

Mastering ArcGIS Server
Development with JavaScript

Transform maps and raw data into full-fledged web
mapping applications using the power of the ArcGIS
JavaScript API and JavaScript libraries

Ken Doman

BIRMINGHAM - MUMBAI

Mastering ArcGIS Server Development with JavaScript

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1110915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-645-9

www.packtpub.com

www.packtpub.com

Credits

Author
Ken Doman

Reviewers
Rusty Green

Matthew King

Dr. Jason E. VanHorn

Dr. Ashwini Wakchaure

Commissioning Editor
Pramila Balan

Acquisition Editor
Vinay Argekar

Content Development Editor
Rohit Kumar Singh

Technical Editor
Saurabh Malhotra

Copy Editors
Janbal Dharmaraj

Kevin McGowan

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Ken Doman has worked in the geographic information system field since 2007.
In his first GIS job, he was given a stack of maps, some AutoCAD data, and a shoe
box full of address notes and was told to make a web-accessible GIS application out
of them. Since then, he has strived to make geographic data available and easily
accessible over the Internet. He is an ESRI certified web application developer and
has created many public web applications using ArcGIS software.

Currently, Ken works for Bruce Harris & Associates, Inc., a mapping and custom
development company that specializes in land records and ESRI software solutions.
There, he creates custom web, desktop, and mobile applications using JavaScript,
.NET, and ArcGIS software.

He has also been a book reviewer for Building Web and Mobile ArcGIS Server
Applications with JavaScript, Packt Publishing by Eric Pimpler and ArcGIS for
Desktop Cookbook, Packt Publishing by Daniela Cristiana Docan. You can learn
more about Ken at http://raykendo.com.

I would like to first thank my wife, Luann, who put up with many
of my late night book-writing sessions. She supported me and
pushed me when I needed it. I would also like to thank the city of
Jacksonville, Texas, the city of Plantation, Florida, and Bruce Harris
& Associates, Inc. for giving me the opportunities to learn the lessons
that I was able to pour into this book. Finally, I would like to thank
god, the source from whom all blessings flow.

http://raykendo.com

About the Reviewers

Rusty Green is an enthusiastic software developer who specializes in creating
simple and reusable web technology solutions and enjoys collaborating on open
source projects. He has a diverse background in technology and holds an MS in
information systems engineering and management, a BS in geospatial information
systems, an AS in architectural technology, and an array of various certifications.
Rusty has held various roles throughout his career, such as a senior software
developer, GIS analyst, corporate faculty member, and director of technology
and software engineering.

You can learn more about him at rustygreen.com.

Matthew King is a software development professional from Brandon, Florida.
He holds a bachelor's degree in information technology from the University of South
Florida. He has a wide range of development experience, including web, desktop,
mobile, database, and GIS applications.

Currently, he works in the City of Tampa as an applications systems analyst
and database administrator. He spends his free time on mobile, website, and
game development as well as actively participating in development user groups
throughout the Tampa and Orlando area. Matthew is the co-organizer of the Tampa
Mobile Applications Developer user group. He is also a veteran of the United States
Navy with 22 years of service.

He enjoys blogging about various technologies that interest him on his website
at http://mattkingit.com. He is now pursuing a Microsoft Certified Solutions
Developer certification in Web Applications and Windows Store Apps.

rustygreen.com
http://mattkingit.com

Dr. Jason E. VanHorn is an associate professor of geography at Calvin College
and an expert in cartography, Geographic Information Systems (GIS), and remote
sensing. He holds a PhD from The Ohio State University, a master of science degree
from Texas A&M University, and a bachelor of arts degree from Indiana University.
He is the chair of the GEO department at Calvin College and his current research
foci involve 2D and 3D visualization of physical dune geomorphology and security
issues dealing with terrorism and Homeland Security analysis. He has authored
numerous publications and online GIS applications and consults on a variety of
national and international projects.

Dr. Ashwini Wakchaure, originally an architect and planner from India, has a
PhD in design, construction, and planning from the University of Florida. She has
been working with GIS technologies for over 10 years now. Primarily an ESRI GIS
user, she has extensively worked with the .Net technologies involving ArcObjects,
Python, and more recently, in the web GIS development area.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface	 xiii
Chapter 1: Your First Mapping Application	 1

Features of the API	 2
The ArcGIS JavaScript API community	 3
Our first Web Map	 4

Our assignment	 4
Setting up the HTML document	 4

Starting from the head	 5
Meta tags and title tags	 6
Cascading style sheets	 6
The Dojo configuration script	 8
The ArcGIS JavaScript API script	 8

Moving from the head to the body	 9
Framing the HTML body	 9
Adding a little style	 9
Adding a script at the end	 10

Asynchronous Module Definition	 12
Loading required modules	 12
The map object	 14
The layers	 16
Adding some action	 17

Events	 17
Tasks	 19
Deferreds and promises	 20

Showing the results	 20
The Map's infoWindow	 21
The InfoTemplate object	 22

A note on proxies	 27
Summary	 28

Table of Contents

[ii]

Chapter 2: Digging into the API	 29
Finding the ArcGIS JavaScript API documentation	 30

The documentation layout	 30
Object constructor	 30
CSS classes and data- attributes	 31
Properties	 31
Methods	 31
Events	 32

Drawing a map	 32
Constructor options	 33

Autoresize	 33
Basemap	 33
Explaining the center, extent, zoom, and scale	 34
LODs	 34

Properties	 35
loaded	 35
layerIds	 35
spatialReference	 35

Methods	 36
Adding, removing, and retrieving layers	 36
Moving around the map	 36
Updating settings	 37

Events	 37
Layers	 38

Common ArcGIS Server layers	 38
ArcGISDynamicMapServiceLayer	 38
ArcGISTiledMapServiceLayer	 39

GraphicsLayers and FeatureLayers	 40
GraphicsLayers	 40
FeatureLayers	 40

Other layer types	 41
Graphics	 42
Introducing geometry objects	 43

Point	 43
Polyline	 43
Polygon	 43
Extent	 44
Multipoint	 44
Geometry spatial reference	 44

Symbols and renderers	 44
Simple symbols	 45

SimpleLineSymbol	 45
SimpleMarkerSymbol	 45
SimpleFillSymbol	 45

esri/Color	 45

Table of Contents

[iii]

Picture symbols	 46
Renderers	 47

SimpleRenderer	 47
Unique Value Renderer	 48
Class Break Renderer	 48

InfoTemplates	 49
Toolbars	 49

The navigation toolbar	 50
The draw toolbar	 50
The edit toolbar	 51

Tasks	 51
Tasks, parameters, and results	 52
Common tasks	 52

GeometryService	 52
QueryTask	 54
IdentifyTask	 55
FindTask	 56
Locator	 56

Tasks requiring server extensions	 56
Routing	 57

Dijits	 57
Measurement	 57
Print	 57
Bookmarks	 58
Basemaps	 58
Popups and InfoWindows	 58
Editing	 59

AttributeInspector	 59
TemplatePicker	 59
An all-in-one Editor	 59

Summary	 60
Chapter 3: The Dojo Widget System	 61

A brief history of the Dojo framework	 62
Introducing dojo, dijit, and dojox	 62

The dojo package	 63
The dijit package	 63
The dojox package	 64

The dojoConfig packages	 64
Defining your widget	 65

Declaring modules	 66
Class Inheritance through Dojo	 66
Dealing with classes and inheritance	 67

Table of Contents

[iv]

Working with Evented modules	 68
An overview of the _WidgetBase module	 69
Working with other _Mixins	 70

Adding _TemplatedMixin	 70
Adding _OnDijitClickMixin	 71
Adding _FocusMixin	 71

The event system	 72
Creating our own widget	 73

Picking up where we left off…	 73
The file structure for our application	 74

Defining the layout with Dojo	 75
Framing the page with BorderContainer	 75
Inserting ContentPane	 76
Modifying the layout of our application	 76

Styling our application	 80
Adding our custom package	 83
Setting up our app	 84
Coding our widget	 85

Adding some dojo/text!	 85
Our dijit template	 86
Working with the dijit constructors	 87
Reusing our old code	 88
Loading more templates	 90
Back to our app.js	 91

Summary	 92
Chapter 4: Finding Peace in REST	 93

Looking at a map server	 95
Working with JSON	 95

JSON and PJSON formatting	 97
Service levels	 98
Map services	 100

Map service layers	 101
Feature services	 103
Layer level	 104

Fields	 104
Domains	 105

Related tables	 106
Common JSON objects	 107

Geometries	 107
Spatial reference	 107
Points	 108
Multipoints	 109
Polylines	 109

Table of Contents

[v]

Polygons	 110
Envelopes	 110

Symbols	 111
Color	 111
Simple line symbol	 111
Simple marker symbol	 112
Simple fill symbols	 112
Picture marker symbol	 113
Picture fill symbol	 113
Text symbol	 114
Uses	 115

Back to our application	 116
How about that InfoWindow	 116

Summary	 120
Chapter 5: Editing Map Data	 121

The use cases for webmap editing	 122
Map editing requirements	 122
Feature services	 122

Feature templates	 123
Feature layer	 123

Feature service modes	 123
Snapshot mode	 123
On demand mode	 124
Selection mode	 124

Editing tools	 124
Edit toolbar	 125
Attribute inspector	 127
Template picker	 130
Attachment editor	 131
Editor dijit	 131
Snapping manager	 132

Securing editing services	 133
Restricting user input	 133
Password protected services	 134

Identity manager	 134
A new mapping application	 134

The file setup	 135
The front page	 135
Loading the map	 137

Adding the map layers	 138
Using the proxy	 140
Finding the user's location	 141

Table of Contents

[vi]

The template picker	 141
The attribute inspector	 142
Securing the application	 146

Limiting data entry	 149
Summary	 150

Chapter 6: Charting Your Progress	 151
Mixing graphs into our maps	 151
Our story continues	 152
Using dojox charting	 152

Creating a chart in JavaScript	 153
The chart object	 154
The chart style	 156
The chart theme	 156
Chart actions and effects	 157

Using Dojox Charts in popups	 158
Using Dojo Charts in our application	 159

Loading the modules	 159
Preparing the popup	 160

Updating the HTML template	 161
Processing the data	 161

Parsing the ethnic data	 162
Parsing the gender data	 163
Parsing the age data	 163

Showing the results	 164
Ethnic graph	 164
Gender graph	 165
Age graph	 166

Introducing D3.js	 167
Adding the D3.js library with Dojo's AMD	 167

Loading another library outside an AMD module	 168
Loading another library within an AMD module	 168

Using D3.js in our application	 169
Adding D3.js to the configuration	 169
Preparing the popup	 170
Processing our data	 170
Displaying the results	 171

Displaying the ethnic graph	 171
Displaying the gender graph	 173
Displaying the age graph	 174

Summary	 175

Table of Contents

[vii]

Chapter 7: Plays Well with Others	 177
Compatibility with other libraries and frameworks	 178
Popular libraries to play with	 178

Our story continues	 179
An overview of jQuery	 181

How jQuery works	 181
Adding jQuery to your app	 182

Filling in our dropdowns	 185
Adding the QueryTask	 186
Other helper functions	 187

Handling events	 189
Handling the state	 189
How the counties differ	 190
Finally, the block groups	 191

Filling in the states	 192
An overview of Backbone.js	 192

Components of Backbone	 193
The Model	 193
The View	 194
The Collection	 195
Implementing a router	 196
Handling events	 196

Putting some Backbone in your app	 197
Defining the models	 198
Defining the collections	 199
Defining the views	 199

Creating templates	 201
Wiring events	 202
Getting the Backbone to dance	 204

An overview of Knockout.js	 204
Knockout and MVVM	 205

Using Knockout in our app	 206
Defining the ViewModel	 207
Adding custom binding handlers	 208
Defining the View	 211
Applying the ViewModel	 212

A brief overview of AngularJS	 213
Angular and MV*	 213
Angular vocabulary	 214

The app controller	 214
The app service	 214
The app directive	 214

Table of Contents

[viii]

Making a web mapping app more Angular	 215
Overall results with other frameworks	 215

jQuery	 215
Backbone.js	 216
Knockout and Angular	 216

Summary	 216
Chapter 8: Styling Your Map	 217

The inner workings of CSS	 218
Selector specificity	 218
Equal selector specificity	 220

Styling tips and tricks	 220
Styling don'ts	 220
Responsive design	 221
Normalize.css	 221
Organizing your CSS	 222

Organizing by selector specificity	 222
Group by module	 222
A class for everything	 222
Media queries	 223

Positioning your map	 223
The fixed-width map	 223
Stretching the map to fullscreen	 224
Floating the map to the side	 224
Positioning the map top and center	 224
Covering most of the page with the map	 225
Centering a map of known width and height	 225
Centering a map of unknown width and height	 226

Troubleshooting	 226
Responsive resizers	 227

Dojo layout	 227
Containers	 228

LayoutContainer	 228
BorderContainer	 228
AccordionContainer	 228
TabContainer	 229

Panes	 229
ContentPane	 229
AccordionPane	 229

Bootstrap	 230
ESRI-Bootstrap	 230
Restyling our app	 231

Adding ESRI-Bootstrap to our app	 231

Table of Contents

[ix]

Bootstrapping our HTML	 232
Replacing the header with a navbar	 232
Rearranging the map	 233

Restyling our app	 234
Making our Census dijit modal	 235

Summary	 239
Chapter 9: Mobile Development	 241

Embracing mobile	 241
Mobile is different	 242

The good	 242
Access to phone sensors	 242
Instant access to the app	 242
Instant access to the user	 243

The bad	 243
So many screen sizes	 243
Fingertip accuracy	 244
Battery life	 244
More devices	 244

The ArcGIS compact build	 245
Modules included in the compact build	 245
What's not included	 245
What does this mean to you?	 245

ESRI Leaflet	 246
Dojox mobile	 246

Dojox mobile views	 247
Working with touch	 247

Gestures	 248
Our application	 249

Changing the layout	 249
Modifying the JavaScript	 251

Working with the map on mobile	 252
Fixing the LocateButton	 253

Working with the editor widgets	 254
Template picker	 254
Attribute inspector	 258

Trouble in the app	 260
Rebuilding the attribute inspector	 261

Creating the form	 261
The attachment editor	 264

The end result	 267
Summary	 268

Table of Contents

[x]

Chapter 10: Testing	 269
Testing through code	 269

Unit testing	 270
Functional testing	 270
End-to-end testing	 271

Testing as you code	 271
Test-Driven Development	 271
Behavior-Driven Development	 272
Test statements	 272

Intern testing framework	 273
Setting up your testing environment	 274

Special requirements for the ArcGIS JavaScript API	 275
Writing tests for Intern	 275

Unit testing with Intern	 275
Test lifecycle with Intern	 276

Jasmine testing framework	 277
Writing tests for Jasmine	 277

Writing suites, specs, and tests	 277
Setup and teardown	 278
Ignoring tests	 279

Red-light green-light	 279
Jasmine and the ArcGIS JavaScript API	 280

In the specs	 282
Use case for Jasmine and the ArcGIS JavaScript API	 284

Our application	 284
Adding testing files	 284

The package.json file	 285
The Grunt setup	 286
Setting up Bower	 287
Intern.js configuration	 289

If you haven't installed Node.js	 292
Loading all the libraries locally	 293
Writing our tests	 294
Checking the results	 298

Summary	 299

Table of Contents

[xi]

Chapter 11: The Future of ArcGIS Development	 301
ArcGIS Online	 302

ArcGIS Portal	 303
Web AppBuilder	 303

Developer Edition	 304
More Node.js	 305
Our application	 305
Creating a webmap	 306

Changing the basemap	 307
Adding the census map service	 307

Searching for layers	 308
Browsing for ESRI layers	 308
Adding layers from the web	 309
Adding layer from a file	 309
Adding map notes	 309
Our application data source	 310
Styling	 310
Creating popups	 312
Adding charts	 313

Uses for an ArcGIS Online webmap	 316
Sharing	 316
Printing	 316
Directions	 316
Measurements	 316
Bookmarks	 317

Developing against an ArcGIS Online webmap	 317
Creating the webmap	 317
In our census widget	 320
Accessing webmap in our app	 320
Interacting with the map through code	 321

Summary	 324
Index	 325

[xiii]

Preface
In this digital age, we expect maps to be available wherever we are. We search
for driving directions on our phone. We look for business locations and nearby
restaurants using apps. Maintenance personnel use digital maps to locate assets
several feet underground. Government officials and C-level executives need
up-to-date location data to make important decisions that affect many lives.

ESRI has been an industry leader for 30 years in the realm of digital mapping.
Through products such as ArcGIS Server, they empower companies, government
agencies, and digital cartographers to publish maps and geographic data on the
Web. Websites and applications written with the ArcGIS API for JavaScript make
those maps available on both desktop and mobile browsers. The API also provides
the building blocks needed to create powerful applications for data presentation,
collection, and analysis.

While there are plenty of examples, blog posts, and books to get you started in
developing apps with the ArcGIS API for JavaScript, they don't often go that
deep. They don't discuss the pitfalls, limitations, and best practices for developing
applications with their tools. That next step is what this book tries to accomplish.

What this book covers
Chapter 1, Your First Mapping Application, introduces you to ArcGIS Server and the
ArcGIS API for JavaScript. In this chapter, you will learn the basics of creating a map
and adding layers.

Chapter 2, Digging into the API, gives an overview of the many API components,
widgets, and features that are available within the ArcGIS API for JavaScript.
This chapter offers explanations of how these components can be used.

Preface

[xiv]

Chapter 3, The Dojo Widget System, explores the Dojo framework, the comprehensive
JavaScript framework the ArcGIS API for JavaScript is built in. This chapter explores
the inner workings of Asynchronous Module Design (AMD) and how to build
custom widgets for our mapping applications.

Chapter 4, Finding Peace in REST, examines the ArcGIS REST API, which defines how
ArcGIS Server communicates with the application in the browser.

Chapter 5, Editing Map Data, covers how to edit geographic data stored in ArcGIS
Server. This chapter examines the modules, widgets, and user controls provided
by the ArcGIS JavaScript API.

Chapter 6, Charting Your Progress, looks at how you can convey map feature
information through charts and graphs. The chapter not only discusses charts and
graphs made with the Dojo Framework, but also looks at how to integrate other
charting libraries, such as D3.js and HighCharts.js.

Chapter 7, Plays Well with Others, discusses ways to integrate other popular libraries
into an application written with the ArcGIS API for JavaScript. This chapter also
explores combining the framework with jQuery, Backbone.js, Angular.js,
and Knockout.js.

Chapter 8, Styling Your Map, covers the use of CSS styling in the mapping application.
This chapter examines how the Dojo framework lays out elements, and explores
adding the Bootstrap framework to style the mapping application.

Chapter 9, Mobile Development, looks at the need to develop with mobile in mind and
discusses the pitfalls of attempting to make your app "mobile-friendly". This chapter
implements the dojox/mobile framework, provided by the Dojo framework, as a
way to style elements for mobile use.

Chapter 10, Testing, discusses the need for test-driven and behavior-driven
development. This chapter discusses how to test applications using the Intern
and Jasmine testing frameworks.

Chapter 11, The Future of ArcGIS Development, looks at new mapping and application
services such as ArcGIS Online and Web AppBuilder. You will learn how to develop
an application around an ArcGIS Online webmap.

Preface

[xv]

What you need for this book
For all the chapters in the book, you will need a modern browser and a text editor
to create files. Whichever text editor you choose is up to you, though one with
syntax highlighting and some sort of JavaScript lining would help. For exercises in
Chapter 5, Editing Map Data and Chapter 9, Mobile Development, you will also need
access to a web hosting server to test files written in Java, PHP, or .NET. Finally, for
the exercise in Chapter 10, Testing, you will need an up-to-date version of Node.js
installed locally on your machine.

Who this book is for
This book is for web developers with some experience with ArcGIS Server, or
geospatial professionals with some experience writing HTML, JavaScript, and CSS.
This book assumes that you have viewed some of the ArcGIS API for JavaScript
examples provided by ESRI. More importantly, this book is for someone who
wishes to dive deeper into application development using ArcGIS Server. Other
books provided by Packt Publishing, such as Building Web and Mobile ArcGIS Server
Applications with JavaScript by Eric Pimpler or Building Web Applications with ArcGIS
by Hussein Nasser, may be more suitable for an introduction to ArcGIS Server and
the ArcGIS API for JavaScript.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We're working with census data, let's call it census.html."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>

Preface

[xvi]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no"/>
 <title>Census Map</title>
 <link rel="stylesheet" href="http://js.arcgis.com/3.13/
 esri/css/esri.css" />
 <style>
 html, body {
 border: 0;
 margin: 0;
 padding: 0;
 height: 100%;
 width: 100%;
 }
 </style>
 <script type="text/javascript">
 dojoConfig = {parseOnLoad: true, debug: true};
 </script>
 <script type="text/javascript" src="http://js.arcgis.com/3.13/"
 ></script>
</head>

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"We positioned it precisely in the top right, and left a little gap for the Census
button to be centered vertically."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xvii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/6459OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/6459OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/6459OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xviii]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Your First Mapping
Application

Let's say you have a map. You've digitized it using ArcGIS Desktop, a sort of
desktop mapping and analysis software provided by ESRI. You've gone through the
painstaking process of plotting points, connecting lines, and checking the boundaries
of polygons. You've added nice background aerial imagery, and you've applied all
the parts that make a map readable.

How are you going to share this map with the general public? You could post it in
the public information office, but citizens have complained about that location being
too remote, and down too many flights of stairs underground. You could make a
thousand printed copies, but that would be terribly expensive.

If you have the ArcGIS Server software running and connected to a web server,
you can publish your map online, and serve it through a website running with
the ArcGIS JavaScript API (http://developers.arcgis.com/javascript).

The ArcGIS JavaScript API is a JavaScript library that works with ArcGIS Server to
connect the map maker with the general public. The map maker can use an ESRI
product, such as ArcMap, to generate a map document. That map maker can then
publish the map document through ArcGIS Server. From there, a web page that has
been loaded with the ArcGIS JavaScript API can draw the map in the browser, and
let the general public pan, identify, and interact with the map.

http://developers.arcgis.com/javascript

Your First Mapping Application

[2]

In this chapter, we'll be covering the following topics:

•	 The requirements for creating a web mapping application using ArcGIS
Server and the ArcGIS API for JavaScript

•	 The HTML head and body content necessary to serve maps with the
JavaScript API

•	 How to create a map with the ArcGIS JavaScript API and add content
•	 How to make a map interactive

Features of the API
The ArcGIS JavaScript API provides many of the tools necessary to build robust web
map applications. It can generate slippy maps, interactive maps that let the user pan
and zoom in. The behavior is similar to Google or Bing Maps, but with your data.
You're in control of the content, from background imagery to markers and popup
content. With ArcGIS Server, you have control over how the maps are laid out, and
which colors, styles, and fonts you use. The API also comes with custom elements
that let you do everything from drawing on the map, searching for data, measuring
things on the map, and printing the map in multiple formats.

The ArcGIS JavaScript API is built on top of the Dojo framework
(www.dojotoolkit.org).You also have access to an extensive package of
free HTML form elements, controls, and layout elements for your web applications
because Dojo comes packaged with the API. These Dojo user controls have been
tested in multiple browsers, and include an entire library of items that can be used
to make a mobile application. While the ArcGIS JavaScript API is built with Dojo,
it also works well with other libraries such as jQuery and AngularJS.

The ArcGIS JavaScript API was designed and built, along with an ArcGIS API,
for Flash and Silverlight. Unlike other APIs which require specialized compilers,
plugins, and related software, the ArcGIS JavaScript API can be written with a
simple text editor and viewed on most common browsers without any special
plugins. Since mobile browsers, such as Safari for iPad and Chrome for Android,
do not support third party plugins, the ArcGIS JavaScript API is the preferred
choice for creating interactive map websites for the mobile platform.

www.dojotoolkit.org

Chapter 1

[3]

Now, it is possible to code a website using Windows Notepad, just like
it's possible to hike up Mount Everest without a guide. But when things
go wrong, you will probably want to use a free text editor with syntax
highlighting and other features, such as NotePad++ (http://notepad-
plus-plus.org/), Aptana Studio 3 (http://www.aptana.com/
products/studio3.html), or Visual Studio Code (http://code.
visualstudio.com) for Windows, Brackets (http://brackets.io)
or Textmate (http://macromates.com/) for Mac, or Kate (http://
kate-editor.org/), Emacs (http://www.gnu.org/software/
emacs/), or vim (http://www.vim.org/) for Linux. If you want text
editors that aren't free, but offer more features and support, you can check
out Sublime Text (http://www.sublimetext.com/) or Webstorm
(http://www.jetbrains.com/webstorm/).

The ArcGIS JavaScript API community
The ArcGIS JavaScript API has an active community of developers who are willing
to help you along the way. ESRI has blogs where they post updates, and host
meetups in various cities across the country and around the globe. Many ArcGIS
JavaScript developers, both inside and outside of ESRI, are active on Twitter and
other social media outlets.

You can find many resources to help you learn about the ArcGIS
JavaScript API through books and the web. For books, you can check out
Building Web and Mobile ArcGIS Server Applications with JavaScript by Eric
Pimpler, Building Web Applications with ArcGIS by Hussein Nasser, and
ArcGIS Web Development by Rene Rubalcava. For online resources, you
can visit ESRI GeoNet (https://geonet.esri.com/community/
developers/content), view the arcgis-javascript-api tag on GIS
StackExchange (http://gis.stackexchange.com/questions/
tagged/arcgis-javascript-api), or visit the ESRI GitHub page
(https://github.com/esri).

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://www.aptana.com/products/studio3.html
http://www.aptana.com/products/studio3.html
http://code.visualstudio.com
http://code.visualstudio.com
http://brackets.io
http://macromates.com/
http://kate-editor.org/
http://kate-editor.org/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://www.sublimetext.com/
http://www.jetbrains.com/webstorm/
https://geonet.esri.com/community/developers/content
https://geonet.esri.com/community/developers/content
http://gis.stackexchange.com/questions/tagged/arcgis-javascript-api
http://gis.stackexchange.com/questions/tagged/arcgis-javascript-api
https://github.com/esri

Your First Mapping Application

[4]

Our first Web Map
Now that the introductions are out of the way, we should begin working with
the API. In this chapter, we're going to look at some code that will make a simple,
interactive map. The example will be a single-page application, with all the styling
and coding on the same page. In the real world, we would want to separate those
into separate files. For this example, this is what the project is comprised of:

•	 Setting up an HTML5 web page
•	 Adding the necessary styling and the ArcGIS JavaScript library
•	 Framing out our HTML content
•	 Setting up a script to create a map
•	 Loading a layer file
•	 Adding a click event that collects data from the map service
•	 Displaying that data on the map

Our assignment
We've just been asked by the Y2K historical society to make an interactive map
application of the United States around the year 2000. They want the application to
show the U.S. demographics including gender, age, and ethnicity, during that year.
After reviewing the request from the client, we determined that the 2000 census data
would provide all the mapping and demographics data we were looking for.

After a bit of research, we found an ArcGIS Server map service that serves the 2000
census data. We can use the ArcGIS JavaScript API to show that data on an HTML
document. The user will be able to click on the map, and the application will display
census data by state, census tract, and census block group.

Setting up the HTML document
Let's open our favorite text editor and create an HTML document. Since we're
working with census data, let's call it census.html. We'll start with an HTML5
template. Browsers will recognize it as HTML5 by the appropriate document
type at the top of the page. Our HTML5 page starts out as follows:

<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>

Chapter 1

[5]

Starting from the head
The head of an HTML document contains information about the page including
the title, metadata about the page content, Cascading Style Sheet (CSS) links to
tell the browser how to render the output, and any scripts that the developer
needs the browser to run before it reads the rest of the page. Here is an example
of a simple webpage:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no"/>
 <title>Census Map</title>
 <link rel="stylesheet" href="http://js.arcgis.com/3.13/
 esri/css/esri.css" />
 <style>
 html, body {
 border: 0;
 margin: 0;
 padding: 0;
 height: 100%;
 width: 100%;
 }
 </style>
 <script type="text/javascript">
 dojoConfig = {parseOnLoad: true, debug: true};
 </script>
 <script type="text/javascript" src="http://js.arcgis.com/3.13/"
 ></script>
</head>
…

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Let's take a look at each of the items separately.

http://www.packtpub.com
http://www.packtpub.com/support

Your First Mapping Application

[6]

Meta tags and title tags
The title and meta tags in the head of the document tell browsers and search engines
more about the page. See the following code for an example:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no"/>
 <title>Census Map</title>

Some tags tell search engines how to read and categorize the content of your website.
Others, like the meta tags in this file, tell the browser how to display and manipulate
the page. In the preceding code the first meta tag, we're establishing the character
set used to render text. The second meta tag tells Internet Explorer browsers to load
the page using the latest version available. The third meta tag tells mobile browsers
that the content is scaled to the correct size, disabling the ability to pinch or spread
your fingers on the screen in order to zoom the text in and out. This is different from
zooming the map scale in and out, and this tag is required in most mobile browsers
to zoom in and out of the map.

Cascading style sheets
The look of a website is determined by the CSS. These style sheets tell the browser
how to lay elements on the page, what colors to make each element, how to space
them out, and so on. You can see how they are arranged in the current document:

<link rel="stylesheet" href="http://js.arcgis.com/3.13/
 esri/css/esri.css" />
 <style>
 html, body {
 border: 0;
 margin: 0;
 padding: 0;
 height: 100%;
 width: 100%;
 }
 </style>

Chapter 1

[7]

Here are three ways to organize and control the styling of elements by using CSS:

•	 First, we can apply styles to individual elements on the page with
inline styling, by adding a style attribute to the HTML element
(<div style="..."></div> for instance).

•	 Second, we can apply styling to the whole page by using an internal style
sheet, denoted by the <style></style> tags.

•	 Third, we can apply styles to multiple sheets by referring to an external
style sheet, denoted by <link rel="stylesheet" … />. For our single
page application, we'll use both our own internal style sheet, and an
external one provided by ESRI.

The ArcGIS JavaScript library requires its own style sheet to properly position the
maps on the screen. Without this file, the map will not render correctly, and thus
show the expected results. To load the required style sheet for the library, add
a link tag and set the href attribute to point to the esri.css file.

If you're using version 3.2 or later, and your map appears on the page in a
checkerboard pattern with the map tiles showing on every other square, the most
likely problem is that the esri.css style sheet did not load. Make sure you reference
the correct esri.css style sheet for the library version you're using. The following
image shows an example of this behavior:

Your First Mapping Application

[8]

The Dojo configuration script
Our JavaScript code adds a variable that tells Dojo how it should load, in the first
script tags. From this script, we can tell the browser how to interpret specially
defined HTML elements in our document, whether we want the browser to cache all
files, and even how to load packages and other libraries into the Dojo build system:

 <script type="text/javascript">
 dojoConfig = {
 parseOnLoad: true,
 cacheBust: true
 };
 </script>

In this case, we're telling Dojo to parse any specially decorated HTML elements
in the body, and replace them with the appropriate Dojo widgets as the page is
loaded. Using the cacheBust parameter, we are also asking the browser to use
a timestamp when it loads the files, so that the files aren't cached in the browser.
Adding timestamps forces the browser to load a fresh copy of the JavaScript file,
rather than relying on a cached copy. Cached scripts under active development may
not show the most recent changes you made, slowing development and increasing
troubleshooting time.

The script that loads the dojoConfig object must come before
you load the ArcGIS JavaScript API. If the dojoConfig object is
created after the API script reference, the dojoConfig contents
will be ignored.

The ArcGIS JavaScript API script
The ArcGIS JavaScript library is the main tool you'll use to render, manipulate,
and interact with geographic data from the ArcGIS Server:

<script type="text/javascript" src="http://js.arcgis.com/3.13/"
 ></script>

This application, as well as other applications in the book, use version 3.13 of the
ArcGIS JavaScript API. It was the most current version available at the time the
book was written. As you maintain these applications, be aware of version number
updates. ESRI often releases new versions to add new features, fix bugs in previous
versions, and to keep the API compliant with the latest browsers.

Chapter 1

[9]

Moving from the head to the body
With our HTML head set up, we can focus on the body of the application. We'll add
HTML elements to the body where the map and other information should go. We'll
style those features from an inline style sheet. Finally, we'll write a script to handle
the map creation, census data retrieval, and reacting to map events.

Framing the HTML body
Our client specified that they would like the app to show two panels, a main map
panel, and a separate panel that explains what the user is supposed to do. We're
going to fulfill the request by blocking off the sections using HTML div elements.
The div elements are generic blocks of content in HTML. In the first div, we'll
add a styling class of instructions, and fill it with the appropriate instructions.
In the second div, we'll apply the specific element id of map, to tell ourselves and
the ArcGIS JavaScript API where to put the map:

<body>
 <div class="instructions">
 <h1>U.S. Census for 2000</h1>
 <p>Click on the map to view census data for the state, census
 tract, and block.</p>
 </div>
 <div id="map"></div>
</body>

Adding a little style
We need to add some style to the new elements we added. To do this, we'll
modify the original internal style sheet in the head portion of the application.
Our client wants the map to take up the whole screen, with a little space in the upper
right-hand corner for the map title and the instructions. The client hasn't decided on
colors yet, but they have requested the rounded corners that everybody's putting on
their websites today.

So, after reviewing the requirements, and looking up how to style the elements,
let's add the following within the <style></style> element. The changes have
been highlighted to help you see what has changed in the following code snippet:

<style>
 html, body, #map {
 border: 0;
 margin: 0;
 padding: 0;
 width: 100%;

Your First Mapping Application

[10]

 height: 100%;
 }
 .instructions {
 position: absolute;
 top: 0;
 right: 0;
 width: 25%;
 height: auto;
 z-index: 100;
 border-radius: 0 0 0 8px;
 background: white;
 padding: 0 5px;
 }
 h1 {
 text-align: center;
 margin: 4px 0;
 }
</style>

Here's an explanation of the style we've added. We want the HTML document, the
map <div> to have no margin, border, or padding, and take up the full height of the
page. We also want the <div> elements with the instructions class to be precisely
positioned in the top right corner, taking up twenty-five percent of the page's width,
and then its height will be determined automatically. The instructions block will be
floating 100 z-index units towards the user (putting it in front of our map), and its
bottom-left corner will have an 8 pixel radius curve in the lower left corner. It will
have a white background, and a little padding on the right and left side. Finally,
the title <h1> will be centered horizontally, with a little padding above and below it.

Adding a script at the end
If we look at our web page now, we won't see much. Just a title and instructions in
the upper right-hand corner. We need to turn this plain page into a fully powered
map application. To do that, we'll need to instruct the browser, by using JavaScript,
on how to transform our map <div> into a map.

Chapter 1

[11]

Just before the end of our body tag, we'll add a script tag where we'll write our
JavaScript code. We put our script near the end of our HTML document because,
unlike images and style sheets, browsers load script tags one at a time. While
the browser is loading the script, it doesn't load anything else. If you put it at the
beginning of the page, the user might notice a bit of latency, or a delay before the
page loads. When we put a script at the end, the user is too distracted by the images
and other elements on the page to notice when your script loads. This gives it the
appearance of loading faster:

 <div id="map"></div>
 <script type="text/javascript"></script>
</body>

So, why didn't we load the ArcGIS JavaScript library at the end of the page? There
will be times, especially if you are using other parts of Dojo, when we'll need the
library to manipulate the page as it loads in the browser. In that case, we put the
library reference at the head of the HTML document.

Now that we have a script tag to write some JavaScript, we can code up an
interactive map. But, before we start writing code, we need to understand how
to use the ArcGIS JavaScript API and Dojo. We'll start with a quick history lesson.

Back in the good old days of web development, and even continuing today,
JavaScript libraries tried to avoid colliding into one another by creating a single
global object (such as JQuery's $ or Yahoo's YUI). All of the library's features would
be built into that object. If you've used the Google Maps API, you've probably used
google.maps.Map() to create a map, and google.maps.LatLng() to load a point on
that map. Each subpart of the library is separated by a dot (.).

Older versions of the ArcGIS JavaScript library were no different. All of ESRI's
mapping libraries were loaded into the main "esri" object. You could create a map
using esri.map, and load it with an esri.layer.FeatureLayer to show some
data, for instance. The Dojo framework was similar, using the dojo, dijit, and
dojox global objects.

But this tree-like approach to JavaScript library design has its downsides. As the
library expands and matures, it builds up a lot of parts that developers didn't always
use. We might use a library for one or two specific features, but we may not use
every single tool and function the library offers. The parts of the library we don't use
waste client bandwidth, bloat the memory, and make our app appear slower to load.

Your First Mapping Application

[12]

Asynchronous Module Definition
Both the ArcGIS JavaScript API and Dojo decided to handle the bloated library crisis
by incorporating the concept of Asynchronous Module Definition (AMD). In AMD,
a library is broken down into modular components. The developer can pick and
choose which parts of library they want to include in the application. By loading only
the parts we need, we reduce download times, free the browser memory of unused
functionality, and improve performance.

Another advantage of AMD is name collision avoidance or the names of the
variables where the libraries load are controlled by the developer. Also, the
scope of the loaded libraries is limited to within the calling function, much like
a self-executing statement.

In an AMD based application, we make a list of the library modules we want to use,
usually in an array of strings that the library knows how to interpret. We then follow
it up with a function that loads most or all of those modules into JavaScript objects.
We can then use those modules within the function to get the results we want.

Loading required modules
To take advantage of the Dojo's AMD style, we're going to use Dojo's require
function. In older examples, we would create multiple dojo.require("")
statements that would load the parts of the ArcGIS JavaScript library we needed
(and hopefully by the time we wanted to use them). But with AMD style, we use a
single require function that requests the list of libraries we ask for, and loads them
within a function that runs after all the libraries are loaded in the browser:

 <div id="map"></div>
 <script type="text/javascript">
 require([], function () {});
 </script>
</body>

The require function takes two arguments, an array of strings that corresponds
to folder locations in our library, and a function that runs after those libraries load.
In the second function, we add arguments (variables within the parentheses after
functions) that correspond to the libraries loaded in the list.

Chapter 1

[13]

So, for this application, we'll need a few modules from the ArcGIS JavaScript API.
We'll need to create an empty map and add data to the map in a form we call layers.
We'll need to identify things on the map, retrieve the census data we need from the
place we clicked on the map, and then display it:

<div id="map"></div>
<script type="text/javascript">
 require([
 "esri/map",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/tasks/IdentifyParameters",
 "esri/tasks/IdentifyTask",
 "esri/InfoTemplate",
 "dojo/_base/array",
 "dojo/domReady!"
], function (
 Map, ArcGISDynamicMapServiceLayer,
 IdentifyParameters, IdentifyTask, InfoTemplate,
 arrayUtils
) {
 // code goes here
 });
</script>

Notice the order of the libraries loaded in the require statement, and the arguments
in the following function. The first item in the list corresponds to the first argument
in the function. It is a common error when creating more complex applications to
mix up the order of the elements, especially if it has been revised multiple times.
Make sure the items correspond as you go down the list.

You may have noticed that, while there are seven libraries loaded, there are only six
arguments. The last library that loaded, the dojo/domReady! library, tells the require
statement's second function not to run until all the HTML elements have loaded and
are rendered in the browser.

Your First Mapping Application

[14]

The map object
Now that we have the components, we need to create an interactive map; let's put
them together. We'll start by constructing a map object, which provides the basis
and interaction platform that we'll need to work with. The map constructor takes
two arguments. The first parameter, either the HTML node or the id string of a
node, indicates where we want to put our map. The second parameter of the map
constructor is an options object, where we add the configurable options that make
our map work as expected:

function (
 Map, ArcGISDynamicMapServiceLayer,
 IdentifyParameters, IdentifyTask, InfoTemplate,
 arrayUtils
) {
 var map = new Map("map", {
 basemap: "national-geographic",
 center: [-95, 45],
 zoom: 3
 });
 });

In the preceding code, we're creating a map in the div element with an id of map.
In the map, we're adding a basemap, or a background reference map, in the style of
National Geographic. We're centering the map at 45°N and 95°W, at a zoom level of
three. We'll go into greater depth concerning these configurations in later chapters. If
you're using a desktop browser to view the results, you should see the United States,
including Alaska, and Hawaii, as in the following image:

Chapter 1

[15]

If you have experience working with Dojo, most element
constructors have the options first, followed by the node or the
id of the node. This is the reverse of how we construct a map.
Remember, order is important.

Your First Mapping Application

[16]

The layers
Years ago, mapping departments drew maps on transparent Mylar sheets.
Painstaking work went into drawing those sheets at the same scale. When the Mylar
sheets were stacked on top of each other, and corresponding points on each layer
were lined up, they would provide a visual mashup of overlapping map layers.

Today, the same effect can be created with a browser-based map application.
Instead of clear Mylar sheets, the application takes advantage of layering image
files and vector graphics to create the same effect. In the ArcGIS JavaScript API,
we refer to these stackable map data sources as layers.

The ArcGIS JavaScript API can accept multiple types of layer files from different
sources. Some layers are very flexible, and can be realigned and reprojected to line
up with other map sources. These are commonly referred to as dynamic layers.
Other layers are made up of images drawn at specific scales, and are not designed
to be so flexible. These are commonly referred to as tiled layers.

In our current application, the National Geographic background we added is
considered a tiled layer. Its pre-rendered content loads quickly in the browser,
which is one of the advantages of using a tiled layer. On the other hand, our data
source for the census data is a dynamic layer provided by an ArcGIS Server map
service. Its dynamic nature helps it to stretch and line up with our tiled background.
Here's the code we'll use to add the layer:

var censusUrl =
 "http://sampleserver6.arcgisonline.com/arcgis/rest/services/
 Census/MapServer/";
var map = new Map("map", {
 basemap: "national-geographic",
 center: [-95, 45],
 zoom: 3
 });

var layer = new ArcGISDynamicMapServiceLayer(censusUrl);

map.addLayer(layer);

So, if we take a look at the page at this point, we should see a map of the world with
black lines surrounding each state, census tract, and block. We can zoom in to see
more detail in the map. Your map should look something like the following image:

Chapter 1

[17]

Adding some action
At this point, we have a map that draws all the state and census block and track data.
We need more than that. We need a way for the user to interact with the site. The
ArcGIS JavaScript API incorporates many tools provided by the native JavaScript
language, plus new tools provided by Dojo.

Events
When many of us learned traditional programming, we learned that programs
followed a linear design. They started on the first line and ended on the last line.
The computer performed each computation in an ordered fashion, and would not
go on to the next line until the current line had finished.

Your First Mapping Application

[18]

But JavaScript adds something different. JavaScript adds an event loop that monitors
for specific website interactions, such as a change in a text blank. We can attach a
function, commonly called an event listener, to a known element event. When that
event is triggered, the event listener runs.

For example, buttons have a click event, and if we attach an event listener to the
button's click event, that function will respond every time that button is clicked.
We can also get information about the button through the data passed through the
click event.

For our application, we want the map to do something when we click on it. If we
look up the list of supported map events, we can attach an event listener using the
.on() method. The .on() method takes two parameters, a string description of the
event, and the event listener function we want to be called when the event occurs.
A list of supported events can be found in the ArcGIS JavaScript API documentation:

map.addLayer(layer);
function onMapClick (event) {
}
map.on("click", onMapClick);

Before we can do anything with the map, we need to know if it has loaded yet.
If we're running an updated browser on our fastest computer with a high-speed
internet connection, the map may load immediately, but if we're testing from a
mobile browser on an older smartphone, with less than stellar internet download
speeds, the map may not load very quickly.

Before we assign the click event, we're going to test whether the map has loaded. If
so, we'll add the onMapClick function as an event listener to the map's click event.
If not, we'll wait until the map fires its load event to set the click event. Just so we
don't have to repeat ourselves when adding the map click event, we'll enclose that
assignment in another function:

function onMapClick(event) {
}
function onMapLoad() {
 map.on("click", onMapClick);
}
if (map.loaded) {
 onMapLoad();
} else {
 map.on("load", onMapLoad);
}

Chapter 1

[19]

Tasks
While developers can write code that does a lot with JavaScript, there are some
tasks that are best left to a server. The ArcGIS JavaScript API sends requests to the
server through task objects. There are tasks for calculating the area and perimeter
of complex shapes, tasks for querying and returning spatial and non-spatial data
on features in a map, and tasks for creating .pdf documents containing the map
we're looking at, among many others. These tasks take the burden off the browser
to perform complex calculations that could be very slow on mobile devices. They
also allow the library to be lighter in weight, so the library doesn't have to load
every single set of conversion factors between one coordinate system and another,
for example.

Most tasks have three parts: the task object, the task parameters, and the task
results. The task object lets us send requests to the ArcGIS Server for specific tasks,
and includes the constants that may need to be referenced for some tasks. The task
object typically takes in a URL string parameter that tells the task to which ArcGIS
Server service endpoint to send its requests. The task parameters object defines what
information we need to get information from the task. Finally, after we execute the
task with the task parameters, and we receive the response from the server, we get
a structured object, or a list of objects known as the task's result. Formats for the
task, task parameters, and task results can be found in the ArcGIS JavaScript API
documentation at https://developers.arcgis.com/javascript/jsapi/.

In our code, we're going to use a task called an IdentifyTask method. We'll tell
the IdentifyTask method to contact ArcGIS Server through our census URL.
Inside the map click event handler, we'll create a task parameter object called an
IdentifyParameter object. We'll configure it with the data about the point we clicked,
and data on the map. Finally, we'll execute the IdentifyTask method, passing in the
IdentifyParameters object, to retrieve census data from the location we clicked:

layer = new ArcGISDynamicMapServiceLayer(censusUrl),
 iTask = new IdentifyTask(censusUrl);

function onMapClick (event) {
 var params = new IdentifyParameters();
 params.geometry = event.mapPoint;
 params.layerOption = IdentifyParameters.LAYER_OPTION_ALL;
 params.mapExtent = map.extent;
 params.returnGeometry = true;
 params.width = map.width;
 params.height= map.height;
 params.spatialReference = map.spatialReference;
 params.tolerance = 3;
 iTask.execute(params);
}

https://developers.arcgis.com/javascript/jsapi/

Your First Mapping Application

[20]

Deferreds and promises
Years ago, when FORTRAN ruled the computer programming world, there was one
statement that drove developers crazy when it came time to troubleshoot their code:
GOTO. With this line of code, disrupting the flow of the application, the application
would jump to another line of code. Jumping from one section of code to another
made following the application's logic difficult at best.

With modern JavaScript and asynchronous development, following the logic of
some asynchronous applications can be difficult, too. The app fires one event when
the user clicks a button, which triggers an AJAX request for data. On the successful
return of that data, another event fires, which makes the map do something that
takes a little time. After the map finishes, it fires off another event, and so on
and so forth.

Dojo responded to this by creating Deferreds objects. Deferred objects return a
promise that a result from an asynchronous process will be coming soon. The
function waiting for the result will not be called until that promise is fulfilled. With
functions returning Deferred results, the developer can chain functions together
using a .then() statement. The .then() statement launches the first function in
its parameters only after the result is fulfilled. Multiple .then() statements can be
chained together with functions that return Deferred objects, leading to an orderly,
and more easily readable coding logic.

In our onMapClick function, the IdentifyTask object's execute method returns a
Deferred object. We'll store that deferred result in a variable, so that it can be used
by another tool later:

function onMapClick (event) {
 var params = new IdentifyParameters(),
 defResults;
 …
 defResults = iTask.execute(params);
}

Showing the results
Once we have received our data, we should show the results to the user. If we look
at the format of the data passed over the network, we'll see a list of complicated
JavaScript Object Notation (JSON) objects. That data, in its raw form, would be
useless in the hands of the average user. Thankfully, the ArcGIS JavaScript API
provides tools and methods for turning this data into something more user-friendly.

Chapter 1

[21]

The Map's infoWindow
In the day of modern map applications such as Google Maps, Bing Maps, and
OpenStreetmaps, users have been taught that if you click on something important
on a map, a little box should pop up and tell you more about that item. The ArcGIS
JavaScript API provides a similar popup control for the map called an infoWindow
control. The infoWindow highlights feature shapes on the map, and overlays a popup
window to show the features-related attributes.

The infoWindow can be accessed as a property of the map (for example,
map.infoWindow). From this point, we can hide or show the popup. We can
tell the infoWindow which features to highlight. The infoWindow provides a
number of configurable and control points to help create a better user experience.

In our application's map click handler, we will need to convert the search results
into a form that can be used by the infoWindow. We'll do that by adding an
.addCallback() call to the IdentifyTask object's execute function. We'll pull out
the features from IdentifyResults, and make a list of them. From that point, we
can pass the processed results into the infoWindow object's list of selected features.
We'll also prompt the infoWindow to show where the user clicked:

function onIdentifyComplete (results) {
 // takes in a list of results and return the feature parameter
 // of each result.
 return arrayUtils.map(results, function (result) {
 return result.feature;
 });
}

function onMapClick (event) {
…
 defResults =
 iTask.execute(params).addCallback(onIdentifyComplete);
 map.infoWindow.setFeatures([defResults]);
 map.infoWindow.show(event.mapPoint);
}

You can run the application now from your browser, and try clicking on one of the
black-outlined features on the map. You should see a shape outlined in cyan (light
blue), and a popup pointing to where you clicked. The popup will tell you that
there is at least one record there (probably more). You can click the small back and
forward arrows on the popup to flip through the selected results (if there is more
than one).

Your First Mapping Application

[22]

The InfoTemplate object
As of this point, we can see the shape of our data. The problem is, we can't see what's
inside. There is important tabular data associated with the shapes we're seeing in the
results, but the popup hasn't been told how to show the information. For that, we can
use an InfoTemplate object. An InfoTemplate object tells the popup how to format
the data for display, including what title to use, and how we want the search results
displayed. An InfoTemplate object is connected to the feature data, along with the
feature's geometry and attributes.

An InfoTemplate object can be constructed in different ways, but most commonly
with a string to describe the title, and another string to show the content. The content
can contain any valid HTML, including tables, links, and images. Since the title and
content are templates, you can insert feature attributes within the template string.
Surround the field names from your results with ${fieldname}, where "fieldname"
is the name of the field you want to use. If you want to show all the field names and
values in the content, without any special formatting, set the content value of the
InfoTemplate object to ${*}.

For our application, we'll need to add InfoTemplates to the IdentifyTask results.
We'll work with the onIdentifyComplete callback and insert them there. We'll start
by inserting the following code:

function onIdentifyComplete (results) {
 return arrayUtils.map(results, function (result) {
 var feature = result.feature,
 title = result.layerName;
 feature.infoTemplate = new InfoTemplate(title, "${*}");
 return feature;
 });
}

In this bit of code, we're extracting the layer name of the results, and using that
for the title. For the content, we're using the "show everything" template to show
all fields and values. If you run the web page in your browser now, and click on a
feature, you should see something like the following image:

Chapter 1

[23]

Now, there are a lot of unreadable field names, and field values we may not be able
to understand. We could apply different content formats, based on the layer names
of the features. Looking at the preceding example, we're mostly interested in the
population, the number of households, and the number of housing units:

function onIdentifyComplete (results) {
 return arrayUtils.map(results, function (result) {
 var feature = result.feature,
 title = result.layerName,
 content;

 switch(title) {
 case "Census Block Points":
 content = "Population: ${POP2000}
Households:
 ${HOUSEHOLDS}
Housing Units: ${HSE_UNITS}";
 break;

Your First Mapping Application

[24]

 default:
 content = "${*}";
 }
 feature.infoTemplate = new InfoTemplate(title, content);
 return feature;
 });
}

If you run the page again in your browser, you should see more readable results,
at least for the census block points. Other features, such as the states, counties,
and block groups, will show a list of field names and their corresponding values,
separated by a colon (:). I'll leave the templates for the other fields as a homework
exercise for you.

In the end, your code should read as follows:

<!DOCTYPE HTML>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no"/>
 <title>Census Map</title>
 <link rel="stylesheet"
 href="http://js.arcgis.com/3.13/esri/css/esri.css">
 <style>
 html, body, #map {
 border: 0;
 margin: 0;
 padding: 0;
 height: 100%;
 }
 .instructions {
 position: absolute;
 top: 0;
 right: 0;
 width: 25%;
 height: auto;
 z-index: 100;
 border-radius: 0 0 0 8px;
 background: white;
 padding: 0 5px;
 }

Chapter 1

[25]

 h1 {
 text-align: center;
 margin: 4px 0;
 }
 </style>
 <script type="text/javascript">
 dojoConfig = { parseOnLoad: true, isDebug: true };
 </script>
 <script src="http://js.arcgis.com/3.13/"></script>
</head>
<body>
 <div class="instructions">
 <h1>U.S. Census for 2000</h1>
 <p>Click on the map to view census data for the state,
 census tract, and block.</p>
 </div>
 <div id="map"></div>
 <script type="text/javascript">
 require([
 "esri/map",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/tasks/IdentifyParameters",
 "esri/tasks/IdentifyTask",
 "esri/InfoTemplate",
 "dojo/_base/array",
 "dojo/domReady!"
], function (
 Map, ArcGISDynamicMapServiceLayer,
 IdentifyParameters, IdentifyTask, InfoTemplate,
 arrayUtils
) {
 var censusUrl =
 "http://sampleserver6.arcgisonline.com/arcgis/rest/services/
 Census/MapServer/",
 map = new Map("map", {
 basemap: "national-geographic",
 center: [-95, 45],
 zoom: 3
 }),
 layer = new ArcGISDynamicMapServiceLayer(censusUrl),
 iTask = new IdentifyTask(censusUrl);

 function onIdentifyComplete (results) {
 return arrayUtils.map(results, function (result) {

Your First Mapping Application

[26]

 var feature = result.feature,
 title = result.layerName,
 content;
 switch(title) {
 case "Census Block Points":
 content = "Population: ${POP2000}
Households:
 ${HOUSEHOLDS}
Housing Units: ${HSE_UNITS}";
 break;
 default:
 content = "${*}";
 }
 feature.infoTemplate = new InfoTemplate(title, content);
 return feature;
 });
 }

 function onMapClick (event) {
 var params = new IdentifyParameters(),
 defResults;
 params.geometry = event.mapPoint;
 params.layerOption = IdentifyParameters.LAYER_OPTION_ALL;
 params.mapExtent = map.extent;
 params.returnGeometry = true;
 params.width = map.width;
 params.height= map.height;
 params.spatialReference = map.spatialReference;
 params.tolerance = 3;

 defResults =
 iTask.execute(params).addCallback(onIdentifyComplete);
 map.infoWindow.setFeatures([defResults]);
 map.infoWindow.show(event.mapPoint);
 }

 function onMapLoad() {
 map.on("click", onMapClick);
 }

 map.addLayer(layer);

 if (map.loaded) {
 onMapLoad();
 } else {
 map.on("load", onMapLoad);

Chapter 1

[27]

 }

 });
 </script>
 </body>
</html>

Congratulations, if this is your first web map application using ArcGIS Server and
JavaScript. You've worked through multiple steps to produce a working, interactive
map application. This application should look great on all the latest browsers.
However, older browsers may not connect with the server properly, and may
require a proxy.

A note on proxies
If you've worked with the ArcGIS JavaScript API for any length of time, or had to
support older browsers like Internet Explorer 9 or less, then you've probably come
across proxies. Proxies are server-side applications that make web requests on behalf
of the web browser, often transmitting and receiving data the browser could not
collect on its own. There are three primary reasons why a browser would require a
proxy to communicate with a server. They are as follows:

1.	 The browser is an older browser that does not support Cross Origin
Resource Sharing (CORS), and the server requests will be made to a
different server from the one the application sits on.

2.	 The proxy provides additional security keys to access specific data, which
might include secured tokens the developer doesn't want to release to
the public.

3.	 The web request is much longer than the 2048+ character maximum for
GET requests.

The first example is common with older browsers, including Internet Explorer 9
or lower. They can't grab data from third party servers that are separate from the
web server, because of a security restraint. With the HTML5 specification for CORS,
newer browsers can check to see if an application is allowed to be requested from a
script not on the server.

The second example is common in large secure environments, with many security
hoops to jump through. Department portal websites could access proxies with
tokens unique to the department, providing an extra layer of security.

Your First Mapping Application

[28]

The third example is common when the user is passing large geometries with many
irregular vertices. For instance, if you were to use a drawing tool to draw an irregular
shape with the free-handed drawer, its vertices are added as you move around
on the map. With so many points, and those points requiring a lot of characters to
show their latitude and longitude, it's no wonder a shape request might exceed the
browser's maximum character length.

The ArcGIS Server proxy is free to download from GitHub (https://github.com/
Esri/resource-proxy). They have versions that work with Java, .NET, and PHP.
Please use the most recent version, and make sure it's properly configured for all the
services you'll be using.

If both your computer and your ArcGIS Server are behind a network
firewall, and the ArcGIS Server has unique public and private IP addresses,
your network firewall may block proxy connections to your ArcGIS Server.
If you see network traffic failing only on older browsers, such as Internet
Explorer 8, and only for internal requests, the firewall might be the issue.
Contact your network administrator to work out the issue.

Summary
In this chapter, we have learnt the basics of writing a simple web application using
the ArcGIS JavaScript API, and put together a map-based application. We learned
how to set up the application in the head of the HTML document. We learned how
to create a map on a page and how to add layers so that we can view the data. We
learned how to retrieve feature shapes and attributes through a task, and how to
show that data to the user.

In the next chapter, we'll look more in depth at the tools available in the ArcGIS
JavaScript API.

https://github.com/Esri/resource-proxy
https://github.com/Esri/resource-proxy

[29]

Digging into the API
An Application Programming Interface (API) defines the operations, formats, and
data structures available from a networked service. The developer writes code using
the API to tell a server to accomplish a task. An API is built on top of an existing
programming language, and uses the syntax and features of the language to make
communications with a computer easier to code.

At one point, ESRI had three web-based APIs to communicate with ArcGIS Server:
Flash, Silverlight, and JavaScript. With the rise of the mobile web and improvements
in browsers, the ArcGIS JavaScript API won as the browser of choice. To make the
best use of the ArcGIS Server map features, it's best to learn what's available from the
JavaScript API. We're going to take a tour through the API, to become familiar with
what it has to offer.

Unlike the other chapters in this book, this chapter provides more of a reference than
a programming exercise. Short code snippets have been added to show how to use
modules within the API. If you don't absorb every little crumb of information out of
this chapter, don't worry. Just come back and reread parts of it for reference.

In this chapter, we'll learn about the following topics:

•	 How maps are created and configured in the ArcGIS JavaScript API
•	 How to display geographic data from ArcGIS Server through tiled,

dynamic, and graphics layers
•	 The building blocks of graphics on a map
•	 How to communicate with ArcGIS Server services through tasks
•	 How packaged UI controls called dijits can save development time

Digging into the API

[30]

For more information about the ArcGIS JavaScript API, including
examples that you can build on your own, check out Building Web
and Mobile ArcGIS Server Applications with JavaScript by Eric Pimpler
or ArcGIS Web Development by Rene Rubalcava.

Finding the ArcGIS JavaScript API
documentation
You can find the documentation for the ArcGIS API for JavaScript by visiting
https://developers.arcgis.com/javascript/jsapi/. There, you'll find
information on the latest version of the API, a list of changes since the previous
version, and related documents to help you create apps. The organization is logical,
and information is relatively easy to find with their layout.

The documentation layout
The documentation for each element in the ArcGIS API is laid out in an organized
fashion. Links to the API components are on the left-hand side. The documentation
for each element defaults to the AMD style, but provides links to the older legacy
development style. With the AMD style, the top of the page shows how to load
the module into your code. Following that is a description of the module, a link to
samples that use the module, and a class hierarchy diagram showing the modules
the current module inherits.

Object constructor
If the module requires a JavaScript object to be constructed, the documentation
provides information on what is needed to call the module's constructor. The
documentation provides details on the parameters required to create the objects,
including parameter names, object types, whether they're optional or not, and what
they do.

https://developers.arcgis.com/javascript/jsapi/

Chapter 2

[31]

CSS classes and data- attributes
Following any constructor information, the documentation provides data on the
CSS class attributes for anything that the module may show on the map, as well as
any HTML5 data-* attributes the module might employ. The CSS classes help you
to modify the appearance of widgets and visual elements on the module, by giving
you a class hook to modify with your custom styling. The data-* attributes give
other JavaScript scripts access to information about your widget, without having
to load the whole widget into memory. For instance, by clicking on a map graphic
while using another library, you could access the geometry's type by looking at the
element's data-geometry-type attribute.

Properties
When an ArcGIS API object is created using the constructor, it will have certain
properties, or variable parameters assigned to the object. Some properties are
set when the object is created. Other properties are set as the object is modified,
or certain methods are run. The API documentation lists object properties that
are actively maintained, and will not be removed without sufficient notice of
depreciation.

If you use web developer tools in your browser, such as Firebug
for Firefox, or Chrome Developer tools, you might find that these
ArcGIS API objects have more properties than are listed in the
documentation. Many properties considered private will have one
or two underscore (_) characters before the name. If the properties
and methods are not listed in the documentation, they may not be
there when the next version of the API is released. Don't count on
undocumented properties and methods in your code.

Methods
Besides certain properties, objects created with the ArcGIS API modules will
probably contain methods, which are JavaScript functions assigned to the object,
often using other parts of the object they're assigned to. The documentation will list
public methods attached to the object, as well as what parameters they accept, what
values they return, and a description of what task or function they perform.

Digging into the API

[32]

Events
Many of the modules have documented events, where the module emits a
notification that something has happened. These are similar to a HTML button's
onClick event, or a browser's onLoad event. In older versions of the API, events
were listened to using dojo.connect. But as the library has matured, Dojo is
depreciating the connect function and replacing it with the dojo/on library
(http://dojotoolkit.org/reference-guide/1.10/dojo/on.html).
The dojo/on module actually delivers a function.

