Access the Services
This sec�on will examine the Angular code needed to integrate the
scheduleTask() and scheduledTaskList() services into our task manager
applica�on.

Use the scheduleTask() Service
You can use JSONP to access the NodeJS applica�on server. Open the
TaskService class in the com/dotComIt/learnWith/services/nodejs
directory. Add a scheduleTask() method to the taskService object:
scheduleTask(task :TaskVO): Observable<ResultObjectVO> {
 let parameters = "taskID" + "=" + task.taskID + '&';
 if (task.dateScheduled) {
 parameters += "dateScheduled" + "=" + task.dateScheduled
+ '&';
 }
 parameters += "callback" + "=" + "JSONP_CALLBACK" ;
 let url = SERVER + 'taskService/scheduleTask?' + parameters;

 return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO);
};

This method’s argument is the task being modified. The parameter object
represents the query string of the service call. It adds the taskID and the
callback onto the final string. If a dateScheduled is part of the task
argument, then that property is added to the query string.

A URL is created using the SERVER constant, the service’s method name,
and the parameter string. Then, the request() method is called on the
jsonp service. When results are returned, the map() func�on is executed to
translate the results from JSON into a ResultObjectVO instance. The
Observable object is returned, allowing the invoking code to specify the
result and error handlers as needed.

Use the scheduleTaskList() Service
The final thing to look at for this chapter is to call the scheduleTaskList()
method. The code is in the same TaskService.js class from the
com/dotComIt/learnWith/services/nodejs directory:

scheduleTaskList(tasks :TaskVO[], schedulerDate:Date):

Observable<ResultObjectVO> {
 let datePipe : DatePipe = new DatePipe('en-US');
 let taskIDList = '';
 for (let index = 0; index < tasks .length; ++index) {
 taskIDList += tasks [index].taskID + ",";
 }
 taskIDList = taskIDList.substr(0,taskIDList.length - 1);
 let parameters = "taskIDList" + "=" + taskIDList + '&';
 parameters += "dateScheduled" + "=" +
 datePipe.transform(schedulerDate,
'shortDate') + '&';
 parameters += "callback" + "=" + "JSONP_CALLBACK" ;

 let url = SERVER + 'taskService/scheduleTaskList?' +
parameters;
 return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO);
};

The method accepts two arguments; an array of tasks to be updated, and
the date that the tasks should be scheduled for. First, the method creates a
comma-separated list of IDs by looping over the tasks array. The final
comma is removed from the list.

Then, a parameter string is created to represent the query string on the
request. The query string contains the taskIDList, the dateScheduled, and
the callback. Next, the URL is created with the server constant, the
endpoint, and the parameters string. A�er that, the json service is invoked.
The map() func�on is called on the results of the request to transform the
results into a ResultObjectVO. Finally, the Observable object is returned.

Wire Up the UI
This sec�on will show you how to connect the Angular UI to the services.
We’ll be popula�ng the contents of a lot of methods we referenced earlier
in this chapter, but haven’t implemented yet. We’ll load data for tasks
scheduled on the specified day, add service calls to the scheduleTaskList()
when the “save” bu�on is clicked, and to scheduleTask() when the “delete”
bu�on is clicked.

Loading Tasks when Scheduler is Opened
We already have a method for loading tasks in the TaskGrid component.
We want to mimic that approach inside the TaskScheduler component.
Open up taskscheduler.component.ts from the
com/dotComIt/learnWith/views/tasks directory. Create a new method
named loadTasks():
loadTasks(taskFilter:TaskFilterVO):void {
 this.schedulerError = '';
 this.taskService.loadTasks(taskFilter).subscribe(
 result => {
 }, error => {
 }
);
}

The method first clears out the schedulerError variable, then calls the
loadTasks() method on the TaskService. This returns an Observable object,
and we are set up to handle both the failure condi�on, and the success
condi�on using the TypeScript lambda nota�on.

The failure condi�on is the second method, a�er the comma. It is easy to
handle:
this.schedulerError = 'We had an error loading tasks.';

It just sets the schedulerError value so a message is displayed to the user.

The success condi�on is bit more complex:
if (result.error) {
 this.schedulerError = 'We could not load any tasks.';
 return;
}

this.taskModel.scheduledTasks = result.resultObject as TaskVO[];
this.taskModel.scheduledTasks =
this.taskModel.scheduledTasks.concat(this.taskModel.addedTasks);

The purpose of this method is to set the resul�ng array of tasks to the
scheduledTasks array in the taskModel instance. If there are any
addedTasks the user entered into the scheduler that have not yet been
saved, they are added to the result.

