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Preface

Surfaces are a major component of geographical information systems (GISs). When
surfaces are used to model geographical entities, they inherently contain uncertainty
in terms of both position and attribute. This book presents the requisite framework for
surfaces where uncertainty is an explicit part of the process, from the data input stage
to the conceptualization of its storage as fuzzy geographical entities, to its display
and to its analyses.

The reader will find the pseudo code of the computer programs that are requisite
for actualizing what is presented in the book, while the associated code itself may be
run utilizing the accompanying CD. The applications that are presented illustrate the
concepts and indicate the relevance, richness, breadth, and depth of analyses that are
possible with fuzzy surfaces. We trust that the reader will find what is presented to
be useful.
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Universidade de Coimbra
Departamento de Matematica
Coimbra, Portugal

Jorge Santos
Universidade de Coimbra
Departamento de Matematica
Coimbra, Portugal

Salvatore Spinella
University of Catania
Dipartimento di Matematica e

Informatica
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and Salvatore Spinella

CONTENTS

1.1 Interval Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Intervals and Operations Among Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Examples: The Malthus Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Functions of Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 The Vertex Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Fuzzy Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Introduction to Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1.1 Fuzzy Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1.2 Examples and Interpretations of the Membership

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1.3 The Mountain Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1.4 The Median Construction of the Membership Function . . . 25
1.2.1.5 Operations with Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.2 Operations Among Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.2.1 Definition of Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.3 Comparing Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3.1 The Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3.2 The Mean Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3.3 Distances Between Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3.4 Distance Between Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3.5 Comparison of Statistical and Fuzzy Descriptions. . . . . . . . . 37
1.2.3.6 Arithmetic Operations. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2.3.7 The Malthus Law Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2.4 Functions of Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Surfaces are central to geographical analysis and their generation and manipulation
a key component of geographical information systems (GISs). Geographical surface
data are often not precise (errorless) since uncertainty is inherent in what is obtained —
measurement uncertainty (position, instrument accuracy), method of data collection
(satellite, sonar, LIDAR, altimeter, air photographs), the surface itself (ocean bottom,
steep slope, terrain, wetlands, landforms — categories whose meanings combine sev-
eral definitions or ideas), and methods of classification (dense forest, land cover/use —
classifications, for example, defined via clustering algorithms). The uncertainty types

1
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of interest to this presentation are: (i) finite ranges or intervals, for example, slope
data are often given in 10-degree increments; (ii) transitional boundaries or fuzzy
sets, for example, ocean to shore, grassland to shrubland; (iii) possibilistic values
which are values that are known to exist, such as a 2000-meter isoline, but whose
precise location is not since it is based on evidence arising from measurement and
knowledge of the area, for example; and (iv) frequency or probability, for example,
the daily temperature distribution over the last 100 years. It is emphasized that these
four types of uncertainty are distinct from each other and must be handled correctly
semantically and analytically. Data of types (i), (ii), (iii), and (iv) will be called in
this study uncertainty data.

This book presents the theory, methods, algorithms, and applications that directly
model and analyze surfaces that are derived from uncertainty data. The focus is on
the uncertainty that arises from transitional boundaries (intervals or fuzzy sets) and
possibility distributions. We do not deal with statistical methods and probabilistic
uncertainties since these are well known. That is, the uncertainties that are studied
herein and the ways to deal with these uncertainties within the framework of a GIS and
geographical analysis of surfaces are limited to three types — intervals, fuzzy sets,
and possibility distributions. In the sequel, these are clearly described; the associated
mathematics, as it pertains to surfaces defined; the algorithms developed; and the
applications illustrated. The book sets out the process to identify the uncertainty in
the geographical entity being studied, obtain the associated data, model, and analyze
the data, display, and interpret results all within the context of a GIS. The book’s
development takes the reader from the foundations of uncertainty relevant to the type
of data encountered in surface analysis, its representation, storage and manipulation
to analysis and display.

The thesis set forward here is that much, if not most, of the uncertainty in ge-
ographical surface analysis is typically interval, fuzzy, and/or possibilistic. Second,
when these data do contain one of these three types of uncertainty, the most faithful,
useful, and natural way to model surfaces is to incorporate (represent and store), ana-
lyze, and display explicitly using interval, fuzzy, and/or possibilistic entities. To this
end, the theory, methods, and applications are presented that clearly demonstrate the
way to do this.

A reader interested in understanding how to create, analyze, and display surfaces
with inherent interval, fuzzy, or possibilistic uncertainties will find help herein to per-
form the task via the software and applications presented in the book. Moreover, the
reader will develop a deeper knowledge of uncertainty itself as related to geograph-
ical analysis of surfaces containing interval, fuzzy, and possibilistic uncertainties so
that the applications of these theories to problems that arise yield solutions that are
more closely allied to the inherent reality, which is usually and most often undeni-
ably imprecise and fuzzy. Since the three aspects of uncertainty that are the focus
of this book (interval, fuzzy, and possibility) are relatively new fields of study, a
few paragraphs introducing their development follow, much of which is a summary
of [68].

Fuzzy set and possibility theory were defined and developed by L. Zadeh begin-
ning with [103] and subsequently [104], [105], [106], and [107]. As is now well known,
the idea was to mathematize and develop analytical tools to solve problems whose

© 2008 by Taylor & Francis Group, LLC
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uncertainty was more ample in scope than probability theory. Classical mathematical
sets, for example, a set A, have the property that either an element x ∈ A or x /∈ A,
but not both. There are no other possibilities for classical sets, which are also called
crisp sets. An interval is a classical set. Zadeh’s idea was to relax this “all-or-nothing”
membership in a set to allow for grades of belonging to a set. When grades of belong-
ing are used, a fuzzy set ensues. To each fuzzy set Ã, Zadeh associated a real-valued
function μ Ã(x), called a membership function, for all x in the domain of interest,
the universe �, whose range is in the interval [0, 1] that describes and quantifies the
degree to which x belongs to Ã. For example, if Ã is the fuzzy set “warm day,” then
a 0◦C day has a membership value of 0 while a 20◦C day might have a membership
value of 1, and a 10◦C day might have a membership value of one half. That is, a fuzzy
set is a set for which membership in the set is defined by its membership function
μ Ã(x) : � → [0, 1] where a value of 0 means that an element does not belong to the
set Ã with certainty and a value of 1 means that the element belongs to the set Ã with
certainty. Intermediate values indicate the degree to which an element belongs to the
set. Using this definition, a classical (so-called crisp) set A is a set whose membership
function has a range which is binary, that is, μA(x) : � → {0, 1}, where μA(x) = 0
means that x /∈ A, and μA(x) = 1 means x ∈ A. This membership function for a
crisp set A is, of course, the characteristic function. So a fuzzy set can be thought of as
being one which has a generalized characteristic function that admits values in [0, 1]
and not just two values {0, 1} and is uniquely defined by its membership function.
Another way of looking at a fuzzy set is as a set in R2 as follows.

DEFINITION 1.1
A fuzzy set Ã, as a crisp set in R2, is the set of ordered pairs

Ã = {(x, μ Ã(x))} ⊆ {(−∞, ∞) × [0, 1]}. (1.1)

Much has been written about fuzzy sets that can be found in standard textbooks (see,
for example, [62]) and will not be repeated here. We present only the ideas that are
pertinent to the areas in the interfaces between interval and fuzzy analysis of interest.

The use of fuzzy sets in geographical analysis is relatively new (see [5], [41], [44],
[46], [48], [66], [69], [71], [88], and [99]). Its application to geographical surfaces
is even more recent ([5], [69], and [88]). Fuzzy surfaces will be studied in detail in
subsequent chapters.

An interval may be represented as a fuzzy set and consequently as a possibility
distribution, as we will see below. Given this fact, we will concentrate on fuzzy set
and possibilistic uncertainties. However, it will be via intervals that we will develop
our analytical and numerical techniques associated with fuzzy sets. Since interval
numbers are easier to manipulate than fuzzy sets, intervals and their applications to
surfaces will be developed separately.

Possibility theory was also developed by Zadeh [108] and extended by many
authors, notably by Dubois and Prade (see [27], [32]), to model uncertainties to allow
for a more general theory of uncertainty than probability theory models. There is
often confusion in the semantics of uncertainty pertaining to probability, interval,
fuzzy, and possibility. This is clarified below. GIS applications have seldom, if ever,
used possibilistic geographical analysis. There are many reasons for this. Perhaps the

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

October 16, 2007 14:28 6395 6395˙Book

4 Fuzzy Surfaces in GIS and Geographical Analysis

greatest reason is that fuzzy set theory, as distinguished from possibility theory, is
not always clear. Second, since geographical entities are often fuzzy (boundaries are
gradual or transitional in nature between geographical entities) the use of possibilistic
entities is frequently omitted. Third, since Zadeh develops possibility theory via fuzzy
set theory [108], most authors do not make a distinction and consider possibility
distributions the same as fuzzy membership functions. The distinction between fuzzy
set theory and possibility theory is most important in its semantics so that a section
dealing with the semantics is included below.

The first research papers in fuzzy set theory appeared in the early 1960s, and while
fuzzy “logic” (which can be related to mathematical analysis) can be thought of being
developed in the early 1920s, the area of fuzzy set theory as a separate field of study
dates from the mid-1960s. On the other hand, the first research “paper” in interval
analysis can be considered to be Archimedes’ computation of circumference of a cir-
cle [83]. More recently Burkhill [13] in 1924 can be considered as the second research
paper in the field. However, interval analysis as a separate field of study began in the
early 1960s. While there are five known direct and clear precursors to Moore’s version
of interval arithmetic and interval analysis beginning in 1924 (see [13], [35], [91],
[97], and [102]), Moore was the one who worked out rounded computer arithmetic
and fully developed the mathematical analysis of intervals, called interval analysis. As
developed by R. E. Moore (see [78], [81], and [82]), interval analysis arose from the
attempt to compute error bounds of numerical solutions on a finite state machine that
accounted for all numerical and truncation errors, including roundoff error, automat-
ically (by the computer itself). This led in a natural way to the investigation of com-
putations with intervals as the entity, data type, that enabled automatic error analysis.

R. E. Moore and his colleagues are responsible for developing the early theory,
extensions, vision, and wide applications of interval analysis and the actual imple-
mentation of these ideas to computers. E. R. Hansen writes (see [53]):

R. E. Moore (see [80]) states that he conceived of interval arithmetic and some of its
ramifications in the spring of 1958. By January of 1959, he had published [78] a report on
how interval arithmetic could be implemented on a computer. A 1959 report [82] showed
that interval computations could bound the range of rational functions and integrals of
rational functions. Theoretical and practical interval arithmetic were differentiated. Ref-
erence [77] discusses interval valued functions, interval contractions, a metric topology
for interval numbers, interval integrals, and contains an extensive discussion of Moore’s
use of interval analysis to bound the solution of ordinary differential equations.

The methods for handling interval uncertainty and arithmetic of fuzzy sets, thus,
can be traced to R. E. Moore’s technical reports in 1959 and 1960, and his Ph.D. thesis
in 1962 (see [78], [79], [81], and [82]). On the real number line, with the usual meaning
of the order relation, an interval [a, b] is the set of all real numbers {x |a ≤ x ≤ b}.
Moreover, intervals can be considered as a number with two parameters (the left
endpoint and the right endpoint). These two natures of intervals, numbers and sets,
lead to interval arithmetic and interval analysis. What follows will develop the methods
required to represent, store, manipulate, and analyze interval entities. While interval
analysis is over 40 years old, the application of interval analysis to geographical
surfaces is recent (see [66], [69], [71], and [88]).

© 2008 by Taylor & Francis Group, LLC
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Intersections and unions of intervals also have an algebra and are computed in
a straightforward manner. These definitions, unlike those of fuzzy set theory found
in the sequel, come from classical set theory. Intersections and unions, of course,
are crucial in defining what we mean by solutions to simultaneous equations and
inequalities as well as the fundamental building blocks of logical statements. For a
given interval [a, b] and a given real number x , the statement x ∈ [a, b] is either true
or false. There is no vagueness or ambiguity except for roundoff when the statement
is implemented on a computer. For two intervals A1 and A2, if we know that x ∈ A1

and x ∈ A2, then we also know with certainty that x ∈ A1 ∩ A2. These statements
have certainty except when one accounts for implementations on the computer and
roundoff error comes into play unlike statements of this type in fuzzy set theory. Inter-
val arithmetic and the interval analysis developed from it do not assign any measure
of possibility or probability to parts of an interval. A number x is either in an interval
A, or it is not. By introducing probability distributions or possibility distributions on
an interval, and using level sets, integrals, or other measures, a connection between
intervals and fuzzy sets can be made.

Intervals are sets, and they are a (new type of) number. This dual role is exploited
in the arithmetic and analysis. As a fuzzy set, an interval number U = [u, ū] has a
membership function

μU (x) =
{

1 for u ≤ x ≤ ū,

0 otherwise

Thus, interval analysis can be considered as a subset of fuzzy set theory. As
a probability distribution, an interval number can be considered as one of two
probability density functions:

1. An interval may be considered to be the uniform distribution

p(x) =
{

1/(ū − u) for u ≤ x ≤ ū, u < ū

0 otherwise

2. An interval may represent the fact that all we know is the support so that
every distribution p(x) with support supp{p(x)} = [u, ū] is in the interval.

The first distribution may be appropriate when an approximation to the distribution is
needed in the presence of no information about how the uncertainty is distributed as a
“best” guess. Most researchers, however, consider the second probabilistic interpre-
tation the most faithful probabilistic meaning of an interval as an uncertainty entity.

There are excellent introductions to interval analysis beginning with R. E. Moore’s
book [77] (also see other texts listed in the bibliography). A more recent introduc-
tion can be found in [21] and downloaded from: http://www.eng.mu.edu/corlissg/
PARA04/READ ME.html. Moreover, there are introductions that can be downloaded
from the interval analysis website http://www.cs.utep.edu/interval-comp. On the in-
terval analysis website, a list of languages that support interval data types is given.
See http://www.cs.utep.edu/interval-comp/intlang.html. In particular, a MATLABTM

system called INTLAB that supports the interval data types and interval linear alge-
braic analysis can be found and downloaded from: http://www.ti3.tu-harburg.de/∼
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6 Fuzzy Surfaces in GIS and Geographical Analysis

systems and analyses associated with this book (also see [86]).

1.1 INTERVAL ARITHMETIC

1.1.1 INTERVALS AND OPERATIONS AMONG INTERVALS

An interval [a, b] is an ordered pair of real numbers a, b with a < b. In a computer,
in order to obtain exact lower and upper bounds on interval arithmetic operations, it is
necessary to use the conservative form representation, which consists in representing
a with the largest machine number aL such that aL ≤ a and b with the lowest
machine number bR such that bR ≥ b [54].

An interval X = [a, b] is positive if a ≥ 0, and strictly positive if a > 0, negative
if b ≤ 0, and strictly negative if b < 0.

Two intervals X = [a, b], Y = [c, d] are equal if a = c and b = d. Among
intervals, it is possible to define a partial ordering:

[a, b] < [c, d] ⇔ b < c (1.2)

Arithmetic operations among intervals are defined as follows.
Let op be any arithmetic operation among reals, op = +, −, ∗, /. If X, Y are two

intervals, op between the two intervals is defined as:

X op Y = {x op y|x ∈ X, y ∈ Y } (1.3)

Explicitly:

[a, b] + [c, d] = [a + c, b + d] (1.4)

[a, b] − [c, d] = [a − d, b − c] (1.5)

[a, b] ∗ [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (1.6)

If the interval Y does not contain 0, the inverse 1/Y is defined by:

1/Y = [1/d, 1/c] (1.7)

and the division of X by Y is:

X/Y = X ∗ (1/Y ) (1.8)

Among the elementary operations, it is convenient to introduce the following:
Power, defined by the following rules [54]:

[a, b]n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1, 1] if n = 0

[an, bn] if a ≥ 0 ∨ (a ≤ 0 ≤ b ∧ n is odd)

[bn, an] if b ≤ 0

[0, max(an, bn)] if a ≤ 0 ≤ b ∧ n is even

(1.9)
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For the square root and the logarithm, we have when [a, b] is strictly positive
[60], √

[a, b] = [
√

a,
√

b] (1.10)

log([a, b]) = [log(a), log(b)] (1.11)

and for the exponential

exp([a, b]) = [exp(a), exp(b)] (1.12)

First we notice that the commutative and distributive laws hold also for intervals
X = [a, b], Y = [c, d], and Z = [e, f ].

X + Y = Y + X (1.13)

X ∗ Y = Y ∗ X (1.14)

X + (Y + Z ) = (X + Y ) + Z (1.15)

X ∗ (Y ∗ Z ) = (X ∗ Y ) ∗ Z (1.16)

Furthermore, defining 0 = [0, 0] and 1 = [1, 1], one has

0 + X = X + 0 = X (1.17)

1 ∗ X = X ∗ 1 = X (1.18)

Now we give some examples.
The distributive law between product and difference does not hold as shown by

the following example:

[1, 2] ∗ ([1, 2] − [1, 2]) = [−2, 2]

and
[1, 2] ∗ [1, 2] − [1, 2] ∗ [1, 2] = [−3, 3]

Also the difference between two intervals is not zero:

[2, 5] − [2, 5] = [−3, 3]

The ratio X/X is not 1 as shown by

[2, 5]/[2, 5] = [2/5, 5/2]

This causes what is called the redundancy problem:

X ∗ Y

Y
�= X

as an example:
[1, 3] ∗ [2, 4]/[2, 4] = [1/2, 6]

and the resulting interval [1/2, 6] is much larger than x = [1, 3].
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Therefore, whenever in an expression a variable is repeated several times, the inter-
val domain grows in an uncontrollable way, and furthermore, this makes it impossible
to adopt the standard cancellation laws when performing algebraic calculations.

This redundancy problem implies that, for the general problem of estimating
the final uncertainty of a complex calculation, it is not practical to utilize interval
arithmetic because there is no general way to control the growth of the uncertainty
interval at each step of the calculation.

There are ways to remedy this drawback [54] by taking appropriate precautions,
such as automatically analyzing the individual steps of a complex calculation in order
to detect redundancies and correct them. A rather interesting approach is that of
affine arithmetic, see [90], which has been applied to several problems in computer
graphics. Another relevant approach is that of constrained interval arithmetic, see
[67]. However, in the interval literature, there seems to be no generally accepted
methodology and accompanying efficient software for achieving this.

In this book, we shall not utilize this general form of interval arithmetic (i.e.,
breaking a calculation into a sequence of interval operations and then applying the
interval arithmetic rules) in order to treat uncertainty in interesting environmental
problems. Instead, we shall adopt a more ad hoc approach, in the sense that, for a
large class of functions that are encountered in interesting environmental problems,
we shall utilize special algorithms, which estimate the final uncertainty interval with
sufficient accuracy and efficiency.

1.1.2 EXAMPLES: THE MALTHUS LAW

One of the simplest examples is population dynamics as described by the discrete
form of Malthus law:

X (t + 1) = �X (t) (1.19)

with � the growth constant. This constant (as well as other parameters that appear
in population dynamics models, in epidemiological studies, etc.) can be interpreted
as a transition probability in a Markov process. Usually, the data are not sufficient to
determine the parameters with sufficient accuracy, and therefore the incorporation of
the uncertainty of the constant in the model is an important aspect of the model
building.

Recent work on modeling and forecasting tuberculosis in the United States with
Markov processes has represented the uncertainty in the parameters using triangular
fuzzy numbers [23], and as a consequence, also the predictions are represented in
terms of fuzzy numbers.

In this chapter, we shall perform uncertainty analysis for the discrete Malthus law
in Equation (1.19) with interval analysis and then we shall compare the results with
those obtained via the probabilistic simulation approach. The fuzzy number analysis
(which is in a sense an extension of the interval analysis, as will be shown later) will
be performed in the next chapter.

Let us assume that the initial value of X lies in the range between 3 and 6 and
therefore can be represented by the interval

X (0) = [3, 6]
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and that the growth constant � lies in the range between 0.95 and 1.05 and is repre-
sented by the interval

� = [0.95, 1.05]

What will be the uncertainty if the population be at the 20th iteration? The answer

X (20) = [1.0754, 15.9198]

can be obtained with the MATLAB program imalthus.m:

clear; x0=infsup(3,6); lambda=infsup(0.95,1.05); x=x0;
mm=20; for
i=1:mm,

x=lambda*x;
end
infsup(x)
y=(lambda^mm)*x0;
infsup(y)

In the probabilistic simulation approach, X (0) and � are treated as uniform ran-
dom variables in the ranges [3, 6] and [0.95,1.25], respectively. A naive application
of Monte Carlo simulation through the MATLAB program rmalthus.m yields the
histogram of the simulated data, and from this, the empirical probability density is
calculated.

clear; n=20; m=2000000;
for j=1:m,

x(1,j)=3+3*rand;
end
hist(x,20);
figure;
mean=1.;
for j=1:m,
for i=2:n,
lambda=0.95+0.1*rand;
x(i,j)=x(i-1,j)*lambda;

end
end
xx=1:m;
for j=1:m,
yy(j)=x(n,j);

end
min(yy)
max(yy)
hist(yy,100);
figure;
zz=1:n;
Nx=hist(yy,zz);
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zn=max(Nx);
for j=1:n,
Nx(j)=Nx(j)/zn;

end plot(zz,Nx);
z=0;
for j=1:m,
z=z+x(n,j);

end
z=z/m

With m = 100 simulation, one finds that the range of the values after 20 itera-
tions is:

X (20) = [2.7719, 7.5400]

and one can see that the range is smaller than that obtained with interval arithmetic.
By increasing the number of simulations to m = 1000, one obtains:

X (20) = [2.1289, 7.4606]

and for 10,000 simulations:

X (20) = [2.1181, 8.8219]

Finally, for 1,000,000 simulations, one has the histogram in Figure 1.1:

X (20) = [1.7384, 9.2908]

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

FIGURE 1.1 Histogram after 1,000,000 simulations.
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which starts to approach the interval result. To approach more closely the interval
arithmetic results, more Monte Carlo simulations are needed and, with the present
naive approach, this would lead to incredible computing time.

Obviously, for the simple problem at hand, the probabilistic approach could be
done in a much more efficient way by computing an integral. However, the scope of
the exercise was to show the potential of the interval arithmetic approach over the
probabilistic-simulation one, at least when the calculations could be done exactly (or
almost exactly).

In this case, the interval obtained with interval calculations is exact because it
expresses simply

X (n) = λn · X (0) (1.20)

and λn is calculated exactly according to the definition of power of an interval. The
result is also consistent with the observation that the real function λn is mono-
tonic. We notice that the largest interval obtained with the probabilistic approach
requires 1,000,000 simulations, which is very demanding computationally. To obtain
1,000,000 function evaluations for functions that are not as simple as the Malthus law
might be prohibitively expensive for the computational resources.

1.1.3 FUNCTIONS OF INTERVALS

It is convenient to introduce the subject with an example. Let us compute the average
of two interval quantities:

Y = (C1 ∗ X1 + C2 ∗ X2)/(X1 + X2)

where
X1 = [6, 8], X2 = [10, 12]

and the weights are also intervals:

C1 = [600, 1500], C2 = [500, 1200].

Then using interval arithmetic, we obtain

Y = [430, 1650]

through the MATLAB program average.m

c1=infsup(600,1500);
c2=infsup(500,1200);
x1=infsup(6,8);
x2=infsup(10,12);
y1=(c1*x1+c2*x2)/(x1+x2);
y=infsup(y1)

This result is awkward because one expects that the average should be included
in the interval [500, 1500].

In fact, a probabilistic simulation with n = 10,000 runs done with the MATLAB
program rmediau.m
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clear all;
n=50000;
x1l=6;
x1r=8;
c1l=600;
c1r=1500;
x2l=10;
x2r=12;
c2l=500;
c2r=1200;
x1sig=(x1r-x1l);
x2sig=(x2r-x2l);
c1sig=(c1r-c1l);
c2sig=(c2r-c2l);
for i=1:n,

x1(i)=x1l+x1sig*rand;
end
for i=1:n,

x2(i)=x2l+x2sig*rand;
end
for i=1:n,

c1(i)=c1l+c1sig*rand;
end
for i=1:n,

c2(i)=c2l+c2sig*rand;
end
for i=1:n,

c(i)=(x1(i)*c1(i)+x2(i)*c2(i))/(x1(i)+x2(i));
end
xx1=mean(x1)
x1va=var(x1)
hist(x1,20)
figure;
xx2=mean(x2)
x2va=var(x2)
hist(x2,20)
figure;
cc1=mean(c1)
c1va=var(c1)
hist(c1,20)
figure;
cc2=mean(c2)
c2va=var(c2)
hist(c2,20)
figure;
cc=mean(c)
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vc=var(c)
hist(c,20)
min(c)
max(c)

gives:
Y = [563, 1310]

which instead is well within the expected range [500,1500]. If we repeat the simulation
with n = 20,000 runs we obtain

Y = [543, 1321]

Again, with n = 30,000 runs, we have

Y = [562, 1316]

and with n = 40,000 runs
Y = [536, 1326]

and the range seems to converge as it is shown by increasing n (however, at the cost
of long CPU times).

The result obtained with a naive application of interval arithmetic is an example
of the redundancy problem, i.e., a consequence of the repeated occurrence of the
variables in the formula and indicates the need for a different algorithm. One of the
most popular approaches is that of interval weighted averages also called the vertex
method and this will be the subject of the next section.

1.1.4 THE VERTEX METHOD

First let us introduce functions of interval variables. Starting from a function of real
variables one can introduce a function of interval variables:

DEFINITION 1.2
(Functions of interval variables) Let f (x1, . . . , xn) be a function of n real variables.
Let F(X1, . . . , Xn) be a function of n intervals X1, . . . , Xn . The function F is an
interval extension of f if

f (x1, . . . , xn) ∈ F(x1, . . . , xn) (1.21)

whenever the intervals X1, . . . , Xn reduce to the real numbers x1, . . . , xn .

DEFINITION 1.3
(Inclusion monotone function) An interval function F is inclusion monotonic if

Xi ⊂ Yi , i = 1, . . . , n ⇒ F(X1, . . . , Xn) ⊂ F(Y1, . . . , Yn) (1.22)

The interval arithmetic operations are inclusion monotonic.
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Now we can introduce the IWA algorithm of Dong and Wong [26] (also called
the vertex method ) in order to evaluate a large class of interval functions. Let the
function to evaluate be

Y = f (X1, . . . , Xn) (1.23)

with X1 = [a1, b1], . . . , Xn = [an, bn]. We assume that f has no extreme in the
interior of the polyinterval [a1, b1] × . . . × [an, bn]. Let us consider the M = 2n

permutations of the endpoints, each represented by a vector with components βi , i =
1, . . . , M = 2n :

β1 = (a1, a2, . . . , an)

β2 = (b1, a2, . . . , an)

. . .

βM = (b1, b2, . . . , bn)

Then the interval value of the function f is:

Y = [c, d] = [min
i

f (i), max
i

f (i)] (1.24)

where f (1) = f (a1, a2, . . . , an), etc.
The MATLAB program iwaff.m performs such algorithm.

function y=iwaff(m,x,handle);
%implements the iwa algorithm with a general function;
%m is the number of arguments;
%x is the vector of arguments;
%to change the function one has to type first from the
%command window handle=@function name;
for h=1:m;

con(h)=0;
t(h)=0;

end
for r=1:m,

xl(r)=inf(x(r));
xr(r)=sup(x(r));

end
for j=1:2^m,

for i=1:m,
if con(i)==2^(i-1);

t(i)=mod(t(i)+1,2);
con(i)=0;

end
xx(j,i)=(1-t(i))*xl(i)+t(i)*xr(i);
con(i)=con(i)+1;

end
end
for k=1:2^m,
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v=xx(k,:);
ou(k)=feval(handle,v);

end
vv1=min(ou);
vv2=max(ou);
cc=infsup(vv1,vv2);
y=infsup(cc);

For the example we have considered, the result is the interval [533.33, 1333.33],
which is the correct value. The IWA algorithm gives the correct result if the function
has its extreme only on the boundary of the domain where it is defined. For the
function under consideration in the example, this is the case, as can be verified by
computing the derivatives and noticing that they do not vanish.

1.2 FUZZY ARITHMETIC

1.2.1 INTRODUCTION TO FUZZY SETS

1.2.1.1 Fuzzy Sets

Fuzzy sets represent a mathematical concept in order to describe mathematically
nonstochastic uncertainty, for example, deriving from subjective judgments or from
imprecise knowledge of parameters. A fuzzy set is a generalization of the classical
concept of set. A fuzzy set A is an assembly of objects of the universe of discourse U
that share some common property. The fuzzy set A is characterized by a membership
function

μ : U → [0, 1] (1.25)

which associates to each element x of U a real number belonging to the interval [0, 1],
representing the degree of belonging to A [62]. In this way, the concept of charac-
teristic function of a set A is generalized. The concept of degree of belonging can
be interpreted also in the framework of possibility theory as the degree of possibility
that the event corresponding to x belongs to the class of events described by A [62].
The set of elements of U for which the membership function is positive is called the
support of A. A singleton is a fuzzy set whose support consists of a single point of U .

