

Online GIS and Spatial Metadata

Online GIS and Spatial
Metadata

David Green & Terry Bossomaier

London and New York

First published 2002 by Taylor & Francis
11 New Fetter Lane, London EC4P 4EE

Simultaneously published in the USA and Canada
by Taylor & Francis Inc,
29 West 35th Street, New York, NY 10001

Taylor & Francis is an imprint of the Taylor & Francis Group

This edition published in the Taylor & Francis e-Library, 2004.

© 2002 David Green & Terry Bossomaier

All rights reserved. No part of this book may be reprinted or reproduced or
utilised in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying and recording, or in
any information storage or retrieval system, without permission in writing
from the publishers.

Every effort has been made to ensure that the advice and information in this
book is true and accurate at the time of going to press. However neither the
publisher nor the authors can accept any legal responsibility or liability for any
errors or omissions that may be made. In the case of drug
administration, any medical procedure or the use of technical equipment
mentioned within this book, you are strongly advised to consult the
manufacturer’s guidelines.

Publisher’s Note
This book has been prepared from camera-ready copy provided by the
authors.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Bossomaier, Terry R.J. (Terry Richard John)

Online GIS and spatial metadata/Terry Bossomaier & David Green.
p. cm.

Includes bibliographical references (p.).
1. Geographic information systems. 2. World Wide Web. 3. Metadata.
I. Title: Online geographic information systems and spatial metadata.
II. Green, David, 1954 Aug. 9– III. Title.

G70.212 .B69 2001 2001042290
910’.285––dc21

ISBN 0-203-30605-8 Master e-book ISBN

ISBN 0-203-34382-4 (Adobe eReader Format)
ISBN 0-748-40954-8 (Print Edition)

Contents

PREFACE vii
ACKNOWLEDGEMENTS ix

CHAPTER 1. Perspectives on global data 1
1.1 Geographic Information Systems
1.2 A brief primer on the nature of GIS
1.3 The rise of the Internet
1.4 Advantages of distributed information systems
1.5 Examples of distributed information
1.6 Overview of this book

CHAPTER 2. GIS and the Internet 13
2.1 The advantages of online GIS
2.2 Issues arising in the new medium
2.3 Some examples of online GIS
2.4 Large-scale spatial data collection projects
2.5 Differences between stand-alone and online GIS
2.6 Options for implementing online GIS

CHAPTER 3. Server-side GIS operations 27
3.1 Web servers
3.2 Server processing
3.3 Online map building
3.4 The use of high-level scripting languages
3.5 Implementing geographic queries
3.6 Concluding remarks

CHAPTER 4. Client-side GIS operations 49
4.1 Introduction
4.2 Image maps
4.3 Use of Javascript in client side operations
4.4 The use of Java applets
4.5 Examples
4.6 Conclusion

CHAPTER 5. Introduction to markup 71
5.1 Markup languages
5.2 XML: structural ideas
5.3 The Document Type Definition
5.4 XML namespaces
5.5 XML schema
5.6 XQL: the XML query language
5.7 Where to find DTDs and other specifications
5.8 The future
5.9 Further reading

Contentsvi

CHAPTER 6. Information networks 91
6.1 What is an information network?
6.2 What can information networks do?
6.3 The organisation of information networks
6.4 Issues associated with information networks
6.5 Information networks in practice

CHAPTER 7. Distributed objects and OpenGIS 109
7.1 Introduction
7.2 The standards organisations
7.3 Online objects and their metadata: CORBA
7.4 The geographic markup language

CHAPTER 8. Metadata on the Web 133
8.1 Introduction
8.2 The Dublin Core
8.3 PICS: platform for Internet content selection
8.4 The Resource Description Framework

CHAPTER 9. Metadata standards 151
9.1 Australasian standards
9.2 Metadata in the USA
9.3 The situation in Europe

CHAPTER 10. Data warehouses 167
10.1 What is a data warehouse?
10.2 Geographic data warehouses
10.3 The structure of a data warehouse
10.4 Issues in building data warehouses
10.5 Organisation and operation
10.6 Data mining
10.7 Examples
10.8 Standards for online GIS warehouses
10.9 The future of geographic data warehouses

CHAPTER 11. New technologies for spatial information 189
11.1 Visions of a global GIS
11.2 Intelligent systems
11.3 Mobile computing
11.4 From online GIS to virtual worlds

GLOSSARY 203

BIBLIOGRAPHY 211

INDEX 219

Preface

This book arises out of two areas of interest that we have shared over many
years. One is the environmental informatics, and the many questions,
technological and practical, involved in collating, interpreting and
disseminating environmental information, which is essentially geographic in
nature. The other is our involvement with Web technology, with its potential
for providing a standard interface for many kinds of information, and for
seamlessly integrating information resources on a scale never seen before.

A major part of the above research has included experimentation with
methodologies for online GIS and for automating distributed information
systems. Many of the examples presented herein are derived from that work.

Despite the evident potential for online GIS, for many years it remained a
curiosity rather than a core technology. The stimulus for writing this book
now was a conference that we organised in 2000 on the topic. During the
course of that meeting it became clear that interest in this field was finally
beginning to pick up. The time seemed ripe to provide an overview of the field.

In this book we have tried to achieve several goals. One is to provide an
overview of the field that goes beyond the superficial. We aim to provide a
starting point for professionals who are trying to learn about the technology,
or who need to set up and run their own online services. We expect that
readers will include both GIS professionals who wish to learn more about the
issues raised by the Web, and Web professionals who wish to learn about
what’s involved in running GIS in an online environment.

This is not a text about GIS per se. There are many other excellent books
that already cover the basic theory and practice of GIS more than adequately.
However, for programmers and others new to geographic information, we do
provide a brief primer on the basics.

Conversely, for GIS people new to Web technology, we have likewise tried
to provide an introduction to the working of HTTP and other matters.
Although we delve into deeply technical matters, we have nevertheless tried
to make the account readable. The technical details are mainly to show readers
examples of real scripts, markup and other elements that make the technology
work. We have tried to avoid turning the book into a technical manual. We
would hope that our accounts of the various topics is clear and lucid enough
to help non-technical readers understand all the issues. We encourage anyone
who finds source code daunting to simply skip over the scripts.

Another goal of this book is to try to sketch out some ideas for future
directions. The entire last chapter is devoted to describing several foreseeable
developments. However, we have also dealt with several issues much earlier.
One example is our object-oriented approach, which we sketch out,
immediately in Chapter 1. Most GIS systems and standards are currently not
object-oriented, although the approach seems completely natural and ideally
suited for GIS, especially in an online, distributed environment.

An indication of the growing activity in online GIS and related technology
is the rapid rate at which protocols, standards and software are changing.
One of the greatest difficulties we faced was that the ground kept shifting

viii

even while we were writing! We had to go back and revise several chapters
because they had already gone out of date since we wrote them.

Given the alarming speed at which the field is changing, we have been
careful to ensure that the finished text would remain current for a reasonable
time. To achieve this goal we have taken several steps. The first is to be less
prescriptive about methods and details. We have deliberately avoided describing
commercial products, except as examples to indicate directions that the
technology is taking. For one thing, this information will be readily available.
For another, products are still changing rapidly.

Our experience as educators in computing and information technology is
that people can use technology better if they understand the basics. So in
Chapter 3, for instance, we have aimed to help readers understand how online
data processing works and just what is involved in getting simple geographic
services to run.

The second step we have taken is to establish a Web site where readers can
access further information. This site

http://clio.mit.csu.edu.au/smdogis/

will provide a range of services to supplement the book. These facilities include:

• working examples of the scripts etc;
• links to current versions of the resources we describe;
• links to other sites and services concerning online GIS;
• link to an online journal where researchers can publish recent work.

In conclusion, we hope that readers will find this book useful. For those of
you new to this field, we hope you find it as exciting and rewarding as we do.

David G.Green and Terry R.J.Bossomaier

Albury Australia, January 2001

Acknowledgements

Finally, we are indebted to the following organizations for granting permission
to reproduce sample pages from their online services:

� Museum of Victoria (Fig. 1.1)
� Pierce County, Washington USA (Fig. 2.1) MAP-Your-Way™
� Xerox PARC Map Viewer (Fig. 2.2 is courtesy of Xerox, Palo Alto

Research Center)
� US Census Bureau (Fig. 2.4, 2.5) TIGER mapping system
� Environment Australia (Fig. 4.7) Australian Atlas
� World Data Centre (Fig. 4.11) Webmapper
� Mapquest (Fig. 11.1)
� The Metadata examples of ANZLIC standards provided in Section

9.1 is Copyright © Commonwealth of Australia, AUSLIG, Australia’s
national mapping agency. All rights reserved. Reproduced by
permission of the General Manager, Australian Surveying and Land
Information Group, Department of Industry, Science and Resources,
Canberra, ACT. Apart from any use as permitted under the Copyright
Act 1968, no part may be reproduced by any process without prior
written permission from AUSLIG. Requests and enquiries concerning
reproduction and rights should be addressed to the Manager,
Australian Surveying and Land Information Group, Department of
Industry, Science and Resources, PO Box 2, Belconnen, ACT, 2616,
or by email to copyright@auslig.gov.au

This book would not have been possible without the support of the many
individuals and organisations who helped us. In Chapter 9 we have made
extensive use of material provided to us by Dr Hugh Caulkins. In Chapter 10
we have made use of material, including several figures, kindly provided by
David Newth. We are also grateful to him for development of the SLEEP
scripting language, which we use to provide examples of script processing in
the latter part of Chapter 3. In that chapter also, we are grateful to Tony
Steinke, who wrote the original version of Charles Sturt University’s Map
Maker service, and to Paul Bristow, who has developed and maintained the
service for several years now.

We are also grateful to colleagues for their assistance with examples and
other material in the book. Some other examples described were implemented
and maintained by Larry Benton. Some of the javascript examples presented
in Chapter 4 were based on material that Larry developed for the Guide to
Australia. In Chapter 4, too, we thank Darren Stuart, who developed the
Java demonstrations presented. We are grateful to Joanne Lawrence for her
assistance with the production of the book and to Simon McDonald for
providing valuable comments on a draft of the manuscript.

Finally, DGG is grateful to Charles Sturt University for funds that helped
with the development of some of the material, and for the opportunity to
write portions of the text during study leave.

CHAPTER 1

Perspectives on global data

1.1 GEOGRAPHIC INFORMATION SYSTEMS

Geographic information systems (GIS) are computer programs for acquiring,
storing, interpreting, and displaying spatially organised information. GIS had
its origins in many different disciplines, including electronic cartography,
geological surveys, environmental management, and urban planning. It has
now become an essential tool in all of these professions, as well as many
others.

At the time this book is being written a great transition is taking place in
the way geographic information systems function. Instead of being isolated in
stand-alone machines, a new environment is gradually being created in which
geographic information is stored and accessed over the Internet. In this book
we argue that this transition has implications that go far beyond a different
format. One of the effects is the greater accessibility that the Internet offers.
However, even more significant is the potential to combine information from
many different sources in ways that were never previously possible. To work
in the new environment, managers, developers and users all need to learn the
basic technology involved. This book is a response to that need.

Many commercial developments in online mapping are now in progress. Our
goal is not to describe or catalogue them in any detail, but to examine the issues
underlying their development. However, before we can consider the issues involved
in placing geographic information systems online, it is essential to have a clear
picture of the kinds of information and functionality involved. The following section
briefly reviews some of the main concepts in GIS.

1.2 A BRIEF PRIMER ON THE NATURE OF GIS

1.2.1 GIS data

Geographic data consists of layers. A layer is a set of geographically indexed
data with a common theme or type. Examples might include coastlines, roads,
topography, towns, public lands. To form a map, the GIS user selects a base
map (usually a set of crucial layers, such as coastlines, or roads) and overlays
selected layers. Layers are of three types:

� vector layers consist of objects that are points (e.g. towns), lines (e.g. roads)

or polygons (e.g. national or state boundaries). Data of this kind are usually
stored in database tables. Each record in the table contains attributes about
individual objects in space, including their location.

Online GIS2

� raster layers consist of data about sites within a region. Examples include
satellite images, digitised aerial photographs and quadrat samples. The
region is divided into a grid of cells (or pixels), each representing an area
of the land surface. The layer contains attributes for each cell. For instance
in a satellite image the attributes might be a set of intensity measurements
at different light frequencies or a classification of the land features within
the cell (e.g. forest, farmland, water).

� digital models are functions that compute values for land attributes at
any location. For instance a digital elevation model would interpolate a
value for the elevation, based on values obtained by surveying. In practice,
digital models are usually converted to vector or raster layers when they
are to be displayed or otherwise used.

As mentioned above, the data in vector layers are often stored in database
tables. This enables a wide range of searching and indexing by attributes.
The data may also be indexed spatially. For instance a quadtree is a construct
that divides a region successively into four quadrants, down to any desired
scale. Any item is indexed by the quadrants in which they li.e. This procedure
(the spatial equivalent of a binary search tree) allows for rapid searching by
location.

Overlays form a classic analytic tool in GIS. Some online services allow
data layers to be overlaid on various backgrounds. For instance, the Victorian
Butterfly Database (Fig. 1.1) allows the user to plot the point distributions of
species against a variety of environmental classifications, each of which provide
clues about factors controlling the species distributions.

1.2.2 GIS functionality

Although most commonly associated with map production, GIS encompasses
a wide range of forms and functions. The most common (but far from only!)
outputs from a GIS are maps. These maps are either the result of a simple plot
of layers for a given region, or they display the results of a query. Queries
involving GIS can be classified as first or second order in nature.

First order questions involve features within a single layer. Examples include
the following:

� Where is object X? e.g. Where is Sydney?
� How big (or long) is object X? What is the area of Europe?
� Where are all objects having a certain property? Where are oil wells in

Alberta?

Second order questions involve overlays of two or more layers, such as:

� What objects are found within areas of a given type? e.g. What mines lie

within a state or district?
� What is the area of overlap between two kinds of objects? For example,

what areas of rainforests lie within national parks? What farms does a
proposed highway run through?

� What environmental factors influence distribution of a rare species?

Perspectives on global data 3

The process of overlay often involves the construction of a new data layer
from existing ones. Suppose that two layers consist of polygons (e.g. electoral
districts and irrigation regions). Then the overlay would consists of polygons
formed by the intersection of polygons in the two layers. For instance in the
example given, these polygons would show the areas within each electorate
that were subject to irrigation.

Two important kinds of functions within a GIS are data analysis and models.
Data analysis tools include a host of techniques for comparing and analysing
data layers. Some examples include:

� kriging (e.g. estimating size of ore bodies) and other methods of
interpolation (e.g. elevation);

Figure 1.1. An example of an online spatial query and mapping system. Mapping of species
distributions provided by the Museum of Victoria’s informatics service. (a) A menu is
used to select species, (b) A resulting plot of specimen locations, and (c) An overlay of sites
on a map of vegetation types. Source: http://www.mov.vic.gov.au/bioinformatics/butter/
#Species Mapper.

Online GIS4

� spatial correlation of variables (e.g. incidence of medical conditions
versus pollution levels by district);

� nearest neighbour analysis (e.g. the numbers of seabird species that
nest close together);

� fractal dimension of shapes (e.g. forest boundaries).

Models in GIS are usually layers obtained by manipulation of other layers.
For instance, operations on maps of topography, streams and rainfall, and
soil type might be inputs to a model whose output is a map of soil moisture.
Traditionally these layers have all been handled by a single integrated package.
Yet at the same time, it is clear that these datasets might come from different
places. The online paradigm would allow each of these components to be
dynamically accessed from different sites.

1.2.3 The object model of GIS

One of the impacts of GIS was to introduce a whole new way of looking at
spatial data. Although cartography had been operating digitally for years before
GIS appeared on the scene, the emphasis was solely on producing maps. A
road map, for instance, would consists of lines to be drawn on the page. Names
for roads and towns formed a separate set of textual data. There was no direct
link between (say) the point representing a town and the name of that town.
These associations became apparent only when the map was printed.

As scientists started to use spatial data for study purposes, the drawbacks
of the map-oriented approach rapidly became obvious, as the following
examples illustrate:

� The data for the rivers in a region were stored as dozens of separate
line segments. The data for individual rivers consisted of many
isolated line segments, with no indication that the segments formed
a single feature. The rivers were broken into segments because the
map required gaps wherever other features (e.g. towns, roads) were
to be drawn over the top.

� In a gazetteer of towns, each location was found to have a small
error. These errors turned out to be offsets that were added to allow
each place name to be plotted in a convenient space on the map,
not at the actual location.

The biggest change that GIS introduces is to store geographical features as
distinct objects. So a road would be stored as an object with certain attributes.
These attributes would include its name, its type (i.e. a road), its quality (e.g.
a highway) and a sequence of coordinates that represent the path that the
road follows across the landscape. For instance, the map shown (Fig. 1.2)
consists of the following objects (Table 1.1).

Table 1.1. Data for the objects shown in Fig. 1.2.

Perspectives on global data 5

In this object-oriented approach, each geographic object belongs to some
class of objects. In Figure 1.2, the objects Sydney and Bathurst would both
belong to the class city; and each of them is termed an instance of the city
class (Fig. 1.3). The notion of classes is a very natural one in GIS. It also has
implications for the way geographic data is treated.

Each object has attributes associated with it. For the city class, these would
at least include a name and a location (latitude and longitude). However, it
might also include many other attributes that we could record about a city,
such as its population, the state in which it lies, the address and phone number
of the city offices, and so on. The importance of defining a class is that for any
other city that we might want to add to the GIS, we have a precise list of data
that we need to supply.

The object approach to GIS has many advantages. The first is that it
encapsulates everything we need about each geographic entity. This not only
includes data, but also extends to methods of handling that data. So, for
instance, the city object might include a method for drawing a city on a map.
In this case it would plot a city as a circle on a map, with the size of the circle
being determined by the population size of city.

Figure 1.2. Simple geographic objects: a road joining two cities. The cities have two
attributes (name and size), as also does the road (name and grade). (a) The objects plotted
as they might appear on a map. (b) A simple model of the two classes of objects, drawn
using the Universal Modelling Language (UML). The boxes denote a class of object.
Associated with each class of object, the model defines two attributes (e.g. name, size for
towns) and a single method (e.g. plot_as_a_circle). The line joining the classes denotes
a relationship between them. The numbers at either end of the line (1..*) indicate that
each road is related to one or more towns, and vice versa.

Online GIS6

Another advantage of objects, is that we can define relationships between
different classes of objects. For instance, the class of cities that we described
above really belongs to a more general class of objects that we might term
“inhabited places”. This general class would not only include cities but also
towns, military bases, research stations, mining camps, farms and any other
kinds of places that humans inhabit.

The city class inherits some of its attributes from the general class of
inhabited places. These basic properties would include the location, as well as
(say) the current population. Other properties of the city class, such as contact
details for the city offices, would be unique to it, and would not be shared by
all inhabited places. The inhabited places actually form a hierarchy (Fig. 1.3),
with capital cities inheriting properties from cities, cities inheriting attributes
and methods from towns, and towns inheriting attributes from inhabited places
Table 1.2. Thus a capital city has six attributes, all but one of which it inherits
from the more general classes to which it belongs.

Object models are usually described in terms of classes of objects and the
relationships between them (Fig. 1.3). The Uniform Modelling Language
(UML) provides a standard approach for specifying object models of data
and processes (Larman, 1998).

