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Preface
The book starts by giving you the background of geospatial analysis, and then offers a flow
of the techniques and technology used and splits the field into its component specialty
areas, such as Geographic Information Systems (GIS), remote sensing, elevation data,
advanced modeling, and real-time data. The focus of the book is to lay a strong foundation
in using the powerful Python language and framework to approach geospatial analysis
effectively. In doing so, we'll focus on using pure Python as well as certain Python tools
and APIs, and using generic algorithms. The readers will be able to analyze various forms
of geospatial data, learn about real-time data tracking, and see how to apply what they
learn to interesting scenarios.

While many third-party geospatial libraries are used throughout the examples, a special
effort will be made by us to use pure Python, with no dependencies, whenever possible.
This focus on pure Python 3 examples is what will set this book apart from nearly all other
resources in this field. We will also go through some popular libraries that weren't in the
previous version of the book.

Who this book is for
This book is for anyone who wants to understand digital mapping and analysis and who
uses Python or any other scripting language for the automation or crunching of data
manually. This book primarily targets Python developers, researchers, and analysts who
want to perform geospatial modeling and GIS analysis with Python.

What this book covers
Chapter 1, Learning about Geospatial Analysis with Python, introduces geospatial analysis as a
way of answering questions about our world. The differences between GIS and remote
sensing are explained. Common geospatial analysis processes are demonstrated using
illustrations, basic formulas, pseudo code, and Python.

Chapter 2, Learning Geospatial Data, explains the major categories of data and several newer
formats that are becoming more and more common. Geospatial data comes in many forms.
The most challenging part of geospatial analysis is acquiring the data that you need and
preparing it for analysis. Familiarity with these data types is essential to understanding
geospatial analysis.
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Chapter 3, The Geospatial Technology Landscape, tells you about the geospatial technology
ecosystem, which consists of thousands of software libraries and packages. This vast array
of choices is overwhelming for newcomers to geospatial analysis. The secret to learning
geospatial analysis quickly is understanding the handful of libraries and packages that
really matter. Most other software is derived from these critical packages. Understanding
the hierarchy of geospatial software and how it's used allows you to quickly comprehend
and evaluate any geospatial tool.

Chapter 4, Geospatial Python Toolbox, introduces software and libraries that form the basis
of the book and are used throughout. Python's role in the geospatial industry is explored:
the GIS scripting language, the mash-up glue language, and the full-blown programming
language. Code examples are used to teach data editing concepts, and many of the basic
geospatial concepts in Chapter 1, Learning about Geospatial Analysis with Python, are also
demonstrated in this chapter.

Chapter 5, Python and Geographic Information Systems, teaches you about simple yet
practical Python GIS geospatial products using processes that can be applied to a variety of
problems.

Chapter 6, Python and Remote Sensing, shows you how to work with remote sensing
geospatial data. Remote sensing includes some of the most complex and least-documented
geospatial operations. This chapter will build a solid core for you and demystify remote
sensing using Python.

Chapter 7, Python and Elevation Data, demonstrates the most common uses of elevation
data and how to work with its unique properties. Elevation data deserves a chapter all on
its own. Elevation data can be contained in almost any geospatial format but is used quite
differently from other types of geospatial data.

Chapter 8, Advanced Geospatial Python Modeling, uses Python to teach you the true power of
geospatial technology. Geospatial data editing and processing help us understand the
world as it is. The true power of geospatial analysis is modeling. Geospatial models help us
predict the future, narrow a vast field of choices down to the best options, and visualize
concepts that cannot be directly observed in the natural world.

Chapter 9, Real-Time Data, examines the modern phenomenon of geospatial analysis. A
wise geospatial analyst once said, "As soon as a map is created it is obsolete." Until recently,
by the time you collected data about the Earth, processed it, and created a geospatial
product, the world it represented had already changed. But modern geospatial data
shatters this notion. Datasets are available over the internet that are up to the minute, or
even the second. This data fundamentally changes the way we perform geospatial analysis.
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Chapter 10, Putting It All Together, combines the skills from the previous chapters step by
step to build a generic corporate system to manage customer support requests and field
support personnel that could be applied to virtually any organization.

To get the most out of this book
This book assumes you have basic knowledge of the Python programming language. You
will require Python (3.7 or higher), a minimum hardware requirement of a 300-MHz
processor, 128 MB of RAM, 1.5 GB of available hard disk, and a Windows, Linux, or macOS
X operating system.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Learning- Geospatial- Analysis- with- Python- Third- Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learning-Geospatial-Analysis-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-Geospatial-Analysis-with-Python-Third-Edition
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789959277_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To demonstrate this, the following example accesses the same file that we just
saw but by using urllib instead of ftplib."

A block of code is set as follows:

import ftplib

server = "ftp.ngdc.noaa.gov"
dir = "hazards/DART/20070815_peru"
fileName = "21415_from_20070727_08_55_15_tides.txt"

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 if (sinSigma == 0):
        distance = 0  # coincident points
        break
    cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLam
    sigma = math.atan2(sinSigma, cosSigma)
    sinAlpha = cosU1 * cosU2 * sinLam / sinSigma
    cosSqAlpha = 1 - sinAlpha**2

Any command-line input or output is written as follows:

pip install virtualenv

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
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https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789959277_ColorImages.pdf
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Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/
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Section 1: The History and the

Present of the Industry
This section starts by demonstrating common geospatial analysis processes using
illustrations, basic formulas, simple code, and Python. Building on that, you'll learn how to
play with geospatial data—acquiring data and preparing it for various analyses. After that,
you'll gain an understanding of the various software packages and libraries used in the
geospatial technology ecosystem. At the end of this section, you'll learn how to evaluate
any geospatial tool.

This section includes the following chapters:

Chapter 1, Learning about Geospatial Analysis with Python
Chapter 2, Learning Geospatial Data
Chapter 3, The Geospatial Technology Landscape



1
Learning about Geospatial

Analysis with Python
Geospatial technology is currently impacting our world since it is changing our knowledge
of human history. In this book, we will step through the history of geospatial analysis,
which predates computers and even paper maps. Then, we will examine why you might
want to learn about and use a programming language as a geospatial analyst as opposed to
just using geographic information system (GIS) applications. This will help us understand
the importance of making geospatial analysis as accessible as possible to as many people as
possible.

In this chapter, we will be covering the following topics:

Geospatial analysis and our world
Dr. Sarah Parcak and archaeology
Geographic information systems
Remote sensing concepts
Elevation data
Computer-aided drafting
Geospatial analysis and computer programming
The importance of geospatial analysis
Geographic information system concepts
Common GIS processes
Common remote sensing processes
Common raster data concepts
Creating the simplest possible Python GIS

Yes, you heard that right! We will be building the simplest possible GIS from scratch using
Python, right from the start.
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Technical requirements
This book assumes that you have some basic knowledge of the Python programming
language, basic computer literacy, and at least an awareness of geospatial analysis. This
chapter provides a foundation for geospatial analysis, which is needed to attack any subject
in the areas of remote sensing and GIS, including the material in all the other chapters of
this book.

The examples in this book are based on Python 3.4.3, which you can download
here: https://www. python. org/ downloads/ release/ python- 343/ .

Geospatial analysis and our world
In the 1880s, British explorers began applying scientific rigor to excavating ancient cultural
sites. The field of archaeology is a frustrating, low, costly, and often dangerous endeavor
requiring patience and a good bit of luck. The Earth is remarkably good at keeping secrets
and erasing the story of human endeavors. Changing rivers, floods, volcanoes, dust storms,
hurricanes, earthquakes, fires, and other events swallow entire cities into the surrounding
landscape, and we lose them to the flow of time.

Our knowledge of human history is based on glimpses into ancient cultures through
archaeological excavation and the study of sites we have been lucky enough to stumble
across through educated guesses or trial and error. There used to be no success in
archaeology unless a team excavated a site, found something, and correctly identified it.
Predictions on where to look were based on a handful of major factors such as proximity to
water that was needed to support agriculture, previously discovered sites, accounts by
early explorers, and other broad clues.

In 2007, archeologist Dr. Sarah Parcak, from the University of Alabama, Birmingham,
began to coax our stubborn Earth into revealing its secrets about where humans have been
and what they've done. Since then, her approach has revolutionized the field of
archaeology.

In a few short years, Dr. Parcak and her team found traces of 17 pyramids, more than 1,000
tombs, and the footprints of 3,000 ancient settlements in Egypt, including the city grid of
the famous lost city of Tanis. She identified significant archaeological sites in Romania, the
Nabataean Kingdom, and Tunisia. She located an arena at the well-excavated ancient
Roman harbor of Portus, as well as its lighthouse and canal leading to Rome near the Tiber
river.

https://www.python.org/downloads/release/python-343/
https://www.python.org/downloads/release/python-343/
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How did she find so many hidden treasures that eluded detection for almost two centuries?
She looked at the bigger picture. Dr. Parcak perfected the art of using satellite imagery to
locate ancient sites from almost 400 miles above the Earth. Her career happened to coincide
with the advent of readily-available, high-resolution satellite imagery that had a 10-inch
pixel resolution or less, thereby providing the detail that was needed to detect subtle
changes in the landscape, thus indicating ancient sites.

Despite the volume and significance of her finds, locating cultural heritage sites from space
requires a tremendous amount of work. Space archaeologists first research old maps and
historical accounts. Then, they look at modern digital maps of existing sites. They also look
at digital terrain models to locate subtle rises in the land where ancient people would build
to avoid floods. Then, they use multispectral imagery, including infrared, which can expose
changes in vegetation or soil when processed due to imported stone and other materials
buried underground that bubble up to the surface. This discoloration, which is represented
by false colors, allows us to differentiate between the bandwidths of sunlight reflected from
sites that are completely invisible on the ground, or even from the air, to the naked eye,
which suddenly stand out in sharp contrast, showing precise locations on a satellite image.

Ancient cultural sites are often invisible to the naked eye from the ground. For example, the
following photograph shows a well-preserved Native American burial mound near
Lewiston, Illinois, USA, which has survived for thousands of years due to its location and is
easily visible:
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However, in areas with harsher weather conditions, sites can be partially destroyed, and so
they are difficult to find. The following photograph shows an area of marsh in Louisiana,
which is full of ancient Native American burial mounds that have eroded over the centuries
and are now nearly impossible to detect without satellite images:

The following processed satellite image, from NASA scientist Dr. Marco Giardino, is in the
same marsh area as the previous photograph and shows the remains of four distinct burial
mounds that aren't visible from the ground. Even though this site is hundreds of years old,
the vegetation species and their health are different compared to the surrounding marsh.
Although archaeologists researched dozens of similar sites in the area, this project was the
first to determine that the mound builders often used a pattern of placing the mounds in
the four cardinal directions (north, south, west, east), which is highly visible from space but
difficult to realize on the ground:
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As quick as space archaeologists are at locating ancient sites, they now find themselves
battling more than geological and meteorological elements. Looting has always been a
threat to archaeology, but due to warfare and black market artifacts, it has become even
more of a problem. Modern construction can also destroy valuable sites. However,
determined archaeologists are using the same technology they used to find the sites
mentioned in order to detect looting or construction threats. Once they find evidence of a
threat, they notify the government so that they can intervene. The following image shows
evidence of looting at the Roman site of Dura Europos in eastern Syria. The circled areas
contain holes that were dug by looters:

In addition to satellite image processing and visual interpretation, space archaeologists also
use geographic information system mapping techniques to mark or digitize sites, overlay
modern roads and city footprints, create labeled maps, and much more. The exciting new
field of space archaeology is one of the latest of many applications of geospatial analysis we
will cover in this book.
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Beyond archaeology: Geospatial analysis can be found in almost every
industry, including real estate, oil and gas, agriculture, defense, disaster
management, health, transportation, and oceanography, to name a few.
For a good overview of how geospatial analysis is used in dozens of
different industries, go to https:/ /www. esri. com/ what- is-gis/ who-
uses- gis.

History of geospatial analysis
Geospatial analysis can be traced back to as far as 15,000 years ago, to the Lascaux cave in
southwestern France. In this cave, Paleolithic artists painted commonly hunted animals and
what many experts believe are astronomical star maps for either religious ceremonies or
potentially even migration patterns of prey. Though crude, these paintings demonstrate an
ancient example of humans creating abstract models of the world around them and
correlating spatial-temporal features to find relationships. The following photograph shows
one of the paintings, with an overlay illustrating the star maps:

Over the centuries, the art of cartography and the science of land surveying have
developed, but it wasn't until the 1800s that significant advances in geographic analysis
emerged. Deadly cholera outbreaks in Europe between 1830 and 1860 led geographers in
Paris and London to use geographic analysis for epidemiological studies.
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In 1832, Charles Picquet used different halftone shades of gray to represent the deaths per
thousand citizens in the 48 districts of Paris as part of a report on the cholera outbreak. In
1854, Dr. John Snow expanded on this method by tracking a cholera outbreak in London as
it occurred. By placing a point on a map of the city each time a fatality was diagnosed, he
was able to analyze the clustering of cholera cases. Snow traced the disease to a single
water pump and prevented further cases. The following map has three layers with streets,
an X for each pump, and dots for each cholera death:
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Geospatial analysis wasn't just used for the war on diseases. For centuries, generals and
historians have used maps to understand human warfare. A retired French engineer named
Charles Minard produced some of the most sophisticated infographics that were ever
drawn between 1850 and 1870. The term infographics is too generic to describe these
drawings because they have strong geographic components. The quality and detail of these
maps make them fantastic examples of geographic information analysis, even by today's
standards. Minard released his masterpiece in 1869:

"La carte figurative des pertes successives en hommes de l'Armée Franc ̧aise dans la
campagne de Russie 1812-1813," which is translated as "Figurative map of the successive
losses of men of the French army in the Russian Campaign 1812-13." 

This depicts the decimation of Napoleon's army in the Russian campaign of 1812. The map
shows the size and location of the army over time, along with prevailing weather
conditions. The following graphic contains four different series of information on a single
theme. It is a fantastic example of geographic analysis using pen and paper. The size of the
army is represented by the widths of the brown and black swaths at a ratio of one
millimeter for every 10,000 men. The numbers are also written along the swaths. The
brown-colored path shows soldiers who entered Russia, while the black-colored path
represents the ones who made it out. The map scale is shown to the right in the center as
one French league (2.75 miles or 4.4 kilometers). The chart at the bottom runs from right to
left and depicts the brutal freezing temperatures that were experienced by the soldiers on
the return march home from Russia:
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While far more mundane than a war campaign, Minard released another compelling map
cataloging the number of cattle sent to Paris from around France. Minard used pie charts of
varying sizes in the regions of France to show each area's variety and volume of cattle that
was shipped:

In the early 1900s, mass printing drove the development of the concept of map layers – a
key feature of geospatial analysis. Cartographers drew different map elements (vegetation,
roads, and elevation contours) on plates of glass that could then be stacked and
photographed to be printed as a single image. If the cartographer made a mistake, only one
plate of glass had to be changed instead of the entire map. Later, the development of plastic
sheets made it even easier to create, edit, and store maps in this manner. However, the
layering concept for maps as a benefit to analysis would not come into play until the
modern computer age.
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GIS
Computer mapping evolved with the computer itself in the 1960s. However, the origin of
the term GIS began with the Canadian Department of Forestry and Rural Development. Dr.
Roger Tomlinson headed a team of 40 developers in an agreement with IBM to build the
Canada Geographic Information System (CGIS). The CGIS tracked the natural resources
of Canada and allowed the profiling of those features for further analysis. The CGIS stored
each type of land cover as a different layer.

It also stored data in a Canadian-specific coordinate system, suitable for the entire country,
which was devised for optimal area calculations. While the technology that was used was
primitive by today's standards, the system had phenomenal capability at that time. The
CGIS included software features that seem quite modern:

Map projection switching
The rubber sheeting of scanned images
Map scale change
Line smoothing and generalization to reduce the number of points in a feature
Automatic gap closing for polygons
Area measurement
The dissolving and merging of polygons
Geometric buffering
The creation of new polygons
Scanning
The digitizing of new features from the reference data

The National Film Board of Canada produced a documentary in 1967 on
the CGIS, which can be viewed at the following URL: https:/ / youtu. be/
3VLGvWEuZxI.

Tomlinson is often called the father of GIS. After launching the CGIS, he earned
his doctorate from the University of London with his 1974 dissertation, entitled The
application of electronic computing methods and techniques to the storage, compilation, and
assessment of mapped data, which describes GIS and geospatial analysis. Tomlinson now runs
his own global consulting firm, Tomlinson Associates Ltd., and he remains an active
participant in the industry. He is often found delivering keynote addresses at geospatial
conferences.
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CGIS is the starting point of geospatial analysis, as defined by this book. However, this
book would not have been written if not for the work of Howard Fisher and the Harvard
Laboratory for Computer Graphics and Spatial Analysis at the Harvard Graduate School of
Design. His work on the SYMAP GIS software, which outputs maps to a line printer,
started an era of development at the laboratory, which produced two other important
packages and, as a whole, permanently defined the geospatial industry. SYMAP led to
other packages, including GRID and the Odyssey project, which come from the same lab:

GRID was a raster-based GIS system that used cells to represent geographic
features instead of geometry. GRID was written by Carl Steinitz and David
Sinton. The system later became IMGRID.
Odyssey was a team effort led by Nick Chrisman and Denis White. It was a
system of programs that included many advanced geospatial data management
features that are typical of modern geodatabase systems. Harvard attempted to
commercialize these packages with limited success. However, their impact is still
seen today.

Virtually, every existing commercial and open source package owes something to these
code bases.

Howard Fisher produced a 1967 film using the output from SYMAP to show the urban
expansion of Lansing, Michigan, from 1850 to 1965 by hand-coding decades of property
information into the system. This analysis took months, but now it would take only a few
minutes to recreate them because of modern tools and data.

You can watch the film at https:/ /www. youtube. com/watch? v=
xj8DQ7IQ8_ o.

There are now dozens of graphical user interface (GUI) geospatial desktop applications
available today from companies including Esri, ERDAS, Intergraph, ENVI, and so on. Esri
is the oldest, continuously operating GIS software company, which started in the late 1960s.
In the open source realm, packages including Quantum GIS (QGIS) and the Geographic
Resources Analysis Support System (GRASS) are widely used. Beyond comprehensive
desktop software packages, software libraries for the building of new software exist in the
thousands.

GIS can provide detailed information about the Earth, but it is still just a model. Sometimes,
we need a direct representation in order to gain knowledge about current or recent changes
on our planet. At that point, we need remote sensing.
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Remote sensing
Remote sensing is where you collect information about an object without making physical
contact with that object. In the context of geospatial analysis, that object is usually the Earth.
Remote sensing also includes processing the collected information. The potential of
geographic information systems is limited only by the available geographic data. The cost
of land surveying, even using a modern GPS to populate a GIS, has always been resource-
intensive.

The advent of remote sensing not only dramatically reduced the cost of geospatial analysis
but took the field in entirely new directions. In addition to powerful reference data for GIS
systems, remote sensing has made the automated and semi-automated generation of GIS
data possible by extracting features from images and geographic data. The eccentric French
photographer, Gaspard-Félix Tournachon, also known as Nadar, took the first aerial
photograph in 1858, from a hot air balloon over Paris:
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The value of a true bird's-eye view of the world was immediately apparent. As early as
1920, books on aerial photo interpretation began to appear.

When the United States entered the Cold War with the Soviet Union after World War II,
aerial photography to monitor military capability became prolific with the invention of the
American U-2 spy plane. The U-2 spy plane could fly at 75,000 feet, putting it out of the
range of existing anti-aircraft weapons designed to reach only 50,000 feet. The American
U-2 flights over Russia ended when the Soviets finally shot down a U-2 and captured the
pilot.

However, aerial photography had little impact on modern geospatial analysis. Planes could
only capture small footprints of an area. Photographs were tacked to walls or examined on
light tables but not in the context of other information. Though extremely useful, aerial
photo interpretation was simply another visual perspective.

The game changer came on October 4, 1957, when the Soviet Union launched the Sputnik 1
satellite. The Soviets had scrapped a much more complex and sophisticated satellite
prototype because of manufacturing difficulties. Once corrected, this prototype would later
become Sputnik 3. Instead, they opted for a simple metal sphere with four antennae and a
simple radio transmitter. Other countries, including the United States, were also working
on satellites. These satellite initiatives were not entirely a secret. They were driven by
scientific motives as part of the International Geophysical Year (IGY).

Advancement in rocket technology made artificial satellites a natural evolution for Earth
science. However, in nearly every case, each country's defense agency was also heavily
involved. Similar to the Soviets, other countries were struggling with complex satellite
designs packed with scientific instruments. The Soviets' decision to switch to the simplest
possible device was for the sole reason of launching a satellite before the Americans were
effective. Sputnik was visible in the sky as it passed over, and its radio pulse could be heard
by amateur radio operators. Despite Sputnik's simplicity, it provided valuable scientific
information that could be derived from its orbital mechanics and radiofrequency physics.

The Sputnik program's biggest impact was on the American space program. America's chief
adversary had gained a tremendous advantage in the race to space. The United States
ultimately responded with the Apollo moon landings. However, before this, the US
launched a program that would remain a national secret until 1995. The classified
CORONA program resulted in the first pictures from space. The US and Soviet Union had
signed an agreement to end spy plane flights, but satellites were conspicuously absent from
the negotiations.
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The following map shows the CORONA process. The dashed lines are the satellite flight
paths, the long white tubes are the satellites, the smaller white cones are the film canisters,
and the black blobs are the control stations that triggered the ejection of the film so that a
plane could catch it in the sky:

The first CORONA satellite was a 4-year effort with many setbacks. However, the program
ultimately succeeded. The difficulty with satellite imaging, even today, is retrieving the 
images from space. The CORONA satellites used canisters of black and white film that
were ejected from the vehicle once exposed. As a film canister parachuted to Earth, a US
military plane would catch the package in midair. If the plane missed the canister, it would
float for a brief period of time in the water before sinking into the ocean to protect the
sensitive information.
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The US continued to develop the CORONA satellites until they matched the resolution and
photographic quality of the U-2 spy plane photos. The primary disadvantages of the
CORONA instruments were reusability and timeliness. Once out of film, a satellite could
no longer be of service. Additionally, the film's recovery was on a set schedule, making the
system unsuitable for monitoring real-time situations. The overall success of the CORONA
program, however, paved the way for the next wave of satellites, which ushered in the
modern era of remote sensing.

Due to the CORONA program's secret status, its impact on remote sensing was indirect.
Photographs of the Earth taken on manned US space missions inspired the idea of a
civilian-operated remote sensing satellite. The benefits of such a satellite were clear, but the
idea was still controversial. Government officials questioned whether a satellite was as cost-
efficient as aerial photography. The military was worried that the public satellite could
endanger the secrecy of the CORONA program. Other officials worried about the political
consequences of imaging other countries without permission. However, the Department of
the Interior (DOI) finally won permission for NASA to create a satellite to monitor Earth's
surface resources.

On July 23, 1972, NASA launched the Earth Resources Technology Satellite (ERTS). The
ERTS was quickly renamed Landsat 1. The platform contained two sensors. The first was
the Return Beam Vidicon (RBV) sensor, which was essentially a video camera. It was built
by the radio and television giant known as the Radio Corporation of America (RCA). The
RBV immediately had problems, which included disabling the satellite's altitude guidance
system. The second attempt at a satellite was the highly experimental Multispectral
Scanner (MSS). The MSS performed flawlessly and produced superior results than the
RBV. The MSS captured four separate images at four different wavelengths of the light
reflected from the Earth's surface.
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This sensor had several revolutionary capabilities. The first and most important capability
was the first global imaging of the planet scanning every spot on the Earth every 16 days.
The following image from NASA illustrates this flight and collection pattern, which is a
series of overlapping swaths as the sensor orbits the Earth, capturing tiles of data each time
the sensor images a location on the Earth:

It also recorded light beyond the visible spectrum. While it did capture green and red light
visible to the human eye, it also scanned near-infrared light at two different wavelengths
not visible to the human eye. The images were stored and transmitted digitally to three
different ground stations in Maryland, California, and Alaska. Its multispectral capability
and digital format meant that the aerial view provided by Landsat wasn't just another
photograph from the sky. It was beaming down the data. This data could be processed by
computers to output derivative information about the Earth in the same way a GIS
provided derivative information about the Earth by analyzing one geographic feature in the
context of another. NASA promoted the use of Landsat worldwide and made the data
available at very affordable prices to anyone who asked.
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This global imaging capability led to many scientific breakthroughs, including
the discovery of previously unknown geography, which occurred as late as 1976. For
example, using Landsat imagery, the Government of Canada located a tiny uncharted
island inhabited by polar bears. They named the new landmass Landsat Island.

Landsat 1 was followed by six other missions that were turned over to the National
Oceanic and Atmospheric Administration (NOAA) as the responsible agency. Landsat 6
failed to achieve orbit due to a ruptured manifold, which disabled its maneuvering engines.
During some of these missions, the satellites were managed by the Earth Observation
Satellite (EOSAT) company, now called Space Imaging, but returned to government
management by the Landsat 7 mission. The following image from NASA is a sample of a
Landsat 7 product:

The Landsat Data Continuity Mission (LDCM) was launched on February 13, 2013, and
began collecting images on April 27, 2013, as part of its calibration cycle to become Landsat
8. The LDCM is a joint mission between NASA and the US Geological Survey (USGS).
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Elevation data
Remote sensing data can measure the Earth in two dimensions. But we can also use remote
sensing to measure the Earth in three dimensions using digital elevation data, which we
include in a Digital Elevation Model. A Digital Elevation Model (DEM) is a three-
dimensional representation of a planet's terrain. In the context of this book, this planet is the
Earth. The history of digital elevation models is far less complicated than remotely-sensed
imagery but no less significant. Before computers, representations of elevation data were
limited to topographic maps created through traditional land surveys. The technology
existed to create three-dimensional models from stereoscopic images or physical models
from materials such as clay or wood, but these approaches were not widely used for
geography.

The concept of digital elevation models came about in 1986 when the French space agency,
Centre National d'e ́tudes Spatiales (CNES) or National Center for the Study of Space,
launched its SPOT-1 satellite, which included a stereoscopic radar. This system created the
first usable DEM. Several other US and European satellites followed this model with similar
missions.

In February 2000, Space Shuttle Endeavour conducted the Shuttle Radar Topography
Mission (SRTM), which collected elevation data of over 80% of the Earth's surface using a
special radar antenna configuration that allowed a single pass. This model was surpassed
in 2009 by the joint US and Japanese mission using the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) sensor aboard NASA's Terra satellite. This
system captured 99% of the Earth's surface but has proven to have minor data issues. Since
the Space Shuttle's orbit did not cross the Earth's poles, it did not capture the entire surface.
SRTM remains the gold standard. The following image from the USGS (https:/ / www.usgs.
gov/media/images/ national- elevation- dataset) shows a colorized DEM known as a
hillshade. Greener areas are lower elevations, while yellow and brown areas are mid-range
to high elevations:
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Recently, more ambitious attempts at a worldwide elevation dataset are underway in the
form of the TerraSAR-X and TanDEM-X satellites, which were launched by Germany in
2007 and 2010, respectively. These two radar elevation satellites worked together to
produce a global DEM called WorldDEM that was released on April 15, 2014. This dataset
has a relative accuracy of 2 meters and an absolute accuracy of 4 meters.

Computer-aided drafting
Computer-aided drafting (CAD) is worth mentioning, though it does not directly relate to
geospatial analysis. The history of CAD system development parallels and intertwines with
the history of geospatial analysis. CAD is an engineering tool used to model two- and
three-dimensional objects, usually for engineering and manufacturing. The primary
difference between a geospatial model and CAD model is that a geospatial model is
referenced to the Earth, whereas a CAD model can possibly exist in abstract space.

For example, a three-dimensional blueprint of a building in a CAD system would not have
latitude or longitude, but in a GIS, the same building model would have a location on the
Earth. However, over the years, CAD systems have taken on many features of GIS systems
and are commonly used for smaller GIS projects. Likewise, many GIS programs can import
CAD data that has been georeferenced. Traditionally, CAD tools were designed primarily
to engineer data that was not geospatial.



Learning about Geospatial Analysis with Python Chapter 1

[ 26 ]

However, engineers who became involved with geospatial engineering projects, such as
designing a city's utility electric system, would use the CAD tools that they were familiar
with in order to create maps. Over time, the GIS software evolved to import the geospatial-
oriented CAD data produced by engineers, and a CAD tools evolved to support geospatial
data creation and better compatibility with GIS software. AutoCAD by Autodesk and
ArcGIS by Esri were the leading commercial packages to develop this capability, and the
Geospatial Data Abstraction Library (GDAL) OGR library developers added CAD
support as well.

Geospatial analysis and computer
programming
Modern geospatial analysis can be conducted with the click of a button in any of the easy-
to-use commercial or open source geospatial packages. So, why would you want to use a 
programming language to learn this field? The most important reasons are as follows:

You want complete control of the underlying algorithms, data, and execution
You want to automate specific, repetitive analysis tasks with minimal overhead
from a large, multipurpose geospatial framework
You want to create a program that's easy to share
You want to learn geospatial analysis beyond pushing buttons in software

The geospatial industry is gradually moving away from the traditional workflow, in which
teams of analysts use expensive desktop software to produce geospatial products.
Geospatial analysis is being pushed toward automated processes that reside in the cloud.
End-user software is moving toward task-specific tools, many of which are accessed from
mobile devices. Knowledge of geospatial concepts and data, as well as the ability to build
custom geospatial processes, is where the geospatial work in the near future lies.
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Object-oriented programming for geospatial
analysis
Object-oriented programming is a software development paradigm in which concepts are
modeled as objects that have properties and behaviors represented as attributes and
methods, respectively. The goal of this paradigm is more modular software in which one
object can inherit from one or more other objects to encourage software reuse.

The Python programming language is known for its ability to serve multiple roles as a well-
designed, object-oriented language, a procedural scripting language, or even a functional
programming language. However, you never completely abandon object-oriented
programming in Python because even its native data types are objects and all Python
libraries, known as modules, adhere to a basic object structure and behavior.

Geospatial analysis is the perfect activity for object-oriented programming. In most object-
oriented programming projects, the objects are abstract concepts, such as database
connections that have no real-world analogy. However, in geospatial analysis, the concepts
that are modeled are, well, real-world objects! The domain of geospatial analysis is the
Earth and everything on it. Trees, buildings, rivers, and people are all examples of objects
within a geospatial system.

A common example in literature for newcomers to object-oriented programming is the
concrete analogy of a cat. Books on object-oriented programming frequently use some form
of the following example.

Imagine that you are looking at a cat. We know some information about the cat, such as its
name, age, color, and size. These features are the properties of the cat. The cat also exhibits
behaviors such as eating, sleeping, jumping, and purring. In object-oriented programming,
objects have properties and behaviors too. You can model a real-world object such as the
cat in our example, or something more abstract such as a bank account.
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Most concepts in object-oriented programming are far more abstract than the simple cat
paradigm or even a bank account. However, in geospatial analysis, the objects that are
modeled remain concrete, such as the simple cat analogy, and in many cases are cats.
Geospatial analysis allows you to continue with the simple cat analogy and even visualize
it. The following map represents the feral cat population of Australia using data provided
by the Atlas of Living Australia (ALA):

So, we can use computers to analyze the relationships between of features on Earth, but
why should we? In the next section, we'll look at why geospatial analysis is a worthwhile
endeavor.
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The importance of geospatial analysis
Geospatial analysis helps people make better decisions. It doesn't make the decision for
you, but it can answer critical questions that are at the heart of the choice to be made and
often cannot be answered any other way. Until recently, geospatial technology and data
were tools available only to governments and well-funded researchers. However, in the last
decade, data has become much more widely available and software has become much more
accessible to anyone.

In addition to freely available government satellite imagery, many local governments now
conduct aerial photo surveys and make the data available online. The ubiquitous Google
Earth provides a cross-platform spinning globe view of the Earth with satellite and aerial
data, streets, points of interest, photographs, and much more. Google Earth users can create
custom Keyhole Markup Language (KML) files, which are XML files that are used to load
and style data to the globe. This program and similar tools are often called geographic
exploration tools because they are excellent data viewers but provide very limited data
analysis capabilities.

The ambitious OpenStreetMap project (https:/ /www. openstreetmap. org/ #map= 5/51. 500/-
0.100) is a crowd-sourced, worldwide, geographic base map containing most layers
commonly found in a GIS. Nearly every mobile phone now contains a GPS, along with
mobile apps to collect GPS tracks as points, lines, or polygons. Most phones will also tag
photos taken with the phone's camera with GPS coordinates. In short, anyone can be a
geospatial analyst.

The global population has reached 7 billion people. The world is changing faster than ever
before. The planet is undergoing environmental changes that have never been seen in
recorded history. Faster communication and transportation increase the interaction
between us and the environment in which we live. Managing people and resources safely
and responsibly is more challenging than ever. Geospatial analysis is the best approach to
understanding our world more efficiently and deeply. The more politicians, activists, relief
workers, parents, teachers, first responders, medical professionals, and small businesses
that harness the power of geospatial analysis, the more potential we have for a better,
healthier, safer, and fairer world.

GIS concepts
In order to begin geospatial analysis, we need to understand some key underlying concepts
that are unique to the field. The list isn't long, but nearly every aspect of analysis traces
back to one of these ideas.
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Thematic maps
As its name suggests, a thematic map portrays a specific theme. A general reference map
visually represents features as they relate geographically to navigation or planning. A
thematic map goes beyond location to provide the geographic context for information
around a central idea. Usually, a thematic map is designed for a targeted audience to
answer specific questions. The value of thematic maps lies in what they do not show. A
thematic map will use minimal geographic features to avoid distracting the reader from the
theme. Most thematic maps include political boundaries such as country or state borders
but omit navigational features, such as street names or points of interest beyond major
landmarks that orient the reader.

The cholera map by Dr. John Snow earlier in this chapter is a perfect example of a thematic
map. Common uses for thematic maps are visualizing health issues, such as disease,
election results, and environmental phenomena such as rainfall. These maps are also the
most common output of geospatial analysis. The following map from the United States
Census Bureau shows cancer mortality rates by state:



Learning about Geospatial Analysis with Python Chapter 1

[ 31 ]

Thematic maps tell a story and are very useful. However, it is important to remember that,
while thematic maps are models of reality just like any other map, they are also
generalizations of information. Two different analysts using the same source of information
will often come up with very different thematic maps, depending on how they analyze and
summarize the data. They may also choose to focus on different aspects of the dataset. The 
technical nature of thematic maps often leads people to treat them as if they are scientific
evidence. However, geospatial analysis is often inconclusive. While the analysis may be
based on scientific data, the analyst does not always follow the rigor of the scientific
method.

In his classic book, How to Lie with Maps, Mark Monmonier, University of Chicago Press,
demonstrates in detail how maps are easily manipulated models of reality, which are
commonly abused. This fact doesn't degrade the value of these tools. The legendary
statistician, George Box, wrote the following in his 1987 book, Empirical Model-Building and
Response Surfaces:

"Essentially, all models are wrong, but some are useful."

Thematic maps have been used as guides to start (and end) wars, stop deadly diseases in
their tracks, win elections, feed nations, fight poverty, protect endangered species, and
rescue those impacted by disaster. Thematic maps may be the most useful models ever
created.

In its purest form, a database is simply an organized collection of information. A database
management system (DBMS) is an interactive suite of software that can interact with a
database. People often use the word database as a catch-all term referring to both the DBMS
and underlying data structure. Databases typically contain alphanumeric data and, in some
cases, binary large objects or blobs, which can store binary data such as images. Most
databases also allow a relational database structure in which entries in normalized tables
can be referenced to each other in order to create many-to-one and one-to-many
relationships among data.

Spatial databases, also known as geodatabases, use specialized software to extend a
traditional relational database management system (RDBMS) to store and query data
defined in a two-dimensional or three-dimensional space. Some systems also account for a
series of data over time. In a spatial database, attributes about geographic features are
stored and queried as traditional relational database structures. These spatial extensions
allow you to query geometries using Structured Query Language (SQL) in a similar way to
traditional database queries. Spatial queries and attribute queries can also be combined to
select results based on both location and attributes.
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Spatial indexing
Spatial indexing is a process that organizes geospatial vector data for faster retrieval. It is a
way of prefiltering the data for common queries or rendering. Indexing is commonly used
in large databases to speed up the returns to queries. Spatial data is no different. Even a
moderately sized geodatabase can contain millions of points or objects. If you perform a
spatial query, every point in the database must be considered by the system in order to
include it or eliminate it in the results. Spatial indexing groups data in ways that allow
large portions of the dataset to be eliminated from consideration by doing computationally
simpler checks before going into a detailed and slower analysis of the remaining items.

Metadata
Metadata is defined as data about data. Accordingly, geospatial metadata is data about
geospatial datasets that provides traceability for the source and history of a dataset, as well
as a summary of the technical details. Metadata also provides long-term preservation of
data by way of documenting the asset over time.

Geospatial metadata can be represented by several possible standards. One of the most
prominent standards is the international standard, ISO 19115-1, which includes hundreds
of potential fields to describe a single geospatial dataset. Additionally, the ISO
19115-2 standard includes extensions for geospatial imagery and gridded data. Some
example fields include spatial representation, temporal extent, and lineage. ISO 19115-3 is
the standard for describing the procedure to generate an XML schema from ISO geographic
metadata. Dublin Core is another international standard that was developed for digital data
that has been extended for geospatial data, along with the associated DCAT vocabulary for
building catalogs of data from a single source.

The primary use of metadata is for cataloging datasets. Modern metadata can be ingested
by geographic search engines, making it potentially discoverable by other systems
automatically. It also lists points of contact for a dataset if you have questions. Metadata is
an important support tool for geospatial analysts and adds credibility and accessibility to
your work. The Open Geospatial Consortium (OGC), which created the Catalog Service
for the Web (CSW), is used to manage metadata. The pycsw Python library implements the
CSW standard.

Metadata is an important documentation tool that's used to manage
geospatial data, while pycsw is an OGC-compliant CSW implementation.
You can learn more about pycsw at https://pycsw.org.

http://pycsw.org
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Map projections
Map projections have entire books devoted to them and can be a challenge for new
analysts. If you take any 3D object and flatten it on a plane, such as your screen or a sheet of
paper, the object is distorted. Many grade school geography classes demonstrate this
concept by having students peel an orange and then attempt to lay the peel flat on their
desk in order to understand the resulting distortion. The same effect occurs when you take
the round shape of the Earth and project it onto a computer screen.

In geospatial analysis, you can manipulate this distortion to preserve common properties,
such as area, scale, bearing, distance, or shape. There is no one-size-fits-all solution to map
projections. The choice of projection is always a compromise of gaining accuracy in one
dimension in exchange for error in another. Projections are typically represented as a set of
over 40 parameters, as either XML or in a text format called Well-Known Text (WKT),
which is used to define the transformation algorithm.

The International Association of Oil and Gas Producers (IOGP) maintains a registry of
the most well-known projections. The organization was formerly known as the European
Petroleum Survey Group (EPSG). The entries in the registry are still known as EPSG codes.
The EPSG maintained the registry as a common benefit for the oil and gas industry, which
is a prolific user of geospatial analysis for energy exploration. At the last count, this registry
contained over 5,000 entries.

As recently as 10 years ago, map projections were of primary concern for a geospatial
analyst. Data storage was expensive, high-speed internet was rare, and cloud computing
didn't really exist. Geospatial data was typically exchanged among small groups working
in separate areas of interest. The technology constraints at the time meant that geospatial
analysis was highly localized. Analysts would use the best projection for their area of
interest.

Data in different projections could not be displayed on the same map because they
represent two different models of the Earth. Any time an analyst received data from a third
party, it had to be reprojected before they could use it with the existing data. This process
was tedious and time-consuming.

Most geospatial data formats do not provide a way to store the projection information. This
information is stored in an ancillary file, usually as text or XML. Since analysts didn't
exchange data often, many people wouldn't bother defining projection information. Every
analyst's nightmare was to come across an extremely valuable dataset that was missing the
projection information. It rendered the dataset useless. The coordinates in the file are just
numbers and offer no clue about the projection. With over 5,000 choices, it was nearly
impossible to guess.
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Now, thanks to modern software and the internet making data exchange easier and more
common, nearly every data format has added a metadata format that defines a projection or
places it in the file header, if supported. Advances in technology have also allowed for
global base maps, which allow for more common uses of projections, such as the common
Google Mercator projection that's used for Google Maps. This projection is also known as
Web Mercator and uses code EPSG:3857 (or the deprecated EPSG:900913).

Geospatial portal projects such as OpenStreetMap (https:/ /www. openstreetmap. org/
#map=5/51.500/-0. 100) and NationalAtlas.gov have consolidated datasets for much of the
world in common projections. Modern geospatial software can also reproject data on the
fly, saving the analyst the trouble of preprocessing the data before using it. Closely related
to map projections are geodetic datums. A datum is a model of the Earth's surface that's
used to match the location of features on the Earth to a coordinate system. One common
datum is called WGS 84 and is used by GPS.

Rendering
The exciting part of geospatial analysis is visualization. Since geospatial analysis is a
computer-based process, it is good to be aware of how geographic data appears on a
computer screen.

Geographic data including points, lines, and polygons are stored numerically as one or
more points, which come in (x,y) pairs or (x,y,z) tuples. The x represents the horizontal axis
on a graph, while the y represents the vertical axis. The z represents terrain elevation. In
computer graphics, a computer screen is represented by an x- and y-axis. The z-axis is not
used because the computer screen is treated as a two-dimensional plane by most graphics
software APIs. However, because desktop computing power continues to improve, three-
dimensional maps are starting to become more common.

Another important factor is screen coordinates versus world coordinates. Geographic data
is stored in a coordinate system representing a grid overlaid on the Earth, which is three-
dimensional and round. Screen coordinates, also known as pixel coordinates, represent a
grid of pixels on a flat, two-dimensional computer screen. Mapping x and y world
coordinates to pixel coordinates is fairly straightforward and involves a simple scaling
algorithm. However, if a z coordinate exists, then a more complicated transformation must
be performed to map coordinates from a three-dimensional space to a two-dimensional
plane. These transformations can be computationally costly and therefore slow if not
handled correctly.
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In the case of remote sensing data, the challenge is typically the file size. Even a moderately
sized satellite image that is compressed can be tens, if not hundreds, of megabytes. Images
can be compressed using two methods:

Lossless methods: They use tricks to reduce the file size without discarding any
data
Lossy compression algorithms: They reduce the file size by reducing the amount
of data in the image while avoiding a significant change in the appearance of the
image

Rendering an image on the screen can be computationally intensive. Most remote sensing
file formats allow for the storing of multiple lower-resolution versions of the image – called
overviews or pyramids – for the sole purpose of faster rendering at different scales. When 
zoomed out from the image to a scale where you can see the detail of the full resolution
image, a preprocessed, lower-resolution version of the image is displayed quickly and
seamlessly.

Remote sensing concepts
Most of the GIS concepts we've described also apply to raster data. However, raster data
has some unique properties as well. Earlier in this chapter, when we went over the history
of remote sensing, the focus was on Earth imaging from aerial platforms. It is important to
note that raster data can come in many forms, including ground-based radar, laser range
finders, and other specialized devices to detect gases, radiation, and other forms of energy
in a geographic context.

For the purpose of this book, we will focus on remote sensing platforms that capture large
amounts of Earth data. These sources included Earth imaging systems, certain types of
elevation data, and some weather systems, where applicable.

Images as data
Raster data is captured digitally as square tiles. This means that the data is stored on a
computer as a numerical array of rows and columns. If the data is multispectral, the dataset
will usually contain multiple arrays of the same size, which are geospatially referenced
together to represent a single area on the Earth. These different arrays are called bands.
Any numerical array can be represented on a computer as an image. In fact, all computer
data is ultimately numbers. In geospatial analysis, it is important to think of images as a
numeric array because mathematical formulas are used to process them.
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In remotely sensed images, each pixel represents both space (the location on the Earth of a
certain size) and the reflectance captured as light reflected from the Earth at that location
into space. So, each pixel has a ground size and contains a number representing the
intensity. Since each pixel is a number, we can perform mathematical equations on this data
to combine data from different bands and highlight specific classes of objects in the image.
If the wavelength value is beyond the visible spectrum, we can highlight features that aren't
visible to the human eye. Substances such as chlorophyll in plants can be greatly contrasted
using a specific formula called the Normalized Difference Vegetation Index (NDVI).

By processing remotely sensed images, we can turn this data into visual information. Using
the NDVI formula, we can answer the question, what is the relative health of the plants in this
image? You can also create new types of digital information, which can be used as input for
computer programs to output other types of information.

Remote sensing and color
Computer screens display images as combinations of Red, Green, and Blue (RGB) to
match the capability of the human eye. Satellites and other remote sensing imaging devices
can capture light beyond this visible spectrum. On a computer, wavelengths beyond the
visible spectrum are represented in the visible spectrum so that we can see them. These
images are known as false color images. In remote sensing, for instance, infrared light
makes moisture highly visible.

This phenomenon has a variety of uses, such as monitoring ground saturation during a
flood or finding hidden leaks in a roof or levee.

Common vector GIS concepts
In this section, we will discuss the different types of GIS processes that are commonly used
in geospatial analysis. This list is not exhaustive; however, it provides you with the
essential operations that all other operations are based on. If you understand these
operations, you will quickly understand much more complex processes as they are either
derivatives or combinations of these processes.
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Data structures
GIS vector data uses coordinates consisting of, at a minimum, an x horizontal value and a y
vertical value to represent a location on the Earth. In many cases, a point may also contain a
z value. Other ancillary values are possible, including measurements or timestamps.

These coordinates are used to form points, lines, and polygons to model real-world objects.
Points can be a geometric feature in and of themselves or they can connect line segments.
Closed areas created by line segments are considered polygons. Polygons model objects
such as buildings, terrain, or political boundaries.

A GIS feature can consist of a single point, line, or polygon, or it can consist of more than
one shape. For example, in a GIS polygon dataset containing world country boundaries, the
Philippines, which is made up of 7,107 islands, would be represented as a single country
made up of thousands of polygons.

Vector data typically represents topographic features better than raster data. Vector data
has more accuracy potential and is more precise. However, collecting vector data on a large
scale is also traditionally more costly than raster data.

Two other important terms related to vector data structures are bounding box and convex
hull. The bounding box, or minimum bounding box, is the smallest possible square that
contains all of the points in a dataset. The following diagram demonstrates a bounding box
for a collection of points:
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The convex hull of a dataset is similar to the bounding box, but instead of a square, it is the
smallest possible polygon that can contain a dataset. The following diagram shows the
same point data as the previous example, with the convex hull polygon shown in red:

As you can see, the bounding box of a dataset always contains a convex hull. 

Geospatial rules about polygons
In geospatial analysis, there are several general rules of thumb regarding polygons that are
different from mathematical descriptions of polygons:

Polygons must have at least four points – the first and last points must be the
same
A polygon boundary should not overlap itself
Polygons in a layer shouldn't overlap
A polygon in a layer inside another polygon is considered a hole in the
underlying polygon

Different geospatial software packages and libraries handle exceptions to these rules
differently, which can lead to confusing errors or software behaviors. The safest route is to
make sure that your polygons obey these rules. There's one more important piece of
information about polygons that we need to talk about.
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A polygon is, by definition, a closed shape, which means that the first and last vertices of
a polygon are identical. Some geospatial software will throw an error if you haven't
explicitly duplicated the first point as the last point in the polygon dataset. Other software
will automatically close the polygon without complaining. The data format that you use to
store your geospatial data may also dictate how polygons are defined. This issue is a gray
area and so it didn't make the polygon rules, but knowing this quirk will come in handy
someday when you run into an error that you can't explain easily.

Buffer
A buffer operation can be applied to spatial objects, including points, lines, or polygons.
This operation creates a polygon around the object at a specified distance. Buffer operations
are used for proximity analysis: for example, establishing a safety zone around a dangerous
area. Let's review this diagram:

The black shapes represent the original geometry, while the red outlines represent the
larger buffer polygons that were generated from the original shape.

Dissolve
A dissolve operation creates a single polygon out of adjacent polygons. Dissolves are also
used to simplify data that's been extracted from remote sensing, as shown here:
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A common use for a dissolve operation is to merge two adjacent properties in a tax
database that has been purchased by a single owner.

Generalize
Objects that have more points than necessary for the geospatial model can be generalized to
reduce the number of points that are used to represent the shape. This operation usually
requires a few attempts to get the optimal number of points without compromising the
overall shape. It is a data optimization technique that's used to simplify data for the
efficiency of computing or better visualization. This technique is useful in web mapping
applications.

Here is an example of a polygon generalization:

Since computer screens have a resolution of 72 dots per inch (dpi), highly detailed point
data, which would not be visible, can be reduced so that less bandwidth is used to send a
visually equivalent map to the user.

Intersection
An intersection operation is used to see if one part of a feature intersects with one or more
features. This operation is used for spatial queries in proximity analysis and is often a
follow-on operation to buffer analysis:
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A merge operation combines two or more non-overlapping shapes in a single multi-shape
object. Multi-shape objects are shapes that maintain separate geometries but are treated as a
single feature with a single set of attributes by the GIS:

A fundamental geospatial operation is checking to see whether a point is inside a polygon.
This one operation is the atomic building block of many different types of spatial queries. If
the point is on the boundary of the polygon, it is considered inside. Very few spatial queries
exist that do not rely on this calculation in some way. However, it can be very slow on a
large number of points.
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The most common and efficient algorithm to detect whether a point is inside a polygon is
called the ray casting algorithm. First, a test is performed to see if the point is on the
polygon boundary. Next, the algorithm draws a line from the point in question in a single
direction. The program counts the number of times the line crosses the polygon boundary
until it reaches the bounding box of the polygon, as shown here:

The bounding box is the smallest box that can be drawn around the entire polygon. If the
number is odd, the point is inside. If the number of boundary intersections is even, the
point is outside.

Union
The union operation is less common, but very useful when you wish to combine two or
more overlapping polygons in a single shape. It is similar to dissolve, but in this case, the
polygons are overlapping as opposed to being adjacent:
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Usually, this operation is used to clean up automatically generated feature datasets from
remote sensing operations.

Join
A join or SQL join is a database operation that's used to combine two or more tables of
information. Relational databases are designed to avoid storing redundant information for
one-to-many relationships. For example, a US state may contain many cities. Rather than
creating a table for each state containing all of its cities, a table of states with numeric IDs is
created, while a table for all the cities in every state is created with a state numeric ID.

In a GIS, you can also have spatial joins that are part of the spatial extension software for a
database. In spatial joins, you combine the attributes in the same way that you do in a SQL
join. However, the relation is based on the spatial proximity of the two features.

To follow the previous cities example, we could add the county name that each city resides
in using a spatial join. The cities layer could be loaded over a county polygon layer whose
attributes contain the county name. The spatial join would determine which city is in which
county and perform a SQL join to add the county name to each city's attribute row.
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Common raster data concepts
As we mentioned earlier, remotely sensed raster data is a matrix of numbers. Remote
sensing contains thousands of operations that can be performed on data. This field changes
on almost a daily basis as new satellites are put into space and computer power increases.

Despite its decade-long history, we haven't even scratched the surface of the knowledge
that this field can provide to the human race. Once again, similar to the common GIS
processes, this minimal list of operations allows you to evaluate any technique that's used
in remote sensing.

Band math
Band math is multidimensional array mathematics. In array math, arrays are treated as
single units, which are added, subtracted, multiplied, and divided. However, in an array,
the corresponding numbers in each row and column across multiple arrays are computed
simultaneously. These arrays are termed matrices, and computations involving matrices are
the focus of linear algebra.

Change detection
Change detection is the process of taking two images of the same location at different times
and highlighting those changes. A change could be due to the addition of something on the
ground, such as a new building, or the loss of a feature, such as coastal erosion. There are
many algorithms that detect changes among images and also determine qualitative factors
such as how long ago the change took place.
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The following image from a research project by the US Oak Ridge National Laboratory
(ORNL) shows rainforest deforestation between 1984 and 2000 in the state of Rondonia,
Brazil: 

Colors are used to show how recently the forest was cut. Green represents virgin
rainforests, white represents a forest that was cut within two years of the end of the date
range, red represents within 22 years, and the other colors fall in-between, as described in
the legend.
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Histogram
A histogram is the statistical distribution of values in a dataset. The horizontal axis
represents a unique value in a dataset, while the vertical axis represents the frequency of
this unique value in the raster. The following example from NASA shows a histogram for a
satellite image that has been classified into different categories, representing the underlying
surface features:

A histogram is a key operation in most raster processing. It can be used for everything from
enhancing contrast in an image to serving as a basis for object classification and image
comparison. 

Feature extraction
Feature extraction is the manual or automatic digitization of features in an image to points,
lines, or polygons. This process serves as the basis for the vectorization of images in which
a raster is converted into a vector dataset. An example of feature extraction is extracting a
coastline from a satellite image and saving it as a vector dataset.

If this extraction is performed over several years, you could monitor the erosion or other
changes along this coastline.
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Supervised and unsupervised classification
Objects on the Earth reflect different wavelengths of light, depending on the materials that
they are made of. In remote sensing, analysts collect wavelength signatures for specific
types of land cover (for example, concrete) and build a library for a specific area. A
computer can then use this library to automatically locate classes in the library in a new
image of the same area.

In unsupervised classification, a computer groups pixels with similar reflectance values in
an image without any other reference information other than the histogram of the image.

Creating the simplest possible Python GIS
Now that we have a better understanding of geospatial analysis, the next step is to build a
simple GIS known as SimpleGIS using Python. This small program will be a technically
complete GIS with a geographic data model and the ability to render the data as a visual
thematic map showing the population of different cities.

The data model will also be structured so that you can perform basic queries. Our
SimpleGIS will contain the state of Colorado, three cities, and population counts for each
city.

Most importantly, we will demonstrate the power and simplicity of Python programming
by building this tiny system in pure Python. We will only use modules available in the
standard Python distribution without downloading any third-party libraries.

Getting started with Python
As we stated earlier, this book assumes that you have some basic knowledge of Python. The
only module that's used in the following example is the turtle module, which provides a
very simple graphics engine based on the Tkinter library included with Python. If you used
the installers for Windows or macOS, the Tkinter library should be included already. If you
compiled Python yourself or are using a distribution from somewhere besides Python.org
(https://www.python. org), then make sure that you can import the turtle module by
typing in the following in the command prompt. This will run the turtle demo script:

python –m turtle

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
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The preceding command will begin a real-time drawing program that will demonstrate the
capabilities of the turtle module similar to the following screenshot:

Now that we've seen what the turtle graphics module can do, let's use it to build an actual
GIS!
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Building a SimpleGIS
The code is divided into two different sections:

The data model section
The map renderer that draws the data

For the data model, we will use simple Python lists. A Python list is a native data type that
serves as a container for other Python objects in a specified order. Python lists can contain
other lists and are great for simple data structures. They also map well to more complex
structures or even databases if you decide you want to develop your script further.

The second portion of the code will render the map using the Python turtle graphics
engine. We will have only one function in the GIS that converts the world coordinates – in
this case, longitude and latitude – into pixel coordinates. All graphics engines have an
origin point of (0,0) and it's usually in the top-left or lower-left corner of the canvas.

Turtle graphics are designed to teach programming visually. The turtle graphics canvas
uses an origin of (0,0) in the center, similar to a graphing calculator. The following graph
illustrates the type of Cartesian graph that the turtle module uses. Some of the points are
plotted in both positive and negative space:

This also means that the turtle graphics engine can have negative pixel coordinates, which
is uncommon for graphics canvases. However, for this example, the turtle module is the
quickest and simplest way to render our map.
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Setting up the data model
You can run this program interactively in the Python interpreter or you can save the
complete program as a script and run it. The Python interpreter is an incredibly powerful
way to learn about new concepts because it gives you real-time feedback on errors or
unexpected program behavior. You can easily recover from these issues and try something
else until you get the results that you want:

In Python, you usually import modules at the beginning of the script, so we'll1.
import the turtle module first. We'll use Python's import feature to assign the
module the name t to save space and time when typing turtle commands:

import turtle as t

Next, we'll set up the data model, starting with some simple variables that allow2.
us to access list indexes by name instead of numbers to make the code easier to
follow. Python lists index the contained objects, starting with the number 0. So, if
we wanted to access the first item in a list called myList, we would reference it
as follows:

myList[0]

To make our code easier to read, we can also use a variable name that's been3.
assigned to commonly used indexes:

firstItem = 0
myList[firstItem]

In computer science, assigning commonly used numbers to an easy-to-remember
variable is a common practice. These variables are called constants. So, for our
example, we'll assign constants for some common elements that are used for all of
the cities. All cities will have a name, one or more points, and a population count:

NAME = 0
POINTS = 1
POP = 2

Now, we'll set up the data for Colorado as a list with a name, polygon points,4.
and population. Note that the coordinates are a list within a list:

state = ["COLORADO", [[-109, 37],[-109, 41],[-102, 41],[-102, 37]],
5187582]
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The cities will be stored as nested lists. Each city's location consists of a single5.
point as a longitude and latitude pair. These entries will complete our GIS data
model. We'll start with an empty list called cities and then append the data to
this list for each city:

cities = []
cities.append(["DENVER",[-104.98, 39.74], 634265])
cities.append(["BOULDER",[-105.27, 40.02], 98889])
cities.append(["DURANGO",[-107.88,37.28], 17069])

We will now render our GIS data as a map by first defining a map size. The6.
width and height can be anything that you want, depending on your screen
resolution:

map_width = 400
map_height = 300

In order to scale the map to the graphics canvas, we must first determine the7.
bounding box of the largest layer, which is the state. We'll set the map's
bounding box to a global scale and reduce it to the size of the state. To do so,
we'll loop through the longitude and latitude of each point and compare it with
the current minimum and maximum x and y values. If it is larger than the
current maximum or smaller than the current minimum, we'll make this value
the new maximum or minimum, respectively:

minx = 180
maxx = -180
miny = 90
maxy = -90
forx,y in state[POINTS]:
if x < minx:
    minx = x
elif x > maxx:
    maxx = x
if y < miny:
    miny = y
elif y > maxy:
    maxy = y
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The second step when it comes to scaling is calculating a ratio between the actual8.
state and the tiny canvas that we will render it on. This ratio is used for
coordinate to pixel conversion. We get the size along the x and y axes of the state
and then we divide the map width and height by these numbers to get our
scaling ratio:

dist_x = maxx - minx
dist_y = maxy - miny
x_ratio = map_width / dist_x
y_ratio = map_height / dist_y

The following function, called convert(), is our only function in SimpleGIS. It9.
transforms a point in the map coordinates from one of our data layers into pixel
coordinates using the previous calculations. You'll notice that, in the end, we
divide the map width and height in half and subtract it from the final conversion
to account for the unusual center origin of the turtle graphics canvas. Every
geospatial program has some form of this function:

def convert(point):
  lon = point[0]
  lat = point[1]
  x = map_width - ((maxx - lon) * x_ratio)
  y = map_height - ((maxy - lat) * y_ratio)
  # Python turtle graphics start in the
  # middle of the screen
  # so we must offset the points so they are centered
  x = x - (map_width/2)
  y = y - (map_height/2)
  return [x,y]

Now comes the exciting part! We're ready to render our GIS as a thematic map.
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Rendering the map 
The turtle module uses the concept of a cursor, known as a pen. Moving the cursor
around the canvas is exactly the same as moving a pen around a piece of paper. The cursor
will draw a line when you move it. You'll notice that, throughout the code, we use the
t.up() and t.down() commands to pick the pen up when we want to move to a new
location and put it down when we're ready to draw. We have some important steps to
follow in this section, so let's get started:

Since the border of Colorado is a polygon, we must draw a line between the last1.
point and the first point to close the polygon. We can also leave out the closing
step and just add a duplicate point to the Colorado dataset. Once we've drawn
the state, we'll use the write() method to label the polygon:

t.up()
first_pixel = None
for point in state[POINTS]:
  pixel = convert(point)
  if not first_pixel:
    first_pixel = pixel
  t.goto(pixel)
  t.down()
t.goto(first_pixel)
t.up()
t.goto([0,0])
t.write(state[NAME], align="center", font=("Arial",16,"bold"))
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If we were to run the code at this point, we would see a simplified map of the2.
state of Colorado, as shown in the following screenshot:

If you do try to run the code, you'll need to temporarily add the following
line at the end, or the Tkinter window will close as soon as it finishes
drawing: t.done().



Learning about Geospatial Analysis with Python Chapter 1

[ 55 ]

Now, we'll render the cities as point locations and label them with their names3.
and population. Since the cities are a group of features in a list, we'll loop
through them to render them. Instead of drawing lines by moving the pen
around, we'll use the turtle dot() method to plot a small circle at the pixel
coordinate that's returned by our SimpleGISconvert() function. We'll then
label the dot with the city's name and add the population. You'll notice that we
must convert the population number into a string in order to use it in the turtle
write() method. To do so, we will use Python's built-in str() function:

  for city in cities:
      pixel = convert(city[POINTS])
      t.up()
      t.goto(pixel)
      # Place a point for the city
      t.dot(10)
      # Label the city
      t.write(city[NAME] + ", Pop.: " + str(city[POP]),
      align="left")
      t.up()

Now, we will perform one last operation to prove that we have created a real4.
GIS. We will perform an attribute query on our data to determine which city has
the largest population. Then, we'll perform a spatial query to see which city lies
the furthest west. Finally, we'll print the answers to our questions on our
thematic map page safely, out of the range of the map.
For our query engine, we'll use Python's built-in min() and max() functions.5.
These functions take a list as an argument and return the minimum and
maximum values of this list. These functions have a special feature called a key
argument that allows you to sort complex objects. Since we are dealing with
nested lists in our data model, we'll take advantage of the key argument in these
functions. The key argument accepts a function that temporarily alters the list for
evaluation before a final value is returned. In this case, we want to isolate the
population values for comparison, and then the points. We could write a whole
new function to return the specified value, but we can use Python's lambda
keyword instead. The lambda keyword defines an anonymous function that is
used inline. Other Python functions can be used inline, such as the string
function, str(), but they are not anonymous. This temporary function will
isolate our value of interest.
So, our first question is, which city has the largest population?6.

biggest_city = max(cities, key=lambda city:city[POP])
t.goto(0,-200)
t.write("The biggest city is: " + biggest_city[NAME])
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The next question is, which city lies the furthest west?7.

western_city = min(cities, key=lambda city:city[POINTS])
t.goto(0,-220)
t.write("The western-most city is: " + western_city[NAME])

In the preceding query, we use Python's built-in min() function to select the8.
smallest longitude value. This works because we represented our city locations
as longitude and latitude pairs. It is possible to use different representations for
points, including possible representations where this code would need
modification to work correctly. However, for our SimpleGIS, we are using a
common point representation to make it as intuitive as possible.
These last two commands are just for cleanup purposes. First, we hide the cursor.9.
Then, we call the turtle done() method, which will keep the turtle graphics
window with our map on it open until we choose to close it using the close
handle at the top of the window:

t.pen(shown=False)
t.done()

Whether you followed along using the Python interpreter or you ran the10.
complete program as a script, you should see the following map being rendered
in real time:
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Congratulations! You have followed in the footsteps of Paleolithic hunters, the father of GIS
Dr. Roger Tomlinson, geospatial pioneer Howard Fisher, and game-changing humanitarian
programmers to create a functional, extensible, and technically complete geographic
information system.