In the following paragraphs, we shall give examples of membership function
constructions from observed data.

1.2.1.2 Examples and Interpretations of the Membership Functions

Measurements in a Vague Environment: The Interpretation of Klawonn

Klawonn [61] introduces the membership function of a fuzzy set as a way of repre-
senting imprecision in a vague environment. It is better to start with an example.

Let us consider the temperature in a room in order to control it. For most purposes,
a temperature difference less than 0.001◦C is completely irrelevant for conditioning.
Therefore, we can identify two temperature values that differ by less of 0.001◦C.
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More generally, once a tolerance threshold ε has been chosen (and this choice depends
on the type of application), we can identify values of a variable whose distance
(measured in an appropriate metric) s is less than ε.

As an example, consider the temperature in a room that is assumed to vary in the
interval [0, 35] centigrades [61]. For the purpose of controlling the temperature, the
region of most interest is that between 19 and 23◦C, because human beings are rather
sensitive to small variations within this range. Instead, the temperatures within the
region 15–19 can be lumped in the concept of cold and that between 23 and 27 as hot,
and from the viewpoint of the human sensations, it is not important to discriminate
very accurately within those regions. Also, for temperatures in the ranges [0, 15] or
[27, 35] there is no interest in fine-tuning the control because the only sensible choice
would be either to heat up in the first case or to cool down in the second one.

In order to take this into account, it is convenient to distinguish the various scales
by introducing a scale factor c(x) and the operation defines a vague environment.
Returning to the example of the temperature, a reasonable scale factor could be (see
Figure 1.2):

c(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < 15

0.25 if 15 ≤ x < 19

1.5 if 19 ≤ x < 23

0.25 if 23 ≤ x < 27

0 if 27 ≤ x < 35

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Temperature

M
em

b
er

sh
ip

Scale factor for the temperature vague environment 

FIGURE 1.2 Scale factor for the temperature environment.
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We shall consider two values x1, x2 ε-indistinguishable if their distance measured
by the scale factor c (whose choice depends on the variability of x) is less than ε.
Formally, we proceed as follows:

Let X = [a, b] be an interval of the real line and c(x), a scale factor (the only
requirement on c(x) is that it must be integrable). We can define a weighted distance
between the two points x1, x2 belonging to the interval [a, b]

δc(x1, x2) =
∫ x2

x1

c(s) ds (1.26)

The two points x1, x2 are considered ε-distinguishable with respect to the scale factor
c if their transformed distance δc(x1, x2) ≥ ε.

Now let us consider x0 ∈ X . We associate to x0 all other x that are not ε-
distinguishable from x0 (with respect to the scale factor c) and for ε varying between
0 and 1, that is, the set

Sx0, ε = {x ∈ X : δc(x, x0) ≤ ε} (1.27)

We let ε vary between 0 and 1; different values can be taken into account by a
suitable redefinition of the scale factor. This set can be described through the map

μx0 : X → [0, 1] (1.28)

x → 1 − min (δc(x, x0), 1) (1.29)

whence
Sx0, ε = {x ∈ X : μx0 (x) ≥ 1 − ε} (1.30)

We can interpret μx0 as the membership function of the fuzzy set of those values
which are ε-indistinguishable from x0; ε vary between 0 and 1. The interpretation
of the membership function is then the following. The interval corresponding to the
α-level α is the set of points that are indistinguishable from x0 for ε = 1−α. Example:

Let us assume c(x) to be constant. Then δc(x1, x2) = c(x2 − x1), whence

μx0 (x) = 1 − min{c(x − x0), 1}

is a linear function that assumes its maximum at x0 and the sides of the triangle have
slope c.

The MATLAB program klawonnplot.m found in the accompanying CD gives
Figure 1.3. Another example is obtained with the scale factor

c(x) = (x − x0)

s2
exp

(−(x − x0)2

2s2

)
which yields, with s = 0.1, Figure 1.4.

For the scale factor of 1.2, the membership functions corresponding to the nominal
values 15, 19, 21, 23, 27 degree celsius are given in Figures 1.5, 1.6, 1.7, 1.8, and 1.9.
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FIGURE 1.3 Membership function of almost 2 in a vague environment with a constant scale
factor.
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FIGURE 1.4 Membership function of almost 2 in a vague environment with a Gaussian scale
factor.
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FIGURE 1.5 Membership function of 15 degrees in the vague environment defined by the
temperature scale factor.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Klawonn construction of membership function

x

M
em

b
er

sh
ip

 f
u

n
ct

io
n

FIGURE 1.6 Membership function of 19 degrees in the vague environment defined by the
temperature scale factor.
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FIGURE 1.7 Membership function of 21 degrees in the vague environment defined by the
temperature scale factor.
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FIGURE 1.8 Membership function of 23 degrees in the vague environment defined by the
temperature scale factor.
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FIGURE 1.9 Membership function of 27 degrees in the vague environment defined by the
temperature scale factor.

Membership Function as Degree of Preference for Design Parameters

According to the context, there could be several interpretations of the membership
function. An interesting interpretation is due to Wood, Otto, and Antonsson [100].
In the design process, there could be several parameters, which could be imprecisely
known, that is, they vary within some ranges. Therefore, a first step would be to treat
them as intervals. However, the designer might have some preference for some of the
parameters, and this could be quantified by introducing the degree of preference μ.
This function could then be interpreted as the membership function of a fuzzy set.

Membership Function from Histograms: The Interpretation of Dubois and Prade

This method is better explained in the case of the definition of the fuzzy set concept
of tall. The universe of discourse U consists of all the possible heights, for example,
in centimeters. The interval U = [linf, lsup], where, for example, linf = 0.5, lsup = 2.5
in meters.

A sample of people are asked at which height in the range U = [linf, lsup] they
consider a person tall. If somebody answers, say, s = 1.75, this means that this
person considers all individuals with height in the range S = [s, lsup] as tall. One can
then discretize the set U in subsets of the kind Si = [si , lsup], and the histogram of
the numerical answers is given in Figure 1.10. The sets Si form a nested sequence
covering the set U . If the number of answers is considerably large, one can assign
probabilities P(Si ) to the sets Si from the normalized histogram. Then a fuzzy set could
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FIGURE 1.10 Histogram corresponding to the height distribution for the concept of tall.

be constructed by defining the membership function μ(s) on the set U as follows:

μ(s) =
∑

P(Si ) (1.31)

over si ≤ s. The interpretation of this choice is that we assign to s the degree of
belonging to the fuzzy set tall given by the sum of all probabilities that s lies in
the intervals [si , lsup], which coincides with the cumulative distribution function of
the probability measure defined by P(Si ). This interpretation is quite intuitive and a
formal justification in the framework of evidence theory can also be given [28].

With the MATLAB programs DP1, DP1a, and DP1b found in the accompany-
ing CD, one obtains the graph of the membership function in Figure 1.11.

The Probabilistic Interpretation of Jamison and Lodwick

For a critical investigation of the relationship between membership function and
probability, see Hisdal and Jamison and Lodwick [58].

1.2.1.3 The Mountain Function

The mountain function method aims at summarizing a set of data described with a
single fuzzy number. Let the data set consist of the points:

DS = {z1, . . . , zN } (1.32)

then the mountain function is defined by

M(c) =
N∑

j=1

exp(− αd(z j , c)) (1.33)
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FIGURE 1.11 Membership function for the concept of tall.

where N is the number of data points, α is a positive constant, and d(x j , c) a distance,
for example, of the kind

d(x j , ci ) = (x j − c)2 (1.34)

and c represents the modal point of the resulting fuzzy number. Then c is chosen as
to maximizing the mountain function M(c).

The method has been extended and modified in order to treat the case of imprecise
data, described by triangular fuzzy numbers. For the sake of concreteness, let us
represent the data as a set of quintuples of the kind:

D j = (x j , y j , zjmin, zjmax, zjcenter) zjmin < zjcenter < zjmax (1.35)

For each quintuple, xi and yi represent the spatial coordinates, assumed to be pre-
cisely known, whereas [zjmin, zjmax, zjcenter] represents a fuzzy triangular number. In
the particular case, when the three values of [zjmin, zjmax, zjcenter] coincide, we have a
crisp number.

Our aim is to construct a fuzzy number that, in a sense, is a summary of the N
fuzzy triangular numbers [z jmin, z jmax , z jcenter ] located at (x j , y j ). The construction
proceeds as follows: Find a fuzzy number S with membership function mS such that:

i support(mS) = [a, b]
where a = min z jmin, b = max z jmax

ii there exists a unique element zS such that mS(zS) = 1
iii mS is monotone increasing to the left of zS and decreasing to the right

of zS
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In the case of imprecise data, we must take into account the spread of each datum
in the definition of the mountain function. In particular, following [48] we shall weigh
less the data that have a larger spread.

The definition we use for the mountain function is the following:

M(c) =
N∑

j=1

exp(− d(z j , c)) (1.36)

where now the distance is given by

d(z j , c) = (c − zjcenter)
2α j1 c < zjcenter (1.37)

d(z j , c) = (c − zjcenter)
2α j2 c ≥ zjcenter (1.38)

with

α j1 = (zjcenter − z jmin)2

2(zjcenter − a)2(zjmax − zjmin)2
(1.39)

α j2 = (zjcenter − zjmin)2

2(zjcenter − b)2(zjmax − zjmin)2
(1.40)

The modal point of the resulting fuzzy number is identified with the maximum of
the mountain function. To construct the full membership function, one proceeds by
utilizing a six–control point linear spline as follows: The control points P0 and P5 are,
respectively, the points (a, 0) and (b, 0), implying that the support of the membership
function is the interval [a, b]. The control point P3 is chosen in such a way that the
requirement ii is satisfied. The other control points P1, P2, and P4 are chosen for the
sake of simplicity, according to the following rules: If (a − c) > (z − b), P1 is taken
to be:

P1 =
(

c − 3

4
(b − c), h

)
(1.41)

h = 9(b − c)2k

2(3c − 2a − b)(5b − 4a − c)

k = (b − c)2

2(c − a)2

P2 is taken to be: (
c − 1

2
(b − c), k

)
(1.42)

P4 is taken to be: (
c + 1

2
(b − c), k

)
(1.43)

Similar formulae apply in the case (a − c) ≤ (z − b).
As a simple example, let us consider the following artificial data set:

D1 = (x1, y1, 109, 125, 144); (1.44)

D2 = (x2, y2, 102, 125, 149); (1.45)
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FIGURE 1.12 Mountain function reconstruction of a set of fuzzy data.

D3 = (x3, y3, 107, 125, 146); (1.46)

D4 = (x4, y4, 152, 175, 186); (1.47)

D5 = (x5, y5, 163, 175, 191); (1.48)

D6 = (x6, y6, 167, 175, 183). (1.49)

The spatial coordinates of the data are irrelevant for our purpose, because they are
assumed to belong to the same cell. The disc that accompanies this book contains the
MATLAB programs distm.m, prototype.m,mountain.m, which lead to the mem-
bership function represented in Figure 1.12.

1.2.1.4 The Median Construction of the Membership Function

An overly simplistic method for constructing a membership function from a set of data
is that of fitting a triangular membership function to the reduced data set consisting
of the minimum, the maximum, and the median. The median is taken to correspond
to the peak value for α = 1, and the minimum and maximum define the range of the
triangular fuzzy number.

A better interval-based construction can be envisaged in which the support of
the membership function is defined by the interval of the minimum and maximum
of the data and the interval corresponding to the α-level α is obtained by deleting
from the ordered data set, in a symmetric way from the median, a fraction α of the
data from the range starting from the extremes. As an example consider the data
consisting of the hourly measurements of the pollutant P M10 (dust) at a given site
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FIGURE 1.13 Triangular fuzzy number from a set of pollutant PM10 concentration data
during the first 2 months of 1999 at a site near a petrochemical factory in Sicily.

near a petrochemical factory in Sicily, taken for the first 2 months of 1999. First we
summarize the data with a triangular fuzzy number and obtain Figure 1.13. Next we
apply the median method and obtain the much more satisfactory membership function
of Figure 1.14. We consider also the yearly data from another station and obtain the
triangular fuzzy number (Figure 1.15) and the median reconstruction (Figure 1.16).
In this latter example, one sees clearly that the median reconstruction gives results
that are much more satisfctory than the triangular fuzzy number representation. In
particular, the effect of outliers is insignificant in the median reconstruction.

1.2.1.5 Operations with Fuzzy Sets

DEFINITION 1.4
(Union) Given two fuzzy subsets A, B of the universe of discourse U, defined by the
membership functions μA and μB , their union is defined as the fuzzy subset of U
whose membership function is

μA∪B(x) = max(μA(x), μB(x)) (1.50)

DEFINITION 1.5
(Intersection) Likewise the intersection of the two fuzzy subsets A, B is defined by
the membership function

μA∩B(x) = min(μA(x), μB(x)) (1.51)
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FIGURE 1.14 Median membership function construction from a set of pollutant PM10 con-
centration data during the first 2 months of 1999 at a site near a petrochemical factory in
Sicily.
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FIGURE 1.15 Triangular fuzzy number from a set of pollutant PM10 concentration data
during the year 1999 at a site near a petrochemical factory in Sicily.
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FIGURE 1.16 Median membership function construction from a set of pollutant PM10 con-
centration data during the year 1999 at a site near a petrochemical factory in Sicily.

DEFINITION 1.6
(Complement) The complement of the fuzzy subset A is defined by the membership
function

μC A(x) = 1 − μA(x) (1.52)

DEFINITION 1.7
(Equivalence) Two fuzzy subsets A and B are equivalent if their membership functions
are equal:

A = B ⇔ ∀x ∈ U μA(x) = μB(x) (1.53)
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1

FIGURE 1.17 Triangular fuzzy number for l = 1, m = 2, r = 3 is “almost 2.”
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FIGURE 1.18 Triangular fuzzy number for l = 2, m = 3, r = 4 is “almost 3.”

DEFINITION 1.8
(Inclusion) The fuzzy subset A is included in the fuzzy subset B iff

A ⊆ B ⇔ ∀x ∈ U μA(x) ≤ μB(x) (1.54)

REMARK 1.1
(Identities) It is easy to prove the following identities:

C(C A) = A (1.55)

C(A ∪ B) = C A ∩ C B (1.56)

C(A ∩ B) = C A ∪ C B (1.57)

In fact one has:

μCC A(x) = 1 − μC A(x)

= 1 − (1 − μA(x))

= μA(x)

and

μC(A ∪ B)(x) = 1 − μA ∪ B(x) (1.58)

= 1 − max(μA(x), μB(x)) (1.59)

= min(1 − μA(x), 1 − μB(x)) = μCA∩CB (x) (1.60)

analogously for the other identity.

REMARK 1.2
(Tertium non datur) The law of “tertium non datur” does not hold; in fact

A ∪ CA �= U (1.61)

because
max(μA(x), 1 − μA(x)) �= 1
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and likewise
A ∩ CA �= ∅ (1.62)

because
min(μA(x), 1 − μA(x)) �= 0

DEFINITION 1.9
(Fuzzy normal subset) A fuzzy subset A of U (universe of discourse) is said to be
normal if its membership function reaches its maximum at a point, that is,

max
x∈U

μA(x) = 1 (1.63)

DEFINITION 1.10
(Fuzzy convex subset) A fuzzy subset A of the universe of discourse U is said to be
convex if

∀x, y ∈ [a, b] μA(λx + (1 − λ)y) ≥ min(μA(x), μA(y)) (1.64)

DEFINITION 1.11
(Direct product of fuzzy sets) Let U, V be universes of discourse and A, B fuzzy
subsets of U, V, respectively. The direct product A × B is the fuzzy subset of the
Cartesian product U × V, defined by the membership function

μA×B(x, y) = min(μA(x), μB(y)) (1.65)

1.2.2 OPERATIONS AMONG FUZZY NUMBERS

1.2.2.1 Definition of Fuzzy Numbers

DEFINITION 1.12
(Fuzzy number) A fuzzy number is a convex and normal fuzzy with compact support
and piecewise continuous membership function.

The set of fuzzy numbers on the real line R will be denoted by F(R).

DEFINITION 1.13
(α-levels) For a fuzzy subset A of the universe of discourse U , we introduce the
α-levels Aα defined as follows for 0 ≤ α ≤ 1

Aα = {x : μA(x) ≥ α} (1.66)

PROPOSITION 1.1 (Resolution principle)
Let χAα

(x) be the characteristic function of the α-level Aα , then

μA(x) = sup
α∈[0,1]

min(α, χAα
(x)) (1.67)

An example of α-level representation of the membership function with MATLAB
is the m-file atrian.m included in the CD that accompanies this book.
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As an example, we plot the triangular fuzzy number with l = 1, m = 2, r = 3,
which could be interpreted as almost 2, Figure 1.17.

1.2.3 COMPARING FUZZY NUMBERS

The problem of comparing fuzzy numbers has been amply studied in the literature
[29]. The simplest way of comparing two fuzzy numbers is to defuzzify the two
numbers, obtaining two crisp numbers representing in a sense typical values of the
two quantities, and then to compare these two crisp numbers in the usual way.

1.2.3.1 The Center of Mass

The simplest defuzzification procedure is that of taking the center of mass [111]:

g =
∫ b

a xμ(x) dx∫ b
a μ(x) dx

(1.68)

where μ(x) is the fuzzy number membership function.
The program MATLAB centermass.m found in the accompanying CD computes

the center of mass for a fuzzy number given by the matrix of its α-levels.

1.2.3.2 The Mean Interval

A very interesting concept is that of mean interval, which in a sense summarizes
both the expected value and the spread of a fuzzy number [29]. Its definition for a
fuzzy number described by the α-levels zα = [zlα, zrα] is

M(z) =
[ ∫ 1

0
zlαd α,

∫ 1

0
zrαd α

]
(1.69)

The program MATLAB meanint.m found in the accompanying CD computes the
mean interval for a fuzzy number given by the matrix of its α-levels.

1.2.3.3 Distances Between Fuzzy Numbers

A simple way of constructing distances for fuzzy numbers is to use any of defuzzifying
scalars and defining a distance between two fuzzy numbers u, v in terms of the absolute
distance between the corresponding defuzzifying scalars, for example:

dist1(u, v) = Abs[M M[u] − M M[v]] (1.70)

where M M[u] represents the scalar that defuzzifies u.
Other distances could be defined on fuzzy numbers starting from distances on

intervals.

1.2.3.4 Distance Between Intervals

A classical example of a distance between intervals is the Hausdorff distance

dH (A, B) = max[sup
x∈A

inf
y∈B

|x − y|, sup
y∈B

inf
x∈A

|y − x |] (Hausdorff) (1.71)
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Another widely used distance [29] starts from a function φp(x) = x p and two
intervals A = [a, b] and B = [c, d]. The distance is then:

dist(A, B) = φ−1
p (0.5(φp(| a − c |) + φp(| b − d |))) (1.72)

where p ≥ 1.
Then given two fuzzy numbers in terms of their α-levels uα , vα , an induced

distance can be defined by [29]:

dist2(u, v) =
∫ 1

0
dist(uα, vα) dα (1.73)

The program MATLAB fdist.m found in the accompanying CD computes the
distance dist2 for two fuzzy numbers given by the matrices of their α-levels.

However, both distances introduced above suffer from the drawbacks that they
do not enjoy some desirable properties of distance between intervals, as discussed by
Bertoluzza et al. [10]. To remedy these drawbacks arising from the fact that only the
endpoints of the intervals are taken into account in the interval distance definition,
a new class of distances with interesting properties has been introduced in [10] as
follows.

DEFINITION 1.14
(Distance between intervals) Let g be a normalized and integrable weight function
on [0, 1]. The squared distance d2 between two intervals A = [a, b] and B = [c, d]
is given by

d2(A, B) =
∫ 1

0
[t · ‖a − b‖ + (1 − t)‖c − d‖]2dg(t) (1.74)

In this class, a particular distance that corresponds to concentrated weights at the
endpoints and at the midpoints of the intervals and is easily implemented is [10]:

d2(A, B) = k(a − b)2 + h(AG − BG)2 + k(c − d)2

with AG = a + b/2, BG = c + d/2, and the weights h, k are such that 2k + h = 1.

Another distance based on similar concepts has been introduced by Tran and
Duckstein ([72] and [94]) and applied to fuzzy regression:

d2(A, B) =
∫ 1

2

− 1
2

([
1

2
(a + b) + t(b − a)

]
−

[
1

2
(c + d) + t(d − c)

])2

dt

=
[

1

2
(a + b) − 1

2
(c + d)

]2

+ 1

3

[
1

2
(b − a) − 1

2
(c − d)

]2

(1.74a)

As an example, the distance dist2 between the intervals A = [0, 0] (a crisp
number) and B = [−1, 3] is the same as between A and C = [1, 3] and equal to
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2.2361, although A is inside B and outside C . Instead, with the distance introduced
by Tran and Duckstein [72], the distance between A and B is 1.5275 and that between
A and C is 2.0817.

By utilizing either of the previously defined distances between intervals, one can
define distances between fuzzy numbers as follows.

DEFINITION 1.15
(Distance between fuzzy numbers) Given an integrable weight function w, [0, 1] →
R such that:

w(α) ≥ 0

α′ < α′′ =⇒ w(α′) < w(α′′)∫ 1

0
w(α) dα = 1 (1.75)

the distance between fuzzy numbers Ã, B̃ ∈ F(R) is a function d : F(R)2 → R
defined by

d( Ã, B̃) =
√∫ 1

0
d2([ Ã]α, [B̃]α)w(α) dα (1.76)

This definition is consistent with the fact that intervals with a higher presumption
level α should have a higher weight in determining the distance. Furthermore, this
definition reduces to the Euclidean one for real numbers.

The MATLAB programs fdistbert.m and fdistduck found in the accompanying
CD compute the above defined distances for two fuzzy numbers given by the matrices
of their α-levels in terms of the interval distances given by Equations (1.75) and (1.76),
respectively.

As an example let us consider the two couples of triangular fuzzy numbers:
A = (−2, 0, 2), B = (−1, 0, 1), A1 = (−2, 0, 1), B1 = (−1, 0, 2). The two

couples are represented in Figures 1.19 and 1.20, respectively. From the figures,
it is intuitive that the distance between A1 and B1 should be greater than that be-
tween A and B because in A1 and B1 there are points that are farther away than
between A and B. Now with the first distance we have introduced in Equation (1.73),
one finds:

fdist(A, B) = 0.5
(1.77)

fdist(A1, B1) = 0.5

which shows that such a distance is not able to discriminate between the two cases.
Instead, for the other distances we have introduced:

fdistbert(A, B) = 0.4472
(1.78)

fdistbert(A1, B1) = 0.5774
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FIGURE 1.19 Triangular fuzzy numbers (–2, 0, 2) and (–1, 0, 1).
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FIGURE 1.20 Triangular fuzzy numbers (–2, 0, 1) and (–1, 0, 2).
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FIGURE 1.21 Interval A overtakes B by 0, B overtakes C by 3/5 and finally D overtakes C
by 1.

and also

fdistduck (A, B) = 0.333
(1.79)

fdistduck (A1, B1) = 0.5774

which shows that these distances are more sensitive to the shapes of the fuzzy numbers.
With the introduced distance, one can obtain a consistent ordering for fuzzy num-

bers that is adequate for most practical applications. Given any distance between fuzzy
numbers, we can give the following definition of equivalence between fuzzy numbers.

DEFINITION 1.16
(Fuzzy equivalence) Given two fuzzy numbers Ã and B̃, a real number ε > 0 and a
fuzzy distance d : F(R)2 → R, then Ã and B̃ are ε-equivalent if d( Ã, B̃) < ε, that
is,

Ã =ε B̃ ⇐⇒ d( Ã, B̃) < ε (1.80)

In order to represent the inequality relationship, it is convenient to introduce the
definition of overtaking between fuzzy numbers. As usual, we start with overtaking
between intervals.

DEFINITION 1.17
(Overtaking between intervals) The overtaking of interval A with respect to interval
B is the real function σ : I (R)2 → R defined as:

σ (A, B) =

⎧⎪⎨⎪⎩
0 Au ≤ Bl

Au−Bl

width(A) Au > Bl ∧ Al ≤ Bl

1 Al > Bl

(1.81)

where width(A) is the width of interval A.

Figure 1.22 clarifies the above definition. The overtaking of A with respect to B
is 0, and of B with respect to C is 3/5 while of D with respect to C is 1. The program
MATLAB intover.m included in the CD that accompanies this book computes the
above defined overtaking between two intervals.
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FIGURE 1.22 Triangular fuzzy numbers (−4, −2.2, −1), (−1, 0.5, 2), (0, 2, 4), and (4.5,
5.5,6.5).

From this definition, one can define the δ-overtaking operator as:

DEFINITION 1.18
(δ-overtaking operator between intervals) Given two intervals A, B and a real number
δ ∈ [0, 1], then A overtakes B by δ if σ (A, B) ≥ δ, that is,

A ≥δ B ⇐⇒ σ (A, B) ≥ δ (1.82)

Likewise we can define the overtaking between fuzzy numbers as follows:

DEFINITION 1.19
(Overtaking between fuzzy numbers) One defines overtaking of the fuzzy number Ã
with respect to the fuzzy number B̃ as the real function σ : F(R)2 → R defined as

σ ( Ã, B̃) =
∫ 1

0
σ ([ Ã]α, [B̃]α)w(α) dα (1.83)

where for w : [0, 1] → R, one assumes the definitions in Equation (1.75).

Figure 1.21 clarifies the above definition. The overtaking of A with respect to B
is 0, and of B with respect to C is about 0.2430 while of D with respect to C is 1. The
program MATLAB over.m included in the CD that accompanies this book computes
the above-defined overtaking for two fuzzy numbers given by the matrices of their
α-levels.

Likewise one can define the operator of δ-overtaking between fuzzy numbers as
follows:
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FIGURE 1.23 Histogram of the hourly PM10 data detected by a sensor for a whole year.

DEFINITION 1.20
(δ-overtaking operator between fuzzy numbers) Given Ã, B̃ ∈ F(R) and a real num-
ber δ ∈ [0, 1], then Ã overtakes B̃ by δ if σ ( Ã, B̃) ≥ δ, that is,

Ã ≥δ B̃ ⇐⇒ σ ( Ã, B̃) ≥ δ (1.84)

1.2.3.5 Comparison of Statistical and Fuzzy Descriptions

A comparison with a statistical approach has been made as follows: We consider the
yearly pollution data previously introduced (see Figure 1.16). From an analysis of the
data histogram, it is seen that they are reasonably well represented by a Gamma(a, b)
distribution (Figure 1.23).

Having computed the mean and standard deviation of the data (see Table 1.1),
one has proceeded to fit such a distribution to a Gamma(a, b) distribution.

A possible way to compare the fuzzy number membership function with the statis-
tical distribution is to calculate the probability of observing values of the distribution
greater than t and the overtaking of the fuzzy number representing the data with re-
spect to the threshold t of a typical quantity, for example, δ = 0.66. Table 1.2 suggests
a possible comparison.

TABLE 1.1
Statistical Parameters Obtained from the Data Detected
by the Environmental Sensor

No. Elements Average Standard Deviation Minimum Median Maximum

7314 25.10 29.63 0.1 18.3 954.2
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TABLE 1.2
Relationship between Thresholds and
Probability for the Chosen Distribution
Model and Comparison with the
Fuzzy-Overtaking Method

Threshold t P(X ≥ t) Z̃ ≥0.66 t

1.27 0.9 True
3.45 0.8 True
6.37 0.7 True

10.10 0.6 True
14.82 0.5 True
20.93 0.4 False
29.16 0.3 False
41.22 0.2 False
62.64 0.1 False

The third column in the table considers the comparison between fuzzy number
representing the data Z̃ overtaking the threshold t by δ = 0.66 and the probability
of the random variable with the  distribution function to be greater than t . Notice
the precise correspondence between probabilities and truth values. We are confident
therefore that the rough membership function construction matches reasonably the
statistical distribution function. However, a detailed statistical data analysis is required
in order to guess the distribution function whereas the fuzzy number membership
construction does not require any prior data analysis.

We remark that the mean interval of the median-reconstructed fuzzy number is
[5.8719, 40.7382].

1.2.3.6 Arithmetic Operations. Examples

Let us consider the function of two variables g : X × Y → Z and let A, B be fuzzy
subsets of X, Y , respectively. Then, on the basis of the extension principle, one has

μg(A,B)(z) = sup[μA(x), μB(y)] (1.85)

where z = g(x, y) and in terms of α-levels, g(A, B)α = g(Aα, Bα). Therefore, the
result is the same as by applying the interval arithmetic extension of the function g.

The MATLAB m-files sum.m, product.m, difference.m, and quotient.m given
found in the CD that accompanies this book perform the four basic operations.