Figure 1.3. A simple data model, showing the relationships between several classes of
geographic objects, drawn using the Universal Modelling Language (UML). Attributes
are shown for each object, but methods are omitted. The arrows indicate general-special
(Genspec) relationships between classes of objects. A city, for instance is a special kind of
town and inherits all the attributes of a town. Likewise a capital inherits attributes of both
(i.e. postcode, contact and region).

Perspectives on global data 7

Another important type of link between classes of objects is a whole-part
relationship. A map, for instance, consists of several elements. There are the
border, the scale and possibly several layers, each containing many elements.
Figure 1.4 shows a simple example of a class diagram showing the whole
map as an aggregate of parts. So, for instance, to plot a whole map, you need
to plot each part in turn.

A further interesting area of activity is the object-oriented database.
Traditional relational databases store data as tables and relationships between
them. Until the surge of interest in multimedia and the web over the last
decade, they had been more or less limited to textual information. In attempting
to store other material such as video or images, considerable changes were
required in storage and query mechanisms.

Around the same time, the idea of storing data as complete objects with an
associated object-query language arose. In the relational model a complex
object might be broken up and split over many tables. In the object model the
object (data and methods) are stored as an entity. An example might be a map
and associated methods for extracting distances between places and many
other things.

Table 1.2. The class hierarchy for inhabited places.

Figure 1.4. A map class is an aggregate consisting of several parts.

Online GIS8

The OO database model is certainly very attractive for GIS style data.
However, the commercial reality has been different. Enterprise databases
store vast amounts of information, require exceptional robustness and
stability and embody much experience in tuning and optimisation. OO starts
a long way behind, and the relational databases have taken on board some of
their advantages such as stored procedures, while hybrid object-relational
databases have evolved. Thus OO databases are still a relatively small part of
the market.

1.3 THE RISE OF THE INTERNET

The Internet (Krol, 1992) is a vast communications network that links together
more than 2 million computers all over the world.

The rapid growth of Internet activity over the last few years has produced
a literal explosion of information. From the user’s point of view this process
has emphasised several crucial needs:

� Organization Ensuring that users can obtain information easily and
quickly. Various projects have developed general indexes of pointers
to network information services (especially Internet search engines).
However, these struggle to cope with the sheer volume of available
information. Self-organization, based on user interests and priorities,
is the only practical solution.

� Stability Ensuring that sources remain available and that links do
not go “stale”. Rather than gathering information at a single centre,
an important principle is that the site that maintains a piece of
information should be the principal source. Copies of (say) a dataset
can become out-of-date very quickly, so it is more efficient for other
sites to make links to the site that maintains a dataset, rather than
take copies of it.

� Quality Ensuring that information is valid, that data are up-to-
date and accurate, and that software works correctly.

� Standardisation Ensuring that the form and content of information
make it easy to use.

The rise of the Internet, and especially the World Wide Web during the 1990s,
revolutionised the dissemination of information. Once an organisation had
published information online, anyone, anywhere could access it. This capacity
meant that people could access relevant information more simply than in the
past. They could also access it faster and in greater quantities. It also raised
the potential for organisations to provide wider access to information resources
that normally require specialised software or hardware. For example by filling
in an online form, remote users can query databases. Geographic information
systems that previously required specialised, and often expensive, equipment,
can now be accessed remotely via a standard Web browser.

The volume of information available on the World Wide Web has grown
exponentially since 1992, when the National Centre for Supercomputer
Applications (NCSA) first released a multimedia browser (Mosaic). This
explosion was driven first by data providers who recognised the potential

Perspectives on global data 9

audience that published information could attract. As the volume of
information grew, users began to drive the process by demanding that
information be available online.

The explosion of online information is a problem: finding one item amongst
millions is akin to finding a needle in a haystack. Potential solutions for
searching include the use of intelligent agents that continually sift and record
relevant items and the promotion of metadata standards to make documents
self-indexing. Information networks (see below) provide a way of organising
sources of information.

The Internet is governed by the Internet Society (ISOC), which includes
technical committees to vet and oversee the development and implementation
of new standards and protocols. The World Wide Web is now governed by
the World Wide Web Consortium (W3C), and has been actively developing
many of the standards that we touch on in this book.

1.4 ADVANTAGES OF DISTRIBUTED INFORMATION SYSTEMS

Perhaps the greatest impact of the Internet is the ability to merge information
from many different sources in seamless fashion (Green 1994). This ability
opens the prospect of data sharing and cooperation on scales that were formerly
impossible. It also brings the need for coordination sharply into focus.

As a geographic information system, the World Wide Web has some
important advantages. One of the greatest practical problems in the
development of geographic information systems is the sheer volume of data
that needs to be gathered. Simply gathering datasets from suppliers can be a
long drawn out process. Most systems require specialised data that the
developers have to gather themselves. Inevitably, the lack of communication
between developers leads to much duplication of effort. The Internet has the
potential to eliminate these problems.

In principle, the suppliers of individual datasets or data layers could
distribute their products online. This approach would not only speed up
development of any GIS, but it would also help to eliminate duplication. In
effect, online distribution of data would have the effect of increasing the
potential volume of information available to GIS developers. It would distribute
the workload amongst many organisations. This would also simplify the
updating of information.

Another advantage of online GIS is that it expands the potential pool of
GIS developers and users. As we shall see in Chapter 2, there are many options
for placing GIS online. The result is that the overall costs can be much less for
developers. It is not only possible, but also cost effective to implement small
GIS that are designed for particular limited applications, such as providing a
geographic interface to online documents or databases.

For some purposes, it is not even necessary for online publishers to
implement a GIS at all. Instead, GIS services can be provided by leasing
information from a specialist GIS site. For instance, suppose that a travel
agency that provides information about (say) tourist attractions,
accommodation and so on, wants to provide street maps to show the location
of each site in its database. This is a very useful service for travellers who are
trying to find their hotel in a strange city. Rather than developing a series of

Online GIS10

maps itself, the agency could arrange to link to sites that provide the necessary
street maps. Such arrangements lead to many new commercial prospects for
GIS, chiefly through on-selling of geographic services. We return to some of
these new commercial models in Chapter 11.

For GIS users the prospects are equally exciting. The Internet brings GIS
within reach of millions of users who previously could not afford the necessary
equipment and specialised software. Apart from the availability of numerous
free services, there is also the potential for access to a fully fledged GIS on
demand. For instance, instead of buying an entire GIS themselves, users could
buy GIS services from providers as they require them. For regular users, these
services could take the form of subscription accounts to an online commercial
system. On the other hand, irregular, one-time users could buy particular services
in much the same way as they might previously have bought a paper map.

To realise the above possibilities, managers of online GIS will need to
develop a climate of cooperation and sharing that is still foreign to many. The
Internet is an ideal medium for collaboration. It makes possible communication
and information sharing on scales that were hitherto unheard of. However,
the explosive growth of the Internet at first led to enormous confusion.
Organisations duplicated services and facilities in inconsistent ways. This
pattern was exacerbated by commercial interests, which saw the Internet as
an extension of their traditional competitive marketplace. The essential obstacle
to information sharing is the tension between self-interest and cooperation.
To resolve these issues, organisations and nations need to agree on protocols
and standards for data recording, quality assurance, custodianship, copyright,
legal liability and for indexing. In later chapters (especially Chapter 6) we
will examine these issues in detail.

1.5 EXAMPLES OF DISTRIBUTED INFORMATION

The ability of the World Wide Web to link information from many different
sources creates a synergy effect in which the overall information resource
may be greater than the sum of its parts. One of the earliest demonstrations of
this power was a service called The Virtual Tourist, created by Brandon Plewe
(1997). It consisted of a central geographic index (point and click on a map)
to access information about different countries. However, the important thing
was that the information was distributed across literally thousands of sites.
The geographic index merely pointed to country indexes, which in turn pointed
to sources of detailed information about particular topics. The result was a
system that allowed users to zoom in to any country and obtain detailed
information about tourism, weather, and other useful information.

There are many examples, in many different fields of activity, that highlight
the advantages of distributed, online information systems. Many of these have
been in fields that relied on the Internet from the beginning. One such field is
biotechnology. The vast online resources are compilations of genomic and
protein sequences, enzymes, type cultures and taxonomic records. There are
also many large repositories of useful software and online services for
processing and interpreting data. Most of the prominent sites provide a wide
range of other information as well, including bibliographies, electronic
newsgroups and educational material. All of the resources are accessible online.

Perspectives on global data 11

Some of the larger facilities, such as the European Molecular Laboratory, are
actually networks of collaborating organisations. The field has even reached
the stage where many funding agencies and scientific journals actually require
researchers to contribute their data to online repositories as a condition of
acceptance of a grant or paper.

Many kinds of environmental information are already online. As scientists,
we have been involved ourselves in some of the efforts already in progress to
compile online information about many kinds of environmental resources,
such as forestry and global biodiversity. In each case, the new possibilities are
leading people and organisations to rethink the way they do things, to look at
the broader geographic context, and to initiate schemes to enhance
international cooperation.

1.6 OVERVIEW OF THIS BOOK

In keeping with our view that online GIS represents a new working
environment, we attempt to achieve two goals in this book. The first is to give
readers an overview of the basic technology involved in online geographic
information systems. The second is to outline models for how the development
of online geographic information might be coordinated.

There are several different aspects we need to consider. First, we have to
understand the mechanisms of GIS processing over the Web. We then have to
move on to consider how data is organised, accessed, searched, maintained,
purchased and processed online. This involves us tackling some fairly complex
standards, which are currently redefining the way in which online GIS will
operate in the future. The first of these is XML, which underlies just about all
of the current web standards. One such crucial standard is RDF the metadata
standard for the web. The second major concept we need to tackle is that of
distributed objects, and how it fits into the OpenGIS framework.

With all of the above details in place, we can now look at the content of
the metadata standards for GIS information and proceed to look at how we
do things online in a serious way.

One area we do avoid is detailed discussion of existing packages for Web
GIS. The chief reason for this omission is that the nature and range of tools is
likely to change rapidly in the near future as vendors respond to developments
with the relevant standards.

Chapters 2 to 5 introduce the technical methods involved in developing
and implementing geographic information systems on the Internet. They are
intended to provide potential developers with technical details and examples
to help them understand the issues. They also provide the technical background
that readers need to appreciate many of the issues discussed in later chapters.
Chapter 2 outlines the main technical issues surrounding online GIS and gives
an overview of the options available. Chapter 3 describes the kinds of facilities
and operations that can be implemented on a Web server. Chapter 4 describes
GIS tools that can be implemented to operate on a standard Web browser.

In Chapter 5 we get to a key development, XML. For many years, the
SGML international standard languished, little used outside a few big
organisations such as the US military. Partly this was due to its complexity
and the high cost of processing tools. Partly the superficial attractiveness of

Online GIS12

WYSIWYG publishing pushed it into the shadows. But as the web grew, the
need for better organisational and searching methods came to the fore. HTML,
the language of the web, is in fact an SGML DTD, and it became apparent
that a simpler version of the full SGML standard would be advantageous. So,
XML came about and has vacuumed up most of the other web standards.
SGML also became the choice for writing spatial metadata standards, but is
now being replaced by XML.

Chapters 6 to 11 examine technical issues involved in coordinating the
development of geographic information in the Internet’s distributed
environment. These issues include many technical matters, but they also
concern the ways in which human collaboration impinge on technology.
Chapter 6 begins the discussion by outlining the nature of information
networks, that is systems in which information is distributed across many
different sites. Chapter 7 outlines some of the interoperable standards involved
in distributed information systems. The biggest such initiative in the spatial
arena is the OpenGIS consortium, which is essentially designing vendor
independent standards for many spatial operations. The particular standards
we look at in Chapter 7 relate to distributed objects, in which the location of
objects on a computer network is essentially transparent.

Chapter 8 looks at the conceptual framework of metadata, by studying the
RDF and similar standards for the Web. Chapter 9 follows this by describing
several metadata standards in use around the world for spatial metadata.
This chapter builds on the XML work in Chapter 5, the distributed object
model of Chapter 7 and the metadata fundamentals in Chapter 8. Chapter 10
looks at ways in which distributed information can be built into data
warehouses, and introduces basic ideas in data mining within such systems.

The final part of the book, Chapters 10 and 11, look at the prospects for
the future development of online GIS. Chapter 10 discusses some of the
emerging new technologies associated with geographic information. Chapter
11 looks at the possibilities inherent in a global geographic information system,
as well as some of the possibilities raised by online GIS.

CHAPTER 2

GIS and the Internet

2.1 THE ADVANTAGES OF ONLINE GIS

The World Wide Web is fast becoming a standard platform for geographic
information systems (GIS). A vast range of geographic information services
already exists on the World Wide Web (Green, 1998) and the range of
environmental information now available online is impressive. Commercial
developers are already producing on-line versions of their GIS software. Many
on-line services include spatial queries or map drawing.

Online GIS has several potential advantages over stand-alone systems. These
advantages include:

� World-wide access An information system on the Web is accessible
from anywhere in the world.

� Standard interface Every Web user has a browser, so any system
that uses the Web is accessible by everyone, without the need for
costly, specialised equipment.

� Faster, more cost-effective maintenance Information can be accessed
at its source, so there is less need to collate data at a central location.

In this chapter we set out to do the following:

1. Examine some of the technical issues involved in developing an

online GIS, and some of the options for dealing with them.
2. Briefly look at some examples of existing geographic information

systems that are online.
3. Demonstrate some simple methods for implementing basic types of

systems.
4. Examine some issues for the future development of online GIS.

2.2 ISSUES ARISING IN THE NEW MEDIUM

The Internet, and in particular the World Wide Web, is a new environment
for all kinds of computing. As such it raises many issues and poses many
challenges that do not exist in a stand-alone environment.

In the following discussion of online GIS, we shall for the most part gloss
over methods of implementing standard GIS operations. Instead we focus on
issues involved in placing the GIS online. The main issues that have to be
addressed arise from:

1. the nature of the Web environment, and
2. the separation of the user interface from geographic data and processing.

Online GIS14

2.2.1 The Web environment

The Web uses the Hypertext Transfer Protocol (HTTP) to communicate queries
and responses across the Internet. HTTP is a client-server protocol. This means
that a “client”—the user’s browser program—transmits a query to a Web
server, which then sends back its response. In HTTP version 1.0 (which is still
used by most servers at the time of writing), these transactions are carried out
on a connectionless, single query basis. Even if a user makes a series of queries
to the same server, the server normally retains no history of past queries, and
no client “session” is established. This is in contrast to several other Internet
protocols, such as FTP and Telnet, where the server establishes a dialogue
with clients who “log in”.

Interactive GIS software that runs on a dedicated machine makes the implicit
assumption that the program’s current state is a direct result of a user’s
interactions with it. Remote GIS cannot do this under HTTP 1.0, which
necessitated workarounds such as using hidden fields and caching.

HTTP and associated client/server software have the advantage of being a
generic technology. Any service provided via the Hypertext Transfer Protocol
is immediately available to anyone, on any type of machine, who is running a
suitable client program.

Important features of WWW browsers and clients include:

� they permit browsing of ALL of the main network protocols (FTP,
Telnet, etc.);

� they permit both text formatting and images that are embedded
directly within text, thus providing the capability of a true
“electronic book”;

� they integrate freely available third party display tools for image
data, sound, Postscript, animation, etc.;

� they permit seamless integration of a user’s own local data (without
the need of a server) with information from servers anywhere on
the Web;

� the forms interface allows users to interact with documents that
appear as forms (including buttons, menus, dialog boxes) which
can pass complex queries back to the server;

� the imagemap interface allows users to query a map interactively.
This would allow (say) a user to get information about different
countries by clicking on a world map, in GIS-like fashion;

� the authorisation feature provides various security options, such as
restricting access to particular information, passwords etc.;

� the SQL gateway allows servers to pass queries to databases. Such
gateways are already implemented for many databases (e.g. flora
and fauna of Europe and the Americas, DNA sequences);

� the ability to run scripts or programs on the server and to deliver
the results to WWW;

� the ability to include files dynamically and thus build up and deliver
documents “on the fly”.

These generic technologies provide enough functionality to do simple spatial
queries. Two more recent web innovations promise much more:

GIS and the Internet 15

� Java from Sun Microsystems is a fully fledged programming
language (see Chapter 4) with advanced graphics features, soon to
be fully threedimensional. It is machine independent and (at least
with experience so far) secure.

� SVG and X3D are fledgling graphics languages built on top of
XML (see Chapter 5). They will enable XML (i.e. plain text)
specification of vector graphics and 3D constructions, both of huge
potential for GIS. See Chapter 4 for further discussion of SVG.

2.2.2 Separation of the user interface

The Web environment separates a user interface from the site of data
processing. This separation poses problems for any operation that relies on a
rapid response from the system. Consider the following examples.

1. A common GIS operation is to define a polygon using the “point and

click” operation of the computer mouse. However, standard Web browsers
treat a single mouse click as a prompt to transmit a query to the server.
The delay between responses from the server is far too slow to maintain
a coherent procedure.

2. Geographic queries are often context-sensitive. For instance a user may
wish to have pop-up menus on a map that quickly display data about the
properties of objects in space.

2.3 SOME EXAMPLES OF ONLINE GIS

Most of the existing online geographic information services fall into one of
two categories: spatial query systems, and map-building programs. Many
services incorporate both. As a result, most of the examples throughout this
book are necessarily restricted to these functions, though there are some
exceptions in Chapter 11. Only a few services provide more advanced GIS
functionality, such as data analysis or modelling. Nevertheless, it is important
to remember that this sort of functionality is also possible in the online
environment. As we shall see in later chapters, the standards and tools needed
to enable advanced GIS applications across the Internet are now currently
under development. Many advanced applications are therefore likely to follow
in coming years.

2.3.1 Spatial queries

The most widely seen GIS functions online are the queries based on spatial
location. These include both selecting spatial objects, such as countries or
states, and random points. Objects are most often selected by text interface
(e.g. a list or database query form). Random points are usually selected via an
imagemap, form image or java applet (see Chapter 4). Web browsers work on

Online GIS16

the hypertext concept of point and click. Few systems permit more sophisticated
searches, such as those that require the user to select more than a single point,
for example drawing a polygon to define a region.

Some early examples of services offering spatial queries include the
following.

The Virtual Tourist

The Virtual Tourist (Plewe, 1997) was a service that aimed to provide tourists
and the tourist industry with detailed information about every country in the
world. Starting from a map of the world, users could click on successive maps
until they had selected a country or region of their choice.

The VT was one of the earliest demonstrations of the power of online
hypermedia to create systems that are more than the sum of their parts. The
original service (which has since been commercialised), placed a central
indexing site on top of literally thousands of contributing sites that provided
sources of information about individual countries. A second, but equally
important lesson was that it is easier to keep information up-to-date if detailed
information is published online by the organisations that maintain it, rather
than by a central agency that would be hard-pressed to keep the information
current (see Chapter 6).

Pierce County Databases

In the state of Washington, USA, Pierce County provides a public GIS online.
Called MAP-Your-Way!™, the system provides a flexible and widely accessible
interface for many of the county’s public databases (Fig. 2.1). Placing the
system online means that anyone can generate customised maps for any

Figure 2.1. Online interface to Pierce County’s MAP-Your-Way!™ information system.

GIS and the Internet 17

combination of features for any part of the county. The service was
implemented using ESRI mapping tools.

The site includes a disclaimer that covers the following crucial matters:
data limitations, interpretations, spatial accuracy, liability, and warranty
against commercial use.

2.3.2 Map-building and delivery

Online facilities for building user-defined maps are now common. The
following examples illustrate the range of features that online map-building
services provide.