It took less than 60 lines of pure Python code! You will be hard-pressed to find a
programming language that can create a complete GIS using only its core libraries in such a
finite amount of readable code as Python. Even if you did, it is highly unlikely that the
language would survive the geospatial Python journey that you'll take through the rest of
this book.

As you can see, there is lots of room for expansion when it comes to SimpleGIS. Here are
some other ways that you might expand this simple tool using the reference material for
Tkinter and Python that were linked at the beginning of this section:

Create an overview map in the top-right corner with a US border outline and
Colorado's location in the US
Add color for visual appeal and further clarity
Create a map key for different features
Make a list of states and cities and add more states and cities
Add a title to the map
Create a bar chart to compare population numbers visually

The possibilities are endless. SimpleGIS can also be used as a way to quickly test and
visualize geospatial algorithms that you come across. If you want to add more data layers,
you can create more lists, but these lists will become difficult to manage. In this case, you
can use another Python module that's included in the standard distribution. The SQLite
module provides a SQL-like database in Python that can be saved to disk or run in
memory.
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Summary
Well done! You are now a geospatial analyst. In this chapter, you learned about the history
of geospatial analysis and the technologies that support it. You saw how Dr. Sarah Parcak's
research made a big difference to history. You also became familiar with foundational GIS
and remote sensing concepts that will serve you through the rest of this book. Finally, you
took all of this knowledge and built a working GIS that can be expanded to do whatever
you can imagine!

In the next chapter, we'll tackle the data formats that you'll encounter as a geospatial
analyst. Geospatial analysts spend far more time dealing with data than actually
performing analysis. Understanding the data that you're working with is essential to
working efficiently and having fun.

Further reading
Here is a list of references you may refer to:

If your Python distribution does not have Tkinter, you can find information on
installing it from the following page: https:/ /tkdocs. com/ tutorial/ install.
html

The official Python wiki page for Tkinter can be found here: https:/ / wiki.
python.org/ moin/ TkInter.
The documentation for Tkinter is in the Python standard library documentation,
which can be found at https:/ /docs. python. org/ 2/library/ tkinter. html.
If you are new to Python, Diveintopython by Mark Pilgrim, published by Apress,
is a free online book that covers all the basics of Python and will bring you up to
speed. For more information, refer to http:/ /www. diveintopython.net.
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2
Learning Geospatial Data

One of the most challenging aspects of geospatial analysis is the data. Geospatial data
already includes dozens of file formats and database structures and continues to evolve and
grow to include new types of data and standards. Additionally, almost any file format can
technically contain geospatial information and is done by simply adding a location.

In this chapter, we will look at the following topics:

Getting an overview of common data formats
Examining some common traits of geospatial data
Understanding spatial indexing
Knowing the most widely used vector data types
Understanding raster data types

We'll also gain some insight into newer, more complex types, including point cloud data,
web services, and geospatial databases.

Getting an overview of common data
formats
As a geospatial analyst, you may frequently encounter the following general data types:

Spreadsheets and comma-separated values (CSV files) or tab-separated
values (TSV files)
Geotagged photos
Lightweight binary points, lines, and polygons
Multi-gigabyte satellite or aerial images
Elevation data such as grids, point clouds, or integer-based images
XML files
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JSON files
Databases (both servers and file databases)
Web services
Geodatabases

Each format contains its own challenges for access and processing. When you perform
analysis on data, you usually have to do some form of preprocessing first. You might clip
or subset a satellite image of a large area down to just your area of interest, or you might
reduce the number of points in a collection to just the ones meeting certain criteria in your
data model. A good example of this type of preprocessing is the SimpleGIS example that
we looked at the end of Chapter 1, Learning about Geospatial Analysis with Python. The state
dataset included just the state of Colorado rather than all 50 states. The city dataset
included only three sample cities demonstrating three levels of population, along with
different relative locations.

The common geospatial operations in Chapter 1, Learning about Geospatial Analysis with
Python, are the building blocks for this type of preprocessing. However, it is important to
note that there has been a gradual shift in the field of geospatial analysis toward readily
available basemaps. Until around 2004, geospatial data was difficult to acquire and desktop
computing power was much less than it is today. Preprocessing data was an absolute first
step for any geospatial project. However, in 2004, Google released Google Maps, which
wasn't long after Google Earth. Microsoft had also been developing a technology 
acquisition called TerraServer, which they relaunched around this time. In 2004, the Open
Geospatial Consortium (OGC) updated the version of its Web Map Service (WMS), which
was growing in use and popularity. This same year, Esri also released version 9 of its
ArcGIS server system. These innovations were driven by Google's web map tiling model,
which allowed for smooth, global, scrolling maps at many different resolutions, and were 
often called slippy maps.

People used map servers on the internet before Google Maps, most famously with the
MapQuest driving directions website. However, these map servers offered only small
amounts of data at a time and usually over limited areas. The Google tiling system
converted global maps into tiered image tiles for both images and mapping data. These
were served dynamically using JavaScript and the browser-based XMLHttpRequest API,
more commonly known as Asynchronous JavaScript and XML (AJAX). Google's system
scaled to millions of users using ordinary web browsers. More importantly, it allowed
programmers to leverage JavaScript programming to create mashups so that they could use
the Google Maps JavaScript API to add additional data to the maps. The mashup concept is
actually a shared geospatial layers system. Users can combine and recombine data from
different web services into a single map, as long as the data is web-accessible. Other
commercial and open source systems quickly mimicked this concept.
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Notable examples of distributed geospatial layers are OpenLayers, which provide an open
source, Google-like API that has now gone beyond Google's API, offering additional
features. Complimentary to OpenLayers is OpenStreetMap, which is the open source
answer to the tiled map services consumed by systems such as OpenLayers.
OpenStreetMap has global, street-level vector data and other spatial features that have been
collected from available government data sources and the contributions of thousands of
editors worldwide. OpenStreetMap's data maintenance model is similar to the way
Wikipedia, the online encyclopedia, crowd sources information creation and updates for
articles. Recently, even more mapping APIs have appeared, including Leaflet and Mapbox,
which continue to increase in flexibility, simplicity, and capability.

The mashup revolution had interesting and beneficial side effects on data. Geospatial data
is traditionally difficult to obtain. The cost of collecting, processing, and distributing data
kept geospatial analysis constrained to those who could afford this steep overhead cost by
producing data or purchasing it. For decades, geospatial analysis was the tool of
governments, very large organizations, and universities. Once the web mapping trend
shifted to large-scale, globally tiled maps, organizations began essentially providing
basemap layers for free in order to draw developers to their platform. The massively
scalable global map system required massively scalable, high-resolution data to be useful.
Geospatial software producers and data providers wanted to maintain their market share
and kept up with the technology trend.

Geospatial analysts benefited greatly from this market shift in several ways. First of all,
data providers began distributing data in a common projection called Mercator. The
Mercator projection is a nautical navigation projection that was introduced over 400 years
ago. As we mentioned in Chapter 1, Learning about Geospatial Analysis with Python, all
projections have practical benefits, as well as distortions. The distortion in the Mercator
projection is its size. In a global view, Greenland appears bigger than the continent of South
America. However, like every projection, it also has some benefits. Mercator preserves
angles. Predictable angles allowed medieval navigators to draw straight bearing lines when
plotting a course across oceans. Google Maps didn't launch with Mercator. However, it
quickly became clear that roads in high and low latitudes met at odd angles on the map
instead of the 90 degrees in reality.

Since the primary purpose of Google Maps was street-level driving directions, Google
sacrificed the global view accuracy for far better relative accuracy among streets when
viewing a single city. Competing mapping systems followed suit. Google also standardized
on the WGS 84 datum. This datum defines a specific spherical model of the Earth, called a
geoid. This model defines the normal sea level. What's significant about this choice by
Google is that the Global Positioning System (GPS) also uses this datum. Therefore, most
GPS units default to this datum as well, making Google Maps easily compatible with raw
GIS data.
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The Google variation of the Mercator projection is often called Google Mercator. The
European Petroleum Survey Group (EPSG) assigns short numeric codes to projections as
an easy way to reference them. Rather than waiting for the EPSG to approve or assign a
code that was first only relevant to Google, they began calling the projection EPSG:900913,
which is Google spelled with numbers. Later, EPSG assigned the code EPSG:3857,
deprecating the older code. Most GIS systems recognize the two codes as synonymous. It
should be noted that Google tweaked the standard Mercator projection slightly for its use;
however, this variation is almost imperceptible. Google uses spherical formulas at all map
scales, while the standard Mercator assumes an ellipsoidal form at large scales.

The following image of the Mercator projection (https:/ /en. wikipedia. org/wiki/
File:Tissot_mercator. png) was taken from Wikipedia:
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It shows the distortion caused by the Mercator projection using Tissot's indicatrix, which
projects small ellipses of equal size on a map. The distortion of the ellipse clearly shows
how the projection affects the size and distance: web mapping services have reduced the
chore of hunting for data and much of the preprocessing for analysts to create basemaps.
However, to create anything of value, you must understand geospatial data and how to
work with it. This chapter provides an overview of the common data types and issues that
you will encounter in geospatial analysis.

Throughout this chapter, two terms will be commonly used:

Vector data: Vector data includes any format that minimally represents
geolocation data using points, lines, or polygons.
Raster data: Raster data includes any format that stores data in a grid of rows
and columns. Raster data includes all image formats.

These are the two primary categories under which most geospatial datasets can be
grouped. 

If you want to see a projection that shows the relative size of continents
more accurately, refer to the Goode homolosine projection: https:/ /en.
wikipedia. org/ wiki/ Goode_ homolosine_ projection.

Understanding data structures
Despite having dozens of formats, geospatial data has some common traits. Understanding
these traits can help you approach and understand unfamiliar data formats by identifying
the ingredients common to nearly all spatial data. The structure of a given data format is
usually driven by its intended use.

Some data is optimized for efficient storage or compression, some is optimized for efficient
access, some is designed to be lightweight and readable (web formats), while other data
formats seek to contain as many different data types as possible.

Interestingly, some of the most popular formats today are also some of the simplest and
even lack features found in more capable and sophisticated formats. Ease of use is
extremely important to geospatial analysts because so much time is spent integrating data
into geographic information systems, as well as exchanging data among analysts. Simple
data formats facilitate these activities the best.
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Common traits
Geospatial analysis is an approach in which you apply information processing techniques
to data with a geographic context. This definition contains the most important elements of
geospatial data:

Geolocation data: Geolocation information can be as simple as a single point on
the Earth referencing where a photo was taken. It can also be as complex as a
satellite camera engineering model and orbital mechanics information being used
to reconstruct the exact conditions and location under which the satellite
captured the image.
Subject information: Subject information can also cover a wide range of
possibilities. Sometimes, the pixels in an image are the data in terms of a visual
representation of the ground. Other times, an image may be processed using
multispectral bands, such as infrared light, to provide information that's not
visible in the image. Processed images are often classified using a structured
color palette that is linked to a key, describing the information each color
represents. Other possibilities include some form of database with rows and
columns of information for each geolocated feature, such as the population
associated with each city in our SimpleGIS from Chapter 1, Learning about
Geospatial Analysis with Python.

These two factors are present in every format that can be considered geospatial data.
Another common feature of geospatial data is spatial indexing. Overview datasets are also
related to indexing.

Understanding spatial indexing
Geospatial datasets are often very large files, easily reaching hundreds of megabytes or
even several gigabytes in size. Geospatial software can be quite slow in trying to repeatedly
access large files when performing analysis.

As discussed briefly in Chapter 1, Learning about Geospatial Analysis with Python, spatial
indexing creates a guide, which allows the software to quickly locate query results without
examining every single feature in the dataset. Spatial indexes allow the software to
eliminate possibilities and perform more detailed searches or comparisons on a much
smaller subset of the data.
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Spatial indexing algorithms
Many spatial indexing algorithms are derivatives of well-established algorithms that have
been used on non-spatial information for decades. The two most common spatial indexing
algorithms are Quadtree index and R-tree index.

Quadtree index
The Quadtree algorithm actually represents a series of different algorithms based on a
common theme. Each node in a Quadtree index contains four children. These child nodes
are typically square or rectangular in shape. When a node contains a specified number of
features and more features are added, the node splits.

The concept of dividing a space into nested squares speeds up spatial searches. The
software must only handle five points at a time and use simple greater-than/less-than
comparisons to check whether a point is inside a node. Quadtree indexes are most
commonly found in file-based index formats.

The following diagram shows a point dataset sorted by a Quadtree algorithm. The black
points are the actual dataset, while the boxes are the bounding boxes of the index. Note that
none of the bounding boxes overlap. The diagram on the left shows the spatial
representation of the index, while the diagram on the right shows the hierarchical
relationship of a typical index, which is how spatial software sees the index and data.

This structure allows a spatial search algorithm to quickly eliminate possibilities when
trying to locate one or more points in relation to some other set of features, as shown in the
following diagram:

Now that we understand quadtree indexes, let's look at another common type of spatial
indexes called R-trees.
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R-tree index
R-tree indexes are more sophisticated than Quadtrees. R-trees are designed to handle 3D
data and are optimized to store the index in a way that is compatible with the way
databases use disk space and memory. Nearby objects are grouped together using an
algorithm from a variety of spatial algorithms. All objects in a group are bounded by a
minimum rectangle. These rectangles are aggregated into hierarchical nodes that are
balanced at each level.

Unlike a Quadtree, the bounding boxes of an R-tree may overlap across nodes. Due to their
relative complexity and database-oriented structure, R-trees are most commonly found in
spatial databases, as opposed to file-based formats.

The following diagram from https://en.wikipedia.org/wiki/File:R-tree.svg shows a
balanced R-tree for a 2D point dataset:

https://en.wikipedia.org/wiki/File:R-tree.svg
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Indexes break up large datasets, but to speed up searching, they may employ a technique
called grids. We'll look at that next.

Grids
Spatial indexes also often employ the concept of an integer grid. Geospatial coordinates are 
usually floating-point decimal numbers with anywhere from 2 to 16 decimal places.
Performing comparisons on floating-point numbers is far more computationally expensive
than working with integers. Indexed searching is about eliminating possibilities that don't
require precision first.

Most spatial indexing algorithms, therefore, map floating-point coordinates to a fixed-sized
integer grid. On searching for a particular feature, the software can use more efficient
integer comparisons rather than working with floating-point numbers. Once the results are
narrowed down, the software can access the full resolution data.

Grid sizes can be as small as 256 x 256 for simple file formats, or can be as large as 3 million
x 3 million in large geospatial databases designed to incorporate every known coordinate
system and possible resolution.

The integer mapping technique is very similar to the rendering technique that is used to
plot data on a graphics canvas in mapping programs. The SimpleGIS script in Chapter 1,
Learning about Geospatial Analysis with Python, also uses this technique to render points and
polygons using the built-in Python turtle graphics engine.

What are overviews?
Overview data is most commonly found in raster formats. Overviews are resampled and
lower-resolution versions of raster datasets that provide thumbnail views or simply faster-
loading image views at different map scales. They are also known as pyramids, and the 
process of creating them is known as pyramiding an image. These overviews are usually
preprocessed and stored with the full resolution data either embedded with the file or in a
separate file.

The compromise of this convenience is that the additional images add to the overall file size
of the dataset; however, they speed up image viewers. Vector data also has a concept of
overviews, usually to give a dataset geographic context in an overview map. However,
because vector data is scalable, reduced size overviews are usually created on the fly by
software using a generalization operation, as mentioned in Chapter 1, Learning about
Geospatial Analysis with Python.
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Occasionally, vector data is rasterized by converting it into a thumbnail image, which is
stored with, or embedded in, the image header. The following diagram demonstrates the 
concept of image overviews that shows visually why they are often called pyramids:

Spatial indexing and overviews help speed up access to data by software for analysts. Next,
we'll look at metadata, which provides both a human-and machine-readable way to
understand, search, and even catalog data.

What is metadata?
As discussed in Chapter 1, Learning about Geospatial Analysis with Python, metadata is any
data that describes the associated dataset. Common examples of metadata include basic
elements such as the footprint of the dataset on the Earth, as well as more detailed
information such as spatial projection and information describing how the dataset was
created.

Most data formats contain the footprint or bounding box of the data on the Earth. Detailed 
metadata is typically stored in a separate location in a standard format, such as the
US Federal Geographic Data Committee (FGDC), Content Standard for Digital
Geospatial Metadata (CSDGM), ISO, or the newer European Union initiative, which
includes metadata requirements, and is called the Infrastructure for Spatial Information in
the European Community (INSPIRE).
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Understanding the file structure
The preceding elements can be stored in a variety of ways in a single file, multiple files, or
databases, depending on the format. Additionally, this geospatial information can be stored
in a variety of formats, including embedded binary headers, XML, database tables,
spreadsheets/CSV, separate text, or binary files.

Human-readable formats such as XML files, spreadsheets, and structured text files require
only a text editor to be investigated. These files are also easily parsed and processed using
Python's built-in modules, data types, and string manipulation functions. Binary-based
formats are more complicated. Therefore, it is typically easier to use a third-party library to
deal with binary formats.

However, you don't have to use a third-party library, especially if you just want to
investigate the data at a high level. Python's built-in struct module has everything that
you need. The struct module lets you read and write binary data as strings. When using
the struct module, you need to be aware of the concept of byte order. Byte order refers to
how the bytes of information that make up a file are stored in memory. This order is
usually platform-specific, but in some rare cases, including shapefiles, the byte order is
mixed into the file.

The Python struct module uses the greater than (>) and less than (<) symbols to specify
byte order (big-endian and little-endian, respectively).

The following brief example demonstrates the usage of the Python struct module to parse
the bounding box coordinates from an Esri shapefile vector dataset. You can download this 
shapefile as a zipped file from the following URL: https:/ /github. com/
GeospatialPython/Learn/ blob/ master/ hancock. zip? raw=true.

When you unzip this, you will see three files. For this example, we'll be using
hancock.shp. The Esri shapefile format has a fixed location and data type in the file
header from byte 36 to byte 37 for the minimum x, minimum y, maximum x, and maximum
y bounding box values. In this example, we will execute the following steps:

Import the struct module.1.
Open the hancock.zip shapefile in the binary read mode.2.
Navigate to byte 36.3.
Read each 8-byte double variables specified as d, and unpack it using the struct4.
module in little-endian order, as designated by the < sign.

https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
https://github.com/GeospatialPython/Learn/blob/master/hancock.zip?raw=true
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The best way to execute this script is in the interactive Python interpreter. We will then
read the minimum longitude, minimum latitude, maximum longitude, and maximum
latitude:

>>> import struct
>>> f = open("hancock.shp","rb")
>>> f.seek(36)
>>> struct.unpack("<d", f.read(8))
(-89.6904544701547,)
>>> struct.unpack("<d", f.read(8))
(30.173943486533133,)
>>> struct.unpack("<d", f.read(8))
(-89.32227546981174,)
>>> struct.unpack("<d", f.read(8))
(30.6483914869749,)

You'll notice that, when the struct module unpacks a value, it returns a Python tuple with
one value. You can shorten the preceding unpacking code to one line by specifying all four
doubles at once and increasing the byte length to 32 bytes, as shown in the following code:

>>> f.seek(36)
>>> struct.unpack("<dddd", f.read(32))
(-89.6904544701547, 30.173943486533133, -89.32227546981174,
   30.6483914869749)

Now that we understand how to describe data, let's learn about one of the most common
types of geospatial data—vector data.

Knowing the most widely used vector data
types
Vector data is, by far, the most common geospatial format because it is the most efficient
way to store spatial information. In general, it requires fewer computer resources to store
and process than raster data. The OGC has over 16 formats directly related to vector data.
Vector data stores only geometric primitives, including points, lines, and polygons.
However, only the points are stored for each type of shape. For example, in the case of a
simple straight vector line shape, only the endpoints would be necessarily stored and
defined as a line. Software displaying this data would read the shape type and then connect
the endpoints with a line dynamically.
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Geospatial vector data is similar to the concept of vector computer graphics, with some
notable exceptions. Geospatial vector data contains positive and negative Earth-based
coordinates, while vector graphics typically store computer screen coordinates. Geospatial
vector data is also usually linked to other information about the object that's represented by
the geometry. This information may be as simple as a timestamp in the case of GPS data or
an entire database table for larger geographic information systems.

Vector graphics often store styling information describing colors, shadows, and other
display-related instructions, while geospatial vector data typically does not. Another
important difference is the shapes. Geospatial vectors typically only include very primitive
geometries based on points, straight lines, and straight-line polygons, while many
computer graphic vector formats have concepts of curves and circles. However, geospatial
vectors can model these shapes using more points.

Other human-readable formats, such as CSV, simple text strings, GeoJSON, and XML-
based formats, are technically vector data because they store geometry as opposed to
rasters, which represent all the data within the bounding box of the dataset. Until the
explosion of XML in the late 1990s, vector data formats were nearly all binary. XML
provided a hybrid approach that was both computer and human-readable. The
compromise is that text formats such as GeoJSON and XML data greatly increase the file
size compared to binary formats. These formats will be discussed later in this section.

The number of vector formats to choose from is staggering. The open source vector library,
OGR (http://www.gdal.org/ogr_formats.html), lists over 86 supported vector formats. Its
commercial counterpart, Safe Software's Feature Manipulation Engine (FME), lists over
188 supported vector formats
(http://www.safe.com/fme/format-search/#filters%5B%5D=VECTOR). These lists include a
few vector graphics formats, as well as human-readable geospatial formats. There are still
dozens of formats out there to at least be aware of, in case you come across them.

Now, let's look at a specific, and widely used type of vector data called shapefiles.

Shapefiles
The most ubiquitous geospatial format is the Esri shapefile. The geospatial software
company known as Esri released the shapefile format specification as an open format in
1998 (http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf). Esri developed
it as a format for their ArcView software, designed as a lower-end GIS option to
complement their high-end professional package, ArcInfo, formerly called ARC/INFO.
However, the open specification, efficiency, and simplicity of the format turned it into an
unofficial GIS standard that is still extremely popular over 15 years later.

http://www.gdal.org/ogr_formats.html
http://www.safe.com/fme/format-search/#filters%5B%5D=VECTOR
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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Virtually, every piece of the software labeled as geospatial software supports shapefiles
because the shapefile format is so common. For this reason, you can almost get by as an
analyst by being intimately familiar with shapefiles and mostly ignoring other formats. You
can convert almost any other format into a shapefile through the source format's native
software or a third-party converter, such as the OGR library, for which there is a Python
module. Other Python modules that handle shapefiles are Shapely and Fiona, which are
based on OGR.

One of the most striking features of a shapefile is that the format consists of multiple files
(from minimum to maximum, there can be 3-15 different files). The following table
describes the file formats. The .shp, .shx, and .dbf files are required for a valid shapefile:

Shapefile
supporting
file
extension

Supporting file
purpose Notes

.shp
This is the shapefile. It
contains the geometry.

It is a required file. Some software that
needs only geometry will accept the .shp
files without the .shx or .dbf file.

.shx

This is the shape index
file. It is a fixed-sized
record index
referencing geometry
for faster access.

It is a required file. This file is meaningless 
without the .shp file.

.dbf
This is the database
file. It contains the
geometry attributes.

It is a required file. Some software will
access this format without the .shp file
present as the specification predates
shapefiles. It's based on the very old FoxPro
and dBase formats. An open specification
exists for it called Xbase. The .dbf files can
be opened by most types of spreadsheet
software.

.sbn
This is the spatial bin
file, that is, the
shapefile spatial index.

It contains bounding boxes of features
mapped to a 256 x 256 integer grid. It is
very common for this file to accompany
large shapefile datasets.

.sbx
A fixed-sized record
index for the .sbn file.

A traditional ordered record index of a
spatial index. Frequently seen.
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Shapefile
supporting
file
extension

Supporting file
purpose Notes

.prj

This contains map
projection information
that's stored in a well-
known text format.

A very common and required file for on-
the-fly projection by the GIS software. This 
same format can also accompany raster
data.

.fbn
A spatial index of
read-only features. Very rarely seen.

.fbx
A fixed-sized record
index of the .fbn
spatial index.

Very rarely seen.

.ixs A geocoding index.
Common in geocoding applications,
including driving-direction type
applications.

.mxs
Another type of
geocoding index. Less common than the .ixs format.

.ain Attribute index. Mostly legacy format, and rarely used in
modern software.

.aih Attribute index. Accompanies the .ain files.

.qix Quadtree index.

A spatial index format created by the open
source community because the Esri .sbn
and .sbx files were undocumented until
recently.

.atx Attribute index.
A more recent Esri software-specific
attribute index to speed up attribute
queries.

.shp.xml Metadata.
A geospatial metadata .xml container. It
can be any of the multiple XML standards,
including FGDC and ISO.

.cpg
Code page file for
.dbf.

It is used for the internationalization of
.dbf files.
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You will probably never encounter all of these formats at once. However, any shapefile that
you use will have multiple files. You will commonly see .shp, .shx, .dbf, .prj, .sbn,
.sbx, and occasionally, .shp.xml files. If you want to rename a shapefile, you must
rename all of the associated files with the same name; however, in Esri software and other
GIS packages, these datasets will appear as a single file.

Another important feature of shapefiles is that the records are not numbered. Records
include the geometry, the .shx index record, and the .dbf record. These records are stored
in a fixed order. When you examine shapefile records using the software, they appear to be
numbered.

People are often confused when they delete a shapefile record, save the file, and reopen it;
the number of the record that was deleted still appears. The reason for this is that the
shapefile records are numbered dynamically on loading, but not saved. So, for example, if
you delete record number 23 and save the shapefile, record number 24 will become 23 the
next time you read the shapefile. Many people expect to open the shapefile and see the
records jump from 22 to 24. The only way to track shapefile records in this way is to create
a new attribute called ID or similar in the .dbf file and assign each record a permanent and
unique identifier.

Just like renaming shapefiles, care must be taken while editing shapefiles. It's best to use
software that treats the shapefiles as a single dataset. If you edit any of the files individually
and add/delete a record without editing the accompanying files, the shapefile will be seen
as corrupt by most geospatial software.

CAD files
CAD stands for computer-aided design. The primary formats for CAD data were created
by Autodesk for their leading AutoCAD package. The two formats that are commonly seen
are Drawing Exchange Format (DXF) and AutoCAD's native Drawing (DWG) format.

DWG was traditionally a closed format, but it has become more open.
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The CAD software is used for everything that is engineering-related, from designing
bicycles to cars, parks, and city sewer systems. As a geospatial analyst, you don't have to
worry about mechanical engineering designs; however, civil engineering designs become
quite an issue. Most engineering firms use geospatial analysis to a very limited degree, but
store nearly all of their data in the CAD format. The DWG and DXF formats can represent
objects using features not found in geospatial software or that are weakly supported by
geospatial systems. Some examples of these features include the following:

Curves
Surfaces (for objects that are different from geospatial elevation surfaces)
3D solids
Text (rendered as an object)
Text styling
Viewport configuration

These CAD and engineering-specific features make it difficult to cleanly convert CAD data
into geospatial formats. If you encounter CAD data, the easiest option is to ask the data
provider if they have shapefiles or some other geospatial-centric format.

Tag-based and markup-based formats
Tag-based markup formats are typically XML formats. They also include other structured
text formats such as the Well-Known Text (WKT) format, which is used for projection 
information files as well as different types of data exchange.

XML formats include the Keyhole Markup Language (KML), the OpenStreetMap (OSM)
format, and the Garmin GPX format for GPS data, which has become a popular exchange
format. The Open Geospatial Consortium's Geographic Markup Language (GML)
standard is one of the oldest and most widely used XML-based geographic formats. It is
also the basis for the OGC Web Feature Service (WFS) standard for web applications.
However, GML has been largely superseded by KML and the GeoJSON format.

XML formats often contain more than just geometry. They also contain attributes and
rendering instructions such as color, styling, and symbology. Google's KML format has
become a fully supported OGC standard. The following is a sample of KML showing a
simple placemark:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
  <Placemark>
    <name>Mockingbird Cafe</name>
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    <description>Coffee Shop</description>
    <Point>
      <coordinates>-89.329160,30.310964</coordinates>
    </Point>
  </Placemark>
</kml>

The XML format is attractive to geospatial analysts for the following reasons:

It is a human-readable format.
It can be edited in a text editor.
It is well supported by programming languages (especially Python).
It is, by definition, easily extensible.

XML is not perfect, though. It is an inefficient storage mechanism for very large data
formats and can quickly become cumbersome to edit. Errors in datasets are common, and
most parsers do not handle errors robustly. Despite the downsides, XML is widely used in
geospatial analysis.

Scalable Vector Graphics (SVG) is a widely supported XML format for computer graphics.
It is supported well by browsers and is often used for geospatial rendering. However, SVG
was not designed as a geographic format.

The WKT format is also an older OGC standard. The most common use for it is to define 
projection information usually stored in .prj projection files, along with a shapefile or
raster. The WKT string for the WGS 84 coordinate system is as follows:

GEOGCS["WGS 84",
    DATUM["WGS_1984",
        SPHEROID["WGS 84",6378137,298.257223563,
            AUTHORITY["EPSG","7030"]],
        AUTHORITY["EPSG","6326"]],
    PRIMEM["Greenwich",0,
        AUTHORITY["EPSG","8901"]],
    UNIT["degree",0.01745329251994328,
        AUTHORITY["EPSG","9122"]],
    AUTHORITY["EPSG","4326"]]

The parameters that define a projection can be quite long. A standards committee, which
was created by the EPSG, introduced a numerical coding system to reference projections.
These codes, such as EPSG:4326, are used as shorthand for strings such as the preceding
code. There are also short names for commonly used projections such as Mercator, which
can be used in different software packages to reference a projection.
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More information on these reference systems can be found on the spatial
reference website at http://spatialreference.org/ref/.

GeoJSON
GeoJSON is a relatively new and brilliant text format based on the JavaScript Object
Notation (JSON) format, which has been a commonly used data exchange format for years.
Despite its short history, GeoJSON can be found embedded in all major geospatial software
systems and most websites that distribute data. This is because JavaScript is the language of
the dynamic web, and GeoJSON can be directly fed into JavaScript.

GeoJSON is a completely backward-compatible extension for the popular JSON format. The
structure of JSON is very similar and, in some cases, identical to existing data structures of
common programming languages. JSON is almost identical to Python's dictionary and list
data types. Due to this similarity, parsing JSON in a script is simple to do from scratch, but
there are many libraries to make it even easier. Python contains a built-in library aptly
named json.

GeoJSON provides you with a standard way to define geometry, attributes, bounding
boxes, and projection information. GeoJSON has all of the advantages of XML, including
human-readable syntax, excellent software support, and wide use in the industry. It also
surpasses XML.

GeoJSON is far more compact than XML, largely because it uses simple symbols to define
objects rather than opening and closing text-laden tags. This compactness also helps with
the readability and manageability of larger datasets. However, it is still inferior to binary
formats from a data volume standpoint. The following is a sample of the GeoJSON syntax,
defining a geometry collection with both a point and line:

{ "type": "GeometryCollection",
  "geometries": [
    { "type": "Point",
      "coordinates": [-89.33, 30.0]
    },
    { "type": "LineString",
      "coordinates": [ [-89.33, 30.30], [-89.36, 30.28] ]
    }
  {"type": "Polygon",
    "coordinates": [[
      [-104.05, 48.99],
      [-97.22,  48.98]

http://spatialreference.org/ref/
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    }
  ]
}

The preceding code is a valid GeoJSON, but it is also a valid Python data structure. You can
copy the preceding code sample directly into the Python interpreter as a variable definition
and it will evaluate without error, as follows:

gc = { "type": "GeometryCollection",
  "geometries": [
    { "type": "Point",
      "coordinates": [-89.33, 30.0]
    },
    { "type": "LineString",
      "coordinates": [ [-89.33, 30.30], [-89.36, 30.28] ]
    }
  ]
}
gc
{'type': 'GeometryCollection', 'geometries': [{'type': 'Point',
   'coordinates': [
  -89.33, 30.0]}, {'type': 'LineString', 'coordinates': [[-89.33,
     30.3], [-89.36,30.28]]}]}

Due to its compact size, internet-friendly syntax by virtue of being written in JavaScript,
and support from major programming languages, GeoJSON is a key component of leading
REST geospatial web APIs, which will be covered later in this chapter. It currently offers the
best compromise among the computer resource efficiency of binary formats, the human-
readability of text formats, and programmatic utility.

GeoPackage
We'll briefly mention the GeoPackage format here as it's covered in Chapter 3, The
Geospatial Technology Landscape, as well as because it's a type of geodatabase. The
geopackage format is an OGC open standard on a SQLite file-based database container
that is a platform, vendor, and software independent. It's an attempt to get away from all of
the issues that are generated from either proprietary data formats or limited data formats.

Next, we'll look at the other major data type: raster data.
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Understanding raster data types
Raster data consists of rows and columns of cells or pixels, with each cell representing a
single value. The easiest way to think of raster data is as images, which is how they are
typically represented by software. However, raster datasets are not necessarily stored as
images. They can also be ASCII text files or Binary Large Objects (BLOBs) in databases.

Another difference between geospatial raster data and regular digital images is their
resolution. Digital images express resolution as dots-per-inch if printed in full size.
Resolution can also be expressed as the total number of pixels in the image, and are defined
as megapixels. However, geospatial raster data uses the ground distance that each cell
represents. For example, a raster dataset with a two-foot resolution means that a single cell
represents two feet on the ground, which also means that only objects larger than two feet
can be identified visually in the dataset.

Raster datasets may contain multiple bands, meaning that different wavelengths of light
can be collected at the same time over the same area. Often, this range is from 3-7 bands,
but can be several hundred in hyperspectral systems. These bands are viewed individually
or swapped in and out as the RGB bands of an image. They can also be recombined into a
derivative single-band image using mathematics and then recolored using a set number of
classes representing values within the dataset.

Another common application of raster data is in the field of scientific computing, which
shares many elements of geospatial remote sensing but adds some interesting twists.
Scientific computing often uses complex raster formats, including Network Common Data
Form (NetCDF), GRIB, and HDF5, which store entire data models. These formats are more
like directories in a filesystem and can contain multiple datasets or multiple versions of the
same dataset. Oceanography and meteorology are the most common applications of this
kind of analysis. An example of a scientific computing dataset is the output of a weather
model, where the cells of the raster dataset in different bands may represent a different
variables' output from the model in a time series.

Like vector data, raster data can come in a variety of formats. The open source raster
library, known as Geospatial Data Abstraction Library (GDAL), which actually includes
the vector OGR library we mentioned earlier, lists over 130 supported raster formats
(http://www.gdal.org/formats_list.html). The FME software package supports this
many as well. However, just like shapefiles and CAD data, there are a few standout raster
formats.

http://www.gdal.org/formats_list.html
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TIFF files
The Tagged Image File Format (TIFF) is the most common geospatial raster format. The
TIFF format's flexible tagging system allows it to store any type of data whatsoever in a
single file. TIFFs can contain overview images, multiple bands, integer elevation data, basic
metadata, internal compression, and a variety of other data that's typically stored in
additional supporting files by other formats. Anyone can extend the TIFF format
unofficially by adding tagged data to the file structure. This extensibility has benefits and
drawbacks. However, a TIFF file may work fine in one piece of software but fail when it's
accessed in another because the two software packages implement the massive TIFF
specification to different degrees. An old joke about TIFFs has a frustrating amount of truth
to it: TIFF stands for Thousands of Incompatible File Formats. The GeoTIFF extension
defines how geospatial data is stored. Geospatial rasters stored as TIFF files may have any
of the following file extensions: .tiff, .tif, or .gtif.

JPEG, GIF, BMP, and PNG
JPEG, GIF, BMP, and PNG formats are common image formats in general, but can be used 
for basic geospatial data storage as well. Typically, these formats rely on accompanying the 
supporting text files for the georeferencing of the information in order to make them
compatible with the GIS software, such as WKT, .prj, or world files.

The JPEG format is also fairly common for geospatial data. JPEGs have a built-in metadata
tagging system, similar to TIFFs, called EXIF. JPEGs are commonly used for geotagged
photographs in addition to raster GIS layers. Bitmap (BMP) images are used for desktop
applications and document graphics. However, JPEG, GIF, and PNG are the formats that
are used in web mapping applications, especially for pregenerated server map tiles for
quick access via slippy maps.

Compressed formats
Since geospatial rasters tend to be very large, they are often stored using advanced
compression techniques. The latest open standard is the JPEG 2000 format, which is an
upgrade of the JPEG format and includes wavelet compression and a few other features,
such as georeferencing data. The Multi-resolution Seamless Image Database (MrSID)
(.sid) and Enhanced Compression Wavelet (ECW) (.ecw) are two proprietary wavelet
compression formats often seen in geospatial contexts.
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The TIFF format supports compression, including the Lempel-Ziv-Welch (LZW) algorithm.
It must be noted that compressed data is suitable as part of a basemap, but should not be
used for remote sensing processing. Compressed images are designed to look visually
correct but often alter the original cell value. Lossless compression algorithms try to avoid
degrading the source data, but it's generally considered a bad idea to attempt to perform
spectral analysis on data that has been through compression. The JPEG format is designed
to be a lossy format that sacrifices data for a smaller file size. It is also commonly
encountered, so it is important to remember this fact to avoid invalid results.

ASCII Grids
Another means of storing raster data, often elevation data, is in ASCII Grid files. This file
format was created by Esri, but has become an unofficial standard supported by most
software packages. An ASCII Grid is a simple text file containing (x, y) values as rows and
columns. The spatial information for the raster is contained in a simple header. The format
of the file is as follows:

<NCOLS xxx>
<NROWS xxx>
<XLLCENTER xxx | XLLCORNER xxx>
<YLLCENTER xxx | YLLCORNER xxx>
<CELLSIZE xxx>
{NODATA_VALUE xxx}
row 1
row 2
.
.
.
row n

While not the most efficient way to store data, ASCII Grid files are very popular because
they don't require any special data libraries to create or access geospatial raster data. These
files are often distributed as .zip files. The header values in the preceding format contain
the following information:

The number of columns
The number of rows
The x-axis cell center coordinate | x-axis lower-left corner coordinate
The y-axis cell center coordinate | y-axis lower-left corner coordinate
The cell size in mapping units
The no-data value (typically, 9,999)
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World files
World files are simple text files that can provide geospatial referencing information to any
image externally for file formats that typically have no native support for spatial
information, including JPEG, GIF, PNG, and BMP. The world file is recognized by
geospatial software due to its naming convention. The most common way to name a world
file is by using the raster file name and then altering the extension to remove the middle
letter and adding w at the end.

The following table shows some examples of raster images in different formats and the
associated world file name based on the convention:

Raster file name World file name
World.jpg World.jgw

World.tif World.tfw

World.bmp World.bpw

World.png World.pgw

World.gif World.gfw

The structure of a world file is very simple. It is a six-line text file, as follows:

Line 1: The cell size along the x-axis in ground units
Line 2: The rotation on the y-axis
Line 3: The rotation on the x-axis
Line 4: The cell size along the y-axis in ground units
Line 5: The center x-coordinate of the upper-left cell
Line 6: The center y-coordinate of the upper-left cell

The following is an example of world file values:

15.0
0.0
0.0
-15.0
-89,38
45.0

The (x, y) coordinates and the (x, y) cell size contained in lines 1, 4, 5, and 6 allow you to
calculate the coordinate of any cell or the distance across a set of cells. The rotation values
are important for geospatial software because remotely sensed images are often rotated due
to the data collection platform.
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Rotating the images runs the risk of resampling the data and, therefore, data loss, so the
rotation values allow the software to account for the distortion. The surrounding pixels
outside the image are typically assigned a no data value and represented as the color
black.

The following image, courtesy of the U.S. Geological Survey (USGS) from https:/ /
viewer.nationalmap. gov/ advanced- viewer/ , demonstrates image rotation, where the
satellite collection path is oriented from southeast to northeast, but the underlying basemap
is north:

https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
https://viewer.nationalmap.gov/advanced-viewer/
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World files are a great tool when working with raster data in Python. Most geospatial
software and data libraries support world files, so they are usually a good choice when it 
comes to georeferencing.

You'll find that world files are very useful, but as you use them
infrequently, you will forget what the unlabeled contents represent. A
quick reference for world files is available at https:/ /kralidis. ca/gis/
worldfile. htm.

Vector data and raster data are the two most common data types. However, there is another
type that is gaining popularity due to the cost of collecting it gradually becoming cheaper.
That type is point cloud data, and we'll examine it next.

What is point cloud data?
Point cloud data is any data collected as the (x, y, z) location of a surface point based on
some sort of focused energy return. This can be created using lasers, radar waves, acoustic
soundings, or other waveform generation devices. The spacing between points is arbitrary
and dependent on the type and position of the sensor collecting the data.

In this book, we will primarily be concerned with LIDAR data and radar data. Radar point
cloud data is typically collected on space missions, while LIDAR is typically collected by
terrestrial or airborne vehicles. Conceptually, both types of data are similar.

LIDAR
LIDAR uses powerful laser range-finding systems to model the world with very high
precision. The term LIDAR, or LiDAR, is a combination of the words light and radar. Some
people claim it also stands for Light Detection and Ranging. LIDAR sensors can be
mounted on aerial platforms, including satellites, airplanes, or helicopters. They can also be
mounted on vehicles for ground-based collection.

Due to the high-speed, continuous data collection provided by LIDAR, and a wide field of
view – often 360 degrees of the sensor – LIDAR data doesn't typically have a rectangular
footprint the way other forms of raster data do. LIDAR datasets are usually called point
clouds because the data is a stream of (x,y,z) locations, where z is the distance from the laser
to a detected object and the (x,y) values are the projected location of the object calculated
from the location of the sensor.

http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
http://kralidis.ca/gis/worldfile.htm
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The following image, courtesy of USGS, shows a point cloud LIDAR dataset in an urban
area using a terrestrial sensor, as opposed to an aerial one. The colors are based on the
strength of the laser's energy return, with red areas being closer to the LIDAR sensor and
green areas farther away, which can give a precise height to within a few centimeters:

The most common data format for LIDAR data is the LIDAR Exchange Format (LAS),
which is a community standard. LIDAR data can be represented in many ways, including a
simple text file with one (x, y, z) tuple per line. Sometimes, LIDAR data can be colorized
using image pixel colors that have been collected at the same time. LIDAR data can also be
used to create 2D elevation rasters.

This technique is the most common use for LIDAR in geospatial analysis. Any other use
requires specialized software that allows the user to work in 3D. In that case, other
geospatial data cannot be combined with the point cloud.

What are web services?
Geospatial web services allow users to perform data discovery, data visualization, and data
access across the web. Web services are usually accessed by applications based on user
input, such as zooming in to an online map or searching a data catalog. The most common
protocols are the Web Map Service (WMS), which returns a rendered map image, and
Web Feature Service (WFS), which typically returns GML, which was mentioned in this
chapter's introduction.



Learning Geospatial Data Chapter 2

[ 86 ]

Many WFS services can also return KML, JSON, zipped shapefiles, and other formats.
These services are called through HTTP GET requests. The following URL is an example of
a WMS GET request, which returns a map image of the world that is 640 pixels wide and
400 pixels tall and has an EPSG code of 900913: http:/ /ows. mundialis. de/ services/
service?SERVICE= wms VERSION= 1. 1. 1REQUEST= GetMap FORMAT= image/ png STYLES= WIDTH= 600
HEIGHT=400LAYERS= TOPO- OSM- WMS SRS= EPSG:900913 BBOX= -20037508,-
20037508,20037508,20037508.

Web services are rapidly evolving. The Open GIS Consortium is adding new standards for
sensor networks and other geospatial contexts. REpresentational State Transfer (REST)
services are also commonly used. REST services use simple URLs to make requesting data
very easy to implement in nearly any programming language by tailoring URL parameters
and their values accordingly. Nearly every programming language has robust HTTP client
libraries that are capable of using REST services.

These REST services can return many types of data, including images, XML, or JSON. There
is no overarching geospatial REST standard yet, but the OGC has been working on one for
quite some time. Esri has created a working implementation that is currently widely used.

The following URL is an example of an Esri geospatial REST service that
would return KML based on a weather radar image layer. You can add
this URL to Google Earth as a network link, or you can download it as
compressed KML (KMZ) in a browser to import it into another program:
https://idpgis.ncep.noaa.gov/arcgis/rest/services/NWS_Observatio
ns/radar_base_reflectivity/MapServer/generateKml?docName=NWSRada

r&layers=0&layerOptions=separateImage.

You can find tutorials on the myriad of OGC services here: http:/ /cite.
opengeospatial. org/ pub/ cite/ files/ edu/ fundamental- concepts/ text/
basic. html.

At the time of writing this book, the OGC is going through an API evolution that will
significantly lower the barrier of using geospatial APIs through technologies such as REST,
OpenAPI, JSON/HTML, and Swagger. You can track these trends through OGC's
technology roadmap here: https:/ /github. com/ opengeospatial/ OGC- Technology- Trends.

Now, we'll move from individual file formats to powerful geodatabases that can
consolidate data through a single API.

http://ows.mundialis.de/services/service?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&FORMAT=image/png&STYLES=&WIDTH=600&HEIGHT=400&LAYERS=TOPO-OSM-WMS&SRS=EPSG:900913&BBOX=-20037508,-20037508,20037508,20037508
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Understanding geospatial databases
A geospatial database, or geodatabase, refers to an entire category of file formats, data
schemas, and even software. In Chapter 3, The Geospatial Technology Landscape, we'll cover
geodatabases as software packages, formally known as database management systems. But
in this section, we'll describe their attributes as file formats. Geodatabases historically
stored only vector data, though modern geodatabases are well-suited for raster data
management as well.

Geodatabases can exhibit all of the common traits we noted previously. This information is
stored in the database in what we call the database model. A very popular model is the
traditional relational model, which uses tables of rows and columns. Each row and column
combination is called a cell. Rows can be related to another table to link information using a
designated column where each cell becomes a key referencing a cell in another table that
then links the rows together.

The actual names of the columns and the relationships among data constitute the data
definition. At a minimum, geodatabases associate a geometry description with attributes
about the object the geometry represents. Single points are often represented by x and y
columns. However, polygons and polylines have arbitrary numbers of points. This means
that geodatabases often store geometry information as a BLOB using a format standard 
known as Well-Known Binary, or WKB.

The attribute information is usually defined as data types such as integers, floating-point
decimal numbers, strings, or dates. The table may also include projection information for
map display, as well as a spatial indexing column to speed up searching and geospatial
comparisons. A geodatabase may also have another related table in order to link detailed
metadata about the geospatial data.

Large geospatial raster datasets are rarely stored directly in the database. Typically, the
raster data is stored on disk with a name, and a filesystem reference is stored in the
database that points to the raster data. A geodatabase may also store a geometry column
representing the ground footprint of the raster data, which can then be used as a proxy for
geospatial operations.
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Summary
You now have the background needed to work with common types of geospatial data. You
also know about the common traits of geospatial datasets that will allow you to evaluate
unfamiliar types of data and identify key elements that will drive you toward which tools
to use when interacting with this data.

In the next chapter, we'll examine the modules and libraries that you can use to work with
geospatial datasets. We will learn about the geospatial technology ecosystem, which
consists of thousands of software libraries and packages. We will also understand the
hierarchy of geospatial software and how it allows you to quickly comprehend and
evaluate any geospatial tool.

Further reading
You can find tutorials on the myriad of OGC services here: http:/ /cite. opengeospatial.
org/pub/cite/files/ edu/ fundamental- concepts/ text/ basic. html.
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3
The Geospatial Technology

Landscape
The geospatial technology ecosystem consists of hundreds of software libraries and
packages. This vast array of choices can be overwhelming for newcomers to geospatial
analysis. The secret to learning geospatial analysis quickly is understanding the handful of
libraries and packages that really matter. Most software, both commercial and open source,
is derived from these critical packages. Understanding the ecosystem of geospatial software
and how it's used allows you to quickly comprehend and evaluate any geospatial tool.

Geospatial libraries can be assigned to one or more of the following high-level core
capabilities, which they implement to some degree. We will be learning about these
capabilities in this chapter:

Data access
Computational geometry (including data reprojection)
Image processing
Visualization tools
Metadata tools

In this chapter, we'll examine the packages that have had the largest impact on geospatial
analysis, and also those that you are likely to frequently encounter. However, as with any
filtering of information, you are encouraged to do your own research and draw your own
conclusions.

The following websites offer more information on software that is not included in this
chapter:

Wikipedia list of GIS
software: https://en.wikipedia.org/wiki/List_of_geographic_information_
systems_software

OSGeo project list and incubator projects: http://www.osgeo.org

https://en.wikipedia.org/wiki/List_of_geographic_information_systems_software
https://en.wikipedia.org/wiki/List_of_geographic_information_systems_software
http://www.osgeo.org/
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The image processing software capability is for remote sensing. However, this category of
software is very fragmented, containing dozens of software packages that are rarely
integrated into derivative software. Most image processing software for remote sensing is
based on the same data access libraries, with custom image processing algorithms
implemented on top of them.

Take a look at the following examples of these types of software, which include both open
source and commercial packages:

Open Source Software Image Map (OSSIM)
Geographic Resources Analysis Support System (GRASS)
Orfeo ToolBox (OTB)
ERDAS IMAGINE
ENVI

Technical requirements
The following is a list of technical requirements for this chapter:

Python 3.6 or higher
RAM: Minimum 6 GB (Windows), 8 GB (macOS); recommended 8 GB
Storage: Minimum 7200 RPM SATA with 20 GB of available space;
recommended SSD with 40 GB of available space
Processor: Minimum Intel Core i3 2.5 GHz; recommended Intel Core i5

Understanding data access
As described in Chapter 2, Learning Geospatial Data, geospatial datasets are typically large,
complex, and varied. This challenge makes libraries that efficiently read, and in some cases
write, this data essential to geospatial analysis. Without access to data, geospatial analysis
cannot begin.

Furthermore, accuracy and precision are key factors in geospatial analysis. An image
library that resamples data without permission, or a computational geometry library that
rounds a coordinate by even a couple of decimal places, can adversely affect the quality of
the analysis. Also, these libraries must manage memory efficiently. A complex geospatial
process can last for hours, or even days.
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If a data access library has a memory fault, it can delay an entire project or even an entire
workflow, involving dozens of people who are dependent on the output of that analysis.

Data access libraries such as Geospatial Data Abstraction Library (GDAL) are mostly 
written in either C or C++ for speed and cross-platform compatibility. Speed is important
due to the typically large size of geospatial datasets. However, you will also see many
packages written in Java. When it's well written, pure Java can approach speeds that are
acceptable for processing large vector or raster datasets, and that are usually acceptable for
most applications.

The following concept map shows the major geospatial software libraries and packages and
how they are related. The libraries in bold represent root libraries that are actively
maintained, and are not significantly derived from any other libraries. These root libraries
represent geospatial operations, which are rather difficult to implement, and the vast
majority of people choose to use one of these libraries, rather than create a competing one.
As you can see, a handful of libraries make up a disproportionate amount of geospatial
analysis software. The following diagram is by no means exhaustive. In this book, we'll
discuss only the most commonly used packages:
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The GDAL, GEOS (short for Geometry Engine - Open Source), and PROJ libraries are the
heart and soul of the geospatial analysis community on both the commercial and open
source sides. It is important to note that these libraries are all written in C or C++. There is
also significant work done in Java in the form of the GeoTools and Java Topology Suite
(JTS) core libraries, which are used across a range of desktops, servers, and mobile
software. Given that there are hundreds of geospatial packages available, with nearly all of
them relying on these libraries to do anything meaningful, you'll beginning to get an idea of
the complexity of geospatial data access and computational geometry. Compare this
software domain to that of text editors, which return over 5,000 options when searched on
the open source project site (http://sourceforge.net/).

Geospatial analysis is a truly worldwide community, with significant contributions to the
field coming from every corner of the globe. But as you learn more about the heavy-hitting
packages at the center of the software landscape, you'll see that these programs tend to
come from Canada or are contributed to heavily by Canadian developers.

Credited as the birthplace of modern GIS, geospatial analysis is a matter of national pride.
Also, the Canadian government and the public–private GeoConnections program have
invested heavily in research and companies, both to fuel the industry for economic reasons,
and out of necessity – to better manage the country's vast natural resources and the needs
of its population.

GDAL
GDAL does the most heavy-lifting tasks in the geospatial industry. The GDAL website lists
over 80 pieces of software using the library, and this list is by no means complete. Many of
these packages are industry leading, open source, and commercial tools. This list doesn't
include the hundreds of smaller projects and individual analysts who are using the library
for geospatial analysis. GDAL also includes a set of command-line tools that can do a
variety of operations without any programming.

A list of projects using GDAL can be found at the following URL: http:/ /
trac. osgeo. org/ gdal/ wiki/SoftwareUsingGdal.

http://sourceforge.net/
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GDAL and raster data
GDAL provides a single, abstract data model for the vast array of raster data types that are
found in the geospatial industry. It consolidates unique data access libraries for different
formats, and provides a common API for reading and writing data. Before the developer
Frank Warmerdam created GDAL in the late 1990s, each data format required a separate
data access library with a different API in order to read data, or in the worst-case scenario,
developers often wrote custom data access routines.

The following diagram provides a visual description of how GDAL abstracts raster data:

In the preceding software concept map, you can see that GDAL has had the greatest impact
of any single piece of geospatial software. Combine GDAL with its sister library, OGR, for
vector data, and the impact almost doubles. The PROJ library has also had a tremendous
impact, but it is usually accessed via OGR or GDAL.

The GDAL home page can be found at http://www.gdal.org/.

http://www.gdal.org/
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GDAL and vector data
In addition to raster data, GDAL lists at least partial support for over 70 vector data
formats. Part of the success of the GDAL package is the X11/MIT open source license. This
license is both commercial and open source-friendly. The GDAL library can be included in
proprietary software without revealing the proprietary source code to users.

GDAL has the following vector capabilities:

Uniform vector data and modeling abstraction
Vector data reprojection
Vector data format conversion
Attribute data filtering
Basic geometry filtering including clipping and point-in-polygon testing

GDAL has several command-line utility programs, which demonstrate its capability for
vector data. This capability can also be accessed through its programming API. The
following diagram outlines the GDAL vector architecture:

The GDAL vector architecture is fairly concise, considering this model is able to represent
over 70 different data formats:

Geometry: This object represents the Open Geospatial Consortium (OGC)
Simple Features specification data model for points, linestrings, polygons,
geometry collections, multipolygons, multipoints, and multilinestrings.
Feature Definition: This object contains the attribute definitions of a group of
related features.
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Feature: This object ties the Geometry and Feature Definition information
together.
Spatial Reference: This object contains an OGC spatial reference definition.
Layer: This object represents features that are grouped as layers within a data
source.
Data Source: This object is the file or database object that is accessed by GDAL.
Drivers: This object contains the translators for the 70-plus data formats that are
available to GDAL.

This architecture works smoothly, with one minor quirk – the layer concept is used even for
data formats that only contain a single layer. For example, shapefiles can only represent a
single layer. But, when you access a shapefile using GDAL, you must still invoke a new
layer object using the base name of the shapefile without a file extension. This design
feature is only a minor inconvenience, heavily outweighed by the power that GDAL
provides.

Now, let's go beyond accessing the data, to using it for analysis.

Understanding computational geometry
Computational geometry encompasses the algorithms that are needed to perform
operations on vector data. The field is very old in computer science; however, most of the
libraries used for geospatial operations are separate from computer graphics libraries
because of geospatial coordinate systems. As described near the end of Chapter 1, Learning
about Geospatial Analysis with Python, computer screen coordinates are almost always
expressed in positive numbers, while geospatial coordinate systems often use negative
numbers when they're moving west and south.

Several different geospatial libraries fit into this category, but they also serve a wide range
of uses, from spatial selection to rendering. It should be noted that some features of GDAL
that were described previously move it beyond the category of data access, and into the
realm of computational geometry. But, it was included in the former category because that
is its primary purpose.
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Computational geometry is a fascinating subject. When writing a simple script to automate
a geospatial operation, you inevitably need a spatial algorithm. The question then arises, do
you try to implement this algorithm yourself, or do you go through the overhead of using a third-
party library? The choice is always deceptive because some tasks are visually easy to
understand and implement, some look complex but turn out to be easy, and some are
trivial to comprehend but are extraordinarily difficult to implement. One such example is a
geospatial buffer operation.

The concept is easy enough, but the algorithm turns out to be quite difficult. The following
libraries in this section are the major packages that are used for computational geometry
algorithms.

The PROJ projection library
U.S. Geological Survey (USGS) analyst, Jerry Evenden, created what is now known as the
PROJ projection library in the mid-1990s while working at the USGS. Since then, it has
become a project of the Open Source Geospatial Foundation (OSGeo), with contributions
from many other developers. PROJ accomplishes the Herculean task of transforming data
among thousands of coordinate systems. The math that is needed to convert points among
so many coordinate systems is extremely complex. No other library comes close to the
capability of PROJ. That fact and the routine that is needed by applications to convert
datasets from different sources to a common projection make PROJ the undisputed leader
in this area.

The following plot is an example of how specific the projections that are supported by PROJ
can be. This plot from https:/ / calcofi. org represents the line/station coordinate system
of the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program
pseudo-projection, which is used only by NOAA (short for National Oceanic and
Atmospheric Administration), the University of California Scripps Institution of
Oceanography, and the California Department of Fish and Wildlife to collect oceanographic
and fisheries data over the last 60 years along the California coastline:

https://calcofi.org
https://calcofi.org
https://calcofi.org
https://calcofi.org
https://calcofi.org
https://calcofi.org
https://calcofi.org


The Geospatial Technology Landscape Chapter 3

[ 97 ]

PROJ uses a simple syntax that is capable of describing any projection, including custom,
localized ones, as shown in the previous plot. PROJ can be found in virtually every major
GIS package, providing reprojection support, and it also has its own command-line tools.

It is available through GDAL for vector and raster data. However, it is often useful to access
the library directly, because it gives you the ability to reproject individual points. Most of
the libraries that incorporate PROJ only let you reproject entire datasets.

For more information on PROJ, visit https:/ /proj4. org.

CGAL
The Computational Geometry Algorithms Library (CGAL), originally released in the late
1990s, is a robust and well-established open source computational geometry library. It was
not specifically designed for geospatial analysis but is commonly used in the field.

https://proj4.org
https://proj4.org
https://proj4.org
https://proj4.org
https://proj4.org
https://proj4.org
https://proj4.org
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CGAL is often referenced as a source for reliable geometry processing algorithms. The
following diagram from the CGAL User and Reference Manual provides a visualization of one
of the often-referenced algorithms from CGAL, called a polygon straight skeleton, which is
needed to accurately grow or shrink a polygon:

The straight skeleton algorithm is complex and important because shrinking or growing a
polygon isn't just a matter of making it bigger or smaller. The polygon actually changes
shape. As a polygon shrinks, non-adjacent edges collide and eliminate connecting edges. As
a polygon grows, adjacent edges separate and new edges are formed to connect them. This
process is key to the buffering of geospatial polygons. The following diagram, also from the
CGAL User and Reference Manual, shows this effect using insets on the preceding polygon:

CGAL can be found online at http://www.cgal.org/.

http://www.cgal.org/
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JTS
JTS is a geospatial computational geometry library that is written in 100% pure Java. JTS
separates itself from other computational geometry libraries by implementing the OGC
Simple Features specification for SQL. Interestingly, other developers have ported JTS to
other languages, including C++, Microsoft .NET, and even JavaScript.

JTS includes a fantastic test program called the JTS TestBuilder, which provides a GUI to
test functions without setting up an entire program. One of the most frustrating aspects of
geospatial analysis concerns bizarre geometry shapes that break algorithms that work most
of the time. Another common issue is unexpected results due to tiny errors in data such as
polygons that intersect themselves in very small areas that are not easily visible. The JTS
TestBuilder lets you interactively test JTS algorithms to verify data, or just to visually
understand a process, as shown here:
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This tool is handy even if you aren't using JTS, but one of the several ports to another
language. It should be noted that Vivid Solutions, the maintainer of JTS, hasn't released a
new version since JTS Version 1.8 in December 2006. The package is quite stable and still in
active use.

The JTS home page is available at https:/ /locationtech. github. io/
jts.

GEOS
GEOS is the C++ port of the JTS library that was explained previously. It is mentioned here
because this port has had a much larger impact on geospatial analysis than the original JTS.
The C++ version can be compiled on many platforms, as it avoids any platform-specific
dependencies. Another factor responsible for the popularity of GEOS is that a fair amount
of infrastructure exists to create automated or semi-automated bindings to various scripting
languages, including Python. Another factor is that the majority of geospatial analysis
software is written in C or C++. The most common use of GEOS is through other APIs that
include GEOS as a library.

GEOS provides the following capabilities:

OGC Simple Features
Geospatial predicate functions
Intersects
Touches
Disjoint
Crosses
Within
Contains
Overlaps
Equals
Covers
Geospatial operations

https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/
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Union
Distance
Intersection
Symmetric difference
Convex hull
Envelope
Buffer
Simplify
Polygon assembly
Polygon validation
Area
Length
Spatial indexing
OGC Well-Known Text (WKT) and Well-Known Binary (WKB) input/output
C and C++ API
Thread safety

GEOS can be compiled with GDAL to use all of its capabilities.

GEOS can be found online at https://trac.osgeo.org/geos.

PostGIS
As far as open source geospatial databases go, PostGIS is the most commonly used spatial
database. PostGIS is essentially a module on top of the well-known PostgreSQL relational
database. Much of the power of PostGIS comes from the previously mentioned GEOS
library. Like JTS, it also implements the OGC Simple Features specification for SQL. This
combination of computational geometry ability in a geospatial context sets PostGIS in a
category of its own.

https://trac.osgeo.org/geos
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PostGIS allows you to execute both attribute and spatial queries against a dataset. Recall
the point from Chapter 2, Learning Geospatial Data, that a typical spatial dataset is
comprised of multiple data types including geometry, attributes (one or more columns of
data in a row), and in most cases, indexing data. In PostGIS, you can query attribute data as
you would do to any database table using SQL.

This capability is not surprising, as attribute data is stored in a traditional database
structure. However, you can also query geometry using SQL syntax. Spatial operations are
available through SQL functions, which you include as part of your queries. The following
sample PostGIS SQL statement creates a 14.5 km buffer around the state of Florida:

SELECT ST_Buffer(the_geom, 14500)
FROM usa_states
WHERE state = 'Florida'

The FROM clause designates the usa_states layer as the location of the query. We filter
that layer by isolating Florida in the WHERE clause. Florida is a value in the
state column of the usa_states layer. The SELECT clause performs the actual spatial
selection on the geometry of Florida that is normally contained in the the_geom column
using the PostGIS ST_Buffer() function. The the_geom column is the geometry column
for the PostGIS layer in this instance. The ST abbreviation in the function name stands for
spatial type. The ST_Buffer() function accepts a column containing spatial geometries
and a distance in the map units of the underlying layer.