As an example, we consider the operations with triangular fuzzy numbers. Let
x = atrian(1, 2, 3) and y = atrian(2, 3, 4) be two triangular fuzzy numbers (in this
case, they are centered at m = 2 and m = 3, respectively, and could be interpreted as
“almost 2” and “almost 3”) given in Figures 1.17 and 1.18. Their sum is then given
by the fuzzy number z = x + y in terms of α-levels, represented in Figure 1.24.

Likewise we have for the product of the previous two fuzzy numbers z = x ∗ y,
represented in Figure 1.25.
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FIGURE 1.24 Sum of the TFN (triangular fuzzy numbers) [1, 2, 3] and [2, 3, 4].

For the inverse operations, we have the difference z = y − x , represented in
Figure 1.26 and for their division z = y/x (x �= 0), represented in Figure 1.27.

Also the elementary functions xα , exp(x), log(x), and
√

x of MATLAB are over-
loaded for treating fuzzy numbers as a list of intervals. Figures 1.28, 1.29, 1.30, and

1.2.3.7 The Malthus Law Revisited

As an application, we consider the same discrete Malthus law, which was considered
for the interval case. We represent the initial value as a triangular fuzzy number
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FIGURE 1.25 Product of the TFN (triangular fuzzy numbers) [1, 2, 3] and [2, 3, 4].
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FIGURE 1.26 Difference of the TFN (triangular fuzzy numbers) [2, 3, 4] and [1, 2, 3].

X0 comprised between 3 and 6 with peak value 4.5 and the growth constant (see
Figure 1.32) λ as a triangular fuzzy number comprised between 0.95 and 1.05 with
peak value 1.

With the MATLAB program fmalthus.m, we obtain, after 20 iterations, Fig-
ure 1.33.

1.2.4 FUNCTIONS OF FUZZY NUMBERS

Let us consider a function f : X ⇒ Y assumed to be bounded and continuous, with
X = X1 × . . . × Xn .
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FIGURE 1.27 Division of the TFN (triangular fuzzy numbers) [2, 3, 4] and [1, 2, 3].
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FIGURE 1.28 Square of the TFN [1, 2, 3].

Let A1, A2, . . . , An be fuzzy sets belonging to X1, . . . , Xn , respectively. If the
fuzzy sets A1, A2, . . . , An are normal and convex, and the function f has some
appropriate properties, then also the set B, the range in Y of the function f , will be
normal and convex, and therefore a fuzzy number.

For a general α-level, the problem is to compute the real interval:

Bα = f (A1α, . . . , Anα) = [yL , y R] (1.86)

for each level α in [0, 1], where yL , y R represent the global minimum and maximum
of f in the space

Xα = X1α × · · · × Xnα (1.87)
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FIGURE 1.29 Square root of the TFN [1, 2, 3].
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FIGURE 1.30 Exponential of the TFN [1, 2, 3].

It is obvious that the number of α-levels used in the discretization of the interval
[0, 1] affects the accuracy of the approximation of the resulting fuzzy number.

From the above properties, it is apparent that the calculation of a fuzzy function can
be reduced to the calculation of an interval function for the given number of α-levels.
Therefore, the same problems of redundancy arise as with the interval arithmetic.
These could be avoided if one utilizes the (computationally costly) global optimization
algorithms. One of the most popular algorithms is the extension to the fuzzy case (i.e.,
for each α-level) of the interval weighted average, IWA, algorithm, which in this case
is called fuzzy weighted algorithm, FWA in short. In order to be applicable, as in the
interval case, it requires the function f to be monotonic in each argument.
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FIGURE 1.31 Logarithm of the TFN [1, 2, 3].
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FIGURE 1.32 Initial value for X0 in the discrete Malthus law.
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FIGURE 1.33 Malthus law with fuzzy numbers; X0 = TFN(3, 4.5, 6), λ = TFN(0.95, 1,

1.05), after 20 iterations.
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Other cases are covered by the algorithm of Yang et al. [101], which depends on
the structure of the domain X of the function f : X ⇒ Y .

The domains are classified as uniform (or quasi-uniform) and nonuniform [101]:

X is a uniform space if Xα has no subspaces in which all the first partial
derivatives of the function (assumed to be differentiable) vanish. In this
case, one can apply the IWA algorithm to each α-level, that is, the FWA
algorithm.

X is quasi-uniform if Xα has subspaces where the first partial derivatives of the
function, ∂i f , vanish but ∂i f do not depend on the variable xi , i = 1, . . . , n.
Also in this case, the function f takes its extremal values at the corner
points. Therefore, also in this case, one can apply the FWA algorithm as
follows. One evaluates the n partial derivatives ∂i f , and for each variable,
one chooses x L

i if ∂i f > 0, otherwise x R
i as a basis for evaluating yL . In

this way, one obtains yL and y R, respectively minimum and maximum of the
function on the chosen xi . Notice that it is sufficient to determine the sign
of the derivatives only at the lowest α-level because then, the space being
quasi-uniform, the sign of each derivative will remain the same at all the
other α-levels.

X is a nonuniform space if the function can have extremal points within
the domain. The algorithm then finds a list of points, called poles, which
are candidates to be the extremal points of the function. In the end, it is
equivalent to solving a nonlinear optimization problem.

All these algorithms can be easily parallelized on the basis of assigning the com-
putation at each α-level to a different processor [19].

1.3 SEMANTICS OF INTERVAL, FUZZY,
AND POSSIBILISTIC ENTITIES

There is often confusion about the differences between fuzzy and possibilistic entities.
Fuzzy and possibilistic entities have a different development from first principles.
Fuzzy set and possibility theory were defined and developed by L. Zadeh, beginning
with [103] and subsequently [104], [105], [106], [107], and [108].

Associated with fuzzy sets, measures and membership functions are two other
types of measures and ensuing distributions — possibility and necessity measures
and distributions. Whereas fuzzy measures quantify the uncertainty of gradualness,
possibility and necessity measures are ways to quantify uncertainty of lack of informa-
tion. Books and articles are available that develop possibility theory (see, for example,
[31], [27], [96], [62]). What is of interest here for fuzzy and possibilistic mathemat-
ical analysis that is developed, is what is called quantitative possibility theory [30].
In particular, possibility theory may be derived in any one of the following ways:

1. via normalized fuzzy sets (see [105], [106], and [107] ),
2. axiomatically from fuzzy measures g that satisfy g(A∪B) = max{g(A), g(B)}

(see [32] and [63], for example),
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3. via belief functions of Dempster-Shafer theory whose focal elements are
normalized and nested (see [62]), or

4. by construction via nested sets with normalization, for example, nested
α-level sets (see [58]).

Of special interest are the third and fourth approaches since they lead directly into a
quantitative possibility theory, though the first points the way and lays the foundation.
It will be assumed that the possibilistic/necessity measures and distributions that are
used herein are constructed according to third or fourth approaches.

Fuzzy and possibilistic entities have different meanings, semantics. Fuzzy and
possibility uncertainty model different entities and the associated solution methods
are different as will be seen. Fuzzy entities, as is well known, are sets with nonsharp
boundaries in which there is a transition between elements that belong and elements
that do not belong to the set. Possibilistic entities are those that exist but the evi-
dence associated with whether or not a particular element is that entity is incomplete,
missing, or not available. Quantitative possibility distributions constructed from first
principles require nested sets (see, for example, [58]) and normalization. Possibility
distributions are normalized since their semantics are tied to existent entities. Nor-
malization is not required of fuzzy membership functions. Thus, not all fuzzy sets can
give rise to possibility distributions. That is, even though Zadeh’s original develop-
ment of possibility theory was derived from fuzzy sets, possibility theory is different
from fuzzy set theory.

Possibilistic distributions (of fuzzy numbers, for example) encapsulate the best
estimate of the possible values of an entity, given the available information. Fuzzy
membership function values (of fuzzy numbers) describe the degree to which an
entity is that value. Note that if the possibility distribution at x is 1, this signifies that
the best evidence available indicates x is the entity that the distribution describes.
On the other hand, if the fuzzy membership function value at x is 1, x is certainly
the value of the entity that the fuzzy set describes. Thus, the nature of mathematical
analysis in the presence of fuzzy and possibilistic uncertainties is quite different in
semantics.

The most general form of possibility theory sets up an order among variables with
respect to their being an entity. The magnitudes associated with this ordering have no
significance other than an indication of order. Thus, if possibility A(x ) = 0 .75 and
possibility A(y) = 0 .25 , all that can be said is that the evidence is stronger that x is
the entity A than y. One cannot conclude that x is three times more likely to be A
than y is. This means that for mathematical analysis, if the possibility distributions
were constructed using the most general assumptions, comparisons among several
distributions are restricted (to merely order). For the most general possibility theory,
setting the possibility level to be greater than or equal to a certain fixed value α,
0 ≤ α ≤ 1, does not have the same meaning as setting a probability to be at least
α. In the former case, the α has no inherent meaning (other than if one has a β >

α, one prefers the decision that generated β to that which generated α) whereas
for the case of probability or quantitative possibility, the value of α is meaningful.
The third and fourth derivations of possibility theory lead to quantitative possibility
theory.
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An alternative approach to possibility theory is as a system of upper and lower
distributions bounding a given, yet unknown probability. That is, given a measurable
set A, Nec(A) ≤ prob(A) ≤ Pos(A) bounds the unknown probability of the event
A so that Pos(A) ≤ α guarantees that prob(A) ≤ α. If the possibilistic entities
are constructed from this perspective, then their α-levels are numerically meaningful
beyond simply being an ordering. This is the method developed in [58].

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

September 21, 2007 11:13 6395 6395˙Book

2 Interpolation with Data
Containing Interval,
Fuzzy, and Possibilistic
Uncertainty

Marcello Anile and Salvatore Spinella

CONTENTS

2.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.1 Modeling Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.2 Real B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.3 Interval B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.4 Fuzzy B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Constructing Fuzzy B-Spline Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Fuzzy Kriging and Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1 GENERAL DEFINITIONS

2.1.1 MODELING OBSERVATIONS

Let O be a sequence of n observational data in a domain X ⊆ R2 in the form

O = {(x1, y1, Z1), . . . , (xi , yi , Zi ), . . . , (xn, yn, Zn)} (2.1)

with
(xi , yi ) ∈ X Zi = {zi,1, . . . , zi,mi } (2.2)

where zi, j ∈ R represents the j th observation at the point (xi , yi ).
As previously discussed in the introduction, a first approach to data reduction

is to model the observation set Zi with the interval Ii defined by the minimum and
maximum values of the observations at the point (xi , yi ) [40]:

IO = {(x1, y1, I1), . . . , (xi , yi , Ii ), . . . , (xn, yn, In)} (2.3)

where Ii is the interval

I l
i = min

1≤ j≤mi

zi, j I u
i = max

1≤ j≤mi

zi, j

47
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For some applications, this reduction is too coarse because it does not take into
account the distribution and the quality of the data Zi at (xi , yi ). If the data set
Zi comprises a large number of observations zi, j , a representation of Zi in terms
of a probability density can be achieved and then a stochastic model can be fitted
to the data in the form of a stochastic surface. However, in general, this approach
requires special assumptions on the joint probability density of the data distribution,
which are difficult to check from the data themselves. Furthermore, the interrogation
of the stochastic surface model can be done, in general, only through Monte Carlo
simulation, which is both noisy and computationally very expensive. Finally, this
approach cannot be pursued when the data set contains only few data and the data
quality is judged subjectively from the observer.

For all these reasons, another approach has been introduced [3, 72] that represents
the datum Zi with an appropriately constructed fuzzy number that reflects both the
data distribution and their quality. Here, fuzzy numbers [60] are defined as maps that
associate to each presumption level α ∈ [0, 1] a real interval Aα such that

α′′ > α′ ⇒ Aα′′ ⊆ Aα′ (2.4)

and the latter property is formally called convex hull property. A regularity property
such as upper semicontinuity is usually also invoked. The core of a fuzzy number is
the set of values with membership equal to 1. When the core has only one element, the
latter is called modal value. The support of the fuzzy number is an interval where the
membership function is positive. In this representation, fuzzy numbers are viewed as
the natural generalization of intervals and intervals can be viewed as fuzzy numbers
whose core equals its support.

By utilizing one of several methods for constructing fuzzy set membership func-
tions ([61], [48]) from Zi , one can represent the n observational data as

FO = {(x1, y1, z̃1), . . . , (xi , yi , z̃i ), . . . , (xn, yn, z̃n)} (2.5)

where z̃i ∈ F(R) is the fuzzy number representing the observations at the point
(xi , yi ).

Arithmetic operations among reals are extended to operations among fuzzy
numbers by utilizing first the extension principle of interval arithmetic [54].

DEFINITION 2.1
(Operation ⊗ between intervals). Given two intervals [a, b] and [c, d], the operation
[a, b] ⊗ [c, d] is defined formally by

[a, b] ⊗ [c, d] = min
[e, f ]

({x ⊗ y|x ∈ [a, b], y ∈ [c, d]} ⊆ [e, f ]) (2.6)

Likewise, the operations among fuzzy numbers are introduced by the following
definition ([60], [2]).

DEFINITION 2.2
(Operation ⊗ between fuzzy numbers). The operation F1 ⊗ F2 associates with the
fuzzy numbers F1 = {Aα}α∈[0,1] and F2 = {Bα}α∈[0,1]; the fuzzy number F =
{Cα}α∈[0,1] such that ∀α ∈ [0, 1] one has Cα = Aα ⊗ Bα
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Fuzzy arithmetic, which is based on interval arithmetic, is conservative with
respect to the uncertainty of the data in the sense that, by utilizing the min-max
operations, it yields under/overestimation for each α-cut.

2.1.2 REAL B-SPLINES

For an introduction to the theory of B-splines, see the book by Lancaster and Saskaulas
f (t) :

[t0, tm] → R of degree at most h − 1. The sequence of knots of a B-spline is a
nondecreasing sequence of real numbers: (t0, . . . , ti , . . . , tm). Let k = m − (2h − 1)
where h is the order of the B-spline. The knots of the subsequence (th−1,. . . , tk+h−1)
are the inner knots of the B-spline. f (t) is C∞ in [t0, tm], but at a knot of multiplicity
p, f (t) is only Ch−p−1. A B-spline of order h on a sequence of m = k +2h −1 knots
is a linear combination

f (t) =
k+h−1∑

i = 0

ci Bi,h(t) (2.7)

where ci are the control coefficients, or control points, and Bi,h(t) are the basis func-
tions of the B-splines of order h defined recursively by [24]

Bi,1(t) =
{

1 if ti ≤ t ≤ ti+1

0 otherwise

Bi,h(t) = t − ti
ti+h−1 − ti

Bi,h−1(t) + ti+h − t

ti+h − ti+1
Bi+1,h−1(t) for h > 1 (2.8)

A real B-spline surface is a tensor product of B-splines defined on a rectangular
domain of M × N control points {ci, j }i=0,...,M−1, j=0,...,N−1:

f (u, v) =
M−1∑
i = 0

N−1∑
j = 0

ci, j Bi,h(u)B j,h(v) (2.9)

The basis functions of real B-splines are all positive and guarantee, among other
things, the convex hull property, that is, that f (t) is contained, for all t in the convex
envelope of the control points.

2.1.3 INTERVAL B-SPLINES

The concept of real B-spline can be easily extended to the space I (R) of real intervals
[40].

DEFINITION 2.3
(Interval B-spline). An interval B-spline F(t) relative to the knot sequence
(t0, t1, . . . , tm), m = k + 2(h − 1), is a function of the kind F(t) : R → I (R)
defined as

F(t) =
h+h−1∑

i = 0

Ii Bi,h(t) (2.10)
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where the control coefficients Ii are real intervals and Bi,h(t) real B-spline basis
functions.

The generalization in 2D of an interval B-spline relative to a rectangular grid of
M × N knots is

f (u, v) =
M−1∑
i = 0

N−1∑
j = 0

Ii, j Bi,h(u)B j,h(v) (2.11)

The construction of an interval B-spline will be considered under the more general
case of a fuzzy B-spline, since intervals can be considered as a special case of fuzzy
numbers.

2.1.4 FUZZY B-SPLINES

Similar to what is done for intervals in [40], we introduce fuzzy B-spline as follows
[3]:

DEFINITION 2.4
(B-spline fuzzy) A fuzzy B-spline F(t) relative to the knot sequence (t0, t1, . . . , tm),
m = k + 2(h − 1) is a function of the kind F(t) : R → F(R) defined as

F(t) =
h+h−1∑

i = 0

Fi Bi,h(t) (2.12)

where the control coefficients Fi are fuzzy numbers and Bi,h(t) real B-spline basis
functions.

Notice that Definition 2.4 is consistent with the previous definitions and more
precisely for any t , F(t) is a fuzzy number, that is, it verifies the convex hull property
given by Equation (2.4):

α′′ > α′ ⇒ F(t)α′′ ⊆ F(t)α′

because the B-spline basis functions are nonnegative.
The generalization in 2D of a fuzzy B-spline relative to a rectangular grid of

M × N knots is

f (u, v) =
M−1∑
i = 0

N−1∑
j = 0

Fi, j Bi,h(u)B j,h(v) (2.13)

with the same properties as described above. Similar considerations in the more
general framework of fuzzy interpolation can be found in [71].

2.2 CONSTRUCTING FUZZY B-SPLINE SURFACES

Let us consider a sequence of fuzzy numbers representing the observations in Equa-
tion (2.5). If a fuzzy B-spline F(u, v) on a rectangular grid G ⊇ X of M × N knots
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approximates FO given by Equation (2.5) then

∀α ∈ [0, 1] [̃zi ]α ⊆ [F(xi , yi )]α i = 1, . . . , n (2.14)

and furthermore, one must also have∫
G

M−1∑
i = 0

N−1∑
j = 0

([
Fu

i, j

]
α

− [
Fl

i, j

]
α

)
Bi,h(u)B j,h(v) dudv

≤
∫

G

M−1∑
i = 0

N−1∑
j = 0

([
Y u

i, j

]
α

− [
Y l

i, j

]
α

)
Bi,h(u)B j,h(v) dudv

∀{Yi, j }i=0,...,N−1, j=0,...,M−1 ∈ F(R) ∀α ∈ [0, 1] (2.15)

where [Fl]α and [Fu]α indicate, respectively, the lower and upper bounds of the
interval representing the fuzzy number α-level. More precisely, for each presump-
tion α-level, the volume encompassed by the upper and lower surfaces of the fuzzy
B-spline is the smallest. These definitions are the generalization to the fuzzy case of
the corresponding interval ones [40].

Notice that the integral in a rectangular domain of a real B-spline is the following
linear expression:∫

D

M−1∑
i = 0

N−1∑
j = 0

Pi, j Bi,h(u)B j,h(v) dudv =
M−1∑
i = 0

N−1∑
j = 0

Pi, j
(ti+h − ti )(s j+h − s j )

h2
(2.16)

where obviously {(ti , s j )}i=0,...,M+h−1, j=0,...,N+h−1 are the grid knots.
Therefore, given the set FO of observations in Equation (2.5) and a finite number

P+1 of presumption levels α0 > α1 > · · · > αP , the construction of a fuzzy B-spline
requires the solution of the following constrained optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑P

k=0

∑M−1
i = 0

∑N−1
j = 0

([
Fu

i, j

]
αk

− [
Fl

i, j

]
αk

) (ti+h−ti )(s j+h−s j )
h2[

Fl
i, j

]
α0

≤ [
Fl

i, j

]
α1

≤ · · · ≤ [
Fl

i, j

]
αP

≤ [
Fu

i, j

]
αP

≤ · · ·
· · · ≤ [

Fu
i, j

]
α1

≤ [
Fu

i, j

]
α0

i = 0 . . . M − 1 j = 0 . . . N − 1∑M−1
i = 0

∑N−1
j = 0

[
Fu

i, j

]
αk

Bi,h(xr )B j,h(yr ) ≥ [
zu

r

]
αk

r = 1, . . . , n k = 0, . . . , P∑M−1
i = 0

∑N−1
j = 0

[
Fl

i, j

]
αk

Bi,h(xr )B j,h(yr ) ≤ [
zl

r

]
αk

r = 1, . . . , n k = 0, . . . , P

(2.17)

With the variable transformation

Fl
i, j = F

l
i, j − F

l

i, j Fu
i, j = F

u
i, j − F

u

i, j

and the further constraints

F
l
i, j ≥ 0 F

l

i, j ≥ 0 F
u
i, j ≥ 0 F

u

i, j ≥ 0

such a problem can be treated as a linear programming problem.
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2.2.1 REMARKS

For the problem in Equation (2.17), one notices that

1. The objective function minimizes the uncertainty of the representation.
2. The first group of constraints represents the convex hull property.
3. The second group of constraints is a consistency requirement for the upper

bounds of the intervals to be greater than the upper bounds of the data at
the data points.

4. The third group of constraints is a consistency requirement for the lower
bounds of the intervals to be lower than the lower bounds of the data at the
data points.

By considering a grid of size M × N , T fuzzy observations, and P presumption
levels, the dimensions of the problem are of 4M N P variables and 2(P −1)M N +2T
constraints [70].

2.3 FUZZY KRIGING AND BOUNDARY CONDITION

In the previous paragraph, we expounded the method for constructing a fuzzy surface
approximating, in a well defined way, the fuzzy numbers representing the data sets.
The quality of this approximation will deteriorate the farther one is from the sites of
the data sets. Therefore, one expects the constructed approximation not to be very
satisfactory at the border of the domain within which the data sites are comprised.
To remedy such drawbacks, one has to introduce further information regarding the
decay of the quantity of interest away from the domain.

A simple approach would be to assume that the quantity of interest decays to zero
outside the boundary but this is hardly justifiable. However, a better treatment would be
to construct fictitious observation data just outside the boundary by utilizing statistical
kriging. The latter approach is more realistic because, in some sense, it amounts to
an extrapolation driven by the data.

By ordinary spatially distributed data and with stationary hypothesis of the dis-
tribution, the kriging combines the available data by weights in order to construct
an unbiased estimator with minimum variance. Likewise, such approach is extended
to the fuzzy case [25]. Given N spatially distributed fuzzy data {(x1, y1, z̃1), . . . ,
(xi , yi , z̃i ), . . . , (xn, yn, z̃n)}, one looks for an estimator constructed by a linear com-
bination of weights λi to evaluate the distribution at the point (x, y) like

Z̃∗ =
N∑

i=1

λi z̃i (2.18)

Notice that the above interprets fuzzy data z̃i and estimator Z̃∗ like random fuzzy
number. In order to construct this estimator, the following hypothesis must be satisfied

(K1) E(Z̃∗) = E(Z̃ ) = E(Z̃ (x + h, y + k) = r

(K2) Ed(Z̃∗, Z̃ )2 must be minimized

(K3) λi ≥ 0, i = 1, . . . , N

(2.19)
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The first condition (K1) implies
∑N

i=1 λi = 1; instead, the last one (K3) guarantees
the estimator stands in the cone of random fuzzy number generated by the data.

It can be proved that

Ed(Z̃∗, Z̃ )2 = ∑N
i, j=1 λiλ j

∑
α Cα(xi , yi , x j , y j )

−2
∑N

i=1 λi
∑

α Cα(xi , yi , x, y)

+ ∑
α Cα(x, y, x, y)

(2.20)

where Cα is a positive defined function that represents a covariance.
The minimization of such function together to the hypotheses (K1) and (K3) leads

to a constrained minimization problem. It is solvable formulating everything in terms
of Kuhn-Tucker conditions by the following theorem.

THEOREM 2.1
Let Z̃∗ be an estimator for Z̃ of the form Z̃∗ = ∑N

i=1 λi z̃i . Suppose the conditions
(K1) and (K3) are satisfied and the matrix defined by �i j = ∑

α Cα(xi , yi , x j , y j ),
i, j = 1, . . . , N is strictly positive defined. Then there exists a unique linear unbiased
estimator Z̃∗ satisfying the (K2) condition. Moreover, the weight satisfies the following
system ∑N

i=1 �i jλi j − L j − μ = ∑
α Cα(xi , yi , x, y)∑N

i=1 λi = 1∑N
i=1 Liλi = 0

Li , λi ≥ 0, i = 1, . . . , N

(2.21)

The residual is

σ 2 =
∑

α

Cα(x, y, x, y) + μ −
N∑

i=1

λi

∑
α

Cα(xi , yi , x, y) (2.22)

The above problem defines the weights λi and it can be solved using a method to
manipulate the constraints in Equation (2.21) like the active set method [42].
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3.1 GEOGRAPHICAL INFORMATION SYSTEMS

3.1.1 INTRODUCTION

Geographical information system (GIS) is an information system where the geograph-
ical locations of the phenomena are stored, enabling the retrieval and processing of
geographical information.

3.1.1.1 Data Models

Traditionally, the geographical information is modeled considering the object data
model or the field data model. The phenomena that exist only on a limited region of
the geographical space are represented by objects whose position in the geographical
space represents their location. Depending on the type of phenomena to be repre-
sented, they may be modeled as points, lines, or areas (see Figure 3.1). This data
model is known as the object data model and is appropriate to represent, for example,
roads, administrative regions, or crops.

When the phenomenon to be represented exists in all geographical space, and what
is to be represented is its variation over the geographical space, the phenomenon is
modeled using a surface z = f (x, y), where the coordinates x and y represent the

55
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D4D3

D2

D1

BA

C

FIGURE 3.1 Representation of phenomena using the object data model. Objects A, D1, D2,
D3, and D4 represent areal entities; object B represents a linear entity and object C a point
entity.

geographical planimetric position and z the value of the phenomenon at that location
(see Figure 3.2). This data model is known as the field data model and is appropriate
to represent phenomena such as altitude, atmospheric pressure, or rainfall.

In addition to these traditional data models, a hybrid model may be considered,
based on the use of fuzzy geographical entities (FGEs). This approach enables the
representation of objects with surfaces, gathering therefore the important character-
istics of both traditional data models. It may be used, for example, to represent GEs
with ill-defined boundaries or whose position varies continuously in the geographical
space. Further details about the construction and processing of FGEs are given in
chapter 4.

3.1.1.2 Data Structures

For the digital representation of the phenomena, two data structures are traditionally
considered: the vector data structure and the raster data structure. The vector data

y

x

z

FIGURE 3.2 Representation of a phenomenon using the surface data model. The coordinates
x and y represent the geographical position and coordinate z the value and concentration of
amplitude of the phenomenon.
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structure uses primitives as points, lines, and areas, and the geographical space is
considered continuous. A point is represented by its coordinates (x, y); a line is
represented by a sequence of points, which are usually connected by straight segments,
or, less frequently, by curves; and an area is represented by a closed line corresponding
to its boundary. The vector data structure is usually associated to the representation
of objects, but it can also be used to represent surfaces, using, for example, contours,
profiles, or a tessellation of regions such as the Delaunay triangles or the Voronoi
polygons (see Figure 3.3).

The raster data structure is characterized by a grid of cells, usually square, known
as pixels. Since only a value of each phenomenon is associated to each cell, in the raster

(xR7, yR7)

(xS4, yS4)

(xS5, yS5)

(xS6, yS6)

(xS7, yS7)

(xS1, yS1)

(xR1, yR1)

(xR2, yR2)

(xR3, yR3)

(xS2, yS2)

(xS3, yS3)

(xR6, yR6)

(xR5, yR5)

(xR4, yR4)

(xP, yP)

S
R

(a) (b)

(c) (d)

P

FIGURE 3.3 (a) Representation of entities using the vector data structure. Representation of
surfaces using the vector data structure: with (b) contours; (c) Delaunay triangles; (d) Voronoi
polygons.
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(a) (b)

FIGURE 3.4 (a) A surface represented with the raster data structure. (b) Entities (objects)
represented with the raster data structure.

data structure, the geographical space is considered discrete. This type of structure
adapts well to the representation of surfaces, even though its resolution is conditioned
to the dimension of the cells. The raster data structure may also be used to represent
objects. Each object is represented explicitly by a set of contiguous cells, correspond-
ing to the same attribute value, such as soil type or slope classes (see Figure 3.4).

A tessellation is a representation where the geographical space is partitioned into
a finite number of contiguous elementary regions, which may be regular or irregular.
To each elementary region, a value of the phenomenon to be represented is associated.
The raster data structure is a particular case of a tessellation.

3.1.1.3 Analysis in GIS

An important characteristic of GISs is their capability of incorporating functions
to perform operations with the stored geographical information, providing analysis
capabilities. A great variety of operations may be executed, which can be grouped
into two types: operations with attributes and spatial operations [18].

The operations with attributes involve only the nonspatial attributes of the stored
geographical information. Examples of these operations are querying the database
about the owner or soil type of a parcel identified by the parcel number. These queries
do not involve information about the spatial location of the parcel. The spatial opera-
tions use the data about the geographical location of the information, and the analysis
performed with these operations is called spatial analysis. Among this type of oper-
ation are, for example, the computation of areas or the identification of the parcels
located within 500 meters of a road.