Xerox PARC World Map viewer

The first online map-building program was the Xerox PARC Map Viewer
(Xerox 1993). The original system drew simple vector maps of any part of
the world, at any resolution (Fig. 2.2). Originally the service was entirely
menu-driven. That is users selected options to build new maps (e.g. zooming
in by a factor of 2) one at a time from the options provided. More recent
versions have added new features and enhanced the interface.

City street maps

In several countries, services now make street maps of various towns and
cities available online. Some systems incorporate street maps with other data,
such as telephone directories, or tourist information.

Figure 2.2. The Xerox PARC Map Viewer was the first online mapping system. Courtesy
of Xerox, Palo Alto Research Center.

Online GIS18

In some cases the maps are generated on demand, a simpler approach is to
scan the maps to provide GIF images at various set resolutions. For instance,
if a printed street directory consists of (say) 100 maps, then breaking each
map into (say) 4×4 submaps, would require 1600 GIF images. To include the
entire set at three resolutions (×1, ×2, ×4), would require 2100 images.
Assuming that each image is no more than (say) 10 Kbytes, then the set can be
stored just over 20 Mbytes. This volume is easily handled by any modern
server. It has the advantage of eliminating the processing needed to draw each
map. The main issue in such a system is to implement an indexing system that
finds the desired map efficiently.

Environment Australia’s interactive map builder

One of the frustrations of traditional paper maps is that the information a
user requires may be spread across two or more sheets. This may be because
the area overlaps two map sheets, or because the user wants to combine data
not normally displayed together. GIS overcome this problem by allowing maps
to be built on demand by interactively combining any layers that the user
requests and for any selected area. However, the majority of potential map
users do not have immediate access to a stand-alone GIS. Online map building
services remove this final obstacle by placing online an interface to their map
layers and drawing algorithms.

A good example of this sort of service is the environmental resources mapping
system provided online by Environment Australia (ERIN, 1999). As well as being
able to draw base maps on demand for any area, the system also allows users to
select further information from a large range of environmental data layers.

CSU’s Map Maker

Another issue for map users is to be able to plot their own data on a map. The
Map Maker service (Steinke et al., 1996), developed by Charles Sturt University,
addresses the need of field researchers (and others) to be able to produce
publication quality plots of regions with their own sites or other locations
added. First trialed in 1993, this service has been publicly available since
1995. The address for the service is

http://life.csu.edu.au/cgi-bin/gis/Map/

The base layers are generated by the GMT system, which is a freeware package
of Generic Mapping Tools (Wessel and Smith, 1991, 1995).

The Map Maker was perhaps the first online service that allowed users to
plot their own data on custom designed maps (Fig. 2.3). Users enter into a
form field the set of coordinates and labels for points that they wish to include.
The Map Maker also allows a limited degree of searching for major cities.

2.3.3 Other GIS functions

Spatial queries and simple map-building are by far the most common GIS
functions available online. However, GIS are also used for a wide range of

GIS and the Internet 19

other operations. Perhaps the most common are spatial modelling and spatial
data analysis. At the time of writing very few such services are available online.
For example, online processing of satellite images have been trialed but are
not generally available because they tend to require a great deal of computation.

The following examples give some idea of the sorts of interactive functions
that can be, and are, online.

2.3.3.1 Environment Australia’s species mapper

Environment Australia’s service Species Mapper (ERIN 1995) provided a system
for querying its database of species distributions and plotting them on maps.
However, the service went further than that. The service also generated and
plotted models predicting the potential geographic distribution of individual
species. To achieve this (using the BIOCLIM algorithm), the server carried out
the following sequences of steps (here slightly simplified) in real time:

Figure 2.3. Adding user data to a map built online using CSU’s Map Maker service. (a)
Form for inserting user data. (b) The resulting map with the towns added.

Online GIS20

1. Query database to retrieve records of species locations.
2. For each species location, interpolate values of essential climatic variables.
3. Calculate the climatic envelope bounding all the species records.
4. At the resolution specified, identify all other sites in the landscape that

fall within the climatic envelope.
5. Plot the sites identified on a base map.
6. Deliver the map to the user.

Redevelopment of Environment Australia’s databases to the service being taken
off-line during 2000, but it is hoped that it will be reinstated in the future.

2.3.3.2 US Census maps

The TIGER Mapping System for USA (Figs 2.4, 2.5) is one of the most
prominent online mapping facilities. It was established in 1994 and generates
45,000 to 50,000 maps per day. It aims

“to provide a good-quality, national scale, street-level map to users
of the World Wide Web. This service is freely accessible to the public,
and based on an open architecture that allows other Web developers
and publishers to use public domain maps generated by this service
in their own applications and documents.” (NGDC 2000)

Future enhancement plans include street-level detail for the entire United States
and more cartographic design features. Planned technical innovations include:
open interface to images (through mapgen script), which will allow users to
request maps directly to include in other documents, and reverse coordinate
decoding, which will allow users to send a pixel coordinate (x,y) from the
map and retrieve the associated real-world coordinate (thus making viable
third party applications that rely on the interactive maps-provided by the
service).

Two recent technologies also promise interesting new applications: satellite
navigation systems (GPS) are readily available in cars, while internet access
from wireless devices (mobile phones etc.) is on the rise. Thus we should see a
whole suite of new synergetic applications (Chapter 11).

2.4 LARGE-SCALE SPATIAL DATA COLLECTION PROJECTS

2.4.1 The rise of online data warehouses

We saw above how the Virtual Tourist linked together information from many
sources. However, that was a case of creating a unifying umbrella for online
resources that had already appeared. In many other cases, the organisation
and development of online data sources required a more systematic and
coordinated approach.

One example was cooperation amongst sites dealing with related topics.
This process led to the formation of information networks dealing with a

GIS and the Internet 21

wide range of topics (Green, 1995). This process still continues and has led to
technical innovations to try to promote cross-site coordination. The first
priority was to develop methods of indexing information. This goal has led to
numerous indexing and production standards, such as XML, CORBA, and
others that we shall discuss in later chapters.

There has also been a variety of software developments to enhance cross-
site queries and information sharing. The first of these was the notion of a
web crawler, an automatic software agent that trawls the Web recording and
indexing everything it finds. Many Internet search engines have used this kind

Figure 2.4.. Online user interface to the TIGER mapping system provided by the US
Census Bureau. (a) The interacting map display, (b) Further form fields for customising
outputs. Source: http://tiger.census.gov/

Online GIS22

of software. Later developments have included collaboration whereby a single
query can spawn searches on many different sites, after which the results are
pooled and transmitted back to the user.

However, the ultimate need is to develop systems that return not indexes
of links to data, but the data itself. That is, they draw on data from many
different sites and combine it into a single set of information for the user. This
need gives rise to the idea of a distributed data warehouse. Data warehouses
are simply assemblies of many different databases that are combined into a
single information system. With the spread of electronic commerce and large-
scale data collection systems, data warehouses are now common. A distributed
data warehouse is just a data warehouse that is spread across several sites on
the Internet. In some contexts (such as environmental information,
biotechnology) there is a trend towards global information systems that
integrate similar kinds of information worldwide. We will look at data
warehouses more closely in Chapter 10.

It is this kind of information that is needed for online GIS. No single agency
can store and maintain all information, in complete detail, for every part of
the world. Perhaps the ultimate online GIS would be a global information
system that integrated all kinds of geographical data from all sites into a
single universal “atlas of the world”. Unlike a traditional paper atlas, there is
in principle no reason why such a system needs to be restricted to a particular

Figure 2.5. Zooming in with the TIGER Mapping System allows the user to select any
desired view, from a continental scale to detailed street maps. In this online example, the
view zooms in to downtown Portland, Oregon.

GIS and the Internet 23

scale, or to particular data layers. In practice, however, there are severe technical
and practical considerations that stand in the way.

2.4.2 The need for metadata

The desire to coordinate data across many different sites leads to the need for
ways to label and identify data resources. Metadata are data about data.
Metadata play a crucial role in recording, indexing and coordinating
information resources (Cathro 1997).

Look at any book. On its cover you will nearly always find the name of
the book, the name of its author and the name of the publisher. These
pieces of information are metadata. Inside the front cover you will find
more metadata: the copyright date, the ISBN, the publisher’s address, and
more. When you are reading the book, or if it is sitting on a bookshelf by
your desk, then these metadata are rarely important. But if you want to
find it in a large library, which might hold a million books, then you
depend entirely on that metadata to find it. One of the worst things that can
happen in a library is for a book to be put back in the wrong place. If that
happens, then no one can find it without a long and painful search through
the shelves.

As it is for books, so it is for online data. Metadata are crucially important
for storing, indexing and retrieving items of information from online sources.
Later in this book (especially Chapters 8 and 9), we will look in detail at the
ways in which metadata are structured and used. In other chapters (6, 7 and
10), we will look at the ways in which metadata help to create large-scale
information resources online.

Metadata have tended to be about content, creation and ownership as we
shall see in Chapter 7. But online documents may require additional metadata,
in terms of how and who shall granted online access.

2.5 DIFFERENCES BETWEEN STAND-ALONE AND ONLINE GIS

The traditional model for a GIS assumes that the system consists of a single
software package, plus data, on a single machine. This model no longer meets
the realities of many GIS projects, which today are often multi-agency,
multidisciplinary, multi-platform, and multi-software. Large numbers of
contributors may be involved, and there may be a large pool of potential
users. These users may require not only maps, but also many forms of multi-
media output (e.g. documents). Moreover, they are likely to require access to
the most current data available, and not to copies that may be months, or
even years, old. A central practical issue, therefore, is how to provide
widespread, de vice-independent, access to a GIS for large numbers of
contributors and users.

The chief difference between an online GIS and traditional systems is the
separation of user interface, data storage and processing. In stand-alone GIS
all of these elements are normally present on a single machine. In online GIS
the elements are normally spread across several machines.

Online GIS24

This separation of GIS elements creates its own special issues and problems.
One is the need to transfer data from one site to another. This leads to a need to
cut down the number of transfers where possible. Another problem is that keeping
track of what the user is currently doing becomes a non-trivial matter. Normally
these details are immediately available because they are stored in computer memory
while the GIS software is running. However, across a network they need to be
stored so that the software can be initiated with the correct state.

In the remainder of this chapter, we look at some of the options for dealing
with this separation of elements. In the chapters that follow, we look at some
of the issues in the course of implementing GIS in an online environment.

2.6 OPTIONS FOR IMPLEMENTING ONLINE GIS

There are several ways in which GIS can be placed online. Perhaps the most
telling is the way in which the user interface is handled. There are essentially
two approaches. One is to take an existing stand-alone GIS and enable it to
run online. The other is to provide GIS functionality via standard Web
browsers. In the following sections we examine each of these options in turn.
We then look at some of the issues that need to be considered.

2.6.1 Internet enable an existing stand-alone GIS

In this approach the user interface is a stand-alone GIS, which handles all (or
most) of the processing involved. However, the system is provided with the
capability to access files across the Internet. So local data (i.e. data residing
on the user’s machine) can be combined with data from other sites.

The above approach has several advantages:

• It retains all the power, speed and functionality of a traditional
system.

• User’s can continue to use a system that they are familiar with.

However, there are also some disadvantages:
 • Users need to acquire and install specialist software (and often

hardware), which may be expensive.
• The system is not universally available. Its audience is limited to

those who have the necessary software.

2.6.2 GIS functionality in standard Web browsers

In this approach, a GIS is built to use existing standard browsers as its user
interface. Normally this means that most of the data, and most of the
processing, is delivered via a server, which then sends the results to the client
for display.

The main advantages of this approach are:
• The system is potentially available to any web user (though browser

addons may be required).
• Simple GIS can be implemented more quickly and easily than using

the power of a full system (why use a sledgehammer to crack a

GIS and the Internet 25

walnut?). For instance if all you want is for users to be able to
make geographic queries of a database (e.g. “what sites fall within
the selected region?”), then just a few geographic operations are
required. The manager therefore need only install software to handle
those operations. The rest of the processing can be handled with
standard Web tools.

Some disadvantages are:

• The GIS manager needs to develop the GIS functionality. Few

systems are available to pre-package the necessary storage,
processing and display functions.

• Even if a standard GIS package is used as a backend, interfaces
needs to be developed between it and the server and for converting
outputs into a form that can be displayed on a browser.

• Many interactive processes, which are taken for granted on a stand-
alone system, become difficult to sustain in a distributed environment.

Besides the above two extreme approaches there are various mixed alternatives.
For example, an online GIS could use a standard Web browser for the starting
interface, and for routine search and selection functions. However for
specialised geographic operations and display it might pull up a GIS display
package as a “helper” application. Some GIS vendors have developed
technology for Web access.

2.6.3 Issues for implementing online systems

If existing GIS software is to be Internet enabled, then the Internet queries can
be seen as akin to reading files in a traditional system, except that the files are
stored somewhere else on the Internet, rather than on the user’s hard disk.
The rest of the system operates just as any stand-alone GIS would. Thus the
main issue is how to build and send queries across the Internet, and how to
handle the replies. We shall take up this issue in Chapter 5, where we address
the issue of querying remote databases. Since this type of GIS applies essentially
to existing software, it is mainly an issue for commercial developers.

Developing GIS that use the Web as their interface is a much more general
concern. At the time of writing there are already many online GIS that use the
Web as their interface. For the most part, these have been developed de novo
by the sites providing the service. Very few pre-packaged toolkits are available
for building online GIS. It is therefore important for potential developers to
have a clear understanding of the issues involved. One of our aims in the
following chapters is to help potential service developers by providing a set of
tools to simplify the building of small online GIS.

In the following two chapters we shall examine issues and methods for
implementing GIS that use the Web as the main platform. First we shall look
at GIS processing on a Web server. We will then go on to look at processes
that need to be handled by the Web client.

A fundamental practical issue for the development of online GIS is how it
should relate to other services. Systems that are built in ad hoc and idiosyncratic

Online GIS26

fashion will not be consistent with other online GIS services. There are many
advantages in developing GIS services that are consistent with those at other
sites. As we shall see later (especially Chapter 7), standards are emerging that
promote consistency, and provide a basis for Web mapping tools that simplify
the development of GIS services online.

2.6.3.1 Connectionless interaction

Perhaps the most basic issues associated with HTTP1.0 are those arising from
connectionless interaction. Web browsers and the HTML specification have
been developed as a stateless interface into WWW resources. Under HTTP1.0,
no context is preserved at either the client or server end, with each data
transaction treated independently from any other. Later releases do allow
preservation of context, but are not yet universal.

When interactive GIS software runs on a dedicated machine, there is an
implicit assumption that the program’s current state is a direct result of a
user’s interactions with it. Remote GIS cannot do this. Under the HTTP, for
instance, every interaction of the user with the software is a fresh query and
starts from the software’s start up state. The combination of the separation of
interface from processing, plus the connectionless nature of the communication,
raises the need to provide mechanisms to maintain continuity.

There are several steps that can be taken to preserve context within a WWW
service.

One method is to embed hidden state variables within Web documents.
The HyperText Markup Language (HTML) provides several methods by which
values for state variables can be transferred between server and client.

First, the HTML forms interface includes provision for “hidden fields”
(see Section 3.3). We can use these to record a user’s current “state” and
essential portions of their interaction with the program. In effect, the server
builds a script to reconstruct the current position as part of each interaction
and embeds it in the document that it returns to the user. This information is
not a simple log; previous panning and zooming can be ignored, for example.

A second method is the use of “cookies” (see Section 4.3). Amongst other
things, cookies provide a way to identify users when they reconnect to a service.
So, for instance, a user’s preferences can be stored from session to session,
thus allowing continuity.

A third procedure is caching. Creating a particular map, for instance, may
require a series of operations that would soon grow impossibly tedious and
timeconsuming if repeated on each step. When interacting with a dedicated
system we avoid this problem by saving the result of a series of steps. This is
done either implicitly, as binary data linked with the user’s session, or explicitly
as a file under the user’s name. In caching, the server not only delivers
information back to the user, but also saves it to disk for a finite time. The file
is then available as a starting point for the next query, if there is one. Caching
requires careful documenting of the nature of each file: options include lookup
tables, headers and coded file names. Cached files can be designated in many
ways, including user (i.e. machine) and time. We have preferred designation
by content as it avoids duplicating common operations for different users,
and provides fastest response to common queries.

CHAPTER 3

Server-side GIS operations

3.1 WEB SERVERS

In this chapter and the one that follows, we examine issues arising in the
development and use of standard Web systems as a medium for GIS. Since we
can run GIS packages, such as ArcInfo, over widespread client server systems
such as X-Windows, we might ask what the Web protocol has to offer. And as
we shall see in this chapter, Web based GIS is not without a few problems.
Since the Web server’s primary role is to deliver Web pages, server-side GIS
operations have to be carried out by secondary programs (usually via the
Common Gateway Interface, which we describe below). The original Web
protocol, HTTP was designed for delivery of static text and simple images,
and is not optimised for much else.

The gains come in low cost, package independence and in cross-platform
web availability. But any program can package information up and transmit
it according to HTTP. Some vendors are now doing this with their GIS
packages. The other advantage is close integration with a web site which may
have information and resources going way beyond the spatial.

An essential feature of geographic information systems is that they allow
the user to interpret geographic data. That is, they incorporate features for
data processing of various kinds. Some of these operations include: spatial
database queries, map-building, geostatistical analysis, spatial modelling and
interpolation.

In an online GIS, the question immediately arises as to where the above
processing is carried out: at the Web server, which is remote from the user and
supplies the information, or at the Web client, which receives the information
and displays it for the user. In this chapter we look at issues and methods
involved in carrying out GIS processing by a Web server.

What GIS operations can and should be run on a server? Only a few
operations cannot be run on a server. These consist chiefly of interactive
operations, such as drawing, that require rapid response to a user’s inputs.
Other operations, such as querying large or sensitive databases, must be carried
out at the server. However, for most other operations, the question of whether
to carry it out on the server, or on the client machine is not so clear cut.

The two most crucial questions when deciding whether an operation should
be performed by the server or the client are:

� Is the processing going to place too large a load on the server? Any
busy Web server will be accessing and transmitting several files per
minute. The processing needed to (say) draw a map may take only a
few seconds, but if requests for this operation are being received
constantly, then they could quickly add up to an unmanageable load.

Online GIS28

� Does the volume of data to be sent to the client place too great a
load on the network? For instance, delivering large images constantly
might slow response for the user.

3.1.1 The HTTP protocol

The “Hypertext Transfer Protocol” (HTTP) is the communications protocol
used on the World Wide Web. It passes hypertext links from a browser to a
server and allows the requested documents and images to be passed back to
the browser. The server, or HTTP daemon (HTTPD) manages all
communication between a client and the programs and data on the web site.

3.1.2 Hypermedia

The World Wide Web has turned the Internet into a medium for hypermedia.
The term hypermedia is a contraction for hypertext and multimedia. Hypertext
refers to text that provides links to other material. Multimedia refers to
information that combines elements of several media, such as text, images,
sound, and animation. Hypertext is text that is arranged in non-linear fashion.
Traditional, printed text is linear: you start at the beginning and read through
all the passages in a set order. In contrast, hypertext can provide many different
pathways through the material. In general we can say that hypertext consists
of a set of linked “objects” (text or images). The links define pathways from
one text object to another.

Electronic information systems have led to a convergence of what were
formerly very different media into a single form, known as “multimedia”.
Film and recordings, for instance, have now become video and audio elements
of multimedia publications. In multimedia publications, one or another kind
of element tends to dominate. In traditional publications, text tends to be the
dominant element, with images provided to “illustrate” the written account.
One exception is the comic book in which a series of cartoon pictures provides
the storyline, with text provided as support.

