

What readers are saying about Desktop GIS

Desktop GIS is a comprehensive survey of open source software for

GIS users. Everyone from casual mapmakers to seasoned profes-

sionals will find a wealth of information from data visualization to

advanced spatial analysis techniques. This book is an ideal text for

anyone interested in a hands-on approach to learning the latest in

open source GIS technology.

Matthew Perry

Senior Staff Scientist, Geosyntec Consultants

Desktop GIS
Mapping the Planet with Open Source Tools

Gary E. Sherman

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Gary E. Sherman.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in China.

ISBN-10: 1-934356-06-9

ISBN-13: 978-1-934356-06-7

http://www.pragprog.com

Contents
Preface 9

How to Use This Book . 9

Acknowledgments . 10

1 Introduction 12

1.1 What Is Desktop Mapping? 13

1.2 Desktop vs. Server Mapping 20

1.3 Assembling a Toolkit . 21

1.4 Other Mapping Options 22

1.5 What’s Ahead? . 22

2 Getting Started 23

2.1 The Three User Classes 23

2.2 Which Are You? . 24

2.3 Choosing a Platform . 25

2.4 Selecting the Right Toolkit 26

2.5 Acquiring and Installing Software 27

2.6 Integration of Tools . 29

2.7 Managing Software Change 30

2.8 Getting Support . 31

2.9 Where to Find Data . 34

2.10 Next Step . 36

3 Working with Vector Data 37

3.1 Viewing Data . 37

3.2 Rendering a Story . 42

3.3 Looking at Attribute Data 44

3.4 Advanced Viewing and Rendering 45

3.5 Making Attribute Data Work for You 56

CONTENTS 6

4 Working with Raster Data 67

4.1 Viewing Raster Data . 67

4.2 Improving Rendering with Pyramids 73

4.3 Intelligent Rasters . 76

5 Digitizing and Editing Vector Data 81

5.1 Simple Digitizing . 81

5.2 Editing Attribute Data 89

5.3 More Digitizing and Editing 90

6 Data Formats 91

6.1 Common Formats . 91

6.2 Choosing a Standard Format 93

6.3 Conversion Options . 96

7 Spatial Databases 98

7.1 Introduction . 98

7.2 Open Source Spatial Databases 99

7.3 Getting Started with PostGIS 101

7.4 Using PostGIS and Quantum GIS 110

7.5 Using PostGIS and uDig 118

7.6 Summing It Up . 119

8 Creating Data 120

8.1 Digitizing . 120

8.2 Importing Data . 122

8.3 Converting Data . 128

8.4 Using GPS Data with QGIS 130

8.5 Georeferencing an Image 135

9 Projections and Coordinate Systems 138

9.1 Projection Flavors . 139

9.2 Working with Projections 140

9.3 The PROJ.4 Projections Library 145

9.4 More Resources . 148

10 Geoprocessing 149

10.1 Projecting Data . 150

10.2 Line-of-Sight Analysis 153

10.3 Hydrologic Modeling . 156

10.4 Creating Hillshades . 159

10.5 Merging Digital Elevation Models 164

10.6 Clipping Features . 166

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=6

CONTENTS 7

11 Using Command-Line Tools 174

11.1 GMT . 174

11.2 Using GDAL and OGR 186

11.3 Creating a Spatial Index for Shapefiles 201

11.4 PostGIS . 203

12 Getting the Most Out of QGIS and GRASS Integration 208

12.1 Loading and Viewing Data 209

12.2 Editing GRASS Data with QGIS 211

12.3 Using Analysis and Conversion Tools 218

12.4 Summing It Up . 233

13 GIS Scripting 235

13.1 GRASS . 235

13.2 QGIS . 236

13.3 GDAL and OGR . 248

13.4 PostGIS . 255

14 Writing Your Own GIS Applications 263

14.1 Options for Writing Your Application 263

14.2 Examples of Custom Applications 265

14.3 How to Approach Your Own Project 267

A Survey of Desktop Mapping Software 269

A.1 GUI Applications . 270

A.2 Command-Line Applications 283

A.3 Other Tools . 289

B Installing Software 290

B.1 GRASS . 290

B.2 OpenJUMP . 292

B.3 Quantum GIS . 292

B.4 uDig . 293

B.5 GMT . 293

B.6 GDAL/OGR . 295

B.7 FWTools . 295

C GRASS Basics 296

C.1 Location, Location, Location 296

C.2 Getting Some Data . 306

C.3 Working with Data . 315

C.4 Getting to Know the GUI 319

C.5 Digitizing and Editing . 322

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=7

CONTENTS 8

D Quantum GIS Basics 330

D.1 Vector Properties and Symbology Options 330

D.2 Project Properties . 336

D.3 Map Navigation and Bookmarks 336

D.4 Plugins . 339

Index 343

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=8

Preface
Open source GIS is a rich and rapidly expanding field of endeavor. Take

a look at the FreeGIS Project website,1 and you’ll see an impressive list

of more than 300 applications. With such a wide array of software avail-

able, it’s impossible for any one book to cover everything. In Desktop

GIS, the goal is to introduce you to some of the major open source GIS

applications that are in active development today. It’s a tough propo-

sition to cover each of these to the extent they deserve. Instead, the

approach is to introduce you to tools that will get you started with open

source GIS and enable you to reach out and expand on your own.

You might think this book is a beginner’s book. Although it’s true that

it starts out that way, we move quickly into areas that intermediate

and advanced users can profit from. Starting from a simple problem

and moving through the concepts of using open source, we’ll advance

to examples of real GIS analysis.

How to Use This Book

If you are new to the concept of GIS, begin at the beginning. For those of

you familiar with GIS but new to open source, the introduction is worth

reading, but you should definitely take a look at Chapter 2, Getting

Started, on page 23 for an overview of things to consider.

If you want an overview of what’s available in open source GIS, before

you proceed take a look at Appendix A, on page 269.

Following the introductory chapters, we delve into working with data,

digitizing and creating new data, and then doing analysis using open

source GIS applications such as GRASS, QGIS, and uDig. In later chap-

ters, you will find information on scripting and writing your own

applications.

1. http://freegis.org

http://freegis.org

ACKNOWLEDGMENTS 10

Since this book is not a tutorial, we won’t go into all the nuances of each

application mentioned. We will show you how to accomplish common

tasks using the software, and in those cases you’ll find a fair bit of

guidance.

The appendixes contain information on installing and using some of

the applications mentioned in the book. If you need further assistance

getting started, refer to websites for the respective projects where you’ll

find a wealth of information.

Versions

The dynamic nature of the open source GIS community was readily

apparent during the writing of this book with several projects releasing

major versions. Fortunately, the differences between the versions don’t

significantly impact our illustrations and examples. Where there is a

difference, it is noted in the text. For software used in the examples,

the following versions were used:

GRASS

For most of the examples, version 6.2.x was used. Where the ver-

sion 6.3 release candidate was used, it is noted in the text.

Quantum GIS

Most of the examples use version 0.8.1. In later chapters where

the Python bindings are discussed, version 0.9.x is used. There

are some minor differences in the user interface between 0.8.1

and 0.9.x, but you should be able to use the later version without

much difficulty.

uDig

For the uDig examples, you can use either the stable (1.0.6) ver-

sion or the current version 1.1 release candidate.

For GDAL, GMT, PROJ.4, and PostGIS, you can use the latest versions

to work through the examples in the book.

Acknowledgments

I want to express my thanks to those who have reviewed all or parts

of the book and provided input and encouragement: Markus Neteler,

Matthew Perry, Barry Rowlingson, Tyler Mitchell, Frank Warmerdam,

Aaron Racicot, Jason Jorgenson, Brent Wood, Dylan Beaudette, Roger

Pearson, Martin Dobias, Patti Giuseppe, and Landon Blake.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=10

ACKNOWLEDGMENTS 11

My family put up with me being “present yet absent” for months on end.

I want to thank them for their support, encouragement, and patience

during the entire process.

Lastly, I want to dedicate this book to the memory of my father, who

passed away during its development. While from another era, he in-

stilled in me the curiosity of how things work and what to do when they

don’t. He taught me much, and for that I am forever grateful.

Gary Sherman

March 2008

gsherman@mrcc.com

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=11

Where there is no vision, the people perish. . .

Proverbs

Chapter 1

Introduction
Interest in mapping is on the rise, as witnessed by services such as

Google Earth, Virtual Earth, MapQuest, and any number of other web

mapping mashups. These are all exciting developments, yet there is

another realm you should consider—the world of desktop mapping with

open source GIS (OSGIS). You may be thinking “Why do I need OSGIS?

I have all the web mapping sites and tools I could ever need.”

To answer that question, let’s consider our friend Harrison. He’s coming

from the same place as many of us, having played around with the web

mapping tools and is now ready to start adding his own data. Harrison

quickly discovers he can’t add the GPS tracks from his last hike to any

of the “conventional” web maps—all he can do is view the data they

provide. Next he fires up Google Earth1 to see whether that will do the

trick. He soon finds that with a little digging around on the Internet, he

is able to get the tracks off his GPS and import them into Google Earth.2

With a bit of work, Harrison is now able to display his GPS tracks.

Fresh from his victory in Google Earth, Harrison now embarks on his

next project, which is the real reason he is interested in mapping. It

turns out that Harrison is an avid bird watcher. Not only did he record

his trek, but he also logged waypoints at each bird sighting. With each

waypoint, he made a few notes about the species of bird, the number of

birds observed, and the weather conditions. Harrison has just moved

from simply displaying where he walked to wanting to display his bird

sightings and “analyze” his observations. In doing so, he has hit upon

the basis of a Geographic Information System (GIS)—linking geographic

locations to information.

1. Although there is a free version of Google Earth, it is not open source.
2. If Harrison had Google Earth Pro, he could have directly loaded his GPS data. But he

opted for the adventurous (in other words, free) route.

WHAT IS DESKTOP MAPPING? 13

Harrison ponders his next move—how to get all that good bird informa-

tion that’s on his trail-weary notebook sheets into a form where he can

not only visualize it but even ask some questions (in other words, do

analysis). Harrison wants to be able to do the following:

• View the locations where he observed birds

• View only the locations where he saw the yellow-bellied Wonky

Finch

• Scale his locations (dots) based on the number of birds seen at

each location (more birds = bigger dot)

• See whether there is any relationship to the weather and the num-

ber or types of birds he observed

Harrison needs not only a good visualization tool but something he can

do analysis with. Harrison needs some GIS tools, and of course we offer

up open source desktop GIS as the solution to his mapping needs.

1.1 What Is Desktop Mapping?

Harrison has introduced us to a problem that we can solve with desktop

GIS software. So, what exactly is desktop mapping? Well, it isn’t about

drawing a map to find your pencils, pens, stapler, and coffee cup. Desk-

top mapping is all about using software installed on your computer to

visualize and analyze data. Not only can it be used to meet Harrison’s

bird-mapping needs, you can also create hard-copy maps, create data

out of thin air (well almost), and examine the relationships between

features.

Although it’s true you can do all this with proprietary software, we’ll

take a journey through the open source GIS landscape to see what we

can find. To get started, let’s take a look at the kinds of things we can

do with open source desktop mapping tools. I’ve already told you that

Harrison’s bird project can be handled quite nicely. Everybody likes to

“get on the board” quickly rather than learning a bunch of theory and

commands. We’ll try to do the same here as you start your journey into

OSGIS, whether you are a beginner or a battle-scarred GIS geek.

To give you an idea of what we can do, you can see a rather simplistic

interpretation of the progression of things we can do with GIS (open

source or not) in Figure 1.1, on the following page, in order of increasing

complexity. We’ll take a closer look at each of these functions to help

you get an idea of what’s involved with each. In turn, you can decide

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=13

WHAT IS DESKTOP MAPPING? 14

Figure 1.1: GIS functions

how far up you want to climb. You’ll notice that our GIS progression is

like scaling the outside of an inverted cone. Imagine yourself as a rock

climber doing a free climb up the outside of that cone. The higher you

go, the more of a workout you’re going to get. Learning OSGIS is a bit

like climbing that cone. Fortunately, you decide how far to go based on

what you want to do. Getting on board is pretty easy. Let’s visualize.

Visualize

The dictionary (well, one of them anyway) defines visualize as “make

(something) visible to the eye.” That definition fits pretty well with what

we want to do. We want to see our data. This is the entry-level activity

in GIS. We get some data, whether from our GPS or by downloading it

from the Internet, and we look at it. Remember, that’s the first thing

Harrison was interested in—looking at his data. That sounds good, but

you’ll quickly find that just looking at a bunch of black lines on a white

background isn’t all that exciting. We need a context for our data. Let’s

return to Harrison for a moment.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=14

WHAT IS DESKTOP MAPPING? 15

Harrison has caught up with us and is staring at a nice collection

of seemingly random lines on a snow white background in his desk-

top GIS viewer.3 Although immensely proud of his accomplishment, it

really isn’t much to look at and certainly not very enlightening. Harri-

son wishes he could display his data over the same topographic (topo)

map he took with him on his hike. Using his favorite search engine, he

begins the hunt for a topo map. Fortunately for Harrison, he stumbles

upon the Libre Map Project4 that has free topo (DRG5) maps for the

United States. Harrison quickly finds his part of the world and down-

loads the appropriate maps. Now he can overlay his GPS data on a

background that provides some context.6 Harrison gets really ambi-

tious now and goes to hunt for some imagery to add to his map. We’ll

check on him later.

What’s the first thing you are going to do when you add your bird loca-

tions, fishing holes, or Big Foot sightings to your map? My guess is

you’ll want to change the color, symbol, size, and any number of other

things to control the way it looks. This is another important aspect of

visualization—being able to change the way the data looks. We call this

symbolizing your data. I think it’s safe to say that all OSGIS viewers

provide this ability. Typically you can change the colors, fill patterns,

line styles, and marker symbols to get the effect you want.

Think back a moment to Harrison’s requirements for his bird-mapping

project. He wants to not only view the locations where he saw the birds

but also to change the size of the dot based on how many birds he saw

at a location, as in Figure 1.2, on the next page. He also may want to

display only a single species. Most OSGIS viewers can easily accomplish

these tasks—and more. Harrison hasn’t thought of it yet, but he’s going

to want to symbolize his bird locations by species as well. By using both

colors and sizes, he can convey a lot of information about his birding

observations. We’ll see examples of how to render our own data using

these techniques in Section 3.2, Rendering a Story, on page 42.

Now that we have explored visualization a bit, let’s move on to the next

step. From visualize to digitize.

3. At the moment, we’re talking in generalities; we’ll get to some specific OSGIS applica-

tions shortly.
4. http://libremap.org

5. A DRG is a scanned USGS topographic map, typically available in TIFF format.
6. The astute observer is asking, what about the projection difference between the GPS

data and the DRG? We’ll pretend that doesn’t exist for the moment.

http://libremap.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=15

WHAT IS DESKTOP MAPPING? 16

Figure 1.2: Bird sightings: The bigger the dot, the more birds

Digitize

Let’s define what it means to digitize. Breaking out our handy dictio-

nary gives us a definition along the lines of “convert pictures or sound

into digital form for processing in a computer.” There’s nothing myste-

rious about that definition. See, you may have already done some dig-

itizing when scanning your old photographs or playing with the sound

recorder and a microphone on your computer.

When it comes to GIS, digitizing usually means capturing and storing

points, lines, or polygons from paper maps. But for the purposes of our

general discussion, we’ll just equate digitizing with creating data and

hope the purists don’t catch up with us before we’re done.

Harrison has a digitizing project in mind. Looking at the DRG he down-

loaded to use as a base for his bird visualization project, he finds it

shows roads, trails, lakes, contour lines, and other physical features.

Unfortunately for Harrison, many of the small lakes on his map are not

labeled with their name. In order to make a better-looking display (and

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=16

WHAT IS DESKTOP MAPPING? 17

GIS Data Types in a Nutshell

You are about to be exposed to a bunch of new terms as
we launch into our discussion of what you can do with OSGIS.
Among these are GIS data types. Essentially you can divide GIS
data into two types: vector and raster.

Think of vector data as things you would draw with a pencil
and paper. We could draw points, lines, and polygons. In GIS,
the features have a location in the real world, allowing us to
examine their relationship to other features.

Taking it one step further, we can attach attributes—
information about the feature. Our vector data can have one
or more attributes. For example, we might create a polygon
that represents the outline of a lake. The attributes for the lake
might be name, area, perimeter, and mean depth. Attributes
are stored in fields in our dataset, whether they be in a file or a
database table.

These two characteristics, location and attributes, are what
make GIS different from a simple drawing or paint program.

The other type of GIS data is raster data. In a raster, the infor-
mation is represented by cells (in some cases, pixels) where the
value of each cell represents a quantity or color. Examples are
a photograph where the cells represent a color and an image
where each cell value represents an elevation.

In GIS, we use both types of data, depending on what we are
trying to accomplish. In the simplest case, we might use a raster
image—an aerial photograph in this case—showing our neigh-
borhood. We then would overlay our vector data in the form
of streets. It not only makes a nice picture to look at, but with
attributes attached to the streets, we can also learn the name
of each.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=17

WHAT IS DESKTOP MAPPING? 18

ultimately a hard-copy map), Harrison would like to label the lakes. He

could just use a paint program and label the lakes, but then he would

have to modify the original image. Besides, Harrison tends to flip-flop

a bit about what he wants, so maximum flexibility is important. Harri-

son then discovers the notion of creating his own vector data. If you’re

not familiar with it, vector data is just points, lines, and polygons that

represent real features on the ground. Harrison thinks about creating

a point near the middle of each lake and labeling it, but that would

look a bit goofy, even for him. He then decides to digitize each lake and

make a polygon. For each polygon, he’ll add an attribute—the name.

While Harrison is busy working on his lakes, let’s talk briefly about the

process of digitizing.

In the simplest sense, digitizing is tracing features with your mouse. In

reality, there is a fair bit of skill involved in doing it right. The process

goes something like this: you create a new layer (think file for now) to

store your features in, add some attributes to it (for example, the lake

name), and then begin tracing features. As you complete each feature,

you enter the attributes. When you are done, you have a layer you

can view and label using the attributes you entered. Of course, this is

a simple explanation, but all digitizing is really an extension of these

concepts.

We’ve kind of lumped things together under the digitizing category.

There are other ways to create new data apart from digitizing. Harrison

actually illustrated this for us when he imported his GPS data. Other

ways to create data include importing from a text file, scanning images,

and even accepting coordinates from a web form. We’ll get into more of

this later. Let’s hope by now both you and Harrison have a good idea of

just what it means to create GIS data. Once we have all this good data,

it’s time to analyze.

Analyze

This is where GIS really shines. Being able to use our data we worked

so hard on collecting to answer some what-if questions is what makes

GIS exciting. This is also what separates GIS software from being just

a “viewer.”

Using GIS we can answer all types of questions. Let’s get Harrison to

help us out with an example. He has a theory that most of his bird

sightings are within 200 feet of a lakeshore. With all his hard work,

Harrison can view both his bird sightings and the lakes, but he can’t

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=18

WHAT IS DESKTOP MAPPING? 19

Figure 1.3: A 200-foot buffer around the lakes

really tell how far apart they are. He could use the fine tools provided by

his software to measure the distance from each sighting to the nearest

lake or lakes. But this is time-consuming and tedious, and the end

result can’t be visualized. Fortunately, Harrison can use a common GIS

operation known as buffering.

Harrison proceeds to create a 200-foot buffer around his lakes (see

Figure 1.3). This is pretty much a one-stop operation. You indicate what

layer you want to buffer (lakes) and enter the distance. The software

then calculates the buffer around each lake and creates a new layer

containing the result. Harrison now proceeds to set up his display. He

adds the new buffer layer to the map, then the lakes, and finally the

bird sightings. Any bird sighting falling on the buffer layer is within

200 feet of a lake (or lakes). Harrison can quickly visualize his results

and see whether his theory is right. OK, so it turns out he was wrong.

It looks like the bird sightings don’t necessarily fall within 200 feet of

a lake. Harrison decides he can still be right and goes off to create a

500-foot buffer.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=19

DESKTOP VS. SERVER MAPPING 20

This is a simple example of the type of analysis you can do with open

source GIS applications available today. You may be thinking that Har-

rison’s analysis is a bit contrived and really not all that significant—and

you are probably right. Let’s list a few more situations where a buffer

analysis might provide meaningful insight:

• Restrict development to a distance at least 500 meters from an

active eagle nest.

• Determine where to allow a drinking establishment such that it’s

at least a quarter mile from any school.

• Develop emergency action plans by identifying all public facilities

within a given distance of a hazardous storage site.

• Establish a setback around a creek or stream.

And the list goes on. As you can see, the simple operation of creating

a buffer can answer a lot of questions. It’s a valuable tool and just

one of many that we’ll take a look at as we get deeper into specific

applications. Of course, there are a lot of other types of analysis we can

do with desktop GIS. We’ll explore some of these later.

We’ve now taken a look at three aspects of GIS: visualization, digitizing,

and analysis. With that under our belt, we are ready to get into some

more specifics. Oh, and about Harrison—he finally proved his point by

creating a 5,000-foot buffer around all the lakes. As usual, the tools

alone can’t provide a meaningful analysis. Before we move on too far,

let’s take a quick look at the server side of things.

1.2 Desktop vs. Server Mapping

When you think of a server, you probably think of a big machine locked

away in an air-conditioned room somewhere. Well, that could be true,

but in this case I’m referring to software, not hardware.

The server side of open source GIS provides important capabilities for

us on the desktop. For example, we might have spatial database that

stores our data. Or we might have a spatial server that can pump

out data using a number of web standards. We can use all these data

sources from the desktop.

We might have resources on a bunch of servers, all accessible from our

desktop GIS applications and serving up all the data we need. We’re still

doing desktop mapping, using the tools installed on our local machine.

Let’s contrast that for a moment with server-side mapping.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=20

ASSEMBLING A TOOLKIT 21

You can see an example of server-side mapping by pointing your web

browser at one of the many web mapping applications on the Internet.

These range from sites providing maps and driving directions to those

serving up massive quantities of data. I’m sure everyone has seen exam-

ples of the type of applications I’m talking about, but for Harrison’s

benefit we’ll mention a URL. Take a look at the Geodata.gov website7

for some sample web mapping applications.

When using server-side mapping, we don’t install anything on our local

machine, and all we need is a web browser. The good thing about this

scenario is that someone else has done all the work in assembling the

data and preparing it for display and use. Why would we want to go

the desktop route instead of letting someone else do all the work for

us? Our friend Harrison discovered some of the reasons in his bird-

mapping project. He wanted to view his data, not the data provided

by some server somewhere. He wanted to create new data by digitizing

the lakes.8 Harrison also wanted to analyze his data by buffering and

storing the results. A lot of these operations can be done with server-

side mapping, but the data ends up living on the server. If you’re lucky,

there may be a way to export it and make it yours.

Am I down on server-side mapping? No—it’s an excellent way to visual-

ize data and provide it to the masses. In fact, there are projects under-

way to further enable the server side and extend the capabilities to

analysis as well.9 Using a mix of desktop and server GIS software is a

good mode of operations, especially if you are like Harrison and want

to be both a data creator and a consumer.

1.3 Assembling a Toolkit

With the preliminaries out of the way, my goal is to help you assemble

a loosely coupled toolkit of OSGIS applications. There are good reasons

to assemble a toolkit rather than using a single mapping application.

Just as you wouldn’t use a screwdriver to build an entire house, we’ll

get better results if we use the right tool for the job at hand. When it

comes to OSGIS, I’m a strong proponent of IIWUI—“If It Works Use It.”

7. http://geodata.gov

8. Sure, you can create features on some web mapping sites. But where do they reside

when it’s all said and done? On the server.
9. An example is PyWPS (http://pywps.wald.intevation.org), which allows web access to

GRASS GIS.

http://geodata.gov
http://pywps.wald.intevation.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=21

OTHER MAPPING OPTIONS 22

Not everyone will need or want the same tools in their toolkit. One of

the things we hope to accomplish on our journey together is to iden-

tify which tools you need and then learn how to assemble them into a

system that works for you. Ideally, you should come through the expe-

rience with some nicely integrated applications and utilities to serve

all your mapping needs on the desktop. As you assemble your toolkit,

you’ll find that many applications are of the “Swiss Army knife” variety,

providing a wide range of capabilities.

1.4 Other Mapping Options

What are your other options? Well, we already mentioned them—web-

based applications. Unless you are developing your own web mapping

application, you’re pretty much at the mercy of the web developer. You

must use their interface and work with the layers they provide. For

some folks, this is a perfectly good solution, and it’s definitely some-

thing to consider when you are ready to share your hard work with the

rest of the world.

For those of you who need to work with local or distributed datasets

to create, edit, and display data, this isn’t going to work. You will need

tools to create and maintain your data.

A solution that falls in the middle is Google Earth, now available on

Mac OS X, Linux, and Windows. With Google Earth you can add and

display your own vector data, once you’ve converted it to the proper

format. I find that using my desktop GIS toolkit to create and prep data

for Google Earth meets my IIWUI test.

1.5 What’s Ahead?

To give you an idea of where we’re headed, we’re next going to dive

into OSGIS and look at the whole notion of using open source for your

mapping needs. From that point on, we’ll look deeper into concepts,

data, and use of the tools at our disposal. Our goal is to get you up

to speed on working with OSGIS desktop applications, and there is a

lot of ground to cover. Unfortunately, we can’t give you an in-depth

tutorial for all the applications we’ll use. In the appendixes you’ll find

some additional information for some of them, and we’ll point you to

additional resources as we go along.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=22

Imagination is more important than knowledge.

Albert Einstein

Chapter 2

Getting Started
Before you start madly downloading software to assemble your GIS

toolkit, let’s think a bit about your requirements, including what type of

mapping you are interested in doing. You may not know the answer to

that question. Most likely if you are starting out, you’ll follow the same

path as Harrison—moving from visualization to creating your own data

to doing analysis. Ultimately, your needs, goals, and requirements will

guide you in assembling your toolkit. For example, there is no point in

assembling an industrial-strength system to simply view GPS tracks on

a map.

As you explore your needs, remember to keep open the possibility for

expansion. As you begin your journey into OSGIS, you may end up at

a destination you never considered. The good thing is, you can always

“upgrade” your toolkit.

2.1 The Three User Classes

If you are already a GIS user, you likely have a good idea of your

needs and requirements, but it’s always good to reevaluate. Let’s con-

sider three classes of GIS users to help you get started. To help us get

acquainted, we’ll use the names Clive, Irving, and Alyssa.

The Casual User

Clive is a casual user, and what he likes to do is visualize mapping data.

His toolkit contains one or more GIS viewer applications and maybe

a custom data store—a place where data resides—such as a spatial

database. In the simplest case, Clive stores his data in files (shapefiles,

Tagged Image File Format [TIFF], and so on). He doesn’t need big fancy

WHICH ARE YOU? 24

GIS algorithms to make him happy. Clive may on occasion need to

create data by importing GPS tracks or maybe even digitizing some

lakes or trails.

Since he doesn’t create a lot of data, Clive gets it by downloading from

the Internet and sometimes from his GPS, just like Harrison did in

the first chapter. The other things Clive uses his GIS software for are

printing simple maps and doing some visual analysis by plopping layers

on top of each other.

The Intermediate User

Irving is an intermediate user, and he likes to not only visualize but to

create data—sometimes lots of it. Irving typically creates data by digi-

tizing and/or converting it from other sources. Sometimes Irving needs

to produce cartographic output (a paper map with lots of decorations)

to share with his friends and cohorts.

Irving works with a wider range of data formats than Clive. He likes

to digitize data from raster maps (just like Harrison), convert data to

suit his needs, create subsets of his data to better visualize where

things are, and use symbols to help visualize some of the relationships

between features.

The Advanced User

Alyssa is an advanced user, and she has mastered the activities and

tools used by Clive and Irving. But she has greater needs—Alyssa lives

to analyze. Beyond viewing, data creation, and map production, she

uses GIS to answer questions based on spatial relationships. She does

cell-based analysis and perhaps even routing and geocoding. She also

may need to write programs and scripts to accomplish her tasks.

Some of the tasks that Alyssa performs include doing line-of-sight anal-

ysis (“Can you see me from here?”), change analysis, buffer analysis,

and grid algebra. She needs a high-powered toolkit.

2.2 Which Are You?

What do Casual Clive, Intermediate Irving, and Advanced Alyssa all

have in common? They all started at the same place and they each use

some of the same tools. You’ll also notice that the classes of users bear

a strong resemblance to the functions in our GIS Cone in Figure 1.1,

on page 14.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=24

CHOOSING A PLATFORM 25

Based on our characters, you should be able to determine where you

fall in the lineup. Not only should you consider what you are now,

but what your needs will be in, say, six months, a year, and beyond.

The truth is that each of our users may have the same tools in their

toolkit. The difference will be in how they are used and to what extent.

As we progress through our exploration of desktop applications and

their capabilities, keep your self-assessment in mind. We will provide

reminders along the way to indicate which tools are best suited for each

class of user.

Lastly, this artificial classification scheme is not hard and fast. It only

provides a starting point for you to think about your requirements and

help you build up your own open source GIS toolkit.

Although jumping into the deep end of the pool can be an effective,

albeit traumatic, way to learn to swim, sometimes it pays to wade in

gradually, feeling your way along. The more feature-rich an applica-

tion is, the more likely it is to have a steeper learning curve. You start

with the tools that meet your needs and work your way into the more

complex as your appetite for GIS increases.

Determining what kind of user we are wasn’t too bad. Now we move

into something a bit more difficult and look at some of the challenges

in assembling an open source GIS toolkit. Everything you do (including

crossing the street) entails some level of risk. Whether you use open

source or proprietary (closed source) software, you incur some risk.

The rest of this chapter looks at the challenges and risks and provides

some insight on dealing with potential pitfalls.

2.3 Choosing a Platform

In ancient times (around twenty to thirty years ago), if you wanted to

“do” GIS, you had to buy a certain type of hardware running a spe-

cific operating system. As time went on, the choices increased. Today

you can pretty much find GIS software to run on your favorite system,

assuming it’s Linux, *nix, OS X, or Windows. You still can’t find much

in the way of GIS software for your Commodore 64.

The logical assumption might be that we just get the software for our

current platform and forge ahead. But consider this: should you choose

the software for the platform or the platform for the software?

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=25

SELECTING THE RIGHT TOOLKIT 26

There are a number of factors to consider:

• Your comfort level with various operating systems

• The types of applications you need

• Your budget

Typically you will choose the software for your current platform and

be on your way. For those of you who are comfortable in two or more

operating systems (say Linux, Mac OS X, or Windows), your options are

more varied. I would rank my choices pretty much in that order. If you

have a choice, Linux or OS X may be a better fit for you. If not, we plan

to show you Windows users plenty of options in the coming chapters.

To get the most benefit as an advanced (and to some extent an inter-

mediate) user, you should probably consider Linux or a Unix variant.

As your demands increase, you require software that is more readily

available on those platforms.

Budget figures in somewhat, with the hardware for some platforms

costing more than others. Since your software acquisition costs are

going to be low or nonexistent, you can afford to spend a little more on

hardware.

2.4 Selecting the Right Toolkit

We mentioned this earlier, but it’s worth repeating. Pick the applications

for your toolkit based on what you want to do. There is no point in

installing every GIS application out there to view Grandma’s house and

the local latte stand. Those are valid uses, but why make it hard on

yourself? On the other hand, you should think ahead a bit and keep

your options open. That way we won’t end up installing a simple viewer

and expect to do volume or fill analysis. To give you a head start, we’ll be

looking at the applications shown in Figure 2.1, on the next page, which

also shows the appropriate user classes. This is really a generalization,

but it does give you an idea of the level of experience appropriate for

each application. In reality, many of the applications can be used across

the spectrum of user classes.

To help you learn more about the software choices available, you can

refer to the survey of open source desktop GIS applications and the

capabilities of each in Appendix A, on page 269.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=26

ACQUIRING AND INSTALLING SOFTWARE 27

Casual Intermediate Advanced

Quantum GIS

GRASS

uDig

gvSIG

Thuban

GMT

JUMP/OpenJUMP

Figure 2.1: Some OSGIS applications in relation to class of user

2.5 Acquiring and Installing Software

Getting an OSGIS package can be a bit different than buying something

off the shelf. Although it’s true you can purchase Linux distributions

off the shelf that include OSGIS software, typically you are going to be

downloading a binary package for your platform. If you’re in luck, that’s

the situation you’ll encounter as you begin to assemble your toolkit.

This route allows you start using the software without worrying about

all those nasty things like dependencies, compilers, and libraries. The

worst case is you may have to download the source code and compile it

yourself.

All the OSGIS software we’ll see in this book can be obtained as a binary

package or installer, depending on your operating system. This is the

easiest way to get started using an application.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=27

ACQUIRING AND INSTALLING SOFTWARE 28

Packages, Installers, and Disk Images

Depending on your platform of choice, you may be installing
RPMs, DEBs, or .tgz on Linux; .zip or bundled installers on Win-
dows; and disk images (.dmg) or OS X installers on Mac. Most
open source GIS projects provide these binary images, and of
course it’s up to you to determine which to install. As we go
along, we’ll give you hints on the installation process and men-
tion all three platforms.

Here are some things to be aware of when going the binary route:

• Some packages and/or installers are not provided or maintained

by the open source project but by third parties.

• Depending on your operating system, the latest version may not

be available.

• The availability of packages for your platform may lag behind the

general release of a new version.

Going with a binary package or installer is definitely the way to go when

test-driving an application for the first time. This gives you a chance

to easily try things without the hassle of gathering dependencies and

compiling from source.

In some cases, you have to compile from source because you have no

alternative. Here are some reasons why you might want to compile an

OSGIS application:

• The binary isn’t available for your platform.

• You want the latest and greatest features, but they haven’t been

released yet.

• You want to customize your toolkit.

Compiling a suite of tools from source can be a daunting task for the

average user, even for the advanced GIS user. When first starting out,

you should consider using binary packages for your platform. This

keeps you from becoming frustrated with the process of boot strapping

a system from scratch. Once you gain familiarity with the tools and

how they interact, you’ll be ready to venture into compiling your own

system. For now, let’s start with the packaged binaries and learn how

to use the software rather than get frustrated with the build process

out of the gate.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=28

INTEGRATION OF TOOLS 29

Trying Open Source GIS with a LiveCD

Another option for giving OSGIS a spin is one of the many
LiveCDs. These allow you to boot your computer from CD into
a Linux system that is preloaded with applications you can use
without having to install anything.

You can choose from a number of GIS LiveCDs, but you need
to make sure your choice contains fairly recent versions of soft-
ware. For a LiveCD that attempts to provide the latest versions,
check out the Ominiverdi offering.∗

∗. http://livecd.ominiverdi.org

2.6 Integration of Tools

Rarely will you find one OSGIS application that meets all your needs.

In fact, if you do, you’re in the minority. An OSGIS toolkit composed of

several applications will provide a much more powerful and complete

system. Now you’re thinking, “Oh, great, I have to learn a whole bunch

of new programs to do anything with this stuff.” In reality, we’ll show

you how to get started without a huge learning curve. For those of you

already up to speed on GIS and tools, we’ll provide that deeper view

you’re looking for to fill out a complete toolkit.

How Do We Integrate?

The plain fact is that integration is largely up to you. Typically you’ll

end up with a loosely coupled set of tools, sometimes bound together

with scripts or other glue. This shouldn’t be interpreted to mean that we

are creating a kludge, but rather putting our tools neatly in the toolkit Kludge: A program or

system that has been

poorly (perhaps sloppily)

assembled)

and making them play nicely together.

Some tools integrate nicely, and the situation is improving all the time.

Consider Quantum GIS (QGIS) and GRASS integration. The GRASS

plugin allows you to access a large number of GRASS functions through

the QGIS interface.

Another form of integration is using programming language bindings so

that you can access the application functionality in Ruby, Python, Perl,

and Java programs. We’ll talk more about this technique in Chapter 11,

Using Command-Line Tools, on page 174.

http://livecd.ominiverdi.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=29

MANAGING SOFTWARE CHANGE 30

2.7 Managing Software Change

One of the biggest challenges you will face when using OSGIS soft-

ware is managing change. All systems have an inherent element of

risk with regard to change. Computer systems are particularly sen-

sitive to change, meaning if you upgrade one component, you better

make sure it doesn’t have a negative impact (read: complete meltdown)

on the other components. Let’s look at an example.

Harrison hears about some really cool features that were just added to

SuperMapper. After all, Harrison subscribes to the project’s email list

and participates on IRC so he can be “in the know.” Unfortunately, the

new SuperMapper features are in the development version. Undaunted,

Harrison proceeds to check out the source code and build the latest,

greatest version. And it works great. All the new features are there,

and Harrison is one happy mapper—until he goes to run his faithful

old workhorse application, MundaneMapper. Turns out that his hack-

ing activities have introduced some library incompatibilities, and now

MundaneMapper refuses to start. Harrison has become a victim of BES.

Harrison will glumly tell you that if you want to maintain a stable sys-

tem, the first thing to avoid is Bleeding-Edge Syndrome (BES). This

differs from being an “early adopter.” Here is how to tell if you have

BES:

• You always download and install the latest beta.

• You find yourself doing CVS and SVN checkouts and building from

scratch. Concurrent Versions

System (CVS) and

Subversion (SVN) are

version control systems

used when developing

software.

• You subscribe to the CVS/SVN commit mailing lists for several

projects and rebuild your toolkit each time a new message comes

in.

• You often find yourself with an inoperable system.

Having BES is not so bad if you are a hobbyist or just experimenting

and understand the risks. It’s not so good if you are trying to do real

work and can’t afford to break things on a regular basis.

Guidelines for Managing Change

Managing change really refers to keeping your software current, re-

sponding to security issues, and keeping things stable so your toolkit

can serve you, not the opposite.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=30

GETTING SUPPORT 31

Let’s look at the three main reasons to upgrade:

• A new version has been released that provides features you need,

want, or absolutely can’t live without.

• Vulnerabilities in your software.

• A “higher-level” component (like your operating system) requires

an upgrade that will render your toolkit applications incompatible.

The first two are a matter of choice; the third may not be if your IT

department has any say. If you are lucky, you are master of your own

destiny and have control over all aspects of your GIS software, including

the operating system. If not, you’re going to have to coordinate and

cooperate.

Here’s a list of some suggestions for managing change in your OSGIS

toolkit:

• Proceed with caution. In other words, look before you leap, and

make sure you understand all the ramifications of upgrading.

• Identify changes in the latest version of the application(s) that may

require extra work on your part.

• Identify changes that remove key functionality you depend on (it

sounds strange, but I’ve seen it happen before).

• Identify dependencies—other packages that will break or things

you need to upgrade as part of the process.

• If at all possible, test your upgrades on a nonproduction machine.

• Don’t upgrade too quickly after a new release. Monitoring the mail-

ing lists and forums can help identify potential problems that oth-

ers have already discovered (and oftentimes, solved).

You may be thinking this OSGIS approach is a minefield. In reality, it’s

no different from managing change with proprietary software. All of the

suggestions mentioned here apply equally to both proprietary and open

source software, particularly in the GIS realm. Just be smart and never

put your data at risk, and you’ll be fine.

2.8 Getting Support

Open source software has a unique support system, and OSGIS is no

different. Rarely when using a proprietary application can you commu-

nicate with the actual developers—with OSGIS you can, often in real

time. Most developers are willing to help, assuming you have spent a

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=31

GETTING SUPPORT 32

bit of time working through things yourself and reading the documen-

tation. Some of the support channels you can use are as follows:

• Mailing lists

• Forums

• IRC (a real-time service that allows you to chat with people across

the globe)

• Wikis

• Search engines

• Websites

When using mailing lists for support, you need to be sure to search the

archives before posting your question. Quite often the answer to your

question will be waiting for you to discover it. In addition to the archives

typically maintained by each mailing list, a couple of other independent

archives are quite useful: Nabble1 and Gmane.2 If the archives don’t

provide the answer, compose an email to the list, and make sure you

include enough information so the group can provide an answer. Keep

in mind that most email lists require you to subscribe before you can

post a question.

Many people prefer forums for support. Many OSGIS projects have a

forum linked to their website. These can be a valuable source of infor-

mation and are usually searchable. Here you can find users helping

users, as well as information from the project members.

Sometimes nothing beats real-time support like you can get on IRC.

Many projects maintain a presence on IRC. For example, at any one

time on irc.freenode.net you might find the following channels: #grass,

#postgis, #gdal, #mapserver, and #qgis. If you don’t know what those

projects are, never fear. We cover most of these in our survey of OSGIS

applications in Appendix A, on page 269.

IRC has its own unique culture as does each channel. Probably the

key thing to remember, apart from doing your homework first, is that

people on IRC are almost always doing something else at the same

time. If you ask a question and nobody answers, it means one of several

things. First, nobody is around who knows the answer. People who can’t

help you often aren’t compelled to tell you. Second, the people who do

know the answer may be busy at the moment and haven’t seen your

1. http://www.nabble.com

2. http://gmane.org

http://www.nabble.com
http://gmane.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=32

GETTING SUPPORT 33

Ask the Right Questions

OK, so you need help, and you’re ready to ask for it. Nothing
will bring on the silence like a poorly asked question. Remem-
ber, the people who know the answer are probably pretty
busy and have invested a fair amount of time in collecting
the knowledge about the application of interest. You need to
do the same. Read the documentation, search the Web, and
make your best attempt at discovering the answer yourself. You
will learn more from the experience and gain some of that
“knowledge.”

If you still need help, provide enough information so someone
has a reasonable chance of helping you. This typically includes
the version of software you are using, your operating system
and its version, and exactly what you were trying to do. With
most OSGIS applications running on at least three or more plat-
forms, each having its own set of unique issues, this information
is pretty important.

Ask the right questions, provide the right information, and you’ll
get the help you need.

question yet. And lastly, it’s possible your question got lost in the rest of

the traffic. Just because no one answers doesn’t mean they are snobs,

arrogant, or hate you. Your best approach is to hang out for a bit on a

channel until you figure out the dynamics.

You can also get commercial support for many of the applications dis-

cussed in this book. Most OSGIS applications provide information

regarding support on their websites. In addition, a list of support pro-

viders is available on the Open Source Geospatial Foundation (OSGeo)

website.3

Although it has been the subject of some heated debates between the

closed and open source groups, most people who have needed support

for OSGIS are happy with the experience. If you need support, it’s out

there and readily available.

3. http://www.osgeo.org/search_profile

http://www.osgeo.org/search_profile
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=33

WHERE TO FIND DATA 34

Free the Data!

There is a lot of data around the world that is either locked up,
expensive, or generally unavailable. As we mentioned before,
this varies depending on where you are in the world.

There is a movement afoot (actually it’s developing on many
fronts) to free up data. One example was the “ransoming”∗

of the U.S. Geological Survey’s (USGS) Digital Raster Graphic
(DRG) topographic maps. These maps are available online
from various sources, some free and some not. To make all the
data available in one place free of charge, the maps were pur-
chased and then “held hostage” until contributions equaled
the cost. The maps were then given to the Internet Archive to
be made available to everyone for free.

Another effort underway in Europe is the Public Geo Data
effort.† This effort seeks to liberate publicly collected data and
make it available at no charge.

∗. http://ransom.redjar.org

†. http://publicgeodata.org

2.9 Where to Find Data

By now you realize (or already knew) that without data, we can’t do

much with OSGIS. For those of you already deeply entrenched in the

GIS world, you pretty much know where to search for data. Feel free

to skip ahead. If you are just getting started with GIS, this is a pretty

common question. Your desktop GIS toolkit isn’t much good without

any data to play with.

The availability of free data depends on where you are in the world. If

you are lucky, you live in a country that freely provides data collected

by the government. If you are not so lucky, you may have to pay, some-

times quite steeply, to get the data. Don’t despair—there is a lot of free

data available to get you started.

In reality, there are two types of data: base data and “your” data. Base

data is just that—you lay it down as a base for the rest of your map.

Examples of base data are country boundaries, rivers, towns, and the

DRG that Harrison downloaded in our first encounter with him. Your

http://ransom.redjar.org
http://publicgeodata.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=34

WHERE TO FIND DATA 35

data is data you have acquired or created for your specific purpose.

A simple example is GPS tracks from your latest road trip. You can

probably find much of the base data you need for free—let’s explore

some of the sources of free data.

Clearinghouse Network

One way to find data is to use the Federal Geographic Data Com-

mittee’s (FGDC) clearinghouse network.4 The clearinghouse contains

nodes (servers) from around the world that contain data and are search-

able. Oftentimes you can find the data you need using the clearing-

house search engine.

Geodata.gov

Another source we mentioned previously is geodata.gov.5 This site was

established to be “Your One Stop for Finding and Using Geographic

Data.” Searching for data on geodata.gov yields a list of results con-

taining links to the metadata or website for each dataset. Some of the

data may be available for download. In other cases, you’ll find that it’s

available for viewing only through a web map interface using your web

browser.

Other Sources

In the end, the old miner’s adage about finding gold applies to geospa-

tial data. Oftentimes the greenhorns would arrive on the gold fields and

be clueless. They sought out the sage advice of the old-timers to get

them started.

Greenhorn: Where’s the best place to prospect for gold?

OldTimer: Gold is where you find it.

There are a lot of sources for data on the Internet, and a bit of judi-

cious searching can lead to good finds. For additional sources to get

you started in your data-prospecting adventure, see the list at desk-

topgisbook.com.6

4. http://fgdc.gov/

5. http://geodata.gov

6. http://desktopgisbook.com/data

http://fgdc.gov/
http://geodata.gov
http://desktopgisbook.com/data
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=35

NEXT STEP 36

2.10 Next Step

We’ve gotten much of the preliminaries out of the way, learned a bit

about what OSGIS can do for us, and also looked at some of the things

to keep in mind along the way. Now it’s time to get into some software

and actually do something.

If you want to get the “birds-eye” view of what’s available in the open

source desktop GIS world, take a look at Appendix A, on page 269.

Now let’s get going and view some data.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=36

Chapter 3

Working with Vector Data
In this chapter, we’ll start working with vector data (points, lines, poly-

gons) by viewing, editing, and analyzing various datasets. Not only will

we view data, but we’ll look at tweaking the way data is displayed to

make it convey more information at a glance.

3.1 Viewing Data

Viewing data is like the “Hello, World!” application that everyone writes

when learning a new programming language. It’s the first thing you’re

going to want to do with any GIS application. Let’s start out by seeing

what kind of things we can do with vector data using open source GIS

software. If you recall Harrison’s original project, he first just wanted to

view bird locations. We’ll take a similar approach and start by viewing

some sample vector data.

Viewing data is really more like visualizing the relationships between

the features. You can get a lot of information by simply viewing features

and applying some special rendering techniques.

When it comes to software, we have a lot of choices for viewing GIS data

(see Appendix A, on page 269). As we begin to explore our data, we’ll

use several different applications to give you a feel for what’s available.

Before we can begin, we obviously need some data to work with. If

you don’t have a shapefile or two handy, you can download1 a sample

dataset and use it to follow along. We will be using this dataset through-

out the following chapters when we need to illustrate some basic func-

tions or concepts. The dataset includes world borders, cities, and a nice

1. http://desktopgisbook.com/sample_data

http://desktopgisbook.com/sample_data

VIEWING DATA 38

Joe Asks. . .

What Is a Shapefile?

A shapefile stores vector features and their attributes. A given
shapefile can contain only one type of feature: points, lines, or
polygons.

The term is actually a bit misleading, since a shapefile always
consists of at least three separate files. For example, a shapefile
named alaska would consist of the following:

• alaska.shp containing the spatial features

• alaska.dbf containing the attributes

• alaska.shx, which is an index file that allows random access
to features in the alaska.shp file

In addition to the three main files described here, you might
also find alaska.sbx, alaska.sbn, and alaska.qix files. These are
additional index files used by some applications. One last file
you’ll often find associated with a shapefile is a .prj file. This file
contains the projection information for the shapefile, including
the geodetic datum (for more on datums, see the Joe Asks. . .

on page 140).

If you are sharing a shapefile with someone, make sure you
include at least the .shp, .dbf, and .shx files; otherwise, it will be
unusable.

raster image of the earth (which we’ll use in a later chapter when we

work with rasters).

Choosing a Viewer

Most of the applications in Appendix A, on page 269, that work with

vector data go beyond a viewer. Let’s use several of them to look at the

sample data. Of course, you don’t need to use all of them, but following

along will help you decide which is best for you. For help on installing

any of the applications, see Appendix B, on page 290.

The truth is that nearly all the OSGIS viewers use a similar user inter-

face. If you can use one, you can figure out the others. Let’s start by

viewing the world borders data using the User Friendly Desktop Inter-

net GIS, uDig.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=38

VIEWING DATA 39

Simple Viewing

If you need help installing uDig, take a look at Section B.4, uDig, on

page 293. OK, let’s fire up uDig so we can get a look at that sample

data:

• Linux: Change to the udig subdirectory, and run udig.

• Mac OS X : Double-click the uDig icon in your Applications folder.

• Windows: Click the Start button, find the uDig program folder in

Program Files, and choose uDig.

When you first start uDig, you are presented with a start-up screen.

You can explore the options, but if you are anxious to get busy, click

the curved arrow in the upper right of the workspace. This gets us to

the business end of uDig.

The uDig workspace isn’t much to look at the first time you run it. You’ll

notice that when uDig starts up, it displays a fairly typical Tip of the

Day dialog box. Feel free to click through the tips and see what pearls

of wisdom you can find. You can turn off this feature if it bothers you

(or you’ve read them all).

Now let’s load the world borders layer to get a feel for how uDig manages

layers, as well as the options for symbolizing features. To view the data

from our sample dataset, start by clicking the Layer menu and then

choosing Add. This opens the Data Sources dialog box, as shown in

Figure 3.1, on the next page.

As you can see from the Data Sources dialog box, uDig supports a

good selection of formats. Let’s start by adding our shapefile of all

the countries in the world. Since this is a file-based data store,2 we

choose Files from the Data Sources dialog box and click Next, which

opens a file selection dialog box from which we can choose our shape-

file. We navigate to the directory containing the shapefile (in this case

world_borders.shp) and click Open (or whatever the standard dialog box

calls it on your platform). This loads the shapefile into uDig and dis-

plays it, as shown in Figure 3.2, on page 41. We’ve closed the Web

Browser tab to maximize the map area and still give you a feel for the

entire interface.

If you are feeling adventurous, go ahead and load the cities layer as well,

using the same process.

2. This is a fancy way to say a GIS data file on your disk drive as opposed to web-

accessible or spatial database data.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=39

VIEWING DATA 40

Figure 3.1: uDig Data Sources Dialog

Moving Around

If you’re following along, you should be looking at the countries of the

world. Take a look at New Zealand—it’s pretty small. This is where

navigation tools come into play. Every GIS application, whether it be on

the Web or the desktop, has a way to navigate around the map. uDig,

of course, supports the usual zoom/pan/identify functions common to

all applications.

Let’s get a closer look at New Zealand. Select the Adjust Current Zoom tool

from the toolbar. It’s the magnifying glass with the drop-down caret

next to it. If you are unsure which tool it is, hover the mouse for a few

seconds, and you’ll get a tooltip to help you out. Find New Zealand,

drag a box around it, and then release the mouse. uDig will zoom the

view to cover the region of the box. You now have a better view of New

Zealand. You can continue to zoom in as much as you like by dragging

boxes with the mouse.

So now that we’ve zoomed into the gnat’s eyebrow, we need to determine

how to get back out. There are a couple of ways do it. First we can go

back to the full view (extent) by using the Zoom to Layers tool in the

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=40

VIEWING DATA 41

Figure 3.2: uDig displaying world borders

toolbar above the layer list. This will zoom to include all layers on the

map. This may not be what we want if we just want to look at the full

view of the world_borders layer. To zoom to just its extent, right-click

world_borders in the layer list, and choose Zoom to Layer.

We can also zoom out incrementally by using the Zoom Out tool on the

main toolbar. Unlike the Adjust Current Zoom tool, this tool is a one-shot

affair—you don’t interact with the map when using it. With each click,

the map is zoomed out by a fixed amount. By now you’ve probably

noticed its cohort, the Zoom In tool. Clicking it zooms the map in by a

fixed amount.

One last way we can navigate the map is by panning. To pan the map,

select the Pan Map View tool (actually both this and the Adjust Current

Zoom buttons are tool groups but contain only one tool) from the main

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=41

RENDERING A STORY 42

Joe Asks. . .

Is It Small or Large Scale?

This can be a constant source of confusion when talking to peo-
ple about maps, whether they be paper or digital. Let’s sort it
out now.

A small-scale map covers a large area, whereas a large-scale
map covers a smaller area on the ground. The terms large and
small are based on the representative fraction that shows the
relationship of one unit on the map to one unit on the ground.
A map scale of 1:8,000,000 is smaller than one of 1:24,000 since
1/8,000,000 is a smaller fraction than 1/24,000.

Simple enough. If you ever get confused, just think in terms of
fractions, and you’ll be able to sort out the small from the large.

toolbar, and drag with the mouse to change the view. You can pan all

around the map using this method.

By combining the pan and zoom tools, you can pretty much navigate

around the world until your heart’s content. You can change the map

view in other ways, but we’ll leave that for you to discover.

3.2 Rendering a Story

Now it’s time to change the way the world looks. This is known as

symbolizing your data, and you can do it in several ways. Are you happy

with the colors uDig chose for the layers? If you are like most people,

you have preferences when it comes to these things, and my guess is

you’re going to want to change the way things look. The simplest, of

course, is just a single color for all features, and this is in fact the way

all vector layers look when first added to uDig. In uDig you can change

the outline color, fill, and marker symbols using the Style Editor. The

Style Editor also allows you to turn on labeling and set the maximum

and minimum scales at which the layer is displayed.

Our friend Harrison, being the inquisitive sort, quickly decides he wants

to be able to tell at a glance where the most populated countries are in

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=42

RENDERING A STORY 43

Figure 3.3: Classifying countries by population

the world. Well, we are in luck. Our world_borders layer just happens

to have an attribute named POP_CNTRY that contains the population

of each country. To make Harrison happy, we can use what’s termed a

class break method to symbolize the data. The Style Editor has a Theme

panel to classify the layer based on an attribute. In Figure 3.3, we can

see the settings we can use to classify the world boundaries based on

population. We set up ten equal interval classes based on the range of

population values. The less populated countries will be colored in light

blues or greens, while the countries with the largest populations will be

rendered in a shade of purple. We could also do a quantile classification,

putting roughly the same number of values in each class. But for our

purpose, the equal intervals work just fine.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=43

LOOKING AT ATTRIBUTE DATA 44

Figure 3.4: Countries classified by population

The results of the classification are shown in Figure 3.4. As you might

have suspected, China and India are rendered as the most populous,

followed by the United States. We could refine our classification to get

a finer-grained view of population by changing the number of classes

or the method. This is a common way to render data to make it tell a

story. Some of the other OSGIS applications we will look later offer even

more ways to symbolize your data.

3.3 Looking at Attribute Data

In the previous section, you might have wondered how we knew about

the POP_CNTRY field in the world_borders shapefile. Well, there are a num-

ber of ways to examine the attribute data associated with a layer. One of

the quickest ways is with ogrinfo, a utility that is part of the GDAL/OGR

suite. We’ll take a more detailed look at ogrinfo and friends later in Sec-

tion 11.2, Using GDAL and OGR, on page 186. If ogrinfo is not already

on your system, see Section B.7, FWTools, on page 295 for information

on installing FWTools.3

3. FWTools is a suite of tools that contains many applications, including ogrinfo.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=44

ADVANCED VIEWING AND RENDERING 45

Then, open a command shell on your system and do the following:

$ ogrinfo -so -al world_borders.shp

INFO: Open of `world_borders.shp'

using driver `ESRI Shapefile' successful.

Layer name: world_borders

Geometry: Polygon

Feature Count: 3784

Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)

Layer SRS WKT:

GEOGCS["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]

CAT: Real (16.0)

FIPS_CNTRY: String (80.0)

CNTRY_NAME: String (80.0)

AREA: Real (15.2)

POP_CNTRY: Real (15.2)

Near the end of the output you’ll find the fields included in the dataset.

Note that POP_CNTRY is listed last, and the output indicates that it is a

numeric field.

Of course, all the desktop GIS applications provide a way to not only

determine which fields are in a dataset but actually view the data itself.

In uDig we just click the Table View tab below the map view, and we get

a nicely formatted view of the data, as shown in Figure 3.5, on the next

page. We’ll examine working with data in other applications in a bit.

Viewing the attribute table is good for just browsing around. Let’s look

at some more advanced ways to view and render our data.

3.4 Advanced Viewing and Rendering

Harrison has some more bird-sighting data he collected in his trav-

els. He wants to view the sightings in a number of ways, including by

species and number of birds per site. This will allow him to quickly

identify where he saw individual species and large groups of the same

species. Fortunately, there are some advanced rendering techniques

that can help him out.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=45

ADVANCED VIEWING AND RENDERING 46

Figure 3.5: Viewing attributes in uDig

Let’s use QGIS to help Harrison classify his data. If you haven’t installed

QGIS yet, take a look at Section B.3, Quantum GIS, on page 292 for

some hints. Then start up QGIS:

• Linux: Change to the QGIS install subdirectory, and run QGIS or

use the desktop icon if installed on your platform.

• Mac OS X : Double-click the QGIS icon in your Applications folder.

• Windows: Click the Start button, find the QGIS program folder in

Program Files, and choose Quantum GIS.

Once QGIS starts up, you are presented with an empty legend and map

canvas. In QGIS, functions are accessible from both the menu and the

toolbar. Before we get to helping Harrison, let’s explore the interface a

bit by loading our world_borders and cities layers. Since these are vector

layers, find the tool to load a vector or use Add a Vector Layer from the

Layer menu. QGIS has a lot of tools on its many toolbars, so it’s best to

familiarize yourself with them up front. You can do this by hovering the

mouse over each tool to view the tooltip or, better yet, by reading the

User Guide4 that comes with QGIS. It contains a summary of the tools

and includes pictures of the icons to help you get started.

Once you click the tool or menu option to load a vector layer, the file

dialog box is displayed. Navigate to the directory where you placed the

sample data, or you can use your own shapefile data if you have some

available. Note you can choose more than one layer from the list by

using the Shift or Ctrl key. This allows us to quickly add more than

4. The User Guide is distributed with QGIS and accessible from the Help menu.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=46

ADVANCED VIEWING AND RENDERING 47

Figure 3.6: QGIS with sample data loaded (OS X)

one layer to the map. Select both the world_borders and cities shapefiles,

and click the Open button to load them. If you don’t see the shapefiles

in the file dialog box, make sure the filter (Files of Type) selector is set

to display ESRI Shapefiles.

Once the layers load, you should see something similar to Figure 3.6.

You might notice something right off, apart from the atrocious colors

QGIS has chosen for our two layers. The cities layer is “underneath” the

world borders. This is because QGIS isn’t very clever in loading layers

and didn’t know it should put your point data on top of your polygon

data. We can easily fix this by dragging the cities layer to the top of

the list in the legend. That solves the ordering problem, but the colors

are still bothersome. Fortunately, QGIS has a wide range of options for

symbolizing layers.

Fixing the Appearance

To fix the layers, we will use the Layer Properties dialog box. You can

access the dialog box by double-clicking a layer or by right-clicking

and choosing Properties from the pop-up menu. Let’s start by modifying

the look of the world. As you can see in Figure 3.7, on the following

page, there is the somewhat busy Layer Properties dialog box and the

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=47

ADVANCED VIEWING AND RENDERING 48

Figure 3.7: QGIS vector layer properties

current settings for the world. Let’s take a bit of time to explore the

options available. First off note that the ugly green color is quite visible.

We’ll change that in a moment. The dialog box is organized into tabs,

the default being Symbology since that is the most often accessed.

Note that some of the options on the Symbology tab will not apply,

depending on the geometry of the layer. By geometry, we mean whether

it’s a point, line, or polygon layer. For more information on each of the

options, see Section D.1, Vector Properties and Symbology Options, on

page 330.

Let’s change that ugly green color to something more pleasing. If you

don’t have the properties dialog box open, double-click the world_borders

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=48

ADVANCED VIEWING AND RENDERING 49

Figure 3.8: Nicely rendered world_borders layer

layer. Let’s make the land a light brown color. Click the color box to the

right of Fill Color, and choose a color from the selector. We’ll do the

same with the outline for the countries, in this case choosing a nice

blue color. Once you made the selections, you can hit Apply to see the

changes or OK to accept the changes and close the dialog box.

One last thing before you see the results. QGIS allows you to set a

background color for the map canvas. Often this can be used to improve

the appearance of the map, especially when you have large areas of

white space. To set a background color, choose Project Properties from

the Settings menu. To set the color, activate the General tab, and then

click the color box to the right of the Background Color label. Close

the dialog box, and refresh the map. The result of all the changes, as

shown in Figure 3.8, shows a nice light blue ocean and the countries of

the world neatly delineated.

Here are a couple of things to note about the result. We changed the

name of the layer from its arcane world_borders to World. We also entered

“Countries” in the Label field in the properties dialog box. Note that this

label shows up to the right of our symbol box in the legend.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=49

ADVANCED VIEWING AND RENDERING 50

Figure 3.9: QGIS continuous color renderer settings

Now that we are proficient in adding a layer and adjusting its appear-

ance, let’s take a look at Harrison’s bird data.

Viewing the Bird Data

To answer all of Harrison’s questions about his data, we’ll use QGIS’s

Continuous Color, Graduated Symbol, and Unique Value renderers.

Using Continuous Colors

In continuous color rendering, you set a color for the minimum and

maximum values in your data, and it automatically assigns colors to

each feature. It turns out this is a quick way to render Harrison’s bird

sightings to get a feel for the relative distribution of birds. The vector

Layer Properties dialog box with the continuous color option selected is

shown in Figure 3.9.

To set up the renderer, we selected a start and end (minimum and

maximum) color. You could use any colors, but we chose a blue to red

transition, going from dark blue to dark red. You could just as easily

go from an orange to a dark green. The number of birds per site are

represented from the fewest (dark blue) to a moderate number (purple)

to the most (dark red). The count field from the attribute table contains

the number of birds per site and is used to classify the data.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=50

ADVANCED VIEWING AND RENDERING 51

Figure 3.10: QGIS continuous color renderer results

When we apply the renderer, we get a nice display, as shown in Fig-

ure 3.10.5 Notice that we didn’t have to specify anything about the data

or the individual classes—in fact, there are no options to do that. It

gives us a relative view of how the bird counts are distributed, but it is

purely qualitative. We can’t tell from the legend what a particular color

represents in terms of actual number of birds at a given location. Of

course, we could use the identify tool (we haven’t talked about this yet)

to find out.

This is a quick way to render the data and get a feel for how things

are distributed. Harrison isn’t fully satisfied with the result—he wants

more control, and as we’ll see, the graduated renderer is better suited

to the task.

5. In this and other examples, you’ll notice we’ve added a background image to enhance

the display. You’ll see how to add rasters in the next chapter.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=51

ADVANCED VIEWING AND RENDERING 52

Figure 3.11: QGIS graduated renderer settings

Graduated Symbols

Let’s take a quick look at using the graduated symbol render in QGIS.

The renderer settings, all ready to go, are shown in Figure 3.11. QGIS

currently doesn’t support ramped colors or palettes. This means a bit

more work when setting up the renderer. When we rendered the world

by population with uDig (Figure 3.4, on page 44), it provided us with a

bunch of color palettes to choose from. With QGIS we have to specify

the color for each class break manually. This means a lot more work if

we have a large number of classes. We have to select each one, set the

color, and, if applicable, the outline color and fill pattern. Although this

gives you more control, it also means more effort if we just want to do

a quick render.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=52

ADVANCED VIEWING AND RENDERING 53

Figure 3.12: QGIS graduated renderer results

In our settings, we specified the sites with the highest bird counts

should be a dark red color, while those with the least are rendered

a green or tan color. As a result, you can see a lot of green dots in Fig-

ure 3.12. This is because we used only five classes. If we wanted a more

granular view of the counts, we would need to increase the number of

classes. Another way to refine the rendering is to edit the values in the

class breaks. QGIS allows you to edit the ranges used for each class by

double-clicking the number range in the list of classes (Figure 3.11, on

the preceding page). You can adjust the ranges for each class to get the

result you want.