Spatial analysis often requires the consecutive use of several operators, which may
process the information initially stored in the GIS or information generated through
the previous application of other operators. Some operators just retrieve information
from the GIS, such as the identification of the parcels with certain characteristics,
although many operators generate new attributes and new geographical information
([6], [18], [93]).
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3.1.2 THE OBJECT DATA MODEL — GEOGRAPHICAL ENTITIES

In object-based GISs, the geographical information is represented by GEs. These
entities are characterized by an attribute and a spatial location. The attribute specifies
the phenomenon represented by the entity, such as building, forest, parcel, or more
complex attributes, such as rural region with a slope between 10 and 20 percent, good
solar exposure, and high levels of humidity. The spatial location of a geographical
entity is specified by a point, a line, or a region and may be represented either in the
vector or in the raster data structure.

A group of GEs characterized by the same attribute is a class of GEs, or simply a
class.

Construction of GE

Geographical entities may be built using several methods and with several types of
data. The sources of geographical data may be grouped into primary and secondary
[57]. The primary sources correspond to the cases where the data are collected directly
from the geographical space, such as with topographic or photogrammetric surveys.
The secondary methods correspond to the use of information already collected and
processed, eventually for other aims, which may be in digital or analog format.

Basically two approaches may be considered to construct GEs:

Attribute-location approach
This approach consists in identifying the attribute that characterizes the geo-

graphical entity, and determining its geographical location, that is, identify-
ing the regions of the geographical space where that attribute can be found.
One way to determine the geographical location is to identify the attribute
in the terrain, aerial photos, remote sensing images, or even paper maps, and
determine the position of the point, line, area, pixels, or cells correspond-
ing to that attribute. The information may be collected in the vector data
structure, as in the case of topographic surveys, vectorization of paper maps,
or aerial photos, or in the raster data structure, for example, when paper
maps are digitized to the raster data structure using a scanner. However, in
most cases, the construction of GE in the raster data structure results from
processing of information already in the raster data structure, such as the
classification of remote sensing images.

This last case may be included in a more vast procedure, named here classi-
fication of tessellations, which consists in classifying tessellations represent-
ing one or several phenomena or attributes, named base attributes, generating
new attributes, named derived attributes. The tessellations are formed by el-
ementary regions ri , which may be cells in a raster data structure or any other
regions, such as, for example, irregular polygons corresponding to classes
of slope. Each derived attribute corresponds to a set of values of the base
attribute and characterizes a class of GEs. For example, the attribute “forest”
may correspond to a set of levels of radiance in a multispectral image ob-
tained by sensors installed in artificial satellites, or the attribute “mountain”
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{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

A B C
Derived

attributes

Values of the base attributes

FIGURE 3.5 Correspondence between the values of the base attributes and the values of the
derived attributes.

to a set of values of terrain altitude. In these cases, the GEs are obtained ag-
gregating contiguous elementary regions to which the same derived attribute
was assigned during the classification. For example, in Figure 3.6, the derived
attributes were defined as a function of the base attributes, where derived
attribute A corresponds to the interval [1, 3] of the base attributes, attribute
B to the interval [4, 7], and attribute C to the interval [8, 10] (see Figure 3.5).

Location-attribute approach
The reverse of the previous approach may also be used to build GE. In this case

homogeneous regions are identified in the geographical space. When their
position is determined, the attribute characterizing them will be identified.
The location-attribute approach may also be used either with the vector data
structure or the raster data structure. In the former, regions are identified,
for example, in aerial photos or high resolution remote sensing images, and
the subsequent identification of the corresponding phenomena is done. In
the raster data structure, the classification of remote sensing images with the
unsupervised classification method is an example of this approach.

3.1.3 THE FIELD DATA MODEL

3.1.3.1 The Field Data Model

The field-based approach conceptualizes the geographic space as a collection of fields.
Each field defines the spatial variation of an attribute of interest as a mathematical

(a) Base attribute (b) Derived attribute (c) Geographical entities

corresponding to the

derived attributes

A C

B

FIGURE 3.6 Geographical entities obtained aggregating contiguous cells to which the same
derived attribute was assigned during the classification of the base attribute.
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function Z = f (x, y). This function is defined on a given region of the geographic
space and assigns to every element of that region a corresponding field attribute
value from the attribute domain. The field model usually assumes a partition of the
geographic space into a finite tessellation of spatial entities. The tessellation can be
regular, such as a grid of squares, or irregular, such as a network of triangles or Voronoi
polygons. The values of the attribute domain are commonly classified using four
scales of measurement: nominal, ordinal, interval, and ratio. Categorical or qualitative
attributes are often expressed in nominal and ordinal scales. Quantitative attributes
are reported in interval or ratio scales. The fields may be continuous, differentiable,
discrete, and isotropic or anisotropic, with positive or negative autocorrelation. The
basic mathematical model Z = f (x, y) can be generalized to allow tridimensional
spatial coordinates x = (x, y, z), time parameter t , and multivalued fields Z =
(Z1, Z2, ..., Zn), taking the form Z = f ( x, t).

3.1.3.2 Map Algebra Operations on Fields

Map algebra describes a set of field operations that are typically classified into local,
focal, and zonal types [93]. These operations take as input one or more fields and
generate a separate field as an output data layer. In a local operation, the value of the
new field at any location x is dependent only on the values of the input field functions
at that location. In focal operations, the value of the new field at a location x depends
not only on the attribute of the input field but also on the attributes of these functions
in a neighborhood of x. Zonal operations take as input a value field and a zone field,
and aggregate the values of the field over each zone.
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4.1 INTRODUCTION

The construction of geographical entities (GEs) may be influenced by several types of
errors and uncertainty that generate errors and uncertainty in the attributes and/or the
geographical location of the entities. In other situations, the need to choose between the
object data model and the field data model is a source of error, since some phenomena
have characteristics of both data models and therefore are not adequately represented
by either of them.

Fuzzy set theory incorporates some concepts that can be used to overcome some
of the problems described above, modeling some types of uncertainty associated to
geographical information as well as its heterogeneity. They enable the development of
an alternative data model that integrates characteristics of the object and the field data
models, where the geographical information is represented with fuzzy geographical
entities (FGEs), which are geographical entities (objects) represented with surfaces.
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An overview of the several sources of uncertainties and/or errors associated with
GEs is presented in this chapter as well as methods to model their uncertainty or
heterogeneity using fuzzy sets.

FGEs are an efficient way to represent the positional uncertainty of GEs, or a grad-
ual variation between them, but their inclusion in geographical information systems
(GISs) requires not only their construction but also the development of operators
capable of processing them. Some basic operators that process FGEs have already
been developed and are briefly reviewed in this chapter.

4.2 FUZZY GEOGRAPHICAL ENTITIES

Since this chapter addresses the representation of GEs as surfaces that represent the
uncertainty or heterogeneity of the entities using fuzzy sets, through the construction
of FGEs, only the types of errors and uncertainty that can be modeled with this
approach are considered. A GE is characterized by an attribute and a geographical
location. These two components of the GEs are intimately related, and therefore the
errors and uncertainty associated to each of them are also related.

A FGE E A, characterized by attribute “A,” is a GE whose position in the geo-
graphical space is defined by the fuzzy set

E A = {(x, y) : (x, y) belongs to the GE characterized by attribute “A”}
with membership function μE A (x, y) ∈ [0, 1] defined for every location in the space
of interest. The membership value 1 represents full membership. The membership
value 0 represents no membership, and the values in between correspond to member-
ship grades to E A, decreasing from 1 to 0.

The construction of FGEs is based on the construction of the membership func-
tion μE A (x, y), so its construction is of prime importance, but it is also one of the main
difficulties of using fuzzy sets ([37], [95], [110]). Since the grades of membership to
a fuzzy set may have several semantic interpretations, they may be used in several
contexts with different meanings and therefore their semantic interpretation should
be identified.

Some methods to build FGEs are presented in the next section, and a semantic
interpretation of the grades of membership is given for each case.

4.2.1 CONSTRUCTION OF FUZZY GEOGRAPHICAL ENTITIES

In chapter 3, section 3.1.2, two main approaches were presented to build GEs, the
attribute-location approach and the location-attribute approach. In both approaches,
several sources of uncertainty may be considered.

4.2.1.1 Attribute Definition

In the attribute-location approach, the first step is the definition of the attribute that
characterizes the GE. This definition may just consist in the choice of a concept easily
identified by humans on the ground, aerial photographs, or satellite images, such as
buildings, roads, or rivers, or may depend upon a group of measurable characteristics
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(taking values on a scale Z ), such as, for example, radiance levels, altitude, or slope. In
this case, the attribute definition involves a series of choices to identify the appropriate
characteristics, which, in some cases, may not be easily determined. For example,
suppose the regions suitable to construct an infrastructure are the GEs characterized
by slopes between 10 and 20 percent and good solar exposure. Why choose slopes
between 10 and 20 percent and not 9 and 21 percent? What is a good solar exposure?
Since these choices are sometimes subjective and/or difficult to define, it may be
considered that, in some situations, there is uncertainty associated to the definition of
the attributes that characterize the GEs.

When the attribute definition is just based on the choice of a concept, it is assumed
that humans are able to identify it without any measured values. The attribute defi-
nition may be more or less precise, giving some instructions regarding, for example,
what types of constructions are considered as buildings. With this approach, most dif-
ficulties will be encountered in the second phase of the construction of the GEs, that
is, in the identification of the locations on the ground that correspond to the attribute,
since the process is subjective. The location of the GE will depend upon the identifi-
cation of the regions where the attribute occurs, and therefore any misinterpretation
of its meaning will generate uncertainty in the position of the GE. So, the attributes
should be defined with some detail to reduce any doubts that might occur during its
identification on the terrain.

Where the attribute is defined by a group of values within one or several char-
acteristics chosen to identify the attribute, the values z of scale Z that correspond to
the attribute have to be chosen for each characteristic considered in the definition of
the attribute. In most situations, these values correspond to an interval Z A = [z, z]
(see Figure 4.1), and therefore, z and z have to be identified for each attribute. One
source of uncertainty in this case is that the transition between the set of values that
correspond to the attribute and the ones that do not may not be clear, and therefore
the attribute may be more accurately defined if, instead of choosing a crisp set Z A,
a gradual transition between membership and nonmembership is allowed, using a
fuzzy set Z̃ A (see Figure 4.2).

The construction of fuzzy set Z̃ A requires the assignment to every value z of a
grade of membership to the set, that is, the definition of a membership function of the
z values to the set.
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FIGURE 4.1 Set of Z values that define attribute A.
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FIGURE 4.2 Fuzzy set Z̃ A.

The semantic import approach used frequently to build membership functions
(e.g., [14], [16], [74], [75], and [95]) considers this approach. Within this method, the
grades of membership represent degrees of similarity.

A method to build the membership functions based on this semantic interpre-
tation is presented in [46]. The similarity view interprets grades of membership as
a quantification of the similarity between the observed characteristics and the ideal
ones [92]. The first step to build the membership function is to identity the values that
ideally correspond to the attribute, that is, to identity the core Z Aid = [zid , zid ] of the
fuzzy set. The second step corresponds to the computation of the degrees of similarity
between the other z values and the ideal ones. These may be quantified considering the
distance between those values and the extreme points of interval Z Aid . The distance
between value z and the core of fuzzy set Z̃ A (see Figure 4.3) is given by

d(z, Z Aid ) =
{

min[d(z, zid ), d(z, zid )] ⇐= z /∈ [zid , zid ]

0 z ∈ [zid , zid ]
(4.1)

where d(z, zid ) and d(z, zid ) are, respectively, the Euclidean distance between z and
the extreme points of interval Z Aid (see Figure 4.4).

The degrees of membership of the z values to Z̃ A are computed considering a
function f such that μZ̃ A

(z) = f [d(z, Z Aid )]. Function f is application dependent
and translates the degree of variation of the membership grades with the distance.

d(z1, ZAid
)

z1 zid zid z2 Z

d(z2, ZAid
)ZAid

FIGURE 4.3 Distances d(z1, Z Aid )and d(z2, Z Aid ) are, respectively, the distances of values z1

and z2 to the set of ideal values corresponding to attribute A, that is, to Z Aid = [zid , zid ].
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z

d(z, zid) ZAid

d(z, zid)

zid zid Z

FIGURE 4.4 Distances d(z, zid ) and d(z, zid ) are, respectively, the Euclidean distance of z to
the extreme points of interval Z Aid .

It must be a decreasing function such that

{
f (0) = 1

lim
d(z,Z Aid )→+∞ f [d(z, Z Aid )] = 0

(4.2)

In most applications, positive memberships are considered only for distances
smaller than a predefined value dmax. This generates a fuzzy set with a bounded
support, and therefore function f is such that

{
f (0) = 1

d(z, Z Aid ) ≥ dmax =⇒ f [d(z, Z Aid )] = 0
(4.3)

Any function with these characteristics may be used, including functions with
different branches for both sides of the core of the fuzzy set, generating asymmet-
ric fuzzy sets. (Figure 4.2 shows an asymmetric fuzzy set.) Linear and sinusoidal
functions are the most used.

Another source of uncertainty in the definition of the attributes characterizing the
GEs occurs when there are several versions of the set Z A that defines the attribute [46].
This type of uncertainty occurs, for example, when the interval Z A is determined by
experts and several experts have different opinions about its amplitude, or when Z A is
estimated using several methods and different methods determine different intervals,
such as in the supervised classification of multispectral remote sensing images, where
different classification methods produce different results.

Therefore, as illustrated in Figure 4.5, for some z values, the classification is
ambiguous, since, depending on the version used, it may belong or not to Z A.

To model this type of uncertainty, as in the previous case, attribute A may be
represented by a fuzzy set Z̃ A. Although, in this case, the interpretation of grades of
membership as random sets (see [33] or [92]) will be used to compute the grades of
membership of the z values to Z̃ A ([46]).

Let us consider the random set A = {(Z A j , m j ) : j = 1, . . . , n}, where the sets
Z A j are the several versions of the set Z A, and the values m j are weights assigned to
the sets such that

n∑
j=1

m j = 1.
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FIGURE 4.5 Three versions of Z A: Z A1 , Z A2 , and Z A3 . The inclusion of z in set Z A is then
ambiguous.

Then, according to the procedure to compute degrees of membership based on random
sets, the membership function of every value z to the fuzzy set Z̃ A is given by

μZ̃ A
(z) =

∑
z∈Z A j

m j (4.4)

4.2.1.2 Positioning an Attribute

In the second phase of the attribute-location approach to build GEs, the geographical
location of the attribute chosen in the first phase is determined.

In the cases presented in the previous section where the attribute definition is based
on measurable quantities and the uncertainty of the attribute definition is modeled
using fuzzy sets, for each location (xi , yi ) where the measurable quantities Z are
known, that is, where a value zi is known, the uncertainty in the attribute space may
be transposed to the geographical space considering

μE A (xi , yi ) = μZ̃ A
(zi ) (4.5)

Therefore, whenever z values are known for a tessellation or in every point of the
geographical space (when the geographical space is considered continuous), for each
location (xi , yi ) of the geographical space, a degree of membership to the FGE E A,

characterized by attribute A, is obtained.
When no uncertainty is associated to the attribute definition, several sources of

errors and uncertainty may be considered in the next step:

• The predefined attribute may be difficult to identify, and therefore it will be
difficult to determine its location on the geographical space. For example,
the attribute is a certain land cover class, and in some regions, the available
data leave doubts about which land cover class is present.
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• The attribute definition is not accurate enough, raising doubts about whether
entities with some characteristics belong or not to that attribute. For exam-
ple, if the attribute is buildings, what is exactly considered to be a building?
Is a hut a building?

• There is not an abrupt transition between the predefined attribute and
other attributes, making the identification of its exact location difficult. For
example, if the attribute is forest, it may be difficult to identify the limits of
the forest, since there may be a gradual transition between the forest and
the surrounding regions.

• The geographical location of the attribute changes with time, and therefore
it is difficult to determine its position, such as the coastline or dunes.

• There are errors associated to the measurements made to determine the
geographical location of the attributes, for example, observation errors in
topographic measurements.

• There are several versions for the entities’ position, such as digitalizations
made by several operators.

To model the uncertainty or errors regarding the positioning of an attribute, two
cases may be considered. One is when the attribute is defined using only a concept
such as buildings, forest, or rivers, and the other case is when the attribute definition
is based on measurable quantities.

In the first case, the difficulty to position the attributes on the ground will depend
upon the details given on its definition and upon the heterogeneity of those attributes
on the region under study. The details used in the attribute definition should be such
that it is clear what the attribute represents, but note that if too many details are given,
the identification of all those details in the ground may complicate the operator’s
work, since it may be difficult to identify, for example, in an aerial photograph, if a
hut is made of wood or brick. So, the attribute definition should be adapted to the
methods and sources of information available to identify the entities.

Whenever the operator has some difficulties in the classification, he may always
assign a degree of uncertainty to the entity. For example, if there is some uncertainty
whether a certain entity should be considered a building or not, a degree of uncertainty
may be assigned to it. These degrees of uncertainty are subjective and only indicative
that some difficulties in the classification were found. They are assigned to the entity
as a whole, since it is an indivisible object. Note that, in this case, the grade of
membership represents uncertainty in the attribute that should be assigned to all the
region. The outcome of this process is then a GE with a constant grade of membership
to an attribute. These grades of membership translate degrees of membership to the
attribute defining the GE and not uncertainty on the geographical space. They result
from lack of data to assign the correct attribute or lack of attribute definition.

In other situations, the uncertainty is not in the identification of the attribute
corresponding to a certain GE, but in the identification of its exact location. In this
case, a fuzzy set may be used to express the entities’ location in the geographical
space. For example, if the attribute is forest and the operator has some difficulties in
the identification of its limits, he may define a core where the attribute forest applies
for sure and then a surrounding region where there is some transition between forest
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Exterior
Frontier

Interior

FIGURE 4.6 Egg-yolk approach to represent GEs.

and nonforest. This corresponds to the identification of the core of the fuzzy set and
its support, and therefore all the region between the support and the core belongs to
the uncertainty region. If it is possible to differentiate further inside the uncertainty
region, then α-levels may be identified, if not, only an uncertainty region may be used.
This process generates FGEs, which correspond to the “egg-yolk” approach used, for
example, in [20] or [38]. This approach considers that the GEs are formed by three
regions: the interior, the frontier, and the exterior, where the frontier is represented
not by lines, but by a region with any dimension or shape (see Figure 4.6), and that
may be considered homogeneous or heterogeneous. The “egg-yolk” representation
is a simplified representation of FGEs and is convenient when the GEs are to be
represented using the vector data structure and to establish neighborhood relations
between GEs with uncertain or fuzzy geographical position.

It is important to stress that, in any of these cases, the grades of membership are
subjective and translate human reasoning.

When the attribute definition is based on measurable quantities and no uncertainty
in the attribute definition is considered, the attributes are defined by intervals Z A. The
attributes positioning on the geographical space corresponds to determine whether
the values zi measured at location (xi , yi ) belong or not to interval Z A. Two sources
of uncertainty may be identified in this case:

• There are errors affecting measured values zi .
• There are several measurements of zi made at different times.

When there are errors affecting values zi , they influence the attribute assigned to
that location, and therefore the geographical extent of the GEs. When these errors
are modeled using a probability distribution function, a fuzzy set, a fuzzy num-
ber, or only an interval, the influence of these errors on the classification may be
modeled using a method similar to the method proposed by Hisdal to simulate hu-
man language (see [55]), where the interpretation of the grades of membership is
based on likelihoods. Denoting by EF (zi ) the function modeling the error in value
zi , when EF (zi ) is a probability distribution function, the degree of membership of
(xi , yi ) to the FGEs characterized by attribute A, defined by Z A = [z, z], is given
by (see [46]).

μE A (xi , yi ) =
∫ z

z
EF (zi )dz i (4.6)
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FIGURE 4.7 The area of the shaded region is the grade of membership of location (xi , yi ) to
the FGEs characterized by attribute A, defined by set Z A, where the uncertainty in the zi value
is modeled with a triangular fuzzy number.

When the error is modeled using fuzzy sets, fuzzy numbers, or intervals, the grades
of membership are computed using

μE A (xi , yi ) =
∫ z

z EF (zi )dzi∫ zmax

zmin
EF (zi )dz i

(4.7)

where zmin and zmax are, respectively, the smaller and larger values that zi can take
according to the error estimation. This value corresponds to the normalized area of
the EF (zi ) that is inside set Z A (see Figure 4.7).

When there are several measurements of zi , made at different times, these mea-
surements may reflect a changing geographical reality. That is, these measurements
reflect a variation over time of what exists in that location. This time variation may
be represented using FGEs. In this case, the random set view of fuzzy sets [33] may
be used to compute the grades of membership [46]. If n observations are made of the
zi values at all locations, then n versions of the GEs are obtained. The random set
EA = {(E Aj , m j )| j = 1, . . . , n} may be considered, where E Aj , with j = 1, . . . , n,
represents the n versions of the GE, and the values m j are weights assigned to
each set of observations and therefore to each version, such that

∑n
j=1m j = 1.

The membership grades of each region to the FGE corresponding to attribute A are
given by:

μE A (xi , yi ) =
∑

(xi ,yi )∈A j

m j (4.8)

4.2.1.3 Identifying Homogeneous Regions

In the location-attribute approach to build GEs, two phases can also be considered:

1. identification of homogeneous regions in the geographical space;
2. determination of the attribute characterizing those regions.

Errors and uncertainty may be found in both phases. The identification of homo-
geneous regions is subject to error and uncertainty, since it is necessary to determine

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

October 16, 2007 14:28 6395 6395˙Book

72 Fuzzy Surfaces in GIS and Geographical Analysis

the degree to which observed characteristics are considered similar, and may therefore
be considered to belong to the same region. The resulting regions are supposed to
be homogeneous, but a certain degree of heterogeneity will always be present. This
heterogeneity may be modeled using fuzzy sets. The most used method to model the
heterogeneity is the fuzzy k-means or fuzzy c-means (see, e.g., [16], [56], or [62]).
The method enables the clustering of values in k fuzzy classes whose limits are not
previously defined. It requires the choice of:

1. the number of classes to be defined;
2. a distance that is used to measure the degree of similarity between the

elements of the class;
3. a number m ∈ [1, ∞], which determines the degree of diversity acceptable

within each class (higher values correspond to higher heterogeneity);
4. a positive integer, which determines the degree of similarity required

between the elements of the same class, which is usually used as a stop
criterion.

This method is usually started choosing a membership grade of each point to each
class. Then, the mean of the degrees of membership of the elements that belong to the
same class is computed. The next step is to recompute the value of the membership
function of each element to each class, minimizing the weighted sum of the distances
between each class mean and the degree of membership of the element to each class.
With the obtained results, new means are computed for each class and the process is
repeated iteratively until the degree of similarity between the elements of each class
defined in step 4 is achieved.

Note that, in this case, the degrees of membership to each class are degrees of
similarity between each value and an ideal value, which, in each iteration, is the mean
of all grades of membership to that class. Note also that, in this method, the member-
ship of each location to the several classes adds up to 1, which means that the classes
are not independent of each other [14].

This method has been frequently used to classify several types of phenomena,
such as soil types, landforms, and pollution concentration (e.g., [15], [47], [75], and
[109]).

4.2.1.4 Choosing an Attribute

The second phase of the classification procedure involves the identification of the
attribute corresponding to each of the classes identified in the previous step, which
is also subject to uncertainty and error. The fuzzy k-mean clustering method requires
the number of classes to be identified á priori, which means that some knowledge
about the terrain characteristics is necessary in advance. It may, however, happen
that the classes obtained with the fuzzy k-mean approach do not describe the terrain
adequately, and therefore it may not be easy to choose the attributes that correspond
to each of the obtained classes since, on one hand, there may be some heterogeneity
in the regions and, on the other hand, there may be doubts in the identification of that
attribute. So the previous step may have to be repeated until a realistic classification
is obtained.
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4.3 PROCESSING FUZZY GEOGRAPHICAL ENTITIES

The use of FGEs in a GIS environment requires operators capable of processing this
type of entity. The immediate approach to process FGEs is to convert them into crisp
entities and use the usual operators to perform the necessary operations. Since the
α-levels of fuzzy sets are crisp sets, the easiest way to convert FGEs to crisp GEs is
to substitute the entity by one of its α-levels. With this approach, different versions
of the FGE may be obtained according to the needs of each application, choosing
different α-levels to represent it. This versatility may be an advantage over the use of
common crisp GEs, since different versions of the FGE may be considered according
to the needs, but it has also the disadvantage of having different GEs representing the
same characteristic in different contexts, which may become confusing if not properly
explained in the metadata. This approach, however, does not use the full capabilities
of FGEs, since their conversion to crisp entities implies a loss of information regard-
ing their positional uncertainty. Therefore, it is useful to develop operators capable of
processing the FGEs without defuzzifying them. These operators work with fuzzy in-
puts and may have crisp or fuzzy outputs. The operators with fuzzy outputs propagate
the fuzziness in the input data to the results of the analysis operations.

Since what characterizes a FGE is the representation of its position in the ge-
ographical space, only spatial operators will be considered, that is, operators that
process the position of the entity in the geographical space. Some of these operators
only generate attributes, which may be crisp or fuzzy, and others generate new entities.
Some examples are shown in Table 4.1.

Since the geographical extent of FGEs is represented by fuzzy sets, some operators
developed within fuzzy set theory may be used to process FGEs.

4.3.1 COMPLEMENT

The complement of a GE is its exterior, that is, the region that does not belong to it,
and therefore is the complement of the set representing the GE. Then, the complement

TABLE 4.1
Some Spatial Operations

Operators Input Output

Buffer One entity
Complement New entities
Intersection Several entities
Reunion

Area

Perimeter One entity

Shape New attributes
Distance

Direction Several entities

Neighborhood
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FIGURE 4.8 Fuzzy geographical entity.

of a FGE is the complement of the fuzzy set representing the entity. The standard
complement of a fuzzy set A is the set indicated in Definition 1.6.

Therefore, the standard complement of a FGE E is the FGE CE, such that, for all
the space under consideration,

μCE(x, y) = 1 − μE (x, y)

Figure 4.9 shows the standard complement of the FGE shown in Figure 4.8.

4.3.2 UNION AND INTERSECTION

Some authors suggested the use of the standard fuzzy operators of union and inter-
section to determine the union and intersection of FGEs ([16], [59], [75]).

The standard union of two fuzzy sets A and B is given by Definition 1.4. Then,
the union of two FGEs E and F is the FGE, such that, for every point (x, y) of the
geographical space (see Figure 4.10),

μE∪F (x, y) = max[μE (x, y), μF (x, y)]

FIGURE 4.9 Complement of fuzzy geographical entity shown in Figure 4.8.
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(d) Union of E1 and E2(c) Intersection of E1 and E2

(a) Fuzzy geographical entity E1 (b) Fuzzy geographical entity E2
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FIGURE 4.10 (a) FGE E1, (b) FGE E2, (c) intersection of FGEs E1 and E2, and (d) union of
FGEs E1 and E2.

A similar approach may be considered for the intersection. The standard intersec-
tion of two fuzzy sets is given by Definition 1.5. Then, the standard intersection of
two FGEs E and F is the FGE, that, for every point (x, y) of the geographical space,
satisfies (see Figure 4.10),

μE∩F (x, y) = min[μE (x, y), μF (x, y)]

4.3.3 BUFFERS GENERATION

Operators to generate buffers around FGEs proposed, for example, by [34] and by
[59]. Katinsky proposes that a buffer around FGEs be obtained considering traditional
buffers around each α-level of the FGE. In this way, each α-level will generate a region
and its degree of membership to the buffer is α (the grade of membership of the α-
level that generated it). Fuzzy buffers are also proposed, which introduce another
source of uncertainty, since a fixed distance is not used. A more complex approach
is presented by [34] and [52], which present several algorithms to generate fuzzy
buffers, including iterative methods, global methods, and methods based on the use
of graphical software.
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4.3.4 DISTANCES AND DIRECTIONS

Altman [1] developed a metric to compute distances between FGEs and directions
defined by two FGEs. This approach considers that the distance between two fuzzy
sets, represented by discrete points, is a fuzzy set whose elements are the values of
the distance between the points of both FGEs. That is,

dist(E, F) = {di : di = d[(x1, y1), (x2, y2)], (x1, y1) ∈ E ∧ (x2, y2) ∈ F}
where d[(x1, y1), (x2, y2)] represents the distance between points (x1, y1) and (x2, y2).
The Euclidean distance can be used, as well as any other distance of interest. The
grade of membership of each value di to the fuzzy distance is given by

μdist(E,F)(di ) = max
di

{min[μE (x1, y1), μF (x2, y2)]}

The metric developed by Altman [1] for directions is similar to the one developed
for distances, replacing the computation of the distance between the points of both
sets by the computation of the bearing defined by them.

4.3.5 AREA

The computation of areas of GEs is a basic operation in a GIS. Several approaches
have been considered to compute the area of FGEs, generating crisp and fuzzy
results. According to Katinsky [59], unambiguous areas of FGEs can only be com-
puted if the FGEs are defuzzified, and no further developments are made. Erwig and
Schneider [39] point out that the areas of fuzzy regions are intervals. Their lower limit
is the area of the region’s core and the upper limit the area of the region’s support.
Since the use of intervals requires new operators, they proposed considering only
minimum and maximum area values corresponding to the lower and upper limits of
the intervals.