The resultObject value is saved directly into the scheduledTasks array in
the taskModel. The array method—concat()—is used to combine the
addedTasks with the scheduledTasks, and save them back into the
scheduledTasks variable. This will create the array used to populate the list
of tasks displayed in the scheduler.

We want to load the tasks when the scheduler is ini�alized. Contrary to
what we’ve done with our other components, we can’t do this in
ngOnInit() because the view is ini�alized before it is shown. Let’s create a
new method, which we can trigger from the TasksComponent:
initialLoad(): void {
 let taskFilter : TaskFilterVO = new TaskFilterVO();
 taskFilter.scheduledEqualDate = new Date();
 this.schedulerDate = {day:
taskFilter.scheduledEqualDate.getUTCDate(),
 month:
taskFilter.scheduledEqualDate.getUTCMonth() + 1,
 year:
taskFilter.scheduledEqualDate.getUTCFullYear()};
 this.loadTasks(taskFilter);
}

The code creates a new TaskFilterVO object and sets the
scheduledEqualDate value to the current date. Remember that the class
used by the DatePicker for the selected date is not a Date class; we need
to create an instance of NgbDateStruct. This instance is not a class, but an
interface, so we are fudging the approach a bit by crea�ng a generic object
with all the required proper�es. The day, month, and year proper�es of the
NgbDateStruct are created by introspec�ng the scheduledEqualDate to
get the valid values for them. The month must be incremented by 1,
because the Date class uses a zero-base array for months with January
being month 0. However, the DatePicker expects a one-base array, where

January is month 1. The last step in the method is to call the loadTasks()
method, passing in the taskFilter value.

We need to make sure we tell the TasksComponent to execute this method
whenever the scheduler is open. Open the tasks.component.ts file in the
com/dotComIt/learnWith/views/tasks directory. Define the
TaskScheduler as a @ViewChild:
@ViewChild(TaskScheduler)
private taskscheduler : TaskScheduler;

Be sure to import the TaskScheduler:
import {TaskScheduler} from "./taskscheduler.component";

Now scroll down to the onToggleScheduler() method:
if (this.schedulerState === true) {
 // close scheduler code
} else {
 // open scheduler code
 this.taskscheduler.initialLoad(new Date());
}

To open the scheduler at the end of the “else” condi�on, call the
ini�alLoad() method on the task scheduler. Send in a new Date object,
ini�alized to the current day. That should get the tasks properly loading
when the date is shown.

Loading Tasks when the Scheduler Date Changes
When the user selects a new scheduler date, the onScheduleDateChange()
method in the TaskScheduler component executes. This is the method
stub:
onScheduleDateChange(): void {
};

It is en�rely possible that this will execute if an invalid date is entered. In
this case, the schedulerDate value will have the value of a string. To make
sure that we have an NgbDateStruct object, we’ll check for the existence
of the year property:
if (this.schedulerDate.year) {
}

Inside the condi�on, define the taskFilter:
let taskFilter : TaskFilterVO = new TaskFilterVO();

Convert the schedulerDate to an actual Date object:
taskFilter.scheduledEqualDate = new Date(this.schedulerDate.month +
'/' +
 this.schedulerDate.day +
'/' +
 this.schedulerDate.year);

And then call the loadTasks() method:
this.loadTasks(taskFilter);

This should set us up for properly loading tasks, and holding onto tasks that
have not yet been scheduled.

Implement the Delete Task from Scheduler Bu�on
When the “X” bu�on is clicked in the task schedule template, the
onTaskUnschedule() method is called. We showed an empty stub earlier
in this chapter, but now it’s �me to implement it. If this bu�on is clicked
and the task already has an associated dateScheduled, then a service call
must be made to null the dateScheduled for the associated task. If the
bu�on is clicked and the task has not yet been associated with a
dateScheduled, then just remove it from the scheduler display without any
further processing.