Vision in humans is the dominant sense, so in multimedia visual elements
(particularly video or animation) often dominate. However, in on-line
publications, the speed of the network transmission is still a major
consideration for narrowband delivery. At present full-screen video is not
practical, except across the very fastest network connections.

It was the introduction of browsers with multimedia capability that made
the World Wide Web a success. However, audio and video elements are not
currently supported by any Web browsers. These require supporting applications
that the browser launches when required. Examples include the programs
mpegplay for MPEG video files, and showaudio for sound. Each kind of
information requires its own software for generating and editing the material.

In this chapter we make occasional use of markup formats, distinguished
by tags : start tags begin and end with angle brackets as <map>; end tags have
an additional/as in </map>. The full syntax and structure of markup for HTML
and XML are covered in Chapter 5.

Server-side GIS operations 29

3.1.3 Server software

There are many versions of software for Web servers. The most widely used is
the Apache server, which is a freeware program, with versions available for
all Unix operating systems. However, most of the major software houses have
also developed server software.

It is not feasible here to give a full account of server software and the issues
involved in selecting, installing and maintaining it. Here we can only identify
some of the major issues that Web managers need to be aware of.

Security is a major concern for any server. Most packages make provision
for restricting access to material via authorisation (access from privileged sites),
and authentication (user name and password). With heightened concern over
the security of commercial operations, most server software now includes
provision for encryption as well as other features to minimise the possibility
of illegal access to sensitive information.

In terms of functionality, most server software today makes provision for
standard services such as initiating and running external programs, handling
cookies (see Chapter 4), allowing file uploads and making external referrals.
Perhaps the most important questions regarding functionality are what versions
of HTTP the server software is designed for and how easily upgrades can be
obtained and installed.

When installing a server, it is important to give careful attention to the
structure of the two directory hierarchies. Source material used by HTTP
servers normally falls into two main hierarchies:

� The document hierarchy, which contains all files that are delivered
direct to the client.

� The CGI hierarchy (see next section), which contains all the files
and source data needed in processing information.

The above distinction is important because it separates freely accessible
material, such as documents, from programs and other resources used in
processing, which often has security implications. Care is needed too in the
organisation of directories under each of these hierarchies. The names of
directories normally form part of the URL for any item of information, so it is
important that they have logical names. Moreover, they should reflect the
sorts of queries that users will make. Many Web managers make the mistake
of structuring directories and information in terms of system management, or
in terms of the internal organisation of their institution or corporation. So,
for example, users would normally prefer to look for tourist information
organised under country or region, rather than (say) the names of individual
travel companies or hotel chains.

More importantly, the logical names of directories should never change
once they are established. It is possible to circumvent this issue to some extent
by using aliases to provide a logical hierarchy. In Unix, for instance, directories
and files can be assigned logical names that are completely independent of
their true storage location. For instance, the real file path

/documents/internal-data/file023.dat

Online GIS30

might be assigned the much simpler logical path

hotel-list.

3.1.4 Practical issues

Although not specifically related to online GIS, a number of general issues are
important for any online information service.

In maintaining a server, three important issues are system updates, backups
and server logs. System updates consist of files and data that need to be changed
at regular intervals. For example, a data file that is derived from another
source may need to be downloaded at regular intervals. These sorts of updates
can be automated by using an appropriate system software. In the Unix
operating system, for instance, the traditional method of automating updates
is by setting crontabs (a system for setting automated actions against times) to
run the necessary shell scripts at regular intervals.

Backups are copies of data on a server. Their function is to ensure that vital
data is not lost in case of hardware or other failure. Backups are usually made
regularly on tapes. For safety, in case of fire, backup copies are best stored off
site. Mirror images of data provide another form of backup. However, it may
be unwise to rely on an outside organisation to provide the sole form of
backup. As with server updates, backups can be automated. Any busy server
would need daily backups, though if storage space is limited, these could be
confined to copies of new or altered files. However, it is always wise to make
a complete copy of the document and CGI hierarchies at regular intervals.

Server log files provide important sources of information about usage of
the system. The access log lists every call to the system. As well as recording
the names of files or processes that are accessed, it also includes the time and
address of the user. This information can be useful when trying to assess
usage rates and patterns. The error log is useful in identifying faults in
information services, as well as potential attempts to breach system security.

3.2 SERVER PROCESSING

To be a complete range of media, the Web provides a methodology by which
a Web server can carry out processing of various kinds in order to respond to
a query. The processing falls into four main classes, which are listed below.

� Allowing users to submit data to the server, usually via forms.
� Uploading files to the server.
� Data processing to derive the information required to answer a

query.
� Building and formatting documents and their elements.

The Common Gateway Interface (CGI) is a link between the Web server and
processes that run on the host machine (Fig. 3.1). CGI programs are accessed
through the web just as a normal HTML document is, through a URL. The only

Server-side GIS operations 31

condition placed upon CGI programs is that they reside somewhere below the
cgi-bin directory configured within the HTTPD server. This is so the server
knows whether to return the file as a document, or execute it as a CGI program.

The data from a form or query is passed from the client browser to the
HTTPD server:

1. The HTTPD server forwards the information from the browser via
CGI to the appropriate application program.

2. The program processes the input and may require access to certain
data files residing on the server, such as a database.

3. The program writes either of the following to standard output: a
HTML document; or a pointer to a HTML document in the form
of a Location Header that contains the URL of the document.

4. The HTTPD server passes the output from the CGI process back to
the client browser as the result of the form or query submission.

Programs to run CGI processes can be written in virtually any programming
language. The most common ones being PERL, C and shell scripts. The basic
structure of a CGI program is illustrated by Figure 3.2.

PERL is the language of choice for many CGI programmers due to its
powerful string manipulation and regular expression matching functionality.
This makes it well suited to handling both CGI input from HTML forms, as
well as producing dynamic HTML documents.

3.2.1 CGI and form handling

3.2.1.1 CGI Input

HTML forms are implemented in a way that produces key-value pairs for
each of the input variables. These key-value pairs can be passed to the CGI

Figure 3.1. Role of the Common Gateway Interface (CGI), which mediates exchanges
between a web server and other programs and data.

Online GIS32

program using one of two methods, GET and POST. An important point to
note is that with both methods, the data is encoded so as to remove spaces,
and other various characters from the data stream. A CGI program must
decode the incoming data before processing.

3.2.1.2 GET

The GET method appends the key-value pairs to the URL. A question mark
separates the URL proper from the parameters which are extracted by the
HTTPD server and passed to the CGI program via the QUERY_STRING
environment variable. The general format of a GET query is as follows:

http://server-url/path?query-string

In this syntax, the main terms are as follows:

server-url is the address of the server that receives the input string;
path is the name and location of the software on the server;
query-string is data to be sent to the server.

Figure 3.2. The structure of CGI programs. Any program must carry out the three tasks
shown: first it decodes any form input, then carry out the required processing; and finally
it must compile an output document to return to the user.

Server-side GIS operations 33

Below are some typical examples,

http://www.cityofdunedin.com/city/? page=searchtools_street
http://www.geo.ed.ac.uk/scotgaz/scotland.imagemap?306,294
http://www.linz.govt.nz/cgi-bin/place?P=13106
http://ukcc.uky.edu:80/~atlas/kyatlas?name=Main+&county=21011

The GET method is generally used for processes where the amount of
information to be passed to the process is relatively small, as in the above
examples. Where larger amounts of data need to be transmitted, the POST
method is used.

3.2.1.3 POST

In the POST method, the browser packs up the data to be passed to the Web
server as a sequence of key-value pairs. When the server receives the data it
passes it on to the CGI program as standard input. Here is a typical string
that would be sent by the sample form, which is described in the section that
follows.

register=tourism&country=Canada&attraction=Lake%Louise&
description=&latdeg=51&latmin=26&longdeg=-116&longmin=11&
region=Alberta&hotel=YES&meals=YES&park=YES&history=YES
&website=http://www.banfflakelouise.com/&
email=info@banfflakelouise.com

The application program needs to unpack this string and carve it up into the
required name-value pairs before it can use the data.

3.2.2 Forms and image fields

An important aspect of the Web is that information access need not be passive.
Users can send data to Web servers via forms. Forms are documents that
include fields where data can be entered. These fields consist of text boxes
and various other “widgets” (Table 3.1). Users normally submit form data by
clicking on a SUBMIT button. The server receives the submitted data, processes
it and sends a response back to the user (Fig. 3.2).

The basic structure of an HTML form is as as follows:

<form processing_options>

input fields mixed with text

</form>

Here the “processing options” are attributes that describe the method that
will be used to transmit the data (see GET or POST above), and indicate
which program will receive and process the form data. The types of input
fields that can be included are listed in Table 3.1.

Online GIS34

Example

Below is the HTML source code for a simple form that might be used for
(say) operators to register tourist attractions in an online database. The resulting
Web form as it would appear in a browser is shown in Figure 3.3.

The code contains two hidden fields, which provide technical data to the
server. One, called “register”, tells the server which register to use. This is
essential if the same software handles several different services. The second
hidden field tells the server which country the registered sites are located in
(Canada in this case). This data would be necessary if the underlying database
held information for many countries, but the form applied to one only.

Note the use of the table syntax to arrange a clear layout of the fields. Web
authoring systems usually make it possible to construct HTML documents
and forms without seeing the underlying code at all. However, it pays authors
to learn to manipulate HTML code directly. For instance, many automatic
form builders use features that may not display well on all browsers.

<html>

<body>

<h1>Tourist site register</h1>

Table 3.1. Some common widgets in HTML forms.

Server-side GIS operations 35

<form action=”http://life.csu.edu.au/cgi-bin/geo/demo.pl”
method=”POST”>

<input type=”hidden” name=”register” value=”tourism”>

<input type=”hidden” name=”country” va1ue=”Canada”>

<p>Attraction

<input name=”attraction” type=”text” size=”50" value=”Enter its
name here”>

<p>Description

<textarea name=”description” rows=”2" cols=”40">

Write a brief description here.

</textarea>

<h4>Location</h4>

<table>

<tr><td><i>Latitude</i>

<input name=”latdeg” type=”text” size=”3"> deg

<input name=”latmin” type=”text” size=”3"> min

<td><i>Longitude</i>

<input name=”longdeg” type=”text” size=”3"> deg

<input name=”longmin” type=”text” size=”3"> min

<td><i>Province</i>

<select name=”region”>

<option value=”BC”>British Columbia

<option value=”ALB”>Alberta

<option value=”SAS”>Saskatchewan

<option value=”MAN”>Manitoba

<option value=”ONT”>Ontario

<option value=”QUE”>Quebec

<option value=”NB”>New Brunswick

<option value=”PEI”>Prince Edward Island

<option value=”NS”>Nova Scotia

<option value=”NFL”>Newfoundland

</select>

</table>

<h4>Facilities available</h4>

<table>

<tr><td valign=”top”><i>Hotel</i> <td>

<td><input type=”radio” name=”hotel” value=”YES”> Yes

<input type=”radio” name=”hotel” value=”NO” > No

<td valign=”top”><i>Meals</i>

Online GIS36

<td><input type=”radio” name=”meals” value=”YES”> Yes

<input type= “radio” name= “meals” value=”NO” > No

</table>

<h4>Features</h4>

Park <input type=”checkbox” name=”park” value=”TRUE”>

History <input type=”checkbox” name=”history” value=”TRUE”>

<h4>Online addresses</h4>

<table>

<tr><td><i>Website</i>

<input name=”website” type=”text” size=”30" value=”http://”>

<td><i>Email</i>

<input name=”email” type=”text” size=”20" value=”Enter
name@location”>

</table>

<input type=”reset” value=”Clear”>

<input type=”submit” value=”Submit”>

</form>

</body>

</html>

Image input fields

HTML provides online forms with the capability for images to be used as
input fields. That is, if a user points at an image with a mouse and clicks the
mouse button, then the location of the mouse pointer will be transmitted as
image coordinates. This facility makes it possible to provide maps, within a
form, that allow the user to select and submit geographic locations interactively.

HTML provides for a user defined widget called an image field. Although
we restrict the discussion here to images that are maps, the image can potentially
be anything at all. A typical entry for an image field might be as follows.

<input type=”image” name=”coord” src=”world.gif”>

In this example, the name of the field variable that is defined is coord and
the image to be displayed is contained in the file called world.gif. The
image field so defined has the following important properties.

� The browser transmits not one, but two values from this field. They
are the x and y coordinates from the image, and are denoted by
coord.x and coord.y respectively.

Server-side GIS operations 37

� These coordinates are image coordinates, not geographic
coordinates. It is up to the processing software to make the
conversion to latitude and longitude.

� The image field acts as a SUBMIT button. That is, when the user
clicks on the image the form data (including the image coordinates)
are submitted to the server immediately.

To convert the image coordinates into geographic coordinates, we need to
know the size of the image in pixels, and the Latitude and Longitude
corresponding to the two corners. The simplest formula for converting the
image coordinate coord.x into the corresponding longitude L is then where

Figure 3.3. Example of a World Wide Web form. This form is defined by the HTML
source code presented in the text. The menu for province selection has been pulled down
and the entry for Quebec highlighted.

Online GIS38

L0 and L1 and the longitudes represented by the top and right sides of the map
and xmax is the horizontal width of the image in pixels. A similar formula
would apply for extracting latitude from coord.y. Note that these formulae
apply only on small scales. On a global scale it is necessary to take into account
the map projection that is used.

3.2.3 Quality assurance and forms

The distributed nature of the Web means that hundreds or even thousands of
individuals could potentially contribute data to a single site. This prospect
raises the need to standardise inputs as much as possible and to guard against
errors. One method, which can be used wherever the range of possible inputs
is limited, is to supply the values for all alternatives. So, for instance, instead
of inviting users to type in the text for (say) “New South Wales” (ie. entering
it as a text field), we can supply the name as one of several options, and
record the result in the desired format (e.g. “NSW”), by using a pull-down
menu (as shown for the field province in Figure 3.3). This method avoids
having to sort out the many different ways in which the name of the state
could be written (e.g. “NSW”, “N.S.W.”).

3.3.4 Processing scripts and tools

The most basic operation on a server is to return a document to the user.
However, many server operations need to include some form of processing as
well. For instance, when a user submits a form the server usually needs to
interpret the data in the form and do something with the data (e.g. write it to
a file, carry out a search), then write the results into a document that it can
return to the user. The processing may include passing the data to various
third party programs, such as databases, or mapping packages. Some
commercial publishing packages now provide facilities to install and manage
the entire business. However, the processing itself is often managed using
processing scripts. Scripts are short programs that are interpreted by the
system on the fly. They are usually written in scripting languages, such as
Perl, Python, Java (see Chapter 4), Shell Script (Unix/Linux), or Visual Basic
(Windows).

The following short example shows a simple Perl script that processes form
data submitted to a Web server. The code consists of three parts. Part 1 decodes
the form data (which is transmitted as an encoded string), and the data are
stored in an array called list. This array, which is of a type known as an
associative array, uses the names of the fields to index the values entered. So
for the field called country in the form example earlier (which took the
value Canada), we would have an array entry as follows:

list{country}=Canada.

Part 2 writes the data in SGML format (see Chapter 5) to a file on the server.
Part 3 writes a simple document (which echoes the submitted values) to
acknowledge receipt to the user. A detailed explanation of the syntax is beyond
the scope of our discussion. For a detailed introduction to the freeware language

Server-side GIS operations 39

Perl see Schwartz (1993). There are also many online libraries of useful scripts,
tools, and tutorials.

!usr/local/bin/perl

Simple form interpreter

Author: David G.Green, Charles Sturt University

Date : 21/12/1994

Copyright 1994 David G.Green

Warning: This is a prototype of limited functionality.

Use at your own risk. No liability will be

accepted for errors/inappropriate use.

#

PART 1 - Convert and store the form data

Create an associative list to store the data

%list = ();

Read the form input string from standard input

$command_string=<STDIN>;

chop ($command_string);

Convert codes back to original format

... pluses to spaces

$command_string =~ s/ \+/ /g;

... HEX to alphanumeric

$command_string=~ s/%(..) /pack (“c”, hex ($1)) /ge;

now identify the terms in the input string

$no_of_terms=split (/&/, $command_string);

@word=@_;

Separate and store field values, indexed by names

for ($ii=0; $ii<$no_of_terms; $ii++)

{ @xxx=split (/=/, $word [$ii]);

$list {$xxx [0]}=$xxx [1];

}

#

PART 2 - Print the fields to a file in SGML format

$target_name=”formdata.sgl”;

open (TARGET, “>>$target_name”);

Use the tag <record> as a record delimiter

print TARGET “<record>\n”;

Cycle through all the fields

Print format <fieldname>value</fieldname>

foreach $aaa (keys (%list))

{ print TARGET “<$aaa>$list{$aaa}<\ /$aaa>\n”;

}

close (TARGET);

print TARGET “<\ /record>\n”;

#

PART 3 - Send a reply to the user

Writes output to standard output

The next line ensures that output is treated as HTML

Online GIS40

print “Content-type: text/html\n\n”;

The following lines hard code an HTML document

print “<HTML>\n<HEAD>\n Form data

return\n<\ /HEAD>\n<BODY>\n”;

print “<H1>Form received. </H1>\n<P>Here is the data you

entered ... \n”;

Print the fields in the form FIELD=VALUE

foreach $aaa (keys (%list))

{ print “Field $aaa=$list{$aaa}\n” ;

}

print “<\ /BODY><\ /HTML>\n”;

To understand how this script would be used in practice, suppose that it is
stored in an executable file named simple.pl that is located in the cgi-bin
hierarchy of a server whose address is mapmoney.com. Then the script would
be called placing the following action command in the form:

<form action=”http://mapmoney.com/cgi-bin/simple.pl”
method=”POST”>

The purpose of the above example is to show the exact code that can be used
to process a form. However, in general, it is not good practice to write scripts
that hard-wire details such as the name of the storage file, or the text to be
used in the acknowledgment. Instead the script can be made much more widely
useful by reading in these details from a file. For instance, the return document
can be built by taking a document template and substituting details supplied
with the form for the blanks left in the template, or by the script itself. Likewise,
the name of the output file could be supplied as a run-time argument to the
script. To do this the script would need to replace the line

$target_name=”formdata.sgl” ;

with an assignment such as the following

$target_name=@ARGV;

The URL to call the script would use a “?” to indicate a run-time argument:

http://mapmoney.com/cgi-bin/simple.pl?formdata.sgl

This example still has problems. In particular, this example shows the
extensions of both the script and the exact name of the storage file. For security
reasons, it is advisable to avoid showing too many details.

3.3 ONLINE MAP BUILDING

To build a simple map across the Web, the following sequence of steps need
to take place:

Server-side GIS operations 41

1. the user needs to select or specify the details of the map, such as the
limits of its borders and the projection to be used;

2. the user’s browser (the “client”) needs to transmit these details to
the server;

3. the server needs to interpret the request;
4. the server needs to access the relevant geographic data;
5. the server needs to build a map and turn it into an image (e.g. GIF

format);
6. the server needs to build an HTML document and embed the above

image in it;
7. the server needs to return the above document and image to the

client;
8. the browser needs to display the document and image for the user.

This process is illustrated in Figure 3.4. In the above sequence, only Steps 2, 7,
and 8 are standard operations. The rest need to be defined. In almost all cases,
Step 1 involves the use of a form, which the browser encodes and transmits. In
Step 3, the server passes the form data to an application program, which must
interpret the form data. The same program must also manage the next three
steps: communicating with the geographic data (Step 4), arranging the map-
building (Step 5) and creating a document to return to the user (Step 6).