With the dojo/on function, you attach events by calling it with the following
parameters: the HTML DOM elements or Dojo widgets you want to listen to, the
name of the event as a string, and a function that will be called when the event
occurs. If you want to stop the event, you need a variable to accept the returned
value of the dojo/on call, ahead of time. When you're ready to stop listening, call that
return variable's remove() method. Some modules contain their own on() method,
which implements the dojo/on module for event handling. Here's an example code
snippet using the dojo/on module:

require(["dojo/on", "dojo/dom", "dojo/domReady!"],
function (on, dom) {
 var soupMe = on(dom.byId("deliver-soup"), "click", function () {
 alert("Here's your soup. NEXT!");
 });
 on(dom.byId("no-more-soup"), "click", function () {
 alert("NO SOUP FOR YOU!");
 soupMe.remove();
 });
});

Now that we know what to expect when we're reading the documentation, let's
look at the different tools available in the ArcGIS API for JavaScript. Since ArcGIS
applications work with geographic data, we'll start off by looking at the map.

Drawing a map
When working with the ArcGIS JavaScript API, one of the first things you'll want to
do is to create a map. The map transforms a simple div element into an interactive
canvas where you can display, request, and even edit geographic data. The map is
a complicated object, so we'll spend a significant amount of time focusing on it.
Let's learn how to make a map in our scripts.

http://dojotoolkit.org/reference-guide/1.10/dojo/on.html

Chapter 2

[33]

Constructor options
When a map is first created using the ArcGIS JavaScript API, the developer has
numerous parameters that can be used to configure the map. We were exposed to
some of those parameters in the previous chapter, when we created our first map
application. Let's look into a few of them a little more closely.

Autoresize
The Autoresize function, which by default is true, tells the map whether it should
resize itself when the browser changes size or orientation. If you have a full
screen map application, and you maximize or resize your browser, the map will
automatically adjust and fill the space assigned to it. The map will keep the same
zoom level, but more or less only the edges of the map will be visible when you
resize your browser.

If your application hides, moves, or animates your maps' appearance onto
or off the screen, the autoresize functionality could lead to some strange
behavior in the map. For example, if the map is made to slide in from the
right, the mouse scroll and some zoom functionality may zoom to the
center-left point, rather than the center of the map. With map animations
on and off screen, it is best to set the autoresize to false.

Basemap
The basemap is an optional string value that provides background imagery to lay
your data on. ESRI serves a variety of background imagery, depending on how you
want to frame your data. All of ESRI's basemaps are tiled images published in the
Web Mercator projection (WKID 102100). For best performances, layers added on top
of an ESRI basemap should be in the same projection. Otherwise, ArcGIS Server will
have to reproject dynamic map services, and tiled map services may not show up
if the spatial references do not match. You can see an example highlighted from the
previous chapter in the following code snippet:

var map = new Map("map", {
 basemap: "national-geographic",
 center: [-95, 45],
 zoom: 3
});

Digging into the API

[34]

The background imagery options available from ESRI include:

•	 street: An ESRI street map
•	 satellite: Satellite/Aerial photography
•	 hybrid: Combination of street map and satellite
•	 topo: Topographic map with elevation and contours
•	 gray: Light gray/minimalist background
•	 oceans: Oceans and bathymetry background
•	 national-geographic: National Geographic-themed
•	 osm: OpenStreetMap-themed

Explaining the center, extent, zoom, and scale
The center, extent, zoom, and scale parameters can be used to override the other
map layer settings and set what area is displayed on the map. The center can be
either a two number array containing the longitude and the latitude of the center
point, or an ESRI point. The extent describes in map coordinates which edges of the
map should be shown: right, left, top or bottom. If a tiled layer is present, the zoom
instructs which level of display, from furthest out to furthest in, the map should
show. The scale tells the map how many units of measure relate to one unit in reality
(for example, a scale value of 500 means that 1 inch on the map represents 500 inches
in real life).

LODs
When a map loads layers, the levels of details (LODs) are defined by the first tiled
layer loaded in the map. You can override those LODs when creating a map, by
passing an array of objects containing a level (number: 0, 1, 2, and so on), a scale
(number: for 1:500 scale, you would use 500), and a corresponding resolution
(number). This is helpful if you want to limit the user's ability to zoom way outside
the view of your map, or if some of your tiled data has a finer resolution than your
basemap will show.

Now that we've learned how adjust the parameters of a map object, let's look at its
different parts.

Chapter 2

[35]

Properties
The map object provides a number of properties that can be used in a mapping
application. Some are read-only, and tell the status of the map. Others can be
manipulated, and the changes can have significant impact on the map. While
there are far more properties, we'll take a look at a few of them.

loaded
After you've created a map object, there are some things you can't do to the map
until it has at least one layer loaded. When a map loads its first layer, it sets its
loaded property to true. Then you can manipulate the map, pan around, search
for layers, and modify its behavior.

A common programming error is not testing whether the map is loaded before
doing something to it, like adding search result graphics from a query. If you have
an extremely fast internet connection, and your ArcGIS Server is right next to you,
the map might be loaded right after you add a layer. But, for internet users outside
your server room, the map may not load that quickly. It's best to check the loaded
property before continuing, as in the following example:

if (map.loaded) {
 doSomethingwithMap(map);
} else {
 map.on("load", doSomethingwithMap);
}

layerIds
The map object keeps a list of references to the layers added to it. Map layer
references are stored as an array of strings called layerIds. The first layerId in the
list refers to the bottom most layer in the stack, while the last id string in the list
refers to the top layer visible on the map. This is handy if you need to search for a
particular layer in the list, or if you need to do something to all the layers loaded in
the map.

spatialReference
The map's spatialReference property refers to the long list of mathematical
equations used to represent a round earth on a flat map. This attribute is often (but
not always) shared by the map and the layers and graphics contained within. We'll
go into more depth studying spatial reference in the Geometry spatial reference section.

Digging into the API

[36]

Methods
The map object has a number of useful methods, which are functions tied into the
map object. These methods help you add items to the map, move around, zoom in
and out, and manipulate map behavior. Let's take a look at some of them.

Adding, removing, and retrieving layers
Layers can be added and removed from the map as needed. If you want to add
one map layer at a time, you can call on the map's addLayer() method. To add
multiple layers at once, you have to put all those layers in an array and call the map's
addLayers() method. Map layers can be removed with the removeLayer() method.

Retrieving layers is as simple as calling the map's getLayer() method. The
getLayer() method is passed an id string for the layer. A list of the valid ids can be
found in the map's layerIds array, or in the map's GraphicsLayerId property. If no
layers are found that match the getLayer() parameter, the method returns a null.

Moving around the map
The map contains several methods for navigating the map. Some affect the location
on the map, and others affect how zoomed in the user is. Here is a list of the most
common methods used to manipulate your position on the map:

•	 setZoom(): This sets the map zoom level, moving further in or further out.
•	 setScale(): Similar to setZoom(), but tries to change the map's scale to

match the value passed.
•	 setLevel(): Similar to setZoom(), but works only in maps with a tiled

service. Based on the integer passed into the function, the map will zoom to
the corresponding zoom level, if the map has tiled layers.

•	 setExtent(): When passed a bounding box, this message will attempt to
set the map's boundaries to match the bounding box. This affects both zoom
level and position.

•	 centerAndZoom(): Accepts a center point and a zoom level, then centers the
map on that point and attempts to zoom to the zoom level. This affects both
position and zoom level.

•	 centerAt(): When this function accepts a point, it attempts to pan the map
over so that the point is in the center of the map.

Chapter 2

[37]

Please note that, for the setExtent(), centerAndZoom(), and
centerAt() methods, the points and bounding boxes need to be
in the same coordinate system as the map.

Updating settings
There are many map navigation actions that can be enabled or disabled using map
methods. You can control what happens when the user clicks, double-clicks, or
shift-double-clicks on the map. You can enable or disable panning with the mouse,
as well as scrolling with the scroll wheel. You can even disable an enable-all
navigation event for the map. There may be times you want to disable navigation.
For instance, if your map is navigated by clicking on links, you may not want the
user to wander too far on your map.

Remember that these settings cannot be modified until the map is loaded. But if the
map hasn't loaded yet, how are we supposed to know when it loads? For an answer,
we'll look into a feature common to most JavaScript libraries, events.

Events
Events are important when working with asynchronous programming in JavaScript.
The map object has a number of events it fires before, during, and after it makes
some important changes, or finishes certain tasks. These events can be listened to
through the map's built-in on() function. Let's look at some of the more common
events you'll be working with:

•	 load: A map event that fires after the map has loaded its first layer.
•	 click: This fires when the user clicks on the map. Among other event

items, it returns the point the user clicked as a mapPoint property of the
event object.

•	 extent-change: This fires when the map either changes location, or changes
zoom level. Both of these factor into calculating the map's extent.

•	 layer-add: This fires when any new layer is added to the map.
•	 layers-add-result: This fires after multiple layers are loaded using the

addLayers() method.
•	 mouse-over: This fires when the mouse is moved over the map.
•	 update-start: This event fires before layers are loaded, either by adding

new layers, or by moving around the map and triggering the map to
download more map data.

•	 update-end: This event fires after the map loads the data from its
map services.

Digging into the API

[38]

Layers
No map is complete without data to show. Data is added to the map through layers.
Layers refer to data sources that include geographic, symbolic, and even tabular
data. The ArcGIS API for JavaScript contains a number of modules for interpreting
different kinds of common geographic data sources. Some of the layer modules
work with data provided by ArcGIS Server, and others can display data from other
sources, such as KML, Web Map Service (WMS), and CSV files.

Common ArcGIS Server layers
ArcGIS Server provides map layer data through Map Services. Map Services provide
data published from an ArcMap map document (.mxd). The visual map data,
legend, and underlying data tables are served through ArcGIS Server, and can be
consumed through the browser when the layer data source is loaded into the map.
Different layer types have different functionalities. We will review those layers in the
following sections.

ArcGISDynamicMapServiceLayer
An ArcGISDynamicMapServiceLayer is the default type of map published
through the ArcGIS Server. It is a dynamic map, meaning that its content is
updated whenever the map is refreshed. Because it is dynamic, the data can also be
reprojected to fit on another map layer that is not in the same spatial reference.

require(["esri/map", "esri/layers/ArcGISDynamicMapServiceLayer"],
 function (Map, ArcGISDynamicMapServiceLayer) {
 …
 var map = new Map("mapdiv", {…});
 var layer = new ArcGISDynamicMapServiceLayer
 ("http://serv.er/arcgis/rest/services/MyDynamicLayer/
 mapserver");
 map.addLayer(layer);
});

Because the data within an ArcGISDynamicMapServiceLayer is dynamic, ArcGIS
Server redraws what the layer should look like every time the map looks at the
data from a different location and zoom level. If this layer contains lots of labels,
annotation, complicated graphics, or raster data (like aerial imagery, for instance),
ArcGIS Server will require more system resources to render the map layer. This will
lead to noticeably slower performance. Other services, like tiled map services, are
recommended for that kind of data.

Chapter 2

[39]

ArcGISTiledMapServiceLayer
ArcGIS Server allows map services to be tiled. An ArcGISTiledMapServiceLayer
has its content already drawn into images at scales defined when the map service is
published. These images are stored on a hard drive for quick retrieval. The benefit
is that these pre-rendered tiles are served quickly and with little effort on the part of
the server. More map services can be run from the same machine with little effect on
performance. See an example in the following code snippet:

require(["esri/map", "esri/layers/ArcGISTiledMapServiceLayer"],
 function (Map, ArcGISTiledMapServiceLayer) {
 …
 var map = new Map("mapdiv", {…});
 var layer = new ArcGISTiledMapServiceLayer
 ("http://serv.er/arcgis/rest/services/MyTiledLayer/mapserver");
 map.addLayer(layer);
});

Tiled map services have some disadvantages. First, the data displayed through tiled
map services doesn't change until the tiles are rebuilt. If a park boundary changes
in the data, but the tiles aren't rebuilt, the service will still show the old boundary.
Second, tiled map services restrict the map to specific zoom scales, with no easy way
to view the map in between zoom scales. Third, if another tiled map is stacked on top
of the first one, it not only has to be in the same spatial reference, but also the zoom
scales have to overlap exactly within overlapping scale ranges. That means that a
map built with scales of 1:500 and 1:1000 can be loaded with a map built with scales
of 1:1000 and 1:2000, but a tiled layer with scales 1:750, 1:1500, and 1:3000 will not
be seen.

You cannot load a dynamic map service layer as an
ArcGISTiledMapServiceLayer, or else it will throw
an error. However, a tiled map service can be loaded as an
ArcGISDynamicMapServiceLayer. You lose performance
when zooming and panning, but it will help you view scales in
between the tiled scales.

We've seen ArcGIS layers that provide image data. Let's turn our attention to layers
that handle more vector data.

Digging into the API

[40]

GraphicsLayers and FeatureLayers
Sometimes you don't want to work with representative images of maps.
Sometimes you want to work with the shape of your data directly. That's where
GraphicsLayers and FeatureLayers come in. These layers render vector graphics
directly in your browser. You can click on them, modify them, and even add data to
an ArcGIS service through them. Let's look a little closer at them.

GraphicsLayers
GraphicsLayers provide a simple way to add custom vector graphics to your map.
You can manage the graphics by calling add() and remove() methods on those
graphics. You can also search through the list of graphics on the map by searching
through the GraphicsLayer.graphics array.

As a side note, the map object has a built-in GraphicsLayer. You can access that
GraphicsLayer through the map.graphics property.

FeatureLayers
FeatureLayers are specialized layers built on a GraphicsLayer that provide much
more functionality. They have the custom vector graphics of a GraphicsLayer, plus
they have an ArcGIS Server data source to populate the data. You can query for data
by either location or attributes, add it to the map using custom graphics, and control
popup content and styling. You can even edit data on your server.

Unlike ArcGIS Tiled and dynamic layers, which can mash up multiple layers at once,
each FeatureLayer can only work with one map service layer. FeatureLayers
can work with individual layers in a map service, or special editable map services
called Feature Services. Feature Services provide more details about the map
layer, including endpoints for querying results. If ArcGIS Server is configured to
allow editing on the features, and the map service is published to allow editing,
FeatureLayers that consume these services will let you modify both shape and
tabular data.

Because FeatureLayers query data from ArcGIS Server, they are limited in the
number of features they can return. Typically, ArcGIS Server limits the number of
results returned in a query to one or two thousand, depending on the version. Server
settings can be altered to show more results, but more FeatureLayer graphics on the
map mean more memory is consumed, and the app may be slow and unresponsive.
Careful thought must be put into using the FeatureLayer with your data.

Chapter 2

[41]

One way that the FeatureLayer refines the number of features returned is by setting
its mode. The FeatureLayer has three primary modes of feature selection:

•	 MODE_ONDEMAND: Only features that fit within the map extent, time extent,
and/or definition query are downloaded. This is the most common way of
interacting with features visible within the map extent.

•	 MODE_SELECTION: Only features that are selected by interacting with the map
(by click, touch, or query, for instance) are downloaded and their data is
shown on the map.

•	 MODE_SNAPSHOT: All features are initially downloaded into memory. This
method is popular for smaller datasets, and requires fewer server calls.

•	 MODE_AUTO: It automatically picks between MODE_ONDEMAND and MODE_
SNAPSHOT and is fairly new to the ArcGIS API for JavaScript, depending on
the size and content of the data.

We will look into FeatureLayers more closely in Chapter 5, Editing Map Data when
we discuss editing.

Other layer types
The ArcGIS API for JavaScript works well with data published through ArcGIS
Server. But not all geographic data available in the world is published through
ArcGIS Server. The API has a number of other layer types that can consume these
different data sources. Some of the more common types are as follows:

•	 KMLLayer: Services written with the Keyhole Markup Language (KML).
KML was made famous by Google Earth. The format uses the markup to
store and symbolize geographic data. Many services publish KML data,
including the National Oceanic and Atmospheric Administration (NOAA).

•	 CSVLayer: A fairly recent addition, it transforms a comma-delimited text file
into points on the map. To show the data on a map, the CSVLayer expects
a latitude and longitude column to show the coordinates in decimal places.
This tool, combined with HTML5's drag-and-drop API, could make it
possible for you to map any compliant data you toss into a .csv file.

•	 WMSLayer and WMTSLayer: Web Map Services (WMS) and Web Map Tiled
Services (WMTS) published using the Open Geospatial Consortium (OGC)
compliant standards.

Digging into the API

[42]

Please note that if you load the layer using just the URL of
the OGC Web Map Service, you'll need to use a proxy (see
Chapter 1, Your First Mapping Application). This is because the
module first requests GetCapabilities on the layer to
grab metadata from the map service. This request requires a
proxy. However, if you load the WMSLayer with an optional
resourceInfo parameter, that automatically describes the
service for you, and the proxy will not be necessary.

•	 StreamLayer: A layer displaying live streaming data from an ArcGIS
GeoEvent Processor Extension. StreamLayer takes advantage of the latest
in HTML5 WebSockets, which provide real-time updates from the server
to the client. You can view Twitter responses to specific events, or real-time
locations of emergency response vehicles with tracking devices.

Note that most up-to-date modern browsers support
WebSockets technology, but older browsers typically do not.
You can visit http://www.websocket.org/echo.html to
see if your browser supports WebSockets.

Graphics
A graphic object represents an individual point, line, or polygon feature drawn on
the webmap. The graphic object has four main parts: its geometry, symbol, attributes,
and infoTemplate. They are used in many parts of the API. If you draw something
on the map, you create a graphic. If you query a map service for something, it returns
a list of graphics. Some modules even accept lists of graphics as arguments for
other functions.

The graphic object can be constructed with up to four optional arguments:

•	 geometry: It describes the shape of the graphic drawn on the map
•	 symbol: It describes the graphic's color, thickness, and features that affect the

appearance of the graphic
•	 attribute: A JavaScript object containing name-value pairs of tabular data

that correspond with the feature
•	 infoTemplate: It formats the look of the graphic attributes when highlighted

by the map's InfoWindow

We'll look more closely at these graphic features in the following sections.

http://www.websocket.org/echo.html

Chapter 2

[43]

Introducing geometry objects
Geometry objects are a collection of coordinates that describe where something
is in the world. They give shape to the data we're looking for. They can be used
for displaying graphics on a map, or to provide spatial data for queries, or even
for geoprocessing services. Geometry objects come in five basic types: point, line,
polygon, extent, and multipoint. Any shapes are built on these basic types.
Let's take a closer look.

Point
In the ArcGIS API for JavaScript, a point is the simplest geometry object. It contains
the x and y coordinates of the point, as well as the point's spatial reference. A point
can be constructed with x and y coordinates, plus a spatial reference. It can also be
defined by longitude and latitude.

Polyline
A polyline geometry is a collection of one or more arrays of point coordinates. Each
array of point coordinates is called a path, and would look like a line when drawn
out. Multiple paths can be stored in the same geometry, giving the appearance of
multiple lines. The individual point coordinates are stored as array of x and y values.

Polygon
Polygons are made up of one or more arrays of points that loop back on themselves.
Each array of points is referred to as a ring, and the first and last point in a ring must
have the same coordinate. Polygons made up of more than one ring are referred to as
multipart-polygons.

Among the many properties and methods that control the polygon's shape are two
useful methods: .getCentroid() and .contains(),.getCentroid() returns a
point that is roughly in the middle of the polygon. The formula used to calculate
the centroid's position can be found on the Wikipedia page for centroids: (http://
en.wikipedia.org/wiki/Centroid#Centroid_of_polygon). The .contains()
method takes a point as an input, and returns a boolean value based on whether the
point is inside the polygon or not.

http://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
http://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon

Digging into the API

[44]

Extent
An extent is a rectangular polygon, which only uses four numbers to describe its
shape. The extent is described by its minimum x value (xmin), maximum x value
(xmax), minimum y value (ymin), and maximum y value (ymax). When viewed on a
map, extents typically look like a box.

Extents are used by many different parts of the API. All other geometry objects other
than points have a getExtent() method, which is used to collect the bounding box
of the geometry. You can zoom to a specific location on a map by setting the map's
extent. Extents are also used to define an area of interest when identifying things on
a map.

Multipoint
Sometimes you need a cluster of points to show on the map. For that, the multipoint
is your answer. You can add and remove points using the addPoint() and
removePoint() methods. You can also get the general area the points cover with the
getExtent() method. They're useful for collecting random points in an area, and for
selecting unconnected features on a map.

Geometry spatial reference
Besides coordinates of a geometry's location, the geometry object also packs
information on the object's spatial reference. The spatial reference describes
the mathematical models used to describe the Earth within the mapped region.
Instead of containing all those formulas and constants, the spatial reference stores
a reference to those formulas through either a well-known ID (WKID), or a
well-known text (WKT).

Spatial Reference plays a crucial role when displaying data on a map. Tiled map
service layers must have the same spatial reference as the map, in order to be
displayed. Dynamic map service layers must be reprojected, adding to the server
time and workload. Graphics also need to be in the same spatial reference as the
map to appear in the correct places on the map.

Symbols and renderers
The ArcGIS API provides some basic graphics tools to define how features look on
your map. If you are creating your own custom graphics, or modifying some existing
ones, this portion of the API tells you how to define their symbols. The API also
provides custom renderers, which help you define what symbols are used, based on
rules applied by the renderer.

Chapter 2

[45]

Simple symbols
The ArcGIS API uses symbols to define the colors, thicknesses, and other visual
features of graphics, independent of their shape. In fact, without a symbol assigned,
the graphics would not show up. The API defines three simple symbols to highlight
points, line, and polygons. Let's look at the Simple Symbols.

SimpleLineSymbol
The SimpleLineSymbol defines the symbology of line and polyline graphics added
to the map. It may seem strange to start with line symbology, but the other two
Simple symbols make use of a line symbol as well. The primary SimpleLineSymbol's
properties are its color, its width (in pixels), and its style. Styles include lines that are
solid, dashed, dotted, and combinations of those as well.

SimpleMarkerSymbol
The SimpleMarkerSymbol defines the symbology of point and multipoint graphics
on the map. The symbol can generate different shapes, depending on the style that
is set. While this symbol defaults to a circle, the SimpleMarkerSymbol can generate
squares, diamonds, x's, and crosses. Other properties that can be manipulated
within this symbol include the size in pixels, its outline as a SimpleLineSymbol,
and its color.

SimpleFillSymbol
SimpeFillSymbols define the symbology of polygon graphics on the map. The
style of the SimpleFillSymbol reflects how the inside of the shape is shown. It
can be solid (completely filled in), null (completely empty), or have lines running
horizontally, vertically, diagonally, or crossing. Please note that a graphic with a
null-styled symbol does not respond to clicks in the center. The symbol can also be
modified by a SimpleLineSymbol outline, and if the style of the SimpleFillSymbol
is solid, its fill color can be modified as well.

Let's look a little further at the colors we'll use to define these symbols.

esri/Color
The esri/Color module allows you to customize the colors of the graphics you add
to your map. The esri/Color module is an extension of the dojo/_base/Color
module, and adds some unique tools to blend, create, and calculate color formats in
different ways. Older versions of the library used the dojo/_base/Color module to
set colors, and is still usable in the current version.

Digging into the API

[46]

The constructor for the esri/Color module can accept a variety of values. You can
assign common color names, such as "blue" or "red". You can use hex strings (for
example #FF00FF for purple), like you would find in css colors. You can also create
colors using three or four number arrays. The first three numbers in the array assign
the red, green, and blue values from 0 to 255 ([0, 0, 0] is black, [255, 255, 255] is
white). The fourth optional number in the array indicates the alpha, or the opacity of
the color. Values in this range are from 0.0 to 1.0, with 1.0 being completely opaque,
and 0.0 being completely transparent.

The esri/Color module has some interesting enhancements on the old
dojo/_base/Color module. For instance, you can create a blend of two existing
colors with the blendColors() method. It takes two colors, and a decimal number
between 0.0 and 1.0, where 0.5 is an even blend of the two colors. This could be
useful, for instance, on a voting map where green represents yes, and red represents
no, and voting districts could be colored by percentages of yes or no votes.

The esri/Color modules also have ways to translate colors from one format to
another. For instance, you could click on a feature, get its graphic color, and use
toHex() or toCss() to get the color string. From there, you could apply that color to
the background color of an information <div> which is used to show the attributes of
that graphic.

Picture symbols
If pictures speak to you more than colors, you can use Picture Symbols in your
graphics. With these symbols, you can use picture icons and custom graphics to
add interesting and memorable data points on your graph. Points and polygons
can be symbolized using Picture Symbols, using the modules esri/symbols/
PictureMarkerSymbol and esri/symbols/PictureFillSymbol respectively.

The PictureMarkerSymbol module adds simple picture graphics for points on the
map. It is typically constructed with three arguments, a URL pointing to the image
file (such as .jpg, .png, or .gif), and an integer width and height in pixels.

The PictureFillSymbol module fills the content of a polygon with a repeating
graphic. The PictureFillSymbol takes four arguments. The first is a URL string
pointing to an image file. The second input is a line symbol, like the esri/symbols/
SimpleLineSymbol. The final two arguments are integer width and the height of the
image in pixels.

Chapter 2

[47]

Renderers
Sometimes, you don't want to assign graphic symbols one at a time. If you know
what type of graphics you're adding, and how the graphics should look ahead of
time, it makes sense to assign the symbology ahead of time. That's where renderers
come in. Renderers can be assigned to GraphicsLayers as a way to assign a common
style to all graphics inside them. Renderers depend on a graphics layer accepting one
geometry type (like all polygons, for instance).

As the ArcGIS API has matured, it has added a number of different renderers
to its library. We'll take a look at three common ones: the SimpleRenderer, the
UniqueValueRenderer, and the ClassBreakRenderer. Each has its appropriate
use cases.

SimpleRenderer
The SimpleRenderer is the simplest of the renderers because it only assigns one
symbol. It accepts a default symbol, and assumes that you'll only insert graphics of
the same type as the symbol. Like other renderers, if you assign a SimpleRenderer
to a GraphicsLayer, you can add Graphic objects to the GraphicsLayer without
them having a symbol assigned. Let's look at a code snippet that shows how to
create and apply a SimpleRenderer to the map's graphics layer:

require(["esri/map", "esri/renderers/SimpleRenderer",
 "esri/symbols/SimpleLineSymbol", "esri/Color",
 "dojo/domReady!"],
function (Map, SimpleRenderer, LineSymbol, Color) {
 …
 Var map = new Map("map", {basemap: "OSM"});
 var symbol = new LineSymbol().setColor(new Color("#55aadd"));
 var renderer = new SimpleRenderer(symbol);
 …
 map.graphics.setRenderer(renderer);
});

The SimpleRenderer has been expanded since version 3.7 of the API. Symbols
can be modified in different ways, based on a range of expected values in a field.
For instance, you can vary the symbol's color between two colors by setting the
colorInfo property of the SimpleRenderer. You can also change the size of a point
according to a field value by setting its proportionSymbolInfo property. Finally,
you can rotate a symbol by its field value by setting its rotationInfo property.

Digging into the API

[48]

Unique Value Renderer
Sometimes you want to display different symbols for your graphics based on
one of their attributes. You can do that with a Unique Value Renderer. Specific
unique values can be highlighted, while values not in the list can be assigned a
default symbol.

The constructor of the Unique Value Renderer accepts a default symbol, and up to
three different fields to compare values against. If more than one field is used, a field
delimiter string is required. Unique values and the associated symbols can then be
loaded as objects within the renderer's info parameter. The info object requires
the following:

•	 A unique value (value)
•	 A symbol associated with that value (symbol)
•	 A symbol label (label)
•	 A description of the unique value (description)

Class Break Renderer
Sometimes you want to classify your graphics by where they fit in certain ranges of
values, like population or Gross Domestic Product (GDP). The Class Break Renderer
helps you to organize the graphics in a visual manner. This renderer looks at a
particular field value in a graphic, and finds which class break range graphic's field
value fits between. It then assigns the corresponding symbol to that graphic.

When constructing a Class Break Renderer, you assign a default symbol, and the
field that will be evaluated to modify the symbol. Class breaks are assigned through
an info property of the renderer. The info array accepts a JavaScript object containing
the following:

•	 The minimum value of the class break (minValue)
•	 The maximum value of the class break (maxValue)
•	 The symbol (symbol)
•	 A label describing the break (label)
•	 A description of the class break (description)

Chapter 2

[49]

InfoTemplates
InfoTemplates, as we mentioned in Chapter 1, Your First Mapping Application,
describe how you want to display data in a popup. The InfoTemplate can be
constructed using two strings, the title and the content. The title and content strings
represent HTML templates, and you can substitute graphic attributes in the template.
For a graphic's infoTemplate, if you wanted to display the graphic's total attribute,
you would insert the value in the template with a ${total}, which shows the field
name inserted inside the brackets of the substitution string ${}.

If you want to display a popup containing all the name/value pairs in the graphic's
attributes, you can use a wildcard ${*} in the content value, as follows:

graphic.infoTemplate = new InfoTemplate("Attributes", "${*}");

For the content, you can add HTML content to the string, including tables, lists,
images, and links. For example, you might use something like the following to
describe a marine habitat:

graphic.infoTemplate = new InfoTemplate("Marine Habitat
 (${name})", "<table><tbody><tr><th>Type:
 </th><td>${type}</td></tr><tr><th>Ocean
 zone:</th><td>${zone}</td></tr><tr><td colspan='2'><img
 src='${imageSrc}' alt='${name}' /></td></tr></tbody></table>");

In the preceding example, we added the name attribute of the graphic to the title,
and created a two-column table that displays the type of the graphic, the zone where
the graphic resides, and a two-column wide image connected to the map graphic.

Toolbars
The ArcGIS API for JavaScript uses toolbars to handle controls that transform the
cursor. The API has three different toolbars: one for map navigation, one for drawing
graphics, and one for editing those graphics. These tools are turned on using the
activate() method, which includes parameters describing what tool you want to
use. The tools can be turned off using the deactivate() method; let's take a closer
look at these tools.

Digging into the API

[50]

The navigation toolbar
The navigation toolbar handles advanced map navigation. By default, the map
offers zoom sliders, and the ability to pan around the map. By activating the zoom
in/zoom out features of the navigation toolbar, the user can draw a boxed extent
where the map will either zoom in on, or zoom out at the same ratio as the zoom box
to the map's current extent. This zoom in/out box is always on once you activate it,
so you'll have to either develop something that turns it off, or let the user activate the
pan tool, which disables the zoom in/out.

The navigation controls have three more actions that can be activated. The
zoomToFullExtent() function, when called from the navigation toolbar, triggers
the map to zoom to its original map extent. The toolbar also keeps track of
how many zoom-ins, zoom-outs, and pans the user has done. By activating the
zoomToPreviousExtent() function, the map extent goes back to previous extents.
And if the map goes back to previous extents, the map can also zoom to future
locations. With the zoomToNextExtent() function, the user can undo the zoom
extent changes they made when they viewed the previous extent.

The draw toolbar
The draw toolbar allows the user to draw on the map to provide input. Depending
on which draw tool was activated, the user can draw a shape on the map, and any
event listener attached to the draw-end event is called, running a function that
receives the shape the user drew. Multiple draw-end events can be attached to the
event listener if needed. Common draw-end events might include adding a drawing
to the map, measuring the shape drawn by the toolbar, or using the shape drawn in
a query. The tools also modify the tooltip of the map, giving directions about how to
draw with them.

The ArcGIS API provides numerous shapes to use when drawing on the map. The
toolbar can be activated using simple drawing tool constants like point, polyline, and
polygon, which are activated by clicking each point on the map and double-clicking
to complete. There are freehand versions of the polyline and polygon, which allow
you to click and drag the mouse to draw a continuous line or shape, and release the
mouse to stop drawing. Also included in the API are drawing tools for common
shapes such as triangles, rectangles, circles, ovals, and arrows, just to name a few.

Chapter 2

[51]

The different toolbars are not aware of each other. If you are not
careful, you could activate both drawing and navigation tools at the
same time, and their actions will occur simultaneously. You could
draw a shape for a tool, and be zoomed into that area because the
navigation tool wasn't told to deactivate. Plan ahead how you will
disable one event when another is enabled.

The edit toolbar
What happens when you draw something on the map and you have made a
mistake? How do you correct a graphic on the map? The edit toolbar allows you to
change map graphics' shape, size, and orientation. It also works on text symbols,
letting you change the text of a text graphic on the map.

When the edit toolbar is activated on a feature, it allows you to move, rotate, scale,
or change the vertices of the feature. Moving lets you grab the feature and position it
where you want. Rotating provides a point to click and drag around to re-orient the
graphic. Scaling lets the user make the graphic larger or smaller. For editing vertices,
the user can drag points around on the map, right-click to "delete" the point, and
click between the graphic versions on "ghost points" to add new vertices to the map.

Please note that while the Edit Toolbar allows users to change graphics on the map,
it doesn't have any features built in that let the user save their changes. When using
the edit toolbar on graphics in an editable feature layer, you still will need a way to
tell the feature layer to save changes. Graphics can be edited in the current session
without saving the changes.

Tasks
As I mentioned in the previous chapter, some application items require resource-
intense processes that are best left for the server. The ArcGIS API calls these actions
tasks. There are a large variety of tasks. Some require the server to compute and/or
return data, which is the case for the geometry service and the QueryTask. Others
use the server to generate custom documents, like the Print Task. Still, others also do
all this, and also require custom extensions not initially a part of ArcGIS Server. Let's
take a look at what makes a good task.

Digging into the API

[52]

Tasks, parameters, and results
As we discussed in the previous chapter, a task is made up of three parts, the task
constructor, the task parameters, and the task results. Typically, only the task
constructor and the task parameters need to be loaded using AMD. The task results
are automatically produced when the results return from the server. The format of
the results is shown in the API documentation to show you how to access what you
need when you successfully receive results. The common order of events with tasks
is as follows:

1.	 The task and task parameters are constructed.
2.	 The task parameters are filled in with the required information
3.	 The task executes a server call using the task parameters.
4.	 When the browser receives the results from the server, something is done

with the results either through a callback function or a deferred value.

It is worth noting that when tasks are executed, they return one of Dojo's Deferred
objects. These deferred results can be passed to another function to be run
asynchronously when the browser receives the results.

Common tasks
There are many tasks commonly available on any installation of ArcGIS Server.
Many rely on a published map service or geoprocessing service to act on. Some, like
the GeometryService, are built into ArcGIS Server. Let's take a look at some of the
common tasks available through the API.

GeometryService
GeometryService provides multiple functions for manipulating geometry data.
Typically, it is published as part of ArcGIS Server. Let's take a look at the Geometry
Service functions available.

•	 AreasAndLengths: Finds areas and perimeters of polygon geometries
•	 AutoComplete: Helps create polygons adjacent to other polygons by filling in

gaps between them
•	 Buffer: Creates a polygon whose edges are a set distance or distances from

the source geometry
•	 ConvexHull: Creates the smallest polygon shape necessary to contain all the

input geometries

Chapter 2

[53]

•	 Cut: Splits a polyline or a polygon along a secondary polyline
•	 Difference: Takes a list of geometries, and a secondary geometry (probably

a polygon), and returns the first list any overlap against the secondary
geometry is cut out

•	 Distance: Finds the distance between geometries
•	 Generalize: Draws a similar looking shape with much fewer points
•	 Intersect: Given a list of geometries and another geometry, returns the

geometries defined by where the first list intersected with the second
•	 Label Points: Finds a point within a polygon which would be the best

position to place a label
•	 Lengths: For lines and polylines, finds the planar or geodesic distance from

beginning to end
•	 Offset: Given a geometry and a distance, will create a geometry the defined

distance to the right of the original geometry if the distance is positive, or to
the left of the geometry if negative

•	 Project: Based on a geometry and a new spatial reference, it returns the
original geometry in the new spatial reference

•	 Relation: Based on two sets of geometries and a specified relationship
parameter, returns a list of pairings showing how items in the two lists are
related (for example: how many from list2 are inside list1)

•	 Reshape: Given a line or a polygon, and a secondary line, it changes the
shape of the first geometry based on the second one, adding to the original
figure, or tossing some of it away

•	 Simplify: Given a complicated polygon or line whose edges crosses itself,
it returns simpler polygons where the crossed parts are undone

•	 TrimExtend: Given a list of polylines, and a polyline to trim or extend to,
it cuts lines in the list where they cross over the second polyline, and
extend other polylines where they don't quite reach the secondary polyline

•	 Union: Given a list of polygons, creates a unified geometry where all the
polygons are dissolved along edges that overlap, creating one solid polygon

Digging into the API

[54]

QueryTask
The QueryTask provides a way to collect both shape and attribute data from features
in a map service. You can request data on individual layers in a map service,
defining your search area by geometry and/or limiting your results to attribute
queries. The QueryTask is constructed with a URL parameter pointing to a single
layer in a map service. The number of results returned from a successful query is
limited by ArcGIS Server, typically to either 1,000 or 2,000 results.

Because results for a QueryTask can be limited by ArcGIS Server, the QueryTask
object has been extended with multiple methods to collect data on its search results.
Here are some of the methods available through the QueryTask:

•	 execute(): Accepts the QueryTask parameters, and requests features based
on those parameters.

•	 executeForCount(): Accepts the same parameters, and returns the number
of results in the map service layer that match the query.

•	 executeForExtent(): It is based on the parameters passed, returns the
geographic extent that contains all the search results. Note that this is only
valid on hosted feature services on www.arcgis.com.

•	 executeForIds(): With the parameters passed, the results return a list
of ObjectIds for the features that match the search. Unlike the execute
command, where the number of results are limited by ArcGIS Server, the
executeForIds() method returns all the ObjectIds that match the search.
That means, if there are 30,000 results that match the search, this method will
return 30,000 ObjectIds, instead of the server limit of 1,000.

The QueryTask parameters can be created using the Query module (esri/tasks/
query). If you have experience with SQL, you'll see similarities between the Query
parameters and SQL Select statements, while there are some Query parameters that
are more specific to ArcGIS Server. A few of the common ones are as follows:

•	 where (string): A legal where clause for a query.
•	 geometry (esri/geometry): A shape to spatial select against.
•	 returnGeometry (Boolean): Whether you want the geometry of the search

result features. Setting this to false returns just attribute data.
•	 outFields (array of strings): A list of fields to retrieve the search results.

Assigning ["*"] to the outFields parameter returns all fields, which is
equivalent to the SQL statement SELECT * from.

www.arcgis.com

Chapter 2

[55]

•	 outSpatialReference (esri/SpatialReference): The spatial reference you
want the geometry to be drawn in. Typically, the map's spatial reference is
assigned to this value.

•	 orderByFields (array of strings): A list of field values to sort the results by.
Add DESC to the string if you want values returned in descending order.

Results are returned from QueryTask in a form called FeatureSet (esri/tasks/
FeatureSet). FeatureSet contains data about the results returned, including the
geometry type of the results, the spatial reference, field aliases for the results, and a
list of feature graphics that match the search results. The featureSet even returns
whether or not the number of results that match the query exceeded the number
that could be delivered by ArcGIS Server. The array of features within the features
property of the featureSet can symbolized and added straight to a map's graphics
layer to be seen and clicked.

IdentifyTask
The IdentifyTask provides a shortcut way to retrieve data from a map service for a
popup. Unlike the QueryTask, which queries only one layer in the map service, the
IdentifyTask can search through all layers in the map service. While the QueryTask
has numerous methods to retrieve data on a search, the IdentifyTask is more
simplified, with a single execute() command to retrieve server results.

The parameters passed to an IdentifyTask are referred to as IdentifyParameters.
Because IdentifyTasks can search multiple layers, the IdentifyParameters
focus on searching by geometry. To search by a where clause, a layerDefinition
parameter must also be added to the parameters.

The results of an IdentifyTask, known as the IdentifyResults, differ somewhat
from the FeatureSet. First, IdentifyResults are returned as an array of objects
that contain a feature parameter that contains the result graphic, while the
FeatureSet is a single object with an array of graphics in its features parameter.
Secondly, IdentifyResults do not contain a list of field names and aliases like
the FeatureSet, because the feature attributes of the IdentifyResult are name/
value pairs where the name key is the alias. Finally, the IdentifyResults return the
layer id and name of the layer they were retrieved from. These attributes makes the
IdentifyTask favourable to quickly populate a map's popup on a click.

Digging into the API

[56]

FindTask
The ArcGIS API offers another tool for finding features on a map called a FindTask.
The FindTask accepts a text string, and searches for features in the map service that
contain that value. On the database side, the FindTask queries through each layer
in the map service, searching permitted fields for a text string with wildcards before
and after it. If searching for the string "Doe", the FindTask would return a feature
with the name value of "John Doe", "Doe Trail", or "Fiddledee doe Studios", but
would not return a feature containing "Do exit" because of the space.

Locator
A Locator provides either an approximate location for an address based on street
addressing data, known as geocoding. The locator can also perform reverse
geocoding, which provides an approximate address for a point on the map based
on that same street data. ESRI provides geocoding services on a national and world
level, but if you have more up-to-date street information, you can publish your own
geocoding service on ArcGIS Server.

For address location, the locator accepts a parameter object containing either a
single line input, or an object containing a Street, City, State, and Zone (zip code)
parameter. The callback function that accepts the Locator.execute() results
should accept a list of objects called AddressCandidates. These AddressCandidates
include the possibly matching street address, the point location of the address, and
a score from 0 to 100, where 100 is a perfect match. If no results return there were no
matches for the address provided.

Tasks requiring server extensions
While ArcGIS Server packs a lot of functionality, ESRI also provides server
extensions, or optional software that performs specific tasks through ArcGIS Server.
This software can do a number of unique tasks, from providing driving directions to
sifting through tweets in your area. You will need to know if your server has one or
more of these extensions before trying to use them. We'll take a look at one of them,
the Routing Task.

Chapter 2

[57]

Routing
Routing Tasks can provide driving directions, calculate the most effective routes,
and redirect users around known roadblocks. The Routing Tasks require the
Network Analyst extension for ArcGIS Server. For Routing Parameters, you can add
a FeatureSet into the stop parameter, and fill it with graphics defining the various
stops our vehicle has to make. You can also supply barriers in the same way, which
block certain roadways. When the Routing Task is executed, it returns a best route
based on the street data provided to the service.

Dijits
The ArcGIS API for JavaScript also provides Dojo widgets, commonly referred to
as dijits. Many of these dijits offer a user interface (UI) with existing API modules
working in the background. Using these dijits can cut development time by
providing well-used and tested UI components. Dijit documentation also shows the
CSS classes used to style the dijits, so that developers and designers can restyle them
to fit the theme of the page. Let's take a look at the more commonly used dijits.

Measurement
The Measurement dijit provides a tool that can be used to measure distances, areas,
and perimeters of locations on the map. It can also get the latitude and longitude of
points on the map. The dijit uses the drawing toolbar to draw shapes on the map.
From there, it sends a request to a GeometryService. Once the dijit has retrieved its
results, it either displays the latitude and longitude of a point, shows the length of
the line drawn on the map, or displays the area and perimeter of the polygon area
drawn on the map.

Print
The Print dijit provides a dropdown control that lets the user select from a
predefined list of print templates and parameters. The developer configures the
dijit with a link to an ArcGIS Server print service, and a list of predefined print
parameters. When the user selects from one of the dropdown choices, the printTask
incorporated in the Print dijit fires off an execute() method with the corresponding
print parameters. When the printTask receives a success response from the server,
the dijit provides a link to click on to download the printout.

Digging into the API

[58]

If you need more granularity in your print control, this dijit is not for you. This tool
is not meant to handle every combination of print parameters. If you're required
to support everything from Tabloid ANSI B Landscape .pdf documents to Letter
ANSI A Portrait .gif images, and everything else in between, you should consider
developing your own tool.

Bookmarks
The Bookmarks dijit allows the user to save custom areas on the map. You can
pre-assign bookmarked areas in the configuration file that the user can click and
zoom to. They can also add areas to a list, edit the names, and delete the custom
areas they want to zoom to. The Bookmarks dijit does not save the map state,
meaning that the layers that were turned on previously won't be automatically
switched, and the selected graphics on the map may not be there.

Basemaps
The ArcGIS API provides a couple dijits for changing your basemaps. This can be
useful when the data blends in or doesn't look right against the current background.
The first tool the API provides is a BasemapToggle, which lets you switch between
two basemaps. The second is the BasemapGallery, which offers more choices. Both
provide thumbnail photos and captions describing the basemaps.

The BasemapGallery can be customized to show your custom basemaps, or show
basemaps from ArcGIS Online. When constructing the BasemapGallery, the
choice of incorporating ArcGIS Online basemaps can be modified by setting the
showArcGISBasemaps option to true. Remember the rule about tiled map services,
however. The ArcGIS Online basemaps are in Web Mercator Auxiliary Sphere
(WKID 102100), which is the same projection as Google and Bing Maps. If your data
is not in the same projection, you could have issues with accuracy and/or missing
tiled layers.

Popups and InfoWindows
Popups and InfoWindows provide a small window to view data about features on
a map. There are four varieties of the infoWindows available: The legacy version
that was replaced in version 3.4, a smaller version of the legacy infoWindow called
InfoWindowLite, the current default popup control, and a lighter mobile version of
the current popup.

Chapter 2

[59]

The current popup exposes a number of elements that you can tap into to customize
the user experience. The popup can select multiple features, and holds the graphics
content of the selected items in a features array. It also has a paging control that lets
the user click to see what other features have been selected. It also keeps track of
which feature is selected through a selectedIndex parameter.

Editing
The editing dijits provide UI components and tools that you can use to edit features
on the map. These tools work with editable FeatureLayers, allowing the user to edit
shapes, add features on the map, change attributes, and save all those changes to the
server. Let's look at some of the components that make up the editing tools.

AttributeInspector
The AttributeInspector allows the user to edit graphic attribute data from an
HTML form. The inspector connects to the FeatureLayer and displays data on
one of the features that is selected. The inspector also provides a previous and next
button to search through the selected Features. The AttributeInspector also
supplies a delete button to delete selected features.

The inspector then builds a form based on the requirements of the features. Dates
will be given calendars, and domain-bound fields will show an HTML Select element
with a dropdown list of domain choices. The user can type in and edit data, and the
data can be saved server-side.

TemplatePicker
The TemplatePicker provides a selector to select what feature types and subtypes
you'll be editing. When a featureLayer is published as editable, it has to expose the
symbology and preset styles through the REST service. The TemplatePicker then
reads the exposed symbology and feature setup data to create a grid of valid editable
choices. The user clicks on the templates like a button, and the symbology is passed
to a drawing tool of some kind.

An all-in-one Editor
The ArcGIS API provides an all-in-one Editor dijit to provide some basic editing
needs. The dijit incorporates the TemplatePicker to select features types and
subtypes to draw from. It also has a toolbar with various tools, pertaining to the
editable features on the map. So, when you select a green line, the tool will show
line-related drawing tools.

Digging into the API

[60]

The Editor also generates an AttributeInspector in the map.infoWindow. You can
edit field values from the popup. It is up to you how you implement saving changes.

The editor also provides undo and redo buttons in the toolbar. If you accidently
delete a feature you wanted to save, you can use the undo button. If you realize
that you really wanted to delete that feature, you can click the redo button.

Now that you have been exposed to most of the major features of the ArcGIS API for
JavaScript, you are better prepared to write some more code using the API.

Summary
In this chapter, we've taken a whirlwind tour of the ArcGIS API for JavaScript.
We've gained familiarity with how the website and API is organized. We've studied
the Map object in detail, looking at all its parts. We've looked over the other parts of
the API, including layers, graphics, toolbars, tasks, and dijits. We've discussed how
each of these are implemented, and some use cases for them. Now that we know
more about the parts of the API, we can use these components to create custom
applications and widgets in the next chapter.

[61]

The Dojo Widget System
The developers at Esri created the ArcGIS JavaScript API using the Dojo framework.
Dojo provides a large assortment of tools, libraries, and UI controls that work across
multiple browsers. Any developer can create custom applications with UI elements
that work well together using Dojo and the ArcGIS JavaScript API. Also, Dojo
provides the AMD tools necessary to develop your own custom widgets, libraries,
and controls.

In the previous chapters, we've reviewed the ArcGIS API for JavaScript, and we've
written a small application using the API. We've even incorporated some basic
principles of AMD into a single page application. What we've done so far would
work great with a smaller application.

But what happens when applications get larger? Are we going to implement a
single script to load all the components we need for a larger application? How are we
going to extend the functionality of our website? What if we update our libraries and
something breaks? Are we going to hunt through several thousand lines of code in
one monolithic JavaScript file to find the parts that need to be changed?

In this chapter, we'll take advantage of the Dojo framework and create a custom
widget for our application. Through that process, we'll cover the following:

•	 The background of the Dojo framework
•	 What the dojo, dijit, and dojox module packages have to offer
•	 How to create and use our own custom modules
•	 How to create widgets (modules with UI components), and how to

extend them

The Dojo Widget System

[62]

A brief history of the Dojo framework
The Dojo framework began in 2004 with initial work at Informatica. Alex Russell,
David Schontzler, and Dylan Schiemann contributed the first lines of code for the
project. As work on the code continued, other developers were brought in and lent
their input into the direction of the framework. The project grew so large that the
founders created the Dojo Foundation to oversee the codebase and its intellectual
properties. Since then, over 60 developers have contributed to the framework, and
companies such as IBM and SitePen continue to use it today. For more information,
visit at http://dojotoolkit.org/reference-guide/1.10/quickstart/
introduction/history.html.

So what makes Dojo a framework, as opposed to a library? When this question
was posed to the people at stack overflow (http://stackoverflow.com/
questions/3057526/framework-vs-toolkit-vs-library), the most agreed upon
answer centered on an inversion of control. When we use tools in a library, our code
controls the flow of logic and activity. When we calculate a value, we update that
value in each location that it's needed through our code. In a framework, however,
the framework controls the behavior of the application. When a value is updated in
a framework, it is the framework that updates that value wherever it is bound on the
web page.

The Dojo framework provides a number of HTML-based controls that we can load
and use. Much in the way of CSS appearances and JavaScript behavior, is prewired
into the control. After initial setup, our code instructs the framework where to send
data when specific control events occur. We have no control when our functions are
called, only what happens after they're called.

If you want to read more about frameworks and the inversion of control,
Martin Fowler provides a good explanation of the subject on his blog at
http://martinfowler.com/bliki/InversionOfControl.html.

Introducing dojo, dijit, and dojox
Great care has been taken to organize the Dojo framework. When Dojo incorporated
the AMD style of modules, many of the objects, methods, and properties were
reorganized into logical folders and modules. Dojo is broken down into three main
packages: dojo, dijit, and dojox. Let's get an idea of what these three packages bring
to the framework.

http://dojotoolkit.org/reference-guide/1.10/quickstart/introduction/history.html
http://dojotoolkit.org/reference-guide/1.10/quickstart/introduction/history.html
http://stackoverflow.com/questions/3057526/framework-vs-toolkit-vs-library
http://stackoverflow.com/questions/3057526/framework-vs-toolkit-vs-library
http://martinfowler.com/bliki/InversionOfControl.html

Chapter 3

[63]

The dojo package
The dojo package provides much of the base functionality needed to load, run, and
tear down the various modules in our applications. The modules provide functions
and tools that work across multiple browsers, including the dreaded older versions
of Internet Explorer. For example, the developer doesn't have to handle events by
trying addEventListener() for Chrome and attachEvent() for older IE, because
it's handled behind the scenes by dojo/on. With the framework, you can get away
from all the browser hacks, and focus on creating a good application.

The dojo package does not contain widgets, but it does contain the tools necessary
to manipulate things within the widgets. Do you need to handle mouse clicks
and touch events? Use the dojo/mouse and dojo/touch modules. Do you need
a jQuery-like selector for your HTML? Load the dojo/query module. The dojo
package provides modules for HTML DOM manipulation, arrays, AJAX, dates,
event, and i18n, just to name a few.

The dijit package
The dijit package provides visual elements (referred to as dijits) that integrate
well with the dojo package. The elements created with the dijit package have been
tested across multiple browsers. They provide a consistent user interface based on
the CSS stylesheets loaded with the library.

As the Dojo framework is used and contributed to by many companies and
developers, there are plenty of user controls available. Whether you're creating a
submission form, a calendar of events, or an executive dashboard, you can combine
the dijits in this package in a way that suits your needs. Some of the more popular
packages include:

•	 dijit/Calendar: This provides an interactive HTML calendar control that
works on both desktops and tablets.

•	 dijit/form: A package containing stylized form elements such as buttons,
checkboxes, dropdown menus, textboxes, and sliders. The form elements
have a consistent look across older and newer browsers.

•	 dijit/layout: A package containing controls that handle layouts. You can
create simple containers, tab containers, accordion containers, and even
containers that control the positions of other containers.

•	 dijit/Tree: A module that creates a collapsible tree menu which could be
used, for instance, to show folder layouts.

The Dojo Widget System

[64]

The dijit package contains more than user controls. It also provides the tools
necessary to create your own custom dijits. Using the dijit/_WidgetBase module
and assorted mixins, you can incorporate both HTML elements and existing dijits
into your own custom dijit. Working with the dijit components can give the
user a consistent experience throughout the entire application.

The dojox package
According to documentation on the Dojo framework (http://dojotoolkit.org/
reference-guide/1.10/dojox/info.html), dojox provides extensions to Dojo.
This part of the library deals with more experimental functionality, user interfaces,
and testing features. Many parts of the library have matured due to extensive use,
while other parts have been depreciated and are not under active development.

One of the useful subpackages in the dojox package is dojox/mobile. The Dojox/
mobile package provides UI elements and controls that you can use in mobile
applications. They have been tested on a wide variety of mobile browsers, and their
styling can even mimic the style of native smartphone and tablet applications.

For more information regarding the dojo, dijit, and dojox packages
in the Dojo framework, you can view tutorial documentation by going to:
http://dojotoolkit.org/documentation/tutorials/1.10/
beyond_dojo/.

The dojoConfig packages
Using the built-in Dojo packages is great and all, but what about making your own
custom package? You can create custom packages in your local folders, and reference
them through your dojoConfig object. In the dojoConfig object, you can add a
packages parameter that contains an array of JavaScript objects. Those package
objects should contain a name attribute, which is a reference to your package, and
a location attribute, which references the folder location. Here's an example of a
dojoConfig object with a reference to a custom package:

<script>
 dojoConfig = {
 async: true,
 isDebug: true,
 packages: [
 {
 name: "myapp",

http://dojotoolkit.org/reference-guide/1.10/dojox/info.html
http://dojotoolkit.org/reference-guide/1.10/dojox/info.html
http://dojotoolkit.org/documentation/tutorials/1.10/beyond_dojo/
http://dojotoolkit.org/documentation/tutorials/1.10/beyond_dojo/

Chapter 3

[65]

 location: location.pathname.replace(/\/[^/]+$/, '') +
 "/myapp"
 }
]
 };
</script>

In the preceding sample, the package myapp is referenced, and all the files for that
package are loaded into the myapp folder under the current page. So, if this page was
shown at http://www.example.com/testmap/, the myapp package could be found
at http://www.example.com/testmap/myapp. When referencing the Something
module in your myapp package, you would load the module like this:

require(["myapp/Something", "dojo/domReady!"], function
 (Something) { … });

Defining your widget
With Dojo's AMD style, there are two main ways to use AMD components. Using
the require() function plays the script once, and then it's done. But if you want to
create a module that can be used over and over again, you would want to define()
the module, instead. The define() function creates one or more custom modules to
be used by an application.

The define() function takes a single argument, which could be any JavaScript
object. Even define("Hello World!") is a valid module definition, though not that
useful. You can create more useful ones by passing in objects or object constructors
that perform tasks for your application. Review the following example:

define(function () {
 var mysteryNumber = Math.floor((Math.random() * 10) + 1);
 return {
 guess: function (num) {
 if (num === mysteryNumber) {
 alert("You guessed the mystery number!");
 } else if (num < mysteryNumber) {
 alert("Guess higher.");
 } else {
 alert("Guess lower.");
 }
 }
 };
});

The Dojo Widget System

[66]

In the preceding example, the module picks a random number from one to ten, It
then returns a module with a guess() method that accepts a numeric value. Upon
calling the guess() method, it alerts the user as to whether the guess was correct
or not.

Declaring modules
Developers entering JavaScript from more classical Object-oriented (OO) languages
may have a difficult time embracing the language's prototype-based inheritance.
In most OO languages, classes are defined at compilation, and sometimes inherit
properties and methods from other base classes. In JavaScript objects, class-type
objects are stored within the object's prototype, which holds the same shared
properties and methods for multiple related objects.

Dojo can ease the transition for these developers when they use the dojo/_base/
declare module. The module creates Dojo-based classes, which can be used by other
applications. Behind the scenes, it takes a class-like JavaScript object and converts
it to a prototype-based constructor. This module couples well with the define()
function to create custom dojo modules, like the following:

define(["dojo/_base/declare", …], function (declare, …) {
 return declare(null, {…});
});

The declare() function takes three arguments: the class name, the parent class,
and the class properties object. The class name is an optional string that can be used
to reference the class. The declare() function will turn the name into a global
variable, so that the dojo/parser can write it into HTML when you reference the
dijit package with a data-dojo-type attribute. If you do not plan to use the dojo/
parser to write your widget into HTML, it's highly recommended that you don't use
the first argument.

Class Inheritance through Dojo
The second argument in the declare() function refers to the parent class. There
are three possible ways to define the parent class. If the class you are creating does
not have a parent class, it is said to have no inheritance. In that case, the parent class
argument is null, as in the following statement:

define(["dojo/_base/declare", …], function (declare, …) {
 return declare(null, {…});
});

Chapter 3

[67]

In the second scenario, there is a parent class for the class you are creating. The
parent could be another AMD module, or another declared item. The following
example shows this by extending the dijit/form/Button module:

define(["dojo/_base/declare", "dijit/form/Button", …],
 function (declare, Button, …) {
 return declare(Button, {…});
 }
);

The third possible scenario involves multiple inheritance, where your class inherits
properties and methods from multiple classes. For that, the parent class parameter
will also accept an array of objects. The first item in the array is considered the base
class, which provides the main construction parameters. The rest of the items in the
list are referred to as "mixins". They don't necessarily provide object construction
functionality, but they add properties and methods that either complement, or
override the existing base class. The following example shows multiple inheritance
using a few libraries we'll talk about later:

define(["dojo/_base/declare", "dijit/_WidgetBase", "dijit/_
OnDijitClickMixin, "dijit/_TemplatedMixin"],
 function (declare, _WidgetBase, _OnDijitClickMixin,
 _TemplatedMixin) {
 return declare([_WidgetBase, _OnDijitClickMixin,
 _TemplatedMixin], {…});
});

Dealing with classes and inheritance
In the final argument of the declare() statement, the developer defines the different
properties and methods contained in the class. The object properties can be anything
from strings and numbers to lists, objects, and functions. Please review the following
code example:

declare("myApp/Fibonacci", null, {
 list: [],
 contructor: function () {
 var len = this.list.length;
 if (len < 2) {
 this.myNumber = 1;
 } else {
 this.myNumber = this.list[len – 1] + this.list[len-2];
 }
 this.list.push(this.myNumber);
 },
 showNumber: function () { alert(this.myNumber); }
});

The Dojo Widget System

[68]

In objects created with the declare() statement, you have both static and instance
properties. Static properties are properties that are shared by all objects that were
created in the same way. Instance properties are properties that are unique to the
object created. Properties defined within the class object are considered static, but
every property initially assigned either within the constructor, or within another
method, is considered an instance property.

In the preceding example, the showNumber() method and the list properties
are static, while the myNumber property is an instance. That means every myapp/
Fibonacci object will share the showNumber() method and the list array, but will
have unique myNumber properties. For example, if five myapp/Fibonacci objects are
created, each should contain the list value of [1, 1, 2, 3, 5]. Adding one more
to the list will add to every Fibonacci list. The myNumber property is created in the
constructor, therefore each object will have a unique value for that property.

When a class is created from a parent class, it has access to its parent's properties
and methods. The new class can also overwrite those methods by having a new
method with the same name in its constructor. For example, let's say a HouseCat
object inherits from a Feline object, and they have their own versions of the
pounce() method, If you call HouseCat.pounce(), it will only run the method
described in HouseCat, and not in Feline. If you want to run the Feline.
pounce() method within the call to HouseCat.pounce(), you would add this.
inherited(arguments) within the HouseCat.pounce() method, to show when
you want to run the parent class method.

Working with Evented modules
The Evented module lets your widgets publish events. When your module is
declared with Evented as the parent class, it provides an emit() method for
broadcasting that the event has occurred, and an on() method for listening to events.
One example that can be found in the ArcGIS API would be the drawing toolbar.
It doesn't display information, but it has the tools necessary to publish events.

The emit() method takes two arguments. The first is a string name that describes
the event, such as map-loaded or records-received. The second is an object created
and passed along with the event. The object could be anything you can create in
JavaScript, but remember to keep the returned content similar, so that the methods
listening for the event to occur don't miss it.

Chapter 3

[69]

An overview of the _WidgetBase module
The _WidgetBase module provides the base class necessary to create a dijit
module. In itself, it's not a widget, but you can easily build a widget on top of it.
The widget created with the _WidgetBase module is bound to an element in the
HTML DOM, which can be referred to with its domNode attribute.

The _WidgetBase module also introduces a lifecycle to the widget. The lifecycle
refers to how the widget is created, built up, used, and torn down. This module
loads the following methods and events that occur within the lifecycle of the widget:

•	 constructor: This method is called on widget creation. There is no access to
the template, but values can be assigned and arrays can be accessed.

•	 parameters mixed into widget instance: The parameters you passed
into the object constructor, such as button labels, are added to the widget to
overwrite any pre-existing values.

•	 postMixinProperties: This is a step prior to rendering the widget HTML.
If you need to change or correct any values passed into the parameters or
something, this would be the time to do so.

•	 buildRendering: This is where the HTML templates are added in
place of the existing node, if templating is being used. If you're using the
_TemplatedMixin module, the template string is loaded into the browser,
rendered into HTML, and inserted in place of the existing domNode. Events
bound in the HTML data-* attributes are assigned here, as well.

•	 Custom setters are called: If you have added custom setter functions,
these will be called at this point.