The graduated renderer gives us (and Harrison) a quick way to spot the

locations with the highest bird count, just by looking at the colors of

the dots on the map. We could create an even more effective display

by changing the symbol size of the dots for each class, starting with

a smaller point size and increasing to a much larger size for the last

class. In this way, the size of the dots conveys the relative number of

birds at each site, and you can get a very quick idea of the distribution

with just a glance.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=53

ADVANCED VIEWING AND RENDERING 54

Unique Values

Harrison can now get an idea of the bird counts at each site by using

the continuous color or graduated renderers. But he also wants to view

the information by species. This is where the unique value renderer

comes into play.

The unique value renderer is useful for visualizing things that are the

same. By that I mean rendering features using the same color when

they have the same value for an attribute. Some common examples are

the following:

• Displaying all the polygons for a land type in the same color, such

as state lands vs. city lands

• Displaying volcanoes by their type

• Displaying roads by type: interstate, highway, secondary road,

and primitive road

• And of course displaying birds by name

The common thread in that list is: display “xyz” by type. That’s the

purpose of a unique value renderer.

To display the bird sightings by name, we set up the unique value ren-

derer as shown in Figure 3.13, on the next page. We can adjust the

colors for each bird by clicking its name in the list and changing the

fill color. We can also adjust the style and size of the marker symbols.

Once we are happy with the setting and click OK, we get a nice display

of our locations by bird name, as shown in Figure 3.14, on page 56.

Now Harrison is happy, and we have gotten a good look at using render-

ers to help us understand our data. While we are here, let’s look at one

more example that has nothing to do with birds. So far in this section

we have been working with point locations. Let’s take an example that

is a bit more colorful and is composed of polygons—a geologic map.

A geologic map portrays rocks by type (note that word type again), and

each type should be rendered in the same color. The unique renderer

setup to display our geologic map is shown in Figure 3.15, on page 57.

Notice that the rendering is done using the UNIT field. This field con-

tains the abbreviation for the rock types.

As with the graduated renderer, you must set the color and style for

each unique value. In the case of this geologic map (which is for the

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=54

ADVANCED VIEWING AND RENDERING 55

Figure 3.13: Unique value renderer for birds

Livengood quadrangle in Alaska6), this is a lot of work. The result of

our efforts is shown in Figure 3.16, on page 58. A couple of points

about the result. First, the colors don’t represent those “standard” for

geologic units—so you geologists out there don’t get too excited. The

second point is, if you wanted to make the colors match the standard,

you would have to manually tweak the color for each unit. Let’s hope

a future version of QGIS will include support for color ramps, palettes,

and custom styles to make this a bit easier.

6. You can download this and other geologic maps for Alaska from

http://pubs.usgs.gov/of/1998/of98-133-a/arc/covers. The maps are in E00 format and require

conversion to use (see Section 8.3, Importing an E00 Interchange File, on page 129 for

options).

http://pubs.usgs.gov/of/1998/of98-133-a/arc/covers
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=55

MAKING ATTRIBUTE DATA WORK FOR YOU 56

Figure 3.14: Viewing birds by name

Now that we have a good idea of how to load and render vector layers

to tell a story, let’s look under the hood and see what we can do with

the attributes associated with our GIS data.

3.5 Making Attribute Data Work for You

So far, we haven’t really dealt much with the attributes associated with

our data layers, other than using them with the various renderers. In

this section, we’ll get into working with our attribute data and making

it work for us. We will leave Harrison’s birds alone to roost for a while

and use the cities layer in the sample dataset to identify features, view

the attribute table, select features, and attach actions to attributes. We

will be using QGIS to illustrate how to work with attribute data, but

you will likely find similar capabilities in the other applications we’ve

mentioned so far.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=56

MAKING ATTRIBUTE DATA WORK FOR YOU 57

Figure 3.15: QGIS unique renderer settings for a geologic map

Identifying Features

If you want to follow along, open QGIS and load the cities and world_

borders layers.

Here is one of the most common questions when working with GIS

data—what is that feature, and what can I learn about it? It’s also

one of the simplest operations we can perform. Once we load the cities

layer, we have 606 dots on our map. The next trick is to determine

which is which. Sure, we can identify some of them just by looking,

assuming we are familiar with the country. This is where the Identify

tool comes into play—it’s used to query a feature on the map. Simply

zoom to an area of interest, activate the layer by clicking its name in

the legend, click the Identify tool, and click the feature. QGIS will dig up

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=57

MAKING ATTRIBUTE DATA WORK FOR YOU 58

Figure 3.16: QGIS unique renderer result

some information about the feature and open the results dialog box, as

shown in Figure 3.17, on the following page.

The results show each field name in the left column and the corre-

sponding value in the right column. You’ll have to expand the result

nodes to see the field values if more than one feature is returned. In

Figure 3.17, on the next page, we have identified Dublin, Ireland, and

can see that it is a capital city with a population of 1,140,000.

If you attempt to identify a feature and QGIS tells you it can’t find

anything at that location—despite that you’re sure you clicked it—you’ll

have to adjust the tolerance used for finding a feature. This setting is on

the Map Tools tab of the Options dialog box, accessible from the Settings

menu. It’s specified as a percentage of the map width. If the default

value isn’t working, try increasing it. If you increase it too much, you

will end up with multiple features returned instead of the one you want.

A setting of 0.7% is probably a good starting point for a map with global

extent. If you still don’t get any results, check to make sure you have

activated the layer by clicking its name in the legend.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=58

MAKING ATTRIBUTE DATA WORK FOR YOU 59

Figure 3.17: QGIS Identify results

Selecting Features

Selecting features is another common operation when working with

attributes. A selection set is used for a number of operations, as we’ll

see shortly. Here we’ll illustrate a simple usage—zooming to the extent

of the selection set.

In QGIS there are two ways to select a feature. The first is using the

Select Features tool, located next to the Identify button. Click the tool,

activate the layer, and then drag a rectangle on the map around the

feature(s) you want to select. When you release the mouse button, the

features contained in the rectangle will be selected and drawn in a high-

lighted color (the color is customizable from the Options dialog box).

The other way to select features is to use the attribute table selection

tools (see Section 3.5, Using the Attribute Table).

Once you have a selection set, you can zoom to it by using the Zoom to

Selection tool or by using the menu option found in the View menu.

Using the Attribute Table

By now it’s clear that GIS layers have attributes associated with the

features.7 The attribute table not only gives us a view into the data

behind the features but in a typical application allows us to edit, select,

and search.

In QGIS, as in all desktop GIS applications, you can view the attribute

table for a layer. The attribute table for the cities layer is shown in

7. Usually this is true—you could have a layer with no attributes.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=59

MAKING ATTRIBUTE DATA WORK FOR YOU 60

Figure 3.18: Attribute table for the cities layer

Figure 3.18. You’ll note that there is a row for each feature (city) and

columns for each attribute (field) in the layer.

This is a very busy dialog box with lots of buttons and features. We’ll

start with the basics and come back to the more advanced features

later. First, you can sort the table by any field by clicking the column

header. Clicking repeatedly toggles between ascending and descending

sort order. You can scroll through the table and randomly browse the

attributes. This is a good way to introduce yourself to a newly acquired

dataset.

You can select features by holding down the left mouse button and

dragging down through the rows. You can also select rows by using

the Shift and Ctrl keys, just as you do in a selection box on your

operating system.

As you select records in the attribute table, the corresponding features

on the map canvas are highlighted.

Quick Search

Say we want to find a particular city—for example, Cuzco in Peru. There

are several ways we could do it:

• Using the Identify tool, we could randomly click the cities in Peru

until we find it.

• Turn on labels for the cities, zoom to Peru, and look around until

we find it. This works pretty well, but if we didn’t know Cuzco was

in Peru, it would become a bit more difficult.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=60

MAKING ATTRIBUTE DATA WORK FOR YOU 61

• We can open up the attribute table, sort it by name, and scroll

down until we find Cuzco.

• We can search for it.

These methods are in increasing order of efficiency. For small datasets,

browsing the attribute table until you find what you are looking for is

reasonable. When you get thousands of records, it can become a chore,

and searching becomes the way to go.

You can quickly search the table for a city by entering a search term

in the Search For box, selecting the field you want to search from the

drop-down list, and clicking the Search button. In our case, we want

to enter “Cuzco” as the term to search for, and we want to look in the

NAME field. The search will return both full or partial matches. When

searching, there are three options you can choose from:

• Select: Select the features that match.

• Select and Bring to Top: Select the features that match and pro-

mote them to the top of the attribute table display.

• Show Only Matching: Show just the features that match.

Which option you choose depends on the purpose for selecting the fea-

tures. If you just want to select them so you can zoom the map to the

selection set, then the first option is sufficient. If you want to view the

attributes of the selection set, then the second option is the one you

want. Of course, you could just scroll through the table and look for

highlighted rows, but promoting them to the top makes it quicker and

easier to browse the results.

Four tools at the top of the attribute dialog box can be used to manip-

ulate the selection set. Use the mouse to hover over each to learn its

function. The tools available are as follows:

• Remove Selection

• Move Selected to Top

• Invert Selection

• Copy Selected Rows to the Clipboard

If you copy the selection to the clipboard and paste into a text editor,

you get a comma-delimited list of the attributes in the selected rows,

complete with a header row containing the field names. Doing this for

Cuzco and pasting it, we get the following:

wkt_geom,NAME,COUNTRY,POPULATION,CAPITAL

POINT(-71.860001 -13.600000),Cuzco,Peru, 184550,N

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=61

MAKING ATTRIBUTE DATA WORK FOR YOU 62

The X and Y of Latitude and Longitude

In conversation, most people say “latitude and longitude,” not
the other way around. In fact, you will most often see it written
that way as well. So, it’s natural for people to assume the lati-
tude = X and longitude = Y (since we say X,Y), but this isn’t so.
It’s an extremely common mistake, especially for newcomers
to the GIS realm. For the record, lines of longitude run vertically
and measure units in the X direction. Lines of latitude run hori-
zontally and measure units in the Y direction.

The output can be used for importing into another application for

further manipulation or reporting purposes. You might be wondering

about the funny-looking POINT notation. It’s the Well-Known Text

(WKT) representation of a point, consisting of the feature type keyword,

in this case POINT, and the coordinates (X and Y) separated by a space.

The X and Y values are in the coordinate system of the layer. In the case

of our cities layer, it’s geographic (longitude, latitude). We also have the

name, the country, its population, and whether the city is a capital.

Advanced Search

The attribute table also provides an advanced search query capabil-

ity where you can really narrow down what you are looking for in the

dataset. The quick-search feature allows us to specify only a single

search term and field to search. With the advanced query, we can be

more specific by using SQL.8 Don’t worry if you aren’t a SQL expert or

don’t even know what it stands for—QGIS makes it easy, as we will see.

Say, for example, we want to find all the cities in the world with more

than 2 million people that are also capital cities. We can easily do this

with the Search Query Builder. To access the builder, open the attribute

table, and click the Advanced button. The query builder populated with

the terms needed to find the cities of interest is shown in Figure 3.19,

on the following page. Now let’s take a look at how this dialog box works.

The fields in the attribute table are listed on the left side of the dialog

box. On the right is a box that can be used to display the values for a

field. This allows you to get a preview of a field’s contents to aid you in

building the query.

8. SQL is a standard language for querying and updating a database.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=62

MAKING ATTRIBUTE DATA WORK FOR YOU 63

Figure 3.19: Search Query Builder

To preview a sample of the data, use the Sample button. This will pull

a subset of the unique values for the field. Viewing a sample is a good

method to use when the attribute table is very large because it saves

time. If you want to see all possible values for a field, use the All button.

These two boxes also serve another purpose. You can add an item in

the box to the query by double-clicking it. To start building our sam-

ple query, we double-click the POPULATION field to add it to the SQL

where clause. To complete the population part of the query, we click the

“greater than” operator button and then type in “2000000.” This gives

us the following:

POPULATION > 2000000

When adding field names and operators, QGIS automatically inserts

the needed spaces. If we test the query now using the Test button, it

reports 110 matching features (cities). To complete the query, we click

the CAPITAL field and click the ALL button to get a list of all possible

values. It’s easy to see there are two possibilities—Y and N. Since we are

using a value from the list, we don’t have to type anything to complete

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=63

MAKING ATTRIBUTE DATA WORK FOR YOU 64

the query. First we add the AND operator by clicking the button in the

Operators section. To add the final parts, just double-click the CAPITAL

field, click the = operator, and double-click Y in the value list. Our query

is now complete:

POPULATION > 2000000 AND CAPITAL = 'Y'

If we test this query, QGIS reports forty-one matching cities. When we

click OK, the attribute table will have those forty-one cities selected. We

can promote them to the top of the table using the Move Selected to Top

button in the Attribute Table toolbar. Since these features are selected,

they will be drawn the map using the selection color preference you

have set in your QGIS preferences or the project properties.

You can construct very complex queries using the query builder. If you

are familiar with SQL, you can bypass the click-and-build routine and

enter the where clause manually. In either case, the ability to define

custom searches is a powerful tool. In a future chapter, we will see how

to use this same concept to create a subset or multiple views of a layer.

Using Attribute Actions

Let’s conclude our look at working with attribute data by doing some-

thing useful with the attributes in the cities layer. QGIS has the concept

of attribute actions, in other words, performing some action (think task)

using the value of an attribute. With an attribute action, you can call

another application and pass the value of the attribute to it. Here are

some potential uses for this feature:

• Do a web search based on one or more attribute values.

• Display a photo based on a location stored as a layer attribute.

• Submit values to a URL that creates a report.

• Query a database based on attribute values.

There really is no limit to the way in which you can use actions to

integrate QGIS with other applications and tools. Let’s take a simple

example and do a Google search of a city using the results from the

Identify tool. Attribute actions are defined from the Actions tab on the

vector Layer Properties dialog box. The steps to create an action are as

follows:

1. Determine the attribute field(s) needed.

2. Determine the application that will “drive” the action.

3. Construct the argument string using the attribute value(s).

4. Create the action.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=64

MAKING ATTRIBUTE DATA WORK FOR YOU 65

Creating the Action

In our example, we are going to use the name of the city and pass

it to Google. The application we need is a web browser. In this case,

we will use Firefox. The URL to search for something with Google is

http://google.com/search?q=find_me, where find_me is the search term.

Attribute actions work by replacing specific strings in our argument

list with the values from the attribute table. The format of these strings

is simple—it’s a percent sign (%) followed by the name of the field we

want to use. In our example, we therefore need to use %NAME as the

replaceable parameter. Putting this altogether gives us the following

action:

firefox http://google.com/search?q=%NAME

One important thing to note here—the browser must be in our path. If

not, the action will fail. The alternative and perhaps the safe way is to

fully specify the path to the browser:

/usr/bin/firefox http://google.com/search?q=%NAME

If you have spaces or other oddities you need to specify in the action,

use double quotes around the entire thing. They will be ignored when

the action is executed but safely allow you to specify the path and other

exotic parameters.

So now that we have the text for the action figured out, let’s put it all

together to create and use the action. First open the properties dialog

box for the cities layer and click the Actions tab. Give the action a name,

“Google search” will work, and then enter the text of the action. If you

are following along, make sure to adjust the path for your browser.

Click the Insert Action button to add the action to the list. We could go

ahead and create other named actions in the same way. If you make a

mistake, you can click the action in the list and edit it.

When you are finished, click the Update action button to save your

changes. Notice we didn’t use the Insert Field button and its associated

drop-down list of field names. That’s because we determined before-

hand we were using %NAME. Also notice the browse button to the right

of the action text box. If you click this button, it lets you browse to the

location of the application you want to use to execute the action. In

our example, we could have used it to browse to the location of Firefox

(/usr/bin/firefox). This is useful if you aren’t sure of the full path for the

application needed to execute the action.

To complete the creation of the action, click OK. It’s now ready to use.

http://google.com/search?q=find_me
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=65

MAKING ATTRIBUTE DATA WORK FOR YOU 66

Figure 3.20: Attribute action enabled in QGIS

Using the Action

Now that we have it, let’s see how to use it. The results of identify-

ing a city on the map are shown in Figure 3.20. If you compare this

with Figure 3.17, on page 59, you will see we now have a new entry at

the bottom of the results list. This is our action, appropriately labeled

“Google search.” To execute an action, you can click it or right-click

and choose the action from the pop-up list (if we had defined more

than one action, we would choose it from this list). When clicked, QGIS

will launch Firefox and execute the Google search for New Orleans. You

can identify another city and use the action to perform a Google search

on it. Depending on your operating system and browser, it may reuse

the current browser window or open a new one.

Now it should be clear where attribute actions could come in handy.

There is one last trick you can use when defining actions. If you use

the special parameter %% instead of a field name, QGIS will replace it

with the value of the currently highlighted field in the identify results

list. In the case of our example, this would allow us to do a search on

any field value in the layer. Most of our fields in the cities layer aren’t

well suited for Google searching, but the COUNTRY field would return

useful results. Being able to specify values in this way, as well as the

ability to define multiple actions gives us a lot of flexibility.

What you do with attribute actions is now limited only by your imagi-

nation and cleverness.

Now that we’ve exercised our vector muscles, let’s move on and work

with some raster data.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=66

Where there is no vision, the people perish. . . .

Proverbs

Chapter 4

Working with Raster Data
Raster data is everywhere in the GIS world. You can use it as a back-

ground layer for your vector data or do full-blown analysis with it. In

this chapter, our goal is to get you up and running with raster data. In

later chapters, we’ll delve into some analysis and manipulation.

Nearly every OSGIS desktop application can display at least some raster

formats—and some more than others. In particular, those applications

that are based on the GDAL library can support an impressive range of

raster data. You can find a partial list of formats that GDAL supports

in Section A.2, GDAL/OGR, on page 283. Both QGIS and GRASS use

the GDAL library for reading and writing raster data.

4.1 Viewing Raster Data

We’ll start with something simple in our endeavor and load a TIFF

image. A fairly common thing you might want to do is view a topo-

graphic map of your area. You might recall that this is what Harrison

used as a background for his bird data. In the United States, many of

these rasters can be downloaded from the U.S. Geological Survey web-

site. Using a topographic map as a base is useful when you want to

view your vector data (for example, GPS tracks and waypoints) over it.

Let’s download a TIFF from the Internet Archive of USGS Maps.1 You

can pick any state you like—for our example, we’ll grab a random image

from Montana.2 You can pick one for your area by browsing the archive

by state. We’ll need both the .tif and .tfw files. Once you have your raster

and the world file, you can view it in QGIS.

1. http://www.archive.org/details/maps_usgs

2. In case you’re interested, we grabbed http://www.archive.org/details/usgs_drg_mt_47113_g1.

http://www.archive.org/details/maps_usgs
http://www.archive.org/details/usgs_drg_mt_47113_g1

VIEWING RASTER DATA 68

Figure 4.1: Montana topographic map in QGIS

The QGIS toolbar contains a button for loading rasters (it’s right next

to the Vector button), or you can choose Add a Raster Layer from the

Layer menu. Rasters in QGIS are loaded using the standard file dialog

box—of course this will vary in appearance depending on your oper-

ating system. To select a TIFF, we need to make sure the filter is set

properly. The QGIS raster dialog box has filters for a number of data

types, including GeoTIFF, ERDAS Imagine, and USGS Digital Eleva-

tion Models. To get started, just make sure the GeoTIFF is selected in

the Files of Type drop-down box, and navigate to the location of the

TIFF file. Select it and click the Open button. QGIS opens and displays

the image at full extent. In Figure 4.1, we have loaded the raster and

zoomed to the northeast corner of the Montana DRG.

The first thing you’re likely to notice is that the raster has a bunch

of text annotations around the border. We call this the collar, and

although it has good information, it’s a bit distracting when we’re work-

ing with our data. This becomes readily apparent when you download

the DRG adjacent to it and want to display them in a seamless fashion.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=68

VIEWING RASTER DATA 69

Joe Asks. . .

What Is a Georeferenced TIFF?

It’s a TIFF image that has metadata (information) about its
coordinate system. This information can be associated with the
image in a couple of ways. In a GeoTIFF, the coordinate system
information is “embedded” in the file itself—in other words, it is
self-contained.

The other way to specify coordinate information is with a world
file. A world file contains information about the map units per
pixel in the image, as well as the real-world coordinates of
the upper-left corner. For a TIFF, the world file usually has a .tfw
extension. World files are used with other georeferenced image
formats, including JPEG (.jgw) and PNG (.pgw). For software that
employs the GDAL library for raster access, the .wld can be used
with TIFF, JPEG, PNG, and other supported formats.

We’ll take up this issue in a bit and show you how to create a seamless

raster from several TIFF images in Section 10.6, Clipping Rasters with

GRASS, on page 167.

With your topographic map loaded, feel free to zoom around and explore

the countryside. If you take the Identify tool and click the raster, you’ll

find it doesn’t yield much in the way of information. In fact, the only

thing it will tell you is the palette index of the pixel where you click.

This is because rasters are composed of cells (a pixel is a cell) and

contain only one value. In the case of a DRG, that’s the palette index

number. For each index, there is a corresponding color value. So for

the Montana DRG, if we click a lake or stream, we find that the palette

index is 2. This isn’t all that useful, but when we get to Section 4.3,

Intelligent Rasters, on page 76 you’ll see other rasters where the cell

values convey significant information.

The last thing we need to mention is the coordinate system for this

raster. If you open the Raster properties dialog box (just double-click

the raster name in the legend) and click the Metadata tab, you’ll find

that my Montana raster is in UTM Zone 12, NAD27 datum. You can

glean that information from the Layer Spatial Reference System section

of the dialog box.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=69

VIEWING RASTER DATA 70

Another way to get the same information is with gdalinfo, a utility that

comes with GDAL and is included in FWTools:3

$ gdalinfo o47113g1.tif

Driver: GTiff/GeoTIFF

Size is 4769, 6920

Coordinate System is:

PROJCS["NAD27 / UTM zone 12N",

GEOGCS["NAD27",

DATUM["North_American_Datum_1927",

SPHEROID["Clarke 1866",6378206.4,294.9786982139006,

AUTHORITY["EPSG","7008"]],

AUTHORITY["EPSG","6267"]],

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433],

AUTHORITY["EPSG","4267"]],

PROJECTION["Transverse_Mercator"],

PARAMETER["latitude_of_origin",0],

PARAMETER["central_meridian",-111],

PARAMETER["scale_factor",0.9996],

PARAMETER["false_easting",500000],

PARAMETER["false_northing",0],

UNIT["metre",1,

AUTHORITY["EPSG","9001"]],

AUTHORITY["EPSG","26712"]]

Origin = (339751.702040000003763,5305307.515394000336528)

Pixel Size = (2.438400000000000,-2.438400000000000)

...

We didn’t include all the output from gdalinfo; we included just enough

for you to see the projection information. If you recall earlier, I told

you that when downloading, we needed the .tfw file, which is actually

the world file for the raster. The fact that the projection information

is reported by gdalinfo means that it is a GeoTIFF and contains not

only the coordinate information needed to properly display it but also

the projection information. You don’t need the world file for a GeoTIFF.

The fact that the DRG was a GeoTIFF wasn’t readily apparent from the

website, so we played it safe and downloaded the world file as well. For-

tunately, we didn’t waste much bandwidth downloading it since world

files are only a few hundred bytes in size.

Let’s return to our global theme now and view a raster mosaic, cour-

tesy of NASA Visible Earth.4 If you want to follow along, you can fetch

3. If it’s not already on your system, see Section B.7, FWTools, on page 295 for informa-

tion on installing FWTools.
4. The ev11612_land_ocean_ice_8192 image is owned and provided by NASA. The image

was obtained from the Visible Earth (http://visibleearth.nasa.gov) and developed by the Earth

http://visibleearth.nasa.gov
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=70

VIEWING RASTER DATA 71

Figure 4.2: NASA world mosaic viewed in QGIS

the raster from http://desktopgisbook.com/sample_data or the NASA site.

Loading it into QGIS gives us a world mosaic, as shown in Figure 4.2.

The NASA raster is a georeferenced image in geographic coordinates,

meaning it can be used in conjunction with our world vector layers.

If you look carefully at Figure 4.2, you’ll notice we’ve added the cities

on top of the raster, just to prove they line up. Fortunately, both the

raster and vector data have geographic coordinates in the same datum.

In case you’re wondering, a datum is a model of the shape of the earth

used to measure positions. In this case, the coordinates are in WGS

84, the same datum commonly used in modern GPS units. We’ll take

a further look at datums and projections in Chapter 9, Projections and

Coordinate Systems, on page 138.

Observatory team (http://earthobservatory.nasa.gov)

http://desktopgisbook.com/sample_data
http://earthobservatory.nasa.gov
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=71

VIEWING RASTER DATA 72

Figure 4.3: QGIS raster properties dialog box

Raster Properties

Now we’ll take a brief look at some of the properties associated with

a raster. Just like vector layers, in QGIS there is a properties dialog

box that allows us to adjust the appearance of the image, as well as

get some information about it. You can access the properties dialog

box by double-clicking the layer name or right-clicking it and choosing

Properties. If this sounds familiar, you are correct. It’s the same method

used for accessing the vector properties dialog box. In Figure 4.3, you

can see the raster properties dialog box.

As you can see, the raster properties dialog box bears a bit of resem-

blance to the vector properties dialog box. They both have Symbology,

General, and Metadata tabs. Rather than look at each of these in detail,

we’ll focus on a couple of things you need to know to effectively use

images in QGIS. On the Symbology tab, you have the choice to dis-

play the image as either color or grayscale. By default, the appropriate

display mode is chosen for an image when you load it.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=72

IMPROVING RENDERING WITH PYRAMIDS 73

Figure 4.4: Semitransparent digital elevation model draped over a DRG

In the case of our example, we have a multiband image consisting of

three bands: red, green, and blue. We can do a number of things with

the bands, including changing which band is used for which color. In

other words, we can swap the mapping of color to band and observe

the effects. We can also invert the colors, which swaps the light and

dark colors. The transparency of a raster can be set using the slider,

allowing the layers underneath to become visible. This can be used to

get some interesting effects, such as those in Figure 4.4.

If you are working with a grayscale image, you can adjust the color map

and standard deviation used to display the raster. See the QGIS user

guide to learn more about these options. One other thing to note is you

can display a color image as grayscale by selecting the Grayscale radio

button and then setting the band in the Gray drop-down box. So, for

example, we can display our color image as grayscale using the green

color band (band 2) to determine the appearance of the image. This

might be used to bring out features or characteristics not visible when

the image is displayed in color.

4.2 Improving Rendering with Pyramids

Pyramids are essentially multiple views of a raster at reduced reso-

lutions. Using pyramids means that the software, in our case QGIS,

doesn’t have to draw every detail of the image to get it on the screen.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=73

IMPROVING RENDERING WITH PYRAMIDS 74

Figure 4.5: QGIS raster pyramids dialog box

This is appropriate because all that detail is lost on you at small scales.

QGIS supports building and using pyramids through the GDAL library.

Some software stores pyramids in external files, but GDAL builds and

stores them by default within the image itself. This means your original

image will be altered and in fact grow in size. You may want to make

a copy of the image before creating pyramids because the process is

not reversible. GDAL supports the creation of external pyramid files for

some raster drivers. In our case, we will use the default and add the

pyramids to our TIFF image.

To create pyramids, first open the raster properties dialog box, and

select the Pyramids tab. Note the warning about altering and possibly

corrupting the image, and make the backup copy before you proceed.

QGIS populates the Pyramid Resolutions list with a set of resolutions

appropriate for your image. The dimensions of the world mosaic image

are 8,192 by 4,096 pixels. In Figure 4.5, you can see that QGIS offers

to build a range of pyramids based on the dimensions of the image.

These levels are calculated by dividing the width and height down to

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=74

IMPROVING RENDERING WITH PYRAMIDS 75

some minimum level. Notice the small X over the pyramid icon for each

level. This indicates that pyramids do not exist for that level. This of

course changes once we build pyramids for the raster. You can choose a

sampling method for calculating the pyramids. If you are unsure what

to do, just take the default value because it will give you acceptable

results. Select the levels you want to build by clicking each one. The

more you select, the longer it will take to build, and more important,

the larger your image will grow. Click the Build Pyramids button, and

wait while QGIS generates the pyramids for each selected level in the

list. This can take a while, especially for large images. Once complete,

the small X will disappear from each level for which pyramids were

built.

You should now see improved performance when drawing the image at

smaller scales. You might also notice some degradation in the appear-

ance of the image; however, at large scales (when zoomed in), the full

quality of the image is preserved. You may have to experiment a bit

to determine how many and which levels you want to build. For this

reason, be sure to keep a copy of the original image in a safe place.

You can also create pyramids using the GDAL utility gdaladdo. As with

QGIS, the pyramids are by default added to the original raster. If you

want to create pyramids for a lot or rasters, using gdaladdo is the way to

go. You can write a small script (shell, Python, Ruby, or Perl) to process

each file in a directory and add the pyramids. Here is an example of

using gdaladdo to create pyramids for our Montana DRG:

$ ls -lh o47113g1.tif

-rw-r--r-- 1 gsherman gsherman 6.8M 2007-07-09 17:24 o47113g1.tif

$ gdaladdo -r average o47113g1.tif 2 4 8 16

0...10...20...30...40...50...60...70...80...90...100 - done.

$ ls -lh o47113g1.tif

-rw-r--r-- 1 gsherman gsherman 11M 2007-07-11 19:49 o47113g1.tif

Here we created four levels of pyramids using the “average” resampling

algorithm. We listed the size before and after the operation. Notice that

building pyramids increased the raster from 6.8 megabytes to 11. For

more information on gdaladdo and its options, see the documentation.5

Creating pyramids for your raster data can give you a huge perfor-

mance gain when rendering at various scales. You may want to make a

backup copy and then experiment with the various levels and sampling

methods to see which provide the best results for your data.

5. http://www.gdal.org/gdaladdo.html

http://www.gdal.org/gdaladdo.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=75

INTELLIGENT RASTERS 76

4.3 Intelligent Rasters

All rasters are intelligent—at least in the sense that they convey infor-

mation. So far we have looked at rasters (DRGs and our world mosaic)

that are useful for general viewing or as a background layer. Typically

these rasters have cell values that don’t really mean anything—they

are just a value used to determine how each pixel should be colored.

Cell values in a raster (or grid as these are often called) can be either

integer or floating point, depending on the capabilities of your software.

You might be wondering what sort of data can be represented by a

raster. The answer is anything you can count, measure, or identify for

a defined area on the ground. Some examples include the following:

• Rock or soil types, specified by a unique numeric code for each

• Vegetation types

• Elevations

• Quantity of an element such as gold or silver, determined by sam-

pling and analysis

Why not use a vector layer rather than raster to delineate data by

“type”? Oftentimes it’s appropriate to use a vector layer, as we did for

our geologic map in Figure 3.16, on page 58. Here each rock type is

represented by a polygon and rendered by value. It really depends on

what you need to accomplish with the data. In the case of a grid con-

taining quantities that we want to use in an analysis, the raster model

is the right choice.

Let’s look at a couple of examples of what we might term a “smarter

raster,” in this case a Digital Elevation Model (DEM) and a grid contain-

ing measured quantities of silver.

Digital Elevation Models

The cells in a DEM contain an elevation value. For any location on the

DEM, we can determine the elevation by examining the value of the

cell. The smaller the size of the cells, the more resolution you will get

from the DEM. We can do a number of interesting things with a DEM,

including the following:

• Display it as is for a backdrop.

• Create a shaded relief to display terrain.

• Perform arithmetic operations on the individual cells to create new

values.

• Create contours from the elevations.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=76

INTELLIGENT RASTERS 77

We’ll look at DEMs in more depth in Chapter 10, Geoprocessing, on

page 149, where we’ll see how to use them in analyzing, creating con-

tours, and generating shaded reliefs—also known as hillshades.

The Grid of Silver

Let’s see how we can use a grid to do some qualitative analysis. Harri-

son’s interests are diverse—this time he’s off to do some prospecting for

silver. In terms of the methodology, he could just as easily be examining

the concentration of hazardous materials or four-leaf clovers.

Harrison has found the results of a soil sampling survey that was done

over a regular grid. Each sample was analyzed for a number of ele-

ments, but he is interested only in silver. Fortunately for Harrison,

along with the results is a raster grid in Arc/Info Binary Grid format.

Harrison fires up QGIS and finds he can easily load the grid by choos-

ing the Add a Raster Layer tool from the toolbar and changing the file type

to “AIG GRASS and all other files (*).” The grid consists of a directory

containing several files. The one we (and Harrison) are interested in is

the .adf file. This contains the grid data, and QGIS knows how to dis-

play this format. In Figure 4.6, on the following page, you can see what

the grid looks like loaded into QGIS and underlain by the DRG for the

region. In order to see the underlying DRG, we’ve made the grid par-

tially transparent using the transparency slider on the raster properties

dialog box.

Notice that the grid is “tilted.” That’s because it has been transformed

from the original coordinate system, a simple X-Y grid, to one that

places it where it belongs in the real world. From looking at it, we

can conclude that whoever laid out the grid didn’t do it using cardinal

directions of north-south and east-west. Transforming it to the proper

coordinate system also gives it a ragged appearance along the edges

since it’s not possible to approximate a straight line given the cell size

in this grid.

We can use the Identify tool just as we did when working with our vec-

tor data (Section 3.5, Identifying Features, on page 57). Unlike vector

data where we might have several attributes for a feature, what we’re

identifying here is the value for a single cell.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=77

INTELLIGENT RASTERS 78

Figure 4.6: Grid of silver values

You’ll also notice that although for a vector layer we can use the select

tools and open the attribute table, we can’t do it for the grid. The only

information we can gain is the cell value.

To help Harrison with his qualitative analysis, let’s identify a few cells

to get a feel for the data. The dark cells to the west (left side of the map)

are low values,6 typically in the neighborhood of 0.2. If we look at the

brighter areas of the grid, we find values up to 3.65 or greater. So, just

by looking at the grid we can get a feel for where the higher values are,

once we know the pattern.

Using the Metadata tab in the raster properties dialog box we can get

some interesting information about the grid. If you scroll to the bottom

of the dialog box, you’ll find some statistics of interest:

Property Value

Band Undefined

Band No 1

Min Val -0.2643643320

Max Val 3.6971910000

6. The units on this grid are in parts per million (ppm). Nobody is going to get rich off

the silver in this grid.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=78

INTELLIGENT RASTERS 79

Figure 4.7: Grid of silver values in pseudocolor

Range 3.9615553319

Mean 0.3253868880

Sum of Squares 991.8232408759

Standard Deviation 0.4478514579

Sum of All Cells 1609.3635482636

Cell Count 4946

This tells us the minimum and maximum values in the grid, the num-

ber of cells, the range, and some other statistics. This is probably a bet-

ter way to get a quick overview of the distribution of a grid, as opposed

to randomly identifying cells.

To make the display a bit more dramatic, we can open the raster prop-

erties dialog box and change the color map from grayscale to pseudo-

color. When we apply this change, we get the result shown in Figure 4.7.

Now the high value areas are red and the low values are blue, making

it even easier to visually analyze the distribution of the values.

We could take our analysis further by using GRASS to create a con-

tour map of the cell values or by generating a hillshade to enhance the

appearance of the map.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=79

INTELLIGENT RASTERS 80

We’ll delve into contouring and creating hillshades, as well as some

other raster manipulation, when we get to Chapter 10, Geoprocessing,

on page 149.

Now that we’ve learned a bit about rasters, let’s take a look at digitizing

some vector data using our OSGIS software.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=80

Chapter 5

Digitizing and Editing Vector Data
One of the strengths of desktop GIS is the ability to create new data.

Although your favorite desktop application can be a data consumer, it

can also be a creator. In this chapter, we’ll look at creating vector data

and some of the reasons why you might want to do so.

5.1 Simple Digitizing

If you remember Harrison’s original bird project, one of the things he

wanted to do was create a new vector layer for the lakes in one of his

birding areas (see Figure 1.3, on page 19). Once he had the lakes in a

new vector layer, he could do some more advanced GIS processing to

create a buffer and test his hypothesis regarding birds and nearness

to lakes. This is a pretty simple digitizing project, one that we’ll do for

Harrison.

Picking a Tool

As you’ve gathered, we could use a bunch of tools to digitize the lakes.

Since we’re going for simple here, either uDig or QGIS is a good choice.

You could use OpenJUMP or GRASS as well. Since we are going to

do some geoprocessing with this layer (a fancy way of saying create

a buffer), it makes sense to create it in a flexible format that we can

import into whatever application we choose. The obvious choice is a

shapefile, although we could just as easily have chosen PostGIS—but

since we won’t talk about that until Chapter 7, Spatial Databases, on

page 98, we’ll keep it simple.

To build Harrison’s layer, we’ll use QGIS and create a shapefile con-

taining lakes as polygons.

SIMPLE DIGITIZING 82

Figure 5.1: Creating a new shapefile in QGIS

Digitizing the Lakes

The first step is to fire up QGIS and add the raster we want to digitize

from to create the lakes. We’re using o48092d8.tiff, a DRG from the Daley

Bay Quadrangle in Minnesota.1 Once we have the raster loaded, we

need to create a new vector layer for the lakes.

As of version 0.9, QGIS supports the creation of shapefiles only for

editing, although you could create a new PostgreSQL layer using SQL

and edit it. For now we’ll create a shapefile with an id field and a name

field. To do this, choose New Vector Layer from the Layer menu. In Fig-

ure 5.1, you can see the completed layer information with the fields

defined. Even though there is a drop-down for file format, there is only

one choice, as we mentioned before. Once we click the OK button, QGIS

opens the dialog box to save the file. This allows you to navigate to the

directory where you want the shapefile to live and give it an appropriate

name. Having done that, our shapefile is created and displayed in QGIS

as shown in Figure 5.2, on the next page. Of course, there is nothing in

it yet.

Now we are ready to digitize. First we need to allow editing on the new

layer by right-clicking it in the legend and choosing Allow Editing from

1. Available at http://www.archive.org/download/usgs_drg_mn_48092_d8/o48092d8.tif.

http://www.archive.org/download/usgs_drg_mn_48092_d8/o48092d8.tif
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=82

SIMPLE DIGITIZING 83

Figure 5.2: QGIS with new layer ready to edit

the pop-up menu.2 A small pencil with a little scribble trailing from

it will appear over the layer’s icon in the legend to indicate that we

are now in edit mode. Before we start editing, we need to make sure

the digitizing toolbar is visible. If not, right-click in the toolbar area

of QGIS, and choose Digitizing from the pop-up menu. In Figure 5.2,

the digitizing toolbar is visible (it’s on the second row of the toolbar

area). You’ll notice that some of the buttons are disabled (grayed out),

in particular the point and line buttons. This is because QGIS knows

we are editing a polygon layer and won’t allow you to create the wrong

feature type. In addition to creating polygons, there are tools for starting

and stopping editing and editing existing features. Let’s start digitizing

by clicking the Capture Polygon tool.

First we will digitize the boundary of largest lake in our map view (it’s

the big one to the west). An important thing to remember when digi-

tizing is to choose an appropriate scale for creating features. To get a

2. In QGIS 0.9.x, the Allow Editing menu option has been renamed Toggle Editing.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=83

SIMPLE DIGITIZING 84

Figure 5.3: Entering attributes for a feature

gross approximation of the lake, we can just zoom in until we see only

the lake. If we want a detailed representation of the lake, we need to

zoom in much closer and pan around the map as we digitize. We’ll take

a middle-of-the-road approach here and zoom in somewhat to illustrate

navigating the map while digitizing.

To start, we zoom in until the lake pretty much fills the map view. To

digitize the lake, click with the left mouse button and begin moving

along the shoreline, clicking at each location where there is a change

in direction. If you get to the edge of the map canvas and need to pan

to continue digitizing, don’t use the pan tool; instead hold down the

Spacebar and move the mouse to pan. If you are zoomed in really close,

this technique allows you to work your way around the lake. If you

find out that you need to change the zoom level to effectively digitize,

you can zoom in and out using the mouse wheel. Both of these nav-

igation techniques are discussed in Section D.3, Map Navigation and

Bookmarks, on page 336.

You’ll notice as you digitize around the lake, the display is updated with

the polygon as you create it. To complete the lake, right-click at the final

point. This opens the attribute dialog box where we enter the attribute

values for the feature. In Figure 5.3, we have assigned an ID of 1 and

entered “Beach Lake” as the name. When we click OK, these values

will be saved for storage in the .dbf of our shapefile. That completes

Beach Lake; however, the feature hasn’t actually been saved yet. To

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=84

SIMPLE DIGITIZING 85

Figure 5.4: Results of digitizing lakes in QGIS

actually write our changes out, we need to stop editing by clicking the

tool in the toolbar or right-clicking the layer and choosing Allow Editing. A

confirmation dialog box appears, and we have to choose Yes to save the

edits. Once we do that, the lake appears like a regular polygon feature,

properly colored, and we can both identify it and view the attribute

table. In Figure 5.4, you can see the results of our digitizing effort, with

the lakes labeled using the name field in the attribute table.

Fixing Mistakes

As you digitize, you are bound to make mistakes. You might find that

you didn’t follow the shore quite right, made a line too straight when

it should have been curved, or just totally bungled the boundary. Typ-

ically the best approach is to continue and then correct the problems

after you have completed the feature.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=85

SIMPLE DIGITIZING 86

Keeping Your Data Safe

When editing your data with any GIS application, it’s a good
idea to make sure you have a backup copy. Let’s face it, disas-
ter can strike, whether it be a program crash, power outage, or
beverage incident. Keeping a current backup of your critical
data is just good practice.

All our OSGIS desktop applications that support editing allow you to

make adjustments to features by moving, deleting, and inserting ver-

tices. Once you’ve completed a feature, the vertices are displayed (in

QGIS they look like X’s). Using the vertex tools on the editing toolbar,

you can adjust the boundary to correct any errors.

Harrison decides he also needs the streams connecting his lakes dig-

itized. Along the way, he makes a few mistakes, which we’ll help him

fix. In Figure 5.5, on the following page, you can see part of Harrison’s

fist attempt at connecting the lakes using QGIS and a line shapefile for

the streams.

If you look closely at the streams (we’ve made them red so they stand

out), you’ll notice a number of problems. For one, we have a stream

that doesn’t connect with its neighbor. In another case, the line seg-

ment overshoots the intersection. These undershoots and overshoots

are called dangles. Lastly, we have a stream that runs too far into the

lake on the east. The other thing you’ll notice is that Harrison was a bit

sloppy in following the stream course, especially approaching the lake

to the east.

Let’s use the vertex-editing tools to clean things up a bit. All the errors

can be easily corrected just by inserting new vertices where needed and

moving existing vertices to intersect where they should. To do this, we

first need to set the snapping tolerance. This controls how QGIS snaps

to existing vertices when editing. By setting a reasonable tolerance, we

can make QGIS “jump” to the closest vertex, thereby making our job

easier as well as making sure the line segments actually touch. It’s

harder than you may think to manually move a vertex and get it exactly

on the line.

To determine a proper snapping tolerance, you need to take a look at

your data and get an idea of distance between vertices in your lines.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=86

SIMPLE DIGITIZING 87

Figure 5.5: Digitized Streams

In QGIS the tolerance is set in map units, so you may find you need

to experiment to get it set right. If you specify too big of a tolerance,

QGIS may snap to the wrong vertex, especially if you are dealing with

a large number of vertices in close proximity. Set it too small, and it

won’t find anything; it will pop up an annoying warning to that effect.

To set the snap tolerance, open the Project Properties dialog box, click

the General tab. Remember the tolerance is in map units. If you want

to make sure, use the Measure Line tool to examine the distance between

vertices to make an educated guess at a proper value. Since our data

is in meters, a value of 2.0 seems to work well. This of course depends

not only on the map units but also the scale at which you are digitizing.

Fortunately, you can tweak the tolerance to get something that works.

Once the tolerance is set, we can move the vertices to fix the dangles.

With the Move Vertex tool selected, place the cursor over the vertex to

be moved and drag it to the new location. When you release the mouse,

the vertex is moved, and the shape of the feature changes. You’ll notice

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=87

SIMPLE DIGITIZING 88

Figure 5.6: Problems with the digitized streams

that when you get close to a vertex, the snapping will kick in and pop

the vertex you are moving right on top of the other. You may find that

there is no vertex at the location you where your lines should meet.

This is the case in Figure 5.6. To get the stream to join the other line

segment, we need a new vertex at the location shown by the black, cir-

cular crosshair. We could do it without a new vertex, but then we won’t

get the benefit of snapping, and we’ll probably just move the problem

from one location to the other. In QGIS, use the Add Vertex tool to add

the new vertex. Then use the Move Vertex tool to connect the dangling

stream to the new vertex. You can use this technique for both over-

shoots and undershoots.

To clean up the sloppy work and make the streams match properly,

we can add more vertices to solve the problem. First use the Add Vertex

tool to add the vertices where needed by clicking the line segment that

needs to be modified. Don’t worry if you don’t get them exact. Once

you’ve added the vertices you need, use the Move Vertex tool to adjust

the positions to reflect the path of the stream. If you didn’t add enough

vertices to accurately portray the feature—no problem—just add some

more and move them around until the job is done.

You may find that you have too many vertices or just plain put one

where it doesn’t belong. In that case, use the Delete Vertex tool to get

rid of the ones you don’t need. When you delete a vertex, the feature

reshapes itself automatically. In Figure 5.7, on the following page, you

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=88

EDITING ATTRIBUTE DATA 89

Figure 5.7: Digitized streams with corrections

can see the result of fixing a dangle and reshaping the stream to better

match with the DRG. As you can see, it’s pretty simple to correct mis-

takes in your data as you go and alter it to make it more precise when

your requirements dictate.

5.2 Editing Attribute Data

Now that we have digitized the lakes and streams, everything is in good

shape—except we have some problems with attributes associated with

the features. If you look at Figure 5.4, on page 85, you’ll notice the lake

in the southeast corner of the map is named FLake Lake. Not only is

there a capital L in “FLake,” the actual name is supposed to be Fluke

Lake. We can correct this error using the editing capabilities built in to

the attribute table.

To fix the name of the lake, we simply open the attribute table for our

lakes layer and click the Start Editing button. Once we do that, any

of the items in the attribute table can be modified by clicking them

and changing the value. We change the name of the lake to Fluke Lake

like it’s supposed to be and hit Enter to make the change stick. Once

we’re done editing the table, click the Stop Editing button to save our

changes.

It was pretty easy to find the record that needed editing, since we had

only five lakes in our layer. What happens if we have 5,000? In that

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=89

MORE DIGITIZING AND EDITING 90

case, you have two options. You can use the search tool, as described

in Section 3.5, Using the Attribute Table, on page 59, to find the desired

record, or you can select the lake on the map canvas using the select

tool and then float it to the top of the table using the Move Selected to

Top button.

If you find that you need to make changes to a lot (or all) records in a

table, then you should consider using something other than a shapefile.

A spatial database may be more suited to your needs. We’ll take a look

at them in Chapter 7, Spatial Databases, on page 98.

5.3 More Digitizing and Editing

So far we’ve used simple digitizing and editing techniques to capture

some data from Harrison’s background DRG. Needless to say, there are

more advanced means of digitizing and editing available to us, particu-

larly with GRASS.

We’ll look at some additional digitizing tasks in Chapter 8, Creating

Data, on page 120. Nowadays it’s often best to spend a little bit of time

looking around for the data you need before you dive into a digitizing

project. Oftentimes the data already exists, and you can save a lot of

time by just grabbing it from the Internet and moving forward. But at

times you are faced with having to create your own data. The methods

we have looked at so far form a good foundation for you to launch your

own projects.

Speaking of data, let’s move on to a look at data formats and what you

need to know when working with OSGIS desktop software.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=90

Chapter 6

Data Formats
One of the challenges in working with GIS software, whether it be pro-

prietary or open source, is making sense of the many data formats

you encounter. Let’s take a look at some of the common formats you

will encounter so you can get an idea of what’s out there. We’ll also

look at where these data formats come from, some of the conversion

options, and lastly how to choose a standard data format for your map-

ping projects.

6.1 Common Formats

So far, we’ve indirectly discussed a number of formats, including shape-

files, GeoTIFF, grids, PostGIS, and GRASS vector and raster. If you are

a casual or intermediate user of OSGIS software, odds are you are going

to be using only a few data formats on a regular basis. Typically this

means working with the following:

• Shapefiles (.shp)

• GeoTIFF or TIFF with world files (.tif, .tfw)

• JPEG with world files (.jpg, .jpw)

• GPS data (.gpx)

In fact, these are pretty common, and you can accomplish a lot with

just these formats. Other vector formats you might run across during

your search for data include the following:

• ArcInfo Binary Coverage

• ArcInfo Interchange File (.e00)

• MapInfo (..tab, .mid, .mif)

COMMON FORMATS 92

• SDTS, a data transfer standard for both vector and raster data1

• Topologically Integrated Geographic Encoding and Referencing

(TIGER) data, used and distributed by the U.S. Census Bureau

• Digital Line Graphics (DLG)

There are a lot of raster formats you might encounter, including the

following:

• ERMapper Compressed Wavelets (.ecw)

• Erdas Imagine (.img)

• Digital Elevation Models (.dem)

• JPEG 2000 (.jp2, .j2k)

• Multi-Resolution Seamless Image Database (MrSID) (.sid)

• GTOPO30, a global digital elevation model (DEM) derived from a

number of raster and vector sources

Some of the formats are open, meaning that they have a published

specification you can use to write applications and utilities that work

with the format. Others are closed, requiring you to use the vendor-

provided API. Of course, this is a concern only if you want to write your

own applications and utilities. If you’re content with using the OSGIS

applications available, someone else has done the hard work for you.

Although it’s not important to understand these formats to use them,

it does help to know a bit about them so you can determine whether

your favorite OSGIS software supports the format. In case you haven’t

realized it yet, the GDAL/OGR library supports a huge range of vector

and raster formats—see Section A.2, GDAL/OGR, on page 283 for lists

of additional vector and raster formats you might encounter.

The good news is if you are using OSGIS software that uses GDAL/OGR

for accessing raster and vector data (such as GRASS or QGIS), then you

have access to most, if not all, of the formats listed.

In Section 11.2, Using GDAL and OGR, on page 186, we’ll look at using

the GDAL/OGR utilities to get information about our data as well as

convert and transform both raster and vector layers.

Web-Deliverable Data

Another “format” you’ll encounter is data deliverable over the Web.

This category of data is often referred to as W*S. The moniker W*S is

1. See http://mcmcweb.er.usgs.gov/sdts

http://mcmcweb.er.usgs.gov/sdts
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=92

CHOOSING A STANDARD FORMAT 93

attached to standards for delivering geospatial data over the Web and

includes Web Mapping Service (WMS), Web Features Service (WFS), and

Web Coverage Service (WCS). A good chunk of the web mapping appli-

cations you might use in your browser get some or all of their data from

a W*S service.

Many of our desktop applications include support for at least WMS.

This allows us to include data from across the Internet in our mapping

projects. The good thing is you don’t have to understand the standard

or how it works; you just use it and get good data for free.

If you want to get real technical information on WMS, WFS, and WCS,

you can find standards on the Open Geospatial Consortium website.2

6.2 Choosing a Standard Format

You might be wondering about a standard format for all your projects.

This isn’t strictly necessary, although it might make your life easier.

Assuming your OSGIS software can handle a multitude of formats,

there may be no reason to convert.

Reasons to Standardize

There are some valid reasons to standardize on a data format for your

raster and vector data. In reality, you’ll probably still have some data

that’s not in your standard format. Let’s take a look at a some reasons

why you might want to convert to a standard format.

Data Management

GIS data can have several unsavory characteristics—and we’re not talk-

ing about accuracy or quality. As you begin to work with data, trans-

form it, analyze it, and so forth, you’ll find the following:

• It propagates rapidly.

• It grows and hides in places you never expect.

• Unchecked, it rapidly becomes unmanageable.

Some (OK, us) have gone so far as to call GIS data an illicit drug.3

You may be wondering how converting to a standard format will im-

prove data management. Well, it’s not a silver bullet, but it can aid in

2. http://www.opengeospatial.org

3. http://spatialgalaxy.net/2006/03/29/gis-data-is-an-illicit-drug/

http://www.opengeospatial.org
http://spatialgalaxy.net/2006/03/29/gis-data-is-an-illicit-drug/
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=93

CHOOSING A STANDARD FORMAT 94

creating a logical structure for storing your data. For example, if all

your vector data is in shapefiles and you can create a nicely organized

directory structure, be it by theme or by project, then your ability to

find and use the data you need increases.

Some find that data management is improved by using a spatial data-

base, although there are perhaps better reasons to use one. By stor-

ing your vector and/or raster data in a spatial database, you pro-

vide one point of entry for all your data needs. There is no question

of which server or directory you need to search to find the data you

need. We’ll look at spatial databases in more detail in Chapter 7, Spa-

tial Databases, on page 98.

Another example is GRASS, which uses its own format for storing both

raster and vector data. Data in GRASS is organized by location and

mapset, making it easy to structure your data collection in a way that

can be more easily managed.

Is improved data management alone a reason for converting to a par-

ticular format? Probably not, especially if you’re talking about convert-

ing between file-based formats such as shapefiles and GeoTIFFs. The

chief considerations are making the data discoverable, accessible, and

usable. If your formats of choice include file-based data, you should

create a structured logical directory layout and naming convention and

adhere to it. This will make managing your data much easier and pre-

vent the multiplication of duplicate data sets. Another important man-

agement tool is metadata that documents each of your datasets. If you

want to take the formal approach and create metadata in a format that

others will understand, use the standard.4 At the very least, you should

include a text file describing the data, its origin, and the processing

steps used to create it. Fortunately, the metadata standard includes all

these components, so you may find it’s worth using.

Improved Functionality

If you want to do more than display and edit spatial data, then conver-

sion to gain improved functionality is certainly a worthwhile consider-

ation. For example, although QGIS is great at displaying a wide range

of raster and vector data and is even able to digitize and edit features,

it lacks the ability to perform common GIS operations. Harrison’s sim-

ple analysis of bird sightings using a buffer (Figure 1.3, on page 19)

4. http://fgdc.gov/metadata

http://fgdc.gov/metadata
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=94

CHOOSING A STANDARD FORMAT 95

requires something with geoprocessing capability. In this case, Harri-

son could have converted his digitized lakes (which likely began life as

a shapefile) into a PostGIS or GRASS layer. Both of these give him the

functionality he needs to create a buffer. In the case of PostGIS, it’s

done with a fairly simple SQL query. In GRASS, he can use the v.buffer

command or the buffer module in the QGIS-GRASS toolbox.

PostGIS is a good example of a reason to convert. Not only does it

improve data management by giving you a “portal” to your data, but it

has been certified as OGC compliant and provides the spatial functions

specified in the Simple Features Specification for SQL. This means that When software is

certified as OGC

compliant, you can be

assured that it adheres

to established standards

and can interoperate

with other compliant

software.

not only can we display and edit PostGIS data in an application-like

QGIS, we also get a whole batch of spatial functions that we can use

to query the relationships between features, transform between pro-

jections, and create new features. If you find that your work requires

more than just simple viewing and editing, then conversion is worth

considering.

Enhanced GIS Capabilities

The other reason to convert is to gain enhanced GIS functionality.

You’re probably asking what the difference is between this and the

improved functionality aspect we just covered. You can view it as a

progression to more powerful and perhaps complex GIS operations.

We’re pretty much talking about GRASS and its bountiful assortment of

vector- and raster-processing tools. Since GRASS stores data in its own

format, we need to convert our existing data in order to take advantage

of the tools.

Examples of the type of capabilities we’re talking about include the

following:

• Line-of-sight analysis

• Union and intersection of layers to create a new layer

• Merging raster data

• Mathematical operations on grids

• Contouring

We’ll dive into some of these topics later in Chapter 10, Geoprocessing,

on page 149.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=95

CONVERSION OPTIONS 96

6.3 Conversion Options

So, you decide to convert some or all your data to a new format. The

next question is, what tools are available to do the job? Fortunately, in

the OSGIS world, conversion between formats is not only commonplace

but easy as well.

If you choose to migrate all your data to PostGIS or GRASS, it’s not a

problem. Both provide the routines to import your data and export it

should the need arise.

GRASS Conversion

GRASS provides both vector and raster import/export functions for a

nice range of formats. To give you an idea of the capabilities, here is a

partial list of the import commands and formats supported by GRASS:

r.in.arc

Converts an ESRI ARC/INFO ASCII raster file (GRID) into a (binary)

raster map layer

r.in.ascii

Converts ASCII raster file to binary raster map layer

r.in.aster

Imports, georeferences, and rectifies an ASTER image

r.in.gdal

Imports a GDAL-supported raster file into a binary raster map

layer

r.in.srtm

Imports Shuttle Radar Topography Mission (SRTM) .hgt files into

GRASS

r.in.wms

Downloads and imports data from WMS servers

v.in.ascii

Creates a vector map from ASCII points file or ASCII vector file

v.in.db

Creates new vector map (point layer) from database table contain-

ing coordinates

v.in.dxf

Converts AutoCad DXF files to GRASS format

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=96

CONVERSION OPTIONS 97

v.in.e00

Imports an ArcInfo export file .e00 to GRASS format

v.in.garmin

Downloads waypoints, routes, and tracks from a Garmin GPS

receiver into a vector map

v.in.gpsbabel

Downloads waypoints, routes, and tracks from a GPS receiver or

a GPS ASCII file into a vector map using formats supported by

gpsbabel

v.in.ogr

Converts OGR-supported formats into a GRASS vector map

You can see from the list of commands that there are a lot of options for

getting your data into GRASS. In fact, we didn’t list all of them for you,

just some of the major ones. For exporting data out of GRASS, there

are also a lot of options. We won’t list them here, but in case you’re

curious, the commands are all of the form r.out.* for rasters and v.out.*

for vectors.

PostGIS Conversion

If you choose PostGIS, it supports the loading of data using SQL and the

importing/exporting of shapefiles using shp2pgsql and pgsql2shp. We’ll

take a look at these two utilities in Section 11.4, PostGIS, on page 203.

If your source data isn’t in shapefile format, you can still import it—you

just need a little extra power. In this case, you need to use the Swiss

Army knife of conversion tools.

The Swiss Army Knife

Just as you wouldn’t go out into the wilderness without your Swiss

Army knife (or maybe bug spray), venturing into the world of data con-

version without the GDAL/OGR utilities is not advised. These utilities

provide conversion between file-based vector and raster formats, as well

as spatial databases.

We take an in-depth look at these tools in Chapter 11, Using Command-

Line Tools, on page 174. For now just keep these two commands in the

back of your mind: ogr2ogr and gdal_translate.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=97

Chapter 7

Spatial Databases
7.1 Introduction

In this chapter, we take a look at spatial databases. A spatial database

allows us to store features, display them, or perform geoprocessing and

analysis through a rich set of spatial functions. Some of the advantages

of storing data in a spatial database are as follows:

• Attributes and geometry of features are stored together.

• Spatial indexing makes drawing faster at larger scales.

• Spatial queries provide the ability to explore features and their

relationships.

• You get better data management.

Structure of a Spatial Database

A spatial database is nothing more than a regular database with sup-

port for geometry data types. It typically contains functions to manipu-

late the geometries and perform spatial queries.

In a spatial database, a table represents a layer, a row is a feature, and

a spatial column contains the geometry of the feature.

OPEN SOURCE SPATIAL DATABASES 99

Joe Asks. . .

What Is a Spatial Query?

A spatial query is one that involves features and their relation-
ship to one another. For example, assuming we had the appro-
priate data in our database, we might ask “Give me the names
of all the coffee shops within 10 kilometers of my house.” A spa-
tial database is well suited to that type of query and can eas-
ily answer that question. Another simple example is finding all
the eagle nests within a drainage basin. Of course, you can do
much more complex things with spatial queries including trans-
forming and creating new data, as well as projecting data on
the fly.

7.2 Open Source Spatial Databases

In the OSGIS world there are currently two options for spatially enabled

databases: PostgreSQL1 with PostGIS2 and MySQL.3 Of the two, Post-

greSQL/PostGIS is the most mature and feature rich. MySQL has just

recently added basic support for geometries. Although the MySQL im-

plementation contains many of the OGC spatial functions, not all of

them are implemented according to the specification. If you just want

to store spatial features, MySQL may be the database for you. If you

want to use the database to do spatial processing and queries, Post-

greSQL with PostGIS is the best choice. Support for displaying features

stored in MySQL is just now emerging, so your options may be limited

in that regard as well.

There are other efforts in the spatial database realm, but none is to the

point that it can be used by the GIS enthusiast.

Comparison of Open Source Spatial Databases

Both PostGIS and MySQL implement the Open GIS Consortium’s Open-

GIS Simple Features Specification for SQL (OGC). You can find the

specification on the OGC website at http://www.opengeospatial.org.

1. http://postgresql.org

2. http://postgis.refractions.net

3. http://mysql.org

http://www.opengeospatial.org
http://postgresql.org
http://postgis.refractions.net
http://mysql.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=99

OPEN SOURCE SPATIAL DATABASES 100

Figure 7.1: Polygons with overlapping MBRs

The standard is more fully implemented in PostgreSQL/PostGIS than

MySQL. In fact, the PostGIS implementation has been certified by the

OGC as compliant with version 1.1 of the standard. What does this

mean to you? It means that PostGIS provides a complete and robust

implementation of the standard, along with additional features not in

the specification. Since PostGIS has been around longer than the My-

SQL spatial implementation, more desktop and web mapping clients/

servers support it.

As we said before, MySQL doesn’t fully implement the OGC specifica-

tion, especially when it comes to spatial functions. This means that

although you can use a function, the result will be less than accu-

rate. For example, if you want to determine whether two polygons over-

lap, MySQL uses a simple bounding box comparison. Depending on the

shape of the polygons, they may or may not overlap even though their

bounding boxes do.

In Figure 7.1, you can see two polygons that do not overlap. For the

sake of example, let’s assume they are lakes. In the figure you can

easily see that polygon P1 and polygon P2 are spatially distinct. The

dashed rectangle around each polygon is the minimum bounding rect-

angle (MBR).4 Note that the MBRs do overlap. Since MySQL does only

MBR comparisons, it would say that P1 and P2 overlap.

4. You’ll see MBR also referred to as extent, bounding box, or BBOX. Some software

prefers one term over another. We use MBR here because it is the term used in the

MySQL documentation.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=100

GETTING STARTED WITH POSTGIS 101

Another impact of using MBRs to compare features takes place when

doing a selection in our favorite desktop GIS application. Suppose we

want to select P2 in Figure 7.1, on the previous page. We would typi-

cally choose the Select tool and either point at or draw a small rectangle

inside P2 to select it. You can guess what will happen if MBRs are used

to determine what should be selected. Since our selection rectangle

may fall within the MBR of both P1 and P2, we could end up with both

selected (and usually highlighted). This isn’t really desirable and can

often be confusing. Although MySQL provides storage and MBR func-

tions, it isn’t really suited for applications that depend on the correct

functioning of spatial functions for selecting and identifying features.

To be fair, the MySQL developers freely admit the nature of their imple-

mentation and also imply that they may support the OGC specification

fully in future releases. Support for MySQL spatial data is already avail-

able in OGR and will likely show up in other OSGIS applications soon.

7.3 Getting Started with PostGIS

In this section, we’ll look at how to enable PostGIS in your PostgreSQL

database and load some data from shapefiles and perhaps from other

sources. We assume you already have a working PostgreSQL install. If

not, refer to the installation section of the manual5 where you will find

detailed instructions for getting PostgreSQL up and running on your

platform. If you’re lucky, PostgreSQL is already installed, and you are

ready to proceed with getting PostGIS set up.