4.3.5.1 Rosenfeld Area

Rosenfeld [87] proposed an operator to compute the area of a fuzzy set. Since the
geographical location of FGEs is represented by a fuzzy set, this operator can be
applied to compute the area of FGEs.

The Rosenfeld operator to compute areas (expressed here as the Rosenfeld area
R A) considers that the area of a fuzzy set E , formed by n regions ri , with area A(ri )
and membership function μE (ri ) is given by:

RA(E) =
n∑

i=1

μE (ri )A(ri )

This operator returns a positive real number and therefore generates a crisp value for
the area.

Considering the standard fuzzy intersection, union, and complement operators
and establishing a comparison with the three following well-known properties of
areas of crisp regions:
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1. ∀E Area(E) ≥ 0
2. ∀E, F Area(E ∪ F) = Area(E) + Area(F) − Area(E ∩ F)
3. ∀E, F : F ⊆ E Area(E − F) = Area(E) − Area(F)

where E − F = E ∩ C F , denoting C F the complement of set F, the Rosenfeld area
has the properties listed below. Proofs and further explanations of other characteristics
of the Rosenfeld area can be found in [44].

Property RA1: For any FGE E , R A(E) ≥ 0.
Property RA2: Let E and F be two FGEs, then

RA(E ∪ F) = RA(E) + RA(F) − RA(E ∩ F)

Property RA3: If E ∩ F = φ, that is, ∃/ri : μE (ri ) > 0 ∧ μF (ri ) > 0, then

RA(E ∪ F) = RA(E) + RA(F) (4.9)

Property RA4: Let E and F be two FGEs such that F ⊆ E . If ∀ri ∈ support(F),
μE (ri ) = 1, that is, support (F) ⊆ core(E), then

RA(E − F) = RA(E) − RA(F)

Property RA5: For any FGEs E and F such that F ⊆ E ,

RA(E − F) ≥ RA(E) − RA(F) (4.10)

As shown in the previous properties, some care must be taken when making
operations with Rosenfeld areas, since the Rosenfeld area of the difference of two
FGEs may not be equal to the difference of the Rosenfeld areas of both entities.

The method proposed by Rosenfeld to compute the area of a FGE considers that
the contribution of the area of each elementary region to the total area is proportional to
the degree of membership of the elementary region to the entity. Then, this operator
is appropriate to determine the area of a FGE, when the degrees of membership
represent the proportion of the area of the elementary region occupied by the attribute
characterizing the entity. These FGEs may, for example, be obtained converting GEs
from the vector data structure to the raster data structure (for more details, see [43]).
However, when the degrees of membership to the FGE represent the uncertainty of
whether the elementary regions belong to the GE or not, the spatial extension of the
GE is not known and, consequently, its area is also not known. In this case, the value
of the area of the FGE obtained with the Rosenfeld operator is just an approximate
value of the area, and does not give any other information about the other values it may
take. For example, consider a FGE that represents the risk of atmospheric pollution
with a certain pollutant, where the degrees of membership of each elementary region
to the FGE represent the possibility that the region is affected by the pollutant. Usery
presents a simple method to build such a membership function using the semantic
import approach [95]. Since any region with μ > 0 may belong to the affected zone,
the area of this entity may vary between the areas of the support and the core of the
fuzzy set representing the FGE. Note that the degrees of membership of interest may
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vary with the application. If, for example, the objective is to determine the area of all
regions that may be affected by the pollutant, or if only the area which has a possibility
of being affected larger than 0.4 is of interest, the Rosenfeld area operator is not useful.
The Rosenfeld area operator does not give also any information about the possible
variation of the area with the different degrees of membership to the entity.

If the degrees of membership translate degrees of similarity to the attribute char-
acterizing the FGE, the area of the GE depends on the degrees of similarity acceptable
for a certain application. For example, if the degrees of membership represent degrees
of similarity to the attribute “pine forest,” based on the percentage of pine trees ob-
served on the terrain and on the percentage of pine trees considered typical of a pine
forest, the area of the entity may, once again, take values between the area of the sup-
port and the area of the core of the fuzzy set that represents the FGE. If the objective
of a certain application is to determine the area of all regions where pine trees can be
found, all degrees of membership are acceptable and the wanted area is the area of the
support of the FGE. On the opposite direction, if the objective is to determine the area
of the regions where there are only pine trees, only the degrees of membership equal
to 1 are of interest. All intermediate situations can be considered, and the Rosenfeld
area operator is not useful in either of them.

The previous examples show that the information given by the Rosenfeld area
operator is limited and insufficient for many applications.

4.3.5.2 Fuzzy Area

To overcome some of the limitations of the previous operator, a new operator was
proposed, called the fuzzy area operator [44].

The spatial location of a FGE is represented by a fuzzy set, which is uniquely
represented by a family of α-levels, for α ∈ [0, 1]. Since an α-level is a crisp set such
that Eα = {ri : μE (ri ) ≥ α}, its area, denoted by Area(Eα), is the sum of the areas
of elementary regions ri , forming a tessellation, that belong to it.

Let us consider the function

AreaE : [0, 1] → R+
0

α → AreaE (α) = Area(Eα) = z

and denote by zi , i = 1, . . . , n, a set of values of R+
0 such that ∃αi : zi = AreaE (αi ),

where 0 < αi < αi+1 ≤ 1.

DEFINITION 4.1
The fuzzy area of a FGE is the fuzzy set FA(E) = {(z, μ FA(E)(z))} with μ FA(E)(z) :
R+

0 → [0, 1] and

μ FA(E)(z) =

⎧⎪⎪⎨⎪⎪⎩
max

zi =AreaE (αi )
αi if ∃i : z = zi

z−zk
zk+1−zk

(αk+1 − αk) + αk if ∃/ i : z = zi ∧ z ∈ [ AreaE (1), AreaE (0)]

0 if z /∈ [ AreaE (1), AreaE (0)]
(4.11)

where zk = max
zi ≤z

(zi ) and αk = min
zk= AreaE (αi )

(αi ).
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FIGURE 4.11 Fuzzy geographical entity E .

To compute the fuzzy area of the FGE represented in Figure 4.11, some α-levels αi

have to be considered and their areas computed. Table 4.2 shows the areas zi obtained
for the α-levels αi . Figure 4.12 shows a plot of the fuzzy area of E obtained using
the values of Table 4.2. A MATLAB routine to compute fuzzy areas of FGEs can be
found in the attached CD (routine fuzzyarea.m).

The fuzzy area has some properties corresponding to the area properties indi-
cated in the previous section. These properties are listed below. The proofs and some
additional explanations about the fuzzy area may be found in [44].

Property FA1: ∀E , the support of FA (E) is a subset of R+
0 .

Property FA2: ∀E , μFA(E)(z) is a decreasing left-continuous function over z ∈
[ AreaE (1), AreaE (0)].

TABLE 4.2
Area of the α-Levels of E

i αi zi = Area(Eαi )

1 0.001 68
2 0.1 68
3 0.2 58
4 0.3 47
5 0.4 36
6 0.5 30
7 0.6 23
8 0.7 19
9 0.8 15

10 0.9 11
11 1 7
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FIGURE 4.12 Fuzzy area of FGE E .

Property FA3: If E is a normal FGE, then FA(E) is a fuzzy number.
Property FA4: If ∃/ri : μE (ri ) > 0 ∧ μF (ri ) > 0 (that is, E ∩ F = φ), then

FA(E ∪ F) = FA(E) + FA(F) (4.12)

The notation used in the following properties is such that, for a fuzzy set S with
α-levels Sα = [s−

α , s+
α ], S+

α = s+
α and S−

α = s−
α .

Property FA5: Let E and F be two FGEs, such that ∃ri :

μE (ri ) = 1 ∧ μF (ri ) = 1.

Then,

FA(E ∪ F)+α = FA(E)+α + FA(F)+α − FA(E ∩ F)+α
≤ [FA(E) + FA(E) − FA(E ∩ F)]+α (4.13)

Property FA6: Let E and F be two FGEs, such that ∃ri : μE (ri ) = 1 ∧
μF (ri ) = 1. Then,

FA(E ∪ F)−α = FA(E)−α + FA(F)−α − FA(E ∩ F)−α
≥ [FA(E) + FA(E) − FA(E ∩ F)]−α (4.14)

Note that properties FA5 and FA6 show that

FA(E ∪ F) ⊆ FA(E) + FA(F) − FA(E ∩ F) (4.15)

Property FA7: If E and F are FGEs such that F ⊆ E , then

FA(E − F)+α ≤ [FA(E) − FA(F)]+α (4.16)

Property FA8: If E and F are FGEs such that F ⊆ core(E) and E − F is a
normal FGE, then

FA(E − F)−α = min[FA(E) − FA(F)]−α = FA(E)−1 − FA(F)+0+ (4.17)

where FA(F)+0+ represents the largest value of the support of FA(F).
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As shown above, the fuzzy area operator generates a fuzzy number, but, even
though some properties similar to the area of classic regions hold, in some cases, care
must be taken when making operations with the fuzzy areas, since the results of the
operations (mainly the difference) may have a behavior different from the expected.

4.3.6 PERIMETER

The perimeter computation of GEs is also a basic operator of a GIS.

4.3.6.1 Rosenfeld Perimeter

Rosenfeld [87] proposed an operator to compute the perimeter of a fuzzy set formed by
a finite set of contiguous and homogeneous regions. This operator, herein designated
by Rosenfeld perimeter (RP), may be applied to FGE represented by a tessellation.
The Rosenfeld perimeter is given by:

RP(E) =
n∑

i, j=1
i< j

ni j∑
k=1

|μE (ri ) − μE (r j )|l(ai jk) (4.18)

where n is the number of elementary regions forming the FGE, ni j is the number
of arcs separating regions ri and r j and l(ai jk) is the length of k arc ai jk of contact
between regions ri and r j .

This operator considers that each arc separating contiguous elementary regions
has a degree of belonging to the perimeter equal to the difference of the membership
grades associated to the elementary regions that it separates. Therefore, as for the
Rosenfeld area operator, the Rosenfeld perimeter operator generates an approximate
real value for the perimeter of the FGE, giving no other information about the other
values it can take, or about its variability with the grades of membership to the FGE.
To overcome these limitations a fuzzy perimeter operator was proposed.

4.3.6.2 Fuzzy Perimeter

A level cut of a FGE E is a classical set. Let P (Eα) be the perimeter of the α-level
cut of the fuzzy set representing the FGE. Let us now consider for each FGE E a
function PE such that

PE : [0, 1] −→ R+
0

α −→ PE (α) = P(Eα) = p (4.19)

and denote by pi , i = 1, . . . , n, a set of values of R+
0 such that ∃αi : pi = PE (αi ),

where 0 < αi < αi+1 < 1.

DEFINITION 4.2
The fuzzy perimeter of a FGE E is the fuzzy set FP(E) = {(z, μF P(E)(z))} where

μFP(E) : R+
0 −→ [0, 1]

p −→ μF P(E)(p) (4.20)
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TABLE 4.3
Perimeter of the α-Levels of E

i αi pi = P(Eαi )

1 0.001 36
2 0.1 36
3 0.2 34
4 0.3 30
5 0.4 24
6 0.5 22
7 0.6 22
8 0.7 24
9 0.8 24

10 0.9 14
11 1 14

and

μFP(E)(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

pk ,pk+1:
(pk≤p≤pk+1∨pk+1≤p≤pk )

∧pk �=pk+1

(
p−pk

pk+1−pk
(αk+1 − αk) + αk

)
if p ∈ [min pi , max pi ]

0 if p /∈ [min pi , max pi ] (4.21)

The perimeter values pi corresponding to the α-levels αi of the FGE represented in
Figure 4.12 are shown in Table 4.3. Figure 4.13 shows the plot of the pi values shown
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FIGURE 4.13 Fuzzy perimeter of fuzzy geographical entity E .
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in Table 4.3 and the fuzzy perimeter of FGE E . A MATLAB routine to compute fuzzy
perimeters of FGEs can be found in the attached CD (routine fuzzyperimeter.m).

Note that the perimeter-levels 0.5 and 0.6 of α are smaller than the perimeter
values of α-level 0.7 (which has a larger area, as can be seen in Table 4.2). Therefore,
the fuzzy perimeter is not built in the same way the fuzzy area is because, otherwise
in some cases, the output would not be a fuzzy set.

The fuzzy perimeter operator satisfies the following properties. Proofs can be
found in [45].

Property FP1: For all FGE E , the support of PF(E) is a subset of R+
0 .

Property FP2: If E is a normal FGE, then PF(E) is a fuzzy number.

Such as with the fuzzy area operator, the support of the fuzzy perimeter shows
the set of values the perimeter of the FGE can take and each α-level cut of the fuzzy
perimeter is the set of all values the perimeter can take when level cuts of the FGE
corresponding to values larger than or equal to α are considered. Therefore, the fuzzy
perimeter operator, as the fuzzy area operator, incorporates more information than
the crisp operators.

Since the fuzzy perimeter operator generates a fuzzy number, it is possible to
perform operations with it, such as the addition of perimeters or the computation of
the shape of a FGE, where a fuzzy area may also be used. For more details see [45].
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5.1 INTRODUCTION — DATA UNCERTAINTY
IN SURFACE MODELS

To model a continuous geographic phenomenon, first a set of data points needs to
be collected from the geographical space. There are two stages in this process: sam-
pling and measurement. Sampling refers to the distribution of measurement places,
in order to have a representative sample data set of the phenomena. In this context,
the uncertainty arises not only from the inaccuracy of measurements but also from
the lack of representativity of sample points and from the choice of the model to be
used. The uncertainty will be included in membership functions of fuzzy numbers,
which will be used to express attribute values (see Figure 5.1). Therefore, the sample
set will by given by

f (xi , z̃i ), i = 1, 2, . . . , N , (5.1)

where f (xi ) ∈ Rn is the position of sample z̃i ∈ F(R).
Mathematical interpolators will be used as models for continuous geographic

phenomena. The first condition for those interpolators is that they should assume the
sampled values in the sampled sites.

f̃ (xi ) = z̃i , i = 1, 2, . . . , N . (5.2)

85
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FIGURE 5.1 Triangular fuzzy sample.

Therefore, when sample values are fuzzy numbers, we will have fuzzy interpola-
tors. The fuzzy interpolator can be defined by its α-levels

[ f (x)]α = [ f −
α ( x), f +

α ( x)], α ∈ [0, 1], (5.3)

with,
α < α′ ⇒ [ f (x)]α′ ⊂ [ f (x))]α, α, α′ ∈ [0, 1]. (5.4)

The type of function to be used will have the general formula

f̃ (x) =
n∑

j=1

ζ̃ jφ j (x), (5.5)

where φ j (x) are the basis functions, which set the interpolator type. Using α-levels,
we get

[ f (x)]α =
n∑

j=1

[ζ j ]αφ j (x), α ∈ [0, 1], (5.6)

and, expressing intervals in radius/midpoint format, we have

[ f (x)]α =
n∑

j=1

ζ̌ j,αφ j (x) +
n∑

j=1

ρ j,α|φ j (x)|[−1, 1], α ∈ [0, 1], (5.7)

where ζ̌ j,α and ρ j,α are, respectively, the midpoint and the radius of the interval [ζ j ]α .
Another important condition is that the surfaces generated by those interpola-

tors should behave in the same way as the phenomena that they model. For exam-
ple, smoothness should be similar. There are several well-known crisp interpolators
usually used in geographic modeling. The generalization from crisp to fuzzy inter-
polators will be done in the way to keep the same properties, namely, smoothness.
Consequently, we introduce the notion of consistent fuzzy interpolator, which is a
fuzzy interpolator whose α-levels’ limits are still functions of the same type of the
original crisp ones. We will see that this additional condition will force us to relax
the conditions in Equation (5.2) to

f̃ (xi ) ⊇ z̃i , i = 1, 2, . . . , N , (5.8)
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or

[ f (x)]α =
n∑

j=1

ζ̌ j,αφ j (x) +
n∑

j=1

ρ j,αφ j (x)[−1, 1] ⊇ [zi ]α, α ∈ [0, 1], (5.9)

where the radius ρ j,α should be minimal.

5.2 UNIVARIATE CASE

In the univariate case, we will represent the sampling set by

{(xi , z̃i ), i = 1, 2, . . . , N }, with the partition a = x1 < x2 < · · · < xN = b.

The problem here is to find a mathematical function f̃ that will model the geo-
graphical phenomena within the interval [a, b] ⊂ R, following the N conditions

f̃ (xi ) = z̃i , i = 1, 2, . . . , N

or, at least,
f̃ (xi ) ⊇ z̃i , i = 1, 2, . . . , N .

The type of function to be used will have the general formula

f̃ (x) =
N∑

j=1

ζ̃ jφ j (x),

or, using α-levels,

[ f (x)]α =
N∑

j=1

[ζ j ]αφ j (x), α ∈ [0, 1],

and, expressing intervals in radius/midpoint format,

[ f (x)]α =
N∑

j=1

ζ̌ j,αφ j (x) +
N∑

j=1

ρ j,α|φ j (x)|[−1, 1], α ∈ [0, 1]. (5.10)

Let us start by the particular example of Lagrange interpolation polynomial, where
the basis functions are

φ j (x) = L j (x) ≡
N∏

i=1
i �= j

(x − xi )

(x j − xi )
, j = 1, 2, . . . , N . (5.11)

In a first approach, the α-levels of Lagrange fuzzy interpolator will be given by

[p(x)]α =
N∑

j=1

ž j,α L j (x) +
N∑

j=1

r j,α|L j (x)|[−1, 1], α ∈ [0, 1], (5.12)

where ž j,α and r j,α are, respectively, the midpoint and the radius of a sample α-level.
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FIGURE 5.2 Triangular fuzzy Lagrange polynomial (support limits in dash, modal curve in
continuous, and consistent support limits in dot).

Originally, Lagrange polynomial is infinitely differentiable. However, the fuzzy
generalization in Equation (5.12) does not have that property, since the α-levels’ limits
are

p−
α (x) =

N∑
j=1

ž j,α L j (x) −
N∑

j=1

r j,α|L j (x)|andp+
α (x)

=
N∑

j=1

ž j,α L j (x) +
N∑

j=1

r j,α|L j (x)|. (5.13)

The presence of absolute values |L j (x)| generates nondifferentiable functions (see
Figure 5.2). This leads to an inconsistent fuzzy interpolator.

To achieve consistency, a Lagrange polynomial with the same degree should
approximate the α-levels’ limits given by Equation (5.13). To solve this problem, we
have to find the consistent interpolator f̃ with α-levels

[ f (x)]α =
N∑

j=1

ζ̌ j,α L j (x) +
N∑

j=1

ρ j,α L j (x)[−1, 1], α ∈ [0, 1], (5.14)

such that

[p(x)]α ⊆ [ f (x)]α =
N∑

j=1

ζ̌ j,α L j (x) +
N∑

j=1

ρ j,α L j (x)[−1, 1], α ∈ [0, 1], (5.15)

where the radii ρ j,α are minimal. This generates a constrained optimization problem

min
ρα

‖ρα‖, subject to

ρ t
α L(x) − r t

α |L(x)| ≥ 0, ∀x ∈ [a, b], α ∈ [0, 1],
(5.16)

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

October 16, 2007 14:28 6395 6395˙Book

Surface Modeling 89

where ρα, rα, L(x), and |L(x)| are vectors with components ρ j,α, r j,α, L j (x) and
|L j (x)|, respectively.

The above optimization problem has an infinite number of conditions (semi-
infinite programming). A simple approach to this is to subdivide the interval [a, b],
approximating the infinite conditions by a finite number.

Other known interpolators can be fuzzified using the same approach. We will see
now the case of other popular interpolators like splines. Linear splines are a simple
case of those interpolators. The fuzzy linear splines s̃1 will be given by its following
α-levels

[s1(x)]α =
N∑

j=1

ž j,αs1, j (x) +
N∑

j=1

r j,α

∣∣s1, j (x)
∣∣ [−1, 1] , α ∈ [0, 1], (5.17)

where

s1, j (x) = (x j+1 − x)

(x j+1 − x j )
, and s1, j+1(x) = (x − x j )

(x j+1 − x j )
, x ∈ [x j , x j+1].

Since x j < x j+1, we have always
∣∣s1, j (x)

∣∣ = s1, j (x),
∣∣s1, j+1(x)

∣∣ = s1, j+1(x), and

[s1(x)]α =
N∑

j=1

ž j,αs1, j (x) +
N∑

j=1

r j,αs1, j (x)[−1, 1], α ∈ [0, 1]. (5.18)

Consequently, fuzzy linear splines are inherently consistent (see Figure 5.3).
The most used splines are the cubic ones, which can be given by

s3(x) =
N∑

j=1

z j s3, j (x),
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FIGURE 5.3 Triangular fuzzy linear spline (support limits in dash and modal curve in con-
tinuous).
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FIGURE 5.4 Triangular fuzzy cubic spline (support limits in dash, modal curve in continuous,
and consistent support limits in dot).

where the base functions s3, j are cubic splines interpolating the data points {(x j , δi, j ),

j = 1, 2, . . . , N }, with δi. j =
{

1, i = j

0, i �= j
, i = 1, 2, . . . , N . Following the same

procedure, a first approach for fuzzy cubic splines will have the α-levels

[s3(x)]α =
N∑

j=1

ž j,αs3, j (x) +
N∑

j=1

r j,α|s3, j (x)|[−1, 1], α ∈ [0, 1].

As in the Lagrange polynomial, the consistency is lost here (see Figure 5.4). To
achieve consistency, we follow the same strategy of Lagrange case, getting

[ f (x)]α =
N∑

j=1

ž j,αs3, j (x) +
N∑

j=1

ζ j,αs3, j (x)[−1, 1], α ∈ [0, 1].

5.3 BIVARIATE CASE

The natural extension from the univariate to the bivariate case is to use the tensor
product, but data have to be arranged in a grid format. However, in most of the
practical problems, the sampling set is given by

{(xi , yi , z̃i ), i = 1, 2, . . . , N }, in a region D ⊂ R2,

where the positions (xi , yi ) have nongrid distribution. Therefore, first we will study
the general case of irregular-spaced data.
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The problem now is to find a mathematical function f̃ that will model the geo-
graphical phenomena, following the N conditions

f̃ (xi , yi ) = z̃i , i = 1, 2, . . . , N

or, at least,
f̃ (xi , yi ) ⊇ z̃i , i = 1, 2, . . . , N .

The type of function to be used will have the general formula

f̃ (x, y) =
N∑

j=1

ζ̃ jφ j (x, y),

with α-levels given by

[ f (x, y)]α =
N∑

j=1

ž j,αφ j (x, y) +
N∑

j=1

ζ j,α|φ j (x, y)|[−1, 1], α ∈ [0, 1]. (5.19)

5.3.1 NON-GRIDDED DATA

In this subsection, the data will be considered spatially irregularly distributed over
a region (see Figure 5.5). There are several interpolators able to solve this type of
problem. These interpolators are usually local, depending only on the existing data in
a neighborhood of the interpolation position. The well-known Delaunay triangulation
is usually used to find these neighborhoods, as we will see later on.

5.3.1.1 Fuzzy TIN Interpolator

As the name suggests, the triangular irregular network (TIN) interpolator is defined
over a triangulation of data positions. Inside every triangle Tk , the interpolator is
defined by a plane passing through the triangle’s vertex, which is given by

f (x, y) = ak x + bk y + ck, (x, y) ∈ Tk, k = 1, 2, . . . , Nt , (5.20)
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FIGURE 5.5 Example of a fuzzy triangular nongridded data set.
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FIGURE 5.6 Fuzzy TIN surface for fuzzy triangular data in Figure 5.5.

where Nt is the number of triangles and ak, bk, ck are the solution of the following
linear system of equations

Ak xk = zk, withAk =

⎡⎢⎣ xk,1 yk,1 1

xk,2 yk,2 1

xk,3 yk,3 1

⎤⎥⎦, xk =

⎡⎢⎣ ak

bk

ck

⎤⎥⎦, zk =

⎡⎢⎣ zk,1

zk,2

zk,3

⎤⎥⎦. (5.21)

Therefore, the resulting surface is a set of contiguous, nonoverlapping triangular
facets.

The fuzzy TIN interpolator f̃ (x, y) is defined by its α-levels [ f (x, y)]α for which
limits f −

α (x, y) and f +
α (x, y) are TINs. For every triangle Tk and for every α-level, the

limits f −
α (x, y) and f +

α (x, y) are planes determined by solving two linear systems like
in Equation (5.21). The only difference is in the right members of equation, which are
z−

k,α = [z−
k,α,1z−

k,α,2z−
k,α,3]t and z+

k,α = [z+
k,α,1z+

k,α,2z+
k,α,3]t , respectively. Consequently,

the resulting fuzzy TIN surface will be like in Figure 5.6.

5.3.1.2 Fuzzy Interpolators Based on Weighted Average

Weighted averages can be written in the form

f (x, y) =
Nk∑
j=1

z jω j (x, y), with
Nk∑
j=1

ω j (x, y) = 1, (x, y) ∈ Vk,

where Vk is a neighborhood of (x, y) containing points {(xi , yi ) ∈ Vk, i = 1, 2, . . . ,

Nk}. The functions ω j are called weights and usually depend on the position (x, y). A
common case is to define those weights based on the inverse of the distances di (x, y)
between the position (x, y) where the interpolation takes place and the neighborhood
points in Vk

ω j (x, y) = d−p
j (x, y)/

Nk∑
i=1

d−p
i (x, y),

with di (x, y) =
√

(x − xi )2 + (y − yi )2, p ∈ N, i = 1, 2, . . . , Nk .
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FIGURE 5.7 Fuzzy surface resulting from the fuzzy Shepard method (p = 2) for fuzzy
triangular data in Figure 5.5.

This choice of weights generates the so-called Shepard method or inverse distance
weighting (IDW) of interpolation, which is a simple approach to model geographical
phenomena, where usually dependency is inversely proportional to distance (see Fig-
ure 5.7). Since the weight functions ω j are always non-negative, the generalization
to fuzzy Shepard method is straightforward. The fuzzy interpolator will be given by

f̃ (x, y) =
Nk∑
j=1

z̃ jω j (x, y), (x, y) ∈ Vk,

with α-levels expressed by

[ f (x, y)]α =
Nk∑
j=1

ž j,αω j (x, y)

+
Nk∑
j=1

r j,αω j (x, y)[−1, 1], α ∈ [0, 1], (x, y) ∈ Vk . (5.22)

5.3.1.3 Fuzzy Interpolators Based on Radial Functions

Weighted functions are an example of radial functions, since they do not depend on
the direction but only a distance. Another interpolator based on radial functions is the
thin-plate splines (see Figure 5.8). This interpolator is defined by

S(x, y) =
M∑

j=1

a jκ j (x, y) + aM+1 + aM+2x + aM+3 y, (5.23)

where

κ j (x, y) = 1

8π
d2

j (x, y) ln[d j (x, y)], d2
j (x, y) = (x − x j )

2 + (y − y j )
2. (5.24)
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FIGURE 5.8 Fuzzy surface resulting from the fuzzy thin-plate spline interpolator for fuzzy
triangular data in Figure 5.5.

The coeficients a j ( j = 1, 2, . . . , M + 3) are found by solving the linear system
of equations

Aa = z, (5.25)

where

A =
[

K P

Pt 0

]
, a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

...

aM

aM+1

aM+2

aM+3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

...

zM

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.26)

with

K =

⎡⎢⎢⎣
κ1(x1, y1) · · · κM (x1, y1)

...
. . .

...

κ1(xM , yM ) · · · κM (xM , yM )

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
1 x1 y1

...
...

...

1 xM yM

⎤⎥⎥⎦ . (5.27)

Therefore, this interpolator can also be written in the form

S(x, y) =
N∑

j=1

z jφ j (x, y), (5.28)

where N = M + 3 and
φ(x, y) = (A−1)tκ(x, y), (5.29)

with φ(x, y)=[φ1(x, y) · · · φN (x, y)]t and κ(x, y) = [ κ1(x, y) · · · κM (x, y) 1 x y ]t .
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Three zero-attribute values (zM+1 = zM+2 = zM+3 = 0) were added to keep
the general interpolation formula in Equation (5.28). Now we can derive the fuzzy
version for this interpolator, getting

S̃(x, y) =
Nk∑
j=1

z̃ jφ j (x, y),

with α-levels expressed by

[S(x, y)]α =
Nk∑
j=1

ž j,αφ j (x, y) +
Nk∑
j=1

r j,α|φ j (x, y)|[−1, 1], α ∈ [0, 1]. (5.30)

Here we have, again, the problem of lack of consistency because the basis func-
tions φ j (x, y) do not have constant sign. To have consistent fuzzy thin-plate splines,
we have to follow the same procedure we did for Lagrange polynomial and cubic
splines, getting

[ f (x, y)]α =
Nk∑
j=1

ž j,αφ j (x, y) +
Nk∑
j=1

ζ j,αφ j (x, y)[−1, 1], α ∈ [0, 1]. (5.31)

As it was noticed in the begining of this subsection, these interpolators use most
of the time only the neighbor data values, especially when there is a large amount of
data to interpolate.