•	 postCreate: Now that the HTML has been rendered, this function can do
more with it. Just be warned, the widget HTML may not be connected to the
document yet. Also, if this widget contains child widgets, they may not have
rendered yet.

•	 startup: This function can be called after all parsing and child-widget
rendering has finished. It is usually used when the widget needs to resize
itself through the resize() method.

•	 destroy: This function is called when this widget is torn down and removed,
either by closing the application, or whenever this function is called. The
parent classes typically handle the tear down events on their own, but if you
need to do anything unique before destroying the widget, this would be the
function to extend.

The Dojo Widget System

[70]

The _WidgetBase module has specialized getter and setter functions that allow you
to perform specific tasks when you set a widget property. You can retrieve the values
with the get() function and set these properties using the set() function. The first
argument of both get() and set() is the name of the property, and the second
argument in the set() method is the value. So, if you want to set the name of a
widget, you would call widget.set("name", "New Name"). There is also a watch()
method that can perform functions when a value changes through set().

Working with other _Mixins
The _WidgetBase module may not provide all the widget functionality your
application will need. The dijit package provides mixins, or JavaScript object
extensions, for your widget. These mixins can provide HTML templates, event
handling for clicks, touches, focus, and a lack thereof, for example. Loading the right
mixin with your application can save you a lot of behavior coding. Let's take a look
at some of the ones we may use.

Adding _TemplatedMixin
The _TemplatedMixin module lets the module replace its existing HTML content
with either a string template, or HTML from another source. The widget's template
string is assigned through the templateString property. This allows the widget
to skip a possibly complicated buildRendering step. You can see an example of a
_TemplatedMixin module call in the following code snippet:

require(["dojo/_base/declare", "dijit/_WidgetBase",
 "dijit/_TemplatedMixin"],
function (declare, _WidgetBase, _TemplatedMixin) {
 declare("ShoutingWidget, [_WidgetBase, _TemplatedMixin], {
 templateString: "I AM NOT SHOUTING!"
 });
});

As the templateString property is being rendered, properties can pass back and
forth between template and widget. Widget properties can be written to the template
during the buildRendering phase by referencing the property name in the widget,
and surrounding it with the ${} wrapper. You can also assign node references and
attach widget events using the HTML data attributes. The data-dojo-attach-
point attribute lets the widget have a named property that connects to the template.
The data-dojo-attach-event attribute attaches a callback method in the widget
that is triggered when the event is occurs. You can view the following example:

Chapter 3

[71]

<div class="${baseClass}">

 <button data-dojo-attach-event="onclick:doSomething">
 ${label}
 </button>
</div>

How should a developer lay out a template widget? The widget's
template HTML should all be contained in a single HTML element.
You can use a <div> tags, a <table> tags, or element tags you plan to
enclose the template in. If the template contains more than one element
at the base layer, the widget will not render and throw an error.

Adding _OnDijitClickMixin
The _OnDijitClickMixin module provides the ability for elements within your
template to be "clicked". This works, not only with click events using the mouse,
but through touch and keyboard events as well. Besides clicking and touching an
element, the user can tab until the element is highlighted, then press the Enter or
spacebar key to activate it.

If the _OnDijitClickMixin module is loaded, the developer can add event handlers
to the dijit template through the data-dojo-attach-event attribute. Within this
data attribute text value, add ondijitclick: followed by the name of your click
event handler. You must have this event handler pointing to a valid function, or
else the whole widget will fail to load. An example of a dijit template using the
clickMe(event) {} function is as follows:

<div class="clickable" data-dojo-attach-
 event="ondijitclick:clickMe"> I like to be clicked.</div>

As a side note, the function within the click event handler should be ready to accept
a one click event argument, and nothing else.

Adding _FocusMixin
The _FocusMixin module provides focus and blur events for your widget and its
components. For instance, if you have a widget that takes up more room when it's
focused, you could add an _onFocus() event handler to the object like this:

_onFocus: function () { domClass.add(this.domNode, "i-am-huge");}

The Dojo Widget System

[72]

On the other hand, when you want your widget to shrink back to its normal size,
you would add an _onBlur() event handler:

_onBlur: function() { domClass.remove(this.domNode, "i-am-huge");}

The event system
The event system within JavaScript is an important part of the language. JavaScript
was designed to respond to events in the browser and events caused by users.
A website may need to respond to the click of a user, or an AJAX response from
a server. With the language, you can attach functions called event handlers to
listen for events from certain elements in the page and the browser.

In the Dojo framework, events are listened to using the dojo/on module. When
assigning an event listener, the module function call returns an object that lets you
discontinue listening by calling the object's remove() method. Also, dojo/on has a
once() method that fires the event once, when the event occurs, then automatically
removes the event.

Some older ArcGIS API samples still use Dojo's old event handler,
dojo.connect(). Events handlers would be attached with
dojo.connect(), and removed with dojo.disconnect(). The Dojo
Foundation is currently depreciating dojo.connect(), and will drop it
from their code when Dojo moves to version 2.0. If you are maintaining
old code, please start migrating all dojo.connect() to dojo/on. With
the ArcGIS API, please pay attention to event names and results returned.
Names may change from CamelCase to dash-separated, and while
dojo.connect() can return more than one item in its callback,
dojo/on only returns a single JavaScript object.

Events are created using emit(). This function takes in a string name of the event,
and a JavaScript object you would want to pass to an event listener. The emit()
method is available for widgets using the dojo/Evented module, and those built
using the dijit/_WidgetBase module. It is also available through the dojo/on
module, but dojo/on.emit() requires an HTML DOM before the event name.

Now that we have a grasp of the Dojo framework, let's build something with it.

Chapter 3

[73]

Creating our own widget
Now that we know the basics of creating custom widgets, that is to say, dijits for our
web applications, let's put our knowledge into practice. In this part of the chapter,
we will transform the single-page application code we wrote in Chapter 1, Your First
Mapping Application into a dijit that can be used with any map. We'll then use that
dijit in a map application that can be expanded to include other dijits as well.

Picking up where we left off…
We finally received feedback from the Y2K Society about the census map we created
in Chapter 1, Your First Mapping Application. They liked how the map worked, but felt
it could use more polish. After a meeting with some group members, here is a list of
their feedback:

•	 The application should have sections at the top and the bottom to show titles
and a little bit about the society

•	 The colors should be warm and cheery, such as yellows
•	 Get rid of the plain black line work of the census layer data
•	 The application should let us do more than simply look at census data.

It should let us click on other buttons to do other things
•	 The census information needs to be more organized and grouped logically

in tables

In order to comply with their requests, we will need to reorganize our application
from Chapter 1, Your First Mapping Application. To fix the issue, we'll need to do
the following:

1.	 We will create a new full page app with a header and footer.
2.	 We will modify the style of the application.
3.	 We will represent the census map service using custom symbology.
4.	 We will add buttons to the header to launch the census popups.
5.	 We will move the infoTemplate data into separate HTML files.

The Dojo Widget System

[74]

The file structure for our application
In order to deliver a map that can do more than just show census data, we're going to
use the tools provided by the Dojo framework. We'll use elements of Dojo to lay out
the application, and turn our previous census map tool into its own widget. Instead
of a single page application, where the HTML, CSS, and JavaScript are mashed
together in the same file, we're going to separate the files into distinct components.

Let's start by organizing the project folder. It's a good idea to separate the styling
and scripts into separate folders. In our project folder, we'll add two subfolders to
the project folder. We'll name them css and js, for the stylesheet and script files,
respectively. Inside the js folder, we'll add another folder and name it templates.
This is where our widget templates will go.

In the main project folder, we'll create an HTML page called index.html. Next,
In the css folder, we'll create a file called y2k.css, which will be our application
stylesheet. We'll create two JavaScript files in our js folder: one called app.js
for our application, and another called Census.js for our widget. We'll stub out
template files in the js/templates folder for the census widget (Census.html),
plus some templates for our popups. The files should look something like the
following folder structure:

Chapter 3

[75]

Defining the layout with Dojo
To handle the layout of the application, we'll use a couple of the modules within
the dijit/layout package. This package has a number of UI containers with styled
looks and built-in UI behavior that we don't have to reinvent. We'll add the layout
elements and restyle them to fit our client's wishes. Let's look at the layout module
found within the dijit package.

Framing the page with BorderContainer
The BorderContainer container provides a common layout tool used with
Dojo. The BorderContainer container is extended from the LayoutContainer
module, which creates a layout that fills up the entire browser window without
scrolling. The LayoutContainer module (and by extension, the BorderContainer
module) allows content elements to be placed with a region attribute.
The BorderContainer container adds borders, spacing, and resizing elements
called splitters, which can be dragged to resize the content items.

The regions that can be assigned to content dijits inside the BorderContainer
container are as follows:

•	 Center: This positions the element at the center of the page, relative to the
other items. One element must be assigned this value.

•	 Top: This positions the element above the center element.
•	 Bottom: This positions the element below the center element.
•	 Right: This positions the element to the right of the center element.
•	 Left: This positions the element to the left of the center element.
•	 Leading: If the dir attribute of the page is set to "ltr" (left-to-right), the

leading element is placed to the left of the center element. If the dir
attribute is "rtl" (right-to-left), the leading element is placed on the right.

•	 Trailing: Layout is the opposite of the leading element, with "ltr" on the
right, and "rtl" on the left.

The Dojo Widget System

[76]

The BorderContainer module, and its parent LayoutContainer module, have a
design parameter that affects the containers surrounding the center element. When
the design parameter is set to its default value of headline, the top and bottom
panels take up the entire width of the container. The right, left, leading, and
trailing panels shrink to fit between the top and bottom panels. Alternatively, you
can set the design parameter to sidebar, and the panels on the sides will take up
the entire height, while the top and bottom panels are squeezed in between them.
The following figure shows example pages made with headline and sidebar designs.
The design parameter was the only parameter changed in the examples:

BorderContainer with 'headline' (left) and 'sidebar' (right) design attributes with ContentPanes

Inserting ContentPane
The ContentPane tile provides the general container used in most desktop Dojo
pages. ContentPane tiles can adjust to fit within their assigned places, and can
expand and shrink as the user resizes the browser. ContentPane tiles can house
HTML elements, such as other Dojo widgets and controls. They also have an href
attribute which, when set, will load and render the content of another HTML page.
The pages are loaded via XMLHttpRequest (XHR), therefore the loaded HTML
should be on the same domain, due to cross-origin issues.

Modifying the layout of our application
Looking at the requirements, we're going to use the BorderContainer containers
and some ContentPane tiles to create the header, footer, and the content of the
application. We'll take a standard HTML template pulling the necessary libraries,
then add the dijit content.

Chapter 3

[77]

In your application's folder, start by creating an HTML file called index.html. We'll
title it Y2K Map, and add the necessary meta tags and scripts to load the ArcGIS API
for JavaScript. We'll also load the dojo CSS stylesheet nihilo.css, to handle the
styling of the base styling of the dojo elements in the application. In order to apply
the style to our application, we'll also add a class of nihilo to the body element of
our HTML document. Finally, we'll add a link to our y2k.css file, which we'll create
soon. Your HTML document should look like the following:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no" />
 <title>Y2K Map</title>
 <link rel="stylesheet"
 href="http://js.arcgis.com/3.13/dijit/themes/nihilo/
 nihilo.css">
 <link rel="stylesheet"
 href="https://js.arcgis.com/3.13/esri/css/esri.css" />
 <link rel="stylesheet" href="css/y2k.css" />
 <script src="https://js.arcgis.com/3.13/"></script>
 </head>
 <body class="nihilo">
 </body>
</html>

Next, we'll add the BorderContainer container and the ContentPane tiles
inside the body tag. These will be built on basic <div> elements. We'll give the
BorderContainer container an id of mainwindow, a ContentPane tile at the top with
an id of header, another ContentPane tile with an id of map where our map will go,
and a ContentPane tile at the bottom with an id of footer. We'll also add a little
content to the header and footer, just to make it look nice. Here is an example:

<body class="nihilo">
 <div id="mainwindow" data-dojo-type="dijit/layout/BorderContainer"
 data-dojo-props="design:'headline',gutter:false,liveSplitters:
 true" style="width: 100%; height: 100%; margin: 0;">
 <div id="header" data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'top',splitter:true">
 <h1>Year 2000 Map</h1>

The Dojo Widget System

[78]

 </div>
 <div id="map" data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'center',splitter:true">
 </div>
 <div id="footer" data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'bottom',splitter:true"
 style="height:21px;">
 Courtesy of the Y2K Society
 </div>
 </div>
</body>

Since the client wanted a place to add multiple functions, including our census
search, we'll add a location for buttons in the upperright-handcorner. We'll create
a button containing <div>, and insert our census button as a dijit/form/Button
module. Using the dijit button will ensure that the styling of the part will go along
with the styling of the widget. Here is an example:

<div id="header"
 data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'top',splitter:true">
 <h1>Year 2000 Map</h1>
 <div id="buttonbar">
 <button data-dojo-type="dijit/form/Button"
 id="census-btn" >Census</button>
 </div>
</div>

To make the files work, we'll need to add a link to the main script file we'll run for
our app. We'll insert the app.js file as the last element inside the <body> tag, so that
loading the file doesn't cause the browser to block other downloads. In the following
code, you can see where we insert this:

 Courtesy of the Y2K Society
 </div>
 </div>
 <script type="text/javascript" src="js/app.js"></script>
</body>

Chapter 3

[79]

Within the app.js file, we're going to do just enough to get the visuals. We'll add
to this file as we go. We'll start with our normal require() statement, loading the
modules for the BorderContainer, ContentPane, and Button elements. We'll also
pull in a module called dojo/parser, which will parse the Dojo data-markup in the
HTML and turn it into application widgets. The code will be as follows:

require([
 "dojo/parser",
 "dijit/layout/ContentPane",
 "dijit/layout/BorderContainer",
 "dijit/form/Button",
 "dojo/domReady!"
], function(
 parser
) {
 parser.parse();
});

After all that work, our HTML should look something like the following:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no" />
 <title>Y2K Map</title>
 <link rel="stylesheet"
 href="http://js.arcgis.com/3.13/dijit/themes/nihilo/
 nihilo.css">
 <link rel="stylesheet"
 href="https://js.arcgis.com/3.13/esri/css/esri.css" />
 <link rel="stylesheet" href="css/y2k.css" />
 <script src="https://js.arcgis.com/3.13/"></script>
 </head>
 <body class="nihilo">
 <div id="mainwindow"
 data-dojo-type="dijit/layout/BorderContainer"
 data-dojo-props="design:'headline',gutter:false,
 liveSplitters: true"
 style="width: 100%; height: 100%; margin: 0;">
 <div id="header"

The Dojo Widget System

[80]

 data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'top',splitter:true">
 <h1>Year 2000 Map</h1>
 <div id="buttonbar">
 <button id="census-btn"
 data-dojo-type="dijit/form/Button">Census</button>
 </div>
 </div>
 <div id="map" data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'center',splitter:true">
 <div id="census-widget"></div>
 </div>
 <div id="footer"
 data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'bottom',splitter:true"
 style="height:21px;">
 Courtesy of the Y2K Society
 </div>
 </div>
 <script type="text/javascript" src="js/app.js"></script>
 </body>
</html>

Styling our application
If we run the application at this point, it won't look quite as expected. In fact, it'll
look a lot like a white screen. That is because we haven't assigned a size to our page
yet. In this case, the ContentPane tile styling creates positioned-looking panels, and
absolute positioning takes the content out of the calculated page flow. Since there
was nothing else to fill the height of the body, it collapsed to zero height.

A quick remedy to this issue is to update the styling of the HTML and the body tag.
Open up y2k.css in your text editor and add the following lines of CSS:

html, body {
 border: 0;
 margin: 0;
 padding: 0;
 height: 100%;
 width: 100%;
 font-size: 14px;
}

Chapter 3

[81]

This CSS we applied makes the page fill up 100 percent of our browser window.
Adding the border, margin, and padding takes away any possible formatting that
different browsers may insert into the page. We added the font size because it's good
practice to set the font size in pixels at the body level. Further font size assignments
can be made relative to this, using the em unit.

If you play your page now, you should see the following output:

The Dojo Widget System

[82]

It's definitely progress, but we need to fulfil the other requirements of the
application. First, the #buttonbar element would look better if we positioned it
precisely in the top-right, and left a little gap for the Census button to be centered
vertically. Next, we'll add some yellow hues to the different panels, and round off
the corners of the header and footer. We'll end up with the following stylized shell
for our application:

To make this happen, here's the CSS we'll add to our y2k.css:

h1 {
 margin: 2px 8px;
 display: inline-block;
 display: inline; / IE 7 compatible */
 zoom: 1; /* IE 7 compatible */
}

#buttonbar {
 position: absolute;
 top: 10px;
 right: 15px;
 width: auto;
 height: auto;
}

Chapter 3

[83]

#mainwindow,
#mainwindow .dijitSplitter {
 background: #fffaa9; /* paler yellow */
}

#header, #footer {
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 border-radius: 5px;
 border: 1px solid #6f6222;
}

#header { background: #ffec50; /* bold yellow */ }

#footer { background: #d0a921; /* darker yellow */ }

Adding our custom package
Before we can use our custom package, we need to tell Dojo where it is. To do that,
we'll need to add a dojoConfig object before we load the ArcGIS JavaScript API.
In the dojoConfig object, we'll add a package array object, and tell it that the y2k
modules are in the js folder. The script should look something like this:

<link rel="stylesheet" href="css/y2k.css" />
<script type="text/javascript">
 dojoConfig = {
 packages: [
 {
 name: 'y2k',
 location: location.pathname.replace(/\/[^\/]*$/, '') +
 '/js'
 }
]
 };
</script>
<script src="https://js.arcgis.com/3.13/"></script>

The Dojo Widget System

[84]

Setting up our app
Now we need to set up our application script and get things moving. We'll open our
app.js file and add the functionality for our map and our upcoming Census widget.
We'll start by adding references to the esri/map module and our y2k/Census
widget. We'll initialize our map just as we did in Chapter 1, Your First Mapping
Application, and we'll create a new Census widget. Following the pattern of many
dojo widgets, the Census widget constructor will take an options object for the first
parameter, and a string reference to an HTML node within the <div> map as the
second argument. We'll fill in the options later:

require([
 "dojo/parser",
 "esri/map", "y2k/Census",
 "dijit/layout/ContentPane",
 …
], function(
 parser, Map, Census
) {
 parser.parse();

 var map = new Map("map", {
 basemap: "national-geographic",
 center: [-95, 45],
 zoom: 3
 });

 var census = new Census({ }, "census-widget");

});

Perhaps you are wondering why some of the modules in our code start
with capital letters, while others do not. Common JavaScript coding
convention states that object constructors start with capital letters. The
Map and Census modules make maps and census widgets, therefore they
should be capitalized. Why the reference to the esri/map module isn't
capitalized is a mystery, and a source of errors if you get it wrong.

Chapter 3

[85]

Coding our widget
We need to start piecing together our Census widget. To do that, we'll use what
we've learned about creating custom widgets from earlier in the chapter. Within
the Census.js file, we'll create a shell widget using the define(), declare(),
and _WidgetBase modules. It should look something like the following code:

define([
 "dojo/_base/declare",
 "dijit/_WidgetBase"
], function (declare, _WidgetBase) {
 return declare([_WidgetBase], { });
});

For our widget, we'll want a template that instructs the user how to use the tool.
It might also be a good idea to let the user close the tool, since we don't want the
map to be cluttered with multiple tools:

define([
 "dojo/_base/declare",
 "dijit/_WidgetBase", "dijit/_TemplatedMixin",
 "dijit/_OnDijitClickMixin"],
function (declare, _WidgetBase, _TemplatedMixin,
 _OnDijitClickMixin) {
 return declare([_WidgetBase, _TemplatedMixin,
 _OnDijitClickMixin], { });
});

At this point, we need to load our template into our widget. To do that, we're going
to implement another dojo module called dojo/text.

Adding some dojo/text!
The dojo/text module lets the module download any sort of text file as a string.
The contents can be HTML, text, CSV, or any related text-based file. When loading
the file using AMD, the format is as follows:

require([…, "dojo/text!path/filename.extension", …],
function (…, textString, …) {…});

In the preceding example, the filename.extension describes the file name, such
as report.txt. The path shows the location of the file in relationship to the script.
So a path of ./templates/file.txt means that the file is located in the templates
folder, which is a subfolder of the folder where this widget script has been located.

The Dojo Widget System

[86]

The exclamation point in our declaration means that the module has a plugin
attribute that can automatically be called on load time. Otherwise, we would have
to wait and call it after the module loaded in our script. Another module where we
see this is dojo/domReady. The exclamation point activates that module, pausing our
application until the HTML DOM is ready as well.

Getting back to our application, it's time to load our dijit template.
The _TemplatedMixin module provides a property called templateString, which it
reads from to build the HTML portion of the dijit package. We'll use the dojo/text
module to load HTML from our Census.html template, then insert the string created
from that into the templateString property. It should look something like this:

define([
 …
 "dijit/_OnDijitClickMixin",
 "dojo/text!./templates/Census.html"
], function (…, _OnDijitClickMixin, dijitTemplate) {
 return declare([…], {
 templateString: dijitTemplate
 });
});

Our dijit template
For our template, we're going to take advantage of a few cool tricks in Dojo. The first
trick is that we can mix property values into our widget through the same substitute
templating we learned about in Chapter 1, Your First Mapping Application. Second,
we're going to take advantage of the _OnDijitClickMixin module to handle
click events.

For our template, we're looking at creating something with a title (such as "Census"),
some instructions, and a close button. We'll assign a close button event handler
through the data-dojo-attach-event attribute using ondijitclick. We'll also
assign a baseClass attribute from the widget to the CSS classes in the widget.
If you haven't created the Census.html file in your template folder, do so now.
Then, enter the following HTML content:

<div class="${baseClass}" style="display: none;">
 <span class="${baseClass}-close"
 data-dojo-attach-event="ondijitclick:hide">X
 Census Data

 <p>
 Click on a location in the United States to view the census
 data for that region.
 </p>
</div>

Chapter 3

[87]

What errors in the template could possibly cause the widget
not to load? If you are incorporating events, through the
data-dojo-attach-event parameter, make sure the callback
function in the template matches the name of the callback
function in your dijit. Otherwise, the dijit will fail to load.

Back in our code, we'll assign a baseClass property, as well as functions for hide()
and show(). Many dijits use those functions to control their visibility. Through those
functions, we'll set the display style attribute to either none or block, as shown in the
following code:

define([…, "dojo/dom-style"],
function (…, domStyle) { …
{
 baseClass: "y2k-census",

 show: function () {
 domStyle.set(this.domNode, "display", "block");
 },

 hide: function () {
 domStyle.set(this.domNode, "display", "none");
 }
});

Working with the dijit constructors
We'll need to add onto the dijit constructor function, but first we need to think
about what this dijit needs. Our original purpose for the dijit was to let the user
click on the map and identify census locations. So, we'll need a map, and since
we're identifying something, we'll need to supply a map service URL to the
constructor of the IdentifyTask object.

Following the trends of most dijit constructors, our dijit constructor will accept
an options object, and either an HTML DOM node, or a string id for that node. In the
options object, we'll look for a map, and a mapService URL. The second argument
in the constructor will be assigned as the dijit's domNode, or if it's a string, the
appropriate node will be found based off the string.

The Dojo Widget System

[88]

For our constructor, we'll incorporate the map into the widget, and turn the
mapService into an IdentifyTask. We'll also add the dojo/dom module to provide
a shortcut for the common JavaScript operation document.getElementById(),
and use that to transform a string id into a DOM element:

define([…, "dojo/dom", "esri/tasks/IdentifyTask", …],
function (…, dom, IdentifyTask, …) {
 …
 constructor: function (options, srcRefNode) {

 if (typeof srcRefNode === "string") {
 srcRefNode = dom.byId(srcRefNode)
 }

 This.identifyTask = new IdentifyTask(options.mapService);
 this.map = options.map || null;
 this.domNode = srcRefNode;
 },
 …
});

Reusing our old code
Looking back at Chapter 1, Your First Mapping Application, we were able to check out
the map, click on it, and get some results. Wouldn't it be great if we could reuse some
of that code? Well, with a few changes, we can reuse a lot of our code.

The first thing we need to tackle is assigning our map click event. Since we don't get
to do it all the time, the most logical time to assign the map click event is when our
dijit is visible. We'll modify our show and hide functions so that they assign and
remove the click handler, respectively. We'll name the map-click event handler
_onMapClick(). We're also going to load the module dojo/_base/lang, which
helps us with objects. We'll use the lang.hitch() function to reassign a function's
this statement:

define([…, "dojo/on", "dojo/_base/lang", …],
function (…, dojoOn, lang, …) {
 …
 show: function () {
 domStyle.set(this.domNode, "display", "block");
 this._mapClickHandler = this.map.on("click", lang.hitch(this,
 this._onMapClick));
 },

Chapter 3

[89]

 hide: function () {
 domStyle.set(this.domNode, "display", "none");
 if (this._mapClickHandler && this._mapClickHandler.remove) {
 this._mapClickHandler.remove();
 }
 },

 _mapOnClick: function () {}
 …

As a side note, while JavaScript doesn't support private variables, the typical naming
convention for JavaScript objects states that, if a property or method starts with an
underscore (_) character, it's considered private by the developer.

In our_onMapClick() method, we'll reuse the click event code from Chapter 1, Your
First Mapping Application, with a few notable exceptions. Remember now that we're
not referencing the map as a variable, but as a property of the widget. The same
thing is true for the IdentifyTask, and any other methods we may call in this dijit.
To refer to properties and methods within a method, the variable must be preceded
by this. In this case, this will refer to the widget, which we made sure of when we
used the dojo/_base/lang library on the _onMapClick() call. If your application
fails at the map click event, it's probably because you didn't properly assign the
variable with the correct this context:

define([…, "esri/tasks/IdentifyParameters", …],
function (…,IdentifyParameters, …) {
 …
 _onMapClick: function (event) {
 var params = new IdentifyParameters(),
 defResults;

 params.geometry = event.mapPoint;
 params.layerOption = IdentifyParameters.LAYER_OPTION_ALL;
 params.mapExtent = this.map.extent;
 params.returnGeometry = true;
 params.width = this.map.width;
 params.height= this.map.height;
 params.spatialReference = this.map.spatialReference;
 params.tolerance = 3;

 this.map.graphics.clear();
 defResults =
 this.identifyTask.execute(params).addCallback
 (lang.hitch(this, this._onIdentifyComplete));
 this.map.infoWindow.setFeatures([defResults]);
 this.map.infoWindow.show(event.mapPoint);
 },
 …

The Dojo Widget System

[90]

Loading more templates
The Y2K society had requested that we display the popups as something more
organized and logical. In our web developer minds, nothing screams organized
data more than a table. We can set up and organize tables for our templates, but
creating those long strings to organize a long list of results would be daunting.
Having HTML strings in our JavaScript code would be a pain to edit, since most
IDEs and syntax-highlighting text editors don't highlight HTML in our JavaScript.

But then we remember that we can load HTML into our JavaScript using the
dojo/text module. If we define the content of our InfoTemplates using little
HTML snippets, and load them using dojo/text, the process will be much
more streamlined:

define([…,
 "dojo/_base/array",
 "esri/InfoTemplate",
 "dojo/text!./templates/StateCensus.html",
 "dojo/text!./templates/CountyCensus.html",
 "dojo/text!./templates/BlockGroupCensus.html",
 "dojo/text!./templates/BlockCensus.html"
],
function (…,
 arrayUtils, InfoTemplate, StateTemplate, CountyTemplate,
 BlockGroupTemplate, BlockTemplate) {

 _onIdentifyComplete: function (results) {

 return arrayUtils.map(results, function (result) {
 var feature = result.feature,
 title = result.layerName,
 content;

 switch(title) {
 case "Census Block Points":
 content = BlockTemplate;
 break;
 case "Census Block Group":
 content = BlockGroupTemplate;
 break;
 case "Detailed Counties":
 content = CountyTemplate;
 break;
 case "states":
 content = StateTemplate;
 break;
 default:

Chapter 3

[91]

 content = "${*}";
 }

 feature.infoTemplate = new InfoTemplate(title, content);
 return feature;
 });
 }
 });
});

I'll leave the contents of the HTML infoTemplates up to you as an exercise.

Back to our app.js
We didn't forget about our app.js file. We stubbed out the code for loading the
map and the Census dijit, but we didn't assign anything else. We need to assign a
click event handler for Census button to toggle the visibility of the Census widget.
For that, we'll use the dijit/registry module to load the dijit button from its
id. We'll load the map and the mapService for the Census dijit, and add an event
listener to the Census button click event that will show the Census widget. We'll use
the dojo/_base/lang module again to make sure the Census.show() function is
properly applied to the Census dijit:

require([
 …
 "dojo/_base/lang",
 "dijit/registry",
 …
], function(
 … lang, registry, …
) {
 …
 var census = new Census({
 map: map,
 mapService:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/services/
 Census/MapServer/"
 }, "census-widget");

 var censusBtn = registry.byId("census-btn");

 censusBtn.on("click", lang.hitch(census, census.show));

});

The Dojo Widget System

[92]

When we run our code, it should look something like the following:

Summary
Over the course of this chapter, we have learned about many of the features offered
by the Dojo framework, which is packaged with the ArcGIS API for JavaScript.
We've learned about the three major packages in Dojo, and how to use them to
create applications. We learned how to create our own modules, and we modified an
existing application to make a module that could be imported into any application.

In the next chapter, we will learn how the ArcGIS API for JavaScript communicates
with ArcGIS Server through REST services.

[93]

Finding Peace in REST
We've spent a few chapters discussing and building applications using the
ArcGIS API for JavaScript. We've used different API tools to communicate with
ArcGIS Server about its map services. But how does the API communicate with
ArcGIS Server?

In this chapter, we'll focus on ArcGIS Server. We'll look at how it implements
a REST interface. We'll review the ArcGIS REST API, outlined at http://
resources.arcgis.com/en/help/arcgis-rest-api/#/The_ArcGIS_REST_
API/02r300000054000000/. This describes the file structure and the format of
the data that passes between the server and the browser. Finally, we'll extend the
application from the previous chapter by changing the popup highlighted symbols.

What is REST? REST stands for Representational State Transfer. It's a software
architecture that focuses on the interface between server and client using a
hypermedia environment. It limits the actions that can be performed between the
client and the server, but provides enough user information and documentation for
the user to navigate amongst data and states.

In our discussion of ArcGIS Server and REST in this chapter, we'll cover the
following topics:

•	 Handling REST endpoints and data formats
•	 The hierarchy of ESRI REST Services, as seen through a browser
•	 Common REST data in JSON format
•	 How to use ArcGIS REST Services and JSON as defined in the REST API

Requirements for a REST service

REST is a methodology based around web pages. A website presents a state
(the URL), data transfer (HTML page, CSS, and JavaScript), and a well-documented
way to navigate between the different states (links). While understanding a website
to be RESTful is well and good, what makes ArcGIS Server so RESTful?

http://resources.arcgis.com/en/help/arcgis-rest-api/#/The_ArcGIS_REST_API/02r300000054000000/
http://resources.arcgis.com/en/help/arcgis-rest-api/#/The_ArcGIS_REST_API/02r300000054000000/
http://resources.arcgis.com/en/help/arcgis-rest-api/#/The_ArcGIS_REST_API/02r300000054000000/

Finding Peace in REST

[94]

In order for a web service to be considered RESTful, it must meet the
following requirements:

•	 Client-Server: The roles of the client and server are clearly defined. The
client doesn't care if the server contains one or one million records, and
the server does not depend on a particular UI for the client. As long as the
interface between the client and server remains the same, the client and
server code can be changed independently.

•	 Stateless: The client handles the state of the application, whereas the server
does not have to keep up with it. The client has all it needs to make a request,
including the necessary parameters and security tokens.

•	 Cacheable: Sometimes client applications cache data for faster performance
because the World Wide Web delivers data asynchronously. The server
needs to tell the client which requests can be cached and for how long.

•	 Layered system: The server-side application can be placed behind a load
balancer, a secure system, or a proxy, with no noticeable effect on the client-
side application.

•	 Code on demand (optional): The server can provide code for the client
to run. Examples include Java applets or JavaScript scripts. Not all REST
services do this.

•	 Uniform interface: With a REST service, the server provides a uniform
interface through which the client can interact with the data. The uniform
interface can be broken down further into four principles.

°° Information requests that include the identification of the resource.
This includes everything from the data source to the output type.

°° The client has enough information from a request to manipulate or
delete data.

°° Messages from the server contain instructions about how to
use them.

°° A state is handled by the client using hypermedia (web pages,
query parameters, and session states).

If you look into the ArcGIS Server implementation, you'll see that it meets these
criteria. Therefore, it's considered RESTful.

Chapter 4

[95]

Looking at a map server
ArcGIS Server provides web access to its map service contents. To access the content,
you need to know the ArcGIS Server name and the site name. By default, ArcGIS
Server is reached through port 6080. It can also be reached through port 80 if it has
been configured and licensed to deliver web content. REST Service endpoints can be
reached through your browser with this address:

http://<GIS Server Name>:6080/<site name>/rest/services

Where GIS Server Name refers to the ArcGIS Server machine, and site name
refers to the ArcGIS Server instance which, by default, is arcgis, the port number
is optional if ArcGIS Server has been set up to deliver traffic on port 80. This is the
default port for Internet traffic.

When there are multiple GIS Servers, often handling a large load of traffic or
complicated services, a web adaptor may be installed. The web adaptor routes traffic
to multiple ArcGIS Servers, based on service requests, load balancing, and other
related issues. The web adaptor also provides a layer of security, whereby ArcGIS
Server machine names are not directly exposed to the outside world. To access the
REST service through the web adaptor, use the following URL.

http://<web server name>/<web adaptor name>/rest/services

As long as ArcGIS Server is accessible from our computer, we can access information
in the web browser. By default, the service data is presented as HTML. From there
we can see the properties of the REST service, and follow links to other services and
actions on the server. This lets developers review and test map services, independent
of any application they create.

ArcGIS REST services provide a great way to view and interact with service data
using HTML, which is good for presentation. Almost all of our applications will
interact with the REST service through server requests. ArcGIS Server can therefore
communicate through REST using another data format called JSON.

Working with JSON
JavaScript Object Notation (JSON) provides a structured data format for loosely
defined data structures. A JSON object is built with other JSON objects, including
strings, numbers, other objects, and arrays. Any data is allowed, as long as
everything is self-contained and there is no sloppy formatting with missing
brackets and braces.

Finding Peace in REST

[96]

There are a number of ways to test for valid JSON. Visit http://jsonlint.com,
where you can copy and paste your JSON and submit it for validation. It will point
out missing or broken formatting issues, as well as how to resolve them.

As you read through the examples in this book you'll see that JSON isn't always
formatted in the same way, especially with JSON object key fields (or property
names). JSON validators require that all string items are enclosed in quotes. Single
or double quotes will work, as long as you put the same marks at the end of a string
as those at the beginning. This includes both JSON object key fields. JavaScript
interpreters in a browser are more flexible, key fields do not have to be enclosed by
quotes. It all depends on how you're testing the JSON.

Before JSON was developed, data was passed from server to client in a format called
Extensible Markup Language (XML). XML is a document markup language that
shows data in a format both humans and machines can read. The XML format can be
read and parsed by a number of programming languages.

There are two main reasons why JSON is the preferred data format for web
applications when compared to XML. First, JSON data can be consumed
immediately by JavaScript applications. XML requires extra steps to parse the data
into a usable object. Secondly, JSON data takes up less space. Let's explore that by
comparing two snippets of data. The following snippet is written in XML:

<mountain>
 <name>Mount Everest</name>
 <elevation>29029</elevation>
 <elevationUnit>ft</elevationUnit>
 <mountainRange>Himalaya</mountainRange>
 <dateOfFirstAscent>May 29, 1953</dateOfFirstAscent>
 <ascendedBy>
 <person>
 <firstName>Tenzing</firstName>
 <lastName>Norgay</lastName>
 </person>
 <person>
 <firstName>Edmund</firstName>
 <lastName>Hillary</lastName>
 </person>
 </ascendedBy>
</mountain>

http://jsonlint.com

Chapter 4

[97]

Now, here's the same data written in JSON:

{
 "type": "mountain",
 "name": "Mount Everest",
 "elevation": 29029,
 "elevationUnit": "ft",
 "mountainRange": "Himilaya",
 "dateOfFirstAscent": "May 29, 1953",
 "ascendedBy": [
 {
 "type": "person",
 "firstName": "Tenzing",
 "lastName": "Norgay"
 },
 {
 "type": "person",
 "firstName": "Edmund",
 "lastName": "Hillary"
 }
]
}

The same data in JSON counts 62 characters less than that in XML. If we take
out the line breaks and extra spaces, or minimize the data, the JSON data is
93 characters shorter than the minimized XML. With bandwidth at a premium,
especially for mobile browsers, you can see why JSON is the preferred format for
data transmission.

JSON and PJSON formatting
JSON comes in two flavors. The default JSON is minimized, with all the extra spaces
and line returns removed. Pretty JSON, or PJSON for short, contains line breaks
and spacing to show the structure and hierarchy of the data. The previous Mount
Everest example shows what PJSON looks like. While PJSON is easier to read, and
therefore easier to troubleshoot for errors, the minimized JSON is much smaller. In
the example, the PJSON has 397 characters, while the minimized version has only
277 characters, a 30 percent decrease in size.

Finding Peace in REST

[98]

When viewing ArcGIS REST service data, you can change the format of the data
by adding an f query parameter to the REST Service URL. It should look like the
following URL:

http://<GIS web service>/arcgis/rest/services/?f=<format>

Here, you can set f=JSON to receive the raw JSON data, or f=PJSON to receive the
human-readable pretty JSON (or padded JSON, if you prefer). Some browsers, such
as Google Chrome and Mozilla Firefox, offer third party extensions that reformat
raw JSON data into PJSON without making the request.

Service levels
Let's start by viewing the sample ArcGIS Server services at http://sampleserver6.
arcgisonline.com/arcgis/rest/services. When we request the page as HTML,
we notice a few things. First, the version of ArcGIS Server is shown (version 10.21
at the time of writing). The version number is important because many features and
bits of information may not be present in older versions. Secondly, we see a list of
links pointing to folders. These are map services grouped in any way the publisher
chooses. We also see a list of map service links below the folder lists. Finally, at the
bottom of the page, we see supported interfaces. In this site, we can see the REST
interface that we're familiar with. The other interfaces will not be covered in this
book. Here's a picture of the service:

http://sampleserver6.arcgisonline.com/arcgis/rest/services
http://sampleserver6.arcgisonline.com/arcgis/rest/services

Chapter 4

[99]

If we change the format of the REST Service request in our browser to Pretty JSON,
by adding ?f=pjson to the end of the URL, we can see roughly how the ArcGIS
JavaScript API would see this location:

Here, the JSON object returned includes the numeric currentVersion, an array of
folder names, and an array of services objects. The service JSON objects contain a
name and a type attribute, which tells you what kind of service you're dealing with,
and gives you the components you need to construct the URL link to those services.
This format is as follows:

http://<server>/arcgis/rest/services/<service.name>/<service.type>

If we follow the link to our census map service, we can see more details.

Finding Peace in REST

[100]

Map services
A map service gives applications access to map data published with ArcGIS Server.
It contains information about the map layout, format, contents, and other items
necessary to properly render the map with the various ArcGIS API's. The map
service URL is formatted as follows:

http://<ArcGIS Server REST Services>/<mapName>/MapServer
or
http://<ArcGIS Server REST Services>/<folder>/<mapName>/MapServer

When you navigate to a map service using your browser, you're presented with a
lot of information about the map service. The HTML provides links to view the data
in different applications, including the ArcGIS JavaScript API and ArcMap. Google
Earth is also available if the map service is published to serve data in that format. The
HTML for the map service also provides a lot of metadata to help you understand
what it's offering. These properties include the Description, Service Description,
Copyright Text, and the Document Info.

Some of the map service properties can be difficult to understand without some
context. We'll review some of the important ones. Remember that properties in this
list show how they are listed in the HTML. When shown in JSON, these items are
camel-cased (first letter lowercase, no spaces, and capital letters to start each new
word after the first).

•	 Spatial reference: How the layout of the map compares with the real world,
which we'll discuss a little later.

•	 Single fused map cache: Lets you know whether the map data has
been cached, or if it is dynamic. You can load the layer by using either
ArcGISTiledMapServiceLayer or ArcGISDynamicMapServiceLayer,
respectively.

•	 Initial extent/full extent: When you first load the map with the ArcGIS
JavaScript API, the initial extent describes the bounding box of the area you
see the first time. The full extent is the expected full area of the map service,
which may be much wider than all the data.

•	 Supported image format types: When ArcGIS Server draws the map
layers as tiles, these are the image formats that can be returned. PNG32 is
recommended if your data has a lot of semi-transparencies and colors,
while PNG8 works well with very simple symbols.

Chapter 4

[101]

•	 Supports dynamic layers: If true, the developer can change the symbology
and layer definitions when displaying the map service.

•	 Max record count: When submitting a query, identify or some other search,
this is the maximum number of results that can be returned by the map
service. This information can only be changed by server-side changes to
the map service.

Finally, the Map Service HTML provides links to a number of related REST
Service endpoints. Most of these links extend the existing URL and provide
more information about the map service. As a bare minimum, the following
should be present:

•	 Legend: Displays the symbology of the layers in the map service.
•	 Export map: This feature lets you download an image showing an area of the

map that fits within a specific bounding box. You can specify parameters.
•	 Identify: This lets you identify features within all layers of a map

service, based on the geometry passed in. This functionality is used by
IdentifyTask.

•	 Find: This lets the user search for features based on the presence of a line of
text passed to it. This functionality is implemented by FindTask.

Map service layers
When exploring the layers of a map service, it helps to know what to look for.
Map services list the basic contents of their layers within an array of objects in
their layer properties.

All layer objects have the same format, with the same properties. Each layer object
has a numeric id property that refers to the layer's zero-based position in the list.
Layer objects also have a name property that comes from how the layer was named in
the map service. These layers also have a minScale and maxScale property, showing
the range within which the layer is visible (with a 0 value meaning there is no
minScale or maxScale limitation). When determining visibility, the layer object also
contains a Boolean defaultVisibility property that describes whether the layer is
initially visible when the map service loads.

Finding Peace in REST

[102]

Map service layer objects also contain information about their layer hierarchy.
Each map layer object contains a parentLayerId and a subLayerIds property.
The parentLayerId is a number that refers to the index of the parent group layer
for the specific layer. A parent layer id of -1 means the layer in question has no
parent layer. The subLayerIds are an integer array of the indexes where you can
find the sublayers for the particular parent layer. If a layer has no sublayers, the
subLayerIds will be a null value, instead of an empty list. You can see an example
of map service layers in the following code:

layers: [
 {
 "id" : 0,
 "name" : "Pet Lovers",
 "parentLayerId" : -1,
 "defaultVisibility" : true,
 "subLayerIds" : [1, 2],
 "minScale" : 16000
 "maxScale" : 0
 },
 {
 "id" : 1,
 "name" : "Dog Lovers",
 "parentLayerId" : 0,
 "defaultVisibility" : true,
 "subLayerIds" : null,
 "minScale" : 16000
 "maxScale" : 0
 },
 {
 "id" : 2,
 "name" : "Cat Lovers",
 "parentLayerId" : 0,
 "defaultVisibility" : true,
 "subLayerIds" : null,
 "minScale" : 16000
 "maxScale" : 0
 }
],
 …

In the preceding snippet, the map service has three layers. The Pet Lovers layer is
actually a parentLayer, and corresponds to a group layer assigned in an ArcMap
.mxd file. There are two layers in parentLayer: Dog Lovers and Cat Lovers. All
layers are visible by default, and the layers do not appear until the map is at a scale
lower than 1:16,000, according to minScale. The maxScale property is set to zero,
meaning there is no maximum scale where the layer turns off again.

Chapter 4

[103]

Feature services
Feature services are similar to map services, but provide more functionality. Their
content can be edited, if the database and map settings support those operations.
They display their feature symbology without the need of a legend service. Their
symbology can also be modified client-side, by changing their renderer. The URL of
a feature service is similar to a map service, except that it ends with FeatureServer,
as shown in the following:

http://<GIS-web-
 server>/arcgis/rest/services/<folder>/<mapname>/FeatureServer

The feature service differs first and foremost in its capabilities. Apart from allowing
you to query data, feature service capabilities allow the user to create, update, and/
or delete records. Those familiar with CRUD operations will recognize those words
as the C, U, and D in CRUD (the R stands for read, which is what happens when
you query for results). The capabilities include editing if create, update, or delete are
allowed. Also, if the feature service supports file attachments to data, such as photos,
the capabilities will include the word "upload".

There are other feature service properties that may help you learn more about the
service. They include the following:

•	 Has Versioned Data: Lets you know that the geodatabase has versioning
enabled, which allows edits to be undone/redone.

•	 Supports Disconnected Editing: Data can be checked out and edited in an
environment without an Internet connection. When the application connects
to the Internet again, the data can be checked back in.

•	 Sync Enabled: If this is true, feature data can be synced between the
geodatabase the data comes from, and another geodatabase (a topic for
another book).

•	 Allow Geometry Updates: If editing is allowed, this lets the API know if
the feature geometries can be edited or not. Due to certain permissions, the
application might only allow for updates to the feature attributes, while the
geometries remain unchanged.

•	 Enable Z Defaults: If the data contains height data (z), default values are
assigned in the map service.

Finding Peace in REST

[104]

Layer level
Map services and feature services are made up of layers. These layers group together
geographic features with the same geometry type and the same sets of properties.
Layers are referred to by their numerical index in the list. The layer index starts at 0
for the bottom layer, and goes up one for each additional layer. The URL might look
something like this for the first layer in a map service:

http://<GIS-web-
 server>/arcgis/rest/services/<folder>/<mapname>/MapServer/0

Map layers offer a whole host of data to help you understand what you're viewing.
The layer's name property comes either from its name in the .mxd file, or from the
layer in the Table of contents, if the file is unsaved. The map layer also provides a
description, and copyright data. The display field property tells the map service
what to use when labeling features, if labeling is turned on.

Map layers also provide important data that you can use in your application.
The type parameter tells you the geometry of the layer, whether it's a point, line,
or polygon. Default visibility lets you know if the layer was originally visible or not
when the map service began. Minimum scale and maximum scale affect visibility,
depending on your zoom level. The map service also lets you know if the layers have
attachments, can be modified with different renderers, and how many results can be
returned from a query.

Fields
A map service layer provides information about its attribute by means of the field
property. The field property is an array of field objects with similar formats. All
fields have a type, a name, and an alias attribute. The type refers to the data type
of the field, whether it's a string or an integer, or something else. A current list
of supported types can be found at http://resources.arcgis.com/en/help/
arcgis-rest-api/#/field/02r300000051000000/. The name attribute is the field
name for the property, as found in the geodatabase. Field names don't contain spaces
or special characters.

http://resources.arcgis.com/en/help/arcgis-rest-api/#/field/02r300000051000000/
http://resources.arcgis.com/en/help/arcgis-rest-api/#/field/02r300000051000000/

Chapter 4

[105]

The alias field is a string that shows the field name for presentation purposes.
Unlike the field name, the alias can have spaces or other special characters. If no
alias is assigned in the geodatabase or the map service, the alias field is the same
as the field name. For instance, when creating the map service with ArcMap, you
might have some data for a block with a field name NUMB_HSES. If you want to show
the values for this property in a chart, the field name may look rough and a little
confusing. You can then add an alias to the NUMB_HSES field by calling it Number of
Houses. That alias provides a much better description for the field:

{
 "type": "esriFieldTypeInteger",
 "name" "NUMB_HSES",
 "alias": "Number of Houses"
}

Domains
Field objects may also have domain attributes assigned to them. Domains are
limitations on field values imposed at the geodatabase level. Domains are uniquely
created in the geodatabase, and can be assigned to feature classes and table fields.
Domains make it easier to input the correct values by restricting what can be entered.
Instead of allowing users to mistype street names in a report service, for instance,
you might provide a field with a domain containing all the correctly typed street
names. The user can then select from the list, rather than have to guess how to spell
the street name.

The ArcGIS REST API supports two varieties of domains: ranges and coded values.
Ranges, as the name implies, set a minimum and maximum numeric value for
a feature attribute. One example of a range might be an average user rating for
restaurants. The restaurant might get somewhere between one and five stars, so you
wouldn't want a restaurant to accidently get a value of 6 or a value of less than 1.
You can see an example of a rating field with that range domain in this snippet:

{
 "type": "esriFieldTypeInteger",
 "name": "RATING",
 "alias": "Rating",
 "domain": {
 "type": "range",
 "name": "Star Rating",
 "range": [1, 5]
 }
}

Finding Peace in REST

[106]

A coded value domain provides a list of code and value pairs to use as legitimate
property values. The coded value list contains items with a name and a code. The
code is the value stored in the geodatabase. The name is the text representation of the
coded value. They're useful in that users are forced to select a valid value, instead of
mistyping a correct value.

In the following example, we can see a field with a coded value domain. The field
contains state abbreviations, but the domain allows the user to see entire state names:

{
 "type": "esriFieldTypeString",
 "name": "STATE",
 "alias": "State",
 "length": 2,
 "domain": {
 "type": "codedValue",
 "name": "State Abbreviation Codes",
 "codedValues": [
 {"name": "Alabama", "code": "AL"},
 {"name": "Alaska", "code": "AK"},
 {"name": "Wisconsin", "code": "WI"},
 {"name": "Wyoming", "code": "WY"}
]
 }
}

In the preceding example, state names are stored in two letter code form. The
domain provides a full name reference table with the full names of the states. If you
were to send queries for features using this field, you would use the code values.
Querying for all features where STATE = 'Alaska' would yield no results, while a
query where STATE = 'AK' may give you results.

Note that the code and the value don't have to be of the same
type. You can have numeric codes for, say, water line part
numbers, and coded values to show their descriptive names.

Related tables
Tables with non-geographic data can be published in a map service. These tables
may provide data related to map features, such as comments on campground
locations or the sales history of a property. These tables can be searched and
queried like features. Relationships between map layers and tables can also be
published and searched.

Chapter 4

[107]

Layers and tables can be joined, either by using geodatabase relationship classes,
or ad-hoc relationship assignments in ArcMap. When published with ArcMap,
those relationships are preserved in ArcGIS Server. The connection between related
features and tables is stored within the relationships property of the layer
and table. A developer can query related data, based on a selection in the parent
feature class.

Relationship objects have the same general format. Each relationship object
contains a numerical id and relatedTableId. The relatedTableId is linked
to the RelationshipQuery object to query for related results. The role describes
whether the current layer or table is the origin or the destination of the relationship.
Cardinality describes whether a single origin object has one or several destinations
related to it.

When querying for results, results return much faster if you
start with the origin and use RelationshipQuery on the
destination tables. Starting with the destination tables may take
significantly longer.

Common JSON objects
The ArcGIS REST API defines the formats for JSON data objects commonly used by
the system. The ArcGIS API for JavaScript uses this format to communicate with the
server. When you look at the network traffic in your browser's developer console,
you'll see these common JSON objects in both the requests and responses. Let's look
more closely at two of these JSON object definitions: geometries and symbols.

Geometries
Geometry JSON is a common data format used for ArcGIS Server processes. It makes
sense, since finding geographic locations relies on geometry. Geometries come in a
variety of shapes and sizes.

Spatial reference
As mentioned in previous chapters, spatial reference refers to the calculations
that represent the earth on a map, either as a spheroid (almost a sphere), or as a
2-dimensional representation of a land surface. Instead of documenting all the
possible factors that go into calculating a spatial reference, a general format is
followed, either by using an assigned well-known ID (WKID), or well-known
text (WKT).

Finding Peace in REST

[108]

For spatial references with well-known ids, the spatial reference JSON is made up
of one required parameter (WKID), and three optional parameters. The WKID is a
numerical reference to the spatial reference, which can be searched at http://www.
spatialreference.org. Common values include wkid 4326, which stands for
WGS84, and is typically used for latitude and longitude. Optional spatial reference
object parameters include the latest WKID or latestWkid, a vertical coordinate
system WKID or vcs Wkid, and the latest vertical coordinate system WKID or
latest vcs Wkid. The last two are used for features with three-dimensional
points, including height.

Spatial references can also be defined using strings, in the case of the well-known
text. The well-known text details the necessary items used to flatten the map
mathematically.

We will not be calculating anything with spatial references. For our applications,
we'll use them either for data comparison, or as parameters for service requests. Let's
say we need the latitude and longitude coordinates for the results of a query, but the
data isn't in a decimal degree latitude/longitude spatial reference. We can query the
data, but set the query.outSpatialReference to wkid 4326, and ArcGIS Server
performs the necessary calculations to give us the results in the format we need.

Points
Points are the simplest geometry, and therefore the simplest to explain. They have
three required parameters, an x value, a y value, and a spatialReference value.
The x value refers to the longitude, or easting value, depending on the coordinate
system. The y value refers to the latitude or the northing value. Points may also have
an optional z value to describe the height, and an optional m value to describe the
slope. You can see an example of a point REST object in the following:

// a two-dimensional point
{x: -95.25, y: 38.09, spatialReference: {wkid: 4326}}

// a three-dimensional point
{x: -38.93, y: -45.08, z: 28.9, spatialReference: {wkid: 4326}}

In the preceding example, the point has an x and y value, plus a spatial reference.
As we learned in the previous section, a well-known id of 4326 means the x and
y values are longitude and latitude. In the second example, a z value was added,
indicating a height.

http://www.spatialreference.org
http://www.spatialreference.org

Chapter 4

[109]

Multipoints
Multipoints, as you may recall from previous chapters, define a cluster of points.
The points share the same spatial reference (spatialReference). Multipoints define
points by using a points property, which is a two dimensional array of points. The
lowest array contains the x, y, and possibly z (height) and m (slope) values. If the
points contain z and/or m values, the multipoint JSON will also have true values for
its hasZ and hasM properties:

// a two-dimensional multipoint
{
 "points": [[12.831, 48.132], [19.813, 49.908], [-90.10,
 83.132]],
 "spatialReference": {wkid: 4326}
}

This example shows three points grouped together as a multipoint, with locations
defined using latitude and longitude coordinates (wkid 4326).

Polylines
Polylines can be either one line, or a group of lines, that describe the same linear
feature on a map. The polylines JSON is made up of a spatial reference and a
three-dimensional array of points in its paths property. The lowest level of the
polyline paths array contains the x, y, and possibly z and m coordinates for a point
on the line. If z and m values are present, the polyline JSON object has its hasZ and
hasM values set to true, respectively.

A polyline may contain more than one line. For instance, if part of a railroad line is
abandoned, the railroad still owns the lines on either side of that section. The two
good sections would still be considered a polyline. This is why the polyline contains
three levels of arrays. The preceding code symbolizes a single line with a string of
latitudinal and longitudinal coordinates:

// a two dimensional path.
{
 "paths": [[[43.234,-28.093], [44.234,-32.232], [43.239,-33.298],
 [49.802,-35.099]]],
 "spatialReference": {wkid: 4326}
}

Finding Peace in REST

[110]

Polygons
Polygons provide a solid shape to areas. A polygon JSON is made up of a spatial
reference and a rings parameter. The rings parameter contains a triple array with
one or more lists of points, where the last point is the same as the first point. In this
way, the polygon closes in on itself and provides an interior and an exterior. The
points within the polygon rings can contain z values for height. In that case, the
polygon would have the optional hasZ property set to true.

A polygon JSON can contain more than one closed loop of points, and these
polygons are called multipart polygons. An example of this would be a plot of
land that has a road built down the middle of it. If the road no longer belongs to the
owner, the owner still retains ownership of the two halves of the property divided by
the road. Since the land used to be as one, it is still treated as one unit, but with two
parts. The following JSON code illustrates a multipart polygon. The polygon has two
rings, each with three points:

// a two dimensional polygon with two rings.
{
 "rings": [[[-85.032,18.098], [-85.352,18.423], [-85.243,18.438],
 [-85.032,18.098]], [[85.042,18.098], [84.995,18.008],
 [85.123,18.900], [85.042,18.098]]],
 spatialReference: {wkid: 4326}
}

Envelopes
Envelopes, also known as extents, are the bounding boxes that represents the
minimum and maximum x and y values for items on the map. The following
example shows an area between 42.902 degrees and 53.923 degrees longitude,
and -23.180 degrees and -18.45 degrees latitude:

{
 "xmin": 42.902, "xmax": 53.923, "ymin": -23.180, "ymax": -18.45,
 "spatialReference": {wkid: 4326}
}

Chapter 4

[111]

Symbols
The symbol JSON contains the minimum amount of data necessary to describe
the properties of the symbols. As we learned in previous chapters, a graphics
symbol describes the appearance of the graphic, affecting the color, line thickness,
and transparency, among other features. Different geometry types have
corresponding symbol types to demonstrate their features. We're going to
look at how the ArcGIS REST API describes the different symbol types,
and how to use them in our application.

Color
Colors are defined in ArcGIS REST services as three to four element arrays with
integer values from 0 to 255. The first three values stand for the red, green, and blue
color values, respectively. Higher numbers mean lighter colors, and lower numbers
mean darker colors, with [0, 0, 0] representing the color black.

The fourth value refers to the alpha, or the opacity of the color. A value of 255
is completely opaque while a value of 0 is completely transparent, and a value
somewhere in between is somewhat see-through. If the fourth value is left out,
it is considered to be completely opaque (255). This description differs from the
esri/Color description of opacity, which defines the value as a decimal value
between 0.0 and 1.0.

Simple line symbol
As for symbols, we start with the simple line symbol because it is used by all the
other symbols. The line consists of four basic properties: a type, a style, a width,
and a color. The type, esriSLS, is always the same for a simple line symbol. The
width describes a pixel width for the line, and color describes the numeric RGB
value described in the previous color section. style is one of several string constants
prefixed by esriSLS. The choices include Solid, Dash, Dot, DashDot, DashDashDot,
and Null. You can see an example of a JSON simple line symbol definition in the
following snippet:

{
 type: "esriSLS",
 style: "esriSLSDash",
 width: 3,
 color: [123,98,74,255]
}

Finding Peace in REST

[112]

Simple marker symbol
The simple marker symbol describes the style of a simple point and is made up of
the following properties: a type, style, color, size, angle, xoffset, yoffset,
and outline. The type is always esriSMS for these symbols. Styles are defined
in a similar way to the simple line symbol, except that all styles are prefixed with
esriSMS. The style can be chosen from a Circle, Cross, Diamond, Square, X, or
Triangle. Angle defines the rotation of the symbol, while xoffset and yoffset
describe how far the drawn point is away from the real point. Size is numeric, and
measures the pixel size of the graphic. Finally, outline accepts a simple line symbol
definition to describe the border of the point graphic:

{
 type: "esriSMS",
 style: "esriSMSCircle",
 color: [255,255,255,50],
 size: 10,
 angle: 0,
 xoffset: 0,
 yoffset: 0,
 outline: {
 width: 1,
 color: [0,0,0]
 }
}

Simple fill symbols
Simple fill symbols can be described by the following properties: type, style, color,
and outline. Type is always esriSFS, and all styles start in the same way. Styles
consist of Solid, Null, and various other ways to describe lines drawn within the
graphic. Outline, like the simple marker symbol, uses the simple line symbol to
describe the border of the polygon. Look at the following code for an example of a
JSON description:

{
 type: "esriSFS",
 style: "esriSFSSolid",
 color: [123, 99, 212, 120],
 outline: {
 type: "esriSLS",
 style: "esriSLSDashDot",
 width: 3,
 color: [123, 99, 212]
 }
}

Chapter 4

[113]

Picture marker symbol
The picture marker symbol describes a point symbol with a picture graphic.
The symbol JSON for this includes unique properties such as url, imageData,
contentType, width, and height, as well as properties common to the simple
marker symbol (type, angle, xoffset, and yoffset). The URL links to the image
you want to see with the features. Width and height describe how large you want
the image to be in pixels. ContentType refers to the file extension, such as image/
png for a .png file. Finally, imageData is populated by the base64 string that can be
translated into an image file. Refer to the following example:

{
 type: "esriPMS",
 url: "images/Cranston.jpg",
 imageData: "iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAAA…",
 contentType: "image/jpg",
 width: 24,
 height: 24,
 angle: 0,
 xoffset: 0,
 yoffset: 0
}

Picture fill symbol
The picture fill symbol can be added to a polygon to show an image tiled inside
the shape. The picture fill symbol has many of the same parameters as the picture
marker symbol, including url, imageData, contentType, width, height, angle,
xoffset, and yoffset. It requires the line symbol JSON for the outline. It accepts
its own numeric xscale and yscale parameters, which shrink or stretch the images
shown within the feature. You can see an example of a picture fill symbol JSON here:

{
 type: "esriPFS",
 url: "images/foliage.png",
 imageData: "iVBORwoadfLKJFDSFKJLKEWIUnjnKUHWkunUWNkJNiuN…",
 contentType: "image/png",
 outline: {
 type: "esriSLS",
 style: "esriSLSSolid",
 width: 3,
 color: [16, 243, 53]
 },
 width: 32,
 height: 32,

Finding Peace in REST

[114]

 angle: 0,
 xoffset: 0,
 yoffset: 0,
 xscale: 1,
 yscale: 1
}

Text symbol
The text symbol JSON describe the formatting used to create custom text labels on
the map. The text symbol JSON looks very different to the other symbols because
it is also concerned with things such as fonts, boldness, and italics. However, the
text symbol does have certain properties in common with the other symbols such
as color, angle, xoffset, and yoffset.