Let’s look at the onTaskUnschedule() method:
onTaskUnschedule(task: TaskVO): void {
 if (task.dateScheduled) {
 task.dateScheduled = null;
 this.scheduleTask(task);
 } else {
 this.deleteTaskFromSchedule(task);
 }
};

If the task has a dateScheduled value, then that value is set to “null”, and
the scheduleTask() method is called. The scheduleTask() method will be
covered later in this chapter when we wire up the services. If the

dateScheduled property has no value, then the deleteTaskFromSchedule()
method is called:
deleteTaskFromSchedule(task: TaskVO): void {
 let itemIndex : number =
this.taskModel.scheduledTasks.indexOf(task);
 if (itemIndex >= 0) {
 this.taskModel.scheduledTasks.splice(itemIndex, 1);
 }
 itemIndex = this.taskModel.addedTasks.indexOf(task);
 if (itemIndex >= 0) {
 this.taskModel.addedTasks.splice(itemIndex, 1);
 }
}

The purpose of the deleteTaskFromSchedule() method is to remove the
task from the scheduledTasks and addedTasks arrays stored in the
taskModel. It does this by using the indexOf() method on the array to get
the index. If the itemIndex has a value greater than “0”; it uses the splice()
method to remove the item. The splice() method accepts two parameters;
the itemIndex, and the number of items to be removed. In this case, only
one item is to be removed.

Now, look at the scheduleTask() method:
scheduleTask(task:TaskVO): void {
 this.schedulerError = '';
 this.taskService.scheduleTask(task).subscribe(
 result => {
 }, error => {
 }
);
};

For the purposes of dele�ng a task, we can assume that the task’s
dateScheduled property will already be updated to the most current. No
addi�onal processing of it is needed before calling the service method to
schedule the task. This service call is setup similar to how we’ve done so in
the past, with a subscribe() func�on that contains the result and error
handlers.

The error func�on is always easier:
this.schedulerError = 'We had an error scheduling the tasks.';

It just sets the schedulerError value to be displayed to the user.

The success() method is more complex. It is probably the most complicated
success handler we’ve created to date. Let’s look at it in pieces. First, check
the error:
if (result.error) {
 this.schedulerError = 'We could not remove the task from the
schedule.';
 return;
}

This is standard. If there was an error, let the user know and then stop
processing with the return statement.

Then, we want to replace the modified task with the item in the model:
this.taskModel.replaceTask(result.resultObject[0]);

I encapsulated the replaceTask() func�on into a method in the TaskModel.
Look for it in TaskModel.ts in the com/dotComIt/LearnWith/model
directory:
replaceTask (task:TaskVO) : void {
 for (let index :number = 0; index < this.tasks.length; ++index)
{
 if (this.tasks[index].taskID === task.taskID) {
 this.tasks[index] = task;
 break;
 }
 }
}

This accepts a task as an argument. It loops over the tasks array stored in
the TaskModel. When it finds the item, based on a taskID check, it will
replace it, then break out of the loop. If the item isn’t found, no
replacement occurs. I encapsulated this method so it can be easily reused
in the next chapter when comple�ng tasks.

Back to the success method from the service call:
for (let index : number = 0; index <
this.taskModel.scheduledTasks.length;
 ++index) {
 if (this.taskModel.scheduledTasks[index].taskID ===

 result.resultObject[0].taskID) {

this.deleteTaskFromSchedule(this.taskModel.scheduledTasks[index]);
 }
}

It looks at the scheduledTasks displayed in the current scheduler list. If it
finds the task, it then calls the deleteTaskFromSchedule() method. This is a
method shown earlier in this chapter that will remove the task from the
scheduledTasks list, as well as the addedTasks list. This is all that is needed
to remove a task from the schedule.

Saving all Scheduled Tasks
The last element of this chapter is to look at the method for scheduling all
the current tasks in the scheduler’s list to the currently selected date.
Clicking the “save” bu�on in the scheduler template will call a method
named onTaskListSchedule():
onTaskListSchedule() {
 let localDate : Date = new Date(this.schedulerDate.month + '/' +
 this.schedulerDate.day + '/' +
 this.schedulerDate.year);

this.taskService.scheduleTaskList(this.taskModel.scheduledTasks,
 localDate)
 .subscribe(
 result => {
 }, error => {
 }
);
}

First, we create a local date instance using the schedulerDate property
selected from the DatePicker. Remember the DatePicker does not use a
Date object as the selected date, but just a wrapper with the month, year,
and day. Then the scheduleTaskList() method is called in the TaskService. It
passes in the list of scheduledTasks and the date. The service returns a
promise object; which is used to queue the success and error handler
func�ons.