The map units in the usa_states layer are expressed in meters, so 14.5 km would be
14,500 meters in the preceding example. Recall the point from Chapter 1, Learning about
Geospatial Analysis with Python, that buffers like this query are used for proximity analysis.
It just so happens that the Florida state water boundary expands 9 nautical miles, or
approximately 14.5 km into the Gulf of Mexico from the state's western and northwestern
coastlines.
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The following map shows the official Florida state water boundary as a dotted line, which
is labeled on the map:
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After applying the 9-nautical-mile buffer, you can see on the following map that the result,
highlighted in orange, is quite close to the official legal boundary, which is based on
detailed ground surveys:

Currently, PostGIS maintains the following feature set:

Geospatial geometry types, including points, linestrings, polygons, multipoints,
multilinestrings, multipolygons, and geometry collections, which can store
different types of geometries, including other collections of spatial functions for
testing geometric relationships (for example, point-in-polygon or unions)
Spatial functions for deriving new geometries (for example, buffers and
intersects)
Spatial measurements including perimeter, length, and area
Spatial indexing using the R-tree algorithm
A basic geospatial raster data type
Topology data types
U.S. geocoder based on TIGER (short for Topologically Integrated Geographic
Encoding and Referencing) census data
A new JSONB data type, which allows indexing and the querying of JSON and
GeoJSON
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The PostGIS feature set is competitive among all geodatabases, and is the most extensive
among any open source or free geodatabases. The active momentum of the PostGIS
development community is another reason for this system being best-of-breed. PostGIS is
maintained at http://postgis.net.

Other spatially enabled databases
PostGIS is the gold standard among free and open source geospatial databases. However,
there are several other systems that you should be aware of as a geospatial analyst. This list
includes both commercial and open source systems, each with varying degrees of
geospatial support.

Geodatabases have evolved in parallel with geospatial software, standards, and the web.
The internet has driven the need for large, multiuser geospatial database servers that are
able to serve large amounts of data. The following diagram, courtesy of www.OSGeo.org,
shows how geospatial architectures have evolved, with a significant portion of this
evolution happening at the database level:

http://postgis.net
https://www.osgeo.org/
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Oracle Spatial and Graph
The Oracle relational database is a widely used database system that is typically used by
very large organizations because of its cost and large scalability. It is also extremely stable
and fast. It runs some of the largest and most complicated databases in the world and is
often found in hospitals, banks, and government agencies that manage millions of critical
records.

Geospatial data capability first appeared in Oracle version 4 as a modification by the
Canadian Hydrographic Service (CHS). CHS also implemented Oracle's first spatial index,
in the form of an unusual, but efficient, three-dimensional helical spiral. Oracle
subsequently incorporated the modification and released the Oracle Spatial Database
Option (SDO) in version 7 of the main database. The SDO system became Oracle Spatial in
Oracle version 8. The database schema of Oracle Spatial still has the SDO prefix on some
column and table names, similar to how PostGIS uses the OGC convention, ST, to separate
spatial information from traditional relational database tables and functions at the schema
level.

As of 2012, Oracle began calling the package Oracle Spatial and Graph, in order to
emphasize the network data module. This module is used for analyzing networked
datasets, such as transportation or utilities. However, the module can also be used against
abstract networks, such as social networks. The analysis of social network data is a common
target for big data analysis, which is now a growing trend. Big data social network analysis
is likely the reason Oracle changed the name of the product.

Oracle Spatial has the following features:

A geospatial data schema
A spatial indexing system, which is now based on an R-tree index
An SQL API for performing geometric operations
A spatial data-tuning API to optimize a particular dataset
A topology data model
A network data model
A GeoRaster data type to store, index, query, and retrieve raster data
Three-dimensional data types, including triangulated irregular networks (TINs)
and LIDAR (short for Light Detection and Ranging) point clouds
A geocoder to search location names and return coordinates
A routing engine for driving direction-type queries
OGC compliance
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Oracle Spatial and PostGIS are reasonably comparable and are both commonly used. You
will see these two systems sooner or later as data sources while performing geospatial
analysis.

Oracle Spatial and Graph is sold separately from Oracle itself. A little-
known fact is that the SDO data type is native to the main Oracle
database. If you have a simple application that just inputs points and
retrieves them, you can use the main Oracle API to add, update, and
retrieve SDOs without Oracle Spatial and Graph.

The U.S. Bureau of Ocean Energy, Management, Regulation, and Enforcement
(BOEMRE) uses Oracle to manage environmental, business, and geospatial data for billions
of dollars worth of oil, gas, and mineral rights, in one of the largest geospatial systems in
the world. The following map is courtesy of BOEMRE:
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Oracle Spatial and Graph can be found online at the following URL:
http://www.oracle.com/us/products/database/options/spatial/overv

iew.

ArcSDE
ArcSDE is Esri's spatial data engine (SDE). It is now rolled into Esri's ArcGIS Server
product after over a decade of being a standalone product. What makes ArcSDE interesting
is that the engine is mostly database-independent, supporting multiple database backends.
ArcSDE supports IBM DB2, Informix, Microsoft SQL Server, Oracle, and PostgreSQL as
data storage systems. While ArcSDE has the ability to create and manage a spatial schema
from scratch on systems such as Microsoft SQL Server and Oracle, it uses native spatial
engines if they are available. This arrangement is the case for IBM DB2, Oracle, and
PostgreSQL. For Oracle, ArcSDE manages the table structure but can rely on the Oracle
SDO data type for feature storage.

Like the previously mentioned geodatabases, ArcSDE also has a rich spatial selection API,
and can handle raster data. However, ArcSDE does not have as rich a SQL spatial API as
Oracle and PostGIS. Esri technically supports basic SQL functionality related to ArcSDE,
but it encourages users and developers to use Esri software or programming APIs in order
to manipulate data that is stored through ArcSDE, as it is designed to be a data source for
Esri software.

Esri does provide software libraries to allow developers to build applications outside of
Esri software using ArcSDE or Esri's file-based geodatabase, known as a personal
geodatabase. But, these libraries are black boxes and the communication protocol that
ArcSDE uses has never been reverse engineered. Typically, interaction happens between
ArcSDE and third-party applications at the web services level using the ArcGIS Server API
(which supports OGC services to some degree), and a fairly straightforward REST API
service that returns GeoJSON.

The following screenshot is taken from the U.S. federal site, http://catalog.data.gov, a
very large geospatial data catalog that is based on ArcSDE, which in turn networks U.S.
federal data, including other ArcSDE installations from other federal agencies.

ArcSDE is integrated into ArcGIS Server; however, information on it can
be found at http://www.esri.com/software/arcgis/arcsde.

http://www.oracle.com/us/products/database/options/spatial/overview
http://www.oracle.com/us/products/database/options/spatial/overview
http://catalog.data.gov
http://www.esri.com/software/arcgis/arcsde
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Microsoft SQL Server
Microsoft added spatial data support to its flagship database product in Microsoft SQL
Server 2008. It has gradually improved since that version but still is nowhere near as
sophisticated as Oracle Spatial or PostGIS. Microsoft supports the same data types as
PostGIS, but uses slightly different naming conventions, with the exception of rasters,
which are not directly supported. It also supports output to WKT and WKB formats.

It offers some very basic support for spatial selection, but it is obviously not a priority for
Microsoft at the moment. This limited support is likely because it is all that can be used for
Microsoft software mapping components, and several third-party engines can provide
spatial support on top of SQL Server.

Microsoft's support for spatial data in SQL Server is documented at the
following
link: http://msdn.microsoft.com/en-us/library/bb933790.aspx.

MySQL
MySQL, another highly popular free database, provides nearly the same support as
Microsoft SQL Server. The OGC geometry types are supported by basic spatial relationship
functions. Through a series of buyouts, MySQL has become the property of Oracle.

While Oracle currently remains committed to MySQL as an open source database, this
purchase has brought the ultimate future of the world's most popular open source database
into question. But, as far as geospatial analysis is concerned, MySQL is barely a contender
and is unlikely to be the first choice for any project.

For more information on MySQL spatial support, visit the following
link: https:/ /dev. mysql. com/ doc/ refman/ 8. 0/en/ spatial- types. html

http://msdn.microsoft.com/en-us/library/bb933790.aspx
http://msdn.microsoft.com/en-us/library/bb933790.aspx
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
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SpatiaLite
SpatiaLite is an extension of the open source SQLite database engine. SQLite uses a file
database and is designed to be integrated into applications rather than into the typical
client-server model, which is used by most relational database servers. SQLite already has
spatial data types and spatial indexing, but SpatiaLite adds support for the OGC Simple
Features specification, as well as map projections. 

It should be noted that the extremely popular SQLite is not in the same category as Oracle,
PostgreSQL, or MySQL, as it's a file-based database that is designed for single-user
applications.

SpatiaLite can be found at http://www.gaia-gis.it/gaia-sins/.

GeoPackage
GeoPackage is a file-based geodatabase format. The official GeoPackage website, http:/ /
geopackage.org, describes it as:

"An open, standards-based, platform-independent, portable, self-describing, compact
format for transferring geospatial information."

It is also a direct answer to Esri's file geodatabase format, and also to the open geospatial
community's designated shapefile killer, to replace the aging, partially closed shapefile
format. Both formats are really file specifications, which rely on other software in order to
read and write data.

GeoPackage is an OGC specification, which means its future is secure as an industry data
format. It is also a catch-all format, which can handle vector data, raster data, attribute
information, and extensions to address new requirements. And, like any good database, it
handles multiple layers. You can store an entire GIS project in a single package, therefore
making data management much simpler.

You can read more about Esri's file geodatabase format here: http:/ /
desktop. arcgis. com/ en/ arcmap/ 10. 3/manage- data/ administer- file-
gdbs/ file- geodatabases. htm.

http://www.gaia-gis.it/gaia-sins/
http://geopackage.org
http://geopackage.org
http://geopackage.org
http://geopackage.org
http://geopackage.org
http://geopackage.org
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Routing
Routing is a very niche area of computational geometry. It is also a very rich field of study
that goes far beyond the familiar driving directions use case. The requirements for a routing
algorithm are simply a networked dataset and impedance values that affect the speed of
travel on that network. Typically, the dataset is vector-based, but raster data can also be
used for certain applications.

The two major contenders in this area are Esri's Network Analyst, and the open source
pgRouting engine for PostGIS. The most common routing problem is the most efficient way
to visit a number of point locations. This problem is called the traveling salesman
problem (TSP). The TSP is one of the most intensely studied problems in computational
geometry. It is often considered the benchmark for any routing algorithm.

More information on the TSP can be found at
http://en.wikipedia.org/wiki/Travelling_salesman_problem.

Esri Network Analyst and Spatial Analyst
Esri's entry into the routing arena, Network Analyst, is a truly generic routing engine that
can tackle most routing applications regardless of context. Spatial Analyst is another Esri
extension that is raster-focused, and it can perform least-cost path analysis on raster terrain
data.

The ArcGIS Network Analyst product page is located on Esri's website
at: http://www.esri.com/software/arcgis/extensions/networkanalyst.

pgRouting
The pgRouting extension for PostGIS adds routing functionality to the geodatabase. It is
oriented toward road networks, but it can be adapted to work with other types of
networked data.

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.esri.com/software/arcgis/extensions/networkanalyst


The Geospatial Technology Landscape Chapter 3

[ 112 ]

The following diagram shows a driving distance radius calculation output by pgRouting,
which is displayed in QGIS. The points are color-coded from green to red, based on their
proximity to the starting location. As shown in the following diagram, the points are nodes
in the network dataset, courtesy of QGIS.org (https:/ /qgis. org/ en/site/ ), which in this
case are roads:

The pgRouting PostGIS extension is maintained at
http://pgrouting.org/.

Next, we'll look at the tools that you need in order to visualize diagrams like the previous
one.

https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
https://qgis.org/en/site/
http://pgrouting.org/
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Understanding desktop tools (including
visualization)
Geospatial analysis requires the ability to visualize output. This fact makes tools that can
visualize data absolutely critical to the field. There are two categories of geospatial
visualization tools.

The first is geospatial viewers and the second is geospatial analysis software. The first
category – geospatial viewers—allows you to access, query, and visualize data, but not to
edit it in any way. The second category allows you to perform those tasks, and edit the
data, too. The main advantage of viewers is that they are typically lightweight pieces of
software that launch and load data quickly.

Geospatial analysis software requires far more resources to be able to edit complex
geospatial data, so it loads more slowly and often renders data more slowly, in order to
provide dynamic editing functionality.

Quantum GIS
Quantum GIS, more commonly known as QGIS, is a complete open source geographic
information system. QGIS falls well within the geospatial analysis category in the two
categories of visualization software. The development of the system began in 2002 and
Version 1.0 was released in 2009.

It is the best showcase of most of the libraries that have been previously mentioned in this
chapter. QGIS is written in C++, using the Qt library for the GUI. The GUI is well designed
and easy to use. In fact, a geospatial analyst who has been trained on a proprietary package,
such as Esri's ArcGIS or Manifold system, will be right at home using QGIS. The tools and
menu system are logical and typical of a GIS system. The overall speed of QGIS is as good
as, or better than, any other system that is available.

A nice feature of QGIS is that the underlying libraries and utility programs are just
underneath the surface. Modules can be written by any third party in Python and added to
the system. QGIS also has a robust online package management system to search for,
install, and update these extensions. The Python integration includes a console that allows
you to issue commands at the console and see the results in the GUI. QGIS isn't the only
software to offer this capability.
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Like most geospatial software packages, with Python integration, it installs a complete
version of Python if you use the automated installer. There's no reason to worry if you
already have Python installed. Having multiple versions of Python on a single machine is
fairly common and well supported. Many people have multiple versions of Python on their
computers for the purpose of testing software, or because it is such a common scripting
environment for so many different software packages.

When the Python console is running in QGIS, the entire program API is available through
an automatically loaded object called qgis.utils.iface. The following screenshot shows
QGIS with the Python console running:
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Because QIS is based on GDAL/OGR and GEOS, and it can use PostGIS, it supports all of
the data sources that are offered by those packages. It also has nice raster processing
features, too. QGIS works well for producing paper maps or entire map books using
available extensions.

QGIS is well documented on the QGIS website at the following link:
http://www.qgis.org/en/documentation.html. You can also find
numerous online and video tutorials by searching for QGIS or particular
operation.

OpenEV
OpenEV is an open source geospatial viewer that was originally developed by Atlantis
Scientific around 2002, which became Vexcel, before a buyout by Microsoft. Vexcel
developed OpenEV as a freely downloadable satellite image viewer for the Canadian
Geospatial Data Infrastructure (CGDI). It is built using GDAL and Python and is partially
maintained by GDAL creator, Frank Warmerdam.

OpenEV is one of the fastest raster viewers available. Despite being originally designed as a
viewer, OpenEV offers all of the utility of GDAL and PROJ. While created as a raster tool, it
can overlay vector data such as shapefiles, and even supports basic editing. Raster images
can also be altered using the built-in raster calculator, and data formats can be converted,
reprojected, and clipped.

https://www.qgis.org/en/docs/index.html
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The following screenshot shows a 25 MB, 16-bit integer GeoTIFF elevation file in an
OpenEV viewer window:

OpenEV is built largely in Python and offers a Python console with access to the full
capability of the program. The OpenEV GUI isn't as sophisticated as other tools, such as
QGIS. For example, you cannot drag and drop geospatial datasets into the viewer as you
can do in QGIS. But, the raw speed of OpenEV makes it very attractive for simple raster
viewing, or for basic processing and data conversion.

The OpenEV home page is available at http://openev.sourceforge.net.

http://openev.sourceforge.net
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GRASS GIS
GRASS is one of the oldest continuously developed geospatial systems in existence. The
U.S. Army Corps of Engineers began GRASS development in 1982. It was originally
designed to run on Unix systems. In 1995, the army released the last patch, and the
software was transferred to community development, where it has remained ever since.

Even though the user interface was redesigned, GRASS still feels somewhat esoteric to
modern GIS users. However, because of its decades-old legacy and non-existent price tag,
many geospatial workflows and highly specialized modules have been implemented in
GRASS over the years, making it highly relevant to many organizations and individuals,
especially in research communities. For these reasons, GRASS is still actively developed.

GRASS has also been integrated with QGIS, so the more modern and familiar QGIS GUI
can be used to run GRASS functions. GRASS is also deeply integrated with Python and can
be used as a library or as a command-line tool. The following screenshot shows some
landform analysis in the native GRASS GUI, which was built using the wxPython library:
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GRASS is housed online at http://grass.osgeo.org/.

gvSIG
Another Java-based desktop GIS is gvSIG. The gvSIG project began in 2004 as part of a
larger project to migrate the IT systems of the Regional Ministry of Infrastructure and
Transport of Valencia, Spain, to free software. The result was gvSIG, which has continued
to mature. The feature set is mostly comparable to QGIS, with some unique capabilities as
well.

The official gvSIG project has a very active fork called gvSIG Community Edition (gvSIG
CE). There is also a mobile version called gvSIG mobile. The gvSIG code base is open
source.

The official home page for gvSIG is available at
http://www.gvsig.org/web/.

OpenJUMP
OpenJUMP is another open source Java-based desktop GIS. JUMP stands for Java Unified
Mapping Platform, and was originally created by Vivid Solutions for the Government of 
British Columbia. After Vivid Solutions delivered JUMP, development stopped. Vivid
Solutions eventually released JUMP to the open source community, where it was renamed
OpenJUMP.

http://grass.osgeo.org/
http://grass.osgeo.org/
http://www.gvsig.org/web/
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OpenJUMP has the ability to read and write shapefiles and OGC GML (short
for Geography Markup Language), and supports PostGIS databases. It can also display
some image formats and data from OGC WMS (short for Web Map Server) and WFS
(short for Web Feature Service) services. It has a plugin architecture, and it can also serve
as a development platform for custom applications.

You can find out more about OpenJUMP on the official web page at
http://www.openjump.org/.

Google Earth
Google Earth is so ubiquitous that it hardly seems worth mentioning. The first release of
EarthViewer 3D in 2001 (created by a company called Keyhole Inc.), and the EarthViewer
3D project were funded by the non-profit venture capital firm, In-Q-Tel, which in turn, is
funded by the U.S. Central Intelligence agency. This spy agency lineage and the subsequent
purchase of Keyhole by Google to create and distribute Google Earth brought global
attention to the geospatial analysis field.

Since the first release of the software as Google Earth in 2005, Google has continually
refined it. Some of the notable additions are the creation of Google Moon, Google Mars,
Google Sky, and Google Oceans. These are virtual globe applications, which feature data
from the Moon and Mars, with the exception of Google Oceans, which adds sea-floor
elevation mapping, known as bathymetry, to Google Earth.

http://www.openjump.org/
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Google Earth introduced the idea of the spinning virtual globe concept for the exploration
of geographic data. After centuries of looking at 2D maps, or low-resolution physical
globes, flying around the Earth virtually and dropping onto a street corner anywhere in the
world was mind-blowing – especially for geospatial analysts and other geography
enthusiasts, as depicted in the following screenshot of Google Earth, overlooking the
Central Business District in New Orleans, Louisiana:

Just as Google had revolutionized web mapping with its tile-based slippy mapping
approach, the virtual globe concept was a major boost to geospatial visualization.

After the initial excitement wore off, many geospatial analysts realized that Google Earth
was a very animated and fun geographic exploration tool, but it really had a very limited
utility for any kind of meaningful geospatial analysis. Google Earth falls squarely into the
realm of geospatial viewer software.
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The only data format it consumes is its native keyhole markup language (KML), which is
an all-in-one data and styling format, which is discussed in Chapter 2, Learning Geospatial
Data. As this format is now an OGC standard, consuming only one data format
immediately limits the utility of any tool. Any project involving Google Earth must first
begin with complete data conversion and styling in KML, reminiscent of geospatial analysis
from around 10-20 years ago. The tools that do support KML, including Google Maps,
support a limited subset of KML.

Google Earth's native dataset has global coverage, but it is a mixture of datasets spanning
several years and sources. Google has greatly improved the inline metadata in the tool,
which identifies the source and approximate date of the current view. But, this method
creates confusion among lay people. Many people believe that the data in Google Earth is
updated far more frequently than it really is. The Google Street View system, showing
street-level, 360-degree views of much of the world, has somewhat helped to correct this
misperception.

People are able to easily identify images of familiar locations as being several years old.
Another common misperception created by Google Earth is that the entire world has been
mapped in detail, and therefore creating a base map for geospatial analysis should be
trivial. As discussed in Chapter 2, Learning Geospatial Data, mapping an area of interest is
far easier than it used to be a few years ago by using modern data and software, but it is
still a complex and labor-intensive endeavor. This misperception is one of the first customer
expectations a geospatial analyst must manage when starting a project.

Despite these misperceptions, the impact that Google has had on geospatial analysis is
almost entirely positive. For decades, one of the most difficult challenges to growing the
geospatial industry was convincing potential stakeholders that geospatial analysis is almost
always the best approach when making decisions about people, resources, and the
environment. This hurdle stands in sharp contrast to a car dealer. When a potential
customer comes to a car lot, the salesman doesn't have to convince the buyer that they need
a car, just about the type of car.

Geospatial analysts had to first educate project sponsors on the technology, and then
convince them that the geospatial approach was the best way to address a challenge.
Google has largely eliminated those steps for analysts.

Google Earth can be found online at
http://www.google.com/earth/index.html.

http://www.google.com/earth/index.html
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NASA WorldWind
NASA WorldWind is an open source virtual globe and geospatial viewer, originally
released by the U.S. National Aeronautics and Space Administration (NASA), in 2004. It
was originally based on Microsoft's .NET Framework, making it a Windows-centric
application.

The following screenshot of NASA WorldWind looks similar to Google Earth:



The Geospatial Technology Landscape Chapter 3

[ 123 ]

In 2007, a Java-based software development kit (SDK) was released, called WorldWind
Java, which made WorldWind more cross-platform. The transition to Java also led to the 
creation of a browser plugin for WorldWind.

The WorldWind Java SDK is considered an SDK and not a desktop application like the
.NET version. However, the demos included with the SDK provide a viewer without any
additional development. While NASA WorldWind was originally inspired by Google
Earth, its status as an open source project takes it in an entirely different direction.

Google Earth is a generalist tool that is bounded by the limits of the KML specification.
NASA WorldWind is now a platform upon which anyone can develop without limits. As
new types of data become available and computing resources grow, the potential of the
virtual globe paradigm certainly holds more potential for geospatial visualization that has
not yet been explored.

NASA WorldWind is available online at
http://worldwind.arc.nasa.gov/java/.

ArcGIS
Esri walks the line of being one of the greatest promoters of the geospatial analytical
approach to understanding our world, and is a privately held, profit-making business,
which must look out for its own interests to a certain degree. The ArcGIS software suite
represents every type of geospatial visualization known, including vector, raster, globes,
and 3D. It is also a market leader in many countries. As shown in the geospatial software
map earlier in this chapter, Esri has increasingly incorporated open source software into its
suite of tools, including GDAL for raster display, and Python as the scripting language for
ArcGIS.

http://worldwind.arc.nasa.gov/java/
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The following screenshot shows the core ArcGIS application, ArcMap, with marine tracking
density data analysis. The interface shares a lot in common with QGIS, as shown in this
screenshot courtesy of https:/ / marinecadastre. gov/ :

The ArcGIS product page is available online at
http://www.esri.com/software/arcgis.

https://marinecadastre.gov/
https://marinecadastre.gov/
https://marinecadastre.gov/
https://marinecadastre.gov/
https://marinecadastre.gov/
https://marinecadastre.gov/
https://marinecadastre.gov/
https://marinecadastre.gov/
http://www.esri.com/software/arcgis
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Now that we understand the tools for visualizing and analyzing data, let's look at how to
manage data.

Understanding metadata management
The distribution of data on the internet has increased the importance of metadata. Data
custodians are able to release a dataset to the entire world for download without any
personal interaction. The metadata record of a geospatial dataset can follow this to help
ensure that the integrity and accountability of this data are maintained.

Properly formatted metadata also allows for automated cataloging, search indexing, and
the integration of datasets. Metadata has become so important that a common mantra
within the geospatial community is data without metadata isn't data, meaning that a
geospatial dataset cannot be fully utilized and understood without metadata.

The following section lists some of the common metadata tools that are available. The OGC
standard for metadata management is the Catalog Service for the Web (CSW), which 
creates a metadata-based catalog system and an API for distributing and discovering
datasets.

Python's pycsw Library
pycsw is an OGC-compliant CSW for the publishing and discovery of geospatial metadata.
It supports multiple APIs, including CSW 2/CSW 3, OpenSearch, OAI-PMH, and SRU. It is
extremely lightweight and pure Python. For an excellent example of a CSW and client that
was built using pycsw, see the Pacific Islands Ocean Observing System (PacIOOS)
catalog, available at the following link: http:/ /pacioos. org/ search/ . The pycsw library is
also used in a larger package called GeoNode.

http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
http://pacioos.org/search/
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GeoNode
GeoNode is a Python-based geospatial content management system. It combines geospatial
data creation, metadata, and visualization in a single server package. It also includes social
features, such as comments and rating systems. It is open source and is available at http:/ /
geonode.org/. The following screenshot is from the GeoNode online demo:

GeoNode and pycsw are the two main metadata tools for Python. Next, we'll look at some
tools that are written in other languages.

http://geonode.org/
http://geonode.org/
http://geonode.org/
http://geonode.org/
http://geonode.org/
http://geonode.org/
http://geonode.org/
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GeoNetwork
GeoNetwork is an open source, Java-based catalog server used to manage geospatial data.
It includes a metadata editor and search engine, as well as an interactive web map viewer.
The system is designed to globally connect spatial data infrastructures. It can publish
metadata through the web using the metadata editing tools. It can also publish spatial data
through the embedded GeoServer map server. It has user and group security permissions,
and web and desktop configuration utilities.

GeoNetwork can also be configured in order to harvest metadata from other catalogs at
scheduled intervals. The following screenshot is of the United Nations Food and
Agriculture Organization's implementation of GeoNetwork:
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You can find out more about GeoNetwork at
http://geonetwork-opensource.org/.

Summary
In this chapter, you learned about the hierarchy of geospatial analysis software. You also
learned a framework for approaching the hundreds of existing geospatial software
packages and libraries, by categorizing them into one or more major functions, including
data access, computational geometry, raster processing, visualization, and metadata
management.

We also examined commonly used foundation libraries, including GDAL, OGR, PROJ, and
GEOS, which are found again and again in geospatial software. You can approach any new
piece of geospatial software, trace it back to these core libraries, and then ask, what is the
value added? to gain a better understanding of the package. If the software isn't using one of
these libraries, you need to ask, why are these developers going against the grain? in order to
understand what that system brings to the table.

Python was only mentioned a few times in this chapter so as to avoid any distraction in
understanding the geospatial software landscape. But, as we will see, Python is interwoven
into every single piece of software in this chapter and is a fully capable geospatial tool in its
own right. It is no coincidence that Python is the official scripting language of ArcGIS,
QGIS, GRASS, and many other packages. It is also not by chance that GDAL, OGR, PROJ,
CGAL, JTS, GEOS, and PostGIS all have Python bindings.

And as for the packages not mentioned here, they are all within Python's grasp through the
Jython Java distribution, the IronPython .NET distribution, Python's various database and
web APIs, and the built-in ctypes module. As a geospatial analyst, if there's one
technology you can't afford to pass up, it's Python.

In the next chapter, we'll see how Python comes into the picture in the geospatial industry.
We'll also learn about the GIS scripting language, the mashup glue language, and the full-
blown programming language.

http://geonetwork-opensource.org/
http://geonetwork-opensource.org/
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Further reading
Here is a list of web pages you can refer to:

https:// github. com/ sacridini/ Awesome- Geospatial

https:// github. com/ jerr0328/ awesome- geospatial- list

https://github.com/sacridini/Awesome-Geospatial
https://github.com/sacridini/Awesome-Geospatial
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Section 2: Geospatial Analysis

Concepts
This section represents the main building blocks of this book, where you'll be introduced to
Python's role in the industry with different code examples and data editing concepts. You'll
learn about geospatial products and how they can be applied to solve problems. Moving
on, you'll see how to practically work with remote sensing data using Python. At the end of
this section, you'll learn how elevation data can be used in any geospatial format to analyze
3D features.

This section includes the following chapters:

Chapter 4, Geospatial Python Toolbox
Chapter 5, Python and Geographic Information Systems
Chapter 6, Python and Remote Sensing
Chapter 7, Python and Elevation Data



4
Geospatial Python Toolbox

The first three chapters of this book covered the history of geospatial analysis, the types of
geospatial data that are used by analysts, and the major software and libraries found within
the geospatial industry. We used some simple Python examples here and there to illustrate
certain points, but we mainly focused on the field of geospatial analysis, independent of
any specific technology. Starting here, we will be using Python to conquer geospatial
analysis and we will continue with that approach for the rest of this book. This chapter
explains the software you will need in your toolbox to do just about anything you want in
the geospatial field.

We'll discover the Python libraries that are used to access the different types of data that
were found in the vector data and raster data sections of Chapter 2, Learning Geospatial
Data. Some of these libraries are pure Python, as well as some of the bindings to the
different software packages that we looked at in Chapter 3, The Geospatial Technology
Landscape.

In this chapter, we will cover the following topics:

Installing third-party Python modules
Python virtual environment
Conda
Docker
Python networking libraries for acquiring data
Python tag-based parsers
Python JSON libraries
OGR
PyShp
DBFPY
Shapely
GDAL
Fiona
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NumPy
GeoPandas
Python Imaging Library (PIL)
PNGCanvas
ReportLab
GeoPDF
Python NetCDF libraries
Python HDF libraries
OSMnx 
Spatial indexing libraries
Jupyter
Conda

We will examine pure Python solutions whenever possible. Python is a very capable
programming language, but some operations, particularly in remote sensing, are too
computationally intensive and therefore are impractical when it comes to using pure
Python or other interpreted languages. Fortunately, every aspect of geospatial analysis can
be addressed in some way through Python, even if it is binding to a highly efficient
C/C++/other compiled-language library.

We will avoid using broad scientific libraries that cover other domains beyond geospatial
analysis to keep the solutions as simple as possible. There are many reasons to use Python
for geospatial analysis, but one of the strongest arguments is its portability.

Furthermore, Python has been ported to Java as the Jython distribution and to the .NET
Common Language Runtime (CLR) as IronPython. Python also has versions such as
Stackless Python for massively concurrent programs. There are versions of Python that are
designed to run on cluster computers for distributed processing. Python is also available on
many hosted application servers that do not allow you to install custom executables, such
as the Google App Engine platform, which has a Python API.

Technical requirements
Python 3.6 or higher
RAM: Minimum 6 GB (Windows), 8 GB (macOS) recommended 8 GB
Storage: Minimum 7200 RPM SATA with 20 GB of available space;
recommended SSD with 40 GB of available space
Processor: Minimum Intel Core i3 2.5 GHz; recommended Intel Core i5
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Installing third-party Python modules
Modules written in pure Python (using the standard library) will mostly run on any of the
20 platforms that the Python (https:/ /www. python. org/ ) website mentions. Each time you
add a third-party module that relies on bindings to external libraries in other languages,
you reduce Python's inherent portability. You also add a layer of complexity to
fundamentally change the code by adding another language into the mix. Pure Python
keeps things simple. Also, Python bindings to external libraries tend to be automatically or
semi-automatically generated.

These automatically generated bindings are very generic and esoteric, and they simply
connect Python to a C/C++ API using the method names from that API, instead of following
the best practices for Python. There are, of course, notable exceptions to this approach that
are driven by project requirements which may include speed, unique library features, or
frequently updated libraries where an automatically generated interface is preferable.

We'll make a distinction between modules that are included as a part of Python's standard
library and modules that must be installed. In Python, the words module and library are
used interchangeably. To install libraries, you either get them from the Python Package
Index (PyPI) or in the case of a lot of geospatial modules, you download a specialized
installer.

PyPI acts as the official software repository for libraries and offers some easy-to-use setup
programs that simplify installing packages. You can use the easy_install program,
which is especially good on Windows or the pip program that's more commonly found on
Linux and Unix systems. Once it's installed, you can then install third-party packages by
running the following code:

easy_install <package name>

For installing pip, run the following code:

pip install <package name>

This book will provide links and installation instructions for open source packages that are
not available on the PyPI. You can manually install third-party Python modules by
downloading the Python source code and putting it in your current working directory, or
you can put it in your Python site-packages directory. These two directories are
available in Python's search path when you try to import a module. If you put a module in
your current working directory, it'll only be available when you start Python from that
directory.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
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If you put it in your site-packages directory, it'll be available every time you start
Python. The site-packages directory is specifically meant for third-party modules. To
locate the site-packages directory for your installation, you need to ask Python's sys
module. The sys module has a path attribute that has a list of all the directories in Python's
search path. The site-packages directory should be the last one. You can locate it by
specifying an index of -1, as shown in the following code:

>>> import sys
>>> sys.path[-1]
'C:\\Python34\\lib\\site-packages'

If that call doesn't return the site-packages path, just look at the entire list to locate it, as
shown in the following code:

>> sys.path
['', 'C:\\WINDOWS\\system32\\python34.zip', 'C:\\Python34\\DLLs',
'C:\\Python34\\lib', 'C:\\Python34\\lib\\plat-win
', 'C:\\Python34\\lib\\lib-tk', 'C:\\Python34',
'C:\\Python34\\lib\\site-packages']

These installation methods will be used in the rest of this book. You can
find the latest Python version, the source code for your platform
installation, and compilation instructions at http:/ /python. org/
download/ .

The Python virtualenv module allows you to easily create an isolated copy of Python for
a specific project without affecting your main Python installation or other projects. Using
this module, you can have different projects with different versions of the same library.
Once you have a working code base, you can keep it isolated from changes to the modules
you used or even Python itself. The virtualenv module is simple to use and can be used
for any example in this book; however, explicit instructions on its use are not included.

To get started with virtualenv, follow this simple guide: http:/ /docs.
python- guide. org/ en/ latest/ dev/ virtualenvs/ .

http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
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Python virtualenv
Python geospatial analysis requires that we use a variety of modules with many
dependencies. These modules often build on each other using specific versions of C or C++
libraries. You often run into version conflicts as you add Python modules to your system.
Sometimes, when you upgrade a particular module, it might break your existing Python
program due to changes in the API – or maybe you are running both Python 2 and Python
3 to take advantage of libraries written for each version. What you need is a way to safely
install new modules without corrupting a working system or code. The solution to that
issue is to use Python virtual environments through the virtualenv module.

The Python virtualenv module creates isolated, individual Python environments for each
project so that you can avoid conflicting modules polluting your main Python installation.
You can switch a particular environment on and off by activating it or deactivating it. The
virtualenv module is efficient in that it doesn't actually copy your entire system Python
installation each time you create an environment. Let's get started:

Installing virtualenv is as simple as running the following code:1.

pip install virtualenv

Then, create a directory for your virtual Python environments. Name it whatever2.
you want:

mkdir geospatial_projects

Now, you can create your first virtual environment using the following3.
command:

virtualenv geospatial_projects/project1

Then, after entering the following command, you can activate the environment:4.

source geospatial_projects/project1/bin/activate

Now, when you run any Python commands in that directory, it will use the5.
isolated virtual environment. When you're done, you can deactivate that
environment with the following simple command:

deactivate

This is how you install, activate for use, and deactivate the virtualenv module. There's
one other environment you should know about, however. We'll examine that next.
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Conda
It's also worth mentioning Conda here, which is an open source, cross-platform package
management system that can also create and manage environments similar to virtualenv.
Conda makes it easy to install complex packages, including geospatial ones. It also works
with other languages besides Python, including R, Node.js, and Java.  

Conda is available here: https:/ /docs. conda. io/ en/ latest/ .

Now, let's check out how to install GDAL so that we can start processing geospatial data.

Installing GDAL
The Geospatial Data Abstraction Library (GDAL), which includes OGR, is critical to many
of the examples in this book and is also one of the more complicated Python setups. For
these reasons, we'll discuss it separately here. The latest GDAL bindings are available on
PyPI; however, the installation requires a few more steps because of additional resources
that are needed by the GDAL library.

There are three ways to install GDAL for use with Python. You can use any one of them:

Compile it from the source code.
Install it as part of a larger software package.
Install a binary distribution and then the Python bindings.

If you have experience with compiling C libraries as well as the required compiler software,
then the first option gives you the most control. However, it is not recommended if you just
want to get going as quickly as possible, because even experienced software developers can
find compiling GDAL and the associated Python bindings challenging. Instructions for
compiling GDAL on leading platforms can be found at http:/ /trac. osgeo. org/gdal/
wiki/BuildHints. There are also basic build instructions on the PyPI GDAL page; have a
look at https:// pypi. python. org/ pypi/ GDAL.

The second option is by far the quickest and easiest. The Open Source Geospatial
Foundation (OSGeo) distributes an installer called OSGeo4W, which installs all of the top
open source geospatial packages on Windows at the click of a button. OSGeo4W can be
found at http:// trac. osgeo. org/ osgeo4w/ .

While these packages are the easiest to work with, they come with their own version of
Python. If you already have Python installed, then having another Python distribution just
to use certain libraries may be problematic. In that case, the third option may be for you.
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The third option installs a pre-compiled binary specific to your Python version. This
method is the best compromise between ease of installation and customization. The catch is
that you must make sure the binary distributions and the corresponding Python bindings
are compatible with each other, your Python version, and in many cases your operating
system configuration.

Windows
The installation of GDAL for Python on Windows becomes easier and easier each year. To
install GDAL on Windows, you must check whether you are running the 32-bit or 64-bit
version of Python:

To do so, just start your Python interpreter at a Command Prompt, as shown in1.
the following code:

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 6 2014, 22:15:05) [MSC
v.1600
32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more
information.

Based on this instance, we can see that Python is version 3.4.2 for win32, which2.
means it is the 32-bit version. Once you have this information, go to the following
URL: http:/ / www. lfd. uci. edu/ ~gohlke/ pythonlibs/ #gdal.
This web page contains Python Windows binaries and bindings for nearly every3.
open source scientific library. On that web page, in the GDAL section, find the
release that matches your version of Python. The release names use the
abbreviation cp for C Python, followed by the major Python version number and
either win32 for 32-bit Windows or win_amd64 for 64-bit Windows.

In the previous example, we would download the file named
GDAL-1.11.3-cp34-none-win32.whl.

This download package is in the newer Python pip wheel format. To install it,4.
simply open a Command Prompt and type in the following code:

pip install GDAL-1.11.3-cp34-none-win32.whl
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Once the package has been installed, open your Python interpreter and run the5.
following commands to verify that GDAL is installed by checking its version:

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 6 2014, 22:15:05) [MSC
v.1600 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>> from osgeo import gdal
>>> gdal.__version__
1.11.3

Now, GDAL should return its version as 1.11.3.

If you have trouble installing modules using easy_install or pip and
PyPI, try to download and install the wheel package from the same site as
the GDAL example.

Linux
GDAL installation on Linux varies widely by distribution. The following https:/ / gdal. org
binaries web page lists the installation instructions for several distributions: http:/ /trac.
osgeo.org/gdal/wiki/ DownloadingGdalBinaries. Let's get started:

Typically, your package manager will install both GDAL and Python bindings.1.
For example, on Ubuntu, to install GDAL, you need to run the following code:

sudo apt-get install gdal-bin

Then, to install the Python bindings, you can run the following command:2.

sudo apt-get install python3-gdal

Most Linux distributions are set up to compile software already, and their3.
instructions are much simpler than those on Windows.
Depending on the installation, you may have to import gdal and ogr as part of4.
the osgeo package, as shown in the following command:

>>> from osgeo import gdal
>>> from osgeo import ogr
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macOS X
To install GDAL on macOS X, you can also use the Homebrew package management
system, which is available at http:/ /brew. sh/ .

Alternatively, you can use the MacPorts package management system, which is available at
https://www.macports. org/ .

Both of these systems are well-documented and contain GDAL packages for Python 3. You
only really need them for libraries that require a properly compiled binary written in C that
has a lot of dependencies and includes many of the scientific and geospatial libraries.

Python networking libraries for acquiring
data
The vast majority of geospatial data sharing is accomplished via the internet, and Python is
well equipped when it comes to networking libraries for almost any protocol. Automated
data downloads are often an important step in automating a geospatial process. Data is
typically retrieved from a website's Uniform Resource Locator (URL) or File Transfer
Protocol (FTP) server and, because geospatial datasets often contain multiple files, data is
often distributed as ZIP files.

A nice feature of Python is its concept of a file-like object. Most Python libraries that read
and write data use a standard set of methods that allow you to access data from different
types of resources, as if you were writing a simple file on disk. The networking modules in
the Python standard library use this convention as well. The benefit of this approach is that
it allows you to pass file-like objects to other libraries and methods, which recognize the
convention without a lot of setup for different types of data that are distributed in different
ways.

The Python urllib module
The Python urllib package is designed for simple access to any file with a URL address.
The urllib package in Python 3 consists of several modules that handle different parts of
managing web requests and responses. These modules implement some of Python's file-
like object conventions, starting with its open() method. When you call open(), it
prepares a connection to the resource but does not access any data. Sometimes, you just
want to grab a file and save it to disk, instead of accessing it in memory. This function is
available through the urllib.request.retrieve() method.
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The following example uses the urllib.request.retrieve() method to download the
zipped shapefile named hancock.zip, which is used in other examples. We define the
URL and the local filename as variables. The URL is passed as an argument, as well as the
filename we want to use, to save it to our local machine, which, in this case, is just
hancock.zip:

>>> import urllib.request
>>> import urllib.parse
>>> import urllib.error
>>> url = "https://github.com/GeospatialPython/
Learn/raw/master/hancock.zip"
>>> fileName = "hancock.zip"
>>> urllib.request.urlretrieve(url, fileName)
('hancock.zip', <httplib.HTTPMessage instance at 0x00CAD378>)

The message from the underlying httplib module confirms that the file was downloaded
to the current directory. The URL and filename could have been passed to the retrieve()
method directly as strings as well. If you specify just the filename, the download saves to
the current working directory. You can also specify a fully qualified pathname to save it
somewhere else. You can also specify a callback function as a third argument, which will
receive download status information for the file so that you can create a simple download
status indicator or perform some other action.

The urllib.request.urlopen() method allows you to access an online resource with
more precision and control. As we mentioned previously, it implements most of the Python
file-like object methods with the exception of the seek() method, which allows you to
jump to arbitrary locations within a file. You can read a file online one line at a time, read
all the lines as a list, read a specified number of bytes, or iterate through each line of the file.
All of these functions are performed in memory, so you don't have to store the data on disk.
This ability is useful for accessing frequently updated data online that you may want to
process without saving to disk.

In the following example, we demonstrate this concept by accessing the United States
Geological Survey (USGS) earthquake feed to view all of the earthquakes in the world that
have occurred within the last hour. This data is distributed as a Comma-Separated Value
(CSV) file, which we can read line by line like a text file. CSV files are similar to
spreadsheets and can be opened in a text editor or spreadsheet program:

First, you need to open the URL and read the header with the column names in1.
the file.
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Then, you need to read the first line, which contains a record of a recent2.
earthquake, as shown in the following lines of code:

>>> url = "http://earthquake.usgs.gov/earthquakes/feed/v1.0/
summary/all_hour.csv"
>>> earthquakes = urllib.request.urlopen(url)
>>> earthquakes.readline()
'time,latitude,longitude,depth,mag,magType,nst,gap,dmin,rms,net,
id,updated,place
\n'
>>> earthquakes.readline()
'2013-06-14T14:37:57.000Z,64.8405,-147.6478,13.1,0.6,Ml,
6,180,0.09701805,0.2,ak,
ak10739050,2013-06-14T14:39:09.442Z,"3km E of Fairbanks,
Alaska"\n'

We can also iterate through this file, which is a memory-efficient way to read3.
through large files.
If you are running this example in the Python interpreter, you will need to press4.
the Enter or return key twice to execute the loop. This action is necessary because
it signals to the interpreter that you are done building the loop. In the following
example, we abbreviate the output:

>>> for record in earthquakes: print(record)
2013-06-14T14:30:40.000Z,62.0828,-145.2995,22.5,1.6,
Ml,8,108,0.08174669,0.86,ak,
ak10739046,2013-06-14T14:37:02.318Z,"13km ESE of Glennallen,
Alaska"
...
2013-06-14T13:42:46.300Z,38.8162,-122.8148,3.5,0.6,
Md,,126,0.00898315,0.07,nc,nc
72008115,2013-06-14T13:53:11.592Z,"6km NW of The Geysers,
California"

The Python requests module
The urllib module has been around for a long time. Another third-party module has been
developed to make common HTTP requests even easier. The requests module has the
following features:

Keep-alive and connection pooling
International domains and URLs
Sessions with cookie persistence
Browser-style SSL verification
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Automatic content decoding
Basic/digest authentication
Elegant key/value cookies
Automatic decompression
Unicode response bodies
HTTP(S) proxy Support
Multipart file uploads
Streaming downloads
Connection timeouts
Chunked requests
.netrc support

In the following example, we'll download the same ZIP file we downloaded with the
urllib module, except this time using the requests module. First, we need to install the
requests module:

pip install requests

Then, we can import it:

import requests

Then, we can set up our variables for the URL and the output filename:

url = "https://github.com/GeospatialPython/Learning/raw/master/hancock.zip"
fileName = "hancock.zip"

Retrieving the ZIP file is as simple as using the requests module's get() method:

r = requests.get(url)

Now, we can get the content from the .zip file and write it to our output file:

with open(fileName, 'wb') as f:
    f.write(r.content)

The requests module has many more advanced features that are just as easy to use as this
example. Now that we know how to get information via the HTTP protocol, let's examine
the FTP protocol which is often used to access geospatial data from online archives.
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FTP
FTP allows you to browse an online directory and download data using FTP client
software. Until around 2004, when geospatial web services became very common, FTP was
one of the most common ways to distribute geospatial data. FTP is less common now, but
you occasionally encounter it when you're searching for data. Once again Python's
batteries-included standard library has a reasonable FTP module called ftplib with a
main class called FTP().

In the following example, we will do the following:

We will access an FTP server hosted by the US National Oceanic and1.
Atmospheric Administration (NOAA) to access a text file containing data from
the Deep-ocean Assessment and Reporting of Tsunamis (DART) buoy network
that's used to watch for tsunamis around the world. This particular buoy is off
the coast of Peru.
We'll define the server and the directory path, and then we will access the server.2.
All FTP servers require a username and password. Most public servers have a
user called anonymous with the password as anonymous, just like this one does.
Using Python's ftplib, you can just call the login() method without any3.
arguments to log in as the default anonymous user. Otherwise, you can add the
username and password as string arguments.
Once we're logged in, we'll change to the directory containing the DART datafile.4.
To download the file, we'll open up a local file called out and pass its write()5.
method as a callback function to the ftplib.ftp.retrbinary() method,
which simultaneously downloads the file and writes it to our local file.
Once the file has been downloaded, we can close it to save it.6.
Then, we'll read the file and look for the line containing the latitude and7.
longitude of the buoy to make sure that the data was downloaded successfully,
as shown in the following lines of code:

import ftplib

server = "ftp.ngdc.noaa.gov"
dir = "hazards/DART/20070815_peru"
fileName = "21415_from_20070727_08_55_15_tides.txt"
ftp = ftplib.FTP(server)
ftp.login()
ftp.cwd(dir)

with open(fileName, "wb") as out:
    ftp.retrbinary("RETR " + fileName, out.write)
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with open(fileName) as dart:
 for line in dart:
     if "LAT, " in line:
     print(line)
     break

The output is:

 LAT,   LON      50.1663    171.8360

In this example, we opened the local file in binary write mode, and we used the
retrbinary() ftplib method, as opposed to retrlines(), which uses ASCII mode.
The binary mode works for both ASCII and binary files, so it's always a safer bet. In fact, in
Python, the binary read and write modes for a file are only required on Windows.

If you are just downloading a simple file from an FTP server, many FTP servers have a web
interface as well. In that case, you could use urllib to read the file. FTP URLs use the
following format to access data:

ftp://username:password@server/directory/file

This format is insecure for password-protected directories because you are transmitting
your login information over the internet. But for anonymous FTP servers, there is no
additional security risk. To demonstrate this, the following example accesses the same file
that we just saw but by using urllib instead of ftplib:

>>> dart = urllib.request.urlopen("ftp://" + server + "/" + dir +
"/" + fileName)
>>> for line in dart:
... line = str(line, encoding="utf8")
... if "LAT," in line:
... print(line)
... break
...
LAT, LON 50.1663 171.8360

Now that we can download files, let's learn how to decompress them.
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ZIP and TAR files
Geospatial datasets often consist of multiple files. For this reason, they are often distributed
as ZIP or TAR file archives. These formats can also compress data, but their ability to
bundle multiple files is the primary reason they are used for geospatial data. While the TAR
format doesn't contain a compression algorithm, it incorporates gzip compression and
offers it as a program option. Python has standard modules for reading and writing both
ZIP and TAR archives. These modules are called zipfile and tarfile, respectively.

The following example extracts the hancock.shp, hancock.shx, and hancock.dbf files
contained in the hancock.zip file we downloaded using urllib for use in the previous
examples. This example assumes that the ZIP file is in the current directory:

>>> import zipfile
>>> zip = open("hancock.zip", "rb")
>>> zipShape = zipfile.ZipFile(zip)
>>> shpName, shxName, dbfName = zipShape.namelist()
>>> shpFile = open(shpName, "wb")
>>> shxFile = open(shxName, "wb")
>>> dbfFile = open(dbfName, "wb")
>>> shpFile.write(zipShape.read(shpName))
>>> shxFile.write(zipShape.read(shxName))
>>> dbfFile.write(zipShape.read(dbfName))
>>> shpFile.close()
>>> shxFile.close()
>>> dbfFile.close()

This example is more verbose than necessary for clarity. We can shorten this example and
make it more robust by using a for loop around the zipfile.namelist() method
without explicitly defining the different files as variables. This method is a more flexible
and Pythonic approach, and could be used on ZIP archives with unknown contents, as
shown in the following lines of code:

>>> import zipfile
>>> zip = open("hancock.zip", "rb")
>>> zipShape = zipfile.ZipFile(zip)
>>> for fileName in zipShape.namelist():
... out = open(fileName, "wb")
... out.write(zipShape.read(fileName))
... out.close()
>>>
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Now that you understand the basics of the zipfile module, let's take the files we just
unzipped and create a TAR archive with them. In this example, when we open the TAR
archive for writing, we specify the write mode as w:gz for gzipped compression. We also 
specify the file extension as tar.gz to reflect this mode, as shown in the following lines of
code:

>>> import tarfile
>>> tar = tarfile.open("hancock.tar.gz", "w:gz")
>>> tar.add("hancock.shp")
>>> tar.add("hancock.shx")
>>> tar.add("hancock.dbf")
>>> tar.close()

We can extract the files using the simple tarfile.extractall() method. First, we open
the file using the tarfile.open() method and then extract it, as shown in the following
lines of code:

>>> tar = tarfile.open("hancock.tar.gz", "r:gz")
>>> tar.extractall()
>>> tar.close()

We'll work on one more example by combining elements we've learned in this chapter as
well as the elements in the vector data section of Chapter 2, Learning Geospatial Data. We'll
read the bounding box coordinates from the hancock.zip file without ever saving it to
disk. We'll use the power of Python's file-like object convention to pass around the data.
Then, we'll use Python's struct module to read the bounding box, like we did in Chapter
2, Learning Geospatial Data.

In this case, we read the unzipped .shp file into a variable and access the data using
Python array slicing by specifying the starting and ending indexes of the data separated by
a colon (:). We are able to use list slicing because Python allows you to treat strings as lists.
In this example, we also use Python's StringIO module to temporarily store data in
memory in a file-like object that implements various methods, including the seek()
method, which is absent from most Python networking modules, as shown in the following
lines of code:

>>> import urllib.request
>>> import urllib.parse
>>> import urllib.error
>>> import zipfile
>>> import io
>>> import struct
>>> url =
"https://github.com/GeospatialPython/Learn/raw/master/hancock.zip"
>>> cloudshape = urllib.request.urlopen(url)
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>>> memoryshape = io.BytesIO(cloudshape.read())
>>> zipshape = zipfile.ZipFile(memoryshape)
>>> cloudshp = zipshape.read("hancock.shp")
# Access Python string as an array
>>> struct.unpack("<dddd", cloudshp[36:68])
(-89.6904544701547, 30.173943486533133, -89.32227546981174,
30.6483914869749)

As you can see from the examples so far, Python's standard library packs a lot of punch.
Most of the time, you don't have to download a third-party library just to access a file
online.

Python markup and tag-based parsers
Tag-based data, particularly different XML dialects, have become a very popular way to
distribute geospatial data. Formats that are both machine and human-readable are
generally easy to work with, though they sacrifice storage efficiency for usability. These
formats can become unmanageable for very large datasets but work very well in most
cases.

While most formats are some form of XML (such as KML or GML), there is a notable
exception. The Well-Known Text (WKT) format is fairly common but uses external
markers and square brackets ([]) to surround data instead of tags in angled brackets
around data like XML does.

Python has standard library support for XML, as well as some excellent third-party libraries
available. Proper XML formats all follow the same structure, so you can use a generic XML
library to read it. Because XML is text-based, it is often easy to write it as a string instead of
using an XML library. The vast majority of applications that output XML do so in this way.

The primary advantage of using XML libraries for writing XML is that your output is
usually validated. It is very easy to create an error while creating your own XML format. A
single missing quotation mark can derail an XML parser and throw an error for somebody
trying to read your data. When these errors happen, they virtually render your dataset
useless. You will find that this problem is very common among XML-based geospatial data.
What you'll discover is that some parsers are more forgiving with incorrect XML than
others. Often, reliability is more important than speed or memory efficiency.

The analysis that's available at http:/ /lxml.de/ performance. html provides benchmarks
for memory and speed among the different Python XML parsers.
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The minidom module
The Python minidom module is a very old and simple to use XML parser. It is part of
Python's built-in set of XML tools in the XML package. It can parse XML files or XML that's
been fed in as a string. The minidom module is best for small to medium-sized XML
documents of less than about 20 MB before speed begins to decrease.

To demonstrate the minidom module, we'll use a sample KML file, which is a part of
Google's KML documentation that you can download. The data that's available at the
following link represents time-stamped point locations that have been transferred from a
GPS device: https:/ /github. com/ GeospatialPython/ Learn/ raw/ master/ time- stamp-
point.kml. Let's get started:

First, we'll parse this data by reading it in from the file and creating a minidom1.
parser object. The file contains a series of <Placemark> tags, which contain a
point and a timestamp at which that point was collected. So, we'll get a list of all
of the Placemarks in the file, and we can count them by checking the length of
that list, as shown in the following lines of code:

>>> from xml.dom import minidom
>>> kml = minidom.parse("time-stamp-point.kml")
>>> Placemarks = kml.getElementsByTagName("Placemark")
>>> len(Placemarks)
361

As you can see, we retrieved all Placemarks, which totaled 361. Now, let's take2.
a look at the first Placemark element in the list:

>>> Placemarks[0]
<DOM Element: Placemark at 0x2045a30>

Each <Placemark> tag is now a DOM element data type. To really see what that
element is, we call the toxml() method, as follows:

>>> Placemarks[0].toxml()
u'<Placemark>\n <TimeStamp>\n \<when>2007-01-14T21:05:02Z</when>\n
</TimeStamp>\n <styleUrl>#paddle-a</styleUrl>\n <Point>\n
<coordinates>-122.536226,37.86047,0</coordinates>\n
</Point>\n </Placemark>'

The toxml() function outputs everything contained in the Placemark tag as a3.
string object. If we want to print this information to a text file, we can call the
toprettyxml() method, which would add additional indentation to make the
XML more readable.
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Now, what if we want to grab just the coordinates from this placemark? The4.
coordinates are buried inside the coordinates tag, which is contained in the
point tag and nested inside the Placemark tag. Each element of a minidom
object is called a node. Nested nodes are called children or child nodes. The child
nodes include more than just tags – they can also include whitespace separating
tags, as well as the data inside the tags. So, we can drill down to the
coordinates tag using the tag name, but then we'll need to access the data
node. All the minidom elements have childNodeslist, as well as a
firstChild() method to access the first node.
We'll combine these methods to get to the data attribute of the first coordinate's5.
data node, which we reference using index 0 in the list of coordinate stags:

>>> coordinates =
Placemarks[0].getElementsByTagName("coordinates")
>>> point = coordinates[0].firstChild.data
>>> point
u'-122.536226,37.86047,0'

If you're new to Python, you'll notice that the text output in these
examples is tagged with the letter u. This markup is how Python denotes
Unicode strings that support internationalization to multiple languages
with different character sets. Python 3.4.3 changes this convention slightly
and leaves Unicode strings unmarked while marking UTF-8 strings with a
b.

We can go a little further and convert this point string into usable data by6.
splitting the string and converting the resulting strings into Python float types, as
shown here:

>>> x,y,z = point.split(",")
>>> x
u'-122.536226'
>>> y
u'37.86047'
>>> z
u'0'
>>> x = float(x)
>>> y = float(y)
>>> z = float(z)
>>> x,y,z
(-122.536226, 37.86047, 0.0)



Geospatial Python Toolbox Chapter 4

[ 150 ]

Using Python list comprehension, we can perform this operation in a single step,7.
as you can see in the following lines of code:

>>> x,y,z = [float(c) for c in point.split(",")]
>>> x,y,z
(-122.536226, 37.86047, 0.0)

This example scratches the surface of what the minidom library can do. For a great tutorial
on this library, have a look at the following tutorial: https:/ / www.edureka. co/ blog/
python-xml-parser- tutorial/ .

ElementTree
The minidom module is pure Python, easy to work with, and has been around since Python
2.0. However, Python 2.5 added a more efficient yet high-level XML parser to the standard
library called ElementTree. ElementTree is interesting because it has been implemented
in multiple versions.

There is a pure Python version and a faster version written in C called cElementTree. You
should use cElementTree wherever possible, but it's possible that you may be on a
platform that doesn't include the C-based version. When you import cElementTree, you
can test to see if it's available and fall back to the pure Python version if necessary:

try:
    import xml.etree.cElementTree as ET
except ImportError:
    import xml.etree.ElementTree as ET

One of the great features of ElementTree is its implementation of a subset of the XPath
query language. XPath is short for XML Path and allows you to search an XML document
using a path-style syntax. If you work with XML frequently, learning XPath is essential.
You can learn more about XPath at the following link: https:/ /www. w3schools. com/ xml/
xpath_intro.asp.

One catch with this feature is that if the document specifies a namespace, as most XML
documents do, you must insert that namespace into queries. ElementTree does not
automatically handle the namespace for you. Your options are to manually specify it or try
to extract it using string parsing from the root element's tag name.
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We'll repeat the minidomXML parsing example using ElementTree:

First, we'll parse the document and then we'll manually define the KML1.
namespace; later, we'll use an XPath expression and the find() method to find
the first Placemark element.
Finally, we'll find the coordinates and the child node and then grab the text2.
containing the latitude and longitude.

In both cases, we could have searched directly for the coordinates tag. But, by grabbing
the Placemark element, it gives us the option of grabbing the corresponding timestamp
child element later, if we so choose, as shown in the following lines of code:

>>> tree = ET.ElementTree(file="time-stamp-point.kml")
>>> ns = "{http://www.opengis.net/kml/2.2}"
>>> placemark = tree.find(".//%sPlacemark" % ns)
>>> coordinates =
placemark.find("./{}Point/{}coordinates".format(ns, ns))
>>> coordinates.text
'-122.536226,37.86047,0'

In this example, notice that we used the Python string formatting syntax, which is based on
the string formatting concept found in C. When we defined the XPath expression for the
placemark variable, we used the % placeholder to specify the insertion of a string. Then,
after the string, we used the % operator followed by a variable name to insert the ns
namespace variable where the placeholder is. In the coordinates variable, we used the ns
variable twice, so we specified a tuple containing ns twice after the string.

String formatting is a simple yet extremely powerful and useful tool in
Python that's worth learning. You can find more information in Python's
documentation online at the following link: https:/ /docs. python. org/ 3.
4/library/ string. html.

Building XML using ElementTree and Minidom
Most of the time, XML can be built by concatenating strings, as you can see in the following
command:

xml = "<?xml version="1.0" encoding="utf-8"?>"
xml += "<kml xmlns="http://www.opengis.net/kml/2.2">"
xml += " <Placemark>"
xml += " <name>Office</name>"
xml += " <description>Office Building</description>"
xml += " <Point>"
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xml += " <coordinates>"
xml += " -122.087461,37.422069"
xml += " </coordinates>"
xml += " </Point>"
xml += " </Placemark>"
xml += "</kml>"

However, this method can be quite prone to typos, which creates invalid XML documents.
A safer way is to use an XML library. Let's build this simple KML document using
ElementTree:

We'll define the rootKML element and assign it a namespace.1.
Then, we'll systematically append sub elements to the root, wrap the elements as2.
an ElementTree object, declare the XML encoding, and write it out to a file
called placemark.xml, as shown in the following lines of code:

>>> root = ET.Element("kml")
>>> root.attrib["xmlns"] = "http://www.opengis.net/kml/2.2"
>>> placemark = ET.SubElement(root, "Placemark")
>>> office = ET.SubElement(placemark, "name")
>>> office.text = "Office"
>>> point = ET.SubElement(placemark, "Point")
>>> coordinates = ET.SubElement(point, "coordinates")
>>> coordinates.text = "-122.087461,37.422069, 37.422069"
>>> tree = ET.ElementTree(root)
>>> tree.write("placemark.kml",
xml_declaration=True,encoding='utf-8',method="xml")

The output is identical to the previous string building example, except that ElementTree
does not indent the tags but rather writes it as one long string. The minidom module has a
similar interface, which is documented in the book Dive Into Python, by Mark Pilgrim,
which was referenced in the minidom example that we just saw.

XML parsers such as minidom and ElementTree work very well on perfectly formatted
XML documents. Unfortunately, the vast majority of XML documents out there don't
follow these rules and contain formatting errors or invalid characters. You'll find that you
are often forced to work with this data and must resort to extraordinary string parsing
techniques to get the small subset of data you actually need. But thanks to Python and
Beautiful Soup, you can elegantly work with bad and even terrible tag-based data.
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Beautiful Soup is a module that was specifically designed to robustly handle broken XML.
It is oriented toward HTML, which is notorious for incorrect formatting but works with
other XML dialects too. Beautiful Soup is available on PyPI, so use either easy_install or
pip to install it, as you can see in the following command:

easy_install beautifulsoup4

Alternatively, you can execute the following command:

pip install beautifulsoup4

Then, to use it, you simply import it:

>>> from bs4 import BeautifulSoup

To try it out, we'll use a GPS Exchange Format (GPX) tracking file from a smartphone
application, which has a glitch and exports slightly broken data. You can download this
sample file from https:/ /raw. githubusercontent. com/ GeospatialPython/ Learn/ master/
broken_data.gpx.