The text symbol has some unique properties that need to be addressed. Vertical and
horizontal alignment position the text in relation to the point because text symbols
are typically placed around label points. Halo size and color, introduced in ArcGIS
Server 10.1, describe the color outline around the text, to make it more readable
against a busy aerial background. The font parameters are so numerous they require
their own object to describe the CSS styling of the labels. You can see an example of a
text symbol here:

{
 "type": "esriTS",
 "color": [158,38,12,255],
 "backgroundColor": [0,0,0,0],
 "borderLineSize": 1,
 "borderLineColor": [158,38,12,255],
 "haloSize": 2,
 "haloColor": [255,255,128,255],
 "verticalAlignment": "bottom",
 "horizontalAlignment": "center",
 "rightToLeft": false,
 "angle": 0,
 "xoffset": 0,
 "yoffset": 0,
 "kerning": true,
 "font": {
 "family": "Georgia",
 "size": 14,
 "style": "normal",
 "weight": "bold",
 "decoration": "none"
 }
}

Chapter 4

[115]

Uses
While you will seldom see symbol JSON passed between the server and client, all
of the symbol constructors in the ArcGIS JavaScript API can accept JSON objects to
define the symbols. The developer can thus stash the symbol style in a configuration
file until it's needed. The developer can also construct the JSON object with a
different color palette and line defining widget before it is assigned as a symbol.

Assigning symbols with JSON is much easier than the previous methods of defining
a simple symbol. The older ways included symbol constructors containing a long
list of arguments. Some constructors could possibly contain nested constructors.
Another way of constructing symbols include creating a base symbol, and then
assigning the necessary attributes with assignment methods. Let's take a look
at an example of the older way:

require(["esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol","esri/Color", …],
function (SimpleFillSymbol, SimpleLineSymbol, esriColor, …) {
 …
 var lineSymbol = new SimpleLineSymbol()
 .setColor(new esriColor([255,128, 128, 0.8]))
 .setWidth(3)
 .setStyle(SimpleLineSymbol.STYLE_DASHDOTDOT);
 var fillSymbol = new SimpleFillSymbol()
 .setOutline(lineSymbol)
 .setColor(new esriColor([64,255,64,0.4]));
 …
});

Here, a base symbol is constructed and additional methods are called to assign
colors, line width, and line style. Compare this to the same symbol declaration
using JSON:

require(["esri/symbols/SimpleFillSymbol", …],
function (SimpleFillSymbol, …) {
 …
 var fillSymbol = new SimpleFillSymbol({
 style: "esriSFSSolid",
 color: [64,255,64,102],
 outline: {
 color: [255,128,128,204],
 width: 3,
 style: "esriSLSDashDotDot"
 }
 });
 …
});

Finding Peace in REST

[116]

While the JSON code takes up an extra line of code, it's more compact and easier
to read. Also, this symbol assignment doesn't require the client to load two
extra modules just to assign a color and a line style. It's all included in a single
construction call.

When constructing symbols using JSON, you don't have to add every
single JSON attribute defined in the symbol. When the symbols are
constructed, the attributes of the JSON object are mixed into a default
symbol. That means that, if you construct a line symbol using the
following code, instead of a 1 pixel wide black line, you'll create a 1 pixel
wide green line.

Var symbol = new SimpleLineSymbol({color: [0,255,0]});

Back to our application
Now that we have an idea of how to work with JSON data, we can improve our
Year 2000 Census map. We've come a long way in styling our application but the
default highlight color for the map's infoWindow clashes with the rest of the site.

How about that InfoWindow
Our clients at the Y2K Society just responded with feedback on the site. They liked
the color palette for the page. Unfortunately, they complained that, when they
clicked on the map, the cyan-colored highlight symbol on the map's popup clashed
with the site. One user even claimed it gave him a headache to stare at it too long.
This problem is fixable, and there are things we can do to make the client happy.

Let's look at the application we wrote in the previous chapter. If you haven't seen
the application in Chapter 3, The Dojo Widget System, there are code samples included
with this book. We created a widget using the Dojo framework to interact with the
map and reveal the census data for the year 2000. We will modify the widget so that
it can modify the map properties for us.

Open the Census.js file in your favorite text editor. If you look it over, you'll see
where we construct the Census widget, then use the show() and hide() functions
to toggle map clickability. We would like to modify the symbols for the map's
infowindow but, where do we begin?

Chapter 4

[117]

We could change the map's infowindow properties in the constructor, but that could
lead to problems. If you remember, in Chapter 2, Digging into the API, we talked about
how changing map settings before it finishes loading causes an error and possibly
stops the application. We'll have to check if the map is loaded before we make any
changes to its infowindow. If it hasn't loaded, we'll assign an event listener to
the map's load event. If it has loaded, we'll go ahead and run the event listener.
We'll call _onMapLoad() event listener, as you can see in the following code:

…
this.map = options.map || null;
this.domNode = srcRefNode;

if (this.map.loaded) {
 this._onMapLoad();
} else {
 this.map.on("load", lang.hitch(this, this._onMapLoad));
}
…

A line below the Census dijit constructor() method, we'll add the new
_onMapLoad() method. We know that the map has loaded there, and that means
the infoWindow object should be ready as well. We'll modify the infoWindow
object's markerSymbol and fillSymbol properties with our own symbology. Now,
we haven't added modules for the SimpleMarkerSymbol and SimpleFillSymbol
yet, so we'll add the references to those in our define statement:

define([
 …
 "esri/InfoTemplate",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/SimpleFillSymbol"
], function (

 InfoTemplate, MarkerSymbol, FillSymbol
) {
 …
 _onMapLoad: function () {
 // change the infoWindow symbol
 this.map.infoWindow.markerSymbol = new MarkerSymbol({});

 this.map.infoWindow.fillSymbol = new FillSymbol({});
 },

});

Finding Peace in REST

[118]

So, we know that symbol constructors can accept JSON objects to create the symbols.
Let's fill in the properties in the objects we'll pass into the symbols. We'll pick some
colors based on the application's color palette. We'll also adjust the fill symbol's
interior transparency, so that the user can see what's underneath. Remember that,
when defining a color, the four numbers represent red, green, blue, and opacity
values, ranging from a full 255, to an empty 0. Also, you don't have to pass every
single symbol JSON property, if you don't mind that it uses a default value instead.

this.map.infoWindow.markerSymbol = new MarkerSymbol({
 style: "esriSMSDiamond",
 color: [255,200,30],
 size: 12,
 outline: {
 width: 1,
 color: [111,98,34]
 }
});

this.map.infoWindow.fillSymbol = new FillSymbol({
 style: "esriSFSSolid",
 color: [255,250,169,128],
 outline: {
 width: 2,
 color: [111,98,34]
 }
});

Chapter 4

[119]

We can then save and reload our application in the browser. If we've typed
everything in correctly, the map should load with no errors. When we click on the
Census button, the floating widget should load in the corner, and when we zoom in
and click on an area, we should see new yellow diamonds when points are selected,
and polygons highlighted in colors similar to the application. Our clients will
hopefully be pleased with our color choices.

Finding Peace in REST

[120]

The preceding image shows the Census Block Points with the golden rod-colored
diamond. Each selected point will show the same graphic. You can see a picture
of one of the states in the following. Note that the fill color is semi-transparent,
allowing the user to read the content underneath:

Summary
We have explored the different parts of the REST Service endpoints for ArcGIS
Server, the primary data source for our ArcGIS JavaScript API-based applications.
We've learned what it means for a service to be RESTful, and how that applies to
ArcGIS Server. We've explored the organization of ArcGIS Server map services.
We've learnt about what information is available when viewing REST Services in
a web browser, and with JSON requests. We learned about the ArcGIS REST API,
how data is formatted for requests, and how it is consumed, both by ArcGIS Server
and by the ArcGIS JavaScript API. Finally, we applied some of our knowledge to
improve our application.

With your understanding of how data is handled client-side and server-side, you
will be able to implement many of the powerful features that ArcGIS Server offers
for web-based applications. In the next chapter, we'll look into one of those powerful
features: editing map data.

[121]

Editing Map Data
Data has to come from somewhere. In the multi-billion dollar geospatial industry,
collecting data is expensive. Features visible from aerial photography need to be
plotted, and features not so visible on a workstation need their GPS coordinates
collected in the field. Your time is valuable, and data collection won't happen on
its own.

But what if you could get others to do the work for you? What if you could create
a website that let other people collect the information? Trained workers could
document utility lines, or concerned citizens could report problem locations in
town. By using volunteer data collection, you can quickly collect the data you need.

ArcGIS Server provides not only data visualization on a map, but editing capabilities
as well. Services can be created, and applications can be built around them, which
allow users to add items to a map, change their shape, edit their attributes, and even
delete them. ArcGIS Server also gives the creator of the services control over which
of those data changes are allowed.

In this chapter, we're going to do the following:

•	 Look at the data editing capabilities ArcGIS Server provides with the ArcGIS
JavaScript API

•	 Learn about the editing controls in the API, and how they create a helpful
editing experience

•	 Create an editing application that uses the tools in the ArcGIS JavaScript API

Editing Map Data

[122]

The use cases for webmap editing
A GIS professional doesn't have to edit all the map data on his own. Trained staff
and eager volunteers can assist with data collection and map editing projects that
interest them. As the developer, it's up to you to give them the tools they need to
collect and update the data. The following are examples of applications which use
web map editing that you can create :

•	 Field crews updating utility data
•	 Public service requests and incident reports
•	 Parcel classification reassignments after analysis
•	 Volunteer geographic information data collection

Map editing requirements
Editing geographic data using the ArcGIS JavaScript API requires some setup on
ArcGIS Server. An editable feature service must be published on ArcGIS Server,
which requires an ArcSDE geodatabase. File geodatabases, personal geodatabases,
and shapefiles cannot be used to store editable data. ArcGIS Online allows you to
upload editable data to ESRI's cloud service, but the data upload and editing process
has requirements which are covered in Chapter 11, The Future of ArcGIS Development.

There are a few requirements for setting up an editable map application using
ArcGIS Server and its JavaScript API. The geodatabase storing the data should
be versioned, if you want to review the data before committing it to your default
database. Versioned data also supports undo and redo operations. You may want
to publish a read-only map service along with your editable feature service. Finally,
some editing operations require a geometry service to handle geometry changes, as
you cut, merge, and trim features.

Feature services
A feature service provides a web interface between data stored on the server and
an application on the browser created to use it. They can be accessed through URL
endpoints similar to map services. However, they produce very different results.
They can be loaded on a map and queried much like dynamic or tiled services, but
there is more. Feature services return graphics instead of tiles. These graphics can be
queried, and even edited, if the service allows.

Chapter 5

[123]

Feature templates
With ArcGIS Server 10.1, feature services can be published with the added
functionality of feature templates. Feature templates give the user preconfigured
features to add to the map. Feature templates are created in ArcMap, and define
the symbology and predefined attributes. These templates make it easier to edit
service data.

One example of Feature templates can be found on an animal sighting map. The
points on the map designate where animal sightings take place. Feature templates
could be created to show pictures of each major type of animal (cat, dog, bird, rabbit,
deer, and so on). Values in some of the fields could be defined ahead of time. For
instance, you could say that all cats are warm-blooded.

How do you, as the developer, take advantage of feature templates? Apart from
demonstrating what each symbol means, there are template pickers in the ArcGIS
JavaScript API's tools that not only show the feature templates, but also let you click
on them and add them to your map.

Feature layer
The feature layer provides access to graphics within a feature class. The user can
thus both query and edit the shapes and attributes of the graphics. We reviewed
their REST service profile in Chapter 4, Finding Peace in REST. We load feature layers
in much the same way we load dynamic and tiled services. However, their options
often require more parameters, due to the editable nature of the content.

Feature service modes
When initializing a feature layer from a feature service, you have a choice as to how
the data is loaded. Do you want to load it all at once? Do you want to load all the
features that you can see? Do you only want to load the one you've selected, and not
show the rest? In the next sections, we'll review the three feature service modes used
to download data to the client browser.

Snapshot mode
Sometimes, if there is not a lot of data, it's better to download it all at once. That's
what snapshot mode does. Snapshot mode downloads feature data based on time
definitions and definition expressions, but it is limited by the maximum download
limit. The visibility of the data is then determined by time extent.

Editing Map Data

[124]

Snapshot mode is helpful if there is not a lot of data to download, or if connectivity
may be an issue during use. The user can download all the feature data at once, work
with it, and then save their changes when connections become favorable again.

On demand mode
Sometimes, you're only interested in downloading the data in front of you. In that
case, on demand mode is the best option. On demand mode only downloads features
within the map extent. They too are affected by time definitions and definition
expressions. Unlike snapshot mode, data requests are made every time the map
extent changes. On demand mode is the default mode for any FeatureLayer.

On demand mode is typically used when there is a lot of data in the feature layer,
but the user is only expected to view a small portion of it. It's very good for focussed
editing tasks. It's not as good for mobile applications with lots of map navigation and
connectivity issues, since some graphics will fail to load.

Selection mode
Loading features by selection is more constraining because it only shows those
features that have been selected. Feature selection is handled using the feature layer's
selectFeatures() method, in a manner similar to querying from a map service
layer. In this case, the graphics returned are considered "selected". Selection methods
include clicking on the map and sending a query with specific parameters. This
method is very helpful if there are lots of features, and you only want to download
specific ones, whether it's by area or attributes.

Editing tools
The ArcGIS JavaScript API comes with a set of widgets and modules designed
specifically for editing. With the editing widgets, the user can add features to the
map, change their shape, edit their attributes, and even delete them, if the services
allow. Let's look at some of the tools available in the API.

Why are the editing tools in your application not working? It
may be the CSS. Editing widgets are created with Dojo user
controls, or dijits. These controls require the Dojo stylesheets,
such as claro.css or nihilo.css. Without them, buttons
stop working, and other unexpected behaviors may arise.

Chapter 5

[125]

Edit toolbar
The edit toolbar, loaded with the esri/toolbars/edit module, lets the user change
the shape, orientation, scale, and position of graphics on a map. We discussed it in
Chapter 2, Digging into the API, in relation to the other toolbars. Separate controls are
required to save the changes made with the edit toolbar. You can see an image of a
triangle selected for the edit toolbar here:

The edit toolbar requires a map in its constructor. The constructor also needs a
number of optional parameters to modify its appearance and behavior. Many of
the options depend on the geometry type of the data being manipulated. As of API
version 3.13, here are some of the available options for the edit toolbar:

•	 allowAddVertices (boolean): If true, you can add vertices to a polyline
or polygon.

•	 allowDeleteVertices (boolean): If true, you can remove vertices from a
polyline or polygon.

•	 ghostLineSymbol (line symbol): When moving a line or polygon edge,
this is the symbol for the line that shows where the new line/edge will go.

•	 ghostVertexSymbol (marker symbol): If you are allowed to add vertices,
this is the symbol that shows where to click to insert a vertex.

•	 textSymbolEditorHolder (string or HTML DOMnode): Web page location
when you want to add a text symbol editor widget

•	 uniformScaling (boolean): When true, resizing a polyline or polygon keeps
the original ratio of width to height.

•	 vertexSymbol (marker symbol): When editing polylines and polygons,
this is the symbol of the points at each vertex.

Editing Map Data

[126]

You can see an example of loading the edit toolbar in the following snippet:

require([…, "esri/toolbars/edit",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/SimpleLineSymbol",],
function (…, EditToolbar, MarkerSymbol, Linesymbol, …) {

 var editTB = new EditToolbar(map,… {
 allowAddVertices: true,
 allowDeleteVertices: true,
 ghostLineSymbol: new LineSymbol(…),
 ghostMarkerSymbol: new MarkerSymbol(…),
 uniformScaling: false,
 vertexSymbol: new MarkerSymbol(…)
 });

});

When you want to use the edit toolbar to edit a feature, you call the activate()
method. The activate() method requires two arguments, and has the option for
a third. Firstly, the method requires a tool, which is made by joining a combination
of the edit toolbar constants with the pipe | symbol. The constants include EDIT_
TEXT, EDIT_VERTICES, MOVE, ROTATE, and SCALE. Secondly, the activate() method
requires a graphic to edit. The final optional argument is an object similar to the one
used to create the edit toolbar. In the following code snippet, we have a graphic that
is added to the map, and a click event is assigned to it that activates the edit toolbar
to edit the graphic when it is double-clicked:

var editTB = new EditToolbar(…);
 …
map.graphics.add(myGraphic);
dojoOn(myGraphic, "dblclick", function () {
 editTB.activate(EditToolbar.EDIT_VERTICES | EditToolbar.MOVE |
 EditToolbar.ROTATE | EditToolbar.SCALE, myGraphic);
 dojoOn.once(myGraphic, "dblclick", function () {
 editTB.deactivate();
 });
});

Chapter 5

[127]

Attribute inspector
Sometimes, you don't care where things are, you just care about the content.
That's where the attribute inspector comes in. The attachment inspector provides
a form with a list of editable fields and the appropriate blanks to edit them. The
attachment inspector is bound to a feature layer, and displays the editable values
for the selected layer. The fields in the attribute inspector respond to the field types
of the attributes. Date fields show a calendar when editing. Fields with coded value
domains show a drop-down list instead of a text blank. Below, you can see an
example of an attribute inspector loaded in the popup, though it could be added
to a separate HTML element.

When initializing an attribute inspector, you need to define how the inspector will
handle the different fields within the graphic attributes. The attribute inspector
constructor accepts an options object, and either an HTML element or an id string
reference to the element. The options object has one parameter called layerInfos,
which accepts an array of layerInfo objects. Each layerInfo object contains one or
more of the following parameters:

•	 featureLayer (required): The feature layer to be edited.
•	 userId (string, optional): The ArcGIS Server user id connected to the

service, should the editing require token authentication. This is not needed
if you have used the Identity Manager to handle logins.

•	 showObjectID (Boolean, optional): Whether you want to see the object id
of the feature when it is selected. By default, this value is false.

Editing Map Data

[128]

•	 showGlobalID (Boolean, optional): Whether you want to see the global id
of the feature when it is selected. By default, this value is false.

•	 showDeleteButton (Boolean, optional): By default, the attribute inspector
shows a delete button that lets you delete the selected feature. Setting this to
false removes it.

•	 showAttachments (Boolean, optional): When set to true, and if the feature
layer has attachments, this displays an attachment editor form in the attribute
inspector, which lets you view and upload files attached to the feature.

•	 isEditable (Boolean, optional): Lets you control whether the feature is
editable. This doesn't override whether the features are editable server-side.
It's just an extra way to block someone without proper credentials from
editing data they shouldn't.

•	 fieldInfos (Objects [], optional): Gives the developer granular control
over what fields are editable, and how. This does not allow the user to edit
fields that aren't allowed to be edited, according to the publishing method
of the feature layer. If this value is not set, the attribute inspector lists all
editable fields. FieldInfo objects contain the following:

°° fieldname (string): The name of the field to be edited
°° format (object, optional): An object that lets you edit time when

editing dates. When set, add the following object: {time: true}
°° isEditable (Boolean, optional): When set to false, this disables the

user's ability to change the value of that field
°° stringFieldOption (string, optional): When set, the user can

edit a string value either in a single-line textbox, a text area with
multiple lines, or a rich-text field that includes additional formatting

°° label (string, optional): When set, this lets you override the name
of the field alias from the feature service

°° tooltip (string, optional): When set, this shows a text tool tip
when the user begins editing the attribute

Chapter 5

[129]

•	 You can see an example of an attribute inspector being loaded with a single
feature layer here:

var layerInfos = [{
 'featureLayer': bananaStandFL,
 'showAttachments': false,
 'isEditable': true,
 'format': {'time': true },
 'fieldInfos': [
 {'fieldName': 'address', 'isEditable':true, 'tooltip':
 'Where is it?', 'label':'Address:'},
 {'fieldName': 'time_open', 'isEditable':true,
 'tooltip': 'Time the Banana Stand opens.',
 'label':'Open:'},
 {'fieldName': 'time_closed', 'isEditable':true,
 'tooltip': 'Time the Banana Stand closes.',
 'label':'Closed:'},
 {'fieldName': 'is_money_here', 'isEditable':false,
 'label':'Is Money Here:', 'tooltip': 'There\'s money in
 the Banana Stand.'}
]
}];

var attInspector = new AttributeInspector({
 layerInfos: layerInfos
}, "edit-attributes-here");

attInspector.startup();

While the attribute inspector allows you to edit the attributes of graphics on a map,
it doesn't provide an immediate way to save the edits. It is up to the developer to
determine when changes to attributes are saved to the server. The developer could
add a save button, or save whenever the feature is no longer selected.

Editing Map Data

[130]

Template picker
The template picker lets the user select from a list of feature templates to add
features to the map. It displays a grid of feature templates from connected feature
layers. These templates include feature names, geometry types, and preset styles.
The user can click on any of the template buttons, and then draw them on the map.
You can load more than one feature layer, and switch between them with ease. You
can see an example in the following screenshot:

The template picker, like most dijits, requires a parameter object and, either an
HTML element or a string reference to the element's id, in order to load. In the
options, the template picker accepts an array of featureLayers. It also accepts the
number of rows or columns it will create. If you don't use featureLayers with
their own feature templates, you can define your own using configured items in the
items array. You can also set the CSS style directly. Finally, you can control whether
tooltips show when you hover over the symbols. In the following snippet, you can
see an example of a template picker initialized:

var widget = new TemplatePicker({
 featureLayers: layers,
 rows: "auto",
 columns: 9,
 showTooltip: true,
 style: "height: 100%; width: 900px;"
}, "templatePickerDiv");

The preceding code shows a template picker with nine columns with tooltips to
show data about the layers loaded in its featureLayers attribute. The size is
900 pixels wide, and as tall as it needs to be.

Chapter 5

[131]

Attachment editor
There's an old saying that a picture is worth a thousand words. Sometimes, you need
that picture to explain what data you're submitting. The attachment editor can help.
The attachment editor allows the application to upload a file, usually an image, and
connect it to the feature on the map. You can view other attachments, and possibly
edit them or delete them, if permissions allow. Attachment editors can be loaded
as part of the attribute inspector by setting the showAttachments property in the
attribute editor options to true, when constructing the editor:

Editor dijit
The editor dijit provides an all-in-one editing tool to create, update, and delete map
features. The editor dijit includes the template picker, attribute inspector, and an
editing toolbar with numerous tools. It lets you draw new features on a map, edit
existing features, and also delete features.

The tools that the editor dijit provides are as follows:

•	 Feature selection tools, either to add new selections, add to them further,
or to remove from existing selections

•	 Feature drawing tools, including a tool to delete features from the map
•	 Tools that let you cut, merge, and clip parts of polylines and polygons
•	 Undo and redo operations (requires versioned map services)

Editing Map Data

[132]

Snapping manager
Here's a common request you might receive when creating an editing tool: "I'd like
a tool that lets me edit this feature based on the lines of this other feature". You
could try to code your own tool to select a feature and go through each phase of
the feature. Or, with a few additional settings, you could implement the map's
snapping manager.

The snapping manager imitates ArcMap snapping controls in the browser . As
your mouse pointer approaches the corner or edge of a graphic feature, perhaps in
a GraphicsLayer or a FeatureLayer, a new pointer moves over the point on the
feature. This shows where you would add a point if you clicked on the map. You can
click along a set of points, line vertices, or polygon corners to draw something that
lines up perfectly with existing features with this tool.

When loading the snapping manager, there are a few important options that need to
be set. Every snapping manager requires a map to snap to. It also requires a graphics
layer or a feature layer to load, along with information about its snapping behavior.
It should know whether to snap to the edge or vertex of a line or polygon, as well
as whether to snap to points of a point feature class. All this information is added
in a layerInfo array in its constructor options, or can be added later by using the
setLayerInfos() method.

There are other optional configurable items in the snapping manager. You can tell
the snapping manager to always snap to a graphic, or whether you want to control
snapping by holding down a key on the keyboard while clicking. You can also
configure which keyboard key is the snapKey, by loading that property with the
appropriate dojo/keys constant. Finally, the tolerance of a snapping manager
refers to the maximum number of pixels the pointer should be from the feature
before it snaps to it.

You can see an example of a snapping manager loaded in a JavaScript API in the
following code:

require([…, "esri/SnappingManager", "dojo/keys", …],
function (…, SnappingManager, dojoKeys …) {

 var propertyLayer = new FeatureLayer({…});
 var sm = new SnappingManager({
 alwaysSnap: false, // default: false
 map: map,
 snapKey: dojoKeys.CTRL, // default: dojoKeys.copyKey
 tolerance: 10, // default: 15
 layerInfo: [{

Chapter 5

[133]

 layer: propertyLayer, // this is a featureLayer,
 snapToEdge: false, // default: true
 snapToVertex: true //default: true
 }]
 });
 …
});

The preceding example shows a snapping manager that turns on when the user
holds down the Ctrl key on a PC (the Command key on a Mac). It only snaps to the
corners of a line or polygon in the propertyLayer feature layer. The tolerance for
snapping was set to 10 pixels.

Securing editing services
If you're going to open up your data to be edited by the public, you need to be
prepared for trouble. From bad data input to malicious attacks, you, as a developer,
need to account for things going wrong. Luckily, ArcGIS Server and the ArcGIS API
for JavaScript can help.

Restricting user input
I remember a project where we had to let users search for addresses based on a list
provided by another system. The other system had no restrictions on what the user
could enter. As a result, the address list was anything but normal. On a given street,
there could be fifteen different ways the street name could be listed. Some were all
caps, while others had "Rd" instead of "Road" Others were misspelled, one m instead
of two, and some had too many spaces between the street name and the suffix.
Needless to say, the data was poorly constructed and unstandardized.

ArcGIS Server provides some tools to help you restrict user input. Implementing
coded value domains and ranges in the geodatabase can help reduce bad input. The
attribute inspector honors field properties such as length and data type. You can set
default values to limit extra user input in the feature service feature templates.

You can also tie in validation and other controls to make sure the user does not
accidently do something like add a phone number to a date column. Dojo comes
with user controls such as validation textboxes that limit bad input.

Editing Map Data

[134]

Password protected services
ArcGIS Server also offers a better option when it comes to securing your editing
services. If you want to restrict access to editing data, you can demand token-based
authentication for map services. A token is an encrypted string that contains a user
name, an expiration date, and extra information for verification purposes. You need
to request a token from http://myserver/arcgis/tokens, where myServer refers
to your ArcGIS Server web endpoint or web adaptor. You submit the necessary user
name and password before having the token added as a cookie on your browser.
Tokens are only good for a limited time, which can be adjusted through configurable
settings in ArcGIS Server.

These token-based security measures work with both map services and editable
feature services. Without the token, you are not able to see the protected map
services in the browser. With it, you can explore secured services, query them,
and even edit data in them.

Identity manager
The identity manager (esri/IdentityManager) is used to handle logins and
the security of ArcGIS Server and ArcGIS Online services. The identity manager
displays a username and password prompt when you attempt to load token-
protected services in the browser. Its user interface uses Dojo UI controls,
so loading the appropriate Dojo style sheet is necessary to make the identity
manager work properly.

Now that we've reviewed some of the editing capabilities ArcGIS Server offers,
let's apply what we've learned to an application.

A new mapping application
So, back to our story and our mapping application. We're still waiting for word from
the Y2K society about the Census map, but we have a new application we've been
asked to work on. It seems that the city of Hollister, California has asked us to put
an app together for them. Let's find out what they want.

The city of Hollister wants to create an application that lets citizens report issues in
the city. They want citizens to report things like graffiti, sidewalk, curb, and street
issues, damaged property, sewer issues, and tree problems, on a map, and also
supply additional information. If possible, they want photos of the problems so
crews know what to look for.

Chapter 5

[135]

The file setup
We don't need to create any custom packages because we're going to use the
out-of-the-box ArcGIS JavaScript API editing tools,. Instead, we'll create a simple file
setup with a css and a js folder, We'll add our custom style.css style sheet in the
css folder, We'll add our app.js file in the js folder. We'll also add a folder named
proxy to handle our proxy service. The file structure should look something like
the following:

The front page
Let's start with the HTML document. We'll use our basic cookie-cutter site. This time,
we'll add Dojo's claro.css style sheet. We don't need any custom packages, so we
can leave those out of the dojoConfig file. We'd like a long column going down the
side of the page, and a header part where we'll put the title for the page layout. We'll
load the BorderContainer with a sidebar design with the taller side columns. We'll
add three ContentPanes for the header, a leading column for the buttons, and a
center region for the map.

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=Edge" />
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no" />
 <title>Incident Reporting App</title>
 <meta name="description" content="">
 <meta name="author" content="Ken Doman">
 <link rel="stylesheet" href="http://js.arcgis.com/3.13/
 dijit/themes/claro/claro.css">

Editing Map Data

[136]

 <link rel="stylesheet" href="https://js.arcgis.com/3.13/
 esri/css/esri.css" />
 <link rel="stylesheet" href="./css/style.css" />
 <script type="text/javascript">
 dojoConfig = {
 async: true,
 isDebug: true
 };
 </script>
 <script src="https://js.arcgis.com/3.13/"></script>
 </head>
 <body class="claro">
 <div id="mainwindow"
 data-dojo-type="dijit/layout/BorderContainer"
 data-dojo-props="design:'sidebar', gutter:false"
 style="width: 100%; height: 100%; margin: 0;">
 <div data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'top'">
 <h1>Incident Reporting App</h1>
 </div>
 <div id="map" data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'center'"></div>
 <div id="editpane" style="width: 130px"
 data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'leading'">
 <div id="editordiv"></div>
 </div>
 </div>
 <script type="text/javascript" src="js/app.js"></script>
 </body>
</html>

We'll add some basic styling for the HTML and the body on the style.css page.
Let's add the following style:

html, body {
 width: 100%;
 height: 100%;
 border: 0;
 margin: 0;
 padding: 0;
 box-sizing: border-box;
 font-family: Helvetica, Arial, sans-serif;
}

*, *:before, *:after { box-sizing: inherit;}

Chapter 5

[137]

We've set the width and height of the HTML and body to 100%, with no border,
margin, or padding. We've also changed the font to a common sans-serif font,
such as Helvetica, Arial, or just plain sans-serif. Finally, we set the elements on
the page to be sized using border-box box-sizing which makes it easier to work
with sizing boxes on the page.

Loading the map
We'll begin writing the code for our application with the page setup. We have a
focus area, which is the city of Hollister. For the sake of an easy life, we'll add the
city boundaries as an extent:

require([
 "dojo/parser", "esri/map", "esri/graphic",
 "esri/geometry/Extent", "esri/dijit/editing/Editor",
 "esri/dijit/editing/TemplatePicker", "esri/tasks/query",
 "dijit/layout/BorderContainer", "dijit/layout/ContentPane",
 "dojo/domReady!"
], function (parser, Map, Graphic, Extent,Editor, TemplatePicker,
 Query) {

 var maxExtent = new Extent({
 "xmin":-13519092.335425414,
 "ymin":4413224.664902497,
 "xmax":-13507741.43672508,
 "ymax":4421766.502813354,
 "spatialReference":{"wkid":102100}
 }),
 map, selected, updateFeature, attInspector;

 parser.parse();

 map = new Map("map", {
 basemap: "osm",
 extent: maxExtent
 });

});

In the preceding code, we've loaded the necessary modules and used the dojo/
parser to parse them. We've added a map with the OpenStreetMap based basemap,
and we've created a maxExtent to simulate the city boundaries.

Editing Map Data

[138]

Adding the map layers
Now that we have our map, we need to add layers to the map. For the sake of this
exercise, we're going to use the San Francisco 311 Feature Service provided by
ESRI. We're going to load the feature layer in selection mode, so we only affect the
features we click on. We're also going to add the complementary dynamic map
service, because we can't see the features without it. We will also set the feature layer
selection symbol using a simple marker symbol to color the features we click on:

require([
 …,
 "esri/layers/FeatureLayer",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/symbols/SimpleMarkerSymbol",
…
], function (…,
 FeatureLayer, ArcGISDynamicMapServiceLayer,
 MarkerSymbol, …
) {
 var maxExtent = …,
 map, incidentLayer, visibleIncidentLayer;
 …
 incidentLayer = new
 FeatureLayer("http://sampleserver3.arcgisonline.com/
 ArcGIS/rest/services/SanFrancisco/311Incidents/FeatureServer/0",
 {
 mode: FeatureLayer.MODE_SELECTION,
 outFields:
 ["req_type","req_date","req_time","address","district",
 "status"],
 id: "incidentLayer"
 });

 visibleIncidentLayer = new
 ArcGISDynamicMapServiceLayer(
 "http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/
 SanFrancisco/311Incidents/MapServer");
 …
 map.addLayers([visibleIncidentLayer, incidentLayer]);

Chapter 5

[139]

When the map layers are added, we can finally interact with them, both as a user
and as a developer. We'll add an event listener called startEditing() to the map's
layers-add-result event. We'll set up the editing events for the feature layer there.
We'll add a map click event that draws a feature if something has been selected from
the menu on the side of the page. Be sure to add this after the layers are defined, but
before they are added to the map.

var …, incidentLayer, visibleIncidentLayer, selected;

visibleIncidentLayer = …;

function startEditing () {
 var incidentLayer = map.getLayer("incidentLayer");
 // add map click event to create the new editable feature
 map.on("click", function(evt) {
 // if a feature template has been selected.
 if (selected) {
 var currentDate = new Date();
 var incidentAttributes = {
 req_type: selected.template.name,
 req_date:(currentDate.getMonth() + 1) + "/" +
 currenDate.getDate() + "/" + currentDate.getFullYear(),
 req_time: currentDate.toLocaleTimeString(),
 address: "",
 district: "",
 status: 1
 };
 var incidentGraphic = new Graphic(evt.mapPoint,
 selected.symbol, incidentAttributes);
 incidentLayer.applyEdits([incidentGraphic],null,null)
 }
 });

 incidentLayer.setSelectionSymbol(
 new MarkerSymbol({color:[255,0,0]})
);

 map.infoWindow.on("hide", function() {
 incidentLayer.clearSelection();
 });
}

Editing Map Data

[140]

incidentLayer.on("edits-complete", function() {
 visibleIncidentLayer.refresh();
});

map.on("layers-add-result", startEditing);
map.addLayers([visibleIncidentLayer, incidentLayer]);

In the preceding code, we've created a callback function called startEditing().
This causes the application to add a new graphic to the editable feature layer
whenever the map is clicked. Default attributes and a symbol are applied to the
editable feature. The editable feature layer clears its selection whenever the popup is
hidden. Also, when the edits are complete, the visible layer is refreshed with the new
data. The startEditing() method is assigned to run when a group of layers are
added, which causes the layers to be added to the map.

Using the proxy
If you try to load the map right now, you may get an error. If you don't get it now,
you might get it when you try to save changes on the map. The reason is that these
editing operations often require a proxy application to handle data which is too large
to fit in the approximately 2,048 character limit of most browser get requests.

You can follow the instructions ESRI provides to set up a proxy service
at https://developers.arcgis.com/javascript/jshelp/ags_
proxy.html.

Proxies come in three varieties, based on your application environment. ESRI
provides proxy services in PHP, Java, and .Net. We'll add a reference to the proxy
in our application. This example shows how it's done with a .Net based proxy:

require([
 …,
 "esri/config",
 "esri/layers/FeatureLayer",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/symbols/SimpleMarkerSymbol",
…
], function (…, esriConfig, …) {
 …
 // set up proxy for the featureLayer
 esriConfig.defaults.io.proxyUrl = "./proxy/proxy.ashx";

 incidentLayer = …

https://developers.arcgis.com/javascript/jshelp/ags_proxy.html
https://developers.arcgis.com/javascript/jshelp/ags_proxy.html

Chapter 5

[141]

Finding the user's location
Our client requested that the app provide the user with the ability to find them on
the map, should they be using a mobile device or a laptop on Wi-Fi. We can provide
that functionality by adding an ArcGIS dijit called LocateButton. We load the
module in our application, initialize it when the map is ready, and it's good to go.
The code to load it should look something like this:

require([…, "esri/dijit/LocateButton", …
], function (…, LocateButton, …) {
 …
 function startEditing() {
 // add the Locate button
 var locator = new LocateButton({map: map}, "locatebutton");
 }
 …
});

If we insert a <div> with an id of locatebutton inside the map ContentPane, and
view the page in our browser, we'll see the locate button above the map, pushing
the map down. We'd much rather locate it near the other zoom in and out buttons.
We'll add the following styling to the style.css sheet to achieve that:

.LocateButton {
 position: absolute;
 left: 29px;
 top: 120px;
 z-index: 500;
}

The template picker
For our application, we're going to use the ArcGIS JavaScript API's template picker
to select incident point types to add to the map. We'll load them in the side pane on
the page, and make them one column wide to add features. We'll pass that feature
template to the selected variable when the feature template is selected. Finally,
we'll load all this when both the map and the feature layers have loaded:

 function generateTemplatePicker(layer) {
 console.log("layer", layer);
 var widget = new TemplatePicker({
 featureLayers: [layer],
 rows: layer.types.length,
 columns: 1,

Editing Map Data

[142]

 grouping: false,
 style: "width:98%;"
 }, "editordiv");

 widget.startup();

 widget.on("selection-change", function() {
 selected = widget.getSelected();
 console.log("selected", selected);
 });
 }
…
function startEditing () {
 var incidentLayer = map.getLayer("incidentLayer");
 generateTemplatePicker(incidentLayer);
 …

The attribute inspector
Now that we are able to add new features to the map, we need a way to edit the
content of those features. To do that, we'll add the attribute inspector. We're going
to initialize the attribute inspector and tie it to the map's infoWindow.

require([…,
 "dojo/dom-construct",
 "esri/dijit/AttributeInspector",
 "dijit/form/Button",
 …
], function (…, domConstruct, AttributeInspector, Button, …) {
 var maxExtent = …,
 map, incidentLayer, visibleIncidentLayer, selected,
 attInspector, updateFeature;
…
function generateAttributeInspector(layer) {
 var layerInfos = [{
 featureLayer: layer,
 showAttachments: true,
 isEditable: true,
 }];

 attInspector = new AttributeInspector({
 layerInfos: layerInfos
 }, domConstruct.create("div", null, document.body));

Chapter 5

[143]

 attInspector.startup();

 //add a save button next to the delete button
 var saveButton = new Button({ label: "Save", "class":
 "saveButton"});
 domConstruct.place(saveButton.domNode,
 attInspector.deleteBtn.domNode, "after");

 saveButton.on("click", function(){
 updateFeature.getLayer().applyEdits(
 null, [updateFeature], null
);
 });

 attInspector.on("attribute-change", function(evt) {
 //store the updates to apply when the save button is clicked
 updateFeature.attributes[evt.fieldName] = evt.fieldValue;
 });

 attInspector.on("next", function(evt) {
 updateFeature = evt.feature;
 console.log("Next " + updateFeature.attributes.objectid);
 });

 attInspector.on("delete", function(evt){
 evt.feature.getLayer().applyEdits(
 null, null, [updateFeature]
);
 map.infoWindow.hide();
 });

 if (attInspector.domNode) {
 map.infoWindow.setContent(attInspector.domNode);
 map.infoWindow.resize(350, 240);
 }

}
…
function startEditing () {
 var incidentLayer = map.getLayer("incidentLayer");
 generateTemplatePicker(incidentLayer);
 generateAttributeInspector(incidentLayer);
…

Editing Map Data

[144]

We'll need to add a little positioning style to the save button on the attribute
inspector. We'll add this entry to position the save button in the style.css
sheet so that it doesn't overlap the delete button.

.saveButton {
 margin: 0 0 0 48px;
}

Now that the attribute inspector is loaded, we can incorporate it into the click events
for both the map layer and the incident layer. We'll create a showInspector()
function that accepts a map click event. It will query the incidentLayer for any
features in that location, and pull up a map infoWindow with the attribute inspector
inside. It will also assign the selected graphic (if any) to:

…
 function showInspector(evt) {
 var selectQuery = new Query(),
 point = evt.mapPoint,
 mapScale = map.getScale();

 selectQuery.geometry = evt.mapPoint;

 incidentLayer.selectFeatures(selectQuery,
 FeatureLayer.SELECTION_NEW, function (features) {
 if (!features.length) {
 map.infoWindow.hide();
 return;
 }

 updateFeature = features[0];

 map.infoWindow.setTitle(updateFeature.getLayer().name);
 map.infoWindow.show(evt.screenPoint,
 map.getInfoWindowAnchor(evt.screenPoint));
 });
 }
…
function startEditing() {
 …
 map.on("click", function (evt) {
 …
 if (selected) {
 …
 incidentLayer.applyEdits([incidentGraphic],null,null)
 .then(function () {

Chapter 5

[145]

 showInspector(evt);
 });

 } else {
 showInspector(evt);
 }
 …
 });
…
 incidentLayer.on("click", showInspector);

The result of the preceding code is shown in the following screenshot:

Editing Map Data

[146]

Securing the application
Now that we have a working incident reporting application, it's time to think about
how we can secure the application. It's a public application, so the public should be
allowed to submit problems. However, we don't want data that doesn't fit our data
schema, or our representative boundaries.

One way we can secure our application from bad input is to restrict the locations
where we accept changes. We don't want employee time wasted investigating
complaints logged outside the city, state, or even country. We can do this by using
the city extent supplied at the beginning of the application. We can test if the clicked
point is inside the city extent in the click event, and notify the client if it's not. That
should look something like the following:

…
map.on("click", function (evt) {
 // if the clicked point isn't inside the maxExtent
 if (!maxExtent.contains(evt.mapPoint)) {
 alert("Sorry, that point is outside our area of interest.");
 return; // disregard the click
 }
…

Speaking of working with extents, we could also lock the selection buttons when
navigating outside the city area. This would alert the user that we aren't accepting
complaints outside the city proper. Of course, we should notify the user why they
are locked out.

We'll start by adding blocking content and notifications in the HTML. We'll add two
divs to the page, a <div> with the id outsidemessage in the map, and a div with
the id blockerdiv next to the editor div. We'll leave the two of them hidden by
default, by adding the inline style display: none. It should look like the following:

…
<div id="map" data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'center'" >
 <div id="locatebutton"></div>
 <div id="outsidemessage" style="display:none;">
 <p>Sorry, but you have navigated outside our city. Click on this
 message to get back to the city.</p>
 </div>
</div>
<div id="editpane" style="width: 130px"
 data-dojo-type="dijit/layout/ContentPane"

Chapter 5

[147]

 data-dojo-props="region:'leading'">
 <div id="editordiv"></div>
 <div id="blockerdiv" style="display:none;"></div>
</div>

We'll add the following styling to the style.css file to style these items. The outside
message will be gray block floating in the lower middle portion of the map, with text
big enough to read, and with rounded corners (because lots of people like rounded
corners). The blocking div will be positioned directly on top of the template picker
buttons. The blocking div will be light gray, semi-transparent, and cover the entire
template picker when visible.

#blockerdiv {
 width: 100%;
 background: rgba(188, 188, 188, 0.6);
 position: absolute;
 top: 0;
 left: 0;
 bottom: 0;
 z-index: 500;
}

#outsidemessage {
 position: absolute;
 bottom: 40px;
 left: 50%;
 width: 200px;
 height: auto;
 margin: 0 0 0 -100px;
 background: rgba(255,255,255,0.8);
 padding: 8px;
 z-index: 500;
 border-radius: 8px;
 text-align: center;
 font-weight: bold;
}

Editing Map Data

[148]

We'll add some code to our app.js file to handle the visibility of these two nodes.
We can listen for changes in the map's extent. When the map's extent is outside the
city extent, and they no longer intersect, both the message div and the blocker div
will be made visible (display: block;). If the user can see some of the extent of the
viewing area, the div objects will be hidden again (display: none;). It should look
like this:

require([…, "dojo/dom-style", …
], function (…, domStyle, …) {

function onMapExtentChange (response) {
 if (!response.extent.intersects(maxExtent)) {
 // show these blocks if the map extent is outside the
 // city extent
 domStyle.set("blockerdiv", "display", "block");
 domStyle.set("outsidemessage", "display", "block");
 } else {
 // hide these blocks if the max Extent is visible within
 // the view.
 domStyle.set("blockerdiv", "display", "none");
 domStyle.set("outsidemessage", "display", "none");
 }
}

map.on("extent-change", onMapExtentChange);
…

We'll also add an event handler to the outside message div that lets the user click to
go back to the starting location for the map. We'll load the dojo/on event to handle
the click event:

require([…, "dojo/dom", "dojo/on", …
], function (…, dojoDom, dojoOn, …) {
 …
 dojoOn(dojoDom.byId("outsidemessage"), "click", function () {
 map.setExtent(maxExtent);
 })
 …
});

Now, when we load our application and pan our way outside the city limits,
the following message should appear:

Chapter 5

[149]

Limiting data entry
As well as stopping bad user input from clicks, we should also consider stopping
bad user input from text editing. We can pull that off by modifying the layerInfos
array assigned to the attribute inspector. We'll start by getting rid of the delete
button, since we don't want citizens deleting everybody else's complaints. We'll also
modify the fieldInfos list and set some of the fields to display only when they are
edited in the attribute inspector. In this case, we'll leave the req_type, address, and
district tabs open for editing.

var layerInfos = [{
 featureLayer: layer,
 showAttachments: true,
 isEditable: true,
 showDeleteButton: false,
 fieldInfos: [
 {'fieldName': 'req_type', 'isEditable':true, 'tooltip':
 'What\'s wrong?', 'label':'Status:'},
 {'fieldName': 'req_date', 'isEditable':false, 'tooltip':
 'Date incident was reported.', 'label':'Date:'},

Editing Map Data

[150]

 {'fieldName': 'req_time',
 'isEditable':false,'label':'Time:'},
 {'fieldName': 'address', 'isEditable':true,
 'label':'Address:'},
 {'fieldName': 'district', 'isEditable':true,
 'label':'District:'},
 {'fieldName': 'status', 'isEditable':false,
 'label':'Status:'}
]
 }];

These are a few of the simple things we can do to help secure our application
against unwanted results, and yet still make the application user-friendly to the
general public.

Summary
In this chapter, we've examined the tools and processes that ArcGIS Server and the
ArcGIS API for JavaScript provide to make web editing possible. We looked at what
goes into an editable feature service. We also looked into the various widgets that
come with the ArcGIS JavaScript API for adding new features, editing geometries,
and editing property attributes. We finished by creating an application that uses the
editing tools to create an incident reporting application, with which users can report
problems in the city on the map.

In the next chapter, we'll take the existing data and add a graphical twist.

[151]

Charting Your Progress
Displaying data geographically provides users with locational awareness, but
some want to see more than just dots on a map and some numbers. They want to
see how the data in each location compares, both across the map, and within a
location. Other methods of displaying data, such as charts and graphs, can provide
additional information.

Charts and graphs are big business. Companies spend millions of dollars creating
executive dashboards, which are a mix of charts and graphs connected to company
data and metrics. They work because humans aren't as good at processing large,
abstract numbers as computers, but they do better at processing data visually.
Good charts and graphs provide comparable data at a glance, in a way anyone
can understand.

In this chapter, we shall learn:

•	 How to create charts and graphs using tools provided by the ArcGIS
JavaScript API and the Dojo framework

•	 How to implement the same charts and graphs using D3.js
•	 How to add an external library such as D3.js as an AMD module

Mixing graphs into our maps
As we have learned before, the ArcGIS JavaScript API contains more than tools to
create maps and text. Built on top of the Dojo framework, the ArcGIS API comes
with many user controls and widgets to help you present data. We can create
dynamic tables, charts, graphs, and other data visualizations.

Charting Your Progress

[152]

But you are not limited to the charting and graph tools provided by API. Using
Dojo's AMD style, you can incorporate other libraries outside the framework into
your widget's build, and load them as they are needed. If you work with team
members who are more familiar with a library like D3.js, you can load the library
asynchronously into your widget and let the other person develop the graphics.

In this chapter, we'll explore both internal and external graphics libraries to add
graphs to our data. We'll use the dojox/charting (http://dojotoolkit.org/
reference-guide/1.10/dojox/charting.html) modules packaged with
the ArcGIS JavaScript API, We'll also implement the graphs with D3.js
(http://d3js.org), a popular data visualization library.

Our story continues
Our clients from the Y2K society called with another request. They don't like the
tables we've added to our census popups. All the big numbers overwhelm some
of the users. They would rather see the data represented in graphs, so that the
user can see the relationships within the data.

The Y2K society specifically requested pie charts for ethnic and gender data.
We can use any color for the ethnic data, but for gender, they made specific color
requests. They want to use a horizontal bar chart for the age data because they've
seen population data shown that way and they liked the look. They would like
some of the other data graphed and charted as well, but they are willing to leave
how that's done to our discretion.

For this round, we're going to try two different approaches and see which one the
client prefers. We'll create charts using the two libraries with the same data, add
them to the census data popups, and see which one the client prefers.

Using dojox charting
We should first look inside the ArcGIS API for JavaScript to see what it has to offer.
We can access a host of charting resources with dojox/charting. The modules allow
you to draw line graphs, pie charts, bar charts, and a whole host of other graphs and
charts in a browser. It contains numerous canned themes to show your data, and it
can be extended with your custom themes as well. The charting libraries can render
in Scalable Vector Graphics (SVG), Vector Markup Language (VML), Silverlight,
and Canvas, making them both progressive and backwards-compatible for older
browsers like IE7.

http://dojotoolkit.org/reference-guide/1.10/dojox/charting.html
http://dojotoolkit.org/reference-guide/1.10/dojox/charting.html
http://d3js.org

Chapter 6

[153]

Like most Dojo components, dojox/charting can render charts either declaratively
within your HTML, or programmatically through JavaScript. Declarative charting
takes advantage of the data-dojo attributes. In the exercises that follow, we'll
explore the programmatic examples, since they are more dynamic and easier to
troubleshoot when things go wrong.

Creating a chart in JavaScript
There is no one module for dojox/charting that will take care of all your graphing
needs. These four major classes of modules within dojox/charting can be loaded
to create a unique chart or graph, and add new looks and functionality:

•	 The chart object
•	 The chart style
•	 The chart theme
•	 The chart actions and effects

The following is a sample loading of each of the four module types, in order:

require([
"dojox/charting/Chart", // object
"dojox/charting/plot2d/Pie", // style
"dojox/charting/themes/MiamiNice", // theme
"dojox/charting/action2d/Highlight", // action
"dojox/charting/action2d/Tooltip", // action
"dojo/ready"],
 function(Chart, Pie, MiamiNice, Highlight, Tooltip,
 ready){
 ready(function(){
 var myChart = new Chart("myChart ");
 myChart.setTheme(MiamiNice)
 .addPlot("default", {
 type: Pie,
 font: "normal normal 11pt Tahoma",
 fontColor: "black",
 labelOffset: -30,
 radius: 80
 }).addSeries("Series A", [
 {y: 3, text: "Red", stroke: "black", tooltip: "Red
 Alert"},
 {y: 5, text: "Green", stroke: "black", tooltip:
 "Green Day"},

Charting Your Progress

[154]

 {y: 8, text: "Blue", stroke: "black", tooltip: "I'm
 Blue!"},
 {y: 13, text: "Other", stroke: "black", tooltip: "A
 bit different"}
]);
 var anim_a = new Highlight(myChart, "default");
 var anim_b = new Tooltip(myChart, "default");
 myChart.render();
 });
});

The chart object
The chart object, loaded with the dojox/charting/Chart module, is the main object
you'll use to create and modify your chart. Almost all of your your customizations
will be run through this object. The chart object is created with a reference to an
HTML element on the page, either by a node or by a string matching the id of a
node. In the following code, you can see an example that shows the creation of a
simple chart:

require(["dojox/charting/Chart", "dojox/charting/axis2d/Default",
 "dojox/charting/plot2d/Lines", "dojo/ready"],
 function(Chart, Default, Lines, ready){
 ready(function(){
 var chart1 = new Chart("fibonacci");
 chart1.addPlot("default", {type: Lines});
 chart1.addAxis("x");
 chart1.addAxis("y", {vertical: true});
 chart1.addSeries("Series 1", [1, 1, 2, 3, 5, 8, 13, 21]);
 chart1.render();
 });
});

In the preceding code, a line graph is produced with values in a series that increase
from 1 to 21.

The construction of the chart object can also accept an options object. In these
options, you can add the map title, and control elements, such as the title text,
position, font, color, and the gap between the title and the graph.

Chapter 6

[155]

The dojox/charting library also includes a 3D charting library, called dojox/
charting/Chart3D. The object can render three dimensional charts and graphs,
which can be rotated and panned to get a good perspective on your data. In the
following code, you can see an example of a 3D plotted bar chart:

require(["dojox/charting/Chart3D", "dojox/charting/plot3d/Bars",
 "dojox/gfx3d/matrix", "dojo/ready"
], function(Chart3D, Bars, m, ready){
 ready(function(){
 var chart3d = new Chart3D("chart3d", {
 lights: [{direction: {x: 6, y: 6, z: -6}, color: "white"}],
 ambient: {color:"white", intensity: 3},
 specular: "white"
 },
 [m.cameraRotateXg(10), m.cameraRotateYg(-10), m.scale(0.8),
 m.cameraTranslate(-50, -50, 0)]),
 bars3d_a = new Bars(500, 500, {gap: 8, material: "red"}),
 bars3d_b = new Bars(500, 500, {gap: 8, material: "#0F0"}),
 bars3d_c = new Bars(500, 500, {gap: 8, material: "blue"});
 bars3d_a.setData([3, 5, 2, 4, 6, 3, 2, 1]);
 chart3d.addPlot(bars3d_a);

 bars3d_b.setData([5, 6, 4, 2, 3, 1, 5, 4]);
 chart3d.addPlot(bars3d_b);

 bars3d_c.setData([4, 2, 5, 1, 2, 4, 6, 3]);
 chart3d.addPlot(bars3d_c);

 chart3d.generate().render();
 });
});

In the preceding code, a 3D bar graph has been produced with three sets of data
colored red, green, and blue. These values are then viewed through a camera that
is rotated somewhat to add perspective to the images.

Charting Your Progress

[156]

The chart style
The chart style describes what kind of chart we're creating. It defines whether we're
loading the data as a line chart or a bar chart, a pie chart or a scatter plot. For two
dimensional charts, you'll find these styles in the dojox/charting/plot2d folder.
Chart styles can be grouped into five main categories, as follows:

•	 Lines: These are the typical line charts that may or may not show the
individual data points.

•	 Stacked Lines: Similar to line charts, but the heights are stacked on top of
each other. These allow the user to compare the combined effect of plotted
data over time, as well as changes in ratios.

•	 Bars: Compare values by the width of rows on a graph.
•	 Columns: Compare quantities by their related column heights.
•	 Miscellaneous: When other charts cannot be grouped together in a category

like the previous ones, they fall into this category. This group includes pie
charts, scatter plots, and bubble plots.

If you are using the 3D charts, the styles for these charts can be found in the dojox/
charting/plot3d folder. To take full advantage of the 3D styles, it is best to load the
dojox/gfx3d/matrix module for 3D graphic effects. The matrix module allows you
to rotate the 3D graph in order to get a good perspective of the 3D charts.

The chart theme
Chart themes describe the colors, shading, and text formatting of text elements
within your charts and graphs. The Dojo framework comes with a large number
of predefined themes that you can choose from, in dojox/charting/themes.

You can see what the different themes look like by going to
http://archive.dojotoolkit.org/nightly/checkout/
dojox/charting/tests/test_themes.html.

The following example is code which loads a chart with a MiamiNice theme. In
this example, we have loaded a line chart with an x and y axis. We set the theme to
MiamiNice using the setTheme() method. Then, we added the series of numbers to
plot and render the chart:

require(["dojox/charting/Chart", "dojox/charting/axis2d/Default",
 "dojox/charting/plot2d/Lines", "dojox/charting/themes/MiamiNice",
 "dojo/ready"],
 function(Chart, Default, Lines, MiamiNice, ready){
 ready(function(){

http://archive.dojotoolkit.org/nightly/checkout/dojox/charting/tests/test_themes.html
http://archive.dojotoolkit.org/nightly/checkout/dojox/charting/tests/test_themes.html

Chapter 6

[157]

 var chart1 = new Chart("simplechart");
 chart1.addPlot("default", {type: Lines});
 chart1.addAxis("x");
 chart1.addAxis("y", {vertical: true});
 chart1.setTheme(MiamiNice);
 chart1.addSeries("Fibonacci", [1, 1, 2, 3, 5, 8, 13, 21]);
 chart1.render();
 });
});

If you don't find a theme that works for you, or if you have specific colors and styling
that you need to adhere to in your application design, you can use the SimpleTheme
object to help define your custom theme. SimpleTheme is based on the GreySkies
theme, but can be extended with other colors and any formatting you choose. You
do not need to define every attribute of your theme, since SimpleTheme applies
whatever defaults you haven't overridden with your custom style. You can see a
sample of the code that implements SimpleTheme here:

var BaseballBlues = new SimpleTheme({
 colors: ["#0040C0", "#4080e0", "#c0e0f0", "#4060a0", "#c0c0e0"]
});
myChart.setTheme(BaseballBlues);

Themes typically use no more than five colors in their palette.
If you need to add more colors for a set of data, push() a color
hex string into the theme's .color array, but do it prior to
setting the theme of the chart.

Chart actions and effects
Creating appealing charts and graphs might be fun for you, but users in the modern
web era expect to interact with the data. They expect chart elements to glow, grow,
and change color when they hover over them. They expect things to happen when
they click on a pie chart.

The dojox/charting/action2d contains chart actions and effects that make charts
more educational and interactive. You don't have to overdo the actions and make
your graph do everything. You can simply apply the events you need to get the
effect across to the users. The following is a list of the basic actions and effects,
along with descriptions:

•	 Highlight: This adds a highlight to the chart or graph element you select.
•	 Magnify: This lets you magnify a portion of the chart or graph for

easier viewing.

Charting Your Progress

[158]

•	 MouseIndicator: You can drag your mouse over features on the graph to
show more data.

•	 MouseZoomAndPan: This lets you zoom and pan over your graph using the
mouse. The scroll wheel zooms in and out, while click and drag lets you
pan around the graph.

•	 MoveSlice: When using a pie chart, clicking on a slice can move it out
from the rest of the chart.

•	 Shake: This creates a shaking action on an element on the chart.
•	 Tooltip: Hovering the mouse cursor over a chart element shows

more information.
•	 TouchIndicator: This provides touch actions that display data on charts.
•	 TouchZoomAndPan: This gives you zoom and pan ability using

touch gestures.

Unlike chart styles and themes, where you attach the chart component to the chart
object, chart actions are called separately. The chart action constructor loads the new
chart as the first argument, and optional parameters for the second argument. Note
that the actions are created before the chart is rendered. You can see an example in
the following code:

require(["dojox/charting/Chart",
 …,
 "dojox/charting/action2d/Tooltip"],
 function(Chart, …, Tooltip){
 var chart = new Chart("test");
 …
 new Tooltip(chart, "default", {
 text: function(o){
 return "Population: "+o.y;
 }
 });
 chart.render();
});

In the preceding example, a chart was created, and a tooltip was added showing
the population as you hovered over a graph feature.

Using Dojox Charts in popups
Combining the dojox/charting modules with the ArcGIS API for JavaScript
provides many ways to display data. One way to deliver feature data through
charts is through the map's infoWindow. The infoWindow uses an HTML template
for its content, and that can provide the hooks we need to attach our graphs.

Chapter 6

[159]

One issue when adding graphs to the infoWindow is determining when to draw
the graph. Thankfully, there's an event for that. The map's infoWindow fires a
selection-changed event whenever the selected feature graphic is changed, either
by clicking on another graphic, or by clicking on the next and previous buttons. We
can assign an event listener to that event, look at the selected graphic and, if it has
the data we need, we can draw the graphs.

Using Dojo Charts in our application
Our census application from previous chapters could use some visual appeal
when it comes to presenting data. We'll make our first attempt at adding charts
and graphs using the dojox/charting library. We'll apply the graphs to the map
popup whenever the user clicks on a census block group, county, or state. The
census blocks don't have enough information for us to graph.

Loading the modules
Since our graphs are currently limited to our census application, we need to
update the modules in our custom y2k/Census module definition:

1.	 We'll start by adding dojo/on to handle the map popup events.
2.	 We'll add the default chart object along with a pie chart and a bar

chart module.
3.	 We'll add the PrimaryColors theme and SimpleTheme to create our own

custom color template.
4.	 Finally, we'll add a highlight and a tooltip action to let the user read the

results when they hover over parts of the graphs.
5.	 It should look a bit like the following:

define([…
 "dojo/on",
 "dojox/charting/Chart",
 "dojox/charting/plot2d/Pie",
 "dojox/charting/plot2d/Bars",
 "dojox/charting/action2d/Highlight",
 "dojox/charting/action2d/Tooltip",
 "dojox/charting/themes/PrimaryColors",
 "dojox/charting/SimpleTheme",.
], function (…, dojoOn, Chart, Pie, Bars, Highlight,
 Tooltip, PrimaryColors, SimpleTheme, …) { … });

Charting Your Progress

[160]

Preparing the popup
As part of our plan, we want the charts and graphs to render in the map's
infowindow when the features are clicked. We're only interested in showing the
charts and graphs for the currently selected feature, so we'll add an event handler
to run every time the infoWindow object's selection-change event fires. We'll call
it _onInfoWindowSelect(). After we write a stub function for that in our Census.js
module, we'll add the event handler in the _onMapLoad() method. We then
know the map and its popup are available. It should look something like the
following code:

_onMapLoad: function () {
 …
 dojoOn(this.map.infoWindow, "selection-change", lang.hitch(this,
 this._onInfoWindowSelect));
},
 …
_onInfoWindowSelect: function () {
 //content goes here
}

The infoWindow object's selection-change event fires when features are both
added and removed from the selection. When we examine the infoWindow object's
selected feature, we must test to find out if it contains a feature. If one is present,
we can process that feature's attributes and add the related graphics to the popup.
The infoWindow function should look like the following:

_onInfoWindowSelect: function () {
 var graphic = this.map.infoWindow.getSelectedFeature(),
 ethnicData, genderData, ageData;
 if (graphic && graphic.attributes) {
 // load and render the ethnic data
 ethnicData = this.ethnicData(graphic.attributes);
 this.ethnicGraph(ethnicData);
 // load and render the gender data
 genderData = this.genderData(graphic.attributes);
 this.genderGraph(genderData);
 // load and render the age data
 ageData = this.ageData(graphic.attributes);
 this.ageGraph(ageData);
 }
},
…
ethnicData: function (attributes) { },
ethnicGraph: function (data) { },

Chapter 6

[161]

genderData: function (attributes) { },
genderGraph: function (data) { },
ageData: function (attributes) { },
ageGraph: function (data) { }

Updating the HTML template
In order to add graphs to our popups, we need to update the HTML templates
to include element IDs. The JavaScript code then looks for a place to render the
graph and we can tell it to render it in the element where the id is added. Open
CensusBlockGroup.html to look at the popup template. Find the Ethnic groups
section and delete the entire table underneath. You can comment it out for testing
purposes, but we don't want everybody to download all that wasted content when
we put this application into production. Replace the table with a div that has an id
equal to ethnicgraph. It should look like the following:

…
Ethnic Groups
<div id="ethnicgraph"></div>
…

Repeat the same under the Males/Females and the Ages sections, replacing those
tables with div elements identified as gendergraph and agegraph respectively.
If you choose to show other graphs, follow the same guidelines. Repeat with the
CountyCensus.html and the StateCensus.html templates as well.