When building a map in the above example, what the system actually
produces is a text document (which includes form fields) with the map
inserted. The map itself is returned as a bit-map (pixel-based) image. The
image is in some format that a Web browser can display. Until recently, this
usually meant a GIF format, or even JPEG. Having to convert Vector GIS
data to a pixel image has been a severe drawback. The output loses precision.

Figure 3.4. The flow of information from user to server and back that is involved in a
typical system for building maps over the Web. The modules used here are as follows:
SLEEP is a script interpreter (see Section 3.5) with a module of GIS calls to the Mapmaker
software (Steinke et al. 1996), which uses the GMT freeware package of map-drawing
tools (Wessel and Smith 1991, 1995).

Online GIS42

It cannot be scaled. And downloading a pixel image, even a compressed one,
often requires an order of magnitude more bandwidth than the original data.
A solution is now at hand with the introduction of a standard for Scalable
Vector Graphics (SVG). We describe this new standard in the next chapter
(Section 4.4.5).

3.4 THE USE OF HIGH-LEVEL SCRIPTING LANGUAGES

Programming languages were invented to simplify the task of programming
computers. High-level languages are computer languages that are designed to
simplify programming in a particular context. It is far easier to write a program
that carries out a specialised task if you can use terms and concepts that relate
directly to the system concerned. The problem with general purpose languages
is that the solution to a programming problem has to be expressed in terms
that are very far removed from the problem’s context. In particular, most
automating of online services has involved writing programs in languages
such as Perl, Java, C++ or shell script.

It has become commonplace in many computing packages to simplify the
specification of processing steps by providing high level scripting languages.
The advantages are that most operations can be programmed far more
concisely than general purpose languages. Also, because they are oriented
towards a specific content area they are usually easier to learn and to use. For
example to extract the contents of a Web form in the language Perl requires a
program of at least a dozen lines. However, in a Web publishing language the
entire process is encapsulated in a single command.

High-level languages are desirable in developing server-side operations on
the Web. The advantages (Green 1996, 2000, Green et al. 1998) include
modularity, reusability, and efficiency. As we shall see below, and in later
chapters, high level languages can include GIS functions and operations.

Most conventional GIS systems incorporate scripting languages to allow
processes to be automated. In automating a web site, particular scripts can be
generalised to turn them into general purpose functions. To do this we start
with a working script such as the following simple example.

SET BOUNDS 34.8S 140. 1E 40.4S 145.2E

EXTRACT roads, topography, vegetation

PLOT roads

PLOT topography

PLOT vegetation

We then replace constant values by variables, which can be denoted by angle
brackets.

SET BOUNDS <tlat> <tlong> <blat> <blong>

EXTRACT roads, topography, vegetation

PLOT roads

PLOT topography

PLOT vegetation

Server-side GIS operations 43

This generalised script can now serve as a template for producing a plot of the
same kind within any region that we care to select. If the user provides the
boundaries from (say) a form, then we could generate a new script by using a
Perl script to replace the variables in the template with the new values. Here’s
a simple example of a Perl script that does this.

! /usr/bin/perl

Build a simple script from a template

The associative array markup contains

replacement values

getvars fromform;

filtertemplate;

sub filtertemplate {

while ($sourceline=<STDIN>)

{ chop ($sourceline) ;

$targetline=$sourceline ;

Enter the input string into the

template fields

for ($i=0; $i<$no_of_tags; $i++)

{ $work=$tag[$i] ;

$targetline =~

s/$work/$ formvar{$work}/gi;

}

print “$targetline\n”;

}

}

This script acts as a filter. Its function is similar to a merge operation in a
word processor. We supply values for variables in a form. The function
getvarsfromform (cf. the example in Section 3.3.4) retrieves these values as a
table ($formvar). The perl script then reads in the template as a filter and
prints out the resulting script. To run this script we would use a call such as

cat templatefile | filterfile > outputscript

where templatefile is the file containing the template, filterfile is
the file containing the above perl code and outputscript is the resulting
script.

Although the above procedure works fine, it is cumbersome to have to
rewrite perl scripts for each new application. A more robust and efficient
approach is to continue the generalisation process to include the perl scripts
themselves. This idea leads quickly to the notion of implementing web
operations via a high-level publishing language.

The following example of output code shows what form data might look
like after processing by a script such as the above. The format used here is
XML (see Chapter 5), with tags such as <country> corresponding to form fields.

Online GIS44

<country>

<name>United State of America</name>

<info>http: //www.usia.gov/usa/usa.htm/</info>

<www>http: //vlib.stanford.edu/Servers.html</www>

<government>http: //www.fie.com/www/us_gov.htm</government>

<chiefs>http: //www.whitehouse.gov/WH/html/handbook.html </
chiefs>

<flag>http: //www.worldofflags.com/</flag>

<map>http: //www.vtourist.com/webmap/na.htm</map>

<spdom>

<bounding>

<northbc>49</northbc>

<southbc>25</southbc>

<eastbc>-68</eastbc>

<westbc>-125</westbc>

</bounding>

</spdom>

<tourist>http: //www.vtourist.com/webmap/na.htm</tourist>

<cities>http: //city.net/countries/united_states/</cities>

<facts>http: //www.odci.gov/cia/publications/factbook/us.html< /
facts>

<weather>http: //www.awc-kc.noaa.gov/</weather>

<creator>David G.Green</creator>

<cid>na</cid>

<cdate>1–07–1998</cdate>

</country>

The following simple publishing script converts the above data from XML
format (held in the file usa.xml) into an HTML document (stored in the file
usa.htm). In this case it simply replaces the tags with appropriate code.
Such a script can be easily prepared by a naïve user without understanding
what the conversion operations actually are.

var <country> </head><body bgcolor=”#ffffff “>

…… definitions omitted ……

source usa.xml

target usa.htm

new all

sub

close all

3.5 IMPLEMENTING GEOGRAPHIC QUERIES

3.5.1 Example—Great Circle Distances

A simple example of a geographic query online is the following demonstration
of computing great circle distances between points selected from a map of the
world. The interface (Fig. 3.5) is a form with a map image in it.

Server-side GIS operations 45

To call the example, the URL addresses the interpreter for this service (here
it is called mapscript). The interpreter links to a set of functions that perform
relevant GIS functions. To enable the demonstration, we pass to the interpreter
the name of the publishing script to be used (here it is in the file circle.0).
The full call is therefore as follows:

http: //life.csu.edu.au/cgi-bin/gis/demos/mapscript?circle.0

The complete process needs two publishing scripts. The script above
(mapscript) provides an entry into the service (Fig. 3.6). It defines initial
locations for the two points involved. A second script (circle.1) processes
subsequent calls made from the form. The complete list of files involved is
thus as follows:

� An initialisation script (circle.0);
� A processing script (circle.1);
� The document template (circle.xml), essentially it is the form shown

in Fig. 3.5, but with variables in place of the locations of the two
points;

� The map used, saved as a static GIF image (world.gif);
� The interpreter (mapscript).

The HTML file that is displayed on the client browser does not exist as a
stored file. It is generated on the fly by the server (see Fig. 3.7). The key
element in the form is the image input type, given by the element

<input type=”image” name=”coord” src=”world.gif>

Figure 3.5. A simple form interface for computing great circle distances. The user simply
clicks on the map to select a new location for point A or point B. A radio button (SELECT
POINT) defines which point is being selected. Following each selection, the server
regenerates the form with the new settings. The great circle distance is displayed in the
box at the right of the map.

Online GIS46

source circle.xml (define the template file)

target STDOUT (send results to standard output)

var alat -34.5 (initial Latitude of Point A)

var along 147 (initial Longitude of Point A)

var blat -33 (initial Latitude of Point B)

var blong 149 (initial Longitude of Point B)

radius 6306 (Earth’s radius in kilometres)

form (extract fields from the form)

circle (calculate the distance)

sub (place new values in the template)

Clicking on the image generates a pair of values, here called coord.x and
coord.y, which are the coordinates of the point on the image where the
mouse is clicked.

Below is the HTML source code for the form used in the great circle
example. The lines in bold are (in order): (1) the call to the form processing
script; (ii) an image input field, which ensures that coordinates are read off
the map; (iii) a hidden field providing a value for the earth’s radius; (iv) the
final four lines in bold are fields that were processed by the publishing script,
as shown in Fig. 3.6.

<html>

<head>

<title>Great circle distance calculations</title>

</head>

<body>

<form

action=”http: //life.csu.edu.au/cgi-bin/gis/calc?circle.1"

method=”POST”> (i)

<table>

<tr><td><input type=”image” name=”coord”

src=”http: //life.csu.edu.au/ gis/demos/world.gif”>

(ii)

<td><h2>Great circle distances</h2>

This service calculates the distance from the

point A to point B.

<i>Click on the image to select a new point. </i>

Lat/Longs are in degrees North.

Current distance

<input type=”text” name=”circle”

value=”732.9" size=”10"> Km

<input type=”hidden” name=”radius” value=”6366.19">

(iii)

Figure 3.6. The publishing script used in the great circle example.

Server-side GIS operations 47

</table>

<P>

<table border=”1" cellpadding=”1">

<tr><td>Value<td>Point A

<td>Point B

<td rowspan=”2"> <input type=”submit”>

<tr><td>SELECT POINT

<td><input type=”radio” name=”site” value=”source”>

<td><input type=”radio” name=”site” value=”target” checked>

<tr><td>Latitude (e.g. -34.5)

<td><input type=”text” name=”alat” value=” -37.45"> (iv)

<td><input type=”text” name=”blat” value=”-33.53"> (iv)

<td rowspan=”2"><input type=”reset”>

<tr><td>Longitude (e.g. 134.5)

<td><input type=”text” name=”along” value=”144.5"> (iv)

<td><input type=”text” name=”blong” value=”151.1"> (iv)

</table>

</form>

</body></html>

3.6. CONCLUDING REMARKS

The above examples are indicative of the kind of scripting that developers of
online GIS are likely to encounter. Most commercial systems have in-built
scripting features, which simplify the implementation of GIS online, much as
we have demonstrated above.

Rapid developments are presently under way in the technology available
for server-side processing. Within the next few years, these developments have

Figure 3.7. Use of a template to update the form used in the great circle example. The
publishing script combines input from the form (Fig. 3.5) takes and combines it with a
template (above left) by replacing actual values (e.g. 147) for the corresponding XML
variables (e.g. <along>). The resulting code for the new form is shown at right.

Online GIS48

the potential to transform the way in which online GIS is implemented and
practised.

Some of the changes are likely to occur through innovations from the World
Wide Web Consortium (W3C). One such development, which will be of
considerable use, is the Scalable Vector Graphics (SVG) standard (see Chapter
4). Vector data usually requires far less storage space, and, more importantly,
far less transmission bandwidth. Although the web has had image formats
available since its inception, vector systems have typically been proprietary
and activated via plugins. One of the most successful has been Flash from
Macromedia. Now, we have a web standard for expressing vector operations
in XML, which will enable CGI scripts to generate vector diagrams on the fly.

Another major development from W3C for server side operations is the
update to the HTTP protocol, which will allow maintenance of state. Security
mechanisms are getting more sophisticated, but, otherwise, there is not much
to report server-side.

Another series of important initiatives are those being developed by the
Open GIS Consortium (OpenGIS 2001). One proposal is the Geographic
Markup Language, which we will look at more closely in Chapter 5. However,
perhaps the most telling proposal is the specification that the Consortium is
developing for Open GIS. We look at the Open GIS specifications in Chapter
7 and Chapter 10. One important development is the Web Map Server Interface
(OpenGIS, 2001), which specifies the types of outputs that a map server should
be capable of providing.

CHAPTER 4

Client-side GIS operations

4.1 INTRODUCTION

One of the fundamental differences between online and stand-alone GIS is
the separation of the user interface from the main data and processing, as we
saw in Chapters 2 and 3. To have to refer every operation, every choice back
to the server is slow. It is also frustrating for the user. Therefore any steps that
are used to move interactions to the client’s machine is desirable. Many types
of operations can be performed client-side. The following list is indicative,
but not exhaustive.

� Simple selection of geographic objects can often be implemented as
client-side image maps.

� Some simple functions, such as elementary checks of validity for
data entries, can be implemented in Javascript, now standardised
as ECMA script, which comes as built-in to most Web browsers.

� Vector graphics will soon be readily available as SVG (see Section 4.4.5).
� Java applets can be used to implement many interactive features, including:

• context-dependent menus;
• advanced geographic selection (e.g. rubber-banding).
• Java has a full set of image processing classes enabling efficient

operations to be carried out client side.

� Helper applications allow many processes to be off-loaded to other
programs. This even includes some GIS operations. Other examples
include:

• Downloading tables as spreadsheets;
• Passing images to suitable viewing programs.

Most of the above features can be employed to help implement an online GIS.
In this chapter, we explore some of the ways in which this can be done. For
the most part we focus on how to use standard Web tools and facilities.
However, it is important to bear in mind that commercial GIS packages are
likely to provide many tools that will greatly expand (and simplify) the range
of what can be achieved.

4.2 IMAGE MAPS

One of the first systems for implementing geographic queries was the
imagemap. An imagemap is an interactive image. In a simple hypertext link,
clicking on an image would request a single document. However, the imagemap
calls up different documents, depending on where on the image you click.

Online GIS50

A very useful way of retrieving information is to plot data on a diagram or
map that shows how ideas, places etc. are related to one another. The imagemap
construct allows us to use such diagrams as hypertext indexes. The source
image may be a map, but can also be any image at all, such as a diagram.

For example, the following image (Fig. 4.1) might serve as a simple
geographic index to Australian states and cities. For simplicity, we have
implemented the index as a set of overlapping rectangles. However, detailed
polygons representing state borders could be used if precision is important.

4.2.1 Operation of an imagemap

An imagemap requires three elements.

1. An image (e.g. “file.html”) so that the map can be displayed.
2. An HTML file containing the image and linking the image with the

map. To be active the image must be referenced via the ISMAP
syntax.

3. A map table which defines regions on the image and lists what
action to take for each.

In the above example (Fig. 4.1), the image is a map of Australia (as a raster
image in GIF format). The associated map file (aus.map) is shown below.

Figure 4.1. The image contained in the file ausmap.gif. The box around Western Australia
and polygon bordering the Northern Territory indicate the regions used in the imagemap
example discussed in this section.

Client-side GIS operations 51

default /links/ozerror.html

rect / inks/wa.html 0, 90 219, 300

poly /links/nt.html

218,114 218,248 327,248 328,133 324,128

315,123 311,124 304,116 299,115 295,110

304,101 302,96 303,91 310,89 315,78

308,75 294,79 287,75 276,75 267,69

264,69 261,78 240,79 231,88 231,94

227,94 223,105 225,110 225,114 218,112

This first line defines the default action—what to return if no valid region is
selected. The remaining lines define regions of the map and the action to take.
For example in the first line:

“rect” means that the region is a rectangle;
“./links/wa. html” defines the file to retrieve when the region is

selected; and
“0, 90 217, 370” defines corners of a rectangle within the

image.

Note that this example has been simplified to avoid printing pages of code!
For some applications, the rectangle shape, as shown for Western Australia,
would be suitable, but if precision is required, then the rectangles would be
replaced by polygons, as shown here for the Northern Territory, that track
the state borders more accurately.

The syntax for calling an imagemap differs from ordinary hypertext. For
example to use the above image as a simple hypertext link, we would use the
syntax

However, to define the imagemap we use the following ISMAP syntax. Below,
the attribute “/cgi-bin/imagemap/ausmap” denotes the map file and
“ausmap.gif” is the image.

For more detailed instructions see an online imagemap tutorial (e.g.
NCSA 1995).

4.2.2 Client-side image maps

Originally imagemaps were available only for server-side processing. That is,
for every selection the coordinates were transmitted back to the server, which
then performed the lookup of the map table. However, this procedure meant
that imagemaps could not be used for stand-alone reference.

Online GIS52

The browser program Netscape version 2 (1995) and later introduced
clientside imagemaps, in which the browser itself processes selections on the
image (there are many advantages to this approach).

The following map (Fig. 4.2) is a client-side image map. If you click on
Australia, then a small map of Australia is loaded; if you click elsewhere a
default file is loaded.

The above innovation requires two additions to HTML syntax. First the
parameter USEMAP tells the browser to look for the map table at the location
indicated (usually within the same document) and the <map> element defines
a block of code where the table is located. Here is the code used in the above
example:

<map name=”xxx”>

<area coords=”232, 87, 266, 117" href=”aus.htm”>

<area coords=”0, 0, 300, 154" href=”error.htm”>

</map>

In the above fragment of HTML code, the first line loads the image and
activates the map. The remaining lines (which need not follow immediately,
even though they do here) define the map table.

4.2.3 Production of imagemaps

As we saw above, define hot regions on an image by listing the coordinates of
the region’s border. However, these are image coordinates, not geographic
coordinates. So when creating an imagemap, it is necessary to convert borders
so that they refer to the image, not the geography. There are two distinct ways
of doing this. If the geographic coordinates are known, then they need to be
converted using the appropriate transformation. However, if they are not,
then the borders need to be digitised directly. Most image viewers allow the
user to read coordinates directly off an image. However, several share ware
programs allow the user to build a map file directly.

Figure 4.2. The world imagemap described in the text.

Client-side GIS operations 53

4.3 USE OF JAVASCRIPT IN CLIENT SIDE OPERATIONS

Javascript is a scripting language designed for use with Web documents. It
began as a proprietary Netscape invention, but has now become a web standard
as ECMA script. The code can be included within an HTML document to
perform various functions. The main kinds of applications are:

� To improve the user interface.
� To validate form data prior to submission.
� For animations and other “bells and whistles” (for example,

animations).
� To allow interaction and exploration of content (e.g. simulations

and games).

Note that Java and Javascript are quite different languages, although they
share some syntactic sugar. A simplified way to view the difference is to think
of Javascript as knowing what is on the Web page and being able to manipulate
it. Java, on the other hand, runs in an independent window or within the web
page but does not normally access its fields.

In the following sections we examine two useful examples.

4.3.1 Screening data input fields

One of the greatest problems with any large scale data system is to ensure that
all of the entries are valid and in a standard format. The best place to trap
errors is at data entry. Web browsers provide two ways of reducing input errors:

� Controlling values in form fields; and
� Using Javascript functions to screen data input fields.

The first of the above methods is simplest. We ensure that values are entered
in the correct format by controlling what is entered. To understand this, suppose
that we set up a simple form in which every value is entered as a simple text
field. The problem is that people can enter values in many different ways. For
instance, the name “United States of America” can be written in many ways,
such as:

� United States
� USA
� U.S.A.
� US of A

Whereas humans can readily identify all of the above forms as variations of
the same thing, they pose severe problems for computer searches, indexing
and many other automated functions. To reduce this problem we can use use
pull menus, radio buttons and other similar data fields that require the user to
choose the value, rather than enter it. By adopting this method, we can ensure
that the system enters the value in correct. For instance, in the example above,
USA can be rendered as an abbreviation. Every time it is selected the machine

Online GIS54

enters it in the same way. Figure 4.3 shows a simple form of this kind. The
HTML code that generates the form is listed below. Notice that although
country names are written on screen in full, the values returned for the variable
“country” are all abbreviations. This can be seen in the OPTIONS fields listed
in source code.