Getting PostGIS can be easy if you are running the right platform. You

may find a binary version available for download.6 Otherwise, you will

have to build from source. If you are running Linux, be sure to check

for a PostGIS binary using your package management tool. Many distri-

butions include PostgreSQL and PostGIS, making it easy to get started.

If you are running Windows, the latest PostgreSQL installers include

an option to install PostGIS. It’s not selected by default, so make sure

to you include it when choosing options during the install. Once you

have the software in place, you’re ready to set up a database and add

the PostGIS extension and tables.

5. http://postgresql.org

6. http://postgis.refractions.net

http://postgresql.org
http://postgis.refractions.net
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=101

GETTING STARTED WITH POSTGIS 102

Creating a PostGIS-Enabled Database

Since PostGIS is an extension to PostgreSQL, you have to add it to a

database in order to use the geometry types and functions. Let’s look

at a session that creates a new database and enables PostGIS:

$ createdb -E UTF8 desktop_data

CREATE DATABASE

$ createlang plpgsql desktop_data

$ psql desktop_data

Welcome to psql 8.1.3, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

\h for help with SQL commands

\? for help with psql commands

\g or terminate with semicolon to execute query

\q to quit

desktop_data=# \i ./lwpostgis.sql

BEGIN

psql:./lwpostgis.sql:39: NOTICE: type "histogram2d" is not yet defined

DETAIL: Creating a shell type definition.

CREATE FUNCTION

...

CREATE FUNCTION

COMMIT

desktop_data=# \i spatial_ref_sys.sql

INSERT 0 1

...

INSERT 0 1

COMMIT

VACUUM

desktop_data=# \d

List of relations

Schema | Name | Type | Owner

--------+------------------+-------+----------

public | geometry_columns | table | gsherman

public | spatial_ref_sys | table | gsherman

(2 rows)

desktop_data=#

Let’s breakdown what we did and explain the steps. First we created

a database using the createdb command, specifying an encoding type

of UTF8 (Unicode) using the -E switch. Using Unicode for the database

encoding provides us with the most flexible solution, especially when

storing non-ASCII data. Once the database is created, we add the Post-

greSQL procedural language (PL/pgSQL) to the database using the cre-

atelang command and the plpgsql keyword. PostGIS needs PL/pgSQL in

order to implement its spatial types and functions.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=102

GETTING STARTED WITH POSTGIS 103

PostGIS and Templates

There is an easier way to create additional PostGIS-enabled
databases. When PostgreSQL creates a database, it does it by
copying an existing database. Usually this is the standard sys-
tem database template1. Anything in the template database
ends up in your newly created database. We can use this
capability to create a PostGIS template database that can be
used when creating a new PostGIS-enabled database.

To create a template, simply create an empty database from
the standard template using createdb -E UTF8 postgis_template

from the command line. Then follow the example in this chap-
ter to load the lwpostgis.sql and spatial_ref_sys.sql scripts. Once
you have the template, use createdb -E UTF8 -T postgis_template

myNewDb to create a new PostGIS-enabled database.

If you installed PostgreSQL on Windows with the PostGIS option,
it should have created a postgis_template database for you. In
this case, you are ready to start creating your own PostGIS-
enabled databases.

Now that we have a database set up and properly configured, the next

step is to load the PostGIS extension into our database. The commands

to do this are provided with PostGIS in the lwpostgis.sql file. We simply

execute this SQL in our newly created database. There are a number

of ways to do this (for example, from a database client tool such as

PgAdminIII); however, we chose to use the PostgreSQL interactive ter-

minal psql. In psql, we use the \i command to read the file from disk

and execute the SQL statements. In our example, we had changed to

the directory containing lwpostgis.sql. If we hadn’t, the full path to lwpost-

gis.sql would be required. This creates the types and functions. At this

point we have a PostGIS-enabled database, but we aren’t done yet.

The final step is to create the spatial references table that contains

more than 2,600 coordinate systems. To do this, we executed the spa-

tial_ref_sys.sql file, also provided with PostGIS. Our database is now ready

to use for PostGIS data. Using the \d command in psql gives us a list

of the tables in our new database. In addition to the spatial_ref_sys table,

you’ll notice the geometry_columns table. Let’s look at it in a bit more

detail.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=103

GETTING STARTED WITH POSTGIS 104

The geometry_columns Table

The geometry_columns table describes the spatially enabled tables in

your database. Many application programs rely on the records in geom-

etry_columns to determine which tables are spatial tables. This table, as

well as spatial_ref_sys, is described in the OpenGIS Simple Features Spec-

ification for SQL.7 We can view the structure of the geometry_columns

table using the \d command in the psql interactive terminal:

desktop_data=# \d geometry_columns

Table "public.geometry_columns"

Column | Type | Modifiers

-------------------+------------------------+-----------

f_table_catalog | character varying(256) | not null

f_table_schema | character varying(256) | not null

f_table_name | character varying(256) | not null

f_geometry_column | character varying(256) | not null

coord_dimension | integer | not null

srid | integer | not null

type | character varying(30) | not null

Indexes:

"geometry_columns_pk" PRIMARY KEY, btree (f_table_catalog, f_table_schema,

f_table_name, f_geometry_column)

The first three columns provide a fully qualified name for a table. Some

databases may use “catalog,” and since the geometry_columns table is a

standard, it is included in every OGC-compliant implementation. Post-

greSQL doesn’t use the concept of a “catalog,” so this column will

always be blank. By default, all tables in PostgreSQL are placed in

the “public” schema. So for a PostGIS-enabled table, we will find the

f_table_schema and f_table_name populated with “public” and the table

name, respectively.

The f_geometry_column contains the name of the column in your spa-

tial table that contains the geometry. The coord_dimension contains the

dimension of the features (2, 3, or 4). The srid is the spatial reference ID

column and contains a number that is related to the srid column in the

spatial_ref_sys table. This defines the coordinate system for the table. The

type field contains information about the feature type contained in the

table and contains a keyword such as POINT, LINESTRING, POLYGON,

and the MULTI forms of each feature.

With this information, a client application (in other words, your desktop

GIS) can quickly determine which spatially enabled tables are available

7. http://www.opengeospatial.org

http://www.opengeospatial.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=104

GETTING STARTED WITH POSTGIS 105

and also collect the information needed to load, project, and display the

features in a table. How does the geometry_columns table get populated?

There are several ways:

• When loading data using shp2pgsql, QGIS, or ogr2ogr, a record is

inserted into the geometry_columns table.

• Using the AddGeometryColumn function on a table that does not

already have a spatial column. This creates the column in the

table and also inserts a record into geometry_columns.

• Manually inserting a record using a SQL insert statement.

Typically you use the AddGeometryColumn function when you create a

new table and want to add a geometry column. In this case, you cre-

ate the table using SQL without the geometry column and then use the

function to both add the column and create an entry in the geome-

try_columns table.

desktop_data=# CREATE TABLE lakes(LAKE_ID int4, LAKE_NAME varchar(32),

LAKE_DEPTH float);

CREATE TABLE

desktop_data=# SELECT AddGeometryColumn('public', 'lakes', 'the_geom', 4326,

'POLYGON', 2);

addgeometrycolumn

public.lakes.the_geom SRID:4326 TYPE:POLYGON DIMS:2

(1 row)

A final note on the geometry_columns table: Some software such as QGIS

can search your PostgreSQL database and determine which tables are

spatially enabled. To maintain maximum flexibility in your database,

you should probably ensure that each spatial table has an entry in the

geometry_columns table.

Spatial Index

When working with PostGIS, it’s important to make sure you have a

spatial index for each layer. Having an index improves both spatial

query and rendering performance.

PostGIS provides a Generalized Search Tree (GiST) index for spatial

features. Depending on how you created your layers, the index may

already exist. You can easily check to see whether an index exists for a

layer using psql to examine the properties of a layer.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=105

GETTING STARTED WITH POSTGIS 106

$ psql gis_data

Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

\h for help with SQL commands

\? for help with psql commands

\g or terminate with semicolon to execute query

\q to quit

gis_data=# \d parklands

Table "public.parklands"

Column | Type | Modifiers

----------+-----------------------+-----------

id | integer | not null

name | character varying(10) |

the_geom | geometry |

Indexes:

"parklands_pkey" PRIMARY KEY, btree (id)

"sidx_parklands" gist (the_geom)

Check constraints:

"enforce_dims_the_geom" CHECK (ndims(the_geom) = 2)

"enforce_geotype_the_geom" CHECK (geometrytype(the_geom) =

'POLYGON'::text OR the_geom IS NULL)

"enforce_srid_the_geom" CHECK (srid(the_geom) = 4326)

We use the \d command to list the properties of the parklands table.

Notice under the indexes heading there is a primary key on the id field

and, under that, a GiST index on the geometry column the_geom. If you

don’t see an entry for a GiST index in the list, you should create one

for your table. To create a GiST index for your table, use the following

SQL:

CREATE INDEX sidx_parklands on parklands USING GIST (the_geom GIST_GEOMETRY_OPS);

If you import shapefiles using SPIT, a GiST index will not be created.

Using shp2pgsql allows you specify the creation of a GiST index during

the import of the shapefile. See Section 11.4, Importing Shapefiles, on

page 203 for an example.

Loading PostGIS Data

There are a number of ways to load data into a PostGIS-enabled data-

base. In Chapter 11, Using Command-Line Tools, on page 174, you will

see how to load data using both the OGR and PostGIS command-line

utilities. For now we’ll look at two other methods for loading data: SQL

and QGIS.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=106

GETTING STARTED WITH POSTGIS 107

Using SQL to Load Data

To load spatial data using SQL, use the GeomFromText function. This

function is part of the OGC specification and as an argument takes the

Well-Known Text (WKT) representation of a feature. WKT is a simple

way to specify a feature type and its coordinates. Some examples of

WKT representations are as follows:

• POINT(-151.5 61.5)

• LINESTRING(-151.5 61.5, -151.5 62.5, -152.25 63.0)

• POLYGON((-155.82 57.31,-155.94 61.18,-152.82 61.18,-152.78 57.31,-155.82

57.31))

To create a polygon in the lakes table created earlier, you would use an

insert statement as follows:

insert into lakes values(1, 'Big Lake', 127.6,

GeomFromText('POLYGON((-155.82 57.31,-155.94 61.18,

-152.82 61.18,-152.78 57.31,-155.82 57.31))', 4326));

This creates a lake (a pretty rectangular one) named Big Lake with an

ID of 1 and a depth of 127.6. The feature type is a polygon, and the

spatial reference ID is 4326.

It makes sense to use this method of loading data when you want to

import data using a script from a text file or in application code where

you are taking input from a user or device. In normal practice, it can

become quite cumbersome to manually enter WKT to build up a SQL

statement. At least now you are aware of the capability, but you don’t

need to know this technique to load and use PostGIS data in your desk-

top GIS application.

Using QGIS to Load Data

QGIS comes with a plugin called SPIT, which stands for Shapefile to

PostGIS Import Tool. This plugin allows you to import shapefiles into

PostGIS from within QGIS. To use SPIT, make sure it’s loaded from the

Plugins menu. Once loaded, it will appear as a blue elephant icon on

the Plugins toolbar. Before you can use SPIT, you need to have already

created a connection to PostGIS (this isn’t strictly true, but it makes

things easier). We haven’t talked about creating connections yet, but

you can learn how by jumping ahead to Section 7.4, Using PostGIS and

Quantum GIS, on page 110. Assuming you have a working connection,

just click the SPIT icon to open the tool. In Figure 7.2, on the next

page, you can see the tool with a few shapefiles ready to be loaded into

PostGIS.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=107

GETTING STARTED WITH POSTGIS 108

Figure 7.2: Loading shapefiles into PostGIS using SPIT

Let’s take a look at each of the items SPIT requires:

PostgreSQL Connections

The drop-down box lists all the connections you have defined. You

can also create a new connection if you don’t have one already. You

can also edit the connection selected in the drop-down if things

aren’t quite right. Note that you don’t explicitly have to connect.

When SPIT starts up, it automatically connects to the database in

the drop-down list.

Shapefile List

This panel provides three buttons to manage the list of shapefiles

to be loaded. The list is displayed at the bottom of the dialog box.

You can add one or more shapefiles by clicking the Add button

and selecting the file(s) from the file dialog box. You can remove

a single shapefile from the list by clicking it to select it and then

using the Remove button. The Remove All button does as it says

and empties the list of shapefiles.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=108

GETTING STARTED WITH POSTGIS 109

Use Default SRID

Click this checkbox to use the default SRID of -1. This is usually

a bad thing because none of your geometries will be associated

with a coordinate system as defined in the spatial_ref_sys table. It

is better to uncheck the box and enter the spatial reference ID in

the box.

Use Default Geometry Column Name

If this box is checked, the default geometry column name of “the_

geom” will be used when creating tables. If you want to use a

different name, uncheck the box, and enter the name you desire.

Global Schema

This drop-down box lists all schemas in your database. If you want

to create your new spatial tables in a schema other than “public,”

select it from the list.

File List

The file list contains all the shapefiles you have selected for load-

ing. You can edit the feature class and schema for each shapefile

entry by clicking the text or choosing the schema from the drop-

down list. Editing the feature class type can cause your import to

fail but may be needed in some circumstances. The file list also

shows the number of features in the shapefile and the name that

will be used to create the table.

Once you click the Import button, SPIT proceeds to process each file.

A progress bar displays the status as the import proceeds. As the files

are processed, they are removed from the list.

Although SPIT is a handy tool, it is also somewhat picky. You may find

that, depending on the feature type, some shapefiles can’t be loaded.

For the fail-safe loading of shapefiles into PostGIS, use one of the meth-

ods described in Chapter 11, Using Command-Line Tools, on page 174.

Spatial Queries

Let’s look at one last feature of spatial databases before we move on

to viewing data stored in PostGIS. One of the strengths of an OGC-

compliant database is the ability to do spatial queries. PostGIS provides

a wealth of both OGC and custom functions to perform queries based

on spatial relationships. Using SQL, we can find features that overlap,

intersect, touch, or are contained in/by another feature. We can also

transform coordinates on the fly, reprojecting them from one spatial

reference system to another.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=109

USING POSTGIS AND QUANTUM GIS 110

Let’s look at one simple example to illustrate. Suppose someone says

“I live at latitude 18N, longitude 77W.” We want to know where that

is—what are our options?

We can start up our desktop GIS, load up a world country layer, and

move our mouse around to find the location. Or if we have the data in

PostGIS, we can quickly do a spatial query to determine the location:

desktop_data=# select cntry_name, pop_cntry from world_borders

where GeomFromText('POINT(-77 18)',4326) && the_geom;

cntry_name | pop_cntry

------------+-----------

Jamaica | 2713130

(1 row)

The query uses the OGC function GeomFromText to create a tempo-

rary point object to use in the search. We use the && operator to test

whether the bounding boxes of the features (our point and all poly-

gons in the world) intersect. The query returns the results, in this case

Jamaica. This is a simple example of the power of queries using a spa-

tial database. The output isn’t a map, and we didn’t even use a GUI to

answer the question.

For details on using spatial functions and geometry constructors, see

the nicely detailed PostGIS manual.8 Although you may think that

using these functions isn’t a “desktop GIS” activity, it is an important

part of data preparation, conversion, and analysis, so it pays to check

out the features and capabilities.

7.4 Using PostGIS and Quantum GIS

QGIS and PostGIS have a long history—well, at least from the QGIS

side. The first working version of QGIS supported only one data type—

PostGIS. So, support for PostGIS has been included in QGIS from day

one. This means that the implementation is fairly complete and an

important part of the development and maintenance process.

8. http://postgis.refractions.net/documentation

http://postgis.refractions.net/documentation
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=110

USING POSTGIS AND QUANTUM GIS 111

Figure 7.3: Creating a new PostGIS connection in QGIS

Typical use of PostGIS layers goes something like this:

1. Open the PostGIS dialog box by clicking the Add a PostGIS Layer tool.

2. Select the connection to use—if one doesn’t already exist, create a

PostGIS connection to your database.

3. Connect to the database.

4. Select the layer(s) you want to add to the map.

5. Optionally specify a query to limit the features returned.

6. Optionally set the encoding.

7. Click the Add button to add the layer(s) to the map canvas.

We’ll go through these steps one by one. Of course, by this point, we

assume you have loaded some data into a PostGIS database. If not,

see Section 7.3, Loading PostGIS Data, on page 106 for information

on loading up your spatial database. To begin, let’s open the PostGIS

dialog box and create a new connection. Click the New button to open

the Create a New PostGIS Connection dialog box. In Figure 7.3, you can

see the completed dialog box for creating a new connection. Let’s take

a look at the required fields.

Name

A descriptive name for the connection. This should be unique

enough so you can recall at a glance the database it uses.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=111

USING POSTGIS AND QUANTUM GIS 112

Host

The host name where the database resides. This can just be local-

host if you are running QGIS on the same machines as Post-

greSQL/PostGIS.

Database

The name of the PostgreSQL database to which you want to

connect.

Port

The port number on which the database listens. This is filled in

with the default value when you open the dialog box, and you

do not need to change it unless your database is listening on a

different port.

Username

The username used to connect to the database.

Password

The password for the database user. QGIS supports a blank pass-

word if the PostgreSQL database is configured to support trusted

connections from your machine.

Save Password

This saves the password along with the rest of the connection

information. Depending on your computing environment, this may

be a security risk. If you don’t store the password, QGIS will

prompt you for it at connection time.

Only Look in the geometry_columns Table

Clicking this prevents QGIS from looking through all your tables

to see whether they contain a geometry column. This can speed

up displaying the list of layers to choose from if you always have

an entry in geometry_columns for every spatial layer.

Only Look in the ’public’ Schema

This constrains QGIS to only look in the public schema when

searching for spatially enabled tables.

In Figure 7.3, on the previous page, we are running QGIS on the same

machine as the database, so we specified “localhost.” Our database

is named “gis_data,” and we are using the standard PostgreSQL port.

Once you have filled in the connection information, you can use the

Test Connect button to test the connection. If it fails, check the param-

eters again. If they are correct, you may have to check the PostgreSQL

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=112

USING POSTGIS AND QUANTUM GIS 113

Figure 7.4: List of available PostGIS layers

database access configuration to make sure you have privileges to con-

nect. Once you can connect, just click OK to save the connection. This

takes you back to the Add PostGIS Table(s) dialog box.

We are now ready to connect to the database—with our new connection

selected in the drop-down list, just click the Connect button. Once you

do this, the list of available layers is populated as shown in Figure 7.4.

If we look at the list of tables, we see a representative collection of Post-

GIS data layers in our database. Under the Type column, you will notice

an icon that indicates the feature type stored in the table. These can be

point, multipoint, linestring, multilinestring, polygon, or multipolygon.

You can’t distinguish from the icon whether a given feature is a regular

or “multi” type feature.

The Name column shows the name of the layer in the following format:

schema.table (geometry column name)

So, for example, the alaska layer is a polygon layer in the “public”

schema and has its geometry stored in a column named shape. You’ll

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=113

USING POSTGIS AND QUANTUM GIS 114

Joe Asks. . .

What’s the Difference Between a Table and a Layer?

In our discussion, a PostGIS layer is a table in PostgreSQL that has
a geometry column. It may or may not have a record describ-
ing it in the geometry_columns table.

So, layers are also tables, and you may find us referring to them
in both ways. A PostgreSQL table without a geometry column is
just that—a table in the database.

notice there is a “Sql” column in the layer list. This will be initially be

empty, and we’ll see its purpose in just a minute.

Loading a layer from the list is easy. Just select one or more by click-

ing them (they will be highlighted as you click so you know they are

selected); then click the Add button. The layers will be added to the

QGIS map canvas and drawn using a random color. Once loaded, you

can modify the colors and rendering using the symbology options we

discussed in Section 3.4, Advanced Viewing and Rendering, on page 45.

Suppose we have a PostGIS layer with 10 million features. As you can

imagine, it would take a while to draw, moving all the data across the

network. Or consider a layer that contains thousands of features, but

we are interested only in some of them based on one of their attributes.

This is where the ability to limit the features in a PostGIS layer comes

in handy. You could think of these as “virtual layers” since they are

defined by a query at the time you add them to QGIS. Let’s look at

an example using the Geographic Names Information System (GNIS)

available from the U.S. Geological Survey.9

GNIS contains information about geographic features, including the

“official” name. For example, the data includes lakes, streams, islands,

glaciers, towns, and schools. All the features are represented by a sin-

gle point. We’ll use the GNIS data for Alaska in our example and add

several “virtual layers” based on queries against the gnis table.

9. http://geonames.usgs.gov

http://geonames.usgs.gov
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=114

USING POSTGIS AND QUANTUM GIS 115

Figure 7.5: PostGIS query builder in QGIS

First we open the Add PostGIS Table(s) dialog box, connect to our

database, and scroll through the list of layers until we find the gnis

layer. Instead of clicking it and adding it to the map, we double-click

to open the PostgreSQL Query Builder. You’ll notice a strong similarity

between this and the query builder we used in Section 3.5, Advanced

Search, on page 62. In fact, they share common roots and function in

essentially the same fashion. There is a slight difference in the opera-

tors available, but otherwise once you know how to use one, you can

easily navigate the other. The difference of course is that now we are

querying a real database instead of a shapefile. In Figure 7.5, you can

see the query builder populated with the parameters for our first layer

(schools) and the results of clicking the Test button.

The query we executed to create schools returned 90 rows. Once we click

OK in the query builder, we are returned to the Add PostGIS Table(s)

dialog box.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=115

USING POSTGIS AND QUANTUM GIS 116

Figure 7.6: PostGIS layers created with the query builder

Note that now there is something in the “Sql” column next to the gnis

layer. This is just the contents of the query box but serves to remind

us what we are adding in the event that we set up queries and add

more than one layer at a time. With the gnis layer selected, we click

the Add button to add it to the map. In Figure 7.6, you can see that

in addition to the school layer, we added layers for airports and mines.

QGIS doesn’t provide a very pleasing name in the legend when adding

layers in this way, so we took the liberty of renaming each of the GNIS

layers to something sane. So, now we have a map with three separate

layers, all derived from the gnis layer in our database.

Now maybe you are asking yourself, why not just add the gnis layer

and symbolize it based on type? We could do that, and it might work

assuming the following:

• Our data is not too dense.

• We want to see all types, not just schools, airports, and mines.

• Our layer isn’t so large that it causes performance problems.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=116

USING POSTGIS AND QUANTUM GIS 117

In the case of the GNIS data, symbolizing all of it by type would result

in a blob of dots and colors, with lots of overlap. Using the same Post-

GIS layer to create our “virtual” layers turns out to be an efficient way

to get just the data we want out of a large dataset. Though we didn’t

demonstrate it, your queries to create a layer can be more complex than

just a simple this=’that’ query by using operators such as AND and OR to

select rows on more than one condition.

Before we leave this topic, we should mention one more thing. Once you

have created a layer using a PostGIS query, you can change it using the

Query Builder button found on the General tab of the vector Layer Prop-

erties dialog box. Clicking the button opens the query builder, allowing

to modify (or completely change) the query that defines the layer.

Creating a Spatial View

If you are a SQL wizard (or wizard-in-training), you can accomplish

the same effect as our “virtual layers” using database views. Whether

you choose to do this depends on how frequently you need to access

the filtered data. If you always use a certain subset of a given layer,

creating a spatial view is a good solution. For example, to make our

schools layer always available, we can create a view using psql, the

PostgreSQL interactive terminal (of course, you could use any tool that

can access PostgreSQL and execute queries).

$ psql gis_data

Welcome to psql 8.1.3, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

\h for help with SQL commands

\? for help with psql commands

\g or terminate with semicolon to execute query

\q to quit

gis_data=# create view school_view as select * from gnis where type = 'school';

CREATE VIEW

gis_data=#

This creates a view for us that includes all the columns from the gnis

table but includes only those features that are schools. When you fire

up QGIS and connect to the database, you’ll find the school_view in the

list of available PostGIS layers.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=117

USING POSTGIS AND UDIG 118

Figure 7.7: PostGIS connect dialog box in uDig

7.5 Using PostGIS and uDig

You can use uDig to display PostGIS layers—which is no surprise since

both come out of Refractions Research.10 If you look back to Figure 3.1,

on page 40, you’ll recall that PostGIS was one of the choices when

adding data to the map.

Adding a PostGIS layer is pretty easy—you just have to know the par-

ticulars of your database location and connection parameters, just as

we did with QGIS. In Figure 7.7, you can see the uDig PostGIS connec-

tion dialog box with our connection parameters filled in. Once we click

Next, we are presented with a list of layers in the database that can be

added to the map. uDig doesn’t currently support the filtering of Post-

GIS layers, so we can’t create a “virtual” layer. Once the layer is added

to the map, you can symbolize it just like we discussed in Section 3.2,

Rendering a Story, on page 42, including the use of color palettes.

Once you’ve made a connection, uDig keeps it available in the cata-

log, accessible at the bottom of catalog, accessible at the bottom of the

10. http://refractions.net

http://refractions.net
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=118

SUMMING IT UP 119

workspace. When you click the Catalog tab, you’ll get a list of the data

stores available to you, one of which will be your PostGIS connection(s).

If you expand the PostGIS node, you’ll see a list of all the layers for a

given connection. To add one of the layers, simply right-click it and

choose Add to New Map or Add to Current Map. You’ll note this is also a

quick way to create a new map and get some data on it. If you choose

Add to New Map, a new map tab is created and named the same name

as the layer you chose.

7.6 Summing It Up

You now have been exposed to the power and flexibility of a spatially

enabled database. Should you use a spatial database or stick to file-

based data like shapefiles? That depends on your needs and goals. If

you have large datasets that you want to create “virtual” layers from

using views or definition queries, a spatial database is the way to go.

Another good reason is to create a centrally located, shared data source

for multiple users.

A spatial database adds a bit of complexity in terms of getting started,

but it’s worth the effort when managing large datasets and many layers.

If you are a casual user, you may find it’s not for you—again, it depends

on your goals and needs.

Lastly, you may be wondering why we are talking about server software

in a desktop book. If you’ve gotten this far, you realize that the “back

end” is just as important as the front. Using a spatial database provides

a data store that we can use on the desktop, as well as for web map-

ping applications. From that perspective, it’s a good choice as a central

repository for all our data.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=119

Chapter 8

Creating Data
Using existing data is fine and gives us a lot of capability—until we want

to display data specific to our area of interest. Sometimes we luck out

and find the data; other times we have to create or convert it. At some

point in your OSGIS career, you are going to need to do some creation

or conversion of data to get what you need. This is where you move on

from the hunter-gatherer stage in your GIS data usage.

Ways to create data suitable for our use include the following:

• Digitizing

• Importing from text files or other sources

• Converting data

• Importing GPS data

• Georeferencing an image

In this chapter, we’ll explore some of the ways in which we can torture

data (whether raw or cooked) into submission and make it usable.

8.1 Digitizing

We’ve already seen examples of digitizing in the previous chapters. In

its nonglamorous form, digitizing is just tracing features, whether it

be on a digitizer tablet or the screen. This is a tried-and-true method

of generating new vector data from paper or a scanned image. If you

digitize from a scanned image displayed on your screen (as we did in

Chapter 5, Digitizing and Editing Vector Data, on page 81), it’s called

heads-up digitizing—you’ve got to keep your head up and focused on the

monitor to do it. This method of digitizing has become quite prevalent

DIGITIZING 121

Figure 8.1: Digitizing a subdivision plat

with the availability of imagery and the ability to scan large documents

and maps into a format suitable for onscreen display.

As an example, we went out on the Internet and dug up an 1882 sub-

division plat from Wichita, Kansas. Our task is to create a vector layer

from the plat for use in historical archiving or some other creative pur-

pose. Of course, digitizing plats is an ongoing activity for government

entities. Our plat is a TIFF image and is not georeferenced. Since we

don’t have any reference points to register it, we’ll pretend it’s in the

proper coordinate system. If we were doing this for real and wanted the

vector layer to overlay other city features, we would need to get it geo-

referenced first. In Figure 8.1, you can see our work partially complete,

with the completed parcels shown in green. The plat itself is a black-

and-white scan of an original paper plat. We created a new shapefile

using QGIS and began digitizing the plat, storing the lot number for

each parcel in the attribute table as we go. When complete, this gives

us a new vector layer that contains the parcel number for each lot. This

in turn can be displayed with other vector layers in the same coordinate

system or linked by parcel ID to additional data in a database.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=121

IMPORTING DATA 122

An alternative to digitizing the raster is to use the GRASS r.to.vect com-

mand. This will create a vector layer from the raster. The results depend

on the quality of the raster. In the case of our plat, we end up with a

huge vector layer containing 70,607 polygons. When using this method,

everything on the image gets converted, including the text. On our

example plat, the quality of the lines around the individual lots is such

that we end up with an inner and outer polygon, the outer one being as

wide as the line on the image. In addition, the process creates a polygon

for the entire image boundary. You could spend as much time cleaning

up the result as digitizing the polygons from scratch. To aid in cleaning

up the vectors, you can use v.clean with the tool=rmarea tool to remove

small areas. The other option may be to preprocess the image using

a graphics program to remove some of the noise and unwanted infor-

mation. In any case, you may find that r.to.vect is an effective solution

when you need to vectorize a raster.

Digitizing is an activity that you’ll find insanely boring, tedious, inter-

esting, or therapeutic, depending on your outlook. It remains an impor-

tant means to create vector data from raster.

8.2 Importing Data

Another important way to get data into your GIS realm is by import-

ing it from text or other source files. Depending on the format of the

data, you may find there is a ready-made solution for importing it. A

prime example of this is delimited text that can be easily imported by

both QGIS and GRASS. QGIS supports the import of points only, while

GRASS can accommodate all feature types in the GRASS vector model.

Quite often you find yourself with some text data that contains coor-

dinates and other attribute information that’s begging to go into your

GIS. Let’s start with a simple example to get started. We want to create

a data layer of all the volcanoes in the world. Using a search engine, we

find a website1 that provides a means to search for volcanoes and their

locations. By not entering any search parameters, we are presented

with a web page containing a table of all volcanoes and their locations.

Since the website doesn’t provide a download of the data, the first thing

we need to do is copy and paste the results into a text editor. Doing

1. http://www.ngdc.noaa.gov/seg/hazard/vol_srch.shtml

http://www.ngdc.noaa.gov/seg/hazard/vol_srch.shtml
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=122

IMPORTING DATA 123

this provides us with a text file containing a header row with the field

names, followed by a row for each volcano:

Number Volcano Name Region Latitude Longitude Elev Type Status Last Known

Eruption

0803-001 Abu Honshu-Japan 34.5 131.6 571 Shield volcano Holocene Unknown

0103-004 Acigol-Nevsehir Turkey 38.57 34.52 1689 Maar Holocene U

1505-017 Acotango Chile-N -18.37 -69.05 6052 Stratovolcano Holocene U

1101-112 Adagdak Aleutian Is 51.98 -176.6 645 Stratovolcano Holocene U

The file looks a bit scrambled up with no clear spacing or delimiter.

Looking at the text file in our editor, we discover that the columns of the

table are separated by a tab character. We can use tab as our delimiter

to import the data. The only change we need to make is to clean up the

header row (the first line of the file). We can modify the field names to

shorten them and make them more appropriate for import. The other

change is to delete the second line of the file, since the Last Known

Eruption field name is broken across two lines. Our changed header

now looks like this:

Number Name Region Latitude Longitude Elev Type Status Last_Eruption

When making the changes, make sure that each field name is separated

by a tab character. Otherwise, the import won’t work properly.

Importing Data with QGIS

With the header row fixed, we are ready to import the data. First we will

use the QGIS Delimited Text plugin to load and view the data. From

the QGIS Plugin Manager, load the plugin to add the tool to the Plugins

toolbar.2 Click the Delimited Text tool to begin the import. In Figure 8.2,

on the next page, you can see the delimited text plugin dialog box,

populated with the parameters for our input file.

We used the browse button to populate the delimited text file box with

our prepared file. The plugin is actually pretty smart. When you enter

the filename, the remainder of the parameters for the import are popu-

lated using an educated guess. This includes the layer name (based on

the input filename) and the delimiter. If you use \t (notation for a tab

character) for the delimiter, the plugin parses the input file and makes

a guess as to the x and y fields—in this case longitude and latitude.

Basically it’s ready to go—all we have to do is click the Add Layer but-

ton. If the delimiter is not a \t, you’ll have to enter the proper delimiter

2. For an overview of plugins in QGIS, see Section D.4, Plugins, on page 339.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=123

IMPORTING DATA 124

Figure 8.2: The QGIS Delimited Text plugin

and then use the Parse button. You can then choose the x and y fields

from the drop-down boxes.

Once you’ve added the text file to the map, you can use it just like any

other layer, including identifying features and viewing the attributes.

So far we haven’t really imported anything. The Delimited Text plugin

includes a data provider that allows QGIS to treat the text file like a true

layer. Essentially a data provider acts as a translator between QGIS and

the data store, whether it be a text file, OGR layer, or PostGIS layer. If

you are happy with the text file, you can save it as a shapefile by right-

clicking the layer in the legend and choosing Save as shapefile. The next

time you want to use the data, just load the shapefile rather than going

through the text import process.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=124

IMPORTING DATA 125

Keep in mind that you can use anything for a delimiter—it doesn’t have

to be a tab character. QGIS also supports the use of regular expressions

when defining the delimiter, allowing you to import text data that is not

entirely uniform.

Preprocessing Text for Import

Sometimes the data you find may not be ready for import. When this

happens, you’re faced with preprocessing; either in an editor or with a

script. Let’s look at an example that illustrates this point.

Say we want to plot historic earthquakes in Alaska. To get started, we

can download earthquake data for Alaska from 1898 through 2006 at

http://www.aeic.alaska.edu. Upon the examination of the data, we find

that it is a fixed-length format. Some columns have blanks in some

rows and values in others. This means we can’t just split the record up

on the whitespace to get the fields.

Mo/Dy/Year Hr:Mn:Sec Latitude Longitude Depth mb ML MS

(km)

12/23/1906 17:21:11.7 56.8500 N 153.9000 W 0.0 7.3 7.3

08/22/1907 22:24:00.0 57.0000 N 161.0000 W 120.0 6.5 6.5

05/15/1908 08:31:36.0 59.0000 N 141.0000 W 25.0 7.0

Note that the “mb” column has a value in the second row but not the

first and third.

To properly parse the records and get the fields we want, we resort to

writing a small Ruby script to prep the data. In addition to breaking it

out by fields, we also check for longitudes in the western hemisphere

and set them to negative to make sure they plot where they should in

the world.

Download prep_earthquakes.rb

#!/usr/local/bin/ruby

Prep a text file of earthquake events with fixed length records to be

imported as delimited text. The "|" is used as the delimiter.

#

f = File.open("db_search2291")

Skip the first two header records

2.times {f.gets}

print the delimited header row containing the fields we are interested in

print "event_date|event_time|latitude|longitude|depth|magnitude\n"

process the earthquake records

while not f.eof

record = f.gets

use a fixed length approach to get the fields we want since

splitting on white space isn't feasible

http://www.aeic.alaska.edu
http://media.pragprog.com/titles/gsdgis/code/prep_earthquakes.rb
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=125

IMPORTING DATA 126

event_date = record[1..10]

event_time = record[13..22]

latitude = record[26..32]

longitude = record[37..44]

longitude_direction = record[46..46]

depth = record[50..54]

magnitude = record[66..69]

if the longitude is in the western hemisphere, it must be

negative

if longitude_direction == 'W'

longitude = -1 * longitude.to_f

end

print a delimited record

STDOUT << event_date << "|" << event_time << "|" \

<< latitude << "|" << longitude << "|" \

<< depth.strip << "|" << magnitude.strip << "|\n"

end

close the input file

f.close

When we run this script, we get a nicely formatted file, delimited with |

and containing only the fields in which we are interested.

event_date|event_time|latitude|longitude|depth|magnitude

06/29/1898|18:36:00.0|52.0000|172.0000|0.0|7.6

10/11/1898|16:37:32.7|50.7100|-179.5|0.0|6.9

07/14/1899|13:32:00.0|60.0000|-150.0|0.0|7.2

You can now import the data using the Delimited Text plugin in QGIS,

using the same method as we used with the volcano data. The only

difference is this time we are using | as a delimiter.

If you are lucky, you won’t have to go through a big preparation process

before importing your data. Oftentimes you can patch up the text file

using a text editor and global search/replace to get it formatted for

import. When you can’t just write a quick Ruby (or Python or Perl)

script to do the job.

Importing with GRASS

Once we have the delimited text file formatted, importing into GRASS

is even quicker than using QGIS. From the GRASS shell, we can use

the v.in.ascii command to import the data. If you don’t specify column

names, GRASS assigns default names that may not be too meaningful.

We want meaningful names, so for the columns option, we specify the

name for each in SQL style.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=126

IMPORTING DATA 127

> v.in.ascii input=earthquakes_delim.txt output=earthquakes skip=2 \

x=4 y=3 cat=0 columns="event_date date, event_time varchar(10), \

lat double precision, lon double precision, depth double precision, \

magnitude double precision"

Maximum input row length: 57

Maximum number of columns: 6

Minimum number of columns: 6

column: 1 type: string length: 10

column: 2 type: string length: 10

column: 3 type: double

column: 4 type: double

column: 5 type: double

column: 6 type: double

Building topology ...

12035 primitives registered

Building areas: 100%

0 areas built

0 isles built

Attaching islands:

Attaching centroids: 100%

Topology was built.

Number of nodes : 11938

Number of primitives: 12035

Number of points : 12035

Number of lines : 0

Number of boundaries: 0

Number of centroids : 0

Number of areas : 0

Number of isles : 0

The options to the v.in.ascii command are explained in the GRASS man-

ual, but basically apart from the input and output names, we told the

command to skip the first two lines since they are header lines and

that our x coordinate is in column 4 and the y coordinate is in column

3 of the input file. We also specified cat=0 to indicate we wanted GRASS

to create an ID column for us. If the input file had a suitable ID field,

we would have used it by specifying its column number with the cat

option.

Notice that we didn’t specify the | delimiter when using v.in.ascii. That’s

because it is the default delimiter. If we had used a different delimiter

when preparing the text file, we would need to use the fs parameter to

specify it.

Once we have our new earthquakes layer imported into GRASS, we can

symbolize it by magnitude to see where in Alaska we shouldn’t live. In

Figure 8.3, on the following page, you can see a portion of southcentral

Alaska with the earthquakes symbolized by magnitude.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=127

CONVERTING DATA 128

Figure 8.3: Earthquakes rendered in QGIS by magnitude

As you can see, it’s relatively easy to import text data into QGIS or

GRASS. Our examples dealt only with importing points. As I said ear-

lier, GRASS supports importing all feature types in “standard” mode.

See the manual page (g.manual v.in.ascii) for details and examples on

importing types other than points.

8.3 Converting Data

Sometimes we are faced with converting data before we can use it, sim-

ply because it’s not in the format that works with our software. You

can probably think of other reasons as well; for example, you want to

share the data with someone using another type of software. Or per-

haps you might want to transform the data to another projection to

make it play nicely with your other data. You might recall we talked a

bit about standardizing your data format in Chapter 6, Data Formats,

on page 91.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=128

CONVERTING DATA 129

A lot of times data is distributed in a form that’s convenient for the dis-

tributor, not the end user. This is probably the most common circum-

stance you’ll encounter when gathering data from the Internet. Let’s

take an example.

Importing an E00 Interchange File

Harrison is interested in some data from his local state government. He

soon discovers that they, like a lot of other government entities, deliver

their data in a format called an E00 file.3 To make use of the data,

Harrison has to convert it into a format his software supports. He has

several options for converting the interchange file. First he can search

around the Internet for one of several E00 to shapefile converters.4 The

other option is to use GRASS to import it right into his favorite mapset.

Once in GRASS,5 he can also export it in a number of formats to share

with his friends. To convert an E00 interchange file to GRASS, Harrison

uses the following:

GRASS 6.2.2 (alaska_albers):~ >

v.in.e00 file=/home/harrison/itma.e00 type=area vect=quad_boundary

Importing areas...

Over-riding projection check.

Proceeding with import...

Layer: LAB

WARNING: Column name changed: 'ITMA#' -> 'ITMA_'

WARNING: Column name changed: 'ITMA-ID' -> 'ITMA_ID'

WARNING: Column name changed: 'TILE-NAME' -> 'TILE_NAME'

Importing map 3011 features...

Layer: ARC

WARNING: Column name changed: 'ITMA#' -> 'ITMA_'

WARNING: Column name changed: 'ITMA-ID' -> 'ITMA_ID'

Importing map 6705 features...

Building topology ...

Imported area vector map <quad_boundary>.

.... more messages

Done.

GRASS 6.2.2 (alaska_albers):~ >

If Harrison needs to share the new layer with somebody, he quickly

creates a shapefile using v.out.ogr.

3. This is an ArcInfo interchange format that is not directly usable by most GIS software.
4. Such as http://avce00.maptools.org

5. If you need help getting GRASS started, see Appendix C, on page 296.

http://avce00.maptools.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=129

USING GPS DATA WITH QGIS 130

GRASS 6.2.2 (alaska_albers):~ > v.out.ogr input=quad_boundary type=area dsn=. \

olayer=quad_boundary.shp format=ESRI_Shapefile

Exporting 3011 areas (may take some time) ...

100%

3011 features written

GRASS 6.2.2 (alaska_albers):~ >

You’ll find that GRASS supports a lot of input and output conversions

for both getting new data into GRASS and exporting it out for use with

other applications or to share with others.

Another great way to convert both vector and raster formats is using the

GDAL/OGR suite of tools. Since there are so many possibilities, we’ll

explore these tools in Section 11.2, Using GDAL and OGR, on page 186.

8.4 Using GPS Data with QGIS

GPS units are everywhere these days. Between the practical use for

the professional and the recreational user, as well as the popularity of

geocaching,6 it seems like everybody is using them. I’m sure you would

like to display your GPS adventures on a topographic (read DRG) map,

especially after we work through how to create seamless rasters using

GRASS in Chapter 10, Geoprocessing, on page 149. Well, the good news

is there are lots of open source tools available for working with your

GPS. You’ll need a GPS with an interface cable so you can move data

to and from your computer. In this section, we’ll show you how to put

your data on the map using the GPS plugin that comes with QGIS.

Getting Set Up

Obviously you need QGIS installed and working on your platform. The

only other requirement (apart from a GPS unit) is gpsbabel.7 QGIS uses

gpsbabel to import other formats and for GPS downloading and upload-

ing operations. Fortunately, gpsbabel runs on all the same platforms

as QGIS, so if you can run QGIS, you can use it with your GPS. Actu-

ally, gpsbabel is a remarkable little program. It runs on almost every-

thing and supports 100+ formats and a bunch of GPS hardware. For

upload/download, if you have a Garmin or Magellan unit, you should

be good to go. For others, see the format list on the web page to see

whether yours is listed there.

6. Treasure hunting with a GPS. See http://www.geocaching.com.
7. http://www.gpsbabel.org

http://www.geocaching.com
http://www.gpsbabel.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=130

USING GPS DATA WITH QGIS 131

Figure 8.4: GPS plugin in QGIS

The GPS Plugin

The GPS plugin is part of the core distribution of QGIS. This means it is

included by default with your installation of QGIS. Like other plugins,

you have to load it before you can get at it from the Plugins toolbar. If

you don’t know how to load a plugin in QGIS, take a look at Section D.4,

Plugins, on page 339. Once you have the plugin loaded, you’ll see a nice

little GPS icon on the toolbar. Clicking it will open the interface you see

in Figure 8.4.

The first thing to notice is the four tabs across the top of the GPS

plugin dialog box. The first two (Load GPX File and Import Other File)

allow you to load data stored on a disk, a CD, or maybe a thumb drive.

The last two tabs (Download from GPS and Upload to GPS) provide the

tools needed to move data to and from your unit. Now that we have the

plugin loaded up and ready to go, let’s begin by fetching some GPS data

from our unit so we can display it.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=131

USING GPS DATA WITH QGIS 132

Joe Asks. . .

What Is GPX?

GPX stands for GPS Exchange Format. It’s a lightweight XML for-
mat for interchanging your GPS data between applications,
both on the desktop and the Web. GPX can handle way-
points, tracks, and routes. Using the GPX format, you can easily
exchange your data between a host of GPS and GIS applica-
tions. QGIS directly supports the GPX format using the GPS data
provider that is included with all versions of QGIS. For a list of
applications that can work with the GPX format, take a look at
the TopoGrafix website.∗

∗. http://www.topografix.com/gpx_resources.asp

Downloading Data from Your GPS

OK, so we assume you have your GPS hooked up to the computer with

your interface cable and the unit is powered on. For now we’ll also

assume that it’s a Garmin, because the plugin is set up for that already.

Downloading from your GPS is easy. Just click the Download from GPS

tab, and select the port your interface cable is using. The port names

will vary depending on your operating system. Usually you’ll find the

appropriate port in the drop-down list.

Since QGIS is feature oriented, you have to specify whether you are

downloading waypoints, routes, or tracks. Just choose what you want

from the drop-down box.

When you download from your GPS, QGIS creates a new layer and also

saves the data in a new GPX file. For it to do that, you have to provide an

output filename and a name for the layer. Keep an eye on the big gray

OK button in the bottom-right corner. Once you fill in all the required

information, it will turn green, meaning you are ready to go.

When you click OK, the data is pulled from the GPS unit and stored

on disk, and a new layer is added to the QGIS map canvas. Repeat

the process to fetch each of the feature types you want to download

(waypoints, tracks, and routes). In Figure 8.5, on the next page, you

can see our GPS data added to the map. To make it more interesting,

we’ve added the world mosaic raster and the world_borders shapefile as

http://www.topografix.com/gpx_resources.asp
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=132

USING GPS DATA WITH QGIS 133

Figure 8.5: Track and waypoint loaded from GPS unit

a backdrop for our data. We’ve also labeled our lonely little waypoint

using the data that came with it from the GPS, in this case, BEAR.

Once loaded into QGIS, the GPX data behaves just like any other layer.

You can label it, change the symbol type and colors, and rename it

in the legend. In case you’re wondering, we called the waypoint BEAR

because it happens to be the point in Canada where we saw a nice fat

black bear feasting on berries. My plan was to geotag the pictures I

took on our road trip, but it didn’t really work out that way. But that’s

another story. . . .

Loading and Viewing Data

So far, we have pulled the data from our GPS unit, displayed it, and

in the process created a GPX file on disk. The next time we want to

display it, we don’t have to pull it off the GPS again (well we could, but

only if we felt we needed the practice). We already have the file saved to

disk—to load it we again use the GPS plugin. You can’t load a GPX file

into QGIS without it.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=133

USING GPS DATA WITH QGIS 134

From the plugin, we just click the Load GPX File tab if it’s not already

active and then enter or browse to the location of our .gpx file. Using

the three checkboxes below the filename, we can choose to load all the

feature types from a GPX file or just some. For each box checked, you

will get a separate layer in QGIS.

You may have noticed that the GPX files we created by downloading

from our GPS contain only one feature type each. You likely also noticed

the three checkboxes when loading a GPX file. QGIS allows you to load

multiple feature types because the plugin assumes you may have GPX

files from other sources that contain multiple types.

The GPS plugin also allows you to load other formats supported by

gpsbabel. Say you have a batch of files from a GPS that you want to

view. If you click the Import Other File tab, you can convert them to

GPX format so they can be used with QGIS. The real work here is done

by gpsbabel, so you must have it installed on your system in order for

this to work. This is just a handy way to convert files and get them into

QGIS. Of course, you could also just use gpsbabel from the command

line to accomplish the same task.

Uploading Data to the GPS

The last thing we’ll look at is uploading data from QGIS to your GPS

unit. Here are a couple of reasons why you might want to do that:

• You download some routes for trails in your area from your local

parks department, and you want to load them on your GPS.

• You have edited your waypoints and tracks from your GPS and

want to load them up.

In the second scenario, you’ll notice that yes—you can edit your GPX

layers in QGIS and change not only the location (more on that in a

second) but also the attributes. So if you’re like me and have trouble

entering text for waypoints on the little spongy rubber buttons, you

can now edit the things after the fact to correct and enhance them. You

may be thinking that editing the locations kind of violates the intent of

a GPS. Well, there may be some circumstances where you might want

to move a waypoint, for example, if you have better information gleaned

from a data source with better accuracy than your GPS.

The other thing you can do is add new features. So, for example, you

could digitize trails from a DRG and upload them to the GPS. Of course,

you need to start with an existing GPX file since the plugin doesn’t

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=134

GEOREFERENCING AN IMAGE 135

Figure 8.6: Uploading to the GPS

provide a way to create a new one. Once you’re done, you can hit the

trails confident that you won’t get lost (depending on how good your

digitizing was). Naturally, the better way is to download the data from

the local parks department and put it on your GPS, but sometimes that

information isn’t available, especially in a GPS format.

If we have some data we want to upload, we can just open the plugin

and click the Upload to GPS tab. From the Data Layer drop-down list,

you can select the GPX layer you want to upload. Notice that it has to

be a layer that’s already on the map. You can’t upload an arbitrary file

using the plugin. Once you select the device and port, just click the OK

button and watch the data fly onto your GPS. In Figure 8.6, you can

see the plugin ready to upload a routes layer to our GPS unit.

As you can see, the GPS plugin relies on gpsbabel to do the heavy lifting.

8.5 Georeferencing an Image

In case you haven’t picked up on it by now, a georeferenced image is

one that has associated coordinate information such that it “draws”

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=135

GEOREFERENCING AN IMAGE 136

where it belongs in the world. An image that isn’t georeferenced in GIS

is not much better than a photograph. You can still look at it, but you

can’t really do anything GIS-like with it, such as overlay vector data or

digitize from it.

Georeferencing with QGIS

QGIS includes a plugin to georeference an image, provided you have

the x and y coordinates needed to establish control points. A control

point is a point on the image that you can determine the real-world

coordinates for with a high degree of accuracy. The more accurate your

control points, the better the “fit” of the georeferenced image.

To begin, load the Georeferencer plugin from the QGIS Plugin Man-

ager. To start the process, click the Georeferencer tool on the plugin

toolbar, and select a raster (image) file using the browse button. Once

you have the full path to a raster entered into the Raster File text box,

click the Enter World Coordinates button. This will open a new window

containing your image and a toolbar used to set control points, as well

as navigate around the image by zooming and panning. Zoom in on

the image to the location of one of your control points, click the Add

Point button in the toolbar, and then click the map to add the point.

When you click, you will be prompted for the x and y coordinates for

the control point.

At this point you have two choices. You can enter the coordinates by

hand if you know them, or you can pick the coordinates from the QGIS

map canvas. The latter method allows you to use a “control” raster that

is already georeferenced. Either method can be accurate, depending the

quality of your control points.

Continue to add control points, preferably covering the extents of the

raster. In Figure 8.7, on the next page, we have loaded an image and

started to add control points by picking them from the QGIS map can-

vas.

Once the control points are established, enter a name for the world

file to be created. The Georeferencer plugin creates a world file to go

along with the image, rather than encoding the coordinate information

in the raster itself. You can also choose the transformation method. If

you choose Helmert, you will either need to enter a name for the new

raster to be created or just accept the default name. Now just click the

Generate World File button to complete the process. Alternatively, you

can use the Generate World File and Load Layer button to load the layer

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=136

GEOREFERENCING AN IMAGE 137

Figure 8.7: Georeferencing an image with QGIS

in QGIS after the world file has been generated. Once you have the layer

up in QGIS, check it against any reference layers you may have to make

sure the georeferencing was a success.

Georeferencing with GRASS

There are two ways to georeference an image using GRASS. You can

use what’s termed the “old” way, or you can use the gis.m GUI. The

old way involves a sequence of commands as described on the GRASS

FAQ:8 i.group + i.target + i.points/i.vpoints + i.rectify. The “new way” is to use

gis.m and the Georectify item under the File menu.

The process is pretty much like that we used with QGIS. We won’t look

at an example here, but you can explore the “old” and “new” ways on

your own if you decide to use GRASS for georeferencing rasters.

Of course, the best option is to find rasters that are already georefer-

enced. In many cases, you can do this—if not, you have to use your

newly acquired skills to get the job done.

8. http://grass.gdf-hannover.de/wiki/Georeferencing

http://grass.gdf-hannover.de/wiki/Georeferencing
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=137

Chapter 9

Projections and
Coordinate Systems

If the world were flat, it would be a lot easier—at least on mapmakers.

Unfortunately, that’s not the case, so we’re faced with the age-old prob-

lem of depicting features on a spheroid (that’s the earth) on a flat piece

of paper (or screen).

To solve this problem over the years, people have come up with the con-

cept of map projections. The key thing to remember about projections is

that none of them is perfect. You simply can’t represent the entire earth

(or even a small part of it) on a flat surface without some distortion.

The amount of distortion varies with the projection. Many projections

are quite good when used for a small or regional area. If you try to use

the same projection for a larger area, the distortion increases.

Let’s look at the main problems with squashing the earth onto a piece of

paper. It’s impossible for a projection to maintain an accurate portrayal

of area, distance, shape, and direction all at once. For this reason, you’ll

find that some projections are more suited for your use than others.

For example, if we’re interested in measuring the areas of lakes we’ve

digitized, we want a projection that is equal-area. This means that for

any given location on the map, the measured area will be correct. If

we are interested in measuring distances, we obviously need an equi-

distant projection.

In choosing a map projection, we need to decide whether our focus

is on shape, direction, area, or distance. Once we know that, we can

choose an appropriate projection. Of course, sometimes you don’t get

PROJECTION FLAVORS 139

a choice. You are forced to work in a particular projection for one rea-

son or another. When Harrison wanted to display his bird sightings on

the DRG, he needed to make sure they were in the same projection.

Rather than “warp” the raster, he found it easier to convert his sight-

ings from geographic to UTM, the same projection as the DRG. You can

warp your rasters (no, it’s not illegal) if you find it more convenient

than transforming the dozens of vector layers in your dataset. For an

example of warping a raster, see Section 11.2, Raster Conversion, on

page 196.

There are plenty of books and online resources that delve into the

details of projections and datums. Our goal here is to give you a brief

yet practical introduction to provide what you need to know to work

with your data. At the end of the chapter, you’ll find some additional

resources you can use to learn more about the sometimes complex

world of projections and coordinate systems.

9.1 Projection Flavors

Projections come in three main flavors: planar or azimuthal, conic, and

cylindrical. The type indicates how the projection is constructed.

Azimuthal

In an azimuthal projection, the sphere (that’s the earth) is pro-

jected onto a flat or planar surface. Examples of azimuthal projec-

tions include Orthographic, Stereographic, Gnomonic, Azimuthal

Equal Distant, and Lambert Azimuthal Equal Area.

Conic

In a conic projection, a spherical surface is projected on to a cone.

Examples of conic projections include Albers Equal Area, Lambert

Conformal, Equidistant Conic, and Polyconic Conic.

Cylindrical

In a cylindrical projection, the sphere is projected on to the walls

of a cylinder. Examples of cylindrical projections include Mercator,

Transverse Mercator, Oblique Mercator, Space Oblique Mercator,

and Miller Cylindrical. There are also a couple of pseudocylindri-

cal projections: Robinson Pseudo-cylindrical and Sinusoidal Equal

Area Pseudo-cylindrical.

Of course, the last projection we need to mention is Geographic, which

really isn’t a projection at all. It’s just a coordinate system of latitude

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=139

WORKING WITH PROJECTIONS 140

Joe Asks. . .

What’s a Datum?

Although we could go into a complicated definition, a datum

is just a model for determining the coordinates of points on the
earth. You are likely to encounter the North American Datum
of 1927 (NAD 27), the North American Datum of 1983 (NAD 83),
and the World Geodetic System of 1984 (WGS 84).

It’s important to make sure that either your data is in the same
datum or you are using software that can convert between
datums on the fly. What happens if you mix datums? Your data
won’t line up as it should. All projections are based on a datum,
so make sure to understand your data before you start trying to
put it all together.

and longitude in a given datum. You’ll find a lot of data in Geographic—

just make sure that the datum matches your intended use.

9.2 Working with Projections

Let’s look at what we need to know to work with projections. When

using a chunk of data in our OSGIS software, we should determine the

following:

• Projection

• Units of measure

• Datum

In practice, most people don’t care too much about these things until

they have a problem and the data doesn’t overlay properly. Or worse

yet, it looks fine, and they think it’s fine, but it’s not. This can lead to

making decisions based on bad information. So, it’s best to check your

projection parameters to make sure that everything is displayed where

it belongs.

Harrison just acquired a new megasized bird layer and is excited to use

it. Let’s look at the ways he can discover the projection information.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=140

WORKING WITH PROJECTIONS 141

Determining the Projection

There are a number of ways to determine the projection for a dataset.

In some cases it’s pretty easy—in others it can be quite difficult if the

person creating the data failed to include the information from the out-

set. For example, a shapefile is usually (or should be) accompanied by a

.prj file containing the projection information. This is just a text file con-

taining the projection parameters in what is known as Well-Known Text

(WKT) format, defined by the OGC OpenGIS Simple Features Implemen-

tation Specification for SQL. If you open a .prj file in your favorite text

editor, you’ll see something similar to this:

GEOGCS["WGS 84",DATUM

["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]

]

From looking at the WKT, we can determine that this layer is in geo-

graphic coordinates (GEOGCS), meaning it’s not projected. We also see

that it is based on the WGS-84 datum and the units are degrees. There

is also a bunch of authority information that indicates the EPSG codes

for each section. See the sidebar on page 143 for additional information

on EPSG.

This gives us enough information to determine whether the layer can be

used with the rest of our data or whether we need to do some conversion

to make things line up properly. Let’s look at the WKT for a projected

coordinate system:

PROJCS["Albers Equal Area",

GEOGCS["clark66",DATUM["D_North_American_1927",

SPHEROID["clark66",6378206.4,294.9786982]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]],

PROJECTION["Albers"],

PARAMETER["standard_parallel_1",55],

PARAMETER["standard_parallel_2",65],

PARAMETER["latitude_of_origin",50],

PARAMETER["central_meridian",-154],

PARAMETER["false_easting",0],

PARAMETER["false_northing",0],

UNIT["Meter",1]

]

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=141

WORKING WITH PROJECTIONS 142

Here we see that the layer is projected (PROJCS); it’s based on the

Clarke 1866 spheroid, NAD 27 datum; the projection is Albers; and

the units are meters. The WKT also contains the parameters (standard

parallels, origin, and central merdian) for the Alaska Albers Equal Area

Conic projection.

The key things to look for are the PROJCS or GEOGCS at the beginning

of the WKT specification, the PROJECTION and DATUM keywords, and

the UNIT keyword. These are enough to tell us whether it’s suitable for

use with our other data.

The second way to determine the projection for a layer is using the gdal-

info command for rasters and ogrinfo for vector layers. Recall that these

utilities are part of GDAL/OGR. We took a look at these commands in

Chapter 3, Working with Vector Data, on page 37 and Chapter 4, Work-

ing with Raster Data, on page 67. If you look back to those chapters,

you’ll see that both commands display the projection information in the

same WKT format we just looked at.

The final way to determine a dataset’s projection is to load it into your

OSGIS application and check the properties for the layer. This works

fine and is handy if you already have the layer loaded, but it’s quicker

to look at the WKT for a vector or use one of the GDAL/OGR commands

to get the information. Since gdalinfo and ogrinfo work with nearly every

format you’ll encounter, it’s worth installing and using them.

Data Problems

If you find that your data isn’t lining up like you expect, it’s either a

projection problem or you just have lousy data. Seriously, though, most

alignment problems are due to either a projection problem or differing

datums. The first thing to do is use your sleuthing skills to examine the

projection and datum for your layers. If you are seeing a big difference

in alignment, it’s likely a projection problem. If it’s a small difference

(less than 500 meters, for example), you likely have a datum problem.

To get to the bottom of it, you have a couple of choices. If your OSGIS

application supports on-the-fly projection (and datum shift if required),

enable it and make sure that the projections are recognized by the

application. If this solves the problem, you don’t need to do anything

else; just keep in mind that you are transforming data on the fly—you

haven’t changed the original data in any way.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=142

WORKING WITH PROJECTIONS 143

EPSG

If you are wondering about the EPSG notation that has popped
up in the Well-Known Text of coordinate systems, it represents a
dataset of coordinate systems formerly distributed by the for-
mer European Petroleum Survey Group. In 2005 the European
Petroleum Survey Group was absorbed into the OGP Surveying
and Positioning Committee. The OGP continues to distribute the
dataset.

The Geodetic Parameter Set contains a unique code for each
coordinate system, as well as details about the projection.
Many OSGIS applications can use the EPSG code as input
when doing transformations. If you have PROJ.4 installed, you
should have a copy of the .epsg file on your system. This file is
a simplified subset of the EPSG definitions and maps the EPSG
number to the corresponding PROJ.4 parameters. The full EPSG
database and documentation is available from OGP.∗

∗. http://www.epsg.org

If on-the-fly transformation isn’t an option, you will have to manually

transform the data to get it into a projection you can use. If you are

using PostGIS, you can create a SQL view of your data that transforms

the geometries using the OGC transform function. You would then load

the view into QGIS or your other application, and the transformation

would be done automatically, at the expense of a bit of performance.

For example, if we have a towns layer in our PostGIS database that we

would like to use with another layer that is geographic, we can create a

view to do the job.1 First let’s look at the schema of the table:

gis_data=# \d towns Table "public.towns"

Column | Type | Modifiers

------------+-----------------------+--------------------------------------

gid | integer | not null default

| | nextval('towns_gid_seq'::regclass)

name | character varying(20) |

class | character varying(35) |

pop | integer |

shape | geometry |

...

gis_data=#

1. The coordinate system for our towns layer in PostGIS is Albers Equal Area.

http://www.epsg.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=143

WORKING WITH PROJECTIONS 144

Next we’ll select a few records from the table to examine the coordi-

nates, just so we can see that our transform works when we’re all done:

gis_data=# select gid, astext(shape) as coordinates from towns limit 5;

gid | coordinates

-----+----------------------------------

1 | POINT(-820805.1875 506479.46875)

2 | POINT(-384408.6875 1333234.375)

3 | POINT(88849.421875 881200.0625)

4 | POINT(-565926.875 1174128)

5 | POINT(-307637.65625 1451385.5)

(5 rows)

Now we can create the view using the transform function to convert from

the projected coordinate system to WGS 84 geographic (EPSG:4326).

We know the EPSG code is 4326 because we looked it up using one

of the methods that you’ll learn about in just a moment. We can now

create the view:

gis_data=# create view towns_geo as select gid, name, class, pop,

transform(shape,4326) as shape from towns;

CREATE VIEW

gis_data=#

Now we can use our towns_geo view as a layer in QGIS. Just to make

sure the transform works, let’s select a few records to see whether the

coordinates look like they are geographic:

gis_data=# select gid, astext(shape) as coordinates from towns_geo limit 5;

gid | coordinates

-----+---

1 | POINT(-157.571463607738 51.336408724444)

2 | POINT(-155.770900879198 53.6566126757253)

3 | POINT(-153.605243492496 52.4282023272413)

4 | POINT(-156.577035823078 53.203783217787)

5 | POINT(-155.42947766785 53.9856939176996)

(5 rows)

gis_data=#

Sure enough, our view is returning coordinates in WGS 84 geographic.

The view gives us a quick way to transform our data on the fly and be

able to visualize it with our other data. Our original data isn’t changed—

we’re just doing a transform on the fly.

If it comes down to it, you can always transform your data, creating a

new dataset in the appropriate projection. We’ll cover transformation for

both vector and raster layers in more detail later when we look at using

command-line utilities. If you’re curious, see Section 11.2, Coordinate

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=144

THE PROJ.4 PROJECTIONS LIBRARY 145

System Conversion, on page 194 and Section 11.2, Raster Conversion,

on page 196.