Processing the data
If you look back through the examples from other dojox/charting operations,
you'll notice how data is added to the chart in an array. However, the data we get
from the map service isn't in that format. We need to process the attribute data into
a format that the dojox/charting modules can use.

When passing data objects into dojox/charting charts and graphs, the graphs
expect data to be plottable with x and y properties. Since we're not comparing
value changes over time or some other independent variable, we will add the
numeric populations to our dependent variable y. The value of the tooltip text
can be assigned to the JSON tooltip data property. You can see the resulting
function in the following code:

…
formatAttributesForGraph: function (attributes, fieldLabels) {
 var data = [], field;
 for (field in fieldLabels) {
 data.push({
 tooltip: fieldLabels[field],

Charting Your Progress

[162]

 y: +attributes[field]
 });
 }
 return data;
},
…

The + symbol in front of the attribute in the population objects is a
shortcut to convert a value into a number, if it isn't one already. You get
the same effect using the parseInt() or parseFloat() methods.

Now that we're able to transform our data into a format useable for our graph
widget, we can call our ethnicData(), genderData(), and ageData() methods.
We'll extract the data we need from the feature attributes and put it in an array
format to be used by the chart module.

Parsing the ethnic data
We're interested in extracting the ethnic makeup of the population in the census area.
We're interested in the WHITE, BLACK, AMER_ES, ASIAN, HAWN_PI, HISPANIC, OTHER,
and MULT_RACE fields that are present in the state, county, and block group feature
classes. Since we have a lot of fields that may or may not be in the feature class, and
we'll be adding them the same way, we'll create an array of field names and the
corresponding labels we want to add. See the following code:

…
ethnicData: function (attributes) {
 var data = [],
 fields = ["WHITE", "BLACK", "AMERI_ES", "ASIAN", "HAWN_PI",
 "HISPANIC", "OTHER", "MULT_RACE"],
 labels = ["Caucasian", "African-American", "Native American
 /
 Alaskan Native", "Asian", "Hawaiian /
 Pacific
 Islander", "Hispanic", "Other", "Multiracial"];
},
…

Now that we have the fields and labels, let's add the information we need to the data
array. The dojox/charting library expects graphical data in either a numerical list
or in a JSON object with a specific format. Since we want to add labels to our data in
a pie chart, we'll create the complex objects:

…
ethnicData: function (attributes) {
 var fieldLabels = {
 "WHITE": "Caucasian",
 "BLACK": "African-American",

Chapter 6

[163]

 "AMERI_ES":"Native American /
 Alaskan Native",
 "ASIAN": "Asian",
 "HAWN_PI":"Hawaiian /
 Pacific Islander",
 "HISPANIC": "Hispanic", "OTHER": "Other",
 "MULT_RACE": "Multi-racial"
 }
 return this.formatAttributesForGraph(attributes, fieldLabels);
},
…

Parsing the gender data
We'll calculate the gender data in a similar way. We are only interested in the MALES
and FEMALES fields in the feature attributes. We're going to add them to the list of
JSON objects with the same format as shown in the preceding code. It should look
like the following:

genderData: function (attributes) {
 var fieldLabels = {
 "MALES": "Males", "FEMALES", "Females"
 }
 return this.formatAttributesForGraph(attributes, fieldLabels);
},
…

Parsing the age data
We'll perform the same style of data manipulation for our ageData() method as we
did with the ethnicData() method. We'll collect the census data if it's available for
ages less than 5, 5-17, 18-21, 22-29, 30-39, 40-49, 50-64, and 65 and up. We'll then
add the appropriate tooltip labels and return the resulting formatted data array. It
should look as follows:

ageData: function (attributes) {
 var fieldLabels = {
 "AGE_UNDER5": "< 5", "AGE_5_17": "5-17", "AGE_18_21": "18-21",
 "AGE_22_29": "22-29", "AGE_30_39": "30-39", "AGE_40_49": "40-49",
 "AGE_50_64": "50-64", "AGE_65_UP": "65+"
 };
 return this.formatAttributesForGraph(attributes, fieldLabels);
},

Charting Your Progress

[164]

Showing the results
Now that we have the results in a format that we can use for the charts, we can load
them into our charts. Our ethnic and gender graphs are both pie graphs, while the
age graph is a horizontal bar graph. Let's look at what it takes to construct each.
Any extra graphs you want to create with the rest of the data can be done in your
own time.

Ethnic graph
We want a pie chart that fits within the popup for the ethnic graph. A radius of 90
pixels should fit nicely within the popup. We're going to set the theme of the graph
using PrimaryColors, one of the default themes in dojox/charting. We'll also add
the pie charting ability to the chart, and add the tooltip and highlight animations
when the user hovers over the data. Finally, we'll render the ethnic pie chart:

ethnicGraph: function (data) {
 var ethnicChart = new Chart("ethnicgraph");
 ethnicChart.setTheme(PrimaryColors)
 .addPlot("default", {
 type: Pie,
 font: "normal normal 11pt Tahoma",
 fontColor: "black",
 radius: 90
 }).addSeries("Series A", data);
 var anim_a = new Tooltip(ethnicChart, "default");
 var anim_b = new Highlight(ethnicChart, "default");
 ethnicChart.render();
},

When the application draws the ethnic graph, it should look like the following image:

Ethnic groups

Chapter 6

[165]

Gender graph
For the gender graph, we're going to set up a similar pie graph to the ethnic graph.
But, before we do, we'll load a new theme to work with. We'll create a genderTheme
constructor from the SimpleTheme constructor, and add light pink for females,
and light blue for males. We'll then create the chart, add the new theme, and
add everything else like we did in the ethnic graph. You can see this in the
following code:

genderGraph: function (data) {
 var genderTheme = new SimpleTheme({
 colors: ["#8888ff", "#ff8888"]
 }),
 genderChart = new Chart("gendergraph");

 genderChart.setTheme(genderTheme)
 .addPlot("default", {
 type: Pie,
 font: "normal normal 11pt Tahoma",
 fontColor: "black",
 radius: 90
 }).addSeries("Series A", data);
 var anim_a = new Tooltip(genderChart, "default");
 var anim_b = new Highlight(genderChart, "default");
 genderChart.render();
},

When the application draws the gender graph, it should look something like the
following image:

Charting Your Progress

[166]

Age graph
We'll create a bar chart graph for the age graph to show the age demographics.
Unlike the pie chart, the bar chart doesn't care about the radius, but prefers to know
how long the bars can grow (maxBarSize), and how far to set them apart (gap).
We'll go ahead and use the PrimaryColors theme again for this object:

ageGraph: function (data) {
 var ageChart = new Chart("agegraph");
 ageChart.setTheme(PrimaryColors)
 .addPlot("default", {
 type: Bars,
 font: "normal normal 11pt Tahoma",
 fontColor: "black",
 gap: 2,
 maxBarSize: 220
 }).addSeries("Series A", data);
 var anim_a = new Tooltip(ageChart, "default");
 var anim_b = new Highlight(ageChart, "default");
 ageChart.render();
}

When you draw the ageChart, it should look something like the following image:

Chapter 6

[167]

Introducing D3.js
You can branch out beyond the ArcGIS JavaScript API and Dojo if you want to
create jaw-dropping graphics. One popular JavaScript library you could use to create
charts, graphs, and other data-driven visualizations is D3.js. D3.js was created
by Mike Bostock of the New York Times to use HTML, SVG, CSS, and JavaScript to
create interactive data-driven graphics. It reads data from HTML and renders it in
the way you decide.

D3.js development has taken off since it was first released to the public. The
library is very versatile in that it doesn't render just charts and graphs. It provides
the building blocks to create charts, graphs, and other interactive graphics that can
move and be styled like any HTML element. Even GIS maps in different projections
can be shown on a webpage using D3.js and a file format called GeoJSON.

For anyone with experience with jQuery, scripts written with D3.js behave in the
same way. You can select HTML elements with the d3.select() or d3.selectAll()
methods, which are similar to the jQuery base method. D3 commands can be chained
one after another, which is also a favorite feature with many jQuery developers. In the
following example, we're using D3 to find elements with the class addflair using the
select() method. We then add spans to the elements with related text content:

d3.select(".addflair").append("span").text("I've got flair!");

Adding the D3.js library with Dojo's AMD
Let's say you want to add D3.js to your mapping application. You find the link to
the d3 library, and copy and paste it into your application like so:

…
 <link rel="stylesheet"
 href="https://js.arcgis.com/3.13/esri/css/esri.css" />
 <script src="https://js.arcgis.com/3.13/"></script>
 <script src=https://d3js.org/d3.v3.js"></script>
</head>
…

You cut and paste an example to test if it's going to work. You crank up your
browser, and load your page. You wait patiently for everything to load, and it
breaks. What happened?

It turns out that the extra libraries loaded after the ArcGIS JavaScript API and
interfered with the AMD library references. Let's look at a couple of solutions
to load external libraries into an AMD-based application.

Charting Your Progress

[168]

Loading another library outside an AMD module
If you are going to work with a JavaScript library outside an AMD module, it's best
to load that library before you load the ArcGIS JavaScript API. You would use this
if you're adding a map on top of an existing application previously written in
another framework.

Loading another library within an AMD module
The other way to handle D3 and other external libraries in your AMD applications
is to load them as AMD modules. You can treat them like any other Dojo-based
module, and load them into memory only when necessary. This works well with
libraries that you use sporadically and don't need at startup. It also works well with
libraries that load all the functionality of the library into a single JavaScript object,
such as D3.js or jQuery.

To load an external library as an AMD module, you must first reference it in
dojoConfig as a package, just like you did with your custom Dojo module in
Chapter 3, The Dojo Widget System. Adding your external library to the packages
will tell Dojo's require() and define() functions where to look for the libraries.
Remember that, when listing the location of the library in the package, you
reference the file folder of the JavaScript library, not the library directly.
For D3, the dojoConfig script may look something like the following:

dojoConfig = {
 async: true,
 packages: [
 {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.4.12/"
 }
]
};

Once the library folder reference has been added to your dojoConfig variable, you
can add it to any require() or define() statement. Loading the library into an
AMD require() statement would look like the following:

require([…, "d3/d3", …], function (…, d3, …) { … });

Chapter 6

[169]

Using D3.js in our application
In our application, we will explore using D3 to add graphs to our application.
We'll use it to replace parts of the dojox/charting code where we add the graphs
to our map popup. Many of the steps will be similar, but some will be different.

Adding D3.js to the configuration
Since our application relies heavily on the Dojo framework, we will add our D3.js
library with AMD. We'll add the reference to D3 in our dojoConfig.packages list.
The new dojoConfig script should look like the following:

dojoConfig = {
 async: true,
 packages: [
 {
 name: 'y2k',
 location: location.pathname.replace(/\/[^\/]*$/, '') +'/js'
 },
 {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.4.12/"
 }
]
};

Now that our AMD code knows where to look for the D3 library, we can add a
reference to it in our census application. The D3 library will then be available to our
census widget, but it will not interfere with other applications that may have their
own d3 variable. Our Census.js code should look like the following:

define([
 …,
 "esri/config", "d3/d3"
], function (
 …,
 esriConfig, d3
) {
…
});

Charting Your Progress

[170]

Preparing the popup
D3.js should now be accessible in our widget, and we can prepare the popup to load
the data. We're going to set up our code in the same way we did when we loaded
the dojox/charting modules. We'll attach the same event to the map.infoWindow
object's selection-change event, and on that, we'll run functions to manipulate
and render our data.

Refer to the Preparing the popup section in the dojox/
charting portion of the chapter to get the code.

As for the HTML popup templates for the block groups, counties, and states, we
can make the same changes we made to the ones in the dojox/charting example.
In keeping with best practices on the Internet, we will replace the id tags on
the graphing div elements with class tags of the same name (ethnic groups get
class="ethnicgraph", for instance). This will cut down on the possibility of HTML
id collision. Also, while Dojo widgets require either an HTML element or an id
string, D3.js graphs can be added to elements found with any CSS selector.

Processing our data
When we collected the attribute data for the dojox/Charting modules, we had to
arrange the attribute data into arrays so they could be consumed by the graphing
modules. The same is true for D3.js. We will format the attributes into a list that
can be read by the graphs.

Unlike the dojox/charting library, D3.js doesn't have name restrictions on the
properties used by the graphing parts. You can give the properties more reasonable
names. Functions in D3.js will be added to calculate graph values. Since much
of our ethnic, gender, and age data is based on population and sorted by name,
it makes sense to name those properties population and name, respectively:

…
formatAttributesForGraph: function (attributes, fieldLabels) {
 var data = [], field;
 for (field in fieldLabels) {
 data.push({
 name: fieldLabels[field],
 population: +attributes[field]
 });
 }
 return data;
},
…

Chapter 6

[171]

We add the property names and the population values to a list in the
formatAttributesForGraph() method. That list will be graphed at a later
time. We don't need to change any of the code because we're using the same
function to process the attribute data in the ethnicData(), genderData(),
and ageData() function.

Displaying the results
Now that we've created our lists of data, we can display them in the graphs on
our popups.

Displaying the ethnic graph
For our ethnic graph, we're going to create a pie chart:

1.	 We'll scale it to fit within a 240 pixel by 210 pixel area in our popup window.
2.	 We'll add our own color scale with a list of CSS colors.
3.	 We'll look for the HTML DOM element where we want to put our graph

(class="ethnicgraph"), and then attach the pie chart graphic.
4.	 We'll apply the color, size it with our population data, and then label it

with the names of the ethnic groups:

ethnicGraph: function (data) {
 var width = 240,
 height = 210,
 radius = Math.min(width, height) / 2;

 var color = d3.scale.ordinal()
 .range(["#98abc5", "#8a89a6", "#7b6888", "#6b486b",
 "#a05d56", "#d0743c", "#ff8c00", "#c7d223"]);
 var arc = d3.svg.arc()
 .outerRadius(radius - 10)
 .innerRadius(0);

 var pie = d3.layout.pie()
 .sort(null)
 .value(function(d) { return d.population; });

 var svg = d3.select(".censusethnic").append("svg")
 .attr("width", width)
 .attr("height", height)
 .append("g")

Charting Your Progress

[172]

 .attr("transform", "translate(" + width/2 + "," +
 height/2 + ")");

 if (!data || !data.length) {
 return;
 }

 var g = svg.selectAll(".arc")
 .data(pie(data))
 .enter().append("g")
 .attr("class", "arc");

 g.append("path")
 .attr("d", arc)
 .style("fill", function(d) { return
 color(d.data.name); });

 g.append("text")
 .attr("transform", function(d) { return
 "translate(" + arc.centroid(d) + ")"; })
 .attr("dy", ".35em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.name; });
 },

When the application draws the graph, it should look something like the
following graph:

Chapter 6

[173]

Displaying the gender graph
For the gender graph, we'll start by copying and pasting the code from the ethnic
graph. The code is similar, except for two minor changes:

1.	 For our first change, we'll add custom colors for the male and female
populations. Look for where the color variable is assigned, and insert
the two color hexadecimal numbers into the color range:
genderGraph: function (data) {
…
 var color = d3.scale.ordinal().range(["#8888ff",
 "#ff8888"]);
…
},

2.	 Next, we would like to make the labels show both the gender in question,
and the actual population. To make a two-line label, we need to add another
tspan to fill in with the population. We also need to move that label so that
it is under the other label, and doesn't cross over it:
g.append("text")
 .attr("transform", function(d) { return "translate(" +
 arc.centroid(d) + ")"; })
 .attr("dy", ".35em")
 .style("text-anchor", "middle")
 .text(function(d) { return d.data.name; })
 .append("tspan")
 .text(function(d) { return d.data.population;})
 .attr("x", "0").attr("dy", '15');

3.	 Once we run the application and test it with some data, the graph should
look like the following image, pending data:

Charting Your Progress

[174]

Displaying the age graph
The age graph creates bar graphs from simple html div elements. It resizes them
according to the data we've provided. We need to calculate a maximum value for
the data, so that we can fit the data values within a maximum width. From there,
we can draw and label our graphs with the data provided:

ageGraph: function (data) {
 // calculate max data value
 var maxData = d3.max(arrayUtils.map(data, function (item)
 {return item.population;}));
 // create a scale to convert data value to bar width
 var x = d3.scale.linear()
 .domain([0, maxData])
 .range([0, 240]);
 // draw bar graph and label it.
 d3.select(".censusages")
 .selectAll("div")
 .data(data)
 .enter().append("div")
 .style("width", function(d) { return x(d.population) + "px";
 })
 .text(function(d) { return d.age + ": " + d.population; });
}

Using CSS styling, we can transform the appearance of the data however we wish.
In this example, we decided to go with an alternating color theme, using the CSS3
nth-child(even) pseudo class selector. You can add your own CSS hover effects
to match what we did with dojox/charting:

.censusages > div {
 background: #12af12;
 color: white;
 font-size: 0.9em;
 line-height: 1.5;
}
.censusages > div:nth-child(even) {
 background: #64ff64;
 color: #222;
 margin: 1px 0;
}

Chapter 6

[175]

Using CSS and our data, we were able to create the following graph:

If you would like more information on the D3.js library, there
is a wealth of information available. The official D3.js website
is at http://d3js.org/. You can go there to find examples,
tutorials, and other eye-popping graphics. You can also check out
Data Visualization with d3.js by Swizec Tellor, Data Visualization
with D3.js Cookbook by Nick Qi Zhu, and Mastering D3.js by Pablo
Navarro Castillo.

Summary
Both dojox/charting and D3.js have their advantages and disadvantages in our
web mapping applications. The dojox/charting library comes with the ArcGIS
JavaScript API, and is easily integrated with existing applications. It provides
many themes that can be added quickly. On the other hand, D3.js works with
HTML elements and CSS styling to create eye-popping effects. It offers more data
visualization techniques than dojox/charting and offers customizable appearances
using CSS styling. Your final choice may come down to your comfort level with
these tools and your imagination.

In this chapter, we have learned how to incorporate graphs and charts in to our
ArcGIS JavaScript API applications. We used graphics libraries provided by the
Dojo framework, which created graphics based on data from map features. We
also used D3.js to render charts and graphs in our application. In the process, we
learned how to load and access other libraries in Dojo's AMD-based applications.

In the next chapter, we'll explore how to mix our ArcGIS JavaScript API
applications with other popular JavaScript frameworks.

http://d3js.org/

[177]

Plays Well with Others
JavaScript development has matured over recent years. Once a simple language used
to script a few animations and user interactions, JavaScript applications now support
a full range of tasks that were only possible with desktop applications a few years
ago. There are numerous well-documented libraries and frameworks that make
complicated applications manageable through a web browser.

No JavaScript library or framework does everything perfectly. Most libraries focus
on improving a few key requirements for application development, such as DOM
manipulation, data binding, animation, or graphics. Some focus on speed; others
focus on cross-browser compatibility.

A successful JavaScript developer doesn't have to build an application from scratch
using one library or raw JavaScript to make it work. By adding current libraries that
work well together, the developer can speed up development and handle multiple
browser types without having to worry about them.

In this chapter, we'll cover the following:

•	 Integrating jQuery into the applications
•	 Integrating Backbone.js into the applications
•	 Integrating Knockout.js into the applications
•	 Discuss Using AngularJS in a mapping application

Plays Well with Others

[178]

Compatibility with other libraries and
frameworks
One way developers describe the usability of JavaScript libraries is how compatible
they are with other libraries. The more libraries your library plays well with, the
more likely it can be used on projects. When libraries don't play well with other
libraries and frameworks, it can lead to unintended code bugs and actions that
nobody saw coming. Since a developer cannot control what other libraries are
used in a project with their library, it is better if a library plays well with others.

There are several ways that libraries can conflict with one another. One way that
was more common in the past is through namespace collision. If two libraries create
the same cut() function in the global namespace, you can't be sure which one will
be called. Another, more subtle conflict arises through manipulating the prototype
of standard JavaScript types. One library will expect the map() method called on an
array to perform a specific task, but if another library overwrote Array.prototype.
map(), the results may not turn out as expected, and may break the application.
Typically, it's only polite to manipulate the prototype of base JavaScript types if you
are patching support for older browsers.

A more recent way that JavaScript libraries can clash is in how they implement
modules. Before ECMAScript 6 came out with the standard for modules, there were
two schools of module development. One revolved around using CommonJS to
define modules, and the other was AMD. Typically, modules from one can be loaded
by the other, as they are called and constructed differently. Most small libraries that
aren't defined one way or another can be loaded into either one, with a little work.

Even within AMD, there can be some conflicts. Some libraries and frameworks use
Require.JS to load their modules. While syntactily similar, there are some differences
in older versions of Dojo that create errors when mixing with Require.JS modules.
It's something to be aware of when mixing and mashing up JavaScript libraries in
your application.

Popular libraries to play with
Now that we've looked at library compatibility as a whole, it's time to check out how
the ArcGIS API for JavaScript plays with other JavaScript libraries and frameworks.
We'll look at some of the popular libraries used by developers, and attempt to load
them along with the ArcGIS API for JavaScript. We'll create the same application
using jQuery, Backbone.js, Knockout.js, and AngularJS, and see how they compare.
Finally, we'll look at a few do's and don'ts with any framework and the ArcGIS API.

Chapter 7

[179]

Our story continues
So, our census data app is a big hit for the Y2K society. They like the look of the
graphics, and want us to expand it. The functionality of the widget is great, but
they've made a new request. It seems that one of the members watched a late night
comedian on television the other night, and found out that there are people out there
who can't find their state or county on a map.

After discussing possible solutions with our client, we've decided to add some
drop-down controls that let the user select a state, county, and even a census block
group. On picking a state, the map zooms to the state and shows the data in a popup.
Also, the county dropdown is populated with the county names in that state. When
the county is selected, the county is selected with a popup, and the block group
names are populated for that county and state. Finally, if the block group is
selected, the block group is zoomed to, and the data is displayed on the map.

In somewhat related news, we've picked up an intern. He's an eager young kid who
likes to follow the latest in JavaScript. He wants to contribute something to this
project, and this looks like a good task to let him cut his teeth on.

The problem is, our intern wants to write the code using another library or
framework, and not just a simple one. He wants to bring in a number of popular
libraries including jQuery, Backbone, Knockout, Node.js, and Angular. While we
appreciate his desire to learn (and to pad his resume), we have to have a serious talk
with him about picking libraries appropriate for the project.

After talking the intern out of a Node.js project (since this is a client-side app, with
no need for server-side work at this point), we explain the general use of the other
libraries, he had on his list. We decide to give the intern a learning project, and
let him build four copies of the app, each incorporating either jQuery, Backbone,
Knockout, or Angular. He can evaluate each app and let us know which worked best
with the application. We figure it's okay that he does four times the work, since he's
not a paid intern.

We should go ahead and set up four project folders with copies of the D3.js app
from our previous chapter's work. In each of the projects, we need to modify the
Census.html template in the /js/template folder to show the drop-down menus.
We'll add three drop-down menus with bold labels and selects that will be populated
later by the four libraries. It should look like the following:

<div class="${baseClass}" style="display: none;">
 <span class="${baseClass}-close" data-dojo-attach-
 event="ondijitclick:hide">X
 Census Data

 <p>

Plays Well with Others

[180]

 Click on a location in the United States to view the census
 data for that region. You can also use the dropdown tools to
 select a State, County, or Blockgroup.
 </p>
 <div >
 State Selector:
 <select></select>
 </div>
 <div>
 County Selector:
 <select></select>
 </div>
 <div>
 Block Group Selector:
 <select></select>
 </div>
</div>

When the new application loads, the new widget should look something like
the following:

Chapter 7

[181]

An overview of jQuery
The most popular library for a number of years has to be jQuery. jQuery was
originally created by John Resig as a library to handle DOM manipulation and
events. Cross-browser compatibility is a strong selling point for this library, since
it works in everything from the newest version of Chrome to Internet Explorer
versions so old they make most developers cringe. Its intuitive commands and
functionality make it easy to pick up for novice developers. The library is so
popular that, as of the end of 2013, it is estimated to be used in 61 percent of the top
100,000 websites in the world, according to the jQuery blog (http://blog.jquery.
com/2014/01/13/the-state-of-jquery-2014/).

If you understand how jQuery works, you can skip the next section and go to Adding
jQuery in our App. If not, here's a quick rundown on how jQuery works.

How jQuery works
The jQuery library is incredibly useful for selecting and manipulating DOM elements
on a web page. DOM elements can be selected using the jQuery() function, or its
common shortcut method $(). It accepts either a DOM element or a string with a
CSS selector. To select an element with an id, you would put a # in front of the ID
name. To select a CSS class, you insert a . in front of the class name. To select all
elements of a tag name, just use the tag name. In fact, almost any legal CSS select
statement is supported by jQuery. Here are some examples in the following code:

jQuery("#main"); // selects a node with an id="main"
$("#main"); // A common shortcut for jQuery; same as above.
$(".classy"); // selects all elements with class="classy"
$("p"); // selects all paragraphs
$(".article p"); // selects all paragraphs in nodes of
 // class="article"
$("input[type='text']"); // selects all text inputs

Once the nodes are selected by the jQuery object, you can perform a number of
functions on them. You can make them appear and disappear using the show() and
hide() methods. You can change their style using css(), their properties using
attr(), and their content using html() or text() methods. Selected form element
values can be retrieved and set using the val(). You can also find elements within
the selected elements with find(), and iterate through each item with the each()
method. Events can also be assigned using the on() method, and removed using
off(). These are just the most common jQuery methods.

http://blog.jquery.com/2014/01/13/the-state-of-jquery-2014/
http://blog.jquery.com/2014/01/13/the-state-of-jquery-2014/

Plays Well with Others

[182]

Another powerful feature of jQuery is a property called chaining. jQuery functions
return the jQuery object. You can immediately call another function on what was
returned. These chained commands are evaluated from left to right. You can create
some powerful transformations on your HTML using this code. For example, if you
wanted to turn every unordered list item into a green frog and every ordered list
item to a big brown toad, you could do the following:

$("ul > li").css("color", "green").text("Frog");
$("ol > li").css({"color": "green", "font-size": "72px"})
 .text("Toad"); // totally legal to do this.

Just be warned, as you work with complex chained functions in jQuery, sometimes
the target of the function will change. Functions like each() and find() will change
the selection that is passed to the next function. In this example, the developer wants
to show a form, set its width to 400px, clear the values of the text blanks, and turn
the labels blue. When they run it, they will find that the labels don't turn blue as
they expected:

$("form").show().css("width", "400px")
 .find('input').val('')
 .find('label').css('color', '#0f0');

When the developer called find('input'), it changed the selected items from form
elements to input elements. Then, when the find('label') was called, jQuery
searched for labels that were inside the input tags. Not finding any, nothing turned
blue. Thankfully, the developer remembered that jQuery also provides an end()
function that returns you to your original selection. The following bit of code works
much better:

$("form").show().css("width", "400px")
 .find('input').val('').end()
 .find('label').css('color', '#0f0');

Now that we've taken a crash course in jQuery, let's try to use it in our application.

Adding jQuery to your app
So, our intern is starting to work with the jQuery-based app when he runs into
his first problem. How does he make jQuery and Dojo play well together? For the
answer to that, we can look at some of the lessons from Chapter 6, Charting Your
Progress, when we added D3.js to our application.

Chapter 7

[183]

Loading a copy of our D3.js app, we'll start by adding a reference to the jQuery
library in our dojoConfig packages. Remember that it is the JavaScript configuration
object that is loaded before we load the ArcGIS Javascript API. We'll add a package
with the name and file location, but we'll also add a main property that will make the
application load the jQuery library. You can download a copy of the jQuery library
and place it in an accessible folder in your application, or you can make a reference
to an external content delivery network (or CDN) that's hosting the library. Using
an external reference to jQuery hosted by Google, it should look something like the
following code:

dojoConfig = {
 async: true,
 packages: [
 {
 name: 'y2k',
 location: location.pathname.replace(/\/[^\/]*$/, '') + '/js'
 }, {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.4.12/"
 }, {
 name: "jquery",
 location:"http://ajax.googleapis.com/ajax/libs/jquery/1.11.2",
 main: "jquery"
 }
]
};

Now that we can access jQuery through AMD, let's open our Census.js file and add
it as a module in our file. We'll add a reference to it in the require statement, and
assign it to the module $, as it is commonly referred to in most jQuery examples. It
should look something like the following code:

require([…, "d3/d3", "jquery"], function (…, d3, $) {
 …
});

Plays Well with Others

[184]

Next, we'll need to update the Census widget template to give jQuery something
to search for. While updating Census.html in the js/templates/ folder, we'll
add a stateselect, countyselect, and blockgroupselect class to each of the
select menus. While adding IDs would make selecting the elements faster, adding
class names will ensure that there is no ID name collision with other widgets in the
application. The template will look like the following example:

…
 <p>
 Click on a location in the United States to view the census
 data for that region. You can also use the dropdown tools to
 select a State, County, or Blockgroup.
 </p>
 <div >
 State Selector:
 <select class="stateselect"></select>
 </div>
 <div>
 County Selector:
 <select class="countyselect"></select>
 </div>
 <div>
 Block Group Selector:
 <select class="blockgroupselect"></select>
 </div>
…

Since we have something for jQuery to select, we need to let jQuery select it in our
code. Add some jQuery selectors to the constructor of our Census widget to get the
nodes that have the stateselect, countyselect, and blockgroupselect classes,
and assign them to the stateSelect, countySelect, and blockGroupSelect
properties of our widget, in that order. This is referred to as caching our selections,
which is a good practice for jQuery apps, since repeating DOM searches can take a
long time, especially in a larger application:

constructor: function (options, srcNodeRef) {
 …
 this.map = options.map || null;
 this.domNode = srcRefNode;

 this.stateSelect = $(".stateselect");
 this.countySelect = $(".countyselect");
 this.blockGroupSelect = $(".blockgroupselect");
 …
},

Chapter 7

[185]

If we ran the application now, we would find that there was nothing in the
stateSelect, countySelect, and blockGroupSelect properties. Why? If you
remember, back in Chapter 3, The Dojo Widget System, we talked about the lifecycle of
a Dojo widget. We discussed the fact that, while the constructor function runs, the
template won't have loaded yet. In fact, it will not be available until the widget runs
the postCreate() method. We'll need to add postCreate() to our application, add
a line that refers to the postCreate function inherited from the WidgetBase class,
and then cut and paste the jQuery code we wrote earlier into this function. It should
look something like the following code:

constructor: function (options, srcNodeRef) {
 …
 this.domNode = srcRefNode;
 /* stateSelect, countySelect, and blockGroupSelect removed */
 …
},

postCreate: function () {
 this.inherited(arguments);

 this.stateSelect = $(".stateselect");
 this.countySelect = $(".countyselect");
 this.blockGroupSelect = $(".blockgroupselect");
},

Now, when the postCreate method is called, stateSelect, countySelect,
and blockGroupSelect will be filled with appropriate objects.

Filling in our dropdowns
We need data to fill in our select dropdowns. For that, we'll need to get state, county,
and block group names from the map services and fill them in the dropdowns. For
the fifty or more states, that is easy, but what about counties and block groups? There
are over 250 counties in the state of Texas alone, and even more block groups. We
need a systematic way to populate the dropdowns.

What if, every time we selected a state, the county dropdown was filled with all the
counties in that state? Also, what if the block groups list wasn't populated until the
user selected the county of interest? We can achieve this if we listen to the select
element's change event. When the event fires, we'll have a new selection result from
the previous level query for the new list.

Plays Well with Others

[186]

We'll start by stubbing out two new methods in the Census module, called
queryDropdownData() and populateDropdown(). Instead of adding a list of
parameters that we don't know yet, we'll add a single argument called args to the
queryDropdownData() method. To the populateDropdown() method, we'll add
the args parameter, plus a featureSet parameter that will come from querying the
map data:

…
getDropDownData: function (args) { },
populateDropdown: function (args, featureSet) { },
…

Adding the QueryTask
Inside the queryDropdownData() method, we're going to query a map service to get
the list of counties in a state, or block groups in a county. For this, we'll need to add
the ArcGIS JavaScript API's QueryTask. If you remember from Chapter 2, Digging
into the API, QueryTask lets us pull SQL-like queries to single layers in a map service.
We'll need to add references to the require statement for the QueryTask and its
associated task parameter builder, the Query. We'll go ahead and construct these in
our getDropdown() method:

require([…, "esri/tasks/Query", "esri/tasks/QueryTask", …],
 function (…, Query, QueryTask, …) {
 …
 queryDropdownData: function (args) {
 var queryTask = new QueryTask(/* url */),
 query = new Query();
 },
 …
});

Now we need to define the parameters for both QueryTask and the query. For that,
we'll use parameters passed through the args object. We can define an args.url
to send a URL string to the QueryTask. We can also use args.field to set the field
name for the data we want returned in the query object, and args.where to supply
a where clause to filter the results. queryDropdownData() should now look like
the following:

queryDropdownData: function (args) {
 var queryTask = new QueryTask(args.url),
 query = new Query();
 query.returnGeometry = false;
 query.outFields = args.fields;
 query.orderByFields = args.fields;

Chapter 7

[187]

 query.where = args.where;
 query.returnDistinctValues = true;

 return queryTask.execute(query);
},

For our populateDropdown() method, we'll take the jQuery-based selector and
add the featureSet features that will be returned from the queryDropdownData()
method. Remember that a featureSet contains a features parameter, which
contains a list of graphic results. Out of the graphics returned, we're only interested
in the attributes of the field returned. It should look as follows. We're going to use
the jQuery each() function on the list of features to iterate through, create an option
for each result, attach it to the selector, and fill it in with values. It should look like
the following:

_populateDropdown: function (args, featureSet) {
 args.selector.empty();
 $.each(featureSet.features, function () {
 args.selector.append($("<option />")
 .val(this.attributes[args.fieldName])
 .text(this.attributes[args.fieldName])
 .attr("data-fips", this.attributes[args.fips]));
 });
},

Other helper functions
With the addition of QueryTask, we can now directly query the state, county, or
block group we select from the drop-down menu. We need to define the function
that will collect that information from the server. We can call the method in our
widget queryShapeAndData(), and it will take a single args parameter with the
data we need from it:

queryShapeAndData: function (args) {
 var queryTask = new QueryTask(args.url),
 query = new Query();
 query.returnGeometry = true;
 query.outFields = ["*"];
 query.outSpatialReference = this.map.spatialReference;
 query.where = args.where;

 return queryTask.execute(query);
},

Plays Well with Others

[188]

While it is possible to add these graphics directly to the map, we should format the
data so that it brings up an infoWindow as if we clicked it ourselves. For this, we'll
add an _onQueryComplete() method. It will accept a featureSet returned from a
QueryTask, and return a list of features with appropriate popup templates just like
the ones we assign when we identify through clicks. Unfortunately, featureSets do
not return the same descriptive information as IdentifyResults, so we will have to
manually add the title of the feature for it to accurately pick the right InfoTemplate:

_onQueryComplete: function (title, featureSet) {
 featureSet.features = arrayUtils.map(
 featureSet.features,
 lang.hitch(this, function (feature) {
 return this._processFeature(feature, title);
 }));
},

Going back to the queryShapeAndData() method, we can add the callback
function to the execute statement and have it return a processed result every
time. The last part of queryShapeAndData()will look like the following:

 …
 return queryTask.execute(query)
 .addCallback(lang.hitch(
 this, this._onQueryComplete, args.title)
);
},

Finally, we need a way to show the queried graphics on the map. We'll create a
method called _updateInfoWindowFromQuery() that takes a featureSet, zooms to
its features, and adds the infoWindow. We're going to use the esri/graphicsUtils
module to collect the overall extent of the graphics, so that we can zoom to it. Once
the asynchronous zoom finishes, we'll set the graphic on the infoWindow and show
it. You can see the code that does all this in the following:

_updateInfoWindowFromQuery: function (results) {
 var resultExtent =
 graphicsUtils.graphicsExtent(results.features);

 this.map.setExtent(resultExtent)
 .then(lang.hitch(this, function () {
 this.map.infoWindow.setFeatures(results.features);
 this.map.infoWindow.show(resultExtent.getCenter());
 }));
},

Chapter 7

[189]

Handling events
Now, we will add event listeners to the stateSelect, countySelect, and
blockGroupSelect items. We'll use the helper functions we developed in previous
sections to populate the data, using some of our knowledge of dojo/Deferred to
connect them asynchronously. Let's begin with the states.

When you select a state from the drop-down menu, the select element will fire a
change event. We're not going to collect data on this event. Instead, we'll get data
directly from the drop-down selectors and use that to generate the queries we need.

Let's go ahead and stub out the _stateSelectChanged() method in the Census
widget. It takes no arguments. We'll do the same with the _countySelectChanged()
and _blockGroupSelectChanged() methods as well. Then, using jQuery's .on()
method, we'll listen for the change events in the stateSelect, countySelect, and
blockGroupSelect controls. We'll use dojo's lang.hitch() method to make sure
that, when we say this, we mean this widget. It should look like the following:

postCreate: function () {
 this.stateSelect = $(".stateselect")
 .on("change", lang.hitch(this, this._stateSelectChanged));
 this.countySelect = $(".countyselect")
 .on("change", lang.hitch(this, this._countySelectChanged));
 this.blockGroupSelect = $(".blockgroupselect")
 .on("change",lang.hitch(this, this._blockGroupSelectChanged));
},
…
_stateSelectChanged: function () {},
_countySelectChanged: function () {},
_blockGroupSelectChanged: function () {},
…

Handling the state
In the _stateSelectChanged() method, we'll start by collecting the name of the
state selected in stateSelect. If there is a value, we'll start by querying for the
graphical data on that state. We'll use the queryShapeAndData() method to query
for the shape data and process it. When that is complete, we can pass it along to the
_updateInfoWindowFromQuery() method:

_stateSelectChanged: function () {
 var stateName = this.stateSelect.val();
 if (value && value.length > 0) {
 this.queryShapeAndData({
 title: "states",

Plays Well with Others

[190]

 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/3",
 where: "STATE_NAME = '" + stateName + "'"
 }).then(lang.hitch(this, this._updateInfoWindowFromQuery),
 function (err) { console.log(err); });
 }
},
…

Now that we're showing the graphic, it's time to fill in the county name. We'll use the
queryDropdownData() method to query for the list of counties, and using .then()
asynchronously, pass the results to our _populateDropdown() method. We'll
assign the county names first in the list of queried values, because we want them
in alphabetical order. We'll tack that on at the end of the _stateSelectChanged()
method, and it should appear like the following:

…
// search for counties in that state.
this.queryDropdownData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/2",
 fields: ["NAME", "CNTY_FIPS"],
 where: "STATE_NAME = '" + stateName + "'",
}).then(lang.hitch(this, this._populateDropdown, {
 selector: this.countySelect,
 fieldName: "NAME",
 fips: "CNTY_FIPS"
}));
…

How the counties differ
The counties should load similarly to the states. The big issue is that we are required
to query for the underlying block groups in a county with state and county FIPs
codes. There are no state or county names available in the block group census data.

Since we assigned the FIP codes to the data-fips attributes of the drop-down
options, there should be a way we can get them, right? Yes we can, but we'll have
to take advantage of jQuery's chaining methods. From stateSelect, for instance,
we can use the jQuery.find(":selected") method to find the selected option
inside the select. From there, we can call jQuery's attr() method to grab the
data-fips attribute. For the state and county names and FIPs codes, it should
look like the following:

Chapter 7

[191]

_countySelectChanged: function () {
 var stateName = this.stateSelect.val(),
 stateFIPS = this.stateSelect.find(":selected")
 .attr("data-fips"),
 countyName = this.countySelect.val(),
 countyFIPS = this.countySelect.find(":selected")
 .attr("data-fips");
…

From here, we can use stateName and countyName to query for the correct county
to show, and stateFIPS and countyFIPS to get the list of block groups. They'll use
the same functions as the _stateSelectChanged() method, but with different map
services and where clauses.

Finally, the block groups
The _blockGroupSelectChanged() method is much easier to write, because we're
only interested in showing the block group. The key here is to collect the selected
state FIP code, the selected county FIP code, and the blockgroup value from their
respective dropdowns. Then we'll piece together the where clause on the query, and
request the graphics for the map. The method should look like the following code:

_blockGroupSelectChanged: function () {
 var stateFIPS = this.stateSelect.find(":selected").attr("data-
 fips"),
 countyFIPS = this.countySelect.find(":selected").attr("data-
 fips"),
 blockGroup = this.blockGroupSelect.val();
 this.queryShapeAndData({
 title: "Census Block Group",
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/1",
 where: "STATE_FIPS = '" + stateFIPS + "' AND CNTY_FIPS = '" +
 countyFIPS + "' AND BLKGRP = '" + blockGroup + "'"
 }).then(
 lang.hitch(this, this._updateInfoWindowFromQuery),
 function (err) { console.log(err); });
},

Plays Well with Others

[192]

Filling in the states
Now that the application is wired, we can finally load the state data from the map
service. We'll start by querying the state layer for state names and state FIP codes. To
get all the states, we'll use a little SQL trick. SQL will return all rows where the where
clause is true, so if you want all the rows, you have to return something that's always
true. In this case, we'll assign 1=1 to the where clause for queryDropdownData(),
because it is always true that 1=1.

Once we receive the query results from the server, we'll pass them to our
_populateDropdown() method. We'll assign the options to the stateSelect
drop-down, show the state names on each choice, and store the FIP codes in the
options as well. We'll add the following snippet to the end of our postCreate()
method:

this.queryDropdownData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/3",
 fields: ["STATE_NAME", "STATE_FIPS"],
 where: "1=1",
}).then(lang.hitch(this, this._populateDropdown, {
 selector: this.stateSelect,
 fieldName: "STATE_NAME",
 fips: "STATE_FIPS"
}));

So, if we've wired everything up correctly, we can view the site in the browser
and open the Census widget. We should then see the states already loaded in the
drop-down menu. You will have to select a state before the counties fill in, and select
a county for the block groups.

Keep this project handy. We'll make copies of this one as a starting point for the
other projects. Now let's try to build a Backbone app.

An overview of Backbone.js
With a simple application like the one we wrote with jQuery, the logic can turn into
spaghetti-code rather quickly. We need to implement good practices to organize our
code. Which practices do we implement? One of the first libraries to try to answer
this question is Backbone.js.

Chapter 7

[193]

Backbone.js is one of the earliest JavaScript libraries to implement a Model View
Controller (MVC) architecture. MVC organizes code by separating data and
business logic (the Model) from the output (the View) and updates both through a
separate component (the Controller). With MVC, you don't write a complicated
JavaScript function that gets input from some text blanks, adds the contents
together, and saves the results. Those three actions can be written into three different
functions, separated by what they do and how they fit into the Model, View, and
Controller classifications.

Backbone.js requires a couple of other libraries in order to work properly. Backbone
uses jQuery to handle DOM manipulation, including showing and hiding elements
on the page. Backbone also requires another library called Underscore.js. This library
provides a number of functions and shortcuts for dealing with JavaScript objects,
arrays, and so forth. Underscore.js provides methods found in dojo/_base/lang
and dojo/_base/array, as well as other methods that can help you pull out relevant
data from your feature graphics.

Components of Backbone
Compared to most popular libraries and frameworks, Backbone.js is rather simple.
It organizes your code into five categories: Model, View, Collection, Event, and
Router. These work together to showcase your data and react to user input. All
but the events are created through Backbone's extend() method, which contains a
JavaScript object that defines the Model, View, Collection, or Router. Events, on
the other hand, are defined through the creation of the other items. Let's review each
item individually.

The Model
Backbone.js' Model provides a description of the data you're going to use. You can
assign default properties, methods, and events to the model that will be called by
application features created in the other categories. Models are created through the
Backbone.Model.extend() constructor method. Models created with this method
become constructors for model data in your application. Data created through
models have different methods to get() and set() data, test for the presence of
data through has(), and even detect changes in the data through isChanged() or
changedAttributes().

Plays Well with Others

[194]

Here's an example of a playing card model, as well as a card created using the model.
The CardModel variable includes rank and suit properties, as well as a function to
describe the card in a single string:

var CardModel = Backbone.Model.extend({
 defaults: {
 "rank": "2",
 "suit": "heart"
 },
 description: function () {
 return this.rank + " of " + this.suit + "s";
 }
});
var myCard = new CardModel({rank: "9", suit: "spade"});
myCard.description(); // returns "9 of spades";

The View
The Backbone View sets up how the data will be presented in the application.
The View defines the HTML output through a series of parameters defined in the
Backbone.View.extend() constructor. You can create a view on a particular DOM
element in your HTML by assigning the .el property in the extend() constructor
method. You can also assign a tagName property to define the HTML element that
is created, a template property if the content is more complicated than a single
element, and even a className property to assign a CSS class to the main element.

The view makes heavy use of both jQuery and Underscore.js. For example, while
the element of the view is defined by the view's .el property, a jQuery version is
available by referring to the Views $el property. Also, HTML content can be defined
through the view's template, which is created through Underscore's .template()
creator.

When a view is first created, it starts with a method called initialize() that you
define. In the initialize() method, you can assign event listeners to other parts of
the view, including models and collections. You can also tell the view to render(),
or write out the HTML code. The render() method that you define is used to add
the custom HTML within the View element. You can also render other views within
the View.

Chapter 7

[195]

In the following code, you can find a sample View to show a card:

var CardView = Backbone.View.extend({
 tagName: "li"
 className: "card"
 template: _.template("<%= description %> <button>Discard</button>"),
 initialize: function () {
 this.render();
 }
 render: function () {
 this.$el.html(
 this.template(this.model.toJSON())
);
 }
});

The Collection
If a Backbone model describes one piece of data, how do you describe a list of them?
That's where a Collection comes in. A collection represents a list of data items of
a particular model. As is probably no surprise, a Collection constructor can be
created using the Backbone.Collection.extend() method.

Collections offer a number of methods for managing the content of your list. You
can .add() or .remove() model-defined items from your collection list, as well as
.reset() the entire list to whatever you pass as a parameter. You can define a url
parameter as a JSON data source, and .fetch() the data.

In the following code, you can see how a Collection is created using a deck of
cards. It is based on the CardModel defined in the model:

Var CardCollection = Backbone.Collection.extend({
 model: CardModel,
 url: "http://cardjson.com", // made up for this example
 deal: function () {
 return this.shift();
 }
});
var deck = new CardCollection();
deck.fetch(); //load cards from website if it existed.

Plays Well with Others

[196]

Implementing a router
Backbone routers help define the state of the application through the URL. They
respond to changes in the URL hash, or the text following the # symbol in the URL.
The hash was originally created in web pages to allow you to click an anchor tag to
move down the page to related content, without reloading the entire page. When
a Backbone router is enabled, you can change the hash, say, through a button or
anchor click, and it will run some JavaScript code in response to the content. All this
happens, and the page doesn't reload.

This lack of page reloads when the router changes makes single-page applications
possible. Instead of loading new pages, Backbone can simply show different views
in response to the router. This gives a snappier response on the page.

Handling events
Events are defined within the other items created by Backbone. Event listeners are
attached to elements of the Model, View, Collection, or Router, by way of the on()
method. The on() method takes three parameters, a string containing the name of
the event, the function that is to be called when the event occurs, and the context that
defines what this is.

Events within HTML elements created by the view are defined in a different way.
The Backbone.View.extend() constructor contains an events parameter that is
defined by an unusually formatted JSON object. Event names, and jQuery selectors
for the elements, are used as the key, and a string containing the name of the
function called in the view makes up the key value. Example events might
look like the following:

…
events: {
 "keypress input": "stopOnEnter",
 "click #mybutton": "itsMine",
 "focus .tinything": "bigScare",
 "blur .tinything": "makeSmallAgain"
}
…

Chapter 7

[197]

Putting some Backbone in your app
Since Backbone uses jQuery under the hood to work with the DOM, we can reuse
much of the code from our jQuery application. We'll be using the same ArcGIS
JavaScript API modules to interact with the map services. We'll only change how the
drop-down options are rendered and how the change events on those dropdowns
are handled. So, let's start by making a copy of our jQuery application and naming
the folder Backbone.

Next, we'll need to add references to the Backbone and Underscore libraries in our
dojoConfig, so that they are available through AMD. We'll load them from a CDN
source for this application, although you're free to download them into folders for
your own applications:

dojoConfig = {
 async: true,
 packages: [
 …
 {
 name: "jquery",
 location:
 "http://ajax.googleapis.com/ajax/libs/jquery/1.11.2",
 main: "jquery"
 }, {
 name: "underscore",
 location:
 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.7.0",
 main: "underscore"
 }, {
 name: "backbone",
 location:
 "http://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2",
 main: "backbone"
 }
]
};

Plays Well with Others

[198]

After that, we'll make reference to the jQuery, Underscore, and Backbone libraries in
our define statement in the Census.js file. The files should load in as so:

define([…, "d3/d3", "jquery", "underscore", "backbone"],
 function (…, d3, $, _, Backbone), {
 …
});

Defining the models
Now, we have the opportunity to define the data models that we'll be working
with. If you remember from the jQuery exercise, we were primarily interested in the
names and the FIP codes for the census locations. In the postCreate() method of
the census widget, we'll define our models using default values from those fields:

postCreate: function () {
 …
 // Backbone Models
 var State = Backbone.Model.extend({
 defaults: {
 "STATE_NAME": "",
 "STATE_FIPS": ""
 }
 });

 var County = Backbone.Model.extend({
 defaults: {
 "STATE_NAME": "",
 "STATE_FIPS": "",
 "NAME": "",
 "CNTY_FIPS": ""
 }
 });

 var BlockGroup = Backbone.Model.extend({
 defaults: {
 "BLKGRP": "0"
 }
 });
},

Chapter 7

[199]

Defining the collections
For the state, county, and block group collections, we'll simply define them based on
the corresponding models we defined previously. We'll then create collection objects
that are tied to the Dojo dijit. It should look like the following:

postCreate: function () {

 // Backbone Collections
 var StateCollection = Backbone.Collection.extend({
 model: State
 });
 var CountyCollection = Backbone.Collection.extend({
 model: County
 });
 var BlockGroupCollection = Backbone.Collection.extend({
 model: BlockGroup
 });

 this.stateCollection = new StateCollection([]);
 this.countyCollection = new CountyCollection([]);
 this.blockGroupCollection = new BlockGroupCollection([]);
},

Defining the views
Now that we've defined our models and collections, it's time to create a view
for them. Our view should create the options with the data that we need in our
application. We'll need to create a separate view for each of the dropdowns, since
assigning templates when the view is created causes errors with this version of
the Backbone.

Let's start with the StateView variable. The StateView variable will be created
through Backbone.View.extend. In the StateView variable, we want to define a
template, an initialize() method, and a render() method. The initialize()
method will listen for the collection's reset event, and cause it to render() again.
The template is defined by Underscore's _.template function called on an HTML
string pulled up by jQuery. The jQuery selector will look for our state option
template by looking for an element with the ID of stateitemtemplate:

// Backbone Views
var StateView = Backbone.View.extend({
 initialize: function () {
 this.collection.on("reset", this.render, this);
 },

Plays Well with Others

[200]

 template: _.template($("#stateitemtemplate").html()),
 render: function () {
 // compile the template using underscore
 var template = this.template,
 el = this.$el.empty();
 // load the compiled HTML into the Backbone "el"ement
 _.each(this.collection.models, function (item) {
 el.append(template(item.toJSON()));
 });
 }
});

In the preceding view, the render function does two things. First, it loads the view
template and the empty jQuery selection object into variables. Next, it iterates over
each of the collection models using Underscore's each() method, fills in the template
with the JSON content from the model, and appends it inside the select element.
Some other Backbone examples would stop the option creation from appending the
options to the select element in a separate view, but this method was chosen for
compact purposes.

Now that the StateView is defined, you can copy and paste the code and tweak
it to create separate CountyView and BlockGroupView constructors. In each
of those, the only thing you need to change is the template jQuery selector, to
#countyitemtemplate and #blkgrpitemtemplate, respectively. Keep the
initialize() and render() methods the same:

…
var CountyView = Backbone.View.extend({
 …
 template: _.template($("#countyitemtemplate").html()),
 …
});

var BlockGroupView = Backbone.View.extend({
 …
 template: _.template($("#blkgrpitemtemplate").html()),
 …
});

Chapter 7

[201]

Finally, we'll assign our actual view properties to these View constructors. With
each view, we'll assign the element they'll be rendered from, which are the select
elements in our widget and the collections they will be using:

this.stateView = new StateView({
 el: $(".stateselect"),
 collection: this.stateCollection
});

this.countyView = new CountyView({
 el: $(".countyselect"),
 collection: this.countyCollection
});

this.blockGroupView = new BlockGroupView({
 el: $(".blockgroupselect"),
 collection: this.blockGroupCollection
});

Creating templates
Thinking back to the jQuery app, we filled in the select dropdowns with options
tags that contained data on both the name of the feature and a FIP code with which
we could query the next level down. We need to create the same HTML elements in
HTML templates rather than piecing them together through code. We'll do this by
adding HTML templates to our main page.

How do we create HTML templates that aren't visible on the page? We can do this
by inserting them into script tags. We'll give each template script tag a type of text/
template. This lets us know that the content of the script is actually HTML code.
Browsers will look at the type, not know what to do with a text/template type,
and simply ignore it.

So, let's create templates for the state options, county options, and block
group options. We'll assign the templates IDs of stateitemtemplate,
countyitemtemplate, and blkgrpitemtemplate, as we added in our code.
In each template, we'll assign the value, text, and data-fips value to the
appropriate item in the model. Take a look at the following templates:

<script type="text/template" id="stateitemtemplate">
 <option value="<%= STATE_NAME %>" data-fips="<%= STATE_FIPS %>">
 <%= STATE_NAME %>
 </option>
</script>

Plays Well with Others

[202]

<script type="text/template" id="countyitemtemplate">
 <option value="<%= NAME %>" data-fips="<%= CNTY_FIPS %>">
 <%= NAME %>
 </option>
</script>
<script type="text/template" id="blkgrpitemtemplate">
 <option value="<%= BLKGRP %>" data-fips="<%= BLKGRP %>">
 <%= BLKGRP %>
 </option>
</script>

Depending on the template library you use, different libraries have different ways
to assign values. Underscore's template() method wraps the attribute names in
<%= %> tags. You can use other template libraries, such as Handlebars.js, but, since
Underscore is required, why not use what we have?

Wiring events
Now let's make things happen. We're going to reuse the event listeners we created
for the jQuery exercise, and make them work for Backbone. We'll start by looking at
the _stateSelectChanged() method.

The first thing that changes is how we collect stateName and stateFIPS. Instead
of referring the stateSelect that was previously defined as a jQuery object,
we'll access the select through the stateView.$el property. Remember that,
in a View, the el property exposes the DOM element, while the $el property
exposes the jQuery element. For the other selection change listeners, we can find
and replace countySelect and blockGroupSelect with countyView.$el and
blockGroupView.$el, respectively.

The only other part that needs changing is how the new drop-down data is
populated after it is queried form the map service. We can replace the
_populateDropdown() method with a simple anonymous function. In the
anonymous function, we'll create a list of feature attributes from the featureSet
using Underscore's pluck() method. It goes item by item through an array, and
grabs the property of the item you describe and puts that in a new list. Next, we'll
assign that list to the countyCollection through its reset() method. That's all
that is needed to update the county list. The same process can be performed on
the _countySelectChanged() method to repopulate the block groups. Your code
changes should look like the following:

Chapter 7

[203]

_stateSelectChanged: function () {
 var stateName = this.stateView.$el.val();
 …
 This.queryDropdownData({
 …
 }).then(lang.hitch(this, function (featureSet) {
 this.countyCollection.reset(
 _.pluck(featureSet.features, "attributes")
);
 });
},

_countySelectChanged: function () {
 var stateValue = this.stateView.$el.val(),
 stateFIPS = this.stateView.$el.find(":selected")
 .attr("data-fips"),
 countyValue = this.countyView.$el.val(),
 countyFIPS = this.countyView.$el.find(":selected")
 .attr("data-fips");
 …
 This.queryDropdownData({
 …
 }).then(lang.hitch(this, function (featureSet) {
 this.blockGroupCollection.reset(
 _.pluck(featureSet.features, "attributes")
);
 });
},

_blockGroupSelectChanged: function () {
 var stateFIPS = this.stateView.$el.find(":selected")
 .attr("data-fips"),
 countyFIPS = this.countyView.$el.find(":selected")
 .attr("data-fips"),
 blockGroup = this.blockGroupView.$el.val();
…
},

Plays Well with Others

[204]

Getting the Backbone to dance
Finally, we need to populate the initial value of stateView. We'll use the
queryDropdownData() method call at the end of jQuery's postCreate(). If we make
the same changes to this call that we made to the event listeners, we should be able
to populate the state drop-down menu. From there, we should be able to populate
the other menus through the event listeners we assigned to the View elements:

postCreate: function () {
 …
 this.queryDropdownData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/3",
 fields: ["STATE_NAME", "STATE_FIPS"],
 where: "1=1",
 }).then(lang.hitch(this, function (featureSet) {
 this.stateCollection.reset(
 _.pluck(featureSet.features, "attributes")
);
 }));

If you want to learn more about implementing ArcGIS JavaScript
APIs using Backbone.js and Marionette, you can review the blog posts
by Dave Bouwman on the matter at http://blog.davebouwman.
com/2013/02/20/part-1-app-design-and-page-layout/.
For more information on Backbone.js, you can read Backbone.js
Patterns and Best Practices by Swarnendu De.

An overview of Knockout.js
Another JavaScript library that can be used to create an interactive single page
application is Knockout.js. Knockout was developed by Steve Sanderson of
Microsoft, though it's not considered a Microsoft product. It's based on Windows
Presentation Framework in that it uses the Model-View-ViewModel (MVVM)
architecture and allows two-way binding on observed properties. Two-way
binding means that data isn't just written to an HTML element, but it can also be
updated, like a text input field in a form, and the data will be already reflected in
the application.

http://blog.davebouwman.com/2013/02/20/part-1-app-design-and-page-layout/
http://blog.davebouwman.com/2013/02/20/part-1-app-design-and-page-layout/

Chapter 7

[205]

Knockout and MVVM
The MVVM is similar in nature to MVC architecture. Both use a model to get to the
data, and a View to show the data. However, instead of an active controller directing
the model and views, the ViewModel sits under the UI layer and exposes functions
and data from the model to the View. The ViewModel typically knows nothing about
the View it's working with. It simply stores and provides information as requested by
the HTML View.

In Knockout, the ViewModel is created like any normal JavaScript object, with a
few additions from Knockout. Properties of the ViewModel that are used in two-
way binding are created using Knockout's observable() and observableArray()
constructors. This allows these properties to be accessed by the View, and updated
without having to update the DOM, as you would have to in jQuery. A constructor
looks something like the following:

// note that ko is the global library object for knockout.js
function PersonViewModel (firstName, lastName) {
 this.firstName = ko.observable(firstName);
 this.lastName = ko.observable(lastName);
}

The HTML document acts as a View, and can be bound to the ViewModel through
the HTML5-based data-* attributes (more specifically, the data-bind attribute).
When the browser loads an HTML view and a script containing the ViewModel, the
Knockout will bind attributes in the data-bind tags to the appropriate fields in the
ViewModel. For the preceding ViewModel created, you might see some HTML like
the following:

<div>
 <label for='fninput'>First Name:</label>
 <input type='text' id='fninput' data-bind='value:firstName' />

 <label for='lninput'>Last Name:</label>
 <input type='text' id='lninput' data-bind='value:lastName'/>

 <p>
 Hello,

 !
 </p>
</div>

Plays Well with Others

[206]

In the ViewModel, properties can be added that are computed values based on
other observables in the ViewModel. These are created with the ko.computed()
constructor. For example, we can take the PersonViewModel in the preceding code
and add a computed fullName property that automatically updates when the first or
last name changes:

function PersonViewModel (firstName, lastName) {
 this.firstName = ko.observable(firstName);
 this.lastName = ko.observable(lastName);
 this.fullName = ko.computed(function () {
 return this.firstName() + " " + this.lastName();
 }, this);
}

Knockout doesn't have many extra features that other libraries and frameworks
possess, such as routers and AJAX requests. It typically relies on other libraries,
such as Sammy.js for routing and jQuery for AJAX. However, what it does offer is
two-way binding that works even in older browsers.

Using Knockout in our app
Let's make another copy of our jQuery app and name the folder Knockout. We will
not need jQuery for this application, since we can use Knockout and the ArcGIS
JavaScript API to handle those functions. We'll start by replacing all the references
to jQuery with Knockout references. The dojoConfig script at the head of the
document should look like the following:

dojoConfig = {
 async: true,
 packages: [
 {
 name: 'y2k',
 location: location.pathname.replace(/\/[^\/]*$/, '') + '/js'
 }, {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.4.12/"
 }, {
 name: "knockout",
 location:
 "http://cdnjs.cloudflare.com/ajax/libs/knockout/3.2.0",
 main: "knockout-min"
 }
]
};

Chapter 7

[207]

Next, we'll add a reference to Knockout in our Census.js file. We'll keep the other
AMD modules and code, and we'll replace things as we go. The define() statement
at the top of Census.js should look a bit like the following:

define([…, "d3/d3", "knockout"], function (…, d3, ko) {
 …
});

Defining the ViewModel
We know what kind of data model we're dealing with, but what we need is a
ViewModel to organize it. We can create the ViewModel constructor in our Census
dijit, and expose it for use by our widget.