The error handler is always simpler:
this.schedulerError = 'We had an error scheduling all the tasks.';

We’ve seen methods like this all throughout the app. The success handler
code is more interes�ng. It will check for an error. If there is one, it will
display a message to the user:
if (result.error) {
 this.schedulerError = 'We had an error scheduling all the
tasks.';
 return;
}

We’ve seen that before. If there is no error, it compares the tasks array
displayed in the TaskGrid with the scheduledTasks array from the
scheduler template to find the same item. When the task is found, the
tasks array must be updated with the new schedulerDate. This will, in turn,
update the task grid’s visual display with the proper scheduled date:
for (let scheduledTaskIndex : number = 0;
 scheduledTaskIndex < this.taskModel.scheduledTasks.length;
 scheduledTaskIndex++) {
 for (let masterTaskIndex :number = 0;
 masterTaskIndex < this.taskModel.tasks.length;
 masterTaskIndex++) {
 if (this.taskModel.tasks[masterTaskIndex].taskID ===

 this.taskModel.scheduledTasks[scheduledTaskIndex].taskID) {
 this.taskModel.tasks[masterTaskIndex].dateScheduled =
localDate;
 break;
 }
 }
}

The outer loop is over the scheduledTasks in the TaskModel, while the
inner loop is over the tasks array from the TaskModel. The two respec�ve
tasks are then compared; looking for items where the taskID matches. If a
taskID match is found, the task grid’s task has its dateScheduled property
updated to the current selected date within the scheduler component. This
will, subsequently, update the task grid to display proper values.

Final Thoughts
This is the most complicated chapter of the book, as it deals with a lot of
new concepts; ngClass, hidden, and ngModelChange, while also
introducing mul�ple service calls. Surprisingly, when building for this
chapter, I had more problems implemen�ng the layout than the business
logic. Ge�ng the “expand/collapse” scheduler bu�on to size properly
compared to the rest of page’s components was a challenge, and the grid
does not like being resized on the fly.

I hope you are having a great experience with this book. There are two
chapters remaining. The next one will show you how to mark a task as
completed, and the final one will discuss how to handle different levels of
authen�ca�on.

Chapter 7: Marking a Task Completed
This chapter will cover the code behind marking a task complete. There are
not any new UI elements introduced in this chapter. Instead, we are taking
the checkbox from the task grid component and hooking it up to a new
service which will mark the task as “completed”, or “uncompleted”.

Create the User Interface
This sec�on will review the UI features that we already built in the
applica�on in rela�on to marking a task as “completed”.

The Completed Checkbox
When we built the task grid, back in Chapter 3, we created a “completed”
column. The “completed” column contains a checkbox. Its checked state can
be used to determine if the task has already been completed or not. This is
a recap of the grid from Chapter 3:

The checkbox can perform double duty. Instead of just using it as a visual
way to show whether or not the task is completed, the user can also
interact with it by clicking on the checkbox. When the checkbox is clicked,
we can call a service to change the completed state of the checkbox.

The Checkbox Implementa�on
It has been a few chapters since you’ve seen it, so I wanted to review the
Checkbox implementa�on. First, open up the taskgrid.component.html file
in the com/dotComIt/learnWith/views/tasks directory. The checkbox
column is defined as an in-line column as part of the ngx-datatable:
<ngx-datatable-column name="Completed" >
 <ng-template let-row="row" let-value="value" ngx-datatable-cell-
template>
 <input type="checkbox" [checked]="value"
 (click)="onCompletedCheckBoxChange(row)" />
 </ng-template>
</ngx-datatable-column>

This is a simple template inside the ngx-datatable-column. It adds a few
new things. First, the let-row property is put on the template. This allows us
to access the current row inside of the template. The click event handler

was added to the checkbox. When the checkbox is clicked, the
onCompletedCheckBoxChange() method is executed inside the TaskGrid
component, and the current row is passed as an argument. No�ce that the
checked property uses one-way binding with square brackets instead of
two-way binding with a mix of square brackets and parentheses. The
checked property is not open to two-way binding the same way an ngModel
would be. Besides, we wouldn’t want to change the task data in memory
un�l we receive confirma�on from the service that the data was updated.
We’ll look at the implementa�on right a�er crea�ng the service.

Examine the Database
This is a review of the data structure surrounding tasks:

In this chapter, the only database columns that need upda�ng are the
completed column and the dateCompleted column. When a task is marked
as “completed”, the completed column should be set to “1” or “true”, and
the dateCompleted column should be set to the current date. When an
item is being marked as “not completed”, the completed column should be
set to “0” or “false”, and the dateCompleted column should be set to “null”,
erasing the value.

This is a sample query to set a task to being “completed”:
update tasks
set completed = 1,
 dateCompleted = ‘5/20/2013’
Where taskID = 1

When we implement this in code, the values that are variable are the taskID
and the completed column’s value. The dateCompleted value will always be
set to the current value.

Crea�ng the Service
This sec�on will show you the NodeJS code required for marking a task
“completed”.