5.3.2 GRIDDED DATA

Now we will consider that the sample data are distributed over a rectangular grid
(see Figure 5.9). There are interpolators that can be applied only in this context.
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FIGURE 5.9 Example of a fuzzy triangular gridded data set.
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Therefore, before applying an interpolator of this type to a set of samples distributed
irregularly, first an interpolator for nongridded data has to be used to generate a
gridded distribution. The grid is defined by partitions over a rectangular region
D = [a, b] × [c, d] ⊂ R2

a = x1 < x2 < · · · < xN = b,

c = y1 < y2 < · · · < yM = d.

As it was mentioned before, bivariate interpolators can be derived from univariate
ones by using the tensor product. Taking the general interpolator formula

f̃ (x, y) =
N∑

i=1

M∑
j=1

ζ̃i jφi j (x, y), (5.32)

we write the basis functions as a tensor product

φi j (x, y) = φi (x)φ j (y). (5.33)

This allows us to build bivariate fuzzy interpolators from univariate ones.

5.3.2.1 Bivariate Lagrange Polynomial

The bivariate Lagrange polynomial is usually written in the form

f (x, y) =
N∑

i=1

M∑
j=1

zi j Li j (x, y), (5.34)

where the bivariate basis functions are written as a tensor product

Li j (x, y) = Li (x)L j (y), (5.35)

with

Li (x) ≡
N∏

k=1
k �=i

(x − xk)

(xi − xk)
, i = 1, 2, . . . , N and

L j (y) ≡
M∏

k=1
k �= j

(y − yk)

(y j − yk)
, j = 1, 2, . . . , M. (5.36)

The first approach for fuzzy bivariate Lagrange interpolator will be given by

f̃ (x, y) =
N∑

i=1

M∑
j=1

z̃i j Li j (x, y), (5.37)

with the following α-levels

[ f (x, y)]α =
N∑

i=1

M∑
j=1

ži j,α Li j (x, y)

+
N∑

i=1

M∑
j=1

ri j,α|Li j (x, y)|[−1, 1], α ∈ [0, 1]. (5.38)
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As in the univariate case, consistency is lost here. Therefore, the consistent
bivariate fuzzy Lagrange polynomial, defined by the α-levels

[ f (x, y)]α =
N∑

i=1

M∑
j=1

ži j,α Li j (x, y)

+
N∑

i=1

M∑
j=1

ζi j,α Li j (x, y)[−1, 1], α ∈ [0, 1], (5.39)

has to be found using a similar procedure.

5.3.2.2 Bilinear Fuzzy Splines

The fuzzy bilinear spline will be given by its α-levels

[ f (x, y)]α =
N∑

i=1

M∑
j=1

ži j,αs1,i j (x, y)

+
N∑

i=1

M∑
j=1

ri j,α|s1,i j (x, y)|[−1, 1], α ∈ [0, 1]. (5.40)

Using again the tensor product, we have

s1,i j (x, y) = s1,i (x)s1, j (y), (i = 1, 2, . . . , N ), ( j = 1, 2, . . . , M), (5.41)

where the only nonzero basis functions are

s1,i (x) = (xi+1 − x)

(xi+1 − xi )
, s1,i+1(x) = (x − xi )

(xi+1 − xi )
,

s1, j (y) = (y j+1 − y)

(y j+1 − y j )
and s1, j+1(y) = (y − y j )

(y j+1 − y j )
,

with (x, y) ∈ [xi , xi+1] × [y j , y j+1].
Since xi < xi+1 and y j < y j+1, we have always |s1,i j (x, y)| = s1,i j (x, y). There-

fore, as in the univariate case, consistency is maintained. The α-levels for bilinear
fuzzy splines are

[ f (x, y)]α =
N∑

i=1

M∑
j=1

ži j,αs1,i j (x, y)

+
N∑

i=1

M∑
j=1

ri j,αs1,i j (x, y) [−1, 1] , α ∈ [0, 1]. (5.42)
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5.3.2.3 Bicubic Fuzzy Splines

Following the same method, in a first approach, the bicubic fuzzy splines have the
following α-levels

[ f (x, y)]α =
N∑

i=1

M∑
j=1

ži j,αs3,i j (x, y)

+
N∑

i=1

M∑
j=1

ri j,α

∣∣s3,i j (x, y)
∣∣ [−1, 1] , α ∈ [0, 1]. (5.43)

The tensor product allows us once more to express the bivariate basis functions using
the univariate ones. The result is

s3,i j (x, y) = s3,i (x) s3, j (y), (5.44)

where s3,i and s3, j are cubic splines interpolating the data points {(xi , δi, j ), i =
1, 2, . . . , N , } and {(y j , δi, j ), j = 1, 2, . . . , M}, respectively, with δi. j =

{
1, i = j
0, i �= j

.

As in the Lagrange polynomial, the consistency is lost in this case. Therefore,
the consistent bicubic spline should be redefined by the following α-levels (see
Figure 5.10)

[ f (x, y)]α =
N∑

i=1

M∑
j=1

ži j,αs3,i j (x, y)

+
N∑

i=1

M∑
j=1

ζi j,αs3,i j (x, y)[−1, 1], α ∈ [0, 1]. (5.45)
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FIGURE 5.10 Fuzzy surface resulting from the fuzzy bicubic spline interpolator for fuzzy
triangular data in Figure 5.9.
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As in the other cases, the consistent interpolator has to be found using an approxima-
tion procedure as described before.

5.3.3 FUZZY GEOSTATISTIC INTERPOLATOR (KRIGING)

Geostatistics was developed by the French mathematician Georges Matheron in the
early sixties, from the seminal work of its inventor, Daniel G. Krige, a South African
mining engineer, from whom the name kriging is derived [36]. The geostatistic in-
terpolation is often used to model geographical phenomena. Often, the sampled data
used in the interpolation have uncertainty that can be expressed by fuzzy numbers
([8], [7], [25]). In this section, the geostatistic tools will be extended to deal with
samples expressed by triangular fuzzy numbers in the form

z̃ = z̃(x, y) = (z−(x, y)/z1(x, y)/z+(x, y)), (x, y) ∈ D ⊂ R2. (5.46)

The geographical phenomena will be modeled by a triangular fuzzy random field

{Z̃ (x, y) = (Z−(x, y)/Z1(x, y)/Z+(x, y)), (x, y) ∈ D} (5.47)

and the sample set of triangular fuzzy numbers {z̃(xi , yi ) = (z−(xi , yi )/z1(xi , yi )/
z+(xi , yi )), i = 1, 2, . . . , N } will be a set of realizations of the random field.

Using the Hausdorff metric η between the α-levels, a metric d∗ can be defined
over the set of fuzzy numbers F , given by

d∗(z̃1, z̃2) = sup
α∈(0,1]

η([z1]α, [z2]α). (5.48)

For triangular fuzzy numbers, an equivalent metric can be defined by

d(z̃1, z̃2)2 = (z−
1 − z−

2 )2 + (
z1

1 − z1
2

)2 + (z+
1 − z+

2 )2. (5.49)

Generalizing last metric for any fuzzy number defined by its α-levels, we have

d(z̃1, z̃2)2 =
∑

α

[(z−
1,α − z−

2,α)2 + (z+
1,α − z+

2,α)2].

Diamond [25] proved that the expectation E Z̃ (x, y) exists if and only if Ed
(Z̃ (x, y), 0̃)2, where 0̃ = (0/0/0), exists and is a triangular fuzzy number given by

E Z̃ (x, y) = (E Z−(x, y)/E Z1(x, y)/E Z+(x, y));

Besides the variance VarZ̃ is defined by

VarZ̃ (x, y) = Ed(Z̃ (x, y), E Z̃ (x, y))2 (5.50)

and it is a real number.
To express spatial variability, the so-called stationary covariance or covariagram

function C̃ , which is defined by the covariance between Z̃ (xi , yi ) and Z̃ (x j , y j ), is
used.

C̃(xi − x j , yi − y j ) = cov(Z̃ (xi , yi ), Z̃ (x j , yi )).

We say that the random variable Z̃ (x, y) is second order stationary if the expected
value exists and is independent of location (x, y), that is,

E Z̃ (x, y) = m̃ = (m−/m1/m+), ∀(x, y) ∈ D, (5.51)
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and there exist lower, C−, modal, C1, and upper covariance, C+, that are functions
of the lag vector hi j between positions (xi , yi ) and (x j , y j ) such that

C−(hi j ) = E[Z−(xi , yi )Z−(x j , y j )] − (m−)2, (5.52)

C1(hi j ) = E[Z1(xi , yi )Z1(x j , y j )] − (m1)2, (5.53)

C+(hi j ) = E[Z+(xi , yi )Z+(x j , y j )] − (m+)2. (5.54)

The assumption of second order stationarity is common in geostatistics. It rep-
resents physical homogeneity and the existence of the first two moments, which are
independent of location. In practical situations, the observations may show a sys-
tematic trend, and it cannot be assumed that the mean is constant. Universal kriging
takes this into account, or then a small “moving window” of adjacent points can be
used to take a moving average, where the constancy of E Z̃ (x, y) = m̃ is not a bad
approximation.

Traditionally, the variogram has been used for modeling spatial variability rather
than covariance. It is an alternative to the covariance and is defined as the variance of
the increment Z (xi , yi ) − Z (x j , y j ). If both exist, they are related by

γ (hij) = C(0) − C(hij). (5.55)

Let γ̃ (h) = (γ −(h)/γ 1(h)/γ +(h)) represent the fuzzy triangular variogram. As-
suming the existence of lower, γ −, modal, γ 1, and upper semivariogram, γ +, inde-
pendent of (x, y), the stationarity condition may be expressed by

2γ −(hi j ) = E[Z−(xi , yi ) − Z−(x j , y j )]
2, (5.56)

2γ 1(hi j ) = E[Z1(xi , yi ) − Z1(x j , y j )]
2, (5.57)

2γ +(hi j ) = E[Z+(xi , yi ) − Z+(x j , y j )]
2. (5.58)

5.3.3.1 Estimation of Fuzzy Variogram

In crisp kriging, the experimental variogram is given by

γ̂ (hij) =
∑n(h)

i=1 [Z (xi , yi ) − Z (x j , y j )]2

2n(hij)
(5.59)

where n(h) is the number of data pairs separated by the same h; under isotropy
conditions only, magnitude ‖h‖ is considered.

If data Z̃ (x1), Z̃ (x2), . . . , Z̃ (xn) are fuzzy numbers, then fuzzy arithmetic opera-
tions [2] can be used to evaluate experimental variogram

γ̂ (h) =
⊕n(h)

i=1 [(Z̃ (xi , yi ) � Z̃ (x j , y j )) ⊗ (Z̃ (xi , yi ) � Z̃ (x j , y j ))]

2n(hij)
. (5.60)

After the experimental variogram has been calculated, a theoretical variogram has
to be chosen and fitted to it (see Figures 5.11 and 5.12). The classical method to fit
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FIGURE 5.11 Fuzzy experimental variogram.

a model γ to a finite set of data (hi , γi ), (i = 1, 2, . . . , N (h)) is based on the least
squares method. Extending that method to fit a fuzzy model γ̃ to fuzzy data (hi , γ̃i ),
we have to minimize

F( p̃1, p̃2, . . . , p̃q ) =
N (h)∑
i=1

d(γ̃i , γ̃
∗(hi ))

2, (5.61)

where ( p̃1, p̃2, . . . , p̃q ) are the fuzzy parameters of γ̃ ∗.
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FIGURE 5.12 Fuzzy theoretical variogram fitted to experimental fuzzy values.
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A distance d between fuzzy numbers has to be defined. Taking the metric in
Equation (5.49), we have

F( p̃1, p̃2, . . . , p̃q ) =
N (h)∑
i=1

[
(γ −

i − γ −(hi ))
2 + (

γ 1
i − γ 1(hi )

2
) + (γ +

i − γ +(hi ))
2
]
.

(5.62)
Using, for example, a fuzzy spherical theoretical variogram model

γ̃ ∗(h) =

⎧⎪⎪⎨⎪⎪⎩
0̃, h = 0

C̃0 ⊕ C̃1 ⊗
(

3h
2a − h3

2a3

)
, 0 < h ≤ a

C̃0 ⊕ C̃1, h > a

, (5.63)

where the variogram parameters are the range a, the nugget effect C̃0, and the sill
C̃0 ⊕ C̃1. Since a is a distance, it will be considered as a real value. Taking C̃0 and C̃1

as triangular fuzzy numbers, we have C̃0 = (C−
0 /C1

0/C+
0 ) and C̃1 = (C−

1 /C1
1/C+

1 ).
So, the variogram can be written as

γ̃ ∗(h) =

⎧⎪⎪⎨⎪⎪⎩
(0/0/0), h = 0(
C−

0 /C1
0/C+

0

) ⊕ (
C−

1 /C1
1/C+

1

) ⊗
(

3h
2a − h3

2a3

)
, 0 < h ≤ a(

C−
0 /C1

0/C+
0

) ⊕ (
C−

1 /C1
1/C+

1

)
, h > a

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(0/0/0), h = 0(
C−

0 + C−
1

(
3h
2a − h3

2a3

)
/C1

0 + C1
1

(
3h
2a − h3

2a3

)
/C+

0

+C+
1

(
3h
2a − h3

2a3

))
, 0 < h ≤ a(

C−
0 + C−

1 /C1
0 + C1

1/C+
0 + C+

1

)
, h > a

.

(5.64)

Substituting in Equation (5.62), using ηi (a) = h3
i

2a3 − 3hi
2a to simplify, it turns out

F(a, C̃0, C̃1) =
N (h≤a)∑

i=1

[
(γ −

i + C−
0 + C−

1 ηi (a))2 + (
γ 1

i + C1
0 + C1

1ηi (a)
)2

+ (
γ +

i + C+
0 + C+

1 ηi (a)
)2] +

N (h>a)∑
N (0<h≤a)

[
(γ −

i − C−
0 − C−

1 )2

+ (
γ 1

i − C1
0 − C1

1

)2 + (γ +
i − C+

0 − C+
1 )2

]
. (5.65)

Assuming that F is a function of u = (a, C−
0 , C1

0 , C+
0 , C−

1 , C1
1 , C+

1 ), we want to
find u∗ that minimizes F subject to conditions 0 < a, 0 ≤ C−

0 C1
0 ≤ C+

0 , and
0 ≤ C−

1 ≤ C1
1 ≤ C+

1 . This theoretical variogram will be used to model spatial
variability, providing, by Equation (5.55), the covariance values for the kriging process
(see Figure 5.13).
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FIGURE 5.13 Fuzzy surface resulting from the fuzzy kriging interpolator for fuzzy triangular
data in Figure 5.5.

5.3.3.2 Kriging Fuzzy Data

To estimate the value Z̃ (x0, y0) at a position (x0, y0) ∈ D, where no observation is
known, we may use the fuzzy estimator

Ẑ (x) =
n⊕

i=1

λi � Z̃ (xi ),

where sum ⊕ and scalar multiplication � are operations defined for fuzzy numbers
(see, for example chapter 1).The weights λi are to be estimated so that Ẑ (x) is un-
biased, E Ẑ (x) = E Z̃ (x) = m̃ and the variance VarẐ (x) = Ed(Ẑ (x), E Z̃ (x))2 is
minimum. From the first condition, we get

n∑
i=1

λi = 1. (5.66)

To avoid mixed products, we impose also that the weights should be non-negative

λi ≥ 0, i = 1, 2, . . . , n. (5.67)

Therefore, we get

Ẑ (x) =
(

n∑
i=1

λi Z−(xi , yi )/
n∑

i=1

λi Z1(xi , yi )/
n∑

i=1

λi Z+(xi , yi )

)
,

and adding the minimum variance condition, we have the following optimization
problem to solve

min∑n
i=1 λi =1,

λi ≥0, i=1,2,...,n

Ed(Ẑ (x, y), E Z̃ (x, y))2.
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Diamond([23]) shows that

Ed(Ẑ (x, y), E Z̃ (x, y))2 =
n∑

i, j=1

λiλ j (C
−(hi j ) + C1(hi j ) + C+(hi j ))

− 2
n∑

i=1

λi (C
−(hi0) + C1(hi0) + C+(hi0))

+ C−(0) + C1(0) + C+(0)

or, in matrix notation,

Ed(Ẑ (x, y), E Z̃ (x, y))2 = λt Cλ − 2λt c + c,

with

λ = [λi ]i=1,2,...,n,

C = [Ci j ]i, j=1,2,...,n, Ci j = C−(hi j ) + C1(hi j ) + C+(hi j ),

c = [ci ]i=1,2,...,n, ci = C−(hi0) + C1(hi0) + C+(hi0),

c = C−(0) + C1(0) + C+(0).

Then, the optimization problem to solve in order to get the weights λi has the con-
strained quadratic form

min∑n
i=1 λi =1,

λi ≥0,i=1,2,...,n

λt Cλ − 2λt c + c.

Introducing the Lagrange multiplier μ for the condition in Equation (5.66) and
multipliers ν1, ν2, . . . , νn for the conditions in Equation (5.67), the weights λi must
satisfy the the Kuhn-Tucker conditions [73], leading to the system

n∑
i=1

Ci jλi − ν j − μ = c j j = 1, 2, . . . , n

n∑
i=1

λi = 1

n∑
i=1

νiλi = 0

νi , λi ≥ 0 i = 1, 2, . . . , n
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on Surfaces

Giovanni Gallo
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6.1 GENERAL CONSIDERATIONS

Errors and uncertainty are an important issue in any form of scientific communication.
It is hence natural that many tools and standard techniques have been developed
for 2D visualization of scientific data since the early start of scientific visualization,
representing uncertainties of points in 2D as vertical bars, graphing probability density
curves and surfaces, and displaying uncertainty side by side. When the data sets are
large, complex, and/or multidimensional, the problem becomes more challenging. It
is hence not surprising that the visualization research has devoted several efforts to the
problem of the visual representation of errors and uncertainty for 3D visualization.
Indeed several applications have a crucial need to correctly visualize uncertainty in the
3D case: Display of medical information and GIS are perhaps the two most relevant
examples of such applications.

The visualization of uncertainty is of course an imperative when dealing with un-
certain phenomena, but uncertainty is present at the core of the visualization problem,
and has to be taken into consideration even if the data to represent would be perfectly
known. Indeed, visualization of natural phenomena per se is a major source of uncer-
tainty; almost every visualization technique requires data filtering and interpolation.
Attention is paid to this relevant issue not too often; the error introduced because of
the adoption of some visual technique adds itself to the unavoidable errors and un-
certainty introduced by acquisition, modeling, and data transformation. These ideas
have been explicitly brought into the focus of the scientific visualization research in
the late nineties when a small set of influential papers about this subject was published
([22], [49], [85]). A schematic view of “uncertainty pipeline” in data visualization
may be found in [64] and in [85], and may be summarized as follows: Data coming
from physical phenomena acquire uncertainty in the measurement phase, in the trans-
formation phase, and in the computation of the visual output for their representation.
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FIGURE 6.1 Uncertainty pipeline from physical phenomena to visualization (From Lodha
et al., 1996. With permission).

A good visualization system to support the final visual analysis of the data requires
an “augmentation” of the standard techniques to include uncertainty information.
This path leads to the idea of “verity representation”: Data and uncertainty should be
represented together in order to provide to the user a holistic way to perceive them
and to draw correct inferences from the pictures. A schematic view of this pipeline
is given in Figure 6.1 (from [64]).

It is important to stress that there is no absolute better technique to solve the
problem of visualizing uncertainty in 3D data; in his short note, Gershon [49] pointed
out that any representation is imperfect and visual representations cannot escape this
destiny, and introduced the concept of “acceptable imperfect presentation.” Within
these methodological boundaries, research in this area of scientific visualization has
been carried out by a handful of researchers and [22] presents an updated compre-
hensive survey of the techniques introduced in the last decade to visualize uncertainty
and errors in 3D.

True to the case, the GIS community carried out some of the earliest work on 3D
representation of “visualization-induced” errors; in this field, indeed, the effects of
uncertainty are of particular concern [99]. Woods and Fisher address some issues in
2D visualization of terrains and provide “gray-scaled maps” of the local root mean
square error that are supposed to be paired with false color maps carrying the primary
information of a scalar quantity. This quite naive approach sharply separates the
data visualization from the uncertainty visualization and provides uncluttered and
easy-to-appreciate maps. This technique moreover does not require any specialized
software and can be carried out with the standard visualization tools available in any
modern GIS. On the other hand, it simply disregards one of the fundamental driving
motivations of modern scientific visualization: data integration. Treating uncertainty
as an extra variable, increasing the dimension of the data set by one, is a simple
legitimate solution but it is an unsatisfactory one; uncertainty is not a variable just
like all the others in that it is associated with some measure of another variable.
In order to provide to the observer some meaningful clues, the geometry of the
variable under examination has to be integrated with the uncertainty information [51].
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The need for a holistic approach to represent data, together with their uncertainty, has
been also called “verity representation” by some researchers [85].

A taxonomy of the visualization techniques for uncertainty splits them into two
great categories: intrinsic and extrinsic method. More precisely, intrinsic method-
ologies generally rely on augmenting the usual visual variables adopted in scientific
visualization (position, size, brightness, texture, color, orientation, and shape) with
variables such as boundary (of variable thickness, texture, and color), blur, trans-
parency, animation, and extra dimensionality. Intrinsic techniques are more often as-
sociated with the representation of continuous (or to say it better “dense”) data sets.
Extrinsic methodologies include objects such as dials, thermometers, arrows, bars,
objects of different shapes, and complex objects (glyphs). These last techniques are
often associated with discrete (or to say it better “sparsely sampled”) data sets. These
approaches moreover pose a complex human perception problem: While a glyph may
be appropriate by itself, the user’s perception may be different when a group of glyphs
is presented in various scales and locations [85]. In both intrinsic and extrinsic cases,
some visual metaphors reveal themselves more appropriate than others to carry un-
certainty information: dashed lines instead of solid ones, thick blurred lines instead
of thin sharp ones, arrows attached to points and lines, blurred icons, and multiple
over-imposed icons. The intrinsic-extrinsic paradigm by itself, however, does not
provide a complete view of the field. A classification of visualization technique into
dynamic and still schemes has been also proposed [76], and multimodal approaches
like sonification [65] or animation [12] have to be taken into consideration to get a
complete panorama of these research areas.

It is beyond the scope of this chapter to provide an exhaustive survey; instead, in
the following subsections, the taxonomies mentioned above provide a general guide to
review some published proposals for visualizing uncertainties that are more relevant
to the GIS case. In particular, techniques to visualize uncertainty in flow computation
and visualization that constitute a lively research subarea in this topic are intentionally
left out for sake of brevity and to keep the focus on GIS.

6.2 INTRINSIC TECHNIQUES

In 1995, Wittenbrink [98] observed that interpolation is often at the core of data
representation and analysis. Traditional interpolation schemes, unfortunately, may
introduce an artificial “smoothness” in the data, conveying the wrong impression that
data behave (at least locally) as well-behaved mathematical functions. To circumvent
this, Wittenbrick proposed to use iterated fractal system (IFS) to interpolate between
data. The resulting surfaces present a user-controlled degree of irregularity, but are, at
the same time, constrained to the original data. The recursive nature of IFS moreover
allows for fast rendering or for the adoption of IFS interpolation in substitution of
traditional interpolation techniques locally and only in the subareas where it is needed.
Wittenbrink shows that the roughness of the resulting surface is controlled with the
choice of a few parameters that could be, in turn, selected according to the degree of
uncertainty of the data to interpolate.

In 2003, Miller et al. [76] proposed a technique to visualize on a 2D map
uncertainty linked with the results provided by a simplified mathematical model of
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the global water balance. A false color map is adopted to visualize water balance that
is, of course, the most important variable of this study. For each pixel in the map, a hue
is selected using a fixed color map, according to the value associated to that pixel. For
example, a “cold-to-warm” color palette may be adopted to represent, respectively,
low and high values of the scalar field that one wishes to map. Typically, a legend of
the adopted color map next to the map makes the values immediately appreciable to
the visual observer. To visualize the uncertainty affecting the estimate of the scalar
field at each pixel, a variation of the luminance of the affected point is adopted, while
its hue is fixed. The space of false colors that this technique eventually adopts may be
represented by a triangle; the hue variation (the color map) is represented along one of
its edges, and the variation in luminance is represented along the segments connecting
this edge with the opposite vertex. This last vertex has a neutral hue and zero lumi-
nance value; it represents the maximum amount of uncertainty in the model. Since the
technique is intrinsically 2D, room is left to introduce extrinsic objects (vertical bars)
to enforce the uncertainty perception or to visualize other variables of the model.

6.3 EXTRINSIC TECHNIQUES

In 2000, Cedilnik and Rheingans [17] proposed an innovative approach called “pro-
cedural annotation.” The basic idea is to augment the data visualization, adding to the
“visual channels” ordinarily used to represent the data values a new “visual layer”
whose perceptive characteristics are controlled in a procedural way according to the
local amount of uncertainty. To be effective, this new layer (the “annotation”) must
obey some rules that Cedilnik summarizes as: “Procedurally generated — can be
evaluated at any point of the image independently from other points. “ Perceptually
normalized — same amount of energy present at every place. Inherently meaning-
ful — have some intuitive way of presenting the uncertainty.” Reasonably fast – the
generation of procedural annotations should not slow down the visualization. A con-
crete example of procedural annotation proposed by Cedilnik in the same paper is
the following. Plane scalar data are represented in a rectangular region with a chosen
color map. A rectangular grid (whose size is adjusted in order not to get percep-
tively over-important) of brighter lines is overimposed on this visualization. Cedilnik
discusses several proposals: Lines may be thinned out, emboldened, perturbed by
geometrical deformation, perturbed by punctual noise, and so forth. To get an idea
of the good results that this approach may provide in the GIS area, a typical annoted
map is reported in Figure 6.2, from Cedilnik [17].

In 2002, Olston and Mackinlay [84] discussed visualization issues related with
uncertainty. Following the claim that generally uncertainty may be classified into two
broad categories, statistical and bounded, they recommend the adoption of different
visualization devices for the two cases. Statistical uncertainty arises when data are
analyzed and summarized with some statistical procedure; in this case, what one
wishes to represent is a more or less peaked density distribution. Bounded uncertainty,
on the other hand, simply reports the range enclosing the observed data and avoids
to make any other assumption on their distribution. Their analysis is exemplified in
a very simple case: error-bars and box-plot. In this case, they recommend to use

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

October 16, 2007 14:28 6395 6395˙Book

Visualization and Analysis on Surfaces 109

(a) (b)

FIGURE 6.2 (a) Original data; (b) the grid annotation has been overimposed. The grid is
thinned in less uncertain areas and thickened in the most uncertain ones (From Cedilnik and
Rheingans, 2000. With permission).

an “ambiguated” form of these traditional glyphs to represent bounded uncertainty
of univariate functions. This paper provides no real suggestion to generalize these
proposals to higher dimensions; a rather pessimistic claim about the difficulty of
solving this issue with extrinsic methods is its main conclusion.

In 2005, Botchen et al. [11] proposed a generalization of the traditional “spot
noise” technique introduced in 1991 by van Wijk to represent uncertainty in flow
visualization. The technique applies a procedural texture to the vector field. The
content of high frequencies of the texture is inversely proportional to the uncertainty.
The texture is hence blurred in areas of strong uncertainty and finely detailed in areas
of small uncertainty. The basic texture is hence blurred and distorted according to the
vector field that has been computed to describe the flow. The good results produced
in this way, unfortunately, do not appear immediately useful in the GIS area, where
dynamic representation of flows is not a common task.

6.4 MIXED TECHNIQUES

The uncertainty problem in interpolating a surface from a cloud of 3D points is
an especially relevant case that has got major attention from the computer graphics
community since the advent of fast and reliable 3D scanners. These devices provide
unstructured (frequently noisy) point clouds that have to be cleaned and processed into
a geometric surface representation. Several authors [9] have proposed to solve this
problem, producing instead of a thin-sheet surface a “fat surface.” This idea is certainly
valid in reverse-engineering application, but to apply it to uncertainty visualization,
an appreciation of the thickness of the fat surface has to be made possible. The only
way to achieve it is through transparency. Transparency, in turn, may easily obfuscate
a correct perception if the surface to model is geometrically complex.