<html><body>

<hl>Choose a country</hl>

<form action=”http: //life.csu.edu.au/cgi-bin/gis/optl”

method=”POST”>

<select name=”country”>

<option value=”USA”>United States of

America

<option value=”AUS”>Australia

<option value=”UK”>United Kingdom

</select>

<p><input type =”submit”><input type=”reset”>

</form>

</body></html>

It is advisable to adopt the above approach as widely as possible in data entry
forms. For instance, to enter dates we can provide a list of all days of the
month, as well as a list of months of the year. In general, text entry can usually
be avoided wherever there is a finite (and relatively small) number of possible
values for a given field.

Another way to trap errors using selection lists is to provide redundant
fields. For instance, suppose that the user is required to enter the name and
lat/long of a town in text fields within a data entry form. Then it is useful to
include a field for correlated geographic units, such as country, state or province
as well. This makes it possible to carry out redundancy checks and flag possible
errors. For instance, the town name could be checked against a gazetteer of
place names within the selected geographic unit. Likewise the latitude and
longitude can be tested to confirm that they do lie within the selected unit.

Figure 4.3. WWW form resulting from the HTML code listed in the text. Although country
names are written on screen in full, the values returned for the variable “country” are all
abbreviations.

Client-side GIS operations 55

4.3.2 The need for Javascript

The above method of providing choices during data entry applies only to
fields that have a restricted range of possible values. However, it cannot trap
all problems with data input. For example, the user may fail to select a value
where one is required. And inevitably free text will be required in almost any
data entry form. For text fields we can use Javascript to carry out preliminary
screening of input data before it is transmitted to a server.

Figures 4.4 and 4.5 show an example of a simple form for data entry. In
this example the user enters the name of a town and the latitude and longitude
of its location. The code for the form includes the required Javascript, which
is downloaded to the browser, along with the form. The field

ONSUBMIT=”return checkForm ()”

within the FORM tag instructs the browser to run the Javascript code just
before submitting it to the server. The form data is transmitted only if the
function checkForm returns a value of TRUE, otherwise an alert box appears
with details of the error detected (Fig. 4.5). The following code shows how
the Javascript is integrated into the HTML code that produces the form.

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JAVASCRIPT”>

//—Check the submitted form

function checkForm ()

{

if ((isLatLong()) && (isPlaceName()))

{

return true;

Figure 4.4. A simple form for entering town locations. The source code contains Javascript
(partly omitted) to test the validity of the entries prior to submission. The missing code is
shown in the next figure.

Online GIS56

}

else

{

return false;

}

}

… code omitted for isLatLong and isPlaceName …

</SCRIPT>

</head>

<body>

<FORM ACTION= “form_processing_url”

METHOD= “POST” NAME= “data_entry”

ONSUBMIT= “return checkForm () “ >

<h1>Add a town name and its location</h1>

<INPUT TYPE=HIDDEN NAME=”topic” VALUE=” “>

<p>Town Name <INPUT TYPE=”text” NAME=”town” SIZE=40>

<p>Latitude < INPUT TYPE=”text” NAME= “latitude”

SIZE=”10">

<p>Longitude < INPUT TYPE=”text” NAME =”longitude”

SIZE=”10">

<INPUT TYPE= “Submit” VALUE=” Submit Details “>

<INPUT TYPE= “Reset” VALUE=” Reset “>

</FORM>

</body ></html>

In this example, we have applied three different kinds of checks.

� The first is to check that the name field is not empty. This is a useful way

to ensure that required data fields are completed prior to submission. We
can generalise the code used as follows, where angle brackets indicate
variables that should be replaced with appropriate field names or code.

Figure 4.5. The javascript source code missing from the form in the previous figure. This
code checks that the fields are valid. An error produces an alert, as shown.

Client-side GIS operations 57

if (<field_name> == “ “) { <action>}

� The second check ensures that the town name is of an acceptable form.
For simplicity, the code used in the example given here

var ch=townstr.substring(i, i+1) ;

if ((ch < “a” | | “z” < ch) && (ch != “ “))

is very restrictive. It ensures that each character in the name is either a
letter, or a space. In real applications, a much greater variety of characters
would be permissible.

� The final check is to ensure that values are given for latitude and longitude
and that they lie within the permissible range. In this case we have used
the convention that positive valus for latitude denote degrees north and
that negative values indicate degrees south.

if (townlat ==” “ | | townlat < -90 | | townlat > 90)

The source code for carrying out the above tests is included in the Javascript
code that follows.

/ / Checks town field.

function isPlaceName ()

{

var townstr=document.data_entry.town.value.toLowerCase();

/ / Return false if field is blank,

if (townstr == “ “)

{

alert (“ \nThe Town Name field is blank.”)

document.data_entry.town.select ();

document.data_entry.town.focus ();

return false;

}

/ / Return false if characters are not letters or spaces.

for (var i=0; i < str.length; i++)

{

var ch=townstr.substring(i, i+1);

for (var i=0; i < townstr.length; i++)

{

var ch=townstr.substring(i, i+1);

if ((ch < “a” | | “z” < ch) && (ch != “ “))

{

alert (“\nTown names may contain only letters

and spaces.”);

document.data_entry.town.select ();

document.data_entry.town.focus ();

return false;

}

} return true;

}

Online GIS58

/ /Check Lat & Long fields

function isLatLong ()

{

var townlat=document.data_entry.latitude.value;

var townlong=document.data_entry.longitude.value;

/ / Return false if latitude is outside the range -90,90,

/ / or if longitude is outside the range -180, 180.

if (townlat ==” “ | | townlat < -90 | | townlat > 90)

{

alert(“ \n Latitude must be in the range -90 to 90”);

return false;

}

if (townlong ==” “ | | townlong < -180 | | townlong > 180)

{

alert(“ \n Longitude must be in the range -180 to 180”)

return false;

}

return true;

}

4.3.3 Geographic indexes

Javascript can also be used for many other purposes. For instance we can
enhance image maps by eliminating the need to refer back to the server. In the
example shown (Fig. 4.6), we replace calls to the server with calls to a Javascript
function. Whenever a mouse click is made on the imagemap, this function
generates a fresh document and inserts the appropriate text into it. The
following Javascript code provides the functionality for this example.

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JAVASCRIPT”>

/ /—Return selected information

function DataDisplay (map_option)

{

msgWindow=window.open (“”, “displayWindow”,

“menubar=no,scrollbars=no,status=no,

width=200, height=100")

msgWindow.document.write(

“<HEAD><TITLE>Data display<\/TITLE><\/HEAD>”)

if (map_option==1)

{ msgWindow.document.write (<h1>Australia<\ /h1>’)

msgWindow.document.write(‘Data about

Australia
’)

}

if (map_option==99)

{

Client-side GIS operations 59

msgWindow.document.write(‘<h1>Try

again!<\ /h1>’)

}

}

</SCRIPT>

</head>

<body>

<h1>Information Map</h1>

<map name=”xxx”>

<area coords=”232,87,266,117"

href=”Javascript:DataDisplay (1)”

onmouseover=”self.status=’Australia’/return true”

onmouseout=”self.status=’ ‘/return true”

>

<area coords=”0, 0, 300,154"

href=”Javascript:DataDisplay (99)”

onmouseover=”self.status=’Try again’/return true”

onmouseout=”self.status=’ ‘/return true”>

</map>

<p>

</body></html>

An important implication of the above is that a number of indexing and other
operations can readily be transferred from the server to the client. This is
desirable where practical, unless it would compromise proprietary or other
concerns. Given that Web sites often contain images that total several hundred
kilobytes in size, it is not impractical to download data tables of hundreds,
and perhaps even thousands of entries.

Javascript can be used to make complex mapping queries self-contained.
For example, Environment Australia’s online “Australian Atlas” (Fig. 4.7)
uses Javascript to allow users to select layers and other options in the course
of making customised environmental maps.

Figure 4.6. Combining an imagemap with javascript to produce a simple spatial information
system. In this simple example a data window appears (shown at right) when the user
clicks on the relevant area of the map.

Online GIS60

4.3.4 Other applications of Javascript

Javascript provides a means to transfer a very wide range of operations from
server to browser. For example, continuity in an interactive session means
that the form or dialog to be displayed depends on the choices and inputs
made by the user. This process is slow if the documents must be repeatedly
downloaded from the server.

4.3.5 Cookies

A “cookie” is an HTTP header that passes data between a server and a client.
The main function of cookies is to help a server to maintain continuity in its
interactions with users. As we have seen, HTTP is memoryless. Every
interaction is independent of previous interactions, even if a user is browsing
through a site during a single interactive session. One of the motivations for
cookies was to be able to facilitate interactive sessions by providing a means
for a server to keep track of a user’s previous activity.

The core of a cookie is the name of a variable and its value. Usually this
variable provides a user identification, which allows the server to look up
relevant background details on the history of the user’s previous interactions.
However, the value could be anything at all. For instance, in the context of a
GIS session it could encode details of the type of operation that the user is

Figure 4.7. A server-side form interface to Environment Australia’s Australian
Atlas. Javascript functions allow the user to select and change layers and features
to be displayed.

Client-side GIS operations 61

currently undertaking, although this information is often more simply passed
as hidden form fields. The typical format for cookie header is as follows:

Cont ent-type: text/html

Set-Cookie: user=Nurk01; path=/gis;

expires Sat, 13–Apr–2002 12:15:00 GMT

Table 4.1 sets out the meaning of the fields used in this header, as well as
other fields assumed in the process. To maintain continuity from one session
to another, cookies are usually written to a cookie file that is stored on the
hard disk of the machine running the Web browser concerned.

Table 4.2 shows two simple examples of entries stored in a user’s cookie file,
which would be referenced by a typical web browser. In practice the entries
would be laid out in TAB delimited format in a flat text file.

The domain field specifies the server(s) to which the cookie applies. The
two logical fields are set by the user. The FLAG field defines whether all
machines in the given domain can access it. The SECURE field defines
whether the server needs to provide a secure connection before it can access
the entry.

Cookies can be created and retrieved using Javascript (as well as other
commonly used languages such as Perl and VBScript). In Javascript there is a
default object document.cookie, which handles interactions with cookies.
Passing a cookie to this object causes it to be created and stored.

The following function (Whalen 1999) retrieves a cookie from the object
document.cookie.

function getCookie (name) {

var cookie=” “+document.cookie;

var search=” “+name+”=”;

var setStr=null;

var offset=0;

var end=0;

if (cookie.length > 0) {

Table 4.2. Examples of entries from the file cookies.txt

Table 4.1. Examples of entries from the file cookies.txt

Online GIS62

offset=cookie.indexOf (search) ;

if (offset != -1){

offset += search.length;

end=cookie.indexOf (“;”, offset)

if (end == -1) {

end=cookie.length;

}

setstr=

unescape (cookie.substring (off set, end));

}

}

return (setStr);

}

To use this function the user would call the function with the name of the
relevant cookie variable. For instance to retrieve the cookie “user” from Table
4.2, a possible call is:

gis_user_var=getCookie(“user”);

4.4 THE USE OF JAVA APPLETS

Java is a fully fledged programming language for the Web. It was developed
by SUN Microsystems to meet the need for a secure way of introducing
processing elements into HTML pages. It is object-oriented and includes a
wide variety of graphics and other functions.

Like Javascript, the Java language can be used to provide client side
functionality. Many of the functions described above for Javascript (e.g.
contextsensitive menus) can also be implemented using java. However, another
important use for java is its drawing ability. Here we look at two examples of
interactive operations that are fundamental in GIS, but difficult to implement
in other ways: rubber banding, tracing polygons and drawing maps.

4.4.1 Drawing

An important use of Java is to reduce the processing load on a Web server by
passing the task to the client. Another is to reduce the volume of data (especially
large images) that need to be passed across the network. One of the heaviest
processing loads (when repeated on a large scale) is simply drawing maps.
When done on the server, there is both the time cost of processing and a
network cost in the form of maps presented as large images that need to be
transferred from server to client. In many instances it is both faster, and involves
less data transer, to pass raw data to the client, together with the Java code
needed to turn it into a map.

The following fragment of Java code is a simple example of a function that
draws a map as an image. In this case it also draws a rectangle on the map to
indicate a selected area. As we shall see later, SVG now provides an alternative.

Client-side GIS operations 63

public void paint (Graphics g)

{

g.drawImage (mapImage, 0, 0, mapWidth, mapHeight, this);

width = Math.abs (topX - bottomX);

height = Math.abs (topY - bottomY);

upperX = Math.min (topX, bottomX);

upperY = Math.min (topY, bottomY);

g.drawRect (upperX, upperY, width, height);

}

4.4.2 Selecting regions

Earlier we have seen two ways of making geographic selections via a standard
Web browser. The first was to use an image within a form as a data entry
field. This method allows the user to enter the image coordinates of a single
point within a map. The second method was to define an imagemap within a
standard HTML document. The imagemap construct allows users to select a
pre-defined region from a map.

The above types of selection omit several important GIS operations.

� Although in principle the form method could be used to select a
variety of objects (e.g. a road), in practice the user could not confirm
that the correct object had been selected without reference back to
the server, which is time-consuming and clumsy.

� Selecting arbitrary, user-defined regions requires the user to be able
to draw a polygon by selecting a series of points.

� Single point clicks suffice for defining single points. However, to
define a set of points, or to digitise (say) a line, such as a road or
river, or a region, the user must again be able to select a set of
points and have lines joining them drawn in.

� Dynamic movement is an interactive process in which a user
selects an object and moves it. This is useful to denote (say) the
changing position of a car on a road. It is closely related to rubber
banding.

� Zooming and panning involve redrawing a map interactively.

In the following sections we look at some of the methods needed for carrying
out these functions.

4.4.3 Rubber banding

Rubber banding is the process of selecting a region (usually a rectangle, circle
or some other regular shape) by choosing a point and holding down the mouse
button whilst simultaneously “pulling” the shape out until it reaches the desired
size (Fig. 4.8).

Online GIS64

In practice, rubber banding is an example of interactive animation. That
is, the maps image, with the shape overlaid on it, is repeatedly redrawn and
displayed in response to the user’s mouse movements. Conceptually this
procedure involves the following steps:

Get mouse location

Calculate shape coordinates

Copy image of base map

Draw shape image over base map

Redisplay map image

The following java source code illustrates some of the functions required in
the above example. This code is used in conjunction with the earlier listing
(Section 4.4.1) that drew a map with a rectangle overlaid on it. Notice that
the listing includes functions for dealing with three distinct events involving
the mouse: that is, the mouse being pressed, dragged, and released.

public void mousePressed (MouseEvent e)

{

xPos=e.getX ();

yPos=e.getY();

mousePosition=myMap.checkPosition (xPos, yPos) ;

if (mousePosition)

{

setTopX (xPos);

setTopY (yPos);

tempUpperLong=myMap.calcLong (xPos);

tempUpperLat=myMap.calcLat (yPos);

}

else

{

showStatus (“Mouse is outside the map area”);

}

}

Figure 4.8. Rubber banding.

Client-side GIS operations 65

public void mouseReleased (MouseEvent e)

{ xPos = e.getX ();

yPos = e.getY ();

if (rodentDrag == 1 && rodentRelease == 0)

{

setBottomX (e.getX ());

setBottomY (e.getY());

mousePosition=myMap.checkPosition (xPos, yPos);

if (mousePosition)

{

lowerLat = myMap.calcLat (yPos);

lowerLong = myMap.calcLong (xPos);

upperLong = tempUpperLong;

upperLat = tempUpperLat;

myMap.convertToPixels (upperLong, lowerLong, u

upperLat. lowerLat);

zoom.setVisible (true);

rodentRelease = 1;

mousePosition = false;

}

else

{

country Info.setText (“Outside map. Try again\n”)

mousePosition = false;

}

}

}

public void mouseDragged (MouseEvent e)

{ if (mousePosition)

{ setBottomX (e.getX ());

setBottomY (e.getY ());

rodentDrag = 1;

repaint ();

}

else

{ showStatus (“Mouse is outside the map area”);

}

}

4.4.4 Drawing and plotting maps, graphs and diagrams

The final application we consider here is the use of java to draw entire maps on
the client machine. The ability to draw polygons interactively is crucial in GIS.
It is used in both drawing and selecting geographic objects. The ability to draw
and interact with maps on the client machine has several potential advantages:

� For vector maps, it usually requires less data to download the vector
data that defines a map, than to download an image of the map. It
also reduces server side processing.

Online GIS66

� Client-side drawing cuts down the amount of processing required
of the server.

� It speeds up processes such as zooming and panning, which
otherwise require the constant transfer of requests and responses
between client and server.

The need to develop java applets to deal with the above issues may decrease
as the World Wide Web Consortium introduces new standards. We now look
at one of these in the following section.

4.4.5 Scalable Vector Graphics (SVG)

Methods of drawing and plotting maps and other online figures are likely to
change dramatically with the introduction of new standards and languages for
plotting vector graphics on the Web. One of the problems with online graphics
has been that Web browsers could display only raster images, usually in GIF or
JPEG formats. However, pixel based images suffer from the problem that they
cannot be rescaled, which is a problem when printing screen images. They also
tend to lose resolution from the original. Diagonal lines, for instance, often exhibit
a “staircase” effect. Another huge problem is that pixel-based images can produce
very large files. This is one of the biggest factors in slowing delivery of online
information, especially for users linked via modems. Given that most GIS is vector
based, the necessity of delivering pixel images has been a great nuisance.

In February 1999, the World Wide Web Consortium released the first draft
of a new standard covering Scalable Vector Graphics (SVG). The following
details are taken from the draft specification (Ferraiolo 2000). At the time of
writing SVG is still only a candidate recommendation, and may change before
being finally adopted. These examples use some of the XML markup features
described more fully in Chapter 5.

To enable SVG an HTML document should include a header such as the
following (Ferraiolo 2000).

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20001102//EN”

“http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-
20001102.dtd”>

The language includes syntax for describing all the common constructs and features
of vector graphics. It also recognises the need for integrating graphics with
hypermedia elements and resources. This ability is essential, for example, to create
imagemap hot spots in an image, or to pass coordinates to a GIS query.

Because polygons defining regions are so common in GIS, perhaps the
most appropriate example is the following, in which the code defines a simple
filled polygon drawn inside a box, much as a simple map might be. Example
map01 specifies a closed path that is shaded grey. The following abbreviations
are used for pen commands within the path command:

M moveto,
L lineto
Z closepath

Client-side GIS operations 67

Using these pen commands, the SVG code for example map01 is as follows.
<?xml version=”1.0" standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20001102//EN”

“http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-
20001102.dtd”>

<svg width=”4cm” height=”4cm” viewBox=”0 0 400 400">

<title>Example map01—a closed path with a border.</title>

<desc>A rectangular bounding box</desc>

<rect x=”1" y=”1" width=”500" height=”400"

style=”fill:none; stroke:black”/>

<path

d=”M 200 100

L 300 100

L 450 300

L 350 300

L 300 200

L 300 300

L 100 300

L 100 200

L 200 200

z”

style=”fill:grey; stroke:black; stroke-width:3"/>

</svg>

Although we have deliberately kept this example brief, it is easy to see how
the method could be used to draw, say, the coastline of North America. Note
that we can readily integrate SVG code into the object-oriented method
discussed in Chapter 1. For instance, each object, say North America, would
have associate with it methods to draw a graph of itself, either as a list of

Figure 4.9. The figure produced by the SVG code given in the text.

Online GIS68

coordinates or as calls to sub-objects (e.g. Canada, USA). The method might
include the following steps for each object:

� convert the list of lat-long bounding coordinates into SVG path
commands.