Our ViewModel for this widget only requires six items. We need to maintain the
lists of states, counties, and block groups, to populate the select elements, as
well as the selected values. For the stateList, countyList, and blockGroupList
properties of the ViewModel, we'll construct Knockout's observableArrays for each.
selectedState, selectedCounty, and selectedBlockGroup will each be created
using Knockout observables. You can see how we construct the ViewModel in the
widget in the following example:

…
SelectorViewModel: function () {
 this.stateList = ko.observableArray([]);
 this.selectedState = ko.observable();
 this.countyList = ko.observableArray([]);
 this.selectedCounty = ko.observable();
 this.blockGroupList = ko.observableArray([]);
 this.selectedBlockGroup = ko.observable();
},
…

Plays Well with Others

[208]

Adding custom binding handlers
In our jQuery and Backbone applications, we attached event listeners to the select
elements so that, when they change, we can query for census data and populate
the next select down. In Knockout, we can do the same thing using custom binding
handlers. Binding handlers have two optional methods: init() and update().
The init() method runs when binding first occurs, while the update() method
runs every time the bound value changes. Both init() and update() have five
arguments, as follows:

•	 element: The HTML DOM element involved in the binding.
•	 valueAccessor: A function that gives access to the observable property

bound to the element. To get the value of this property, call the ko.unwrap()
method on the value returned from ValueAccessor().

•	 allBindings: An object used to get the particular bindings to the element,
like the text, value, or name. Binding properties can be retrieved using
allBindings.get().

•	 viewModel: This was the old way to get at the entire ViewModel, prior to
version 3.x.

•	 bindingContext: This is the way to get to all the bindings. bindingContext
may have at least some of the following:

°° $data: The current ViewModel assigned to this element
°° $rawData: Direct access to the values held in the ViewModel
°° $parent: Access to the parent ViewModel this ViewModel may be

assigned to
°° $parents: An array object providing access to each tier of ViewModel

connected to this ViewModel
°° $root: This grants direct access to the base ViewModel, originally

bound to the entire page

We need to create the binding handlers before we apply bindings to the page.
While we can create the binding handlers earlier, we're going to assign them in the
postCreate() method of our widget, since that's where we've applied the changes
in our other applications. We'll start by creating some empty binding handlers for
stateUpdate, countyUpdate, and blockGroupUpdate. We're only interested in the
update() methods, so we'll leave the init() method out. The following code is the
empty version of stateUpdate:

…
postCreate: function () {
 ko.bindingHandlers.stateUpdate = {

Chapter 7

[209]

 update: function (
 element, valueAccessor, allBindings, viewModel, bindingAccessor
) {
 // content will come here shortly.
 }
 };

},
…

Within the binding handlers, and the subsequent calls to the ArcGIS JavaScript API
modules, the widget scope is going to get lost. In the postCreate() method, we'll
create a variable named self, and assign a reference to the widget to it, like so:

postCreate: function () {
 var self = this;
 ko.bindingHandlers.stateUpdate = {…};
…
},

With the binding handlers set, we'll bring our code over from our previous event
handlers. From _stateSelectChanged(), we'll copy over the code and make our
changes. First, we'll change how the functions collect the state names and census FIP
codes for the queries. Once we have the names, getting the visual data will be easy.
Finally, we'll change how the ViewModel is updated once the query for the counties
in the state is finished. The stateUpdate binding handler should look like
the following:

…
// within the postCreate() method.
var self = this;

ko.bindingHandlers.stateUpdate = {
 update: function (
 element, valueAccessor, allBindings, viewModel,
 bindingAccessor
) {
 // retrieve the selected state data.
 var stateData = ko.unwrap(valueAccessor()),
 stateName, stateFIPS;

 // if stateData is valid and has a state name…
 if (stateData && stateData.STATE_NAME) {
 // assign state name and FIPS code.
 stateName = stateData.STATE_NAME;
 stateFIPS = stateData.STATE_FIPS;

Plays Well with Others

[210]

 // query for shape and attributes to show on the map.
 // Replace all "this" references with "self" variable.
 self.queryShapeAndData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/3",
 where: "STATE_NAME = '" + stateName + "'"
 }).then(
 lang.hitch(self, self._updateInfoWindowFromQuery),
 function (err) { console.log(err); });

 // search for counties in that state.
 self.queryDropdownData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/2",
 fields: ["NAME","STATE_NAME","CNTY_FIPS","STATE_FIPS"],
 where: "STATE_NAME = '" + stateName + "'",
 }).then(function (featureSet) {

 // create an array of county data attributes
 var theCounties = arrayUtils.map(
 featureSet.features,
 function (feature) {
 return feature.attributes;
 });

 // insert a blank value in the beginning of the array.
 theCounties.splice(0, 0, {
 NAME:"",STATE_NAME:"",CNTY_FIPS:"",STATE_FIPS:""});

 // assign the list to the countyList in the ViewModel
 bindingContext.$data.countyList(theCounties);
 });
 }
 }
 };

Chapter 7

[211]

For the county and the block groups, we'll follow similar patterns in countyUpdate
and blockGroupUpdate. Remember the following changes for this app:

•	 Replacing references to this with the variable self
•	 Get county and block group feature attribute data from

ko.unwrap(valueAccessor())

•	 Collect the list of feature attributes for the drop-down list using the Dojo
module method arrayUtils.map()

•	 Add an attribute with blank values to the first feature of the feature
attributes list

•	 Add the new list to the bindingContext.$data array

Defining the View
Now that we've done all the hard work setting up the ViewModel and the related
functionality, let's work with some HTML. Open the Census.html template in
the js/template/ folder. This is where we are going to apply our View. Start by
removing the class assignments on the three select elements, and replace them with
the text data-bind="".

Next, we're going to assign four properties within each data-bind context: options,
optionsText, value, and the appropriate binding handler we created in the
previous section. The options will be assigned to the appropriate observableArray
list. The optionsText will be the field name that we want to see on the options.
Both the value and the binding handler we created will be bound to the selected
observable for that type. The Census.html file should look like the following:

…
<div >
 State Selector:
 <select data-bind="options: stateList,
 optionsText: 'STATE_NAME',
 value: selectedState,
 stateUpdate: selectedState"></select>
</div>
<div>
 County Selector:
 <select data-bind="options: countyList,

Plays Well with Others

[212]

 optionsText: 'NAME',
 value: selectedCounty,
 countyUpdate: selectedCounty"></select>
</div>
<div>
 Block Group Selector:
 <select data-bind="options: blockGroupList,
 optionsText: 'BLKGRP',
 value: selectedBlockGroup,
 blockGroupUpdate: selectedBlockGroup"></select>
</div>
…

Applying the ViewModel
Now that we have a working View and ViewModel, and the code that links it to our
Model, it's time to put it all together. Once the page has loaded in the postCreate()
method, and all our binding handlers have been assigned, it's safe to call
ko.applyBindings() to the ViewModel. In most examples that you see online,
the ViewModel is bound as follows:

ko.applyBindings(new ViewModel());

It would be great to finish with that and call it a day, but we don't have any state
data to start out the SelectViewModel. We're going to have it assign it some way.
We're going to take some code from the jQuery and Backbone code to assign the
initial values to the state dropdowns. We'll then modify it to fit the pattern we
established for assigning the other dropdowns. We'll query for a list of states, and
add the list to our working ViewModel, like so:

…
var viewModel = new this.SelectorViewModel();
ko.applyBindings(viewModel);

this.queryDropdownData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/3",
 fields: ["STATE_NAME", "STATE_FIPS"],
 where: "1=1",
}).then(function (featureSet) {
 // make a list of the feature attributes of the states
 var theStates = arrayUtils.map(
 featureSet.features,

Chapter 7

[213]

 function (feature) { return feature.attributes; });
 // add in a blank value to the beginning of the list
 theStates.splice(0, 0, {STATE_NAME: "", STATE_FIPS: ""});
 // apply the list of states to our viewModel
 viewModel.stateList(theStates);

});

For more information on KnockoutJS, you can visit
http://knockoutjs.com or http://learn.
knockoutjs.com for interactive tutorials. For books on
the library, you can check out KnockoutJS Starter by Eric
M. Barnard, or Mastering KnockoutJS by Timothy Moran.

A brief overview of AngularJS
One of the more recent popular frameworks that we can use alongside our JavaScript
application is AngularJS. Angular was originally created at Google as a language to
help designers code. It quickly grew into the JavaScript framework of choice, both at
Google and abroad. The core Angular development team makes sure that Angular
excels in data binding and testability.

Angular works by parsing through the HTML page for specific element attributes.
These attributes give directives to Angular about how to bind input and output
elements on the page to JavaScript variables in memory. Data that is bound to the
HTML can either be defined in code or requested from a JSON source. The binding
is two way, similar to Knockout, but this framework has been fleshed out to provide
more popular features found in other libraries.

Angular and MV*
While Angular was designed with MVC in mind, developers argue that it doesn't
follow the MVC pattern. They say that the controller aspects don't really behave
as controllers, but more like presenters (in MVP) or ViewModel (MVVM). This led
some Angular developers to coin the term Model View Whatever (MVW or MV*
for short). Whatever architecture style it uses, it has caught the attention of many
developers. It's currently one of the most popular frameworks, favored even more
than jQuery by most JavaScript developers.

http://knockoutjs.com
http://learn.knockoutjs.com
http://learn.knockoutjs.com

Plays Well with Others

[214]

Angular vocabulary
One of the barriers to using AngularJS is the new vocabulary it introduces. Many of
the terms were created by computer scientists at Google, so they may sound very
academic. However, when we place them within the context of a language we know,
we can understand the concepts better. We're going to discuss the following Angular
terms, and how they relate to our mapping application:

•	 Controller
•	 Service
•	 Directive

The app controller
In Angular, the Controller is a JavaScript object connected by two-way binding to
an HTML document using Angular tags. Changes to values within the scope of the
controller will change the values displayed on the HTML document. The Angular
controller is comparable to the ViewModel in Knockout. For map-driven applications
written with Angular, the map is often defined as part of the main controller.

The app service
In Angular, a service is a JavaScript object used to communicate with servers and
other data sources. Services are created once, and keep running through the life
of the application in the browser. The equivalent item in the ArcGIS JavaScript
API would be a task like QueryTask or GeometryService. In fact, if you wrote an
Angular app using the ArcGIS JavaScript API, you could wrap a QueryTask within
an Angular service and serve data that way.

The app directive
In Angular, a directive is a custom element with its own behavior defined in code.
The directive loads a template HTML file, applies its own bindings, and displays
on a web page. In the ArcGIS JavaScript API, the equivalent to a directive is the
Dojo dijit that we learned about in Chapter 3, The Dojo Widget System. The dijit
defines an HTML template and the JavaScript behavior bound to it. One difference
between directives and dijits is that Angular directives are allowed to give an HTML
element a custom name, such as <overviewmap></overviewmap>, while dijits
must be built on existing HTML elements. Also, Angular events and descriptions are
described with ng-* HTML parameters rather than data-dojo-* parameters.

Chapter 7

[215]

Making a web mapping app more Angular
Since AngularJS is a framework, it is expected to handle the work of page layout,
event handling, and so on. However, Dojo is also a framework, and has its own
opinions about how those page events should be handled. Can the two get along?

The key to using AngularJS and the ArcGIS JavaScript API side by side is to let
Angular handle most of the page layout, but use the map, widgets, and task from
the ArcGIS JavaScript API to communicate with ArcGIS Server.

Much of the work needed to make our application run with AngularJS would take
far too long to explain, and deserves its own chapter. Instead, I've supplied a few
resources you can look over to integrate Angular into your own application.

For more information about incorporating ArcGIS JavaScript API with
Angular.JS, you can read blog posts by Rene Rubalcava at http://
odoe.net/blog/using-angularjs-with-arcgis-api-for-
javascript/ or read his book ArcGIS Web Development, published
by Manning Press. You can also review code from ESRI at https://
github.com/Esri/angular-esri-map. Finally, for more information
about Angular.JS, you can read Instant AngularJS Starter by Dan Menard,
or Mastering Web Application Development with AngularJS by Pawel
Kozlowski and Peter Bacon Darwin.

Overall results with other frameworks
All the frameworks we have reviewed in this chapter have worked with the ArcGIS
API for JavaScript. Some, such as jQuery, slipped right and could be used right
away. Others, such as Backbone and Angular, required a significant rewrite of the
application. Each of these libraries takes up significant bandwidth when the browser
downloads the website. These libraries and frameworks would have to bring
something very important to make it worth the wait.

jQuery
The jQuery library performs a number of functions found in Dojo. Both work well
in a wide array of browsers. While jQuery's functionality and style make it easier to
work with the HTML DOM, its event handling doesn't couple directly with Dojo's
event handlers. In other words, $(map).on("click", …) doesn't do the same thing
as map.on("click", …).

http://odoe.net/blog/using-angularjs-with-arcgis-api-for-javascript/
http://odoe.net/blog/using-angularjs-with-arcgis-api-for-javascript/
http://odoe.net/blog/using-angularjs-with-arcgis-api-for-javascript/
https://github.com/Esri/angular-esri-map
https://github.com/Esri/angular-esri-map

Plays Well with Others

[216]

If you're creating an application that's jQuery centric and you want to add an
ArcGIS-based map, it's perfectly fine to mix the two libraries together. You can
easily define map operations with Dojo and other form operations through jQuery.
However, jQuery doesn't add anything to the ArcGIS JavaScript library that can't
be accomplished by importing a couple of extra Dojo modules (which saves on
download bandwidth as well).

Backbone.js
Backbone organizes your code well, but it requires a lot of code to make it work. All
the models, views, and other features have to be defined individually, and coupled
with one another. There are other extension libraries, such as Marionette.js, that
can make Backbone easier to code. Using Backbone could be very beneficial to
architect the application around the map, but for this simple job, it was a
little excessive.

Knockout and Angular
Both Knockout and Angular are great frameworks for CRUD (Create, Read, Update,
and Destroy) applications, but they don't bring anything new and powerful to
web mapping applications. They can slow an application down if a lot of two-way
binding is applied to an HTML document. Also, since Angular is a framework, it is
written to handle many of the user interactions behind the scenes. Large portions
of the code would have to be rewritten if Angular was added to an existing ArcGIS
JavaScript API application.

In conclusion, we could have easily accomplished what we wanted using Dojo and
the ArcGIS JavaScript API. We could save time and bandwidth on a smaller device
like a smartphone or tablet by writing these portions using the ArcGIS JavaScript
API. However, it helps to know how to incorporate ArcGIS maps with existing
applications written in these other frameworks.

Summary
In this chapter, you have learned how to use the ArcGIS JavaScript API along with
other JavaScript libraries. We built applications using jQuery, Backbone.js, Knockout.
js, and Angular.js. We compared the different uses of the libraries and frameworks,
and how they worked with the ArcGIS API and Dojo.

In the next chapter, we'll tackle a topic that strikes fear into the hearts of some
JavaScript developers… styling.

[217]

Styling Your Map
It's the one word that strikes fear into the heart of developers: style. They think it's
a field for right-brain dominant artists. They treat color theory, typography, and
whitespace as a foreign language. They long to push these tasks onto a web designer
and focus on algorithms and API calls.

Many small firms, government agencies, and departments don't have the luxury of
having a web designer on their staff, or even on call. These small organizations tend
to consist of one or more people hired for their technical and analytical skills, while
design skills are left as an afterthought. Maybe you're working for one of those
right now.

While this chapter may not turn you into an instant web designer, it will help
you use CSS to effectively lay out your web map applications.

In this chapter, we'll cover the following topics:

•	 How CSS is applied to an HTML document
•	 The different ways to position the map on a page
•	 How to use Dojo's dijit/layout modules to style your page
•	 How to add Bootstrap to the layout of your page

Styling Your Map

[218]

The inner workings of CSS
As we mentioned in Chapter 1, Your First Mapping Application, the Cascading Style
Sheet (CSS) tells the browser how to render an HTML page. As the browser scans
through the HTML, it scans through all the applicable CSS styles from CSS files, as
well as any overriding styling within the HTML, to see how it should render the
element. CSS descriptions, such as color and font size, often cascade down from one
element to its children unless specifically overridden. For example, the style applied
to the div tag will also apply to the p tags inside it, as shown in the following code:

<div>
 <p>I'm not red.</p>
 <div style="color:red;">
 <p>You caught me red-handed.</p>
 <p>Me too.</p>
 </div>
 <p>I'm not red</p>
</div>

CSS works a little differently from most programming languages. In JavaScript,
when you have a bug in part of your program, you can step through the code in
your browser until you find the part that breaks. In CSS, however, the rules that
define the look of an element can be stretched across multiple style sheets, and can
even be written inside the element. The appearance of the element can also
be impacted by elements both inside and out.

Selector specificity
The browser decides how elements should be styled by comparing the selector
types used to define the style. It applies weights based on the type and quantity
of selectors used to define a style. Browsers have five basic ranks for CSS selectors,
based on how specific they are. Technically, there is a zeroth selector when you use
the * to select every element on the page but, compared to the other selectors, it has
no value. Selector ranks are as follows:

•	 By element (for example h1, div, or p)
•	 By element classes, attributes, and pseudo selectors. Some examples include:

°° .email or .form (classes)
°° input[type='text'] (attributes)
°° a:hover or p:first-child (pseudo selectors)

•	 By IDs (for example #main or #map-div)
•	 By inline styles (<p style=""></p>)
•	 By styles marked !important

Chapter 8

[219]

A common way to note specificity is to count the number of selectors in each
category and separate them with a comma. A p selector gets a specificity of 1, and
a p > a gets a specificity of 2. However, a p.special > a gets a specificity of
1,2, because the class falls in a separate, higher category. A #main selector has a
specificity of 1,0,0 while the inline style of a p tag earns a specificity of 1,0,0,0.
The powerful !important clause is the only thing that can override an inline
selector, and it earns a specificity of 1,0,0,0,0.

When comparing selector specificity, a single higher rank selector beats any number
of lower rank selectors. In the case of a tie, the next lowest is compared. For example,
let's take a look at the following HTML snippet:

<style>
 .addr { background: red; }
 .start.blank { background: orange; }
 .help.blank.addr { background: yellow; }
 #citytxt { background: green; }
 input[type='text'] { background: blue; }
 input { background: purple; }
</style>
…
<input type="text" id="citytxt" class="addr start blank help" />

What do you think the background color will be from this? The correct answer is
green. The #citytxt rule is a third ranked selector, since it points to an individual
element on the page. If we look at the selectors along with their specificity ranks,
they look as follows:

<style>
 .addr { background: red; } /* 0,1,0 */
 .start.blank { background: orange; } /* 0,2,0 */
 .help.blank.addr { background: yellow; } /* 0,3,0 */
 #citytxt { background: green; } /* 1,0,0 */
 input[type='text'] { background: blue; } /* 0,1,1 */
 input { background: purple; } /* 0,0,1 */
</style>

So what happens when everything else is equal?

Styling Your Map

[220]

Equal selector specificity
When two or more rules have equal selector specificity, the last one listed wins.
This is another feature of the cascading effect of CSS. We always put the custom
CSS after the Dojo and ArcGIS JavaScript API style sheets in our applications.
Any style changes we make will then not be overridden by the other style sheets.

With the last in wins rule, we can undo any unintended side effects of CSS rules
applied to our widgets. We don't always have to resort to using !important tags
or writing inline styles that get lost in our code reviews. We can use the same
strength of selector specificity, and get the result we want, as long as we put it
after the old rule.

Styling tips and tricks
Now that we have an idea how CSS works, we can build on this logic to create
some working styles for our application:

•	 We'll begin by studying some of the bad patterns we need to avoid.
We'll look at how they impact styles and further development negatively.

•	 Next, we'll look into some good practices, such as using responsive
design and normalizing style sheets.

•	 We'll look at how to organize your style sheets to make them easier
to extend and troubleshoot.

•	 We'll cover how to position your map wherever your application needs it.

Styling don'ts
Before I go too far with telling you what to do, let's go through a few things you
should avoid. These bad design habits are typically picked up while working through
beginner tutorials and copying and pasting single-page applications off the Internet:

•	 Styling your elements inline: Trying to change the appearance of 20 or
more paragraphs one by one is a pain.

•	 Making everything important: The important clause allows you to override
styles imposed by other widgets and imported style sheets, but don't get
carried away.

•	 Having lots of references to individual IDs: A few element ID references
are fine but, if you want to reuse your CSS files on other pages, or in other
projects, you want them as general as possible. Not everyone will be using
your #pink_and_purple_striped_address2_input element.

Chapter 8

[221]

•	 Writing new changes to your CSS file at the bottom of your page: We all
know that last in wins, but if you slap every new update at the bottom of
the page, the file becomes a junk-drawer of unorganized CSS rules.

Like any hard and fast rules, there are appropriate times to break them. But, by
working within the bounds of these rules, you make it easier for yourself and
others to maintain your applications.

Responsive design
The responsive design movement has taken a firm hold on website development.
Responsive design revolves around the idea that a website should be useable on
a wide variety of screen sizes, from large monitors to mobile phone screens. This
reduces the costs of maintaining multiple websites for desktop and mobile users.

On the surface, responsive design involves assigning percentage widths and
heights instead of fixed sizes, but there is more. Fluid grid layouts support multiple
columns on wider screens while collapsing down to a single column on narrow
screens. Images at different resolutions can be served for tablets and screens with
retina displays for crisper looking images. CSS media queries can change how
elements are displayed at different sizes or across different media.

Maps created with the ArcGIS JavaScript API work well with responsive design
layouts. The maps keep track of the size of their HTML container elements, and
size changes, while updating their contents. While the map scale stays the same, the
extent is recalculated, and new map tiles are requested for locations not previously
stored in memory. These changes can be triggered by resizing the browser window
in a desktop, or turning a tablet sideways in a mobile browser.

Normalize.css
It can be frustrating trying to make your application look good in your browser.
Bringing in more browsers compounds the problem. Many browsers have unique
rendering engines on different devices which make the same HTML elements look
different on each device. Can't they all come to the same conclusion about how
HTML elements should look?

Developers and designers often use a CSS file called normalize.css
(http://necolas.github.io/normalize.css/). This style sheet styles HTML
elements so that they all look similar on different browsers and devices. It cuts
down on the guesswork when you are concerned about how a page will look.

http://necolas.github.io/normalize.css/

Styling Your Map

[222]

The normalize.css file style is typically inserted as the first style sheet in the HTML
document head. Any changes you make to your website's style will then be made
after the normalize rules are applied, and are less likely to be overridden. Some CSS
frameworks like Twitter Bootstrap, already incorporate normalize.css in their
style sheets.

Organizing your CSS
As previously discussed in the list of things not to do with your styles, the greatest
offenders involve using higher selector specificity than needed, and treating the style
sheet like a junk drawer. By organizing your style sheet properly, you can cut down
on both of these offenders, and make your application easier to style and maintain.
Let's go through a few best practices.

Organizing by selector specificity
Current trends in web design call for CSS selectors to be organized from the lowest
selector specificity to the highest. All your div, h1, and p tags might be put at the
top of the page in your style sheet. After the appearances of the HTML elements are
defined, you add various classes, selectors, and pseudo-selectors to describe how
those would change the appearance of your elements. Finally, you could assign the
appearances of an individual element by referencing its id.

Group by module
Applications written with the ArcGIS JavaScript API can easily be organized by
dijits, so why not arrange the style sheets by dijits as well? You can define the styling
of individual dijits in the application after you define the style of your page. You can
separate your CSS into logical sections using /* comments */ between the module
and dijit styles.

A class for everything
A common practice when organizing code for selector specificity is to assign CSS
classes as much as possible. Your map dijits may have an .open class that sets the
width and height. The same dijit may have a .closed class that hides the dijit.
Using the dojo/dom-class module, you can add, remove, and toggle the classes
you define, however you want:

.open {
 width: 30%;
 height: 100%;
 display: block;
}

Chapter 8

[223]

.closed {
 width: 0%;
 display: none;
}

Using descriptive classes makes it easier to see what your application is doing,
especially when you look at the page source. Descriptive classes are easier to
reference in your style sheet.

Media queries
Media queries provide effective ways to create custom looks and responsive grids
on different screens. You can change the look of your site depending on the media
type (screen, print, projector, and so on), the screen width, and even the pixel depth
(retina displays versus standard desktop screens).

One thing to consider when organizing your code is that media queries should
be placed after normal selectors. You can then take advantage of the last in wins
principal, and use the same selectors to show different results when the screen size
changes. I've been guilty of not paying attention to where I placed my media queries,
and wasted time troubleshooting why my transitions weren't occurring. Only later
did I find, in the mess of CSS, where I had applied a rule after my media query that
cancelled the effect.

Positioning your map
We can't always rely on other frameworks and style sheets to properly position our
maps. Sometimes, we have to get our hands dirty with CSS and do it ourselves. We'll
go through some styling scenarios for our maps, and look at what CSS rules we need
to apply to the map element to position it properly. All examples assume that you're
creating a map on a div element with the ID of "map".

The fixed-width map
By default, a map is created with a specific width and height. The width and height
can be any non-negative number, from a whole screen, to a narrow column. If a
height is not assigned, a default height of 400px is assigned to the map element.
You can see a simple, non-responsive CSS style for the map here:

#map {
 width: 600px;
 height: 400px;
}

Styling Your Map

[224]

Stretching the map to fullscreen
Sometimes, your map is more than just an important piece of the page.
Sometimes, the map needs to take up the whole page. That is what this full screen
size represents. This style works, assuming that the HTML and body tags have a
width and height of 100% as well. This full screen style can also be assigned to a
map that is supposed to fill 100% of the area in another element:

#map {
 width: 100%;
 height: 100%;
}

Floating the map to the side
Sometimes you don't want a full map. Sometimes you just want a small map on the
side of the screen, showing the location of whatever content it's sharing the page
with. You can then float the content off to the side. Floating an element to the right
or the left lets other content fill in around it. This technique is typically used with
photos and text, where the text flows around the photo. It works for a map as well:

#map {
 width: 30%;
 height: 30%;
 float: right;
}

Positioning the map top and center
Sometimes you need to center your map in your layout. You have some text, and
you just want the map to line up nicely in the middle. With this centering trick,
you can horizontally center any block type element on a page. Here, you set the
position to relative, and you assign a right and left margin of auto. The browser
will automatically assign an equal number to the right and left margin, essentially
centering it. But remember, this must be performed on a block element (like the map)
with relative positioning. Remove any of these criteria, and the trick doesn't work, as
shown in the following code:

#map {
/* just in case something sets the display to something else */
 display: block;
 position: relative;
 margin: 0 auto;
}

Chapter 8

[225]

Covering most of the page with the map
If you need an almost full page effect, where you need to leave room for a title bar
or a column to the right or left, you can use absolute positioning to stretch the map.
Absolute positioning takes the element outside of the normal layout, and lets you
position it wherever you want.

Once you assign absolute positioning to the map, you can use the top, bottom, left,
and right values to stretch the map out. By assigning a value of 0 to the bottom,
you're telling the browser to set the bottom edge of the element at the bottom of the
page. By assigning a value of 40px to the top, you are telling the browser to assign
the top of the map element 40 pixels from the top of the page. By assigning both left
and right values, you are stretching the map element out in both directions.

As a caveat, remember that absolutely positioned elements escape the bounds of
their location, and will be positioned either on the whole page, or inside the first
parent element that has relative positioning:

#map {
 position: absolute;
 top: 40px; /* for a 40px tall titlebar */
 bottom: 0;
 left: 0;
 right: 0;
}

Centering a map of known width and height
Sometimes, you need to put your map in the center of the page. You want to create
a modal effect, where the map is centered both vertically and horizontally, kind of
like a modal dialog. If you know the width and height of the map, you can pull this
off easily. You assign absolute positioning to the map, and set the top and left
edges of the map at 50% of the page. This won't look right at first, until you assign the
margins. The trick is to assign negative top and left margins, with values that are half
the height and width of the map elements, respectively. What you get is a vertically
and horizontally centered map that also works in older browsers:

#map {
 width: 640px;
 height: 480px;
 position: absolute;
 top: 50%;
 left: 50%;
 margin: -240px 0 0 -320px;
}

Styling Your Map

[226]

Centering a map of unknown width and height
If you implement percentages or other units into the styling of your map, you may
not know at any one time how wide the map is. We can use absolute positioning
to put the upper left corner of the element in the middle of the page, but how can
the element be shifted so that it sits in the middle of the page? There is an easy way
to center the map both vertically and horizontally when the width and height is
variable. It requires a CSS3 transformation.

We can translate or move the element in any direction by using the CSS3
transformation. The first value moves it to the right or left, while the second value
moves it up and down. Negative values signify translation to the left and up. We
can apply width and height in pixels, or we can apply a percentage of the element's
width to center it:

#map {
 position: absolute;
 top: 50%;
 left: 50%;
 width: 60%; /* any width is okay */
 height: 60%; /* any height is okay */
 -webkit-transform: translate(-50%, -50%);
 -moz-transform: translate(-50%, -50%);
 -ms-transform: translate(-50%, -50%);
 -o-transform: translate(-50%, -50%);
 transform: translate(-50%, -50%);
 /* transform shifts it halfway back*/
}

CSS3 transformations are available in most modern browsers, with some
slightly older ones requiring vendor prefixes. Internet Explorer 8 and
earlier do not support these transformations. See http://caniuse.
com/#feat=transforms2d for more details.

Troubleshooting
With the rising popularity of web development tools for browsers, your browser
is the best tool for troubleshooting styling issues on a page. Mozilla Firefox initially
had the most advanced inspection tools using a free third-party add-on called
Firebug. Later, Chrome released its own development tools, while Firefox and
Internet Explorer eventually built and improved their own. All modern desktop
browsers now provide advanced JavaScript and CSS information for desktop and
mobile devices.

http://caniuse.com/#feat=transforms2d
http://caniuse.com/#feat=transforms2d

Chapter 8

[227]

Most browser developer tools can be opened using the same keyboard shortcuts.
Internet Explorer responds to the F12 key as far back as version 8. Chrome and
Firefox also respond to F12, with the keyboard combination of Ctrl + Shift + I
(Cmd + Opt + I for a Mac).

Responsive resizers
All desktop browsers shrink and grow as you maximize and shrink them. Many
modern browsers, however, have extra features and add-ons that can help you test
your applications as if they were mobile browsers. The latest editions of the Firefox
Developer Edition have a Responsive Design View that resizes your browser
depending on the mobile device. It can rotate the screen when the user rotates their
phone, and even triggers touch events. Google Chrome has a Device Mode that lets
you select from popular smartphones and tablets, and can simulate slower network
speeds, as well as pretending to be a mobile browser by changing the user agent it
sends on requests. The latest versions of Internet Explorer also have these in their
developer tools.

Now that we've reviewed the tools we can use to test our layouts, let's look at the
tools the ArcGIS JavaScript API provides to lay out our applications.

Dojo layout
Dojo uses its own framework to control the layout of the application. Dojo's
layouts can be found in the dijit/layout modules. These modules can be used
to implement full page applications with all their features implemented, by using
the Dojo framework.

Dijits created with dijit/layout modules can be encoded directly in the HTML.
These are encoded using the data-dojo-type attribute. Properties for these,
including styling and behavior, are encoded in the data-dojo-props attribute
of the element. These dijits can be loaded from HTML by using the dojo/parser
module to parse the HTML.

Applications where the dijit/layout elements are loaded through
HTML often break when dojo/parser doesn't have access to a layout
module. Make sure that all the modules for the layout elements used in
the HTML have been loaded in the require() or define() statement
that calls the parse() method of the dojo/parser module. Check for
misspellings, either in the module loaders, or in the HTML data-dojo-
type attributes.

Styling Your Map

[228]

Layouts created with the dijit/layout modules can be divided into two
classifications: Containers and Panes. Pane elements are generally located
inside containers.

Containers
Containers are parent elements that control the position and visibility of child
panes assigned within them. Containers come in a variety of shapes and functions.
Some can show multiple panes at once, while others show one or a few at a time.
In JavaScript, if you have access to the Container dijit, you can access the pane
elements inside it by calling the container's getChildren() method.

Let's look at a few of the common containers.

LayoutContainer
The LayoutContainer allow other panes to be positioned around a central pane.
The center pane in a LayoutContainer is assigned a region attribute of center. Panes
surrounding it are assigned region values of top, bottom, right, left, leading, or
trailing to define their position in relation to the center pane. Multiple panes can
have the same region attribute, such as two or three left panes. These will stack side
by side to the left of the center pane.

BorderContainer
The BorderContainer is derived from the LayoutContainer. As the name
implies, it adds borders to section off the different panes in the application.
BorderContainers can also provide livesplitters, which are draggable
elements that let the user resize panes as they see fit.

AccordionContainer
The AccordionContainer arrange and transition between panes using an
accordion effectIn this arrangement, pane titles appear stacked on top of one
another, and only one pane is visible at any time. The contents of the other panes
are hidden by the accordion effect. When the user selects another pane within the
AccordionContainer, the panes animate in a sliding motion, hiding the current
pane and showing the selected pane.

Chapter 8

[229]

TabContainer
The TabContainer wi provides a tab-based organization of content. Tabs with the
titles of the ContentPane enclosed describe the content, and clicking on those
tabs removes the content visibility. The effect is similar to a Rolodex or a file
folder, where you flip through tabs to view the content you need.

Panes
Panes in the dijit/layout modules provide a container in your application in
which to put user controls and widgets. You can write HTML content or add other
dijits. Panes can be encoded in HTML, or created with JavaScript and attached to
their parent container. Let's look at a couple of the panes available in Dojo using
the ArcGIS JavaScript API.

ContentPane
The ContentPane tile is the most common pane inserted in a container. It can
be inserted as a pane inside all the other containers, with the exception of the
AccordionContainer. On the surface, they appear to be glorified div elements
that also track size and relationship to other dijits around them. But a ContentPane
tile can also downloads and displays content from other web pages. Setting the
ContentPane tile's href property will download and display another web page's
HTML content in a single pane in your application.

AccordionPane
One or more AccordionPane panes are added within an AccordionContainer to
display their content in a collapsible format. AccordionPane titles are stacked on top
of each other and, as you click the titles, the content slides into view, covering the
previously open AccordionPane. An AccordionPane otherwise exhibits the same
functional behavior as a ContentPane.

Now that we've reviewed how the Dojo framework handles the application layout,
let's look at using an alternative style framework.

Styling Your Map

[230]

Bootstrap
If you're looking for an alternative to Dojo's way of laying things out, you might
consider Bootstrap. Bootstrap is a popular styling framework originally created by
developers at Twitter. The story goes that the developers needed a way to release
websites quickly, so they drafted a set of style sheets as a starting point for their
projects. The styling templates proved very popular because they were easy to use
and met the needs of most web developers. The template, originally named Twitter
Blueprint, was later released in August 2011 as Bootstrap.

Bootstrap provides developers with responsive design styles that work well on both
desktop and mobile browsers. Responsive grids can be fine-tuned to give you multi-
column layouts that collapse to smaller sizes in smaller browser windows. Bootstrap
provides stylish looking form elements, and buttons big enough for fat fingers on
phone browsers. The framework provides easy to understand CSS classes, and the
documentation and style sheets provide guidance on how to use the framework.
From picture icons that can be understood across language barriers, to JavaScript
plugins that create modal dialogs, tabs, carousels, and other elements we're used to
on websites. Entire applications can be created using Bootstrap.

While Bootstrap styling doesn't require JavaScript libraries, all of the JavaScript
plugins require jQuery to run. That is not very helpful for those of us using Dojo,
but we do have an alternative.

ESRI-Bootstrap
Combining Bootstrap's ease of use and the compatibility with the ArcGIS JavaScript
API, ESRI created ESRI-Bootstrap library (https://github.com/Esri/bootstrap-
map-js). The style framework resizes maps and other elements just like Bootstrap,
while many of the elements retain the same look and feel of a Bootstrap site. Dialogs
don't run off the screen and elements respond to both mouse clicks and touches.
Finally, ESRI Bootstrap can be used with either a combination of Dojo and jQuery,
or Dojo alone.

We are going to add ESRI-Bootstrap on top of our Y2K application. You can use the
Dojo/jQuery application we wrote in Chapter 7, Plays Well with Others. We're going
to use a pure Dojo application written in parallel with jQuery to show how you can
add ESRI-Bootstrap to an application without jQuery.

https://github.com/Esri/bootstrap-map-js
https://github.com/Esri/bootstrap-map-js

Chapter 8

[231]

Restyling our app
We recently let our intern create multiple copies of our application using other
frameworks. While they were busy doing that, we decided to write the update
using just the ArcGIS JavaScript API. The Y2K society checked out our app and
approved our changes, but that wasn't all they had to say.

When we met with the Y2K society board, we found a critic in a new member of the
board. They thought it looked okay, but it needed a more modern look. When asked
for details, they showed us websites on their tablet that they thought looked good.
All the sites we were shown had one thing in common, they were all built using
Bootstrap. He managed to convince others on the board that our app needed
to embrace this new style.

Going back to the drawing board, we looked at what ESRI had to offer. We decided
to incorporate ESRI-Bootstrap into our application. It provides a modern feel.

Adding ESRI-Bootstrap to our app
Let's start by adding references to ESRI-Bootstrap to our application. The ESRI-
Bootstrap Getting Started page tells us to download a ZIP file of the latest version
published on GitHub. Click on the Download ZIP button on the right hand side of
the GitHub page. Once downloaded, unzip the file.

We're primarily interested in the bootstrapmap.js and bootstrapmap.css files
in the src/js/ and src/css/ folders, respectively. The rest of the files contain
templates and samples that you can look at to see how they use Bootstrap with
their maps. Copy these files into the js and css folders.

Next, we'll add the necessary references to the head tag of our index.html file.
We can remove the nihilo.css external style sheet as we're no longer using the
Dojo widgets to lay out our application, and add the following:

…
<link href="http://netdna.bootstrapcdn.com/bootstrap/3.2.0/css/
 bootstrap.min.css" rel="stylesheet" media="screen" />
<link rel="stylesheet"
 href="https://js.arcgis.com/3.13/esri/css/esri.css" />
<link rel="stylesheet" type="text/css" href="css/bootstrapmap.css" >
<link rel="stylesheet" href="css/y2k.css" />
…

Styling Your Map

[232]

Now that we have added the stylesheets, we need to add a reference to the Dojo
version of bootstrap within our dojoConfig variable. The Dojo Bootstrap library,
which covers features normally handled by jQuery, can be found at https://github.
com/xsokev/Dojo-Bootstrap, but we'll pull it from https://rawgit.com, which
serves GitHub code directly. It should look as follows:

dojoConfig = {
 async: true,
 packages: [
 …
 {
 name: "d3",
 location: "http://cdnjs.cloudflare.com/ajax/libs/d3/3.4.12/"
 },
 {
 name: "bootstrap",
 location: "http://rawgit.com/xsokev/Dojo-Bootstrap/master"
 }
]
};

Now that the head has been taken care of, it's time to overhaul the body.

Bootstrapping our HTML
Since ESRI-Bootstrap provides plenty of CSS styling and JavaScript, most of the
work involves overhauling our HTML. We can start by removing the references to
the Dojo layout widgets in the body of our main HTML page. You can remove the
class="nihilo" from the body element, the dijit/layout/BorderContainer
from the #mainwindow div, and all the dijit/layout/ContentPane references.

Replacing the header with a navbar
Our first job is to replace the header in the application. There are many ways you
could start off a page like this but we'll use the Bootstrap NavBar in place of the
header since the initial layout of the page was a full page app with no scrolling,
You can see several examples of how to implement a navbar in HTML at
http://getbootstrap.com.

We'll replace the header div with a nav element with the classes of navbar and
navbar-default in the header. We'll add a div with the class of container-fluid
inside that, since the size and appearance of its contents varies with different browsers.
We'll add two div elements to the container-fluid div element. The first will have
a class of navbar-header, and the second will have the classes of collapse and
navbar-collapse.

https://github.com/xsokev/Dojo-Bootstrap
https://github.com/xsokev/Dojo-Bootstrap
https://rawgit.com
http://getbootstrap.com

Chapter 8

[233]

We'll add a button to the navbar-header that will only appear when the browser is
narrow enough. The button will have the classes of navbar-toggle and collapsed,
plus a data-toggle attribute of collapse. This button will be floated to the far right
when visible. The title of the map will go in a span next to the toggle button. This
span will be given a class of navbar-brand.

We'll add the button that shows our Census dijit to the navbar-collapse div
element. We'll add the btn classes (to make it a button), btn-default (to make it a
default color), and navbar-btn (to make the button style fit in the navbar). When we
are done, the HTML should look as follows:

…
<body>
 <nav class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"
 data-toggle="collapse"
 data-target="#bs-example-navbar-collapse-1">
 Toggle navigation

 </button>
 Year 2000 Map
 </div>
 <div class="collapse navbar-collapse"
 id="bs-example-navbar-collapse-1">
 <button id="census-btn"
 class="btn btn-default navbar-btn">Census</button>
 </div>
 </div>
 </nav>
 …

Rearranging the map
Now that the header has been redesigned, it's time to look at the rest of the page.
We will want to pull the census widget location out of the map in order to
incorporate a Bootstrap modal dialog. We can move the footer inside the map to
make up the space lost in previous versions. We can define the map and related
items below the header, as follows:

…
<div class="modal fade" id="census-widget"></div>
<div id="map">

Styling Your Map

[234]

 Courtesy of the Y2K Society
</div>
<script type="text/javascript" src="js/app.js"></script>
…

Restyling our app
We'll need to manually restyle the page since we're removing all traces of Dojo's
layout system. We can remove most of the styling references since they'll clash with
the Bootstrap style. We'll keep the basic styling for the HTML and body tags, since
they make the application a fullpage app. We'll also keep the styling for the D3.js
graphs, but we can delete the rest of the styles.

We need to stretch the map from top to bottom and from end to end. If we don't,
the map will be limited in its width and height. We can use absolute positioning to
stretch the map across the page. We'll use the almost full page style we talked about
earlier. Since the toolbar on the page is 50 pixels high (which you'll see when you
experiment with the app), we'll set the top of the map to be 50px from the top.
The bottom, right, and left sides can positioned on the edges of the screen:

#map {
 position: absolute;
 top: 50px; /* 50 pixels from the top */
 bottom: 0; /* all the way to the bottom */
 left: 0; /* left side 0 units from the left edge */
 right: 0; /* right side 0 units from the right edge */
}

The other item we'll need to restyle is our footer element. We can position it at the
bottom of the page, using the same technique we used on the map. We can also
make the background semi-transparent, for a nice effect:

#footer {
 position: absolute;
 bottom: 5px; /* 5 pixels from the bottom */
 left: 5px; /* left side 5 pixels from the left edge */
 padding: 3px 5px;
 background: rgba(255,255,255,0.5); /* white, semitransparent */
}

Once these styles have been applied, we can see a working example of our map.
You can see an example of the map in the following picture:

Chapter 8

[235]

Making our Census dijit modal
Now that our page has been transformed into a Bootstrap application, we need to
add the same to our Census dijit. We need to tap into Bootstrap's modal widgets to
imitate the effect of our floating dialog.

Open the Census.html file in the js/templates/ folder. In the base div element,
add the classes modal and fade. The modal class tells Bootstrap that this will be a
modal dialog, while fade describes how the element will hide and show. We'll also
add a data-backdrop attribute to the element and set it to static. This will create
the generic modal dialog that keeps the rest of the page from being clicked while it's
open. In this case, we'll abandon the idea that closing the widget will turn off the
map's click events:

<div class="${baseClass} modal fade"
 style="display: none;" data-backdrop="static">
…
</div>

Styling Your Map

[236]

We'll add several more div elements to the base div to define the modal and the
heading. One level inside our modal class, we'll add a div element with the classes
of modal-dialog and modal-sm. The modal-dialog class defines the style for the
modal, while modal-sm makes the modal smaller. Removing modal-sm creates a
dialog that stretches across larger screens.

We'll create a div with the class modal-content in the div with the modal-dialog
class, and two div elements inside that, with the classes of modal-header and
modal-body, respectively. We'll add our closing button and our title to the
modal-header div. We'll add the text and select dropdowns for the rest of
our dijit to the modal-body div:

<div class="${baseClass} modal fade"
 style="display: none;" data-backdrop="static">
 <div class="modal-dialog modal-sm">
 <div class="modal-content">
 <div class="modal-header">
 …
 </div>
 <div class="modal-body">
 …
 </div>
 </div>
 </div>
</div>

We'll replace the dijit closing event with Bootstrap's modal closing event in the
modal-header div. We'll add a class of close to the button, and a data-dismiss
attribute of modal. Most Bootstrap examples also include ARIA attributes to handle
screen readers and other accessibility tools, so we'll add an aria-hidden value of
true so that screen-readers do not read aloud the X that we place in that. For the
title, we'll surround the Census data in a span with the class of modal-title. It
should look like the following code:

…
<div class="modal-header">
 <button type="button" class="close"
 data-dismiss="modal" aria-hidden="true">x</button>
 Census Data
</div>
…

Chapter 8

[237]

We'll add our description paragraph to the modal-body div and format the select
elements so that they appear as form elements. We'll add the class form-group to
the div elements that surround our select dropdowns. This lines up the content
and adds proper spacing and formatting. We'll replace the b tags with label tags,
and add the control-label class. We'll add the form-control class to the select
element. This stretches the select dropdown across the width of the dialog. Our
HTML should look as follows:

…
<div class="modal-body">
 <p>
 Click on a location in the United States to view
 the census data for that region. You can also use
 the dropdown tools to select a State, County, or
 Blockgroup.
 </p>
 <div class="form-group" >
 <label class="control-label">State Selector: </label>
 <select class="form-control"
 data-dojo-attach-point='stateSelect'
 data-dojo-attach-event='change:_stateSelectChanged'>
 </select>
 </div>
 <div class="form-group">
 <label class="control-label">County Selector: </label>
 <select class="form-control"
 data-dojo-attach-point='countySelect'
 data-dojo-attach-event='change:_countySelectChanged'>
 </select>
 </div>
 <div class="form-group">
 <label class="control-label">
 Block Group Selector: </label>
 <select class="form-control"
 data-dojo-attach-point='blockGroupSelect'
 data-dojo-attach-event='change:_blockGroupSelectChanged'>
 </select>
 </div>
</div>
…

Styling Your Map

[238]

We'll add a div with the class of modal-footer to our modal-body div. Here, we
can add another button to dismiss the dialog, just in case the user doesn't notice the
x in the upper corner. We'll format the dismiss button by adding the classes btn and
btn-default, affecting the shape and color, in that order. We'll also add our data-
dismiss attribute and set it equal to modal. It should look as follows:

 …
 <div class="modal-footer">
 <button id="btnDismiss" type="button"
 class="btn btn-default" data-dismiss="modal">
 Dismiss
 </button>
 </div>
 </div>
 …

Once the widget HTML is properly formatted, the application should look like the
following image. Notice the dropdowns and buttons with wide spacing, which
makes it easier to click on them on a smaller mobile device:

Chapter 8

[239]

Now that the application is functionally complete, we can modify parts of it to create
our own look and feel. Remember, Bootstrap was meant to be a starting point for
creating a website. It doesn't have to be the end result. We can still change colors
and other features to make the application our own.

Summary
In this chapter, we've discussed the different ways in which you can style your
ArcGIS JavaScript API application. We looked at how CSS works, how rules affect
each other, and how your browser decides which CSS rules to follow. We looked at
the Dojo layout modules, and how those can be used to handle the appearance and
functionality of your application. We also looked at ESRI-Bootstrap, a version of
Bootstrap that can run with the ArcGIS JavaScript API. Finally, we added the
ESRI-Bootstrap look to our application.

In the next chapter, we'll be going mobile. We'll create a mobile application that
works on most tablets and phone browsers.

[241]

Mobile Development
Mobile web development has caused quite a stir in the last few years. When Apple
introduced the iPhone, it didn't support third party plugins such as Flash and
Silverlight. This challenged web developers to deliver worthwhile web experiences
on the mobile platform with only HTML, CSS, and JavaScript. Proposed feature
enhancements such as HTML5, CSS3, and ECMAScript 5 and 6, along with more
powerful browsers, have improved the mobile browsing experience.

Companies and organizations have taken different approaches to delivering the mobile
web experience. Some organizations reroute mobile browsers to sites that serve mobile
content only (with URLs such as mobile.example.com or m.example.com instead of
www.example.com). Others have used responsive design and mobile first strategies
to deliver the same content, formatted differently, for phones, tablets, and desktop
screens. Still others, such as Facebook, have given up on mobile web development
and focused on mobile apps, using native applications or hybrid web apps.

In this chapter, we'll look at the following:

•	 What makes developing for mobile devices different from desktop
website development

•	 How to use the ArcGIS compact build
•	 How to control the mobile user experience with dojox/mobile modules

Embracing mobile
Mobile web development is a fast-growing market. In India in 2012, the percentage
of Internet content served from mobile devices surpassed that of desktop computers.
In the US, reports show that web traffic from mobile devices accounted for 10 percent
in 2014, and the percentage is increasing.

Mobile Development

[242]

What are people doing with the mobile Internet? Some are checking their e-mail.
Others are searching for information, playing games, or keeping in contact with
others. People want to be connected, entertained, and informed, and they want it
available when they want them.

Mobile is different
Making a website work on a mobile device is vastly different from making it work
on a desktop machine. There are so many things that were features on a desktop
browser that are now a hindrance to work with on a mobile device. Let's look at
both the good and the bad of what makes mobile different.

The good
Even with all the negatives, mobile application development is an exciting field.
There are a lot of good features available for mobile web applications. Modern
smartphones offer sensors and tools that would be strange on a desktop, but are vital
for mobile apps. They bring a world of information to the user, and let the user make
notes and share things where they are, instead of later that day when they boot up
their desktop. Let's look at these features in more detail.

Access to phone sensors
Mobile devices come with a number of sensors built in. These sensors can test
the device's orientation, acceleration, and even location. Location can be collected
through a built-in GPS device, cell phone signal triangulation, or based on the
location of your Wi-Fi signal. Newer sensors within the phone can relay battery
strength. Also, some third-party hybrid tools provide access to more phone features,
such as the memory, contact lists, and the camera.

Instant access to the app
Users no longer have to write down a URL to pull up at home. Now, they can speak
it into the browser, or take a picture of a QR Code to access a website. That instant
access gets more people to use your application right away, cutting the risk of
forgetting your app's location.

Chapter 9

[243]

With instant access to the application, users can collect data where they are, instead
of going home to input information. The user can take a picture of a broken fire
hydrant, log in to a community issues app, and report the problem to the proper
authorities. Field workers can collect feature data in the field and check it in.
Volunteer geographical data collection can be used for citizen science, municipal
issue tracking, and a host of other applications.

Instant access to the user
Unlike a desktop application that may be used by anybody sitting at a library
computer kiosk, mobile phones are more likely to have a single user. Application
usage can be tied in to user profiles to give you a more complete picture of how your
app is used by different demographics. The possibilities are endless.

The bad
You spend hours putting together a gorgeous website that looks perfect on your
monitor. You test your site on three or four different browsers, and like what you
see. It looks great; it works great. It's bound to be a success.

Then, you run into a friend and want to show them your amazing website, but all
you have is your smartphone. No problem, you think, as you type in site's URL into
your phone's browser. What comes up is a usability nightmare. Parts of the screen
are cut off. Controls don't work like you planned. You can't navigate through the
menus properly. Overall, it's a mess.

Now, let's look at some of the pain points of mobile web development.

So many screen sizes
Back in the old days of the Internet, you only had to worry about a few monitor
sizes. As long as you made a site that looked good on a 1024x768 monitor, you were
okay. Some people had the money to afford larger monitors, while some others had
smaller, but there wasn't a big difference.

Now, smartphones, tablets, and other devices have screens that range from four
inches corner-to-corner to flat-screen television sizes and, because screen technology
has improved so much, the smaller screens have a pixel density 1.5, 2, or even 3
times that of a standard desktop monitor. Websites that were easy to read on a
desktop become squished and smaller on a smartphone.

Mobile Development

[244]

As the number of screen resolutions increases, so does the number of tests you need
to perform on your website. Does the site look as good on a three inch wide phone as
on an HD television? Does it scale well?

Fingertip accuracy
Another feature lost when moving from desktop to mobile applications is the high
accuracy input of a mouse. Whether you use a mouse, a laptop trackpad, or a stylus
pen with your computer, you have a mouse pointer that provides fine manipulation
of your content. On mobile devices, you have to account for rather large fingers
that may click more than one of your cleverly sized buttons. Also, the little closeout
buttons you created for your site may be too hard to close with some of the large
fingerprints out there.

Along with losing the accuracy of a mouse pointer, you also lose mouse hover
events. Everything from simple tooltips to CSS-powered collapsible menus no longer
work as expected in a mobile browser, because there are no hover events to listen to
and work with. Your old code from five to ten years ago won't work the same in the
mobile web era.

Battery life
Dealing with battery life can be another hindrance to mobile development. Repeated
access to location data and constantly monitoring advertising can drain the battery
on mobile devices. While this information is handy to have, it comes at a price.
Remember that not everybody has a full charge on their phone, and not every
battery will run for hours.

More devices
We mentioned the multitude of screen sizes before, but that's just the beginning.
There are a wide variety of devices out there, running Android, iOS, Windows
Phone, and other operating systems. Each one has a choice of a number of web
browsers, and even those web browsers may be at different version numbers. With
all this, support for the latest and greatest web features can be spotty, depending on
the feature. You'll have to decide what you're willing to support, and what devices
you're willing to purchase for testing.

Now that we've looked at why we should be building mobile applications, let's look
at the tools we have available through the ArcGIS JavaScript API.

Chapter 9

[245]

The ArcGIS compact build
The ArcGIS JavaScript API can be loaded as a more compact library for mobile
browsers. The compact build, as it is called, packs the bare minimum of the libraries
needed to view map applications in a mobile browser. Other modules can be
downloaded through Dojo's require() statements, but many will not be preloaded
with the initial library.

Modules included in the compact build
The ArcGIS compact build contains all the modules necessary to build a web map
application. It loads the same as the regular ArcGIS API for JavaScript, using
require() and define() statements. It also comes with the most frequently used
modules, such as esri/Map and esri/layers/ArcGISDynamicMapServiceLayer,
to quickly load your maps while using the least bandwidth.

What's not included
With all the functionality the ArcGIS JavaScript compact build offers, you'd think
they must sacrifice something. The first thing that the compact build gives up is
weight. At 179.54 KB in version 3.13, the library weighs in 107.26 KB under its
bulkier cousin. The regular build comes with a number of libraries preloaded, while
the compact build uses require() or define() statements to request those modules
separately. With this, you have better control over what library parts you send to
the user.

Another item sacrificed in the ArcGIS JavaScript API compact build is the reliance
on the dijit namespace. The first thing you'll notice is that the popups are replaced
with a more simplified versions. Also, if you like the graduated zoom slider to
zoom your map in and out, you can forget it in the compact build. It only supports
the + and – buttons to zoom the map in and out. If you have widgets that rely on
the dijit/_Widgetbase library, those can be downloaded separately through
require() and define() statements.

What does this mean to you?
The ArcGIS JavaScript compact build provides much of the same functionality as
the regular build does. There are a few differences in some of the controls, but they
both present the same maps and information. The smaller library size is perfect for
dropping a map into an existing application, or for using other libraries, such as
Angular, Knockout, or jQuery, to handle other component interactions. If you
don't have a dependence on the few features lost by using the compact build,
it's worth trying.

Mobile Development

[246]

For more information on the ArcGIS JavaScript API compact build, look
at the ArcGIS JavaScript API documentation at https://developers.
arcgis.com/javascript/jshelp/inside_compactbuild.html.

ESRI Leaflet
The Leaflet.js library provides another alternative to the ArcGIS JavaScript API.
It's a lightweight library that can show maps on a large range of browsers. Leaflet
works well with any tiled map services, and points, lines, and polygons can be
added through geojson, a popular open-source JSON format for geographical data.
The library can support different tools and data sources with plugins. There is a rich
plugin ecosystem for the Leaflet library, with more tools and data source plugins
developed daily.

ESRI has released the ESRI Leaflet plugin so that Leaflet maps can use ArcGIS Server
Map Services. According to the ESRI Leaflet GitHub page, it supports the following
map service layers:

•	 ESRI basemap services
•	 Feature services
•	 Tiled map services
•	 Dynamic map services
•	 ImageServer map services

For more information about the Leaflet.js library, you can visit
http://leafletjs.com/. For books on the library, you can check out
Leaflet.js Essentials by Paul Crickard III, or Interactive Map Designs with
Leaflet JavaScript Library How-to by Jonathan Derrough.

Dojox mobile
Don't you wish you could create an application that mimics the style of a mobile
device, while looking like a native app? That's what some of the contributors to
the Dojo framework thought, and that led to the modules in dojox/mobile. The
modules provide controls that match many of the UI elements in native mobile apps,
mimicking them in form and function. With the widgets in this library, buttons and
sliders look like iPhone buttons and sliders on Safari, while appearing as native
Android buttons and sliders on Android-based browsers.

https://developers.arcgis.com/javascript/jshelp/inside_compactbuild.html
https://developers.arcgis.com/javascript/jshelp/inside_compactbuild.html
http://leafletjs.com/

Chapter 9

[247]

The dojox/mobile modules provide a visual interactive framework that mimics
native mobile apps. Unlike their dijit form counterparts, the dojox/mobile user
controls do not use so many HTML elements, improving the download speed and
memory usage. The UI elements work well with other dojox/mobile controls, from
the dojox/mobile/View that takes up the whole screen, down to the last dojox/
mobile/Button. Let's take a look at a few of them.

Dojox mobile views
The dojox/mobile/View module provides a visual separation between parts of
the application. Views are full page containers that can be navigated to and from
by swipes or button presses. These are somewhat analogous to the dijit/layout/
ContentPane in how they organize content.

Related to the dojox/mobile/View, the dojox/mobile/ScrollableView provides
extra scrolling functionality in a way mobile users expect. In many mobile devices,
when the user swipes the screen to scroll down the page, that user expects the page
will continue to scroll until it slows to a stop. ScrollableView implements that
inertial scrolling down the page.

As ScrollableView scrolling events interfere with panning a map on a
touchscreen interface, you should not add an interactive map to this view.
ScrollableView is better suited for forms and content that may extend
beyond the height of the screen.

Working with touch
If you're used to working with mouse events in JavaScript, touch events can be a bit
confusing. The touchstart and touchend events look equivalent to the mousedown
and mouseup events.

In current versions of the ArcGIS JavaScript API, many of the touch events are
already handled by the API modules. When working with the map, you don't need
to assign a map.on("touchstart") event listener on top of a map.on("click")
event listener. The map.on("click") event listener handles it for you. The same
goes for any Dojo widgets and controls. That's one less thing you have to do to make
your application mobile-ready.

Mobile Development

[248]

Speaking of the map, there are touch events available that make some navigation
tools obsolete. You can pinch or spread your fingers on the screen to zoom in and
out respectively. Panning can be controlled by dragging your finger across the map.
These actions remove the need for zoom in, zoom out, and pan buttons, which can
free up valuable screen real estate.

Gestures
JavaScript handling of complicated mobile gestures hasn't been as smooth as it
has been in native applications. Native applications are developed to distinguish
between a tap and a tap-and-hold, for instance. By default, many JavaScript-based
applications treat them both as a click.

The Dojo framework that comes with the ArcGIS JavaScript API has some
experimental libraries to handle gestures, with the dojox/gesture modules. These
modules allow you to assign events using dojo/on, as in the following snippet:

require(["dojo/on", "dojox/gesture/tap"], function (dojoOn, tap) {
 dojoOn(node, tap, function (e) {…});
});

For simple gesture definition, dojox/gesture modules allow you to define tap and
swipe events using dojox/gesture/tap and dojox/gesture/swipe respectively.
With tap events, you can define single tap, double tap, and tap-and-hold events. For
swipe events, you can define events at the beginning and end of the swipe event. In
the following, you can see a code snippet implementing it:

require(["dojo/on", "dojox/gesture/swipe"], function(on, swipe){
 on(node, swipe, function(e){ … });
 on(node, swipe.end, function(e){ alert("That was easy.");});
});

You can't find a gesture that does what you want? With the dojox/gesture/Base
module, you can define your own custom gestures. As of now, you have to define
your own methods to handle gestures such as rotating, pinching, and spreading your
fingers. At some point, there will be more general support for those gestures, but not
as of the time of writing.

If you would like to learn more about handling touch and gestures
in Dojo applications, you can visit https://dojotoolkit.org/
reference-guide/1.10/dojox/gesture.html.

https://dojotoolkit.org/reference-guide/1.10/dojox/gesture.html
https://dojotoolkit.org/reference-guide/1.10/dojox/gesture.html

Chapter 9

[249]

Our application
As our story continues, we receive a call from the city of Hollister, California,
regarding their incident reporting app. They like the application, and it works great
for the receptionist who takes phone calls about those issues. Now, they want a
version that's more mobile-friendly, and they've come to us for help. It's time for
us to take our knowledge of mobile apps and create a tool they can use from a
smartphone in the field.

The original incident reporting app was built using typical dijit/layout elements,
where every panel had a place on the screen. Now, we have to consider that there's
not enough room on a smaller screen for everything. Instead, we need to organize
each panel into its own separate view. We'll need to control how we navigate
between these views, and use the appropriate controls that work well with a
mobile device.

We'll use the ArcGIS JavaScript API compact build, along with the dojox/mobile
modules, to create a mobile-friendly web application. We'll put the map in one view,
the incident picker in a second view, and a more detailed reporting form in the third
view. For all of these, we'll use dojox/mobile user interface components, along with
the ArcGIS JavaScript API editing widgets, to create not just a mobile-friendly, but a
user-friendly reporting experience as well.