The completeTask() Service Method
Open up the TaskService NodeJS package in the
com/dotComIt/learnWith/services directory. Create the method signature
of our new handler:
function completeTask(response, queryString) {
}
exports.completeTask = completeTask;

The completeTask() method is a new request handler and uses the same
method signature of other request handlers we created. The two
arguments in it are the response object and the queryString variable. I also
included the line that exports the completeTask() method so it can be
referenced in the ResponseHandler package. Next up comes some
boilerplate code to set up the resultObject and a callback string:
var resultObject = {};
var callback = '';
if(queryString.callback != undefined){
 callback = queryString.callback;
}

There should be two arguments defined in the query string; the taskID and
a completed value. The completed value should be a Boolean value that
determines whether the task—represented by the taskID—should become
marked “completed”, or “not completed”. Perform this check:
if((queryString.taskID == undefined) ||
 (queryString.completed == undefined)){
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
} else {
 // Query processing code here
}

If either the taskID or the completed property is undefined, then an error
is sent back to the client.

If both values are defined, we create the query:

query = "update tasks set ";
if(queryString.completed == 'true'){
 query = query + " completed = 1, ";
 query = query + " dateCompleted = GETDATE() ";
} else {
 query = query + " completed = 0, ";
 query = query + " dateCompleted = null ";
}
query = query + " where taskID = " + queryString.taskID + " ";

The query updates the tasks table, and sets the completed property and
the dateCompleted value. The value of the completed property and
dateCompleted columns depend upon the “completed” argument in the
queryString. If the completed value is “true”, then the task is marked as
“completed” and the dateCompleted is set to the current date. If the
completed value is “false”—or anything other than “true”—then the
property is set to “0”, marking the task “not completed”, and the
dateCompleted value is set to “null”.

Next, execute the query and process the results:
var dataQuery = databaseConnection.executeQuery(query,
 function(result) {
 var queryStringData = {};
 queryStringData.taskID = queryString.taskID;
 queryStringData = JSON.stringify(queryStringData);
 mockQueryString = {};
 mockQueryString.filter = queryStringData;
 mockQueryString.callback = callback;
 getFilteredTasks(response, mockQueryString)
 },
 function(err) {
 resultObject.error = 1;
 responseHandler.execute(response, resultObject, callback);
 }
);

The query is executed using our DatabaseConnec�on module. We now
send a string represen�ng the query to execute a result handler, and an
error handler, into the executeQuery func�on of that module. The result
handler func�on is an anonymous func�on defined in-line. The result
expected from this service call is an updated task object represen�ng the
modified task. The getFilteredTasks() method is used to load the new task

and send the results back to the user. The error handler sends an error
response back to the user.

The last step to implement this method is to add the handler into our
handler object. Open up the ResponseHandler module in the
com/dotComIt/learnWith/server directory. Add this line:
handlers["/taskService/completeTask"] = taskService.completeTask;

Restart your NodeJS app server, and you should be good to go.

Tes�ng the completeTask() service
To test the completeTask() method you just need to load a URL in the
browser and review the results. This URL can be used to mark a task
“completed”:
http://127.0.0.1:8080/taskService/completeTask?
taskID=1&completed=true

Run this and you should see results similar to this:
{
 "resultObject":
 [
 {
 "taskcategoryID":2,
 "description":"Get Milk",
 "taskCategory":"Personal",
 "dateScheduled":"03\/29\/2013",
 "dateCompleted":"05\/26\/2013",
 "taskID":1,
 "dateCreated":"03\/27\/2013",
 "completed":true,
 "userID":1
 }
],
 "error":0.0
}

You can change the value of the completed property in the URL to set the
same task to “not complete”:
http://127.0.0.1:8080/taskService/completeTask?
taskID=1&completed=false

This should give you these results:

{
 "resultObject":
 [
 {
 "taskcategoryID":2,
 "description":"Get Milk",
 "taskCategory":"Personal",
 "dateScheduled":"03\/29\/2013",
 "dateCompleted":"",
 "taskID":1,
 "dateCreated":"03\/27\/2013",
 "completed":false,
 "userID":1
 }
],
 "error":0.0
}

In the results, you can successfully see that the completed field is back to
“0”, and the dateCompleted value is an empty string.

Complete Tasks from Angular
The last step for this book is to create the JSONP service that can be used
to call the NodeJS completedTask() method. Open up the TaskService file
from the com/dotComIt/learnWith/services/nodejs directory.