This 2,347-line data file is in pristine condition except that it is missing a
closing </trkseg> tag, which should be located at the very end of the file, just before the
closing </trk> tag. This error was caused by a data export function in the source program.
This defect is most likely a result of the original developer manually generating the GPX
XML on export and forgetting the line of code that adds this closing tag. Watch what
happens if we try to parse this file with minidom:

>>> gpx = minidom.parse("broken_data.gpx")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Python34\lib\xml\dom\minidom.py", line 1914, in parse
return expatbuilder.parse(file)
File "C:\Python34\lib\xml\dom\expatbuilder.py", line 924, in
parse
result = builder.parseFile(fp)
File "C:\Python34\lib\xml\dom\expatbuilder.py", line 207, in
parseFile
parser.Parse(buffer, 0)
xml.parsers.expat.ExpatError: mismatched tag: line 2346, column 2

As you can see from the last line in the error message, the underlying XML parser in
minidom knows exactly what the problem is – a mismatched tag right at the end of the file.
However, it refused to do anything more than report the error. You must have perfectly
formed XML or none at all to avoid this.
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Now, let's try the more sophisticated and efficient ElementTree module with the same
data:

>>> ET.ElementTree(file="broken_data.gpx")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Python34\lib\xml\etree\ElementTree.py", line 611, in
__init__
self.parse(file)
File "C:\Python34\lib\xml\etree\ElementTree.py", line 653, in
parse
parser.feed(data)
File "C:\Python34\lib\xml\etree\ElementTree.py", line 1624, in
feed
self._raiseerror(v)
File "C:\Python34\lib\xml\etree\ElementTree.py", line 1488, in
_raiseerror
raise err
xml.etree.ElementTree.ParseError: mismatched tag: line 2346,
column 2

As you can see, different parsers face the same problem. Poorly formed XML is an all too
common reality in geospatial analysis, and every XML parser assumes that all the XML in
the world is perfect, except for one. Enter Beautiful Soup. This library shreds bad XML into
usable data without a second thought, and it can handle far worse defects than missing
tags. It will work despite missing punctuation or other syntax and will give you the best
data it can. It was originally developed for parsing HTML, which is notoriously horrible for
being poorly formed, but it works fairly well with XML as well, as shown here:

>>> from bs4 import BeautifulSoup
>>> gpx = open("broken_data.gpx")
>>> soup = BeautifulSoup(gpx.read(), features="xml")
>>>

No complaints from Beautiful Soup! Just to make sure the data is actually usable, let's try
and access some of the data. One of the fantastic features of Beautiful Soup is that it turns
tags into attributes of the parse tree. If there are multiple tags with the same name, it grabs
the first one. Our sample data file has hundreds of <trkpt> tags. Let's access the first one:

>>> soup.trkpt
<trkpt lat="30.307267000" lon="-89.332444000">
<ele>10.7</ele><time>2013-05-16T04:39:46Z</time></trkpt>
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We're now certain that the data has been parsed correctly and that we can access it. If we
want to access all of the <trkpt> tags, we can use the findAll() method to grab them and
then use the built-in Python len() function to count them, as shown here:

>>> tracks = soup.findAll("trkpt")
>>> len(tracks)
2321

If we write the parsed data back out to a file, Beautiful Soup outputs the corrected version.
We'll save the fixed data as a new GPX file using Beautiful Soup module's prettify()
method to format the XML with nice indentation, as you can see in the following lines of
code:

>>> fixed = open("fixed_data.gpx", "w")
>>> fixed.write(soup.prettify())
>>> fixed.close()

Beautiful Soup is a very rich library with many more features. To explore it further, visit the
Beautiful Soup documentation online at http:/ /www. crummy. com/ software/
BeautifulSoup/bs4/ documentation. html.

While minidom, ElementTree, and cElementTree come with the Python
standard library, there is an even more powerful and popular XML library
for Python called lxml. The lxml module provides a Pythonic interface to
the libxml2 and libxslt C libraries using the ElementTree API. An
even better fact is that lxml also works with Beautiful Soup to parse bad
tag-based data. On some installations, beautifulsoup4 may require
lxml. The lxml module is available via PyPI but requires some
additional steps for the C libraries. More information is available on the
lxml home page at the following link: http:/ /lxml. de/ .

Well-Known Text (WKT)
The WKT format has been around for years and is a simple text-based format for
representing geometries and spatial reference systems. It is primarily used as a data
exchange format by systems that implement the OGC Simple Features for SQL
specification. Take a look at the following sample WKT representation of a polygon:

POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))
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Currently, the best way to read and write WKT is by using the Shapely library. Shapely
provides a very Python-oriented or Pythonic interface to the Geometry Engine - Open
Source (GEOS) library we described in Chapter 3, The Geospatial Technology Landscape.

You can install Shapely using either easy_install or pip. You can also use the wheel
from the site we mentioned in the previous section. Shapely has a WKT module which can
load and export this data. Let's use Shapely to load the previous polygon sample and then
verify that it has been loaded as a polygon object by calculating its area:

>>> import shapely.wkt
>>> wktPoly = "POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,
1 1))"
>>> poly = shapely.wkt.loads(wktPoly)
>>> poly.area
15.0

We can convert any Shapely geometry back into a WKT by simply calling its wkt attribute,
as shown here:

>>> poly.wkt
'POLYGON ((0.0 0.0, 4.0 0.0, 4.0 4.0, 0.0 4.0, 0.0 0.0), (1.0 1.0,
2.0 1.0, 2.0 2.0, 1.0 2.0, 1.0 1.0))'

Shapely can also handle the WKT binary counterpart called Well-Known Binary (WKB),
which is used to store WKT strings as binary objects in databases. Shapely loads WKB
using its wkb module in the same way as the wkt module, and it can convert geometries by
calling that object's wkb attribute.

Shapely is the most Pythonic way to work with WKT data, but you can also use the Python
bindings to the OGR library, which we installed earlier in this chapter.

For this example, we'll use a shapefile with one simple polygon, which can be downloaded
as a ZIP file. It is available at the following link: https:/ /github. com/ GeospatialPython/
Learn/raw/master/ polygon. zip.

In the following example, we'll open the polygon.shp file from the shapefile dataset, call
the required GetLayer() method, get the first (and only) feature, and then export it to
WKT:

>>> from osgeo import ogr
>>> shape = ogr.Open("polygon.shp")
>>> layer = shape.GetLayer()
>>> feature = layer.GetNextFeature()
>>> geom = feature.GetGeometryRef()
>>> wkt = geom.ExportToWkt()
>>> wkt

https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip
https://github.com/GeospatialPython/Learn/raw/master/polygon.zip


Geospatial Python Toolbox Chapter 4

[ 157 ]

' POLYGON ((-99.904679362176353 51.698147686745074,
-75.010398603076666 46.56036851832075,-75.010398603076666
46.56036851832075,-75.010398603076666 46.56036851832075,
-76.975736557742451 23.246272688996914,-76.975736557742451
23.246272688996914,-76.975736557742451 23.246272688996914,
-114.31715769639194 26.220870210283724,-114.31715769639194
26.220870210283724,-99.904679362176353 51.698147686745074))'

Note that with OGR, you would have to read access each feature and export it individually,
since the ExporttoWkt() method is at the feature level. We can now turn around and read
a WKT string using the wkt variable containing the export. We'll import it back into ogr
and get the bounding box, also known as an envelope, of the polygon, as you can see here:

>>> poly = ogr.CreateGeometryFromWkt(wkt)
>>> poly.GetEnvelope()
(-114.31715769639194, -75.01039860307667, 23.246272688996914,
51.698147686745074)

Shapely and OGR are used for reading and writing valid WKT strings. Of course, just like
XML, which is also text, you could manipulate small amounts of WKT as strings in a pinch. 
Next, we'll look at a modern text format that is becoming very common in the geospatial
world.

Python JSON libraries
JavaScript Object Notation (JSON) is rapidly becoming the number one data exchange
format across a lot of fields. The lightweight syntax and its similarity to existing data
structures in both the JavaScript that Python borrows some data structures from, as well as
JavaScript itself, make it a perfect match for Python.

The following GeoJSON sample document contains a single point:

{
    "type": "Feature",
    "id": "OpenLayers.Feature.Vector_314",
    "properties": {},
    "geometry": {
        "type": "Point",
        "coordinates": [
            97.03125,
            39.7265625
        ]
    },
    "crs": {
        "type": "name",
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        "properties": {
            "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
        }
    }
}

This sample is just a simple point with new attributes, which would be stored in the
properties data structure of the geometry. In the preceding example, the ID, coordinates,
and CRS information would change depending on your particular dataset. 

Let's modify this sample GeoJSON document using Python. First, we'll compact the sample
document into a single string to make it easier to handle:

>>> jsdata = """{
    "type": "Feature",
   "id": "OpenLayers.Feature.Vector_314",
  "properties": {},
    "geometry": {
        "type": "Point",
        "coordinates": [
           97.03125,
           39.7265625
       ]
    },
    "crs": {
        "type": "name",
        "properties": {
            "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
        }
    }
}"""

Now, we can use the GeoJSON jsdata string variable we created in the preceding code, in
the following examples.

The json module
GeoJSON looks very similar to a nested set of Python's dictionaries and lists. Just for fun,
let's just try and use Python's eval() function to parse it as Python code:

>>> point = eval(jsdata)
>>> point["geometry"]
{'type': 'Point', 'coordinates': [97.03125, 39.7265625]}
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Wow! That worked! We turned that random GeoJSON string into native Python data in one
easy step. Keep in mind that the JSON data format is based on JavaScript syntax, which
happens to be similar to Python. Also, as you get deeper into GeoJSON data and work with
larger data, you'll find that JSON allows characters that Python does not. Using Python's
eval() function is considered very insecure as well. But as far as keeping things simple is
concerned, note that it doesn't get any simpler than that!

Thanks to Python's drive toward simplicity, the more advanced method doesn't get much
more complicated. Let's use Python's json module, which is part of the standard library, to
turn the same string into Python the right way:

>>> import json
>>> json.loads(jsdata)
{u'geometry': {u'type': u'Point', u'coordinates': [97.03125,
39.7265625]}, u'crs': {u'type': u'name', u'properties': {u'name':
u'urn:ogc:def:crs:OGC:1.3:CRS84'}}, u'type': u'Feature', u'id':
u'OpenLayers.Feature.Vector_314',
u'properties':
{}}

As a side note, in the previous example, the CRS84 property is a synonym for the common
WGS84 coordinate system. The json module adds some nice features such as safer parsing
and conversion of strings into Unicode. We can export Python data structures to JSON in 
almost the same way:

>>> pydata = json.loads(jsdata)
>>> json.dumps(pydata)
'{"geometry": {"type": "Point", "coordinates": [97.03125,
39.7265625]}, "crs": {"type": "name", "properties": {"name":
"urn:ogc:def:crs:OGC:1.3:CRS84"}}, "type" : "Feature", "id":
"OpenLayers.Feature.Vector_314", "properties":
{}}'

When you dump data, it comes out as one long string that's difficult to read. There's a way
we can print the data so it is easier to read: by passing the dumps() method an indent
value:

print(json.dumps(pydata, indent=4))

{
    "type": "Feature",
    "id":
    "OpenLayers.Feature.Vector_314",
    "properties": {},
    "geometry": {
        "type": "Point",
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        "coordinates": [
            97.03125,
            39.7265625
        ]
    },
    "crs": {
        "type": "name",
        "properties": {
                 "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
        }
   }
}

Now that we understand json module, let's look at the geospatial version called geojson.

The geojson module
We could happily go on reading and writing GeoJSON data using the json module
forever, but there's an even better way. The geojson module that's available on PyPI offers
some distinct advantages. For starters, it knows the requirements of the GeoJSON
specification, which can save a lot of typing. Let's create a simple point using this module
and export it to GeoJSON:

>>> import geojson
>>> p = geojson.Point([-92, 37])

This time, when we dump the JSON data for viewing, we'll add an indent argument with a
value of 4 so that we get nicely indented JSON data that's easier to read:

>>> geojs = geojson.dumps(p, indent=4)
>>> geojs

Our output is as follows:

{
    "type": "Point",
    "coordinates": [
        -92,
        37
    ]
}
POINT (-92 37)



Geospatial Python Toolbox Chapter 4

[ 161 ]

Notice that the geojson module has an interface for different data types and saves us from
setting the type and coordinates attributes manually. Now, imagine if you had a geographic
object with hundreds of features. You could programmatically build this data structure
instead of building a very large string.

The geojson module is also the reference implementation for the Python geo_interface
convention. This interface allows cooperating programs to exchange data seamlessly and in
a Pythonic way without the programmer explicitly exporting and importing GeoJSON
strings. So, if we wanted to feed the point we created with the geojson module to the
Shapely module, we could perform the following command, which reads the geojson
module's point object straight into Shapely, after which we'll export it as WKT:

>>> from shapely.geometry import asShape
>>> point = asShape(p)
>>> point.wkt
'POINT (-92.0000000000000000 37.0000000000000000)'

More and more geospatial Python libraries are implementing both the geojson and
geo_interface functionality, including PyShp, Fiona, Karta, and ArcGIS. Third-party
implementations exist for QGIS. 

GeoJSON is a simple text format that is human and computer-readable. Now, we'll look at
some binary vector formats.

OGR
We touched on OGR as a way to handle WKT strings, but its real power is as a universal
vector library. This book strives for pure Python solutions, but no single library even comes
close to the variety of formats that OGR can process.

Let's read a sample point shapefile using the OGR Python API. The sample shapefile can be
downloaded as a ZIP file here:
https://github.com/GeospatialPython/Learn/raw/master/point.zip.

This point shapefile has five points with single digit, positive coordinates. The attributes list
the order in which the points were created, making it useful for testing. This simple
example will read in the point shapefile and loop through each feature; then, it will print
the x and y values of each point, plus the value of the first attribute field:

>>> import ogr
>>> shp = ogr.Open("point.shp")
>>> layer = shp.GetLayer()
>>> for feature in layer:

https://github.com/GeospatialPython/Learn/raw/master/point.zip
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... geometry = feature.GetGeometryRef()

... print(geometry.GetX(), geometry.GetY(),
feature.GetField("FIRST_FLD"))
...
1.0 1.0 First
3.0 1.0 Second
4.0 3.0 Third
2.0 2.0 Fourth
0.0 0.0 Appended

This example is simple, but OGR can become quite verbose as your script becomes more
complex. Next, we'll look at a simpler way to deal with shapefiles.

PyShp
PyShp is a simple, pure Python library that reads and writes shapefiles. It doesn't perform
any geometry operations and only uses Python's standard library. It's contained in a single
file that's easy to move around, squeeze onto small embedded platforms, and modify. It is
also compatible with Python 3. It also implements __geo_interface__. The PyShp
module is available on PyPI.

Let's repeat the previous OGR example with PyShp:

>>> import shapefile
>>> shp = shapefile.Reader("point.shp")
>>> for feature in shp.shapeRecords():
... point = feature.shape.points[0]
... rec = feature.record[0]
... print(point[0], point[1], rec)
...
1.0 1.0 First
3.0 1.0 Second
4.0 3.0 Third
2.0 2.0 Fourth
0.0 0.0 Appended
//
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dbfpy
Both OGR and PyShp read and write the .dbf files because they are part of the shapefile
specification. The .dbf files contain the attributes and fields for the shapefiles. However,
both libraries have very basic .dbf support. Occasionally, you will need to do some heavy-
duty DBF work. The dbfpy3 module is a pure Python module dedicated to working with
.dbf files. It is currently hosted on GitHub. You can force easy_install to find the
download by specifying the download file:

easy_install -f
 https://github.com/GeospatialPython/dbfpy3/archive/master.zip

If you are using pip to install packages, use the following command:

pip install
 https://github.com/GeospatialPython/dbfpy3/archive/master.zip

The following shapefile has over 600 .dbf records representing US Census Bureau tracts,
which make it a good sample for trying out dbfpy: https:/ /github. com/
GeospatialPython/Learn/ raw/ master/ GIS_ CensusTract. zip.

Let's open up the .dbf file of this shapefile and look at the first record:

>>> from dbfpy3 import dbf
>>> db = dbf.Dbf("GIS_CensusTract_poly.dbf")
>>> db[0]
GEODB_OID: 4029 (<type 'int'>)
OBJECTID: 4029 (<type 'int'>)
PERMANE0: 61be9239-8f3b-4876-8c4c-0908078bc597 (<type 'str'>)
SOURCE_1: NA (<type 'str'>)
SOURCE_2: 20006 (<type 'str'>)
SOURCE_3: Census Tracts (<type 'str'>)
SOURCE_4: Census Bureau (<type 'str'>)
DATA_SE5: 5 (<type 'str'>)
DISTRIB6: E4 (<type 'str'>)
LOADDATE: 2007-03-13 (<type 'datetime.date'>)
QUALITY: 2 (<type 'str'>)
SCALE: 1 (<type 'str'>)
FCODE: 1734 (<type 'str'>)
STCO_FI7: 22071 (<type 'str'>)
STATE_NAME: 22 (<type 'str'>)
COUNTY_8: 71 (<type 'str'>)
CENSUST9: 22071001734 (<type 'str'>)
POPULAT10: 1760 (<type 'int'>)
AREASQKM: 264.52661934 (<type 'float'>)
GNIS_ID: NA (<type 'str'>)
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POPULAT11: 1665 (<type 'int'>)
DB2GSE_12: 264526619.341 (<type 'float'>)
DB2GSE_13: 87406.406192 (<type 'float'>)

The module quickly and easily gives us both the column names and data values together,
as opposed to handling them as separate lists, so that they're easier to manage. Now, let's
increment the population field contained in POPULAT10 by 1:

>>> rec = db[0]
>>> field = rec["POPULAT10"]
>>> rec["POPULAT10"] = field + 1
>>> rec.store()
>>> del rec
>>> db[0]["POPULAT10"]
1761

Keep in mind that both OGR and PyShp can do this same procedure, but dbfp3y makes it a
little easier if you are only making a lot of changes to the .dbf files.

Shapely
Shapely was mentioned in the Well-Known Text (WKT) section for its import and
exportability. However, its true purpose is as a generic geometry library. Shapely is a high-
level, Pythonic interface to the GEOS library for geometric operations. In fact, Shapely
intentionally avoids reading or writing files. It relies completely on data import and export
from other modules and maintains focus on geometry manipulation.

Let's do a quick Shapely demonstration in which we'll define a single WKT polygon and
then import it into Shapely. Then, we'll measure the area. Our computational geometry will
consist of buffering that polygon by a measure of five arbitrary units, which will return a
new, bigger polygon for which we'll measure the area:

>>> from shapely import wkt, geometry
>>> wktPoly = "POLYGON((0 0,4 0,4 4,0 4,0 0))"
>>> poly = wkt.loads(wktPoly)
>>> poly.area
16.0
>>> buf = poly.buffer(5.0)
>>> buf.area
174.41371226364848
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We can then perform a difference in the area of the buffer and the original polygon area, as
shown here:

>>> buf.difference(poly).area
158.413712264

If you can't have pure Python, a Pythonic API as clean as Shapely that packs such a punch
is certainly the next best thing.

Fiona
The Fiona library provides a simple Python API around the OGR library for data access and
nothing more. This approach makes it easy to use and is less verbose than OGR while using
Python. Fiona outputs GeoJSON by default. You can find a wheel file for Fiona at http:/ /
www.lfd.uci.edu/ ~gohlke/ pythonlibs/ #fiona.

As an example, we'll use the GIS_CensusTract_poly.shp file from the dbfpy example
we looked at earlier in this chapter.

First, we'll import fiona and Python's pprint module to format the output. Then, we'll
open the shapefile and check its driver type:

>>> import fiona
>>> from pprint import pprint
>>> f = fiona.open("GIS_CensusTract_poly.shp")
>>> f.driver

ESRI shapefile
Next, we'll check its coordinate reference system and get the data bounding box, as shown
here:

>>> f.crs
{'init': 'epsg:4269'}
>>> f.bounds
(-89.8744162216216, 30.161122135135138, -89.1383837783784,
30.661213864864862)
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Now, we'll view the data schema as geojson and format it using the pprint module, as
you can see in the following lines of code:

>>> pprint(f.schema)
{'geometry': 'Polygon',
'properties': {'GEODB_OID': 'float:11',
'OBJECTID': 'float:11',
'PERMANE0': 'str:40',
'SOURCE_1': 'str:40',
'SOURCE_2': 'str:40',
'SOURCE_3': 'str:100',
'SOURCE_4': 'str:130',
'DATA_SE5': 'str:46',
'DISTRIB6': 'str:188',
'LOADDATE': 'date',
'QUALITY': 'str:35',
'SCALE': 'str:52',
'FCODE': 'str:38',
'STCO_FI7': 'str:5',
'STATE_NAME': 'str:140',
'COUNTY_8': 'str:60',
'CENSUST9': 'str:20',
'POPULAT10': 'float:11',
'AREASQKM': 'float:31.15',
'GNIS_ID': 'str:10',
'POPULAT11': 'float:11',
'DB2GSE_12': 'float:31.15',
'DB2GSE_13': 'float:31.15'}}

Next, let's get a count of the number of features:

>>> len(f)
45
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Finally, we'll print one of the records as formatted GeoJSON, as shown here:

pprint(f[1])
{'geometry': {'coordinates': [[[(-89.86412366375093,
30.661213864864862), (-89.86418691770497, 30.660764012731285),
(-89.86443391770518, 30.659652012730202),
...
'type': 'MultiPolygon'},
'id': '1',
'properties': {'GEODB_OID': 4360.0,
'OBJECTID': 4360.0,
'PERMANE0': '9a914eef-9249-44cf-a05f-af4b48876c59',
'SOURCE_1': 'NA',
'SOURCE_2': '20006',
...
'DB2GSE_12': 351242560.967882,
'DB2GSE_13': 101775.283967268},
'type': 'Feature'}

GDAL
GDAL is the dominant geospatial library for raster data. Its raster capability is so significant
that it is a part of virtually every geospatial toolkit in any language, and Python is no
exception to this. To see the basics of how GDAL works in Python, download the following
sample raster satellite image as a ZIP file and unzip it: https:/ /github. com/
GeospatialPython/Learn/ raw/ master/ SatImage. zip. Let's open this image and see how
many bands it has and how many pixels are present along each axis:

>>> from osgeo import gdal
>>> raster = gdal.Open("SatImage.tif")
>>> raster.RasterCount
3
>>> raster.RasterXSize
2592
>>> raster.RasterYSize
2693
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By viewing it in OpenEV, we can see that the following image has three bands, 2,592
columns of pixels, and 2,693 rows of pixels:

GDAL is an extremely fast geospatial raster reader and writer within Python. It can also
reproject images quite well in addition to being able to do a few other tricks. However, the
true value of GDAL comes from its interaction with the next Python module, which we'll
examine now.

NumPy
NumPy is an extremely fast, multidimensional Python array processor designed
specifically for Python and scientific computing but is written in C. It is available via PyPI
or as a wheel file (available at http:/ /www. lfd.uci. edu/ ~gohlke/ pythonlibs/ #numpy) and
can be installed with ease. In addition to its amazing speed, the magic of NumPy includes
its interaction with other libraries. NumPy can exchange data with GDAL, Shapely, the
Python Imaging Library (PIL), and many other scientific computing Python libraries in
other fields.
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As a quick example of NumPy's ability, we'll combine it with GDAL to read in our sample
satellite image and then create a histogram of it. The interface between GDAL and NumPy
is a GDAL module called gdal_array, which has NumPy as a dependency. Numeric is the
legacy name of the NumPy module. The gdal_array module imports NumPy. 

In the following example, we'll use gdal_array, which imports NumPy, to read the image
in as an array, grab the first band, and save it as a JPEG image:

>>> from osgeo import gdal_array
>>> srcArray = gdal_array.LoadFile("SatImage.tif")
>>> band1 = srcArray[0]
>>> gdal_array.SaveArray(band1, "band1.jpg", format="JPEG")

This operation gives us the following grayscale image in OpenEV:
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PIL
PIL was originally developed for remote sensing but has evolved as a general image editing
library for Python. Like NumPy, it is written in C for speed but is designed specifically for
Python. In addition to image creation and processing, it also has a useful raster drawing
module. PIL is also available via PyPI; however, in Python 3, you may want to use the
Pillow module, which is an upgraded version of PIL. As you'll see in the following
example, we can use a Python try statement to import PIL using two possible variations,
depending on how you installed it.

In this example, we'll combine PyShp and PIL to rasterize the hancock shapefile from the
previous examples and save it as an image. We'll use a world to pixel coordinate
transformation similar to our SimpleGIS from Chapter 1, Learning about Geospatial Analysis
with Python. We'll create an image to use as a canvas in PIL, and then we'll use the PIL
ImageDraw module to render the polygon. Finally, we'll save it as a PNG image, as you can
see in the following lines of code:

>>> try:
>>> import Image
>>> import ImageDraw
>>> except:
>>> from PIL import Image
>>> from PIL import ImageDraw
>>> import shapefile
>>> r = shapefile.Reader("hancock.shp")
>>> xdist = r.bbox[2] - r.bbox[0]
>>> ydist = r.bbox[3] - r.bbox[1]
>>> iwidth = 400
>>> iheight = 600
>>> xratio = iwidth/xdist
>>> yratio = iheight/ydist
>>> pixels = []
>>> for x,y in r.shapes()[0].points:
... px = int(iwidth - ((r.bbox[2] - x) * xratio))
... py = int((r.bbox[3] - y) * yratio)
... pixels.append((px,py))
...
>>> img = Image.new("RGB", (iwidth, iheight), "white")
>>> draw = ImageDraw.Draw(img)
>>> draw.polygon(pixels, outline="rgb(203, 196, 190)",
fill="rgb(198, 204, 189)")
>>> img.save("hancock.png")
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This example creates the following image:

PNGCanvas
Sometimes, you may find that PIL is overkill for your purposes, or you are not allowed to
install PIL because you do not have administrative rights to the machine that you're using
to install Python modules that have been created and compiled in C. In those cases, you can
usually get away with the lightweight pure Python PNGCanvas module. You can install it
using easy_install or pip.

Using this module, we can repeat the raster shapefile example we performed using PIL but
in pure Python, as you can see here:

>>> import shapefile
>>> import pngcanvas
>>> r = shapefile.Reader("hancock.shp")
>>> xdist = r.bbox[2] - r.bbox[0]
>>> ydist = r.bbox[3] - r.bbox[1]
>>> iwidth = 400
>>> iheight = 600
>>> xratio = iwidth/xdist
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>>> yratio = iheight/ydist
>>> pixels = []
>>> for x,y in r.shapes()[0].points:
... px = int(iwidth - ((r.bbox[2] - x) * xratio))
... py = int((r.bbox[3] - y) * yratio)
... pixels.append([px,py])
...
>>> c = pngcanvas.PNGCanvas(iwidth,iheight)
>>> c.polyline(pixels)
>>> f = open("hancock_pngcvs.png", "wb")
>>> f.write(c.dump())
>>> f.close()

This example gives us a simple outline as PNGCanvas does not have a built-in fill method:
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GeoPandas
Pandas is a high-performance Python data analysis library that can handle large datasets
that are tabular (similar to a database), ordered/unordered, labeled matrices, or unlabeled
statistical data. GeoPandas is simply a geospatial extension to Pandas that builds upon
Shapely, Fiona, PyProj, Matplotlib, and Descartes, all of which must be installed. It allows
you to easily perform operations in Python, which would otherwise require a spatial
database such as PostGIS. You can download a wheel file for GeoPandas from http:/ / www.
lfd.uci.edu/~gohlke/ pythonlibs/ #panda.

The following script opens a shapefile and dumps it into GeoJSON. Then, it creates a map
with matplotlib:

>>> import geopandas
>>> import matplotlib.pyplot as plt
>>> gdf = geopandas.GeoDataFrame
>>> census = gdf.from_file("GIS_CensusTract_poly.shp")
>>> census.plot()
>>> plt.show()

The following image is the resulting map plot of the previous commands:
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PyMySQL
The popular MySQL (available at http:/ /dev.mysql. com/downloads) database is gradually
evolving spatial functions. It has support for OGC geometries and a few spatial functions. It
also has a pure Python API available in the PyMySQL library. The limited spatial functions
use planar geometry and bounding rectangles as opposed to spherical geometry and
shapes. The latest development release of MySQL contains some additional functions that
improve this capability.

In the following example, we'll create a database in MySQL called spatial_db. Then, we'll
add a table called PLACES with a geometry column. Next, we'll add two cities as point
locations. Finally, we'll calculate the distance using MySQL's ST_Distance function and
then convert the result from degrees into miles.

First, we will import our mysql library and set up the database connection:

# Import the python mysql library
import pymysql
# Establish a database connection on our local
# machine as the root database user.
conn = pymysql.connect(host='localhost', port=3306,
user='root', passwd='', db='mysql')

Next, we get the database cursor:

# Get the database cursor needed to change
# the database
cur = conn.cursor()

Now, we check if the database already exists, and drop it if it does:

# If the database already exists, delete
# it and recreate it either way.
cur.execute("DROP DATABASE IF EXISTS spatial_db")
cur.execute("CREATE DATABASE spatial_db")
# Close the cursor and the connection
cur.close()
conn.close()

Now, we set up a new connection and get a cursor:

# Set up a new connection and cursor
conn = pymysql.connect(host='localhost', port=3306,
user='root', passwd='', db='spatial_db')
cur = conn.cursor()

http://dev.mysql.com/downloads
http://dev.mysql.com/downloads
http://dev.mysql.com/downloads
http://dev.mysql.com/downloads
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Next, we can create our new table and add our fields:

# Create our geospatial table
cur.execute("CREATE TABLE PLACES (id int NOT NULL
# Add name and location fields. The location
# field is spatially enabled to hold GIS data
AUTO_INCREMENT PRIMARY KEY, Name varchar(50) NOT NULL, location
Geometry NOT NULL)")

With the fields added, we are ready to insert records for the location of some cities:

# Insert a name and location for the city of
# New Orleans
cur.execute("INSERT INTO PLACES (name, location) VALUES ('NEW
ORLEANS', GeomFromText('POINT(30.03 90.03)'))")
# Insert a name and location for the city of
# Memphis.
cur.execute("INSERT INTO PLACES (name, location) VALUES
('MEMPHIS', GeomFromText('POINT(35.05 90.00)'))")

Then, we can commit changes to the database:

# Commit the changes to the database
conn.commit()

Now, we can query the database! First, we'll get a list of all of the point locations:

# Now let's read the data. Select all of
# the point locations from the database.
cur.execute("SELECT AsText(location) FROM PLACES")

Now, we'll extract the two points from the query results:

# We know there's only two points, so we'll
# just parse them.
p1, p2 = [p[0] for p in cur.fetchall()]

Before we can measure the distance, we need to convert the point listings into geospatial
geometries:

# Now we'll convert the data
# to geometries to measure the distance
# between the two cities
cur.execute("SET @p1 = ST_GeomFromText('{}')".format(p1))
cur.execute("SET @p2 = ST_GeomFromText('{}')".format(p2))
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Finally, we can use the Distance stored procedure to measure the distance between the
two geometries:

# Now we do the measurement function which
# is also a database query.
cur.execute("SELECT ST_Distance(@p1, @p2)")
d = float(cur.fetchone()[0])
# Print the distance as a formatted
# string object.
print("{:.2f} miles from New Orleans to Memphis".format(d *
70))
cur.close()
conn.close()

The output is as follows: 

351.41 miles from New Orleans to Memphis

There are other spatial database options available, including PostGIS and
SpatiaLite; however, Python 3 support for these spatial engines is
developmental at best. You can access PostGIS and MySQL through the
OGR library; however, MySQL support is limited.

PyFPDF
The pure Python PyFPDF library is a lightweight way to create PDFs, including maps.
Because the PDF format is a widely used standard, PDFs are commonly used to distribute
maps. You can install it via PyPI as fpdf. The official name of the software is PyFPDF
because it is a part of the PHP language module called fpdf. This module uses a concept
called a cell to lay items out at specific locations on a page. As a quick example, we'll import
the hancock.png image we created from the PIL example into a PDF called map.pdf to
create a simple PDF map. The map will have the header text at the top that says Hancock
County Boundary, followed by the map image:

>>> import fpdf
>>> # PDF constructor:
>>> # Portrait, millimeter units, A4 page size
>>> pdf=fpdf.FPDF("P", "mm", "A4")
>>> # create a new page
>>> pdf.add_page()
>>> # Set font: arial, bold, size 20
>>> pdf.set_font('Arial','B',20)
>>> # Layout cell: 160 x 25mm, title, no border, centered
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>>> pdf.cell(160,25,'Hancock County Boundary', \
>>> border=0, align="C")
>>> # Write the image specifying the size
>>> pdf.image("hancock.png",25,50,110,160)
>>> # Save the file: filename, F = to file System
>>> pdf.output('map.pdf','F')

If you open the PDF file named map.pdf in Adobe Acrobat Reader or another PDF reader
such as Sumatra PDF, you'll see that the image is now centered on an A4 page. Geospatial
products are often included as part of larger reports, and the PyFPDF module simplifies
automatically generating reports as PDFs.

Geospatial PDF
The Portable Document Format, or PDF, is a file format for storing and presenting
digitally-formatted text and images in a cross-platform and application-independent way.
PDF is a widely used document format that has also been extended to store geospatial
information.

The PDF specification, starting with version 1.7, includes extensions for geospatial PDFs
that map portions of the document to a physical space, also known as georeferencing. You
can create points, lines, or polygons as geospatial geometries, which can also have
attributes.

There are two methods for encoding geospatial information within a PDF. A company
named TerraGo created a specification that has been adopted by the Open Geospatial
Consortium as a best practice which is not a standard. That format is known as GeoPDF.
The extensions that were proposed by Adobe Systems, which created the PDF specification
known as ISO 32000, are currently being incorporated into the 2.0 version of the
specification.

The geospatial PDF products by TerraGo conform to the OGC best practice document and
the Adobe PDF extension. But TerraGo goes beyond those features to include layers and
other GIS functionality. However, you must use TerraGo's plugins for Adobe Acrobat or
other software to access that functionality. At a minimum, TerraGo supports the features
that are needed to at least display in any PDF software.

In Python, there is a library called geopdf which has nothing to do with TerraGo but does
support the OGC best practice. This library was originally developed by Tyler Garner of
Prominent Edge (https:/ /prominentedge. com/ ) for Python 2. It has been ported to Python
3.

https://prominentedge.com/
https://prominentedge.com/
https://prominentedge.com/
https://prominentedge.com/
https://prominentedge.com/
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Installing geopdf from GitHub is as simple as running the following:

pip install
https://github.com/GeospatialPython/geopdf-py3/archive/master.zip

The following example recreates the map we created in Chapter 1, Learning about Geospatial
Analysis with Python, in the Simple GIS section as a geospatial PDF. The geopdf library
relies on the Python ReportLab PDF library. The steps we will need to execute are as
follows:

Create a PDF drawing canvas.1.
Draw a rectangle for the state of Colorado.2.
Set up a function to convert map coordinates into screen coordinates.3.
Draw and label the cities and populations.4.
Register the corners of the state as geospatial PDF coordinates that georeference5.
the entire map.

The Python code's comments explain what's happening in each step:

# Import the geopdf library
from geopdf import GeoCanvas
# Import the necessary Reportlab modules
from reportlab.pdfbase.pdfdoc import PDFString, PDFArray
# Create a canvas with a name for our pdf.
canvas = GeoCanvas('SimpleGIS.pdf')
# Draw a rectangle to represent the State boundary
canvas.rect(100, 400, 400, 250, stroke=1)
# DATA MODEL
# All layers will have a name, 1+ points, and population count
NAME = 0
POINTS = 1
POP = 2
# Create the state layer
state = ["COLORADO", [[-109, 37], [-109, 41], [-102, 41], [-102, 37]],
5187582]
# Cities layer list
# city = [name, [point], population]
cities = []
# Add Denver
cities.append(["DENVER", [-104.98, 39.74], 634265])
# Add Boulder
cities.append(["BOULDER", [-105.27, 40.02], 98889])
# Add Durango
cities.append(["DURANGO", [-107.88, 37.28], 17069])
# MAP GRAPHICS RENDERING
map_width = 400
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map_height = 250
# State Bounding Box
# Use Python min/max function to get state bounding box
minx = 180
maxx = -180
miny = 90
maxy = -90
for x, y in state[POINTS]:
    if x < minx:
        minx = x
    elif x > maxx:
        maxx = x
    if y < miny:
        miny = y
    elif y > maxy:
        maxy = y
# Get earth distance on each axis
dist_x = maxx - minx
dist_y = maxy - miny
# Scaling ratio each axis
# to map points from world to screen
x_ratio = map_width / dist_x
y_ratio = map_height / dist_y
def convert(point):
    """Convert lat/lon to screen coordinates"""
    lon = point[0]
    lat = point[1]
    x = map_width - ((maxx - lon) * x_ratio)
    y = map_height - ((maxy - lat) * y_ratio)
    # Python turtle graphics start in the middle of
    # the screen so we must offset the points so they
    # are centered
    x = x + 100
    y = y + 400
    return [x, y]

# Set up our map labels
canvas.setFont("Helvetica", 20)
canvas.drawString(250, 500, "COLORADO")

# Use smaller text for cities
canvas.setFont("Helvetica", 8)

# Draw points and label the cities
for city in cities:
pixel = convert(city[POINTS])
print(pixel)
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# Place a point for the city
canvas.circle(pixel[0], pixel[1], 5, stroke=1, fill=1)

# Label the city
canvas.drawString(pixel[0] + 10, pixel[1], city[NAME] + ", Population: " +
str(city[POP]))

# A series of registration point pairs (pixel x,
# pixel y, x, y) to spatially enable the PDF. We only
# need to do the state boundary.
# The cities will be contained with in it.
registration = PDFArray([
PDFArray(map(PDFString, ['100', '400', '{}'.format(minx),
'{}'.format(maxy)])),
PDFArray(map(PDFString, ['500', '400', '{}'.format(maxx),
'{}'.format(maxy)])),
PDFArray(map(PDFString, ['100', '150', '{}'.format(minx),
'{}'.format(miny)])),
PDFArray(map(PDFString, ['500', '150', '{}'.format(maxx),
'{}'.format(miny)]))
])
# Add the map registration
canvas.addGeo(Registration=registration)
# Save our geopdf
canvas.save()

Rasterio
The GDAL library we introduced earlier in this chapter is extremely powerful, but it wasn't
designed for Python. The rasterio library solves that problem by wrapping GDAL in a
very simple, clean Pythonic API for raster data operations.

This example uses the satellite image from the GDAL example in this chapter. We'll open
the image and get some metadata, like the following 

>>> import rasterio
>>> ds = rasterio.open("SatImage.tif")
>>> ds.name
'SatImage.tif'
>>> ds.count
3
>>> ds.width
2592
>>> ds.height
2693
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OSMnx
The osmnx library combines Open Street Map (OSM) and the powerful NetworkX library
to manage street networks used for routing. This library has dozens of dependencies which
it rolls up to do all of the complex steps of downloading, analyzing, and visualizing street
networks.

You can try to install osmnx using pip:

pip install osmnx

However, you may run into some installation issues due to the dependencies. In that case,
it's easier to use the Conda system, which we'll introduce later in this chapter.

The following example uses osmnx to download street data from OSM for a city, creates a
street network from it, and calculates some basic statistics:

>>> import osmnx as ox
>>> G = ox.graph_from_place('Bay Saint Louis, MS , USA',
network_type='drive')
>>> stats = ox.basic_stats(G)
>>> stats["street_length_avg"]
172.1468804611654

Jupyter
The Jupyter project is something you should be aware of when working with geospatial or
other scientific data. The Jupyter Notebook app creates and displays notebook documents
in a web browser that are human-readable and machine-executable code and data. It's great
for sharing tutorials for software and has become very common in the geospatial Python
world.

You can find a good introduction for Jupyter Notebooks and Python here: https:/ /
jupyter-notebook- beginner- guide. readthedocs. io/ en/latest/ what_ is_jupyter. html.
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Conda
Conda is an open source package management system that makes installing and updating
complex libraries easier. It works with several languages, including Python. Conda is very
useful for setting up libraries and testing them so that we can try out new things in a
development environment. It's usually better to custom configure production
environments, but Conda is a great way to prototype new ideas.

You can get started with Conda at https:/ /conda. io/ en/latest/ .

Summary
In this chapter, we surveyed the Python-specific tools for geospatial analysis. Many of these
tools included bindings to the libraries we discussed in Chapter 3, The Geospatial Technology
Landscape, for best-of-breed solutions for specific operations such as GDAL's raster access
functions. We also included pure Python libraries as much as possible and will continue to
include pure Python algorithms as we work through the upcoming chapters.

In the next chapter, we'll begin applying all of these tools for GIS analysis.

Further reading
The following links will allow you to explore the topics in this chapter further. The first link
is about the XPath query language, which we used to filter XML elements using
Elementree. The second link is the documentation for the Python string library, which will
be critical throughout this book for manipulating data. Third, we have the lxml library, one
of the more powerful and fast XML libraries. Finally, we have Conda, which provides a
comprehensive, easy-to-use framework for scientific operations in Python, including
geospatial technology:

For more information on XPath, check out the following link: http:/ / www.
w3schools. com/ xsl/ xpath_ intro. asp

For more details on the Python string module, check out the following link:
https:// docs. python. org/ 3. 4/ library/ string. html

The documentation on LXML can be found at the following link: http:/ /lxml.
de/

You can learn more about Conda at the following link: https:/ /conda. io/ en/
latest/
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5
Python and Geographic

Information Systems
This chapter will focus on applying Python to functions that are typically performed by a
geographic information system (GIS) such as QGIS or ArcGIS. These functions are the
heart and soul of geospatial analysis. We will continue to use as few external dependencies
as possible outside of Python itself so that you have tools that are as reusable as possible in
different environments. In this book, we separate GIS analysis and remote sensing from a
programming perspective, which means that, in this chapter, we'll mostly focus on vector
data.

As with the other chapters in this book, the items presented here are core functions that
serve as building blocks that you can recombine to solve challenges that you will encounter
beyond this book. The topics in this chapter include the following:

Measuring distance
Converting coordinates
Reprojecting vector data
Measuring area
Editing shapefiles
Selecting data from within larger datasets
Creating thematic maps
Using spreadsheets
Conversion of non-GIS data types
Geocoding
Multiprocessing
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This chapter contains many code samples. In addition to the text, code comments are
included as guides within the samples. This chapter covers more ground than any other
chapter in this book. It covers everything from measuring the earth to editing data and
creating maps, to using scaled up multiprocessing for faster analysis. By the end of this
chapter, you'll be a geospatial analyst ready to learn about the more advanced techniques in
the rest of this book.

Technical requirements
For this chapter, you will require the following:

Python 3.7
The Python UTM library
The Python OGR library
The Python Shapefile library
The Python Fiona library
The Python PNGCanvas library
The Python Pillow library (Python Imaging Library)
The Python Folium library
The Python Pymea library
The Python Geocoder library
The Python GeoPy library

Measuring distance
The essence of geospatial analysis is discovering the relationships of objects on Earth. Items
that are closer together tend to have a stronger relationship than those that are farther
apart. This concept is known as Tobler's First Law of Geography. Therefore, measuring
distance is a critical function of geospatial analysis.
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As we have learned, every map is a model of the Earth and they are all wrong to some
degree. For this reason, measuring the accurate distance between two points on the Earth
while sitting in front of a computer is impossible. Even professional land surveyors (who
go out in the field with both traditional sighting equipment and very precise GPS
equipment) fail to account for every anomaly in the Earth's surface between point A and
point B. So, to measure distance, we must look at the following questions:

What are we measuring?
How much are we measuring?
How much accuracy do we need?

Now, to calculate distance, there are three models of the Earth that we can use:

Flat plane
Spherical
Ellipsoid

In the flat plane model, standard Euclidean geometry is used. The Earth is considered a flat
plane with no curvature, as shown in the following diagram:

This model makes math quite simple because you work with straight lines. The most
common format for geospatial coordinates is decimal degrees. However, decimal degree
coordinates are reference measurements on a sphere taken as angles – between the
longitude and the prime meridian—and the latitude and equator. Furthermore, the lines of
longitude converge toward zero at the poles. The circumference of each line of latitude
becomes smaller toward the poles as well. These facts mean decimal degrees are not a valid
coordinate system for Euclidean geometry, which uses infinite planes.
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Map projections attempt to simplify the issues of dealing with a 3D ellipsoid in a 2D plane,
either on paper or on a computer screen. As we discussed in Chapter 1, Learning about
Geospatial Analysis with Python, map projections flatten a round model of the Earth to a
plane and introduce distortion in exchange for the convenience of a map. Once this
projection is in place and decimal degrees are traded for a Cartesian coordinate system with
x and y coordinates, we can use the simplest forms of Euclidean geometry—namely, the
Pythagorean theorem.

At a large enough scale, a sphere or ellipsoid like the Earth appears more like a plane than a
sphere. In fact, for centuries, everyone thought the Earth was flat! If the difference in
degrees of longitude is small enough, you can often get away with using Euclidean
geometry and then converting the measurements into meters, kilometers, or miles. This
method is generally not recommended but the decision is ultimately up to you and your
requirements for accuracy as an analyst.

The spherical model approach tries to better approximate reality by avoiding the problems
resulting from smashing the Earth onto a flat surface. As the name suggests, this model
uses a perfect sphere for representing the Earth (similar to a physical globe), which allows
us to work with degrees directly. This model ignores the fact that the Earth is really more of
an egg-shaped ellipsoid with varying degrees of thickness in its crust. But by working with
distance on the surface of a sphere, we can begin to measure longer distances with more
accuracy. The following screenshot illustrates this concept:
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Using the ellipsoid model of the Earth, analysts strive for the best model of the Earth's
surface. There are several ellipsoid models, which are called datums. A datum is a set of
values that define an estimated shape for the Earth, also known as a geodetic system. Like
any other georeferencing system, a datum can be optimized for a localized area. The most
commonly used datum is called WGS84, which is designed for global use. You should be
aware that WGS84 is occasionally updated as assessment techniques and technology
improves. The most recent revision occurred in 2004.

In North America, the NAD83 datum is used to optimize referencing over the continent. In
the Eastern Hemisphere, the European Terrestrial Reference System 1989 (ETRS89) is
used more frequently. ETRS89 is fixed to the stable part of the Eurasian Plate. Maps of 
Europe based on ETRS89 are immune to continental drift, which changes up to 2.5 cm per
year as the Earth's crust shifts.

An ellipsoid does not have a constant radius from the center. This fact means the formulas
used in the spherical model of the Earth begin to have issues in the ellipsoid model. Though
not a perfect approximation, it is much closer to reality than the spherical model.

The following screenshot shows a generic ellipsoid model denoted by a black line
contrasted against a representation of the Earth's uneven crust, which is using a red line to
represent the geoid. Although we will not use it for these examples, another model is the
geoid model. The geoid is the most precise and accurate model of the Earth, which is based
on the Earth's surface with no influencing factors except gravity and rotation. The following
diagram is a representation of a geoid, ellipsoid, and spherical model to illustrate their
differences:
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Understanding these models of the Earth is critical to everything else in this book because
we're modeling the Earth, after all.

Now that we've discussed these different models of the Earth and the issues with
measuring them, let's look at some solutions using Python.

Using the Pythagorean theorem
We'll start by measuring with the simplest method, that is, the Pythagorean theorem, also
known as Euclidean distance. If you remember your geometry lessons from school, the
Pythagorean theorem asserts the following:

a2 + b2 = c2

In this assertion, the variables a, b, and c are all sides of a triangle. You can solve any one
side if you know the other two.

In this example, we'll start with two projected points in the Mississippi Transverse
Mercator (MSTM) projection. The units of this projection are in meters. The x-axis locations
are measured from the central meridian defined by the westernmost location in the state.
The y-axis is defined from the NAD83 horizontal datum. The first point, defined as (x1,y1),
represents Jackson, the state capital of Mississippi. The second point, defined as (x2,y2)
represents the city of Biloxi, which is a coastal town, as shown in the following illustration:
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In the following example, the double-asterisk (**) in Python is the syntax
for exponents, which we'll use to square the distances.

We'll import the Python math module for its square root function called sqrt(). Then,
we'll calculate the x-axis and y-axis distances. Finally, we'll use these variables to execute
the Euclidean distance formula to get the distance across the bounding box in meters from
an x, y origin, which will be used in the MSTM projection:

import math
# First point
x1 = 456456.23
y1 = 1279721.064
# Second point
x2 = 576628.34
y2 = 1071740.33
# X distance
x_dist = x1 - x2
# Y distance
y_dist = y1 - y2
# Pythagorean theorem
dist_sq = x_dist**2 + y_dist**2
distance = math.sqrt(dist_sq)
print(distance)
# 240202.66

So, the distance is approximately 240,202 meters, which is around 240.2 kilometers or 150
miles. This calculation is reasonably accurate because this projection is optimized for
measuring distance and area in Mississippi using Cartesian coordinates.

We can also measure distance using decimal degrees, but we must perform a few
additional steps. To measure using degrees, we must convert the angles into radians, which
account for the curved surface distance between the coordinates. We'll also multiply our
output in radians times the radius of the Earth in meters to convert back from radians.

You can read more about radians at http:/ /en.wikipedia. org/ wiki/
Radian.
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We'll perform this conversion using the Python math.radians() method in the following
code when we calculate the x and y distances:

import math
x1 = -90.21
y1 = 32.31
x2 = -88.95
y2 = 30.43
x_dist = math.radians(x1 - x2)
y_dist = math.radians(y1 - y2)
dist_sq = x_dist**2 + y_dist**2
dist_rad = math.sqrt(dist_sq)
dist_rad * 6371251.46
# 251664.46

Okay, so this time, we came up with around 251 kilometers, which is 11 kilometers more
than our first measurement. So, as you can see, your choice of measurement algorithm and
Earth model can have significant consequences. Using the same equation, we come up with
radically different answers, depending on our choice of coordinate system and Earth
model.

You can read more about Euclidean distance at http:/ /mathworld.
wolfram. com/ Distance. html.

Let's check out the haversine formula next.

Using the haversine formula
Part of the problem with using the Pythagorean theorem to measure distance on the Earth,
which is a sphere, is the concept of great circle distance. A great circle is the shortest 
distance between two points on a sphere. Another important feature that defines a great
circle is that the circle, if followed all of the way around the sphere, will bisect the sphere
into two equal halves, as shown in the following Wikipedia illustration:
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So, what is the right way to measure a line on a curved sphere? The most popular method
is to use the haversine formula, which uses trigonometry to calculate the Great Circle 
distance using coordinates defined in decimal degrees as input. The haversine formula
is haversine(θ) = sin²(θ/2), where θ is the central angle between two points on a sphere. Once
again, we'll convert the axis distances from degrees into radians before we apply the
formula, just like in the previous example. But this time, we'll also convert the latitude (y-
axis) coordinates into radians separately:

import math
x1 = -90.212452861859035
y1 = 32.316272202663704
x2 = -88.952170968942525
y2 = 30.438559624660321
x_dist = math.radians(x1 - x2)
y_dist = math.radians(y1 - y2)
y1_rad = math.radians(y1)
y2_rad = math.radians(y2)
a = math.sin(y_dist/2)**2 + math.sin(x_dist/2)**2 \
 * math.cos(y1_rad) * math.cos(y2_rad)
c = 2 * math.asin(math.sqrt(a))
distance = c * 6371  # kilometers
print(distance)
# 240.63
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Wow! We get 240.6 kilometers using the haversine formula, compared to 240.2 kilometers
using the optimized and more accurate projection. This difference is less than half a
kilometer, which is not bad for a distance calculation of two cities 150 miles apart. The
haversine formula is the most commonly used distance measuring formula because it is
relatively lightweight from a coding perspective and reasonably accurate in most cases. It is
considered to be accurate to within about a meter.

To summarize what we've learned so far, most of the point coordinates you encounter as an
analyst are in unprojected decimal degrees. So, your options for measurement are as
follows:

Reproject to a distance-accurate Cartesian projection and measure.
Just use the haversine formula and see how far it takes you for your analysis.
Use the even more precise Vincenty formula.

That's right! There's another formula that seeks to provide an even better measurement
than haversine.

Using the Vincenty formula
So, we've examined distance measurement using the Pythagorean theorem (flat Earth
model) and the haversine formula (spherical Earth model). The Vincenty formula accounts
for the ellipsoid model of the Earth. And if you are using a localized ellipsoid, it can be
accurate to much less than a meter.

In the following implementation of this formula, you can change the semi-major axis value
and flattening ratio to fit the definition of any ellipsoid. Let's see what the distance is when
we measure using the Vincenty formula on the NAD83 ellipsoid in the following example:

First, we will import the math module, which allows us to work in radians, and1.
the other math functions we'll need:

import math

Now, we need to set up our variables, including the variable that holds our2.
distance value, the two points we're measuring, the constants describing the
Earth, and the derivative formulas we need:

distance = None
x1 = -90.212452861859035
y1 = 32.316272202663704
x2 = -88.952170968942525
y2 = 30.438559624660321
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# Ellipsoid Parameters
# Example is NAD83
a = 6378137  # semi-major axis
f = 1/298.257222101  # inverse flattening
b = abs((f*a)-a)  # semi-minor axis
L = math.radians(x2-x1)
U1 = math.atan((1-f) * math.tan(math.radians(y1)))
U2 = math.atan((1-f) * math.tan(math.radians(y2)))
sinU1 = math.sin(U1)
cosU1 = math.cos(U1)
sinU2 = math.sin(U2)
cosU2 = math.cos(U2)
lam = L

Now begins the Vincenty formula. There's just no easy way to do this and the3.
math is a little complicated, but it works:

for i in range(100):
    sinLam = math.sin(lam)
    cosLam = math.cos(lam)
    sinSigma = math.sqrt((cosU2*sinLam)**2 +
                         (cosU1*sinU2-sinU1*cosU2*cosLam)**2)
    if (sinSigma == 0):
        distance = 0  # coincident points
        break
    cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLam
    sigma = math.atan2(sinSigma, cosSigma)
    sinAlpha = cosU1 * cosU2 * sinLam / sinSigma
    cosSqAlpha = 1 - sinAlpha**2
    cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha
    if math.isnan(cos2SigmaM):
        cos2SigmaM = 0  # equatorial line
    C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha))
    LP = lam
    lam = L + (1-C) * f * sinAlpha *
        (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma *
                             (-1+2*cos2SigmaM*cos2SigmaM)))
    if not abs(lam-LP)  1e-12:
        break
uSq = cosSqAlpha * (a**2 - b**2) / b**2
A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)))
B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)))
deltaSigma = B*sinSigma*(cos2SigmaM+B/4 *
(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM) -
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma) *
(-3+4*cos2SigmaM*cos2SigmaM)))
s = b*A*(sigma-deltaSigma)
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Finally, after all that, we have our distance:

distance = s
print(distance)
# 240237.66693880095

Using the Vincenty formula, our measurement came to 240.1 kilometers, which is only 100
meters off from our projected measurement using Euclidean distance. Impressive! While
many times more mathematically complex than the haversine formula, you can see that it is
also much more accurate.

The pure Python geopy module includes an implementation of the
Vincenty formula and has the ability to geocode locations by turning place
names into latitude and longitude coordinates: http:/ /geopy.
readthedocs. org/ en/ latest/ .

The points that were used in these examples are reasonably close to the equator. As you
move toward the poles or work with larger distances or extremely small distances, the
choices you make become increasingly more important. If you're just trying to make a
radius around a city to select locations for a marketing campaign promoting a concert, then
an error of a few kilometers is probably okay. However, if you're trying to estimate fuel
required for an airplane to make a flight between two airports, then you want to be spot on!

If you'd like to learn more about issues with measuring distance and direction, and how to
work around them with programming, visit the following site: http:/ /www. movable- type.
co.uk/scripts/latlong. html.

On this site, Chris Veness goes into great detail on this topic and provides online
calculators, as well as examples written in JavaScript, which can easily be ported to Python.
The Vincenty formula implementation that we just saw is ported from the JavaScript on this
site.

You can see the full pure mathematical notation for the Vincenty formula here: https:/ /
en.wikipedia.org/ wiki/ Vincenty%27s_ formulae.

Now that we know how to calculate distance, we need to understand how to calculate the
direction of a line to relate objects on Earth by distance and location for geospatial analysis.
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Calculating line direction
In addition to distance, you will often want to know the bearing of a line between its
endpoints. We can calculate this line direction from one of the points using only the Python
math module:

First, we import the math functions we'll need:1.

from math import atan2, cos, sin, degrees

Next, we set up some variables for our two points:2.

lon1 = -90.21
lat1 = 32.31
lon2 = -88.95
lat2 = 30.43

Next, we'll calculate the angle between the two points:3.

angle = atan2(cos(lat1)*sin(lat2)-sin(lat1) * \
  cos(lat2)*cos(lon2-lon1), sin(lon2-lon1)*cos(lat2))

Finally, we'll calculate the bearing of the line in degrees:4.

bearing = (degrees(angle) + 360) % 360
print(bearing)
309.3672990606595

Sometimes, you end up with a negative bearing value. To avoid this issue, we add 360 to
the result to avoid a negative number and use the Python modulo operator to keep the
value from climbing to over 360.

The math in the angle calculation is reverse engineering a right triangle and then figuring
out the acute angle of the triangle. The following URL provides an explanation of the
elements of this formula, along with an interactive example at the end: https:/ /www.
mathsisfun.com/sine- cosine- tangent. html.

We now know how to calculate the location of features on the Earth. Next, we'll learn how
to integrate data from different sources, starting with coordinate conversion.
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Understanding coordinate conversion
Coordinate conversion allows you to convert point coordinates between different
coordinate systems. When you start working with multiple datasets, you'll inevitably end
up with data in different coordinate systems and projections. You can convert back and
forth between two of the most common coordinate systems, UTM and geographic
coordinates (latitude and longitude), using a pure Python module called utm. You can
install it using easy_install or pip from PyPI: https:/ /pypi. python. org/ pypi/ utm.

The utm module is straightforward to use. To convert from UTM into latitude and
longitude, you can use the following code:

import utm
y = 479747.0453210057
x = 5377685.825323031
zone = 32
band = 'U'
print(utm.to_latlon(y, x, zone, band))
# (48.55199390882121, 8.725555729071763)

The UTM zones are numbered horizontally. However, vertically, the bands of latitude are
ordered by the English alphabet with a few exceptions. For example, the letters A, B, Y, and
Z are used to label the Earth's poles. The letters I and O are omitted because they look too
much like 1 and 0. Letters N through X are in the Northern Hemisphere while C through M
are in the Southern Hemisphere. The following screenshot, from the website Atlas Florae
Europaeae, illustrates the UTM zones over Europe:
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Converting from latitude and longitude is even easier. We just pass the latitude and
longitude to the from_latlon() method, which returns a tuple with the same parameters
that are accepted by the to_latlon() method:

import utm
utm.from_latlon(48.55199390882121, 8.725555729071763)
# (479747.04524576373, 5377691.373080335, 32, 'U')

The algorithms that were used in this Python implementation are
described in detail at http:/ /www. uwgb. edu/dutchs/ UsefulData/
UTMFormulas. HTM.

Converting between UTM and latitude/longitude just scratches the surface of transforming
datasets from different sources so that they can be overlaid nicely on a map. To go beyond
the basics, we'll need to perform map projections. 

Now that we know how to calculate line direction, let's see how reprojection is done.
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Understanding reprojection
In GIS, reprojection is all about changing the coordinates in a dataset from one coordinate
system to another. While reprojection is less common these days due to more advanced
methods of data distribution, sometimes you need to reproject a shapefile. The pure Python
utm module works for reference system conversion, but for a full reprojection, we need
some help from the OGR Python API. The OGR API contained in the osgeo module also
provides the Open Spatial Reference module, also known as osr, which we'll use for
reprojection.

As an example, we'll use a point shapefile containing New York City museum and gallery
locations in the Lambert conformal projection. We'll reproject it to WGS84 geographic (or
un-project, it rather). You can download this zipped shapefile at https:/ /git. io/ vLbT4.

The following minimalist script reprojects the shapefile. The geometry is transformed and
then written to the new file, but the .dbf file is simply copied to the new name as we aren't
changing it. The standard Python shutil module, short for shell utilities, is used to copy
.dbf. The source and target shapefile names are variables at the beginning of the script.
The target projection is also near the top, which is set using an EPSG code. The script
assumes there is a .prj projection file, which defines the source projection. If not, you
could manually define it using the same syntax as the target projection. We'll walk through
projecting a dataset step by step. Each section is marked with comments:

First, we import our libraries:1.

from osgeo import ogr
from osgeo import osr
import os
import shutil

Next, we define our shapefile names as variables:2.

srcName = 'NYC_MUSEUMS_LAMBERT.shp'
tgtName = 'NYC_MUSEUMS_GEO.shp'

Now, we create our target spatial reference using the osr module as EPSG code3.
4326, which is WGS84 Geographic:

tgt_spatRef = osr.SpatialReference()
tgt_spatRef.ImportFromEPSG(4326)
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Then, we set up our shapefile Reader object using ogr and get the spatial4.
reference:

driver = ogr.GetDriverByName('ESRI Shapefile')
src = driver.Open(srcName, 0)
srcLyr = src.GetLayer()
src_spatRef = srcLyr.GetSpatialRef()

Next, we check whether our target shapefile already exists from a previous test5.
run and delete it if it does:

if os.path.exists(tgtName):
    driver.DeleteDataSource(tgtName)

Now, we can begin building our target layer for the shapefile:6.

tgt = driver.CreateDataSource(tgtName)
lyrName = os.path.splitext(tgtName)[0]
# Use well-known binary format (WKB) to specify geometry
tgtLyr = tgt.CreateLayer(lyrName, geom_type=ogr.wkbPoint)
featDef = srcLyr.GetLayerDefn()
trans = osr.CoordinateTransformation(src_spatRef, tgt_spatRef)

Next, we can loop through the features in our source shapefile, reproject them7.
using the Transform() method, and add them to the new shapefile:

srcFeat = srcLyr.GetNextFeature()
while srcFeat:
    geom = srcFeat.GetGeometryRef()
    geom.Transform(trans)
    feature = ogr.Feature(featDef)
    feature.SetGeometry(geom)
    tgtLyr.CreateFeature(feature)
    feature.Destroy()
    srcFeat.Destroy()
    srcFeat = srcLyr.GetNextFeature()
src.Destroy()
tgt.Destroy()

Then, we need to create a shapefile .prj file containing projection information as8.
a shapefile has no inherent way to store it:

# Convert geometry to Esri flavor of Well-Known Text (WKT) format
# for export to the projection (prj) file.
tgt_spatRef.MorphToESRI()
prj = open(lyrName + '.prj', 'w')
prj.write(tgt_spatRef.ExportToWkt())
prj.close()
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Finally, we can just make a copy of the .dbf source with the new filename as the9.
attributes are part of the reprojection process:

srcDbf = os.path.splitext(srcName)[0] + '.dbf'
tgtDbf = lyrName + '.dbf'
shutil.copyfile(srcDbf, tgtDbf)

The following screenshot shows the reprojected points in QGIS with satellite imagery in the
background:

If you are working with a set of points, you can reproject them programmatically instead of
reprojecting a shapefile using PyProj: https:/ /jswhit. github. io/ pyproj/ .