To overcome this difficulty in 2002, Grigoryan and Rheingans [51] proposed a
technique called “probabilistic surface.” The mainstream computer graphics tech-
nique to visualize surfaces is to triangulate them and to send to the graphic hardware
the description of the triangles coming from this transformation. Modern graphic
processors are indeed optimized in dealing with triangles and, as such, they achieve
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amazing performances. As an alternative (or better, complementary to the “triangle
primitive model”), simple primitives, other than triangles, have been proposed. The
most popular of such graphic primitives is the “point.” Images built mapping into
the screen points have the typical “cloudy” appearance that makes them a natural
choice for uncertainty representation. The probabilistic surface technique starts with
a surface represented with a traditional triangular mesh. Assume that at any vertex
of the mesh, an uncertainty measure has been provided. For each triangular facet, a
random set of points lying on that facet is generated. The number of such points is
user-controlled. These points are hence displaced, colored in a different manner from
the supporting facet, or made transparent to some degree, according to the interpo-
lated uncertainty value that can be assigned to each one of them. The user may choose
to visualize this “cloud” of points together with the supporting triangulated surfaces
or without it. The resulting images may be considered an “intrinsic” representation
of the uncertainty, but since a point could be considered as a very elementary (yet
powerful!) glyph, the method could be considered extrinsic as well. This technique
has been applied to visualize boundaries of tumors in the human body, as a means to
help surgeons in planning treatments, and in general, it is very effective to visualize
3D surfaces affected by uncertainty. To get complete advantage of the technique,
however, the user has to be provided with some even limited possibility of navigating
into the 3D space. The full 3D structure of the cloud is, indeed, best appreciated when
the surface moves relative to the observer in a slow controlled way.

In conclusion, this section is perhaps a little too sketchy. As the above analy-
sis shows there is a wide choice of methods and techniques that can be applied to
the problem of uncertainty visualization. After about 10 years of research, it seems
to be recognized by the mainstream that uncertainty cannot be put aside and that
good scientific visualization has to include it, possibly in a holistic or, at least, well-
integrated way with the other data. The above review should convince that there is no
single method that is best suited for all GIS applications. When the interest is focused
on the analysis of the data and this analysis does not require to go into 2D or into 3D,
the annotation approach of [17] seems to be the most economic and elegant. When
appreciation of volumes or of terrains is crucial, the top front methods seem to be
all related to the proposal of [51] and to the idea of probabilistic surfaces. A gen-
eral purpose GIS should perhaps include both approaches as a standard tool to help
practitioners to integrate uncertainty representation into the illustrations of their data.
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Cidália Fonte, Jorge Santos, Gil Gonçalves,
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7.1 LINEAR INTERPOLATION — BACCHIGLIONE RIVER

Environmental regulations require the monitoring of the environmental state of a
water basin in order to preserve and improve the water quality with respect to a target
fixed in advance in terms of indexes. The necessity to represent a large amount of
data related to an observation period and to compare it with respect to an ideal target
(represented by a suitable index) compels to consider the uncertainty involved in the
data survey and classification. The uncertainty arises from:

• lack of precision in environmental surveying,
• vagueness of the quality index definitions,
• arbitrariness in the classification with respect to the indices.

As pointed out by [89], thresholds for environmental indices are meaningful only
in the context of the knowledge of natural background levels, regulatory policy, and
the vulnerability of the main environmental components, and this implies that their
values are comprised within some ranges according to some degree of confidence.
Therefore, it is natural to relate environmental indices and their thresholds to some
idea of acceptability measure, which would be restrictive to treat as a crisp number
but instead could in a more natural way encompass some range. Hence, an environ-
mental index or threshold could be interpreted as an interval or, more generally, as
the membership in a fuzzy set that is constructed from a nested sequence of intervals
together with a presumption level for each interval. The representation of uncertainty
in an environmental survey by means of fuzzy number interpolation allows to obtain
a continuous model of the pollutants along the main axis of a basin, which is useful
to locate the pollution sources, to monitor them, and to operate in order to improve
the environmental quality.
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7.1.1 FUZZY REPRESENTATION OF RIVER POLLUTION

The proposed methodology was applied to a specific case study: the water quality
monitoring of Bacchiglione River in the northeastern part of Italy. Water monitoring
is carried out by Veneto Region Environmental Prevention and Protection Agency
(ARPAV), the institutional body with the responsibility of environmental monitoring
and control of pollution sources. The monitoring is referred to the period 2000–2004.
Since January 1, 2000, the monitoring network has been reorganized according to the
legal disposition of the Italian Decree no. 152/1999 so that the period that the data set
analyzed can be considered homogeneous (the sampling frequency is monthly, the
stations are not moved, and so forth.).

This work considers the Bacchiglione River as axis of the water basin. Along the
river, there are seven monitoring places where monthly samples are collected and an-
alyzed for tracing polluting substances like nitrogens, toxic metal, hydrocarbons, and
bacteria. Therefore, river monitoring consists of a sampling sequence during 1 year,
and the water quality in a basin is established with respect to a long period of observa-
tions. In this work, fuzzy representation was used in order to summarize the sampling
observations and to represent the uncertainty of monitoring. The fuzzy number Z̃
collects 4 years of observations of a monitor point and has been constructed preserv-
ing the convex hull property as a map (α-level, interval), which associates to each
α-level the smallest, median interval that contains a fraction (1−α) of the set of data.
Although a little simplistic, we have found that such a construction is sufficiently
robust and compares well with statistical considerations. Then, these fuzzy num-
bers representing the sampled quantity were interpolated using cubic splines, which
envelop the data in order to have a continuous model as a function of the distance
to the mouth of the river (see [4]). The splines are finally interrogated at each kilo-
meter using quality threshold. Figure 7.1 shows a representation of the interrogation
involved in water monitoring. Notice that the resulting lines do not represent means

Quality threshold

Uncertain quality

Fuzzy overtaking

FIGURE 7.1 Fuzzy overtaking.
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FIGURE 7.2 Bacchiglione River basin.

but the requirement that the quality threshold corresponding to each index is exceeded
in the sense of fuzzy overtaking with δ = 2

3 (see [4] and Figure 7.2).

7.1.2 RESULTS

From Figure 7.3, a higher level of contamination in the lower part of the basin, due
to urban sewage and agrochemical loads along the whole hydrographic basin, is ev-
ident. Figure 7.4 shows the two main contributions of civil and industrial loads with
the peak of chemical oxygen demand (COD) as seen in the towns of Vicenza and
Padua. The civil load is confirmed in Figure 7.5 with Escherichia coli, an indicator of
fecal pollution (both of human and of animal origin). The river Bacchiglione presents
a nitrate contamination in relation to agricultural leachate (Figure 7.6) in the middle
and lower parts of the hydrographic basin. The biochemical oxygen demand (BOD5)
(Figure 7.7) follows the same graph of Figure 7.4 for COD but in a more evident
way: the peaks indicate contributions of the discharges first of the town of Vicenza
and then of the town of Padua. Low values of oxygen saturation percentage, showed
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in Figure 7.8, is related to water pollution. High values could be related to water
movements (falls, narrowing of the river, etc.). Figure 7.9 shows phosphorus values
along the river that are related to the agricultural exploitation of the river basin lands.
These human activities are more intense near the mouth of the river. The same graph is
pointed out from Figures 7.10, 7.11, 7.12, and 7.13 in the period 2000–2004. Total co-
liforms (TC), fecal coliforms (FC), Escherichia coli (EC), and Enterococci are used as
bacterial indicators for water quality monitoring and health assessment as each group
of bacteria is prevalent in the intestines and feces of warm-blooded mammals, includ-
ing wildlife, livestock, and human. These indicators are not pathogens: Fecal coli,
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FIGURE 7.11 Fecal coliforms.
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fecal streptococci, and salmonella are used because they are less costly to detect and
describe than the pathogens themselves.

In general, the Bacchiglione River basin is characterized with a high civil and
industrial load and a significant agricultural load. The worst situation along the river
is pointed out after the sewage system contributions for the towns of Vicenza (upper
basin part) and Padua (lower basin part).

These results suggest that fuzzy interpolation is able to represent environmental
state in terms of data measurements. Furthermore, fuzzy uncertainties can be queried
to assess environmental quality from data directly, without statistical consideration
about data.

7.2 AIR POLLUTION

Geographical data concerning environment pollution consist of a large set of temporal
measurements (representing, e.g., hourly measurements for 1 year) at a few scattered
spatial sites. In this case, the temporal data at a given site must be summarized in
some form in order to employ them as input to build a spatial model. Summarizing the
temporal data (data reduction) will necessarily introduce some form of uncertainty,
which must be taken into account.

Statistical methods reduce the data to some moments of the distribution function
as means and standard deviations, but these procedures rely on statistical assumptions
on the distribution function, which are hard to verify in practice. In the general case,
without any special assumption on the distribution function, statistical reduction can
grossly misrepresent the data distribution. An alternative way is to represent the data
with fuzzy numbers, which has the advantage of keeping the full data content (con-
servatism) and also of leading to computationally efficient approaches. This method
has been employed for ocean floor geographical data by [40] (in the interval case)
and [3] (for fuzzy numbers), and to environmental pollution data by [4].

Once the temporal data at the given sites have been summarized with fuzzy num-
bers, then it is possible to resort to fuzzy interpolation techniques in order to build
a mathematically smooth deterministic surface model representing the spatial dis-
tribution of the quantity of interest. An alternative approach would be to employ
fuzzy kriging, which will build a stochastic model. However, our aim is to construct
a smooth deterministic model, because this could be used for simulation purposes.

We shall use fuzzy kriging only to estimate the missing information, which is
required just outside the domain boundary, as we shall see, in order to build a consistent
deterministic model.

7.2.1 FUZZIFICATION AND MAP CONSTRUCTION

The construction of a fuzzy map consists of the following steps:

Fuzzification of data: The fuzzy number Z̃ has been constructed preserving
the convex hull property given in Equation (2.4) as a map (α-level, interval),
which associates to each α-level the smallest median interval that contains
a fraction (1 − α) of the set of data.
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Kriging: Outside the region of measured data, “virtual” observations are estimated
by kriging in order to complete the information needed for the approximation
procedure.

Approximation: A smooth and deterministic model is fitted by a fuzzy
B-spline.

For the kriging step, the following correlation function was chosen

C(h) = C0 − e− h
α (7.1)

where C0 is the variance of the fuzzy distribution. This is a simple assumption for an
isotropic distribution of the data. Moreover, notice that the choice of an anisotropic
correlation function for the kriging procedure can be used to take into account more
complex characteristics of the region like orography and microclimate.

The data for CO referring to the city of Catania in the year 2001 have been
represented by 17 fuzzy numbers through the α-level construction previously intro-
duced. Each fuzzy number represents the measures of a sensor placed in the city.
Eight kriged points were added at the vertexes and at the sides of the map, in order
to make an estimation on the bound of the map. Then, we have chosen a regular grid
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FIGURE 7.14 The z axis represents the level of pollution defuzzified by overtaking.
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6 × 8 and constructed the fuzzy B-spline surface of order 4 by solving the problem
in Equation (2.17). At last the fuzzy map was interrogated at growing level of CO.

Figure 7.14 shows on the z axis the level of CO pollution exceeded in the mapped
urban area (in the sense of Definition 1.20).

In this case, the fuzzy kriging procedure has been used only to supply missing
information just outside the boundary of the region of interest. However, one could en-
visage a hybrid method where the kriging procedure would create a regularly spaced
set of fictitious data observations in the form of fuzzy numbers, which afterward
would be approximated by a fuzzy B-spline, in order to construct a viable smooth
deterministic model.

7.3 IDENTIFICATION OF ZONES SUITABLE FOR CONSTRUCTION
USING FUZZY GEOGRAPHICAL ENTITIES

As explained in chapter 4, fuzzy geographical entities (FGEs) can be constructed using
several approaches within several contexts. Different types of information can be used,
and therefore the resulting FGEs may have different semantics.

The present example illustrates an application where FGEs are built and a simple
analysis is performed with those entities. The aim is to identify the zones suitable
for constructing an infrastructure. The regions must have relatively small slopes and
good solar exposure. In a traditional crisp analysis, the conditions imposed could
be slopes between 0 and 10 percent and more or less faced to south, for example,
with an aspect between 135 and 225 degrees (considering 0 degrees in the north
direction).

A digital terrain model with 10-meter resolution was used. The slope and aspect
of the region under study were computed and zones corresponding to the criteria
described above identified. These regions can be seen, respectively, in Figures 7.15
and 7.16. To obtain the region satisfying both conditions, an overlay of the above
results is done, determining the intersection of the obtained regions. The resulting
regions are shown in Figure 7.17.

Notice that, with this crisp approach, regions with slopes a little larger than
10 percent are not considered as adequate at all, and the same occurs to regions
with aspect smaller than 135 degrees or larger than 225 degrees. For example, a zone
with slope equal to 11 percent and aspect of 226 degrees is not considered appropriate,
while a zone with 10 percent slope and aspect equal to 225 degrees is considered as
good as any other. This abrupt transition between the regions considered as conve-
nient, and the ones excluded à priori from the analysis, can be avoided if, instead of
considering the appropriate values of slope and aspect with crisp sets, fuzzy sets are
used. Figures 7.18 and 7.19 show example membership functions that can be used to
consider the slope and aspect values appropriate for the study.

Degrees of membership to the “convenient slopes for construction” and “regions
with good solar exposure” are computed for all regions. The results are shown in
Figures 7.20 and 7.21. The overlay of these results is done with the fuzzy logical
operator for intersection, and the results are shown in Figure 7.22 where, for each
cell, a degree of suitability for construction is obtained. Figure 7.23 shows all regions
with grades of membership between 0 and 1, that is, all regions that have not been
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Regions with slope between 0% and 10%

FIGURE 7.15 Regions with slope between 0 and 10 percent.

Regions with aspect between 135° and 225°

FIGURE 7.16 Regions heading south (aspect between 135 and 225 degrees).
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Regions with slope between 0% and 10% and aspect between 135° and 225°

FIGURE 7.17 Crisp zones suitable for construction (relatively small slopes and good solar
exposure).

identified in the crisp analysis and were identified in the fuzzy one. Some of these
regions have relatively good conditions, since they have grades of membership close
to 1 (177 cells have grades of membership between 0.9 and 1, and 1159 between
0.7 and 1).

A similar analysis could be performed considering some crisp subintervals for
slope values between 10 and 20 percent, and for aspect from 90 to 135 degrees and
from 225 to 270 degrees. If, for example, three subintervals were considered inside
each mentioned interval, after the overlay, nine new classes would be formed, resulting

FIGURE 7.18 Membership function of the slope values to “convenient slopes for
construction.”
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FIGURE 7.19 Membership function of the aspect values to “regions with good solar
exposure.”

from combinations between these classes. To take decisions based on this information,
degrees of preference needed to be applied to each class, resulting in something similar
to the result immediately obtained with the fuzzy analysis. Even though some similar
analysis could be done using the crisp subintervals for the less suitable conditions, the
main disadvantage of this crisp approach is that abrupt transition between the classes
would always be present, which results in assigning different values of suitability to
regions with similar characteristics because they are located close to the borders of
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FIGURE 7.20 Fuzzy geographical entity corresponding to “convenient slopes for
construction.”
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FIGURE 7.21 Fuzzy geographical entity corresponding to “regions with good solar
exposure.”
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FIGURE 7.22 Fuzzy regions with relatively small slopes and good solar exposure.
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FIGURE 7.23 Regions with degrees of membership to “zones with relatively small slopes
and good solar exposure” larger than 0 and smaller than 1.

contiguous intervals. On the other hand, a fuzzy approach enables gradual transitions
to be considered and consequently a more realistic analysis.

7.4 UNCERTAINTY IN TERRAIN SLOPE CLASSIFICATION

The classification of topographic surface represented by a digital elevation model
(DEM) into specific slope classes is a common task in GIS applications. However,
the computation of these classes from a DEM is influenced by the uncertainty in the
elevations of those models. Monte Carlo method has been used to study the effect of
DEM uncertainty on topographic parameters. This method requires intensive com-
putation, which turns the implementation very hard in most GIS software packages.
Interval arithmetic (IA) has been used as a successful alternative to the Monte Carlo
method. Intervals of variation are used instead of a significant number of simulations.
The generalization from IA to fuzzy numbers is straightforward if we consider the
interval as the fuzzy number support. The results from both methods show that the
propagation of DEM uncertainty to the calculation of slope classes using IA is an
interesting alternative to Monte Carlo method, since it does not require much intensive
computation, which turns the implementation easier in GIS analyses [50].

Slope classification is affected by elevation uncertainty in DEM, which is gen-
erated by errors in the acquisition of topographical data and in the interpolation
methods used to build the elevation model. The uncertainty includes errors or un-
certainties due to imperfections of measurement systems and also the effect of the
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cartographic generalization, which cannot be avoided in cartographic modeling. In
order that information about the quality of the topographic surface can be accessed
by GIS users during spatial analysis, the following procedure has to be executed:

1. build an elevation uncertainty model;
2. propagate that uncertainty to derived terrain features (slope, aspect,

curvature . . . );
3. specify appropriate methods for uncertainty evaluation, including visual-

ization.

Here, we use a simple uncertainty model of cartographic terrain representation,
which states that for a terrain representation based on contour lines and point eleva-
tions, 90 percent of control point elevations should have a mean-squared error not
bigger than half of the contour interval. Here, we assume that DEM uncertainty can
be modeled adding to every grid elevation a disturbing term from a random field
spatially independent from neighbors. The Monte Carlo simulations are generated by
the simple formula:

z(x, y) = z0(x, y) + N (μz, σz), (7.2)

where the mean μz is 0 and σz = 0.304�z, following the previous uncertainty
model (�z is the contour interval). Interval elevations are considered here confidence
intervals based on the same standard deviation σz .

Both methods were applied to the region in Figure 7.24. The results are condensed
in Figure 7.25 and in Table 7.1.

49800
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FIGURE 7.24 Shaded relief of study area.
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FIGURE 7.25 (a) Midpoint of interval slope; (b) mean value of Monte Carlo simulations.

TABLE 7.1
Confusion Matrix Comparing Uncertainty in Slope Classification Using Monte
Carlo Method and Interval Arithmetic

Slope classes with uncertainty — Monte Carlo method

Classes I II III IV V Total PCC

I 3755 3244 0 0 0 6989 53.73
Slope classes with

uncertainty — interval

arithmetic

II 0 18266 496 0 0 18762 97.36
III 0 0 12654 89 0 12743 99.3
IV 0 0 0 3770 43 3813 98.87
V 0 0 0 0 3882 3882 100

Total 3755 21500 13150 3859 3925 46189 91.64

The confusion matrix in Table 7.1 shows that the amount of cells classified in the
same way by both methods is in fact 92 percent. Furthermore, if class I is ignored,
the amount of pixels classified in the same way for each class is very high (more
than 97 percent). This means that both methods of uncertainty propagation produce
almost the same results for classes II, III, IV, and V. However, for class I, there is
only 54 percent of agreement. This smaller agreement is due to the strong variation
of elevation frequencies around the 5-percent value, which induces instability when
class limit is close to that region of the histogram. For example, if we change classes
I and II to 0–7 percent and 7–10 percent, respectively, we will get the values 82 and
96 percent of agreement, respectively. Therefore, the IA is an alternative to evaluate
elevation uncertainty propagation to slope classification.
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8.1 PSEUDO CODE FOR FUZZY SURFACES

8.1.1 CONSTRUCTION OF A FUZZY B-SPLINE

The construction of a fuzzy B-spline can be done with a resolution of a linear pro-
gramming problem. In fact, the pseudo code 1 shows a single statement to perform the
resolution of the linear programming problem in Equation (2.17). It must be noticed
that this problem can be hard to solve numerically because it could involve thousands
of variables and constraints, but this is not unusual in linear programming. However,
many traps could fail the computation. Basically correlations among geographical
data (which are very frequent) can lead to linear combination and could block the
start of many linear routines. An easy solution to these problems can be a simple
exchange of the rows into the matrix of the linear problem. This easy heuristic can
help the pivoting strategies.

129
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Algorithm 1 B-spline construction

Require: Observation ((xi , yi ), Fi ), xGridSpace, yGridSpace
solve minimization problem in Equation (2.17) to envelop
observations return solution as fuzzy numbers for grid knot

Another important point is the grid spacing of the B-spline. It must be noticed
that fine grids introduce nodes that relax the surface on the constraints that is, reduce
the uncertainty propagation.

The fuzzy B-spline evaluation on a point (x, y) is a simple summation of the
products between F(i, j) and the respective base basei, j computed in (x, y). The
pseudo code 2 expounds this schema.

8.1.2 FUZZY OVERTAKE PSEUDO CODE

The concept of overtake is easy to implement because it requires only direct compu-
tation. The pseudo code 3 shows the summation with respect to a weight function g.

Algorithm 2 B-spline evaluation on a M × N

Require:(x, y) to evaluate
acc ← 0
for i ← 1 to N do

for j ← 1 to M do
acc ← acc + base(i, j, x, y)F(i, j)

end for
end for
return acc

Algorithm 3 Fuzzy overtake o between G and F

for all α-level do
compute the overtake oα between intervals Gα and Fα using Equation (1.81)

end for
o ← ∫

α
oα ∗ g(α)

Algorithm 4 B-spline interrogation: t > F(x, y)

Require: a threshold t (real or fuzzy), a fuzzy surface F(x, y), a δ ∈ [0, 1]
if Overtake(t, F(x, y)) > δ then

return TRUE
else

return FALSE
end if
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The algorithm for interrogation in section 8.1.2 is a predicate that returns “true”
if there is an overtake of δ between fuzzy numbers. A global interrogation on a map
can be done with one of the many algorithms of scan line.

8.2 PSEUDO CODE FOR FUZZY INTERPOLATORS

8.2.1 CONSTRUCTION OF FUZZY UNIVARIATE LINEAR SPLINES

The construction of a fuzzy univariate linear spline is based on crisp linear splines.
Every α-level limit is a crisp linear spline (see routine flspline in f uzinter p MATLAB
toolbox).

Algorithm 5 Fuzzy univariate linear spline

Require: (xd, z̃d) and evaluation positions x
for i ← 1 to NumOfPositions do

for α ← 0 to 1 do
FuzLinSpi (α) ← [ LinearSpline(xd, z−(α); xi ), LinearSpline
(xd, z+(α); xi )]

end for
end for
return FuzLinSp(x)

8.2.2 CONSTRUCTION OF FUZZY UNIVARIATE CUBIC SPLINES

The construction of a fuzzy univariate cubic spline is based on basis cubic splines.
Since these functions can be negative, consistency is to be achieved by solving a
semi-infinite optimization problem. However, for computational reasons, it is much
easier to find an approximation. Therefore, we suggest to use crisp cubic splines to
approximate the α-levels’ limits of the inconsistent fuzzy cubic splines (see routine
cfuzpline in fuzinterp MATLAB toolbox).

Algorithm 6 Fuzzy univariate cubic spline

Require: (xd, z̃d) and evaluation positions x
for i ← 1 to NumOfPositions do

for α ← 0 to 1 do
FuzCubSpi (α) ← | BasisCubicSplines(xd; xi )| ∗ z̃d(α)

end for
end for
for α ← 0 to 1

ConsistFuzCubSp(α) ← [ FittedCubSp(x, FuzCubSp−(α)),
FittedCubSp(x, FuzCubSp+(α))]

end for

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

October 16, 2007 14:28 6395 6395˙Book

132 Fuzzy Surfaces in GIS and Geographical Analysis

for i ← 1 to NumOfPositions do
for α ← 0 to 1 do

ConsistFuzCubSpi (α) ← ConsistFuzCubSp(α; xi )
end for

end for
return Consist FuzCubSp(x)

8.2.3 CONSTRUCTION OF FUZZY TINS

The construction of a fuzzy TIN just needs to triangulate the data points and find
the planes that are the α-levels’ limits for every triangle (see routine ftin in fuzinterp
MATLAB toolbox).

Algorithm 7 Fuzzy TIN

Require: (xd, yd, z̃d) and evaluation positions (x, y)
tr i ← triangulation(xd, yd)
for i ← 1 to NumOfPositions do

T ← Find Triangle in tri containing (xi , yi )
for α ← 0 to 1 do

planeT (α) ← [plane(xT , yT , z−
T (α)), plane(xT , yT , z+

T (α))]
FuzT I Ni (α) ← planeT (α, xi , yi )

end for
end for
return FuzT I N (x, y)

8.2.4 CONSTRUCTION OF FUZZY SHEPARD METHOD

The construction of fuzzy Shepard method needs to find a neighborhood of interpola-
tion positions to data points and the distances between them, to calculate the weights
(see routine fshep in fuzinterp MATLAB toolbox).

Algorithm 8 Fuzzy Shepard method

Require: (xd, yd, z̃d) and evaluation positions (x, y)
for i ← 1 to NumOfPositions do

neighs ← neighbors(xd, yd) of (xi , yi )
weights ← distances of (xi , yi ) to neighs

for α ← 0 to 1 do
FuzShepi (α) ← weights ∗ z̃(α, neighs)

end for
end for
return FuzShep(x, y)
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8.2.5 CONSTRUCTION OF FUZZY THIN-PLATE SPLINES

The construction of fuzzy thin-plate splines also needs to find a neighborhood of inter-
polation positions to data points. The weights here are determined from the solution
of a linear system of radial functions. Since weights can be negative here, consistency

suggest to use crisp thin-plate splines to approximate the α-levels’ limits of the incon-
fuzinterp MATLAB toolbox).

Algorithm 9 Fuzzy thin-plate splines

Require: (xd, yd, z̃d) and evaluation positions (x, y)
for i ← 1 to NumOfPositions do

neighs ← neighbors(xd, yd) of (xi , yi )
weights ← SolveLin((xi , yi ), neighs

for α ← 0 to 1 do
FuzTPSi (α) ← weights ∗ z̃(α, neighs)

end for
end for
return FuzTPS(x, y)

8.2.6 CONSTRUCTION OF FUZZY CUBIC SPLINES

The construction of a fuzzy cubic spline surface is based on tensor product of basis
cubic splines in x and y. Again, the consistency is to be achieved by solving a semi-
infinite optimization problem, but the best approach is also to find an approximation
using crisp cubic splines to approximate the α-levels’ limits of the inconsistent fuzzy
cubic splines (see routine cfuzpline2 in fuzinterp MATLAB toolbox).

Algorithm 10 Fuzzy cubic spline

Require: (xd, yd, z̃d) and evaluation positions (x, y)
for i ← 1 to NumOfPositions do

for α ← 0 to 1 do
FuzCubSpi (α) ← | BasisCubicSplines(xd, yd; xi , yi )| ∗ z̃d(α)

end for
end for
for α ← 0 to 1 do

ConsistFuzCubSp(α) ← [FitCubSp(x, y, FuzCubSp−(α)),
FitCubSp(x, y, FuzCubSp+(α))]

end for
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for i ← 1 to NumOfPositions do
for α ← 0 to 1 do

ConsistFuzCubSpi (α) ← ConsistFuzCubSp(α; xi , yi )
end for

end for
return ConsistFuzCubSp(x, y)

8.3 PSEUDO CODE FOR THE CONSTRUCTION OF FUZZY
GEOGRAPHICAL ENTITIES

As explained in chapter 4, several approaches can be used to construct FGEs, de-
pending on what they represent and the information available. Algorithms to build
FGEs over a tessellation are presented below, considering the four possible sources
of uncertainty mentioned in chapter 4. For all cases, a tessellation of the geographical
space is considered, and the value z of the characteristic used to define the attribute
is known in each elementary region of the tessellation.

8.3.1 UNCERTAINTY IN THE ATTRIBUTE DEFINITION

This algorithm can be used to construct FGEs when there is uncertainty in the defi-
nition of the attribute characterizing the GEs.

Algorithm 11 Uncertain attribute

Require: z j values for all elementary regions r j of the tessellation and membership
function μA(z) characterizing attribute A
for all z j values do

μFGEA (r j ) ← μA(z j )
end for

8.3.2 SEVERAL VERSIONS OF THE ATTRIBUTE

This algorithm applies when there are several versions of the attribute characterizing
a GE, resulting in uncertainty in the attribute definition.

Algorithm 12 Several versions of the attribute

Require: z j values for all elementary regions r j of the tessellation, i sets (Z A)i

corresponding to all versions (Z A and the degree of confidence of each version
i of A)
for each elementary region r j do

counter ← 0
for each version i do

if z j belongs to (Z A)i then
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counter ← counter + degree of confidence of version i
end if

end for
μA(z j ) ← counter
μFGEA (r j ) ← μA(z j )

end for

The degrees of confidence assigned to each version of the attribute must be a value
between 0 and 1, and the sum of the degrees of confidence assigned to all versions of
the same attribute must add up to 1.

8.3.3 ERRORS IN THE BASE ATTRIBUTE VALUES

This algorithm applies when the values of the base attribute at the elementary regions
are affected by errors. These errors can be used to construct FGEs.

Algorithm 13 Uncertainty in z values

Require: z j values for all elementary regions r j of the tessellation, the attribute
values Z A = [z, z] defining attribute A, the error function of each z j : EF(z j )
and the maximum and minimum values z j can take zmax and zmin

μFGEA (r j ) ←
∫ z

z EF(z j )dz j∫ zmax
zmin

EF(z j ) dzj

8.3.4 EVOLUTION OVER TIME

This algorithm applies when the geographical locations of the GEs change over time.
The information about the position of the entities in different epochs can be used to
construct FGEs.