Create a method named completeTask():
completeTask(task:TaskVO) : Observable<ResultObjectVO> {
 let parameters = "taskID" + "=" + task.taskID + '&';
 parameters += "completed" + "=" + !task.completed + '&';
 parameters += "callback" + "=" + "JSONP_CALLBACK" ;
 let url = SERVER + 'taskService/completeTask?' + parameters;
 return this.jsonp.request(url)
 .map((result) => result.json() as ResultObjectVO);
}

The method accepts one argument; the task object which is being
completed. This returns an Observable instance of a ResultObjectVO.

The first thing this method does is to create a URL query string. Two
arguments go into the service method; the taskID, and the completed
value. The completed value is reversed using the “not” operator, as the UI
did not change the task object yet. So, if the completed value is “false”,
then “true” should be sent to the service, comple�ng the task. Conversely,
if the completed value is “true”, then “false” should be sent to the service,
opening the task. Required in the final URL argument is the callback
argument. It is necessary in order to access the results from the remote
service call. The last line of the code makes the service call using the jsonp
service. Finally, the map() func�on is executed on the service result to
convert the returned JSON into a ResultObjectVO before the invoking code
executes its own result func�on.

Wire Up the UI
This sec�on will show you how to integrate the service into the UI code to
mark the task as completed. When the checkbox is clicked, the method
onCompletedCheckBoxChange() will execute. The method is inside the
MainScreenCtrl.js file, located at com/dotComIt/learnWith/controllers.

This is the onCompletedCheckBoxChange() method:
onCompletedCheckBoxChange (task:TaskVO):void {
 this.taskLoadError = '';
 this.taskService.completeTask(task).subscribe(
 result => {
 }, error => {
 }
);
}

This method accepts a single argument; the task whose completed value
needs to be toggled. It calls the completeTask() method of the TaskService
object; passing in the task to be updated. The completeTask() method
returns a promise object, and a success or failure method will execute
based on the Observable result.

The error handler just shows the user an error message:
this.taskLoadError = 'Error completing the task.';

The success method will check to see if an error is flagged in the
ResultObjectVO:
if (result.error) {
 this.taskLoadError = 'Error completing the task.';
 return;
}

If an error is found, the user is no�fied via the taskLoadError value and the
processing stops. Conversely, if there is no error, then we call the
replaceTask() method we created in the previous chapter:
this.taskModel.replaceTask(result.resultObject[0]);

The replaceTask() method will take the updated task object and modify the
underlying tasks array in the taskModel. This �me, we’re using it to update

the task object a�er its completed property has been changed.

If you experiment with this long enough as is, you’ll no�ce that the grid
object’s is not properly upda�ng immediately a�er the taskModel is
updated. So, if you double click the completed checkbox, it will mark it
completed both �mes instead of going from completed to incomplete, and
back. The solu�on is to force the grid to recalculate, similar to what we did
a�er resizing it when opening the scheduler:
setTimeout(() => this.taskGrid.recalculate(), 10);

I used a very short �meout for this because we already updated the value.
I lost quite a few hours on this, looking for a fringe bug in the services
before discovering the real issue.

Final Thoughts
This chapter, while short, represents an important piece of the task
manager applica�on we’ve been building. It doesn’t introduce any new
concepts or ideas, and at this point in the book we are just applying what
we know. There is only a single chapter le� in this book and it will focus on
the security aspects of the applica�on; learning how to disable or enable
func�onality based on the user’s role.

Chapter 8: Implemen�ng User Roles
This chapter will focus on tweaking the applica�on’s UI based on the role
of the user who has signed in. There are no new services to cover for this
chapter, so the structure of it will be a bit different than previous ones. The
bulk of it relates to condi�onally modifying the UI. A new Angular direc�ve
is introduced: disabled.

Review User Roles
This sec�on will review the user roles that pertain to this app, and then
define how the UI needs to change based on those roles.

Role Review
You may remember, back in Chapter 1, we defined two user roles for this
applica�on:

· Tasker: This is the administrator user who has full access to the
applica�on. They can create new tasks, edit tasks, and mark tasks as
“completed”.

· Creator: This is the limited permission user. Users with this role can
view tasks, and create new tasks. However, this user cannot edit
tasks; including scheduling a task for a certain date, or marking tasks
“completed”.

The user’s RoleID is loaded into the applica�on along with other user data
a�er the user logs in. They are stored as part of the user object in the
UserModel. Two user accounts were set up here; one for each role. The
Tasker account is “me/me” and the Creator account is “wife/wife”.