In addition to converting coordinates into different projections, you often need to convert
them among different formats, which we'll look at next.

https://jswhit.github.io/pyproj/
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Understanding coordinate format
conversion
Map coordinates were traditionally represented as degrees, minutes, and seconds (DMS)
for maritime navigation. However, in GIS (which is computer-based), latitude and
longitude are represented as decimal numbers known as decimal degrees. The degrees,
minutes, and seconds format is still used. Sometimes, you have to convert between that
format and decimal degrees to perform calculations and output reports.

In this example, we'll create two functions that can convert either format into the other:

First, we import the math module to do conversions and the re regular1.
expression module to parse the coordinate string:

import math
import re

We have our function to convert decimal degrees into a degrees, minutes, and2.
seconds string:

def dd2dms(lat, lon):
    """Convert decimal degrees to degrees, minutes, seconds"""
    latf, latn = math.modf(lat)
    lonf, lonn = math.modf(lon)
    latd = int(latn)
    latm = int(latf * 60)
    lats = (lat - latd - latm / 60) * 3600.00
    lond = int(lonn)
    lonm = int(lonf * 60)
    lons = (lon - lond - lonm / 60) * 3600.00
    compass = {
        'lat': ('N','S'),
        'lon': ('E','W')
    }
    lat_compass = compass['lat'][0 if latd >= 0 else 1]
    lon_compass = compass['lon'][0 if lond >= 0 else 1]
    return '{}º {}\' {:.2f}" {}, {}º {}\' {:.2f}"
    {}'.format(abs(latd),
    abs(latm), abs(lats), lat_compass, abs(lond),
    abs(lonm), abs(lons), lon_compass)
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Next, we have our function to go the other way and convert degrees:3.

def dms2dd(lat, lon):
    lat_deg, lat_min, \
    lat_sec, lat_dir = re.split('[^\d\.A-Z]+', lat)
    lon_deg, lon_min, \
    lon_sec, lon_dir = re.split('[^\d\.A-Z]+', lon)
    lat_dd = float(lat_deg) +\
    float(lat_min)/60 + float(lat_sec)/(60*60);
    lon_dd = float(lon_deg) +\
    float(lon_min)/60 + float(lon_sec)/(60*60);
    if lat_dir == 'S':
        lat_dd *= -1
    if lon_dir == 'W':
        lon_dd *= -1
    return (lat_dd, lon_dd);

Now, if we want to convert decimal degrees into DMS, it's as simple as using the4.
following code:

print(dd2dms(35.14953, -90.04898))
 # 35º 8' 58.31" N, 90º 2' 56.33" W

To go the other direction, you just type the following function:5.

dms2dd("""29º 56' 0.00" N""", """90º 4' 12.36" W""")
 (29.933333333333334, -90.0701)

Note that, because the DMS coordinates contain both single and double quotes to represent
minutes and seconds, we have to use the Python string convention of using triple quotes on
each latitude and longitude coordinate to contain both types of quotes so that they are
parsed correctly.

Coordinates are the fundamental units of a GIS dataset. They are used to build points, lines,
and polygons.

Calculating the area of a polygon
We have one more calculation before we move on to editing GIS data. The most basic unit
of GIS is a point. Two points can form a line. Multiple lines that share endpoints can form a
polyline, and polylines can form polygons. Polygons are used to represent everything from
a house to an entire country in geospatial operations.
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Calculating the area of a polygon is one of the most useful operations in GIS  if we wish to
understand the relative size of features. But in GIS, area calculations go beyond basic
geometry. The polygon lies on the Earth, which is a curved surface. The polygon must be
projected to account for that curvature.

Fortunately, there is a pure Python module simply called area that handles these
complications for us. And because it's pure Python, you can look at the source code to see
how it works. The area module's area() function accepts a GeoJSON string with a list of
points that form a polygon and then returns the area. The following steps will show you
how to calculate the area of a polygon:

You can install the area module using pip:1.

pip install area

First, we'll import the area function from the area module:2.

from area import area

Next, we'll create a variable called polygon that's contained in a GeoJSON3.
geometry for our polygon:

# Our points making up a polygon
polygon =
{"type":"Polygon","coordinates":[[[-89.324,30.312],[-89.326,30.31],
[-89.322,30.31],[-89.321,30.311],[-89.321,30.312],[-89.324,30.312]]
]}

Now, we're able to pass the polygon points string to the area function to calculate4.
the area:

a = area(polygon)

The area that's returned is 80235.13927976067 square meters. We can then use5.
Python's built-in round() function to round the long floating-point value to two 
decimal places to get 80235.14:

round(a, 2)

You now have the tools to do the math regarding the distance and size for geospatial data.

In the next section, we'll look at editing datasets in one of the most popular GIS data
formats—shapefiles.
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Editing shapefiles
Shapefiles are one of the most common data formats in GIS, both for exchanging data as
well as performing GIS analysis. In this section, we'll learn how to work with these files
extensively. In Chapter 2, Learning Geospatial Data, we discussed shapefiles as a format that
can have many different file types associated with it. For editing shapefiles, and most other
operations, we are only concerned with two file types:

The .shp file
The .dbf file

The .shp file contains the geometry while the .dbf file contains the attributes of the
corresponding geometry. For each geometry record in a shapefile, there is one .dbf record.
The records aren't numbered or identified in any way. This means that, when adding and
deleting information from a shapefile, you must be careful to remove or add a record to
each file type to match.

As we discussed in Chapter 4, Geospatial Python Toolbox, there are two libraries we can use
to edit shapefiles in Python:

One is the Python bindings to the OGR library.
The other is the PyShp library, which is written in pure Python.

We'll use PyShp in order to stick with the pure Python when possible theme of this book. To
install PyShp, use easy_install or pip.

To begin editing shapefiles, we'll start with a point shapefile containing cities for the state
of Mississippi, which you can download as a ZIP file. Download the following file to your
working directory and unzip it: http:/ / git. io/vLbU4.

http://git.io/vLbU4
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The points we are working with can be seen in the following illustration:

Accessing the shapefile
To do anything with a shapefile, we'll need to access it as a data source. To access the
shapefile, we'll use PyShp to open it. In PyShp, we'll add the following code:

import shapefile
 r = shapefile.Reader('MSCities_Geo_Pts')
 r
<shapefile.Reader instance at 0x00BCB760>

We created a shapefile Reader object instance and set it to the r variable. Notice that, when
we passed the filename to the Reader class, we didn't use any file extensions. Remember
that we are dealing with at least two different files ending in .shp and .dbf. So, the base
filename without the extension that is common to these two files is all we really need.

You can, however, use a file extension. PyShp will just ignore it and use the base filename.
So, why would you add an extension? Most operating systems allow an arbitrary number
of periods in a filename. For example, you might have a shapefile with the following base
name: myShapefile.version.1.2.
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In this case, PyShp will try to interpret the characters after the last period as a file extension,
which would be .2. This issue will prevent you from opening the shapefile. So, if your
shapefile has periods in the base name, you would need to add a file extension such as
.shp or .dbf to the filename.

Once you have opened a shapefile and created a Reader object, you can get some
information about the geographic data. In the following sample, we'll get the bounding box,
shape type, and the number of records in the shapefile from our Reader object:

r.bbox
 [-91.38804855553174, 30.29314882296931, -88.18631833931401,
 34.96091138678437]
 r.shapeType
 # 1
 r.numRecords
 # 298

The bounding box, which is stored in the r.bbox property, is returned as a list containing
the minimum x value, minimum y value, maximum x value, and maximum y value. The
shape type, which is available as the shapeType property, is a numeric code defined by the
official shapefile specification. In this case, 1 represents a point shapefile, 3 represents lines,
and 5 represents polygons. And finally, the numRecords property tells us there are 298
records in this shapefile. Because it is a simple point shapefile, we know there are 298
points, each with their own .dbf record.

The following table shows the different geometry types for shapefiles, along with their
corresponding numeric code:

Geometry Numeric Code
NULL 0
POINT 1

POLYLINE 3
POLYGON 5

MULTIPOINT 8
POINTZ 11

POLYLINEZ 13
POLYGONZ 15

MULTIPOINTZ 18
POINTM 21

POLYLINEM 23
POLYGONM 25
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MULTIPOINTM 28
MULTIPATCH 31

Now that we know how to access it, let's see how we can read these files.

Reading shapefile attributes
The .dbf file is a simple database format that is structured in a similar way to a
spreadsheet with rows and columns, with each column as a label defining what
information it contains. We can view that information by checking the fields property of the
Reader object:

r.fields
 # [('DeletionFlag', 'C', 1, 0), ['STATEFP10', 'C', 2, 0],
 ['PLACEFP10', 'C', 5, 0],
 # ['PLACENS10', 'C', 8, 0], ['GEOID10', 'C', 7, 0], ['NAME10', 'C',
 100, 0],
 # ['NAMELSAD10', 'C', 100, 0], ['LSAD10', 'C', 2, 0], ['CLASSFP10',
 'C', 2, 0],
 # ['PCICBSA10', 'C', 1, 0], ['PCINECTA10', 'C', 1, 0], ['MTFCC10',
 'C', 5, 0],
 # ['FUNCSTAT10', 'C', 1, 0], ['ALAND10', 'N', 14, 0], ['AWATER10',
 'N', 14,0],
 # ['INTPTLAT10', 'C', 11, 0], ['INTPTLON10', 'C', 12, 0]]

The fields property returns quite a bit of information. The fields contain a list of 
information about each field, called field descriptors. For each field, the following
information is presented:

Field name: This is the name of the field as text, which can be no longer than 10
characters for shapefiles.
Field type: This is the type of the field, which can be text, number, date, floating-
point number, or Boolean represented as C, N, D, F, and L, respectively. The
shapefile specification says it uses the .dbf format specified as dBASE III, but
most GIS software seems to support dBASE IV. In version IV (4), the number and
floating-point types are equivalent.
Field length: This is the length of the data in characters or digits.
Decimal length: This is the number of decimal places in a number or floating-
point field.
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The first field descriptor outlines a hidden field that is part of the .dbf file format
specification. DeletionFlag allows the software to mark records for deletion without
actually deleting them. That way, the information is still in the file but can be removed from
the displayed record list or search queries.

If we just want the field name and not the other metadata, we can use Python list
comprehensions to return just the first item in the descriptor and ignore the DeletionFlag
field. This example creates a list comprehension that returns the first item in each descriptor
(field name), starting with the second descriptor to ignore the deletion flag:

[item[0] for item in r.fields[1:]]
# ['STATEFP10', 'PLACEFP10', 'PLACENS10', 'GEOID10', 'NAME10',
'NAMELSAD10', 'LSAD10',
# 'CLASSFP10', 'PCICBSA10', 'PCINECTA10', 'MTFCC10', 'FUNCSTAT10',
'ALAND10',
# 'AWATER10', 'INTPTLAT10', 'INTPTLON10']

Now, we have just the field names, which are much easier to read. For clarity, the field
names all contain the number 10 because this is version 2010 of this shapefile, which is
created as a part of each census. These kinds of abbreviations are common in shapefile
.dbf files due to the 10 character limit on the field names.

Next, let's examine some of the records that these fields describe. We can view an
individual record using the r.record() method. We know from the first example that
there are 298 records. So, let's examine the third record as an example. The records are
accessed using list indexes. In Python, indexes start at 0, so we have to subtract one from
the desired record number to get the index. For record 3, the index would be 2. You just
pass the index to the record() method, as shown in the following code:

r.record(2)
#['28', '16620', '02406337', '2816620', 'Crosby', 'Crosby town', '43',
'C1', 'N','N', # 'G4110', 'A', 5489412, 21336, '+31.2742552',
'-091.0614840']

As you can see, the field names are stored separately from the actual records. If you want to
select a record value, you need its index. The index of the city name in each record is 4:

r.record(2)[4]
# 'Crosby'
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But counting indexes is tedious. It's much easier to reference a value by the field name.
There are several ways we can associate a field name with the value of a particular record.
The first is to use the index() method in Python lists to programmatically get the index
using the field name:

fieldNames = [item[0] for item in r.fields[1:]]
name10 = fieldNames.index('NAME10')
name10
# 4
r.record(2)[name10]
# 'Crosby'

Another way we can associate field names to values is by using Python's built-in zip()
method, which matches corresponding items in two or more lists and merges them into a
list of tuples. Then, we can loop through that list, check the name, and then grab the
associated value, as shown in the following code:

fieldNames = [item[0] for item in r.fields[1:]]
fieldNames
# ['STATEFP10', 'PLACEFP10', 'PLACENS10', 'GEOID10', 'NAME10',
'NAMELSAD10',
# 'LSAD10', 'CLASSFP10', 'PCICBSA10', 'PCINECTA10', 'MTFCC10','FUNCSTAT10',
# 'ALAND10','AWATER10', 'INTPTLAT10', 'INTPTLON10']
 rec = r.record(2)
 rec
# ['28', '16620', '02406337', '2816620', 'Crosby', 'Crosby town',
# '43', 'C1', 'N','N', 'G4110', 'A', 5489412, 21336, '+31.2742552',
'-091.0614840']
 zipRec = zip(fieldNames, rec)
 list(zipRec)
# [('STATEFP10', '28'), ('PLACEFP10', '16620'), ('PLACENS10', '02406337'),
# ('GEOID10', '2816620'), ('NAME10', 'Crosby'), ('NAMELSAD10', 'Crosby
town'),
# ('LSAD10', '43'), ('CLASSFP10', 'C1'),
('PCICBSA10','N'),('PCINECTA10','N'),
# ('MTFCC10', 'G4110'), ('FUNCSTAT10', 'A'), ('ALAND10',
5489412),('AWATER10', 21336),
# ('INTPTLAT10', '+31.2742552'), ('INTPTLON10', '-091.0614840')]
for z in zipRec:
    if z[0] == 'NAME10': print(z[1])
# Crosby
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We can also loop through .dbf records using the r.records() method. In this example,
we'll loop through the list returned by the records() method but limit the results using
Python array slicing to the first three records. As we mentioned previously, shapefiles don't
contain record numbers, so we'll also enumerate the records list and create a record number
on the fly, so the output is a little easier to read. In this example, we'll use the enumerate()
method, which will return tuples containing an index and the record, as shown in the
following code:

for rec in enumerate(r.records()[:3]):
    print(rec[0]+1, ': ', rec[1])
# 1 :  ['28', '59560', '02404554', '2859560', 'Port Gibson', 'Port Gibson
city', '
# 25', 'C1', 'N', 'N', 'G4110', 'A', 4550230, 0, '+31.9558031',
'-090.9834329']
# 2 :  ['28', '50440', '02404351', '2850440', 'Natchez', 'Natchez city',
'25', 'C1',
#      'Y', 'N', 'G4110', 'A', 34175943, 1691489, '+31.5495016',
'-091.3887298']
# 3 :  ['28', '16620', '02406337', '2816620', 'Crosby', 'Crosby town',
'43', 'C1','N',
#       'N', 'G4110', 'A', 5489412, 21336, '+31.2742552', '-091.0614840']

This kind of enumeration trick is what most GIS software packages use when displaying
records in a table. Many GIS analysts assume shapefiles store the record number because
every GIS program displays one. But if you delete a record, for example, record number 5
in ArcGIS or QGIS, and save the file, when you open it again, you'll find what was formerly
record number 6 is now record 5. Some spatial databases may assign a unique identifier to
records. Often, a unique identifier is helpful. You can always create another field and
column in .dbf and assign your own number, which remains constant even when records
are deleted.
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If you are working with very large shapefiles, PyShp has iterator methods that access data
more efficiently. The default records() method reads all the records into the RAM at
once, which is fine for the small .dbf files but becomes difficult to manage even with a few
thousand records. Any time you'd use the records() method, you can also use the
r.iterRecords() method the same way. This method holds the minimum amount of
information needed to provide the record at hand rather than the whole dataset. In this
quick example, we're using the iterRecords() method to count the number of records to
verify the count in the file header:

counter = 0
for rec in r.iterRecords():
    counter += 1
counter
# 298

Now that we can read one half of the shapefile, that is, the attributes, we're ready to look at
the other half, that is, the geometry.

Reading shapefile geometry
Now, let's take a look at the geometry. Previously, we looked at the header information and
determined this shapefile was a point shapefile. So, we know that each record contains a
single point. Let's examine the first geometry record:

geom = r.shape(0)
geom.points
# [[-90.98343326763826, 31.9558035947602]]

In each geometry record, also known as shape, the points are stored in a list called points,
even if there is only one point, as in this case. Points are stored as x, y pairs, so longitude
comes before latitude if that coordinate system is used.

The shapefile specification also allows for 3D shapes. Elevation values are along the z-axis
and often called z values. So, a 3D point is typically described as x, y, z. In the shapefile
format, z values are stored in a separate z attribute if they're allowed by the shape type. If
the shape type doesn't allow for z values, then that attribute is never set when the records
are read by PyShp. Shapefiles with z values also contain measure values or m values, which
are rarely used and are not used in this example.
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A measure is a user-assigned value that may be associated with a shape. An example
would be a temperature recorded at a given location. There is another class of shape types
that allow for adding m values to each shape but not z values. This class of shape types is
called an M shape type. Just like the z values, if the data is there, the m attribute is created;
otherwise, it's not. You don't typically run into shapefiles with z values and you rarely
come across shapefiles with m values set. But sometimes you do, so it's good to be aware of
them. And just like our fields and records .dbf example, if you don't like having the z and
m values stored in separate lists, from the points list, you can use the zip() method to
combine them. The zip method can take multiple lists as parameters separated by commas,
as demonstrated when we looped through the records previously and joined the field
names and attributes.

When you create a Reader object with PyShp, it is read-only. You can change any values in
the Reader object, but they are not written to the original shapefile. In the next subsection,
we'll see how we can make changes in the original shapefile.

Changing a shapefile
To create a shapefile, you need to also create a Writer object. You can change values in
either a Reader or Writer object; they are just dynamic Python data types. But at some
point, you must copy the values from Reader to Writer. PyShp automatically handles all
of the header information, such as the bounding box and record count. You only need to
worry about the geometry and attributes. You'll find that this method is much simpler than
the OGR example we used previously. However, it is also limited to UTM projections.

To demonstrate this concept, we'll read in a shapefile containing points with units in
degrees and convert it into the UTM reference system in a Writer object before saving it.
We'll use PyShp and the UTM module we discussed previously in this chapter. The
shapefile we'll use is the New York City museums shapefile, which we reprojected to a
WGS84 geographic. You can also just download it as a ZIP file, which is available
at https://git.io/ vLd8Y.

In the following example, we'll read in the shapefile, create a writer for the converted
shapefile, copy the fields over and then the records, and finally convert each point and
write it as a geometry record before saving the converted shapefile:

import shapefile
import utm
r = shapefile.Reader('NYC_MUSEUMS_GEO')
w = shapefile.Writer(r.shapeType)
w.fields = list(r.fields)
w.records.extend(r.records())

https://git.io/vLd8Y
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for s in r.iterShapes():
    lon,lat = s.points[0]
    y,x,zone,band = utm.from_latlon(lat,lon)
    w.point(x,y)
w.save('NYC_MUSEUMS_UTM')

If you were to print out the first point of the first shape, you would see the following:

print(w.shapes()[0].points[0])
# [4506346.393408813, 583315.4566450359, 0, 0]

The point is returned as a list containing four numbers. The first two are the x and y values,
while the last two are placeholders, in this case for elevation and measure values,
respectively, which are used when you write those types of shapefiles. Also, we did not
write a PRJ projection file, as we did in the preceding reprojection example. Here's a simple
way to create a PRJ file using the EPSG code from https:/ /spatialreference. org/ . The
zone variable in the preceding example tells us that we are working in UTM Zone 18,
which is EPSG code 26918. The following code will create a prj file:

from urllib.request import urlopen
prj = urlopen('http://spatialreference.org/ref/epsg/26918/esriwkt/')
with open('NYC\_MUSEUMS\_UTM', 'w') as f:
    f.write(str(prj.read()))

As another example, we can add a new feature to a shapefile. In this example, we'll add a
second polygon to a shapefile representing a tropical storm. You can download the zipped
shapefile for this example here: https:/ / git.io/ vLdlA.

We'll read the shapefile, copy it to a Writer object, add the new polygon, and write it back
out with the same filename using the following code:

import shapefile
file_name = "ep202009.026_5day_pgn.shp"
r = shapefile.Reader(file_name)
with shapefile.Writer("test", r.shapeType) as w:
    w.fields = list(r.fields)
    for rec in r.records():
        w.record(*list(rec))
    for s in r.shapes():
        w._shapeparts(parts=[s.points], shapeType=s.shapeType)
    w.poly([[[-104, 24], [-104, 25], [-103, 25], [-103, 24], [-104,
    24]]])
    w.record("STANLEY", "TD", "091022/1500", "27", "21", "48", "ep")

This is how we do the changes in the original shapefile. Now, let's see how we can add new
fields in the shapefile.
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Adding fields
A very common operation on shapefiles is to add additional fields to them. This operation
is easy but there's one important element to remember. When you add a field, you must
also loop through the records and either create an empty cell or add a value for that
column. As an example, let's add a reference latitude and longitude column to the UTM
version of the New York City museums shapefile:

First, we'll open the shapefile and create a new Writer object:1.

import shapefile
r = shapefile.Reader('NYC_MUSEUMS_UTM')
with shapefile.Writer("test", r.shapeType) as w:

Next, we'll add the fields as float types with a length of 8 for the entire field and2.
a maximum precision of 5 decimal places:

   w.fields = list(r.fields)
   w.field('LAT','F',8,5)
   w.field('LON','F',8,5)

Next, we'll open the geographic version of the shapefile and grab the coordinates3.
from each record. We'll add these to the corresponding attribute record in the
UTM version's .dbf:

    for i in range(len(r.shapes())):
        lon, lat = r.shape(i).points[0]
        w.point(lon, lat)
        w.record(*list(r.record(i)), lat, lon)

In the next subsection, we'll see how we can merge multiple shapefiles.
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Merging shapefiles
Aggregating multiple related shapefiles of the same type into one larger shapefile is
another very useful technique. You might be working as part of a team that divides up an
area of interest and then assembles the data at the end of the day. Or, you might aggregate
data from a series of sensors out in the field, such as weather stations.

For this example, we'll use a set of building footprints for a county that is maintained
separately in four different quadrants (northwest, northeast, southwest, and southeast).
You can download these shapefiles as a single ZIP file at http:/ /git. io/ vLbUE.

When you unzip these files, you'll see they are named by quadrant. The following script
uses PyShp to merge them into a single shapefile:

import glob
import shapefile
files = glob.glob('footprints_*shp')
with shapefile.Writer("Merged") as w:
    r = None
    for f in files:
        r = shapefile.Reader(f)
        if not w.fields:
            w.fields = list(r.fields)
        for rec in r.records():
            w.record(*list(rec))
        for s in r.shapes():
            w._shapeparts(parts=[s.points], shapeType=s.shapeType)

As you can see, merging a set of shapefiles is very straightforward. However, we didn't do
any sanity checks to make sure the shapefiles were all of the same type, which you might
want to do if this script was used for a repeated automated process, instead of just a quick
one-off process.

Another note about this example is how we invoked the Writer object. In the other
examples, we used a numeric code to define a shape type. You can define that number
directly (for example, 1 for point shapefiles) or call one of the PyShp constants. The
constants are the type of shapefile in all caps. For example, a polygon is as follows:

shapefile.POLYGON

In this case, the value of that constant is 5. When copying data from a Reader to a Writer
object, you'll notice the shape type definition is simply referenced, as shown in this
example:

r = shapefile.Reader('myShape')
w = shapefile.Writer("myShape", r.shapeType)

http://git.io/vLbUE
http://git.io/vLbUE
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This method makes your script more robust as the script has one less variable that needs to
be changed if you later change the script or the dataset. In the merging example, we don't
have the benefit of having a Reader object available when we invoke Writer.

We could open the first shapefile in the list and check its type, but that would add several
more lines of code. An easier way is just to omit the shape type. If the Writer shape type
isn't saved, PyShp will ignore it until you save the shapefile. At that time, it will check the
individual header of a geometry record and determine it from that.

While you can use this method in special cases, it's better to define the shape type explicitly
when you can, for clarity, and just to be safe to prevent any outlier case errors. The
following illustration is a sample of this dataset so that you get a better idea of what the
data looks like, as we will be using it more next:

Now, let's see how to do this with the .dbfpy files.

Merging shapefiles with dbfpy
The .dbf portion of PyShp can occasionally run into issues with .dbf files that are 
produced by certain software. Fortunately, PyShp allows you to manipulate the different
shapefile types separately. There's a more robust .dbf library, named dbfpy3, which we
discussed in Chapter 4, Geospatial Python Toolbox. You can use PyShp to handle the .shp
and .shx files, while .dbfpy handles more complex .dbf files. You can download the
module here: https:/ /github. com/ GeospatialPython/ dbfpy3/ archive/ master. zip.
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This approach takes more code but it will often succeed where PyShp alone fails with .dbf
issues. This example uses the same shapefiles from the previous example. In the following
example, we'll merge a shapefile using only its attributes:

First, we import the libraries we need, get a list of shapefiles using the glob1.
module, and create a shapefile Writer object using PyShp:

import glob
import shapefile
from dbfpy3 import dbf
shp_files = glob.glob('footprints_*.shp')
w = shapefile.Writer(shp="merged.shp", shx="merged.shx")

Now, we're going to open only the .shp files and copy the geometries to the2.
writer. We'll circle back and get the attributes using the dbypy3 module later to
demonstrate working with shapefile components separately:

# Loop through ONLY the shp files and copy their shapes
# to a Writer object. We avoid opening the dbf files
# to prevent any field-parsing errors.
for f in shp_files:
    print("Shp: {}".format(f))
    r = shapefile.Reader(f)
    r = shapefile.Reader(shp=shpf)
    for s in r.shapes():
        w.poly([s.points])
    print("Num. shapes: {}".format(len(w.shapes())))

Once all of the geometry has been copied over to the writer, we can save the3.
.shp file and have PyShp create an index file for the geometry:

# Save only the shp and shx index file to the new
# merged shapefile.
w.close()

Next, we can get a list of .dbf files using the glob module:4.

# Now we come back with dbfpy and merge the dbf files
dbf\_files = glob.glob('\*.dbf')

Next, we'll use the first .dbf file in the list as a template to get the field data and5.
use it to set the properties of the shapefile writer: 

# Use the first dbf file as a template
template = dbf\_files.pop(0)
merged\_dbf\_name = 'merged.dbf'
# Copy the entire template dbf file to the merged file
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merged\_dbf = open(merged\_dbf\_name, 'wb')
temp = open(template, 'rb')
merged\_dbf.write(temp.read())
merged\_dbf.close()
temp.close()

Then, we simply loop through the .dbf files and copy the records to Writer:6.

# Now read each record from the remaining dbf files
# and use the contents to create a new record in
# the merged dbf file.
db = dbf.Dbf(merged\_dbf\_name)
for f in dbf\_files:
    print('Dbf: {}'.format(f))
    dba = dbf.Dbf(f)
    for rec in dba:
        db\_rec = db.newRecord()
        for k, v in list(rec.asDict().items()):
            db\_rec[k] = v
        db\_rec.store()
db.close()

Now that we know how to merge shapefiles, let's check out how to split them.

Splitting shapefiles
Sometimes, you may also need to split larger shapefiles to make it easier for you to focus on
a subset of interest. This splitting, or subsetting, can be done spatially or by attributes,
depending on which aspect of the data is of interest.

Subsetting spatially
One way to extract part of a dataset is to use spatial attributes such as size. In the following
example, we'll subset the southeast quadrant file we merged. We'll filter the building
footprint polygons by area and export any buildings with a 100 square meters or less (about
1,000 square feet) profile to a new shapefile. We'll use the footpints_se shapefile for this.
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PyShp has a signed area method that accepts a list of coordinates and returns either a
positive or negative area. We'll use the utm module to convert the coordinates into meters.
Normally, the positive or negative area denotes whether the point order of the polygon is
clockwise or counterclockwise, respectively. But point order doesn't matter here, so we'll
use the absolute value using the abs() function, as shown here, when we get the area
value:

import shapefile
import utm
r = shapefile.Reader('footprints\_se')
w = shapefile.Writer(r.shapeType)
w.fields = list(r.fields)
for sr in r.shapeRecords():
    utmPoints = []
    for p in sr.shape.points:
        x,y,band,zone = utm.from_latlon(p[1],p[0])
        utmPoints.append([x,y])
    area = abs(shapefile.signed_area(utmPoints))
    if area <= 100:
        w._shapes.append(sr.shape)
        w.records.append(sr.record)
w.save('footprints\_185')

Let's see the difference in the number of records between the original and the subset
shapefile:

r = shapefile.Reader('footprints\_se')
subset = shapefile.Reader('footprints\_185')
print(r.numRecords)
# 26447
print(subset.numRecords)
# 13331

We now have some substantial building blocks for geospatial analysis with vector data, as
well as attributes.

Performing selections
The previous subsetting example is one way to select data. There are many other ways to
subset data for further analysis. In this section, we'll examine selecting subsets of data that
are critical for efficient data processing to reduce the size of a large dataset down to just our
area of interest for a given dataset.
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The point-in-polygon formula
We briefly discussed the point-in-polygon formula in Chapter 1, Learning about Geospatial
Analysis with Python, as a common type of geospatial operation. You'll find it is one of the
most useful formulas out there. The formula is relatively straightforward.

The following function performs this check using the Ray Casting method. This method
draws a line from the test point all of the way through the polygon and counts the number
of times it crosses the polygon boundary. If the count is even, the point is outside the
polygon. If it is odd, then it's inside. This particular implementation also checks to see
whether the point is on the edge of the polygon:

def point_in_poly(x,y,poly):
    # check if point is a vertex
    if (x,y) in poly: return True
    # check if point is on a boundary
    for i in range(len(poly)):
       p1 = None
       p2 = None
       if i==0:
          p1 = poly[0]
          p2 = poly[1]
       else:
          p1 = poly[i-1]
          p2 = poly[i]
       if p1[1] == p2[1] and p1[1] == y and x min(p1[0], \
          p2[0]) and x < max(p1[0], p2[0]):
          return True
    n = len(poly)
    inside = False
    p1x,p1y = poly[0]
    for i in range(n+1):
       p2x,p2y = poly[i % n]
       if y min(p1y,p2y):
          if y <= max(p1y,p2y):
             if x <= max(p1x,p2x):
                if p1y != p2y:
                   xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
                if p1x == p2x or x <= xints:
                   inside = not inside
       p1x,p1y = p2x,p2y
    if inside: return True
    return False
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Now, let's use the point_in_poly() function to test a point in Chile:

# Test a point for inclusion
myPolygon = [(-70.593016,-33.416032), (-70.589604,-33.415370),
(-70.589046,-33.417340), (-70.592351,-33.417949),
(-70.593016,-33.416032)]
# Point to test
lon = -70.592000
lat = -33.416000
print(point_in_poly(lon, lat, myPolygon))
# True

This shows that the point is inside. Let's also verify that edge points will be detected:

# test an edge point
lon = -70.593016
lat = -33.416032
print(point_in_poly(lon, lat, myPolygon))
# True

You'll find new uses for this function all the time. It's definitely one to keep in your toolbox.

Bounding box selections
A bounding box is the smallest rectangle that can completely contain a feature. We can use
it as an efficient way to subset one or more individual features from a larger dataset. We'll
look at one more example of using a simple bounding box to isolate a complex set of 
features and save it in a new shapefile. In this example, we'll subset the roads on the island
of Puerto Rico from the mainland US Major Roads shapefile. You can download the
shapefile here: https:/ /github. com/ GeospatialPython/ Learn/ raw/ master/ roads. zip.

Floating-point coordinate comparisons can be expensive, but because we are using a box
and not an irregular polygon, this code is efficient enough for most operations:

import shapefile
r = shapefile.Reader('roadtrl020')
w = shapefile.Writer(r.shapeType)
w.fields = list(r.fields)
xmin = -67.5
xmax = -65.0
ymin = 17.8
ymax = 18.6
for road in r.iterShapeRecords():
    geom = road.shape
    rec = road.record
    sxmin, symin, sxmax, symax = geom.bbox
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    if sxmin < xmin: continue
    elif sxmax xmax: continue
    elif symin < ymin: continue
    elif symax ymax: continue
    w._shapes.append(geom)
    w.records.append(rec)
w.save('Puerto_Rico_Roads')

Now that we've used geometry to select features, let's do it another way by using attributes.

Attribute selections
We've now seen two different ways of subsetting a larger dataset, resulting in a smaller one
based on spatial relationships. But we can also select data using the attribute fields. So, let's
examine a quick way to subset vector data using the attribute table. In this example, we'll
use a polygon shapefile that has densely populated urban areas within Mississippi. You can
download this zipped shapefile from http:/ /git. io/vLbU9.

This script is really quite simple. It creates the Reader and Writer objects, copies the .dbf
fields, loops through the records for matching attributes, and then adds them to Writer.
We'll select urban areas with a population of less than 5000:

import shapefile
# Create a reader instance
r = shapefile.Reader('MS_UrbanAnC10')
# Create a writer instance
w = shapefile.Writer(r.shapeType)
# Copy the fields to the writer
w.fields = list(r.fields)
# Grab the geometry and records from all features
# with the correct population
selection = []
for rec in enumerate(r.records()):
    if rec[1][14] < 5000:
        selection.append(rec)
# Add the geometry and records to the writer
for rec in selection:
    w._shapes.append(r.shape(rec[0]))
    w.records.append(rec[1])
# Save the new shapefile
w.save('MS_Urban_Subset')
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Attribute selections are typically fast. Spatial selections are computationally expensive
because of floating-point calculations. Whenever possible, make sure you are unable to use
attribute selection to subset first. The following illustration shows the starting shapefile
containing all urban areas on the left with a state boundary, and the urban areas with less
than 5,000 people on the right, after the previous attribute selection:

Let's see what that same example looks like using fiona, which takes advantage of the
OGR library. We'll use nested with statements to reduce the amount of code needed to
properly open and close the files:

import fiona
with fiona.open('MS_UrbanAnC10.shp') as sf:
    filtered = filter(lambda f: f['properties']['POP'] < 5000, sf)
    # Shapefile file format driver
    drv = sf.driver
    # Coordinate Reference System
    crs = sf.crs
    # Dbf schema
    schm = sf.schema
    subset = 'MS_Urban_Fiona_Subset.shp'
    with fiona.open(subset, 'w',
        driver=drv,
        crs=crs,
        schema=schm) as w:
            for rec in filtered:
                w.write(rec)

Now, we know how to combine discrete datasets as well as split larger datasets apart. What
else can we do? We can aggregate features within a dataset.
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Aggregating geometry
GIS vector datasets are typically composed of point, line, or polygon features. One of the
principles of GIS is that things that are closer together geographically are more related than
things that are further apart. When you have a set of related features, often, it's too much
detail for the analysis you're trying to accomplish. It can be useful to generalize them to
speed up processing or simplify a map. This type of operation is called aggregation. A
common example of aggregation is to combine a set of local political boundaries into a
larger political boundary such as counties into a state or states into a country or countries
into continents.

In this example, we'll do just that. We'll convert a dataset comprising all of the counties in
the US state of Mississippi into a single polygon representing the entire state. The Python
Shapely library is perfect for this kind of operation; however, it can only manipulate
geometry and doesn't read or write data files. To read and write data files, we'll use the
Fiona library. If you don't have Shapely or Fiona installed, use pip to install them. You can
download the counties dataset here: https:/ /git. io/fjt3b.

The following illustration shows what the counties dataset looks like:
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The following steps will show you how to merge the individual county polygons into a
single polygon:

In the following code, we import the libraries we need, including the different1.
portions of the shapely library.
Then, we'll open the counties GeoJSON file.2.
Next, we'll copy the schema of the source file, which defines all of the metadata3.
for the dataset.
Then, we need to alter that metadata copy to change the attributes  in order to4.
define a single attribute for the state name. We also need to alter the geometry
type from MultiPolygon to Polygon.
Then, we'll open our output dataset GeoJSON file named combined.geojson.5.
Next, we'll extract all of the polygons and attributes and combine all of the6.
polygons into one.
Finally, we'll write the combined polygon out with the new attribute.7.
We'll import our libraries, including OrderDict, so that we can maintain control8.
of the shapefile attributes:

# Used OrderedDict to control the order
# of data attributes
from collections import OrderedDict
# Import the shapely geometry classes and methods.
# The "mapping" method returns a GeoJSON representation
# of a geometry.
from shapely.geometry import shape, mapping, Polygon
# Import the shapely union function which combines
# geometries
from shapely.ops import unary_union
# Import Fiona to read and write datasets
import fiona

We open our GeoJSON file and copy the metadata:9.

# Open the counties dataset
with fiona.open('ms_counties.geojson') as src:
    # copy the metadata
    schema = src.meta.copy()
    # Create a new field type for our
    # state dataset
    fields = {"State": "str:80"}



Python and Geographic Information Systems Chapter 5

[ 226 ]

Then, we create our new field:10.

    # Create a new property for our dataset
    # using the new field
    prop = OrderedDict([("State", "Mississippi")])
    # Change the metadata geometry type to Polygon
    schema['geometry'] = 'Polygon'
    schema['schema']['geometry'] = 'Polygon'

Now, we can add the new field to the metadata:11.

    # Add the new field
    schema['properties'] = fields
    schema['schema']['properties'] = fields

Next, we can open the combined GeoJSON file and write out our results:12.

# Open the output GeoJSON dataset
with fiona.open('combined.geojson', 'w', **schema) as dst:
    # Extract the properties and geometry
    # from the counties dataset
    props, geom = zip(*[(f['properties'],shape(f['geometry'])) for
    f in src])
    # Write the new state dataset out while
    # combining the polygons into a
    # single polygon and add the new property
    dst.write({'geometry': mapping(\
    Polygon(unary_union(geom).exterior)),
    'properties': prop})

The output dataset will look similar to the following illustration:
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Now that we know all about reading, editing, and writing GIS data, we can begin
visualizing it in the upcoming sections.

Creating images for visualization
Now, we're moving from calculations and data editing to something we can see! We'll
begin by creating different types of maps. In Chapter 1, Learning about Geospatial Analysis
with Python, we visualized our SimpleGIS program using the Tkinter module that's
included with Python. In Chapter 4, Geospatial Python Toolbox, we examined a few other
methods for creating images. Now, we'll examine these tools in more depth by creating two
specific types of thematic maps. The first is a dot density map and the second is a
choropleth map.

First, let's start with the dot density map.

Dot density calculations
A dot density map shows concentrations of subjects within a given area. If an area is
divided up into polygons containing statistical information, you can model that
information using randomly distributed dots within that area using a fixed ratio across the
dataset. This type of map is commonly used for population density maps.

The cat map in Chapter 1, Learning about Geospatial Analysis with Python, is a dot density
map. Let's create a dot density map from scratch using pure Python. Pure Python allows
you to work with much more lightweight libraries that are generally easier to install and
are more portable. For this example, we'll use a US Census Bureau Tract shapefile along the
US Gulf Coast, which contains population data. We'll also use the point-in-polygon
algorithm to ensure the randomly distributed points are within the proper census tract.
Finally, we'll use the PNGCanvas module to write out our image.

The PNGCanvas module is excellent and fast. However, it doesn't have the ability to fill in
polygons beyond simple rectangles. You can implement a fill algorithm but it is very slow
in pure Python. However, for a quick outline and point plot, it does a great job.
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You'll also see the world2screen() method, which is similar to the coordinates-to-
mapping algorithm we used in SimpleGIS in Chapter 1, Learning about Geospatial Analysis
with Python. In this example, we'll read in a shapefile and write it back out as an image:

First, we import the libraries we need, including pngcanvas, to draw a map1.
image:

import shapefile
import random
import pngcanvas

Next, we define our point-in-polygon function, which we've used before. In this2.
example, we'll use it to randomly distribute population values within a location:

def point_in_poly(x,y,poly):
    '''Boolean: is a point inside a polygon?'''
    # check if point is a vertex
    if (x,y) in poly: return True
    # check if point is on a boundary
    for i in range(len(poly)):
        p1 = None
        p2 = None
        if i==0:
            p1 = poly[0]
            p2 = poly[1]
        else:
            p1 = poly[i-1]
            p2 = poly[i]
        if p1[1] == p2[1] and p1[1] == y and \
        x min(p1[0], p2[0]) and x < max(p1[0], p2[0]):
            return True
    n = len(poly)
    inside = False
    p1x,p1y = poly[0]
    for i in range(n+1):
        p2x,p2y = poly[i % n]
        if y min(p1y,p2y):
            if y <= max(p1y,p2y):
                if x <= max(p1x,p2x):
                    if p1y != p2y:
                        xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
                    if p1x == p2x or x <= xints:
                    inside = not inside
        p1x,p1y = p2x,p2y
    if inside: return True
    else: return False
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Now, we need a function to scale our geospatial coordinates to the map image:3.

def world2screen(bbox, w, h, x, y):
    '''convert geospatial coordinates to pixels'''
    minx,miny,maxx,maxy = bbox
    xdist = maxx - minx
    ydist = maxy - miny
    xratio = w/xdist
    yratio = h/ydist
    px = int(w - ((maxx - x) * xratio))
    py = int((maxy - y) * yratio)
    return (px,py)

Next, we read in the shapefile and set the size of our output map image:4.

# Open the census shapefile
inShp = shapefile.Reader('GIS_CensusTract_poly')
# Set the output image size
iwidth = 600
iheight = 400

Next, we need to determine the index of the population field so that we can get5.
the population count for each area:

# Get the index of the population field
pop_index = None
dots = []
for i,f in enumerate(inShp.fields):
    if f[0] == 'POPULAT11':
        # Account for deletion flag
        pop_index = i-1

Then, we calculate the population density value. We want to create a dot on the6.
map for every 100 people:

# Calculate the density and plot points
for sr in inShp.shapeRecords():
    population = sr.record[pop_index]
    # Density ratio - 1 dot per 100 people
    density = population / 100
    found = 0
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We will loop through each polygon and randomly distribute the points to create7.
a density map:

# Randomly distribute points until we
# have the correct density
while found < density:
    minx, miny, maxx, maxy = sr.shape.bbox
    x = random.uniform(minx,maxx)
    y = random.uniform(miny,maxy)
    if point_in_poly(x,y,sr.shape.points):
        dots.append((x,y))
        found += 1

We're now ready to create our output image:8.

# Set up the PNG output image
c = pngcanvas.PNGCanvas(iwidth,iheight)
# Draw the red dots
c.color = (255,0,0,0xff)
for d in dots:
    # We use the *d notation to exand the (x,y) tuple
    x,y = world2screen(inShp.bbox, iwidth, iheight, *d)
    c.filled_rectangle(x-1,y-1,x+1,y+1)

Our dots have been created. Now, we need to create the outlines of the census9.
tract:

# Draw the census tracts
c.color = (0,0,0,0xff)
for s in inShp.iterShapes():
    pixels = []
    for p in s.points:
        pixel = world2screen(inShp.bbox, iwidth, iheight, *p)
        pixels.append(pixel)
    c.polyline(pixels)

Finally, we'll save the output image:10.

# Save the image
with open('DotDensity.png','wb') as img:
    img.write(c.dump())
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This script outputs an outline of the census tract, along with the density dots, to show
population concentration very effectively:

Now, let's check out the second type of map: choropleth maps.

Choropleth maps
A choropleth uses shading, coloring, or symbols to show an average value or quantity
within an area. They make it easy for us to visualize large amounts of data as a summary.
This method is useful if related data spans multiple polygons. For example, in a worldwide
population density map by country, many countries have disconnected polygons (for
example, Hawaii is an island state of the US).

In this example, we'll use the Python Imaging Library (PIL) we discussed in Chapter 3,
The Geospatial Technology Landscape. PIL is not purely Python but is designed specifically for
Python. We'll recreate our previous dot density example as a choropleth map. We'll
calculate a density ratio for each census tract based on the number of people (population)
per square kilometer and use that value to adjust the color. Dark is more densely populated
while lighter is less. Follow these steps:

First, we will import our libraries:1.

import math
import shapefile
try:
   import Image
   import ImageDraw
except:
   from PIL import Image, ImageDraw
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Then, we'll need our geospatial coordinates to image coordinates conversion2.
function:

def world2screen(bbox, w, h, x, y):
    '''convert geospatial coordinates to pixels'''
    minx,miny,maxx,maxy = bbox
    xdist = maxx - minx
    ydist = maxy - miny
    xratio = w/xdist
    yratio = h/ydist
    px = int(w - ((maxx - x) * xratio))
    py = int((maxy - y) * yratio)
    return (px,py)

Now, we open our shapefile and set our output image size:3.

# Open our shapefile
inShp = shapefile.Reader('GIS_CensusTract_poly')
iwidth = 600
iheight = 400

We then set up PIL to draw our map image:4.

# PIL Image
img = Image.new('RGB', (iwidth,iheight), (255,255,255))
# PIL Draw module for polygon fills
draw = ImageDraw.Draw(img)

Just like our previous example, we need to get the index of the population field:5.

# Get the population AND area index
pop_index = None
area_index = None
# Shade the census tracts
for i,f in enumerate(inShp.fields):
    if f[0] == 'POPULAT11':
        # Account for deletion flag
        pop_index = i-1
    elif f[0] == 'AREASQKM':
        area_index = i-1

Now, we can draw the polygons, shade them according to population density,6.
and save the image:

# Draw the polygons
for sr in inShp.shapeRecords():
    density = sr.record[pop_index]/sr.record[area_index]
    # The 'weight' is a scaled value to adjust the color
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    # intensity based on population
    weight = min(math.sqrt(density/80.0), 1.0) * 50
    R = int(205 - weight)
    G = int(215 - weight)
    B = int(245 - weight)
    pixels = []
    for x,y in sr.shape.points:
        (px,py) = world2screen(inShp.bbox, iwidth, iheight, x, y)
        pixels.append((px,py))
        draw.polygon(pixels, outline=(255,255,255), fill=(R,G,B))
    img.save('choropleth.png')

This script produces the following diagram with the relative density of tracks. You can
adjust the color using the R, G, and B variables:

Now that we can show statistical data from shapefiles, we can look at a statistical data
source that is even more common than shapefiles: spreadsheets.

Using spreadsheets
Spreadsheets such as Microsoft Office Excel and Open Office Calc are inexpensive (even
free), ubiquitous, easy to use, and great for recording structured data. For these reasons,
spreadsheets are widely used to collect data for entry into a GIS format. As an analyst, you
will find yourself working with spreadsheets frequently.
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In the previous chapters, we discussed the CSV format, which is a text file with the same
basic rows and columns data structure as a spreadsheet. For CSV files, you use Python's
built-in csv module. But most of the time, people don't bother exporting a true spreadsheet
to a generic CSV file. That's where the pure Python xlrd module comes into play. The
name xlrd is short for Excel Reader and is available from PyPI. There is also an
accompanying module, the xlwt (Excel Writer) module, for writing spreadsheets. These
two modules make reading and writing Excel spreadsheets a snap. Combine it with PyShp
and you can move back and forth between spreadsheets and shapefiles with ease. This
example demonstrates converting a spreadsheet into a shapefile. We'll use a spreadsheet
version of the New York City museum point data available at https:/ /git. io/ Jemi9.

The spreadsheet contains the attribute data, followed by an x column with the longitude
and a y column with the latitude. To export it to a shapefile, we'll execute the following
steps:

Open the spreadsheet.1.
Create a shapefile Writer object.2.
Capture the first row of the spreadsheet as the dbf columns.3.
Loop through each row of the spreadsheet and copy the attributes to dbf.4.
Create a point from the x and y spreadsheet columns.5.

The script is as follows:

import xlrd
import shapefile
# Open the spreadsheet reader
xls = xlrd.open_workbook('NYC_MUSEUMS_GEO.xls')
sheet = xls.sheet_by_index(0)
# Open the shapefile writer
w = shapefile.Writer(shapefile.POINT)
# Move data from spreadsheet to shapefile
for i in range(sheet.ncols):
    # Read the first header row
    w.field(str(sheet.cell(0,i).value), 'C', 40)
for i in range(1, sheet.nrows):
    values = []
    for j in range(sheet.ncols):
        values.append(sheet.cell(i,j).value)
    w.record(*values)
    # Pull latitude/longitude from the last two columns
    w.point(float(values[-2]),float(values[-1]))
w.save('NYC_MUSEUMS_XLS2SHP')

https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
https://git.io/Jemi9
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Converting a shapefile into a spreadsheet is a much less common operation, though not
difficult. To convert a shapefile into a spreadsheet, you need to make sure you have an x
and y column by using the Adding fields example from the Editing shapefiles section in this
chapter. You would loop through the shapes and add the x, y values to those columns.
Then, you would read the field names and column values from dbf into an xlwt
spreadsheet object or a CSV file using the csv module. The coordinate columns are labeled
in the following screenshot:

In the next section, we'll use a spreadsheet as an input data source.
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Creating heat maps
A heat map is used to show the geographic clustering of data using a raster image that
shows density. The clustering can also be weighed by using a field in the data to not only
show geographic density but also an intensity factor. In this example, we'll use bear
sighting data contained in the CSV dataset, which stores the data as points to create a heat
map of the frequency of bear sightings in different areas of Mississippi. This dataset is so
simple that's we're going to treat the CSV file as a text file, which is one of the nice features
of a CSV file.

You can download the dataset here: https:/ /git. io/fjtGL.

The output is going to be a simple HTML web map that you can open in any web browser.
The web map will be based on the excellent Leaflet JavaScript library. On top of that, we'll
use the Python Folium library, which makes it easy  for us to create Leaflet web maps, in
order to generate the HTML page:

import os
import folium
from folium.plugins import HeatMap
f = open('bear_sightings.csv', 'r')
lines = f.readlines()
lines.pop(0)
data = []
bears = [list(map(float, l.strip().split(','))) for l in lines]
m = folium.Map([32.75, -89.52], tiles='stamentonerbackground',
zoom_start=7, max_zoom=7, min_zoom=7)
HeatMap(bears, max_zoom=16, radius=22, min_opacity=1, blur=30).add_to(m)
m.save('heatmap.html')

This script will create a file called heatmap.html. Open it in any web browser to see a
similar image:

https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
https://git.io/fjtGL
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Next, we'll learn how to use data generated by a GPS to collect field data such as the
information in the preceding heatmap.

Using GPS data
The most common type of GPS data these days is the Garmin GPX format. We covered this
XML format in Chapter 4, Geospatial Python Toolbox, which has become an unofficial
industry standard. Because it is an XML format, all of the well-documented rules of XML
apply to it. However, there is another type of GPS data that pre-dates XML and GPX, called
the National Marine Electronics Association (NMEA). This data is ASCII text sentences
that are designed to be streamed.
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You occasionally bump into this format from time to time because even though it is older
and esoteric, it is still very much alive and well, especially for communicating ship 
locations via the Automated Identification System (AIS), which tracks ships globally. But
as usual, you have a good option in pure Python. The pynmea module is available on PyPI.
The following code is a small sample of NMEA sentences:

$GPRMC,012417.859,V,1856.599,N,15145.602,W,12.0,7.27,020713,,E\*4F
$GPGGA,012418.859,1856.599,N,15145.602,W,0,00,,,M,,M,,\*54
$GPGLL,1856.599,N,15145.602,W,012419.859,V\*35
$GPVTG,7.27,T,,M,12.0,N,22.3,K\*52
$GPRMC,012421.859,V,6337.596,N,12330.817,W,66.2,23.41,020713,,E\*74

To install the pynmea module from PyPI and download the complete sample file, you can
view the following URL: http:/ / git. io/ vLbTv. Then, you can run the following sample,
which will parse the NMEA sentences into objects. The NMEA sentences contain a wealth of
information:

from pynmea.streamer import NMEAStream
nmeaFile = open('nmea.txt')
nmea_stream = NMEAStream(stream_obj=nmeaFile)
next_data = nmea_stream.get_objects()
nmea_objects = []
while next_data:
    nmea_objects += next_data
    next_data = nmea_stream.get_objects()
# The NMEA stream is parsed!
# Let's loop through the
# Python object types:
for nmea_ob in nmea_objects:
    if hasattr(nmea_ob, 'lat'):
        print('Lat/Lon: (%s, %s)' % (nmea_ob.lat, nmea_ob.lon))

The latitudes and longitudes are stored in a format called degrees decimal minutes. For
example, this random coordinate, 4533.35, is 45 degrees and 33.35 minutes. 0.35 of a minute
is exactly 21 seconds. In another example, 16708.033 is 167 degrees and 8.033 minutes. 0.033
of a minute is approximately 2 seconds. You can find more information about the NMEA
format at http:/ /aprs. gids. nl/ nmea/ .

GPS data is an important location data source, but there's another way we can describe a
point on the Earth using a street address. The method for locating a street address on the
Earth is called geocoding.

http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://git.io/vLbTv
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
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Geocoding
Geocoding is the process of converting a street address into latitude and longitude. This
operation is critical to in-vehicle navigation systems and online driving direction websites.
Python has two excellent geocoder libraries available named geocoder and geopy. Both
take advantage of online geocoding services to allow you to geocode addresses
programmatically. The geopy library even lets you reverse geocode to match a latitude and
longitude to the nearest address:

First, let's do a quick example with the geocoder library, which defaults to using1.
Google Maps as its engine:

import geocoder
g = geocoder.google('1403 Washington Ave, New Orleans, LA 70130')
print(g.geojson)
# {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates':
[-90.08421849999999, 29.9287839]},
'bbox': {'northeast': [29.9301328802915, -90.0828695197085],
'southwest': [29.9274349197085, -90.0855674802915]},
'properties': {'quality': 'street_address', 'lat': 29.9287839,
'city': 'New Orleans',
'provider': 'google', 'geometry': {'type': 'Point', 'coordinates':
[-90.08421849999999, 29.9287839]},
'lng': -90.08421849999999, 'method': 'geocode', 'encoding':
'utf-8', 'confidence': 9, 'address': '1403 Washington Ave,
New Orleans, LA 70130, USA', 'ok': True, 'neighborhood': 'Garden
District', 'county': 'Orleans Parish',
'accuracy': 'ROOFTOP', 'street': 'Washington Ave', 'location':
'1403 Washington Ave, New Orleans, LA 70130',
'bbox': {'northeast': [29.9301328802915, -90.0828695197085],
'southwest': [29.9274349197085, -90.0855674802915]},
'status': 'OK', 'country': 'US', 'state': 'LA', 'housenumber':
'1403', 'postal': '70130'}}
print(g.wkt)
# 'POINT(-90.08421849999999 29.9287839)'

Here, we print the GeoJSON record for that address, which contains all known
information in Google's database. Then, we print out the returned latitude and
longitude as a WKT string, which could be used as input to other operations such
as checking whether the address is inside of a flood plain polygon. The
documentation for this library also shows you how to switch to other online
geocoding services such as Bing or Yahoo. Some of these services require an API
key and may have request limits.
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Now, let's look at the geopy library. In this example, we'll geocode against the2.
OpenStreetMap database. Once we match the address to a location, we'll turn
around and reverse geocode it:

from geopy.geocoders import Nominatim
g = Nominatim()
location = g.geocode('88360 Diamondhead Dr E, Diamondhead, MS 39525')
rev = g.reverse('{},{}'.format(location.latitude, location.longitude))
print(rev)
# NVision Solutions Inc., 88360, Diamondhead Drive East, Diamondhead,
Hancock County, Mississippi, 39520,
# United States of America
print(location.raw)
# {'class': 'office', 'type': 'yes', 'lat': '30.3961962', 'licence': 'Data
© OpenStreetMap contributors,
# ODbL 1.0. http://www.openstreetmap.org/copyright', 'display\_name':
'NVision Solutions Inc.,
# 88360, Diamondhead Drive East, Diamondhead, Hancock County, Mississippi,
39520, United States of America',
# 'lon': '-89.3462139', 'boundingbox': ['30.3961462', '30.3962462',
'-89.3462639', '-89.3461639'],
# 'osm\_id': '2470309304', 'osm\_type': 'node', 'place\_id': '25470846',
'importance': 0.421}

Now that we know of several different ways to geocode, let's look at speeding up the
process. If you have thousands of addresses to geocode, it can take a while. Using
multiprocessing, you can reduce a geocoding process that might take days into a few hours.

Multiprocessing
Geospatial datasets are very large. Processing them can take time, which can be hours or
sometimes even days. But there's a way you can speed processing up for certain operations.
Python's built-in multiprocessing module can spawn multiple processes on your computer
to take advantage of all of the available processors.
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One operation that works really well with the multiprocessing module is geocoding. In this
example, we'll geocode a list of cities and split that processing across all of the processors
on your machine. We'll use the same geocoding technique as before, but this time, we'll add
the multiprocessing module to increase the potential for greater speed and scalability. The
following code will geocode a list of cities simultaneously across multiple processors:

First, we import the modules we need:1.

# Import our geocoding module
from geopy.geocoders import Nominatim
# Import the multiprocessing module
import multiprocessing as mp

Next, we create our geocoder object:2.

# Create our geocoder
g = Nominatim()

Now, we need a function to geocode and individual address:3.

# Create a function to geocode an individual address
def gcode(address):
    location = g.geocode(address)
    print("Geocoding: {}".format(address))
    return location

Next, we create our list of cities to process:4.

# Our list of cities to process
cities = ["New Orleans, LA", "Biloxi, MS", "Memphis, TN",
"Atlanta, GA", "Little Rock, AR", "Destin, FL"]

Then, we set up our processor pool based on the number of processors available:5.

# Create our processor pool counting all of the processors
# on the machine.
pool = mp.Pool(processes=mp.cpu_count())
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Next, we map our list of cities to the geocode function though the processor pool:6.

# Map our cities list to the geocoding function
# and allow the processor pool to split it
# across processors
results = pool.map(gcode, cities)

Then, we can print the results:7.

# Now print the results
print(results)

# [Location(New Orleans, Orleans Parish, Louisiana, USA,
(29.9499323, -90.0701156, 0.0)),
# Location(Biloxi, Harrison County, Mississippi, USA, (30.374673,
-88.8459433348286, 0.0)),
# Location(Memphis, Shelby County, Tennessee, USA, (35.1490215,
-90.0516285, 0.0)),
# Location(Atlanta, Fulton County, Georgia, USA, (33.7490987,
-84.3901849, 0.0)),
# Location(Little Rock, Arkansas, USA, (34.7464809, -92.2895948,
0.0)),
# Location(Destin, Okaloosa County, Florida, USA, (30.3935337,
-86.4957834, 0.0))]

This technique can be very powerful, but not every type of processing can be performed
this way. The type of processing  you use has to support operations that can be broken
apart into discrete calculations. But when you can break problems apart, like we did in this
example, the results are orders of magnitude faster.
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Summary
This chapter covered the critical components of GIS analysis. We examined the challenges
of measuring on the curved surface of the Earth using different approaches. We looked at
the basics of coordinate conversion and full reprojection using OGR, the utm module with
PyShp, and Fiona, which simplifies OGR. We edited shapefiles and performed spatial and
attribute selections. We created thematic maps from scratch using only Python. We also
imported data from spreadsheets. Then, we parsed GPS data from NMEA streams. Finally,
we used geocoding to convert street addresses into locations and back.

As a geospatial analyst, you may be familiar with both GIS and remote sensing, but most
analysts specialize in one field or the other. That is why this book approaches the fields in
separate chapters – so that we can focus on their differences. As we mentioned in the
introduction, the techniques in this chapter are the building blocks for all geospatial
analysis and will give you the tools you need so that you can learn about any aspect of this
field.

In Chapter 6, Python and Remote Sensing, we'll tackle remote sensing. In GIS, we have been
able to explore this field using pure Python modules. In remote sensing, we'll become more
dependent on bindings to compiled modules written in C due to the sheer size and
complexity of the data.



6
Python and Remote Sensing

In this chapter, we will discuss remote sensing. Remote sensing is about gathering a
collection of information about the Earth without making physical contact with it.
Typically, this means having to use satellite or aerial imagery, Light Detection and
Ranging (LIDAR), which measures laser pulses from an aircraft to the Earth, or synthetic
aperture radar. Remote sensing can also refer to processing data that's been collected,
which is how we'll use the term in this chapter. Remote sensing grows in a more exciting
way every day as more satellites are launched and the distribution of data becomes easier.
The high availability of satellite and aerial images, as well as interesting new types of
sensors launching each year, is changing the role that remote sensing plays in
understanding our world.

In remote sensing, we step through each pixel in an image and perform some form of query
or mathematical process. An image can be thought of as a large numerical array. In remote
sensing, these arrays can be quite large, in the order of tens of megabytes to several
gigabytes in size. While Python is fast, only C-based libraries can provide the speed that's
needed to loop through arrays at a tolerable speed.

We'll use the Python Imaging Library (PIL) for image processing and NumPy, which
provides multidimensional array mathematics. While written in C for speed, these libraries
are designed for Python and provide a Pythonic API.

In this chapter, we'll cover the following topics:

Swapping image bands
Creating image histograms
Performing a histogram stretch
Clipping and classifying images
Extracting features from images
Change detection
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First, we'll start with basic image manipulation and then build on each exercise, all the way
to automatic change detection. These techniques will compliment the previous chapters by
adding the ability to process satellite data and other remote sensing products to our
toolbox.

Technical requirements
Python 3.6 or higher
RAM: Minimum 6 GB (Windows), 8 GB (macOS), recommended 8 GB
Storage: Minimum 7200 RPM SATA with 20 GB of available space;
recommended SSD with 40 GB of available space
Processor: Minimum Intel Core i3 2.5 GHz; recommended Intel Core i5

Swapping image bands
Our eyes can only see colors in the visible spectrum as combinations of red, green, and
blue (RGB). Air and space-borne sensors can collect wavelengths of the energy outside of
the visible spectrum. To view this data, we move images representing different
wavelengths of light reflectance in and out of the RGB channels to make color images.

These images often end up as bizarre and alien color combinations that can make visual
analysis difficult. An example of a typical satellite image is shown in the following Landsat
7 satellite scene near the NASA Stennis Space Center in Mississippi along the Gulf of
Mexico, which is a leading center for remote sensing and geospatial analysis in general:
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Most of the vegetation appears red and water appears almost black. This image is a type of
false-color image, meaning the color of the image is not based on the RGB light. However,
we can change the order of the bands or swap out certain bands to create another type of
false-color image that looks more like the world we are used to seeing. To do so, you first
need to download this image as a ZIP file from here: https:/ /git. io/vqs41.

We installed the GDAL library with Python bindings in Chapter 4, Geospatial Python
Toolbox, in the Installing GDAL and NumPy section. The GDAL library includes a module
called gdal_array that loads and saves remotely-sensed images to and from NumPy
arrays for easy manipulation. GDAL itself is a data access library and does not provide
much in the name of processing. So, in this chapter, we will rely heavily on NumPy to
actually change images.

https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
https://git.io/vqs41
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In this example, we'll load the image into a NumPy array using gdal_array and then we'll
immediately save it back to a new GeoTiff file. However, upon saving, we'll use NumPy's
advanced array-slicing feature to change the order of the bands. Images in NumPy are
multi-dimensional arrays in the order of band, height, and width. This means that an image
with three bands will be an array of length 3, containing an array for the band, height, and
width of the image. It's important to note that NumPy references array locations as y,x (row,
column) instead of the usual x, y (column, row) format we work with in spreadsheets and
other software. Let's get started:

First, we'll import gdal_array:1.

from gdal import gdal_array

Next, we'll load an image named FalseColor.tif into a numpy array:2.