� print the name of the object by writing an SVG text command

Creating an entire map from a description of the data objects is simply a matter
of working recursively through the hierarchy of objects in the map. At each
stage, you convert each object into its SVG representation. The process may
sound cumbersome, but it is the kind of processing that computers thrive on.

Because SVG is based on XML (see Chapter 5), there is ample scope to
bundle up different map elements as objects wrapped in the corresponding
XML elements. So for instance, we could render the above example as a
hierarchy of map objects, with the box indicating the border of the entire
map, and the path indicating one feature in the map.

The compact nature of vector graphics means that down-loading even
complex maps would still require less data than an image of the same area.

We anticipate that the introduction of SVG is likely to have several effects.
One is that the need for java code as a rendering tool for maps will be reduced.
SVG viewers are likely to include of the operations (e.g. zooming and panning)
described earlier. So in many instances a map can be downloaded from a
server as SVG source and manipulated directly.

Third party packages are likely to include scripting commands and other
high level features to simplify the generation of SVG source. One important
step would be converters for turning files in proprietary GIS formats into
SVG code. Many SVG related tools are already available. Most basic are
programs and plug-ins for viewing SVG data Other basic tools include filters
for converting translating data between SVG and several GIS and CAD/CAM
formats. They also include converters for SVG into standard image and output
formats, such as GIF, Postscript and PDF.

4.5 EXAMPLES

4.5.1 An example of an interactive geographic query system

As a simple demonstration of the use of Java applets, we have implemented
an online query system for Australian towns (http://life.csu.edu.au/gis/???). In
this system the user downloads an applet that displays a map of Australia
together with dots for towns (Fig. 4.10). To obtain information about a
particular town, the user selects a town by mouse click (Fig. 4.10a). When a
town is selected in this way, the details are displayed in boxes on the screen.
The user can zoom into particular regions by rubber banding (Fig. 4.10b).

Client-side GIS operations 69

4.5.2 Asian financial crisis

The company Internetgis.com has developed a system, called ActiveMaps,
which provides a class library is designed for Java developers who want to
add GIS/mapping functions to their applets or applications. The service
provides geographically based information about the Asian financial crisis. It
combines a map of the region with data about the economy of each country.
The user interface consists of a map, together with a variety of tools for
customisation and queries. The mapping features includes panning and
zooming, using rubber banding, plus the facility to insert data on the map.

4.5.3 NGDC Palaeogeographic data

The US National Geophysical Data Centre provides large, public repositories
for many kinds of palaeoclimatic, such as tree ring records, and the Global
Pollen Database (NGDC 2000). To assist users, NGDC have developed a
Java Applet called WebMapper for finding Paleoclimate data held at the World
Data Center for Paleoclimatology (Fig. 4.11). The service includes zooming,
site selection. Enhancements planned (at the time of writing) include the ability
to search for sites by name or by investigator, or to filter the sites displayed by
type, age range, variable, or investigator.

Figure 4.10. A demonstration of an online geographic query system using Java. The
Australian towns query system allows users to (a) the online user interface, which is invoked
when the system is started. (b) An example of zooming (using rubber banding) and
displaying selected data. http://life.csu.edu.au/gis/javamap/

Online GIS70

4.6 CONCLUSION

In the last two chapters we have described the basic Web technology that can
be adapted to create an online GIS. We should perhaps stress that the techniques
that we have described here are based on free software and can be used as an
integral part of a web site without incurring the start up and maintenance
costs of a commercial GIS.

An important area of interest for minimalist client-side operations is the
palm-top market. At the time of writing, this market is set to explode. Several
commercial GIS manufacturers have recently introduced palm-top extensions.
We will discuss this development later (see Chapter 11).

In the chapters that follow, we now turn to look at ways in which individual
online GIS can be integrated into more comprehensive geographically based
information systems.

Figure 4.11. The WebMapper search interface (Java Applet) from the World Data Center
for Paleoclimatology. http://www.ngdc.noaa.gov/paleo/data.html

CHAPTER 5

Introduction to Markup

5.1 MARKUP LANGUAGES

In the early days of computing, formatting data was pretty much up to the
idiosyncrasies of individual programmers. If you wanted to be able to plot
the boundary of a country, then you might throw the data into a file as line
after line of data, each line containing a pairs of coordinates. The file would
contain numbers, just numbers. As likely as not, the coordinate pairs would
be jammed up against one another. Clarity didn’t matter because the data
were set up for just one program to read and you told your program what the
exact format was. If it ever occurred to you that others might one day want to
use that data, then you just shrugged your shoulders and said “Hey, that’s ok.
If they need to know what the format is, then just come and ask me.”

Today’s computing scene is completely different. Data and processing are
distributed across networks. An online GIS is likely to need to draw on data
from many different sites. Likewise, any data set is likely to accessed and used
by many different programs. Given this environment, there is no time to go
and ask the author what the format is. The content, structure and format of a
data file needs to be immediately transparent to any program that accesses it.
This need creates a demand for ways of indicating the structure of data. But
ad hoc explanations are not enough. They need to be universal standards that
everyone can understand and apply. And so markup languages were born.

In the very early days of computer document processing, full screen displays
of a document as it would look when printed, so-called what you see is what
you get (WYSIWYG), was far from practical. Not only were machines not
powerful enough, either in processor speed or in memory, to manipulate
documents on the fly, but computer monitors were hardly up to the task.
Windowing systems, universal today, were still to come. Yet there was a need
to go beyond plain text, just an endless list of words with simple punctuation,
to text that had different fonts or structure (numbered paragraphs, chapters,
indexing and so on).

Thus began the idea of embedding special characters, called markup tags,
in the text. Markup tags introduced, not more text, but control sequences.
Early examples of such systems were the utilities nroff and troff on Unix
and runoff on DEC machines. In runoff, for example, a dot at the beginning
of the line signified that the line was not part of the text, but contained
commands to the processing system. Once a document had been written up
with the associated commands, or markup, a program would read it, put the
commands into action and produce a printable form.

A major breakthrough in computer typesetting occurred in the late 70s,
early 80s, when Donald Knuth (1984) developed the language TeX. Designed

Online GIS72

to facilitate the typesetting of mathematics (and improve the accuracy in the
process), TeX introduced a whole range of new concepts and methods for
representing and processing typographical data. TeX is still a markup language
with a very, very powerful macro facility (i.e. a system for storing and re-using
sequences of commands); but it is concerned primarily with layout and
presentation. Moving a full stop a fraction of a millimetre is a lot of fun in TeX!

TeX is, however, complex! Users frequently relied on collections of macros
or ad hoc templates from elsewhere. The successor language LaTeX, which
followed in around 1986 (Lamport 1986), introduced an integrated macro
framework using pre-written style files. It was much easier for the non-specialist
to use, but its really important contribution was its emphasis on structure. A
LaTeX document consists of a range of nested environments, nested within
one another. From the document environment downwards they indicate the
structure of the document as sections, lists, paragraphs etc. For research papers
in the quantitative sciences, there is still no significantly better typesetting
system.

Although nroff and troff are still often found on Unix machines, most of
these systems are now obsolete. But one, the Generalised Markup Language
from IBM, evolved into SGML, the Standard Generalised Markup Language.
which subsequently gave birth to XML. Originating around the same time as
TeX, the emphasis in SGML was, right from the beginning, on structure rather
than presentation.

SGML was a well-kept secret for many years. In fact one book was even
called the Billion Dollar Secret (Ensign 1997). It had some big customers: you
don’t get much larger than the US military. SGML, the Standard Generalised
Markup Language is not in itself a markup language, but rather a meta-
language: it enables precise document specifications, or DTDs (Document
Type Definitions) to be written. The merit of such a scheme is that it becomes
possible to precisely control the structure of a document. The military found
this particularly desirable having vast quantities of paperwork specifications
and a need for powerful document control techniques.

SGML really became a household tool with the beginning of the World
Wide Web, although, with apologies to Voltaire, using SGML was like writing
prose for many people. What everybody saw, of course, was not SGML but
one DTD written within it: HTML, the Hypertext Markup Language. Early
exponents of the Web followed HTML quite closely, but the Web grew at a
pace hardly anybody dreamed of. HTML 1.0 was followed rapidly by ever
more complex versions. It is currently at level 4, which is at least four times
the size of the original HTML specification!

The World Wide Web now covers almost everything imaginable: from
academic papers to advertising; from pornography to space science; from the
trivial and ephemeral to ground-breaking, new research. In 1999 the number
of Web sites hit somewhere around 50 million, with over 200 million forecast
for the year 2000. With this explosion has come a truly enormous problem:
finding things. Because the Web grows organically, without any central control,
it is inherently disordered. Hence the need for metadata; and along with this
need came the latest markup innovation, XML.

Originally SGML was concerned primarily with document structure. SGML
would ensure that all the pieces of the document were present and in a correct
order. It’s easy to see how this might be important. So, imagine competing

Introduction to Markup 73

tender documents for a new aircraft. Important items such as delivery date,
price structure, and lots of other details need to be present. Why make a
(fallible) human proofreader check that everything is there if it can be done
by the document structuring package?

But along with the disordered growth of the Web another aspect started to
assume more importance: the use of markup tags to convey semantic
information as well as structure. Let’s see how this works. Imagine that we
want to find a recipe for the old English dish of jugged hare. If we look for
hare we find zoological data; we find children’s stories about mad March
hares; we find polemics against hare coursing, one of England’s less animal-
welfare oriented pursuits; we might even find references to hares as food
somewhere too. Now imagine that we have tagged the occurrence of jugged
hare with the label dish,

<dish>jugged hare</dish>

The word “dish” in angled brackets is the tag; we’ll cover the syntax in more
detail below. Now if we restrict our search to hare inside the dish tag we get
rid of most of the spurious hits. But we can do even better. We still might hit
the biography of the Duke of Upper Ernest, whose favourite dish was roast
hare. Suppose now that all recipes for hare are embedded within an additional
tag like this

<recipe>

<dish>juggedhare</dish>

…

</recipe>

Now we can search for hare inside food inside recipe and we should hit just
what we want. When we study the Geographic Markup Language (GML),
which is an extension of XML, we shall see how easy it is to incorporate
geographic constraints, such as recipes from a particular region. The beauty
of all this, the beauty of XML, is that we don’t need anything special here. We
don‘t need an elaborately configured database, any particular metadata
standard will do.

But there could be one complication. Different people might use tags in
different ways. Dish could be used to tag pottery. Thus we have come to the
idea of namespaces, which allow one to register the use of a tag. Well cover
this in Section 5.4. SGML is pretty arcane in these days of desktop publishing.
XML removes a lot of the complexity (and a bit of the rigour too). But it has
a free-form nature which makes it much easier to use. It was the big growth
event of the years 1999–2000 and is still growing.

5.1.1 Spatial tags

We are not concerned here with all the many aspects of Web publishing. We
need just enough knowledge to work through the spatial metadata standards,
which are strongly dependent on SGML/XML. Now, although SGML came

Online GIS74

first and is in some respects the more powerful of the two, we will start with
the more straightforward XML. XML does have one advantage over SGML
for spatial metadata: it allows much more tightly controlled data types. Thus
we can specify that a number shall be between 0 and 180 (such as we would
require for a spatial coordinate). First we pick our way through the syntax,
watching the functionality and application rather than the fine syntactic detail.
Then we look at two important related standards. We consider the important
issue of attaching unique interpretations or meaning to XML tags through
the namespace recommendation in Section 5.4. There is now a firm
recommendation for XML namespaces. The other topic is still somewhat fluid:
this is the area of XML schema, which we consider in Section 5.5.

5.2 XML: STRUCTURAL IDEAS

SGML is one of the most flexible and general standards imaginable. It is
composed of markup concepts and principles, but it does not specify exactly
how these get represented in the source document. It does, however, have an
example (commonly used) set of syntactic elements, known as the reference
concrete syntax. We shall skip over all these details and work with the syntactic
specification chosen for XML.

Conceptually, an XML document is made up of a sequence of one or more
elements, which may be nested inside one another. The resulting document
structure we refer to as a document tree. Each element has a single parent
element right on up to the top or outermost element which we refer to as the
document root. Elements may be qualified by one or more attributes. Marked
up documents can get quite complicated and so there is a sophisticated
abbreviation mechanism, through the use of entities.

Perceptive readers may already have noticed a similarity between the idea
of elements in an XML tree, and the object hierarchies described in Chapter
1. XML is highly suited to representing information objects and conversely,
XML elements can rightly be thought of as information objects.

Now let’s examine these concepts and their associated syntax in a little bit
more detail.

5.2.1 Elements and attributes

An element begins with its name in angled brackets, as in <dish> above. It
ends with the same structure but including a forward slash immediately after
the first bracket as in </dish>. The content of the element goes in between
and can include other elements to an arbitrary extent. The content can be as
simple as a word or phrase, as in our dish example. But it can be as complicated
as an entire document, maybe the recipe example above, or even an entire
cookery book. Sometimes an element may have no content (for example an
element indicating the insertion of an object such as a graphic). In this case
the closing tag can be rolled into the start tag as in

Introduction to Markup 75

<image src=”mypic.jpeg”/>

In this example, the trailing slash “/” acts as a closing tag.
An element may have attributes, which qualify the element in some way.

So recipe might have attributes of foodtype and usage. It might look like this:

<recipefoodtype=”game”usage=”maincourse”>

The attributes, which are essentially keyword-value pairs, go inside the start
tag. SGML is one of the most flexible and general standards imaginable. It is
composed of markup concepts and principles, but it does not specify exactly
how these get represented in the source document. It does, however, have an
example (commonly used) set of syntactic elements, known as the reference
concrete syntax, such as the angle brackets above. We shall skip over all these
details and work with the syntactic specification chosen for XML.

Now, in SGML, elements (along with everything else) are defined
beforehand in the DTD. The DTD specifies the order that elements go in,
what elements may be nested inside others, the sorts of characters elements
can contain and a variety of special features which relate to how an element is
processed. In XML we do not have a DTD as such. But simple rules still have
to be obeyed. The most important of these is that elements should not be
interleaved. In other words each element must finish entirely within the parent
element, as shown in Table 5.1.

5.2.2 What’s in a name?

SGML defines what each name can contain quite precisely. Sometimes the
reference concrete syntax is quite restrictive, e.g. names are restricted to 8
characters. XML is more fluid than SGML and commonsense will normally
suffice. Any mixture of letters and characters with limited punctuation is
acceptable. Why should we limit punctuation? Well, we do not want it to
interfere with the control syntax. So, since angle brackets mark the beginning
and end of tags, using them in a name presents complications! We would
need a mechanism to quote them, to say that they were to be interpreted
literally and not as indicating the start or end of a tag. We do this with entities,
which we consider next.

Table 5.1. Correct nesting of elements.

Online GIS76

5.2.3 Entities

In writing documents in standard ASCII text, we occasionally come across
characters we don’t have a representation for, particularly in non-English words.
They might be accents over letters, or different letters entirely. Another situation
which causes difficulty is that of the special punctuation character, such as the
nonbreaking space. We represent these cases using character entities. The format
is simple. The entity begins with the ampersand symbol, is followed by a character
string and terminated by a semi-colon. So, for the non-breaking space the
character entity is . It is not surprising to find that < and > are
the entities for the angled brackets while &s; is the ampersand itself.

5.3 THE DOCUMENT TYPE DEFINITION

As we have already indicated, the DTD provides a very tight definition of document
structure. We do not have the time and space to go into the fine details here,
particularly since the future, especially for online documents, will be XML.

In addition to the definitions of the elements and attributes we have just
discussed, the DTD contains also a certain amount of front matter. First, it
contains information about the version of SGML and the locations of any
files of public entities, such as special character sets and son on. Then, quite
different to XML it contains definition of the syntax used for the document.
SGML is truly selfdescribing.

Various organisations including ANZLIC and the FGDC have created DTDs
for spatial metadata. We discuss them in some detail in Chapter 9.

5.4 XML NAMESPACES

As we saw earlier, XML namespaces are devices that allow us to attach meaning
to XML tags. In SGML it is possible to refer to external entity sets or DTDs,
but there is no precise network link. With XML, which was driven by the
needs of the Web, indices to elements and attributes are, naturally enough,
available as URLs1.

XML namespaces have a precise grammar, but for present purposes we
need to know just two things about their use:

1. the xmlns tag is used to define the URL where the namespace is to be

found;
2. tags may be now indexed according to the namespace using the form

gis:bridge to indicate a tag called bridge in the gis name space.

Tags without a namespace prefix inherit the namespace from the next
outermost namespace tag. These facilities are important for the Resource
Description Framework, which we look at in detail in Chapters 7 and 8. To

1 Strictly speaking all these documents are now written in terms of the more general concept
of URIs but the difference is unimportant here.

Introduction to Markup 77

guide us through RDF we don’t really need to know very much more, but it is
worth looking at an example:

<section xmlns:gis=”http://clio.mit.csu.edu.au/smdogis/xml”>

In the bottom left corner of the image is the

<gis:bridge>Sydney Harbour Bridge </gis:bridge> and not

far away is one of Australia’s finest buildings the

<building>Sydney Opera House </building>

</section>

There has been a certain amount of confusion over the fine details of the
XML namespace definitions, which have arisen through the need to maintain
backward compatibility with XML 1.0. The note by James Clark (1999)
explains this in more detail but we do not need to probe further in the present
context.

Also in progress is work on the XML schema requirements (Malhotra and
Maloney, 1999), which will to some extent merge with the work on RDF
schemas which we discuss in detail in Section 8.5.

XML allows a pretty unrestricted use of names for elements. This is fine
when one author is handling relatively small documents. But for larger scale
systems, web sites etc., we could run into name conflict. Names may get reused
in different contexts, creating considerable confusion. The solution is the use
of namespaces, defined as URIs online. Each tag may then be qualified by a
namespace indicator to make its significance precise.

Thus the resource description framework, which we discuss in Chapter 8
has a namespace prefix denoted by rdf, hence the creator tag can be
prefixed as:

<rdf:creator>Garfield</rdf:creator>

This format enables a fairly common word, such as creator, to be given a
precise reference. This nomenclature could get fairly complex, but there are
rules, which we do not have space to discuss here, that allow developers to set
up assumptions and hierarchies of namespace references.

The SGML DTD provides a precise description of document structure:
which elements go where; what element is nested within what. But a DTD
says nothing about the meaning or representation of the terms. Let’s eavesdrop
on a conversation:

If the palooka sitting East had two bullets he ‘would have doubled.
So, he must have a stiff in one of the minors, we can throw him in to
suicide squeeze West.

If you’ve read the right books, then you might recognise some of this. The rest
is jargon or slang. You’d need a glossary or thesaurus to make sense of it.

XML recognises that the various meanings of terms can change in different
contexts and sets out to define them, through the concept of namespaces. A
document may use more than one, externally defined namespace (somewhere
on the web) and there are various defaults defined for names which are not

Online GIS78

prefixed with a namespace. We won’t go into the exact details of the
specification, but just look at a couple of simple examples to get an idea of
what happens.

First imagine we have a namespace which defines various sailing terms,
which we might label as sail. So the tag, crew, which could refer to a type of
haircut, is appropriately labelled:

<sail:crew>Fred Bloggs</sail:crew>

This tells us that the term crew is an element in the sail namespace.
So how do we locate the definitions of sailing terms? We use the attribute,

defined in XML, xmlns to provide a URI (Uniform Resource Indicator) for
where the information is found.

There are two other ideas we need to grasp. The first is how we nest elements
and infer default namespaces.