9.3 The PROJ.4 Projections Library

PROJ.4 is a cartographic projections library that is used in many, if

not most, open source GIS applications, both on the desktop and on

the Internet. It was originally developed by the USGS and is now main-

tained by a group of volunteers.

You may be wondering why we are mentioning a library—turns out

that PROJ.4 also comes with some handy utilities for experimenting

with projections and doing interactive transformations:

proj and invproj

Performs forward and inverse transformations for a large number

of projections. With your projection parameters in hand, you can

perform a forward calculation using proj (geographic to projected)

or an inverse calculation using invproj (projected to geographic).

Neither of these utilities does datum shifts.

cs2cs

Performs transformations between coordinate systems, including

datum shifts. With cs2cs, you supply the parameters for both coor-

dinate systems, specifying which is the target or “to” system.

geod and invgeod

Performs forward and inverse Great Circle (geodesic) transforma-

tions. This allows you to calculate latitude, longitude, and back

azimuth given a starting point, azimuth, and distance. You can

also determine the azimuths (forward and back) and distance be-

tween two known points.

nad2nad

Performs datum conversions between the North American 1927

and 1983 datums. The same conversions can be accomplished

using cs2cs.

Let’s look at an example. Say Harrison has loaded up some of his bird

data in his favorite desktop application and it contains a DRG. If you

remember correctly, DRGs come in a UTM projection. Harrison is curi-

ous about a couple of bird observations on his map. When he moves

his cursor over the points, he sees big numbers for the coordinates in

the status bar of his application. He knows his DRG is in UTM Zone 6,

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=145

THE PROJ.4 PROJECTIONS LIBRARY 146

NAD27 datum, but he wants to know the approximate geographic coor-

dinates for the point.2 PROJ.4 can quickly answer his question. First

he has to know the parameters for the UTM projection in order to do the

conversion. There are several ways to do this—perhaps the easiest is to

look up the proj string in the .epsg file that is installed with PROJ.4.3

On a Linux system you’ll find this in /usr/share/proj/epsg. To locate the

projection, you can open the .epsg file in your favorite text editor and

search, or you can use grep from the command line:

$ grep -C 1 -i "utm zone 6n" /usr/share/proj/epsg| \

grep -i "nad27"

<26705> +proj=utm +zone=5 +ellps=clrk66 +datum=NAD27 +units=m +no_defs <>

NAD27 / UTM zone 6N

<26706> +proj=utm +zone=6 +ellps=clrk66 +datum=NAD27 +units=m +no_defs <>

Here we used grep to search for “utm zone 6n” and told it to print one

line on either side of the match (-C 1) and ignore the case (-i). Since

we wanted only NAD 27 projections, we piped the output to grep again

to show only those lines containing “nad27.” From the result we get a

couple of things: the EPSG number, in this case 26706, and the string

that we need to use with proj. If you can’t find the .epsg file on your sys-

tem, you can search for your projection using the tools on the Spatial

Reference website.4 Entering “nad27 utm zone 6n” as the search string

will quickly find the projection. You can then copy the proj parameters

from the website.

Now that Harrison has the projection parameters, he can convert his

coordinates from UTM Zone 6N to geographic using invproj:

$ invproj +proj=utm +zone=6 +ellps=clrk66 +datum=NAD27 \

+units=m +no_defs

312244.49 6795460.41

150d30'W 61d15'N

Harrison entered the coordinates that he read from his status bar

(312244.49, 6795460.41) and got the results in degrees and minutes

(150d30’W, 61d15’N). Lucky for Harrison, his birds like to roost on nice

clean coordinates. Just to convince himself that this works, he plugs

2. If you think there is more than one way to do this, you are right—depending the

software you are using.
3. The .epsg file included with PROJ.4 does not include a number of datums outside the

United States and Canada. You can find a complete list of datums in your GRASS install

in etc/datum.table.
4. http://spatialreference.org

http://spatialreference.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=146

THE PROJ.4 PROJECTIONS LIBRARY 147

the answer back in to the proj command to see whether he gets his

original UTM coordinates:

$ proj +proj=utm +zone=6 +ellps=clrk66 +datum=NAD27 \

+units=m +no_defs

150d30'W 61d15'N

312244.49 6795460.41

Sure enough it worked. He could have specified the latitude and longi-

tude using decimal degrees (-150.5 61.25) and gotten the same result.

PROJ.4 also has a number of other options, including the ability to cus-

tomize the output format to your taste. You can see that PROJ.4 can be

useful for doing interactive transforms.

If you wanted to transform from a UTM projection to an Albers Equal

Area, you would have to do an inverse (invproj) to get the latitude and

longitude for the UTM point and then do a forward projection (proj)

using the Albers parameters to get the final result. The cs2cs program

simplifies this by allowing you to specify both coordinate systems. Let’s

convert our UTM point from the previous example to Alaska Albers

coordinates using cs2cs:

$ cs2cs +proj=utm +zone=6 +ellps=clrk66 +datum=NAD27 \

+units=m +to +proj=aea +lat_1=55 +lat_2=65 +lat_0=50 +lon_0=-154 \

+x_0=0 +y_0=0 +datum=NAD27 +units=m +no_defs

312244.49 6795460.41

187115.08 1257043.95 0.00

Now we have Albers coordinates 187115.08, 1257043.95 as a result of

our transformation. You are probably wondering what the 0.00 means.

This is height above (or below) the ellipsoid. Since both datums were

NAD27 and they are both based on the same ellipsoid, there is no dif-

ference. Let’s do a datum shift to illustrate how it’s done and compare

the results:

$ cs2cs +proj=utm +zone=6 +datum=NAD27 +units=m \

+to +proj=aea +lat_1=55 +lat_2=65 +lat_0=50 +lon_0=-154 +x_0=0 +y_0=0 \

+datum=NAD83 +units=m +no_defs

312244.49 6795460.41

186991.95 1256960.61 0.00

Here we see the result, which is a bit different from the NAD27 result.

The total shift in coordinates is approximately 184 meters. If you don’t

believe it, break out your high-school math book and use the distance

formula (Pythagorean Theorem) to check the result.

If you want to transform a lot of points, you can provide the coordinates

to cs2cs from a file to do batch conversions. See the documentation for

cs2cs for details on the available options.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=147

MORE RESOURCES 148

You may be wondering which of the PROJ.4 utilities you should use.

In general, cs2cs is your best bet since it supports transformations

between projected coordinate system as well as datum transforms. If

you just need to go to/from a projected coordinate system to geographic

without a datum transform, the proj and invproj utilities do an accept-

able job.

9.4 More Resources

The U.S. Geological Survey has a “poster” that provides an excellent

overview of projections and the characteristic of each. The poster is

available for download free of charge.5

Published in 1987, the USGS Professional Paper, “Map Projections: A

Working Manual” provides a good overview of projections and includes

the mathematical formulae needed to transform more than twenty-five

different coordinate systems. The paper is available online.6

You might find it hard to believe, but an animated movie made in 1947

provides an excellent beginner’s introduction to the problems of por-

traying a spherical earth on a flat surface. Entitled The Impossible Map,

the movie is available online from the National Film Board of Canada.7

The American Society for Photogrammetry & Remote Sensing maintains

a repository of the “Grids and Datums” column from each issue of its

journal.8 Datums and grids for a number of regions around the world

are documented in each column since 1998.

Lastly, using your favorite search engine on the term map projections

will bring up enough reading material to keep you busy for a while.

Becoming an expert on projections takes some time and effort; learning

enough to be proficient with your data is as simple as being able to

identify what you have and making your software work for you.

5. Download it from http://erg.usgs.gov/isb/pubs/MapProjections/projections.pdf. You can also

find a copy of the map projections poster in PDF at http://desktopgisbook.com/projections.
6. http://pubs.er.usgs.gov/usgspubs/pp/pp1395

7. http://www.nfb.ca/animation/objanim/en/films (sort by title to find it)
8. http://www.asprs.org/resources/grids

http://erg.usgs.gov/isb/pubs/MapProjections/projections.pdf
http://desktopgisbook.com/projections
http://pubs.er.usgs.gov/usgspubs/pp/pp1395
http://www.nfb.ca/animation/objanim/en/films
http://www.asprs.org/resources/grids
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=148

Chapter 10

Geoprocessing
It’s often not enough to have data and look at it. We almost always

want to do some sort of manipulation or processing. This is where geo-

processing comes in. We’ll use the broad definition of geoprocessing

to include any kind of data manipulation and analysis. To some extent,

you could consider importing data as a geoprocessing operation. In this

chapter, we’ll look at some other operations to include the following:

• Projection

• Line-of-sight analysis

• Watershed modeling

• Hillshading

• Clipping features

• More complex importing

• Grid algebra

If you are wondering what tools are available in the OSGIS stack to

accomplish these tasks, for the most part you’ll find the answer is

GRASS. Although some of the other desktop tools provide various levels

of support for a few types of operations, for the most part you’ll need

GRASS. The goal in this chapter is not to instruct you in the use of all

the GRASS geoprocessing tools but rather to introduce you by way of

example to the possibilities.

PROJECTING DATA 150

10.1 Projecting Data

That’s right—we’re going to take one more look at projecting data, even

though we’ve given it a good going over in Chapter 9, Projections and

Coordinate Systems, on page 138. Once again, depending on how you

view and use your GIS data, you may find you need to project the data

to another coordinate system to make your life easier. Some of the desk-

top GIS applications support “on-the-fly” projection of data. This means

you set the default projection for the map, and every layer that is added

is reprojected to that coordinate system, assuming it’s different from

the default. This is a two-edged sword. On one hand, it’s very conve-

nient. On the other, there is a performance penalty in that every point

or vertex must be transformed as the features are drawn. The size of

the penalty depends on a number of factors and really can’t be gen-

eralized; however, suffice it to say that as long as you’re transforming

coordinates on the fly, it’s going to be slower.

As we’ve seen, the solution is to transform the data to a coordinate sys-

tem that is suitable for your project work. In Section 11.2, Coordinate

System Conversion, on page 194, you’ll see how to use ogr2ogr to trans-

form OGR-supported layers. In this section, we’ll look at how to change

the coordinate system of our data using GRASS.

GRASS has two commands that are used to project data: r.proj for raster

maps and v.proj for vector maps. The key to projecting data is having

your locations properly defined and set up. If you need a hand getting

started with GRASS locations and mapsets, take a look at Section C.1,

Location, Location, Location, on page 296.

When you project a map, it ends up in your current location and map-

set. You could think of it as copying the map from its original location

to your current one, transforming the coordinates as it goes. You don’t

specify any projection parameters when projecting GRASS maps, since

all keys on the locations involved and locations always have a projec-

tion/coordinate system defined.

Let’s look at the usage for projecting a vector map using v.proj:

> v.proj help

Description:

Allows projection conversion of vector files.

Keywords:

vector

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=150

PROJECTING DATA 151

Usage:

v.proj [-lz] input=name location=string [mapset=string]

[dbase=string] [output=name] [--overwrite]

Flags:

-l List vector files in input location and exit (a dummy value

must be given for input)

-z (3-D vectors only) Assume z co-ordinate is ellipsoidal

height and transform if possible

--o Force overwrite of output files

Parameters:

input Name of input vector map

location Location containing input vector map

mapset Mapset containing input vector map

dbase Path to GRASS database of input location

output Name for output vector map

As you can see, there aren’t many required parameters. You have to

know where the map resides, including the full path to the GRASS

database if it’s in a different database than the target location. Usually

you get away with just entering the map name and location and speci-

fying the output name. As usual, GRASS gives you an --overwrite option

in case you need to run the command more than once to get it right.

We have a lakes map in our alaska_albers location that we can play with.

Let’s project it to our UTM Zone 6 location alaska_utm6_nad27.1 We begin

by starting GRASS in the location where we want the projected map to

reside, in this case our UTM location, and then proceeding:

GRASS 6.3.cvs (alaska_utm6_nad27):~ > v.proj input=lakes \

location=alaska_albers mapset=PERMANENT output=lakes

Input Projection Parameters: +proj=aea +lat_1=55 +lat_2=65 +lat_0=50

+lon_0=-154 +x_0=0 +y_0=0 +no_defs +a=6378206.4 +rf=294.9786982

+nadgrids=/usr/local/grass-6.3.cvs/etc/nad/alaska

Input Unit Factor: 1

Output Projection Parameters: +proj=utm +zone=6 +a=6378206.4

+rf=294.9786982 +no_defs

+nadgrids=/usr/local/grass-6.3.cvs/etc/nad/alaska

Output Unit Factor: 1

Re-projecting vector map...

Building topology ...

177 primitives registered

Building areas: 100%

87 areas built

1. Projecting a region the size of Alaska into a single UTM zone is not really appropriate,

but it illustrates the process of projecting vectors with GRASS.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=151

PROJECTING DATA 152

87 isles built

Attaching islands: 100%

Attaching centroids: 100%

Topology was built.

Number of nodes : 178

Number of primitives: 177

Number of points : 0

Number of lines : 0

Number of boundaries: 89

Number of centroids : 88

Number of areas : 87

Number of isles : 87

Number of incorrect boundaries : 2

Number of duplicate centroids : 1

GRASS 6.3.cvs (alaska_utm6_nad27):~ >

We specified the name, location, and mapset for the map (layer) we

wanted to project and specified the output name to be lakes. GRASS

gives us a whole bunch of information as it proceeds with the projection

process. Once complete, we have our new lakes layer projected to UTM

Zone 6—we’ll use v.info to see what we created:

GRASS 6.3.cvs (alaska_utm6_nad27):~ > v.info map=lakes

+--+

| Layer: lakes Organization: |

| Mapset: gsherman Source Date: |

| Location: alaska_utm6_nad27 Name of creator: |

| Database: /home/gsherman/grassdata |

| Title: |

| Map Scale: 1:1 |

| Map format: native |

|--|

| Type of Map: Vector (level: 2) |

| |

| Number of points: 0 Number of areas: 87 |

| Number of lines: 0 Number of islands: 87 |

| Number of boundaries: 89 Number of faces: 0 |

| Number of centroids: 88 Number of kernels: 0 |

| |

| Map is 3D: 0 |

| Number of dblinks: 1 |

| |

| Projection: UTM (zone 6) |

| N: 12862988.157 S: 0.000 |

| E: 420703.718 W: -2476603.714 |

| B: 0.000 T: 0.000 |

| |

| Digitize threshold: 0.00000 |

| Comments: |

| |

+--+

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=152

LINE-OF-SIGHT ANALYSIS 153

You can see once you have your locations set up in GRASS, projecting to

a new coordinate system is fairly simple. Using the same methodology,

you can also project rasters using r.proj, which we’ll do as part of our

next geoprocessing task. Let’s move on to some topics that are more

along the lines of “classic” geoprocessing.

10.2 Line-of-Sight Analysis

Line-of-sight analysis (LOS) is interesting from a curiosity standpoint as

well as for hard analysis. Suppose you want to know what you can see

from the top of the local mountain (assuming you don’t live in Kansas).

With the right data to work with, LOS analysis can show you all the

areas that are visible from a given point on the map. Some practical

applications are determining the visibility of features in site planning.

Can the new garbage dump be seen from the local park? How many

people will be able to see the new 75-foot-tall monster transmission

tower (I have a new one in my backyard)? When doing LOS analysis, we

can specify not only the location to view from but also the height of the

observer (that would be us). Let’s take a look at a simple LOS example.

In our example, we will use the GRASS r.los command to create a view-

shed (area we can see) from a given point. To do the analysis, we need

a raster dataset that has elevation information. A couple of examples

are the USGS Digital Elevation Model (DEM) product and the National

Elevation Dataset (NED).2

We will use a 1:63,360 DEM (that’s 1 inch = 1 mile) in our LOS analysis.

The steps to get from a raw DEM to our LOS viewshed are as follows:

1. Download the DEM.

2. Import the DEM into our world latitude-longitude mapset.

3. Project the DEM into the Albers coordinate system.

4. Use r.los to do the LOS analysis.

5. Use r.mapcalc to set unwanted values to null.

6. Display the results.

2. You can download the NED data from http://seamless.usgs.gov using an interactive web

map interface to select your area of interest. You can find links to a good number of the

datasets offered by USGS at http://edc.usgs.gov/geodata.

http://seamless.usgs.gov
http://edc.usgs.gov/geodata
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=153

LINE-OF-SIGHT ANALYSIS 154

Getting the DEM

The first task is to get the DEM and get it ready for use in the analy-

sis. The DEM we chose is for the Anchorage C6 quadrangle in Alaska.3

The file (ancc6.gz) came gzipped, so before it can be imported, it must be

unzipped. We used gzip -d to unzip it and then renamed it to ancc6.dem.

If we wanted to, we could view it right now using QGIS because it sup-

ports USGS ASCII DEMs. To import it into GRASS, we need a geo-

graphic location since the DEMs coordinates are in degrees of latitude

and longitude. The datum of the location must match the DEM as well.

In the case of our DEM, that’s NAD 27. If you can’t remember the gory

details of creating a new GRASS location, refer to Section C.1, Location,

Location, Location, on page 296.

To import the DEM into our geographic location, from the GRASS shell

we use the following:

r.in.gdal input=ancc6.dem output=ancc6_dem title="Anchorage C6 DEM"

Now we need to project the DEM to our Albers coordinate system. You

might be asking why we have to project it. Well, the answer is, r.los

doesn’t work with geographic coordinates. If you try it, you’ll get a nice

message along the lines of this:

ERROR: Lat/Long support is not (yet) implemented for this module.

To project the DEM, we use the r.proj command. But first we need to

have an Alaska Albers location created using the proper parameters.

For this example, we created one and set the default region (part of the

creation process) to just the area of our DEM. If you need to know the

parameters for a location, you can use g.proj -p from the GRASS shell to

print the projection information for the current location.

> g.proj -p

-PROJ_INFO---

name : Albers Equal Area

proj : aea

datum : nad27

a : 6378206.4

es : 0.006768657997291279

lat_1 : 55

lat_2 : 65

lat_0 : 50

lon_0 : -154

x_0 : 0

y_0 : 0

3. You can download this DEM at http://agdc.usgs.gov/data/usgs/geodata/dem/63K/demlist_A.htm .

http://agdc.usgs.gov/data/usgs/geodata/dem/63K/demlist_A.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=154

LINE-OF-SIGHT ANALYSIS 155

no_defs : defined

-PROJ_UNITS--

unit : meter

units : meters

meters : 1

To project the DEM, we start GRASS in the target location (in this case

Alaska Albers) and use the r.proj command:

r.proj input=ancc6_dem location=world_lat_lon_nad27 output=ancc6_dem

Notice we specify the source location where the geographic version of

the DEM resides. Now we have the DEM ready to use in our analysis.

Doing the Line-of-Sight Analysis

Now that the data is in order, we can get down to doing some analy-

sis. To use r.los, we need to now where the observer is located in map

coordinates, as well as the maximum distance we want the analysis to

consider. We can also apply a height to the observer if we desire. For

now, we’ll do a simple analysis using a point located on a gravel bar in

the river bottom to determine what we can see. To get the coordinates

for the observer (that’s us standing on the gravel bar), we just used

QGIS or GRASS to get the location of the mouse cursor in map units.

With that, we can run r.los:

r.los input=ancc6_dem output=los_river coordinate=259315,1307037 max_dist=3000

This gives us a line-of-site analysis extending 3,000 meters from our

location. Depending on your version of GRASS, r.los may set any cell

outside the maximum distance to a value of zero, which means that

when we overlay the results on the DEM or other background layers,

our underlying layers are not visible.4 Fortunately, there are a couple

of ways to fix this problem.

The GRASS r.mapcalc command allows you to do arithmetic operations

on the cells in raster layers. A full range of operators and functions

is supported. In our case, we want to do something pretty simple—set

the cells outside our analysis area to null values. This will allow our

background layers to show through. To do this, we will create a new

map from the results of r.los. The command is simply as follows:

r.mapcalc 'los_river_nulls=if(los_river==0,null(),los_river)'

4. As of this writing, GRASS 6.3 release candidate 3 does not have this issue.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=155

HYDROLOGIC MODELING 156

The r.mapcalc creates a new raster map named los_river_nulls using the

output from the r.los command. The if statement says, “If a cell has a

value of 0, set it to null; otherwise, set it to its current value.” This gives

us a raster with all the values outside our analysis area set to null,

and we can now see the results with our background layers showing

through. In Figure 10.1, on the following page, you can see the results

of the analysis, with those areas that we can see from our position (the

red circle) shown in light blue. We’ve overlaid the LOS results on our

DRG so we can compare the analysis with the topography. As you might

expect, our line of sight is somewhat limited when standing in the river

bottom. We can’t see very far to the west, basically just along the top of

the river bluff. We can see upstream and downstream a fair bit, as well

as to the east, which is on the inside of the river bend and consequently

doesn’t have a high bank.

If we didn’t want to create a new layer, it turns out there is an easier

way for us to set those pesky 0s to null:

r.null map=los_river setnull=0

That’s it—r.null does the trick. Now the LOS result map has nulls prop-

erly set and can be displayed directly. So, why did we go to all the

trouble to use r.mapcalc? It’s mainly to introduce the concept of map

algebra, which we’ll look at in a bit more depth later.

To test the LOS ability of GRASS, we took a simple example from the

river bottom. We hope that was enough for you to see the power of this

type of analysis. We also used a bit of map algebra to tweak the output

and make it more appealing when displayed with the background lay-

ers. We’ll continue our river theme in the next section by looking at the

watershed modeling tools in GRASS.

10.3 Hydrologic Modeling

GRASS includes a number of modules for hydrologic modeling, includ-

ing modules to create and analyze watershed basins, carve out streams

in a DEM, trace a drainage path, simulate flooding, and perform a host

of other functions. These modules provide a sophisticated toolset for

your hydrologic modeling needs.

To illustrate one of these tools, we’ll take a simple example and raise the

sea level by 100 meters using the Ancc6_dem DEM. The r.lake module

allows you to create a new raster map portraying the filling of an area

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=156

HYDROLOGIC MODELING 157

Figure 10.1: Results of line-of-sight analysis in GRASS

on a DEM to a given level. You just specify the start point and the water

level. You don’t have to be real picky about the start point because

GRASS analyzes the DEM and fills it such that the deepest point will

be equal to the depth you chose. This means you can actually pick what

will become a very shallow area (in other words, a higher elevation), and

the lake will be created properly. After all, water does flow downhill.

First let’s look at the usage for r.lake:

GRASS 6.2.2 (albers_c6):~ > r.lake help

Description:

Fills lake from seed at given level

Keywords:

raster

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=157

HYDROLOGIC MODELING 158

Usage:

r.lake [-no] dem=name wl=value [lake=name] [xy=east,north]

[seed=name] [--overwrite]

Flags:

-n Use negative depth values for lake raster map

-o Overwrite seed map with result (lake) map

--o Force overwrite of output files

Parameters:

dem Terrain raster map (DEM)

wl Water level

lake Output raster map with lake

xy Seed point coordinates

seed Raster map with seed (at least 1 cell > 0)

The command is pretty straightforward. Notice that we can choose to

assign negative values to the lake map using the -n option. This means

that if we query a given cell, the value will be negative, indicating a

depth from the surface of the lake.

The seed coordinates specify the starting point of the calculations. We

could use a raster map as a seed as long as it has one cell with a value

greater than zero. Why would we want to do this? If we wanted to create

a series of maps showing an increasing water level, we could use the

previous output as the seed for the next map. Another important point

is that the water level must be specified in DEM units—in our case,

meters.

To flood our DEM, we pick a point in the southwest corner somewhere

and use the following command:

r.lake dem=ancc6_dem lake=ancc6_lake_100m xy=258686.903427,1298819.69314 wl=100

This creates a new map named ancc6_lake_100m, shown in Figure 10.2,

on the next page. Each flooded cell in the raster has a value indicating

the depth, while those that are above water are set to null. This means

the underlying layer(s) on our map are visible so we can see what land

remains.

If you look carefully at the newly create lake, you can see the original

river course underneath. It flows from the top center of the map down

and then to the west. This was the extent of the water before we flooded

the area, apart from a few lakes in the southwest quadrant of the map

that are now completely underwater. You can see from the result that

raising sea level 100 meters isn’t a good thing. We flooded several lakes,

along with a bunch of subdivisions and a town or two.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=158

CREATING HILLSHADES 159

Figure 10.2: Raising sea level by 100 meters

Using r.lake is a simple example of a pretty powerful tool in the GRASS

hydrologic modeling toolbox. If you use your imagination, you could

combine this tool with a bit of shell script to loop through multiple iter-

ations of rising sea level, saving each image using r.out.mpeg to create

an animation. But we’ll leave that exercise to you.

10.4 Creating Hillshades

You’ve no doubt seen those fancy shaded relief maps. Now we are going

to see how to create one from a DEM using the GRASS r.shaded.relief

module. Again we’ll use the Ancc6_dem DEM as the starting point. First

let’s get a look at the usage and options for r.shaded.relief.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=159

CREATING HILLSHADES 160

GRASS 6.2.2 (albers_c6):~ > r.shaded.relief help

Description:

Creates shaded relief map from an elevation map (DEM).

Keywords:

raster, elevation

Usage:

r.shaded.relief map=string [shadedmap=string] [altitude=value]

[azimuth=value] [zmult=value] [scale=value] [units=string]

[--overwrite]

Flags:

--o Force overwrite of output files

Parameters:

map Input elevation map

shadedmap Output shaded relief map name

altitude Altitude of the sun in degrees above the horizon

options: 0-90

default: 30

azimuth Azimuth of the sun in degrees to the east of north

options: 0-360

default: 270

zmult Factor for exaggerating relief

default: 1

scale Scale factor for converting horizontal units to elevation units

default: 1

units Set scaling factor (applies to lat./long. locations only)

options: meters,feet

The command is pretty straightforward and has several options for cre-

ating the shaded relief map from the DEM, including sun angle and

altitude. We can also exaggerate the relief to get a more dramatic effect.

We’ll start simple and create a standard shaded relief map:

GRASS 6.2.2 (albers_c6):~ > r.shaded.relief map=ancc6_dem \

shadedmap=ancc6_shade1

Calculating shading, please stand by.

100%

Color table for [ancc6_shade1] set to grey

Shaded relief map created and named [ancc6_shade1].

This map is all default settings. Generally, the default light settings

(altitude and azimuth) produce good results, unless you have particular

needs. Notice that when we created the hillshade, it set the color to

gray. This is because r.shaded.relief is actually a shell script that runs

both r.mapcalc and r.colors to create the hillshade. Let’s try one with

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=160

CREATING HILLSHADES 161

Figure 10.3: Hillshade with no exaggeration (left) and 4X exaggeration

(right)

some vertical exaggeration, and then we’ll compare:

GRASS 6.2.2 (albers_c6):~ > r.shaded.relief map=ancc6_dem \

shadedmap=ancc6_shade2 zmult=4

Calculating shading, please stand by.

100%

Color table for [ancc6_shade2] set to grey

Shaded relief map created and named [ancc6_shade2].

Now we have an “out-of-the-box” hillshade and one with exaggerated

relief (four times). In Figure 10.3, you can see the two side by side, with

the default hillshade on the left and the 4X exaggeration on the right.

I’ll leave it up to you to decide which looks better.

Colorizing the Hillshade

A gray hillshade is nice but a bit boring. Let’s look at how to make our

hillshade nicely colored and even export it to a georeferenced TIFF. The

process consists of two steps: colorizing the DEM and combining it with

the hillshade to make the final product.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=161

CREATING HILLSHADES 162

To begin, we will create a rules file to define colors by percentage of the

range of elevations in the raster. The rules file specifies percentages and

a color in RGB notation and is taken directly from the manual page for

r.colors.

0% 0 230 0

20% 0 160 0

35% 50 130 0

55% 120 100 30

75% 120 130 40

90% 170 160 50

100% 255 255 100

We save this as myelevation.rules and will use it in a minute. To create

the colored hillshade, we set the colors for the DEM to those in the rules

file we just built and then do some magic with the r.his and r.composite

commands. Here is a script that does the whole process for us:

Line 1 #!/bin/sh
- r.shaded.relief map=ancc6_dem shadedmap=ancc6_shade zmult=4 --overwrite
- cat myelevation.rules |r.colors map=ancc6_dem color=rules
- r.his -n h_map=ancc6_dem i_map=ancc6_shade r_map=ancc6_r g_map=ancc6_g \
5 b_map=ancc6_b --overwrite
- r.composite -d red=ancc6_r blue=ancc6_b green=ancc6_g output=ancc6_comb \
- --overwrite

Let’s take a look at each line of the script to see what it does. Line 2 cre-

ates the shaded relief map from the DEM, with a vertical exaggeration

of 4. We specified the --overwrite option (you can also use --o) to allow

us to run the script multiple times if need be, replacing the existing

shaded relief map each time.

On line 3, we apply the color rules to the DEM by piping the contents

of the rules file to the r.colors command. Now for the tricky part.

Next we use r.his to create red, green, and blue maps from the DEM

and shaded relief as shown on line 4. The hue is taken from the input

DEM and specified with the h_map parameter. This sets the color for

each cell. The intensity or brightness of each cell is set from the shaded

relief map using the i_map parameter. The remainder of line 4 contains

the names for the output of the red, green, and blue maps.

Finally on line 6, we put the RGB maps back together with r.composite to

create the final map named ancc6_comb. Now we have a nicely colored

hillshade, as shown in Figure 10.4, on the next page.

You may be wondering about the value of the composite map we just

created. Apart from displaying it in GRASS or QGIS, we can export it

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=162

CREATING HILLSHADES 163

Figure 10.4: Colored shaded relief map created with GRASS

to other formats supported by the r.out.* suite of commands in GRASS.

This includes creating a georeferenced TIFF that can be used with other

GIS software for those poor folks not using GRASS and/or QGIS. Let’s

export the colored hillshade to a georeferenced TIFF that we can share:

r.out.tiff -t input=ancc6_comb output=ancc6.tif compression=packbit

The -t switch tells r.out.tiff to create a world file along with the TIFF. If

we use gdalinfo on the newly created file, we can see exactly what we

created.

> gdalinfo ancc6.tif

Driver: GTiff/GeoTIFF

Size is 410, 551

Coordinate System is `'

Origin = (249831.465000,1318446.415363)

Pixel Size = (53.32700000,-53.30280132)

Image Structure Metadata:

COMPRESSION=PACKBITS

Corner Coordinates:

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=163

MERGING DIGITAL ELEVATION MODELS 164

Upper Left (249831.465, 1318446.415)

Lower Left (249831.465, 1289076.572)

Upper Right (271695.535, 1318446.415)

Lower Right (271695.535, 1289076.572)

Center (260763.500, 1303761.494)

Band 1 Block=410x6 Type=Byte, ColorInterp=Red

Band 2 Block=410x6 Type=Byte, ColorInterp=Green

Band 3 Block=410x6 Type=Byte, ColorInterp=Blue

We can see from the gdalinfo output that our new TIFF is a three-

band image and compressed with packbits compression. That’s good,

because it’s what we specified when we created the image. Notice what’s

missing—there is no coordinate system defined for the image. When you

export an image using r.out.tiff, it doesn’t encode the coordinate system

information into the TIFF. We could add this using gdal_translate. For

more information on gdal_translate and friends, see Section 11.2, Using

GDAL and OGR, on page 186.

When you go to share your georeferenced hillshade maps with the rest

of the world, make sure to include the world file. Otherwise, it may fall

off the face of the earth when your friends attempt to display it with the

rest of their data.

10.5 Merging Digital Elevation Models

In this section we’ll look at how to merge DEMs to create a single map

layer in GRASS, and there is a very good reason to do so. As you look

around the Internet, you’ll find that a lot of the available data (DEMs

included) is tiled. This means you have to download more than one file

to get the complete dataset. Sometimes just having one tile is fine, as

long as it covers the area you need. Other times, you might find you

need several adjacent tiles to get the coverage you want. To illustrate

the process, we’ll merge several GTOPO305 DEMs into a single layer.

To begin, we fetched all the DEMs for the Americas and stashed them

in a directory. The DEM files are distributed in a tar-gzipped format so

you’ll have to unpack them before proceeding. On Linux or OS X you

can just use this:

tar -xzf w100s10.tar.gz

On Windows use a zip file manager that supports tar.gz files such as

7-zip. Before we proceed with the import, we need to edit the .HDR file

5. http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=164

MERGING DIGITAL ELEVATION MODELS 165

Exporting Rasters from GRASS

For the colorized hillshade, we used r.out.tiff to create a com-
posite image from each of the raster maps (red, green, and
blue) created by r.his. Compositing the maps results in some
reduction of color, although this likely won’t be noticeable to
the human eye.

For exporting single band rasters, r.out.gdal is a better choice.
This is because a three-band image is always created by
r.out.tiff, even though you specify a single GRASS raster as input.

for each DEM, adding a line containing “PIXELTYPE SIGNEDINT.” This

ensures that the DEMs will be imported correctly (for more information,

see the r.in.gdal manual page). Once we have the DEMs all unpacked and

the .HDR files properly edited, we can import them into our world_lat_lon

location in GRASS using r.in.gdal:

r.in.gdal -e input=./gtopo30/W060N40.DEM output=w060n40

r.in.gdal -e input=./gtopo30/W060N90.DEM output=w060n90

r.in.gdal -e input=./gtopo30/W060S10.DEM output=w060s10

r.in.gdal -e input=./gtopo30/W100N40.DEM output=w100n40

r.in.gdal -e input=./gtopo30/W100N90.DEM output=w100n90

r.in.gdal -e input=./gtopo30/W100S10.DEM output=w100s10

r.in.gdal -e input=./gtopo30/W140N40.DEM output=w140n40

r.in.gdal -e input=./gtopo30/W140N90.DEM output=w140n90

r.in.gdal -e input=./gtopo30/W180N90.DEM output=w180n90

We could use the DEMs as is, loading each into GRASS or QGIS for

display purposes. However, if we want to do some analysis or even cre-

ate a combined shaded relief map, we need to put them all together. To

do this, we use the GRASS r.patch command. The usage for r.patch is

pretty simple. All you do is provide a list of input DEMs and a name

for the output. There are a couple of caveats, though. First, of course,

you have to have a GRASS location for the area of interest, and sec-

ond, make sure you set your GRASS region to the area covered by the

combined DEMs. You can set the region using g.region. To “patch” the

DEMs together, we use the following:

r.patch input=w060n40,w060n90,w060s10,w100n40,w100n90,w100s10, \

w140n40,w140n90,w180n90 output=americas_dem

We just created a merged DEM named americas_dem, consisting of nine

input DEMs. In Figure 10.5, on the next page, you can see the result,

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=165

CLIPPING FEATURES 166

Figure 10.5: Merged GTOPO30 DEM

with the color map set to the same we used in Section 10.4, Colorizing

the Hillshade, on page 161. We could now create a nice hillshade from

the DEM or use it in some sort of analysis, such as melting the Antarctic

ice sheet and determining the effect on sea level using r.lake.

10.6 Clipping Features

Sometimes you want to create or modify a dataset by constraining it

to an area of interest. We call this clipping, and you can do it for both

raster and vector datasets using GRASS. In this section, we’ll look at

clipping the “collars” from a USGS DRG to allow them to display nicely

side by side. We’ll also look at clipping vector features to create a subset

of a larger dataset.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=166

CLIPPING FEATURES 167

Figure 10.6: Overlapping collars on DRGs

Clipping Rasters with GRASS

If you are wondering why would we want to clip rasters in the first

place, let me give you an example. When you download a DRG from the

USGS or other source, more than likely it will have collars around the

image. A collar is that nice white paper border (well, it would be paper

if it wasn’t digital) that contains information about the map, including

the quadrangle, scale, date published, and other tidbits of information.

This is all good information, except when we want to display more than

one of these rasters side by side. In that case, we end up with the

situation shown in Figure 10.6. The collar of the DRG on top of the

map stack blots out information from the DRG below it. To make a

seamless data display, we need to remove the collars.

In its original form, a DRG looks just like the paper map you could

buy from your local map store. That’s because the USGS DRGs are

scanned from those original maps and include not only the good stuff

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=167

CLIPPING FEATURES 168

(contours, lakes, rivers, and so forth) but also the metadata as we indi-

cated previously. When you plop them into GRASS, QGIS, or another

GIS application, they look just like you threw them down on the kitchen

table and tried to match them up. Fortunately, GRASS provides a fairly

easy way to make the maps play nicely with each other.

The steps to clip a raster are as follows:

1. Create a vector map to be used as the area of interest.

2. Convert the vector map to a raster map.

3. Use the new raster map as a mask for clipping.

4. Create the newly clipped raster using raster algebra.

5. Clean things up.

Let’s work through the process and see whether we can’t make our

rasters fit together nicely. First we have to import the rasters into

GRASS in a proper location. Generally you’ll find your DRG is in UTM

coordinates. You’ll need a GRASS location in the appropriate UTM zone

in order to import the raster. If you are fortunate enough to be working

with data all in the same zone, then you’re all set. If your rasters span

UTM zones or you are working on a more regional scale, you may need

to project the rasters to a different coordinate system. You can easily

do this before you import into GRASS using gdalwarp. For examples of

gdalwarp, see Section 11.2, Using GDAL and OGR, on page 186.

For the sake of our example, I’m going to project the DRGs to the Alaska

Albers projection, since that’s where I ultimately want to use them. This

will eventually allow me to create a seamless DRG layer for the whole

state. To warp the DRGs from UTM Zone 6 to Alaska Albers, I used the

following command:

gdalwarp -t_srs "+proj=aea +lat_1=55 +lat_2=65 +lat_0=50 +lon_0=-154 \

+x_0=0 +y_0=0 +ellps=clrk66 +datum=NAD27" i61149c6.tif i61149c6_albers.tif

Now you’re thinking that doesn’t look so simple, but the ugly-looking

part of the command comes from the need to specify the projection in

proj format. Since the Alaska Albers coordinate system in meters doesn’t

have an EPSG code, we have to spell it all out. If you’re lucky, there will

be an EPSG code for your target projection, and you can just use the

EPSG:srid notation with gdalwarp to project the raster. For example,

had I wanted to use map units of feet, the EPSG projection 2964 is

perfect, and the gdalwarp command would have been this:

gdalwarp -t_srs EPSG:2964 i61149c6.tif i61149c6_albers.tif

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=168

CLIPPING FEATURES 169

We’re now ready to import the DRG into our Alaska Albers GRASS loca-

tion that we already have set up. To do this, we’ll use r.in.gdal from the

GRASS shell. In fact, this whole process will be done using shell com-

mands rather than the GUI interface. Once we’re done, we can check

the results by using gis.m in GRASS or by loading the rasters into QGIS.

To import the raster, do use:

r.in.gdal input=i61149c6_albers.tif output=ancb8_collars

Now we have the raster complete with collars in GRASS. The next thing

we need is a vector area map that outlines just the “good” portion of the

DRG in which we are interested. In most cases, you can find a vector

quadrangle boundary layer somewhere on the Internet that is perfectly

suited for this task. If not, you’ll have to warm up your GRASS digitiz-

ing skills and create a new vector map by digitizing the four corners of

the DRG. If you do find a vector layer of the quadrangles for your area,

you have a bit of work to do as well, since we want only one of the quad-

rangle polygons. In the case of Alaska, the quadrangle vector map has

3,011 polygons, representing both the 1:250,000 and 1:63,360 scale

quadrangles. To clip the DRG, we need to create a new vector map

by extracting the quadrangle of interest. We do this using the v.extract

command:

v.extract input=itma output=ancb8 where="TILE_NAME='ANCB8'"

The input map is itma, and it contains the quadrangle boundaries.

We want to create a new map named ancb8 with the boundary of the

Anchorage B8 quadrangle. Notice the key part of the v.extract command:

the where clause. This tells GRASS to extract only features where the

attribute TILE_NAME is equal to “ANCB8,” giving us a single polygon,

which is what we want.

To use the boundary of the quadrangle as a mask, our new vector map

has to be converted to a raster using v.to.rast:

v.to.rast input=ancb8 output=ancb8_itma use=val

This creates a raster map named ancb8_itma that covers the area of the

polygon in ancb8. The use=val parameter tells GRASS to set the cells to

the value specified by the value parameter. Of course, you noticed that

we didn’t specify a value parameter. That’s because it defaults to 1 if

not specified, and this is exactly what we want. If we were to load up

the ancb8_itma raster in GRASS or QGIS and look at the cell values,

we’d find that they are indeed all set to 1. This is important—when we

use this map as a mask, only those cells lying in our area of interest

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=169

CLIPPING FEATURES 170

will have a value of 1. When we get to the final step, this will cause

every cell in our DRG outside the bounds of ancb8_itma to be set to

null, effectively stripping the collars.

We are now ready to actually do the clipping operation. First we set the

GRASS region to that or our ancb8_collars DRG:

g.region rast=ancb8_collars

We then use the ancb8_itma raster we created from our vector quadran-

gle boundary as a mask:

g.copy ancb8_itma,MASK

Now that the mask is set, we use a very simple bit of map algebra to

create the clipped DRG:

r.mapcalc ancb8=ancb8_collars

Notice the r.mapcalc operation looks like it just creates a new raster

from every cell in our original DRG. The magic is in the mask, which

controls which cells in the new raster are set to the same values as

those in the original. Cells outside the mask are set to null. The last

step is to remove the mask:

g.remove MASK

Repeating the process for the adjacent DRG (ANCB7) gives us two ras-

ters that we can now display seamlessly, as shown in Figure 10.7, on

the next page. Comparing this to what we started with in Figure 10.6,

on page 167, you can see that we have attained success. If we wanted

to, we could combine the DRGs into a single raster using r.patch, sim-

ilar to the method described in Section 10.5, Merging Digital Elevation

Models, on page 164.

To put it all together, the sequence of commands we used to get from

overlapping to seamless nirvana is shown here in the form of a bash

script:

import the DRG

r.in.gdal input=i61149c6_albers.tif output=ancb8_collars

Extract the quad boundary from the boundary map

v.extract input=itma output=ancb8 where="TILE_NAME='ANCB8'"

Convert the extracted vector quad feature to a raster map

v.to.rast input=ancb8 output=ancb8_itma use=val

Set the region to operate on to that of our DRG

g.region rast=ancb8_collars

Set the mask for the operation to the raster created from the

quad boundary vector

g.copy ancb8_itma,MASK

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=170

CLIPPING FEATURES 171

Figure 10.7: Seamless display of clipped DRGs

Use map algebra to create the "clipped" raster

r.mapcalc ancb8=ancb8_collars

Delete the mask

g.remove MASK

Clipping Vectors with GRASS

Clipping a vector map in GRASS is simpler than the raster exercise we

just went through. Basically, we need to specify the map we want to

clip and the map to be used as the clipping layer. Once we have our

data in order, we’ll use the v.overlay command to do the work.

In this example, we will clip out the rivers that are contained in a sin-

gle quadrangle. Our starting situation is shown in Figure 10.8, on the

following page, with the quadrangle shown in yellow. The first task is to

extract just the TANA5 quadrangle from our itma quadrangle boundary

map:

v.extract input=itma output=tana5 where="TILE_NAME='TANA5'"

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=171

CLIPPING FEATURES 172

Figure 10.8: Rivers and the quadrangle for clipping

This gives us the new vector map tana5 that contains just the quadran-

gle of interest. This is the same method we used in our raster clipping

process. To clip out the rivers, we simply do an intersection of the two

maps using the v.overlay command:

v.overlay ainput=majrivers atype=line binput=tana5 operator=and \

output=majrivers_tana5

In Figure 10.9, on the next page, you can see the result of the clipping

operation. The rivers that fall within the Tanana A5 quadrangle are all

that remain in our new vector layer (majrivers_tana5). We’ve also included

the Tanana A5 quadrangle as a backdrop in the figure. Looking at the

v.overlay command, you can see that we specified the majrivers map as

the first input and indicated its type using the atype parameter. The

tana5 vector map we created using v.extract was specified as the sec-

ond input map using the binput parameter. The key in this operation is

declaring the proper operator (and) since v.overlay has four possibilities.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=172

CLIPPING FEATURES 173

Figure 10.9: Rivers clipped to a quadrangle boundary

Clipping features from larger map layers to create smaller ones is a

common GIS operation, especially when your project is focused in a

smaller area and you don’t need all the extra features running around

your map. The GRASS v.overlay command provides a quick and easy

way to subset your data into new map layers.

We’ll talk about some other vector overlay operations when we get to

Chapter 12, Getting the Most Out of QGIS and GRASS Integration, on

page 208.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=173

Chapter 11

Using Command-Line Tools
Command-line tools provide a powerful way to manipulate data, espe-

cially when you want to process them in batches using a script. This

chapter describes some of the more common and useful command-line

tools and illustrates how to use them to perform common data manip-

ulation, conversion, and map generation tasks. We will take a look at

the following:

• Generic mapping tools (GMT)

• Converting and appending data using GDAL/OGR

• PostGIS

11.1 GMT

For a very brief introduction to GMT, see Appendix A, on page 269. In

this section, we will take a look at using GMT to create nicely formatted

maps for displaying and printing. But before we can do that, we need

to make sure you have GMT installed. If not, take a look at Section B.5,

GMT , on page 293 for some hints to get you started.

The GMT commands create Encapsulated PostScript (EPS) output. If

you are using Linux or OS X, you should already have the tools you

need to view .eps files. On Windows you will need a viewer that supports

EPS. One such viewer is GSview, which allows EPS files to be viewed

and printed. For other options, use your favorite Internet search engine

to find a suitable application that works for you.

GMT 175

Figure 11.1: Hemisphere view of Earth created with GMT

A Simple GMT Example

To get started, let’s take a look at how to generate a simple globe like

that shown in Figure 11.1. The code is pretty simple, although it’s a bit

arcane at first glance:

Download gmt_simple_world.sh

pscoast -JA0/20/4.5i -Bg30/g15 -Dl -A2000 -G187/142/46 -S109/202/255 \

-R0/360/-90/90 -P -N1 > simple_hemi.eps

Let’s examine the switches used to generate the image. First, GMT’s

pscoast command requires information about the coordinate system

you want to use. This is specified by using the -J switch. GMT supports

a nice selection of coordinate systems including the following:

• Albers Conic Equal Area

• Lambert Conic Conformal

• Equidistant Conic

http://media.pragprog.com/titles/gsdgis/code/gmt_simple_world.sh
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=175

GMT 176

• Lambert Azimuthal Equal Area

• Stereographic Equal Angle

• Orthographic

• Azimuthal Equidistant

• Gnomonic

• Mercator

• Transverse Mercator

• Universal Transverse Mercator

• Oblique Mercator

• Cassini Cylindrical

• Cylindrical Equidistant

• General Cylindrical

• Miller Cylindrical

• Miscellaneous

Each projection has a specific argument that must be supplied to the

-J switch. Looking back at the globe example, you’ll see that -JA was

used to specify the Lambert Azimuthal Equal Area projection. I know

because the programs that make up GMT provide a complete descrip-

tion of what’s expected as input when you run them with no options.

For example, if we enter the pscoast command, we get several screens

of options and switches. The first part contains the available projection

switches and their syntax:

$ pscoast

pscoast 3.4.5 - Plot continents, shorelines, rivers, and borders on maps

usage: pscoast -J<params> -R<west>/<east>/<south>/<north>

[-A<min_area>[/<min_level>/<max_level>]] [-B<tickinfo>] [-C[<fill>]]

[-D<resolution>] [-Eaz/el] [-G[<fill>]]

[-I<feature>[/<pen>]] [-K]

[-L[f][x]<lon0>/<lat0>/<slat>/<length>[m|n|k]]

[-M[<flag>]] [-N<feature>[/<pen>]] [-O]

[-P] [-Q] [-S<fill>]

[-U[dx/dy/][label]] [-V]

[-W[<pen>]] [-X<x_shift>]

[-Y<y_shift>] [-bo[s][<n>]]

[-c<ncopies>]

-J Selects map proJection. (<scale> in cm/degree, <mapwidth> in cm)

-Ja|A<lon0>/<lat0>/<scale (or radius/lat)|mapwidth> (Lambert Azimuthal

Equal Area)

-Jb|B<lon0>/<lat0>/<lat1>/<lat2>/<scale|mapwidth> (Albers Equal-Area

Conic)

-Jc|C<lon0>/<lat0><scale|mapwidth> (Cassini)

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=176

GMT 177

-Jd|D<lon0>/<lat0>/<lat1>/<lat2>/<scale|mapwidth> (Equidistant Conic)

-Je|E<lon0>/<lat0>/<scale (or radius/lat)|mapwidth> (Azimuthal

Equidistant)

-Jf|F<lon0>/<lat0>/<horizon>/<scale (or radius/lat)|mapwidth> (Gnomonic)

-Jg|G<lon0>/<lat0>/<scale (or radius/lat)|mapwidth> (Orthographic)

-Jh|H<lon0>/<scale|mapwidth> (Hammer-Aitoff)

-Ji|I<lon0>/<scale|mapwidth> (Sinusoidal)

-Jj|J<lon0>/<scale|mapwidth> (Miller)

-Jk|K[f|s]<lon0>/<scale/mapwidth> (Eckert IV (f) or VI (s))

-Jl|L<lon0>/<lat0>/<lat1>/<lat2>/<scale|mapwidth> (Lambert Conformal

Conic)

-Jm|M (Mercator). Specify one of two definitions:

-Jm|M<scale|mapwidth>

-Jm|M<lon0>/<lat0>/<scale|mapwidth>

-Jn|N<lon0>/<scale|mapwidth> (Robinson projection)

-Jo|O (Oblique Mercator). Specify one of three definitions:

-Jo|Oa<orig_lon>/<orig_lat>/<azimuth>/<scale|mapwidth>

-Jo|Ob<orig_lon>/<orig_lat>/<b_lon>/<b_lat>/<scale|mapwidth>

-Jo|Oc<orig_lon>/<orig_lat>/<pole_lon>/<pole_lat>/<scale|mapwidth>

-Jq|Q<lon0>/<scale|mapwidth> (Equidistant Cylindrical)

-Jr|R<lon0>/<scale|mapwidth> (Winkel Tripel)

-Js|S<lon0>/<lat0>/[<slat>/]<scale (or radius/lat)|mapwidth>

(Stereographic)

-Jt|T (Transverse Mercator). Specify one of two definitions:

-Jt|T<lon0>/<scale|mapwidth>

-Jt|T<lon0>/<lat0>/<scale|mapwidth>

-Ju|U<zone>/<scale|mapwidth> (UTM)

-Jv|V<lon0>/<scale/mapwidth> (van der Grinten)

-Jw|W<lon0>/<scale|mapwidth> (Mollweide)

-Jy|Y<lon0>/<lats>/<scale|mapwidth> (Cylindrical Equal-area)

-Jp|P[a]<scale|mapwidth>[/<origin>] (Polar [azimuth] (theta,radius))

-Jx|X<x-scale|mapwidth>[l|p<power>][/<y-scale|mapheight>[l|p<power>]]

(Linear projections)

(See psbasemap for more details on projection syntax)

Each projection requires different parameters. In our example we used

-JA0/20/4.5i. This selects the projection (Lambert Azimuthal Equal Area)

and sets the longitude to 0 degrees, the latitude to 20 degrees, and

the width of the map to 4.5 inches. Note that either -J or -j can be

used. Specifying uppercase indicates that the last parameter (in our

case 4.5i) is width. Had we used a lowercase j, GMT would interpret the

last parameter as a scale value. Widths can be specified using c, i, p, or

m, which correspond to centimeters, inches, points (1/72 of an inch),

and meters.

You can quickly see two things:

• GMT has a lot of options.

• You might want to read the manual.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=177

GMT 178

Figure 11.2: Globe centered on 180/65

This is an important point—sometimes it takes a bit of digging and

looking at examples to find the switches, arguments, or parameters

needed to accomplish your goal. Reading the manual is a good place to

start.

Let’s see what happens if we modify the -J switch a bit. Let’s flip the

view around 180 degrees and move it closer to the North Pole. To do

this, use -JA180/60/4.5i. Leave all the other parameters the same, and

run the pscoast command. Our command is now as follows:

Download gmt_simple_world.sh

pscoast -JA180/65/4.5i -Bg30/g15 -Dl -A2000 -G187/142/46 -S109/202/255 \

-R0/360/-90/90 -P -N1 > simple_180_world.eps

Looking at Figure 11.2, you see that indeed we are now looking at the

International Date Line, and our view is centered at 60 degrees north

latitude.

http://media.pragprog.com/titles/gsdgis/code/gmt_simple_world.sh
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=178

GMT 179

Joe Asks. . .

Where Does the GMT Data Come From?

GMT actually provides a number of datasets in five resolu-
tions ranging from fine to crude. When installing GMT, you can
choose which resolutions you want to include.

There are also tools available to convert other formats for use
with GMT. Use your favorite search engine to find tools applica-
ble to your situation.

Let’s take a look at the other switches used to create the globe. The -B

switch defines the intervals for the boundary tick marks. In the globe

case, these are the lines of longitude and latitude. The arguments to the

-B switch indicate a gridline spacing of 30 degrees in the x (longitude)

direction and 15 degrees in the y (latitude) direction. Note how the x

and y settings are separated by a forward slash.

The -D switch selects the resolution of the dataset used in creating the

globe. The available choices are f, h, i, l, and c, which correspond to full,

high, intermediate, low, and crude. Some of these options may not be

available to you if you didn’t install all the data sets with GMT. For the

globe, we used the low resolution data set.

To control the display of features, the -A switch allows you to specify

that features below a certain size not be drawn. In our example, we

specified that features with an area greater smaller 2,000 square kilo-

meters should not be displayed.

The fill color used for the countries is specified using the -G switch. The

color can be specified using RGB notation, a shade of gray, or a pattern.

In the globe, we used 187/142/46 to create a light brown color. We could

have specified a fill pattern using -Gp100/30. This fills the land masses

with pattern number 30 at a resolution of 100 dpi. If we want to get the

highest possible resolution for the pattern, we can use a resolution of

0. Specifying -GP inverts the pattern. GMT has 90 predefined patterns

available for your use, and you can find examples of each in the GMT

Technical Reference. The same options apply for filling the water areas

in GMT, except we use the -S switch. There are a number of variations

for specifying fill colors, and these are well documented in the GMT

manuals and tutorial.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=179

GMT 180

The other major switch used in generating the globe is -R. This specifies

the extent of the map we want to generate. In the case of the globe,

we obviously wanted the entire planet, so we specified an x range of

0 to 360 degrees and a y range of -90 to 90. The range is specified as

west/east/south/north. In our next example, we will use -R to constrain

our map to a smaller area.

The other switch of interest is -N1. This tells GMT to draw national

boundaries in addition to the coastline. Other arguments to -N allow you

to draw state boundaries within the Americas and marine boundaries.

The -P switch simply sets the page orientation to portrait. Landscape is

the default.

A Flat Example

Let’s shift gears a bit and look at another example of using GMT, this

time for a smaller area. For this example, we’ll create a map of Alaska

and annotate it. As I said before, the -R switch controls the extent of

our map. Alaska ranges from about 172 degrees east longitude to 130

degrees west. Using 360 degrees for the entire globe, this translates to

a region extending from 172 degrees to 230 degrees.

For the Alaska map, we will use the Albers Equal Area Conic projection.

Looking at the syntax for pscoast reveals that this requires the use of

the -Jb switch. In this case, we use the lowercase b to indicate that we

will specify the size of the map using a scale. First let’s look at the code

in gmt_alaska.sh:

Download gmt_alaska.sh

pscoast -Jb-154/50/55/65/1:12000000 -R172/230/51/72 -B10g5/5g5 -W1p/0/0/0 \

-I1/2p/0/192/255 -I2/2p/0/192/255 -I3/1p/0/192/255 -I4/1p/0/192/255 \

-G220/220/220 -S0/192/255 -L210/54/54/1000 -P -N1/1p/0/0/0 -Dl \

>gmt_alaska_coast.eps

This looks like quite a complex command, but it’s really not too bad

once you get past all the numbers and slashes.

Projection

First note we specified the projection using -Jb-154/50/55/65/1:12000000.

Let’s pick that apart a bit to see what’s happening. The Albers projec-

tion requires the longitude of the central meridian, the latitude of the

origin, and the latitude of the two standard parallels. That’s what you

see specified as -154/50/55/65. These are the standard values used for

the Albers projection in Alaska. You can actually specify any values

http://media.pragprog.com/titles/gsdgis/code/gmt_alaska.sh
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=180

GMT 181

you want, but if there is a standard for the area you are mapping, you

should use it.

The remaining part of the -Jb switch is the size of the output. In this

case, we specified it as a scale of 1:12,000,000. This means that one

unit on the map represents 12,000,000 units on the ground (in this

case meters). If we just wanted output to fit on a page, we could specify

-JB-154/50/55/65/6.0i to get a 6-inch-wide image.

Map Extent

To set the map extent, we use the -R switch. In this case we already

determined that Alaska ranges from 172 to 230 degrees longitude and

roughly 51 to 72 degrees north latitude. To create the map covering this

area, we use -R172/230/51/72.

Grid Lines

In this example, we not only want to draw grid lines but also want to

annotate them. This is done using -B10g5/5g5. This tells pscoast to draw

grid lines 5 degrees apart for both latitude and longitude. The annota-

tion is drawn at 10 degree intervals for longitude and 5 degree intervals

for latitude. If you look at the documentation for pscoast, you will see

that the first number after the -B is the annotation interval followed

by the grid line interval. This notation gives you a lot of flexibility in

drawing and labeling gridlines.

Rivers

To make our map more interesting, we’ll add rivers to it. GMT comes

with several levels of river detail that are specified with the -I switch.

The levels we are using are as follows:

• Permanent major rivers

• Additional major rivers

• Additional rivers

• Minor rivers

Note the -I options we specified in the pscoast command. One is required

for each river level we want to include on the map. The first two (major

rivers) are drawn using a pen width of 2 (2p), while the third and

fourth level are drawn with a width of 1 (1p). We use the same color

(0/192/255) for each river. If we wanted to include the intermittent

major rivers (fifth level), we would add -I5/1p/0/192/255 to the pscoast

command.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=181

GMT 182

Fill Colors

Next we specify the fill colors for the land and water areas using the

-G and -S switches and add the RGB values to specify the color. For

land we use a light gray with RGB values of 220/220/220. For the water

0/192/255 gives us a nice cyan color. Keep in mind that we could also

use a pattern or shade for filling land and water areas.

Scale Bar

A scale bar can easily be added to the map using the -L switch. Scale

bars can be simple or fancy. In this case, we’ll just create a simple one

and place it in an open area on the map. How do we know it’s open?

Well, part of the process is running pscoast and tweaking the options

and then running it again until we get the look we want. To create the

scale bar, we need the latitude and longitude of the point where we

want to place it. Since scale varies as we move further from the equa-

tor, we also specify the latitude at which we want the scale calculated.

Lastly, we indicate the length the scale bar should span. The default

is kilometers, but you can append m for miles or n for nautical miles.

Putting it all together, we have -L210/54/54/1000, which gives a 1,000 km

scale bar calculated at 54 degrees north latitude and originating at 210

degrees longitude and 54 degrees latitude.

The Last Bits

The remainder of the command tells pscoast to use portrait mode (-P),

draw country boundaries in black using a pen width of 1(-N1/1p/0/0/0),

and use the low-resolution data (-Dl). The low-resolution dataset is the

default, but we specified it here so you could see the syntax.

The Result

You can see the result of all these command switches and options in

Figure 11.3, on the next page. We have a nice map of Alaska, with grid

lines, borders, and degree annotations. The land and water is filled as

we specified, and the scale bar is sitting nicely in the Gulf of Alaska.

Overlaying Data

Now that we have used most of the common options, let’s look at one

more example with pscoast. This time we’ll generate a world map and

overlay point data from a delimited text file. You can take that concept

and expand it to create overlays of multiple datasets. In this case, we

will overlay the location of registered Quantum GIS users throughout

the world.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=182

GMT 183

Figure 11.3: Alaska coastline generated with GMT

First let’s look at the command to generate the base map:

Download gmt_qgis_users.sh

pscoast -JN0/38 -R-180/180/-90/90 -K -W -G220/220/220 -S0/192/255 -N1 \

-P -B30g5:."Quantum GIS Users": > qgisusers.eps

About the only thing new in this command is we added a title to the map

by appending a colon and a period to the -B arguments and then the title

string. If you are getting the idea the -B switch has lots of permutations,

you are correct. Some have called it the most complicated (or confusing)

switch in the GMT suite of tools. Fortunately, it’s well documented.

Note that we used -JN to specify the Robinson projection, centering the

map at 0 degrees longitude with a width of 38 centimeters.

This gives us a Robinson base map of the world with grid lines and

annotation of the tick marks. To add an overlay of data, we need to

make a couple of modifications to the base map. First we need to specify

that we want to be able to write to the output file in “append” mode. This

is done using the -K switch. This allows us to overlay the data created

with the next command. Without it, our next command would generate

http://media.pragprog.com/titles/gsdgis/code/gmt_qgis_users.sh
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=183

GMT 184

GMT and Multiple Commands

When you want to create a more complex map, you will wind
up running multiple GMT commands. The trick is to make sure
you specify in the first command that more PostScript code will
be appended to the output. Without this, you will end up with
every command generating a new page in the output. This can
be useful, but when you are trying to create an overlay of mul-
tiple commands, it’s annoying. Create the base map using the
-K switch, and then in subsequent commands include the -O to
invoke overlay mode.

a new page in the output, and we would have to hold it up to the window

to see the overlay.

To add the overlay, we need two things: a text file containing the coor-

dinates of each point and the psxy command. Here is a snippet from the

text file we will use to create the map:

-4.0000000000,36.0000000000

-71.9146000000,42.8053750000

-122.7833300000,53.9176000000

5.6667000000,51.9667000000

-0.9519000000,51.4450000000

11.0800000000,46.0400000000

-124.0800000000,40.8800000000

These are just x and y values (longitude and latitude) for each point we

want to create on the map. To add these, we use psxy, making sure to

include the -O switch so the points overlay the base map. The complete

code to generate the base map and the overlay is as follows:

Download gmt_qgis_users.sh

pscoast -JN0/38 -R-180/180/-90/90 -K -W -G220/220/220 -S0/192/255 -N1 \

-P -B30g5:."Quantum GIS Users": > qgisusers.eps

psxy qgis_users.txt -JN -O -R -Sc0.15c -G255/0/0 >>qgisusers.eps

Note that in the psxy command we didn’t need to supply any arguments

to the projection or extent switches since they were fully specified when

the base map was created. We included the overlay switch and a color

for the points using -G. The -Sc switch indicates we want to plot the

points using circles. There are several other symbol types you can use

including star, bar, diamond, and ellipse.

http://media.pragprog.com/titles/gsdgis/code/gmt_qgis_users.sh
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=184

GMT 185

Quantum GIS Users

180˚

180˚

210˚

210˚

240˚

240˚

270˚

270˚

300˚

300˚

330˚

330˚

0˚

0˚

30˚

30˚

60˚

60˚

90˚

90˚

120˚

120˚

150˚

150˚

180˚

180˚

-90˚ -90˚

-60˚ -60˚

-30˚ -30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

90˚ 90˚

Figure 11.4: Quantum GIS users plotted on a Robinson projection

using GMT

We specified the symbol size as 0.15 cm. You should recognize the rest

of the parameters from our previous discussion.

The final result is shown in Figure 11.4. This combines the base map

with the user data. We could have added other point data by running

another psxy command.

As you can see, GMT is a handy tool for creating maps from the com-

mand line. We’ve really only scratched the surface of its capability.

More GMT

GMT has many more features than we have covered—there are sixty-

four commands at last count. You should have the basics down, allow-

ing you to venture forward and generate even more impressive maps.

Make sure to consult the GMT documentation for additional informa-

tion, including cookbook recipes and tutorials.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=185

USING GDAL AND OGR 186

For additional information on using GMT with GRASS, see “Producing

Press-Ready Maps with GRASS and GMT” by Dylan Beaudette in OSGeo

Journal, Volume 1, May 2007.1

11.2 Using GDAL and OGR

We have seen examples of the GDAL and OGR utilities previously in

several sections. Now we will take a more focused look at the utilities

and how they are used. You will quickly see that this set of tools belongs

in your toolkit, especially if you plan to do any data manipulation.