Algorithm 14 Evolution over time

Require: all versions of the geographical entity characterized by A and the degree of
confidence of each version
for each elementary region r j do

counter ← 0
for each version do

if region belongs to version then
counter ← counter + degree of confidence of version

end if
end for
μFGEA (r j ) ← counter

end for
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8.4 PSEUDO CODE FOR OPERATIONS WITH FUZZY
GEOGRAPHICAL ENTITIES

8.4.1 FUZZY AREA COMPUTATION

The fuzzy area determination requires the computation of the crisp area of several α-
levels of the FGEs. The α-levels may be chosen by the user according to the needs and
the variation of the FGEs grades of membership. In Matlab routine fuzzyarea.m found
in the attached CD, default values α are 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 1. The pseudo code algorithm 15 shows the basic steps of the fuzzy area routine.

Algorithm 15 Fuzzy area computation

Require FGE E , set of values α ∈ [0, 1], cell size
for all α-levels do

A (α) ←area of α-level α E
end for
for i ← 1 to number of α values do

slope(i) ← slope of the segment defined by points [A{α(i)}, α(i)] and
[A{α(i + 1)}, α(i + 1)] y − intersect (i) ← y − intersect of the segment defined
by points [A{α(i)}, α(i)] and [A{α(i + 1)}, α(i + 1)]

end for
eliminate unnecessary branches of membership function
return slope, y-intersect and points (A, α)defining each branch of the fuzzy area

8.4.2 FUZZY PERIMETER COMPUTATION

Pseudo code algorithm 16 shows the basic steps of the computation of the fuzzy
perimeter of FGEs. Such as with the fuzzy area algorithm, the fuzzy perimeter deter-
mination also requires the computation of the crisp perimeter of several α-levels of
the FGE. In Matlab routine fuzzyperimter.m found in the attached CD, default values
of α are 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

Algorithm 16 Fuzzy perimeter computation

Require FGE E , set of values α ∈ [0, 1], cell size
for all α-levels do

P(α) ← perimeter of α-level α E
end for
for i ← 1 to number of α values-1 do

slope (i) ← slope of the segment defined by points [P{α(i)}, α(i)] and
[P{α(i + 1)}, α(i + 1)] y − intersect (i) ← y-intersect of the segment defined
by points [P{α(i)}, α(i)] and [P{α(i + 1)}, α(i + 1)]

end for
fuzzyperimeter(P) = max (grade of membership considering all branches defined
by points [P{α(i)}, α(i)] and [P{α(i + 1)}, α(i + 1)] to which P may belong )
return slope, y-intersect and points (P, α) defining each branch of the fuzzy
perimeter
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DISCLAIMER OF WARRANTY

We make no warranties, expressed or implied, that the programs contained in this
volume are free of error, or are consistent with any particular standard of merchantabil-
ity, or that they will meet your requirements for any particular application. They should
not be relied on for solving a problem whose incorrect solution could result in injury
to a person or loss of property. If you do use the programs in such a manner, it is at your
own risk. The authors and publisher disclaim all liability for direct or consequential
damages resulting from your use of the programs.

9.1 A FUZZY NUMBER IMPLEMENTATION IN C++

This section introduces a base of C++ code for fuzzy number implementation. The
implementation is based on a class named FuzzyNumber, which includes constructors
and arithmetic operators. The member of this class is a map that implements the
functional relation between α-level and interval. Many other operators (like inserter
and extractor for input–output operations) and fuzzy function are listed in the code.
Notice that all code is written as template with respect to a T type, which can assume
integer type or floating point type.

/*
Name: Fuzzy.h
Description: A collection of templates to define in
C++ the fuzzy arithmetic.

*/

#include "Interval.h"
#include <utility>
#include <vector>

137
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#include <map>
#include <stack>

/*
Definition of Fuzzy Number

*/
template<class T> class FuzzyNumber{ public:

typedef T valuetype;

FuzzyNumber(vector<T>&, vector<T>&);
// Constructors
FuzzyNumber();
FuzzyNumber(T&);

bool Insert(T&, Interval<T>&); // Insert of an
interval of level alpha

FuzzyNumber<T>& operator+=(const FuzzyNumber<T>&);
// Operators
FuzzyNumber<T>& operator-=(const FuzzyNumber<T>&);
FuzzyNumber<T>& operator*=(const FuzzyNumber<T>&);
FuzzyNumber<T>& operator/=(const FuzzyNumber<T>&);

pair<T,Interval<T> > operator()(const T&) const;
// Map operator

FuzzyNumber<T>& operator=(const T& a);
// Real assignment
FuzzyNumber<T>& operator+=(const T& a);
// unary operator
FuzzyNumber<T>& operator-=(const T& a);
FuzzyNumber<T>& operator*=(const T& a);
FuzzyNumber<T>& operator/=(const T& a);

map<T,Interval<T> > A; // Map representation of a
}; // Fuzzy Number

/*
Constructor of the fuzzy number zero at alpha-level zero
*/
template<class T> FuzzyNumber<T>::FuzzyNumber(){

T zero=T();
A[zero]=zero;

};
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/*
Constructor from real data of a fuzzy number given a
vector of data and a vector of levels.

It constructs an alpha-level representation of the data.
Data are ordered and for each alpha level a median
interval, which envelops a portion (1-alpha) of data.
This choice supposes data are representative of the
uncertainty.

*/
template<class T>FuzzyNumber<T>::FuzzyNumber(vector<T>&
data, vector<T> & level)

{
T zero=T(), uno=T(1), l;
unsigned n=data.size(),k;

sort(data.begin(),data.end(),less<T>());

A[zero] = Interval<T>(data[0], data[n-1]);

for (unsigned i=0; i<level.size(); i++)
{

if (zero<level[i] && level[i]<uno)
{
k=(unsigned int)(level[i]*n/2);
l=(T)(2*k)/n;
A[l]=Interval<T>(data[k], data[n-k-1]);

}
}

}

/*
alpha-level inserting

*/
template<class T> bool FuzzyNumber<T>::Insert(T& level,
Interval<T>& i){

typedef map<T,Interval<T> >::iterator CI;
pair<CI, bool> bins=A.insert(pair<T, Interval<T> >
(level, i));
CI iter;

if(!bins.second)return false;

if((iter=bins.first) != A.begin()){
iter--;
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if (!bins.first->second.in(iter->
second)) {

A.erase(bins.first);
return false;

}
}

iter=bins.first; iter++;
if (iter!=A.end() && !iter->second.in(bins.first->
second)){

A.erase(bins.first);
return false;

}
return true;

}

/*
Definition of operation "+=" between fuzzy numbers.

This operator evaluates the representation of two fuzzy
numbers and updates a result that represents the sum
of the fuzzy numbers.
*/
template<class T> inline FuzzyNumber<T>& FuzzyNumber<T>
:: operator+=(constFuzzyNumber<T>& a)

{
typedef map<T,Interval<T> >::const_iterator CI;

CI f1_end = a.A.end(), f1 = a.A.begin(),
f_end = A.end(), f = A.begin();

Interval<T> i=f->second, i1=f1->second;
T alpha=f->first, alpha1=f1->first;

for(;;){
if(f->first > f1->first){

if(f1!=f1_end){
A[alpha1] = i+i1;

if(++f1!=f1_end) {alpha1=f1->first;
i1=f1->second;}
else{ f++; A.erase(alpha);

if(f==f_end)break;
else{i=f->second; alpha=f->first;}

}
}else {
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A[alpha] = i+i1;
if(f!=f_end && ++f!=f_end){i=f->
second; alpha=f->first; }

else break;
}

} else if(f->first < f1->first){
if(f!=f_end){

A[alpha] = i+i1;
if(++f!=f_end){i=f->

second; alpha=f->first;}
else{ f1++; A.erase(alpha1);

if(f1==f1_end)break;
else {alpha1=f1->first; i1=f1->
second;}

}
}else {

A[alpha1] = i+i1;
if(f1!=f1_end && ++f1!

=f1_end) {alpha1=f1->first; i1=f1->second;}
else break;

}
}else {

A[alpha] = i + i1;
if(f1!=f1_end && ++f1!=f1_end){alpha1=f1->
first; i1=f1->second;}
if(f!=f_end && ++f!=f_end){ alpha=f->first;
i=f->second; }
if(f1==f1_end && f==f_end)break;

}
}
return * this;

}

/*
Definition of operation "-=" between fuzzy numbers.

This operator evaluates the representation of two fuzzy
numbers and updates a result that represents the sum of
the fuzzy numbers.
*/
template<class T> inline FuzzyNumber<T>& FuzzyNumber<T>
::operator-=(constFuzzyNumber<T>& a)

{
typedef map<T,Interval<T> >::const_iterator CI;

CI f1_end = a.A.end(), f1 = a.A.begin(),
f_end = A.end(), f = A.begin();
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Interval<T> i=f->second, i1=f1->second;
T alpha=f->first, alpha1=f1->first;

for(;;){
if(f->first > f1->first){

if(f1!=f1_end){
A[alpha1] = i-i1;

if(++f1!=f1_end) {alpha1=f1->first;
i1=f1->second;}
else{ f++; A.erase(alpha);

if(f==f_end)break;
else{i=f->second; alpha=f->first;}

}
}else {

A[alpha] = i-i1;
if(f!=f_end && ++f!=f_end)
{ i=f->second; alpha=f->first; }

elsebreak;
}

}else if(f->first < f1->first){
if(f!=f_end){

A[alpha] = i-i1;
if(++f!=f_end)

{ i=f->second; alpha=f->first;}
else{ f1++; A.erase(alpha1);

if(f1==f1_end)break;
else {alpha1=f1->first;
i1=f1->second;}

}
}else {

A[alpha1] = i-i1;
if(f1!=f1_end && ++f1!

=f1_end){alpha1=f1->first; i1=f1->second;}
else break;

}
} else {

A[alpha] = i - i1;
if(f1!=f1_end && ++f1!=f1_end){alpha1=f1->
first; i1=f1->second;}
if(f!=f_end && ++f!=f_end){ alpha=f->first;
i=f->second; }
if(f1==f1_end && f==f_end)break;

}
}
return * this;

}
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/*
Definition of operation "*=" between fuzzy numbers.

This operator evaluates the representation of two fuzzy
numbers and updates a result that represents the sum of
the fuzzy numbers.
*/

template<class T> inline FuzzyNumber<T>& FuzzyNumber<T>::
operator*=(constFuzzyNumber<T>& a)

{
typedef map<T,Interval<T> >::const_iterator CI;

CI f1_end = a.A.end(), f1 = a.A.begin(),
f_end = A.end(), f = A.begin();

Interval<T> i=f->second, i1=f1->second;
T alpha=f->first, alpha1=f1->first;

for(;;){
if(f->first > f1->first){

if(f1!=f1_end){
A[alpha1] = i*i1;

if(++f1!=f1_end) {alpha1=f1->first;
i1=f1->second;}
else{ f++; A.erase(alpha);

if(f==f_end)break;
else{i=f->second; alpha=f->first;}

}
}else {

A[alpha] = i*i1;
if(f!=f_end && ++f!=f_end){ i=f->
second; alpha=f->first; }

elsebreak;
}

}elseif(f->first < f1->first){
if(f!=f_end){

A[alpha] = i*i1;
if(++f!=f_end)

{ i=f->second; alpha=f->first;}
else{ f1++; A.erase(alpha1);

if(f1==f1_end)break;
else {alpha1=f1->first;
i1=f1->second;}

}
}else {

A[alpha1] = i*i1;
if(f1!=f1_end &&
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++f1!=f1_end){alpha1=f1->first; i1=f1->second;}
elsebreak;

}
}else {

A[alpha] = i * i1;
if(f1!=f1_end && ++f1!=f1_end){alpha1=f1->
first; i1=f1->second;}
if(f!=f_end && ++f!=f_end){ alpha=f->first;
i=f->second; }
if(f1==f1_end && f==f_end)break;

}
}
return * this;

}

/*
Definition of operation "/=" between fuzzy numbers.

This operator evaluates the representation of two fuzzy
numbers and updates a result that represents the sum of
the fuzzy numbers.
*/
template<class T> inline FuzzyNumber<T>& FuzzyNumber<T>
:: operator/=(const Fuzzy Number<T>& a)

{
typedef map<T,Interval<T> >::const_iterator CI;

CI f1_end = a.A.end(), f1 = a.A.begin(),
f_end = A.end(), f = A.begin();

Interval<T> i=f->second, i1=f1->second;
T alpha=f->first, alpha1=f1->first;

for(;;){
if(f->first > f1->first){

if(f1!=f1_end){
A[alpha1] = i/i1;

if(++f1!=f1_end) {alpha1=f1->first;
i1=f1->second;}
else{ f++; A.erase(alpha);

if(f==f_end)break;
else{i=f->second; alpha=f->first;}

}
}else {

A[alpha] = i/i1;
if(f!=f_end && ++f!=f_end){ i=f->
second; alpha=f->first; }
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elsebreak;
}

}elseif(f->first < f1->first){
if(f!=f_end){

A[alpha] = i/i1;
if(++f!=f_end)

{ i=f->second; alpha=f->first;}
else{ f1++; A.erase(alpha1);

if(f1==f1_end)break;
else {alpha1=f1->first;
i1=f1->second;}

}
}else {

A[alpha1] = i/i1;
if(f1!=f1_end &&

++f1!=f1_end){alpha1=f1->first; i1=f1->second;}
elsebreak;

}
}else {

A[alpha] = i / i1;
if(f1!=f1_end && ++f1!=f1_end){alpha1=f1->
first; i1=f1->second;}
if(f!=f_end && ++f!=f_end){ alpha=f->first;
i=f->second; }
if(f1==f1_end && f==f_end)break;

}
}
return * this;

}

/*
Definition of binary operator "+" between fuzzy numbers.
This operator evaluates the representation of two fuzzy
numbers and returns a result that represents the sum
of the fuzzy numbers.
*/
template<class T> FuzzyNumber<T> operator+(const
FuzzyNumber<T>& a, constFuzzyNumber<T>& b)

{
FuzzyNumber<T> r = a;
return r+=b;

}
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/*
Definition of binary operator "-" between fuzzy numbers.
This operator evaluates the representation of two fuzzy
numbers and returns a result that represents the sum
of the fuzzy numbers.
*/
template<class T> FuzzyNumber<T> operator-(const
FuzzyNumber<T>& a, const FuzzyNumber<T>& b)

{
FuzzyNumber<T> r = a;
return r-=b;

}

/*
Definition of binary operator "*" between fuzzy numbers.
This operator evaluates the representation of two fuzzy
numbers and returns a result that represents the sum
of the fuzzy numbers.
*/
template<class T> FuzzyNumber<T> operator*(const
FuzzyNumber<T>& a, const FuzzyNumber<T>& b)

{
FuzzyNumber<T> r = a;
return r*=b;

}

/*
Definition of binary operator "/" between fuzzy numbers.
This operator evaluates the representation of two fuzzy
numbers and returns a result that represents the sum
of the fuzzy numbers.
*/
template<class T> FuzzyNumber<T> operator/(const
FuzzyNumber<T>& a, const FuzzyNumber<T>& b)

{
FuzzyNumber<T> r = a;
return r/=b;

}

/*
Functional representation. Given an alpha-level x, this
operator returns a pair (alpha-level, interval) whose
alpha-level is the superior extreme of the alpha-level
set less than x.
*/
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template<class T> pair<T,Interval<T> > FuzzyNumber<T>::
operator()(const

T& x) const
{
map<T,Interval<T> >::const_iterator
p=A.lowerbound(x);
if(p->first==x){

pair<T,Interval<T> >
f(p->first,p->second);
return f;

}else{
p--;
pair<T,Interval<T> > f(p->first,p->second);
return f;

}
}

/*
Definition of the operator "<<". It formats output for
the out channel.
*/

template<class T> ostream& operator << (ostream& os,
const FuzzyNumber<T>& x)

{
typedef map<T,Interval<T> >::const_iterator CI;

os << "{ ";
for (CI p = x.A.begin(); p!=x.A.end(); p++)

os << "(" << p->first << ", " << p->second
<< ") ";

return os << "}";
}

/*
Definition of the operator ">>". It gets formatted input
from a channel.
*/
template<class T> istream& operator >> (istream& s,
FuzzyNumber<T>& x) {
FuzzyNumber<T> z;
Interval<T> Int;
char c=0;
T lev;

z.A.clear();
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s >> c;
if (c == '{')

while ((s>>c) && c!=`}'){
if (c==`('){

s >> lev >> c;
if (c==`,'){

s >> Int >> c;
if (c!=`)' || !z.Insert(lev,Int))
{s.clear(ios::badbit);break;}
else continue;

}else{ s.clear(ios::badbit);break;}
}else{ s.clear(ios::badbit);break;}

}
else s.clear(ios::badbit);

if (s && c==`}') x=z;
else s.clear(ios::badbit);

return s;
}

/*
Constructor to transform a scalar in a fuzzy number.
It links algebraic arithmetic and fuzzy arithemetic.
*/

template<class T> FuzzyNumber<T>::FuzzyNumber(T& x){
T zero=T();
A[zero]=x;

}

/*
Scalar assignment to a fuzzy number. This operator
links algebraic arithmetic and fuzzy number arithmetic.
*/
template<class T> FuzzyNumber<T>& FuzzyNumber<T>::
operator=(const T& a)
{
typedef map<T,Interval<T> >::const_iterator CI;

CI f=A.begin(),f_end = A.end();
T zero=T();

A.erase(f,f_end);
A[zero]=a;
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return * this;
}

/*
Definition of the operator "+=" between a fuzzy number
and a scalar.

*/
template<class T> FuzzyNumber<T>& FuzzyNumber<T>::
operator+=(const T& a)
{
typedef map<T,Interval<T> >:: iterator CI;

CI f,f_end = A.end();

for(f=A.begin(); f!=f_end; f++) f->second+=a;
return * this;

}

/*
Definition of the operator "-=" between a fuzzy number
and a scalar.
*/
template<class T> FuzzyNumber<T>& FuzzyNumber<T>::
operator-=(const T& a)
{
typedef map<T,Interval<T> >::const_iterator CI;

CI f,f_end = A.end();

for(f=A.begin(); f!=f_end; f++) f->second-=a;
return * this;

}

/*
Definition of the operator "*=" between a fuzzy number
and a scalar. NOTA: OPERAZIONE NON CONSERVATIVA.
*/
template<class T> FuzzyNumber<T>& FuzzyNumber<T>::
operator*=(const T& a)
{
typedef map<T,Interval<T> >::iterator CI;

CI f,f_end = A.end();
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for(f=A.begin(); f!=f_end; f++) f->second*=a;
return * this;

}

/*
Definition of operator "/=" between a fuzzy number
and a scalar.
*/
template<class T> FuzzyNumber<T>& FuzzyNumber<T>::
operator/=(const T& a)
{
typedef map<T,Interval<T> >::const_iterator CI;

CI f,f_end = A.end();

for(f=A.begin(); f!=f_end; f++) f->second/=a;
return * this;

}

/*
Definition of the operator "+" between a fuzzy number
and a scalar.
*/
template<class T> FuzzyNumber<T> operator+(const
FuzzyNumber<T>& a, constT& b)

{
FuzzyNumber<T> r = a;
return r+=b;

}

/*
Definition of the operator "-" between a fuzzy number
and a scalar.
*/
template<class T> FuzzyNumber<T> operator-(const
FuzzyNumber<T>& a, const T& b)

{
FuzzyNumber<T> r = a;
return r-=b;

}

/*
Definition of the operator "-" between a fuzzy number
and a scalar.
*/
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template<class T> FuzzyNumber<T> operator*(const
FuzzyNumber<T>& a, constT& b)

{
FuzzyNumber<T> r = a;
return r*=b;

}

/*
Definition of the operator "/" between a fuzzy number
and a scalar.
*/

template<class T> FuzzyNumber<T> operator/(const
FuzzyNumber<T>& a, constT& b)

{
FuzzyNumber<T> r = a;
return r/=b;

}

/*
Definition of the operator "+" between a scalar and a
fuzzy number.
*/

template<class T> inline FuzzyNumber<T> operator+(const
T& b, const FuzzyNumber<T>& a)

{
return a + b;

}

/*
Definition of the operator "-" between a scalar and a
fuzzy number.
*/

template<class T> inline FuzzyNumber<T> operator-(const
T& b, const FuzzyNumber<T>& a)

{
typedef map<T,Interval<T> >::const_iterator CI;

CI f,f_end = a.A.end();

FuzzyNumber<T> r;

for(f=a.A.begin(); f!=f_end; f++) r.A[f->first]
= b - f->second;
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return r;

}

/*
Definition of the operator "*" between a scalar and a
fuzzy number.
*/
template<class T> inline FuzzyNumber<T> operator*(const
T& b, const FuzzyNumber<T>& a)

{
return a * b;

}

/*
Definition of the operator "/" between a scalar and a
fuzzy number.
*/
template<class T> inline FuzzyNumber<T> operator/(const
T& b,constFuzzyNumber<T>& a)

{
typedef map<T,Interval<T> >::const_iterator CI;

CI f,f_end = a.A.end();

FuzzyNumber<T> r;

for(f=a.A.begin(); f!=f_end; f++) r.A[f->first]
=b/f->second;

return r;
}

/*
A weighting function for summation of intervals with
respect to their alpha-levels.
*/

double g( double alpha){ return alpha+.5; }

/*
Definition of fuzzy distance.

*/
template<class T> T FuzzyDist(const FuzzyNumber<T>& a,
const FuzzyNumber<T>& b){

typedef map<T,Interval<T> >::const_iterator CI;
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CI f1_end = b.A.end(),
f_end = a.A.end(),
f1 = b.A.begin(),
f = a.A.begin();

stack<pair<T,T> > d; // < level,distance>
pair<T,T> dtmp;
T fdist=T();
double tmpg,tmph;

while(f!=f_end && f1!=f1_end)
{
if(f->first > f1->first)

{
d.push(pair<T,T>(f1->first,dist(f->second,
f1->second)));

if(f1!=f1_end) f1++;
}

else if(f->first < f1->first)
{

d.push(pair<T,T>(f->first,dist(f->second,
f1->second)));

if(f!=f_end) f++;
}

else {
d.push(pair<T,T>(f->first,dist(f->second,
f1->second)));
if(f1!=f1_end) f1++;
if(f!=f_end) f++;

}
}

dtmp=d.top();
fdist += pow(dtmp.second,2.)*

(g(1.) + (tmpg=g(dtmp.first))) *
(1.-(tmph=dtmp.first))/2.;

d.pop();

while (d.size()){
dtmp=d.top();
fdist+= pow(dtmp.second,2.)*
(tmpg+g(dtmp.first))*(tmph-dtmp.first)/2.;
tmpg=g(dtmp.first); tmph=dtmp.first;
d.pop();

}

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

September 21, 2007 11:51 6395 6395˙Book

154 Fuzzy Surfaces in GIS and Geographical Analysis

return sqrt(fdist);
}

/*
Overtaking between fuzzy numbers. "f1 > f2"

*/
template<class T> T FuzzyOver(const FuzzyNumber<T>& a,
const FuzzyNumber<T>& b){

typedef map<T,Interval<T> >::const_iterator CI;

CI f=a.A.begin(),f_end = a.A.end();
stack<pair<T,T> > o; // <level,override>
pair<T,T> stmp;
T s,h1,h2;

while (f!=f_end){
s = (f->second.upper()-b(f->first).

second.lower()) /
(f->second.upper()-f->second.lower());

if(s>1.) s=1.;
if (s>.0) { o.push(pair<T,T>(f->first,s)); f++;}
else{break;}

}

if (f==f_end) o.push(pair<T,T>(1.,.0));
else if (s<=.0) o.push(pair<T,T>(f->first,.0));

s=T(); stmp=o.top(); h1=stmp.first;
while (o.size()){

stmp=o.top();
h2=stmp.first;
s+=stmp.second*(h1-h2)*(g(h1)

+g(h2))*.5;
h1=h2; o.pop();

}
return s;

}

/*
Definition of mean interval of a fuzzy number.

*/
template<class T> Interval<T> meanint(FuzzyNumber<T> a){

typedef map<T,Interval<T> >::const_iterator CI;
CI f,f_end = a.A.end();
T l=T(), r=T(), prevl=T(), prevu=T(), preva=T();
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for(f=a.A.begin()++; f!=f_end; f++){
l+=((f->second.lower()+prevl)*
(f->first-preva));
r+=((f->second.upper()+prevu)*
(f->first-preva));
prevl=f->second.lower();
prevu=f->second.upper();
preva=f->first;

}

l+=(prevu-prevl)*(1-preva);
r+=(prevu-prevl)*(1-preva);

Interval<T> i(l/2.,r/2.);

return i;
}

/*
Definition of centroid for a fuzzy number.

*/
template<class T> double centroid(FuzzyNumber<T> a){

typedef map<T,Interval<T> >::const_iterator CI;
CI f,f_end = a.A.end();

T l=T(), r=T(), prevl=T(), prevu=T(), preva=T(), l=T(),
u=T();

for(f=a.A.begin()++; f!=f_end; f++){

l+=(f->second.lower()*f->first
+prevl*preva)*(f->second.lower()
- prevl);

l+=(f->first+preva)*(f->second.lower()
- prevl);

r+=(f->second.up()*f->first+prevu*preva)
*(prevu - f->second.up());
r+=(f->first+preva)*(prevu - f->second.up());

prevl=f->second.lower();
prevu=f->second.upper();
preva=f->first;

}
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l+=((prevl+prevu)/2.+prevl*preva)*(prevu-prevl)/2.;
l+=(1-preva)*(prevu-prevl)/2.;

r+=((prevl+prevu)/2.+prevl*preva)*(prevl-prevu)/2.;
r+=(1-preva)*(prevl-prevu)/2.;

return (l+r)/(l+r);
}

9.2 FUZZY QUERY SYSTEM. C++ CODE

#include<iostream>
#include<stdio.h>
#include<fstream>
#include<string>
#include"BSplineFuzzy.h"

int main( int argc, char *argv[])
{

// Definition of variables, input...

try{
BSplineFuzzy< double> B(grado,xg,yg,vliv,x,y,f,EPS);

B.write(st);

double l[2],u[2], xgs, ygs,lvl;
l[0]=(*(*B).u)[1];
l[1]=(*(*B).v)[1];
u[0]=(*(*B).u)[(*(*B).u).size()-(*B).M];
u[1]=(*(*B).v)[(*(*B).v).size()-(*B).M];

// Writing down a map at level lvl
lvl = ...

for(xx=l[0]; xx<u[0]; xx+=xstep)
for(yy=l[1]; yy<u[1]; yy+=ystep)
tomap << xx << " " << yy << " " << (*B)(xx,yy)(lvl).
second.lower() << " " << (*B)

(xx,yy)(lvl).second.upper()<< " n";

FuzzyNumber<double> sogliaF(soglia);
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double levf=...
double levi=...
double levs=...

for(xx=l[0]; xx<u[0]; xx+=xgs){
for(yy=l[1]; yy<u[1]; yy+=ygs){

for(double s=lvlf; s>=lvli;s-=lvls){
FuzzyNumber<double> soglia = FuzzyNumber
< double>(s);
// cout << xx << " " << yy << " " << FuzzyOver
((*B)(xx,yy), sogliaF) << " " <<

over << endl;
if(FuzzyOver((*B)(xx,yy),soglia)>over)break;

}
tomap << s << " ";

}
tomap<< "\n";

}

} catch(BSplineFuzzy< double>::NoSolution& er){
cout <<"Numerical Run-Time error number: "
<< er.icase<< "\n";
system("PAUSE");
return -1;

}

return 0;
}
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44. C. Fonte and W. A. Lodwick, Areas of fuzzy geographical entities, International
Journal of Geographical Information Science 18 (2004), no. 2, 127–150.

© 2008 by Taylor & Francis Group, LLC



P1: Prasannajit/Sanjay

October 16, 2007 14:28 6395 6395˙Book

References 161

45. , Area, perimeter and shape of fuzzy geographical entities, Develop-
ments in spatial data handling (P. Fisher ed.), Springer-Verlag, Berlin, 2005, pp.
315–326.

46. , Modeling the fuzzy spatial extent of geographical entities, Fuzzy modeling
with spatial information for geographical problems, Springer-Verlag, Berlin, 2005, pp.
121–142.

47. H. Franssen, A. Eijnsbergen, and A. Stein, Use of spatial prediction techniques and
fuzzy classification for mapping soil pollutants, Geoderma 77 (1997), 243–262.

48. G. Gallo, I. Perfilieva, M. Spagnuolo, and S. Spinello, Geographical data analysis via
mountain function, International Journal of Intelligent Systems 14 (1999), 359–373.

49. N. Gershon, Visualization of an imperfect world, IEEE Computer Graphics and
Applications 18 (1998), no. 4, 43–45.
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