# name of our source image
src = "FalseColor.tif"
# load the source image into an array
arr = gdal_array.LoadFile(src)

Next, we'll reorder the image bands by slicing the array, rearranging the order,3.
and saving it back out:

# swap bands 1 and 2 for a natural color image.
# We will use numpy "advanced slicing" to reorder the bands.
# Using the source image
output = gdal_array.SaveArray(arr[[1, 0, 2], :], "swap.tif",
 format="GTiff", prototype=src)
# Dereference output to avoid corrupted file on some platforms
output = None

In the SaveArray method, the last argument is called a prototype. This argument lets you
specify another image for GDAL from which you copy spatial reference information and
some other image parameters. Without this argument, we'd end up with an image without
georeferencing information, which could not be used in a GIS. In this case, we specify our
input image file name because the images are identical, except for the band order. In this
method, you can tell that the Python GDAL API is a wrapper around a C library and is not
as Pythonic as a Python-designed library. For example, a pure Python library would have
written the SaveArray() method as save_array() to follow Python standards.
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The result of this example produces the swap.tif image, which is a much more visually 
appealing image with green vegetation and blue water:

There's only one problem with this image: it's kind of dark and difficult to see. Let's see if
we can figure out why in the next section.

Creating histograms
A histogram shows the statistical frequency of data distribution within a dataset. In the case
of remote sensing, the dataset is an image. The data distribution is the frequency of pixels in
the range of 0 to 255, which is the range of 8-byte numbers that are used to store image
information on computers.

In an RGB image, color is represented as a 3-digit tuple with (0,0,0, 0, 0) being black and
(255,255,255) being white. We can graph the histogram of an image with the frequency of
each value along the y-axis and the range of 256 possible pixel values along the x-axis.
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Remember in Chapter 1, Learning about Geospatial Analysis with Python, in the Creating the
simplest possible Python GIS section, when we used the Turtle graphics engine included with
Python to create a simple GIS? Well, we can also use it to easily graph histograms.

Histograms are usually a one-off product that makes a quick script. Also, histograms are
typically displayed as a bar graph with the width of the bars representing the size of
grouped data bins. But, in an image, each bin is only one value, so we'll create a line graph.
We'll use the histogram function in this example and create a red, green, and blue line for
each respective band.

The graphing portion of this example also defaults to scaling the y-axis values to the max
RGB frequency found in the image. Technically, the y-axis represents the maximum
frequency, which is the number of pixels in the image, which would be the case if the image
was all one color. We'll use the turtle module again here, but this example could be easily
converted into any graphical output module. Let's take a look at the swap.tif image we
created in the previous example:

First, we import the libraries we need, including the turtle graphics library:1.

from gdal import gdal_array
import turtle as t

Now, we create a histogram function that can take an array and sort the2.
numbers into bins making up the histogram:

def histogram(a, bins=list(range(0, 256))):
 fa = a.flat
 n = gdal_array.numpy.searchsorted(gdal_array.numpy.sort(fa), bins)
 n = gdal_array.numpy.concatenate([n, [len(fa)]])
 hist = n[1:]-n[:-1]
 return hist

Finally, we have our turtle graphics function that takes a histogram and draws3.
it:

def draw_histogram(hist, scale=True):

Draw the graph axes using the following code:4.

t.color("black")
axes = ((-355, -200), (355, -200), (-355, -200), (-355, 250))
t.up()
for p in axes:
  t.goto(p)
  t.down()
  t.up()
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Then, we can label them:5.

t.goto(0, -250)
t.write("VALUE", font=("Arial, ", 12, "bold"))
t.up()
t.goto(-400, 280)
t.write("FREQUENCY", font=("Arial, ", 12, "bold"))
x = -355
y = -200
t.up()

Now, we'll add tick marks on the x-axis so that we can see the line values:6.

for i in range(1, 11):
  x = x+65
  t.goto(x, y)
  t.down()
  t.goto(x, y-10)
  t.up()
  t.goto(x, y-25)
  t.write("{}".format((i*25)), align="center")

We'll do the same for the y-axis:7.

x = -355
y = -200
t.up()
pixels = sum(hist[0])
if scale:
  max = 0
  for h in hist:
    hmax = h.max()
    if hmax > max:
      max = hmax
  pixels = max
label = int(pixels/10)
for i in range(1, 11):
  y = y+45
  t.goto(x, y)
  t.down()
  t.goto(x-10, y)
  t.up()
  t.goto(x-15, y-6)
  t.write("{}".format((i*label)), align="right")
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We can begin plotting our histogram lines:8.

x_ratio = 709.0 / 256
y_ratio = 450.0 / pixels
colors = ["red", "green", "blue"]
for j in range(len(hist)):
  h = hist[j]
  x = -354
  y = -199
  t.up()
  t.goto(x, y)
  t.down()
  t.color(colors[j])
  for i in range(256):
    x = i * x_ratio
    y = h[i] * y_ratio
    x = x - (709/2)
    y = y + -199
    t.goto((x, y))

Finally, we can load our image and plot its histogram using the functions we9.
defined previously:

im = "swap.tif"
histograms = []
arr = gdal_array.LoadFile(im)
for b in arr:
  histograms.append(histogram(b))
draw_histogram(histograms)
t.pen(shown=False)
t.done()

Here's what the histogram for swap.tif looks like after running the preceding code
example:
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As you can see, all three bands are grouped closely toward the left-hand side of the graph
and all have values less than 125 or so. As these values approach zero, the image becomes
darker, which is not surprising.

Just for fun, let's run the script again and when we call the draw_histogram() function,
we'll add the scale=False option to get a sense of the size of the image and provide an
absolute scale. We'll change the following line:

draw_histogram(histograms)

This will be changed to the following:

draw_histogram(histograms, scale=False)



Python and Remote Sensing Chapter 6

[ 253 ]

This change will produce the following histogram graph:

As you can see, it's harder to see the details of the value distribution. However, this
absolute-scale approach is useful if you are comparing multiple histograms of different
products that were produced from the same source image.

So, now that we understand the basics of looking at an image statistically using histograms,
how do we make our image brighter? Let's check this out in the next section.
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Performing a histogram stretch
A histogram stretch operation does exactly what its name says. It redistributes the pixel
values across the whole scale. By doing so, we have more values at the higher-intensity
level and the image becomes brighter. So, in this example, we'll reuse our histogram
function, but we'll add another function called stretch() that takes an image array,
creates the histogram, and then spreads out the range of values for each band. We'll run
these functions on swap.tif and save the result in an image called stretched.tif:

import gdal_array
import operator
from functools import reduce

def histogram(a, bins=list(range(0, 256))):
 fa = a.flat
 n = gdal_array.numpy.searchsorted(gdal_array.numpy.sort(fa), bins)
 n = gdal_array.numpy.concatenate([n, [len(fa)]])
 hist = n[1:]-n[:-1]
 return hist

def stretch(a):
 """
 Performs a histogram stretch on a gdal_array array image.
 """
 hist = histogram(a)
 lut = []
 for b in range(0, len(hist), 256):
 # step size
 step = reduce(operator.add, hist[b:b+256]) / 255
 # create equalization look-up table
 n = 0
 for i in range(256):
 lut.append(n / step)
 n = n + hist[i+b]
 gdal_array.numpy.take(lut, a, out=a)
 return asrc = "swap.tif"
arr = gdal_array.LoadFile(src)
stretched = stretch(arr)
output = gdal_array.SaveArray(arr, "stretched.tif", format="GTiff",
prototype=src)
output = None
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The stretch algorithm will produce the following image. Look how much brighter and
visually appealing it is:

We can run our turtle graphics histogram script on stretched.tif by changing the file
name in the im variable to stretched.tif:

im = "stretched.tif"

Running the preceding code will give us the following histogram:
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As you can see, all three bands are distributed evenly now. Their relative distribution to
each other is the same, but, within the image, they are now spread across the spectrum.

Now that we can change images for better presentation, let's look at clipping them to
examine a particular area of interest.

Clipping images
Very rarely is an analyst interested in an entire satellite scene, which can easily cover
hundreds of square miles. Given the size of satellite data, we are highly motivated to
reduce the size of an image to only our area of interest. The best way to accomplish this
reduction is to clip an image to a boundary that defines our study area. We can use
shapefiles (or other vector data) as our boundary definition and basically get rid of all the
data outside that boundary.
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The following image contains our stretched.tif image with a county boundary file 
layered on top, visualized in Quantum GIS (QGIS):

To clip the image, we need to follow these steps:

Load the image into an array using gdal_array.1.
Create a shapefile reader using PyShp.2.
Rasterize the shapefile into a georeferenced image (convert it from a vector into a3.
raster).
Turn the shapefile image into a binary mask or filter to only grab the image4.
pixels we want within the shapefile boundary.
Filter the satellite image through the mask.5.
Discard satellite image data outside the mask.6.
Save the clipped satellite image as clip.tif.7.

We installed PyShp in Chapter 4, Geospatial Python Toolbox, so you should already have it
installed from PyPi. We will also add a couple of useful new utility functions in this script.
The first is world2pixel(), which uses the GDAL GeoTransform object to do the world-
coordinate to image-coordinate conversion for us.
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It's still the same process we've used throughout this book, but it's
integrated better with GDAL.

We also add the imageToArray() function, which converts a PIL image into a NumPy
array. The county boundary shapefile is the hancock.shp boundary we've used in 
previous chapters, but you can also download it here if you need to: http:/ /git. io/vqsRH.

We use PIL because it is the easiest way to rasterize our shapefile as a mask image to filter
out the pixels beyond the shapefile boundary. Let's get started:

First, we'll load the libraries we need:1.

import operator
from osgeo import gdal, gdal_array, osr
import shapefile

Now, we'll load PIL. This may need to be installed slightly differently on2.
different platforms, so we have to check for that difference:

try:
 import Image
 import ImageDraw
except:
 from PIL import Image, ImageDraw

Now, we will set up the variables for our input image, shapefile, and our output3.
image:

# Raster image to clip
raster = "stretched.tif"
# Polygon shapefile used to clip
shp = "hancock"
# Name of clipped raster file(s)
output = "clip"

Next, create a function that simply converts an image into a numpy array so that4.
we can convert the mask image we will create and use it in our NumPy-based
clipping process:

def imageToArray(i):
 """
 Converts a Python Imaging Library array to a gdal_array image.
 """
 a = gdal_array.numpy.fromstring(i.tobytes(), 'b')

http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
http://git.io/vqsRH
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 a.shape = i.im.size[1], i.im.size[0]
 return a

Next, we need a function to convert geospatial coordinates into image pixels,5.
which will allow us to use coordinates from our clipping shapefile to limit which
image pixels are saved:

def world2Pixel(geoMatrix, x, y):
 """
 Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate
 the pixel location of a geospatial coordinate
 """
 ulX = geoMatrix[0]
 ulY = geoMatrix[3]
 xDist = geoMatrix[1]
 yDist = geoMatrix[5]
 rtnX = geoMatrix[2]
 rtnY = geoMatrix[4]
 pixel = int((x - ulX) / xDist)
 line = int((ulY - y) / abs(yDist))
 return (pixel, line)

Now, we can load our source image into a numpy array:6.

# Load the source data as a gdal_array array
srcArray = gdal_array.LoadFile(raster)

We'll also load the source image as a gdal image because gdal_array does not7.
give us the geotransform information we need to convert coordinates into pixels:

# Also load as a gdal image to get geotransform (world file) info
srcImage = gdal.Open(raster)
geoTrans = srcImage.GetGeoTransform()

Now, we'll use the Python shapefile library to open our shapefile:8.

# Use pyshp to open the shapefile
r = shapefile.Reader("{}.shp".format(shp))

Next, we'll convert the shapefile bounding box coordinates into image9.
coordinates based on our source image:

# Convert the layer extent to image pixel coordinates
minX, minY, maxX, maxY = r.bbox
ulX, ulY = world2Pixel(geoTrans, minX, maxY)
lrX, lrY = world2Pixel(geoTrans, maxX, minY)
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Then, we can calculate the size of our output image based on the extents of the10.
shapefile and take just that part of the source image:

# Calculate the pixel size of the new image
pxWidth = int(lrX - ulX)
pxHeight = int(lrY - ulY)
clip = srcArray[:, ulY:lrY, ulX:lrX]

Next, we'll create new geomatrix data for the output image:11.

# Create a new geomatrix for the image
# to contain georeferencing data
geoTrans = list(geoTrans)
geoTrans[0] = minX
geoTrans[3] = maxY

Now, we can create a simple black-and-white mask image from the shapefile that12.
will define the pixels we want to extract from the source image:

# Map points to pixels for drawing the county boundary
# on a blank 8-bit, black and white, mask image.
pixels = []
for p in r.shape(0).points:
 pixels.append(world2Pixel(geoTrans, p[0], p[1]))
rasterPoly = Image.new("L", (pxWidth, pxHeight), 1)
# Create a blank image in PIL to draw the polygon.
rasterize = ImageDraw.Draw(rasterPoly)
rasterize.polygon(pixels, 0)

Next, we convert the mask image into a numpy array:13.

# Convert the PIL image to a NumPy array
mask = imageToArray(rasterPoly)

Finally, we're ready to use the mask array to clip the source array in numpy and14.
save it to a new geotiff image:

# Clip the image using the mask
clip = gdal_array.numpy.choose(mask, (clip, 0)).astype(
 gdal_array.numpy.uint8)
# Save ndvi as tiff
gdal_array.SaveArray(clip, "{}.tif".format(output),
 format="GTiff", prototype=raster)
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This script produces the following clipped image:

The areas that remain outside the county boundary that appear in black are actually called
NoData values, meaning there is no information at that location, and are ignored by most
geospatial software. Because images are rectangular, the NoData values are common for
data that does not completely fill an image.

You have now walked through an entire workflow that is used by geospatial analysts
around the world every day to prepare multispectral satellite and aerial images for use in a
GIS. We'll look at how we can actually analyze images as information in the next section.

Classifying images
Automated remote sensing (ARS) is rarely ever done in the visible spectrum. ARS
processes images without any human input. The most commonly available wavelengths
outside of the visible spectrum are infrared and near-infrared.

The following illustration is a thermal image (band 10) from a fairly recent Landsat 8
flyover of the US Gulf Coast from New Orleans, Louisiana to Mobile, Alabama. The major
natural features in the image have been labeled so that you can orient yourself:
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Because every pixel in that image has a reflectance value, it is information as opposed to
just color. The type of reflectance can tell us definitively what a feature is, as opposed to us
guessing by looking at it. Python can see those values and pick out features the same way
we intuitively do by grouping related pixel values. We can colorize pixels based on their
relation to each other to simplify the image and view-related features. This technique is
called classification.

Classifying can range from fairly simple groupings, based only on some value distribution
algorithm derived from the histogram, to complex methods involving training datasets and
even computer learning and artificial intelligence. The simplest forms are called
unsupervised classifications, in which no additional input is given other than the image
itself. Methods involving some sort of training data to guide the computer are called
supervised classifications. It should be noted that classification techniques are used across
many fields, from medical doctors searching for cancerous cells in a patient's body scan, to
casinos using facial-recognition software on security videos to automatically spot known
con-artists at blackjack tables.

To introduce remote sensing classification, we'll just use the histogram to group pixels with
similar colors and intensities and see what we get. First, you'll need to download the 
Landsat 8 scene from here: http:/ /git. io/vByJu.

http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
http://git.io/vByJu
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Instead of our histogram() function from the previous examples, we'll use the version
included with NumPy that allows you to easily specify the number of bins and returns two
arrays with the frequency, as well as the ranges of the bin values. We'll use the second array
with the ranges as our class definitions for the image. The lut or look-up table is an
arbitrary color palette that's used to assign colors to the 20 unsupervised classes. You can
use any colors you want. Let's look at the following steps:

First, we import our libraries:1.

import gdal
from gdal import gdal_array, osr

Next, we set up some variables for our input and output images:2.

# Input file name (thermal image)
src = "thermal.tif"
# Output file name
tgt = "classified.jpg"

Load the image into a numpy array for processing:3.

# Load the image into numpy using gdal
srcArr = gdal_array.LoadFile(src)

Now, we're going to create a histogram of our image with 20 groups or bins that4.
we'll use for classifying:

# Split the histogram into 20 bins as our classes
classes = gdal_array.numpy.histogram(srcArr, bins=20)[1]

Then, we'll create a look-up table that will define the color ranges for our classes5.
so that we can visualize them:

# Color look-up table (LUT) - must be len(classes)+1.
# Specified as R, G, B tuples
lut = [[255, 0, 0], [191, 48, 48], [166, 0, 0], [255, 64, 64],
[255,
    115, 115], [255, 116, 0], [191, 113, 48], [255, 178, 115], [0,
    153, 153], [29, 115, 115], [0, 99, 99], [166, 75, 0], [0, 204,
    0], [51, 204, 204], [255, 150, 64], [92, 204, 204], [38, 153,
    38], [0, 133, 0], [57, 230, 57], [103, 230, 103], [184, 138,
0]]
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Now that our setup is complete, we can perform the classification:6.

# Starting value for classification
start = 1
# Set up the RGB color JPEG output image
rgb = gdal_array.numpy.zeros((3, srcArr.shape[0],
 srcArr.shape[1], ), gdal_array.numpy.float32)
# Process all classes and assign colors
for i in range(len(classes)):
  mask = gdal_array.numpy.logical_and(start <= srcArr, srcArr <=
  classes[i])
 for j in range(len(lut[i])):
   rgb[j] = gdal_array.numpy.choose(mask, (rgb[j], lut[i][j]))
 start = classes[i]+1

Finally, we can save our classified image:7.

# Save the image
output = gdal_array.SaveArray(rgb.astype(gdal_array.numpy.uint8),
tgt, format="JPEG")
output = None

The following image is our classification output, which we just saved as a JPEG:
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We didn't specify the prototype argument when saving this as an image, so it has no
georeferencing information, though we could easily have done otherwise to save the output
as a GeoTIFF.

This result isn't bad for a very simple unsupervised classification. The islands and coastal
flats show up as different shades of green. The clouds were isolated as shades of orange
and dark blues. We did have some confusion inland where the land features were colored
the same as the Gulf of Mexico. We could further refine this process by defining the class
ranges manually instead of just using the histogram.

 Now that we have the ability to separate features in the image, we can try to extract
features as vector data for inclusion in a GIS.

Extracting features from images
The ability to classify an image leads us to another remote sensing capability. Now that
you've worked with shapefiles over the last few chapters, have you ever wondered where
they come from? Vector GIS data such as shapefiles are typically extracted from remotely-
sensed images such as the examples we've seen so far.

Extraction normally involves an analyst clicking around each object in an image and
drawing the feature to save it as data. But with good remotely-sensed data and proper pre-
processing, it is possible to automatically extract features from an image.

For this example, we'll take a subset of our Landsat 8 thermal image to isolate a group of
barrier islands in the Gulf of Mexico. The islands appear white as the sand is hot and the
cooler water appears black (you can download this image here: http:/ /git. io/vqarj):

http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
http://git.io/vqarj
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Our goal with this example is to automatically extract the three islands in the image as a
shapefile. But before we can do that, we need to mask out any data we aren't interested in.
For example, the water has a wide range of pixel values, as do the islands themselves. If we
just want to extract the islands themselves, we need to push all the pixel values into just
two bins to make the image black and white. This technique is called thresholding. The
islands in the image have enough contrast with the water in the background that
thresholding should isolate them nicely.

In the following script, we will read the image into an array and then histogram the image
using only two bins. We will then use the colors black and white to color the two bins. This
script is simply a modified version of our classification script with very limited output.
Let's look at the following steps:

First, we import the one library we need:1.

from gdal import gdal_array

Next, we define the variables for our input and output image:2.

# Input file name (thermal image)
src = "islands.tif"
# Output file name
tgt = "islands_classified.tiff"

Then, we can load the image:3.

# Load the image into numpy using gdal
srcArr = gdal_array.LoadFile(src)

Now, we can set up our simple classification scheme:4.

# Split the histogram into 20 bins as our classes
classes = gdal_array.numpy.histogram(srcArr, bins=2)[1]
lut = [[255, 0, 0], [0, 0, 0], [255, 255, 255]]

Next, we classify the image:5.

# Starting value for classification
start = 1
# Set up the output image
rgb = gdal_array.numpy.zeros((3, srcArr.shape[0], srcArr.shape[1],
),
 gdal_array.numpy.float32)
# Process all classes and assign colors
for i in range(len(classes)):
  mask = gdal_array.numpy.logical_and(start <= srcArr, srcArr <=
  classes[i])
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 for j in range(len(lut[i])):
   rgb[j] = gdal_array.numpy.choose(mask, (rgb[j], lut[i][j]))
   start = classes[i]+1

Finally, we save the image:6.

# Save the image
gdal_array.SaveArray(rgb.astype(gdal_array.numpy.uint8),
 tgt, format="GTIFF", prototype=src)

 The output looks great, as shown in the following image:

The islands are clearly isolated, so our extraction script will be able to identify them as
polygons and save them to a shapefile. The GDAL library has a method called
Polygonize() that does exactly that. It groups all sets of isolated pixels in an image and
saves them out as a feature dataset. One interesting technique we will use in this script is to
use our input image as a mask.

The Polygonize() method allows you to specify a mask that will use the color black as a
filter that will prevent the water from being extracted as a polygon, and we'll end up with
just the islands. Another area to note in the script is that we copy the georeferencing
information from our source image to our shapefile to geolocate it properly. Let's look at
the following steps:

First, we import our libraries:1.

import gdal
from gdal import ogr, osr

Next, we set up our input and output image and shapefile variables:2.

# Thresholded input raster name
src = "islands_classified.tiff"
# Output shapefile name
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tgt = "extract.shp"
# OGR layer name
tgtLayer = "extract"

Let's open our input image and get the first and only band:3.

# Open the input raster
srcDS = gdal.Open(src)
# Grab the first band
band = srcDS.GetRasterBand(1)

Then, we'll tell gdal to use that band as a mask:4.

# Force gdal to use the band as a mask
mask = band

Now, we're ready to set up our shapefile:5.

# Set up the output shapefile
driver = ogr.GetDriverByName("ESRI Shapefile")
shp = driver.CreateDataSource(tgt)

Then, we need to copy our spatial reference information from the source image6.
to the shapefile, to locate it on the Earth:

# Copy the spatial reference
srs = osr.SpatialReference()
srs.ImportFromWkt(srcDS.GetProjectionRef())
layer = shp.CreateLayer(tgtLayer, srs=srs)

Now, we can set up our shapefile attributes:7.

# Set up the dbf file
fd = ogr.FieldDefn("DN", ogr.OFTInteger)
layer.CreateField(fd)
dst_field = 0

Finally, we can extract our polygons:8.

# Automatically extract features from an image!
extract = gdal.Polygonize(band, mask, layer, dst_field, [], None)

The output shapefile is simply called extract.shp. As you may remember from Chapter
4, Geospatial Python Toolbox, we created a quick pure Python script using PyShp and PNG
Canvas to visualize shapefiles. We'll bring that script back here so that we can look at our
shapefile, but we'll add something extra to it. The largest island has a small lagoon which
shows up as a hole in the polygon. To properly render it, we have to deal with parts in a
shapefile record.
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The previous example using that script did not do that, so we'll add that piece as we loop
through the shapefile features in the following steps:

First, we need to import the libraries we'll need:1.

import shapefile
import pngcanvas

Next, we get the spatial information from the shapefile that will allow us to map2.
coordinates to pixels:

r = shapefile.Reader("extract.shp")
xdist = r.bbox[2] - r.bbox[0]
ydist = r.bbox[3] - r.bbox[1]
iwidth = 800
iheight = 600
xratio = iwidth/xdist
yratio = iheight/ydist

Now, we'll create a list to hold our polygons:3.

polygons = []

Then, we will loop through the shapefile and collect our polygons:4.

for shape in r.shapes():
 for i in range(len(shape.parts)):
 pixels = []
 pt = None
 if i < len(shape.parts)-1:
   pt = shape.points[shape.parts[i]:shape.parts[i+1]]
 else:
   pt = shape.points[shape.parts[i]:]

Next, we map each point to an image pixel:5.

 for x, y in pt:
   px = int(iwidth - ((r.bbox[2] - x) * xratio))
   py = int((r.bbox[3] - y) * yratio)
   pixels.append([px, py])
 polygons.append(pixels)

Next, we draw the image using our polygon pixel information in PNGCanvas:6.

c = pngcanvas.PNGCanvas(iwidth, iheight)
for p in polygons:
 c.polyline(p)
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Finally, we save the image:7.

with open("extract.png", "wb") as f:
    f.write(c.dump())
    f.close()

The following image shows our automatically extracted island features: 

Commercial packages that do this kind of work can easily cost tens of thousands of dollars.
While these packages are very robust, it is still fun and empowering to see how far you can
get with simple Python scripts and a few open-source packages. In many cases, you can do
everything you need to do.

The western-most island contains the polygon hole, as shown in the following image, and is
zoomed in on that area:

If you want to see what would happen if we didn't deal with the polygon
holes, then just run the version of the script from Chapter 4, Geospatial
Python Toolbox, on this same shapefile to compare the difference. The
lagoon is not easy to see, but you will find it if you use the other script.
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Automated feature extraction is a holy grail within geospatial analysis because of the cost
and tedious effort required to manually extract features. The key to feature extraction is
proper image classification. Automated feature extraction works well with water bodies,
islands, roads, farm fields, buildings, and other features that tend to have high-contrast
pixel values with their background.

You now have a good grasp of working with remote sensing data using GDAL, NumPy,
and PIL. It's time to move on to our most complex example: change detection.

Understanding change detection
Change detection is the process of taking two geo-registered images of the exact same area
from two different dates and automatically identifying differences. It is really just another
form of image classification. Just like our previous classification examples, it can range from
trivial techniques like those used here, to highly-sophisticated algorithms that provide
amazingly precise and accurate results.

For this example, we'll use two images from a coastal area. These images show a populated
area before and after a major hurricane, so there are significant differences, many of which
are easy to visually spot, making these samples good for learning change detection. Our
technique is to simply subtract the first image from the second to get a simple image
difference using NumPy. This is a valid and often used technique.

The advantages are it is comprehensive and very reliable. The disadvantage of this overly
simple algorithm is that it doesn't isolate the type of change. Many changes are insignificant
for analysis, such as the waves on the ocean. In this example, we'll mask the water fairly
effectively to avoid that distraction and only focus on the higher reflectance values toward
the right-hand side of the difference image histogram.

You can download the baseline image from http:/ /git. io/ vqa6h.
You can download the changed image from http:/ / git.io/ vqaic.
Note these images are quite large – 24 MB and 64 MB, respectively!

The baseline image is panchromatic, while the changed image is in false color.
Panchromatic images are created by sensors that capture all visible light and are typical of 
higher resolution sensors rather than multispectral sensors that capture bands containing
restricted wavelengths.
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Normally, you would use two identical band combinations, but these samples will work for
our purposes. The visual markers we can use to evaluate change detection include a bridge
in the southeast quadrant of the image that spans from the Peninsula to the edge of the
image. This bridge is clearly visible in the before image and is reduced to pilings by the
hurricane. Another marker is a boat in the northwest quadrant which appears in the after
image as a white trail but is not in the before image.

A neutral marker is the water and the state highway, which runs through the town and
connects to the bridge. This feature is easily visible concrete, which does not change
significantly between the two images. The following is a screenshot of the baseline image:
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To view these images up-close yourself, you should use QGIS or OpenEV (FWTools), as
described in the Quantum GIS and OpenEv section in Chapter 3, The Geospatial Technology
Landscape, to view them easily. The following image is the after image:

So, let's perform change detection:

First, we load our libraries:1.

import gdal
from gdal import gdal_array
import numpy as np
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Now, we set up the variables for our input and output images:2.

# "Before" image
im1 = "before.tif"
# "After" image
im2 = "after.tif"

Next, we read both images into NumPy arrays with gdal_array:3.

# Load before and after into arrays
ar1 = gdal_array.LoadFile(im1).astype(np.int8)
ar2 = gdal_array.LoadFile(im2)[1].astype(np.int8)

Now, we subtract the before image from the after image (difference = after –4.
before):

# Perform a simple array difference on the images
diff = ar2 - ar1

Then, we divide the image into five classes:5.

# Set up our classification scheme to try
# and isolate significant changes
classes = np.histogram(diff, bins=5)[1]

Next, we set our color table to use black to mask the lower classes. We do this to6.
filter water and roads because they are darker in the image:

# The color black is repeated to mask insignificant changes
lut = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 255, 0],
[255, 0, 0]]

Then, we assign colors to the classes:7.

# Starting value for classification
start = 1
# Set up the output image
rgb = np.zeros((3, diff.shape[0], diff.shape[1], ), np.int8)
# Process all classes and assign colors
for i in range(len(classes)):
 mask = np.logical_and(start <= diff, diff <= classes[i])
 for j in range(len(lut[i])):
 rgb[j] = np.choose(mask, (rgb[j], lut[i][j]))
 start = classes[i]+1
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Finally, we save our image:8.

# Save the output image
output = gdal_array.SaveArray(rgb, "change.tif", format="GTiff",
prototype=im2)
output = None

Here's what our initial difference image looks like:

For the most part, the green classes represent areas where something was added. The red
would be a darker value where something was probably removed. We can see that the boat
trail is green in the northwest quadrant. We can also see a lot of changes in vegetation, as
would be expected due to seasonal differences. The bridge is an anomaly because the
exposed pilings are brighter than the darker surface of the original bridge, which makes
them green instead of red.
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Concrete is a major indicator in change detection because it is very bright in sunlight and is
usually a sign of new development. Conversely, if a building is torn down and the concrete
is removed, the difference is also easy to identify. So, the simple difference algorithm that
we used here isn't perfect, but it could be greatly improved using thresholding, masking,
better class definitions, and other techniques.

To really appreciate our change detection product, you can overlay it on the before or after
image in QGIS and set the color black to transparent, as shown in the following image:

Potentially, you can combine this change detection analysis with the feature extraction
example to extract changes as vector data that can be analyzed in a GIS efficiently.
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Summary
In this chapter, we covered the foundations of remote sensing, including band swapping,
histograms, image classification, feature extraction, and change detection. Like in the other
chapters, we stayed as close to pure Python as possible, and where we compromised on this
goal for processing speed, we limited the software libraries as much as possible to keep
things simple. However, if you have the tools from this chapter installed, you really have a
complete remote sensing package that is limited only by your desire to learn.

The techniques in this chapter are foundational to all remote sensing processes and will
allow you to build more complex operations.

In the next chapter, we'll investigate elevation data. Elevation data doesn't fit squarely in
GIS or remote sensing as it has elements of both types of processing.

Further reading
The authors of GDAL have a set of Python examples that cover a number of advanced
topics that may be of interest to you. You can find them at https:/ /github. com/OSGeo/
gdal/tree/master/ gdal/ swig/ python/ samples.
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7
Python and Elevation Data

Elevation data is one of the most fascinating types of geospatial data. It represents many
different types of data sources and formats. It can display properties of both vector and
raster data, resulting in unique data products. Elevation data can be used for terrain
visualization, land cover classification, hydrology modeling, transportation routing, feature
extraction, and many other purposes.

You can't perform all of these options with both raster and vector data, but since elevation
data is three-dimensional, due to containing x, y, and z coordinates, you can often get more
out of this data than any other type.

In this chapter, we will cover the following topics:

Using ASCII Grid elevation data files for simple elevation processing
Creating shaded relief images
Creating elevation contours
Gridding the LIDAR data
Creating a 3D mesh

In this chapter, you will learn how to read and write elevation data in both raster and
vector formats. We'll also create some derivative products.

Accessing ASCII Grid files
For most of this chapter, we'll use ASCII Grid files, or ASCIIGRID. These files are a type of
raster data that's usually associated with elevation data. This grid format stores data as text
in equal-sized square rows and columns with a simple header. Each cell in a row/column
stores a single numeric value, which can represent some feature of terrain, such as
elevation, slope, or flow direction. The simplicity makes it an easy-to-use and platform-
independent raster format. This format is described in the ASCII Grids section of Chapter 2,
Learning Geospatial Data.
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Throughout this book, we've relied on GDAL, and to some extent, even PIL, to read and
write geospatial raster data, including the gdalnumeric module, so that we can load raster
data into NumPy arrays. ASCII Grid allows us to read and write rasters using only Python
or even NumPy because it is simple plain text.

As a reminder, some elevation datasets use image formats to store
elevation data. Most image formats only support 8-bit values ranging
from between 0 to 255; however, some formats, including TIFF, can store
larger values.

Geospatial software can typically display these datasets; however,
traditional image software and libraries usually don't. For simplicity, in
this chapter, we'll mostly stick to the ASCII Grid format for data, which is
both human and machine-readable, as well as widely supported.

Reading grids
NumPy has the ability to read the ASCII Grid format directly using its loadtxt() method,
which is designed to read arrays from text files. The first six lines consist of the header,
which is not a part of the array. The following lines are a sample of a grid header:

ncols 250
nrows 250
xllcorner 277750.0
yllcorner 6122250.0
cellsize 1.0
NODATA_value -9999

Let's look at what each line in the preceding code contains:

Line 1 contains the number of columns in the grid, which is synonymous with
the x axis.
Line 2 represents the y axis as a number of rows.
Line 3 represents the x coordinate of the lower-left corner, which is the minimum
x value in meters.
Line 4 is the corresponding minimum y value in the lower-left corner of the grid.
Line 5 is the cell size or resolution of the raster. As the cells are square, only one
size value is needed, as opposed to the separate x and y resolution values in most
geospatial rasters.
Line 6 is NODATA_value, which is a number that's assigned to any cell for which
a value is not provided.
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Geospatial software ignores these cells for calculations and often allows special display
settings for it, such as making them black or transparent. The -9999 value is a common no
data placeholder value that's used in the industry and is easy to detect in software but can
be arbitrarily selected. Elevation with negative values (that is, bathymetry) may have valid
data at -9999 meters, for instance, and may select 9999 or other values. As long as this
value is defined in the header, most software will have no issues. In some examples, we'll
use the number zero; however, zero can often also be a valid data value.

The numpy.loadtxt() method includes an argument called skiprows, which allows you
to specify the number of lines in the file to be skipped before reading the array values.

To try out this technique, you can download a sample grid file called
myGrid.asc from http:/ /git.io/ vYapU.

So, for myGrid.asc, we would use the following code:

myArray  = numpy.loadtxt("myGrid.asc", skiprows=6)

This line results in the myArray variable containing a numpy array derived from the
ASCIIGRID myGrid.asc file. The ASC filename extension is used by the ASCIIGRID
format. This code works great, but there's one problem. NumPy allows us to skip the
header but not keep it. We need to keep this so that we have a spatial reference for our data.
We will also use it to save this grid or create a new one.

To solve this problem, we'll use Python's built-in linecache module to grab the header.
We could open the file, loop through the lines, store each one in a variable, and then close
the file. However, linecache reduces the solution to a single line. The following line reads
the first line in the file to a variable called line1:

import linecache
line1 = linecache.getline("myGrid.asc", 1)

In the examples in this chapter, we'll use this technique to create a simple header processor
that can parse these headers into Python variables in just a few lines. Now that we know
how to read grids, let's learn how to write them.

http://git.io/vYapU
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Writing grids
Writing grids in NumPy is just as easy as reading them. We use the corresponding
numpy.savetxt() function to save a grid to a text file. The only catch is that we must
build and add the six lines of header information before we dump the array to the file. This
process is slightly different for different versions of NumPy. In either case, you build the
header as a string first. If you are using NumPy 1.7 or later, the savetext() method has an
optional argument called header that lets you specify a string as an argument. You can
quickly check your NumPy version from the command line using the following command:

python -c "import numpy;print(numpy.__version__)"
1.8.2

The backward-compatible method is to open a file, write the header, and then dump the
array. Here is a sample of the version 1.7 approach to save an array called myArray to an
ASCIIGRID file called myGrid.asc:

header = "ncols {}\n".format(myArray.shape[1])
header += "nrows {}\n".format(myArray.shape[0])
header += "xllcorner 277750.0\n"
header += "yllcorner 6122250.0\n"
header += "cellsize 1.0\n"
header += "NODATA_value -9999"
numpy.savetxt("myGrid.asc", myArray, header=header, fmt="%1.2f")

We make use of Python format strings, which allow you to put placeholders in a string to
format the Python objects to be inserted. The {} format variable turns the object you refer
to into a string. In this case, we are referencing the number of columns and rows in the
array.

In NumPy, an array has two properties:

Size: It returns an integer for the number of values in the array.
Shape: It returns a tuple with the number of rows and columns, respectively.

So, in the preceding example, we use the shape property tuple to add the row and column
counts to the header of our ASCII Grid. Notice that we also add a trailing newline character
for each line (\n). There is no reason to change the x and y values, cell size, or no data value
unless we altered them in the script.
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The savetxt() method also has an fmt argument, which allows you to use Python format
strings to specify how the array values are written. In this case, the %1.2f value specifies
floats with at least one number and no more than two decimal places. The backward-
compatible version for NumPy, before 1.6, builds the header string in the same way but
creates the file handle first:

with open("myGrid.asc", "w") as f:
 f.write(header)
 numpy.savetxt(f, str(myArray), fmt="%1.2f")

As you'll see in the upcoming examples, this ability to produce valid geospatial data files
using only NumPy is quite powerful. In the next couple of examples, we'll be using an
ASCIIGRID Digital Elevation Model (DEM) of a mountainous area near Vancouver,
British Columbia, in Canada.

You can download this sample as a ZIP file at the following URL: http:/ /
git.io/ vYwUX.

The following image is the raw DEM that was colorized using QGIS with a color ramp that
makes the lower elevation values dark blue and higher elevation values bright red:

While we can conceptually understand the data in this way, it is not an intuitive way to
visualize the data. Let's see if we can do better by creating a shaded relief.
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Creating a shaded relief
Shaded relief maps color elevation in such a way that it looks as if the terrain is cast in a
low angle light, which creates bright spots and shadows. This aesthetic styling creates an
almost photographic illusion, which is easy to grasp so that we can understand the
variation in the terrain. It is important to note that this style is truly an illusion as the light
is often physically inaccurate in terms of the solar angle, and the elevation is usually
exaggerated to increase contrast.

In this example, we'll use the ASCII DEM we referenced previously to create another grid
that represents a shaded relief version of the terrain in NumPy. This terrain is quite
dynamic, so we won't need to exaggerate the elevation; however, the script has a variable
called z, which can be increased from 1.0 to scale the elevation up.

After we have defined all the variables, including the input and output filenames, we'll see
the header parser based on the linecache module, which also uses a Python list
comprehension to loop and parse the lines that are then split from a list into six variables.
We also create a y cell size called ycell, which is just the inverse of the cell size by
convention. If we don't do this, the resulting grid will be transposed.

Note that we define filenames for slope and aspect grids, which are two
intermediate products that are combined to create the final product. These
intermediate grids are output as well. They can also serve as inputs to
other types of products.

This script uses a three-by-three windowing method to scan the image and smooth out the
center value in these mini-grids to process the image efficiently. It does so within the
memory constraints of your computer. However, because we are using NumPy, we can
process the entire array at once via matrices, as opposed to using a lengthy series of nested
loops. This technique is based on the excellent work of a developer named Michal
Migurski, who implemented the clever NumPy version of Matthew Perry's C++
implementation, which served as the basis for the DEM tools in the GDAL suite.
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After the slope and aspect have been calculated, they are used to output the shaded relief.
The slope is the steepness of a hill or mountain, while the aspect is the direction the grid cell
faces that is specified as a degree between 0 and 360. Finally, everything is saved to the disk
from NumPy. In the savetxt() method, we specify a four-integer format string as the
peak elevations are several thousand meters:

First, we'll import the linecache module to parse the header and the numpy1.
module to do the processing:

from linecache import getline
import numpy as np

Next, we'll set up all of the variable names that will define how the shaded relief2.
is processed:

# File name of ASCII digital elevation model
source = "dem.asc"

# File name of the slope grid
slopegrid = "slope.asc"

# File name of the aspect grid
aspectgrid = "aspect.asc"

# Output file name for shaded relief
shadegrid = "relief.asc"

# Shaded elevation parameters
# Sun direction
azimuth = 315.0

# Sun angle
altitude = 45.0

# Elevation exageration
z = 1.0

# Resolution
scale = 1.0

# No data value for output
NODATA = -9999

# Needed for numpy conversions
deg2rad = 3.141592653589793 / 180.0
rad2deg = 180.0 / 3.141592653589793
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Now that our variables are set up, we can parse the header:3.

# Parse the header using a loop and
# the built-in linecache module
hdr = [getline(source, i) for i in range(1, 7)]
values = [float(h.split(" ")[-1].strip()) for h in hdr]
cols, rows, lx, ly, cell, nd = values
xres = cell
yres = cell * -1

Next, we can load the actual data using numpy by skipping the header portion:4.

# Load the dem into a numpy array
arr = np.loadtxt(source, skiprows=6)

We're going to loop through the data, row by row, column by column, to process5.
it. Please note, however, that we're going to skip the outer edges that contain
nodata values. We'll break the data into smaller grids of 3 x 3 pixels as we go
because for each grid cell, we need to see the cells surrounding it:

# Exclude 2 pixels around the edges which are usually NODATA.
# Also set up structure for 3 x 3 windows to process the slope
# throughout the grid
window = []
for row in range(3):
 for col in range(3):
 window.append(arr[row:(row + arr.shape[0] - 2),
 col:(col + arr.shape[1] - 2)])

# Process each 3x3 window in both the x and y directions
x = ((z * window[0] + z * window[3] + z * window[3] + z *
 window[6]) -
 (z * window[2] + z * window[5] + z * window[5] + z *
 window[8])) / \
 (8.0 * xres * scale)
y = ((z * window[6] + z * window[7] + z * window[7] + z *
 window[8]) -
 (z * window[0] + z * window[1] + z * window[1] + z *
 window[2])) / \
 (8.0 * yres * scale)

For each 3 x 3 mini-window, we'll calculate slope, aspect, and then the shaded6.
relief value:

# Calculate slope
slope = 90.0 - np.arctan(np.sqrt(x * x + y * y)) * rad2deg

# Calculate aspect
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aspect = np.arctan2(x, y)

# Calculate the shaded relief
shaded = np.sin(altitude * deg2rad) * np.sin(slope * deg2rad) + \
 np.cos(altitude * deg2rad) * np.cos(slope * deg2rad) * \
 np.cos((azimuth - 90.0) * deg2rad - aspect)

Next, we need to scale each value between 0-255 so that it can be viewed as an7.
image:

# Scale values from 0-1 to 0-255
shaded = shaded * 255

Now, we have to rebuild our header since we have ignored the outer edge of the8.
nodata values and our dataset is smaller:

# Rebuild the new header
header = "ncols {}\n".format(shaded.shape[1])
header += "nrows {}\n".format(shaded.shape[0])
header += "xllcorner {}\n".format(lx + (cell * (cols -
 shaded.shape[1])))
header += "yllcorner {}\n".format(ly + (cell * (rows -
 shaded.shape[0])))
header += "cellsize {}\n".format(cell)
header += "NODATA_value {}\n".format(NODATA)

Next, we'll set any nodata values to the chosen nodata values we set in our9.
variables at the beginning:

# Set no-data values
for pane in window:
 slope[pane == nd] = NODATA
 aspect[pane == nd] = NODATA
 shaded[pane == nd] = NODATA

We're going to save the slope and aspect grids separately so that we can view10.
them later and understand how the shaded relief is created:

# Open the output file, add the header, save the slope grid
with open(slopegrid, "wb") as f:
 f.write(bytes(header, "UTF-8")
 np.savetxt(f, slope, fmt="%4i")

# Open the output file, add the header, save the aspectgrid
with open(aspectgrid, "wb") as f:
 f.write(bytes(header, "UTF-8")
 np.savetxt(f, aspect, fmt="%4i")
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# Open the output file, add the header, save the relief grid
with open(shadegrid, "wb") as f:
 f.write(bytes(header, 'UTF-8'))
 np.savetxt(f, shaded, fmt="%4i")

If we load the output shaded relief grid to QGIS and specify the styling to stretch the image
to the minimum and maximum values, we will see the following image:

If QGIS asks you for a projection, the data is EPSG:3157. You can also open the image in the
FWTools OpenEV application we discussed in the Installing GDAL section of Chapter
4, Geospatial Python Toolbox, which will automatically stretch the image for optimal viewing.

As you can see, the preceding image is much easier to comprehend than the pseudo-color
representation that we examined originally. Next, let's look at the slope raster that's used to
create the shaded relief:
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The slope shows the gradual decline in elevation from the high points to low points in all
the directions of the dataset. The slope is an especially useful input for many types of
hydrology models:
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The aspect shows the maximum rate of a downslope change from one cell to its neighbors.
If you compare the aspect image to the shaded relief image, you will see that the red and
gray values of the aspect image correspond to shadows in the shaded relief. So, the slope is
primarily responsible for turning the DEM into a terrain relief while the aspect is
responsible for shading.

Now that we can display the data in a useful way, let's see if we can also create other data
from it.

Creating elevation contours
 A contour is an isoline along the same elevation in a dataset. Contours are usually stepped
at intervals to create an intuitive way to represent elevation data, both visually and
numerically, using a resource-efficient vector dataset. Now, let's look at another way to
visualize the elevation better using contours.

The input is used to generate contours in our DEM and the output is a shapefile. The
algorithm (Marching Squares: https:/ /en.wikipedia. org/ wiki/ Marching_ squares) that's
used to generate contours is fairly complex and very difficult to implement using NumPy's
linear algebra. In this case, our solution is to fall back on the GDAL library, which has a
contouring method available through the Python API. In fact, the majority of this script is
just setting up the OGR library code that is needed to output a shapefile. The actual
contouring is a single method call named gdal.ContourGenerate(). Just before this call,
there are comments that define the method's arguments. The most important ones are as
follows:

contourInterval: This is the distance in the dataset units between contours.
contourBase: This is the starting elevation for the contouring.
fixedLevelCount: This specifies a fixed number of contours as opposed to
distance.
idField: This is the name for a required shapefile dbf field, usually just called
ID.
elevField: This is the name for a required shapefile dbf field for the elevation
value and is useful for labeling in maps.
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You should have GDAL and OGR installed from the Installing GDAL section of Chapter 4,
Geospatial Python Toolbox. We will be implementing the following steps:

First, we will define the input DEM filename.1.
Then, we will output the shapefile's name.2.
Next, we'll create the shapefile data source with OGR.3.
Then, we'll get the OGR layer.4.
Next, we'll open the DEM.5.
Finally, we'll generate contours on the OGR layer.6.

Let's look at a code representation of the preceding steps:

First, we load in the gdal and ogr libraries to handle the data:1.

import gdal
import ogr

Then we'll set up a variable for our filename:2.

# Elevation DEM
source = "dem.asc"

Next, we'll create the beginnings of our output shapefile using OGR:3.

# Output shapefile
target = "contour"
ogr_driver = ogr.GetDriverByName("ESRI Shapefile")
ogr_ds = ogr_driver.CreateDataSource(target + ".shp")
ogr_lyr = ogr_ds.CreateLayer(target,
# wkbLineString25D is the type code for geometry with a z
# elevation value.
geom_type=ogr.wkbLineString25D)
field_defn = ogr.FieldDefn("ID" ogr.OFTInteger)
ogr_lyr.CreateField(field_defn)
field_defn = ogr.FieldDefn("ELEV" ogr.OFTReal)
ogr_lyr.CreateField(field_defn)

Then, we'll create some contours:4.

# gdal.ContourGenerate() arguments
# Band srcBand,
# double contourInterval,
# double contourBase,
# double[] fixedLevelCount,
# int useNoData,
# double noDataValue,
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# Layer dstLayer,
# int idField,
# int elevField
ds = gdal.Open(source)

# EPGS:3157
gdal.ContourGenerate(ds.GetRasterBand(1), 400, 10, [], 0, 0,
ogr_lyr, 0, 1))
ogr_ds = None

Now, let's draw the contour shapefile that we just created using pngcanvas,5.
which we introduced in the PNGCanvas section of Chapter 4, Geospatial Python
Toolbox:

import shapefile
import pngcanvas

# Open the contours
r = shapefile.Reader("contour.shp")

# Setup the world to pixels conversion
xdist = r.bbox[2] - r.bbox[0]
ydist = r.bbox[3] - r.bbox[1]
iwidth = 800
iheight = 600
xratio = iwidth/xdist
yratio = iheight/ydist
contours = []

# Loop through all shapes
for shape in r.shapes():
 # Loop through all parts
 for i in range(len(shape.parts)):
   pixels = []
   pt = None
   if i < len(shape.parts) - 1:
     pt = shape.points[shape.parts[i]:shape.parts[i+1]]
   else:
     pt = shape.points[shape.parts[i]:]
   for x, y in pt:
     px = int(iwidth - ((r.bbox[2] - x) * xratio))
     py = int((r.bbox[3] - y) * yratio)
     pixels.append([px, py])
     contours.append(pixels)

# Set up the output canvas
canvas = pngcanvas.PNGCanvas(iwidth, iheight)
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# PNGCanvas accepts rgba byte arrays for colors
red = [0xff, 0, 0, 0xff]
canvas.color = red

# Loop through the polygons and draw them
for c in contours:
 canvas.polyline(c)

# Save the image
with open("contours.png", "wb") as f:
 f.write(canvas.dump())

We will end up with the following image:
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If we bring our shaded relief ASCIIGRID and the shapefile into a GIS, such as QGIS, we can
create a simple topographic map, as follows. You can use the elevation (that is, ELEV) dbf
field that you specified in the script to label the contour lines with the elevation:

The techniques that were used in these NumPy grid examples provide the building blocks
for all kinds of elevation products. Next, we'll work with one of the most complex elevation
data types: LIDAR data.

Working with LIDAR data
LIDAR stands for Light Detection and Ranging. It is similar to radar-based images but 
uses finite laser beams that hit the ground hundreds of thousands of times per second to
collect a huge amount of very fine (x,y,z) locations, as well as time and intensity. The
intensity value is what really separates LIDAR from other data types. For example, the
asphalt rooftop of a building may be of the same elevation as the top of a nearby tree, but
the intensities will be different. Just like remote sensing, radiance values in a multispectral
satellite image allow us to build classification libraries. The intensity values of LIDAR data
allow us to classify and colorize LIDAR data.
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The high volume and precision of LIDAR actually make it difficult to use. A LIDAR dataset
is referred to as a point cloud because the shape of the dataset is usually irregular as the
data is three-dimensional with outlying points. There's not many software packages that
effectively visualize point clouds.

Furthermore, an irregular-shaped collection of finite points is just hard to interact with,
even when we are using appropriate software.

For these reasons, one of the most common operations on LIDAR data is to project data and
resample it to a regular grid. We'll do this using a small LIDAR dataset. This dataset is
approximately 7 MB uncompressed and contains over 600,000 points. The data captures
some easily identifiable features, such as buildings, trees, and cars in parking lots. You can
download the zipped dataset from http:/ /git. io/vOERW.

The file format is a very common binary format specific to LIDAR called LAS, which is
short for laser. Unzip this file to your working directory. To read this format, we'll use a
pure Python library called laspy. You can install Python version 3.7 using the following
command:

pip install http://git.io/vOER9

With laspy installed, we are ready to create a grid from LIDAR.

Creating a grid from the LIDAR data
This script is fairly straightforward. We loop through the (x,y) point locations in the LIDAR
data and project them to our grid with a cell size of one meter. Due to the precision of the
LIDAR data, we'll end up with multiple points in a single cell. We average these points to
create a common elevation value. Another issue that we have to deal with is data loss.
Whenever you resample the data, you lose information.

In this case, we'll end up with NODATA holes in the middle of the raster. To deal with this
issue, we fill these holes with average values from the surrounding cells, which is a form of
interpolation. We only need two modules, both available on PyPI, as shown in the
following code:

from laspy.file import File
import numpy as np

# Source LAS file
source = "lidar.las"

# Output ASCII DEM file

http://git.io/vOERW
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target = "lidar.asc"

# Grid cell size (data units)
cell = 1.0

# No data value for output DEM
NODATA = 0

# Open LIDAR LAS file
las = File(source, mode="r")

# xyz min and max
min = las.header.min
max = las.header.max

# Get the x axis distance in meters
xdist = max[0] - min[0]

# Get the y axis distance in meters
ydist = max[1] - min[1]

# Number of columns for our grid
cols = int(xdist) / cell

# Number of rows for our grid
rows = int(ydist) / cell
cols += 1
rows += 1

# Track how many elevation
# values we aggregate
count = np.zeros((rows, cols)).astype(np.float32)

# Aggregate elevation values
zsum = np.zeros((rows, cols)).astype(np.float32)

# Y resolution is negative
ycell = -1 * cell

# Project x, y values to grid
projx = (las.x - min[0]) / cell
projy = (las.y - min[1]) / ycell

# Cast to integers and clip for use as index
ix = projx.astype(np.int32)
iy = projy.astype(np.int32)

# Loop through x, y, z arrays, add to grid shape,
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# and aggregate values for averaging
for x, y, z in np.nditer([ix, iy, las.z]):
 count[y, x] += 1
 zsum[y, x] += z

# Change 0 values to 1 to avoid numpy warnings,
# and NaN values in array
nonzero = np.where(count > 0, count, 1)

# Average our z values
zavg = zsum / nonzero

# Interpolate 0 values in array to avoid any
# holes in the grid
mean = np.ones((rows, cols)) * np.mean(zavg)
left = np.roll(zavg, -1, 1)
lavg = np.where(left > 0, left, mean)
right = np.roll(zavg, 1, 1)
ravg = np.where(right > 0, right, mean)
interpolate = (lavg + ravg) / 2
fill = np.where(zavg > 0, zavg, interpolate)

# Create our ASCII DEM header
header = "ncols {}\n".format(fill.shape[1])
header += "nrows {}\n".format(fill.shape[0])
header += "xllcorner {}\n".format(min[0])
header += "yllcorner {}\n".format(min[1])
header += "cellsize {}\n".format(cell)
header += "NODATA_value {}\n".format(NODATA)

# Open the output file, add the header, save the array
with open(target, "wb") as f:
 f.write(bytes(header, 'UTF-8'))
 # The fmt string ensures we output floats
 # that have at least one number but only
 # two decimal places
 np.savetxt(f, fill, fmt="%1.2f")
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The result of our script is an ASCIIGRID, which looks like the following image when
viewed in OpenEV. Higher elevations are lighter while lower elevations are darker. Even in
this form, you can see buildings, trees, and cars:

If we assigned a heat map color ramp, the colors give you a sharper sense of the elevation
differences:
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So, what happens if we run this output DEM through our shaded relief script from earlier?
There's a big difference between straight-sided buildings and sloping mountains. If you
change the input and output names in the shaded relief script to process the LIDAR DEM,
we get the following slope result:

The gently rolling slope of the mountainous terrain is reduced to outlines of major features
in the image. In the aspect image, the changes are so sharp and over such short distances
that the output image is very chaotic to view, as shown in the following screenshot:



Python and Elevation Data Chapter 7

[ 299 ]

Despite the difference between these images and the coarser but somewhat smoother
mountain versions, we still get a very nice shaded relief, which visually resembles a black
and white photograph:

Now that we know how to process LIDAR data, let's learn how to visualize it using Python.

Using PIL to visualize LIDAR data
The previous DEM images in this chapter were visualized using QGIS and OpenEV. We
can also create output images in Python by introducing some new functions of the Python
Imaging Library (PIL) that we didn't use in the previous chapters.

In this example, we'll use the PIL.ImageOps module, which has functions for histogram
equalization and automatic contrast enhancement. We'll use PIL's fromarray() method to
import the data from numpy. Let's see how close we can get to the output of the desktop GIS
programs that were pictured in this chapter with the help of the following code:

import numpy as np

try:
 import Image
 import ImageOps
except ImportError:
 from PIL import Image, ImageOps

# Source gridded LIDAR DEM file
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source = "lidar.asc"

# Output image file
target = "lidar.bmp"

# Load the ASCII DEM into a numpy array
arr = np.loadtxt(source, skiprows=6)

# Convert array to numpy image
im = Image.fromarray(arr).convert("RGB")

# Enhance the image:
# equalize and increase contrast
im = ImageOps.equalize(im)
im = ImageOps.autocontrast(im)

# Save the image
im.save(target)

As you can see, in the following image, the enhanced shaded relief has sharper relief than
the previous version:

Now, let's colorize our shaded relief. We'll use the built-in Python colorsys module for 
color space conversion. Normally, we specify colors as RGB values. However, to create a
color ramp for a heat map scheme, we'll use HSV (short for Hue, Saturation, and Value)
values to generate our colors.
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The advantage of HSV is that you can tweak the H value to be a degree between 0 and 360
on a color wheel. Using a single value for hue allows you to use a linear ramping equation,
which is much easier than trying to deal with combinations of three separate RGB values.
The following image, which was taken from the online magazine Qt Quarterly, illustrates
the HSV color model:

The colorsys module lets you switch back and forth between the HSV and RGB values.
The module returns percentages for RGB values, which must then be mapped to the 0-255
scale for each color.

In the following code, we'll convert the ASCII DEM into a PIL image, build our color
palette, apply the color palette to the grayscale image, and save the image:

import numpy as np

try:
 import Image
 import ImageOps
except:
 from PIL import Image, ImageOps
import colorsys

# Source LIDAR DEM file
source = "lidar.asc"

# Output image file
target = "lidar.bmp"

# Load the ASCII DEM into a numpy array
arr = np.loadtxt(source, skiprows=6)

# Convert the numpy array to a PIL image.
# Use black and white mode so we can stack
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# three bands for the color image.
im = Image.fromarray(arr).convert('L')

# Enhance the image
im = ImageOps.equalize(im)
im = ImageOps.autocontrast(im)

# Begin building our color ramp
palette = []

# Hue, Saturation, Value
# color space starting with yellow.
h = .67
s = 1
v = 1

# We'll step through colors from:
# blue-green-yellow-orange-red.
# Blue=low elevation, Red=high-elevation
step = h / 256.0

# Build the palette
for i in range(256):
 rp, gp, bp = colorsys.hsv_to_rgb(h, s, v)
 r = int(rp * 255)
 g = int(gp * 255)
 b = int(bp * 255)
 palette.extend([r, g, b])
 h -= step

# Apply the palette to the image
im.putpalette(palette)

# Save the image
im.save(target)
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The preceding code produces the following image, with higher elevations in warmer colors
and lower elevations in cooler colors:

In this image, we actually get more variation than the default QGIS version. We could
potentially improve this image with a smoothing algorithm that would blend the colors
where they meet and soften the image visually. As you can see, we have the full range of
our color ramp expressed from cool to warm colors, as the elevation change increases.

Creating a triangulated irregular network
The following example is our most sophisticated example yet. A triangulated irregular
network (TIN) is a vector representation of a point dataset in a vector surface of points
connected as triangles. An algorithm determines which points are absolutely necessary to
accurately represent the terrain as opposed to a raster, which stores a fixed number of cells
over a given area and may repeat elevation values in adjacent cells that could be more
efficiently stored as a polygon.

A TIN can also be resampled more efficiently on the fly than a raster, which requires less
computer memory and processing power when using TIN in a GIS. The most common type
of TIN is based on Delaunay triangulation, which includes all the points without
redundant triangles.
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The Delaunay triangulation is very complex. We'll use a pure Python library written by Bill
Simons as part of Steve Fortune's Delaunay triangulation algorithm called voronoi.py to
calculate the triangles in our LIDAR data. You can download the script to your working
directory or site-packages directory from http:/ /git. io/ vOEuJ.

This script reads the LAS file, generates the triangles, loops through them, and writes out a
shapefile. For this example, we'll use a clipped version of our LIDAR data to reduce the
area to process. If we run our entire dataset of 600,000+ points, the script will run for hours
and generate over half a million triangles. You can download the clipped LIDAR dataset as
a ZIP file from the following URL: http:/ /git. io/ vOE62.

We have several status messages that print while the script runs because of the time-
intensive nature of the following example, which can take several minutes to complete.
We'll be storing the triangles as PolygonZ types, which allow the vertices to have a z
elevation value. Unzip the LAS file and run the following code to generate a shapefile
called mesh.shp:

First, we import our libraries:1.

import pickle
import os
import time
import math
import numpy as np
import shapefile
from laspy.file import File
# voronoi.py for Python 3: pip install http://git.io/vOEuJ
import voronoi

Next, we define the location and name of our LIDAR file, our target output file,2.
and our pickle file:

# Source LAS file
source = "clippedLAS.las"

# Output shapefile
target = "mesh"

# Triangles pickle archive
archive = "triangles.p"
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Now, we'll create a point class that's needed by the voronoi module:3.

class Point:
 """Point class required by the voronoi module"""
 def __init__(self, x, y):
   self.px = x
   self.py = y

def x(self):
 return self.px

def y(self):
 return self.py

Next, we'll create a triangle array to keep track of the triangles that have been4.
created for the mesh:

# The triangle array holds tuples
# 3 point indices used to retrieve the points.
# Load it from a pickle
# file or use the voronoi module
# to create the triangles.
triangles = None

Next, we need to open our LIDAR file and pull the points:5.

 # Open LIDAR LAS file
 las = File(source, mode="r")
else:

# Open LIDAR LAS file
 las = File(source, mode="r")
 points = []
 print("Assembling points...")

# Pull points from LAS file
 for x, y in np.nditer((las.x, las.y)):
 points.append(Point(x, y))
 print("Composing triangles...")
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Now, we can perform a Delaunay calculation on the points to build the triangles:6.

# Delaunay Triangulation
 triangles = voronoi.computeDelaunayTriangulation(points)

We'll dump the triangles to the pickle archive to save time if we run this exact7.
script again:

 # Save the triangles to save time if we write more than
 # one shapefile.
 f = open(archive, "wb")
 pickle.dump(triangles, f, protocol=2)
 f.close()

Next, we can create a shapefile Writer object to begin creating our output8.
shapefile by setting up the necessary fields:

print("Creating shapefile...")
 # PolygonZ shapefile (x, y, z, m)
 w = shapefile.Writer(target, shapefile.POLYGONZ)
 w.field("X1", "C", "40")
 w.field("X2", "C", "40")
 w.field("X3", "C", "40")
 w.field("Y1", "C", "40")
 w.field("Y2", "C", "40")
 w.field("Y3", "C", "40")
 w.field("Z1", "C", "40")
 w.field("Z2", "C", "40")
 w.field("Z3", "C", "40")
 tris = len(triangles)

Then, we loop through the triangles and create the mesh:9.