If you want a quick overview of the formats supported by GDAL and

OGR, as well as a brief summary of each utility, see Section A.2, GDAL/

OGR, on page 283 in our survey of OSGIS software.

Getting Information

One of the key uses of the GDAL/OGR utilities is getting information

about a supported raster or vector file. The commands used are gdal-

info and ogrinfo, respectively. Let’s take a better look at each of these

utilities.

Vector Information

You download a shapefile from the Internet and unzip it. Now you have

a batch of files sitting there (remember, a shapefile consists of at least

three files). What attributes does the shapefile contain? What kind of

features does it store—points, lines, or polygons? What projection or

coordinate system does it use? We are in luck; ogrinfo can answer all

those questions for us.

The ogrinfo utility can provide information on both a single layer and all

layers in a directory. For example, for a summary of all shapefiles in a

directory, we just have to provide the directory name:

$ ogrinfo ./desktop_gis_data

INFO: Open of `./desktop_gis_data'

using driver `ESRI Shapefile' successful.

1: cities (Point)

2: AKvolc_v3 (Point)

3: world_borders (Polygon)

From the output we can see that the directory desktop_gis_data contains

three shapefiles: cities, AKvolc_v3, and world_borders. The results for each

1. http://www.osgeo.org/files/journal/final_pdfs/OSGeo_vol1_GRASS-GMT.pdf

http://www.osgeo.org/files/journal/final_pdfs/OSGeo_vol1_GRASS-GMT.pdf
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=186

USING GDAL AND OGR 187

shapefile includes its type. This is good summary information, but what

if we want more detail? By specifying the layer name, ogrinfo will give

us very detailed information about the layer:

$ ogrinfo -so -al ./desktop_gis_data cities

INFO: Open of `./desktop_gis_data'

using driver `ESRI Shapefile' successful.

Layer name: cities

Geometry: Point

Feature Count: 606

Extent: (-165.270004, -53.150002) - (177.130188, 78.199997)

Layer SRS WKT:

GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",

SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.0174532925199433]]

NAME: String (40.0)

COUNTRY: String (12.0)

POPULATION: Real (11.0)

CAPITAL: String (1.0)

The result gives us a detailed summary of information about the cities

layer. We can see it is a point layer with 606 features. The coordinate

system is WGS84, meaning the coordinates are in latitude and longi-

tude. We also get a summary of the fields and their types, along with the

extent of the layer. Armed with this information, we can easily deter-

mine whether a layer is suitable for our use and is in an appropriate

coordinate system.

Notice the -so switch in the previous example. We used it in combination

with the -al switch in order to get detailed information about the layer.

The -so switch tells ogrinfo to print a summary only; otherwise, it would

also print each record in the shapefile, complete with all the attributes

as well as the coordinate information. There are times you may want

to view all the information, perhaps dumping it to a text file for further

use.

We can use the OGR utilities with more than just shapefiles. To get

a quick list of the supported drivers for your installation of OGR, use

the --formats switch. The formats you find available will depend on how

your version of OGR was compiled. If our version contains support for

PostgreSQL, we can get information on layers stored in our PostGIS-

enabled database.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=187

USING GDAL AND OGR 188

$ ogrinfo "PG:dbname=gis_data host=madison"

INFO: Open of `PG:dbname=gis_data host=madison'

using driver `PostgreSQL' successful.

1: edit_test (Point)

2: country (Multi Polygon)

3: air_intl_buffer_500k12 (Polygon)

4: bug_test (Polygon)

5: air_intl_buffer_500k14 (Polygon)

6: 64districts (Multi Polygon)

7: 94election (Multi Polygon)

8: admin_nps (Multi Polygon)

9: admin_nra (Multi Polygon)

10: admin_nwr (Multi Polygon)

...

An important part of using ogrinfo with PostGIS is the connection string,

specified with “PG:” and followed by the appropriate parameters. In

our case, we needed only to specify the database name and the host.

Depending on how your database authentication is set up, you may

need to include “user=” and “password=” (with the appropriate values)

in your connection string.

This database contains more than 100 layers, so we truncated the

listing—but you get the idea. We didn’t have to connect to the database,

log in, and issue some SQL to determine what layers were available. We

didn’t even have to be on the same host as the database in order to

get the information—of course this assumes you have a properly set

up database with appropriate permissions. Let’s get the details for the

country layer, remembering to use the -so switch so we don’t dump the

whole world to our command shell:

$ ogrinfo -so -al "PG:dbname=gis_data host=madison" country

INFO: Open of `PG:dbname=gis_data host=madison'

using driver `PostgreSQL' successful.

Layer name: country

Geometry: Multi Polygon

Feature Count: 251

Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)

Layer SRS WKT:

GEOGCS["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=188

USING GDAL AND OGR 189

Geometry Column = shape

cntry_name: String (40.0)

color_map: String (1.0)

curr_code: String (4.0)

curr_type: String (16.0)

fips_cntry: String (2.0)

gid: Integer (0.0)

gmi_cntry: String (3.0)

landlocked: String (1.0)

pop_cntry: Integer (0.0)

sovereign: String (40.0)

The output looks similar to that for a shapefile. The thing to note is, in

addition to the fields in the layer, ogrinfo also identifies the name of the

geometry column for us—in this case it’s shape.

Raster Information

For getting information on your rasters, gdalinfo is the tool to use. We

introduced this back in Section 4.1, Viewing Raster Data, on page 67

where we examined a GeoTIFF. Let’s look at some of the options and

formats associated with the utility.

To get a list of all the supported formats at your disposal, use the switch

--formats. When you do this, you’re likely going to get a long list. I won’t

list all fifty-three of them here, but just the first few as an example:

$ gdalinfo --formats

Supported Formats:

VRT (rw+): Virtual Raster

GTiff (rw+): GeoTIFF

NITF (rw+): National Imagery Transmission Format

HFA (rw+): Erdas Imagine Images (.img)

SAR_CEOS (ro): CEOS SAR Image

CEOS (ro): CEOS Image

ELAS (rw+): ELAS

AIG (ro): Arc/Info Binary Grid

AAIGrid (rw): Arc/Info ASCII Grid

SDTS (ro): SDTS Raster

DTED (rw): DTED Elevation Raster

PNG (rw): Portable Network Graphics

JPEG (rw): JPEG JFIF

We can use gdalinfo on files that aren’t “strictly” GIS files. For example,

here is the output for a JPEG from a digital photo:

$ gdalinfo -mm DSCN3898.JPG

Driver: JPEG/JPEG JFIF

Size is 1280, 960

Coordinate System is `'

Metadata:

EXIF_ImageDescription=

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=189

USING GDAL AND OGR 190

EXIF_Make=NIKON

EXIF_Model=E4300

EXIF_XResolution=(300)

EXIF_YResolution=(300)

EXIF_DateTime=2007:02:17 07:29:59

...

Corner Coordinates:

Upper Left (0.0, 0.0)

Lower Left (0.0, 960.0)

Upper Right (1280.0, 0.0)

Lower Right (1280.0, 960.0)

Center (640.0, 480.0)

Band 1 Block=1280x1 Type=Byte, ColorInterp=Red

Computed Min/Max=0.000,255.000

Band 2 Block=1280x1 Type=Byte, ColorInterp=Green

Computed Min/Max=1.000,255.000

Band 3 Block=1280x1 Type=Byte, ColorInterp=Blue

Computed Min/Max=0.000,255.000

There was a lot more metadata in the output, forty-six lines in total.

Basically, every EXIF field a camera stores was dumped. The point is,

gdalinfo can provide detailed information for the formats it supports—

and, yes, just in case you were wondering, you can georeference a

JPEG. You won’t see any coordinate system information for the digital

photo; however, if there was a world file associated with it, the informa-

tion would be included in the output.

Using gdalinfo is a quick and efficient way to get information on your

rasters, without having to open them in your GIS application. For com-

plete information on all the options, see the GDAL documentation.2

Converting Data

The GDAL and OGR utilities allow you to convert data between formats,

optionally changing some of the characteristics in the process. In this

section, we’ll look at options and techniques for data conversion, both

raster and vector.

Vector Conversion

First off, let’s think about why you might want to convert from one

vector format to another:

• You have data in a format that isn’t usable in your desktop GIS

application.

• You need to provide data (to someone or to another application) in

a different format than what you are using.

2. http://www.gdal.org/gdalinfo.html

http://www.gdal.org/gdalinfo.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=190

USING GDAL AND OGR 191

• The data is in the wrong coordinate system or datum.

• You want to create a subset of the data based on a bounding box.

• You want to create a subset of the data based on an attribute

query.

• You want to load data into PostgreSQL/PostGIS.

These all sound like good reasons for doing a conversion. Let’s look at

a few simple examples to get you started with ogr2ogr.

Format Conversion

First let’s convert a vector layer from one format to another. In the

simplest case, we specify the format we want to convert to, the source

layer, and the destination:

$ ogr2ogr -f GML cities.gml cities.shp

$ ogrinfo cities.gml

Had to open data source read-only.

INFO: Open of `cities.gml'

using driver `GML' successful.

1: cities

We just converted the cities.shp shapefile to GML.3 Notice there was no

output or confirmation from ogr2ogr, but the file was created and con-

tains all features in the cities layer in GML. Going the other direction is

just as easy:

$ ogr2ogr -f "ESRI Shapefile" cities_from_gml.shp cities.gml

$ ogrinfo cities_from_gml.shp

INFO: Open of `cities_from_gml.shp'

using driver `ESRI Shapefile' successful.

1: cities_from_gml (Point)

Notice that we specify the format we are converting to using the -f

switch. Remember you can get a list of supported formats passing the

--formats switch to ogr2ogr. If the format name contains spaces, you’ll

have to quote it as we did for the ESRI shapefile conversion.

Data Loading

We can use ogr2ogr to load data into a PostGIS-enabled PostgreSQL

database. If you are loading just shapefiles, you could use the shp2pgsql

utility that comes with PostGIS. Otherwise, you will find ogr2ogr handy

for loading other data types.

3. Geographic Markup Language—see http://www.opengeospatial.org/standards/gml.

http://www.opengeospatial.org/standards/gml
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=191

USING GDAL AND OGR 192

Let’s load the GML file we created into PostgreSQL:

$ ogr2ogr -f PostgreSQL -a_srs EPSG:4326 "PG:dbname=gis_data host=madison"\

cities.gml

$ ogrinfo -so -al "PG:dbname=gis_data host=madison" cities

INFO: Open of `PG:dbname=gis_data host=madison'

using driver `PostgreSQL' successful.

Layer name: cities

Geometry: Unknown (any)

Feature Count: 606

Extent: (-165.270004, -53.150002) - (177.130188, 78.199997)

Layer SRS WKT:

GEOGCS["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],

TOWGS84[0,0,0,0,0,0,0],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]

FID Column = ogc_fid

Geometry Column = wkb_geometry

capital: String (1.0)

country: String (12.0)

name: String (25.0)

population: Integer (0.0)

Well, that worked—the GML file was successfully loaded into Postgre-

SQL. Using ogrinfo, we confirmed that it was loaded and had the proper

coordinate system. If you look at the load command, you will notice we

specified the coordinate system with the -a_srs switch using an EPSG

code of 4326 (WGS 84, latitude/longitude). We did this because the

GML file contains no projection information, even though the shapefile

we created it from did. This allows our newly created PostGIS layer

to play nicely with other WGS 84 layers in our database. Note that by

specifying -a_srs, we aren’t reprojecting or changing the data in any way.

All we are doing is assigning the coordinate system to the PostGIS layer

when it is created.

As you suspected, we can also unload data from PostGIS to a supported

format. For example, we’ll unload one of our layers to GML:

$ ogr2ogr -f GML volcanoes.gml "PG:dbname=gis_data host=madison" volcanoes

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=192

USING GDAL AND OGR 193

We can also specify a where clause in ogr2ogr to create a subset of our

data. This works quite well for extracting features from PostGIS where

the database might be quite large and we need only a small set of the

data for our purpose. To extract a subset, use the -where switch and

enclose the clause in double quotes:

$ ogr2ogr -f "ESRI Shapefile" strato_volcanoes.shp \

"PG:dbname=gis_data host=madison" volcanoes -where "type = 'Stratovolcanoes'"

$ ogrinfo -so -al strato_volcanoes.shp

INFO: Open of `strato_volcanoes.shp'

using driver `ESRI Shapefile' successful.

Layer name: strato_volcanoes

Geometry: Point

Feature Count: 7

We just created a shapefile containing only volcanoes of type Strato-

volcanoes from our original layer in PostGIS. The PostGIS layer con-

tains ninety-three volcanoes and our use of the where clause whittled

that down to seven matches. If all you want to do is display a subset

of a PostGIS layer, remember that QGIS supports subsets on the fly;

otherwise, this is another useful technique for moving data around.

A further option when unloading or converting data is to specify a

bounding rectangle using the -spat option. This will allow you to extract

only those features within the rectangle, creating a spatial subset. You

need to specify the bounds of the rectangle in the same coordinate sys-

tem as the layer. To illustrate, let’s extract a small subset of the cities

layer we loaded into PostGIS and list the results using ogrinfo.

$ ogr2ogr -f "ESRI Shapefile" cities_subset.shp \

-spat -152 58 -148 62 "PG:dbname=gis_data host=madison" cities

$ ogrinfo -al cities_subset.shp

INFO: Open of `cities_subset.shp'

using driver `ESRI Shapefile' successful.

Layer name: cities_subset

Geometry: Point

Feature Count: 2

Extent: (-149.449997, 60.119999) - (-149.172974, 61.188648)

Layer SRS WKT:

GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",

SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]]

capital: String (1.0)

country: String (12.0)

name: String (25.0)

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=193

USING GDAL AND OGR 194

population: Real (11.0)

OGRFeature(cities_subset):0

capital (String) = N

country (String) = US

name (String) = Seward

population (Real) = 2699

POINT (-149.449996948241989 60.119998931884801)

OGRFeature(cities_subset):1

capital (String) = N

country (String) = US

name (String) = Anchorage

population (Real) = 184300

POINT (-149.172973632811988 61.188648223877003)

The cities layer in PostGIS has 606 features. You can see that our spatial

subset has two features, both contained within the latitude/longitude

rectangle we specified. Notice that the extent of the new layer is less

than what we specified as the spatial boundaries. The bounding rect-

angle is specified as xmin, ymin to xmax, ymax—in this case -152, 58

to -148, 62. The extent of the new layer is smaller, because it repre-

sents the extent of the features extracted, not the search rectangle. You

can probably think of ways in which creating subsets by attributes or

spatial boundaries can come in handy.

A recent addition to the OGR utilities is support for KML. This allows

you to export an OGR supported data source to KML for use in Google

Earth.4

$ ogr2ogr -f KML volcanoes.kml "PG:dbname=gis_data host=madison" volcanoes

Depending on your version of GDAL/OGR, if you try to use ogrinfo on

volcanoes.kml, you will get an error message. Preliminary support for

reading KML files is not available in GDAL prior to version 1.5.

Coordinate System Conversion

We can also change the coordinate system of a layer using ogr2ogr.

You can do this even if you don’t want to change the format of the

layer. For our cities.shp we created earlier, we could convert it from WGS

84 (latitude/longitude) to some other coordinate system, such as U.S.

National Atlas Equal Area. To do this, we need to know either the pro-

jection parameters or the EPSG code. As we saw in Chapter 9, Projec-

tions and Coordinate Systems, on page 138, there are a number of ways

4. Be aware that Google Earth expects your KML to be in geographic coordinates.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=194

USING GDAL AND OGR 195

to find this—additional ways include querying the spatial_ref_sys table in

PostGIS and using the projection search feature in the QGIS projection

dialog box. If you like, you can download all the EPSG codes in several

database formats from OGP.5 Another handy reference for coordinate

systems is the Spatial Reference website, which provides an interac-

tive web interface that allows you to find and display spatial reference

information.6

Let’s convert the cities shapefile to the U.S. National Atlas Equal Area

projection (EPSG:2163) and check the result:

$ ogr2ogr -f "ESRI Shapefile" -t_srs EPSG:2163 cities_2163.shp cities.shp

$ ogrinfo -so -al cities_2163.shp

INFO: Open of `cities_2163.shp'

using driver `ESRI Shapefile' successful.

Layer name: cities_2163

Geometry: Point

Feature Count: 606

Extent: (-11983157.793768, -9388276.306186) - (11909182.755140, 11453696.678979)

Layer SRS WKT:

PROJCS["US National Atlas Equal Area",

GEOGCS["Unspecified datum based upon the Clarke 1866 Authalic Sphere",

DATUM["Mean_Sea_Level",

SPHEROID["Clarke_1866_Authalic_Sphere",6370997,0]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]],

PROJECTION["Lambert_Azimuthal_Equal_Area"],

PARAMETER["latitude_of_center",45],

PARAMETER["longitude_of_center",-100],

PARAMETER["false_easting",0],

PARAMETER["false_northing",0],

UNIT["Meter",1]]

NAME: String (40.0)

COUNTRY: String (12.0)

POPULATION: Real (11.0)

CAPITAL: String (1.0)

A couple of things to note about the coordinate conversion: First, we

didn’t do a format conversion—the output is a shapefile, just like the

input. Second, we used -t_srs to transform the coordinates to the desired

projection. When we look at the results using ogrinfo, we see that indeed

the coordinate system was changed to U.S. National Atlas Equal Area.

When would coordinate conversion from the command line be useful?

Apart from the reasons we’ve listed at the beginning of this section,

5. http://www.epsg.org

6. http://spatialreference.org

http://www.epsg.org
http://spatialreference.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=195

USING GDAL AND OGR 196

suppose you just received a CD containing 300 shapefiles that need

to be transformed to a coordinate system compatible with your other

data. Using the OGR utilities with a bit of simple shell, Ruby, or Python

script would make this a simple and quick task. Loading each layer into

a GUI and running a tool to transform the coordinates is fine for one

layer, but not for 300.

Raster Conversion

The reasons for doing a raster conversion are pretty much the same as

those for vector conversion, with the exception of loading into PostGIS.

Let’s add a couple more reasons to the list:

• You want to change the compression type of an image.

• You want to set a no-data value in the image to allow displaying

certain areas as transparent.

• You want to rescale (reclass) the pixel values in an image.

In this section, we’ll do a few raster conversions to illustrate some of

the possibilities available with gdal_translate and gdalwarp.

Extracting Part of a Raster

Let’s start by pulling out a piece of the world mosaic raster using a

latitude/longitude rectangle. Since I happen to know the coordinates

that cover Alaska, we’ll use it in our example:

$ gdal_translate -a_ullr -180 72 -129 50 -projwin -180 72 -129 50 \

world_mosaic.tif alaska_mosaic.tif

Input file size is 8192, 4096

Computed -srcwin 0 409 1161 501 from projected window.

0...10...20...30...40...50...60...70...80...90...100 - done.

Take a look at that command. The -projwin option specifies the area we

want to clip out of the image using the coordinate system. Note we could

use the -srcwin option to specify the clip area using pixel coordinates for

the upper-left corner and a size in the x and y directions, also in pixels.

We also used the -a_ullr option to force the output image to have the

bounding coordinates we want; otherwise, it would be offset by a half-

pixel in both the x and y directions (see Section C.2, Using the Command

Line, on page 307 for more information on the cause of this offset).

To check to see whether this worked, we can open the new file in QGIS

or one of the other applications we have discussed. Since we just want

to see whether it worked, we could use any a graphic viewer on our

system that supports TIFF. In Figure 11.5, on the next page, you can

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=196

USING GDAL AND OGR 197

Figure 11.5: Alaska derived from the world mosiac

see the result of our effort. You can see from the figure that indeed we

cropped out Alaska from the world mosaic.

Let’s run gdalinfo on the new file and examine a few of the details. We’ll

specify the no-metadata switch to cut down on the amount of output.

$ gdalinfo -nomd alaska_mosaic.tif

Driver: GTiff/GeoTIFF

Size is 1161, 501

Coordinate System is:

GEOGCS["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.2572235629972,

AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433],

AUTHORITY["EPSG","4326"]]

Origin = (-180.000000000000000,72.026367187500000)

Pixel Size = (0.043945312500000,-0.043945312500000)

Corner Coordinates:

Upper Left (-180.0000000, 72.0263672) (180d 0'0.00"W, 72d 1'34.92"N)

Lower Left (-180.0000000, 50.0097656) (180d 0'0.00"W, 50d 0'35.16"N)

Upper Right (-128.9794922, 72.0263672) (128d58'46.17"W, 72d 1'34.92"N)

Lower Right (-128.9794922, 50.0097656) (128d58'46.17"W, 50d 0'35.16"N)

Center (-154.4897461, 61.0180664) (154d29'23.09"W, 61d 1'5.04"N)

Band 1 Block=1161x7 Type=Byte, ColorInterp=Red

Band 2 Block=1161x7 Type=Byte, ColorInterp=Green

Band 3 Block=1161x7 Type=Byte, ColorInterp=Blue

Band 4 Block=1161x7 Type=Byte, ColorInterp=Alpha

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=197

USING GDAL AND OGR 198

The information for the raster confirms that it was assigned the same

coordinate system as the source image since we didn’t specify other-

wise. You can also see the bounding coordinates of the image exactly

match those we specified with -projwin. You might also notice we didn’t

specify an output format. This is because the default output format for

gdal_translate is a GeoTIFF. If we wanted to convert the format at the

same time, we would have specified it with the -of switch.

GDAL supports more than sixty raster formats, some of which are read-

only. Those that are read-write we can be specified as an output format.

Let’s take a simple example and convert the alaska_mosaic.tif to a PNG:

$ gdal_translate -of PNG -co "WORLDFILE=YES" alaska_mosaic.tif \

alaska_mosaic.png

Input file size is 1161, 501

0...10...20...30...40...50...60...70...80...90...100 - done.

Notice we provided the -co option to create a world file in addition to

the PNG. This allows us to use the PNG in a GIS application and have

it display in the proper location. When using world files, you have to

make sure they stay with the raster file. This is one of the advantages

of a GeoTIFF, since it encodes the coordinate system information right

in the raster.

Changing the Coordinate System

Let’s do another example and change the coordinate system of alaska_

mosaic.tif to Alaska Albers Equal Area, a projection commonly used for

Alaska data. The EPSG code for the projection is 2964; however, it spec-

ifies the units as feet rather than meters. All my other Alaska data is

in meters, so for this transformation, we’ll go the hard way and specify

the projection parameters in proj format:

$ gdal_translate -b 1 -b 2 -b 3 alaska_mosaic.tif alaska_mosaic_noalpha.tif

$ gdalwarp -t_srs '+proj=aea +lat_1=55 +lat_2=65 +lat_0=50 +lon_0=-154 +x_0=0 \

+y_0=0 +ellps=clrk66 +datum=NAD27' alaska_mosaic_noalpha.tif \

alaska_mosaic_albers.tif

Creating output file that is 1296P x 944L.

Processing input file alaska_mosaic_noalpha.tif.

:0...10...20...30...40...50...60...70...80...90...100 - done.

In Figure 11.6, on the following page, you can see the result of the

warping process. Notice that we translated the image before the warp

using gdal_translate. This was to remove the alpha channel from the

original image. The alpha channel is used to determine transparency

for each pixel in the image. In the case of our mosaic, it was found by

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=198

USING GDAL AND OGR 199

Figure 11.6: Alaska mosaic warped to Alaska Albers projection

trial and error that the oceans were transparent. When warped, they

turned black. To get around this problem, we used gdal_translate with

a series of -b switches to specify which bands in the image should be

used in the output image. This effectively strips the alpha band. If you

look back at the gdalinfo output for alaska_mosaic.tif, you’ll see that it

reported Bands 1 through 3 as red, green, and blue, respectively, as

well as Band 4 as alpha. Once we removed the alpha band, the warp

gives us the expected result.

Warping an image with gdalwarp is a quick and efficient way to change

the coordinate system as opposed to other methods one might use. As

you can see, you have to know a little bit about the data you are working

with in order to be successful in getting the results you want. If you

have more than one image to process and want to combine them, you

can use wildcards with gdalwarp to mosaick them on the fly, creating a

single image in the process.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=199

USING GDAL AND OGR 200

Raster Transparency

The last raster example we’ll look at is setting a transparency value.

This is useful when you want the layers underneath the raster to be vis-

ible. To set the transparency, we’ll use the GDAL Virtual Format (VRT).

A VRT file is a description of the raster, stored in XML, that can be

modified using a text editor. The first step is to use gdal_translate to cre-

ate the VRT file. In this case, we’ll use the survey plat that we digitized

from Section 8.1, Digitizing, on page 120. Running the gdal_translate

command on the plat (l1-1.tif) creates the VRT for us:

$ gdal_translate -of VRT l1-1.tif l1-1.vrt

Input file size is 9568, 12754

Before we can set the transparency, we have to determine the index

of the white color values in the raster. For this, we use gdalinfo with

the -nomd option since we don’t need the metadata, just the color table

information:

$ gdalinfo -nomd l1-1.tif

Driver: GTiff/GeoTIFF

Size is 9568, 12754

Coordinate System is `'

Corner Coordinates:

Upper Left (0.0, 0.0)

Lower Left (0.0,12754.0)

Upper Right (9568.0, 0.0)

Lower Right (9568.0,12754.0)

Center (4784.0, 6377.0)

Band 1 Block=9568x12754 Type=Byte, ColorInterp=Palette

Color Table (RGB with 2 entries)

0: 255,255,255,255

1: 0,0,0,255

From the output, we can see that RGB 255,255,255 (white) is at index

0 in the raster. We now have everything we need to set the transparency

using the VRT file. To set the transparency, we add a <NoDataValue>

tag inside the <VRTRasterBand> tag, using 0 as the index value. Our

modified VRT file contains the following:

Download l1-1.vrt

Line 1 <VRTDataset rasterXSize="9568" rasterYSize="12754">
- <Metadata>
- <MDI key="TIFFTAG_SOFTWARE">AccXES Version 4.2 Build 106</MDI>
- <MDI key="TIFFTAG_DATETIME">2004:02:26 16:11:38</MDI>
5 <MDI key="TIFFTAG_XRESOLUTION">400</MDI>
- <MDI key="TIFFTAG_YRESOLUTION">400</MDI>
- <MDI key="TIFFTAG_RESOLUTIONUNIT">2 (pixels/inch)</MDI>
- </Metadata>

http://media.pragprog.com/titles/gsdgis/code/l1-1.vrt
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=200

CREATING A SPATIAL INDEX FOR SHAPEFILES 201

- <VRTRasterBand dataType="Byte" band="1">
10 <Metadata>

- <MDI key="NBITS">1</MDI>
- </Metadata>
- <ColorInterp>Palette</ColorInterp>
- <NoDataValue>0</NoDataValue>

15 <ColorTable>
- <Entry c1="255" c2="255" c3="255" c4="255"/>
- <Entry c1="0" c2="0" c3="0" c4="255"/>
- </ColorTable>
- <SimpleSource>

20 <SourceFilename relativeToVRT="1">l1-1.tif</SourceFilename>
- <SourceBand>1</SourceBand>
- <SrcRect xOff="0" yOff="0" xSize="9568" ySize="12754"/>
- <DstRect xOff="0" yOff="0" xSize="9568" ySize="12754"/>
- </SimpleSource>

25 </VRTRasterBand>
- </VRTDataset>

The tag we added is found in line 14 of the VRT file. Notice the file

also contains a reference to the raster in the <SourceFilename>. This

is important—you still need the original raster in order for the VRT to

work properly.

When the VRT file is displayed by software that uses GDAL for raster

access, white will be transparent, allowing the underlying layers to

show through. In Figure 11.7, on the following page, we have loaded

the parcel shapefile we digitized in Section 8.1, Digitizing, on page 120,

into QGIS, overlaid by our VRT file. You’ll notice that the parcels (green

polygons) are visible, proving that the white of our original raster is now

transparent. You can use VRT files in a number of ways, including set-

ting transparent values for adjacent images so they can be displayed

together without blotting each out. The key is to use gdalinfo to get the

color index number and then create and edit the VRT file(s).

For more information on the VRT format, see the GDAL Virtual Format

Tutorial.7

11.3 Creating a Spatial Index for Shapefiles

A spatial index can improve the performance of your mapping appli-

cation, whether it be on the desktop or the server.8 The index speeds

up drawing, selecting, and identifying features by allowing the software

7. http://www.gdal.org/gdal_vrttut.html

8. This assumes that your software supports the use of the spatial index in .qix format.

http://www.gdal.org/gdal_vrttut.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=201

CREATING A SPATIAL INDEX FOR SHAPEFILES 202

Figure 11.7: VRT raster over the parcel shapefile

to quickly locate the features of interest. There is more than one way

to create a spatial index. In Section D.1, Spatial Indexes, on page 333,

you will see how to create one using QGIS. Of course, there is a way

to do this from the command line as well. You’ll find this useful if you

have a whole batch of shapefiles you want to index. Rather than load-

ing each one into QGIS, opening the properties dialog box, and clicking

the button to build the index, you can just write a simple script to do

the job. To create a spatial index, use the shptree application. You can

get shptree in a number of ways. It’s included in the FWTools9 distribu-

tion as well as in MapServer.10 You’re probably going to want FWTools

anyway, because it contains all the OGR and GDAL utilities we’ve been

using and a lot more goodies. Let’s look at the usage:

$ shptree

Syntax:

shptree <shpfile> [<depth>] [<index_format>]

9. http://fwtools.maptools.org

10. http://mapserver.gis.umn.edu

http://fwtools.maptools.org
http://mapserver.gis.umn.edu
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=202

POSTGIS 203

Where:

<shpfile> is the name of the .shp file to index.

<depth> (optional) is the maximum depth of the index

to create, default is 0 meaning that shptree

will calculate a reasonable default depth.

<index_format> (optional) is one of:

NL: LSB byte order, using new index format

NM: MSB byte order, using new index format

The following old format options are deprecated:

N: Native byte order

L: LSB (intel) byte order

M: MSB byte order

The default index_format on this system is: NL

Creating an index is easy, despite all the somewhat confusing options

for shptree. In fact, the defaults are usually fine, and you can just use

the following:

$ shptree earthquakes.shp

creating index of new LSB format

As you can see, there isn’t much in the way of feedback. When the

command is complete, you’ll find a file with a qix extension:

$ ls -l *.qix

-rw-r--r-- 1 gsherman gsherman 72 Mar 21 01:22 earthquakes.qix

That’s all there is to it. Make sure the spatial index stays with the rest

of the shapefile when you copy or move it somewhere else. The spatial

index will work with QGIS and MapServer and probably any spatial

application that used OGR for reading shapefiles.

11.4 PostGIS

PostGIS comes with a couple of utilities for moving data in and out of

a PostgreSQL database. Although you can accomplish the same results

with ogr2ogr, the utilities supplied with PostGIS have some additional

options that you will find useful. The limitation, of course, is that only

shapefiles are supported. Given the flexibility and capability of the OGR

utilities, this isn’t a problem. We can still get the data from here to there

safely and in the form we need.

Importing Shapefiles

To import a shapefile into PostGIS, use the shp2pgsql command. Let’s

look at the options and syntax.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=203

POSTGIS 204

$ shp2pgsql

RCSID: $Id: shp2pgsql.c 2513 2006-10-14 14:22:10Z mschaber $ RELEASE: 1.2.1

USAGE: ./shp2pgsql [<options>] <shapefile> [<schema>.]<table>

OPTIONS:

-s <srid> Set the SRID field. If not specified it defaults to -1.

(-d|a|c|p) These are mutually exclusive options:

-d Drops the table, then recreates it and populates

it with current shape file data.

-a Appends shape file into current table, must be

exactly the same table schema.

-c Creates a new table and populates it, this is the

default if you do not specify any options.

-p Prepare mode, only creates the table.

-g <geometry_column> Specify the name of the geometry column

(mostly useful in append mode).

-D Use postgresql dump format (defaults to sql insert statements.

-k Keep postgresql identifiers case.

-i Use int4 type for all integer dbf fields.

-I Create a GiST index on the geometry column.

-S Generate simple geometries instead of MULTI geometries.

-w Use wkt format (for postgis-0.x support - drops M - drifts coordinates).

-W <encoding> Specify the character encoding of Shape's

attribute column. (default : "ASCII")

-N <policy> Specify NULL geometries handling policy (insert,skip,abort)

-? Display this help screen

As you can see, shp2pgsql has quite a few options. Let’s examine the

major ones we need to know in order to get a shapefile into the data-

base. PostGIS uses the concept of a spatial reference ID (SRID), and this

option is specified using -s. For the most part, this is equivalent to an

EPSG code; however, you can define your own SRIDs in the database.

The spatial_ref_sys table contains the spatial reference systems (think

projections) that PostGIS knows about as well as the SRID for each. If

we look at the record for SRID 4326 in the spatial_ref_sys table, we find

that it’s the same as EPSG 4326 that we used when doing vector data

conversions with OGR. In fact, the authority for that SRID is EPSG.

The -d, -a, -c, and -p switches provide some management options for

creating the layer. As you can see, -c is the default option, and you

don’t need to specify it. The -g switch allows us to specify a name for

the column in the table that will hold the feature geometry information.

You don’t need to specify this unless you don’t like the default name or

have existing data or standards.

A layer in PostGIS without a spatial index isn’t a happy layer. Or at least

we won’t be happy using it because performance will suffer. You might

be thinking we should always specify the -I switch. However, building a

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=204

POSTGIS 205

spatial index can be a time-consuming affair for large tables. You might

want to defer building the index, especially if you are loading a lot of

data with a script.

So, what do we really need to specify? Not much when it comes down

to it, but here’s one word of caution: before you start going wild loading

data, think about the SRID you should use and then specify it for every

layer.11 If you don’t do it up front, you’ll regret it later. Let’s load a

shapefile as an example:

$ shp2pgsql -s 4326 -I cities.shp cities_pg | psql -d gis_data

Shapefile type: Point

Postgis type: POINT[2]

BEGIN

NOTICE: CREATE TABLE will create implicit sequence "cities_pg_gid_seq"

for serial column "cities_pg.gid"

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index

"cities_pg_pkey" for table "cities_pg"

CREATE TABLE

addgeometrycolumn

public.cities_pg.the_geom SRID:4326 TYPE:POINT DIMS:2

(1 row)

CREATE INDEX

INSERT 0 1

INSERT 0 1

INSERT 0 1

...

COMMIT

OK, let’s analyze what we did here. We knew beforehand that the EPSG

code for cities.shp was 4326, so we specified that as the SRID. The only

other option we used was -I to build the spatial index. Other than that,

we give the shapefile name and the name of the table we want to create,

in this case cities_pg. If we had ended the command there and hit Enter ,

we would have seen a slew of SQL statements scroll by. That’s because

shp2pgsql sends its output to stdout (in other words, your terminal or

command window). We could pipe that to a file using > and then use the

file in an application that was capable of running SQL commands from

a file to send it to the appropriate database. We can take a shortcut,

though, and just pipe the output from shp2pgsql directly to psql, the

PostgreSQL interactive terminal. Passing the name of the database to

11. The shapefiles have to be in the same projection as the SRID you plan to use—loading

them into PostGIS won’t transform them.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=205

POSTGIS 206

psql using the -d switch is all we need to send the SQL to the database

and create the table.

As the import proceeds, the results are printed to the screen. I trun-

cated the INSERT statements in the example, since there are 606 of

them—one for each city. Notice that before the import began we get

some feedback about what’s going on, including the creation of the

geometry column.

If we use psql to examine the table after it’s loaded, we find that our

spatial index was created as part of the import. Partial output from the

\d command in psql shows the GIST index cities_pg_the_geom_gist was

created on the geometry column.

Indexes:

"cities_pg_pkey" PRIMARY KEY, btree (gid)

"cities_pg_the_geom_gist" gist (the_geom)

Our table is ready to use in our GIS applications; however, you should

run the VACUUM ANALYZE command to have PostgreSQL collect statistics

to improve performance.

Exporting to a Shapefile

To export data from your PostGIS database to a shapefile, use the

pgsql2shp command. This command has fewer options than its coun-

terpart:

$ pgsql2shp

RCSID: $Id: pgsql2shp.c 2513 2006-10-14 14:22:10Z mschaber $ RELEASE: 1.2.1

USAGE: ./pgsql2shp [<options>] <database> [<schema>.]<table>

./pgsql2shp [<options>] <database> <query>

OPTIONS:

-f <filename> Use this option to specify the name of the file

to create.

-h <host> Allows you to specify connection to a database on a

machine other than the default.

-p <port> Allows you to specify a database port other than the default.

-P <password> Connect to the database with the specified password.

-u <user> Connect to the database as the specified user.

-g <geometry_column> Specify the geometry column to be exported.

-b Use a binary cursor.

-r Raw mode. Do not assume table has been created by

the loader. This would not unescape attribute names

and will not skip the 'gid' attribute.

-k Keep postgresql identifiers case.

-? Display this help screen.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=206

POSTGIS 207

Basically, we just need to provide the name for the shapefile we want to

create and the connection information for the database. You probably

realize this means you can use this command from a remote machine.

Let’s be wishy-washy and export our layer back out of the database:

$ pgsql2shp -f cities_out.shp gis_data cities_pg

Initializing... Done (postgis major version: 1).

Output shape: Point

Dumping: XXXXXXXX [606 rows].

Things worked as expected—we got all 606 cities out of the database

and into a new shapefile. We could use ogrinfo to check it out, but trust

me, it’s the same as what went into the database. Notice that we didn’t

specify anything for the database connection. That’s because we ran

pgsql2shp on the same host as the database server. If we were doing an

export from a remote server, we would have to specify host, user, and

password. If your database server runs on a nonstandard port, you will

have to specify it as well.

If your table has more than one geometry column, you can specify

which to use for exporting the features with the -g switch. You might be

wondering how you get a table with more than one geometry column.

All I’ll tell you is it didn’t happen with shp2pgsql. Seriously, though,

creating a table with more than one geometry column is done program-

matically through SQL or custom applications using the programmer’s

API for PostgreSQL.

That’s pretty much the quick tour for getting data out of your Post-

greSQL database. There are other ways too, including writing custom

scripts using APIs that know how to talk to the database. Although

pgsql2shp works well for exporting to shapefiles, you might find that

ogr2ogr provides a better solution for exporting to other formats.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=207

Chapter 12

Getting the Most Out of
QGIS and GRASS Integration

We have mentioned the QGIS-GRASS integration in a number of places

so far. In this chapter, you will see how QGIS can serve as a front end

for viewing and editing GRASS data, as well as for performing analysis

and data conversion. We’re venturing into some powerful territory here,

allowing you to harness the geoprocessing power of GRASS.

QGIS supports GRASS through the use of a plugin. The plugin pro-

vides access to GRASS data and functions and is distributed with all

official QGIS packages. Actually, it consists of a data provider to bridge

between a GRASS map layer and the QGIS map canvas and a plugin to

provide the user interface. Well, enough of the boring details; let’s get

started by loading up the GRASS plugin and seeing how it all works.

To review, when you initially start QGIS, there are no plugins loaded.

To load a plugin, you use the Plugin Manager, found in the Plugins

menu. The Plugin Manager provides a list of all the available plugins

and whether they are currently loaded (indicated by a checkbox next to

their names). To load the GRASS plugin, click the checkbox next to its

name, and click the OK button. This loads the GRASS plugin, adds a

GRASS menu to the Plugins menu, and adds a new toolbar to the GUI.

For a review of plugins in QGIS, see Section D.4, Plugins, on page 339.

If you have followed along with some of the previous GRASS examples,

you probably recall how to load the GRASS plugin in QGIS and create

a location. If not, refer to Section C.1, Location, Location, Location, on

page 296 for a refresher. You might also want to take a look at Sec-

tion C.2, Importing with QGIS, on page 313 for information on how to

LOADING AND VIEWING DATA 209

Figure 12.1: Selecting a GRASS mapset in QGIS

import vector layers using the GRASS toolbox in QGIS. We will now

expand on those concepts by exploring the toolbox in depth, using it

first to load some more data and then to do a bit of data conversion and

analysis. From this point on, we assume a working GRASS install and

a ready-to-use mapset.

12.1 Loading and Viewing Data

If you work through the GRASS basics in Appendix C, on page 296, you

end up with two vector layers in your mapset: cities and world_borders.

Our goal now is to add the world mosaic to GRASS using the toolbox.

To do this, we first add world_mosaic.tif to QGIS as a regular raster layer.

Once it’s loaded up, we need to open our mapset using the Open mapset

menu item in the GRASS menu (remember the GRASS menu is located

under the Plugins main menu). The mapset we want is in our world_lat_lon

location. In Figure 12.1, you can see the dialog box used to open a

mapset in QGIS. Notice that you can open any mapset in any location in

any GRASS database using this dialog box. As you change the Gisdbase

location, either by typing a path or by browsing to it, the Location and

Mapset drop-downs change to reflect what’s available.

Once we open the mapset, the Open GRASS tools tool becomes active on

the GRASS toolbar, as do the region and vector edit tools. Now that the

mapset is open, we can open the GRASS toolbox. Click the Open GRASS

Tools tool and wait as the toolbox initializes. The tools in the toolbox

are added dynamically. In fact, you can customize the tools and add

more GRASS functionality. The downside (well sort of) is that the more

tools in the box, the longer it takes to open. Once it’s up and initialized,

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=209

LOADING AND VIEWING DATA 210

Figure 12.2: The GRASS tools in QGIS

you are presented with a collection of tools, as shown in Figure 12.2,

on the following page.

Before we import our raster, let’s look at the toolbox for a minute. The

tools are arranged in a tree structure by category. In Figure 12.2, you

can see the following categories: Import, Vector Overlay, Buffer, and

Extract Features from Vector. But that’s not all. Notice the scrollbar in

the toolbox—it has a ways to go to get to the bottom. That’s where the

rest of the GRASS tools are hiding for the moment. We’ll look at some

of them a bit later.

To import the raster, we click the Import GDAL raster layer tool. You must

have a raster loaded in QGIS before using this tool, which we do so we

are in good shape.1 Each tool in the GRASS toolbox has its own page

for accepting input and providing feedback as it runs. Typically the

tool page will contain Options, Output, and Manual tabs. You enter the

1. The same is true for vectors. To import either type using the toolbox, you must

load the GDAL/OGR-supported layer in QGIS first. To import a vector, use the Import

OGR/PostGIS vector layer tool.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=210

EDITING GRASS DATA WITH QGIS 211

required parameters for the tool on the Options tab; then when the tool

is run, the output shows up on the Output tab. Clicking the Manual

tab displays the manual page for the GRASS tool you are working with.

The Options tab contains a drop-down box populated with the layers

eligible for conversion. In this case, since we have only world_mosaic.tif

loaded, it’s the only thing in the list. To convert it, we just need to

supply a name for the output map. Rather than be original, we’ll use

world_mosaic for the output name. Now all that’s left to do is click the

Run button and watch the output fly by. Once the raster is imported,

we can review the contents of the Output tab to look for any prob-

lems or see the results and details of the conversion. Not only that,

but it also provides a good way to learn about what’s going on inside

GRASS. Assuming all went well, we now have the world_mosaic loaded

in to GRASS. Load it up in QGIS using the Add GRASS raster layer tool.

Those are the basics of getting data into GRASS using the import capa-

bilities of the toolbox. Notice that not only can we load an OGR vec-

tor layer, but we can load PostGIS as well. Sometimes it makes sense

to convert your data, and other times you can just use them in their

native form in QGIS with your GRASS data. If you need to manipulate

the data, it’s best to bring it into GRASS.

Once you’ve added a GRASS map to the map canvas, it works pretty

much like any other layer in QGIS. You can identify features, make

selections, view the attribute table, and label features. The one thing

you can’t do is edit the data—at least not through the editing tools

we’ve seen thus far in QGIS.

12.2 Editing GRASS Data with QGIS

Editing vector GRASS maps in QGIS is also done via the GRASS plug-

in. The editing tools are designed to work with the underlying GRASS

vector model, which is different from a shapefile or PostGIS data store.

GRASS is topological, meaning it understands the relationship between

adjacent features and stores common boundaries only once. Shapefiles

and PostGIS data, on the other hand, are nontopological—each feature

is stored in its entirety, with no regard for adjacent features.

To be able to edit a GRASS map, you obviously need to have the mapset

open and the map loaded into QGIS. You may think I’m stating the

obvious here, but in fact you can load a GRASS map without opening

the mapset. If you do that, the toolbox, region tools, and editing tool

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=211

EDITING GRASS DATA WITH QGIS 212

Figure 12.3: GRASS edit tools in QGIS

will be disabled. Now that everything is in order, we can click the Edit

GRASS Vector layer tool, opening the edit tools shown in Figure 12.3, on

the following page.

Which layer are we editing? The answer is the one highlighted in the

legend when you bring up the edit tools. Fortunately, if the highlighted

layer isn’t a GRASS vector map, the Edit GRASS Vector layer tool will be

disabled. So, the trick is to make sure the layer you want to edit is

highlighted before opening the edit tools.

The edit tools closely mirror those used when digitizing in GRASS, a

process you can learn about in Section C.5, Digitizing and Editing in

GRASS, on page 323.

First we will look at the basics of the editing tools and then get into the

specifics. The task we’ll use to illustrate simple editing is adding a new

city to the world. Since our mapset is already open, we can load the

cities layer and use it for our editing task. Each feature in GRASS has

a category field named cat that serves as the identifier. When we add

a new point (city), we have a choice of how that category is created, as

shown in the Mode drop-down box. The choices are as follows:

• Next Not Used: The next unused category will be assigned auto-

matically.

• Manual Entry: You will enter the category manually when you cre-

ate the feature.

• No Category: No category will be assigned to the new feature.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=212

EDITING GRASS DATA WITH QGIS 213

Figure 12.4: Adding attributes to a GRASS feature

We’ll explore some of these options later, but for now, automatically

assigning the next available category seems like a good way to go. The

first tool on the toolbar is New point. Let’s use it to create a new city

in Alaska named, for lack of a better term, Quantum GIS City. First

we zoom in to where we want to create the city, choose the New point

tool by clicking it, and then click the map to place the feature. When

we click, the city is created on the map, and the GRASS Attributes

dialog box opens to allow us to enter the information for the new city. In

Figure 12.4, you can see the dialog box with the information for our new

city (OK, I know that Alaska isn’t a country, although some Alaskans

wish it were). The category (607) was automatically assigned for us, and

we entered the name, country, population, and capital. When we click

Update, the information is updated in the GRASS database. We could

choose to create another new record or delete this one entirely, in which

case our feature would have no attributes.

We added the city, but nothing is saved until we close the editing tool-

box. Although I said when you click Update, the attributes are saved—

actually they are queued up and ready to be saved. Once we close the

editing tools, our changes are saved, and the new city is rendered on

the map using the same symbology as the rest of the cities.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=213

EDITING GRASS DATA WITH QGIS 214

Creating Multiple Layers in a Map

One of the features of GRASS is the ability to create more than one

layer per map. This means you can have point, line, and polygon layers

within a single map. Let’s look at a practical example of how this might

be useful.

We created Quantum GIS City, and it had a population of one. Now

after a major infusion of capital because of it’s cottage GIS industry, the

population has boomed, and the city has grown by orders of magnitude.

But in our GRASS layer, it’s just a point. This is where we can take

advantage of multiple layers in a map. We can digitize the boundaries

of the city, creating either a polygon or line layer. We end up with both

the point location and the boundaries and can use one or both at the

same time in QGIS, depending on what information we are trying to

convey.

To create a polygon for Quantum GIS City, start editing the cities GRASS

map. This time instead of adding a point, we choose the New boundary

tool on the toolbar and digitize the boundary of our burgeoning city.

Once we close the boundary, the attribute dialog box pops up, allowing

us to fill in the attributes. Then we use the New centroid tool to add

a centroid to the boundary, creating the polygon. Again the attributes

dialog box pops up, and we can enter the information again. Now we

have three features for our city and attributes for each. Now you are

asking yourself, why did we have to enter the attributes each time? The

short answer is you don’t. Since each of the feature types is for the same

city, we should have created the point first, filled in the attributes, and

then used its cat for the other features. You can do this by changing

the mode in the edit toolbox to Manual and entering the category value

of the point in the Category field. When we digitize the boundary or

add a centroid, it will automatically populate the attribute fields from

those associated with the point. This saves time and ensures that the

attributes for each feature type are consistent.

Now we have more versatility in our cities map, in that we can display

points when looking at the worldwide or country view and can display

lines or polygons when zoomed in for more detail. By now you should be

thinking of all kinds of possibilities this provides, since many “features”

may have a point or polygon representation in real life. With shapefiles

we would have to create a separate file for each feature type. PostGIS

supports geometry collections, but QGIS doesn’t know how to visualize

them since it makes the assumption of one feature type per layer.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=214

EDITING GRASS DATA WITH QGIS 215

Creating a New Map

What if we want to create a new GRASS vector map and add data to

it? We could pop out to the GRASS command line or GUI and do it, or

we can use the Create a new GRASS vector item from the GRASS plugin

menu in QGIS. Before you can do this, though, you have to open the

mapset where you want the new vector map to live.

The steps involved in creating a new GRASS map are as follows:

1. Open the mapset where the map will reside.

2. Click the Create a new GRASS Vector menu item.

3. In the New Vector Name dialog box, enter the name for the new

map.

4. Click OK.

5. Add features to the map using the edit tools.

When you create a new layer, the edit tools automatically pop up so you

can add features. QGIS doesn’t add your new map to the canvas yet,

so it may be a bit confusing as to what you are doing. Don’t worry—the

layer will show up once we close the edit tool dialog box.

When first created, the layer has only one attribute: cat. Let’s say we

are creating a new map named water_wells. This map will contain the

point locations of water wells, and we will digitize them off a raster map

we have showing the locations. Having only the cat attribute by itself

isn’t very useful when it comes to storing information about the wells.

We need some additional information, such as owner name, depth, and

whether it’s an active well. To do this, we use the Table tab in the edit

dialog box.

In Figure 12.5, on the next page, you can see the table I constructed for

the water wells map. To build the table, you just use the Add Column

button to add a new column and then give it a name and set the type

and length as appropriate. You can see in the figure I added the owner,

depth, and active fields. For the active field, I chose to use a single

character that will contain a “Y” or “N” to represent yes or no. Once

everything is set up, clicking the Create/Alter Table button saves the

changes. We can now digitize the wells and add the attributes we need.

We’ll start by adding a new well within the Quantum GIS City polygon

and assigning the owner as the city, depth of 220, and a Y in the active

column to indicate it is in use. From there, you can go forth in like

fashion and digitize all the water wells.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=215

EDITING GRASS DATA WITH QGIS 216

Figure 12.5: Adding columns to the new GRASS map table

We quickly realize in using our shiny new water_wells map that it is

lacking something. We should have had a name field to store the name

of the well. For residential wells, this probably isn’t important, but it’s

likely that the managers of Quantum GIS City will want names on their

wells to more easily manage them. No problem—we can easily add the

new column and fix any existing wells so they have a name.

To add a name column, begin editing the water_wells map, and click the

Table tab. We now see the table with its current columns and their

types. To add a new column, just click the Add Column button, and fill

in the details.

What about the well(s) we already created? The GRASS edit tools allow

you to edit the attributes for any feature. To edit the attributes for an

existing feature, click the Edit attributes tool. This brings up the same

dialog box you see when entering the attributes for a newly created

feature. Now there is a blank name field. We just fill it in with the name

of the well, as shown in Figure 12.6, on the following page, and click

the Update button. You’ll have to repeat this for all the existing wells.

Of course, this illustrates the point that you should think about your

requirements before creating the data. It will save you time and energy,

especially if you realize it too far into your project.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=216

EDITING GRASS DATA WITH QGIS 217

Figure 12.6: Editing the attributes of an existing feature

The Rest of the Story

That pretty much covers the basics of editing GRASS maps with QGIS.

Before we move on, let’s look at some settings you can customize while

editing.

The first is the Settings tab. Currently there is only one setting—the

snap tolerance. This controls how close you have to be to a feature for

the current tool to snap to it. It’s set in screen pixels. You can customize

it for your use if you find the default value of 10 is too large (or small).

Having too large a snap tolerance may result in selecting (and possibly

deleting/moving) the wrong feature.

You can also customize the size and colors used for displaying items by

clicking the Symbology tab. This allows you to customize the line width

used when digitizing, as well as the marker size used for points and

centroids. Below that is a list of the colors that can be customized for

things like background, highlight, point, line, boundary, centroid, and

so forth. It’s good to have options, but in most cases I find the default

colors to be fine for digitizing.

To complete our editing saga, the results of our efforts are shown in

Figure 12.7, on the next page. Each of the GRASS layers (feature types)

for the cities map is shown in the legend. I’ve renamed them so you can

tell which layer type they represent. We also see the water_wells map,

containing two wells. You’ll notice that the wells are rendered by their

status—active or inactive. We can see from the map that the Quantum

GIS City fathers have decommissioned old Municipal Well #1.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=217

USING ANALYSIS AND CONVERSION TOOLS 218

Figure 12.7: Completed city map with water wells

Which method of GRASS editing should you use: QGIS or GRASS gis.m?

It depends mainly on preference, how comfortable you are with the

tools, and whether you can perform all the tasks you need to from the

chosen interface. In the next section, we will take a look at the analysis

and conversion tools available in the GRASS toolbox in QGIS. This may

help you decide whether you can do most of your GRASS work in QGIS

or whether gis.m is the way to go.

12.3 Using Analysis and Conversion Tools

Creating and drawing data in GIS is just part of the picture, unless of

course all you want is a pretty map. A big part of GIS and what makes

it a powerful tool is the ability to do analysis of spatial relationships.

In this section, we plan to take a look at some of the tools available

in the QGIS GRASS toolbox that allow you to do both conversion and

analysis. But before we go there, let’s complete our look at the GRASS

Tools dialog box.

We got our first look at the toolbox back in Figure 12.2, on page 210.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=218

USING ANALYSIS AND CONVERSION TOOLS 219

We used a couple of the tools to convert some vector and raster data

into GRASS but didn’t really look at the toolbox that closely. If you

refer to the figure, you’ll see at start-up there are two tabs: Modules

and Browser. The Modules tab contains all the GRASS tools you can

run from the toolbox. These tools are added at runtime from a config-

uration file, and there is actually a way to customize and add to the

tools that are presented in the toolbox, assuming you have attained

the appropriate level of GRASS mastery. The tools are categorized by

function (also customizable) in the module list.

We will use some of the tools in the module list shortly. The Browser

tab contains the GRASS browser and allows you to view all the maps in

your current mapset, as well as manage them. Before we dive into the

modules, let’s learn a bit about the browser.

Using the Browser

To activate the browser, simply click the Browser tab. All the mapsets

in the current location are displayed on the left in a tree structure.

Typically you will see the PERMANENT mapset, along with the one or

more user mapsets. Remember, the PERMANENT mapset contains read-

only maps that are shared among users and are generally base layers

everybody needs.

If a mapset contains maps, you will be able to expand the tree. The

maps are further categorized into raster, region, and vector nodes. Ex-

panding one of the nodes will show you a list of all the maps associated

with it. If you click a map, the pane on the right displays informa-

tion about the map. In Figure 12.8, on the next page, you can see the

browser with the Cities map selected. Notice all the good information

displayed in the pane on the right? We can get a good overview of the

map, including the number of each feature type (in this case 607 points,

0 lines, 1 boundary, 1 centroid, 1 area, and 1 island). The original layer

as imported from the shapefile had 606 points. The other features were

added when we digitized the city limits of Quantum GIS City and its

point location. We can also see the extents of map—in this case it takes

up most of the world.

As we work with GRASS maps, a history is recorded. You can see in

our browser example the command used to create the Cities map from

the original shapefile. This is displayed in the right pane, just below

the extent information. Also note on the left under the Cities node, there

are three layers, one for each feature type. These layers are prefixed

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=219

USING ANALYSIS AND CONVERSION TOOLS 220

Figure 12.8: GRASS browser in QGIS

with a number, followed by the feature type. Using the browser gives

you a quick overview of your maps and layers, as well as some detailed

information about the number of features and the history of the map.

Let’s take a look at the toolbar in the browser because it has a number

of useful functions for working with and managing our maps.

The first tool is the Add selected map to canvas tool. Its purpose seems

pretty obvious—you select a map and click the tool, and it gets added to

the map canvas in QGIS. What gets added depends on what you have

selected in the list of maps and layers. If you have a map selected, for

example, Cities, and click Add selected map to canvas, all the layers under

Cities will be added. This means the point, line, and polygon layers get

added as separate layers in QGIS, and we will have three entries in the

legend. If you had selected just the polygon layer of the Cities map, only

it would be added. This feature gives you a quick way to add every layer

for a map or to be more discriminating and add only the particular layer

you need.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=220

USING ANALYSIS AND CONVERSION TOOLS 221

The next tool is Copy selected map, which allows you to copy the cur-

rently selected map into the current mapset. There are a number of

reasons why you might want to copy a map. A typical case is when you

are about to do some fancy (read: dangerous) conversion or edit—you

might want to make a copy in case things go bad. When you click Copy

selected map, you are prompted for a name for the new map. Give it a

name, and click OK to create the new map. Note that in order for this to

work, you have to highlight a map in the browser list—the copy won’t

work on a layer of a map.

The Rename selected map tool allows you to rename a map. This can

come in handy when doing a risky edit operation. Before you begin,

make a copy of your map. If things go badly during the edit operation,

you can just delete the original map that is now fouled up and rename

the copy to the original, so you can try again. Don’t forget to make

another clean copy at this point. When naming or renaming a map,

you’re not allowed to enter spaces since they are not valid in a GRASS

map name—don’t think that your spacebar is broken.

The red button with the big X in the middle is the Delete selected map

tool. Use this one with caution, because once it’s gone, it’s gone. Fortu-

nately, you have to confirm the delete operation, giving you a chance to

change your mind. When you delete a map, it is removed from the list

of maps in the browser. Interestingly enough, if it happens to be on the

QGIS map canvas, it isn’t removed, and you can still identify features

and view the attribute table. If you try to edit it, the operation will fail

since the underlying data structures have been removed.

There are two other buttons on the toolbar. The first allows you to set

the GRASS region to the currently selected map. This information is

saved, and the next time you run GRASS, the region will be restored.

Unlike a lot of file system browsers, the GRASS browser doesn’t con-

tinuously poll or receive notification when the contents of your mapset

has changed. The remaining button allows you to refresh the browser

contents when you have added new maps or layers and want to view

their information in the browser.

Now that we have a handle on the browser, we’ll move on to looking at

some of the basic modules. The browser will come in handy later when

we need to view or manage some of the output maps from our analysis

and conversion activities.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=221

USING ANALYSIS AND CONVERSION TOOLS 222

Working with Modules in the Toolbox

In previous sections we’ve seen how to use the import modules in the

toolbox to import both vector and raster data. In this section, we’ll move

beyond that and look at some of the other modules and what you can

do with them. First a word about how the modules in the toolbox work:

unlike working in GRASS, the modules in the toolbox require a layer

loaded in QGIS to use as input to the module. For example, when we

imported the world_mosaic.tif into GRASS, we loaded the TIFF into QGIS

first and then used the import tool. Let’s start our exploration of the

toolbox by creating a buffer or two.

Buffering Vector Features

We can use the toolbox to buffer point, line, or polygon features. Buffers

are useful for visualizing “things” that are within a given distance of

other “things.” For example, suppose Harrison has spotted eagles’ nests

in an area where a new trail is to be built. He is concerned about the

potential for all the eager hikers disturbing the baby eagles and would

rather keep them at least 500 meters from the nest. Harrison goes off

to help the city planners with a bit of analysis.

With a map of eagles’ nests, we can create a polygon layer that buffers

each nest by a distance of 500 meters. Basically, it’s like drawing a

circle with a radius of 500 meters around each nest. Once we have the

buffer layer, we can use it to site the trail to avoid the nests. Of course,

this is just a simple example. In practice, buffers are an important part

of GIS analysis in many disciplines. On the flip side, you might also

analyze a proposed trail by buffering it and seeing whether it overlaps

any nests.

When you buffer a feature, you must specify the distance in map units.

In other words, if your map is in latitude and longitude, you would

specify the distance in decimal degrees. This usually isn’t very prac-

tical, so in most cases a projection that uses meters or feet for units

of measure is used. Obviously to be successful (and accurate) in your

analysis, you have to know a little bit about your data, its projection,

and units of measure.

In Figure 12.9, on the following page, we have taken a hypothetical

grouping of eagles’ nests and have applied a 500-meter buffer to them.

The nests and the buffers are displayed over a topographic map. In

this case, we are interested in the distance of each nest from the roads

in the area. From looking at the map, we can see that all of the nests

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=222

USING ANALYSIS AND CONVERSION TOOLS 223

Figure 12.9: Buffered eagle nests created with GRASS and QGIS

except E1 are at least 500 meters from the nearest road. Nest E4 comes

close to being within the buffer distance of the road but is still at least

500 meters away. If we were doing an impact analysis, this simple tool

provides a quick way to visualize the relationships.

To create the buffer, we first put the eagles’ nest map over the topo-

graphic raster map. Then from the GRASS toolbox, we selected the Vec-

tor Buffer module. When you click the module, it opens a new tab for

the buffer operation in the toolbox. Since we had only one GRASS map

loaded, the eagles_nest map is chosen as the input vector map. We then

just specify the buffer distance in map units, in this case 500 meters,

and eagles_nests_500m_buf as the name for the output map. When we

click Run, the buffer layer is created, and we can review the output

from the buffer processing if we want. To add the newly created buffer

to the map canvas, we just click the View Output button. It sounds like

a lot of steps, but in reality it takes about ten seconds to create a buffer,

depending of course on how fast you type.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=223

USING ANALYSIS AND CONVERSION TOOLS 224

Figure 12.10: Roads buffered using GRASS in QGIS

Let’s help the eagles shop for a new nest site. In this case, we need

to buffer the roads by 500 meters to define the areas unsuitable for

nesting. We first start by creating a new empty roads map using our

QGIS-GRASS skills. Then we digitize the main roads from the topo-

graphic raster map using the GRASS edit tools. Since this is a one-shot

analysis, we can get away without entering attributes for our roads. If

we were going to use the road map in future work, we would need to put

a little more thought into the attributes and enter them as we digitize.

Once we have the roads digitized, we can use the Vector Buffer module

to buffer the roads. When we display the roads and the buffer, we can

easily see sites in Figure 12.10 that aren’t suitable for marketing to Mr.

and Mrs. Eagle.

You can also buffer a raster map, in which case the cells of the raster

are buffered based on distance zones you set up. If you are interested

in this kind of buffer processing, the GRASS manual is your friend.

You can see the utility of a simple geoprocessing task like buffering.

With the GRASS plugin in QGIS, this kind of GIS analysis is easy to do.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=224

USING ANALYSIS AND CONVERSION TOOLS 225

Vector Overlays

Now we turn our attention to a group of modules that have to do

with vector overlays. These modules are found in the toolbox under

the heading “Vector overlay.” The modules available to us include the

following:

Vector Union

This module overlays two vector maps to create a new map con-

taining the union or combination of the features. The attribute

tables from the two maps are merged, and a prefix is added to

column names so you can tell from which map they originated.

The boundaries are not dissolved so all original boundaries of the

features are still visible.

Vector Intersection

This creates a new map containing the portions of features com-

mon to features on the input maps. Where two polygons overlap,

only the common portion will be included in the resulting map.

Vector Subtraction

The second polygon map is subtracted from the first. The result

for each feature is that portion of the feature in the first map not

overlapping a polygon feature in the second map.

Vector Non-intersection

This removes the common portion between polygon features. If two

polygons overlap, the overlapping part will be removed, resulting

in what looks like a hole in the combined polygons.