Changing the layout
We will begin creating the mobile application by loading the ArcGIS compact build
into the index.html file. In the head of the HTML document, we'll change the link
to the ArcGIS JavaScript API to load the compact build. We'll keep the esri.css
file and our own style sheet reference, but we can remove the claro.css style sheet
reference, since our application won't need it. Our index.html file should look
like the following:

<head>
 …
 <!-- note that the claro.css stylesheet is removed -->
 <link rel="stylesheet"
 href="https://js.arcgis.com/3.13/esri/css/esri.css" />
 <link rel="stylesheet" href="./css/style.css" />
 <script type="text/javascript">
 dojoConfig = { async: true, isDebug: true };
 </script>
 <script src="https://js.arcgis.com/3.13compact/"></script>
</head>
…

Mobile Development

[250]

The body of our application has three actionable parts. There's a map where we place
our incidences. There's also a panel where we select what incident is on the map.
Finally, there is a form where we fill out more information about the incident. We'll
lay those out into different views: mapview, incidentview, and attributeview.
Inside each view, we'll add the headings and controls we need for our application.
It should look like the following:

<body>
 <div id="mapview" data-dojo-type="dojox/mobile/View">
 <h1 data-dojo-type="dojox/mobile/Heading">
 Incident Reporting App
 </h1>
 <div id="map" >
 <div id="locatebutton"></div>
 </div>
 </div>
 <div id="incidentview" data-dojo-type="dojox/mobile/View">
 <h2 data-dojo-type="dojox/mobile/Heading"
 data-dojo-props="back:'Map',moveTo:'mapview'">
 Incident
 </h2>
 <div id="pickerdiv"></div>
 </div>
 <div id="attributeview" data-dojo-type="dojox/mobile/View">
 <h2 data-dojo-type="dojox/mobile/Heading"
 data-dojo-props="back:'Incident',moveTo:'incidentview'">
 Description
 </h2>
 <div id="attributediv"></div>
 </div>
 …
</body>

In the preceding code, we've added the familiar data-dojo-type attributes to create
the dojox/mobile/View modules on the page. Inside each view, we have a dojox/
mobile/Heading module element, to show a heading at the top of the page. The
heading also doubles up as a sort of a button bar, into which we can put back buttons
inside. In the data-dojo-props attribute of the headings, we define a back button
with the back attribute defining the button text, and the moveTo attribute defining
the view it switches to.

Chapter 9

[251]

Modifying the JavaScript
In our app.js file, we'll need to modify the require statement in order to load the
appropriate modules for the mobile library. Instead of loading the dijit/layout
modules for setting up the layout, we'll need to add the dojox/mobile equivalent. In
the require() statement in the app.js file, modify the code to add the following:

require([
 "dojox/mobile/parser",
 "dojo/dom",
 "dojo/on",
 "esri/config",
 "esri/map",
 "esri/graphic",
 "esri/layers/FeatureLayer",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/geometry/Extent",
 "esri/dijit/editing/Editor",
 "esri/dijit/editing/TemplatePicker",
 "esri/dijit/editing/AttributeInspector",
 "esri/dijit/LocateButton",
 "esri/tasks/query",
 "dijit/registry",
 "dojox/mobile/Button",
 "dojox/mobile",
 "dojox/mobile/deviceTheme",
 "dojox/mobile/compat",
 "dojox/mobile/View",
 "dojox/mobile/Heading",
 "dojox/mobile/ToolBarButton",
 "dojo/domReady!"
], function (
 parser, dojoDom, dojoOn,
 esriConfig, Map, Graphic,
 FeatureLayer, ArcGISDynamicMapServiceLayer,
 MarkerSymbol, Extent,
 Editor, TemplatePicker, AttributeInspector,
 LocateButton, Query, registry, Button
) {

Mobile Development

[252]

As you can see, we replaced the normal dojo/parser with a dojox/mobile/
parser equivalent. We've added the dojox/mobile base class, the dojox/mobile/
deviceTheme that loads the appropriate theme based on your browser, and dojox/
mobile/compat so that the site can also be seen on older desktop browsers such as
Internet Explorer. For the elements we want to see out of the dojox/mobile library,
we've loaded the View, the Heading to view title data, and the ToolBarButton to
add buttons to the heading.

Working with the map on mobile
Let's focus on making the map work. In our mobile application, we've added the
map within the mapview div. We've set the width and height of the map to 100% in
our style.css file. The map should load as normal, right?

When we load the map as it is, especially from a larger browser, we find that the
map doesn't stretch all the way to the bottom. Using our favorite tools for examining
DOM elements, we find that height of the map div has been set inline to 400px.
Where have we seen this before?

After examining the DOM elements of features around the map, we see that the
view's height hasn't been set. By default, the mapview div's height depends on the
height of its content. As its height has not been defined, the map sets its height
to 400px. To fix this, we need to manually define the mapview div's height in
our style.css file. We'll also stop the mapview div from scrolling by setting its
overflow-y to hidden. This will remove any unsightly scrollbars on our map,
which may interfere with map navigation:

#mapview {
 height: 100%;
 overflow-y: hidden;
}

#map {
 width: 100%;
 height: 100%;
}

Chapter 9

[253]

Fixing the LocateButton
The LocateButton, which uses the browser's GPS functionality to center the map
on our location, has moved around. It appears that addition of the dojox/mobile/
Heading and the mobile buttons to zoom in and out have caused our LocateButton
to be displaced. We can use our favorite browser DOM explorer to reposition the
Locate button to a good spot, and then include it in the style.css file to make it
more permanent. The style for the LocateButton should look something like
the following:

.LocateButton {
 position: absolute;
 left: 21px;
 top: 130px;
 z-index: 500;
}

When you're done, you should have a map that looks like the following:

Mobile Development

[254]

Working with the editor widgets
Now that we're using the ArcGIS compact build, we don't have access to the popup
dijit that we used with the attachment editor. We don't have many of the other
dijit-based modules either. This application may require a bit more work to make it
mobile-ready.

Template picker
To select from the list of incidents, we chose the esri/dijit/editing/
TemplatePicker module to create buttons to select an incident. Now, we'll keep
using it, but we're looking at it in a different view. The original one presented a
vertical list of buttons down the side of the page for presenting incidents. Now,
we're going to remove those settings and define the template picker more normally.
The code for initializing the template picker should look like the following:

function startEditing () {
 …
 picker = new TemplatePicker({
 featureLayers: [layer],
 style: "width:100%;height:auto;",
 grouping: false
 }, "pickerdiv");
 picker.startup();
…

To access the picker for our incidents, or to edit a currently selected feature, we
need to call the showInspector() function. If we look over the existing function,
it attempts to select features in a feature service based on a point around where
we click. It uses the map's infoWindow to show the attribute editor. Now that
we're using another location to edit the feature attributes, we need to modify the
showInspector() code to handle our new functionality.

Our first step in making our showInspector() function work on a mobile is to
tweak the surface area that is selected compared to that if we click on the map.
Currently, it creates a two pixel wide extent around our click point. We can expand
it to 10 pixels, because our fingers are wider than a mouse pointer. Also, we need to
modify the callback function after the query succeeds. If there are no features in the
location clicked on the map, we'll show the template picker. If none is selected, we'll
tell it to go to the attribute inspector instead:

function showInspector(evt) {
 var selectQuery = new Query(),
 point = evt.mapPoint,
 mapScale = map.getScale();
 selectQuery.geometry = new Extent({

Chapter 9

[255]

 xmin: point.x - mapScale * 5 / 96,
 xmax: point.x + mapScale * 5 / 96,
 ymin: point.y - mapScale * 5 / 96,
 ymax: point.y + mapScale * 5 / 96,
 spatialReference: map.spatialReference
 });

 incidentLayer.selectFeatures(selectQuery,
 FeatureLayer.SELECTION_NEW, function (features) {
 if (!features.length) {
 goToPicker(point);
 } else {
 goToAttributeInspector('mapview', features[0]);
 }
 });
 }

In our goToPicker() function, we'll switch from mapview to incidentview. We'll
do this by using the performTransition() method provided by dojox/mobile/
View. It accepts up to five arguments: an id for another view to see, a number-based
direction (either 1 or -1), a transition style, and an object that defines this for the
callback function that rounds out the fifth argument. We'll tell mapview to make
the transition to incidentview, moving from the right with a slide animation, and
we'll add a callback function once the process finishes:

 function goToPicker(point) {
 registry.byId('mapview').performTransition('incidentview', 1,
 'slide', null, function() {
…
 });
}

When we try to run the goToPicker function as it is, it goes to incidentview,
but we don't see any incidents. This is due to an interesting feature of some dojo
widgets. When not visible, the widgets set their widths and heights to 0, effectively
becoming invisible. We need to refresh the TemplatePicker internal grid and clear
the template selection.

When the user selects a feature from the list, we need something to convey our
selection to the attribute inspector. We'll also add a single fire event using the once()
method in the dojo/on module, and attach it to the selection-change event of the
TemplatePicker widget. From there, we'll collect the selected attributes, the current
date, and a few other attributes, and pass them to a function that adds the incident to
the map. The function should look like the following:

 registry.byId('mapview').performTransition('incidentview', 1,
 'slide', null, function() {

Mobile Development

[256]

 //refresh the grid used by the templatePicker.
 picker.grid.render();
 picker.clearSelection();
 // on picker selection change…
 dojoOn.once(picker, 'selection-change', function () {

 var selected = picker.getSelected();
 if (selected) {
 // log the date and time
 var currentDate = new Date();
 var incidentAttributes = {
 req_type: selected.template.name,
 req_date:(currentDate.getMonth() + 1) + "/" +
 currentDate.getDate() + "/" + currentDate.getFullYear(),
 req_time: currentDate.toLocaleTimeString(),
 address: "",
 district: "",
 status: 1
 };
 addIncident(point, selected.symbol, incidentAttributes);
 }
 });
 });
 }

For the addIncident() function, we'll add our point location, symbol, and
attributes into a graphic. From there, we'll add the graphic feature to the editable
incidentLayer. Once we have completed that, we'll attempt to select it again using
the incidentLayer layer's selectFeatures() method, then send the result to the
goToAttributeInspector() function. We'll pass along the name of the current
view (incidentview), as well as the first feature that's selected. It should look like
the following:

function addIncident(point, symbol, attributes) {
 var incident = new Graphic(point, symbol, attributes);
// add incident to the map so it can be selected and passed to the
// attribute inspector.
incidentLayer.applyEdits([incident],null,null).then(function () {
 var selectQuery = new Query(),
 mapScale = map.getScale();
 selectQuery.geometry = new Extent({
 xmin: point.x - mapScale / 96,
 xmax: point.x + mapScale / 96,
 ymin: point.y - mapScale / 96,
 ymax: point.y + mapScale / 96,

Chapter 9

[257]

 spatialReference: map.spatialReference
 });

 // must select features before going to attributeInspector
 incidentLayer.selectFeatures(selectQuery,
 FeatureLayer.SELECTION_NEW, function (features) {
 if (features.length) {
 // fill in the items
 goToAttributeInspector(features[0], "incidentview");
 }
 });
 });
}

If all works correctly, you should be able to access your incident picker with
incidentview, and it should look like the following:

Mobile Development

[258]

Attribute inspector
Now that the map and the template picker have been properly updated for the
mobile application, it's time to look at the third stage of our incident reporting
application. Using our previous code, we'll select the incident through the
FeatureLayer selection. We'll then load the attribute inspector and edit the data.
Finally, we'll save the feature data, including any images, to the feature service.

In the previous desktop application, we loaded the attribute inspector in the map
popup. However, we don't have the same popup widget we had before in the
ArcGIS compact build. This one won't be so editable on the map screen. However,
we have plenty of screen real estate on the attribute view, so we'll load the inspector
there. Also, note that we'll remove any of the events where the map popup loads or
changes the attribute inspector.

First, we need to create a location on the page for the attribute inspector within the
attribute view. In the index.html page, within the attributeview div element,
we'll add a div element with an id of attinspector. When our application loads,
it will create an attribute inspector in this location. It should look like the following:

<div id="attributeview" data-dojo-type="dojox/mobile/View">
 <div id="attinspector"></div>
</div>

In our app.js file, we will still use the generateAttributeInspector() function
that is called by the startEditing() function when the map is loaded. However,
the generateAttributeInspector() function will need a few changes to work with
its more permanent surroundings. We will need to do the following:

•	 Initialize and start up the attribute inspector where the attinspector div
element is located

•	 Remove any references to the infoWindow property of the map
•	 When the changes are applied to the generateAttributeInspector()

function, it should look something like the following:

function generateAttributeInspector(layer) {

 layerInfos = [{
 featureLayer: layer,
 showAttachments: true,
 isEditable: true,
 showDeleteButton: false,
 fieldInfos: [
 {'fieldName': 'req_type', 'isEditable':true,
 'tooltip': 'What\'s wrong?', 'label':'Status:'},

Chapter 9

[259]

 {'fieldName': 'req_date', 'isEditable':false,
 'tooltip': 'Date incident was reported.',
 'label':'Date:'},
 {'fieldName': 'req_time',
 'isEditable':false,'label':'Time:'},
 {'fieldName': 'address', 'isEditable':true,
 'label':'Address:'},
 {'fieldName': 'district', 'isEditable':true,
 'label':'District:'},
 {'fieldName': 'status', 'isEditable':false,
 'label':'Status:'}
]
 }];
 //"","req_date","req_time","address","district","status"

 attInspector = new AttributeInspector({
 layerInfos: layerInfos

 }, "attinspector");

 attInspector.startup();

 //add a save button next to the delete button
 var saveButton = new Button({ label: "Save", "class":
 "saveButton"});
 domConstruct.place(saveButton.domNode,
 attInspector.deleteBtn.domNode, "after");

 saveButton.on("click", function(){
 updateFeature.getLayer()
 .applyEdits(null, [updateFeature], null);
 });

 attInspector.on("attribute-change", function(evt) {
 //store the updates to apply when the save button is
 clicked
 updateFeature.attributes[evt.fieldName] =
 evt.fieldValue;
 });

 attInspector.on("next", function(evt) {
 updateFeature = evt.feature;
 console.log("Next " +
 updateFeature.attributes.objectid);
 });

Mobile Development

[260]

 attInspector.on("delete", function(evt){
 evt.feature.getLayer()
 .applyEdits(null,null,[updateFeature]);
 map.infoWindow.hide();
 });
 // content after this was deleted.
 }

Once we have made the changes, we can run the application in a browser and check
out the attribute inspector. After clicking on a troublesome location on our map, and
identifying the incident with TemplatePicker, we should be able to view and edit
the incident attributes with the attribute inspector.

Trouble in the app
Oops, we've run into a bit of a problem with the application. We tested the app by
tapping on a spot on the map to report an incident. We selected the incident type
from the template picker, and it made the selection. After a couple of seconds, it
switched over to the attribute inspector, and we got the following:

Chapter 9

[261]

The attribute inspector form is very unsightly, and doesn't behave in the way it did
as a desktop web application. The user controls to edit the feature attributes don't
work very well. How could this happen?

The issues with the attribute inspector actually lead back to something we did at
the beginning of this application. We removed the claro.css file at the head of the
web page and, along with it, removed any other dijit references. This act saved
significant bandwidth on our application, but we lost the styling and functionality
of the user controls in the attribute inspector. Now, it's not going to do what we
want it to.

Rebuilding the attribute inspector
There is another way, however. We can create our own form for updating the feature
attributes. We can use form elements from the dojox/mobile modules to make our
own form, instead of using the attribute inspector. Also, on closer inspection, the
attachment editor portion of the attribute inspector worked well. We can load the
attachment editor after our custom form, and use it to save images to the features.

Creating the form
To make the custom form, we're going to need to load a few dojox/mobile modules
to parse. In the require() list in our app.js file, we'll add the dojox/mobile/
RoundRect module to create a rounded body for the form. We'll also use dojox/
mobile/TextBox for text entry, as well as the combination of dijit/form/DataList
and dojox/mobile/ComboBox to create a mobile drop-down menu. We're also going
to use dojox/mobile/Button to save our changes. Our require statement should
look like the following:

require([…, "dojox/mobile/RoundRect", "dojox/mobile/TextBox",
 "dijit/form/DataList", "dojox/mobile/ComboBox",
 "dojox/mobile/Button", "dojo/domReady!"], function (…) {
…
});

Mobile Development

[262]

Next, we'll modify the attribute view to make the form for editing the incident
attributes. We'll use DataList and ComboBox in index.html as a selection tool for
the incident type. In this way, if the wrong type is selected, the user will be able to
correct it. Next, we'll use Textbox to record the Address and District attributes.
The date, time, and status are read-only at this point, since we don't want the
reporter to change the date and time of the incident and whether the incident has
been opened or closed. Finally, we'll add a Save button to the form to save the
results. Once we add these to index.html, the file should look like the following:

<div id="attributeview" data-dojo-type="dojox/mobile/View">
 <h2 data-dojo-type="dojox/mobile/Heading"
 data-dojo-props="back:'Incident',moveTo:'incidentview'">
 Description
 </h2>
 <div data-dojo-type="dojox/mobile/RoundRect">
 <label>Request Type:</label>
 <select data-dojo-type="dijit/form/DataList"
 data-dojo-props='id:"incidentDataList"'>
 <option>Graffiti Complaint</option>
 <option>Blocked Street or Sidewalk</option>
 <option>Damaged Property</option>
 <option>Sewer Issues</option>
 <option>Tree Maintenance or Damage</option>
 <option>Sidewalk and Curb Issues</option>
 </select>
 <input type="text" data-dojo-type="dojox/mobile/ComboBox"
 data-dojo-props='list:"incidentDataList",
 id:"incidentSelector"' />

 <label>Date:</label>

 <label>Time:</label>

 <label>Address:</label>
 <input type="text" data-dojo-type="dojox/mobile/TextBox"
 data-dojo-props='id:"incidentAddress"' />

 <label>District:</label>
 <input type="text" data-dojo-type="dojox/mobile/TextBox"
 data-dojo-props='id:"incidentDistrict"' />

Chapter 9

[263]

 <label>Status: </label>

 <button data-dojo-type="dojox/mobile/Button"
 data-dojo-props="id:'saveButton'">Save</button>
…
 </div>

Finally, we need to modify our JavaScript to handle the form input and output.
We'll create two functions, setupIncident() and saveEdits(), to load and save the
data from the incident details form. The setupIncident() function will accept the
feature to be modified as an argument. Also, since setupIncident() can be called
when tapping on an existing incident on the map, or after selecting an incident type
in TemplatePicker, we'll pass the view name along with the feature data so it can
move to the incident details view:

 function setupIncident(feature, view) {
 var attr = feature.attributes;
 updateFeature = feature;
 registry.byId("incidentSelector").set("value", attr.req_type);
 dojoDom.byId("incidentDate").innerHTML = attr.req_date;
 dojoDom.byId("incidentTime").innerHTML = attr.req_time;
 registry.byId("incidentAddress").set("value", attr.address);
 registry.byId("incidentDistrict").set("value", attr.district);
 dojoDom.byId("incidentStatus").innerHTML = attr.status;

 attInspector.showAttachments(feature, incidentLayer);
 registry.byId(view).performTransition('attributeview', 1,
 'slide');
 }

The saveEdits() function will collect the values from the form, add those values as
feature attributes, and save the feature back to the geodatabase:

 function setupIncident() {
 …
 }
 function saveEdits(){
 // add updated values
 updateFeature.attributes.req_type =
 registry.byId("incidentSelector").get("value");
 updateFeature.attributes.address =
 registry.byId("incidentAddress").get("value");
 updateFeature.attributes.district =
 registry.byId("incidentDistrict").get("value");

Mobile Development

[264]

 // update the feature layer
 updateFeature.getLayer().applyEdits(null, [updateFeature],
 null);
 // move back to the map view
 registry.byId("attributeview").performTransition("mapview",
 -1, 'slide');
 }

The attachment editor
The last feature we will be implementing is the addition of photos to the incident
reports. The previous version used the attachment editor that was part of the
attribute inspector. Now that we're implementing our own entry form, we need to
include the attachment editor separately.

The first step in adding the attachment editor in our application is to add the module
reference in the app.js file require statement. According to the API documentation,
the module to use is in esri/dijit/editing/AttachmentEditor. We'll add the
reference in the following code:

require([…
 "esri/dijit/editing/TemplatePicker",
 "esri/dijit/editing/AttachmentEditor",
 …
], function (…
 TemplatePicker, AttachmentEditor,
 …
) { });

We'll initialize the attachment editor after the TemplatePicker in our
startEditing() function and assign it to the variable attachmentEditor. We
need the scope of the attachmentEditor to fit within the whole application since
we'll be connecting it with feature data in other functions. You can see the additions
highlighted in the following code:

require([…
 "esri/dijit/editing/TemplatePicker",
 "esri/dijit/editing/AttachmentEditor",
 …
], function (
 TemplatePicker, AttachmentEditor,
 …
) {

Chapter 9

[265]

 var attachmentEditor;
 …
 function startEditing () {
 // add the Locate button
 var locator = new LocateButton({map: map}, "locatebutton");
 var incidentLayer = map.getLayer("incidentLayer");

 picker = new TemplatePicker({
 featureLayers: [layer],
 style: "width:100%;height:auto;",
 grouping: false
 }, "pickerdiv");
 picker.startup();

 attachmentEditor = new AttachmentEditor({}, "attributediv");
 attachmentEditor.startup();
 …
 }
 …
});

When we connect our editing form with our data in the setupIncident() function,
we also need to connect the attachmentEditor to its data. After we've updated the
editing form with the feature values, we'll call the showAttachments() method of
the attachmentEditor. This method accepts the feature, as well as the layer to be
edited. The attachment editor will handle how to display existing attachments, and
how to add new ones. The code changes should look like the following:

 function setupIncident(feature, view) {
 var attr = feature.attributes;
 updateFeature = feature;
 registry.byId("incidentSelector").set("value", attr.req_type);
 dojoDom.byId("incidentDate").innerHTML = attr.req_date;
 dojoDom.byId("incidentTime").innerHTML = attr.req_time;
 registry.byId("incidentAddress").set("value", attr.address);
 registry.byId("incidentDistrict").set("value", attr.district);
 dojoDom.byId("incidentStatus").innerHTML = attr.status;

 attachmentEditor.showAttachments(feature, incidentLayer);
 registry.byId(view).performTransition('attributeview', 1,
 'slide');
 }

Mobile Development

[266]

Finally, we need to supply an element to index.html, in which we will attach the
attachment editor widget. At the bottom of the attributeview element, underneath
the editing form, we'll add a div element with the id of attributediv. That portion
of our index.html page should look like the following:

<div id="attributeview" data-dojo-type="dojox/mobile/View">
 <h2 data-dojo-type="dojox/mobile/Heading"
 data-dojo-props="back:'Incident',moveTo:'incidentview'">
 Description
 </h2>
 <div data-dojo-type="dojox/mobile/RoundRect">
 …
 <button data-dojo-type="dojox/mobile/Button"
 data-dojo-props="id:'saveButton'">Save</button>
 </div>
 <div id="attributediv"></div>
</div>

When you run the application and begin reporting an incident, you should
eventually see a form that looks like the following:

Chapter 9

[267]

The end result
After modifying our application layout and behavior, we now have a useful
mobile reporting tool. A citizen could load this page in their browser and report
any problems they find. City workers could also use this to report incidents. Your
application should look like this:

More work could be done to improve the application. Currently, it requires a
constant Internet connection to make edits. If your mobile device is in an area
with bad network coverage, any edits will be lost.

Mobile Development

[268]

Summary
In this chapter, we have examined what makes a website mobile. We looked at
the requirements for a mobile application, in screen real estate, functionality, and
bandwidth. We looked at the ArcGIS compact build to use on mobile applications.
We also modified an existing application previously formatted for desktop use,
and made it mobile-ready.

In the next chapter, we'll investigate how to write testable code using
test-driven development.

[269]

Testing
When you publish a website or a web application to the public, users expect it to
work. Links are supposed to take their places, and buttons are supposed to do
things. They may not have the technical knowhow to look in good their browser
console or observe network traffic. They may even have good reason to disable
JavaScript on their browser.

The truth is, sometimes websites don't work because of hardware, software, or user
error, but at other times the cause comes from the developer's buggy code. Maybe
the code was pieced together from a cut-and-paste collage of code samples and stack
overflow answers. Then the developer rushes to test the application once or twice,
using the same workflow they use every time they write a component.

Maybe, though, something changed outside of the developer's control. Maybe a
feature attribute that once held numeric values now contains strings. Maybe the API
was updated and there was a fundamental change in the application. Maybe a REST
data service is down, or maybe some bored kid is trying to input random data or
malicious SQL injection code to bring down the website.

Testing through code
These are all good reasons to create tests for your applications. Testing is one method
of ensuring that your code does as expected. It defines clear use cases, with clearly
defined, expected results. Testing also acts as a sort of project documentation. It tells
other developers who work with the project how the code is supposed to behave.

Now that you understand why testing is important, let's look at the testing
methodologies used by other developers over the years.

Testing

[270]

Unit testing
Unit testing is when individual components or modules of code are loaded into
a testing framework and tested individually. Tests are developed and results are
compared to expected values. For object-oriented programming, individual objects
can be loaded and tested without having to wait for other components to load.

JavaScript objects and modules lend themselves well to unit testing. Developers can
write scripts to load modules individually, pass values into functions and objects,
and see what comes out. Passing the tests ensures the JavaScript modules and objects
will perform as far as expected test cases go.

However, unit testing doesn't prevent all errors. While they tests the input and
output of objects and functions, they don't test how these objects interact. What
happens when two or more memory-intense modules are running in the same
browser? What happens to module A when input expected from module B times
out? Also, unit testing doesn't address user experience concerns. It's hard to write a
unit test for a map that pans slower than I think it should. Clearly, unit testing can't
be the only tool in your testing tool belt.

Functional testing
Functional testing handles the testing of a single process, instead of a single unit. It
makes many of the changes expected in a workflow, and checks that the results line
up with what is expected. While one or more unit tests may cover the components
tested in the functional test, the functional test connects them together to simulate a
real-world example.

An example might be the calculation of Value Added Tax (VAT) on an online
purchase in European countries. You might have unit tests that cover the following:

•	 Whether Italy has the correct VAT percentage
•	 What the subtotal of a list of purchased items costs
•	 What the total cost of a purchase would be after VAT is applied

With a functional test, you can string them all together. You could ask, given that
a person in Italy purchases these items, does the total cost after VAT matches what
is expected.

Chapter 10

[271]

End-to-end testing
If unit testing examines the individual components of an application and functional
testing tests a single workflow, then end-to-end testing examines the whole thing
from beginning to end. The entire application is loaded into a platform specially
designed for handling tests. A user script is loaded with predefined actions, such
as text to enter or buttons to click. Any errors are logged by the system for review.
Some testing frameworks even record screenshots or video of the testing process
for review.

End-to-end testing is meant to catch the errors generated by components interacting
with one another. They also tend to catch improper implementation of the
components (that is human error). However, end-to-end testing can be expensive in
terms of computer resources and time. The more use cases you test using end-to-end
testing, the longer it will take to get results. End-to-end testing is typically saved for
code releases or nightly build processes, while unit testing is expected to cover the
minor code changes between releases.

There are a number of paid services available on the web for end-to-end testing.
For some frameworks, such as Angular, there are testing frameworks such as
Protractor.js that can be used for end-to-end testing, but if you want end-to-end
testing that is both free and framework agnostic, you have options. Open source
libraries such as Phantom.JS, Casper.JS, and web browser automation tools such as
Selenium, can help you test your application from start to finish, with a bit of setup.

Testing as you code
Many developers have found that the best time to test their code is when they are
writing it. It's a horrible feeling when you spend all day writing a module, only to
have it fail and not know why. By creating unit tests in the middle of development,
the developer receives quick feedback regarding whether part of their code succeeds
or fails. Now, let's look at some ways developers write tests as they code.

Test-Driven Development
Test-Driven Development (TDD) is the process of writing unit tests and
end-to-end tests, then writing code to pass those tests. Whenever code is
refactored, it runs through the same tests to ensure results come out as expected.

Testing

[272]

Developers using TDD tend to code using the following steps:

1.	 Write a test based on requirements.
2.	 Run all tests and see that the new test fails. This eliminates unnecessary tests

and tests the overall testing framework.
3.	 Write some code to pass the test.
4.	 Run the tests again.
5.	 Refactor as necessary to clean up ugly code, names, and functionality.
6.	 Repeat steps 1 to 5 until done.

By writing the test before writing code, the developer keeps their focus on the
module's objectives and does not write unnecessary code. The tests also give the
developer confidence in the code, and lead to faster code development.

Behavior-Driven Development
Behavior-Driven Development (BDD) is a form of TDD that answers the question
"how much should I test?". In BDD, tests for code modules and objects are written
with descriptions that start with "It should do _____". Code tests are then written to
test for those features and those only.

BDD tests help to both define acceptance criteria and document code. By looking
through the test descriptions, other developers will have a better idea of what the
code is supposed to do. By describing acceptance criteria up front, the developer
doesn't have to write extra code for use cases the code will never experience.

Test statements
At the heart of every TDD and BDD setup is the test statement. The test statements
are lines of code written in a readable format to test properties and values of results.
Test statements define a simple test within unit tests or functional tests.

Depending on the library you choose for generating test statements, they may follow
a BDD should pattern, a TDD expect pattern, or a TDD assert pattern. Some
libraries may let you use one or more of these patterns for your tests. For example,
using the Chai.js library (which we'll discuss a little later in the chapter), we can
look at examples using any of the three patterns. Tests using the should pattern
might look like the following:

chai.should();

country.should.be.a('string');

Chapter 10

[273]

country.should.equal('Greece');
country.should.have.length(6);
texas.should.have.property('counties')
 .with.length(253);

The expect pattern may look something like the following:

var expect = chai.expect;

expect(country).to.be.a('string');
expect(country).to.equal('Greece');
expect(country).to.have.length(6);
expect(texas).to.have.property('counties')
 .with.length(253);

Finally, the assert pattern should look something like the following:

var assert = chai.assert;

assert.typeOf(country, 'string');
assert.equal(country, 'Greece');
assert.lengthOf(country, 6)
assert.property(texas, 'counties');
assert.lengthOf(texas.counties, 253);

All three formats test the same things. Their only difference is the syntax they use to
get the same results. Depending on which testing formats your team likes to write,
many of the testing libraries will have something in that flavor.

Now that we've reviewed the general concepts behind software testing, let's look at
the tools we have to work with. In the last few years, the JavaScript community has
produced a number of testing frameworks. Some are specific to a framework, such
as Protractor for Angular, while others work with almost any library or framework,
such as Mocha, Jasmine, or Intern. In this chapter, we're going to examine two of
them: Intern and Jasmine.

Intern testing framework
Intern (https://theintern.github.io/) is a testing framework for testing
websites and applications. Its website boasts that not only can it test plain JavaScript
applications, but also test server-side websites built with Ruby and PHP, as well
as mobile iOS, Android, and Firefox apps. Intern supports AMD and promises
asynchronous testing.

https://theintern.github.io/

Testing

[274]

If you're using Node.js in your development environment, Intern may integrate well.
If you use Grunt, Intern comes with its own Grunt tasks for easy integration into
your existing workflow. Intern also works with continuous integration services such
as Jenkins and Travis CI.

Intern works in most modern browsers, including Android Browser, Chrome,
Firefox, Safari, Opera, and Internet Explorer. For Internet Explorer, Intern works
with versions 9 and later. If you need to test older versions of Internet Explorer,
there is an intern-geezer module available through npm. The tests will work with
Internet Explorer versions 6-8, which do not support EcmaScript 5, which is required
by regular Intern.

Setting up your testing environment
If you're using Node.js, installation can be as simple as npm install intern.
According to the website, Intern has a recommended folder structure for your
projects, as shown in the following screenshot:

The makers of Intern recommend that you keep your source code and distributable
code in folders separate from the tests. In that way, the tests aren't accidently
published along with the code. You may not want people finding your tests, which
could expose your secured services, private API keys, and sensitive passwords.

Chapter 10

[275]

Special requirements for the ArcGIS JavaScript API
According to reports from several users, using Intern with ESRI's hosted link to the
ArcGIS API for JavaScript is not recommended. It can cause tests to fail where they
shouldn't because a module and its dependencies load too slowly. The recommended
solution is to download the API and the Dojo framework into folders alongside your
project files. You can use Grunt, a Node.js task runner.

Writing tests for Intern
Writing tests for Intern was achieved with modules like Dojo's AMD style in mind.
Once module paths have been assigned, these modules can be loaded into tests and
run. Let's look at how to do that.

Unit testing with Intern
Writing unit tests for Intern is very similar to writing Dojo modules, with a few
exceptions. Each unit test is made up of a define() function. The define() function
may take either a function with a single require argument, or a list of string
references to modules, and a function to run when all those modules have loaded. It
is a common practice in Node.js modules to load them individually through a single
require() function.

You will need to load a testing interface and an assertion library in the unit testing
function. The testing interface provides a way to register testing suites. When calling
the interface as a function, you provide a JavaScript object with descriptive key
strings and values containing functions to run tests or objects to classify subtests.
An example unit test is shown in the following snippet:

define(function (require) {
 var registerSuite = require('intern!object');
 var assert = require('intern/chai!assert');

 registerSuite({
 'One plus one equals two': function () {
 Var result = 1 + 1;
 assert.equal(result, 2, "1 + 1 should add up to 2");

 },
 'Two plus two equals four': function () {
 Var result = 2 + 2;
 assert.equal(result, 4, "2 + 2 should add up to 4");
 }
 });
});

Testing

[276]

In the preceding code, the registerSuite variable accepts Intern's object interface
for creating tests, while assert accepts the chai.assert library loaded with Intern.
The registerSuite()function is called, passing in two tests in an object. The first
test looks at whether adding one and one will equal two, while the second test looks
at adding two two's to see if that equals four. The assert.equal() function tests
whether the result variable matches the expected result, and will throw an error
with a text message should the test fail.

Test lifecycle with Intern
There may be something you need to do before you run your test in a testing suite,
or before and after each test. This is the test lifecycle. Intern provides keywords in
your test definitions to define what should happen during the test lifecycle. All these
lifecycle functions are optional, but they will help you to create useable tests. Here is
an outline of the general lifecycle of a test:

•	 setup: This function runs before any of the tests run, presumably to set up
something to test against. For example, you may create a map here before
you test your widget against it.

•	 During each test, the following events occur:
°° beforeEach: This function will run before each test. As an example,

you might load a fresh copy of your widget.
°° The test runs.
°° afterEach: This function will run after each test. Here, you might

destroy the widget you created in the beforeEach function, or you
might reset variable values that may have changed during tests.

•	 teardown: This function runs after all the tests within the suite run.
Here, you might destroy any maps or objects you created in the setup phase.

You can see an example of a unit test using the lifecycle in the following code.
This one simulates loading a map and adding a widget to the map:

define(["intern!object", "intern/chai!expect", "esri/map",
 "app/widget"],
function (registerSuite, expect, Map, Widget) {
 var map, widget;
 registerSuite({
 setup: function () {
 map = new Map("mapdiv", {});
 },
 beforeEach: function () {
 widget = new Widget({map: map}, "widget");

Chapter 10

[277]

 },
 afterEach: function () {
 widget.destroy();
 },
 teardown: function () {
 map.destroy();
 },
 'My first test': function () {
 // test content goes here.
 }
 });
});

In the preceding code, the define statement looks a lot like the one we're familiar
with, loading multiple objects at once. Note that the map is created on setup and
destroyed on teardown, while the widget is newly created before each test and
destroyed after each test.

Jasmine testing framework
If you're looking for a simple BDD framework to test your application, Jasmine
might have what you need. Jasmine is a framework-independent BDD library that
can be used to run tests on JavaScript applications. It can either be installed through
Node.js, or the library can be downloaded and copied to the test project folder.

Jasmine loads its test in an HTML file called a SpecRunner (short for specifications
runner). This page loads the main Jasmine library, as well as all the user libraries
and unit tests. Once loaded, the Jasmine library runs tests in the browser and
displays the results.

Writing tests for Jasmine
Once we have the SpecRunner in place, it's time to write tests. Tests are written using
normal JavaScript logic and a few testing objects and methods provided by Jasmine.
Let's look at some of the different parts.

Writing suites, specs, and tests
Jasmine tests are organized by suites, specs, and tests. Suites make up the top
level, and describe the unit tested. In fact, Jasmine tests write the suites using the
describe() function, which describes the feature to be tested. The arguments for the
describe() function include a string describing the feature, and a function to run
the tests.

Testing

[278]

Specs for the features can be written using the it() function in the describe suite.
The it() function, like the describe() function, contains a string to describe the test
and a function where a test is performed on the behavior. Any errors that occur in
the it() function lead to a failing test, while an it() function that runs successfully
shows a passing test for the behavior. In the following you can see an example of a
describe() and it() statement:

describe("A widget listing the attributes of the U.N.",
 function () {
 it("has its headquarters located in New York City.",
 function () {
 //tests go here
 }
);
 }
);

Inside each spec is one or more tests. In Jasmine, tests are written in the expect
format. Based on the object passed to the expect object, you have numerous tests
that can be performed on it, such as whether or not it equals a specific value, or
whether it comes back as a "truthy" JavaScript statement:

describe("A widget listing the attributes of the U.N.",
 function () {
 // unitedNations.countries is a string array of country names.
 it("contains more than 10 countries.", function () {
 expect(unitedNations.countries.length).toBeGreaterThan(10);
 });
 it("should contain France as a member country.", function () {
 expect(unitedNations.countries).toContain("France");
 });
});

Setup and teardown
There are times when you will need to load modules or create JavaScript objects to
test. You may also want to reset them between tests and tear them down to save
memory. To set up and tear down items to be tested, you would use the beforeEach
and afterEach functions. Each one lets you set up and tear down values between
tests, so that each test has fresh values that are repeatable. These are loaded in the
suites, and are supposed to be called before any specs that require them are called:

describe("A widget listing the attributes of the U.N.",
 function () {
 var unitedNations;

 beforeEach(function () {

Chapter 10

[279]

 unitedNations = new UnitedNations();
 });

 afterEach(function () {
 unitedNations.destroy();
 });

 it("should do something important", function () {
 //…
 });
 }
);

Ignoring tests
What if your module has a depreciated feature? What if you expect your module
to have a feature one day, but you don't want to write a test that fails now. You
could delete or comment out the code, but in doing so you lose some of the history
of your module in some respect. Jasmine has a way of disabling suites and marking
specs as pending without losing code. By replacing your describe statements with
xdescribe, and your it statements with xit, you can write tests that won't fail now,
but will be marked as "pending". You can find an example in the following code that
uses xit:

xit("Elbownia will join the United Nations next year.",
 function () {
 expect(unitedNations.countries).toContain("Elbownia");
 }
);

Red-light green-light
Many developers who write TDD and BDD tests practice red-green testing, which
is supported in Jasmine. Red stands for a failed test, while green stands for a passed
test. In red-green testing, a developer does the following:

1.	 Writes a necessary unit test that they know will fail (red).
2.	 Writes code for the object or module so that the test passes (green).
3.	 Refactors the code as needed, making sure it still passes the test.
4.	 Repeats steps 1 to 3 until both the code and tests are satisfactory.

Testing

[280]

Using the red-green testing method, the developer keeps the tests in mind as they
develop module functionality. Passing tests gives the developer confidence in their
code, and allows for faster development.

In Jasmine, test results on the SpecRunner HTML page are displayed using red and
green colors. Red colors are shown when a test fails, while green colors show when
all tests pass. The SpecRunner page will display which specification failed (if any),
and the error thrown when the failure occurred. Armed with that information, the
developer can fix the problem and move on to the next step in development.

Jasmine and the ArcGIS JavaScript API
Setting up your SpecRunner for applications using the ArcGIS JavaScript API is a
little more challenging. The AMD nature of the Dojo framework makes loading the
modules and tests a little more challenging, but it can be done.

The first step is to load the Jasmine and ArcGIS JavaScript APIs into the application.
Due to all the parts that Jasmine has to handle outside our application, and because
AMD modules tend to not show up when errors occur, we need to load Jasmine
before the ArcGIS JavaScript API:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 <title>Jasmine Spec Runner</title>

 <link rel="stylesheet"
 href="https://js.arcgis.com/3.13/esri/css/esri.css" />
 <link rel="stylesheet" type="text/css"
 href="tests/jasmine/jasmine.css" />

 <script type="text/javascript" src="tests/jasmine/jasmine.js">
 </script>
 <script type="text/javascript" src="tests/jasmine/jasmine-
 html.js" ></script>

 <script type="text/javascript">var dojoConfig={};</script>
 <script type="text/javascript" src="
 https://js.arcgis.com/3.13/" ></script>
</head>

Chapter 10

[281]

You will be able to load the locations of both your modules, and the tests on those
modules, in the dojoConfig packages. We will be using the AMD loader to load
the test suites as modules. In the following example, the AMD modules are in the
js subfolder, while the spec tests are in the tests subfolder. The dojoConfig
package should look something like the following:

Var basePath = location.pathname.replace(/\/[^\/]*$/, '');
var dojoConfig = {
 async: true,
 packages: [
 {
 name: 'app',
 location: basePath + '/js/'
 }, {
 name: 'spec',
 location: basePath + "/tests/"
 }
]
};

Since many of your custom widgets will require other modules, including other
custom modules, to load, you need to keep the path for your custom modules the
same as in your application.

In the body of the HTML document, add a script to call the specs through Dojo's
require() function. The code will load the specs out of the tests subfolder through
AMD. When the modules have loaded and the dojo/ready function is called, we
will load Jasmine's HtmlReporter and execute the Jasmine testing:

<body>
<script type="text/javascript">
 require([
 "dojo/ready",
 "spec/Widget1",
 "spec/Widget2",
 "spec/Widget3"
], function (ready) {

 ready(function () {
 // Set up the HTML reporter - this is responsible for
 // aggregating the results reported by Jasmine as the
 // tests and suites are executed.
 jasmine.getEnv().addReporter(
 new jasmine.HtmlReporter()
);
 // Run all the loaded test specs.

Testing

[282]

 jasmine.getEnv().execute();
 });
 });
</script>
</body>

When the tests are loaded and run, they will be rendered on this HTML page in
the browser.

In the specs
Normally, Jasmine specs can either be run as a script or enclosed in a self-running
JavaScript function. However, to work with Dojo, they need to be enclosed in
module definitions. Unlike the custom modules we've made in the past, we won't
use the dojo/_base/declare module to make a custom module. We'll simply use
the define() statement to load the necessary modules, and run the test inside it.

For each suite, use the define() statement to help load the tests. You could also load
any other ArcGIS JavaScript API modules or widgets you might need to help test the
module. The code for the Widget1 spec, as requested by the main app, might look
like the following:

define(["app/Widget1", "esri/geometry/Point"],
 function (Widget1, Point) {

});

Start writing Jasmine specs in the define statement. When the suite modules are
loaded, they will automatically run any tests inside them and display the results
on the SpecRunner page in the browser. You can use beforeEach to load a fresh
module for testing, and afterEach to destroy it, if necessary. You can perform any
custom ArcGIS JavaScript API-related tasks within the suites and specs:

define(["app/Widget1", "esri/geometry/Point"],
 function (Widget1, Point) {

 describe("My widget does some incredible tasks.", function () {
 var widget, startingPoint;

 // before each test, make a new widget from a staring point.
 beforeEach(function () {
 startingPoint = new Point([-43.5, 87.3]);
 widget = new Widget({start: startingPoint});
 });

 // after each test, destroy the widget.
 afterEach(function () {

Chapter 10

[283]

 widget.destroy();
 });

 it("starts at the starting point", function () {
 expect(widget.start.X).toEqual(startingPoint.X);
 expect(widget.start.Y).toEqual(startingPoint.Y);
 });
 //…
 });

});

Once you have your tests defined, you can view the SpecRunner page in the
browser and check out the results. If you have set everything up, you should have
tests running and displaying results. Have a look at the following screenshot for
an example:

Testing

[284]

Use case for Jasmine and the ArcGIS
JavaScript API
Jasmine provides an easy-to-write testing environment for your JavaScript widgets.
If you are new to unit testing and BDD, and you aren't comfortable with setting up
the Node.js environment on top of your tests, then Jasmine is a good place to start.
All the libraries you need can be downloaded from GitHub, and you can begin
writing tests almost right away.

Jasmine can be downloaded from its GitHub repository at
https://github.com/jasmine/jasmine. Documentation
for Jasmine can be found at http://jasmine.github.io/.
If you are interested in more reading material on this framework,
you can read Jasmine JavaScript Testing, Second Edition by Paulo
Ragonha, or Jasmine Cookbook by Munish Sethi.

Our application
For our application, we're going to set up unit testing for our Y2K map app
using Intern. Unlike our other applications, which only required a browser, we're
going to use Node.js for this setup. If we were following real TDD/BDD practices,
we would have written these tests while we were developing the application.
However, this will give you practice writing tests for any legacy applications
you've previously written.

For this sample, we'll follow the example provided by David Spriggs and Tom
Wayson through GitHub (https://github.com/DavidSpriggs/intern-tutorial-
esri-jsapi). We'll make some modifications to work with more recent updates in
both the ArcGIS JavaScript API and in the modules associated with the tests.

Adding testing files
In our Y2K application, we're going to add several files to work with the required
Node.js modules. We'll add a package.json file, which tells the Node Package
Manager (NPM) what modules we need and what version numbers we require.
Next, we'll add a Grunt.js file, since we'll use Grunt to load the ArcGIS JavaScript
API locally. We'll also add a bower.json file for Bower to load the correct Dojo
libraries locally, and a .bowerc file to configure Bower when we run it. Finally,
we're going to add an intern.js file in a tests folder to configure the Intern tests.

https://github.com/jasmine/jasmine
http://jasmine.github.io/.
https://github.com/DavidSpriggs/intern-tutorial-esri-jsapi
https://github.com/DavidSpriggs/intern-tutorial-esri-jsapi

Chapter 10

[285]

Our new folder structure should look like the following:

The package.json file
In our package.json file, we'll add the file dependencies required for our Node.js
modules. When specifying version numbers for some of the modules, you'll note that
some have a tilde (~) in front while others have a caret symbol(^). A tilde matches
both major and minor version numbers (the first and second numbers in the
three-number version code), while the caret will pull the most recent matching
major version number. Copy the following into your package.json file:

{
 "name": "intern-tutorial-esri-jsapi",
 "repository": {
 "type": "git",
 "url": "https://github.com/DavidSpriggs/intern-tutorial-esri-
 jsapi.git"
 },
 "version": "0.2.0",
 "devDependencies": {
 "dojo": "^1.10",
 "esrislurp": "^1.1.0",

Testing

[286]

 "grunt": "^0.4",
 "grunt-contrib-watch": "~0",
 "grunt-esri-slurp": "^1.4.7",
 "intern": "^2.0.3",
 "selenium-server": "2.38.0"
 }
}

The Grunt setup
Grunt is a popular task runner used in Node.js applications. It's used to automate
code building steps, such as minifying JavaScript, creating CSS files from CSS
preprocessors like LESS or SASS, or, in this case, testing code. Grunt reads a
Grunt.js file, which tells it where to look for files and what to do with them.
In our Grunt.js file, we're going to add the following code:

module.exports = function(grunt) {
 grunt.initConfig({
 intern: {
 dev: {
 options: {
 runType: 'runner',
 config: 'tests/intern'
 }
 }
 },
 esri_slurp: {
 options: {
 version: '3.13'
 },
 dev: {
 options: {
 beautify: false
 },
 dest: 'esri'
 }
 },
 esri_slurp_modules:{
 options: {
 version: '3.13',
 src: './',
 dest: './modules'
 }
 },

Chapter 10

[287]

 watch: {
 all: {
 options: { livereload: true },
 files: ['src/js/*.js']
 }
 }
 });

 // Loading using a local copy
 grunt.loadNpmTasks('intern');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.loadNpmTasks('grunt-esri-slurp');

 // download Esri JSAPI
 grunt.registerTask('slurp', ['esri_slurp']);
 grunt.registerTask('create_modules', ['esri_slurp_modules']);

 // Register a test task
 grunt.registerTask('test', ['intern']);

 // By default we just test
 grunt.registerTask('default', ['test']);
};

In the preceding code, Node.js expects that we will pass our module definition to
the module.exports variable. We tell Grunt where to find our intern module
for testing in grunt.initConfig, and esri_slurp for downloading the ArcGIS
JavaScript API. We also tell it to watch the src/js/ folder for any changes to
JavaScript files, which will trigger the tests to run again.

Once the configuration has loaded, we tell Grunt to load the modules for intern,
grunt-contrib-watch, and grunt-esri-slurp to modules from npm. The tasks are
then registered, and everything is set up to run the tests.

Setting up Bower
Bower is a Node.js module used to download all the required JavaScript libraries
for a project automatically. We will use Bower to download the libraries and Dojo
modules necessary to run our tests. Most common libraries and frameworks can
be downloaded locally through Bower. Our exception in this case is the ArcGIS
JavaScript API, which will currently be handled through esri-slurp. We need to fill
out a bower.json file to tell Bower what libraries we need, and what library versions
they should be as well.

Testing

[288]

Within our bower.json file, we need to create a JSON object to list our project name,
version number, dependencies, and any development dependencies. We can name it
whatever we want, so we'll name it y2k-map-app. We'll give it a version of 0.0.1 for
testing, and we'll be sure to increment it whenever dependencies or library version
numbers need to be updated. We have no development dependencies in this
case, but we do need to list the parts of the Dojo framework, as well as D3.js ,
in this application.

We not only need to list the libraries and modules required for the tests, but the
version numbers as well. We can refer to the ArcGIS JavaScript API What's New page
at https://developers.arcgis.com/javascript/jshelp/whats_new.html to
find out. According to the page, we need version 1.10.4 of the Dojo framework,
including dojo, dijit, dojox, and util modules from dojo/util. We also need
to add the dgrid modules with version 0.3.16, put-selector version 0.3.6, and
xstyle version 0.1.3. Referring back to the dojoConfig packages from our index.
html page, we see that d3.js is using version 3.5.6. We'll list the dependencies
within a JSON object, with the version numbers preceded by a # sign. The contents
of our bower.json file should be the following:

{
 "name": "y2k-map-app",
 "version": "0.0.1",
 "dependencies": {
 "dijit": "#1.10.4",
 "dojo": "#1.10.4",
 "dojox": "#1.10.4",
 "util": "dojo-util#1.10.4",
 "dgrid": "#0.3.16",
 "put-selector": "#0.3.6",
 "xstyle": "#0.1.3",
 "d3": "#3.5.6"
 },
 "devDependencies": {}
}

For the .bowerc file, we're going to add a simple configuration object. In the
configuration object JSON, we're going to add a directories field and assign a value
of .. This will tell Bower to load the files requested in this folder. The contents of the
.bowerc file should look like the following:

{"directories": "."}

https://developers.arcgis.com/javascript/jshelp/whats_new.html

Chapter 10

[289]

Intern.js configuration
Now we need to set up our Intern.js configuration file in the tests folder to run
our tests. We'll start by adding some default code in the page. More information on
this configuration file can be found at https://github.com/theintern/intern/
wiki/Configuring-Intern. Start by copying the following content:

// Learn more about configuring this file at
 <https://github.com/theintern/intern/wiki/Configuring-Intern>.
// These default settings work OK for most people. The options
 that *must* be changed below are the
// packages, suites, excludeInstrumentation, and (if you want
 functional tests) functionalSuites.
define({
 // The port on which the instrumenting proxy will listen
 proxyPort: 9000,

 // A fully qualified URL to the Intern proxy
 proxyUrl: 'http://localhost:9000/',

 // Default desired capabilities for all environments. Individual
 capabilities can be overridden by any of the
 // specified browser environments in the `environments` array
 below as well. See
 // https://code.google.com/p/selenium/wiki/DesiredCapabilities
 for standard Selenium capabilities and
 // https://saucelabs.com/docs/additional-config#desired-
 capabilities for Sauce Labs capabilities.
 // Note that the `build` capability will be filled in with the
 current commit ID from the Travis CI environment
 // automatically
 capabilities: {
 'selenium-version': '2.38.0'
 },

 // Browsers to run integration testing against. Note that
 version numbers must be strings if used with Sauce
 // OnDemand. Options that will be permutated are browserName,
 version, platform, and platformVersion; any other
 // capabilities options specified for an environment will be
 copied as-is
 environments: [{
 browserName: 'internet explorer',
 version: '10',
 platform: 'Windows 8'
 }, {

https://github.com/theintern/intern/wiki/Configuring-Intern
https://github.com/theintern/intern/wiki/Configuring-Intern

Testing

[290]

 browserName: 'internet explorer',
 version: '9',
 platform: 'Windows 7'
 }, {
 browserName: 'firefox',
 version: '23',
 platform: ['Linux', 'Windows 7']
 }, {
 browserName: 'firefox',
 version: '21',
 platform: 'Mac 10.6'
 }, {
 browserName: 'chrome',
 platform: ['Linux', 'Mac 10.8', 'Windows 7']
 }, {
 browserName: 'safari',
 version: '6',
 platform: 'Mac 10.8'
 }],

 // Maximum number of simultaneous integration tests that should
 be executed on the remote WebDriver service
 maxConcurrency: 3,

 // Name of the tunnel class to use for WebDriver tests
 tunnel: 'SauceLabsTunnel',

 // Connection information for the remote WebDriver service. If
 using Sauce Labs, keep your username and password
 // in the SAUCE_USERNAME and SAUCE_ACCESS_KEY environment
 variables unless you are sure you will NEVER be
 // publishing this configuration file somewhere
 webdriver: {
 host: 'localhost',
 port: 4444
 },

 // The desired AMD loader to use when running unit tests
 (client.html/client.js). Omit to use the default Dojo
 // loader
 useLoader: {
 'host-node': 'dojo/dojo',
 'host-browser': 'node_modules/dojo/dojo.js'
 },

Chapter 10

[291]

 // Configuration options for the module loader; any AMD
 configuration options supported by the Dojo loader can be
 // used here
 loader: {
 // Packages that should be registered with the loader in each
 testing environment
 packages:[]
 },

 // Non-functional test suite(s) to run in each browser
 suites: [],

 // A regular expression matching URLs to files that should not
 be included in code coverage analysis
 excludeInstrumentation: /^tests\//
});

Inside the loader.packages list, we'll add the folder locations of all the files we
expect to have. These will include both the files we have now, plus the files we
expect to download through Bower. Note that our app folder is referenced through
the folder where our Census widget is stored. Also, we're loading all the ESRI and
Dojo files, as well as D3.js for the graphics. Your packages portion should look like
the following:

packages: [{
 name: 'tests',
 location: 'tests'
}, {
 name: 'app',
 location: 'src/js'
}, {
 name: 'gis',
 location: 'gis'
}, {
 name: 'esri',
 location: 'esri'
}, {
 name: 'dgrid',
 location: 'dgrid'
}, {
 name: 'put-selector',
 location: 'put-selector'
}, {
 name: 'xstyle',
 location: 'xstyle'
}, {

Testing

[292]

 name: 'dojo',
 location: 'dojo'
}, {
 name: 'dojox',
 location: 'dojox'
}, {
 name: 'dijit',
 location: 'dijit'
}, {
 name: 'd3',
 location: 'd3'
}
],
…

We need to add the names of our test suites to the suites list. For now, we'll add
the following:

…
// Non-functional test suite(s) to run in each browser
 suites: [
 'tests/Census'
],
…

We should have everything we need in this file to run some successful tests on the
Census widget. As we add more modules, we can expand this point with more tests.

We should be ready at this point to load the files we need through Node.js. If you
haven't installed Node.js or any of the other node dependencies for this application,
please follow the next section. If you already have, you can still review the next
section, or skip it if you're already familiar with Grunt and Bower.

If you haven't installed Node.js
In this section, we'll go through the necessary steps to set up Node.js and the
necessary dependencies. In these examples, we'll be working with NPM, Grunt,
Grunt-CLI, and Bower. If you already have these set up in your development
environment, you can skip to the next section.

If you haven't installed Node.js, you can download a copy from http://nodejs.
org. On the home page, you'll find a link to the appropriate installer for your
computer. Follow the directions in the installation wizard to install the software.

http://nodejs.org
http://nodejs.org

Chapter 10

[293]

Node.js works through a command-line interface. All commands will be typed in
either through a Linux or OSX terminal, or through the Windows command prompt
(cmd.exe). Some portions may need you to have root or administrative access. Also,
if you're using a Windows machine, the PATH variable may need to be updated
to include both the node.js folder and its node_modules subfolder, where other
commands and utilities will be loaded.

Next, if you have not installed the grunt, grunt-cli, and bower modules, we'll
install them using npm. NPM comes built into Node.js and provides access to a
multitude of plugins, libraries, and applications to help you generate applications
faster. From your command prompt (or terminal), type the following to download
the modules we need:

npm install –g grunt

npm install –g grunt-cli

npm install –g bower

The –g flag tells npm to install the modules globally, so that they can be accessed
anywhere that Node.js and npm can be called. Without the –g flag, the module will
be loaded in a node_modules subfolder of your current directory.

Loading all the libraries locally
Now it is time to load all of the Node.js applications necessary for testing.
We're going to do the following:

1.	 Install all of our modules from npm.
2.	 Load most of the external JavaScript libraries locally using Bower.
3.	 Download the ArcGIS JavaScript API using Grunt Slurp.

We'll start by loading all the modules from npm. You will need to use a command line
tool like Windows command prompt (cmd.exe) or terminal for Mac or Linux to run
the code. Our package.json file defines the modules we need to run. We can install
the modules by typing the following in the command line:

npm install

If we need to test for features in older browsers, such as Internet Explorer 8 or earlier,
we will need to install an Intern extension called intern-geezer. It allows tests to
work on older browsers that may not have the features used in standard Intern. If
you need the older support, enter the following into the command line:

npm install intern-geezer

Testing

[294]

To load our JavaScript libraries locally, we can call on Bower to install the files. Our
bower.json file tells it what to load, and our .bowerc file tells it where to load it.
Enter the following into the command line:

bower install

Now, we need to load the ArcGIS JavaScript library for local testing. Since we
defined everything for this task in our Grunt.js file, we can simply enter the
following into the command line to download the files and start up our testing:

grunt slurp

Now our project should be up and running. We can now focus on writing tests for
our application.

Writing our tests
We will be writing tests using the same dojo module definition style we used with
creating objects, and similar to the Jasmine tests we talked about earlier. However,
since Intern is designed for AMD, we can load the intern items within the module
define() statements. In our tests folder, we'll create a file called Census.js, and let
that contain our test module definition.

We will start by stubbing out our define() statement. We will load both Intern and
Chai to run our tests. With Chai, we'll try using the assert module, where all test
statements start with assert. We'll also load our Census widget and all the modules
necessary to get it working, like a map. Since Intern typically runs without requiring
HTML DOM, but our maps and Census widget require it, we'll add some modules to
add elements to the DOM:

define([
 'intern!object',
 'intern/chai!assert',
 'app/Census',
 'esri/map',
 'dojo/dom-construct',
 'dojo/_base/window'
], function(registerSuite, assert, Census, Map, domConstruct, win) {
 //…
});

Chapter 10

[295]

Within the module definition, we'll add the variables for our map and Census
widget, and then register our suite with Intern using registerSuite(). In the
registerSuite() function, we'll pass an object containing the test name Census
Widget. We'll also add two methods, setup() and teardown(), to call before and
after all the tests have run:

…
var map, census;

registerSuite({
 name: 'Census Widget',
 // before the suite starts
 setup:function () {},
 // after all the tests have run
 teardown: function () {},
});
…

In the setup function, we'll need to create the DOM, the map to attach to the DOM,
and the Census widget to attach to the map. We'll use the dojo/dom-construct
and the dojo/_base/window modules to create the DOM for both. Once the DOM
elements have been created, we can initialize our map and census dijit. In our
teardown function, we'll destroy the map so that it doesn't take up valuable
memory space. The code should look like the following:

…
setup: function () {
 // create a map div in the body, load esri css, and create the
 map for our tests
 domConstruct.place('<link rel="stylesheet" type="text/css"
 href="//js.arcgis.com/3.13/dijit/themes/claro/claro.css">',
 win.doc.getElementsByTagName("head")[0], 'last');

 domConstruct.place('<link rel="stylesheet" type="text/css"
 href="//js.arcgis.com/3.13/esri/css/esri.css">',
 win.doc.getElementsByTagName("head")[0], 'last');

 domConstruct.place('<div id="map"
 style="width:300px;height:200px;" class="claro"><div id="census-
 widget"></div></div>', win.body(), 'only');

Testing

[296]

 map = new Map("map", {
 basemap: "topo",
 center: [-122.45, 37.75],
 zoom: 13,
 sliderStyle: "small"
 });

 census = new Census({
 map: map,
 mapService:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/"
 }, "census-widget");
},
…
teardown: function () {
 map.destroy();
},
…

Now that the map and the Census widget have been initialized, we can start adding
tests. I'll walk you through three relatively straightforward tests. It is up to you to
extend them further. In this exercise, we'll test the Census dijit for the following:

•	 It should have all its working parts
•	 It should return the correct query results when we make a known request
•	 Parts of the charting widget should work as expected

When writing the first test, we'll give it a label of Test Census widget creation.
For the corresponding function, we'll start by testing if the baseClass for the dijit is
as expected. We'll use assert.strictEqual() to test whether the value is correct.
Note that assert.strictEqual() takes three arguments, two values to compare,
and a string description of the test. That test should look like the following:

…
'Test Census widget creation': function() {
 assert.strictEqual(
 census.baseClass,
 "y2k-census",
 "census.baseClass should return a string 'y2k-census'"
);
},
…

Chapter 10

[297]

Our second test may seem a little tricky, since it's an asynchronous test. However,
Intern is designed to handle asynchronous testing as well. If necessary, we can
tweak Intern's timeout before it considers the task failed, but for now we will just
load the test.