What UI Changes Are Needed?
The Tasker role will see the app we have created without any further
changes. However, the Creator role will need to see a different type of
func�onality. These are the items that need to be changed:

· Disable Completed Checkbox: The Creator user role should be able
to see the “completed” checkbox—so they know the status of the
tasks—but they should not be able to interact with it.

· Scheduler: The Creator user role should not be able to access the
scheduler. This will be accomplished by hiding the bu�on that will
display or hide the scheduler.

· Edit Task: The Creator user role should not be able to edit tasks.
This will be accomplished by hiding the column in the uiGrid that
shows the “edit task” bu�on.

These are simple changes throughout the app. Overall, they provide a
more robust experience. In many of the applica�ons I have built for

Enterprise clients, controlling who can interact with what data is o�en very
important.

Modify the UI
This sec�on will show you the code specifics on the UI changes that need to
be made to support the different user roles.

Modifying the UserModel
The first step is to add an isUserInRole() func�on to the UserModel. This
func�on will take a number argument represen�ng a role, and check to see
if the user is in that role or not. If so, it will return “true”. If not, it will return
“false”. This is a helper func�on to encapsulate the role-checking
func�onality throughout the app.

First, open the UserModel.ts file from the
com/dotComIt/learnWith/model directory. Create the isUserInRole()
func�on:
isUserInRole(roleToCompare:number):boolean {
 if (!this.user) {
 return false;
 }
 if (this.user.role === roleToCompare) {
 return true;
 }
 return false;
}

This func�on will be used throughout our implementa�on of the new
func�onality. First, it checks to make sure the user object is defined. If not,
return “false”. This condi�on will occur if the app is reloaded from the
internal screen. Then, it compares the user’s role value with the
roleToCompare. If they are equal, return “true”. Otherwise, return “false”.

There are two separate roles in this app. For encapsula�on sake, I defined
them both as part of the UserModel class:
readonly TASKER_ROLE = 1;
readonly CREATOR_ROLE = 2;

When reviewing code, it will be a lot easier to understand what
TASKER_ROLE means than it will to understand what “1” means. Normally,
I’d want to create these as constants. However, TypeScript does not support
constants as class members, so I defined them as readonly values. By using

the conven�on of all caps, this should hopefully dis�nguish our constant
variables from regular variables which use camel case.

Disabling the Completed Checkbox
The “completed” checkbox column was implemented as part of the
TaskGrid component using a custom template. Open up the
taskgrid.component.ts file from the com/dotComIt/learnWith/views/tasks
directory. We need to inject the UserModel so it can be used from the view.
First import it:
import {UserModel} from "../../model/usermodel";

Then, add it to the constructor:
constructor(private taskModel :TaskModel,
 private taskService : TaskService,
 private userModel :UserModel) {
}

Now we can use the userModel instance inside the view template. Open up
taskgrid.component.html and find the checkbox template:
<ngx-datatable-column name="Completed" >
 <ng-template let-row="row" let-value="value" ngx-datatable-cell-
template>
 <input type="checkbox"

[disabled]="userModel.isUserInRole(userModel.CREATOR_ROLE)"
 [checked]="value"
 (click)="onCompletedCheckBoxChange(row)" />
 </ng-template>
</ngx-datatable-column>

The only new a�ribute on the checkbox is the disabled a�ribute. If “true”,
the checkbox will be disabled. If “false”, the checkbox will be enabled. To
get the value for the ngDisabled property, the isUserInRole() func�on is
called with the CREATOR_ROLE as an argument. When this occurs, Angular
knows to automa�cally enable or disable the checkbox based on the user
log in. You’ve seen enabled checkboxes all throughout this book. So far:

The disabled checkboxes have a slightly different look; they are greyed out.
When you roll the mouse over it, you see a visual mouse cursor telling you
that you can’t interact with it. This is the disabled checkboxes screen, with
mouse cursor:

Removing the Show Scheduler Bu�on
The next step is to toggle the “scheduler” bu�on display. The tasker role will
be able to see it, but the creator will not. This is easy to do with an *ngIf
direc�ve in the tasks.component.html file, right on the div that contains
the bu�on:
<div class="horizontal-layout-4"
 *ngIf="userModel.isUserInRole(userModel.TASKER_ROLE)">
 <button class="height100" (click)="onToggleScheduler()" >
 {{schedulerShowButtonLabel}}
 </button>
</div>

We’ve used the *ngIf direc�ve in the past to show or hide various error
alerts. Here, the value of the component acts similar to the disabled

direc�ve on the “completed” checkbox. The only difference is that we’re
tes�ng for the TASKER_ROLE instead of the CREATOR_ROLE.