In Figure 12.11, on the following page, you can see a graphic illustra-

tion of the results of each vector overlay operation. In the center are

two polygons, and surrounding them is the result. The graphics in the

GRASS toolbox also provide a visual cue for each overlay operation in

case you need reminding. You can start thinking about how you would

use these modules for something real. We’ll take a simple example to

illustrate the use of the Vector Subtraction command. This will be suf-

ficient to illustrate the use of the modules, and then you can go crazy

with the others.

Let’s take a semireal but mostly manufactured example using logging.2

Suppose the logging company is allowed to cut certain stands of trees,

2. Before you take this example seriously, I confess I know little about timber industry

practices—it’s just an example.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=225

USING ANALYSIS AND CONVERSION TOOLS 226

Figure 12.11: Result of each type of vector overlay operation

based on species and age. We have a polygon map outlining the stands

eligible for cutting. A stream runs through the logging area. To protect

both the stream and the fish populations, there is a 100-meter setback

requirement from any activity. We need to identify the portions of the

eligible stands that are “legal” for harvest.

First we prepare our data and make sure we have a good and accurate

polygon map of the eligible stands. Next we need to buffer the stream to

100 meters to create the second polygon map needed for the analysis.

Once we have those, we can proceed with the subtraction operation. In

Figure 12.12, on the next page, you can see the stands map and the

digitized streams along with the buffer. You can guess by looking at it

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=226

USING ANALYSIS AND CONVERSION TOOLS 227

Figure 12.12: Timber stands and stream buffers

where the likely “no logging” areas are, but by doing the analysis we

will be able visualize it to aid in making decisions.

Now to subtract the portions of the stands that are not eligible for log-

ging. To do this, we use the Vector Subtraction module and enter the

name of the stands map as the first vector input map on the module

input screen. The stream buffer map is entered as the second vector

map. Then we specify a name for the output map. Since it will contain

polygons of the eligible areas, we’ll name it eligible_stands. We click the

Run button, and off we go. The result of this operation is shown in

Figure 12.13, on the following page.

You can see from the results that the upstream stand has been carved

up into three fairly small pieces, one of which is between a fork in the

stream. If we pretend to know something about logging, we might say

that the upstream stand (the one to the right) doesn’t look like it’s too

promising in terms of both size and location. The downstream stand

has been cut in two but is still fairly sizeable. This example serves to

show how the vector overlay modules can be used for visual analysis

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=227

USING ANALYSIS AND CONVERSION TOOLS 228

Figure 12.13: Eligible logging areas after vector subtraction

of spatial relationships. OK, enough pretending that I know anything

about the timber industry.

Creating a Contour Map

To further illustrate the power of the GRASS modules in the toolbox,

we’ll create a contour map from the Anchorage DEM we used in the

LOS analysis in Section 10.2, Line-of-Sight Analysis, on page 153. Cre-

ating a contour map is quite simple, but you need to be aware of the

limitations. When using a DEM, the map will be only as good as the

original data. If the cell size is 50 meters, you can’t expect to create

contours at 20 meters. The same holds true for any raster source we

might want to use.

To create a contour map, we first fire up QGIS and open the GRASS

mapset that contains the DEM. To make a contour map, we first have

to add the DEM to the map canvas. Once that’s done, we can open the

GRASS toolbox and locate the r.contour module. It is under the “Gener-

ate vector contour lines” heading in the list of modules.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=228

USING ANALYSIS AND CONVERSION TOOLS 229

Figure 12.14: Setting up to contour a DEM

When you click r.contour, the module Options tab is displayed, as shown

in Figure 12.14. Here we have filled in the parameters for creating the

contour map. The first step is select an eligible GRASS raster from the

Name of Input Raster Map drop-down. We’ll contour the Ancc6_dem

DEM at an interval of 200 feet. Since the DEM is in meters, we need to

convert that to feet. Using 3.28 ft/m gives us roughly 61 meters, which

we entered in the increment field. The Minimum Contour Level setting

specifies how “low” we want to contour. In the case of our DEM, we

think everything is above sea level, so we just leave that set at zero. The

only other thing to specify is the name for the output map.

When we click Run, the magic happens, and the vector contour map is

created. We can then add it to the map using the View Output button.

The result is shown in Figure 12.15, on the next page, draped over the

original topographic map and the shaded relief. You may find you need

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=229

USING ANALYSIS AND CONVERSION TOOLS 230

Figure 12.15: Result of contouring the DEM

to adjust the parameters to get the result you want. If so, you can use

the browser to delete the contour map and start over. Make sure you

remove the map from the QGIS canvas first!

In case you are wondering, we could of course accomplish the same

thing from the GRASS shell or command line. The command used to

create the contour map is as follows:

r.contour input="ancc6_drg@gsherman" output="ancc6_contour_200" \

minlevel=0 step=61 cut=0

The QGIS module leaves off a few parameters that we could have used

from the GRASS shell. (I know that we’re talking about QGIS, but this

is good stuff.)

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=230

USING ANALYSIS AND CONVERSION TOOLS 231

The full option list for the command is as follows:

GRASS 6.2.2 (albers_c6):~ > r.contour help

Description:

Produces a GRASS binary vector map of specified contours from GRASS

raster map layer.

Keywords:

raster

Usage:

r.contour [-qn] input=name output=name [levels=value[,value,...]]

[minlevel=value] [maxlevel=value] [step=value] [cut=value]

[--overwrite]

Flags:

-q Suppress progress report & min/max information

-n Suppress single crossing error messages

--o Force overwrite of output files

Parameters:

input Name of input raster map

output Name for output vector map

levels List of contour levels

minlevel Minimum contour level

maxlevel Maximum contour level

step Increment between contour levels

cut Minimum number of points for a contour line (0 -> no limit)

default: 0

Note we could have specified both minimum and maximum contour lev-

els, as well as an interval and a step value. There is also a cut option to

specify how many points constitute a contour line. The point of show-

ing you the GRASS usage of this command is this—don’t count on the

QGIS-GRASS modules to provide you with all the options for a particu-

lar operation. For this reason, it’s good to always read the manual entry

(available from the Manual tab for each module) to see what you might

be missing.

Map Algebra

If you’ve been following along with QGIS and actually opened the tool-

box, you’re probably thinking “Wow, there’s a lot of modules in there.”

You’re right, and there is no way we are going to give you an example of

each. The goal is to get you started with the basics, and you can develop

your skill set to meet your needs. That said, there is one last module

we want to look at, just because it’s a bit different from the others.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=231

USING ANALYSIS AND CONVERSION TOOLS 232

Map or “grid” algebra allows you to perform operations on raster maps

in GRASS. This can be useful for a number of things, depending on your

data. You might recall that we have already used some map algebra

(r.mapcalc) in Chapter 10, Geoprocessing, on page 149 when processing

rasters.

The QGIS-GRASS toolbox includes a graphic means to design a set of

operations to create a new raster from a set of input maps. Essentially

you are creating a model that can be run to perform the operation(s).

To illustrate, we’ll convert our DEM from meters to feet, a simple matter

of multiplication.

To convert the DEM, the value of each cell in meters must be multiplied

by 3.28 to convert it to feet. Given that our simple little DEM contains

225,500 cells, this is no trivial matter. Fortunately, the r.mapcalc mod-

ule makes this easy to do.

First we’ll look at a complete “model” and then explain the process of

putting it together. In Figure 12.16, on the next page, you can see the

completed model ready to run.

So, how did we build the model? Basically, it’s a select-drag-drop oper-

ation for each component. The tools on the toolbar allow you to add a

map, constant, function, and connector. We started out by adding the

DEM, which must already be loaded into QGIS; otherwise, it won’t show

up in the list of available maps. We then added the constant 3.28 and a

multiply operator. The output “widget” was already on the model when

we started. Once all the parts are in place, we just use the Add connec-

tion tool to connect them, making sure they are in the proper sequence.

The last step is to enter a name for the output map, and then we are

ready to run it.

When we run the model, it’s really just building up a GRASS r.mapcalc

command for us in the background and executing it. It multiplies each

cell in the Ancc6_dem by 3.28 and stores the value in the output map.

When complete, we have a new raster map that looks just like the orig-

inal when displayed in QGIS, but the units are in feet rather than

meters. If you think you may want to run the model again, you can

save it for future use by clicking the Save tool in the toolbar. When it

comes time to run the model again, start the r.mapcalc module, and

load the model using the Open tool on the toolbar.

This simple example illustrates how to use the r.mapcalc module to

build a model and run it. We didn’t look at all the functions, but there

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=232

SUMMING IT UP 233

Figure 12.16: Mapcalc model for converting DEM from meters to feet

are eighteen operators (arithmetic and logical) and thirty-two functions,

including trigonometric, logical, log, and others. So, you can get a lot

fancier than we did with the r.mapcalc module.

12.4 Summing It Up

That concludes our tour of the QGIS-GRASS plugin and toolbox. As you

may have guessed, we just scratched the surface here. It’s up to you to

explore further and see what other magic awaits you. As I said at the

beginning of this chapter, we’re bordering on advanced territory here.

Keep in mind as you explore the QGIS-GRASS modules that there may

be extra options and “power” available from the GRASS shell.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=233

SUMMING IT UP 234

Joe Asks. . .

What Options Are There for Printing Maps?

At some point you’re going to want to print from your OSGIS ap-
plication. If you’re using QGIS, you can use the map composer
to create a map complete with legend, scale bar, and annota-
tions. You can export from the map composer to a PNG or SVG
for printing or further processing in a graphics application.∗

GRASS provides the ps.map module to produce high-quality
PostScript output suitable for printing. A text file containing
mapping instructions is used as input to ps.map. There are a
lot of instruction keywords that can be used in creating your
map. For help getting started with ps.map, see the GRASS man-
ual page. You can find examples of ps.map scripts on the GRASS
wiki.†

If you are using GMT to create maps, the output is already suit-
able for printing or inclusion in other documents. If you are using
one of the other OSGIS applications, check the manual for infor-
mation on creating hard-copy output.

∗. The current version of the map composer has a number of issues that limit
the quality of the output. These issues are being addressed, and let’s hope the
composer will improve in the next release.
†. http://grass.gdf-hannover.de/wiki/Ps.map_scripts

There are advanced uses for many of the modules in the toolbox that are

beyond the scope of our discussion. If you are already an advanced GIS

user, you are probably picturing them right now. If you are a casual

or intermediate user, you may find that the QGIS-GRASS integration

provides access to a rich set of tools for performing data import and

conversion. Be careful, though—once you start down that path, you

may end up as an advanced user with more ideas than time.

The QGIS-GRASS tools lower the barrier of entry into the world of geo-

processing with GRASS. As you progress in your GIS journey, you’ll

likely find yourself using the GRASS shell to get at even more power

and options.

http://grass.gdf-hannover.de/wiki/Ps.map_scripts
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=234

Chapter 13

GIS Scripting
Most GIS users that I know end up doing a bit of programming, regard-

less of the software they are using. There is always some little task that

is easier done with a script or a bit of code. In this chapter, we’ll look at

some methods for automating tasks in OSGIS software. You don’t have

to be a programmer to do a bit of script writing, especially when you

can get jump-started by downloading examples and snippets.

The script languages available to you depend on the application you

are using. Applications and tools with a command-line interface (CLI)

can be scripted with most any language available. Others have bind-

ings for specific languages. Some nonexhaustive examples include the

following:

• GRASS: Shell, Tcl/Tk, Perl, Ruby, Python

• QGIS: Python

• GDAL/OGR: Shell, Perl, Ruby, Python

• PostGIS: Any language that works with PostgreSQL, such as Perl,

Python, PHP, and Ruby

Some OSGIS applications even provide bindings that allow you to write

a custom application using a language such as Python. In this chapter,

we will explore some of the techniques used with these applications.

13.1 GRASS

Since the real core of GRASS is comprised of CLI applications, it’s pretty

easy to use most any scripting language to perform tasks. From Perl,

Python, Ruby, and Tcl/Tk, you can “call” an application and capture

the output. This makes GRASS easy to automate.

QGIS 236

Shell Game

What do we mean by a shell? It’s a command interpreter pro-
vided with your operating system. If you use OS X, Linux, or a
Unix variant, you likely have bash, csh, and/or ksh available to
you. Windows has cmd, which has its own language and prob-
ably isn’t going to be real helpful in shell scripting. Check out
MSYS∗ and Cygwin† for Windows alternatives.

∗. http://mingw.org

†. http://cygwin.org

Probably the simplest way to automate GRASS tasks is using the script-

ing capabilities of your shell. On Linux and OS X, this is a pretty natural

thing to do, because both come with a fully capable shell. On Windows,

you may have to install a Unix-like shell such as MSYS or Cygwin to be

able to accomplish the same results. You can check up on the progress

of the GRASS Windows support at the GRASS website.1

13.2 QGIS

At version 0.9.x, QGIS includes support for scripting with Python. QGIS

provides the following options for using Python:

• Use the Python console from which you can run scripts using the

objects and methods in the QGIS API.

• Write plugins in Python instead of C++.

• Use PyQt2 to build complete mapping applications using Python

and the QGIS libraries.

Why would you want to do any of this? You’d be surprised at the things

you might dream up. QGIS has been designed to make the libraries eas-

ily usable in your own plugins and applications. With the new Python

bindings, this brings a whole new world of possibility—from simple plu-

gins to complete applications. So far, some of the things that people

have come up with are as follows:

• A map algebra plugin

1. http://grass.itc.it

2. http://www.riverbankcomputing.co.uk/pyqt/

http://mingw.org
http://cygwin.org
http://grass.itc.it
http://www.riverbankcomputing.co.uk/pyqt/
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=236

QGIS 237

• A geocoding plugin

• A region tool for drawing and getting map coordinates from the

canvas

• An application to collect fisheries data

We’re going to take a look at a simple plugin to help us get an idea

of what can be done with the PyQGIS bindings. Using Python to get

started is pretty easy, so don’t be afraid if you aren’t a programmer.

Let’s start by looking at the console.

The Python Console

The console is a bit like using Python from the command line. It lets

you interactively enter bits of code and see the result. This is a good

way to experiment with the interface and can actually be helpful when

you are writing a plugin or application.

To bring up the Python console, go to the Plugins menu, and choose

Python console. The console has a command-line entry area at the bot-

tom and the result window above. Make sure you read the little tip at

the top.

The console is not of much use if we don’t know what to enter into

it. Let’s try a simple example and change the title of the main QGIS

window. The iface object provides you with access to the QGIS API.

Using it, we can reference the main window and set the title:

iface.getMainWindow().setWindowTitle('Hello from Desktop GIS!')

In Figure 13.1, on the following page, we can see the result of our little

example, with the console in front and the new title showing on the

QGIS window behind it.

Changing the title isn’t all that useful, but it shows you how to get a

hold of the interface into the QGIS internals. Like I said, the console

isn’t for doing anything overly useful but is a good exploratory tool.

To manipulate the map canvas, we can try the command given as an

example in the console:

iface.zoomFull()

This will zoom the map to its full extent. Now you’re probably wondering

how to find out what functions are available. The answer is the QGIS

API documentation, available from the website.3

3. http://svn.qgis.org/api_doc/html

http://svn.qgis.org/api_doc/html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=237

QGIS 238

Figure 13.1: Changing the window title with Python

The API may be a bit intimidating at first, but it’s very useful, in fact

essential, to our Python exploits. When you use the iface object in the

Python console, you are actually using an instance of the QgisInterface

class.4 If we look at the documentation for QgisInterface, we find func-

tions such as the following:

• zoomFull(): Zoom to full extent of map layers.

• zoomPrevious(): Zoom to previous view extent.

• zoomActiveLayer(): Zoom to extent of the active layer.

• addVectorLayer(QString vectorLayerPath, QString baseName, QString

providerKey): Add a vector layer.

• addRasterLayer(QString rasterLayerPath): Add a raster layer given a

raster layer filename.

• addRasterLayer(QgsRasterLayer *theRasterLayer, bool theForceRender\

Flag=false): Add a raster layer given a QgsRasterLayer object.

• addProject(QString theProject): Add a project.

• newProject(bool thePromptToSaveFlag=false): Start a blank project.

We already used the zoomFull() method to zoom to the full extent of all

the layers on our map. You can see there is a lot of potential here for

manipulating the map, including adding layers and projects. We can

use these same methods in our plugins and stand-alone applications

as well. As you dive into PyQGIS, the documentation will be your friend.

4. http://svn.qgis.org/api_doc/html/classQgisInterface.html

http://svn.qgis.org/api_doc/html/classQgisInterface.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=238

QGIS 239

Think of the Python console as a workbench for trying methods and

using classes in the QGIS API. Once you get that under your belt, you’re

ready for some real programming. We’ll start out by creating a little

plugin using Python.

A PyQGIS Plugin

Writing plugins in Python is much simpler than using C++. Let’s work

up a little plugin that implements something missing from the QGIS

interface. For this exercise, you’ll need QGIS 0.9.x, Python, PyQt, and

the Qt developer tools.

Harrison just received the latest Birding Extraordinaire magazine, and

in it he finds an article that describes locations for the exotic Moose-

Finch.5 The locations are in latitude and longitude, which don’t mean

much to Harrison unless he’s in his backyard. He fires up QGIS, adds

his layer containing the world boundaries, and begins hunting for the

coordinates. Sure, he can use the coordinate display in the status bar

to eventually find what he wants, but wouldn’t it be nice to be able to

just zoom to the coordinates by entering them? Well, that’s what our

little plugin will do for us (and Harrison).

Before we get started, we need to learn a little bit about how the plugin

mechanism works. When QGIS starts up, it scans certain directories

looking for both C++ and Python plugins. For a file (shared library,

DLL, or Python script) to be recognized as a plugin, it has to have a

specific signature. For Python scripts, it’s pretty simple. Take a look

at your QGIS installation. By platform, here is where you’ll find the

Python plugin directory (we’ll assume your top-level install directory is

represented by .):

• Linux and other Unix: ./share/qgis/python/plugins

• Mac OS X : ./Contents/MacOS/share/qgis/python/plugins

• Windows: .\share\qgis\python\plugins

For QGIS to find our Python plugin, we have to place it in a subdirec-

tory of the appropriate plugin directory for our platform. Each plugin

is contained in its own directory. When QGIS starts up, it will scan

each subdirectory in share/qgis/python/plugins and initialize any plugins

it finds. Once that’s done, our Python plugin will show up in the QGIS

5. A mythical creature

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=239

QGIS 240

plugin manager where we can activate it just like the other plugins that

come with QGIS. OK, enough of that, let’s get started writing our plugin.

Setting Up the Structure

The first thing we need to do is set up the structure for our plugin. In

this example, we’ll be developing our plugin on Linux, but the method is

the same. Just adapt some of the file system commands as appropriate

for your platform. In our examples, QGIS is installed in a directory

named qgis_09 in our home directory. Let’s create the directory for the

plugin:

mkdir ~/qgis_09/share/QGIS/python/plugins/zoom_to_point

That gives us a directory that QGIS will scan on start-up. Within that

directory, we are going to create the following files to get us started

(we’ll need some additional files in a bit):

• __init__.py

• resources.py

• resources.qrc

• zoomtopoint.py

Making the Plugin Recognizable

To initialize our plugin and make it recognizable by QGIS, we use

__init__.py. For our ZoomToPoint plugin, it looks like this:

load ZoomToPoint class from file zoom_to_point.py

from zoomtopoint import ZoomToPoint

def name():

return "Zoom to Point"

def description():

return "Zooms the map canvas to the point you specify"

def version():

return "Version 0.1"

def classFactory(iface):

return ZoomToPoint(iface)

The mandatory things a plugin must return are a name, description,

and version, all of which are implemented in our previous script. The

other requirement is the classFactory() method that must return a refer-

ence to the plugin itself, after receiving the iface object as an argument.

That’s all there is to it to make QGIS think we’re a plugin. But for it

to work, we need to actually implement some logic to make it do some-

thing.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=240

QGIS 241

Defining Resources

For our plugin, we not only need the logic to zoom the map but also a

dialog box to collect input from the user. We also need a resources file

that will contain the icon for our tool. Let’s get that out of the way first

by creating our resources.qrc file that contains the definition of our icon:

<RCC>

<qresource prefix="/plugins/zoom_to_point" >

<file>icon.png</file>

</qresource>

</RCC>

This resource file uses a prefix to prevent naming clashes with other

plugins. It’s good to make sure your prefix will be unique—usually

using the name of your plugin is adequate. We define one file, icon.png,

in the resource file. This is just a PNG image that will be used in the

toolbar when we activate our plugin. You can create your own PNG or

use an existing one. The only real requirement is that it be 22-by-22

pixels so it will fit nicely on the toolbar. You can also use other formats

(XPM for one), but PNG is convenient, and there are a lot of existing

icons in that format.

Once we have the resource file built, we need to use the PyQt resource

compiler to compile it:

pyrcc4 -o resources.py resources.qrc

The -o switch is used to define the output file. If you don’t include it,

the output of pyrcc4 will be written to the terminal, which is not really

what we’re after here. Now that we have the resources defined, we need

to build the GUI to collect the information for ZoomToPoint.

Creating the GUI

To create the GUI, we’ll use the same tool that C++ developers use: Qt

Designer. This is a visual design tool that allows you to create dialog

boxes and main windows by dragging and dropping widgets and defin-

ing their properties. Designer is installed along with Qt, so it should be

already available on your machine.

Our dialog box is pretty simple. In Figure 13.2, on the next page, you

can see the dialog box in Designer, along with the widget palette and the

property editor. It’s already complete, but let’s take a look at what we

had to do to build it. It’s going to be a quick tour since we won’t go into

all the intricacies of Designer. If you want to get into the nitty-gritty, see

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=241

QGIS 242

Figure 13.2: Plugin dialog box in Qt Designer

the excellent documentation on Designer on the Trolltech website6 or in

your Qt documentation directory.

We start by creating a new dialog box using the New form option on the

File menu and selecting the dialog box with the button on the bottom.

Then we add text labels and text edit controls, as shown in Figure 13.2.

We also added a spin control for scaling the view. You don’t have to set

any properties of the text edit controls, but it can be convenient to name

them something other than the default. In this case, I named them

xCoord, yCoord, and spinBoxScale. This makes it easier to reference them

in the code (for those of us with short memories). For our dialog box, we

6. http://trolltech.com

http://trolltech.com
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=242

QGIS 243

don’t need to change the default actions of the OK and Cancel buttons.

Once we have all the controls on the form, we’re ready to generate some

code from it.

To convert our dialog box (which we saved as zoomtopointdialog.ui) to

Python, we use the PyQt pyuic4 command to compile it:

pyuic4 -o ui_zoomtopoint.py zoomtopointdialog.ui

This gives us ui_zoomtopoint.py containing the code necessary to create

the dialog box when the plugin is launched. There is one more thing we

need to get the dialog box up on the screen. We need a bit of code that

imports the user interface and displays the form. For this we create

zoomtopointdialog.py containing the following:

from PyQt4 import QtCore, QtGui

from ui_zoomtopoint import Ui_ZoomToPoint

class ZoomToPointDialog(QtGui.QDialog):

def __init__(self):

QtGui.QDialog.__init__(self)

Set up the user interface from Designer.

self.ui = Ui_ZoomToPoint()

self.ui.setupUi(self)

This bit of code uses the ui_zoomtopoint.py script in setupUi(self) to set

things up. Our GUI is now ready for use. All we need to write now is

the Python code to interact with the QGIS map canvas.

Getting to Zoom

We’re now ready to write the actual code that does something with the

map. Up to this point we’ve just been getting the plumbing put in. Now

we’ll write the code to actually zoom to the point we enter in our dialog

box. As we go, we’ll look at the code in chunks to make it a bit easier.

Let’s start by looking at the things we need to import and the initializa-

tion of the plugin:

Download zoomtopoint.py

Line 1 # Import the PyQt and QGIS libraries
- from PyQt4.QtCore import *
- from PyQt4.QtGui import *
- from qgis.core import *
5 # Initialize Qt resources from file resources.py
- import resources
- # Import the code for the dialog
- from zoomtopointdialog import ZoomToPointDialog
-

http://media.pragprog.com/titles/gsdgis/code/zoomtopoint.py
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=243

QGIS 244

10 class ZoomToPoint:
-

- def __init__(self, iface):
- # Save reference to the QGIS interface
- self.iface = iface

15

- def initGui(self):
- # Create action that will start plugin configuration
- self.action = QAction(QIcon(":/plugins/zoom_to_point/icon.png"), \
- "Zoom To Point plugin", self.iface.getMainWindow())

20 self.action.setWhatsThis("Configuration for Zoom To Point plugin")
- QObject.connect(self.action, SIGNAL("activated()"), self.run)
-

- # Add toolbar button and menu item
- self.iface.addToolBarIcon(self.action)

25 self.iface.addPluginMenu("&Zoom to Point...", self.action)
-

- def unload(self):
- # Remove the plugin menu item and icon
- self.iface.removePluginMenu("&Zoom to Point...",self.action)

30 self.iface.removeToolBarIcon(self.action)

Every Python script that uses the QGIS libraries and PyQt needs to

import the QtCore and QtGui libraries, in addition to the QGIS core

library. This gives us access to the PyQt wrappers for our Qt objects

(like our dialog box) and the QGIS core libraries. We do this in lines

2 through 8. Notice that not only did we import the PyQt and QGIS

libraries, but we also brought in our resources file and, in line 8, the

code for the dialog box.

If you noticed line 10, you probably realized that we’re talking about a

Python class. The implementation of our plugin all takes place within

the ZoomToPoint class. The methods we are about to discuss are all mem-

bers of ZoomToPoint.

When the class is first instantiated, we store the reference to the iface

object using the __init__() method. This method gets called whenever we

create a ZoomToPoint object. We store iface as a class member because

we are going to use it later when we need access to the map canvas.

As far as QGIS is concerned, plugins must implement only two meth-

ods: initGui() and unload(). These two methods are used to initialize the

user interface when the plugin is first loaded and clean up the interface

when it’s unloaded. Let’s take a look at what we need to initialize our

plugin GUI.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=244

QGIS 245

First we need to create what’s called an action. This is a Qt object of

type QAction. It’s used to define an action that will later be used on a

menu or a toolbar. On line 19, we create our action by supplying three

arguments:

• The icon for the toolbar. This is a combination of the prefix

(/plugins/zoom_to_point) and the icon file name (icon.png) as spec-

ified in our resources file.

• Some text that’s used in the menu and tooltip, in this case “Zoom

To Point plugin.”

• A reference to the parent for the plugin, in this case the main

window of QGIS.

Once we have created the action, we set some descriptive text to be

used with the WhatsThis function (that’s the little arrow you find on a lot

of applications that you click to activate and then click a toolbar item

or other GUI element to get a description). On line 21, we do one last

thing with the action to connect it to the run() method. This basically

connects things so that when the OK button on the dialog box is clicked

the run() method in our ZoomToPoint class is called.

Next we need to actually put our nicely configured action on the menu

and toolbar in the GUI. The QgisInterface class that we played with in

the Python console contains the methods we need. On line 24, we use

addToolBarIcon() to add the icon for our tool to the plugin toolbar in

QGIS. To add it to the menu, we use addPluginMenu() method, as shown

on line 25. Now our GUI is set up and ready to use.

The unload() method is pretty simple. It uses the removePluginMenu()

and removeToolBarIcon() methods to remove the menu item and the icon

from the toolbar. Remember this method is called only when you unload

the plugin from QGIS using the Plugin Manager.

Finally, we are ready to add the bit of code that does the real work.

Like most GUI applications, the bulk of the code has to do with the

user interface while a few bytes do the actual work. In our case, the

actual work is done by the run() method that is defined on line 1 in the

following listing:

Download zoomtopoint.py

Line 1 def run(self):
- # create and show the ZoomToPoint dialog
- print "Creating ZoomToPoint Dialog"
- dlg = ZoomToPointDialog()

http://media.pragprog.com/titles/gsdgis/code/zoomtopoint.py
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=245

QGIS 246

5 dlg.show()
- result = dlg.exec_()
- # See if OK was pressed
- if result == 1:
- # Get the coordinates and scale factor from the dialog

10 x = dlg.ui.xCoord.text()
- y = dlg.ui.yCoord.text()
- scale = dlg.ui.spinBoxScale.value()
- # Create a rectangle to cover the new extent
- rect = QgsRect(float(x)-scale,float(y)-scale,float(x)+scale,float(y)+scale)

15 # Get the map canvas
- mc=self.iface.getMapCanvas()
- # Set the extent to our new rectangle
- mc.setExtent(rect)
- # Refresh the map

20 mc.refresh()

Let’s step through the run() method to see how it works. On line 3, we

print a message to the terminal to let us know what’s happening. If you

start QGIS from a command shell in either Linux or OS X, you can see

messages that are sent to the terminal. In this case, we use it just to

ease our paranoia about whether the run() method is getting called.

The next step is to create the dialog box (line 4) and then display it

using exec_(). This causes the dialog box to show itself and then wait

for some user interaction. The dialog box remains up until either the

OK or Cancel button is clicked. Once a button is clicked, we test to see

whether it was the OK button on line 8. If so, we are then ready to zoom

the map.

First we have to retrieve the x and y coordinates and the scale that you

entered on the dialog box (lines 10 through 12). We store these in local

variables just to make the next step a bit more readable in the code.

Once we have the user inputs, we need to create a rectangle that we

can use in setting the map extent. The QGIS API has a QgsRect class

that is used for this purpose. On line 14, we create the rectangle by

simply expanding the x and y values by the scale value. Once we have

the rectangle, we are ready to zoom the map. First we get a reference

to the QGIS map canvas on line 16, using the iface reference we saved

in the __init__() method. Then it’s simply a matter of calling the map

canvas setExtent() method. To actually get the map to zoom, we call

the map canvas refresh() method and the map zooms to the rectangle

we specified. Once complete, our plugin stands by ready for the next

request.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=246

QGIS 247

Let’s summarize the process of creating a plugin. First we have a bit

of work to do to get the GUI in order. This includes setting up our

resources file, designing the dialog box, and writing the class needed

to bootstrap it. Then we create the actual plugin code, including the

methods needed to initialize the GUI when the plugin is activated, and

clean up after itself when it is unloaded. Finally, we implement the

run() method where the real work of showing the dialog box, collecting

the input, and zooming the map takes place. While we stretched out the

explanation, there really isn’t all that much hand written code involved

in making the plugin. In fact, for the ZoomToPoint plugin there are less

than 80 lines of actual code.

Our plugin is pretty rough. We don’t do any error checking—you can

submit blank values for x and y. There are a number of enhancements

you could add to the plugin, including the ability to “remember” the

x, y, and scale values that you used the previous go. If you got really

fancy, you could also figure out how to set a marker at the point after

you zoom. Come to think of it, once you add those features, send them

to me, and I’ll include them in the next release of the plugin. Just to

prove it works, you can see the plugin and the values we just entered

in Figure 13.3, on the next page. Behind it you’ll see the map zoomed

to the coordinates we specified. Notice the magnifying glass icon with

the blue dot in the middle on the upper left of the toolbar. That’s the

icon we specified for our plugin, and it indeed shows up on the toolbar.

If we were to look in the Plugins menu, we would find an entry for Zoom

to Point as well.

Writing a QGIS plugin in Python is pretty easy. Some plugins won’t

require a GUI at all. For example, you might write a plugin that returns

the map coordinates for the point you click the map. Such a plugin

wouldn’t require any user input and could use a standard Qt Message-

Box to display the result. You can also write plugins for QGIS in C++,

but that’s another story and one I’ll let you write.7

A PyQGIS Application

A stand-alone application is a step beyond a QGIS plugin. In some

ways, they are very similar. We need to create a GUI and use the same

imports. On the other hand, we do not have to write all that code to

7. Actually, you can find information on writing QGIS plugins in C++ on the QGIS wiki

at http://wiki.qgis.org.

http://wiki.qgis.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=247

GDAL AND OGR 248

Figure 13.3: ZoomToPoint plugin in use

interface with the QGIS plugin mechanism. A stand-alone application

does require a lot more GUI coding. Rather than build an applica-

tion here, I’ll point you at the QGIS blog for more information.8 There

you’ll find five or six tutorials on creating stand-alone applications

using QGIS and the Python bindings. For some real-world examples

of PyQGIS applications, see Section 14.2, Examples of Custom Applica-

tions, on page 265.

13.3 GDAL and OGR

We already took a long look at the GDAL and OGR utilities in Chap-

ter 11, Using Command-Line Tools, on page 174. Here we will take what

we learned in that chapter and look at ways to automate our data con-

version and loading tasks. Many, if not most, tasks can be handled with

a shell script (bash for example) and don’t require Ruby or Python. Of

8. http://blog.qgis.org

http://blog.qgis.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=248

GDAL AND OGR 249

course, if you are more comfortable with one of those over shell script-

ing, it makes sense to use what you know. If you want to tap into the

power of the GDAL/OGR bindings, you’ll need to use Python, Ruby,

Java, or one of the other supported languages.

For Windows users it will likely be easier to use Ruby or Python, unless

you have access to a Unix-like shell through Cygwin or MSYS.

In this section, we’ll take a look at a couple of examples, one using a

shell script and the other using Python with the GDAL/OGR bindings.

Converting Data with a Shell Script

In the simplest case, we have a directory full of files, and we want to

perform the same operation on each one. The basic application flow is

as follows:

1. Get a list of the files.

2. Loop over the list.

3. Perform some operation on each file.

4. Repeat until all files are processed.

It can’t get too much simpler than that. Let’s take an example using

bash and convert a batch of shapefiles from an Albers projection to

geographic coordinates in WGS 84. First let’s figure out what command

and options we need to get the job done. We’ll use ogr2ogr to convert the

files. Fortunately, all the shapefiles have an associated projection file,

so we don’t have to worry about specifying that during the conversion.

Here is the bash script to do the conversion:

Download convert_shapefiles.sh

Line 1 #!/bin/bash
- # Convert all shapefiles in the current directory to
- # WGS84 projection. The converted shapefiles are placed
- # in the geo subdirectory.
5 for shp in *.shp
- do
- echo "Processing $shp"
- ogr2ogr -f "ESRI Shapefile" -t_srs EPSG:4326 geo/$shp $shp
- done

Notice that on line 7, we are going to print a little message for each

shapefile that is processed. On line 8, we have the ogr2ogr command

that does the actual work. As it’s processed, each converted shapefile

http://media.pragprog.com/titles/gsdgis/code/convert_shapefiles.sh
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=249

GDAL AND OGR 250

is placed in a geo subdirectory. Other than that, the output from the

script isn’t that exciting:

$. ./convert_shapefiles.sh

Processing adminbnd.shp

Processing admin_nps.shp

Processing admin_nra.shp

Processing admin_nwr.shp

Processing admin_state.shp

Processing admin_usfs.shp

Processing admin_wild.shp

Processing admin_wild_s.shp

Processing gnisalb.shp

Processing govt_emp.shp

Processing language.shp

Processing owner_fed.shp

Let’s test one of the new shapefiles to make sure it did what we wanted:

$ ogrinfo -al -so adminbnd.shp

INFO: Open of `adminbnd.shp'

using driver `ESRI Shapefile' successful.

Layer name: adminbnd

Geometry: Polygon

Feature Count: 11977

Extent: (-168.072393, 53.921043) - (-129.973606, 71.389543)

Layer SRS WKT:

GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",

SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]]

AREA: Real (19.3)

PERIMETER: Real (19.3)

BNDS_: Integer (9.0)

BNDS_ID: Integer (9.0)

PARCEL_ID: Integer (9.0)

NAME: String (25.0)

LONGNAME: String (50.0)

ADMIN: Integer (9.0)

AGENCY_ITE: String (50.0)

PARCEL_TYP: String (50.0)

SCALE: Integer (9.0)

EFF_DATE: Date (10.0)

AMEND_DATE: Date (10.0)

DESCRIPTIO: String (50.0)

The spatial reference system (SRS) for the converted shapefile is indeed

what we asked for—WGS 84.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=250

GDAL AND OGR 251

Creating a Shapefile from Delimited Text

While the GDAL/OGR utilities provide you with a lot of capability,

sometimes you may need to dig a little deeper. In this example, we’ll

use Python with OGR to create a shapefile from the volcanoes dataset.

In Section 8.2, Importing Data, on page 122, we used the delimited text

plugin to import the volcano data into QGIS and display it and then

save it to a shapefile. That works well, but suppose you have a lot of

data to process. In that case, writing a script to do the work is not only

quicker but more flexible.

Before we get started, we need to make sure that the Python bindings

for GDAL/OGR are present. This is easy to test using the Python Inter-

preter:

$ python

Python 2.5.1 (r251:54863, Oct 5 2007, 13:50:07)

[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import ogr

>>>

If you get the prompt back with no errors, you are good to go. If not, it

means that your GDAL/OGR install doesn’t include the Python bind-

ings. If you built from source, you’ll have to go back and recompile with

the --with-python option. If you don’t have them, a quick way to get the

needed bindings for Linux or Windows is to use FWTools.9

Our script will take the following steps to get from delimited text to the

shapefile:

1. Import the needed modules.

2. Open the delimited text file.

3. Create the shapefile.

4. Add the fields to the shapefile.

5. Read the text file and populate the attributes and geometry for

each row.

6. Close the shapefile.

9. http://fwtools.maptools.org

http://fwtools.maptools.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=251

GDAL AND OGR 252

Let’s take a look at the code in chunks and go through it bit by bit:

Download import_volcanoes.py

Line 1 # import the csv module
- import csv
- # import the OGR modules
- import ogr
5 import osr
-

- # use a dictionary reader so we can access by field name
- reader = csv.DictReader(open("volcano_data.txt","rb"),
- delimiter='\t',

10 quoting=csv.QUOTE_NONE)

Beginning with line 2, we import the modules needed for the script.

The csv module is part of Python as of version 2.3. It provides a simple

way to read a delimited text file and is well suited to our needs. The

other imports we need are ogr, which provides access to the OGR func-

tions needed to create and write features to a shapefile and osr, which

provides the spatial reference functions.

Next we set up the csv reader in line 8. We are using the DictReader class

to read the file and map the information into a dict. This allows us to

reference the data using the field names in the header row of the input

file. We’ll use this capability to pick and choose which fields we want

in our shapefile. When creating the DictReader, we need to specify the

delimiter, in this case \t for the tab character. You might remember we

used the same with the QGIS Delimited Text plugin. The last argument

in setting up the reader is cvs.QUOTE_NONE, which specifies that our file

has no quotes around the data.

Now we’re ready to use the OGR bindings to create the shapefile:

Download import_volcanoes.py

Line 1 # set up the shapefile driver
- driver = ogr.GetDriverByName("ESRI Shapefile")
-

- # create the data source
5 data_source = driver.CreateDataSource("volcanoes.shp")
-

- # create the spatial reference
- srs = osr.SpatialReference()
- srs.ImportFromEPSG(4326)

10

- # create the layer
- layer = data_source.CreateLayer("volcanoes", srs, ogr.wkbPoint)
-

http://media.pragprog.com/titles/gsdgis/code/import_volcanoes.py
http://media.pragprog.com/titles/gsdgis/code/import_volcanoes.py
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=252

GDAL AND OGR 253

- # Add the fields we're interested in
15 field_name = ogr.FieldDefn("Name", ogr.OFTString)

- field_name.SetWidth(24)
- layer.CreateField(field_name)
- field_region = ogr.FieldDefn("Region", ogr.OFTString)
- field_region.SetWidth(24)

20 layer.CreateField(field_region)
- layer.CreateField(ogr.FieldDefn("Latitude", ogr.OFTReal))
- layer.CreateField(ogr.FieldDefn("Longitude", ogr.OFTReal))
- layer.CreateField(ogr.FieldDefn("Elevation", ogr.OFTInteger))

The first step is to create the driver in line 2. Once we have the driver, we

can use it to create the data source. In OGR, a shapefile data source can

be a directory of shapefiles, or it can be just a single file. In our case, we

are creating just a single shapefile as the data source in line 5. In line

8, we create a SpatialReference object and then use the ImportFromEPSG()

method to set the spatial reference to WGS84 using EPSG code 4326.

From the data source, we can create the layer as shown in line 12. The

first argument is just the name of the shapefile without the extension.

The second argument to CreateLayer() is the spatial reference. The final

argument is the feature type—in our case a wkbPoint.

With the layer created, we can add the field definitions in lines 15

through 23. For the text fields, Name and Region, we create the field

object, set an arbitrary width of 24, and then use the CreateField() to

add it to our layer. For the numeric fields, we can create the field all in

one step as in line 21.

The layer is now ready for some data:

Download import_volcanoes.py

Line 1 # Process the text file and add the attributes and features to the shapefile
- for row in reader:
- # create the feature
- feature = ogr.Feature(layer.GetLayerDefn())
5 # Set the attributes using the values from the delimited text file
- feature.SetField("Name", row['Name'])
- feature.SetField("Region", row['Region'])
- feature.SetField("Latitude", row['Latitude'])
- feature.SetField("Longitude", row['Longitude'])

10 feature.SetField("Elevation", row['Elev'])
-

- # create the WKT for the feature using Python string formatting
- wkt = "POINT(%f %f)" % (float(row['Longitude']) , float(row['Latitude']))
-

15 # Create the point from the Well Known Txt
- point = ogr.CreateGeometryFromWkt(wkt)
-

http://media.pragprog.com/titles/gsdgis/code/import_volcanoes.py
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=253

GDAL AND OGR 254

- # Set the feature geometry using the point
- feature.SetGeometry(point)

20 # Create the feature in the layer (shapefile)
- layer.CreateFeature(feature)
- # Destroy the feature to free resources
- feature.Destroy()
-

25 # Destroy the data source to free resources
- data_source.Destroy()

In line 2, we began reading the text file to create the features, one for

each line in the file. For each line we must create a feature object (line 4)

and then set the values for each of the fields in lines 6 through 10. Since

we chose to use the DictReader, we can access the values for each field

by name to set the values. This takes care of the attributes—all that’s

left is to create the geometry from the latitude and longitude values.

To create the geometry, we create a WKT representation of the point

using the values of the latitude and longitude fields. In line 13, the

Python string-formatting feature is used to easily create the WKT for

the point in the form of POINT(x y). Using the WKT, the point feature

is created in line 16. The last step to get the entire feature ready is

to set the geometry, as shown in line 19. The feature (attributes and

geometry) is now complete and can be added to the shapefile using

CreateFeature(), as shown in line 21. The last step before moving on to

the next line in the text file is to destroy the local feature object to free

up resources (line 23).

Once all the lines in the text file are processed, the data source is

“destroyed” to close everything up cleanly. When it’s run, the script

produces the following files:

volcanoes.dbf

volcanoes.prj

volcanoes.shp

volcanoes.shx

If you look at the .prj file, you’ll see that it contains the projection infor-

mation for WGS84. Just to prove it works, the volcano shapefile dis-

played over the world_borders shapefile is shown in Figure 13.4, on the

next page.

You can probably envision even more clever and perhaps complicated

scripts using both the GDAL/OGR utilities and bindings. There are

GDAL/OGR bindings for Perl, Python, Ruby, Java, and C#/.NET, plus

a couple of other languages. This gives you the option of writing scripts

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=254

POSTGIS 255

Figure 13.4: Volcanoes shapefile created with Python script

in these languages directly against the GDAL/OGR API to work with

both vector and raster formats.

13.4 PostGIS

Although PostGIS is really on the server side of things, it’s an important

component of many of our desktop applications. In this section, we will

look at using Ruby to access and work with geometries stored in Post-

greSQL. Fortunately, the components to unite Ruby, PostgreSQL, and

PostGIS already exist. We’re using Ruby, but you could just as easily

use Python or another language that provides PostgreSQL bindings.

Installing the Gems

First we need to get a few things installed in order to work with the

database. Here’s what you need:

• Ruby

• RubyGems

• postgres-pr

• GeoRuby

Obviously we need Ruby—I’ll let you figure out how to get that—or just

visit the website at http://www.ruby-lang.org. To access PostgreSQL, we

http://www.ruby-lang.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=255

POSTGIS 256

will use the postgres-pr library, and for working with geometries, we will

use GeoRuby. We can install these using gem. To install RubyGems,

download the distribution file for your platform, and unpack it. Make

sure you have rdoc installed first. Then install Rubygems by changing

to the distribution directory and running the setup.rb file:

$ ruby setup.rb

Install the remaining dependencies using gem:

gem install postgres-pr

Bulk updating Gem source index for: http://gems.rubyforge.org

Successfully installed postgres-pr-0.4.0

gem install GeoRuby

Successfully installed GeoRuby-1.2.1

Installing ri documentation for GeoRuby-1.2.1...

Installing RDoc documentation for GeoRuby-1.2.1...

Now we have the tools installed and are ready to give it a go. We already

have a PostgreSQL database with some layers loaded. First let’s just

run a simple script to check the connectivity and make sure everything

is working correctly. We can test this with the following code:

require 'rubygems'

require 'postgres-pr/connection'

c = PostgresPR::Connection.new('gis_data', 'gsherman', '', 'tcp://madison:5432')

res =c.query('select * from geometry_columns')

res.rows.each{|r|

puts r

puts "-------------"

}

The first couple of records from the script are shown next, just to prove

it worked. We have connectivity to our database and were able to print

out all the records in the geometry_columns table.

public

country

shape

2

4326

MULTIPOLYGON

public

edit_test

shape

2

4326

POINT

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=256

POSTGIS 257

Now let’s quickly test the GeoRuby install using the following script to

create a point and print it out in WKT format:

require 'rubygems'

require 'geo_ruby'

include GeoRuby::SimpleFeatures

p = Point.from_x_y(-151.25,61.75)

puts p.as_wkt

The output from the script is a whopping:

POINT(-151.25 61.75)

Although not very earth-shattering, it proves we have the environment

set up right and now can move on to doing something useful with our

PostgreSQL data and Ruby.

Remember in Section 8.2, Importing Data, on page 122, where we wrote

a little script to prepare the historic earthquake data for import? Well,

we’re going to modify that a bit and use it to load the earthquake data

directly into PostGIS. Here’s the script with the new bits added in:

Download load_earthquakes.rb

Line 1 #!/usr/local/bin/ruby
- require 'rubygems'
- require 'postgres-pr/connection'
- require 'geo_ruby'
5 include GeoRuby::SimpleFeatures
- # load earthquake data into PostGIS
- conn = PostgresPR::Connection.new('gis_data',
- 'gsherman',
- '',

10 'tcp://madison:5432')
- # create the database table
- conn.query('create table quake_demo (id int4 primary key, event_date date,' +
- 'event_time varchar(10), latitude float, longitude float, depth float,' +
- 'magnitude float, geom geometry)')

15 # Open the file
- f = File.open("db_search2291")
- # Skip the first two header records
- 2.times{f.gets}
- # Member for the primary key

20 key = 0
- # process the earthquake records
- while not f.eof
- record = f.gets
- # used a fixed length approach to get the fields we want since

25 # splitting on white space isn't feasible
- event_date = record[1..10]
- event_time = record[13..22]
- latitude = record[26..32]

http://media.pragprog.com/titles/gsdgis/code/load_earthquakes.rb
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=257

POSTGIS 258

- longitude = record[37..44]
30 longitude_direction = record[46..46]

- depth = record[50..54]
- magnitude = record[66..69]
- # if the longitude is in the western hemisphere, it must be
- # negative

35 longitude = -1 * longitude.to_f if longitude_direction == 'W'
- magnitude = '0' if magnitude.strip.length == 0
- key = key + 1
- # create a point using geo_ruby
- pt = Point.from_x_y(longitude, latitude)

40 # insert the row
- result = conn.query("insert into quake_demo values(#{key}, " +
- "'#{event_date}', '#{event_time}',#{latitude}, #{longitude}, " +
- "#{depth}, #{magnitude}, GeometryFromText('#{pt.as_wkt}',4326))")
-

45 end
- # create the spatial index
- result=conn.query("create index sidx_quake_demo on quake_demo " +
- "using GIST (geom GIST_GEOMETRY_OPS)")
-

50 # analyze the table
- result = conn.query("vacuum analyze quake_demo")
-

- conn.close
- f.close

Let’s take a look at how this works. First we need to pull in the needed

dependencies; then in line 7, we make connection to the database. If

you want to try this, just change the parameters to match your setup

(database name, username, password, and connection information).

Once we have a connection, the next step is to create the table. We

do this with a simple DDL10 query beginning with line 12. The rest

of the script is pretty much the same as the one we used to prepare

the delimited data, until you get down to line 39 where we use one of

the GeoRuby classes to simplify things a bit. By using the Point object,

we can easily get the WKT needed for our insert statement. Sure, we

could have cobbled it together from the latitude and longitude, but that

wouldn’t be any fun. Once we have the point, we create the insert state-

ment (41). As you can see from the code, this is done for each line in

the input file, resulting in more than 12,000 records in the database.

Once all the records are loaded, we have a couple of things left to do.

First we need a spatial index on our new table. Without it, retrieving

10. Data Definition Language

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=258

POSTGIS 259

features for a specific area will be slow. Again, we use a bit of DDL in

line 47, taken straight from the PostGIS manual, to create the index.

The last step is to get out the vacuum and sweep up the dust. Well,

not really, but we do need to run VACUUM ANALYZE on our new table.

In the PostgreSQL world, this command reclaims space for use and

updates the statistics for a table or tables to ensure that query exe-

cution is planned efficiently. Even if you don’t quite understand that

explanation, just run it anyway—your data will be happy, and you will

be happy.

Our new table is now ready to use. We can view it by any application

that supports PostGIS layers, assuming it doesn’t rely on our old friend

the geometry_columns table. Take a look back at Section 7.3, The geom-

etry_columns Table, on page 104 if you need a refresher. QGIS doesn’t

require an entry in the geometry_columns—it can scan the database and

find all tables that have a spatial column. If your client (or server) soft-

ware relies on the geometry_columns table, you can easily add a record

using something similar to the following:

insert into geometry_columns

values('', 'public', 'quakes_demo', 'geom', 2, 4326, 'POINT');

Now every application that supports PostGIS should be able to find the

layer. In Figure 13.5, on the following page, you can see the results of

our scripting work, loaded into QGIS.

The earthquakes are rendered in graduated symbols, with the worst

being big red dots. I also added the NASA JPL world mosaic as a back-

drop. The big red dot you see is the site of the March 1964 Alaska

earthquake, which registered approximately 9.2 on the Richter scale.

You may be wondering why we added an integer primary key when

we created the table in line 12. Well, first, it’s always good to have a

primary key in your tables. And second, if we want to use the table in

QGIS, it requires a primary key in order to manage selection sets and

other bookkeeping tasks behind the scenes.

Transforming Coordinates

For our last example, we take a look at a simple way to transform coor-

dinates using a PostGIS-enabled database. Why would you want to do

this? Well, let’s look at the process first and then revisit that question.

Harrison has some old musty topographic maps he used to mark bird

sightings back in the old days before he had a GPS. Now he wants to

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=259

POSTGIS 260

Figure 13.5: Results of loading earthquakes into PostGIS

add them back into his GPS and integrate them into his bird database

(Harrison likes to revisit the exact spots year after year). No problem,

you say—just put the latitude and longitudes from the paper map into

the GPS. But Harrison, being an up-and-coming GIS savant, realizes

that his paper maps are in a different datum than his GPS uses. The old

maps were created using the NAD27 datum, where his GPS now uses

WGS84. If he just plugs the latitudes and longitudes into the GPS, the

locations could be off by as much as 400 feet or more. Since Harrison

has a really accurate tool for determining latitude and longitude on his

paper maps, he’s not happy with a datum problem.

It turns out it’s a simple matter to transform coordinates using PostGIS

and GeoRuby. You don’t even have to store anything in the database.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=260

POSTGIS 261

Here’s the code:

Download transform_point.rb

Line 1 #!/usr/local/bin/ruby
- require 'rubygems'
- require 'postgres-pr/connection'
- require 'geo_ruby'
5 include GeoRuby::SimpleFeatures
- # Connect to the database
- conn = PostgresPR::Connection.new('gis_data',
- 'gsherman',
- '',

10 'tcp://madison:5432')
- # Create a point using geo_ruby from the command line arguments
- pt = Point.from_x_y(ARGV[0], ARGV[1])
- # transform the point
- wkt = "'POINT(#{pt.x} #{pt.y})'"

15 sql = "select transform(GeometryFromText(#{wkt},4267), 4326)"
- result = conn.query(sql)
- # Create a WGS84 point from the transform result
- wgs84_pt = Point.from_hex_ewkb(result.rows[0][0])
- # print the results

20 print "Input NAD27 point : #{ARGV[0]}, #{ARGV[1]}\n"
- print "Output WGS84 point: #{wgs84_pt.x}, #{wgs84_pt.y}\n"
- # Close the database connection
- conn.close

Let’s take a look at a couple of things about the code. First, Harrison

must specify the latitude and longitude on the command line, since the

NAD27 point from his map is created on line 12 using the first two

elements of the ARGV array. Since I like to specify coordinates as X

and then Y, that’s the way Harrison did it. This means we have to put

the longitude on the command line first, followed by the latitude. The

second thing to note is there is absolutely no error checking—this is a

no-frills script.

When Harrison runs the script, here’s what he gets:

$ ruby code/transform_point.rb -151 61

Input NAD27 point : -151, 61

Output WGS84 point: -151.002235480186, 60.9994441802801

He now has his first point in converted to WGS84. He could just as

easily transform the points to a projected coordinate system by sub-

stituting the appropriate SRID in the query. For example, if we wanted

to convert from our NAD27 latitude and longitude coordinates to UTM

Zone 6, NAD83 datum, the query on line 15 would look like this:

select transform(GeometryFromText(#{wkt},4267), 26906)

http://media.pragprog.com/titles/gsdgis/code/transform_point.rb
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=261

POSTGIS 262

A Better Way to Transform?

You may be wondering if there is a better way to transform
coordinates. In fact, there are a bunch of ways to do it. For sim-
ple command-line transformations, you can use the cs2cs utility
that is part of the PROJ4 Cartographic Projections Library. This
library is used by virtually all OSGIS projects for doing transfor-
mations or “projecting on the fly.”

You can also transform entire datasets using ogr2ogr. Many of
the OSGIS applications provide a means to transform a dataset
to new coordinate system.

So, why use Ruby and PostGIS to do it? The point was to gen-
tly introduce you to the possibilities of scripting using both Post-
greSQL and the GeoRuby classes. Let’s hope we succeeded in
whetting your appetite for further scripting endeavors.

We just need to know the proper EPSG code to specify in the query, in

this case 26906. If we run the program now, we get different-looking

coordinates—let’s hope ones that make sense for a point in UTM Zone

6, NAD83:

$ ruby code/transform_point.rb -151 61

Input NAD27 point : -151, 61

Output UTM Zone 6 NAD83 point: 283625.288353973, 6769338.97358209

One other point before we leave this topic: note how we created a point

from the results of a query. We used the from_hex_ewkb(WKB) method

when creating the new point. This is the format that is returned when

we query a geometry column in a PostGIS layer. This handy method

makes it easy to create objects from the results of a query.

The GeoRuby classes can also be used with Ruby on Rails, opening up a

world of possibilities for integrating PostGIS and your web applications.

Finally, if you are thinking this example was a bit contrived, you are

right. However, there is a practical application. For example, suppose

you are writing an application (either web or desktop) that accepts user

input in one coordinate system but must store it in PostGIS in another.

The simple solution presented here is one way to do it. Of course, the

possibilities are endless. . . .

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=262

Here be dragons!

Mapmakers of old

Chapter 14

Writing Your Own
GIS Applications

Most GIS users have ventured into the realm of programming—whether

it be writing scripts or full-blown applications. Scripting is quite useful

for automating GIS tasks, as we saw in Chapter 13, GIS Scripting, on

page 235.

Sometimes you find yourself in a position where you need a customized

application. The full version of your favorite OSGIS application is per-

haps overkill or doesn’t provide the features you need. Often trying to

twist the application into the form you need results in a system that

is not user-friendly and is difficult to use. Many disciplines can benefit

from a lightweight custom application that serves a specific need. These

are the reasons for writing such an application; let’s look at some of the

specifics.

14.1 Options for Writing Your Application

If we are going to write an application, there are some things we don’t

want to build from scratch:

• Low-level drawing routines for displaying raster and vector data

• Read/write access to our data stores

• Renderers such as unique value and graduated symbol

• Legend generation

OPTIONS FOR WRITING YOUR APPLICATION 264

We want the API to handle all the hard stuff for us so we can concen-

trate on the custom functionality. That said, let’s see what APIs are

available for the task.

Tools for Building a Custom Application

You can build a custom application in many ways. You can program

at a low-level against, for example, the GDAL/OGR or GRASS libraries.

One of the most time-consuming aspects of creating an application is

the user interface. If you’ve never done it before, you’ll find that it takes

nearly as much code for the GUI as it does for the logic. If you are

going to write a desktop application, the first thing you should decide

is which GUI toolkit you will use.

Let’s take a look at the GIS toolkits (APIs) available for us to work with.

If you’re like me, cross-platform support is an important consideration,

although depending on the scope and target for the application, build-

ing on a single OS may be perfectly acceptable. In the list of toolkits that

follow, we’ll point out the level of cross-platform support for each. This

is not a comprehensive list—there are likely other toolkits out there in

the wild.

Mapnik

Mapnik1 is a toolkit for developing mapping applications using

C++ or Python. As of version 0.4, Mapnik runs on Linux, Mac OS

X, and Windows. Mapnik renders its output as an image. You can

likely integrate this with whatever GUI toolkit you desire, based

on your platform.

MapWinGIS

MapWinGIS2 is an ActiveX control that you can use with any

programming language that supports ActiveX on Windows. This

includes Visual Basic, Delphi, VB .NET, and C# and the GUI ele-

ments that go along with them.

PyWPS

PyWPS3 is the “Python Web Processing Service,” an implementa-

tion of the Web Processing Standard from the Open Geospatial

Consortium. PyWPS allows you to write applications using Python

and GRASS that work over the Web. Although it isn’t a way to

1. http://mapnik.org

2. http://www.mapwindow.com

3. http://pywps.wald.intevation.org

http://mapnik.org
http://www.mapwindow.com
http://pywps.wald.intevation.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=264

EXAMPLES OF CUSTOM APPLICATIONS 265

write desktop applications, it does use GRASS on the back end to

provide powerful geoprocessing capabilities via the Web and is an

option depending on your needs.

QGIS libraries

The QGIS4 libraries support stand-alone application development

using both C++ and Python. Operating system support includes

Linux, *BSD, Mac OS X, and Windows. If you write an application

using the QGIS libraries, you’ll also be using the Qt GUI toolkit.

uDig framework

The uDig5 framework support cross-platform customization using

Java and the Eclipse Rich Client Platform (RCP). The framework

can be extended through the use of plugins and GUI customiza-

tion. Since uDig is based on Eclipse, you’ll use the SWT toolkit

when developing your own customizations.

Now for a caveat when choosing a toolkit: Make sure it can support

the data stores you want to use. uDig has good format support as does

QGIS, since it relies on GDAL/OGR for reading and writing spatial data.

Mapnik support shapefiles, PostGIS, and TIFFs. MapWinGIS supports

shapefiles and ASCII grids and rasters in the form of GIF, TIFF, JPEG,

and BMP.

14.2 Examples of Custom Applications

Here we’ll provide a couple examples of applications that have been

written using some of the toolkits we mentioned previously. This serves

to illustrate the kinds of things people are doing with custom applica-

tions and serves to show that when you develop it, you are in control of

the function and appearance.

Quantum Navigator

Quantum Navigator is an example of a complete application developed

with the QGIS libraries. The application is written in Python using the

bindings available for the QGIS libraries. The user interface is designed

in Qt and made possible through the PyQt bindings. The components

used in the construction of this application are as follows:

• QGIS libraries (version 0.9 or later)

4. http://qgis.org

5. http://udig.refractions.net

http://qgis.org
http://udig.refractions.net
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=265

EXAMPLES OF CUSTOM APPLICATIONS 266

• Python

• Qt toolkit

• PyQt (Python bindings for the Qt toolkit)

Now you know what it’s made of, let’s see what it does. Quantum Navi-

gator provides basic routing and navigation capabilities on a road map.

With the proper road data (a shapefile), you can select the start and end

points of your route and the application will calculate a route based on

your criteria, whether it be the shortest, fastest, or most economic path.

The route obeys all rules of the road, such as one-way streets and turn

restrictions.

Quantum Navigator additionally includes a GPS simulator that can

be programmed by creating waypoints on the map by clicking at the

appropriate places and specifying a speed value. When in navigation

mode, the application provides information about upcoming turns as

you approach them.

In Figure 14.1, on the following page, you can see Quantum Navigator

with an economic route outlined in blue with waypoints visible along

the way. In case you’re wondering, this application was not developed

to provide actual in-car navigation with a GPS. It was done as part of

a thesis and, per the author,6 serves as a good example of creating a

custom application with the Quantum GIS API and Python.

OpenOceanMap

Faced with deploying a means to collect fisheries data in the field,

Ecotrust7 developed OpenOceanMap, a decision support tool based on

open source software. Rather than deploy a fleet of commercial soft-

ware, Ecotrust developed the custom application using QGIS, Qt, and

Python. This low-cost approach provided a lean interface that simplifies

data collection in the field. It also avoids the complication and confu-

sion that can result when you embed your functionality inside a full-

blown desktop GIS. This stripped-down approach provides a workable

cross-platform solution that can be efficiently deployed in the field. In

Figure 14.2, on page 268, you can see the OpenOceanMap application.

6. Martin Dobias, http://mapserver.sk/~wonder/qnavigator/

7. http://ecotrust.org

http://mapserver.sk/~wonder/qnavigator/
http://ecotrust.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=266

HOW TO APPROACH YOUR OWN PROJECT 267

Figure 14.1: Quantum Navigator

uDig Examples

uDig has been used in a number of projects that created a custom

application using the framework. Here are some examples:

• Populations at Risk, a disaster planning and response tool

• GeoVista, a system for management of parks and reserves

• Diva GIS, a tool used by UN Food and Agriculture to map and

analyze potato species distributions

• ArboGIS, a tool for forest resource data management

14.3 How to Approach Your Own Project

We’ve seen some examples of custom applications using a couple of

different technologies. You may be wondering at this point what the

best approach is when starting your own project. Obviously you have

choices to make: programming language, GIS toolkit, and GUI toolkit.

You may have noticed that the toolkits used in our examples (QGIS

and uDig) are tightly coupled with both the programming language and

the GUI toolkit. In other words, the GIS toolkit you choose is going

to dictate that other two components. Regardless of the approach you

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=267

HOW TO APPROACH YOUR OWN PROJECT 268

Figure 14.2: OpenOceanMap

take, the key thing is to leverage all the hard work others have done

before you, so you can concentrate on implementing your logic, rather

than redesigning the wheel from scratch.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=268

A man’s feet should be planted in his country, but his eyes

should survey the world.

George Santayana

Appendix A

Survey of
Desktop Mapping Software

There are a lot of applications in the OSGIS desktop world. In this chap-

ter, we’ll explore some of the major choices available. In our survey, we’ll

classify applications based on both capability and the underlying lan-

guage. The programming language behind an application is important

because it affects how the application is distributed, is installed, and

how easy it is for us to customize.

Sometimes we open source enthusiasts are a bit odd. Many of us choose

our software based on the language in which it is written. When you

begin to look into OSGIS applications, you will find them divided into

what have been termed tribes based on the programming language.

While we mention the programming language, our focus will center

around the features of each application. For reference, in Figure A.1,

on the following page, you can see the language behind each of the

applications in our survey, including the potential for using a scripting

language with each. If you are a programmer, you’ll be interested in Bindings consist of

interface code (stored in

a shared library or DLL)

that allow you to access

the features of an

application or library

from a scripting

language.

the underlying language since it will give you an idea of how easily you

might customize or extend the application. After all, that’s a big part of

what open source is all about.

For most people, the words Desktop GIS generally conjure up visions

of a GUI interface. Although that’s largely true, it’s clear there are

command-line applications that deserve a place in our toolkit. In the

survey, we’ll divide the applications into two primary groups—those

with a GUI and those that are command line only.