In the query test, we'll send a query to the map service with all the states, and ask for
a list of the states. Using a then() statement after the query, we can grab the results
and test those using assert.strictEqual(). The test should look like the following:

…
'Test Census query for dropdown data': function () {

 census.queryShapeAndData({
 url:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/
 services/Census/MapServer/3",
 fields: ["STATE_NAME", "STATE_FIPS"],
 where: "1=1",
 }).then(function (featureSet) {
 assert.strictEqual(
 featureSet.features.length,
 51,
 "There should be 51 states returned, including the District
 of Columbia"
);
 });
},
…

Finally, for the graphing functions, we'll write tests to look at the functions we use to
translate feature attribute data into a format that D3 can use. In this example, we'll
pass attribute data through the census.ethnicData() method and test the output
for expected values. Like other testing libraries, we can add more than one test
within this specification. The test should look like the following:

'Test Census Graphing Attributes': function () {

 var ethnicAttributes = {
 WHITE: 10,
 BLACK: 20,
 AMERI_ES: 12,
 ASIAN: 11,
 HAWN_PI: 4,
 HISPANIC: 23,
 OTHER: 7,

Testing

[298]

 MULT_RACE: 17
 };

 var data = census.ethnicData(ethnicAttributes);

 assert.strictEqual(
 data.length,
 8,
 "The translation from graphic attributes to d3-based data
 should have 8 attributes in the ethnicData function"
);
 assert.strictEqual(
 data[4].name,
 "Hawaiian / Pacific Islander",
 "The item in index 4 should have a name of Hawaiian / Pacific
 Islander data"
);
 assert.strictEqual(
 data[5].population,
 23,
 "Out of the Hispanic column, the data index of 5 should have a
 population of 23."
);
}

Checking the results
In order to check our tests, we need to load our file in the browser. Since we installed
Intern as a node module, we'll need to view its test-running page. The file is located
under node_modules/intern/client.html. You will need to specify where the
tests are loaded in the browser by giving a query parameter of config=tests/
intern. The following URL is an example you might view in a browser (it may
be different depending on your setup): http://localhost/MasteringArcGIS/
Chapter10/node_modules/intern/client.html?config=tests/intern.

When you correctly view the page, you'll be greeted with the Intern icon and a
pass/fail report. Failing tests will be highlighted in red, while passing tests will be
highlighted in green. You should see something like the following image:

Chapter 10

[299]

Summary
In this chapter, we have reviewed the reasons why we want to set up tests for
our web applications. We have looked over different testing methodologies,
development practices, and JavaScript libraries useful for testing our applications.
Using Intern, we have set up tests for our own application.

In the next chapter, we'll look into the future of web applications for ArcGIS Server,
checking into ArcGIS Online.

[301]

The Future of ArcGIS
Development

What does the future hold for those who want to develop map applications for
ArcGIS Server? After all, the direction of the Internet changes with each new
technology, and what is popular today might not be popular tomorrow. The
Flex and Silverlight APIs were quite popular at one point, and now they're
only being maintained. What does the future hold for ArcGIS Server development
with JavaScript?

If the latest releases from ESRI are any indication, JavaScript is still the development
language of choice for the web. However, instead of letting users build applications
from scratch, the ArcGIS platform has released new features that can jump start
application development. Two of them, ArcGIS Online and Web AppBuilder, are
based on the ArcGIS JavaScript API. We'll take a look at these technologies, and
develop an application using a map created with ArcGIS Online.

In this chapter, we'll cover the following topics:

•	 How to use ArcGIS Online to create web maps
•	 What Web AppBuilder is and how it relates to ArcGIS Online
•	 How to use an ArcGIS Online web map in your ArcGIS

JavaScript API application

The Future of ArcGIS Development

[302]

ArcGIS Online
ArcGIS Online is ESRI's online tool for creating web maps in the cloud. ArcGIS Online
provides a way for users to create web maps, mix and match map services and other
data sources, modify popups, and share the resulting web maps, either with the
general public or within their organizations. This is a screenshot of the ArcGIS
Online page where you can add data from different sources into custom maps:

Besides referencing data through web maps, ArcGIS Online subscriptions allow you
to upload and store data. Tiled map services can be created with tiled map packages
generated through ArcGIS Server. Feature services can be created to store, update,
and retrieve feature data. You can also use other ArcGIS Server extensions, such as
geocoding and routing through ArcGIS Online. This means that you don't have to
use your own hardware to host your data. You can maintain your feature data and
tiled maps in the ArcGIS Online cloud.

Now, I'm sure you're wondering how ESRI can afford to offer these features. The
more advanced services cost credits, which can be purchased through ESRI. Each
simple transaction can cost a fraction of a credit, but repeated use can add up. Tiled
and feature services also cost credits, and are charged by gigabytes of storage per
month. Depending on the size of your organization, you get an allotted number
of credits per year, with the option to purchase more. However, if you have a
developer account, ArcGIS Online currently offers 50 credits a month for testing
your applications.

Chapter 11

[303]

ArcGIS Portal
If you work for an enterprise organization that doesn't want its data hosted through
a public platform such as ArcGIS Online, there is a private version as well. ArcGIS
Portal is an organization-centered version of ArcGIS Online that can work within
a private or secured network. Logins can be verified through a number of common
secure protocols such as SAML and oAuth2.

ArcGIS Portal has many of the same features as ArcGIS Online. You can create
and share web maps. You can upload, catalog, and search for data sources in your
organization and, using administrator access, you can set user roles and permissions.
The primary difference is that the data you create and share is kept within the
company network. What happens in ArcGIS Portal stays in ArcGIS Portal.

Web AppBuilder
Developers have made the same map tools over and over for different sites. Almost
all generic web mapping applications have a drawing tool, a measuring tool, a print
tool, a legend, and so on. The developers at ESRI China have implemented an idea
to create an application that builds JavaScript web mapping apps that use ArcGIS
Online web maps. They call the tool Web AppBuilder, that is shown in the
following screenshot:

The Future of ArcGIS Development

[304]

Web AppBuilder creates full-page web mapping applications using the ArcGIS
JavaScript API. The applications use responsive design elements and fit any
screen. Publishers have a choice of color scheme, title text, logos, and an assortment
of widgets. Web AppBuilder applications are published and hosted through
ArcGIS Online, so you don't need your own hosting environment to create a
web map application.

You can create generic Web Appbuilder applications straight from ArcGIS Online.
Using an existing AGOL webmap, you can create an application, add several
default widgets, such as printing, measuring, and queries. You can define titles,
color schemes (from a list), and parameters for each of the widgets you use.

Developer Edition
One issue with the default Web AppBuilder is that there is no room for custom
development. If you don't like the way the Query widget searches for results, you
don't have anything better. ESRI recognized this, and released a developer edition
for custom development.

The Web AppBuilder Developer Edition is a Node.js application that lets you
generate web mapping applications using default widgets and any custom widgets
you create. Widgets are based on Dojo's dijit system, and are easily added to the
system. Web AppBuilder and the applications created with it are tied to an ArcGIS
Online account.

Web AppBuilder Developer Edition generates the HTML, style sheets, and JavaScript
necessary to run a freestanding website. Configuration data is stored in JSON
files. Along with creating custom widgets, it is possible to create custom themes,
modifying the style and position of elements to match your requirements.

Widgets made for the Web AppBuilder Developer Edition are highly extensible.
Widget components can be written for international markets using i18n
(internationalization) and localization principals. Configurations can store label
names in the widget in multiple languages, which will be loaded correctly with
the application. Widget configurations can also be modified prior to application
deployment. Settings for the widgets can be written using dijit form elements, much
like the application itself, to modify the configuration.

As of the time of writing, ArcGIS Online will not host applications created with the
Developer Edition. Applications generated with the Developer Edition are hosted
on the developer's own platform. Since the files generated through the Developer
Edition are static HTML, JavaScript, CSS, and image files, they can be hosted with
little or no server-side processing.

Chapter 11

[305]

For more information regarding Web AppBuilder, refer to the ESRI
website at http://doc.arcgis.com/en/web-appbuilder/. For
more information about Web AppBuilder Developer Edition, including
download instructions and tutorials, visit https://developers.
arcgis.com/web-appbuilder/.

More Node.js
Speaking of Node.js, there are a number of tools for the ArcGIS JavaScript API that
rely on Node.js. The ArcGIS API for JavaScript Web Optimizer is a Node.js project
hosted by ESRI, which packages your custom modules along with a minimum set of
ESRI and Dojo modules for a simplified build process. You can host through ESRI's
content delivery network (CDN), or download and host it yourself.

If you decide to focus more on the Web AppBuilder Developer Edition, there's a
Node.js project for that, too. The generator-esri-appbuilder-js project generates
a template Web AppBuilder widget with all the necessary files. It asks you for basic
information, such as the widget name and author information, as well as what
kinds of files the widget will require. The project is based on Yeoman, a Node.js
template-generating tool.

For more information on the ArcGIS API for JavaScript Web Optimizer,
visit https://developers.arcgis.com/javascript/jshelp/
inside_web_optimizer.html. For the generator-esri-
appbuilder-js project, you can find it on NPM at https://www.
npmjs.com/package/generator-esri-appbuilder-js, or view
the source code at https://github.com/Esri/generator-esri-
appbuilder-js.

Our application
Now that we're up to speed on the latest and greatest from ESRI, let's return to
our story. The Y2K society called and they love the work we've done with our
application. They can't wait to share all that information with the general public.

The interesting thing is that the Y2K society has purchased a few ArcGIS Online
licenses. Now they want you to store the web map data in that format, so they can
manage and add new data about the year 2000 as they come across it.

http://doc.arcgis.com/en/web-appbuilder/
https://developers.arcgis.com/web-appbuilder/
https://developers.arcgis.com/web-appbuilder/
https://developers.arcgis.com/javascript/jshelp/inside_web_optimizer.html
https://developers.arcgis.com/javascript/jshelp/inside_web_optimizer.html
https://www.npmjs.com/package/generator-esri-appbuilder-js
https://www.npmjs.com/package/generator-esri-appbuilder-js
https://github.com/Esri/generator-esri-appbuilder-js
https://github.com/Esri/generator-esri-appbuilder-js

The Future of ArcGIS Development

[306]

Our goal is to create an ArcGIS Online webmap for the Y2K society and add it to
our existing application. We will add the map layers, popup templates, and charts
into the webmap. We'll then load the webmap into our existing application, cut
out unnecessary features, and make the rest of the custom features work with
the webmap.

Creating a webmap
We need to create a webmap to use in our application. If you haven't already set up a
developer account for ArcGIS Online, go to https://developers.arcgis.com/en/
sign-up/ to sign up for a developer account. Once you've signed in, click on Map
in the top menu. It will load an empty map much like the image at the beginning of
the chapter.

We can start by saving a copy of our map. This will allow us to name the map, write
descriptions, search terms, and so on. In the toolbar toward the top, click on the Save
dropdown and select Save. This will create a dialog popup that will let us enter the
name of our map, write a summary, and add tags that make it easier to search for our
map. We can put the map in our base folder, or make a new one for the application.
Add Y2K Census Map to the title, and give a brief description. It should look similar
to the following screenshot:

Once you've clicked SAVE MAP, the map should have a new name. If you look in
the URL, you'll also notice some strange characters. Your webmap has now been
assigned a new webmap ID (?webmap=XXXXXXXXXXXXXXXXX), which is a unique
string that ArcGIS Online uses to reference your map. Keep this webmap ID handy,
because we'll use it later in our application.

https://developers.arcgis.com/en/sign-up/
https://developers.arcgis.com/en/sign-up/

Chapter 11

[307]

Changing the basemap
One of the best features of using ArcGIS Online to host your webmap is all the
basemap backgrounds that are available. From satellite and aerial photos to simple
grayscale maps, there's a good background available for your data.

In previous versions of our application, we used the national geographic basemap
to frame our data. We can do the same for this webmap. Click Basemap in the upper
left-hand corner of the toolbar, and you'll be able to view a number of web map
thumbnail images. Select the National Geographic basemap, and the map should
update. The basemap selector should look like the following screenshot:

Adding the census map service
ArcGIS Online provides a number of ways to add layers to maps. Whether we have
an ArcGIS Server map service or a simple CSV file, ArcGIS Online can accommodate
a wide variety of data. To add layers to the map, click on the Add button in the
upper left-hand corner and select from the drop-down choices. Some of the different
ways to add layers to webmaps are discussed in the following sections.

The Future of ArcGIS Development

[308]

Searching for layers
ArcGIS Online catalogs a wide variety of map layers for both public and
organizational use. ArcGIS Online provides a search blank and a list of matching
maps and layers to add to your webmap. If layers and services have been shared
within your organization, you can search for keywords and tags to add that layer
into your map. You can also add map services and layers that other people have
marked as public data.

If your web map contains layers that are restricted to either your
organization, or to specific groups within your organization, anyone
who views the webmap will be prompted to log in to prove they can
view the layers. If login fails, the webmap may load, but the restricted
data will not be loaded on the map.

Browsing for ESRI layers
ESRI has a large collection of its own map data available for public use. The data
covers a wide range of topics and interests. You can filter by category, and click
to add the map layer to your existing map. Currently, major categories include
the following:

•	 Imagery
•	 Basemaps
•	 Historical maps
•	 Demographics and lifestyles
•	 Landscapes
•	 Earth observations
•	 Urban systems
•	 Transportation
•	 Boundaries and places

While you might be tempted to grab census data from this location, remember
that this shows more current data. Since we're using the Year 2000 data in this
case, we'll ignore this option. However, we'll remember this, because it could be
useful in other projects.

Chapter 11

[309]

Adding layers from the web
This option allows us to add from a number of web map services. While it's expected
that we can add ArcGIS Server map services, some of the other choices may surprise
you. Besides ArcGIS Server map and feature services, other layer types we can
add include:

•	 WMS Service
•	 WMTS Service
•	 Tiled Service
•	 KML file
•	 GeoRSS file
•	 CSV file

Note that the CSV file refers to one available online, more than likely through
another service. If you have a CSV file to upload, you would select the next option.

Adding layer from a file
Here, we get to upload a file and have ArcGIS Online render it for us. The dialog
asks for a file to upload and, based on the file format, it will also ask for information
to determine geographical locations. Acceptable files for adding geographical data
include the following:

•	 A shape file with up to 1,000 features stored in a .zip folder
•	 A tab or comma delimited text or CSV file
•	 A GPS Exchange Format (GPX), which is available from many GPS units

Adding map notes
This option allows you to draw custom points, lines, and polygons on the map as
notes for other users or applications. You can select from a number of predefined
feature types with unique renderers. Based on the note template you pick, you can
add points, lines, and polygons with custom symbols.

The Future of ArcGIS Development

[310]

Our application data source
For our application data source, we'll add a layer from the web. After you choose
to add a layer from the web, select the ArcGIS web service from the drop-down list,
and either type or paste the 2000 census map service URL in the blank. Leave the Use
as Basemap checkbox unchecked. Finally, click ADD LAYER to add it to the map.
You can see a screenshot of the prompt in the following image:

Styling
ArcGIS Online allows you to restyle many dynamic and feature layers, even if they
weren't styled that way on the original map. You can add custom renderers to alter
the color, transparency, and picture symbology of each layer. You can turn a simple
map with no style into a custom map with unique value symbology, telling the story
you want to tell.

For our web map, we see the simple black outlines of the states and counties on our
map. We're going to change the style to make them look more appealing, and to
blend them in with the National Geographic basemap background.

First, click on the census map service layer under Contents to expand the map layer.
You'll see the different sublayers that make up the layer, such as States, Counties,
Block Groups, and Block Points. By clicking on each one, you can see the symbols
for each layer.

Chapter 11

[311]

We'll start changing the symbology for the States. Click the little downward-pointing
triangle to the right of States and select Change Style. The first menu will appear on
the left, and let you select a label and symbol. Between the basemap and our popups,
we'll have a good idea of what state we're in, so we'll leave the labels alone. Click on
the Options button in the Single Symbol drawing under Select a drawing style.

The next prompt lets you change the symbol and the visibility range of the layer on
the map. If the layers are already set with minimum and maximum visibilities, this
will not make those more lenient, but it can make them stricter. Click on the Symbol
link to get a color prompt. From here, you can set the color of the outline and the
inside filling of the polygons. It should look something like the following screenshot:

Change the color of the outline to a darker orange, and click OK. We'll leave a
transparent fill in the states. Repeat the same processes with the Counties and
Block Groups, picking a lighter shade of orange each time.

The Future of ArcGIS Development

[312]

Creating popups
Now that we've adjusted our layers, let's look at the popups. ArcGIS Online lets you
create and configure popups for map layers and feature services on your webmap.
They provide a number of popup configurations, including a list of feature attributes
and a What You See Is What You Get (WYSIWYG) rich text editor. Both allow some
value formatting, such as thousand separators for numbers, or date formatting for
dates. The WYSIWYG editor also allows you to use text colors and add links based
on value attributes.

For our application, we're going to stick with displaying the list of attributes. Click
on the Options button for the States (the little downward-pointing triangle), and
select Configure Popup. In the next menu on the left-hand side, we can modify
the title and the contents. Remember that, in any of the blanks, field names are
surrounded by brackets and will be replaced with values.

Next to the Display dropdown, select A list of field attributes. This will create a
long list of all the field attributes. We don't want to see all of them, or even most of
them, so we'll configure which fields we see. Click on the Configure Attributes link
under the list of fields.

You'll see a dialog with a list of fields available for viewing. Each field has a checkbox
for visibility, a field name shown with brackets, and a field alias. Field aliases can
be altered by clicking on them and typing in a different value. Unchecking a box
here means that it won't appear in the popup. For numeric and date fields, extra
formatting prompts appear to the right of the list when such a field is selected.
Look at the following screenshot:

Chapter 11

[313]

Since we see the state name in the title, we can uncheck everything but Population
for 2000, Square Miles, and Population per Square mile. We'll rename the aliases
to make them more appealing. Finally, we'll click OK. The list of attributes should
reflect the three fields we've made visible at this point.

Adding charts
The popup configuration controls on ArcGIS Online also allow you to add images,
charts, and graphs based on feature attributes. The images and graphs appear in
the popups under the content we've displayed. These graphics are drawn using the
dojox/charting libraries.

Going back to the States layer, we'll add the graphs for the ethnicities, genders, and
ages in the states. In the lower left, under Popup Media, click on the Add button. A
dropdown will appear, letting you choose the image or chart you would like to see.
For our ethnic graph, we'll select a pie graph.

In the next prompt, we're given the parameters required to configure the pie chart. It
requires a title, a caption, and selected fields to add to the chart. We're also given the
option to normalize the data against another field in our data. If we were comparing
relative population levels between areas, it would be beneficial to normalize against
the entire population, but since we're making pie charts, and the populations of each
ethnic group should add up to 100 percent, we'll skip normalization. You can see an
example of the prompt in the following screenshot:

The Future of ArcGIS Development

[314]

For the State popup, we'll give the graph a name of Ethnic Graph. We'll then add
a caption to explain what the chart is all about. Finally, we'll make sure that the
WHITE, BLACK, AMERI_ES, ASIAN, HISPANIC, MULT_RACE, HAWN_PI,
and OTHER fields are checked. Note that, if you didn't reformat the names of the
fields when configuring the popup field name attributes in the previous section,
the attributes will appear just as you left them. You can edit the field aliases here as
well. You don't necessarily have to make them visible in the popup to make them
chartable (and format their aliases) here. Finally, click OK, and you should see your
Ethnic Chart in the list of Popup Media.

We'll repeat the steps for adding the gender and age charts. For the gender pie
chart, we'll repeat the preceding steps to add another pie chart. We'll label it Gender
Chart, and make sure that the MALES and FEMALES fields are checked. For the age
bar chart, we'll select Bar Chart from the first menu. In the second prompt, we'll title
the chart Age Chart and add the AGE_UNDER5, AGE_5_17, AGE_18_21, AGE_22_29,
AGE_30_39, AGE_40_49, AGE_50_64, and AGE_65_UP fields.

Once the charts have been configured, be sure to click on SAVE POPUP on the bottom
of the popup menu. This will reload the map with the new popup configurations.
Click on a state to test that the popups appear. You should see the fields we added,
and Ethnic Chart in the State popup. Arrows are also added to the right and left of the
charts so that the user can view the gender and age graphs as well. Hovering over
the graphs with your mouse will show the labels and numbers behind the graphs.
They should appear like the popups shown in the following pictures.

This screenshot shows the Ethnic Graph:

Chapter 11

[315]

This screenshot shows the Gender Chart:

This screenshot shows the Age Chart:

The Future of ArcGIS Development

[316]

Uses for an ArcGIS Online webmap
ArcGIS Online not only provides maps, but also tools with which you can perform
analysis, collect data, and share maps with others. Some of the other features
available in the preceding toolbar are as follows.

Sharing
Sharing lets you control who has access to your webmap. You can share the map
with the world, with those in your organization, or keep it to yourself. You can give
other people access to the map by sharing the URL for it. You can also imbed the
webmap in any website as an iframe, or create a web application using one of the
web app templates.

Printing
The Print control in the toolbar opens a printable copy of the webmap in a new
tab on your browser. The printable copy shows the title, the map in its current
extent, and the attribution data. The page is formatted to be printed on an ANSI
(A letter-sized) piece of paper.

Directions
By clicking on Directions, you'll get a Directions widget in the left-hand portion of
the screen. The Directions widget lets you get directions from a starting point to a
finishing point, with any number of stops in between. Directions and time can be
calculated for a car, truck, or walking. You can also collect return trip data, as well
as traffic data, on the route. Remember that directions and traffic routing cost credits
to use.

Measurements
The measurement widget here mimics the measurement dijit in esri/dijit/
Measurement. You can draw points, lines, and polygons to collect coordinates,
lengths, and areas respectively. You can also change the units of measurement
into metric or English units. When collecting latitude and longitude with points,
it displays them in decimal degrees, as well as degrees-minutes-seconds.

Chapter 11

[317]

Bookmarks
The Bookmarks tool allows you to save locations on the webmap. The bookmarks
widget captures the current map extent and gives it a name. When creating multiple
bookmarks of areas on the map, you can quickly navigate to them by clicking on the
bookmark names. You can also edit the names and delete unwanted bookmarks.
Bookmark data is saved along with other features of the webmap.

Developing against an ArcGIS Online
webmap
If your organization is happy with the webmaps and tools offered by ArcGIS Online,
you could potentially run your public facing GIS from the website and never develop
another tool. Sometimes you need custom functionality. Sometimes you need an
application that makes custom requests from other data sources when you click on a
map. Maybe you need a complicated query page or a query builder to collect results.
Whatever your specialized needs, you can bring the ArcGIS Online webmap to your
custom app.

What does using an AGOL webmap do for your application? It cuts out many of
the map configuration steps. All the tiled, dynamic, and feature layers we would
normally hardcode in the application can now be mashed together in a webmap and
loaded in our app. All the popups and infoTemplate that we had to assign through
code can now be carried over from the we map. Whenever changes to the map
service layers and popups are required, they can be made through ArcGIS Online,
instead of changing the code and hoping that users aren't still running a cached copy
of your configuration script. Configurations can be handled by someone else, giving
you more time to code.

Creating the webmap
In order to bring in the webmap we created earlier, we need to update our app.js
file. In the list of modules in the app.js file's require() method, we need to add a
reference to the esri/arcgis/utils module. This will give us the tools we need to
add the webmap to our application:

require([, "esri/arcgis/utils",],function (, arcgisUtils,) {

});

The Future of ArcGIS Development

[318]

Typically, we would use the arcgisUtils.createMap() method to construct our
new webmap. It requires parameters similar to the esri/map constructor, including a
reference to the HTML element id where the map should go, and an options object.
However, the arcgisUtils.createMap() method also requires an ArcGIS Online
webmap id. You can get this id by opening your webmap in ArcGIS Online to edit.
If you look at the URL, you'll see the search parameter webmap=XXXXXXXXXXXXXXX,
where those X's are replaced by alphanumeric characters. You can copy and paste
the id numbers into your application to create a webmap, like so:

require([, "esri/arcgis/utils",],function (, arcgisUtils,) {
 arcgisUtils.createMap("450d4fb709294359ac8d03a3069e34d3",
 "mapdiv", {});
});

Options for the arcgisUtils.createMap() method include, but are not limited to
the following:

•	 bingMapKey: The unique key string provided in your subscription to
Bing Maps.

•	 editable: A Boolean value that you can use to disable any feature
layer editing.

•	 geometryServiceURL: URL link to ArcGIS Server geometry service.
•	 ignorePopups: A Boolean that will disable all popups if true.
•	 mapOptions: The normal options you would pass to create a normal map.
•	 usePopupManager: A Boolean value that, when true, tells InfoWindow to

retrieve all clicked features that have popup templates. When true, it also
handles the popups visibility of map service sublayers whether the parent
layer is visible or not. If false, popups on sublayers may or may not load
if the parent layer is not turned on, and you will have to manually control
popup visibility for complicated maps.

The arcgisUtils.createMap() method will return a dojo/Deferred promise,
which will fire a success callback using then() once the webmap data has been
downloaded and the map has been created. The callback will return a response
object that contains the following:

•	 map: The esri/map object created
•	 itemInfo: An object containing:

°° item: An object that contains the map title, a snippet to describe it,
and the extent in a nested array form

Chapter 11

[319]

°° itemInfo: A JSON object containing data about the map services,
renderers, popups, bookmarks, and other map data used to create
the web map

°° errors: An array of errors encountered when loading data and
creating the map services

•	 clickEventHandler and clickEventListener: When populated, these
control the map click events that show popups. If you ever need to turn off
popups, you can run the following:
// response object was returned by arcgisUtils.createMap()
response.clickEventHandler.remove();

•	 To restore the popups, run the following line of code (assuming that you've
loaded the dojo/on module:

response.clickEventHandler = dojoOn(map, "click",
 response.clickEventListener);

When creating the webmap, if you set the usePopupManager
parameter to true (the default is false), the clickEventHandler
and clickEventListener parameters will be null. In that
case, popup visibility will be controlled through the map.
setInfoWindowOnClick(boolean) method.

Since we incorporated the ESRI Bootstrap back in Chapter 8, Styling Your Map, we
need to use the ESRI Bootstrap version of the createMap() constructor in the esri/
arcgis/utils module. Since the map may take time to load, we'll move the census
widget loading inside the deferred callback. The code should look as follows:

 /* not used because we're using the boostrapMap version
 var deferred =
 arcgisUtils.createMap("450d4fb709294359ac8d03a3069e34d3", "map",
 {}); */

 var deferred =
 BootstrapMap.createWebMap("450d4fb709294359ac8d03a3069e34d3",
 "map", {});

 deferred.then(function (response) {
 // map and census widget definition moved inside deferred
 callback
 var map = response.map;

The Future of ArcGIS Development

[320]

 var census = new Census({
 map: map,
 mapService:
 "http://sampleserver6.arcgisonline.com/arcgis/rest/services/
 Census/MapServer/"
 }, "census-widget");

 dojoOn(dom.byId("census-btn"), "click", lang.hitch(census,
 census.show));
 });

In our census widget
Now that we have defined many parts of our map in the webmap, we can remove a
lot of the widget code that handled the same information. In the module reference of
our census's define statement, we can remove references to the following modules:

•	 The State, County, Block Group, and Block Point templates
•	 IdentifyTask and IdentifyParameter
•	 InfoTemplates

•	 D3/d3

Remember to delete the module references as well as their corresponding variables.

In the body of our widget, we can remove any references to the identifytask or
map clicking, or infowindow selection events, since that controlled the popups. We
can also remove all the methods that created the charts on our popups. All we're left
with is a widget that populates the drop-down menus for states, counties, and block
groups, to let us see that data.

Don't feel bad about deleting so much code. One of the joys of a developer's life is to
delete lines of code, since they are possible sources of errors.

Accessing webmap in our app
What would we do if we needed something from the ArcGIS Online webmap
configuration? If we want that information, the ArcGIS JavaScript API gives us the
tools to retrieve it. By using the esri/arcgis/utils and esri/request modules,
we can retrieve and work with our web map data.

Chapter 11

[321]

To access our web map configuration data, we need two pieces of information: the
URL of the site hosting the data and the web map ID. The URL of the service hosting
the webmap data can be found in the arcgisUrl property of the esri/arcgis/
utils module. By default, it points to http://www.arcgis.com/sharing/rest/
content/items, but if your webmaps are hosted in a private enterprise network in
the ArcGIS portal, this URL string should be replaced with the appropriate URL for
your portal service.

In our JavaScript code, we can combine the URL hosting the webmap data, along
with the webmap ID, into a URL to access JSON data for our webmap. We can use
the esri/request module to request the data from the URL and use it wherever we
need in our application. A bit of sample code is shown in the following snippet:

require([…, "esri/arcgis/utils", "esri/request", …],
 function (…, arcgisUtils, esriRequest, …) {
 …
 // replace fake webmapid value with real webmap id
 var webmapid = "d2klfnml2kjfklj2nfkjeh2ekrj";
 var url = arcgisUtils.arcgisUrl + "/" + webmapid + "/data";
 esriRequest({
 url: url,
 handleAs: "json",
 content: {f: "json"}
 }).then(function (response) {
 console.log(response);
 // do something with the JSON data.
 });
 …
});

If you look at the JSON results from our webmap, using either the map console or
a JSON viewing plugin for the browser, you can see that the webmap data for our
application includes map service layers, a background basemap, and even details
about the configuration of our popups. There's a lot of potentially useful information
in this response, should we need it.

Interacting with the map through code
In our previous version, we loaded InfoTemplates for each layer to define the
format of the content displayed in the popups. Now that we have all that information
defined through ArcGIS Online, we don't need to make the extra HTTP requests to
load the HTML templates. You can click on the map and the popups will be ready to
be used.

http://www.arcgis.com/sharing/rest/content/items
http://www.arcgis.com/sharing/rest/content/items

The Future of ArcGIS Development

[322]

However, we run into a problem when we try to use our custom drop-down
selectors to bring up the popups. In the older version, we would query the data,
add an appropriate template, and insert it in the InfoWindow. Now, a user click
pulls the appropriate data for us. But how can we click on the map without clicking
on the map?

Using an undocumented trick, we can trigger a map-click event with our data. We
could zoom to the feature extent on the map and trigger the map click event when
it's done. This trick has been successfully deployed on a number of websites that use
ArcGIS Online webmaps.

Look for the _updateInfoWindowFromQuery() method in the Census.js widget.
It currently contains steps that set the map extent and fill in the contents of the
map's InfoWindow. We'll keep the extent setting, but remove any references to
map.infoWindow. Instead, inside the asynchronous callback function called after
the map has changed extents, we'll add code to call the map.onClick() method to
trigger the click event:

_updateInfoWindowFromQuery: function (results) {
 var resultExtent =
 graphicsUtils.graphicsExtent(results.features);
 this.map.setExtent(resultExtent).then(lang.hitch(this, function ()
 {
 // do something
 this.map.onClick();
 }));
},

The map.onClick() function requires an object with three properties: a graphic,
a mapPoint, and a screenPoint that contains the coordinates of the point on the
screen. We can use the first of our query results for the graphic that has been clicked.
For a quick and dirty click location, we can use the center of the current extent, which
we get from resultExtent.getCenter(). As for the corresponding screenPoint
for our map point, the map has methods for converting geographic points to screen
points and the other way around. We'll use the map.toScreen() method with the
center point to get its coordinates on the screen. We'll then feed the results into the
map.onClick() method, and test the application. The function should look like
the following:

_updateInfoWindowFromQuery: function (results) {
 var resultExtent =
 graphicsUtils.graphicsExtent(results.features);

Chapter 11

[323]

 this.map.setExtent(resultExtent).then(lang.hitch(this, function
 () {
 var center = resultExtent.getCenter();
 var centerScreen = this.map.toScreen(center);
 this.map.onClick({
 graphic: results.features[0],
 mapPoint: center,
 screenPoint: centerScreen
 });
 }));
},

We can test the code by loading our application and clicking the Census button.
It should show our drop-down modals for the state, county, and block group data.
When we select a state like California, it should query, zoom, and the popup should
appear momentarily with the popups we configured earlier. Now, we have a fully
functioning census application, while letting ArcGIS Online handle most of the work:

The Future of ArcGIS Development

[324]

Summary
In this chapter, we have looked at the newest tools provided by ESRI for the ArcGIS
platform: ArcGIS Online and Web AppBuilder. We have created a webmap using
ArcGIS Online, adding layers, formatting them, and creating popups. We added the
webmap to our own application.

Throughout this book, we've dived deep into the ArcGIS JavaScript API. We
started by creating a simple webmap application, complete with click events and
geographical data. You have learned how to use to tools provided by the API and
the Dojo framework to build custom controls and modules that you could reuse from
project to project. You then experimented with adding other JavaScript libraries, so
that developers not so familiar with dojo could contribute. You learned how to edit
geographical data through web applications. You also learned how to style your map
applications for desktop and mobile use. You even learned how to unit test your
code. Finally, you learned how ESRI is simplifying webmap development through
ArcGIS Online and Web AppBuilder, bringing applications to the public faster. You
have definitely come a long way.

Where do you go from here? There are a number of great books, blogs,
and other resources. You can find out about current trends in ArcGIS
development through ESRI's forums at http://geonet.esri.com,
or find support for the latest ArcGIS APIs at http://developers.
arcgis.com. For blogs, you can check out Dave Bouwman's blog at
http://blog.davebouwman.com, or Rene Rubalcava at http://
odoe.net. For books, you may want learn about how to manage
ArcGIS Server to serve your web maps with Managing ArcGIS for
Server by Hussein Nasser. You may also want to check out ArcGIS Web
Development by Rene Rubalcava, Developing Web and Mobile ArcGIS
Server Applications with JavaScript by Eric Pimpler, or Developing Mobile
Web Applications by Matthew Sheehan.

http://geonet.esri.com
http://developers.arcgis.com
http://developers.arcgis.com
http://blog.davebouwman.com
http://odoe.net
http://odoe.net

[325]

Index
Symbols
_FocusMixin module

adding 71
_Mixins

working with 70
_OnDijitClickMixin module

adding 71
_TemplatedMixin module

adding 70
_WidgetBase module

about 69
buildRendering 69
constructor 69
Custom setters are called 69
destroy 69
methods 69, 70
parameters mixed into widget instance 69
postCreate 69
postMixinProperties 69
startup 69

A
AccordionContainer 228
AccordionPane 229
all-in-one Editor dijit 59
Angular

MV* 213
overall results 216

AngularJS 213
Angular vocabulary

about 214
app controller 214

app directive 214
app service 214

API features
defining 2

app
about 284, 305
Census dijit modal, creating 235-239
ESRI-Bootstrap, adding 231, 232
HTML, bootstrapping 232
libraries, loading locally 293, 294
Node.js, setting up 292, 293
restyling 231, 234
results, checking 298
testing files, adding 284
tests, writing 294-297

Application Programming
Interface (API) 29

Aptana Studio 3
reference 3

ArcGIS API for JavaScript Web Optimizer
reference 305

ArcGIS compact build
about 245
modules 245

ArcGISDynamicMapServiceLayer 38
ArcGIS JavaScript API

about 1, 151
Deferreds 20
defining 17
events 17
promises 20
tasks 19
URL 1

[326]

ArcGIS JavaScript API community 3
ArcGIS JavaScript API documentation

layout 30
reference 246
searching 30

ArcGIS Online 302
ArcGIS Online webmap

about 316
bookmarks 317
directions 316
measurements 316
printing 316
sharing 316
uses 316

ArcGIS Portal 303
ArcGIS REST API

reference 93
ArcGIS Server proxy

download link 28
ArcGISTiledMapServiceLayer 39
arcgisUtils.createMap() method

options 318
Asynchronous Module Definition (AMD)

about 12
advantages 12

attachment editor 131
attribute inspector

about 127, 258
parameters 127, 128

AttributeInspector 59
Autoresize function 33

B
Backbone

components 193
Backbone, adding to app

about 197, 198
collections, defining 199
events, wiring 202
initial value of stateView, populating 204
models, defining 198
templates, creating 201, 202
views, defining 199-201

Backbone.js
about 192, 193
overall results 216

basemaps 58
basemap, webmap

changing 307
Behavior-Driven Development (BDD) 272
body, HTML document

defining 9
HTML body, framing 9
script, adding at end 10, 11
style, adding 9, 10

Bookmarks dijit 58
Bootstrap 230
BorderContainer

about 75, 228
regions 75

Bower
about 287
setting up 287, 288

Brackets
URL 3

C
caching 184
Cascading Style Sheet. See CSS
census map service, webmap

adding 307
application data source 310
charts, adding 313-315
ESRI layers, browsing for 308
layers, adding from file 309
layers, adding from web 309
layers, searching for 308
map notes, adding 309
popups, creating 312, 313
styling 310, 311

centroids
Wikipedia page 43

chaining 182
chart actions and effects

about 157
Highlight 157

[327]

Magnify 157
MouseIndicator 158
MouseZoomAndPan 158
MoveSlice 158
Shake 158
Tooltip 158
TouchIndicator 158
TouchZoomAndPan 158

chart object 154, 155
chart style

about 156
bars 156
columns 156
line chart 156
miscellaneous 156
stacked lines 156

chart theme 156
Class Break Renderer 48
code testing

about 271
Behavior-Driven Development (BDD),

using 272
Test-Driven Development (TDD),

using 271, 272
test statements 272, 273

colors 111
common events

click 37
extent-change 37
layer-add 37
layers-add-result 37
load 37
mouse-over 37
update-end 37
update-start 37

common JSON objects
about 107
geometries 107
symbols 111

common methods
centerAndZoom() 36
centerAt() 36
setExtent() 36
setLevel() 36

setScale() 36
setZoom() 36

common tasks
about 52
FindTask 56
GeometryService 52, 53
IdentifyTask 55
Locator 56
QueryTask 54

components, Backbone
about 193
Collection 195
events, handling 196
Model 193, 194
router, implementing 196
View 194, 195

constructor options
about 33
Autoresize function 33
basemap 33
center parameter 34
extent parameter 34
levels of details (LODs) 34
scale parameter 34
zoom parameter 34

Containers
about 228
AccordionContainer 228
BorderContainer 228
TabContainer 229

content delivery network (CDN) 183, 305
ContentPane 76, 229
Cross Origin Resource Sharing (CORS) 27
CSS

about 218
equal selector specificity 220
organizing 222
selector specificity 218, 219
working 218
working styles 220

CSS, organizing
classes, assigning 222
from lowest up 222

[328]

group by module 222
media queries 223

CSVLayer 41
custom widget

app.js 91, 92
application, reorganizing 73
application, styling 80-82
app, setting up 84
coding 85
creating 73
custom package, adding 83
dijit constructors, working with 87
dijit template 86, 87
dojo/text module, adding 85
file structure, for application 74
layout, handling 75
old code, reusing 88, 89
templates, loading 90, 91

D
D3.js

about 167
adding, to configuration 169
adding, with Dojo's AMD 167
another library, loading outside AMD

module 168
another library, loading within AMD

module 168
reference 152
using, in application 169

D3.js, in application
about 169
data, processing 170
popup, preparing 170
results, displaying 171

data
age data 163
ethnic data 162
gender data 163
processing 161

Deferreds 20
Device mode 227
dijit package 63
dijits

about 57

basemaps 58
Bookmarks dijit 58
editing dijits 59
Measurement dijit 57
Popups and InfoWindows 58
Print dijit 57

documentation layout,
ArcGIS JavaScript API

about 30
CSS classes 31
data- attributes 31
events 32
methods 31
object constructor 30
properties 31

Dojo Charts
data, processing 161
modules, loading 159
popup, preparing 160
results, displaying 164
using, in application 159

dojoConfig packages 64, 65
Dojo framework

about 62
history 62
URL 2

Dojo layout
about 227
Containers 228
panes 229

dojo/on library
URL 32

dojo package 63
dojox charting

about 152
chart actions and effects 157
chart, creating in JavaScript 153
chart object 154, 155
chart style 156
chart theme 156

dojox mobile
about 246
views 247

dojox package
about 64

[329]

dijit/Calendar 63
dijit/form 63
dijit/layout 63
dijit/Tree 63

draw toolbar 50
dropdowns, jQuery

filling 185, 186
helper functions 187, 188
QueryTask, adding 186, 187

dynamic layers 16

E
editing dijits

about 59
all-in-one Editor dijit 59
AttributeInspector 59
TemplatePicker 59

editing services
securing 133
user input, restricting 133

editing tools
about 124
attachment editor 131
attribute inspector 127-129
editor dijit 131
edit toolbar 125, 126
snapping manager 132, 133
template picker 130

editor widgets, mobile application
attribute inspector 258-260
template picker 254-256
working with 254

edit toolbar
about 51, 125
options 125, 126

Emacs
URL 3

end-to-end testing 271
envelopes 110
ESRI-Bootstrap 230
esri/Color module 45
ESRI GeoNet

URL 3

ESRI GitHub page
URL 3

ESRI Leaflet 246
Evented module

about 68
working with 68

event handling, jQuery
about 189
block groups 191
counties 190, 191
state, handling 189, 190

event listener 18
event system 72
Extensible Markup Language (XML) 96
extent 44

F
feature layer 123
FeatureLayers

about 40
MODE_AUTO 41
MODE_ONDEMAND 41
MODE_SELECTION 41
MODE_SNAPSHOT 41

feature service
about 122, 123
on demand mode 124
selection mode 124
snapshot mode 123

feature services
about 103
properties 103

feature templates 123
FindTask 56
Firebug 226
functional testing 270

G
geocoding 56
geojson 246
geometries, JSON objects

envelopes 110
multipoints 109

[330]

points 108
polygons 110
polylines 109
spatial reference 107

GeometryService 52
geometry objects

about 43
extent 44
multipoint 44
point 43
polygon 43
polyline 43
spatial reference 44

Geometry Service Functions
AreasAndLengths 52
AutoComplete 52
Buffer 52
ConvexHull 52
Cut 53
Difference 53
Distance 53
Generalize 53
Intersect 53
Label Points 53
Lengths 53
Offset 53
Project 53
Reshape 53
Simplify 53
TrimExtend 53
Union 53

GIS StackExchange
URL 3

graphic object
about 42
attribute argument 42
geometry argument 42
infoTemplate argument 42
symbol argument 42

graphics 42
GraphicsLayers 40
Gross Domestic Product (GDP) 48
Grunt 286
Grunt.js file 286, 287

H
head, HTML document

ArcGIS JavaScript API script 8
CSS style sheets 6
Dojo Config script 8
starting 5
title and meta tags 6

HTML, bootstrapping
header, replacing with navbar 232, 233
map, rearranging 233

HTML document
setting up 4

I
i18n (internationalization) 304
IdentifyTask 55
identity manager 134
InfoTemplates 49
InfoWindow 116-120
instance properties 68
Intern

about 273, 274
special requisites, for ArcGIS

JavaScript API 275
testing environment, setting up 274
test lifecycle 276, 277
tests, writing for 275
unit test, writing for 275, 276
URL 273

Intern.js configuration file 289-292

J
Jasmine

about 277
and ArcGIS JavaScript API 280-282
and ArcGIS JavaScript API, use case 284
red-green testing 279, 280
specs 282, 283
tests, writing for 277

JavaScript libraries
compatibility, with other libraries 178

[331]

JavaScript Object Notation. See JSON
jQuery

about 181
overall results 215, 216
working 181, 182

jQuery, adding to app
about 182-185
dropdowns, filling 185, 186
events, handling 189
states, filling in 192

JSON
about 96, 97
URL 96
working with 95-97

K
Kate editor

URL 3
Keyhole Markup Language (KML) 41
KMLLayer 41
Knockout

MVVM 205, 206
overall results 216

Knockout, in app
about 206, 207
custom binding handlers, adding 208-211
View, defining 211
ViewModel, applying 212
ViewModel, defining 207

Knockout.js 204

L
layer level

about 104
domains 105, 106
fields 104

layers
about 16, 38
common ArcGIS Server layers 38
defining 16
FeatureLayers 40
GraphicsLayers 40

layer types
about 41
CSVLayer 41
KMLLayer 41
StreamLayer 42
WMSLayer 41
WMTSLayer 41

LayoutContainer 228
layout, custom widget

about 75
application layout, modifying 76-79
ContentPane, inserting 76
page, framing with BorderContainer 75

Leaflet.js library
about 246
URL 246

levels of details (LODs) 34
libraries

using 12, 13
Locator 56

M
map, creating

about 32
constructor options 33
events 37
methods 36
properties 35

map layers 104
map object

defining 14, 15
mapping application

about 134
attribute inspector 142-145
data entry, limiting 149, 150
file setup 135
front map 135, 136
map layers, adding 138-140
map, loading 137
proxy, using 140
securing 146-148
template picker 141

map server 95

[332]

map service
about 100, 101
layers 101, 102

Measurement dijit 57
methods, map object

about 36
layers, adding 36
layers, removing 36
layers, retrieving 36
position, manipulating on map 36
settings, updating 37

methods, QueryTask
about 54
execute() 54
executeForCount() 54
executeForExtent() 54
executeForIds() 54

mobile
features 242
limitations 243

mobile application
attachment editor, adding 264-266
creating 249
custom form, creating 261-263
editor widgets, working with 254
end result 267
issues 260, 261
JavaScript, modifying 251, 252
layout, changing 249, 250
LocateButton, fixing 253
map, working with 252
rebuilding 261

mobile, features
about 242
instant access to app 242
instant access to user 243
phone sensors 242

mobile, limitation
about 243
battery life 244
fingertip accuracy 244
screen sizes 243

mobile web development
about 241
application 249

dojox mobile 246
ESRI Leaflet 246
gestures 248
mobile, embracing 241
mobile, features 242
touch, working with 247

Model View Controller (MVC) 193
Model-View-ViewModel (MVVM) 204
Model View Whatever (MVW or MV*) 213
multipart polygons 110
multipoints 109

N
National Oceanic and Atmospheric

Administration (NOAA) 41
navigation toolbar 50
Node.js 305
Node Package Manager (NPM) 284
NotePad++

URL 3

O
object-oriented (OO) languages 66
on demand mode, feature service 124
Open Geospatial Consortium (OGC) 41

P
package.json file 285
panes

about 229
AccordionPane 229
ContentPane 229

password protected services
about 134
identity manager 134

picture fill symbol 113
PictureFillSymbol module 46
picture marker symbol 113
PictureMarkerSymbol module 46
PJSON 97
points 108
polygon geometry 43
polygons 110

[333]

polyline geometry 43
polylines 109
popular libraries 178-180
popup

HTML template, updating 161
preparing 160

Popups and InfoWindows 58
Print dijit 57
properties, map object

about 35
layerIds 35
loaded 35
spatialReference 35

properties, feature services
disconnected editing 103
geometry updates 103
sync enabled 103
versioned data 103
Z defaults, enabling 103

proxies
defining 27, 28

proxy service
reference link, for setup 140

Q
Query parameters

geometry (esri/geometry) 54
orderByFields (array of strings) 55
outFields (array of strings) 54
outSpatialReference

(esri/SpatialReference) 55
returnGeometry (Boolean) 54
where (string) 54

R
related tables 106
renderers

about 44, 47
Class Break Renderer 48
SimpleRenderer 47
Unique Value Renderer 48

Representational State Transfer (REST) 93
Responsive Design View 227
RESTful

requisites 94

results
displaying 20
InfoTemplate object 22-27
infoWindow 21

results, displaying
about 164
age graph 166, 174
ethnic graph 164, 171, 172
gender graph 165, 173

reverse geocoding 56
Routing Tasks 57

S
Scalable Vector Graphics (SVG) 152
selection mode, feature service 124
service levels 98, 99
simple fill symbol 112
simple line symbol 111
simple marker symbol 112
SimpleRenderer 47
simple symbols

about 45
SimpleFillSymbol 45
SimpleLineSymbol 45
SimpleMarkerSymbol 45

slippy maps
generating 2

snapping manager 132, 133
snapshot mode, feature service 123
spatial reference 44
static properties 68
StreamLayer 42
Sublime Text

URL 3
symbols

about 44, 111
color 111
picture fill symbol 113
picture marker symbol 113
simple fill symbol 112
simple line symbol 111
simple marker symbol 112
simple symbols 45
text symbol 114
uses 115, 116

[334]

T
TabContainer 229
task objects 19
tasks

about 51
common tasks 52
parameters 52
results 52
Routing Tasks 57
tasks, requiring server extensions 56

template picker 130, 254
TemplatePicker 59
Test-Driven Development (TDD) 271, 272
testing 269
testing files

adding 284
bower.json file 287, 288
Grunt.js file 286, 287
Intern.js configuration file 289-292
package.json file 285

testing methodologies
about 269
end-to-end testing 271
functional testing 270
unit testing 270

test lifecycle, with Intern
setup 276
teardown 276

test statements
about 272, 273
assert pattern 273
expect pattern 273
should pattern 272

Textmate
URL 3

text symbol 114
tiled layers 16
token

about 134
reference link 134

toolbars
about 49
draw toolbar 50

edit toolbar 51
navigation toolbar 50

touch and gestures, handling
reference 248

troubleshooting
about 226
responsive resizers 227

U
Unique Value Renderer 48
unit testing 270
user interface (UI) 57

V
Value Added Tax (VAT) 270
Vector Markup Language (VML) 152
vim

URL 3
Visual Studio Code

URL 3

W
Web AppBuilder

about 303, 304
Developer Edition 304
reference 305
reference, for Developer Edition 305

webmap
about 4
ArcGIS Online webmap 316
assignment 4
basemap, changing 307
census map service, adding 307
creating 306

webmap, developing against ArcGIS
Online webmap

about 317
in census widget 320
map, interacting with 321-323
webmap, accessing in app 320, 321
webmap, creating 317-319

[335]

web map editing
requisites 122
use cases 122

web mapping app
creating, AngularJS 215

Web Map Service (WMS) 38
Web Map Tiled Services (WMTS) 41
WebSockets

URL 42
Webstorm

URL 3
well-known ID (WKID) 44, 107
well-known text (WKT) 44, 107
What You See Is What You Get

(WYSIWYG) 312
widget

classes, dealing with 67, 68
defining 65
inheritance, dealing with 67, 68
modules, declaring 66
parent class 66

WMSLayer 41
WMTSLayer 41

working styles
CSS, organizing 222
fixed-width map 223
map, floating to side 224
map of known width and height,

centering 225
map of unknown width and height,

centering 226
map, positioning 223
map, positioning to top and center 224
map, stretching to fullscreen 224
normalize.css style 221
page, covering with map 225
responsive design 221
styling dont's 220

X
XMLHttpRequest (XHR) 76

Y
Y2K society 152

Thank you for buying
Mastering ArcGIS Server
Development with JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

ArcGIS for Desktop Cookbook
ISBN: 978-1-78355-950-3 Paperback: 372 pages

Over 60 hands-on recipes to help you become a more
productive ArcGIS Desktop user

1.	 Learn how to use ArcGIS Desktop to create,
edit, manage, display, analyze, and share
geographic data.

2.	 Use common geo-processing tools to select
and extract features.

3.	 A guide with example-based recipes to help
you get a better and clearer understanding
of ArcGIS Desktop.

Learning ArcGIS Geodatabases
ISBN: 978-1-78398-864-8 Paperback: 158 pages

An all-in-one start up kit to author, manage, and
administer ArcGIS geodatabases

1.	 Covers the basics of building Geodatabases,
using ArcGIS, from scratch.

2.	 Model the Geodatabase to an optimal state
using the various optimization techniques.

3.	 Packed with real-world examples showcasing
ArcGIS Geodatabase to build mapping
applications in web, desktop, and mobile.

Please check www.PacktPub.com for information on our titles

Building Web and Mobile
ArcGIS Server Applications
with JavaScript
ISBN: 978-1-84969-796-5 Paperback: 274 pages

Master the ArcGIS API for JavaScript, and build
exciting, custom web and mobile GIS applications
with the ArcGIS Server

1.	 Develop ArcGIS Server applications with
JavaScript, both for traditional web browsers
as well as the mobile platform.

2.	 Acquire in-demand GIS skills sought by
many employers.

3.	 Step-by-step instructions, examples, and
hands-on practice designed to help you learn
the key features and design considerations for
building custom ArcGIS Server applications.

Programming ArcGIS 10.1 with
Python Cookbook
ISBN: 978-1-84969-444-5 Paperback: 304 pages

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems for
ArcGIS with Python

1.	 Learn how to create geoprocessing scripts
with ArcPy.

2.	 Customize and modify ArcGIS with Python.

3.	 Create time-saving tools and scripts for ArcGIS.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Your First Mapping Application

	Features of the API
	The ArcGIS JavaScript API community

	Our first Web Map
	Our assignment

	Setting up the HTML document
	Starting from the head
	Meta tags and title tags
	Cascading style sheets
	The Dojo configuration script
	The ArcGIS JavaScript API script

	Moving from the head to the body
	Framing the HTML body
	Adding a little style
	Adding a script at the end

	Asynchronous Module Definition
	Loading required modules
	The map object
	The layers
	Adding some action
	Events
	Tasks
	Deferreds and promises

	Showing the results
	The Map's infoWindow
	The InfoTemplate object

	A note on proxies
	Summary

	Chapter 2: Digging into the API

	Finding the ArcGIS JavaScript API documentation
	The documentation layout

	Object constructor
	CSS classes and data- attributes
	Properties
	Methods
	Events

	Drawing a map
	Constructor options
	Autoresize
	Basemap
	Explaining the center, extent, zoom, and scale
	LODs

	Properties
	loaded
	layerIds
	spatialReference

	Methods
	Adding, removing, and retrieving layers
	Moving around the map
	Updating settings

	Events

	Layers
	Common ArcGIS Server layers
	ArcGISDynamicMapServiceLayer
	ArcGISTiledMapServiceLayer

	GraphicsLayers and FeatureLayers
	GraphicsLayers
	FeatureLayers

	Other layer types

	Graphics
	Introducing geometry objects
	Point
	Polyline
	Polygon
	Extent
	Multipoint
	Geometry spatial reference

	Symbols and renderers
	Simple symbols
	SimpleLineSymbol
	SimpleMarkerSymbol
	SimpleFillSymbol

	esri/Color
	Picture symbols
	Renderers
	SimpleRenderer
	Unique Value Renderer
	Class Break Renderer

	InfoTemplates
	Toolbars
	The navigation toolbar
	The draw toolbar
	The edit toolbar

	Tasks
	Tasks, parameters, and results
	Common tasks
	GeometryService
	QueryTask
	IdentifyTask
	FindTask
	Locator

	Tasks requiring server extensions
	Routing

	Dijits
	Measurement
	Print
	Bookmarks
	Basemaps
	Popups and InfoWindows
	Editing
	AttributeInspector
	TemplatePicker
	An all-in-one Editor

	Summary

	Chapter 3: The Dojo Widget System

	A brief history of the Dojo framework
	Introducing dojo, dijit, and dojox
	The dojo package
	The dijit package
	The dojox package

	The dojoConfig packages
	Defining your widget
	Declaring modules
	Class Inheritance through Dojo
	Dealing with classes and inheritance

	Working with Evented modules
	An overview of the _WidgetBase module
	Working with other _Mixins
	Adding _TemplatedMixin
	Adding _OnDijitClickMixin
	Adding _FocusMixin

	The event system
	Creating our own widget
	Picking up where we left off…
	The file structure for our application

	Defining the layout with Dojo
	Framing the page with BorderContainer

	Inserting ContentPane

	Modifying the layout of our application

	Styling our application
	Adding our custom package
	Setting up our app
	Coding our widget
	Adding some dojo/text!
	Our dijit template
	Working with the dijit constructors
	Reusing our old code
	Loading more templates
	Back to our app.js

	Summary

	Chapter 4: Finding Peace in REST

	Looking at a map server
	Working with JSON
	JSON and PJSON formatting

	Service levels
	Map services
	Map service layers

	Feature services
	Layer level
	Fields
	Domains

	Related tables
	Common JSON objects
	Geometries
	Spatial reference
	Points
	Multipoints
	Polylines
	Polygons
	Envelopes

	Symbols
	Color
	Simple line symbol
	Simple marker symbol
	Simple fill symbols
	Picture marker symbol
	Picture fill symbol
	Text symbol
	Uses

	Back to our application
	How about that InfoWindow

	Summary

	Chapter 5: Editing Map Data

	The use cases for webmap editing

	Map editing requirements
	Feature services
	Feature templates

	Feature layer
	Feature service modes
	Snapshot mode
	On demand mode
	Selection mode

	Editing tools
	Edit toolbar
	Attribute inspector
	Template picker
	Attachment editor
	Editor dijit
	Snapping manager

	Securing editing services
	Restricting user input
	Password protected services
	Identity manager

	A new mapping application
	The file setup

	The front page
	Loading the map
	Adding the map layers
	Using the proxy
	Finding the user's location

	The template picker
	The attribute inspector
	Securing the application
	Limiting data entry

	Summary

	Chapter 6
: Charting Your Progress
	Mixing graphs into our maps
	Our story continues
	Using dojox charting
	Creating a chart in JavaScript
	The chart object
	The chart style
	The chart theme
	Chart actions and effects

	Using Dojox Charts in popups
	Using Dojo Charts in our application
	Loading the modules
	Preparing the popup
	Updating the HTML template

	Processing the data
	Parsing the ethnic data
	Parsing the gender data
	Parsing the age data

	Showing the results
	Ethnic graph
	Gender graph
	Age graph

	Introducing D3.js
	Adding the D3.js library with Dojo's AMD
	Loading another library outside an AMD module
	Loading another library within an AMD module

	Using D3.js in our application
	Adding D3.js to the configuration
	Preparing the popup
	Processing our data
	Displaying the results
	Displaying the ethnic graph
	Displaying the gender graph
	Displaying the age graph

	Summary

	Chapter 7: Plays Well with Others

	Compatibility with other libraries and frameworks
	Popular libraries to play with
	Our story continues

	An overview of jQuery
	How jQuery works

	Adding jQuery to your app

	Filling in our dropdowns
	Adding the QueryTask
	Other helper functions

	Handling events
	Handling the state
	How the counties differ
	Finally, the block groups

	Filling in the states

	An overview of Backbone.js
	Components of Backbone
	The Model
	The View
	The Collection
	Implementing a router
	Handling events

	Putting some Backbone in your app
	Defining the models
	Defining the collections
	Defining the views
	Creating templates

	Wiring events
	Getting the Backbone to dance

	An overview of Knockout.js
	Knockout and MVVM

	Using Knockout in our app
	Defining the ViewModel
	Adding custom binding handlers
	Defining the View
	Applying the ViewModel

	A brief overview of AngularJS
	Angular and MV*
	Angular vocabulary
	The app controller
	The app service
	The app directive

	Making a web mapping app more Angular
	Overall results with other frameworks
	jQuery
	Backbone.js
	Knockout and Angular

	Summary

	Chapter 8: Styling Your Map

	The inner workings of CSS
	Selector specificity
	Equal selector specificity

	Styling tips and tricks
	Styling don'ts
	Responsive design
	Normalize.css
	Organizing your CSS
	Organizing by selector specificity
	Group by module
	A class for everything
	Media queries

	Positioning your map
	The fixed-width map
	Stretching the map to fullscreen

	Floating the map to the side
	Positioning the map top and center
	Covering most of the page with the map
	Centering a map of known width and height
	Centering a map of unknown width and height

	Troubleshooting
	Responsive resizers

	Dojo layout
	Containers
	LayoutContainer
	BorderContainer
	AccordionContainer
	TabContainer

	Panes
	ContentPane
	AccordionPane

	Bootstrap
	ESRI-Bootstrap
	Restyling our app
	Adding ESRI-Bootstrap to our app
	Bootstrapping our HTML
	Replacing the header with a navbar
	Rearranging the map

	Restyling our app
	Making our Census dijit modal

	Summary

	Chapter 9
: Mobile Development
	Embracing mobile
	Mobile is different
	The good
	Access to phone sensors
	Instant access to the app
	Instant access to the user

	The bad
	So many screen sizes
	Fingertip accuracy
	Battery life
	More devices

	The ArcGIS compact build
	Modules included in the compact build
	What's not included
	What does this mean to you?

	ESRI Leaflet
	Dojox mobile
	Dojox mobile views

	Working with touch
	Gestures

	Our application
	Changing the layout
	Modifying the JavaScript

	Working with the map on mobile
	Fixing the LocateButton

	Working with the editor widgets
	Template picker
	Attribute inspector

	Trouble in the app
	Rebuilding the attribute inspector
	Creating the form
	The attachment editor

	The end result

	Summary

	Chapter 10: Testing

	Testing through code
	Unit testing
	Functional testing
	End-to-end testing

	Testing as you code
	Test-Driven Development
	Behavior-Driven Development
	Test statements

	Intern testing framework
	Setting up your testing environment
	Special requirements for the ArcGIS JavaScript API

	Writing tests for Intern
	Unit testing with Intern
	Test lifecycle with Intern

	Jasmine testing framework
	Writing tests for Jasmine
	Writing suites, specs, and tests
	Setup and teardown
	Ignoring tests

	Red-light green-light
	Jasmine and the ArcGIS JavaScript API
	In the specs

	Use case for Jasmine and the ArcGIS JavaScript API

	Our application
	Adding testing files
	The package.json file
	The Grunt setup

	Setting up Bower
	Intern.js configuration

	If you haven't installed Node.js
	Loading all the libraries locally
	Writing our tests
	Checking the results

	Summary

	Chapter 11: The Future of ArcGIS Development

	ArcGIS Online
	ArcGIS Portal

	Web AppBuilder
	Developer Edition

	More Node.js
	Our application
	Creating a webmap
	Changing the basemap
	Adding the census map service
	Searching for layers
	Browsing for ESRI layers
	Adding layers from the web
	Adding layer from a file
	Adding map notes
	Our application data source
	Styling
	Creating popups
	Adding charts

	Uses for an ArcGIS Online webmap
	Sharing
	Printing
	Directions
	Measurements
	Bookmarks

	Developing against an ArcGIS Online webmap
	Creating the webmap
	In our census widget
	Accessing webmap in our app
	Interacting with the map through code

	Summary

	Index