Removing the bu�on leaves some empty space on the right side of the
screen where the bu�on used to be. So, to expand the task grid to make use
of all the space available, we can create a new style. Put this in the
styles.css file from the com/dotComIt/learnWith/styles directory:
.horizontal-layout-100{
 position: relative;
 display: inline-block;
 vertical-align: top;
 width:100%;
 height:100%;
}

The style on the task grid is set using the ngClass direc�ve and the
TasksComponent’s gridContainerStyle variable. You’ll need to set the
gridContainerStyle to something other than the default. You can do so in
the ngOnInit() method of the tasks.component.ts file:
if (this.userModel.isUserInRole(this.userModel.CREATOR_ROLE)) {
 this.gridContainerStyle = 'horizontal-layout-100';
}

It checks if the user is in the creator role. If they are, it sets the
gridContainerStyle to the new value.

Removing the Edit Task Column
The final step is to remove the column with the edit bu�on for the creator
role while keeping it in for the tasker role. The solu�on to this is to use
another *ngIf condi�on on the bu�on template. Open up the
taskgrid.component.html file from the
com/dotComIt/learnWith/views/tasks directory. Find the last column in
the ngx-datatable:
<ngx-datatable-column
*ngIf="userModel.isUserInRole(userModel.TASKER_ROLE)">
 <ng-template let-row="row" ngx-datatable-cell-template >
 <button (click)="onEditTask(row)" [hidden]="schedulerState">
 Edit Task
 </button>
 <button (click)="onScheduleTaskRequest(row)"
 [hidden]="!schedulerState">

 +
 </button>
 </ng-template>
</ngx-datatable-column>

The *ngIf property tells Angular to show the item if the user is in the tasker
role, and hide it if the user is not.

If the user logs in as a tasker, this is what they’ll see:

The scheduler “expand” bu�on is on the right, and the “edit” bu�on is
clearly visible in the default grid.

If the user logs in as a creator, this is what they’ll see:

The scheduler’s “expand” bu�on is hidden here, and there is no “edit”
bu�on in the task grid.

Final Thoughts
At this point, we have finished building our task list manager in Angular.
You should be ready to tackle your first Angular project. Good luck! Let me
know how it goes.

A�erword
I wrote this book to document my own learning process building HTML5
applica�ons. This book con�nues the LearnWith series, focusing on
Angular 4 with some hints of TypeScript. I hope you benefited from my
experience.

If you want more informa�on, be sure to check out www.learn-with.com.
You can test the app we created in this book, get the source code for each
chapter, get the most up to date version of the books, and browse some of
our other �tles which will build the same app using different technologies.

When you’re there, be sure to sign up to get a free monthly tutorial from
us.

If you need personal mentoring or have a custom consul�ng project, we’d
love to help out. Please don’t hesitate to reach out.

Send me an email at jeffry@dot-com-it.com and tell me how this book
helped you become a success.

https://www.learn-with.com/
mailto:jeffry@dot-com-it.com

	About the Author
	Table of Contents
	Preface
	Introduction
	What is this Book Series About?
	Who Is This Book for?
	How to Read This Book
	Common Conventions
	Caveats
	Want More?
	Chapter 1: The Application Overview and Setup
	Introducing the Task Manager Application
	Setup Your Environment
	Create the Database
	Create the NodeJS Application
	Create the Application Skeleton
	Set up the Routes
	Final Thoughts
	Chapter 2: Login
	Create the User Interface
	Creating Value Objects
	Examine the Database
	Write the Services
	Access the Services
	Wire Up the UI
	Final Thoughts
	Chapter 3: Displaying the Tasks
	Create the User Interface
	Examine the Database
	Write the Services
	Wire Up the UI
	Final Thoughts
	Chapter 4: Filtering the Tasks
	Create the User Interface
	Examine the Database
	Write the Service
	Access the Service
	Wire Up the UI
	Final Thoughts
	Chapter 5: Creating and Editing Tasks
	Create the User Interface
	Examine the Database
	Write the Services
	Access the Services
	Wire Up the UI
	Final Thoughts
	Chapter 6: Scheduling Tasks
	Create the User Interface
	Examine the Database
	Write the Services
	Access the Services
	Wire Up the UI
	Final Thoughts
	Chapter 7: Marking a Task Completed
	Create the User Interface
	Examine the Database
	Creating the Service
	Wire Up the UI
	Final Thoughts
	Chapter 8: Implementing User Roles
	Review User Roles
	Modify the UI
	Final Thoughts
	Afterword