GUI APPLICATIONS 270

P Y T H O N

Thuban

J A V A

gvSIG

JUMP

OpenJUMP

uDig

C / C++

GRASS
OPENEV
OSSIM
QGIS
GMT

GDAL/OGR

B I N D I N G S

Perl

Ruby

Python

Others

Figure A.1: Applications grouped by underlying programming language

A.1 GUI Applications

Let’s start with the GUI applications. A lot of OSGIS GUI applications

exist. If you don’t believe me, just take a look at the FreeGIS website.1

We’re going to hit some of the major ones. Our survey includes the

following apps in alphabetical order:

• GRASS

• gvSIG

• Jump/OpenJump

• OSSIM

• OpenEV

• Quantum GIS

• Thuban

• uDig

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=270

GUI APPLICATIONS 271

GRASS GRASS is written in C

with the GUIs

implemented using

TCL/Tk and Python.
Let’s start with the patriarch of the OSGIS world—GRASS. The Geo-

graphic Resources Analysis Support System, or GRASS as its com-

monly called, is a GIS that supports analysis, modeling, visualization,

raster processing, and many other operations. It is the “heavyweight”

of the OSGIS world.

GRASS was originally developed by the U.S. Army Corps of Engineers

Construction Engineering Research Laboratories (USA-CERL) for use in

environmental research, assessments, monitoring, and management of

U.S. Department of Defense lands. The last release was in 1992 and

by 1996, USA-CERL was no longer supporting the public in its use of

GRASS. This began a transition period that in the long run gave us the

open source version of GRASS we have today.

Today GRASS has an international team of developers and users

throughout the world, including academia, government, and consult-

ing companies. If you are interested in more of the history, visit the

GRASS home page.2

In Figure A.2, on the next page, you can see a simple example of GRASS

with the countries of the world layer displayed on a raster background.

GUI or Not?

Is GRASS a GUI program or a command-line program? The answer is

both. Seriously, though, GRASS has a GUI component, but the real

work is done by a suite of command-line programs, or modules, that do

everything from import data to combining grids. The GUI side provides

both a means to view your data and to perform the many functions

that GRASS provides. So in reality, you can think of GRASS as a bit of

a hybrid with the power of the command line and the convenience of

a GUI. The individual programs can be glued together with a scripting

language (shell, Perl, Python, Ruby, your choice) to perform complex

operations.

The GUI is currently undergoing a bit of change with a new interface

being developed using Python and wxWidgets.3 In addition, Quantum

GIS supports viewing of GRASS layers, giving you another option for

visualizing your data.

1. http://freegis.org

2. http://grass.itc.it

3. http://www.wxwidgets.org

http://freegis.org
http://grass.itc.it
http://www.wxwidgets.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=271

GUI APPLICATIONS 272

Figure A.2: GRASS on Linux

Pros and Cons

Let’s look at the pros and cons of using GRASS. First here are the pros:

• Mature and stable implementation

• Huge feature set for visualization and analysis of both raster and

vector data

• Supports wide array of data formats

• Good vector digitizing tools

• Good community support from mailing lists, Wiki, and IRC

• 3D visualization

• Can be automated and scripted using common languages

• Choice of GUIs

• Good documentation

• Packages available for most supported platforms

• Raster map algebra and simulation models

And now here are the cons:

• Rather steep learning curve

• For analysis, data must be converted to GRASS format

• “Nonstandard” GUI

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=272

GUI APPLICATIONS 273

Figure A.3: world_borders and cities layers in gvSig

What kind of user would want to use GRASS? Although it’s definitely

not for Clive, our casual user (he should use the QGIS-GRASS inte-

gration), it’s a good choice for our advanced user Alyssa. Intermediate

users will find parts of it that may be useful and worth a test drive.

Only you can tell whether it’s for you.

gvSIG gvSIG is written in Java.

gvSIG is an open source project that allows you to work with a variety

of vector and raster data formats, including shapefiles, GeoTIFF, ECW,

JPEG, WMS, WFS, and WCS. gvSIG provides a set of editing tools for

maintaining your data. gvSIG is multiplatform, running on Windows,

Linux, and Mac OS X. Plugins can be used to extend the functionality

and provide access to additional data formats. In Figure A.3, you can

see gvSIG with the world_borders and cities layers.

Pros and Cons

The pros for gvSIG include the following:

• Good format support including web-deliverable data

• Extensible through plugins

• Editing and drawing tools

• Map layouts

• Geoprocessing tools (buffer, intersection, union, and so on)

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=273

GUI APPLICATIONS 274

For gvSIG there are also a few cons:

• Incomplete internationalization of the text in menus and dialog

boxes (gvSIG’s first language is Spanish)

• Still maturing, especially regarding additional language support

• Minor GUI issues on some platforms4

JUMP and OpenJUMP JUMP and OpenJUMP

are written in Java.

JUMP stands for the Java Unified Mapping Platform. OpenJUMP is

based on JUMP, created by Vivid Solutions,5 with code contributions

from Refractions Research.6

As development slowed, a group of JUMP users decided to continue

development under the name OpenJUMP. This group created a “fork”

of the JUMP source code and continued development apart from the

JUMP development team. As a result, the two programs are similar, but

different and incompatibilities have been introduced. For example, you

can’t use all OpenJUMP plugins in JUMP, and vice versa. In addition,

there are no less than four other derivatives based on the original JUMP

work at various stages in its development. These include DeeJUMP,

SkyJUMP, PirolJUMP, and KOSMO.

The latest version of JUMP (1.2) released in November 2006 added sup-

port for rasters, spatial databases (PostGIS), and enhanced query capa-

bility. Most of these features were subsequently ported to OpenJUMP.

While development on JUMP seems to have come to a standstill, the

development of OpenJUMP continues with volunteer efforts.

As far as the fork goes, generally speaking it’s considered undesirable

for a project in the open source world. The end result in this case is two

or more projects with similar goals and a common root, all under active

development. Which you might use is up to you, based on the features

and stability you desire. When it comes to the JUMP family, you have

six choices, so you’ll have a bit of homework to do if you decide the

JUMP lineage is for you.

While not as strong on the analysis end of the spectrum as GRASS, it

does have a lot of useful features for all classes of users. Its support of

GIS standards and good feature set make it attractive to a lot of folks.

4. The issues were noted during a review of the 1.1 version and are being addressed by

the development team.
5. http://www.vividsolutions.com

6. http://refractions.net

http://www.vividsolutions.com
http://refractions.net
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=274

GUI APPLICATIONS 275

Pros and Cons

Let’s look at the pros and cons of JUMP. First here are the pros:

• Easy install

• Editing tools

• Support for a good range of data formats

• WMS support

• Basic analysis functions like buffering and spatial operations

• Geometry validation: checks to see whether your features are valid

• Good set of visualization options

• Extensible framework for creating customizations

• Supports industry standards

And here are the cons:

• Six versions from which to choose from with differing levels of

support, goals, and features

To give you a sample of the interface, OpenJUMP with some worldwide

data loaded is shown in Figure A.4, on the next page.

OSSIM OSSIM is written in C++

and uses the Qt class

library.OSSIM stands for Open Source Software Image Map and is pronounced

as “awesome.” The core of OSSIM is a library that provides remote sens-

ing, image processing, and geospatial functionality. Some of the things

you can do with OSSIM include the following:

• Ortho rectification7

• Terrain correction

• Create mosaics from individual images

OSSIM supports a wide range of projections as well as a lot of data

formats. As you can guess from the name, OSSIM is focused on raster

processing and display rather than vector data.

You might be wondering why are we talking about a software library in

the survey of desktop applications. The reason is because OSSIM also

comes with a selection of command-line utilities, as well as three GUI

applications (ImageLinker, iview, and ossimPlanet).

7. Ortho rectification is a process where an image (photo) is registered to map coordinates

(a projection) and correction is made for distortions because of terrain. The result is an

image that can be used in your GIS software that will “line up” with your other data.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=275

GUI APPLICATIONS 276

Figure A.4: OpenJUMP

ossimPlanet is a globe-style viewer that provides support for a number

of formats. There are a number of reasons why you might want to use

it instead of, or in addition to, Google Earth, including access to World-

wind8 data, the ability to add your own data without having to convert

it first, and its support for WMS layers. Plus, it’s open source, and you

can drag and drop your data right onto the globe.

In Figure A.5, on the following page, you can see ossimPlanet zoomed

into a local airport. Since ossimPlanet can access Worldwind layers, you

get the full access to the data on platforms where Worldwind doesn’t

run (everything but Windows).

Whether the OSSIM suite of programs is right for you depends on how

much you play with raster data. In general, the new ossimPlanet is a

good viewer of raster imagery available from Worldwind sources and

8. http://worldwind.arc.nasa.gov/index.html

http://worldwind.arc.nasa.gov/index.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=276

GUI APPLICATIONS 277

Figure A.5: ossimPlanet viewing hi-res imagery

other WMS servers around the Internet, including NASA JPL. At this

point I’d say the raster processing capabilities are for the advanced

user. But casual and intermediate users might find it a great tool for

viewing raster data from a number of sources across the Internet. The

fact that you can drag and drop your own shapefiles right into ossim-

Planet is a great advantage too. Just keep in mind that your shapefiles

have to be in geographic (read latitude/longitude) coordinates in order

to display them in ossimPlanet.

Pros and Cons

The pros for the OSSIM suite are as follows:

• Impressive raster processing capabilities

• Access to a huge repository of data on the Internet through using

ossimPlanet

• Runs on most platforms

• Community support via website, mailing list, and IRC

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=277

GUI APPLICATIONS 278

There are just a few cons:

• Still evolving (especially with regard to ossimPlanet)

• Has a bit of a learning curve

• Advanced raster processing functions not well documented

OpenEV OpenEv is written in C

and makes extensive

use of Python.OpenEv allows you to view vector, raster, and WMS data sources. Open-

Ev has been around for a while (since 2000), and recently development

on it seems to have slowed. The latest version (1.8) was released in

2004, and the project is currently in maintenance mode.9 There is an

effort underway to produce version 2 of OpenEv, using the Gtk2 toolkit

to give it a more modern look and feel. Currently, version 2 is still

under wraps and can’t be tested. If you are interested in OpenEV 1.x, it

is distributed as part of the excellent FWtools suite.10 Note that OpenEv

is available only for Linux and Windows.

Should you consider using OpenEv? Frankly, there are probably better

choices for you to use in visualizing your data. While there is nothing

wrong with OpenEv, the facts that it’s in maintenance mode and that

version 2 hasn’t surfaced yet makes it less attractive.

Quantum GIS Quantum GIS is written

in C++ and uses the Qt

class library.I’ll try to maintain some objectivity is this section.11 The Quantum GIS

project was founded in early 2002 with the original goal of building a

GIS data viewer for Linux that was fast and supported a wide range

of data stores, in particular the PostGIS spatial database. Since then,

QGIS, as it’s known, has grown to support a large array of data types

and runs on many platforms, including Mac OS X, Windows, BSD, and

of course Linux. The project has a strong developer community, and a

glimpse at the user map (see Figure 11.4, on page 185) shows that it is

being used widely around the world.

In Figure A.6, on the following page, you can see a simple example of

QGIS with the countries of the world layer displayed on the map canvas.

QGIS provides viewing for both vector and raster data sets. Support for

the majority of these is provided through the GDAL/OGR libraries (see

Section 11.2, Using GDAL and OGR, on page 186).

9. See http://openev.sourceforge.net for details
10. See http://fwtools.maptools.org.
11. I founded the Quantum GIS project.

http://openev.sourceforge.net
http://fwtools.maptools.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=278

GUI APPLICATIONS 279

Figure A.6: Quantum GIS

Additionally, it supports PostGIS layers (stored in a PostgreSQL data-

base), delimited text, GPS tracks, routes, and waypoints, and GRASS

layers. With QGIS you can edit PostGIS and GRASS layers and do

heads-up digitizing.

QGIS and GRASS

QGIS is not a full-fledged GIS application (the only one I consider in

that category throughout our survey is GRASS). To enhance its capa-

bilities, QGIS supports viewing, editing, and manipulation of GRASS

data through its plugin facility. This allows you to create data from the

GRASS command line and view it in QGIS. The GRASS toolbox provided

by the plugin allows you to perform many common functions without

leaving QGIS.

QGIS is an application that has something for every class of user.

Casual users will find it a handy tool for visualizing data and work-

ing with your GPS data. Irving and his cohorts (that’s you intermediate

users) can use QGIS to create and edit data in a number of formats.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=279

GUI APPLICATIONS 280

For the advanced crowd (Alyssa and friends), you can perform analysis

using the GRASS plugin.

Pros and Cons

Let’s look at some of the pros of QGIS:

• Support for a wide range of both vector and raster data

• Editing capabilities

• Good set of tools for symbolizing and visualizing your data

• Good documentation

• Strong community support through forum, mailing lists, and IRC

• Extensible through plugins

• Includes a plugin for working with GPS units

• Good integration with GRASS visualization, editing, and analysis

functions

• Customization using Python in order to write new tools and plug-

ins (requires version 0.9.0 or higher)

Here are a couple of cons:

• Simple feature labeling (no collision detection)

• Limited map composition and printing capability

• Doesn’t include all features of a desktop GIS

• Still maturing

QGIS likely has a place in your visualization and editing toolbox, espe-

cially when you consider the wide range of formats supported, the inte-

gration with GRASS, as well as the extensibility provided by the Python

bindings.

Thuban Thuban is written in

Python and uses the

wxWidgets toolkit.Thuban has been around since 2002 and is developed and maintained

by Intevation GMBH. Thuban provides viewing of GIS data stored in

shapefiles, GeoTIFF, and PostGIS. It has projection support and can do

table queries and joins. Figure A.7, on the following page, which comes

from the Thuban website,12 shows the main application window with

several vector layers loaded.

12. http://thuban.intevation.org/

http://thuban.intevation.org/
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=280

GUI APPLICATIONS 281

Figure A.7: Thuban

Thuban is a nice application with a pretty complete feature set for visu-

alizing data. Since it doesn’t provide much in the way of analysis capa-

bility, it’s not going to fulfill all the needs of an advanced user.

Pros and Cons

Some of the pros for Thuban are as follows:

• Lightweight viewer

• Good feature set

• Support for a good range of data formats

For Thuban we do not find much in the way of cons other than the

following:

• Install can be bit tricky

• Development seems to have slowed

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=281

GUI APPLICATIONS 282

Figure A.8: uDig displaying NASA Blue Marble WMS

uDig uDig is written in Java

and uses the Eclipse

framework.uDig is the User Friendly Desktop Internet GIS, created by Refractions

Research (http://udig.refractions.net). uDig provides viewing and editing

for a variety of data formats, including the usual file-based layers

(shapefiles and rasters), PostGIS layers, WMS, WFS, Oracle Spatial, and

DB2. That should cover most of your data needs.

uDig provides a fairly complete set of viewing and editing tools. Since

it supports WMS, we can pull in a wide array of free data from the

Internet. In Figure A.8, you can see uDig displaying the NASA Blue

Marble WMS layer, from the NASA JPL WMS site.13

uDig is another one of those Swiss Army knife–type applications that

provides a lot of features. You may not use all of them, but there is

something there for pretty much everybody. If you are heavy into anal-

ysis like Alyssa, you’ll find it a bit light on that end of things. Otherwise,

it’s an easy-to-install and easy-to-use viewer/editor.

13. http://wms.jpl.nasa.gov/wms.cgi

http://udig.refractions.net
http://wms.jpl.nasa.gov/wms.cgi
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=282

COMMAND-LINE APPLICATIONS 283

Pros and Cons

Some of the pros for uDig are as follows:

• Support for a wide range of data formats

• Easy to install

• Both viewing and editing capabilities

• Extensible

And here are the cons:

• Interface is a bit nonstandard

• Some learning curve in getting up to speed on loading, symboliz-

ing, and visualizing data

• No analysis functions; however, work is underway to integrate

JGrass14 into uDig

A.2 Command-Line Applications

Now it’s time to take a look at some of the command-line applica-

tions you will find useful in your OSGIS ventures. With the advent of

“modern” GIS software, most people want to point and click their way

through life. That’s good, but there is a tremendous amount of flexibil-

ity and power waiting for you with the command line. Many times you

can do something on the command line in a fraction of the time you can

do it with a GUI. The applications we’ll look at next are definitely worthy

of consideration when you start stuffing gadgets into your toolbox.

GDAL/OGR GDAL and OGR are

written in C and C++.

Let’s take a look at GDAL and OGR. These two are used under the hood

in a large number of GIS applications, both open source and propri-

etary. GDAL and OGR are really libraries that provide support for a

vast number of raster and vector formats. Along with the libraries are

a suite of command-line tools to work with these formats.

Raster support is provided by the GDAL library. Most popular raster

formats are supported, including TIFF, PNG, JPEG2000, GRASS raster,

ArcInfo grid, DEM, and ECW. Some of these formats require external

libraries that are not included with GDAL (an example is ECW). If you

want to have support for one of these, you will have to download and

possibly build the dependent libraries and then compile GDAL. You

14. http://www.jgrass.org

http://www.jgrass.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=283

COMMAND-LINE APPLICATIONS 284

can find a complete list of supported formats on the GDAL home page

at http://www.gdal.org.

Vector support is provided by the OGR library. It too supports a large

number of formats, including shapefiles, MapInfo (tab and mid/mif),

PostGIS, GML, DGN, Oracle Spatial, and SQLite. The OGR library has

similar constraints as GDAL. You may have to provide your own ver-

sion of nonfree libraries needed to compile OGR (for example, Oracle

Spatial).

GDAL-Supported Formats

As I said earlier, GDAL provides a number of command-line utilities

for manipulating common raster formats. Operations such as warp-

ing, converting, and merging are all supported. You can also do coordi-

nate transformation (that means changing projections) when converting

between formats.

The list of supported formats in quite long. Some of the more pop-

ular raster formats supported by GDAL, and ones you are likely to

encounter, are shown in the following list. We haven’t listed them all—to

get the full list, see the GDAL website.

• Arc/Info ASCII Grid

• Arc/Info Binary Grid (.adf)

• First Generation USGS DOQ (.doq)

• New Labeled USGS DOQ (.doq)

• ERMapper Compressed Wavelets (.ecw)

• ESRI .hdr Labelled

• ENVI .hdr Labelled Raster

• GMT Compatible netCDF

• GRASS Rasters

• TIFF/GeoTIFF (.tif)

• GXF—Grid eXchange File

• Hierarchical Data Format Release 4 (HDF4)

• Hierarchical Data Format Release 5 (HDF5)

• Erdas Imagine (.img)

• JPEG JFIF (.jpg)

• JPEG2000 (.jp2, .j2k)

• MrSID

• NetCDF

• Portable Network Graphics (.png)

http://www.gdal.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=284

COMMAND-LINE APPLICATIONS 285

• ArcSDE Raster

• USGS SDTS DEM (*CATD.DDF)

• USGS ASCII DEM (.dem)

The list of formats may seem a bit daunting—don’t worry if you don’t

recognize all of them; the point is to illustrate the wide range available.

At last count, GDAL included support for seventy-three different raster

formats.

GDAL Utilities

Let’s take a brief look at the command-line utilities that are part of

GDAL. We won’t cover them all, just the ones that you’re likely to find

useful from the outset. For a complete list and documentation, see the

GDAL website.

gdalinfo

This handy utility reports information about a raster, including,

if applicable, the coordinate system, color palette, extents, and

probably more than you want to know about your raster. This is

a quick way to examine a raster and get some information on it

without having to load it into a desktop application.

gdal_translate

This command allows you to copy a raster file and convert it to

another format. You can also add coordinate system information

to the output or create a subset of the image by specifying a sub-

window in pixel coordinates. Another neat trick is setting a certain

value in the output to nodata,, making it transparent (depending

of course on the software you use to view it).

gdaladdo

This utility adds overviews (commonly called pyramids) to a raster

to improve the display speed at smaller scales. On an image with

pyramids, as you zoom in, more detail will appear. One note of

caution, when using gdaladdo, your original image may be mod-

ified. For a GeoTIFF the pyramids are stored right in the original

image. It’s a good idea to create a backup before running gdaladdo.

gdalwarp

With gdalwarp, you can “warp,” in other words, transform, a raster

from one coordinate system to another. This comes in handy if you

want to convert a raster into a local projection to match your other

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=285

COMMAND-LINE APPLICATIONS 286

data. You can also specify multiple input files to create a mosaic

from a group of rasters.

gdaltindex

If you use MapServer, you’ll find this utility handy for creating an

index of the area covered by a group of rasters. Using gdaltindex

you can create a tile index (a shapefile) that can be used with

MapServer. You could also use the tile index as a coverage map to

see where your rasters are located.

gdal_contour

This utility will create contour lines from a Digital Elevation Model

(DEM), which is essentially a raster composed of cells of a given

size. Each cell has one attribute: an elevation. The smaller the

cells, the more accurately the elevation is depicted. With gdal_

contour, you specify the contour interval, and it kindly creates a

shapefile with contour lines. There are other ways to do this, but

gdal_contour is a quick way to make contour lines.

gdal_merge.py

If you have a bunch of adjacent images, gdal_merge.py allows you

to mosaic them together to create a single seamless image. This

can be handy, for example, when piecing together DRGs for a local

area so you can load just the one image along with your other data.

gdal-config

This utility is used to print the configuration options and other

information about the installed version of GDAL, including which

raster formats are supported. If you end up getting crazy and com-

piling your own OSGIS software, gdal-config is almost always used

during the configuration process to set things up for compiling

with the GDAL/OGR libraries.

OGR-Supported Formats

While GDAL is used with rasters, OGR provides tools to manipulate

vector GIS layers. OGR supports a wide variety of formats. In some

cases, the OGR library can create many of the formats it supports while

others are read-only. Many of the formats can also be georeferenced15

using the library or the OGR utilities. OGR also has an impressive list

15. In this case, georeferencing means the format can contain information about the

coordinate system.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=286

COMMAND-LINE APPLICATIONS 287

of supported formats, some of which I’ve listed for you here. For the

complete list, see the GDAL website.

• Arc/Info Binary Coverage

• Comma-Separated Value (.csv)

• DWG

• DXF

• ESRI Personal GeoDatabase

• ESRI ArcSDE

• ESRI Shapefile

• GML

• GMT

• GPX

• GRASS

• KML

• Mapinfo File

• MySQL

• ODBC

• Oracle Spatial

• PostgreSQL

• SDTS

• SQLite

• U.S. Census TIGER/Line

• VRT—Virtual Datasource

• Informix DataBlade

OGR Utilities

Three utilities come with the OGR library, two of which you are likely

to find very useful when working with vector data.

ogrinfo

This utility displays information about a layer, including the coor-

dinate system, attributes, and number of features. Given the right

command-line switches, it will even print out the coordinates of

every feature. You’ll find ogrinfo to be very handy, especially with

data you download or are handed from a stranger. It’s even help-

ful with your own data, when you go back to it months after first

creating it and can’t remember anything about it.16

16. Or maybe I’m the only one with this problem.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=287

COMMAND-LINE APPLICATIONS 288

ogr2ogr

With ogr2ogr, you can convert a vector layer from one format to

another, optionally translating the coordinate system along the

way. This can be especially handy when you get some new piece

of data and want to get it into your favorite format or coordinate

system.

ogrtindex

Unless you’re a MapServer user, you likely won’t use ogrtindex. It

creates a tile index from a group of files (for example, vectors) that

can be used with MapServer.

Here’s a tip that you’ll find useful: both the gdalinfo and the ogrinfo

commands accept a --formats switch.17 This is a quick way to find out

which formats are supported for a given installation of GDAL/OGR.

This is important because both GDAL and OGR can be compiled and

distributed with support for a number of optional features. If in doubt,

using --formats is a quick way to see whether the magic you are about

to attempt is supported.

For a more comprehensive look at both the GDAL and OGR utilities,

see Section 11.2, Using GDAL and OGR, on page 186.

Generic Mapping Tools GMT is written in C

This next set of command-line tools can create some really impressive

output. In fact, that’s its whole aim—to create quality output that can

be printed or included in other documents. The Generic Mapping Tools

(GMT) has been around a long time. This is a testament to both its util-

ity and acceptance by the user community. GMT was originally devel-

oped in 1988 by Paul Wessel and Walter H. F. Smith and is currently

hosted at the University of Hawaii.

GMT allows you to create cartographic-quality maps from the command

line. This sounds simple, but in fact it has quite sophisticated features

including base map creation, plotting x-y values, lines, and polygons,

coordinate transformations, gridding, contouring, and 3D illuminated

surfaces.

Now I know you are probably thinking that GMT doesn’t exactly fit your

idea of a desktop GIS application. In fact, it can be a valuable addition

17. In fact, almost all of the GDAL and OGR utilities accept the --formats switch.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=288

OTHER TOOLS 289

to your toolkit. For an introduction to GMT and its capabilities, see

Section 11.1, GMT , on page 174.

A.3 Other Tools

As I said earlier, there is a huge selection of OSGIS applications to

choose from. It’s also impossible to discuss each of these in detail. Our

survey included some of the major applications available today—and

those that together in some combination form a productive toolkit.

Our survey should have got you started thinking about some of the

tools available. Now it’s up to you to carry on the survey if you see fit.

To get you started, here are some links to lists of OSGIS software and

tools that you may want to peruse:

• http://www.osgeo.org

• http://www.freegis.org

• http://opensourcegis.org

• http://en.wikipedia.org/wiki/List_of_GIS_software#Open_source_software

• http://maptools.org

For a good survey that includes both open source desktop and web

mapping tools, see “The State of Open Source GIS” by Paul Ramsey.18

18. http://www.foss4g2007.org/presentations/viewattachment.php?attachment_id=8

http://www.osgeo.org
http://www.freegis.org
http://opensourcegis.org
http://en.wikipedia.org/wiki/List_of_GIS_software#Open_source_software
http://maptools.org
http://www.foss4g2007.org/presentations/viewattachment.php?attachment_id=8
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=289

Appendix B

Installing Software
In this appendix, you will find brief information on installing most of the

applications we have discussed. As always, it helps to read the installa-

tion instructions provided with the software. The following information

is of the quick-start variety and will help you get up and running.

We provide information for each platform, assuming of course that the

application is supported on each.

B.1 GRASS

The good news is you can get a binary distribution for most major plat-

forms. And if you can’t, GRASS builds quite readily on most platforms.

In this section, we’ll look at the options for each of the major platforms

so you can get up and running quickly. All binary and source packages

are available from the GRASS website.1

Linux

Binaries are readily available for Linux, including a generic tar.gz pack-

age. Typically, you will find binaries for the following distributions:

• Generic GNU/Linux

• Debian

• Fedora Core

• Gentoo

• Mandriva

• OpenSuSE

1. http://grass.itc.it

http://grass.itc.it

GRASS 291

• SuSe 10.2

• Ubuntu

To install, just use the package management tool(s) provided with your

distribution (for example, rpm, apt, yum). The package for Generic

GNU/Linux is easily installed using the provided installation script for

your distribution. For all packages, GRASS depends on a number of

supporting libraries that you will also have to install using your pack-

age management system.

In the event you can’t find a package for your distribution or you just

want to live on the edge, you will have to compile GRASS from source.

There is a complete “Compiling source code” manual available on the

website. Compiling from source is not difficult and may be your best

option if you want to stay current with new developments.

Unix

If you are using Solaris, Irix, HP-UX, DEC-Alpha, AIX, or one of the

BSD variants, compiling from source is your only option. GRASS should

build on POSIX systems using the GNU C compiler.

OS X

For Mac OS X a binary distribution is available from the GRASS website

as a disk image (.dmg). Currently, a number of other frameworks are

required along with the GRASS image. These are also available from the

link on the website.

Installation is standard Mac fare—open the disk image, and drag the

application to your Applications folder. Make sure you get all the required

frameworks as described on the website.

Windows

For GRASS 6.2.x, installation on Windows requires the use of Cyg-

win (http://cygwin.org). Detailed instructions on installing Cygwin and

GRASS are available on the GRASS website.

At version 6.3 of GRASS, there will be a native Windows version that

does not require Cygwin. At the time of this writing, there was an exper-

imental build available for download from the GRASS website.2 If you

are a Windows user and are pining for GRASS, it’s on its way.

2. http://grass.itc.it/download/index.php

http://cygwin.org
http://grass.itc.it/download/index.php
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=291

OPENJUMP 292

B.2 OpenJUMP

Installing OpenJUMP consists of the following:

1. Downloading the distribution ZIP file

2. Unzipping the distribution

3. Running the start-up script in the bin directory

In reality, there are some tweaks needed to get things working with your

operating system. Your best bet is to refer to the install instructions on

the OpenJUMP website3 after unzipping the distribution for the latest

information on getting things up and running.

B.3 Quantum GIS

For QGIS, you will find packages for the major platforms, including

Linux, Mac OS X, and Windows on the download site.4 To install on

each platform, do the following:

• Mac OS X : Mount the disk image (.dmg), and drag QGIS to your

Applications folder.

• Windows: Run the installer, and follow the instructions to install

QGIS.

• Linux: If you find a package (rpm, deb) for your Linux distribu-

tion, just download and install it. If not, you will have to compile

QGIS and its dependencies. Information on building from source

is available on the QGIS website.5

QGIS depends on a number of other OSGIS packages. When installing

on Mac OS X and Windows, these are bundled for you in the package.

On Linux and other *nix platforms, you will need to install the depen-

dencies prior to installing or building QGIS. For distributions that have

a package manager, this is usually not a difficult task. It’s best to look

around before building dependencies from scratch to see whether pack-

ages or builds for your operating system are available.

3. http://openjump.org/wiki/show/Installation+Instructions

4. http://download.qgis.org

5. http://qgis.org

http://openjump.org/wiki/show/Installation+Instructions
http://download.qgis.org
http://qgis.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=292

UDIG 293

B.4 uDig

Installing uDig is pretty easy if you are running Windows, Linux, or

Mac OS X. Since uDig is based on Eclipse,6 you obviously need to run

it on a platform supported by Eclipse. The uDig download site7 provides

binary releases for the three aforementioned platforms. The uDig folks

tell me it should also run on Solaris and any other Unix platform that

supports GTK.8

Installation is fairly simple for each platform:

• Mac OS X : Mount the disk image (.dmg), and drag uDig to your

Applications folder.

• Linux: Unzip the distribution file.

• Windows: Run the downloaded .exe to install uDig.

Currently, the Windows and Linux binary distributions include a Java

runtime and are ready to run. On Mac OS X, Java is already installed,

and you are good to go. Since all the dependencies needed for uDig are

packaged with it, you don’t need to download and install anything else.

This makes it quick and easy to get going.

B.5 GMT

As with most OS GIS applications, you have choices when it comes to

installing GMT. If you are lucky enough to have a system that uses

apt for package management, it can be as easy as finding out which

packages are available:

root@madison:~ # apt-cache search "Generic Mapping Tools"

gmt - Generic Mapping Tools

gmt-coast-low - Low resolution coastlines for the Generic Mapping Tools

gmt-doc - HTML documentation for the Generic Mapping Tools

gmt-doc-pdf - PDF docs for the Generic Mapping Tools

gmt-doc-ps - PostScript docs for the Generic Mapping Tools

gmt-manpages - Manpages for the Generic Mapping Tools

gmt-tutorial-pdf - Tutorial for the Generic Mapping Tools (PDF)

gmt-tutorial-ps - Tutorial for the Generic Mapping Tools (PostScript)

6. Eclipse is an “open development platform comprised of extensible frameworks, tools

and runtimes for building, deploying, and managing software.” See http://www.eclipse.org.
7. http://udig.refractions.net

8. GTK is a multiplatform toolkit for creating graphical user interfaces. It was originally

developed and used in the creation of the GNU Image Manipulation Program (GIMP). See

http://gtk.org.

http://www.eclipse.org
http://udig.refractions.net
http://gtk.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=293

GMT 294

You might want to broaden your search a bit by searching for gmt

to make sure you haven’t missed any goodies. Once you have located

them, you can easily install the components you want using apt-get:

root@madison:~ # apt-get install gmt gmt-coast-low gmt-doc-pdf gmt-examples

Reading package lists... Done

Building dependency tree... Done

gmt-examples is already the newest version.

The following NEW packages will be installed:

gmt gmt-coast-low gmt-doc-pdf

0 upgraded, 3 newly installed, 0 to remove and 246 not upgraded.

Need to get 0B/14.9MB of archives.

After unpacking 20.6MB of additional disk space will be used.

Selecting previously deselected package gmt.

(Reading database ... 160635 files and directories currently installed.)

Unpacking gmt (from .../gmt_4.0-2build1_i386.deb) ...

Selecting previously deselected package gmt-coast-low.

Unpacking gmt-coast-low (from .../gmt-coast-low_20020411-1_all.deb) ...

Selecting previously deselected package gmt-doc-pdf.

Unpacking gmt-doc-pdf (from .../gmt-doc-pdf_4.0-2build1_all.deb) ...

Setting up gmt (4.0-2build1) ...

Setting up gmt-coast-low (20020411-1) ...

Setting up gmt-doc-pdf (4.0-2build1) ...

root@madison:~ #

Operating systems that support apt include Debian and its variants

(for example, Ubuntu) and Mac OS X with Fink.9 If you aren’t fortunate

enough to have one of these systems, you may find packages available

for you Linux variant. Check your package management tool to see

whether GMT is available. If not, refer to the GMT home page to see

what your options are. You always have the option to build from source

on your platform, and the GMT website10 can generate a configuration

file based on your choices. You then feed the configuration file to the

install_gmt script, and it handles downloading, building, and installing

the software.

If you are a Windows user, your options are a bit more limited. The GMT

folks suggest installing Cygwin and then building GMT as you would for

Unix. Again, see the website for your options.

9. http://fink.sourceforge.org

10. http://gmt.soest.hawaii.edu

http://fink.sourceforge.org
http://gmt.soest.hawaii.edu
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=294

GDAL/OGR 295

B.6 GDAL/OGR

• Linux: Binaries for GDAL and OGR are available from the GDAL

website.11 For Linux, check for the current packages, and install

using your package manager. If you don’t find current binaries for

your Linux distribution, then you will have to build from source

or install FWTools (Section B.7, FWTools).

• Mac OS X : Binaries frameworks are available from the Kyng Chaos

website.12 Just download and install the .dmg per the instructions

found in the ReadMe.rtf.

• Windows: Binaries and plugins for Windows are available from the

OSGeo download site.13 Download the latest version and extract it

to a directory in your path.

For Linux and Windows, you may find that FWTools is a better way to

go—you get GDAL/OGR as well as a bunch of other handy applications.

B.7 FWTools

FWTools is an open source GIS binary kit for Linux and Windows. It

includes GDAL/OGR, the projections library PROJ4, MapServer, and

Python, among others. It’s a complete runtime environment with no ex-

ternal dependencies. Install it, and you are ready to use all the included

applications and utilities.

To install FWTools, do the following:

• Linux: Download and untar the distribution, change to the FWTools

directory, and execute the install.sh script. Once it’s complete, you’ll

need to add the bin_safe directory to your path.

• Windows: Download the installer and run it, and then follow the

instructions to complete the installation. The installation creates

a shortcut to start an FWTools shell from which you can use the

applications.

11. http://www.gdal.org

12. http://www.kynchaos.com

13. http://download.osgeo.org/gdal/win32

http://www.gdal.org
http://www.kynchaos.com
http://download.osgeo.org/gdal/win32
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=295

Appendix C

GRASS Basics
Once you have GRASS installed, setting up GRASS and creating your

locations is key to getting off the ground. This appendix will guide you

through creating a location using both QGIS and the GRASS shell.

From there you’ll get a basic introduction to working with GRASS GIS.

Once you’ve mastered the basics of GRASS, you might be interested in

diving deeper with Open Source GIS: A GRASS GIS Approach by Markus

Neteler and Helena Mitasova.

C.1 Location, Location, Location

Why are we repeating ourselves? Because it’s real important. One of the

key concepts in using GRASS is that of a location. Remember the old

axiom about location used in both real estate and business? Well, the

same holds true for GRASS. Once you get the concept down, you will

have mastered what many have stumbled on.

Quick Start

We are going to “cheat” to get started with GRASS data by using the

QGIS/GRASS plugin to create a new location and mapset. We’ll then go

back and look at alternative ways to do the same. This method makes

it very easy to create a new location. We simply add one or more layers

to QGIS that encompass the geographic region of interest and then use

the plugin to do the dirty work. Before we do that, though, we need a

GRASS database to get started with.

A GRASS database is simply a directory where we will store our GRASS

locations and mapsets, along with the data. You can have as many

LOCATION, LOCATION, LOCATION 297

Figure C.1: QGIS with layers used to create a GRASS location

GRASS databases as you desire. For this example, we’ll use a directory

in our home directory named grassdata. The QGIS/GRASS plugin can

create this directory as part of defining our new location and mapset.

Creating the Location

Let’s start by running QGIS and loading the data that covers the area of

interest. We’ll use the standard Alaska sample data here and load just

the coastline and the Russia/Canada boundaries. If you don’t already

have the sample data, you can get it from http://desktopgisbook.com. In

Figure C.1, you can see QGIS with the data loaded and ready for us to

use the GRASS plugin.

Now it’s time to create the database, location, and mapset. Choose

GRASS from the Plugins menu and choose New Mapset. Here you can

choose an existing database directory or create a new one. The dia-

log box provides some visual cues as to how you should proceed. In

Figure C.2, on the following page, you can see the database selection

http://desktopgisbook.com
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=297

LOCATION, LOCATION, LOCATION 298

Figure C.2: GRASS database selection/creation dialog box

dialog box with values for our new database plumbed in (to create a

new database, just create a new folder using the browse button to the

right of the Database field).

Clicking the Next button brings us to the location screen. To create a

location, we simply provide a name, in this case alaska_data. Note that

the plugin will use not only the extent of the data loaded into QGIS but

also the projection information when creating the new location. Clicking

Next opens the projection page where we can customize the projection

if we choose to do so. If the layers loaded in to QGIS have associated

projection information, it will be preselected in the Projection list. In

this case, “NAD 27 / Alaska Albers (meters)” is selected. We don’t have

to do anything further to define the coordinate system.

Moving to the next screen (by clicking the Next button) brings us to

Default GRASS Region. Here you can customize the region (think ex-

tents) for the location. By default, it will be set to the same extent as the

data loaded in QGIS. Usually you won’t have to make any changes here.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=298

LOCATION, LOCATION, LOCATION 299

Figure C.3: Default region populated from layers loaded in QGIS

Note that this screen allows you to set the extent by choosing countries

or regions from a drop-down list. This can be useful if you want to cre-

ate a new location but don’t have any layers loaded in QGIS. In this

case you need to specify the region, as well as the projection informa-

tion since it won’t be automatically populated for you. In Figure C.3,

you can see the region screen with the extents set automatically from

our data loaded in QGIS. Notice the extents are shown graphically in

red on the world map.

Keep in mind that we have defined a default region. The region can be

changed for each mapset or for the entire location later.

Clicking the Next button brings us to the final screen in the process.

Here we give the mapset a name. As explained in the dialog box, a

mapset is simply a collection of maps (think layers here) used by a

single user. You can name the mapset whatever you like. In a multiuser

environment, a user ID might be a good choice. Enter a name, and click

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=299

LOCATION, LOCATION, LOCATION 300

Next. This brings up a summary of what we just did, telling us that we

have created a database in our chosen directory, a named location, and

a mapset.

Click Finish, and we are done. You now have a new location and mapset

ready for your use. The plugin automatically opens it and sets it as the

current location. You should be able to see the region delineated by a

red rectangle on the map canvas.

Using the QGIS/GRASS plugin allowed us to create the new location

without knowing the gory details about the extent of our data and

projection parameters. Once you’ve become accustomed to the GRASS

paradigm, you may choose to create your locations/mapsets using the

GRASS shell.

Creating a Location with GRASS

You are probably noticing about now that we haven’t run GRASS yet. So

far everything we have done has been through QGIS using the GRASS

plugin. Now it’s time to show you how to start GRASS and create a

location. Starting GRASS depends on your platform:

• Linux: From a terminal window, run the GRASS binary using grass

combined with the version number. So to start GRASS 6.2, you

would use grass62 from the command line or the menu.

• Mac OS X : Start by double-clicking the GRASS icon in your Appli-

cations folder.

• Windows: Start your Cygwin shell, and start GRASS by running

grass62 or start it from the menu.

When you start GRASS, you are presented with either a text-based form

or a GUI dialog box requesting the location and mapset you want to use

for the session. Which you see depends on how you started GRASS and

which mode you used last (GRASS remembers and starts up in the last-

used mode). For the purpose of this example, we started GRASS from

the command line and specified the -text switch to force start-up in text

mode.

In Figure C.4, on the following page, you can see the start-up screen

for GRASS 6.2.2. Starting GRASS requires three pieces of information:

the database directory, location, and mapset. These requirements are

nicely explained on the form.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=300

LOCATION, LOCATION, LOCATION 301

Figure C.4: GRASS start-up form

If you don’t have a directory for storing your GRASS locations in, create

it before you start GRASS, or pop out to another shell and create it.

You can store locations in any directory, but it’s best to establish a

structure for your data to keep it apart from other non-GRASS files and

directories on your system.

In Figure C.4, we have entered the required information to get started.

Since the location doesn’t exist yet, we have to provide some additional

information as we proceed. Hitting Esc + Enter tells us that the location

we specified (world_lat_long) doesn’t exist and asks whether we want to

create it. It also shows a list of the current locations (empty in our

case) in the database in case we made a mistake and want to select an

existing one. To continue, press Enter or enter n and Enter to cancel

the process. Next GRASS tells us what we need before we can proceed

to create the location:

• The coordinate system for the database

• The zone for the UTM database and all the necessary parameters

for projections other than Latitude-Longitude; x,y; and UTM

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=301

LOCATION, LOCATION, LOCATION 302

• The coordinates of the area to become the default region and the

grid resolution of this region

• A short, one-line description or title for the location

We will be creating a worldwide location in geographic (latitude/longi-

tude) coordinates so we know the answer to all the questions. The sec-

ond requirement doesn’t apply since we aren’t using UTM or some other

projection. Pressing Enter brings us to the coordinate system selection

screen. The options are as follows:

• A x,y

• B Latitude-Longitude

• C UTM

• D Other Projection

Option B is what we want, so we press B and then Enter . If we had

specified one of the others, we would have had to enter additional infor-

mation that requires having some information about the projection and

its parameters. GRASS asks us to confirm our selection by entering Y

or just pressing Enter since yes is the default answer (indicated by the

brackets around “y” in the question):

Latitude-Longitude coordinate system? (y/n) [y]

GRASS now asks for a one-line description of the location. We’ll use

something simple like “World wide location in latitude and longitude.”

After confirmation, we are asked whether we want to specify a datum.

This is always a good idea—in fact, it’s essential to ensure your maps

are transformed properly should the need arise. For this location, we

will use WGS84. We also have to set a datum transformation parameter.

The transcript for this part of the process is as follows:

Please enter a one line description for location <world_lat_lon>

> World wide location in latitude and longitude

===

World wide location in latitude and longitude

===

ok? (y/n) [y]

Do you wish to specify a geodetic datum for this location?(y/n) [y] Y

Please specify datum name

Enter 'list' for the list of available datums

or 'custom' if you wish to enter custom parameters

Hit RETURN to cancel request

>WGS84

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=302

LOCATION, LOCATION, LOCATION 303

Now select Datum Transformation Parameters

Please think carefully about the area covered by your data

and the accuracy you require before making your selection.

Enter 'list' to see the list of available Parameter sets

Enter the corresponding number, or <RETURN> to cancel request

>list

Number Details

1 Used in whole wgs84 region

(PROJ.4 Params towgs84=0.000,0.000,0.000)

Default 3-Parameter Transformation (May not be optimum for older datums;

use this only if no more appropriate options are available.)

Now select Datum Transformation Parameters

Please think carefully about the area covered by your data

and the accuracy you require before making your selection.

Enter 'list' to see the list of available Parameter sets

Enter the corresponding number, or <RETURN> to cancel request

>1

Now GRASS pops up the screen to define the default region. Even

though we know we are creating a worldwide location, GRASS doesn’t

yet. This screen provides a visual representation of the four required

edges, as well as the default grid resolution. In the case of vector lay-

ers, grid resolution has no effect since the coordinates are stored at full

precision, as are rasters that you import. The grid resolution applies to

new raster maps you create in your mapset. In our example we’ll just

use a resolution of 1 degree since we don’t have any particular infor-

mation about rasters we might want to import. Since we want to cover

the whole world, we enter the coordinates, as shown in Figure C.5,

on the following page. When we are happy with the values, pressing

Esc + Enter takes us to a summary screen where we can confirm every-

thing before proceeding. Pressing Enter creates the new location:

projection: 3 (Latitude-Longitude)

zone: 0

north: 90N

south: 90S

east: 180E

west: 180W

e-w res: 1

n-s res: 1

total rows: 180

total cols: 360

total cells: 64,800

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=303

LOCATION, LOCATION, LOCATION 304

Figure C.5: Defining the default GRASS region

Do you accept this region? (y/n) [y] >y

LOCATION <world_lat_lon> created!

Hit RETURN -->

When we hit Enter , we end up back at a screen that looks exactly

like Figure C.4, on page 301. But now the location exists, so press-

ing Esc + Enter actually gets us to the GRASS command prompt (this

example is from a Linux session, so your output will look a bit different,

depending on your operating system):

Welcome to GRASS 6.2.2 (2007)

GRASS homepage: http://grass.itc.it/

This version running thru: Bash Shell (/bin/bash)

Help is available with the command: g.manual -i

See the licence terms with: g.version -c

Start the graphical user interface with: gis.m &

When ready to quit enter: exit

GRASS 6.2.2 (world_lat_lon):~ >

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=304

LOCATION, LOCATION, LOCATION 305

The entire process of creating a location was done from a shell ses-

sion because we started GRASS without any command-line switches.

GRASS also provides a GUI start-up using grass62 -gui. Let’s look at one

more way to create a location, using information from one of our layers

and the GRASS GUI.

Start GRASS using grass62 -gui. On some platforms you can get the same

effect by double-clicking the GRASS desktop icon or selecting it from

your application menu. Once the GUI starts, we are presented with a

form that allows us to start working right away, create a new mapset, or

create a new location. In Figure C.6, on the following page, we see that

the location we created using the command line shows up by default

and is ready to use. Our interest is in creating a new location, using

the Georeferenced File button found under the “Define a new location

with...” heading.

When you click the button to create a location from a georeferenced file,

a small dialog box opens where you can specify the name for the new

location, the path (by default this is your current GRASS database loca-

tion), and importantly, the file to be used in creating the location. Using

the browse button, we can browse to the location of our world_borders

shapefile and use it to create the location. Once we have the path for it

filled in, we click the Define Location button.

That’s all there is to it. GRASS creates the new location and tells you it

needs to restart in order to work with the new location. After it closes,

start up the GRASS GUI again, and you will find the newly created

location ready for use—with one exception. There are no mapsets yet,

other than the PERMANENT mapset. The PERMANENT mapset is for shared

layers. We need to create a mapset for us to use for loading our data

and eventually doing some editing. From the GUI, it’s easy to create a

mapset by selecting the location you want to add it to and then filling

in a name for the mapset. Click the Create New Mapset button, and

it’s done. You can now select it from the list and click the Enter GRASS

button to continue. This brings up the grass shell, and it also starts the

GRASS display manager. For now, just exit GRASS, unless you want to

play around with your new mapset and do some exploration.

In this section, we saw how several ways to create a new location. We

didn’t look at them all but just enough to get us started. The GRASS

GUI also provides the ability to create a location using an EPSG code

or by entering projection values. Of all the methods available to us,

using QGIS and the Georeferenced File method in the GRASS GUI are

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=305

GETTING SOME DATA 306

Figure C.6: GRASS GUI start-up screen

probably the quickest and easiest. If you are familiar with projections

and EPSG codes, you may find the other methods just as easy.

C.2 Getting Some Data

A GRASS location and mapset is nice, but you obviously need some

data to work with. GRASS uses its own format for storing data. Unlike

the OSGIS viewers we have discussed (Thuban, uDig, QGIS) that read

a number of formats, GRASS prefers its own format. That’s not to say

you can’t use external data with GRASS because you can. To get full

advantage of the capabilities, importing the data is required.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=306

GETTING SOME DATA 307

A Word About GRASS Commands

GRASS commands are arranged by function. For example, vec-
tor commands begin with v., raster commands begin with r.,
database commands with d., and general commands with g..
For a complete list of these commands and their function, refer
to the online GRASS manual that is installed with GRASS. You
can easily access the manual using the g.manual -i command
from the GRASS shell.

This section will show you several ways to get some data into GRASS

so you can work with it, including the following:

• Import the data using v.in.ogr and r.in.gdal GRASS commands.

• Use the GRASS plugin in QGIS to import a loaded vector layer.

• Use v.external to make an external layer (for example a shapefile)

accessible to GRASS.

Using the Command Line

Let’s start by importing some vector data into GRASS using v.in.ogr.

This command allows you to import data sources supported by the

OGR library (see Section A.2, OGR Utilities, on page 287 for information

on supported formats). This means we can use it to import a shapefile,

among others. The world_borders shape is stored in the desktop_gis_data

folder (if you are following along, your location may vary). We will use it

to import into GRASS.

Let’s look at part of the syntax help for v.in.ogr. If you want to get the

full picture, use g.manual v.in.ogr:

GRASS 6.2.2 (world_lat_lon):~ > v.in.ogr --help

Description:

Convert OGR vectors to GRASS. Available drivers:

ESRI Shapefile,MapInfo File,UK .NTF,SDTS,TIGER,S57,

DGN,VRT,AVCBin,REC,Memory,CSV,GML,PostgreSQL,GRASS

Usage:

v.in.ogr [-lfcztoe] dsn=string output=name [layer=string[,string,...]]

[spatial=value[,value,...]] [where=sql_query] [min_area=value]

[type=string[,string,...]] [snap=value] [location=string]

[cnames=string[,string,...]] [--overwrite]

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=307

GETTING SOME DATA 308

Flags:

-l List available layers in data source and exit

-f List available formats and exit

-c Do not clean polygons (not recommended)

-z Create 3D output

-t Do not create attribute table

-o Override projection (use location's projection)

-e Extend location extents based on new dataset

--o Force overwrite of output files

Parameters:

dsn OGR datasource name. Examples:

ESRI Shapefile: directory containing shapefiles

MapInfo File: directory containing mapinfo files

output Name for output vector map

layer OGR layer name. If not given, all available layers are imported.

Examples:

ESRI Shapefile: shapefile name

MapInfo File: mapinfo file name

If you happen to invoke a GRASS command without any parameters,

a GUI window will pop up, allowing you to set the options and execute

the command. To import our layer, we’ll use the command line rather

than the GUI.

There are a lot of optional flags and parameters we can use with v.in.ogr.

For our example, we are going to go the simple route and see whether

it gives us the expected results. To import the layer, use the following:

v.in.ogr dsn=/home/gsherman/desktop_gis_data output=world_borders \

layer=world_borders

The dsn is the data source name and, in the case of OGR vectors, refers

to the directory where the layers are stored. In this case, that’s the

directory where the world_borders layer lives: /home/gsherman/desktop_

gis_data. If you don’t specify a layer name using the layer parameter, all

layers in the dsn directory will be imported. This obviously can be pretty

handy for bringing in a lot of layers all at once.

Importing the layer will take a while. GRASS does a number of things

when importing a layer, including building topology as appropriate. Part

of the output from the import process is shown next. We didn’t include

the entire output because it gets quite long and includes detailed infor-

mation about the import process and building topology.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=308

GETTING SOME DATA 309

Joe Asks. . .

What Is Topology?

You probably noticed the word topology has cropped up a
couple of times now. In simple terms, topology is the relation-
ship between spatial features. For example, a polygon bound-
ary consists of lines. Adjacent polygons share common bound-
aries. Data formats that are topological maintain this relation-
ship when creating and editing data. The common boundaries
are stored only once.

In a nontopological format, the common boundaries are dupli-
cated, one for each polygon.

Apart from the storage difference, a topological GIS such as
GRASS maintains the spatial relationships as you edit data. If
you move a line, the polygon boundary or boundaries are
adjusted accordingly. This provides consistency in your data
and is essential when performing many geoprocessing tasks.

GRASS 6.2.2 (world_lat_lon):~ > v.in.ogr dsn=/home/gsherman/desktop_gis_data \

output=world_borders layer=world_borders cnames=dog

A datum name wgs84 (WGS_1984) was specified without transformation parameters.

Note that the GRASS default for wgs84 is towgs84=0.000,0.000,0.000.

Projection of input dataset and current location appear to match.

Proceeding with import...

Layer: world_borders

Importing map 3784 features...

Building topology ...

If the import’s successful, you should be returned to the GRASS prompt

without any error messages. You can quickly confirm that we now have

a world_borders layer using the following:

GRASS 6.2.2 (world_lat_lon):~ > g.list vect

--

vector files available in mapset gsherman:

world_borders

--

Now let’s bring in a raster using the r.in.gdal command. This command

uses the GDAL library and therefore can import a wide range of formats.

For this example, we will import the NASA world mosaic into GRASS.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=309

GETTING SOME DATA 310

The syntax of r.in.gdal is as follows:

Usage:

r.in.gdal [-oefk] input=string output=name [band=value]

[target=string] [title="phrase"] [location=string] [--overwrite]

Flags:

-o Override projection (use location's projection)

-e Extend location extents based on new dataset

-f List supported formats then exit

-k Keep band numbers instead of using band color names

--o Force overwrite of output files

Parameters:

input Raster file to be imported

output Name for output raster map

band Band to select (default is all bands)

target Name of location to read projection from for GCPs transformation

title Title for resultant raster map

location Name for new location to create

The options here are fewer than with v.in.ogr. To import the raster, use

the following:

GRASS 6.2.2 (world_lat_lon):~ > r.in.gdal \

input=./ev11612_land_ocean_ice_8192.tif output=nasa_world_mosaic

ERROR: Projection of dataset does not appear to match current location.

LOCATION PROJ_INFO is:

name: Latitude-Longitude

datum: wgs84

towgs84: 0.000,0.000,0.000

proj: ll

ellps: wgs84

cellhd.proj = 0 (unreferenced/unknown)

You can use the -o flag to r.in.gdal to override this check and use

the location definition for the dataset.

Consider generating a new location from the input dataset using the

'location' parameter.

GRASS 6.2.2 (world_lat_lon):~ >

Oops—what happened? GRASS doesn’t like our raster because it thinks

it may be in a different projection than our WGS84 location. We can

override this using the -o switch if we’re sure the projection is correct:

GRASS 6.2.2 (world_lat_lon):~ > r.in.gdal -o \

input=./ev11612_land_ocean_ice_8192.tif output=nasa_world_mosaic

Over-riding projection check.

Proceeding with import...

WARNING: G_set_window(): Illegal latitude for North

GRASS 6.2.2 (world_lat_lon):~ >

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=310

GETTING SOME DATA 311

Now what? It appears that GRASS isn’t happy with the raster’s north-

ern latitude value(s). Let’s use gdalinfo to examine the raster so we can

determine what’s going on:

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data > gdalinfo -nomd \

./ev11612_land_ocean_ice_8192.tif

Driver: GTiff/GeoTIFF

Size is 8192, 4096

Coordinate System is `'

Origin = (-180.021973,90.021973)

Pixel Size = (0.04394530,-0.04394530)

Corner Coordinates:

Upper Left (-180.0219727, 90.0219726)

Lower Left (-180.0219727, -89.9779762)

Upper Right (179.9779249, 90.0219726)

Lower Right (179.9779249, -89.9779762)

Center (-0.0220239, 0.0219982)

Band 1 Block=8192x1 Type=Byte, ColorInterp=Red

Band 2 Block=8192x1 Type=Byte, ColorInterp=Green

Band 3 Block=8192x1 Type=Byte, ColorInterp=Blue

Band 4 Block=8192x1 Type=Byte, ColorInterp=Undefined

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data >

This provides us with a lot of detail information about the raster. For

now, we are interested in the coordinates. Notice that our image extends

beyond the bound of the world (at least as we defined it in our GRASS

location). The image appears to be shifted to the upper left. This is

because a world file specifies the position of the center of the upper-

left pixel. You can see that the shift is exactly half the pixel size of

0.04394530. So, how do we solve this problem so we can complete the

import? The answer is to simply translate the bounding rectangle so it

is correct. To do that, we will use the gdal_translate command:

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data > gdal_translate -of GTiff \

-a_ullr -180 90 180 -90 -co "COMPRESS=LZW" -a_srs EPSG:4326 \

./ev11612_land_ocean_ice_8192.tif world_mosaic.tif

Input file size is 8192, 4096

0...10...20...30...40...50...60...70...80...90...100 - done.

Using gdal_translate we translated the raster and created a new one with

the proper bounding rectangle (-a_ullr -180 90 180 -90). We didn’t change

the data; all we did was remove the shift because of the way world

files are designed. During the process, we specified the image should

be compressed using LZW (-co "COMPRESS=LZW") and also assigned the

WGS84 projection to it (-a_srs EPGS:4326). The new image is a true Geo-

TIFF. It doesn’t have a world file but has the projection information

encoded in the file itself.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=311

GETTING SOME DATA 312

Using gdalinfo on the new world_mosaic.tif yields the following:

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data > gdalinfo -nomd world_mosaic.tif

Driver: GTiff/GeoTIFF

Size is 8192, 4096

Coordinate System is:

GEOGCS["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.2572235629972,

AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433],

AUTHORITY["EPSG","4326"]]

Origin = (-180.000000,90.000000)

Pixel Size = (0.04394531,-0.04394531)

Corner Coordinates:

Upper Left (-180.0000000, 90.0000000) (180d 0'0.00"W, 90d 0'0.00"N)

Lower Left (-180.0000000, -90.0000000) (180d 0'0.00"W, 90d 0'0.00"S)

Upper Right (180.0000000, 90.0000000) (180d 0'0.00"E, 90d 0'0.00"N)

Lower Right (180.0000000, -90.0000000) (180d 0'0.00"E, 90d 0'0.00"S)

Center (0.0000000, 0.0000000) (0d 0'0.01"E, 0d 0'0.01"N)

Band 1 Block=8192x1 Type=Byte, ColorInterp=Red

Band 2 Block=8192x1 Type=Byte, ColorInterp=Green

Band 3 Block=8192x1 Type=Byte, ColorInterp=Blue

Band 4 Block=8192x1 Type=Byte, ColorInterp=Alpha

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data >

The important things to note in the output of gdalinfo are as follows:

• The coordinate system WGS84 has been assigned and encoded in

the file.

• The pixel size hasn’t changed.

• The bounding coordinates are now correct.

At last we can import the image into GRASS. Now that the image has

been tortured into submission, we don’t have to supply any flags to the

r.in.gdal command:

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data > r.in.gdal \

input=./world_mosaic.tif output=world_mosaic

A datum name wgs84 (WGS_1984) was specified without transformation parameters.

Note that the GRASS default for wgs84 is towgs84=0.000,0.000,0.000.

Projection of input dataset and current location appear to match.

Proceeding with import...

...

r.in.gdal complete.

GRASS 6.2.2 (world_lat_lon):~/desktop_gis_data >

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=312

GETTING SOME DATA 313

Success! We stumbled across a bit of a problem initially, but this served

to illustrate some problem-solving tools and techniques at our disposal.

You should note that you won’t encounter the offset issue with every

raster you import. If you are importing a GeoTIFF that contains coordi-

nate information, odds are it will be processed just fine. If not, you are

now prepared to deal with the problem.

The last thing we want to do is color-composite the image for display

purposes. The import processed each band of the image separately,

creating separate outputs for red, green, blue, and the alpha channel.

We can combine these together so the image looks like we expect using

r.composite:

GRASS 6.2.2 (world_lat_lon):~ > r.composite red=world_mosaic.red \

green=world_mosaic.green blue=world_mosaic.blue output=world_mosaic

...

GRASS 6.2.2 (world_lat_lon):~ >

In Figure C.7, on the following page, you can see the world mosaic dis-

played in GRASS. You might notice it looks a little “blocky.” If you zoom

in, you will find it loses the detail we had in the original TIFF image.

We should have set the region to that of the raster before creating the

composite; otherwise, GRASS uses the default region specified when

we created the location. To get the results we want, we can compos-

ite the image again, after setting the region using one of the rasters

(world_mosaic.red) created during the import:

GRASS 6.2.2 (world_lat_lon):~ > g.region rast=world_mosaic.red

GRASS 6.2.2 (world_lat_lon):~ > r.composite red=world_mosaic.red \

green=world_mosaic.green blue=world_mosaic.blue output=world_mosaic_better

...

GRASS 6.2.2 (world_lat_lon):~ >

Now we have a proper looking raster that preserves the resolution of

the original TIFF file.

Importing with QGIS

Now let’s look at using QGIS to import a layer into GRASS. After QGIS is

fired up, open the mapset we want to use for storing our data. To open

a mapset, choose Open mapset from the GRASS menu under the main

Plugins menu. Make the appropriate selections for location and mapset,

and press OK. Nothing much happens when you do this, other than the

GRASS toolbox icon will now be enabled. Now that the mapset is open,

we need to load the shapefile we want to import. To import a shapefile

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=313

GETTING SOME DATA 314

Figure C.7: World mosaic in GRASS

into GRASS, it must first be loaded into QGIS using the Add a Vector

Layer menu or toolbar icon. In our case, we will use the cities layer.

Once the cities layer is loaded into QGIS, open the GRASS toolbox by

clicking the tool in the GRASS toolbar or by choosing Open GRASS tools

from the GRASS plugin menu. The toolbox contains a wealth of GRASS

tools and functions we can run from within QGIS. Right at the top of

the list you will find Import OGR/PostGIS Vector Layer. This tool will

give us the opportunity to import any loaded vector layer into GRASS,

assuming it’s an OGR or PostGIS layer.

Once we click the import tool, a new tab page is opened, and a drop-

down box of all the eligible layers is available. We just pick the one we

want to import from the list and then fill in a name for the GRASS layer

(output vector map). Clicking the Run button starts the import process.

The output from the command will be displayed as the import proceeds.

If all goes well, a “Successfully finished” message will be displayed at

the end of the output. If you scroll back through the output window,

you will find that the command used to do the import is v.in.ogr. The

GRASS plugin in QGIS just provided a convenient front end for import-

ing the layer. We could easily have accomplished the same thing using

the GRASS command line.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=314

WORKING WITH DATA 315

If you click the Add GRASS vector layer tool you will see that our GRASS

mapset now contains both the world_borders layer and the cities layer.

We can use the same method to import rasters into GRASS, using the

Import GDAL Raster Layer tool in the toolbox. If we encounter difficul-

ties with the raster as we did the NASA world mosaic, some prep work

using gdalinfo and gdal_translate may be required.

Importing External Data

The last means of getting vector data into GRASS involves importing

external data. Actually, it’s not really an import but more of a link.

When working with external data, you have to be aware that a number

of GRASS tools and operations won’t work. But it is a handy way to

display data without converting to a GRASS layer. For information on

which OGR formats can be linked, see the manual for v.external.

The syntax for v.external is almost exactly like the simplest form of

v.in.ogr:

v.external dsn=string [output=name] [layer=string] [--overwrite]

To link the world_borders shapefile, we would use the following:

v.external dsn=./desktop_gis_data output=world_borders_external \

layer=world_borders.shp

We can now use the layer in GRASS—just remember it is read-only

and may yield incorrect results when used in some GRASS operations.

This is because an external layer is fundamentally different from a true

GRASS layer. For example, an external layer doesn’t have true topology

but a pseudo-topology is created to allow it to act like a complete GRASS

layer. Again, if you want to use a layer for operations other than display,

it’s best to import it into GRASS using one of the methods we have

discussed in this chapter.

C.3 Working with Data

Now that we know how to get data into GRASS, let’s work with it a

bit and learn how to use the display manager. You may have gathered

by now that GRASS has a couple of start-up modes—GUI and text.