# Loop through shapes and
 # track progress every 10 percent
 last_percent = 0
 for i in range(tris):
     t = triangles[i]
     percent = int((i/(tris*1.0))*100.0)
     if percent % 10.0 == 0 and percent > last_percent:
         last_percent = percent
         print("{} % done - Shape {}/{} at {}".format(percent,
         i, tris, time.asctime()))
 part = []
 x1 = las.x[t[0]]
 y1 = las.y[t[0]]
 z1 = las.z[t[0]]
 x2 = las.x[t[1]]
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 y2 = las.y[t[1]]
 z2 = las.z[t[1]]
 x3 = las.x[t[2]]
 y3 = las.y[t[2]]
 z3 = las.z[t[2]]

Next, we can eliminate any extremely long line segments, which are10.
miscalculations by the library:

 # Check segments for large triangles
 # along the convex hull which is a common
 # artifact in Delaunay triangulation
 max = 3
 if math.sqrt((x2-x1)**2+(y2-y1)**2) > max:
 continue
 if math.sqrt((x3-x2)**2+(y3-y2)**2) > max:
 continue
 if math.sqrt((x3-x1)**2+(y3-y1)**2) > max:
 continue
 part.append([x1, y1, z1, 0])
 part.append([x2, y2, z2, 0])
 part.append([x3, y3, z3, 0])
 w.poly(parts=[part])
 w.record(x1, x2, x3, y1, y2, y3, z1, z2, z3)
 print("Saving shapefile...")

Finally, we can save the output shapefile:11.

w.close()
print("Done.")
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The following image shows a zoomed-in version of the TIN over the colorized LIDAR data:

The mesh provides an efficient, continuous surface from point clouds, which can be easier
to deal with than the point clouds themselves.

Summary
Elevation data can often provide a complete dataset for analysis and derivative products
without any other data. In this chapter, you learned how to read and write ASCII Grids
using only NumPy. You also learned how to create shaded reliefs, slope grids, and aspect
grids. We created elevation contours using a little-known feature called contour of the
GDAL library that's available for Python.

Next, we transformed LIDAR data into an easy-to-manipulate ASCII Grid. We
experimented with different ways to visualize the LIDAR data with the PIL. Finally, we
created a 3D surface or TIN by turning a LIDAR point cloud into a 3D shapefile of
polygons. These are the tools of terrain analysis that are used for transportation planning,
construction planning, hydrological drainage modeling, geologic exploration, and more. 

In the next chapter, we'll combine the building blocks from the previous three chapters to
perform some advanced modeling and actually create some information products.
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Further reading
You can find some additional tutorials on Python and elevation data at the following
link: https://www. earthdatascience. org/ tutorials/ python/ elevation/ .
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3
Section 3: Practical Geospatial

Processing Techniques
This section is of an advanced level and it will require all of the skills you learned
previously. It starts off with learning how to create geospatial models to answer specific
questions. Further, it will show you a few techniques for building geospatial models and
how it will help to predict the future using visualization concepts. We'll move on to
accessing and processing real-time data. At the end of this section, we'll combine all that we
learned in the previous sections and implement a system to create an outdoor running or
hiking report based on GPS data and geotagged photos.

This section includes the following chapters:

Chapter 8, Advanced Geospatial Python Modeling
Chapter 9, Real-Time Data
Chapter 10, Putting It All Together
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Advanced Geospatial Python

Modeling
In this chapter, we'll build on the data processing concepts that we've learned in order to
create some full-scale information products. The previously introduced data processing
methods rarely provide answers to questions by themselves. You combine these data
processing methods to build a geospatial model from multiple processed datasets. A
geospatial model is a simplified representation of some aspect of the real world, which
helps us answer one or more questions about a project or problem. In this chapter, we will
introduce some important geospatial algorithms that are commonly used in agriculture,
emergency management, logistics, and other industries.

The products that we will create are as follows:

A crop health map
A flood inundation model
A colorized hillshade
A terrain routing map
A street routing map
A shapefile with links to geolocated photos

While these products are task-specific, the algorithms that are used to create them are
widely applied in geospatial analysis. We will be covering the following topics in this
chapter:

Creating a normalized difference vegetative index (NVDI)
Creating a flood inundation model
Creating a color hillshade
Performing least cost path analysis
Converting the route to a shapefile
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Routing along streets
Geolocating photos
Calculating satellite image cloud cover

The examples in this chapter are longer and more involved than in the previous chapters.
For that reason, there are far more code comments to make the programs easier to follow.
We will also use more functions in these examples. In previous chapters, functions were
mostly avoided for clarity, but these examples are sufficiently complex that certain
functions make the code easier to read. These examples are actual processes that you would
use on the job as a geospatial analyst.

Technical requirements
For this chapter, the following requirements need to be satisfied:

Version: Python 3.6 or higher
RAM: Minimum 6 GB (Windows), 8 GB (macOS); recommended 8 GB
Storage: Minimum 7,200 RPM SATA with 20 GB of available space,
recommended SSD with 40 GB of available space.
Processor: Minimum Intel Core i3 2.5 GHz, recommended Intel Core i5.

Creating a normalized difference vegetative
index
Our first example will be an normalized difference vegetative index (NVDI). NDVIs are
used to show the relative health of plants in an area of interest. An NDVI algorithm uses
satellite or aerial imagery to show relative health by highlighting the chlorophyll density in
plants. NDVIs use only the red and near-infrared bands. The formula of NDVI is as follows:

NDVI = (Infrared – Red) / (Infrared + Red)

The goal of this analysis is to produce, to begin with, a multispectral image containing
infrared and red bands, and end up with a pseudo color image using seven classes, which
color the healthier plants darker green, less-healthy plants lighter green, and bare soil
brown.
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Because the health index is relative, it is important to localize the area of interest. You could
perform a relative index for the entire globe but vast areas, such as the Sahara desert on the
low-vegetation extreme and densely forested areas, such as the Amazon jungle, skew the
results for vegetation in the middle range. However, that being said, climate scientists
routinely create global NDVIs to study worldwide trends. The more common application,
though, is for managed areas, such as a forest or a farm field, as in this example.

We will begin with an analysis of a single farm field in the Mississippi Delta. To do so, we'll
start with a multispectral image of a fairly large area and use a shapefile in order to isolate a
single field. The image in the following screenshot is our broad area, with the field of
interest highlighted in yellow:

You can download this image and the shapefile for the farm field as a ZIP file from http:/ /
git.io/v3fS9.

For this example, we'll use GDAL, OGR, gdal_array/numpy, and the Python Imaging
Library (PIL) to clip and process the data. In the other examples in this chapter, we'll just 
use simple ASCII Grids and NumPy. As we'll be using ASCII elevation grids, GDAL isn't
required. In all examples, the scripts use the following convention:

Import libraries.
Define functions.
Define global variables, such as filenames.
Execute the analysis.
Save the output.

http://git.io/v3fS9
http://git.io/v3fS9
http://git.io/v3fS9
http://git.io/v3fS9
http://git.io/v3fS9
http://git.io/v3fS9
http://git.io/v3fS9
http://git.io/v3fS9
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Our approach to the crop health example is split into two scripts. The first script creates the 
index image, which is a grayscale image. The second script classifies the index and outputs
a colored image. In this first script, we'll execute the following steps to create the index
image:

Read the infrared band.1.
Read the field boundary shapefile.2.
Rasterize the shapefile to an image.3.
Convert the shapefile image to a NumPy array.4.
Use the NumPy array to clip the red band to the field.5.
Do the same for the infrared band.6.
Use the band arrays to execute the NDVI algorithm in NumPy.7.
Save the resulting indexing algorithm to a GeoTIFF file using gdal_array.8.

We will discuss this script in sections to make it easier to follow. The code comments will
also tell you what is going on at each step of the way.

Setting up the framework
Setting up the framework will help us to import the modules that we need and set up the
functions that we'll use for steps 1 to 5 of the preceding instructions. The imageToArray()
function converts a PIL image to a NumPy array and is dependent on the gdal_array and
PIL modules. The world2Pixel() function converts geospatial coordinates to the pixel
coordinates of our target image. This function uses the georeferencing information that is
presented by the gdal module. The copy_geo() function copies the georeferencing
information from our source image to our target array but accounts for the offset that is
created when we clip the image. These functions are fairly generic and can serve a role in a
variety of different remote sensing processes beyond this example:

First, we import our libraries:1.

import gdal
from osgeo import gdal
from osgeo import gdal_array
from osgeo import ogr
try:
 import Image
 import ImageDraw
except ImportError:
 from PIL import Image, ImageDraw
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Then, we need a function to convert an image to a numpy array:2.

def imageToArray(i):
    """
    Converts a Python Imaging Library
    array to a gdal_array image.
    """
    a = gdal_array.numpy.fromstring(i.tobytes(), 'b')
    a.shape = i.im.size[1], i.im.size[0]
    return a

Now, we'll set up a function to convert the coordinates to image pixels:3.

def world2Pixel(geoMatrix, x, y):
 """
 Uses a gdal geomatrix (gdal.GetGeoTransform())
 to calculate the pixel location of a
 geospatial coordinate
 """
 ulX = geoMatrix[0]
 ulY = geoMatrix[3]
 xDist = geoMatrix[1]
 yDist = geoMatrix[5]
 rtnX = geoMatrix[2]
 rtnY = geoMatrix[4]
 pixel = int((x - ulX) / xDist)
 line = int((ulY - y) / abs(yDist))
 return (pixel, line)

Finally, we'll create a function to copy geographic metadata from an image:4.

def copy_geo(array, prototype=None, xoffset=0, yoffset=0):
 """Copy geotransfrom from prototype dataset to array but account
 for x, y offset of clipped array."""
 ds = gdal_array.OpenArray(array)
 prototype = gdal.Open(prototype)
 gdal_array.CopyDatasetInfo(prototype, ds,
 xoff=xoffset, yoff=yoffset)
 return ds

The next step is to load the data, which we'll be checking in the next section.
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Loading the data
In this section, we load the source image of a farm field using gdal_array, which takes it
straight into a NumPy array. We also define the name of our output image, which will be
ndvi.tif. One interesting piece of this section is that we load the source image a second
time using the gdal module, as opposed to gdal_array.

This second call is to capture the georeferencing data for the image that is available through
gdal, and not gdal_array. Fortunately, gdal only loads raster data on demand, so this
approach avoids loading the complete dataset into the memory twice. Once we have the
data as a multidimensional NumPy array, we split out the red and infrared bands, as they
will both be used in the NDVI equation:

# Multispectral image used
# to create the NDVI. Must
# have red and infrared
# bands
source = "farm.tif"

# Output geotiff file name
target = "ndvi.tif"

# Load the source data as a gdal_array array
srcArray = gdal_array.LoadFile(source)

# Also load as a gdal image to
# get geotransform info
srcImage = gdal.Open(source)
geoTrans = srcImage.GetGeoTransform()

# Red and infrared (or near infrared) bands
r = srcArray[1]
ir = srcArray[2]

Now that we have our data loaded, we can turn our shapefile into a raster.

Rasterizing the shapefile
This section begins the process of clipping. However, the first step is to rasterize the
shapefile that outlines the boundary of the specific area that we are going to analyze. That
area is within the larger field.tif satellite image. In other words, we convert it from
vector data to raster data. But we also want to fill in the polygon when we convert it so that
it can be used as an image mask. The pixels in the mask will be correlated to the pixels in
the red and infrared arrays.
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Any pixels outside the mask will be turned to NODATA pixels so they are not processed as
part of the NDVI. To make this correlation, we'll need the solid polygon to be a NumPy
array, just like the raster bands. This approach will make sure our NDVI calculation will be
limited to the farm field.

The easiest way to convert the shapefile polygon into a filled polygon as a NumPy array is
to plot it as a polygon in a PIL image, fill that polygon in, and then convert it to a NumPy
array using existing methods, in both PIL and NumPy, which allow that conversion.

In this example, we use the ogr module to read the shapefile, because we already have
GDAL available. But, we could have also used PyShp to read the shapefile just as easily. If
our farm field image was available as an ASCII Grid, we could have avoided using the
gdal, gdal_array, and ogr modules altogether:

First, we open our shapefile and select the one and only layer:1.

# Clip a field out of the bands using a
# field boundary shapefile

# Create an OGR layer from a Field boundary shapefile
field = ogr.Open("field.shp")
# Must define a "layer" to keep OGR happy
lyr = field.GetLayer("field")

There's only one polygon, so we'll grab that feature:2.

# Only one polygon in this shapefile
poly = lyr.GetNextFeature()

Now we'll convert the layer extent to image pixel coordinates:3.

# Convert the layer extent to image pixel coordinates
minX, maxX, minY, maxY = lyr.GetExtent()
ulX, ulY = world2Pixel(geoTrans, minX, maxY)
lrX, lrY = world2Pixel(geoTrans, maxX, minY)

Then, we calculate the pixel size of the new image:4.

# Calculate the pixel size of the new image
pxWidth = int(lrX - ulX)
pxHeight = int(lrY - ulY)
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Next, we create a new blank image at the correct size:5.

# Create a blank image of the correct size
# that will serve as our mask
clipped = gdal_array.numpy.zeros((3, pxHeight, pxWidth),
 gdal_array.numpy.uint8)

Now, we're ready to clip the red and infrared bands using the bounding box:6.

# Clip red and infrared to new bounds.
rClip = r[ulY:lrY, ulX:lrX]
irClip = ir[ulY:lrY, ulX:lrX]

Next, we create the georeferencing information for the image:7.

# Create a new geomatrix for the image
geoTrans = list(geoTrans)
geoTrans[0] = minX
geoTrans[3] = maxY

Then we can prepare to map points to pixels in order to create our mask image:8.

# Map points to pixels for drawing
# the field boundary on a blank
# 8-bit, black and white, mask image.
points = []
pixels = []
# Grab the polygon geometry
geom = poly.GetGeometryRef()
pts = geom.GetGeometryRef(0)

We loop through all of the point features and store their x and y values:9.

# Loop through geometry and turn
# the points into an easy-to-manage
# Python list
for p in range(pts.GetPointCount()):
    points.append((pts.GetX(p), pts.GetY(p)))

Now, we convert the points to pixel locations:10.

# Loop through the points and map to pixels.
# Append the pixels to a pixel list
for p in points:
    pixels.append(world2Pixel(geoTrans, p[0], p[1]))
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Next, we create a new image that will serve as our mask image:11.

# Create the raster polygon image as a black and white 'L' mode
# and filled as white. White=1
rasterPoly = Image.new("L", (pxWidth, pxHeight), 1)

Now we can rasterize our polygon:12.

# Create a PIL drawing object
rasterize = ImageDraw.Draw(rasterPoly)

# Dump the pixels to the image
# as a polygon. Black=0
rasterize.polygon(pixels, 0)

Finally, we can convert our mask to a numpy array:13.

# Hand the image back to gdal/gdal_array
# so we can use it as an array mask
mask = imageToArray(rasterPoly)

Now that we have converted the shapefile to a mask image, we can clip the bands.

Clipping the bands
Now that we have our image mask, we can clip the red and infrared bands to the boundary
of the mask. For this process, we use NumPy's choose() method that correlates the mask
cell to the raster band cell and returns that value, or returns 0. The result is a new array that
is clipped to the mask, but with the correlated values from the raster band:

# Clip the red band using the mask
rClip = gdal_array.numpy.choose(mask,
 (rClip, 0)).astype(gdal_array.numpy.uint8)

# Clip the infrared band using the mask
irClip = gdal_array.numpy.choose(mask,
 (irClip, 0)).astype(gdal_array.numpy.uint8)

We now have just the data that we want, so we can apply our NDVI relative vegetation
health formula.
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Using the NDVI formula
Our final process for creating the NDVI is to execute the equation that is infrared -
red/infrared + red. The first step that we perform silences any not-a-number, also known as
NaN, values in NumPy that might occur during division. And before we save the output,
we'll convert any NaN values to 0. We'll save the output as ndvi.tif, and that will be the
input for the next script in order to classify and colorize the NDVI as follows:

First, we'll ignore any warnings from numpy, as we'll get some errors near the1.
edges:

# We don't care about numpy warnings
# due to NaN values from clipping
gdal_array.numpy.seterr(all="ignore")

Now we can perform our NDVI formula:2.

# NDVI equation: (infrared - red) / (infrared + red)
# *1.0 converts values to floats,
# +1.0 prevents ZeroDivisionErrors
ndvi = 1.0 * ((irClip - rClip) / (irClip + rClip + 1.0))

If there are any NaN values, we convert them to zero:3.

# Convert any NaN values to 0 from the final product
ndvi = gdal_array.numpy.nan_to_num(ndvi)

Finally, we save our finished NDVI image:4.

# Save the ndvi as a GeoTIFF and copy/adjust
# the georeferencing info
gtiff = gdal.GetDriverByName( 'GTiff' )
gtiff.CreateCopy(target, copy_geo(ndvi, prototype=source,
xoffset=ulX, yoffset=ulY))
gtiff = None

The following figure is the output of this example. You need to view it in a geospatial
viewer such as QGIS or OpenEV. The image won't open in most image editors. The lighter
the shade of gray, the healthier the plant is within that field:
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Now that we know how to use the NDVI formula, let's see how to classify it.

Classifying the NDVI
We now have a valid index, but it is not easy to understand, because it is a grayscale image.
If we color the image in an intuitive way, then even a child can identify the healthier plants.
In the following section, Additional functions, we read in this grayscale index and classify it
from brown to dark green using seven classes. The classification and image processing
routines, such as the histogram and stretching functions, are almost identical to what we
used in the Creating histograms section in Chapter 6, Python and Remote Sensing, but this
time we are applying them in a much more specific way.

The output of this example will be another GeoTIFF file, but this time it will be a colorful
RGB image.

Additional functions
We won't need any of the functions from our previous NDVI script, but we do need to add
a function for creating and stretching a histogram. Both of these functions work with
NumPy arrays. We'll also shorten the reference to gdal_array to gd in this script because
it is a long name, and we need it throughout the script.
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Let's have a look at the steps as follows:

First, we import the libraries that we need:1.

import gdal_array as gd
import operator
from functools import reduce

Next, we need to create a histogram function, which we'll need in order to do a2.
histogram stretch:

def histogram(a, bins=list(range(256))):
 """
 Histogram function for multi-dimensional array.
 a = array
 bins = range of numbers to match
 """
 # Flatten, sort, then split our arrays for the histogram.
 fa = a.flat
 n = gd.numpy.searchsorted(gd.numpy.sort(fa), bins)
 n = gd.numpy.concatenate([n, [len(fa)]])
 hist = n[1:]-n[:-1]
 return hist

Now, we create our histogram stretch function:3.

def stretch(a):
 """
 Performs a histogram stretch on a gdal_array array image.
 """
 hist = histogram(a)
 lut = []
 for b in range(0, len(hist), 256):
 # step size – create equal interval bins.
 step = reduce(operator.add, hist[b:b+256]) / 255
 # create equalization lookup table
 n = 0
 for i in range(256):
 lut.append(n / step)
 n = n + hist[i+b]
 gd.numpy.take(lut, a, out=a)
 return a

Now that we have our utility functions, we can process the NDVI.
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Loading the NDVI
Next, we'll load the output of our NDVI script back into a NumPy array. We'll also define
the name of our output image as ndvi_color.tif, and create a zero-filled
multidimensional array as a placeholder for the red, green, and blue bands of the colorized
NDVI image. The following code will load the NDVI TIFF image into a numpy array:

# NDVI output from ndvi script
source = "ndvi.tif"

# Target file name for classified
# image image
target = "ndvi_color.tif"

# Load the image into an array
ndvi = gd.LoadFile(source).astype(gd.numpy.uint8)

Now that our image is loaded as an array, we can stretch it.

Preparing the NDVI
We need to perform a histogram stretch on the NDVI in order to ensure that the image
covers the range of classes that will give the final product meaning:

# Peform a histogram stretch so we are able to
# use all of the classes
ndvi = stretch(ndvi)

# Create a blank 3-band image the same size as the ndvi
rgb = gd.numpy.zeros((3, len(ndvi), len(ndvi[0])), gd.numpy.uint8)

Now that we've stretched the image, we can begin the classification process.

Creating classes
In this part, we set up the ranges for our NDVI classes, which are broken up across a range
from 0 to 255. We'll use seven classes. You can change the number of classes by adding or
removing values from the classes list. Next, we create a look-up table, or LUT, in order to 
assign colors for each class. The number of colors must match the number of classes.
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The colors are defined as RGB values. The start variable defines the beginning of the first
class. In this case, 0 is a nodata value, which we designated in the previous script, so we
begin the class at 1. We then loop through the classes, extract the ranges, and use the color
assignments to add the RGB value to our placeholder array. Finally, we save the colorized
image as a GeoTIFF file:

# Class list with ndvi upper range values.
# Note the lower and upper values are listed on the ends
classes = [58, 73, 110, 147, 184, 220, 255]

# Color look-up table (lut)
# The lut must match the number of classes
# Specified as R, G, B tuples from dark brown to dark green
lut = [[120, 69, 25], [255, 178, 74], [255, 237, 166], [173, 232, 94],
 [135, 181, 64], [3, 156, 0], [1, 100, 0]]

# Starting value of the first class
start = 1

Now we can classify the image:

# For each class value range, grab values within range,
# then filter values through the mask.
for i in range(len(classes)):
 mask = gd.numpy.logical_and(start <= ndvi,
 ndvi <= classes[i])
 for j in range(len(lut[i])):
     rgb[j] = gd.numpy.choose(mask, (rgb[j], lut[i][j]))
     start = classes[i]+1

Finally, we can save our classified GeoTIFF file:

# Save a geotiff image of the colorized ndvi.
output=gd.SaveArray(rgb, target, format="GTiff", prototype=source)
output = None
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Here is the image that we output:

This is our final product for this example. Farmers can use this data to determine how to
effectively irrigate and spray chemicals, such as fertilizers and pesticides, in a targeted,
more effective, and more environmentally friendly way. In fact, these classes can even be
turned into a vector shapefile, which is then loaded into a GPS-driven computer on a field
sprayer. This then automatically applies the correct amount of chemicals in the correct
place as a sprayer is driven around the field, or in some cases, even flown over the field in
an airplane with a sprayer attachment.

Notice as well that even though we clipped the data to the field, the image is still a square.
The black areas are the nodata values that have been converted to black. In display
software, you can make the nodata color transparent without affecting the rest of the image.

Although we created a very specific type of product, a classified NDVI, the framework of
this script can be altered in order to implement many remote sensing analysis algorithms.
There are different types of NDVIs, but with relatively minor changes, you can turn this
script into a tool that can be used to look for harmful algae blooms in the ocean, or smoke in
the middle of a forest indicating a forest fire.
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This book attempts to limit the use of GDAL as much as possible in order
to focus on what can be accomplished with pure Python and tools that can
easily be installed from PyPI. However, it is helpful to remember that
there is a wealth of information on using GDAL and its associated utilities
to carry out similar tasks. For another tutorial on clipping a raster with
GDAL via its command-line utilities, see https:/ /joeyklee. github. io/
broc- cli- geo/ guide/ XX_ raster_ cropping_ and_ clipping. html.

Now that we've worked with the land, let's work with water in order to create a flood
inundation model.

Creating a flood inundation model
In this next example, we'll begin to enter the world of hydrology. Flooding is one of the
most common and devastating natural disasters, which affects nearly every population on
the globe. Geospatial models are a powerful tool in estimating the impact of a flood and
mitigating that impact before it happens. We often hear on the news that a river is reaching
the flood stage, but that information is meaningless if we can't understand the impact.

Hydrological flood models are expensive to develop and can be very complex. These
models are essential for engineers in building flood control systems. However, first
responders and potential flood victims are only interested in the impact of an impending
flood.

We can begin to understand the flooding impact in an area using a very simple and easy-to-
comprehend tool called a flood inundation model. This model starts with a single point
and floods an area with the maximum volume of water that a flood basin can hold at a
particular flood stage. Usually, this analysis is a worst-case scenario. Hundreds of other
factors go into calculating how much water will enter into a basin from a river-topping
flood stage. But we can still learn a lot from this simple first-order model.

As mentioned in the Elevation data section in Chapter 1, Learning about
Geospatial Analysis with Python, the Shuttle Radar Topography
Mission (SRTM) dataset provides a nearly-global DEM that you can use
for these types of models. More on SRTM data can be found here: http:/ /
www2. jpl. nasa. gov/ srtm/ .
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You can download the ASCII Grid data in EPSG:4326, and a shapefile containing the point
as a .zip file from http:/ /git. io/ v3fSg. The shapefile is just for reference and has no role
in this model. The following image is a digital elevation model (DEM) with a source point
displayed as a yellow star near Houston, Texas. In real-world analysis, this point would
likely be a stream gauge where you would have data about the river's water level:

The algorithm that we are introducing in this example is called a flood fill algorithm. This
algorithm is well known in the field of computer science and is used in the classic computer
game Minesweeper to clear empty squares on the board when a user clicks a square. It is
also the method that is used for the well-known paint bucket tool in graphics programs
such as Adobe Photoshop, and it is used to fill an area of adjacent pixels of the same color
with a different color.

There are many ways to implement this algorithm. One of the oldest and most common
ways is to recursively crawl through each pixel of the image. The problem with recursion is
that you end up processing pixels more than once and creating an unnecessary amount of
work. The resource usage for a recursive flood fill can easily crash a program on even a
moderately sized image.
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This script uses a four-way queue-based flood fill that may visit a cell more than once but
ensures that we only process a cell once. The queue only contains unique, unprocessed cells
by using Python's built-in set type, which only holds unique values. We use two sets: fill,
which contains the cells we need to fill, and filled, which contains processed cells.

This example executes the following steps:

Extract the header information from the ASCII DEM.1.
Open the DEM as a numpy array.2.
Define our starting point as row and column in the array.3.
Declare a flood elevation value.4.
Filter the terrain to only the desired elevation value and below.5.
Process the filtered array.6.
Create a 1, 0, 0 array (that is, a binary array) with flooded pixels as 1.7.
Save the flood inundation array as an ASCII Grid.8.

This example can take a minute or two to run on a slower machine; we'll
use the print statements throughout the script as a simple way to track
progress. Once again we'll break this script up with explanations, for
clarity.

Now that we have our data, we can begin our flood fill function.

The flood fill function
We use ASCII Grids in this example, which means that the engine for this model is
completely in NumPy. We start off by defining the floodFill() function, which is the
heart and soul of this model. This Wikipedia article on flood fill algorithms provides an
excellent overview of the different approaches: http:/ /en. wikipedia. org/wiki/ Flood_
fill.

Flood fill algorithms start at a given cell and begin checking the neighboring cells for
similarity. The similarity factor might be color or, in our case, elevation. If the neighboring
cell is of the same or lower elevation as the current cell, then that cell is marked for checks
of its neighbor until the entire grid is checked. NumPy isn't designed to crawl over an array
in this way, but it is still efficient in handling multidimensional arrays overall. We step
through each cell and check its neighbors to the north, south, east, and west. Any of those
cells which can be flooded are added to the filled set, and their neighbors are added to the
fill set to be checked by the algorithm.
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As mentioned earlier, if you try to add the same value to a set twice, it just ignores the
duplicate entry and maintains a unique list. By using sets in an array, we efficiently check a
cell only once because the fill set contains unique cells. The following code implements our
floodFill function:

First we import our libraries:1.

import numpy as np
from linecache import getline

Next, we create our floodFill function:2.

def floodFill(c, r, mask):
 """
 Crawls a mask array containing
 only 1 and 0 values from the
 starting point (c=column,
 r=row - a.k.a. x, y) and returns
 an array with all 1 values
 connected to the starting cell.
 This algorithm performs a 4-way
 check non-recursively.
 """

Next, we create sets to track the cells that we've already covered:3.

 # cells already filled
 filled = set()
 # cells to fill
 fill = set()
 fill.add((c, r))
 width = mask.shape[1]-1
 height = mask.shape[0]-1

Then we create our inundation array:4.

 # Our output inundation array
 flood = np.zeros_like(mask, dtype=np.int8)

Now we can loop through the cells and flood them, or not:5.

 # Loop through and modify the cells which
 # need to be checked.
 while fill:
   # Grab a cell
   x, y = fill.pop()
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If the land is higher than the floodwater, skip it:6.

   if y == height or x == width or x < 0 or y < 0:
    # Don't fill
    continue

If the land elevation is equal to or less than the floodwater, fill it in:7.

   if mask[y][x] == 1:
    # Do fill
    flood[y][x] = 1
   filled.add((x, y))

Now, we check the surrounding neighbor cells to see if they need to be filled, and8.
when we run out of cells, we return the flooded matrix:

   # Check neighbors for 1 values
   west = (x-1, y)
   east = (x+1, y)
   north = (x, y-1)
   south = (x, y+1)
   if west not in filled:
     fill.add(west)
   if east not in filled:
     fill.add(east)
   if north not in filled:
     fill.add(north)
   if south not in filled:
     fill.add(south)
 return flood

Now that we've set up our floodFill function, we can create a flood.

Predicting flood inundation
In the remainder of the script, we load our terrain data from an ASCII Grid, define our
output grid filename, and execute the algorithm on the terrain data. The seed of the flood
fill algorithm is an arbitrary point, as sx and sy within the lower elevation areas. In a real-
world application, these points would likely be a known location, such as a stream gauge or
a breach in a dam. In the final step, we save the output grid.
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The following steps need to be performed:

First, we set up our source and target data names:1.

source = "terrain.asc"
target = "flood.asc"

Next, we open the source:2.

print("Opening image...")
img = np.loadtxt(source, skiprows=6)
print("Image opened")

We'll create a mask array of everything below 70 meters:3.

# Mask elevations lower than 70 meters.
wet = np.where(img < 70, 1, 0)
print("Image masked")

Now, we'll parse the geospatial information from the header:4.

# Parse the header using a loop and
# the built-in linecache module
hdr = [getline(source, i) for i in range(1, 7)]
values = [float(h.split(" ")[-1].strip()) for h in hdr]
cols, rows, lx, ly, cell, nd = values
xres = cell
yres = cell * -1

Now, we'll establish a starting point that is located in a riverbed:5.

# Starting point for the
# flood inundation in pixel coordinates
sx = 2582
sy = 2057

Now, we trigger our floodFill function:6.

print("Beginning flood fill")
fld = floodFill(sx, sy, wet)
print("Finished flood fill")

header = ""
for i in range(6):
 header += hdr[i]
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Finally, we can save our flood inundation model output:7.

print("Saving grid")
# Open the output file, add the hdr, save the array
with open(target, "wb") as f:
 f.write(bytes(header, 'UTF-8'))
 np.savetxt(f, fld, fmt="%1i")
print("Done!")

The image in the following screenshot shows the flood inundation output over a classified
version of the DEM, with lower elevation values in brown, mid-range values in green, and
higher values in gray and white:

The flood raster, which includes all areas less than 70 meters, is colored blue. This image
was created with QGIS, but it could be displayed in ArcGIS as EPSG:4326. You could also
use GDAL to save the flood raster grid as an 8-bit TIFF file or JPEG file, just like the NDVI
example, in order to view it in a standard graphics program.

This image in the following screenshot is nearly identical, except for the filtered mask from
which the inundation was derived, which is displayed in yellow. This is done by generating
a file for the array called wet, instead of fld, to show the non-contiguous regions, which
were not included as part of a flood. These areas are not connected to the source point, so
they would unlikely be reached during a flood event:
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By changing the elevation value, you can create additional flood inundation rasters. We
started with an elevation of 70 meters. If we increase that value to 90, we can expand the
flood. The following screenshot shows a flood event at both 70 and 90 meters:

The 90 meter inundation is the lighter-blue polygon. You can take bigger or smaller steps
and show different impacts as different layers.
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This model is an excellent and useful visualization. However, you could take this analysis
even further by using GDAL's polygonize() method on the flood mask, as we did with
the island in the Extracting features from images section in Chapter 6, Python and Remote
Sensing. This operation would give you a vector flood polygon. Then, you could use the
principles that we discussed in the Performing selections section in Chapter 5, Python and
Geographic Information Systems, to select buildings using the polygon to determine
population impact. You could also combine that flood polygon with the dot density
example in Chapter 5, Python and Geographic Information Systems, in the Dot density
calculations section, to assess the potential population impact of a flood. The possibilities are
endless.

Creating a color hillshade
In this example, we'll combine previous techniques to combine our terrain hillshade from
Chapter 7, Python and Elevation Data, with the color classification that we used on the
LIDAR. For this example, we'll need the ASCII Grid DEMs named dem.asc and
relief.asc that we used in the previous chapter.

We'll create a colorized DEM and a hillshade, and then use PIL to blend them together for
an enhanced elevation visualization. The code comments will guide you through the
example, as many of these steps are already familiar to you:

First, we import the libraries that we need:1.

import gdal_array as gd
try:
 import Image
except ImportError:
 from PIL import Image

For this next part, you'll need the following two files: https:/ /github. com/
GeospatialPython/ Learn/ raw/ master/ relief. zip and https:/ / github. com/
GeospatialPython/ Learn/ raw/ master/ dem. zip.

Then, we'll set up variables for the inputs and outputs:2.

relief = "relief.asc"
dem = "dem.asc"
target = "hillshade.tif"
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Next, we'll load our relief image:3.

# Load the relief as the background image
bg = gd.numpy.loadtxt(relief, skiprows=6)

Then, we'll load the DEM image, so that we'll have the elevation data:4.

# Load the DEM into a numpy array as the foreground image
fg = gd.numpy.loadtxt(dem, skiprows=6)[:-2, :-2]

Now, we'll create a new image for our colorization with elevation breakpoints5.
forming classes and corresponding colors in a LUT:

# Create a blank 3-band image to colorize the DEM
rgb = gd.numpy.zeros((3, len(fg), len(fg[0])), gd.numpy.uint8)

# Class list with DEM upper elevation range values.
classes = [356, 649, 942, 1235, 1528,
 1821, 2114, 2300, 2700]

# Color look-up table (lut)
# The lut must match the number of classes.
# Specified as R, G, B tuples
lut = [[63, 159, 152], [96, 235, 155], [100, 246, 174],
 [248, 251, 155], [246, 190, 39], [242, 155, 39],
 [165, 84, 26], [236, 119, 83], [203, 203, 203]]

# Starting elevation value of the first class
start = 1

We can now perform our color classification:6.

# Process all classes.
for i in range(len(classes)):
 mask = gd.numpy.logical_and(start <= fg,
 fg <= classes[i])
 for j in range(len(lut[i])):
 rgb[j] = gd.numpy.choose(mask, (rgb[j], lut[i][j]))
 start = classes[i]+1
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Then, we can convert our shaded relief array to an image, as well as our7.
colorized DEM:

# Convert the shaded relief to a PIL image
im1 = Image.fromarray(bg).convert('RGB')

# Convert the colorized DEM to a PIL image.
# We must transpose it from the Numpy row, col order
# to the PIL col, row order (width, height).
im2 = Image.fromarray(rgb.transpose(1, 2, 0)).convert('RGB')

Now, we'll blend the two images for the final effect and save it to an image file:8.

# Blend the two images with a 40% alpha
hillshade = Image.blend(im1, im2, .4)

# Save the hillshade
hillshade.save(target)

The following image shows the output, which makes a great backdrop for GIS maps:

Now that we can model terrain, let's learn how to navigate over it. 
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Performing least cost path analysis
Calculating driving directions is the most commonly used geospatial function in the world.
Typically, these algorithms calculate the shortest path between points A and B, or they may
take into account the speed limit of the road, or even current traffic conditions, in order to
choose a route by drive time.

But what if your job is to build a new road? Or what if you are in charge of deciding where
to run power transmission lines or water lines across a remote area? In a terrain-based
setting, the shortest path might cross a difficult mountain, or run through a lake. In this
case, we need to account for obstacles and avoid them if possible. However, if avoiding a
minor obstacle takes us too far out of our way, the cost of implementing that route may be
more expensive than just going over a mountain.

This type of advanced analysis is called least cost path analysis. We search an area for the
route that is the best compromise of distance versus the cost of following that route. The
algorithm that we use for this process is called the A-star or A* algorithm. The oldest
routing method is called the Dijkstra algorithm, which calculates the shortest path in a
network, such as a road network. The A* method can do that as well, but it is also better
suited for traversing a grid-like DEM.

You can find out more about these algorithms on the following web
pages:

Dijkstra's algorithm: http:/ /en. wikipedia. org/wiki/
Dijkstra's_ algorithm. 
A* algorithm: http:/ /en.wikipedia. org/ wiki/ A- star_
algorithm.

This example is the most complex in this chapter. To better understand it, we have a simple
version of the program, which is text based, and operates on a 5 x 5 grid with randomly
generated values. You can actually see how this program follows the algorithm before
trying it on an elevation grid with thousands of values.

This program executes the following steps:

Create a simple grid with randomly generated pseudo-elevation values between1.
1 and 16.
Define a start location in the lower-left corner of the grid.2.
Define the end point as the upper-right corner of the grid.3.
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Create a cost grid that has the elevation of each cell, plus the cell's distance to the4.
finish.
Examine each neighboring cell from the start, and choose the one with the lowest5.
cost.
Repeat the evaluation using the chosen cell until we get to the end.6.
Return the set of chosen cells as the least cost path.7.
Set up the test grid.8.

You simply run this program from the command line and view its output. The first section
of this script sets up our artificial terrain grid as a randomly generated NumPy array, with
notional elevation values between 1 and 16. We also create a distance grid that calculates
the distance for each cell to the destination cell. This value is the cost of each cell.

Let's have a look at the following steps:

First, we'll import numpy and set the size of our grid:1.

import numpy as np

# Width and height
# of grids
w = 5
h = 5

Next, we set a starting location cell and an ending location:2.

# Start location:
# Lower left of grid
start = (h-1, 0)

# End location:
# Top right of grid
dx = w-1
dy = 0

Now, we can create a grid of zeros based on our width and height:3.

# Blank grid
blank = np.zeros((w, h))
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Next, we'll set up our distance grid in order to create impedance values:4.

# Distance grid
dist = np.zeros(blank.shape, dtype=np.int8)

# Calculate distance for all cells
for y, x in np.ndindex(blank.shape):
 dist[y][x] = abs((dx-x)+(dy-y))

Now, we'll print out the cost value of each cell in our cost grid:5.

# "Terrain" is a random value between 1-16.
# Add to the distance grid to calculate
# The cost of moving to a cell
cost = np.random.randint(1, 16, (w, h)) + dist

print("COST GRID (Value + Distance)\n{}\n".format(cost))

Now that we have a simulated terrain grid to work with, we can test a routing algorithm.

The simple A* algorithm
The A* search algorithm that is implemented here crawls the grid in a similar fashion to our
flood fill algorithm in the previous example. Once again, we use sets to avoid using
recursion, and to avoid the duplication of cell checks. But this time, instead of checking
elevation, we check the distance cost of routing through a cell in question. If the move
raises the cost of getting to the end, then we go with a lower-cost option.

The following steps need to be performed, as follows:

First, we'll start our A* function by creating sets that will keep track of the path1.
progress:

# Our A* search algorithm
def astar(start, end, h, g):
    closed_set = set()
    open_set = set()
    path = set()
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Next, we add the starting cell to the open list of cells in order to process and2.
begin looping through that set:

    open_set.add(start)
    while open_set:
        cur = open_set.pop()
        if cur == end:
            return path
        closed_set.add(cur)
        path.add(cur)
        options = []
        y1 = cur[0]
        x1 = cur[1]

We check the surrounding cells as options for forward progress:3.

        if y1 > 0:
            options.append((y1-1, x1))
        if y1 < h.shape[0]-1:
            options.append((y1+1, x1))
        if x1 > 0:
            options.append((y1, x1-1))
        if x1 < h.shape[1]-1:
            options.append((y1, x1+1))
        if end in options:
            return path
        best = options[0]
        closed_set.add(options[0])

We then check each option for the best option and append it to the path until we4.
reach the end:

        for i in range(1, len(options)):
            option = options[i]
            if option in closed_set:
                continue
            elif h[option] <= h[best]:
                best = option
                closed_set.add(option)
            elif g[option] < g[best]:
                best = option
                closed_set.add(option)
            else:
                closed_set.add(option)
        print(best, ", ", h[best], ", ", g[best])
        open_set.add(best)
    return []



Advanced Geospatial Python Modeling Chapter 8

[ 341 ]

Now that we have the algorithm set up, we can test it out by creating a path.

Generating the test path
In this section, we'll generate a path on our test grid. We'll call our A* function, using the
starting point, end point, cost grid, and distance grid:

# Find the path
path = astar(start, (dy, dx), cost, dist)
print()

Now, we'll put our path on its own grid and print it:

# Create and populate the path grid
path_grid = np.zeros(cost.shape, dtype=np.uint8)
for y, x in path:
 path_grid[y][x] = 1
path_grid[dy][dx] = 1

print("PATH GRID: 1=path")
print(path_grid)

Next, we'll view the output of this test.

Viewing the test output
When you run this program, you'll generate a randomly-numbered grid similar to the
following:

COST GRID (Value + Distance)
[[13 10 5 15 9]
 [15 13 16 5 16]
 [17 8 9 9 17]
 [ 4 1 11 6 12]
 [ 2 7 7 11 8]]

(Y,X), HEURISTIC, DISTANCE
(3, 0) , 4 , 1
(3, 1) , 1 , 0
(2, 1) , 8 , 1
(2, 2) , 9 , 0
(2, 3) , 9 , 1
(1, 3) , 5 , 0
(0, 3) , 15 , 1
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PATH GRID: 1=path
[[0 0 0 1 1]
 [0 0 0 1 0]
 [0 1 1 1 0]
 [1 1 0 0 0]
 [1 0 0 0 0]]

The grid is small enough such that you can easily trace the algorithm's steps manually. This
implementation uses Manhattan distance, which means the distance does not use diagonal
lines—only left, right, up, and down measurements. The search also does not move
diagonally in order to keep things simple.

The real-world example
Now that we have a basic understanding of the A* algorithm, let's move to a more complex
example. For the relief example, we'll use the same DEM that is located near Vancouver,
British Columbia, Canada, which we used in Chapter 7, Python and Elevation Data, in the
Creating a shaded relief section. The spatial reference for this grid is EPSG:26910 NAD
83/UTM zone 10N. You can download the DEM, relief, and start and end points of the
shapefile as a zipped package from http:/ /git.io/ v3fpL.

We'll actually use the shaded relief for visualization. Our goal in this exercise will be to
move from the start to the finish point in the lowest-cost way possible:
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Just looking at the terrain, there are two paths that follow low-elevation routes without
much change in direction. These two routes are illustrated in the following screenshot:

So, we would expect that when we used the A* algorithm, it would be close. Remember
that the algorithm is only looking in the immediate vicinity, so it can't look at the whole
image like we can, and it can't make adjustments early in the route based on a known
obstacle ahead.

We will expand this implementation from our simple example and use Euclidean distance,
or as the crow flies measurements, and we will also allow the search to look in eight
directions instead of four. We will prioritize terrain as the primary decision point. We will
also use distance, both to the finish and from the start, as lower priorities in order to make
sure that we are moving forward toward the goal and not getting too far off track. Other
than those differences, the steps are identical to the simple example. The output will be a
raster with the path values set to one and the other values set to zero.

Now that we understand the problem, let's solve it!
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Loading the grid
In this section and the following sections, we'll create the script that can create a route over
terrain. The script starts out simple enough. We load the grid into a NumPy array from an
ASCII Grid. We name our output path grid, and then we define the starting cell and end
cell:

First, we import our libraries:1.

import numpy as np
import math
from linecache import getline
import pickle

Next, we'll define our input and output data sources:2.

# Our terrain data
source = "dem.asc"

# Output file name for the path raster
target = "path.asc"

Then, we can load the grid skipping over the header:3.

print("Opening %s..." % source)
cost = np.loadtxt(source, skiprows=6)
print("Opened %s." % source)

Next, we'll parse the header for the geospatial and grid size information:4.

# Parse the header
hdr = [getline(source, i) for i in range(1, 7)]
values = [float(ln.split(" ")[-1].strip()) for ln in hdr]
cols, rows, lx, ly, cell, nd = values

Finally, we'll define our starting and end locations:5.

# Starting column, row
sx = 1006
sy = 954

# Ending column, row
dx = 303
dy = 109

Now that our grid is loaded, we can set up the functions that we'll need.
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Defining the helper functions
We need three functions in order to route over terrain. One is the A* algorithm, and the
other two assist the algorithm in choosing the next step. We'll briefly discuss these helper
functions. First, we have a simple Euclidean distance function named e_dist, which
returns the straight-line distance between two points as map units. Next, we have an
important function called weighted_score, which returns a score for a neighboring cell,
based on the elevation change between the neighbor and the current cell, as well as the
distance to the destination.

This function is better than distance or elevation alone because it reduces the chance of
there being a tie between two cells, making it easier to avoid back-tracking. This scoring
formula is loosely based on a concept called the Nisson Score, which is commonly used in
these types of algorithms and is referenced in the Wikipedia articles mentioned earlier in
this chapter. What's great about this function is that it can score the neighboring cell with
any values that you wish. You might also use a real-time feed to look at the current weather
in the neighboring cell, and avoid cells with rain or snow.

The following code will create our distance function and our weighting function that we'll
need to traverse the terrain:

First, we'll create a Euclidean distance function that will give us the distance1.
between points:

def e_dist(p1, p2):
 """
 Takes two points and returns
 the Euclidian distance
 """
 x1, y1 = p1
 x2, y2 = p2
 distance = math.sqrt((x1-x2)**2+(y1-y2)**2)
 return int(distance)

Now, we'll create our weight function in order to score each node for its2.
suitability to move:

def weighted_score(cur, node, h, start, end):
 """
 Provides a weighted score by comparing the
 current node with a neighboring node. Loosely
 based on the Nisson Score concept: f=g+h
 In this case, the "h" value, or "heuristic",
 is the elevation value of each node.
 """
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We start with a score of 0 and check the node's distance from the end and the3.
start:

 score = 0
 # current node elevation
 cur_h = h[cur]
 # current node distance from end
 cur_g = e_dist(cur, end)
 # current node distance from
 cur_d = e_dist(cur, start)

Next, we examine the neighboring nodes and make a decision on where to move:4.

 # neighbor node elevation
 node_h = h[node]
 # neighbor node distance from end
 node_g = e_dist(node, end)
 # neighbor node distance from start
 node_d = e_dist(node, start)
 # Compare values with the highest
 # weight given to terrain followed
 # by progress towards the goal.
 if node_h < cur_h:
 score += cur_h-node_h
 if node_g < cur_g:
 score += 10
 if node_d > cur_d:
 score += 10
 return score

Now that our helper functions are complete, we can build the A* function.
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The real-world A* algorithm
This algorithm is more involved than the simple version in our previous example. We use
sets to avoid redundancy. It also implements our more advanced scoring algorithm and
checks to make sure we aren't at the end of the path before doing additional calculations.
Unlike our last example, this more advanced version also checks cells in eight directions, so
the path can move diagonally. There is a print statement at the end of this function that is
commented out. You can uncomment it in order to watch the search crawl through the grid.
The following code will implement the A* algorithm that we will use for the rest of the
section:

First, we open the function by accepting a starting point, an end point, and a1.
score:

def astar(start, end, h):
 """
 A-Star (or A*) search algorithm.
 Moves through nodes in a network
 (or grid), scores each node's
 neighbors, and goes to the node
 with the best score until it finds
 the end. A* is an evolved Dijkstra
 algorithm.
 """

Now, we set up the sets that will track progress:2.

 # Closed set of nodes to avoid
 closed_set = set()
 # Open set of nodes to evaluate
 open_set = set()
 # Output set of path nodes
 path = set()

Next, we begin processing using our starting point:3.

 # Add the starting point to
 # to begin processing
 open_set.add(start)
 while open_set:
 # Grab the next node
 cur = open_set.pop()
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If we hit the end, we return the completed path:4.

 # Return if we're at the end
 if cur == end:
 return path

Otherwise, we keep working through the grid and eliminating possibilities:5.

 # Close off this node to future
 # processing
 closed_set.add(cur)
 # The current node is always
 # a path node by definition
 path.add(cur)

To keep things moving, we grab all of the neighbors that need to be processed as6.
we go:

 # List to hold neighboring
 # nodes for processing
 options = []
 # Grab all of the neighbors
 y1 = cur[0]
 x1 = cur[1]
 if y1 > 0:
 options.append((y1-1, x1))
 if y1 < h.shape[0]-1:
 options.append((y1+1, x1))
 if x1 > 0:
 options.append((y1, x1-1))
 if x1 < h.shape[1]-1:
 options.append((y1, x1+1))
 if x1 > 0 and y1 > 0:
 options.append((y1-1, x1-1))
 if y1 < h.shape[0]-1 and x1 < h.shape[1]-1:
 options.append((y1+1, x1+1))
 if y1 < h.shape[0]-1 and x1 > 0:
 options.append((y1+1, x1-1))
 if y1 > 0 and x1 < h.shape[1]-1:
 options.append((y1-1, x1+1))

We check each neighbor for being the destination:7.

 # If the end is a neighbor, return
 if end in options:
 return path
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We take the first option as the best option and process the other options,8.
upgrading as we go:

 # Store the best known node
 best = options[0]
 # Begin scoring neighbors
 best_score = weighted_score(cur, best, h, start, end)
 # process the other 7 neighbors
 for i in range(1, len(options)):
 option = options[i]
 # Make sure the node is new
 if option in closed_set:
 continue
 else:
 # Score the option and compare
 # it to the best known
 option_score = weighted_score(cur, option,
 h, start, end)
 if option_score > best_score:
 best = option
 best_score = option_score
 else:
 # If the node isn't better seal it off
 closed_set.add(option)
 # Uncomment this print statement to watch
 # the path develop in real time:
 # print(best, e_dist(best, end))
 # Add the best node to the open set
 open_set.add(best)
return []

Now that we have our routing algorithm, we can generate a real-world path. 

Generating a real-world path
Finally, we create our real-world path as a chain of ones in a grid of zeros. This raster can
then be brought into an application such as QGIS and visualized over the terrain grid. In
the following code, we'll use our algorithm and helper functions to generate a path, as
follows:

First, we send our start and end points, as well as our terrain grid, to the routing1.
function:

print("Searching for path...")
p = astar((sy, sx), (dy, dx), cost)
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print("Path found.")
print("Creating path grid...")
path = np.zeros(cost.shape)
print("Plotting path...")
for y, x in p:
 path[y][x] = 1
path[dy][dx] = 1
print("Path plotted.")

Once we have a path, we can save it out as an ASCII Grid:2.

print("Saving %s..." % target)
header = ""
for i in range(6):
 header += hdr[i]

# Open the output file, add the hdr, save the array
with open(target, "wb") as f:
 f.write(bytes(header, 'UTF-8'))
 np.savetxt(f, path, fmt="%4i")

Now, we want to save our path data because the points are in the correct order,3.
from the starting point to the end point. When we put them into the grid, we lose
that order because it is all one raster. We'll use the built-in Python pickle
module to save the list object to disk. We're going to use this data in the next
section to create a vector shapefile of the route. So, we'll save our path data as a
pickled Python object that we can reuse later, without running the whole
program:

print("Saving path data...")
with open("path.p", "wb") as pathFile:
 pickle.dump(p, pathFile)
print("Done!")
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Here is the output route of our search:

As you can see, the A* search came very close to one of our manually selected routes. In a
couple of cases, the algorithm chose to tackle some terrain, instead of trying to go around it.
Sometimes the slight terrain is deemed less of a cost than the distance to go around it. You
can see examples of that choice in this zoomed-in portion of the upper-right section of the
route. The red line is the route that our program generated through the terrain:

We only used two values: terrain and distance. But you could also add hundreds of factors,
such as soil type, water bodies, and existing roads. All of these items could serve as an
impedance or an outright wall. You would just modify the scoring function in the example
to account for any additional factors. Keep in mind, the more factors you add, the more
difficult it is to trace what the A* implementation was thinking when it chose the route.
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An obvious future direction for this analysis would be to create a vector version of this
route as a line. The process would include mapping each cell to a point and then using
nearest-neighbor analysis to order the points properly, before saving it as a shapefile or
GeoJSON file.

Converting the route to a shapefile
The raster version of the least cost path route is useful for visualization, but it isn't much
good for analysis because it is embedded in the raster, and it is, therefore, difficult to relate
to other datasets as we have done so many other times in this book. Our next goal will be to
use the path data that we saved when creating the route to create a shapefile since the
saved data is in the proper order. The following code will convert our raster path to a
shapefile that is easier to use in a GIS for analysis:

First, we'll import the modules that we need, which aren't many. We'll use the1.
pickle module to restore the path data object. Then, we'll use the linecache
module to read the geospatial header information from the path raster in order to
map the path rows and columns to the earth coordinates. Finally, we'll use the
shapefile module to export the shapefile:

import pickle
from linecache import getline
import shapefile

Next, we'll create a function to convert rows and columns to x and y coordinates.2.
The function accepts the metadata header information from the path raster file,
as well as the column and row number:

def pix2coord(gt,x,y):
 geotransform = gt
 ox = gt[2]
 oy = gt[3]
 pw = gt[4]
 ph = gt[4]
 cx = ox + pw * x + (pw/2)
 cy = oy + pw * y + (ph/2)
 return cx, cy

Now, we'll restore the path object from the pickled object:3.

with open("path.p", "rb") as pathFile:
 path = pickle.load(pathFile)
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Then, we'll parse the metadata information from the path raster file:4.

hdr = [getline("path.asc", i) for i in range(1, 7)]
gt = [float(ln.split(" ")[-1].strip()) for ln in hdr]

Next, we need a list object to hold the converted coordinates:5.

coords = []

Now, we convert each raster location from the least cost path object into a6.
geospatial coordinate and store it in the list that we created:

for y,x in path:
 coords.append(pix2coord(gt,x,y))

Finally, with just a few lines, we write out a line shapefile:7.

with shapefile.Writer("path", shapeType=shapefile.POLYLINE) as w:
 w.field("NAME")
 w.record("LeastCostPath")
 w.line([coords])

Good work! You have created a program that can automatically navigate through obstacles,
based on a set of rules, and exported it to a file that you can display and analyze in a GIS!
We only used three rules, but you can add additional restrictions on how the program picks
a path by adding other datasets, such as weather or water bodies, or anything else you can
imagine.

Now that we understand blazing a path across an arbitrary surface, we'll look at routing
through a network.

Routing along streets
Routing along streets uses a connected network of lines, which is called a graph. The lines
in the graph can have impedance values, which discourage a routing algorithm from
including them in a route. Examples of impedance values often include traffic volume,
speed limit, or even distance. A key requirement for a routing graph is that all of the lines,
known as edges, must be connected. Road datasets that are created for mapping will often
have lines whose nodes do not intersect.

In this example, we'll calculate the shortest route through a graph by distance. We'll use a
start and end point, which are not nodes in the graph, meaning we'll have to first find the
graph nodes that are the closest to our start and destination points.
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To calculate the shortest route, we'll use a powerful pure Python graph library called
NetworkX. NetworkX is a general network graphing library that can create, manipulate,
and analyze complex networks, including geospatial networks. If pip does not install
NetworkX on your system, then you can find instructions for downloading and installing 
NetworkX for different operating systems at http:/ /networkx. readthedocs. org/ en/
stable/.

You can download the road network and the start and end points, which are located along
the U.S. Gulf Coast, as a ZIP file from http:/ /git. io/vcXFQ. Then, you can follow these
steps:

First, we'll need to import the libraries we're going to use. In addition to1.
NetworkX, we’ll use the PyShp library in order to read and write shapefiles:

import networkx as nx
import math
from itertools import tee
import shapefile
import os

Next, we'll define the current directory as our output directory for the route2.
shapefile that we'll create:

savedir = "."

Now, we’ll need a function that can calculate the distance between points in3.
order to populate the impedance values of our graph and to find the nodes
closest to our start and destination points for the route:

def haversine(n0, n1):
 x1, y1 = n0
 x2, y2 = n1
 x_dist = math.radians(x1 - x2)
 y_dist = math.radians(y1 - y2)
 y1_rad = math.radians(y1)
 y2_rad = math.radians(y2)
 a = math.sin(y_dist/2)**2 + math.sin(x_dist/2)**2 \
 * math.cos(y1_rad) * math.cos(y2_rad)
 c = 2 * math.asin(math.sqrt(a))
 distance = c * 6371
 return distance

http://networkx.readthedocs.org/en/stable/
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Then, we'll create another function, which returns pairs of points from a list, to4.
give us the line segments that we'll use to build our graph edges:

def pairwise(iterable):
 """Return an iterable in tuples of two
 s -> (s0,s1), (s1,s2), (s2, s3), ..."""
 a, b = tee(iterable)
 next(b, None)
 return zip(a, b)

Now, we'll define our road network shapefile. This road network is a subset of a5.
U.S. interstate highway files shapefile from the United States Geological
Survey (USGS), which has been edited to ensure all the roads are connected:

shp = "road_network.shp"

Next, we'll create a graph with NetworkX and add the shapefile segments as6.
graph edges:

G = nx.DiGraph()
r = shapefile.Reader(shp)
for s in r.shapes():
 for p1, p2 in pairwise(s.points):
 G.add_edge(tuple(p1), tuple(p2))

Then, we can extract the connected components as a subgraph. However, in this7.
case, we've ensured that the entire graph is connected:

sg = list(nx.connected_component_subgraphs(G.to_undirected()))[0]

Next, we can read in the start and end points that we want to navigate:8.

r = shapefile.Reader("start_end")
start = r.shape(0).points[0]
end = r.shape(1).points[0]
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Now, we loop through the graph, and assign distance values to each edge, using9.
our haversine formula:

for n0, n1 in sg.edges_iter():
 dist = haversine(n0, n1)
 sg.edge[n0][n1]["dist"] = dist

Next, we must find the nodes in the graph that are the closest to our start and10.
end points, in order to begin and end our route by looping through all of the
nodes, and measuring the distance to our end points until we find the shortest
distance:

nn_start = None
nn_end = None
start_delta = float("inf")
end_delta = float("inf")
for n in sg.nodes():
 s_dist = haversine(start, n)
 e_dist = haversine(end, n)
 if s_dist < start_delta:
 nn_start = n
 start_delta = s_dist
 if e_dist < end_delta:
 nn_end = n
 end_delta = e_dist

Now, we are ready to calculate the shortest distance through our road network:11.

path = nx.shortest_path(sg, source=nn_start, target=nn_end,
weight="dist")

Finally, we'll add the results to the shapefile and save our route:12.

w = shapefile.Writer(shapefile.POLYLINE)
w.field("NAME", "C", 40)
w.line(parts=[[list(p) for p in path]])
w.record("route")
w.save(os.path.join(savedir, "route"))
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The following screenshot shows the road network in light gray, the start and end points,
and the route in black. You can see that the route cuts across the road network in order to
reach the road that is the nearest to the end point in the shortest possible distance:

Now that we know how to create various types of routes, we can look at locating photos
that you might take while traveling along a route.

Geolocating photos
Photos that are taken with GPS-enabled cameras, including smartphones, store location
information in the header of the file in a format called EXIF tags. These tags are based
largely on the same header tags that are used by the TIFF image standard. In this example,
we'll use those tags to create a shapefile with point locations for the photos, and file paths
to the photos, as attributes.



Advanced Geospatial Python Modeling Chapter 8

[ 358 ]

We’ll use the PIL in this example because it has the ability to extract EXIF data. Most photos
that are taken with smartphones are geotagged images; however, you can download the set
used in this example from https:/ /git. io/vczR0:

First, we'll import the libraries that we need, including PIL for the image1.
metadata and PyShp for the shapefiles:

import glob
import os
try:
 import Image
 import ImageDraw
except ImportError:
 from PIL import Image
 from PIL.ExifTags import TAGS
import shapefile

Now, we'll need three functions. The first function extracts the EXIF data. The2.
second function converts degree, minutes, seconds (DMS) coordinates to 
decimal degrees (EXIF data stores GPS data as DMS coordinates). The third
function extracts the GPS data and performs the coordinate conversion:

def exif(img):
 # extract exif data.
 exif_data = {}
 try:
 i = Image.open(img)
 tags = i._getexif()
 for tag, value in tags.items():
 decoded = TAGS.get(tag, tag)
 exif_data[decoded] = value
 except:
 pass
 return exif_data

def dms2dd(d, m, s, i):
 # convert degrees, min, sec to decimal degrees
 sec = float((m * 60) + s)
 dec = float(sec / 3600)
 deg = float(d + dec)
 if i.upper() == 'W':
 deg = deg * -1
 elif i.upper() == 'S':
 deg = deg * -1
 return float(deg)

def gps(exif):

http://git.io/vczR0
http://git.io/vczR0
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 # get gps data from exif
 lat = None
 lon = None
 if exif['GPSInfo']:
 # Lat
 coords = exif['GPSInfo']
 i = coords[1]
 d = coords[2][0][0]
 m = coords[2][1][0]
 s = coords[2][2][0]
 lat = dms2dd(d, m, s, i)
 # Lon
 i = coords[3]
 d = coords[4][0][0]
 m = coords[4][1][0]
 s = coords[4][2][0]
 lon = dms2dd(d, m, s, i)
 return lat, lon

Next, we will loop through the photos, extract the coordinates, and store the3.
coordinates and filename in a dictionary:

photos = {}
photo_dir = "./photos"
files = glob.glob(os.path.join(photo_dir, "*.jpg"))
for f in files:
 e = exif(f)
 lat, lon = gps(e)
 photos[f] = [lon, lat]

Now, we will save the photo information as a shapefile:4.

with shapefile.Writer("photos", shapefile.POINT) as w:
    w.field("NAME", "C", 80)
    for f, coords in photos.items():
        w.point(*coords)
        w.record(f)
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The filenames of the photos in the shapefile are now attributes of the point locations where
the photos were taken. GIS programs including QGIS and ArcGIS have the tools to turn
those attributes into links when you click on the photo path or the point. The following
screenshot from QGIS shows that one of the photos opens after clicking on the associated
point using the Run Feature Action tool:

To view the result, please use the following instructions:

Download QGIS from https:/ /qgis. org and follow the installation instructions.1.
Open QGIS and drag the photos.shp file onto the blank map.2.
In the Layer panel on the left, right-click the layer named Photos and select3.
Properties.
On the Actions tab, click the green plus sign to open the new actions dialog.4.
In the Type drop-down menu, select Open.5.
In the Description field, enter Open Image.6.
Click the Insert button in the lower-right corner.7.
Click the OK button, and then close the properties dialog.8.

http://qgis.org
http://qgis.org
http://qgis.org
http://qgis.org
http://qgis.org
http://qgis.org
http://qgis.org
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Click on the small black arrow to the right of the Run Feature Action tool, which9.
is a gear icon with a green center and a white arrow in it.
In the menu that pops up, choose Open Image.10.
Now, click on one of the points on the map to see the geotagged image popup.11.

Now, let's move from an image taken on the Earth, to images taken of the Earth itself, by
working with satellite images.

Calculating satellite image cloud cover
Satellite images give us a powerful bird's-eye view of the Earth. They are useful for a
variety of purposes, which we saw in Chapter 6, Python and Remote Sensing. However, they
have one flaw—clouds. As a satellite passes around the Earth and collects imagery, it
inevitably images clouds. And in addition to obstructing our view of the Earth, the cloud
data can adversely affect remote sensing algorithms by wasting CPU cycles on useless
cloud data, or skew the results by introducing unwanted data values.

The solution is to create a cloud mask. A cloud mask is a raster that isolates the cloud data
in a separate raster. You can then use that raster as a reference when processing the image
in order to avoid cloud data, or you can even use it to remove the clouds from the original
image.