GRASS remembers which mode you used last and will attempt to start

up using the same the next time around. Not only are there two modes,

there are also two GUIs to choose from. By default if you start GRASS

using grass62 -gui, you get the “official” display manager gis.m. The other,

older display manage is d.m. If you prefer it, start GRASS in text mode

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=315

WORKING WITH DATA 316

GRASS GUIs

GRASS itself has two GUI interfaces currently: gis.m and d.m.
There is currently work being done on a new interface using
Python and wxWindows.∗ That interface isn’t far enough along
for us to use in our examples, but it’s something to keep an
eye on. Oh, and don’t forget the other GRASS GUI option—
Quantum GIS.

∗. http://wxwindows.org

using grass62 -text, and then enter the command to bring it up. So far we

have been using GRASS 6.2 in our examples. Now we will switch to the

bleeding edge a bit and use GRASS 6.3. Everything we have done so far

in terms of creating locations and mapsets is the same between 6.2 an

6.3, so you don’t have to start over and learn something new. In fact,

our locations and mapsets all work with 6.3, so we are in good shape.

To view GIS data, obviously you need a GUI, so we will start up GRASS

6.3 in that mode, using the -gui switch. This gives us the new and

improved display manager. The first thing you will notice is that three

windows pop up. GRASS requires a bit of screen real estate in which

to operate. You can use it on a 12-inch laptop display, but that’s not

ideal. The first step is to rearrange the windows so you can get a look at

all of them at the same time. With a bit of resizing and moving, you will

be able to fit them all nicely on your display. You should now have the

GIS Manager, Map Display 1, and Output windows arranged so each is

visible. Let’s add a vector layer and see what happens.

Everything starts with the GIS Manager. Its toolbars are organized by

function, in particular the raster and vector functions are those we

are interested in at the moment. Like other GIS applications, GRASS

has tooltip text for each button on the toolbar(s). Hover the mouse to

learn what each tool is for, or consult the manual. The button to add a

vector layer looks like a stream with a green polygon and red markers

on a white background. Clicking it adds a generic vector layer to the

manager window. To actually display something, we have to add a layer

to this vector “object.” To do this, click the newly added Vector 1 item.

This opens up a new form on the lower half of the manager window

where we can set up the display parameters and options. To specify the

layer to use, click the Vector Map to Display button just to the left of

http://wxwindows.org
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=316

WORKING WITH DATA 317

the first textbox. This will display a list of layers in the mapset that you

can choose from. For our example, we’ll just add the world_borders layer.

We could save a step and just type in the layer name if we happen to

know it.

Entering the layer name is just the start. GRASS can display a number

of features from the layer, including the following:

• Shapes

• Categories

• Topology

• Line directions

• Points

• Lines

• Boundaries

• Centroids

• Areas

• Faces

This gives us a lot of options. Don’t worry if you don’t understand what

all of them mean. For now we just want to produce a map showing the

polygons that make up the countries of the world. To do this, all we

really need to select is shapes and areas. To draw the layer now, switch

to the map window, and find the Zoom to button located near the middle

of the toolbar (it looks like a magnifying glass next to a map). Notice the

tool is actually a drop-down tool button. Click and hold the button to

display the options. Click Zoom to Default Region, and the world_borders

map will be drawn to fill the display window. Notice we didn’t set any

options other than the layer name and what features to draw so the

countries are drawn in the default color (gray). If we want to symbolize

the map by population or some other attribute, it turns out you can’t

do that by adding a vector layer to the map—you have to use a thematic

map layer.

Adding a thematic map layer is done in a similar fashion as a regu-

lar vector layer. In fact, the button to add a thematic layer is just to

the right of the button we just used—if in doubt, hover the mouse.

Clicking the Add thematic map layer button adds a “thematic 1” object

to the manager window. Clicking it brings up the options panel. First

we specify world_borders as the vector map. You will notice the options

for a thematic map are different than for the vector map. The critical

thing is we need a numeric field to classify the map with. Fortunately,

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=317

WORKING WITH DATA 318

Figure C.8: Settings for a thematic map of the world by population

the population field is precisely that. If you can’t remember the name

of the fields in the layer, GRASS lets you list those using the Show

Attribute Columns button. Clicking it causes the field names and types

to be printed in the Output window. Doing that we quickly see that

POP_CNTRY is what we want to use to classify the map so it gets entered

in the textbox for the numeric attribute column.

Next we need to set the type of thematic map from the drop-down list.

In the case of the population map, we want graduated colors. You can

also select the Map By option, choosing interval, standard deviation,

quartiles, or custom_breaks. Interval will produce the results we need.

We set the number of intervals (classes) to 5 and choose a preset color

scheme of Green-Red. That’s all we have to do to set up the map. In

Figure C.8, you can see the completed setup in the GIS Manager for

the thematic map. There are more options you can’t see in the figure,

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=318

GETTING TO KNOW THE GUI 319

Figure C.9: Thematic map of population by country

such as font sizes for the legend and so forth, but the defaults are fine

for generating the map (fire up GRASS and look if you want to see what

they are). The thematic map can be drawn using the same method as

for the regular vector map. As you can see in Figure C.9, the countries

are rendered by population, with the most populous in red. The legend

is displayed separately from the map window in GRASS and shows the

colors and class intervals.

You’ve probably noticed that the GRASS GUI uses a different paradigm

than the other OSGIS applications we surveyed in Appendix A, on

page 269. As such, it takes some getting used to. If you are going to

use GRASS, take some time to familiarize yourself with the interface.

In fact, let’s do some of that right now.

C.4 Getting to Know the GUI

One of the barriers to using GRASS is psychological. Many people dis-

miss it as being too difficult, arcane, or archaic. That’s unfortunate

because GRASS has a lot to offer. That’s not to say there isn’t a learn-

ing curve with GRASS. Just like any powerful application, it takes time

to learn and master. That said, let’s take a look at the map interface

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=319

GETTING TO KNOW THE GUI 320

MDI or SDI?

As you may have guessed by now, GRASS lets you have multiple
windows, which essentially makes it a Multiple Document Inter-
face (MDI) application as opposed to a Single Document Inter-
face (SDI) application. Some folks prefer MDI, although mod-
ern user interface design thought seems to indicate that SDI is
preferable. Using an MDI application on a small display can be
quite painful—plan accordingly.

in Figure C.9, on the preceding page and examine both the toolbar and

the other features.

To acquaint us with the tools available on the map interface, take a look

at the following list of each tool and a brief description of its function.

The name for each is the same tooltip text you see when you hover the

mouse over a tool.

Display active layers

This tool displays all the active layers using the current region

extents (that is, view extent) for the map interface.

Redraw all layers

Redraws the map, displaying all active layers in the current view

extent.

Start NVIZ using active layers in current region

This starts NVIZ, a tool for viewing data in three dimensions. NVIZ

supports vertical exaggeration, rotation, and fly-through effects.

Erase to white

Erases the map to a white background color.

Pointer

Switches to the pointer. When the pointer is active, its location is

displayed in the status bar at the bottom of the map.

Zoom In

This provides an interactive zoom-in tool. Dragging a box zooms

in to the outlined area. A single click of the tool zooms in a fixed

amount.

Zoom Out

This provides an interactive zoom-out tool that works like that

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=320

GETTING TO KNOW THE GUI 321

of QGIS. The display will be zoomed so that it is contained in the

rectangle created by dragging the mouse. Clicking the map results

in a fixed zoom out.

Pan

Pans the map when you hold down the mouse and drag it.

Return to previous zoom

This should be pretty obvious, but it returns you to the previous

view. Unlike QGIS, this tool maintains a history of zoom levels,

allowing you to click your way back to where you initially started.

Zoom to

This tool is really a collection of one-shot zoom actions allowing

you to zoom to the selected map, a saved region, the current

region, and the default region. There are a couple of other choices

as well.

Query

This tool is equivalent to the identify tools we saw in uDig and

QGIS. It operates on the active layer (map) and returns informa-

tion about the layer at the location you click. For a raster this will

be the coordinates of the mouse click and the cell value. For a vec-

tor layer, it displays the coordinates as well as the attributes for

the feature.

Measure

Measures distances on the map, using the current measurement

units.

Create profile of raster map

This button actually opens another window that allows you to

draw a profile line on a raster and then plot a cross section. This

is useful for example in creating elevation cross sections from a

Digital Elevation Model (DEM).

Export display to graphics file

Exports the current map view to a graphics file. PPM/PNM, TIFF,

JPEG, and BMP are supported.

Print raster and vector maps to eps file

This tool does more than the tooltip implies. It allows you to send

the map to a printer or create a PostScript, PDF, or EPS file.

Constrain map to region geometry

This causes the map display to be constrained to the actual region

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=321

DIGITIZING AND EDITING 322

(extent) you asked for in your zoom or other map navigation action.

When using this mode, the map likely won’t fill the display.

Map fills display window

This mode causes the map to fill the entire display area. This mode

is the same as that used by uDig and QGIS.

C.5 Digitizing and Editing

To complete our introduction to GRASS, let’s look at how to digitize

and edit a layer. We’ll create a layer and digitize some lakes off a world

mosaic raster.

The GRASS Vector Model

Before we start digitizing, we need to go over a few facts about how

GRASS stores and works with vector features. The GRASS vector model

is all new at version 6.x. Rather than go into all the gory the details now,

just be aware of the following:

• Each vector feature has a “category” number that serves as an

identifier.

• Vector features can have 0..n category numbers.

• A GRASS layer consists of link(s) from a set of geographic objects

to attribute table(s).

• Layers don’t contain any geographic features but are linked to

them.

• For a feature to be part of a layer, one or more of its category

values must appear in the attribute table.

You’re probably wondering what the story is with this confusing sound-

ing category and attribute table thing. Basically, it’s pretty powerful in

that it allows you to link multiple attribute tables to a single feature.

Why would we want to do that? Well, in a contrived example, suppose

for our lakes layer we want to store physical characteristics such as

volume and maximum depth, width, and length. We also want to store

information about fish species and their percentage of the total fish

population. As you can see, these two goals don’t really translate into

one attribute table. In the first case, it’s a one-to-one relationship, and

in the second (fish), it’s a one-to-many relationship. Besides that, the

two types of data just don’t belong together. In GRASS, we can create

two attribute tables and link them to our vector layer. Then we can

add records to each, using the vector category as an identifier in the

attribute tables. If a lake has no fish, it won’t have any records in the

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=322

DIGITIZING AND EDITING 323

fish table. If we draw the “fish” layer, that lake won’t show up. Although

this may not be the best example, you get the idea.

In fact, you can combine totally unrelated features (datawise) that are

topologically related in a single map and break it out into layers using

this scheme. The GRASS documentation uses the example of forests

and lakes, but any mapping of land parcels that includes water bod-

ies is a good example. The lakes and parcels are topologically related

(share common boundaries) but are different types of features. In con-

ventional GIS, we might represent these with two separate layers (for

example, shapefiles). In GRASS, they can live in the same map and be

distinguished using categories and attributes.

Digitizing and Editing in GRASS

GRASS digitizing is a bit different from what you may have seen with

other applications. First, of course, we need to create a new map in

which to store our vector features. We can do this and start digitizing

all in one step using v.digit. When you use v.digit from the GRASS shell,

it fires up the digitizing tools and a map display window. But for this

to work, we have to open a map monitor first using d.mon.1 Instead of

going that route, we’ll just start up GRASS in GUI mode and let it do

some of the behind-the-scenes work for us.

Once you have the GRASS GIS Manager up and running using the

world latitude/longitude location, choosing Digitize from the Develop

map item on the Vector main menu brings up the v.digit dialog box. This

allows us to enter the name for the new layer and tick the box to allow

creating it since it doesn’t exist yet. In Figure C.10, on the next page,

you can see the v.digit dialog box with the options we need filled in. You’ll

notice that we specified a display command of d.rast map=world_mosaic.

This becomes the background image that we will digitize from. We could

specify more than one background map if needed. The command d.rast

simply tells GRASS to draw the raster specified by the map option, in

this case our world mosaic.

You’ve perhaps noticed that the entire v.digit command required to ac-

complish the same result is displayed at the bottom of the dialog box,

next to a little “copy” icon. This allows you to copy the command to

the clipboard and use it elsewhere—for example in script. This is also

1. In GRASS 6.3 the use of d.mon is no longer required.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=323

DIGITIZING AND EDITING 324

Figure C.10: Setting up to digitize a new map in GRASS

Figure C.11: GRASS digitizing tools

helpful from a learning standpoint so you can see what commands are

used to accomplish a task in GRASS.

Once we click the Run button, two things happen. First, a Monitor win-

dow is opened, and the layer(s) we specified as background are drawn.

Second, the v.digit tool window appears, as shown in Figure C.11. Together

these two windows provide us with the capability to digitize features.

The first step is to zoom into the area where we want to work. Let’s

start with Lake Tanganyika, located in the Great Rift Valley near 29.57

degrees N latitude, 6.16 degrees W longitude (the v.digit tools dialog box

show latitude/longitude at the bottom left of the window).

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=324

DIGITIZING AND EDITING 325

We are almost ready to digitize, but first we need to add at least one

more column to the attribute table associated with our vector map. To

do this, click the Open settings tool in the v.digit toolbar. This brings up

the settings dialog box where we can configure a number of things for

our digitizing session, including the symbology, background map, and

snapping thresholds, as well as the attribute table. To add a column

to the attribute table, click the Table tab. Click the Add New Column

button, enter the field name, and then choose the field type from the

drop-down list. For the Name field for our lakes, we’ll use a varchar

field with a length of 24.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=325

DIGITIZING AND EDITING 326

Figure C.12: Adding a Column to a GRASS Vector Map

In Figure C.12, you can see the settings filled out for the name field. If

you wanted to add more columns, you can do so using the same pro-

cess. To create the column(s), click the Create Table button, and then

close the settings dialog box. Now we have a vector map and associated

attribute table ready for digitizing.

Let’s take a look at the tools available for digitizing (see Figure C.11, on

page 324). The first four tools are for refreshing and navigating the map

and by now should be pretty familiar. The first button just redraws the

map. The others allow you to zoom in, out, and pan the map. I need

to point out a key feature of this dialog box: the three wide buttons

below the toolbars represent the buttons on your mouse (yes, you need

a three-button mouse or some way to emulate one). When you select a

tool, the labels on the buttons change to give you a visual cue as to the

function of each mouse button. Get used to looking at the labels; it will

help you as you digitize. If we click the Zoom in by window tool, we see

that the mouse button functions are as follows:

• 1. corner

• 1. corner

• Quit

So, this means we can use buttons 1 or 2 (left or middle) to mark the

first corner of our zoom window. When we click the map with either

button, the button labels in the dialog box change yet again:

• 1. corner

• 2. corner

• Quit

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=326

DIGITIZING AND EDITING 327

If we click the left button, we reset the corner and start over. If we click

the middle button, it establishes the second corner of our zoom window

and the display changes, zooming in as we expect. In both cases, the

third (right) button cancels the zoom function and resets all the button

labels to blank.

This takes a bit of getting used to because you are probably accustomed

to just dragging a rectangle, letting go, and watching the zoom happen.

The shortcut in this case is to use the middle button for setting both

corners of the zoom window—not that is saves you any effort, just a bit

of finger movement for those of us that are uncoordinated.

Now we know how to navigate the map, and the tools we need to get

started digitizing are on the second toolbar. The first two are for points

and lines, and the next two are the ones we want.

First we select the Digitize new boundary tool and click it. The mouse

button cues now indicate left button to create a new point and right

button to quit. Now all we have to do is click our way around the lake,

following the shoreline. When you click the first point, the mouse cues

change again. The first remains New Point, but the second changes to

Undo Last Point, and the third changes to Close Line. Now we can just

click around the lake and use undo if we need to delete a bad point.

Once we get to the origin, we use the right mouse button to close the

boundary, clicking over the first point. If we click within the tolerance,

the boundary will close; if not, we’ll have to do it manually.

As soon as you right-click, a form pops up to allow you to enter the

name. At this point you are naming the boundary line. If it’s not impor-

tant to you to put a name on the boundary, you can skip it; otherwise,

you can enter the name of the lake now. Once we close the boundary,

we’ll see how to make it into a polygon.

If the boundary turns green when you close it, you are in luck. The start

and end points coincide. If not and it’s red, we can use the Move vertex

tool to easily move the last point to close things up. To move it, select

the tool and click the last point, and then move the mouse until the

cursor is over the first point and click again. If you’re lucky (or good),

the border will turn red to green, indicating closure.

Now that we have a closed boundary, we can make it a polygon by

adding a centroid. Click the Digitize new centroid tool, and then click

somewhere in the center of the lake polygon. Again the attribute form

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=327

DIGITIZING AND EDITING 328

Figure C.13: Results of digitizing lakes in GRASS

will pop up, and we can enter Lake Tanganyika for the name. When we

submit, the attributes are stored. Now when we click the centroid of the

lake in the GRASS map display using the Query tool, we get the polygon

attributes. In fact, now our africa_lakes map contains two feature types:

1_line and 1_polygon. We can draw boundaries to view the outline of the

lake. If we also turn on areas in the GIS Manager, we see the polygon.

In Figure C.13, you can see the results of our digitizing the lakes. We’ve

rendered them in cyan with a three-pixel dark blue border and added

labels to the centroids, all using the GIS Manager to set things up.

That completes our simple example of digitizing in GRASS. We didn’t get

too fancy with things but illustrated a fairly typical session for creating

polygons. Of course, lines and points work in a similar fashion. The

other tools on the v.digit dialog box allow us to add and delete a vertex,

split a line, and move or delete an entire feature.

On the upper toolbar, you’ll find tools to both display categories for

a feature as well as copy them. Why would you want to copy cate-

gories from one feature to another? Well, imagine we have two fea-

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=328

DIGITIZING AND EDITING 329

tures that belong to the same overall “thing.” An example is a parcel

of land divided by a river. When you digitize, you will have two poly-

gons, but they both are the same parcel of land—they have the same

owner, tax ID, or what have you. We can digitize the first polygon and

set its attributes. Then when we digitize the second, rather than assign-

ing a new category number and duplicating all the attributes, we just

copy them from the first parcel using the Copy categories tool. So, this

tool is good when we are working with multipoint, multilinestring, or

multipolygon features.

This section is about digitizing and editing with GRASS, and you’re

thinking “all we did was talk about digitizing.” Well, as with most of

the editing-enabled applications, the operations are pretty much the

same. How do we edit the features in GRASS? Just start up v.digit from

the GIS Manager or from the GRASS shell. We can also manipulate the

attribute data using the db. suite of commands.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=329

Appendix D

Quantum GIS Basics
Quantum GIS has a lot of functionality and many areas to explore. Here

you will find an introduction to the basics of using QGIS, including map

navigation and other essential features.

At first glance, QGIS has a feature set similar to other GIS viewers/edi-

tors. QGIS can view vector and raster data, including data stored in a

PostGIS-enabled PostgreSQL database. QGIS also supports WMS layers

and has preliminary support for WFS layers.

We used QGIS to view and render data in Chapter 3, Working with

Vector Data, on page 37, so we won’t repeat that here. Instead, we’ll

take a look at some of the features you may not have seen yet.

D.1 Vector Properties and Symbology Options

Each layer you add in QGIS has properties associated with it. You

can access the vector properties dialog box by double-clicking the layer

name in the legend or by right-clicking its name and choosing Properties

from the pop-up menu.

Symbology

First let’s look at the options on the Symbology tab:

Legend Type

QGIS supports a number of legend types. These are actually ways

to symbolize your data. Currently you can choose from Single

Symbol, Graduated Symbol, Continuous Color, and Unique Value

renderers. For examples of using these to render your data, refer

to Section 3.4, Advanced Viewing and Rendering, on page 45.

VECTOR PROPERTIES AND SYMBOLOGY OPTIONS 331

Transparency

The transparency slider allows you to make the layer transparent.

This allows you to “see through” the layer to reveal layers lower in

the map stack.

Label

The Label field allows you to specify the name that appears next to

the symbol in the legend. So for the world_borders layer, we might

name it “World Borders.”

Point Symbol

This drop-down contains the available symbols for a point. When

you select one from the list, it will be used to render the points on

the layer.

Point Size

This allows you to change the size of the symbol. The size is spec-

ified in points just as font sizes are in your word processor.

Outline Style

For line and polygon layers, you can specify the style of the line

used to draw the feature or its outline. This also works with the

basic point symbols (box, triangle, circle, and diamond). QGIS pro-

vides a number of style choices, including solid, dashed, dotted,

and various combinations of dot-dash.

Outline Color

You can specify the color of the outline for the basic point symbols

as well as for line and polygon layers. Just click the colored box to

the right of the option to open the color selector. The color selector

is platform specific, so its appearance will depend on whether you

are running Windows, OS X, or in the case of Linux, your Linux

windows manager (for example, KDE vs. Gnome vs. XFCE, etc.).

Outline Width

This option lets you specify the width of the line in pixels (used for

line and polygon layers).

Fill Color

For a polygon layer, you can specify the color used to fill the poly-

gons or basic point symbols. Again, just click the colored box to

the right of the option to open the color selector.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=331

VECTOR PROPERTIES AND SYMBOLOGY OPTIONS 332

Fill Patterns

For polygon and basic point symbol fills, the default is a solid. Q-

GIS has a range of other fill patterns you can choose from (includ-

ing hollow). Just click the pattern you want to use to select it.

More Properties

Let’s finish up looking at a few more features of the vector Layer Prop-

erties dialog box before moving on to more advanced consideration of

QGIS. Some of the things we’ll see here may not make too much sense

yet, depending on what class of user your are. Don’t worry, we’ll explain

as we go along and draw it all together.

General Tab

The General tab contains options and settings that are of all things—

“general.” First off we see that we can define a display name for the

layer. We did this in the previous example by right-clicking the layer

name and choosing Rename. That’s the quick way to do it, but you can

also set it here if you like.

Scale-Dependent Rendering

QGIS supports scale-dependent rendering. Scale-dependent rendering

allows you to control when a layer is visible. There are a couple of

primary reasons why would we would want to do that:

• The layer is meaningless at small scales (remember, a small scale

covers a large area) because you wouldn’t be able to see the infor-

mation. An example is displaying streets at the scale of our world_

borders layer. You wouldn’t gain much information from such a

display.

• You have two versions of the data, one for small scales and one for

large. An example of this is a coastline. At a small scale (zoomed

way out), we don’t need to display a lot of detail. In fact, such

detail is wasted and slows only the rendering process. You can

cram only so much information into a single pixel. As you zoom

in, you want the low resolution layer to switch off and another

higher resolution (more detail) layer to switch on.

If you choose to use scale-dependent rendering, you have to set the

minimum and maximum scales for the layer. This controls the visibility

of the layer. The scale for each setting is specified as a ratio of 1:[some

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=332

VECTOR PROPERTIES AND SYMBOLOGY OPTIONS 333

number]. How do you determine what that number should be? Fortu-

nately, QGIS displays the current scale in map units on the status bar.

If you look back to Figure 3.8, on page 49, you will see that the scale is

1:464 (look at the bottom of the QGIS frame, right under the map dis-

play). You can use this information to determine what scales you want

for the minimum and maximum settings. Use the zoom tools to get the

view you want at each level and then use the displayed scale to set up

the scale-dependent rendering.

What if we want the layer to always be visible when zoomed out (small

scales) but turn off as we zoom in? Set the scale you want it to turn

off at in the Minimum field, and set the Maximum field to a very large

number. If you want the inverse to be true, set the Minimum field to

zero and the Maximum field to the scale at which you want the layer to

turn off.

Note that the terms minimum and maximum as used in the dialog box

seem to be opposite of our definition of small vs. large scale. As long as

you are aware of this, you’ll be able to set things up to meet your needs.

Spatial Indexes

The next area of interest on the General tab is the Spatial Index sec-

tion. From here you can create a spatial index, assuming the layer type

supports such an option. A spatial index speeds up drawing, selecting,

and identifying features. For example, when zooming in, QGIS uses the

spatial index to select only the features in the view window for drawing.

This is much quicker than marching through each feature in the layer

and testing it to see whether it should be drawn. The same holds true

for selecting or identifying (which really involves a select of sorts) fea-

tures. The spatial index helps quickly locate the feature(s). When you

click the button to create a spatial index for a shapefile, a new file with

a .qix extension is created. For our world_borders layer, the spatial index

file is world_borders.qix. Always make sure to create a spatial index for

layers that support it. It makes things much snappier.

Spatial Reference System

This is just a fancy name for projection. The spatial reference system

defines the projection and coordinate system of the layer. This is what

makes it possible to draw data in real-world coordinates and have dif-

fering layer’s “line up.” The projection information for the layer is dis-

played in PROJ.4 format (see Chapter 9, Projections and Coordinate

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=333

VECTOR PROPERTIES AND SYMBOLOGY OPTIONS 334

Systems, on page 138 for details). Using the Change button, you can

set the projection for the layer.

Usually QGIS sets the parameters you see here based on the projection

information associated with the layer. If there is no projection infor-

mation, then QGIS makes an assumption based on your preference

setting for projections. You can set QGIS to do the following when a

layer is loaded that has no projection information:

• Prompt for projection

• Use the projectwide default projection as set in the Project

Properties

• Use the global default projection specified in your user preferences

If you want to take a look at these options now, open the Preferences

dialog box, and click the Projection tab.

Subset

The last piece of the General tab concerns itself with the subset of the

data. This feature lets you create a subset of your layer on the fly and

display only the data matching the criteria you specify. Currently this

works only with PostGIS layers. For an example of how to use this

feature, take a look at Section 7.4, Using PostGIS and Quantum GIS, on

page 110.

Metadata Tab

The Metadata tab provides detailed information about the layer, includ-

ing its location, type, number of features, and projection. In Figure D.1,

on the next page, we can see the Metadata tab contents for our world_

borders layer.

The General information provided shows us not only information about

the layers physical location but also the type—in this case an ESRI

shapefile. We can also see that our layer contains polygon features and

has a number of editing capabilities. Well, these aren’t really capabil-

ities of the layer but show you what QGIS can do with the layer in

terms of editing. With the world_borders layer, we see that we can add

and delete features, create a spatial index, and change the values for

attributes in the layer. This is useful information, especially in the case

where you just downloaded a new layer and it’s still a mystery to you.

The metadata also includes information about the extent of the layer. It

shows the extent in both the coordinate system (spatial reference sys-

tem) of the layer and the project. You might notice that they are the

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=334

VECTOR PROPERTIES AND SYMBOLOGY OPTIONS 335

Figure D.1: Metadata for the world_borders layer

same in our example. This is because we haven’t changed the coor-

dinate system of the map canvas. We are displaying the world_borders

features in the same coordinate system in which they are stored.

The layer and project coordinate systems are displayed in the next sec-

tion of the metadata, using PROJ.4 format. In this case, it’s +proj=longlat

+ellps=WGS84 +datum=WGS84 +no_defs. QGIS isn’t so friendly in describ-

ing the projection in terms that we can easily understand. If you are

familiar with GIS and coordinate system, you can probably guess that

the coordinates are latitude and longitude in the WGS84 datum. Refer

to Chapter 9, Projections and Coordinate Systems, on page 138 for hints

on how to decipher what projection you’re working with.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=335

PROJECT PROPERTIES 336

The last bit of information we can glean from the metadata is informa-

tion about the attributes of the layer. If you look at Attribute Field Info

in Figure D.1, on the previous page, you will see it lists all the fields in

the layer, along with information about the type, length, and precision.

In the case of world_borders, we have three numeric fields (real) and two

string fields. This gives us a quick overview of the attributes for the

layer and also the field names we can use in labeling and identifying

features.

You might be wondering about the remaining tabs on the vector Layer

Properties dialog box—Labels and Actions. QGIS has a lot of options for

labeling features. You can set the font, shading, alignment, and other

options to control how features are labeled on your map. You can even

use fields in the layers attribute table to control the style, alignment,

and buffer (shading) for the labels. Attribute actions are handy things

that allow you to call an external program and pass it values from

the layer’s attribute table. You can get an in-depth look at them in

Section 3.5, Using Attribute Actions, on page 64.

D.2 Project Properties

You can customize a number of properties for a QGIS project. For exam-

ple, QGIS allows you to set a background color for the map canvas.

Often, this can be used to improve the appearance of the map, espe-

cially when you have large areas of whitespace. To set a background

color, choose Project Properties from the Settings menu. To set the color,

activate the General tab, and then click the color box to the right of the

Background Color label.

D.3 Map Navigation and Bookmarks

QGIS supports the typical map navigation toolset with zoom and pan.

We can also create spatial bookmarks that allow us to store a view

extent and return to it later.

Zooming

Load a layer, click the Zoom In tool (looks like a magnifying glass with a

plus sign in the middle), and then drag a rectangle on the map canvas

to zoom in. If you can’t find the zoom tool, hover the mouse over the

tools in the toolbar, and check out the tooltip help that pops up for

each one. You can also zoom in by a fixed amount by just clicking the

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=336

MAP NAVIGATION AND BOOKMARKS 337

map canvas. Zooming out works the same way but with one nuance.

When you drag a rectangle to zoom out, the current view will be scaled

to fit in the rectangle.

You can also use the mouse wheel to zoom in and out on the map.

First, make sure the mouse cursor is over the map canvas. To zoom in,

roll the mouse away from you (think of it as flying toward the map). To

zoom out, roll it toward you (flying away from the map). The focal point

of the zoom is the location of the mouse cursor. After a mouse zoom,

the map will be centered at the cursor location. You can change this

behavior on the Map Tools tab of the Options dialog box. If you like,

you can set it to just zoom in and not re-center the map. You can also

set the zoom factor used with each “roll” of the wheel. Using the mouse

wheel to zoom can be very useful when digitizing data.

We need to mention a several other zoom tools here:

Zoom Full

This tool zooms to the full extent of the layers on the map canvas.

This means you will see all the features in all the layers on the

map. This is a quick way to reset the view after you have zoomed

in and panned around.

Zoom to Layer

This zooms to the extent of the currently selected a layer. The

selected layer is the one highlighted in the legend. You can invoke

this by using the tool button or by right-clicking the legend and

choosing Zoom to layer extent from the pop-up menu.

Zoom to Selection

In QGIS (as in most GIS applications), you can select features in a

layer either interactively on the map using a selection tool or from

the attribute table. If you have a selection set, you can zoom to

just the area it covers using this tool.

Zoom Previous

This is like a back button. It zooms to the previous view extent. If

you hit the button again, it will take you to where you were before.

In other words, it’s a one-shot deal. There is no zoom history that

you can navigate forward and back through. But it’s still a quick

way to back out of a zoom or pan operation.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=337

MAP NAVIGATION AND BOOKMARKS 338

Panning

Panning is done using the Pan tool on the toolbar. It looks like a hand

and is located in the same toolbar as the zoom tools. Again, use the

mouse hover and tooltips to help determine the function of any tool on

the toolbars. To pan, select the tool, and drag it on the map canvas to

move the view.

You can also pan using the mouse and without clicking the map canvas.

This works only if the map canvas has the focus, meaning you haven’t

just worked with some other component of the interface, such as the

legend. To pan, hold down the spacebar, and move the mouse. This

method of panning is very useful when digitizing data, since switching

to the Pan tool may have undesired consequences.

Spatial Bookmarks

Bookmarks are everywhere—in your web browser, text editors, and

even books. QGIS supports spatial bookmarks, a way to save a location

and return to it later. Spatial bookmarks are stored globally, meaning

they are available in QGIS regardless if you have the same layers loaded

as when the bookmark was created.

To create a bookmark for an area you are viewing, simply click the

New Bookmark tool (its the half-globe with star above it), or choose New

Bookmark from the View menu. This opens a simple one-line dialog box

that allows you to enter a bookmark name. Click OK, and the bookmark

is created. Make sure the name you create is descriptive. You might also

want to append the coordinate system to the name as a reminder. The

bookmark tool doesn’t store the projection (it just stores coordinates),

so it’s up to you to remember or annotate it if it’s important.

We can manage our bookmarks using the Geospatial Bookmarks dialog

box shown in Figure D.2, on the next page. Note we have four book-

marks stored. The name and coordinates (Extent) are visible. Since

bookmarks are global, QGIS doesn’t currently store anything in the

Project column. To zoom to a bookmark, select it from the list, and

click the Zoom To button. You can also zoom to a bookmark by double-

clicking it in the list.

You can’t do much in the way of managing bookmarks, other than

delete them. There is no way to rename a bookmark or edit the extents.

Be sure to take a look at the context help (click the Help button) for

more information.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=338

PLUGINS 339

Figure D.2: QGIS Geospatial Bookmarks dialog box

D.4 Plugins

As you may have gathered already, QGIS supports the use of plugins to

add new capabilities and tools. Basically, a plugin is a loadable module

that can be added and removed from QGIS. With the release of version

0.9, QGIS supports writing plugins in both C++ and Python.

Let’s get a brief description of each of the twelve plugins distributed

with QGIS.

Add Delimited Text Layer

Loads and displays data from a delimited text file. The text file

must contain x and y coordinates for each feature. Only point

data is supported by the plugin. You can find an example of using

this plugin in Section 8.2, Importing Data with QGIS, on page 123.

Copyright Label

Displays copyright information on the map canvas. You can cus-

tomize the text, style, and placement of the label.

GPS Tools

Tools to load and import GPS data, as well as download to your

GPS unit. For details on using this plugin, see Section 8.4, Using

GPS Data with QGIS, on page 130.

GRASS

A full suite of GRASS tools for loading vector and raster maps,

digitizing features, and using modules to import, export, and pro-

cess data. We cover this plugin in a fair bit of detail in Chapter 12,

Getting the Most Out of QGIS and GRASS Integration, on page 208.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=339

PLUGINS 340

Georeferencer

Georeference rasters by interactively setting control points to cre-

ate a world file. See Section 8.5, Georeferencing with QGIS, on

page 136.

Graticule Creator

Create a graticule (grid) shapefile by specifying the extent and

interval between latitude and longitude lines. You can create a

point, line, or polygon graticule with this plugin.

Launcher

Launches a program or script from QGIS and captures the output.

Commands are stored in a drop-down list for future use.

North Arrow

Displays a customizable north arrow on the map canvas. You can

adjust the placement of the arrow, as well as the angle. Or you

can just let QGIS determine the angle direction automatically.

PostgreSQL Geoprocessing

Tools for processing PostGIS layers. At present, this plugin is

rather limited and contains only a Buffer tool.

SPIT

The Shapefile to PostGIS Import Tool (SPIT) allows you to import

shapefiles into PostGIS. The use of SPIT is covered in Section 7.3,

Using QGIS to Load Data, on page 107.

Scale Bar

Displays a scale bar on the map canvas. You can customize the

placement, style, color, and size of the scale bar.

WFS

Experimental plugin for consuming WFS services on the Internet

and displaying the data in QGIS. This plugin is included as part

of the QGIS package, but at the time of this writing probably isn’t

ready for prime time.

QGIS plugins are managed by the Plugin Manager. You access the Plug-

in Manager from the Plugins menu. In Figure D.3, on the next page, you

can see the Plugin Manager and the twelve plugins that are distributed

with QGIS.

The Plugin Manager is easy to use. Basically, you just check the plugins

you want loaded and click the OK button. If you want to unload a

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=340

PLUGINS 341

Figure D.3: QGIS Plugin Manager

plugin, uncheck it before you click OK. That’s pretty much it when it

comes to managing plugins. You probably noticed the Plugin Directory

text box at the top of the manager dialog box. This allows you to specify

a different directory to be searched for QGIS plugins. In practice, it’s

best to leave the directory alone, since by default it points to the location

where your plugins are installed. If you were developing a plugin, you

might find it necessary to change the directory so you could load your

new creation for testing purposes.

When you load a plugin, the plugin’s menu and toolbar icons are added

to the QGIS GUI. With one exception all plugin icons are added to the

Plugins toolbar. The exception is the GRASS plugin. It has ten tools

and therefore its own toolbar. Once you have loaded one or more plu-

gins, you’ll find them listed under the Plugins menu on the QGIS main

menu. You can access a plugin’s functions from either the menu or the

appropriate tool on the toolbar.

http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=341

PLUGINS 342

Creating a Plugin

Creating a plugin in QGIS is a bit of a technical affair. Currently, it

requires the use of C++ or Python and Qt. Full support for writing plu-

gins in Python is available in version 0.9. If you really want to write

a C++ plugin, check out the resources available on the QGIS website,

blog, and wiki. For an example of a QGIS plugin written in Python, see

the handy Zoom To Point plugin we created in Section 13.2, A PyQGIS

Plugin, on page 239.

With the advent of the Python bindings for QGIS, a number of Python

plugins have already emerged. For more information, check out the

QGIS Python Plugin repository.1

1. http://spatialserver.net/pyqgis_repository.html

http://spatialserver.net/pyqgis_repository.html
http://books.pragprog.com/titles/gsdgis/errata/add?pdf_page=342

Index
A
Actions, attribute, 66f, 64–66

Alaska Albers Equal Area Conic

projection, 142

Algebra, 233f, 231–233

Alignment problems, 142

American Society for Photogrammetry

& Remote Sensing, 148

Analyze, 18–20

see also Geoprocessing

Applications, writing, 263–268

Attribute data, 44–45, 46f, 56–66

editing, 89–90

features and, 84f

Attribute tables, quick search of, 60–62

Automating tasks, see Scripting

Azimuthal projection, 139

B
Beach Lake example, 84

Beaudette, Dylan, 186

Bindings, 235

Bird sightings example, 16f, 55, 56f

Bleeding-Edge Syndrome (BES), 30

Borders, 49f

Browser tab, 219–221

Buffering, 19

GRASS and, 223f, 224f, 222–224

lake example, 19f

tools and, 81

C
Clipping feature, 167f, 171f, 172f, 173f,

166–173

Collar, 68

Collars, 168

Command-line interface (CLI), 235, 236

Command-line tools, 174–207

GDAL and OGR, 186–201

data conversion, 197f, 199f,

190–201

raster information, 189–190

vector information, 186–189

generic mapping tools, 175f, 178f,

174–186

PostGIS and, 203–207

spatial index for shapefiles, 202–203

Conic projection, 139

Continuous colors (QGIS), 51f, 50–51

Contour maps, 229f, 230f, 228–231

Control points, 136

Converting, data, 96–97, 128–130,

190–201, 249

Coordinate system, 138–148

changing, 198

control points and, 136

conversion of, 194

datum, 140

generic mapping tools and, 175

projections and, 139–145

raster data, 69

transforming, 259–262

Costs, platform and, 26

Cygwin, 236

Cylindrical projection, 139

D
Daley Bay Quandrangle, Minnesota, 82

Data

classification of, 46–47

conversion of, 96–97, 190–201, 249

converting, 128–130

datum and, 140

as drug, 93n

formats of, 91–97

freeing of, 34

generic mapping tool, 179

DATA DEFINITION LANGUAGE (DDL) 344 GENERIC MAPPING TOOLS (GMT)

GPS, 131f, 133f, 130–135

images, georeferenced, 137f,

136–137

importing, 124f, 128f, 122–128

management, 93

projection problems, 142–145

QGIS and GRASS integration and,

209–211

safety of, 86

sample dataset, 37

sources of, 34–35

symbolizing, 15

viewing, 37–42, 67–73

web deliverable, 93

see also Digitizing; Geoprocessing

Data Definition Language (DDL), 258

Data types, 17

Databases

Post-GIS enabled, 102–105

tables vs layers, 114

Databases, spatial, 94, 98–119

features of, 98

index, 105–106

open source, 99–101

PostGIS and, 101–110

PostGIS and QGIS, 111f, 113f, 115f,

116f, 110–117

PostGIS and uDIG, 118f, 118–119

spatial query, 99

structure of, 98

Datum, 140

Desktop mapping

described, 13–21

GIS functions, 14f

vs. server mapping, 20–21

Digital elevation model (DEM), 76–77,

153, 154

contour maps and, 229, 230f

hillshades, 161f, 163f, 159–165

hydrologic model, 156–159

merging, 166f, 164–166

units, converting, 233f

Digital raster graphic (DRG)

clipping, 171f, 166–173

collar overlap, 167f

Digitize, 16–18

Digitizing, vector data, 82f, 83f, 84f,

85f, 81–89, 120–122

mistakes, 88f, 89f, 85–89

safety of, 86

subdivision plat, 121f

tools for, 81

Distortion, 138

E
E00 interchange files, 129–130

Eagle nest example, 222, 223f

Earthquake data (Alaska), 125, 128f,

259, 260f

Editing

attribute data, 89–90

with QGIS, 211–218

Editing, with QGIS, 212, 213f

Encapsulated PostScript (EPS) output,

174

EPSG notation, 141, 143, 144

European Petroleum Survey Group

(EPSG), 195, 198

F
Formats, data, 91–97

conversion of, 96–97

raster, 92

selecting, 93–95

standardizing, 93

vector, 91

web deliverable, 93

Functionality, 94

FWTools, 44, 70, 202, 251

G
GDAL and OGR, 186–201

data conversion, 197f, 199f, 190–201

documentation, 190

driver support, 187

raster information, 189–190

scripting, 249–255

vector information, 186–189

GDAL library, 74

gdaladdo, 75

Generic mapping tools (GMT), 174–186

-B switch, 183

coordinate systems supported by,

175

data sources, 179

Earth hemisphere view, 175f

EPS output and, 174

fill colors, 182

flat example, 180–182, 183f

Globe centered, 178f

grid lines, 181

multiple commands and, 184

GEOCACHING 345 GTOPO30 DEMS

overlay, 183

parameters and, 177

printing maps, 234

projection, 181

pscoast command, 176, 178

QGIS users plotted, 185f

rivers, 181

scale bar, 182

Geocaching, 130

Geodata.gov, 21, 35

Geographic coordinates (GEOGCS),

141, 144

Geographic information system (GIS)

analyze, 18–20

data types, 17, 91–97

defined, 12

desktop vs. server mapping, 20–21

digitize, 16–18

as drug, 93n

functions, 14f

options and, 22

requirements, 23–29, 97

software for, 27–28

support for, 32–33

toolkit for, 21, 26

viewing data, 37–42, 67–73

visualize, 14–15

writing applications, 263–268

Geographic Markup Language (GML),

191

Geographic Names Information System

(GNIS), 114

geometry_columns table, 104–105

Geoprocessing, 149–173

clipping feature, 167f, 171f, 172f,

173f, 166–173

data, projecting, 150–153

defined, 149

DEMs, merging, 166f, 164–166

hillshades, creating, 161f, 163f,

159–165

hydrologic modeling, 159f, 156–159

line-of-sight analysis, 153–156, 157f

Georeferenced TIFF (GeoTIFF), 69

Georeferencer plugin, 136

GeoRuby gem, 255, 257

GMane, 32

Google Earth, 22

GPS data

downloading, 132–133

loading and viewing, 133–134

QGIS and, 131f, 133f, 130–135

uploading, 135f, 134–135

GPS exchange format, 132

GPS plugin, 131, 135

gpsbabel, 130, 134, 135

GPX, 132

Graduated symbols (QGIS), 53f, 52–53

GRASS

browser, activating, 219–221

buffers and, 223f, 224f, 222–224

capabilities of, 95

clipping feature, 167f, 171f, 172f,

173f, 166–173

contour maps, 229f, 230f, 233f,

228–233

conversion, 96, 97

coordinate systems, changing, 150

deleting maps, 221

DEMS, merging, 166f, 164–166

E00 interchange files and, 129–130

FAQ, 137

geoprocessing and, 149

georeferencing, 137

hillshades, creating, 161f, 163f,

159–165

hydrologic modeling, 159f, 156–159

importing with, 126–127

line-of-sight analysis, 153–156, 157f

maps, creating new, 216f, 215–216

mapset, opening in, 209

multiple layers in, 214

QGIS integration, 208–234

attributes, adding, 213f, 217f

browser, 220f

city map with water wells, 218f

data, loading and viewing,

209–211

editing and, 212f, 211–218

mapset, opening in, 209f

settings, customizing, 217–218

tools, 210f, 218–233

raster data, importing, 211

rasters, exporting, 165

saving in, 213

scripting and, 235–236

vector overlays, 226f, 227f, 228f,

225–228

wiki, 234

Windows support, 236n

see also Appendix C

GTOPO30 DEMs, 164

HILLSHADES 346 PROJECTIONS

H
Hillshades, 161f, 163f, 159–165

Hydrologic modeling, 159f, 156–159

I
Images

georeferencing, 137f, 136–137

warping, 199

Importing, data, 124f, 128f, 122–128

The Impossible Map (film), 148

Index, spatial, 202–203

Installation, see Appendix B

Integer primary key, 259

Integration, 29

Intelligent rasters, 78f, 79f, 76–80

K
KML, coordinates for, 194

L
Lake buffer, 19f

Large scale, 42

Latitude, 62

Layers

editing in GRASS, 212

multiple, creating, 214

vs tables, 114

Libre Map Project, 15

Line-of-sight analysis, 153–156, 157f

LiveCDs, 29

Logging example, 225, 226, 227f

Longitude, 62

M
Map algebra, 233f, 231–233

Mapnik, 264

MapServer, 202

MapWinGIS, 264

Minimum bounding rectangles (MBRs),

100f, 101

MSYS, 236

MySQL, 99, 100

N
Nabble, 32

NASA Visible Earth, 71, 71n

National Elevation Dataset (NED), 153

National Film Board of Canada, 148

O
Open Source Geospatial Consortium

(OSGeo), 93

Open Source Geospatial Foundation

(OSGeo), 33

OpenOceanMap, 266, 268f

P
Performance, spatial indexes and, 204

Platforms, 25–26

Population, 43, 44f, 63

PostGIS, 97, 101–110

cities features, 194

command-line tools and, 203–207

commands, 103

coordinates, transforming, 259–262

data loading, 192

data unloading, 192

database, 102

documentation for, 110n

gems, 255

limiting features, 114

loading data, 106, 260f

vs MySQL, 100f, 99–101

OGR and connection strings, 188

QGIS and, 111f, 113f, 115f, 116f,

110–117

scripting and, 255–262

shapefiles, exporting, 206

shapefiles, importing, 203

shapefiles, loading, 108f

spatial reference ID and, 204

templates, 103

uDig and, 118f, 118–119

PostgreSQL/PostGIS, 99, 100

Preprocessing data, 125–126

Primary key, 259

Printing maps, 234

“Producing Press-Ready Maps with

GRASS and GMT” (Beaudette),

186

PROJ.4 Projections Library, 145–148

Projected layers (PROJCS), 142

Projections, 138–148

described, 138

determining, 141–142

EPSG notation, 143

focus of, 138

geoprocessing, 150–153

problems, data, 142–145

PROJ.4 library, 145–148

PSCOAST COMMAND 347 SCRIPTING

resources for, 148

types, 139–140

utilities for, 145

pscoast command, 176, 178

Public Geo Data effort, 34

PyQt website, 236n

Pyramids (raster data), 74f, 74–75

Python, scripting, 236–248

console, 238f, 237–239

PyQGIS plugin, 242f, 239–247, 248f

resources, defining, 241

shapefile, volcanoes, 255f

PyWPS, 21, 265

Q
QGIS, 46–47

attribute data and, 56–66

attribute actions, 66f, 64–66

attribute table, 60f, 63f, 59–64

identifying features, 57–58

selecting features, 59

attributes, entering, 84f

blog, 248

continuous colors, 51f, 50–51

data, importing, 124f, 123–125

data, loading, 107

delimited text plugin, 124f

digitizing, 82, 85f

earthquakes in, 128f

generic mapping tools and, 185f

geometry collections in, 214

georeferencing, 137f, 136–137

GPS data and, 131f, 133f, 130–135

GPS plugin, 131

graduated symbols, 53f, 52–53

GRASS integration, 208–234

browser, 220f

data, loading and viewing,

209–211

editing and, 212f, 213f, 211–218

mapset in, 209f

tools, 210f, 218–233

identifying features, 59f

layers in, 83f

libraries, 265

NASA World Mosaic, 71f

options, 48–50

plugins for, 208

PostGIS and, 111f, 113f, 115f, 116f,

110–117

pyramids and, 73, 74f

Python, scripting in, 236–248

raster properties, 72f

rasters, loading, 68f, 68

sample data loaded, 47f

shapefiles in, 82f

SQL and, 62

tolerance, 87

unique values, 55f, 54–55, 56–58f

vector layer properties, 48f

world borders layer, 49f

see also Appendix D

Qt designer, 242f, 241–243

Quantum GIS, see QGIS

Quantum Navigator, 265, 267f

R
Raster data, 17, 67–80

collar, 68

conversion of, 196

coordinate system for, 69

digital elevation models, 76–77

exporting from GRASS, 165

formats of, 92

GDAL and, 189

GDAL/OGR and, 189–190

GRASS, importing into, 211

intelligent, 78f, 79f, 76–80

properties, 72f, 72

pyramids, 74f, 74–75

silver grid, 77, 78f

transparency and, 200

transparency model, 73f

viewing, 68f, 67–73

Raster properties, 72f, 72

Refractions research, 118

Relief maps, shaded, 161f, 163f,

159–165

Requirements, 23–29, 97

S
Safety, of data, 86

Scale, 42

Scaling, 75

Scripting, 235–262

data transformation, 262

GDAL and OGR, 249–255

GRASS and, 235–236

PostGIS and, 255–262

Python and, 236–248

console, 238f, 237–239

SEARCHING 348 VECTOR OVERLAYS

PyQGIS plugin, 242f, 239–247,

248f

Searching, attribute tables, 63f, 60–64

Server vs. desktop mapping, 20–21

Shaded relief maps, 161f, 163f,

159–165

Shapefiles

conversion of, 250

creating, from delimited text, 255f,

251–255

described, 38

loading, 108f

PostGIS, exporting, 206

PostGIS, importing into, 203

in QGIS, 82, 83f

spatial index for, 202–203

vector data, getting, 186

volcanoes and, 193

Shell, 236, 249

Small scale, 42

Software, 27–28

change and, 30–31

support for, 32–33

see also Appendix A

Spatial databases, 94, 98–119

features of, 98

index, 105–106

open source, 99–101

PostGIS and, 101–110

PostGIS and QGIS, 111f, 113f, 115f,

116f, 110–117

PostGIS and uDig, 118f, 118–119

spatial query and, 99

structure of, 98

Spatial index, 105–106, 202–203

Spatial queries, 99, 109–110

Spatial reference ID (SRID), 204

Spatial Reference website, 146

Spatial view, creating, 117

SPIT plugin, 107

SQL, 104

data loading and, 107

QGIS and, 62

virtual layers, 117

Support, 32–33

Symbolizing data, 15, 43f, 44f, 42–44

T
Tables vs layers, 114

Templates, PostGIS and, 103

TIFF, georeferenced, 69

Tolerance, 87

Toolkit, 21, 26

for analysis and conversion, 218–233

custom applications, 264–265

digitizing, 81

for GRASS in QGIS, 210f

see also Command-line tools

TopoGrafix, 132

Transparency, 200

Trolltech, 242

U
uDig, 39, 265, 267

attribute data, 44–45, 46f

Data Sources dialog box, 40f

displaying world borders, 41f

navigation, 40–42

PostGIS and, 118f, 118–119

symbolizing data, 43f, 44f, 42–44

Unique values (QGIS), 55f, 54–55,

56–58f

U.S. Geological Survey (USGS)

datasets, 153

Digital Raster Graphic (DRG)

topographic maps, 34

Map Projections: A Working Manual,

148

projections poster, 148

User classes, 23–25, 27f

Utilities, projections, 145

V
Vector data, 17, 37–66

attribute data, 44–45, 46f, 56–66

converting, 190

defined, 18

digitizing, 82f, 83f, 84f, 85f, 81–89

editing, 89–90

formats of, 91

GDAL/OGR and, 186–189

QGIS and, 46–47, 48f

QGIS appearance options, 48–50

QGIS continuous colors, 51f, 50–51

QGIS graduated symbols, 53f, 52–53

QGIS unique values, 55f, 54–55,

56–58f

shapefiles and, 38

symbolizing data, 43f, 44f, 42–44

viewing it, 37–42

Vector overlays, 226f, 227f, 228f,

225–228

VIEWERS 349 ZOOM

Viewers, 38–39

Visualize, 14–15

Volcano location database search, 122

W
W*S service, 93

Warping images, 199

Web deliverable data, 93

Websites

Alaskan geologic maps, 55n

American Society for

Photogrammetry & Remote

Sensing, 148n

Cygwin, 236n

Daley Bay Quandrangle, 82n

DEM Anchorage, Alaska, 154n

Desktop GIS Book, 35n, 37n

Earthquake data (Alaska), 125

EPSG documentation, 143n

European Petroleum Survey Group

(EPSG), 195n

Federal Geographic Data

Committee’s clearinghouse

network, 35n

FWTools, 202n, 251n

GDAL documentation, 190n

gdaladdo, 75n

geocaching, 130n

Geodata, 21n, 35n

Geographic Markup Language

(GML), 191n

Geographic Names Information

System (GNIS), 114n

GIS LiveCDs, 29n

GMane, 32n

GMT, using with GRASS, 186n

gpsbabel, 130n

GRASS FAQ, 137n

GRASS wiki, 234n

GRASS Windows support, 236n

GTOPO30 DEMs, 164n

Impossible Map (movie), 148n

KML coordinates, 194n

Libre Map Project, 15n

Mapnik, 264n

MapServer, 202n

MapWinGIS, 264n

MSYS, 236n

Nabble, 32n

NASA Visible Earth, 71n

National Elevation Dataset (NED),

153n

Open Source Geospatial Consortium

(OSGeo), 93n

Open Source Geospatial Foundation

(OSGeo), 33n

OpenGIS Simple Features

Specification for SQL, 104n

OpenOceanMap, 266n

PostGIS, 101n

PostGIS documentation, 110n

Public Geo Data effort, 34n

PyQt, 236n

PyWPS, 21n, 264n

QGIS API documentation, 237n

QGIS blog, 248n

QGIS libraries, 265n

QgisInterface, 238n

refractions research, 118n

Ruby, 255

SDTS format, 92n

Spatial Reference, 146n, 195n

spatially enabled databases, 99n

TopoGrafix, 132n

Trolltech, 242n

uDig, 265n

USGS datasets, 153n

USGS Map Projections, 148n

USGS Maps, Archive of, 67n

Volcano location database search,

122n

Well-Known Text (WKT), 107, 141, 257

Writing applications, 263–268

X
X and Y coordinates, 62

Z
Zoom, 243–247

More GIS and tools
More on GIS and the most popular parsing tool for Java.

GIS for Web Developers
GIS for Web Developers you’ll learn more about

delivering a user a GIS experience from a Web

server. You’ll learn about Spatial Databases,

Creating and using OGC Web Services and clients,

and more.

GIS for Web Developers Adding Where to your

Web Applications

Scott Davis

(275 pages) ISBN: 978-0-9745140-9-3. $34.95

http://pragprog.com/titles/sdgis

The Definitive ANTLR Reference
This book is the essential reference guide to ANTLR

v3, the most powerful, easy-to-use parser generator

built to date. Learn all about its amazing new LL(*)

parsing technology, tree construction facilities,

StringTemplate code generation template engine,

and sophisticated ANTLRWorks GUI development

environment. Learn to use ANTLR directly from its

author!

The Definitive ANTLR Reference: Building

Domain-Specific Languages

Terence Parr

(384 pages) ISBN: 0-9787392-5-6. $36.95

http://pragprog.com/titles/tpantlr

http://pragprog.com/titles/sdgis
http://pragprog.com/titles/tpantlr

Ruby & Erlang
Ruby is the object-oriented language of choice for forward-looking professionals. Erlang is

your choice for high-availability, distributed systems that work in the real world.

Everyday Scripting with Ruby
Don’t waste that computer on your desk. Offload

your daily drudgery to where it belongs, and free

yourself to do what you should be doing: thinking.

All you need is a scripting language (free!), this

book (cheap!), and the dedication to work through

the examples and exercises. Learn the basics of the

Ruby scripting language and see how to create

scripts in a steady, controlled way using test-driven

design.

Everyday Scripting with Ruby: For Teams,

Testers, and You

Brian Marick

(320 pages) ISBN: 0-9776166-1-4. $29.95

http://pragprog.com/titles/bmsft

Programming Erlang
Learn how to write truly concurrent programs—

programs that run on dozens or even hundreds of

local and remote processors. See how to write

high-reliability applications—even in the face of

network and hardware failure—using the Erlang

programming language.

Programming Erlang: Software for a Concurrent

World

Joe Armstrong

(536 pages) ISBN: 1-934356-00-X. $36.95

http://pragprog.com/titles/jaerlang

http://pragprog.com/titles/bmsft
http://pragprog.com/titles/jaerlang

Get Started with Rails
Whether your background is in Java or PHP, we’ll get you started in the Ruby on Rails web

programming framework the easy way. Coming soon for .NET.

Rails for PHP Developers
Rails for PHP Developers kick-starts your Rails

experience by guiding you through learning both

Ruby and Rails from a PHP developer’s perspective.

Written by developers with deep experience using

PHP, Ruby, and Rails, this book leverages your

existing knowledge of PHP to learn Rails application

development quickly and effectively.

Rails for PHP Developers

Derek DeVries and Mike Naberezny

(375 pages) ISBN: 978-1-9343560-4-3. $34.95

http://pragprog.com/titles/ndphpr

Rails for Java Developers
Enterprise Java developers already have most of

the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what

this book does. It covers: • the Ruby language

• building MVC applications • unit and functional

testing • security • project automation

• configuration • web services This book is the

fast track for Java programmers who are learning

or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragprog.com/titles/fr_r4j

http://pragprog.com/titles/ndphpr
http://pragprog.com/titles/fr_r4j

Web 2.0
Welcome to the Web, version 2.0. Ajax libraries and accessibility are key.

Prototype and script.aculo.us
Tired of getting swamped in the nitty-gritty of

cross-browser, Web 2.0–grade JavaScript? Get back

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it

a walk in the park. Be it Ajax, drag and drop,

autocompletion, advanced visual effects, or many

other great features, all you need is to write one or

two lines of script that look so good they could

almost pass for Ruby code!

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95

http://pragprog.com/titles/cppsu

Design Accessible Web Sites
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

Jeremy Sydik

(304 pages) ISBN: 978-1-9343560-2-9. $34.95

http://pragprog.com/titles/jsaccess

http://pragprog.com/titles/cppsu
http://pragprog.com/titles/jsaccess

Real World Tools
Learn real-world design and architecture for your project, and a very pragmatic editor for

Mac OS X.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real-world customers from 100

different countries? Are you ready for a world filled

with flaky networks, tangled databases, and

impatient users?

If you’re a developer and don’t want to be on call at

3 a.m. for the rest of your life, this book will help.

Release It! Design and Deploy Production-Ready

Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragprog.com/titles/mnee

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

that will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragprog.com/titles/textmate

http://pragprog.com/titles/mnee
http://pragprog.com/titles/textmate

Leading Your Team
See how to be a pragmatic project manager and use agile, iterative project retrospectives

on your project.

Manage It!
Manage It! is an award-winning, risk-based guide

to making good decisions about how to plan and

guide your projects. Author Johanna Rothman

shows you how to beg, borrow, and steal from the

best methodologies to fit your particular project.

You’ll find what works best for you.

• Learn all about different project lifecycles • See

how to organize a project • Compare sample

project dashboards • See how to staff a project

• Know when you’re done—and what that means.

Your Guide to Modern, Pragmatic Project

Management

Johanna Rothman

(360 pages) ISBN: 0-9787392-4-8. $34.95

http://pragprog.com/titles/jrpm

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragprog.com/titles/dlret

http://pragprog.com/titles/jrpm
http://pragprog.com/titles/dlret

Getting It Done
Start with the habits of an agile developer and use the team practices of successful agile

teams, and your project will fly over the finish line.

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragprog.com/titles/prj

http://pragprog.com/titles/pad
http://pragprog.com/titles/prj

Get Groovy
Expand your horizons with Groovy, and tame the wild Java VM.

Programming Groovy
Programming Groovy will help you learn the

necessary fundamentals of programming in Groovy.

You’ll see how to use Groovy to do advanced

programming techniques, including meta

programming, builders, unit testing with mock

objects, processing XML, working with databases

and creating your own domain-specific languages

(DSLs).

Programming Groovy: Dynamic Productivity for

the Java Developer

Venkat Subramaniam

(320 pages) ISBN: 978-1-9343560-9-8. $34.95

http://pragprog.com/titles/vslg

Groovy Recipes
See how to speed up nearly every aspect of the

development process using Groovy Recipes. Groovy

makes mundane file management tasks like

copying and renaming files trivial. Reading and

writing XML has never been easier with XmlParsers

and XmlBuilders. Breathe new life into arrays,

maps, and lists with a number of convenience

methods. Learn all about Grails, and go beyond

HTML into the world of Web Services: REST, JSON,

Atom, Podcasting, and much, much more.

Groovy Recipes: Greasing the Wheels of Java

Scott Davis

(264 pages) ISBN: 978-0-9787392-9-4. $34.95

http://pragprog.com/titles/sdgrvr

http://pragprog.com/titles/vslg
http://pragprog.com/titles/sdgrvr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Desktop GIS’s Home Page

http://pragprog.com/titles/gsdgis

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/gsdgis.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/gsdgis
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/gsdgis
www.pragprog.com/catalog

	Contents
	Preface
	How to Use This Book
	Acknowledgments

	Introduction
	What Is Desktop Mapping?
	Desktop vs. Server Mapping
	Assembling a Toolkit
	Other Mapping Options
	What's Ahead?

	Getting Started
	The Three User Classes
	Which Are You?
	Choosing a Platform
	Selecting the Right Toolkit
	Acquiring and Installing Software
	Integration of Tools
	Managing Software Change
	Getting Support
	Where to Find Data
	Next Step

	Working with Vector Data
	Viewing Data
	Rendering a Story
	Looking at Attribute Data
	Advanced Viewing and Rendering
	Making Attribute Data Work for You

	Working with Raster Data
	Viewing Raster Data
	Improving Rendering with Pyramids
	Intelligent Rasters

	Digitizing and Editing Vector Data
	Simple Digitizing
	Editing Attribute Data
	More Digitizing and Editing

	Data Formats
	Common Formats
	Choosing a Standard Format
	Conversion Options

	Spatial Databases
	Introduction
	Open Source Spatial Databases
	Getting Started with PostGIS
	Using PostGIS and Quantum GIS
	Using PostGIS and uDig
	Summing It Up

	Creating Data
	Digitizing
	Importing Data
	Converting Data
	Using GPS Data with QGIS
	Georeferencing an Image

	Projections and Coordinate Systems
	Projection Flavors
	Working with Projections
	The PROJ.4 Projections Library
	More Resources

	Geoprocessing
	Projecting Data
	Line-of-Sight Analysis
	Hydrologic Modeling
	Creating Hillshades
	Merging Digital Elevation Models
	Clipping Features

	Using Command-Line Tools
	GMT
	Using GDAL and OGR
	Creating a Spatial Index for Shapefiles
	PostGIS

	Getting the Most Out of QGIS and GRASS Integration
	Loading and Viewing Data
	Editing GRASS Data with QGIS
	Using Analysis and Conversion Tools
	Summing It Up

	GIS Scripting
	GRASS
	QGIS
	GDAL and OGR
	PostGIS

	Writing Your Own GIS Applications
	Options for Writing Your Application
	Examples of Custom Applications
	How to Approach Your Own Project

	Survey of Desktop Mapping Software
	GUI Applications
	Command-Line Applications
	Other Tools

	Installing Software
	GRASS
	OpenJUMP
	Quantum GIS
	uDig
	GMT
	GDAL/OGR
	FWTools

	GRASS Basics
	Location, Location, Location
	Getting Some Data
	Working with Data
	Getting to Know the GUI
	Digitizing and Editing

	Quantum GIS Basics
	Vector Properties and Symbology Options
	Project Properties
	Map Navigation and Bookmarks
	Plugins

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