In this section, we'll create a cloud mask for a Landsat image using the rasterio module
and the rio-l8qa plugin. The cloud mask will be created as a separate image that just
contains clouds:

First, we need to download some sample Landsat 8 satellite image data as a ZIP1.
file from http:/ /bit. ly/ landsat8data.
Click the download icon in the top right to download the data as a ZIP file, and2.
unzip it to a directory named l8.
Next, make sure you have the raster libraries that we need by running pip:3.

pip install rasterio
pip install rio-l8qa

Now, we'll create the cloud mask by first importing the libraries that we need:4.

import glob
import os
import rasterio
from l8qa.qa import write_cloud_mask

http://bit.ly/landsat8data
http://bit.ly/landsat8data
http://bit.ly/landsat8data
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Next, we need to provide a reference to our satellite image directory:5.

# Directory containing landsat data
landsat_dir = "l8"

Now, we need to locate the quality-assurance metadata for the satellite data,6.
which gives us the information that we need to generate the cloud mask:

src_qa = glob.glob(os.path.join(landsat_dir, '*QA*'))[0]

Finally, we use the quality-assurance file to create a cloud mask TIFF file:7.

with rasterio.open(src_qa) as qa_raster:
 profile = qa_raster.profile
 profile.update(nodata=0)
 write_cloud_mask(qa_raster.read(1), profile, 'cloudmask.tif')

The following image is just the band 7 (short-wave infrared) image from the Landsat 8
dataset:
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The next image is the cloud mask image containing only the location of clouds and
shadows:

And finally, here's the mask over the image, showing the clouds as black:
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This example brushes the surface of what you can do with image masking. Another
rasterio module, rio-cloudmask, allows you to calculate the cloud mask from scratch
without using the quality-assurance data. But it requires some additional pre-processing
steps. You can learn more about that here: https:/ /github. com/ mapbox/ rio- cloudmask. 

Summary
In this chapter, we learned how to create three real-world products, which are used every
day in government, science, and industry. Apart from where this analysis is typically done
with black box packages—costing thousands of dollars—we were able to use very minimal
and free cross-platform Python tools. And in addition to the examples in this chapter, you
now have some more reusable functions, algorithms, and processing frameworks for other
advanced analyses, which will allow you to solve new problems that you come across in
fields such as transportation, agriculture, and weather.

In the next chapter, we'll move into a relatively new area of geospatial analysis: real-time
and near real-time data.
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9
Real-Time Data

A common saying among geospatial analysts is: A map is outdated as soon as it's created. This
saying reflects the fact that the Earth and everything on it are constantly changing. For most
of the history of geospatial analysis and through most of this book, geospatial products are
relatively static. Raw datasets are typically updated anywhere from a few months to a few
years. The age of geospatial data in a map is referred to as data currency.

Data currency has traditionally not been the primary focus because of the time and expense
needed to collect data. Web mapping, wireless cellular modems, and low-cost GPS
antennas have changed that focus. It is now logistically feasible and even quite affordable
to monitor a rapidly changing object or system and broadcast those changes to millions of
people online. This change is revolutionizing geospatial technology and taking it in new
directions. The most direct evidence of this revolution is web mapping mashups using
systems such as Google Maps or OpenLayers and web-accessible data formats. Every day,
more and more electronic devices are being brought online to broadcast their location and
data for automation or remote control. Examples include thermostats, cameras, cars, and
more. You can also use cheap, embedded computers such as the popular Raspberry Pi to
turn almost anything into a connected smart device. This concept of connecting devices into
a web of data and information is called The Internet of Things (IoT).

In this chapter, we'll be checking out the following topics:

Limitations of real-time data
Using real-time data
Tracking vehicles
Storm chasing
Reports from the field

By the end, you'll have learned to work with real-time geospatial data, and will be able to
build a field reporting tool that can serve as a data transmission source for any type of data.
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Technical requirements
This chapter requires the following things:

Python 3.6 or higher
RAM: Minimum 6 GB (Windows), 8 GB (macOS), recommended 8 GB
Storage: Minimum 7200 RPM SATA with 20 GB of available space, and
recommended SSD with 40 GB of available space
Processor: Minimum Intel Core i3 2.5 GHz, and recommended Intel Core i5
The MapQuest Developer API key, available here: https:/ /developer.
mapquest. com/ plan_ purchase/ steps/ business_ edition/ business_ edition_
free/register

Limitations of real-time data
The term real-time data typically means near-real-time. Some tracking devices capture real-
time data and may update as often as several times a second. But the limitations of the
infrastructure that broadcasts that data may constrain the output to every 10 seconds or
longer. Weather radar is a perfect example. A Doppler Weather Radar (DWR) sweeps
continuously but data is typically available online every five minutes. But given the
contrast with traditional geospatial data updates, a refresh of a few minutes is real-time
enough. Limitations can be summarized as follows:

Network bandwidth limitations restricting data size
Network latency limiting the data update frequency
Availability of the data source due to restrictions such as battery life
Lack of quality control due to data being instantly available to consumers
Security vulnerabilities due to rapid ingestion of unverified data

Real-time data opens up additional opportunities for geospatial applications so we'll look at
using it next.

https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register


Real-Time Data Chapter 9

[ 367 ]

Using real-time data
Web mashups often use real-time data. Web mashups are amazing and have changed the
way many different industries operate. But they are typically limited in that they usually
just display pre-processed data on a map and give developers access to a JavaScript API.
But what if you want to process the data in some way? What if you want to filter, change,
and then send it to another system? To use real-time data for geospatial analysis, you need
to be able to access it as point data or a georeferenced raster.

You can find out more about web map mashups here: https:/ /www. esri.
com/arcgis- blog/ products/ product/ uncategorized/ digital- map-
mashups/ .

As with examples in the previous chapters, the scripts are as simple as possible and
designed to be read from start to finish without much mental looping. When functions are
used they are listed first, followed by script variable declarations, and finally the main
program execution.

Now let's see how to access a real-time and point-location data source using vehicles from
the NextBus API.

Tracking vehicles
For our first real-time data source, we'll use the excellent NextBus API. NextBus (http:/ /
www.nextbus.com/ ) is a commercial service that tracks public transportation for
municipalities including buses, trolleys, and trains. People riding these transit lines can
then track the arrival time of the next bus.

What's even better is that, with the customer's permission, NextBus publishes tracking data
through a REpresentational State Transfer (REST) API. Using URL API calls, developers
can request information about a vehicle and receive an XML document about its location.
This API is a straightforward way to begin using real-time data.
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If you go to NextBus, you'll see a web interface as shown in the following screenshot,
showing data for the city of Los Angeles, California metro system:

The system lets you select several parameters to learn the current location and time
prediction for the next stop. On the right side of the screen, there is a link to a Google Maps
mashup, showing transit tracking data for the particular route as shown in the following
screenshot:
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This is a very useful website but it does not give us control over how the data is displayed
and used. Let's access the raw data directly using Python and the NextBus REST API to
start working with real-time data. 

For the examples in this chapter, we'll use the documented NextBus API found
here: http://www. nextbus. com/ xmlFeedDocs/ NextBusXMLFeed. pdf.

To start with this example, we will need a list of buses required.

The NextBus agency list
NextBus customers are called agencies. In our examples, we are going to track buses on a
route for Los Angeles, California. First, we need to get some information about the agency.
The NextBus API consists of a web service named publicXMLFeed, in which you set a
parameter named command. We'll call the agencyList command in a browser to get an
XML document containing agency information using the following REST URL: http:/ /
webservices.nextbus. com/ service/ publicXMLFeed? command= agencyList.
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When we go to that link in a browser, it returns an XML document containing the
<agency/> tag. The tag for Los Angeles looks like the following:

<agency tag="lametro" title="Los Angeles Metro" regionTitle="California-
Southern"/>

Now that we have a list of buses, we need to get the routes they can travel.

The NextBus route list
The tag attribute is the ID for Thunder Bay, which we need for other NextBus API
commands. The other attributes are human-readable metadata. The next piece of 
information we need is the details about the route 2 bus route. To get this information, we'll
use the agency ID and the routeList REST command to get another XML document by
pasting the URL into our web browser.

Note that the agency ID is set to the parameter in the REST URL: http:/ /
webservices. nextbus. com/ service/ publicXMLFeed? command= routeList
a=lametro.

When we call this URL in a browser, we get the following XML document:

<?xml version="1.0" encoding="utf-8" ?>
<body copyright="All data copyright Los Angeles Metro 2015."><route tag="2"
title="2 Downtown LA - Pacific Palisades Via"/><route tag="4" title="4
Downtown LA - Santa Monica Via Santa"/>
<route tag="10" title="10 W Hollywood-Dtwn LA -Avalon Sta Via"/>
...
<route tag="901" title="901 Metro Orange Line"/>
<route tag="910" title="910 Metro Silver Line"/>
</body>

We have buses and routes. We're ready to start tracking their locations! 

NextBus vehicle locations
So the mainline route ID stored in the tag attribute is simply 1, according to  these results.
Thus, now, we have all of the information we need to track buses along the LA Metro route
2. 
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There is only one more required parameter (called t) that represents milliseconds since the
1970 epoch date (January 1, 1970, at midnight UTC). The epoch date is simply a computer
standard used by machines to track time. The easiest thing to do within the NextBus API is
to specify 0 for this value, which returns data for the last 15 minutes.

There is an optional direction tag that allows you to specify a terminating bus stop in the
event a route has multiple buses running on the route in opposite directions. But, if we
don't specify that, the API will return the first one, which suits our needs. The REST URL to
get the mainline route for LA Metro looks like the following: http:/ /webservices.
nextbus.com/service/ publicXMLFeed? command= vehicleLocations a=lametro r=2t= 0.

Calling this REST URL in a browser returns the following XML document:

<?xml version="1.0" encoding="utf-8" ?>
<body copyright="All data copyright Los Angeles Metro 2015.">
<vehicle id="7582" routeTag="2" dirTag="2_758_0" lat="34.097992"
lon="-118.350365" secsSinceReport="44" predictable="true" heading="90"
speedKmHr="0"/>
<vehicle id="7583" routeTag="2" dirTag="2_779_0" lat="34.098076"
lon="-118.301399" secsSinceReport="104" predictable="true" heading="90"
speedKmHr="37"/>
. . .
</body >

Each vehicle tag represents a location within the last 15 minutes. The last tag is the most
recent location (even though XML is technically unordered).

These public transportation systems do not run all of the time. Many close
down at 10:00 p.m. (22:00) local time. If you encounter an error in the
script, use the NextBus website to locate a system that is running and
change the agency and route variables to that system.

We can now write a Python script that returns the locations for a bus on a given route. If we
don't specify the direction tag, NextBus returns the first one. In this example, we are
going to poll the NextBus tracking API by calling the REST URL using the built-in Python
urllib library demonstrated in previous chapters.
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We'll parse the returned XML document using the simple built-in minidom module, also
shown in The minidom module section, in Chapter 4, Geospatial Python Toolbox. This script
simply outputs the latest latitude and longitude of the route 2 bus. You will see the agency
and route variables near the top. To do this, we need to follow the following steps:

First, we import the libraries we need:1.

import urllib.request
import urllib.parse
import urllib.error
from xml.dom import minidom

Now we set up our variables for API mode and the customer and route we want2.
to query:

# Nextbus API command mode
command = "vehicleLocations"

# Nextbus customer to query
agency = "lametro"

# Bus we want to query
route = "2"

We're going to set the time value to 0, which will grab the last 15 minutes of3.
data:

# Time in milliseconds since the
# 1970 epoch time. All tracks
# after this time will be returned.
# 0 only returns data for the last
# 15 minutes
epoch = "0"

Now we need to build the query URL that we'll use to access the API:4.

# Build our query url
# webservices base url
url = "http://webservices.nextbus.com"

# web service path
url += "/service/publicXMLFeed?"

# service command/mode
url += "command=" + command

# agency
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url += "&a=" + agency
url += "&r=" + route
url += "&t=" + epoch

Next, we can call the API using urllib:5.

# Access the REST URL
feed = urllib.request.urlopen(url)
if feed:
 # Parse the xml feed
 xml = minidom.parse(feed)
 # Get the vehicle tags
 vehicles = xml.getElementsByTagName("vehicle")
 # Get the most recent one. Normally there will
 # be only one.

Finally, we can access the results and print out the location of each bus:6.

 if vehicles:
   bus = vehicles.pop()
   # Print the bus latitude and longitude
   att = bus.attributes
   print(att["lon"].value, ",", att["lat"].value)
 else:
   print("No vehicles found.")

The output of this script is simply a latitude and longitude value that implies that we now
have control of the API and understand it. The output should be a coordinate value for the
latitude and longitude.

Now we are ready to use these location values to create our own map.

Mapping NextBus locations 
The best source of freely available street mapping data is the OpenStreetMap (OSM)
project: http://www. openstreetmap. org. OSM also has a publicly available REST API for
creating static map images called StaticMapLite: http:/ /staticmap. openstreetmap. de.
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The OSM StaticMapLite API provides a GET API based on Google's static map API to
create simple map images with a limited number of point markers and lines. A GET API, as
opposed to a REST, API allows you to append name/value parameter pairs after a question
mark on the URL. A REST API makes the parameters part of the URL path. We'll use the
API to create our own NextBus API map on-demand with a red pushpin icon for the bus
location.

In the next example, we have condensed the previous script down to a compact function
named nextbus(). The nextbus() function accepts an agency, route, command, and
epoch as arguments. The command defaults to vehicleLocations and the epoch defaults
to 0 to get the last 15 minutes of data. In this script, we'll pass in the LA route-2 route
information and use the default command that returns the most recent latitude/longitude of
the bus.

We have a second function named nextmap() that creates a map with a purple marker on
the current location of the bus each time it is called. The map is created by building a GET
URL for the OSM StaticMapLite API, which centers on the location of the bus and uses a
zoom level between 1-18 and the map size to determine the map extent.

You can access the API directly in a browser to see an example of what the
nextmap() function does. You will need a free MapQuest Developer API
key available by registering here: https:/ /developer. mapquest. com/
plan_ purchase/ steps/ business_ edition/ business_ edition_ free/
register. Once you have the key, insert it in the key parameter where it
says YOUR_API_KEY_HERE. Then, you can test the following example
URL: https://www.mapquestapi.com/staticmap/v4/getmap?size=
865,512&type=map&pois=mcenter,40.702147,-74.015794|&zoom=
14&center=40.714728,-73.998672&imagetype=JPEG&key=YOUR_AP

I_KEY_HERE.
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Static maps look similar to the following:

The nextmap() function accepts a NextBus agency ID, route ID, and string for the base
image name for the map. The function calls the nextbus() function to get the
latitude/longitude pair. The execution of this program loops through at timed intervals,
creates a map on the first pass, and then overwrites the map on subsequent passes. The
program also outputs a timestamp each time a map is saved. The requests variable
specifies the number of passes and the freq variable represents the time in seconds
between each loop. Let's check the following code to see how of this example works: 

First, we import the libraries we need:1.

import urllib.request
import urllib.parse
import urllib.error
from xml.dom import minidom
import time
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Next, we create a function that can get the latest location of a bus on a given2.
route:

def nextbus(a, r, c="vehicleLocations", e=0):
 """Returns the most recent latitude and
 longitude of the selected bus line using
 the NextBus API (nbapi)
 Arguments: a=agency, r=route, c=command,
 e=epoch timestamp for start date of track,
 0 = the last 15 minutes"""
 nbapi = "http://webservices.nextbus.com"
 nbapi += "/service/publicXMLFeed?"
 nbapi += "command={}&a={}&r={}&t={}".format(c, a, r, e)
 xml = minidom.parse(urllib.request.urlopen(nbapi))
 # If more than one vehicle, just get the first
 bus = xml.getElementsByTagName("vehicle")[0]
 if bus:
 at = bus.attributes
 return(at["lat"].value, at["lon"].value)
 else:
 return (False, False)

Now we have a function to plot a bus location on a map image:3.

def nextmap(a, r, mapimg):
 """Plots a nextbus location on a map image
 and saves it to disk using the MapQuest OpenStreetMap Static Map
 API (osmapi)"""
 # Fetch the latest bus location
 lat, lon = nextbus(a, r)
 if not lat:
   return False
 # Base url + service path

Within that function, we set up the API parameters in the URL:4.

 osmapi = "https://www.mapquestapi.com/staticmap/v4/getmap?
 type=map&"
# Use a red, pushpin marker to pin point the bus
 osmapi += "mcenter={},{}|&".format(lat, lon)
# Set the zoom level (between 1-18, higher=lower scale)
 osmapi += "zoom=18&"
# Center the map around the bus location
 osmapi += "center={},{}&".format(lat, lon)
# Set the map image size
 osmapi += "&size=1500,1000"
# Add our API Key
 osmapi += "&key=YOUR_API_KEY_HERE"
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Now we can create the image by calling the URL and save it:5.

 # Create a PNG image
 osmapi += "imagetype=png&"
 img = urllib.request.urlopen(osmapi)

# Save the map image
 with open("{}.png".format(mapimg), "wb") as f:
   f.write(img.read())
return True

Now in our main program, we can set up variables about the buses we want to6.
track:

# Nextbus API agency and bus line variables
agency = "lametro"
route = "2"
# Name of map image to save as PNG
nextimg = "nextmap"

Then, we can specify the number and frequency of tracking points we want:7.

# Number of updates we want to make
requests = 1
# How often we want to update (seconds)
freq = 5

Finally, we can begin tracking and updating our map image:8.

# Map the bus location every few seconds
for i in range(requests):
 success = nextmap(agency, route, nextimg)
 if not success:
   print("No data available.")
   continue
 print("Saved map {} at {}".format(i, time.asctime()))
 time.sleep(freq)

While the script runs, you'll see an output similar to the following, showing at9.
what time the script saved each map:

Saved map 0 at Sun Nov 1 22:35:17 2015
Saved map 1 at Sun Nov 1 22:35:24 2015
Saved map 2 at Sun Nov 1 22:35:32 2015
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This script saves a map image similar to the following, depending on where the bus was
when you ran it: 



Real-Time Data Chapter 9

[ 379 ]

This map is an excellent example of using an API to create a custom mapping product. But
it is a very basic tracking application. To begin to develop it into a more interesting
geospatial product, we need to combine it with some other real-time data source that gives
us more situational awareness.

Now that we can track buses, let's add some additional information to the map that would
be useful to know for passengers taking a bus. Let's add some weather data.

Storm chasing
So far, we have created a simpler version of what the NextBus website already does. But we
have done it in a way that ultimately gives us complete control over the output. Now we
want to use this control to go beyond what the NextBus Google Maps mashup does. We'll
add another real-time data source that is very important to both travelers and bus-line
operators: the weather.

Iowa State University's Mesonet program provides free and polished weather data for
applications. We use this data to create a real-time weather map for our bus location map.
We can use the Open Geospatial Consortium (OGC) Web Map Service (WMS) standard
to request a single image over our area of interest. A WMS is an OGC standard for serving
georeferenced map images through the web; they are generated by a map server through
an HTTP request.

The Mesonet system provides an excellent web mapping service that returns a subsetted
image from a global precipitation mosaic based on a properly-formatted WMS request. An
example of such a request is the following query: http:/ /mesonet. agron. iastate. edu/
cgi-bin/wms/nexrad/ n0r. cgi? SERVICE= WMS VERSION= 1. 1.1REQUEST= GetMap LAYERS= nexrad-
n0rSTYLES=SRS=EPSG:900913 BBOX= - 15269659. 42,2002143. 61,- 6103682. 81,7618920. 15
WIDTH=600HEIGHT= 600 FORMAT= image/ png.
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Because the examples in this chapter rely on real-time data, the specific requests listed may
produce blank weather images if there is no activity in the area of interest. You can visit this
link (http://radar. weather. gov/ ridge/ Conus/ index. php) to find an area where a storm is
occurring. This page contains a KML link for Google Earth or QGIS. These WMS images are
transparent PNG images similar to the following sample:

The OSM site, on the other hand, no longer provides its street maps via WMS—only as tiles.
They do, however, allow other organizations to download tiles or raw data to extend the
free service. The US National Oceanic and Atmospheric Administration (NOAA) has
done just that and provided a WMS interface to their OSM data, allowing requests to
retrieve the single basemap image we need for our bus route:
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We now have data sources from which to get the basemap and weather data. We want to
combine these images and plot the current location of the bus. Instead of a simple dot, we'll
get a little more sophisticated and add the following bus icon this time:

You will need to download this icon, busicon.png, to your working directory  from
here: https://github. com/ GeospatialPython/ Learn/ blob/ master/ busicon. png? raw=
true.

Now we'll combine our previous scripts and our new data sources to create a real-time
weather bus map. Because we are going to blend the street map and weather map, we'll
need the Python Imaging Library (PIL) used in previous chapters. We'll replace our
nextmap() function from the previous example with a simple wms() function that can grab
a map image by a bounding box from any WMS service.  We'll also add a function that
converts decimal degrees into meters, named ll2m(). 

The script gets the bus location, converts the location to meters, creates a 2 mile (3.2 km)
rectangle around the location, and then downloads a street and weather map. The map
images are then blended together using PIL. PIL then shrinks the   bus icon image to 30 x 30
pixels and pastes it in the center of the map, which is the bus location. Let's look at how the
following code works:

First, we'll import the libraries we need:1.

import sys
import urllib.request
import urllib.parse
import urllib.error
from xml.dom import minidom
import math
try:
 import Image
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except:
 from PIL import Image

Now we'll reuse our nextbus function from the previous example to get the bus2.
tracking data:

def nextbus(a, r, c="vehicleLocations", e=0):
 """Returns the most recent latitude and
 longitude of the selected bus line using
 the NextBus API (nbapi)"""
 nbapi = "http://webservices.nextbus.com"
 nbapi += "/service/publicXMLFeed?"
 nbapi += "command=%s&a=%s&r=%s&t=%s" % (c, a, r, e)
 xml = minidom.parse(urllib.request.urlopen(nbapi))
 # If more than one vehicle, just get the first
 bus = xml.getElementsByTagName("vehicle")[0]
 if bus:
 at = bus.attributes
 return(at["lat"].value, at["lon"].value)
 else:
 return (False, False)

We also need a function to convert latitude and longitude into meters:3.

def ll2m(lon, lat):
 """Lat/lon to meters"""
 x = lon * 20037508.34 / 180.0
 y = math.log(math.tan((90.0 + lat) *
 math.pi / 360.0)) / (math.pi / 180.0)
 y = y * 20037508.34 / 180
 return (x, y)

Now we need a function to retrieve WMS map images, which we'll use for our4.
weather image:

def wms(minx, miny, maxx, maxy, service, lyr, epsg, style, img, w,
        h):
    """Retrieve a wms map image from
    the specified service and saves it as a JPEG."""
    wms = service
    wms += "?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&"
    wms += "LAYERS={}".format(lyr)
    wms += "&STYLES={}&".format(style)
    wms += "SRS=EPSG:{}&".format(epsg)
    wms += "BBOX={},{},{},{}&".format(minx, miny, maxx, maxy)
    wms += "WIDTH={}&".format(w)
    wms += "HEIGHT={}&".format(h)
    wms += "FORMAT=image/jpeg"
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    wmsmap = urllib.request.urlopen(wms)
    with open(img + ".jpg", "wb") as f:
        f.write(wmsmap.read())

Now we can set up all of the variables in our main program to use our functions:5.

# Nextbus agency and route ids
agency = "roosevelt"
route = "shuttle"
# OpenStreetMap WMS service
basemap = "http://ows.mundialis.de/services/service"
# Name of the WMS street layer
streets = "TOPO-OSM-WMS"
# Name of the basemap image to save
mapimg = "basemap"
# OpenWeatherMap.org WMS Service
weather =
"https://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0q.cgi?"
# If the sky is clear over New York,
# use the following url which contains
# a notional precipitation sample:
# weather = "http://git.io/vl4r1"
# WMS weather layer
weather_layer = "nexrad-n0q-900913"
# Name of the weather image to save
skyimg = "weather"
# Name of the finished map to save
final = "next-weather"
# Transparency level for weather layer
# when we blend it with the basemap.
# 0 = invisible, 1 = no transparency
opacity = .5
# Pixel width and height of the
# output map images
w = 600
h = 600
# Pixel width/height of the the
# bus marker icon
icon = 30



Real-Time Data Chapter 9

[ 385 ]

Now we're ready to get our bus location:6.

# Get the bus location
lat, lon = nextbus(agency, route)
if not lat:
 print("No bus data available.")
 print("Please try again later")
 sys.exit()
# Convert strings to floats
lat = float(lat)
lon = float(lon)
# Convert the degrees to Web Mercator
# to match the NOAA OSM WMS map
x, y = ll2m(lon, lat)
# Create a bounding box 1600 meters
# in each direction around the bus
minx = x - 1600
maxx = x + 1600
miny = y - 1600
maxy = y + 1600

Then, we can download our street map:7.

# Download the street map
wms(minx, miny, maxx, maxy, basemap, streets, mapimg, w, h)

Then, we can download the weather map:8.

# Download the weather map
wms(minx, miny, maxx, maxy, weather, weather_layer, skyimg, w, h)
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Now we can overlay the weather data on the bus map:9.

# Open the basemap image in PIL
im1 = Image.open("basemap.png").convert('RGBA')
# Open the weather image in PIL
im2 = Image.open("weather.png").convert('RGBA')
# Convert the weather image mode
# to "RGB" from an indexed PNG
# so it matches the basemap image
im2 = im2.convert(im1.mode)
# Create a blended image combining
# the basemap with the weather map
im3 = Image.blend(im1, im2, opacity)

Next, we need to add the bus icon to our combined map to show the bus's10.
location:

# Open up the bus icon image to
# use as a location marker.
# http://git.io/vlgHl
im4 = Image.open("busicon.png")
# Shrink the icon to the desired
# size
im4.thumbnail((icon, icon))
# Use the blended map image
# and icon sizes to place
# the icon in the center of
# the image since the map
# is centered on the bus
# location.
w, h = im3.size
w2, h2 = im4.size
# Paste the icon in the center of the image
center_width = int((w/2)-(w2/2))
center_height = int((h/2)-(h2/2))
im3.paste(im4, (center_width, center_height), im4)

Finally, we can save the finished map:11.

# Save the finished map
im3.save(final + ".png")
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This script will produce a map similar to the following:
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The map shows us that the bus is experiencing moderate precipitation at its current
location. The color ramp, as shown in the Mesonet website screenshot earlier, ranges from
light blue for light precipitation, then green, yellow, orange, to red as the rain gets heavier
(or light gray to darker gray in black and white). So, at the time this map was created, the
bus-line operator could use this image to tell their drivers to go a little slower, and
passengers will know they may want to get an umbrella before heading to the bus stop. 

Because we wanted to learn the NextBus API at a low level, we used the
API directly using built-in Python modules. But several third-party
Python modules exist for the API including one on PyPI, simply called
nextbus, which allows you to work with higher-level objects for all of the
NextBus commands and provides more robust error handling not
included in the simple examples in this chapter.

Now that we've learned how to check the weather, let's combine discrete real-time data
sources into more meaningful products using Python, HTML, and JavaScript.

Reports from the field
In our final example in this chapter, we'll get off of the bus and out into the field. Modern
smartphones, tablets, and laptops allow us to update a GIS and view those updates from
everywhere. We'll use HTML, GeoJSON, the Leaflet JavaScript library, and a pure-Python
library named Folium to create a client-server application that allows us to post geospatial
information to a server and then create an interactive web map to view those data updates.

First, we need a web form that shows your current location and updates the server when
you submit the form with comments about your location. You can find the form
here: http://geospatialpython. github. io/Learn/ fieldwork. html.
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The following screenshot shows the form:

You can view the source of that form to see how it works. The mapping is done using the
Leaflet library and posts GeoJSON to a unique URL on myjson.com. You can use this page
on mobile devices, move it to any web server, or even use it on your local hard drive.

http://myjson.com/
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The form posts to the following URL publicly on myjson.com: https:/ / api.myjson. com/
bins/467pm. You can visit that URL in a browser to see the raw GeoJSON.

Next, you need to install the Folium library from PyPI. Folium provides a simple Python
API for creating Leaflet web maps. You can find more information about Folium
here: https://github. com/ python- visualization/ folium.

Folium makes producing a Leaflet map extremely simple. This script is just a few lines and
will output a web page named map.html. We pass the GeoJSON URL to the map object,
which will plot the locations on the map:

import folium
m = folium.Map()
m.geo_json(geo_path="https://api.myjson.com/bins/467pm")
m.create_map(path="map.html")

The resulting interactive map will display points as markers. When you click on a marker,
the information from the form is displayed. You can just open the HTML file in any
browser.

Summary
Real-time data is an exciting way to do new types of geospatial analysis, only recently made
possible by advances in several different technologies, including web mapping, GPS, and
wireless communications. In this chapter, you learned how to access raw feeds for real-time
location data, how to acquire a subset of real-time raster data, how to combine different
types of real-time data into a custom map analysis product using only Python, and how to
build client-server geospatial applications to update a GIS in real-time. 

As with previous chapters, these examples contain building blocks that will let you build
new types of application using Python that go far beyond the typical popular and
ubiquitous JavaScript-based mashups.

In the next chapter, we will combine everything we've learned so far into a complete
geospatial application that applies algorithms and concepts in a realistic scenario.
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10
Putting It All Together

Throughout the book, we have touched all the important aspects of geospatial analysis and
we've used a variety of different techniques in Python to analyze different types of
geospatial data. In this final chapter, we will draw on nearly all of the topics we have
covered to produce a real-world product that has become very popular: a GPS route
analysis report.

These reports are common to dozens of mobile app services, GPS watches, in-car
navigation systems, and other GPS-based tools. A GPS typically records location, time, and
elevation. From these values, we can derive a vast amount of ancillary information about
what happened along the route on which that data was recorded. Fitness apps including
RunKeeper, MapMyRun, Strava, and Nike Plus all use similar reports to present GPS-
tracked exercise data from running, hiking, biking, and walking.

We will create one of these reports using Python. This program is nearly 500 lines of code,
our longest yet, so we will step through it in pieces. We will combine the following
techniques:

Understanding a typical GPS report
Building a GPS reporting tool

As we step through this program, all of the techniques used will be familiar, but we will be
using them in new ways.

Technical requirements
We'll be needing the following things for this chapter:

Python 3.6 or higher
RAM: Minimum – 6 GB (Windows), 8 GB (macOS); recommended 8 GB
Storage: Minimum 7200 RPM SATA with 20 GB of available space,
recommended SSD with 40 GB of available space
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Processor: Minimum Intel Core i3 2.5 GHz, recommended Intel Core i5
PIL: The Python Imaging Library
NumPy: A multidimensional and array-processing library
pygooglechart: A Python wrapper for the excellent Google Chart API
FPDF: A simple and pure-Python PDF writer

Understanding a typical GPS report
A typical GPS report has common elements including a route map, elevation profile, and
speed profile. The following screenshot is a report from a typical route logged through
RunKeeper (https:/ /runkeeper. com/ index):

https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
https://runkeeper.com/index
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Our report will be similar, but we'll add a twist. We'll include the route map and elevation
profile like this service, but we'll also add the weather conditions that occurred on that
route when it was recorded and a geolocated photo taken on route.

Now that we know what a GPS report is, let's learn how to build it.

Building a GPS reporting tool
The name of our program is GPX-Reporter.py. If you remember the Tag and markup-based
formats section in Chapter 2, Learning Geospatial Data, the GPX format is the most common
way to store GPS route information. Nearly every program and device relying on GPS data
can convert to and from GPX.

For this example, you can download a sample GPX file from: http:/ /git. io/ vl7qi. Also,
you will need to install a few Python libraries from PyPI. 

You should simply use easy_install or pip to install these tools. We will also be using a
module called SRTM.py. This module is a utility for working with near-global elevation
data collected during the 11-day Shuttle Radar Topography Mission (SRTM) in 2000 by
the space shuttle Endeavor. Install the SRTM module using pip:

pip install srtm.py

Alternatively, you can also download the zipped file, extract it, and copy the srtm folder to
your Python site-packages directory or your working directory: http:/ /git. io/vl5Ls.

You will also need to register for a free Dark Sky API. This free service provides unique
tools. It is the only service that provides global, historical weather data for nearly any point
location with up to 1,000 requests per day for free: https:/ /darksky. net/ dev.

Dark Sky will provide you with a text key that you insert into a variable called api_key in
the GPX-Reporter program before running it. Finally, as per Dark Sky's terms of service,
you'll need to download a logo image to be inserted into the report: https:/ /raw.
githubusercontent. com/ GeospatialPython/ Learn/ master/ darksky. png.

You can review the Dark Sky Terms of Service here: https:/ /darksky. net/
dev/docs/ terms.

http://git.io/vl7qi
http://git.io/vl7qi
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Now, we're ready to work through the GPX-Reporter program. Like other scripts in this
book, this program tries to minimize functions so you can mentally trace the program
better and modify it with less effort. The following list contains the major steps in the
program: 

Setting up the Python logging module1.
Establishing our helper functions2.
Parsing the GPX data file3.
Calculating the route bounding box4.
Buffering the bounding box5.
Converting the box to meters6.
Downloading the basemap7.
Downloading the elevation data8.
Hillshading the elevation data9.
Increasing the hillshade contrast10.
Blending the hillshade and basemap11.
Drawing the GPX track on a separate image12.
Blending the track image and basemap13.
Drawing the start and finish points14.
Saving the map image15.
Calculating the route mile markers16.
Building the elevation profile chart17.
Getting the weather data for the route time period18.
Generating the PDF report19.

The next subsection takes you through the first step.

Initial setup
The beginning of the program is import statements followed by the Python logging
module. The logging module provides a more robust way to track and log program status
than simple print statements. In this part of the program, we configure it as shown in the
following steps:

We first need to install all the libraries we need, as shown in the following code:1.

from xml.dom import minidom
import json
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import urllib.request
import urllib.parse
import urllib.error
import math
import time
import logging
import numpy as np
import srtm # Python 3 version: http://git.io/vl5Ls
import sys
from pygooglechart import SimpleLineChart
from pygooglechart import Axis
import fpdf
import glob
import os
try:
 import Image
 import ImageFilter
 import ImageEnhance
 import ImageDraw
except:
 from PIL import Image
 from PIL import ImageFilter
 from PIL import ImageEnhance
 from PIL import ImageDraw
 from PIL.ExifTags import TAGS

Now we can configure the Python logging module to tell us what's going on2.
throughout the process, as shown here:

# Python logging module.
# Provides a more advanced way
# to track and log program progress.
# Logging level - everything at or below
# this level will output. INFO is below.
level = logging.DEBUG
# The formatter formats the log message.
# In this case we print the local time, logger name, and message
formatter = logging.Formatter("%(asctime)s - %(name)s -
%(message)s")
# Establish a logging object and name it
log = logging.getLogger("GPX-Reporter")
# Configure our logger
log.setLevel(level)
# Print to the command line
console = logging.StreamHandler()
console.setLevel(level)
console.setFormatter(formatter)
log.addHandler(console)
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This logger prints to the console, but with a few simple modifications you can have it print
to a file, or even a database, just by altering the configuration in this section. This module is
built into Python and is documented here: https:/ /docs. python. org/3/ howto/ logging.
html.

Next, we have several utility functions that are used several times throughout the program.

Working with utility functions
All of the following functions, except the functions related to time, have been used in
previous chapters in some form. Let's see how to use utility functions in our example:

First, the ll2m() function converts latitude and longitude to meters:1.

def ll2m(lat, lon):
 """Lat/lon to meters"""
 x = lon * 20037508.34 / 180.0
 y = math.log(math.tan((90.0 + lat) *
 math.pi / 360.0)) / (math.pi / 180.0)
 y = y * 20037508.34 / 180
 return (x, y)

The world2pixel() function converts geospatial coordinates to pixel2.
coordinates on our output map image:

def world2pixel(x, y, w, h, bbox):
 """Converts world coordinates
 to image pixel coordinates"""
 # Bounding box of the map
 minx, miny, maxx, maxy = bbox
 # world x distance
 xdist = maxx - minx
 # world y distance
 ydist = maxy - miny
 # scaling factors for x, y
 xratio = w/xdist
 yratio = h/ydist
 # Calculate x, y pixel coordinate
 px = w - ((maxx - x) * xratio)
 py = (maxy-y) * yratio
 return int(px), int(py)

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html
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Then, we have get_utc_epoch() and get_local_time() to convert the UTC3.
time stored in the GPX file to local time along the route:

def get_utc_epoch(timestr):
 """Converts a GPX timestamp to Unix epoch seconds
 in Greenwich Mean Time to make time math easier"""
 # Get time object from ISO time string
 utctime = time.strptime(timestr, '%Y-%m-%dT%H:%M:%S.000Z')
 # Convert to seconds since epoch
 secs = int(time.mktime(utctime))
 return secs

Now we have a haversine distance function and our simple wms function to4.
retrieve map images:

def haversine(x1, y1, x2, y2):
 """Haversine distance formula"""
 x_dist = math.radians(x1 - x2)
 y_dist = math.radians(y1 - y2)
 y1_rad = math.radians(y1)
 y2_rad = math.radians(y2)
 a = math.sin(y_dist/2)**2 + math.sin(x_dist/2)**2 \
 * math.cos(y1_rad) * math.cos(y2_rad)
 c = 2 * math.asin(math.sqrt(a))
 # Distance in miles. Just use c * 6371
 # for kilometers
 distance = c * (6371/1.609344) # Miles
 return distance

The wms() function retrieves map images with the following code:5.

def wms(minx, miny, maxx, maxy, service, lyr, epsg, style, img, w,
h):
 """Retrieve a wms map image from
 the specified service and saves it as a JPEG."""
 wms = service
 wms += "?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&"
 wms += "LAYERS={}".format(lyr)
 wms += "&STYLES={}&".format(style)
 wms += "SRS=EPSG:{}&".format(epsg)
 wms += "BBOX={},{},{},{}&".format(minx, miny, maxx, maxy)
 wms += "WIDTH={}&".format(w)
 wms += "HEIGHT={}&".format(h)
 wms += "FORMAT=image/jpeg"
 wmsmap = urllib.request.urlopen(wms)
 with open(img + ".jpg", "wb") as f:
   f.write(wmsmap.read())
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Next, we have an exif() function to extract the metadata from the photo:6.

def exif(img):
 """Return EXIF metatdata from image"""
 exif_data = {}
 try:
 i = Image.open(img)
 tags = i._getexif()
 for tag, value in tags.items():
 decoded = TAGS.get(tag, tag)
 exif_data[decoded] = value
 except:
 pass
 return exif_data

Then we have a dms2dd() function to convert degrees/minutes/seconds7.
coordinates to decimal degrees because that's how the photo coordinates are
stored:

def dms2dd(d, m, s, i):
 """Convert degrees/minutes/seconds to
 decimal degrees"""
 s *= .01
 sec = float((m * 60.0) + s)
 dec = float(sec / 3600.0)
 deg = float(d + dec)
 if i.upper() == 'W':
 deg = deg * -1.0
 elif i.upper() == 'S':
 deg = deg * -1.0
 return float(deg)

And finally, we have a gps() function to extract the coordinates from the photo8.
metadata:

def gps(exif):
 """Extract GPS info from EXIF metadat"""
 lat = None
 lon = None
 if exif['GPSInfo']:
 # Lat
 coords = exif['GPSInfo']
 i = coords[1]
 d = coords[2][0][0]
 m = coords[2][1][0]
 s = coords[2][2][0]
 lat = dms2dd(d, m ,s, i)
 # Lon
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 i = coords[3]
 d = coords[4][0][0]
 m = coords[4][1][0]
 s = coords[4][2][0]
 lon = dms2dd(d, m ,s, i)
 return lat, lon

Next, we have our program variables. We will be accessing an OpenStreetMap9.
WMS service provided for free by a company named Mundalis as well as the
SRTM data provided by NASA.

We access the WMS services in this book using Python's urllib library
for simplicity, but if you plan to use OGC web services frequently, you
should use the Python package OWSLib available through PyPI: https:/ /
pypi. python. org/ pypi/ OWSLib.

Now let's perform the followings steps to set up the WMS web service:

We will output several intermediate products and images. These variables are1.
used in those steps. The route.gpx file is defined in this section as
the gpx variable. First, we set up some conversion constants for degrees to
radians conversion and back with the following code:

# Needed for numpy conversions in hillshading
deg2rad = 3.141592653589793 / 180.0
rad2deg = 180.0 / 3.141592653589793

Next, we set up the name of our .gpx file as follows:2.

# Program Variables

# Name of the gpx file containing a route.
# https://git.io/fjwHW
gpx = "route.gpx"

Now, we begin setting up the WMS web service, which will retrieve the map:3.

# NOAA OpenStreetMap Basemap

# OSM WMS service
osm_WMS = "http://ows.mundialis.de/services/service"

# Name of the WMS street layer
# streets = "osm"
osm_lyr = "OSM-WMS"

https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
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https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib
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# Name of the basemap image to save
osm_img = "basemap"

# OSM EPSG code (spatial reference system)
osm_epsg = 3857

# Optional WMS parameter
osm_style = ""

Next, we set up our hillshade parameters, which will determine the angle and4.
direction of our artificial sun:

# Shaded elevation parameters
#
# Sun direction
azimuth = 315.0

# Sun angle
altitude = 45.0

# Elevation exageration
z = 5.0

# Resolution
scale = 1.0

Then we set up the no_data value where there is no elevation information:5.

# No data value for output
no_data = 0

Next, we set up the name of our output image as follows:6.

# Output elevation image name
elv_img = "elevation"

Now we create the colors for our minimum and maximum elevation values with7.
the following code:

# RGBA color of the SRTM minimum elevation
min_clr = (255, 255, 255, 0)

# RGBA color of the SRTM maximum elevation
max_clr = (0, 0, 0, 0)

# No data color
zero_clr = (255, 255, 255, 255)
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Then we set up our output image size, as follows:8.

# Pixel width and height of the

# output images
w = 800
h = 800

Now that we understand how the functions work, let's parse the GPX.

Parsing the GPX
Now, we'll parse the GPX file, which is just XML, using the built-in
xml.dom.minidom module. We'll extract latitude, longitude, elevation, and timestamps.
We'll store them in a list for later use. The timestamps are converted to struct_time
objects using Python's time module, which makes it easier to work with.

The following steps need to be performed for parsing:

First, we parse the gpx file using the minidom module:1.

# Parse the gpx file and extract the coordinates
log.info("Parsing GPX file: {}".format(gpx))
xml = minidom.parse(gpx)

Next, we get all of the "trkpt" tags that contain the elevation information:2.

# Grab all of the "trkpt" elements
trkpts = xml.getElementsByTagName("trkpt")

Now, we set up the lists to store our parsed location and elevation values:3.

# Latitude list
lats = []
# Longitude list
lons = []
# Elevation list
elvs = []
# GPX timestamp list
times = []

Then, we loop through the GPS entries in the GPX and parse the values:4.

# Parse lat/long, elevation and times
for trkpt in trkpts:
 # Latitude
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 lat = float(trkpt.attributes["lat"].value)
 # Longitude
 lon = float(trkpt.attributes["lon"].value)
 lats.append(lat)
 lons.append(lon)
 # Elevation
 elv = trkpt.childNodes[0].firstChild.nodeValue
 elv = float(elv)
 elvs.append(elv)

The timestamp requires a little bit of extra work because we have to convert from GMT
time to local time:

 # Times
 t = trkpt.childNodes[1].firstChild.nodeValue
 # Convert to local time epoch seconds
 t = get_local_time(t)
 times.append(t)

After we parse the GPX, we need the bounding box of the route to download data from
other geospatial services.

Getting the bounding box
When we download data, we want the dataset to cover more area than the route so the map
is not cropped too closely around the edges of the route. So we'll buffer the bounding box
by 20% on each side. Finally, we'll need the data in Eastings and Northings to work with
the WMS service. Eastings and Northings are the x and y coordinates of points in the
Cartesian coordinate system in meters. They are commonly used in the UTM coordinate
system:

First, we get the extents from our coordinate lists as follows: 1.

# Find Lat/Long bounding box of the route
minx = min(lons)
miny = min(lats)
maxx = max(lons)
maxy = max(lats)

Next, we buffer the bounding box to ensure the track isn't taken close to the edge:2.

# Buffer the GPX bounding box by 20%
# so the track isn't too close to
# the edge of the image.
xdist = maxx - minx
ydist = maxy - miny
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x20 = xdist * .2
y20 = ydist * .2

# 10% expansion on each side
minx -= x20
miny -= y20
maxx += x20
maxy += y20

Finally, we set up our bounding box in a variable and convert our coordinates to3.
meters, which the web service requires:

# Store the bounding box in a single
# variable to streamline function calls
bbox = [minx, miny, maxx, maxy]

# We need the bounding box in meters
# for the OSM WMS service. We will
# download it in degrees though to
# match the SRTM file. The WMS spec
# says the input SRS should match the
# output but this custom service just
# doesn't work that way
mminx, mminy = ll2m(miny, minx)
mmaxx, mmaxy = ll2m(maxy, maxx)

With this, we will now download our map and elevation images.

Downloading map and elevation images
We'll download the OSM basemap first as our basemap, which has streets and labels:

First, we'll download the OSM basemap using log.info:1.

# Download the OSM basemap
log.info("Downloading basemap")
wms(mminx, mminy, mmaxx, mmaxy, osm_WMS, osm_lyr,
 osm_epsg, osm_style, osm_img, w, h)
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This section will produce an intermediate image as shown in the following
screenshot:
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Next, we'll download some elevation data from the SRTM dataset. SRTM is2.
nearly global and provides a 30-90 m resolution. The SRTM.py Python
module makes working with this data easy. SRTM.py downloads the data and
sets it needs to make a request. Therefore, if you download data from different
areas, you may need to clean out the cache located in your home directory
(~/.srtm). This part of the script can also take up to 2-3 minutes to complete,
depending on your computer and internet connection speeds:

# Download the SRTM image

# srtm.py downloader
log.info("Retrieving SRTM elevation data")
# The SRTM module will try to use a local cache

# first and if needed download it.
srt = srtm.get_data()
# Get the image and return a PIL Image object
image = srt.get_image((w, h), (miny, maxy), (minx, maxx),
 300, zero_color=zero_clr, min_color=min_clr,
 max_color=max_clr)
# Save the image
image.save(elv_img + ".png")

This portion of the script also outputs an intermediate elevation image, as shown
in the following screenshot:
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Now that we have our elevation image, we can turn it into a hillshade.

Creating the hillshade
We can run this data through the same hillshade algorithm used in Creating a shaded-relief
section in Chapter 7, Python and Elevation Data. For this, let's follow these steps: 

First, we open our elevation image and read it into a numpy array:1.

# Hillshade the elevation image
log.info("Hillshading elevation data")
im = Image.open(elv_img + ".png").convert("L")
dem = np.asarray(im)

Now we set up our processing windows to move through the grid and analyze it2.
in small sections for efficiency:

# Set up structure for a 3x3 windows to
# process the slope throughout the grid
window = []
# x, y resolutions
xres = (maxx-minx)/w
yres = (maxy-miny)/h

Then, we break the elevation image into windows as follows:3.

# Create the windows
for row in range(3):
 for col in range(3):
 window.append(dem[row:(row + dem.shape[0]-2),
 col:(col + dem.shape[1]-2)])

We will create arrays for our processing windows as follows:4.

# Process each cell
x = ((z * window[0] + z * window[3] + z * window[3] + z *
window[6]) -
 (z * window[2] + z * window[5] + z * window[5] + z * window[8])) \
 / (8.0 * xres * scale)

y = ((z * window[6] + z * window[7] + z * window[7] + z *
window[8]) -
 (z * window[0] + z * window[1] + z * window[1] + z * window[2])) \
 / (8.0 * yres * scale)
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Finally, we can process them in a single pass thanks to numpy:5.

# Calculate slope
slope = 90.0 - np.arctan(np.sqrt(x*x + y*y)) * rad2deg

# Calculate aspect
aspect = np.arctan2(x, y)

# Calculate the shaded relief
shaded = np.sin(altitude * deg2rad) * np.sin(slope * deg2rad) \
 + np.cos(altitude * deg2rad) * np.cos(slope * deg2rad) \
 * np.cos((azimuth - 90.0) * deg2rad - aspect)

shaded = shaded * 255

Now that we have our hillshade layer, we can begin creating maps.

Creating maps
We have the data we need to begin building the map for our report. Our approach will be
the following:

Enhancing the elevation and basemap images with filters
Blending the images together to provide a hillshaded OSM map
Creating a translucent layer to draw the street route
Blending the route layer with the hillshaded map

These tasks will all be accomplished using the PIL Image and ImageDraw modules, as
shown in the following steps: 

First, we convert our shaded relief numpy array back to an image and smooth it:1.

# Convert the numpy array back to an image
relief = Image.fromarray(shaded).convert("L")

# Smooth the image several times so it's not pixelated
for i in range(10):
 relief = relief.filter(ImageFilter.SMOOTH_MORE)

log.info("Creating map image")
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Now we'll increase the contrast in the image to make it stand out more:2.

# Increase the hillshade contrast to make
# it stand out more
e = ImageEnhance.Contrast(relief)
relief = e.enhance(2)

Next, we crop the map image to the same size as our elevation image:3.

# Crop the image to match the SRTM image. We lose
# 2 pixels during the hillshade process
base = Image.open(osm_img + ".jpg").crop((0, 0, w-2, h-2))

Then we increase the contrast on the map image as well and blend it with the4.
hillshade image:

# Enhance basemap contrast before blending
e = ImageEnhance.Contrast(base)
base = e.enhance(1)

# Blend the the map and hillshade at 90% opacity
topo = Image.blend(relief.convert("RGB"), base, .9)

Now we're ready to draw the GPS tracks on our blended map by first converting5.
our points to pixels:

# Draw the GPX tracks
# Convert the coordinates to pixels
points = []
for x, y in zip(lons, lats):
 px, py = world2pixel(x, y, w, h, bbox)
 points.append((px, py))

We also need to subtract the buffer from the edge buffer from the tracks image6.
we are about to create:

# Crop the image size values to match the map
w -= 2
h -= 2

Next, we create a transparent image and draw our track as a red line:7.

# Set up a translucent image to draw the route.
# This technique allows us to see the streets
# and street names under the route line.

track = Image.new('RGBA', (w, h))
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track_draw = ImageDraw.Draw(track)

# Route line will be red at 50% transparency (255/2=127)
track_draw.line(points, fill=(255, 0, 0, 127), width=4)

Now we can paste the track on our image with the following code:8.

# Paste onto the basemap using the drawing layer itself
# as a mask.
topo.paste(track, mask=track)

Now we'll draw a starting point on the route like so:9.

# Now we'll draw start and end points directly on top
# of our map - no need for transparency
topo_draw = ImageDraw.Draw(topo)

# Starting circle
start_lon, start_lat = (lons[0], lats[0])
start_x, start_y = world2pixel(start_lon, start_lat, w, h, bbox)
start_point = [start_x-10, start_y-10, start_x+10, start_y+10]
topo_draw.ellipse(start_point, fill="lightgreen", outline="black")
start_marker = [start_x-4, start_y-4, start_x+4, start_y+4]
topo_draw.ellipse(start_marker, fill="black", outline="white")

Following is the code snippet for the ending point:10.

# Ending circle
end_lon, end_lat = (lons[-1], lats[-1])
end_x, end_y = world2pixel(end_lon, end_lat, w, h, bbox)
end_point = [end_x-10, end_y-10, end_x+10, end_y+10]
topo_draw.ellipse(end_point, fill="red", outline="black")
end_marker = [end_x-4, end_y-4, end_x+4, end_y+4]
topo_draw.ellipse(end_marker, fill="black", outline="white")

Now that we have our track drawn, we're ready to place our geotagged photo.

Locating the photo
We'll use a photo taken with a cell phone that adds GPS location coordinates. You can
download it from: 
https://raw.githubusercontent. com/ GeospatialPython/ Learn/ master/ RoutePhoto. jpg.
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Place the image in a directory named photos at the same level as the script. We'll only use
one photo but the script can handle as man images as you want. We'll draw and place a
photo icon on the map and then save the completed basemap, as shown in the following
steps:

First, we get a list of images with the following code:1.

# Photo icon
images = glob.glob("photos/*.jpg")

Next, we loop through each image and grab its GPS information:2.

for i in images:
 e = exif(i)

Then, we parse the location info using our GPS function as follows:3.

 photo_lat, photo_lon = gps(e)
 #photo_lat, photo_lon = 30.311364, -89.324786

Now, we can convert the photo coordinates to image pixel coordinates:4.

 photo_x, photo_y = world2pixel(photo_lon, photo_lat, w, h, bbox)

Then we'll draw an icon for the location of the photo with the following code:5.

 topo_draw.rectangle([photo_x - 12, photo_y - 10, photo_x + 12, \
 photo_y + 10], fill="black", outline="black")
 topo_draw.rectangle([photo_x - 9, photo_y - 8, photo_x + 9, \
 photo_y + 8], fill="white", outline="white")
 topo_draw.polygon([(photo_x-8,photo_y+7), (photo_x-3,photo_y-1),
(photo_x+2,photo_y+7)], fill = "black")
 topo_draw.polygon([(photo_x+2,photo_y+7), (photo_x+7,photo_y+3),
(photo_x+8,photo_y+7)], fill = "black")

And finally, we'll save our map like so:6.

# Save the topo map
topo.save("{}_topo.jpg".format(osm_img))
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While not saved to the filesystem, the hillshaded elevation looks like the following: 
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The blended topographic map looks like the following screenshot:

While hillshade mapping gives us an idea of the elevation, it doesn't give us any
quantitative data. To get more detailed, we'll create a simple elevation chart.
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Measuring elevation
Using the excellent Google Chart API, we can quickly build a nice elevation profile chart
showing how the elevation changes across the route:

First, we'll create the chart object for our elevation profile:1.

# Build the elevation chart using the Google Charts API
log.info("Creating elevation profile chart")
chart = SimpleLineChart(600, 300, y_range=[min(elvs), max(elvs)])

Now, we need to create a line for our minimum value like so:2.

# API quirk - you need 3 lines of data to color
# in the plot so we add a line at the minimum value
# twice.
chart.add_data([min(elvs)]*2)
chart.add_data(elvs)
chart.add_data([min(elvs)]*2)

# Black lines
chart.set_colours(['000000'])

Next, we can fill in our elevation profile as follows:3.

# fill in the elevation area with a hex color
chart.add_fill_range('80C65A', 1, 2)

Then we can set up the elevation labels as follows and assign them to an axis:4.

# Set up labels for the minimum elevation, halfway value, and max
value
elv_labels = int(round(min(elvs))), int(min(elvs)+((max(elvs)-
min(elvs))/2))

# Assign the labels to an axis
elv_label = chart.set_axis_labels(Axis.LEFT, elv_labels)

Next, we can label the axis itself with the following code:5.

# Label the axis
elv_text = chart.set_axis_labels(Axis.LEFT, ["FEET"])
# Place the label at 30% the distance of the line
chart.set_axis_positions(elv_text, [30])
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Now we can calculate the distance between the track points:6.

# Calculate distances between track segments
distances = []
measurements = []
coords = list(zip(lons, lats))
for i in range(len(coords)-1):
 x1, y1 = coords[i]
 x2, y2 = coords[i+1]
 d = haversine(x1, y1, x2, y2)
 distances.append(d)
total = sum(distances)
distances.append(0)
j = -1

We have the elevation profile, but we need to add the distance markers along the x axis so
we know where along the route the profile changed.

Measuring distance
In order to understand the elevation data chart, we need reference points along the x axis to
help us determine the elevation along the route. We will calculate the mile splits along the
route and place those at the appropriate location on the x axis of our charts. Let's have a
look at the following steps:

First, we locate the mile markers along the axis as follows:1.

# Locate the mile markers
for i in range(1, int(round(total))):
 mile = 0
 while mile < i:
 j += 1
 mile += distances[j]
 measurements.append((int(mile), j))
 j = -1

Next, we set up labels for the mile markers:2.

# Set up labels for the mile points

positions = []
miles = []
for m, i in measurements:
 pos = ((i*1.0)/len(elvs)) * 100
 positions.append(pos)
 miles.append(m)
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# Position the mile marker labels along the x axis
miles_label = chart.set_axis_labels(Axis.BOTTOM, miles)
chart.set_axis_positions(miles_label, positions)

Now we can label the mile markers as follows:3.

# Label the x axis as "Miles"
miles_text = chart.set_axis_labels(Axis.BOTTOM, ["MILES", ])
chart.set_axis_positions(miles_text, [50, ])

# Save the chart
chart.download('{}_profile.png'.format(elv_img))

Our chart should now look like the following screenshot:

Our first chart is complete. Now, let's look at weather data along the route.
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Retrieving weather data
In this section, we will retrieve our final data element: the weather. As mentioned earlier,
we will use the Dark Sky service, which allows us to gather historical weather reports for
any place in the world. The weather API is REST and JSON-based, so we'll use the urllib
module to request data and the json library to parse it. Of note in this section is that we
cache the data locally, so you can run the script offline for testing if need be. Early on in this
section is where you place your Dark Sky API key that is flagged by the YOUR KEY
HERE text. Let's have a look at the following steps:

First, we need the center of our area of interest:1.

log.info("Creating weather summary")

# Get the bounding box centroid for georeferencing weather data
centx = minx + ((maxx-minx)/2)
centy = miny + ((maxy-miny)/2)

Now, we set up the free Dark API key as follows so we can retrieve weather data:2.

# DarkSky API key
# You must register for free at DarkSky.net
# to get a key to insert here.
api_key = "YOUR API KEY GOES HERE"

Then, we grab the latest timestamp from our data that we'll use for our weather3.
query:

# Grab the latest route time stamp to query weather history
t = times[-1]

Now we're ready to do our weather data query as follows:4.

history_req =
"https://api.darksky.net/forecast/{}/".format(api_key)
#name_info = [t.tm_year, t.tm_mon, t.tm_mday,
route_url.split(".")[0]]
#history_req += "/history_{0}{1:02d}{2:02d}/q/{3}.json"
.format(*name_info)
history_req += "{},{},{}".format(centy, centx, t)
history_req += "?exclude=currently,minutely,hourly,alerts,flags"
request = urllib.request.urlopen(history_req)
weather_data = request.read()
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We'll cache the weather data like so just in case we want to look at it later:5.

# Cache weather data for testing
with open("weather.json", "w") as f:
 f.write(weather_data.decode("utf-8"))

Then we parse the weather JSON data as follows:6.

# Retrieve weather data
js = json.loads(open("weather.json").read())
history = js["daily"]

All we need is the weather summary, which is the first item in the list:7.

# Grab the weather summary data.
# First item in a list.
daily = history["data"][0]

Now, we'll get the specific weather attributes as follows:8.

# Max temperature in Imperial units (Farenheit).
# Celsius would be metric: "maxtempm"
maxtemp = daily["temperatureMax"]

# Minimum temperature
mintemp = daily["temperatureMin"]

# Maximum humidity
maxhum = daily["humidity"]

# Precipitation in inches (cm = precipm)
if "precipAccumulation" in daily:
 precip = daily["precipAccumulation"]
else:
 precip = "0.0"

Now that we have the weather data stored in variables, we can complete the final9.
step: adding it all to a PDF report. 

The fpdf library has no dependencies except PIL in some cases. For our purposes, it will
work quite well. We are going to proceed down the page and add the elements. fpdf.ln()
separates rows, while fpdf.cells contains text and allows for more precise layouts.
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We're finally ready to create our PDF report with the following steps: 

First, we set up our pdf object as follows:1.

# Simple fpdf.py library for our report.
# New pdf, portrait mode, inches, letter size
# (8.5 in. x 11 in.)
pdf = fpdf.FPDF("P", "in", "Letter")

Then, we'll add a page for our report and set our font preferences:2.

# Add our one report page
pdf.add_page()

# Set up the title
pdf.set_font('Arial', 'B', 20)

We'll create a title for our report with the following code:3.

# Cells contain text or space items horizontally
pdf.cell(6.25, 1, 'GPX Report', border=0, align="C")

# Lines space items vertically (units are in inches)
pdf.ln(h=1)
pdf.cell(1.75)

# Create a horizontal rule line
pdf.cell(4, border="T")
pdf.ln(h=0)
pdf.set_font('Arial', style='B', size=14)

Now, we can add the route map like so:4.

# Set up the route map
pdf.cell(w=1.2, h=1, txt="Route Map", border=0, align="C")
pdf.image("{}_topo.jpg".format(osm_img), 1, 2, 4, 4)
pdf.ln(h=4.35)

Next, we add the elevation chart as follows:5.

# Add the elevation chart
pdf.set_font('Arial', style='B', size=14)
pdf.cell(w=1.2, h=1, txt="Elevation Profile", border=0, align="C")
pdf.image("{}_profile.png".format(elv_img), 1, 6.5, 4, 2)
pdf.ln(h=2.4)
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Then we can write the weather data summary with the following code:6.

# Write the weather summary
pdf.set_font('Arial', style='B', size=14)
pdf.cell(1.2, 1, "Weather Summary", align="C")
pdf.ln(h=.25)
pdf.set_font('Arial', style='', size=12)
pdf.cell(1.8, 1, "Min. Temp.: {}".format(mintemp), align="L")
pdf.cell(1.2, 1, "Max. Hum.: {}".format(maxhum), align="L")
pdf.ln(h=.25)
pdf.cell(1.8, 1, "Max. Temp.: {}".format(maxtemp), align="L")
pdf.cell(1.2, 1, "Precip.: {}".format(precip), align="L")
pdf.ln(h=.25)

The Dark Sky terms require us to add a logo to our report, crediting the excellent7.
data source:

# Give Dark Sky credit for a great service (https://git.io/fjwHl)
pdf.image("darksky.png", 3.3, 9, 1.75, .25)

Now we can add the geolocated image with the following code:8.

# Add the images for any geolocated photos
pdf.ln(h=2.4)
pdf.set_font('Arial', style='B', size=14)
pdf.cell(1.2, 1, "Photos", align="C")
pdf.ln(h=.25)
for i in images:
 pdf.image(i, 1.2, 1, 3, 3)
 pdf.ln(h=.25)

And finally, we can save the report and view it:9.

# Save the report
log.info("Saving report pdf")
pdf.output('report.pdf', 'F')
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You should have a PDF document in your working directory called
report.pdf containing your finished product. It should look like the image shown in the
following screenshot:
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With this, we have used all the techniqueswe've learned throughout this book and built a
GPS reporting tool. 

Summary
Congratulations! In this book, you pulled together the most essential tools and skills
needed to be a modern geospatial analyst. Whether you use geospatial data occasionally or
use it all the time, you will be better equipped to make the most of geospatial analysis. This
book focuses on using open source tools almost entirely found within the PyPI directory for
ease of installation and integration. But even if you are using Python as a driver for a
commercial GIS package or a popular library such as GDAL, the ability to test out new
concepts in pure Python will always come in handy. 

Further reading
Python provides a rich set of libraries for visualizing data. One of the most prominent is
Matplotlib, which can produce numerous types of charts and maps and save them to PDF.
Packt has several books on Matplotlib, including the Matplotlib 30 Cookbook: https:/ /www.
packtpub.com/big- data- and- business- intelligence/ matplotlib- 30- cookbook.
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