The second is just to recognise that we are using at least one namespace
without referring to it: the XML namespace itself. One of the beauties of
XML is it is incredibly self-referential. Most concepts are defined within XML
as we shall see in the remainder of this and the following chapter.

Although XML design does not espouse terseness, continual addition of
prefixes would start to make a document hard to read. Hence we use the
concept of inheritance. A tag without a prefix inherits its prefix from the
parent element, or grandparent element and so on up the document tree.
Thus in the following fragment:

<sail xmlns=”http://sailing.vir/terms”>

<dinghy>laser</dinghy>

<cat>Stingray</cat>

</sail>

is equivalent to

<sail xmlns=”http://sailing.vir/terms”>

<sail:dinghy>laser</sail:dinghy>

<sail:cat>Stingray</sail:cat>

</sail>

Note that dinghy is pretty specific, but cat is not. In fact a web search for cat
would have many hits which were absolutely nothing to do with boats, hence
the importance of the namespace. There is an alternative syntax here, for no
obvious reason, where we spell out the attribute more explicitly

<sail:boat xmlns:sail=’http://sailing.vir/terms’>

<dinghy>laser</dinghy>

<cat>Stingray</cat>

</sail:boat>

Introduction to Markup 79

5.5 XML SCHEMA

In SGML the Document Type Definition served to exactly encode the rules of
document structure. In XML we have much looser rules, which merely control
things like the embedding of tags inside one another. The need for stronger
control is satisfied by XML schemas. They describe the tags and their possible
values in considerable detail. As we hinted above, control over the element
context may include things like the range of possible numerical values which
might be taken. The schema specification is quite new and implementation of
schema processing software tools is just beginning.

XML began life as a simplified version of XML. It has now come to
dominate current development on the Web. With its spread into areas such as
metadata, digital signatures, generic document structures and so on, the need
for an additional structuring mechanism became necessary. This mechanism
is the XML Schema. In some ways it is a bit of a reinvention of the wheel, in
that a lot of what it does is similar to an SGML DTD. But in other ways it has
gone beyond the DTD framework to allow more precise specification of
structure and content.

There are many bells and whistles to the schema documents. We cannot
possibly include all of them here, but the web site has the URLs for tutorial
documents and the full reference specifications. What we propose to do here
is to look at a metadata DTD (in fact a subset of the ANZLIC DTD) and see
how the XML Schema document would express the same concepts.

We shall actually start in the middle, rather than at the beginning, to focus
on the definitions of elements and their attributes. Right at the root of the
document tree is the definition of the an z me ta element.

This element does not contain any actual text but merely other elements.
The DTD entry to define such an element is:

<!ELEMENT anzmeta - - (citeinfo, descript, timeperd,

distinfo?, cntinfo+)>

The two hyphens indicate whether it is possible to omit the start or end tags
(in this case no; possible omission would be indicated by a letter o instead of
the hyphen). In XML this situation does not arise as start and end tags are
obligatory. In brackets we then have a list of elements which make up the
anzmeta element. The comma separating them has a specific meaning here:
the elements must appear in this order only; the ampersand symbol would be
used to indicate that several elements are required but may occur in any order.
Two other symbols appear: ? indicates that an element is optional; +indicates
that the element must occur one or more times.

In the XML schema this looks a lot more complicated. The definition of
the element is fairly simple:

<xsd:complexType name=”anzmeta” type=”anzmetaType”>

where xsd denotes the schema namespace and the element is empty (denoted
by the closing symbol />). What makes it more complicated is the type attribute.
Any element may have either a simple or complex type; to users of

Online GIS80

programming languages like C or C++ this is very similar to the difference
between a string or integer and a class or structure. We shall see other
programming analogies later. anzmetaType is complex because it is made
up of other simple or complex types.

Incidentally the name of the type could be anything. We’ve followed a
practice common in object-oriented programming of appending a descriptor
(Type) to the name of the instance. This is merely a convention. So here is the
definition of anzmetaType:

<xsd:complexType name=”anzmetaType”>

<xsd:element name=”citeinfo” type=”citeinfoType”/>

<xsd:element name=”descript” type=”descript”/>

<xsd:element name=”timeperd” type=”timeperd”/>

<xsd:element name=”distinfo” type=”distinfo”

minOccurs=0/>

<xsd:element name=”cntinfo” type=”cntinfo”

minOccurs=1

maxOccurs=”unbounded”/>

</xsd:complexType >

So we move recursively down through the definition of each element and its
type. Note that for distinfo and cntinfo we have specified an attribute
which indicates the number of times the element may occur, equivalent to the
SGML? and+operators respectively. We haven’t specified them for the other
elements, because the defaults are adequate. The default for minOccurs is 1
and the default for maxOccurs is minOccurs, i.e. the element occurs once
and only once. In the cntinfo case we have specified that the maximum
number of occurrences is unbounded. We could also specify a finite number
(say we going to allow up to one such element for each state or territory
which in Australia would make maxOccurs 8). This is added flexibility over
SGML which can not express such a precise range.

All the sub-elements, citeinfo etc. will have their associated type
definitions and we do not need to go through all of them. But there are a few
more features we would like to illustrate. Here is the cntinfo type (not
strictly according to the ANZLIC definition)

<xsd:complexType name=”cntinfoType”>

<xsd:element name=”cntorg” type=”xsd:string”/>

<xsd:element name=”cntpos” type=”xsd:string”/>

<xsd:element name=”address” type=addressType,

minOccurs=0

maxOccurs=1/>

<xsd:element name=”city” type=”xsd:string”/>

<xsd:element name=”state” type=”stateType”/>

<xsd:element name=”postcode” type=”postcodeType”

<xsd:element name=”cntvoice”, type=”telNumType”

minOccurs=0

maxOccurs=1/>

</xsd:complexType>

Introduction to Markup 81

The first point to note is that although we have defined city etc. as just plain strings
(built-in simple types) we have chosen to define a special type for state. Here it is

<xsd:simpleType name=”stateType” base=”xsd:string”>

<xsd:pattern value=”[A-Z] {}2"/>

</xsd:simpleType>

The States in the USA all have two letter upper case abbreviations. Thus we
define a sub-type of string which restricts strings to precisely this form. Any
other string will generate an error message.

Australia has fewer states than the USA. In this case we might want to
tighten things up even more and specify only the allowed abbreviations. We
do this with enumeration:

<xsd:simpleType name=”stateType” base=”xsd:string”>

<xsd:enumeration value=”ACT”/>

<xsd:enumeration value=”NSW”/>

<xsd:enumeration value=”NT”/>

<xsd:enumeration value=”QLD”/>

<xsd:enumeration value=”SA”/>

<xsd:enumeration value=”TAS”/>

<xsd:enumeration value=”VIC”/>

<xsd:enumeration value=”WA”/>

</xsd:simpleType>

Another explicit example occurs in the definition of jurisdic which is a sub-
element of citeinfo. Here the jurisdictions are spelt out explicitly:

<xsd:simpleType name=”jurisdicType”base=”xsd:string”>

<xsd:enumeration value=”Australia”/>

<xsd:enumeration value=”Australian Capital Territory”/>

<xsd:enumeration value=”New South Wales”/>

<xsd:enumeration value=”New Zealand”/>

<xsd:enumeration value=”Northern Territory”/>

<xsd:enumeration value=”Queensland”/>

<xsd:enumeration value=”South Australia”/>

<xsd:enumeration value=”Tasmania”/>

<xsd:enumeration value=”Victoria”/>

<xsd:enumeration value=”Western Australia”/>

<xsd:enumeration value=”Other”/>

</xsd:simpleType>

The first thing we can do with a schema is to specify what elements and other
things belong inside an element:

<xsd:element name==”distinfo “type=”distinfoTyp”>

<xsd:complextype name=”distinfoType”

<xsd:complextype/>

</xsd:element>

Online GIS82

In the case of coordinates we might need to impose limits on the acceptable
values. Latitude, for example, ranges from 0 to 90 degrees. So what we need
to do is to take a simple type, integer and restrict its application.

<xsd:simpleType name=”latitude” base=”xsd:integer” >

<xsd:minInclusive=”0">

<xsd:maxInclusive=”90">

</xsd:simpleType>

Sometimes we might want to mix element content with some basic text data.
This might work as follows:

<distinfo>

The following options are available:

 mapiinfo

 arcinfo

 OpenGiS

These data are also available in a variety

of other non-standard formats.

</distinfo>

The schema that would represent this is:

<xsd:element name=”distinfo” content=”mixed”>

<xsd:element name=”ol”>

</xsd:element>

Note that we cannot just mix text and elements at random. We still have to
specify the order in which the elements appear even though we might intermix
plain text amongst them.

Suppose we want to restrict the particular strings which might be used.
There is a regular expression syntax to do something just like this. The details
are complex, so let’s just look at a simple example.

A common problem with much legacy data is that the origin is uncertain,
i.e. we do not know the start date. We could just leave this out, or add some
not-known tag. An alternative would be to make the element explicitly null.
In the schema this would take the form

<xsd:element name=”begindate”

type=”date “nullable=”true”>

and the date element itself would look like this:
<begindate xsi:null=”true”></begindate>

Introduction to Markup 83

We can of course make the element an empty element, which we do simply by
including the attribute “content=empty’”.

There are two things to note about this format. First, we have applied a
specific namespace (an instance of an XML schema) to the null attribute.
Secondly the tag is not an empty tag, but a tag with nothing in it (which has a
conventional close tag).

We might want to specify that an element is made up of a collection of
elements. We have several ways of doing this: choice, sequence and
all. The element choice allows just one element from a selection:

<xsd:choice>

<xsd:element>

<xsd:element name= type=/>

<xsd:group ref=junk/>

</xsd:choice>

<xsd:group name=junk>

<xsd:sequence>

…

/xsd:sequence>

</xsd:group>

Note that sequence is the default anyway. With the element all we have to use
all of the elements but they can be in any order, e.g.

minOccurs and maxOccurs

XML schema are somewhat more precise with mixed content models.

5.6 XQL: THE XML QUERY LANGUAGE

XQL is a generic language for querying XML documents, implemented in a
number of software packages. It was essentially defined in a proposal to a
W3C Query Language workshop in 1998 by Joe Lapp of webMethods and
David Schach of Microsoft. The W3C has a working group on XML query
languages, but at the time of writing is some way off a final submission. The
XQL model illustrates the sort of things we would like to be able to do, but
will have to await the precise syntax.

The full standard is likely to be more complex, allowing searches to span
multiple documents, but there is not even a draft recommendation at the
time of writing. A related standard, which is the Object Query Language
(OQL). Since one prominent move on the web is towards an object-
oriented model of documents, it is likely that OQL will play a role in the
final standard.

XQL enables selections of subsets of a document based on XML elements,
along with pattern matching for the contents of elements themselves. XQL
has a number of characteristics in common with SQL. Apart from the sort of
operations which can be performed, it is declarative, rather than procedural.

Online GIS84

Thus XQL implementations might use a range of algorithms or techniques
for efficient query processing: they have nothing to do with the language. The
result of an XQL query is itself an XML document (check this is always true).
It’s useful to us in the metadata context because we can use it to extract
different parts of the metadata for particular purposes. Consider the following
fragment, an abbreviated, hypothetical, document in the ANZLIC DTD.

<anzmeta>

<descript>

<abstract>

Covers Bathurst and surrounding area

</abstract>

<theme>

<keyword thesaurus=ÓplacesÓ>NSW</keyword>

<keyword>city</keyword>

</theme>

</descript>

<distinfo>

<native>

<digform>

<formname>

Unsigned 8 bit generic binary

</formname>

</digform>

</native>

<accconst>

available online to the general public

</acconst>

</distinfo>

<distinfo>

<native>

<nondig>

<formname>

ordinary hardcopy map

</formname>

</nondig>

</native>

<accconst>

available for purchase from gov. shops

</acconst>

</distinfo>

</anzmeta>

Suppose we want to check the data quality of the dataset described by this
metadata. The DTD provides an element, <dataqual> for precisely this,
containing sub-elements describing, for example, the accuracy, completeness
and logical consistency. We get all of these as a sub-document with the XQL
query anzmeta/dataqual and we can now check that the data meets our
quality requirements. We wouldn’t necessarily write these queries explicitly
ourselves. They can be generated automatically by a specialised metadata

Introduction to Markup 85

query program or they can be part of a program for extracting the data itself.
Let’s take a more detailed look. First we will look at the way we drill down
through the elements of an XML document, then at how to put in specific
pattern matches.

5.6.1 Locating elements and attributes

The intense wave of activity in Web language specifications at the end of the
90s has had the considerable benefit of using similar syntax wherever possible.
So the syntax for locating elements in XQL is almost identical to the pathname
syntax defined for Uniform Resource Indicators. So to get the positional
accuracy inside the data quality element we have simply

anzmeta/dataqual/posacc

with forward slashes (/) separating each element. We might also want to access,
not the immediate children of a parent node, but simply the descendents. So
we might want to pick the contact organisation nodes, which are buried quite
deep in the DTD structure. Now we use a double slash operator (//): anzmeta/
/cntorg.

<descript>

<abstract>

Covers Bathurst and surrounding area

</abstract>

<theme>

<keyword>NSW</keyword>

<keyword>city</keyword>

</theme>

</descript>

But what happens if the document contains repeated occurrences of an element?
As you would expect, a sequence of nodes is returned in precisely the order
they were in the document. However, such a list would not be a valid XML
document. So the response to the query is returned wrapped inside a root
element, <xql:result>. Suppose we have two distribution formats described
in an <anzmeta> document. The query distinfo might return the XML
document

<xql:result>

<distinfo>

<native>

<digform>

<formname>

Unsigned 8 bit generic binary

</formname>

<digform>

</native>

Online GIS86

<accconst>

available online to the general public

</acconst>

</distinfo>

<distinfo>

<native>

<nondig>

<formname>

ordinary hardcopy map

</formname>

<nondig>

</native>

<accconst>

available for purchase from gov. shops

</acconst>

</distinfo>

</xql:result>

with descriptions of two formats, one online and the other a hardcopy format
available for purchase. We have got here the immediate children (abstract)
and the contents of these children. What we have actually got (as the default)
is a deep return, in which we have all the children of the node. In fact a deep
return is indicated by two question marks (??), whereas a shallow return is
represented by just one as distinfo? returning

<xql:result>

<distinfo>

<native>

</native>

<accconst>

</accconst>

</distinfo>

</descript>

</xql:result>

The reader familiar with operating systems such as UNIX might have noticed
the resemblance to the path nomenclature. Similarly a few other ideas from
regular and logical expressions transfer across. One useful concept, is the
asterisk (*) to represent a wild card. Thus the query

descript/*/keyword

finds all keywords that are precisely the grandchildren of the descript element.
There is just one more little twist to think about, before we move onto

attributes and the text content of elements. We can select a set of nodes in a
query, but return some function of this set. So cover up the solution, and see
if you can guess what this query will produce: descript??//
keyword|Tricky.

What we get is the whole of the descript element (deep return) which has a
keyword descendent, i.e.

Introduction to Markup 87

<xql:result>

<descript>

<abstract>

Covers Bathurst and surrounding area

</abstract>

<theme>

<keyword>NSW</keyword>

<keyword>city</keyword>

</theme>

</descript>

</xql:result>

So far we have discussed how to move around in and select items from the
document hierarchy. There are two other useful concepts: sequence and
position, but these will take us beyond the scope of the present book.

All the above tricks and techniques apply to attributes too. All we need to
do is to prefix the attribute name with the at character (@). So in the following
example: @thesaurus we get the value places returned. Attributes can occur
in any order in an element and do not have sub-attributes or elements. So, the
attribute component of a query will come last. Note that when we issue queries
against attributes, we get strings returned. These strings do not necessarily
produce a valid XML document.

5.6.2 Conditional queries

So far we have just located elements, or element sub-trees and attributes,
based purely on their position within the document tree. Suppose we now
want to impose conditions on exactly what we return. A condition appears in
square brackets ([]) immediately after an element or attribute. So, native
[nondig] returns

<formname>

ordinary hardcopy map

</formname>

We can now add comparison expressions using simple Boolean operators,
denoted by eq and ne, or simply=and !–, and native [xxxx]. By adding

Boolean relational operators, or and and we can get really complicated
queries. For instance, the expression

keyword[not @thesaurus]

returns the keyword cities.

There is more too. We can make comparisons to integer and real numbers and
a whole range of additional comparison operators are part of the XQL extensions.

Online GIS88

5.7 WHERE TO FIND DTDS AND OTHER SPECIFICATIONS

We have seen in the preceding sections a wide variety of specification for
document structure and semantics. There is still a few more to come. So, how
does some given document know where to find these specifications? There
are two mechanisms: a generic header at the top of the document and embedded
URIs throughout.

5.7.1 Document headers

In SGML we begin with quite a complicated header block specifying a great
deal of things to do with syntax used for defining SGML constructs etc. We
needn’t worry too much about this, since XML has tended to lock in defaults
for many of these options.

The key component comes right at the beginning, the doctype declaration
in which the DTD is given a name:

<!DOCTYPE myDTD [

<!ENTITY % ISOpub PUBLIC

“ISO 8879–1986//ENTITIES Publishing//EN”>]>

The embedded declaration defines the public entities, the expressions such as
 to represent a non-breaking space. In this definition we have reference
to an International Standards Organisation (ISO) definition, a public text
class (ENTITIES) and a public text description (Publishing) and finally after
the second set of //, a public text language code (EN for English) (Bryan 1988).

In XML the situation is a little simpler:

<?xml version=”1.0" encoding=”UTF-8"?>

<?xml:stylesheet href=”annrep99.css” type=”text/css”

charset=”UTF-8"?>

First we have the declaration of the version number of XML and an encoding
specification. The second line provides something different to the SGML
framework: a specific style sheet for presenting the document. A processing
system may not need to make use of this: a query agent would be interested in
content rather than presentation for example.

Introduction to Markup 89

5.8 THE FUTURE

At the time of writing, XML is developing furiously. Specifications of all kinds
are on the move, while cheap or free software is becoming more readily
available. SGML, although it will always be around and is mostly backwards
compatible with XML, is probably on the decline. Figure 5.1 shows the current
situation.

Figure 5.1. XML and SGML Components.

Online GIS90

5.9 FURTHER READING

SGML is a much older standard than XML and there are a number of good
books available. Bryan (1988) is formal and thorough and an excellent
reference text. XML, like the universe, is expanding rapidly in all directions
and there is really no substitute for accessing material on the web itself. The
website for this book (http://www.csu.edu.au/complexsystems/
smdogis/) has a set of current links.

Two books which discuss the broader implications of structured
documentation are Alschuler (1995) and Ensign (1997).

Charles Goldfarb has been a pioneer of SGML and subsequently XML
technologies and his new XML handbook (Goldfarb and Prescod 1998) is a
definitive reference at the time of writing.

CHAPTER 6

Information networks

In the preceding chapters, we have looked in detail at the mechanics of placing
geographic information online. However, the real power of the Internet lies in
sharing and distributing information. Geographic information is intrinsically
distributed. Whether it be mines in Canada, roads in Britain, or lakes in USA,
most geographic applications concern particular themes within particular
regions. To compile an overview of (say) the worldwide distribution of a
single theme, or else to overlay a number of themes for a given region or
country, you usually have to collate information from a number of different
sources.

The result is that in considering geographic information online, we need to
go beyond the methods of delivering geographic information from a single
Web site and look at how to coordinate geographic information that is spread
across many different sites. In the following chapters, therefore, we move on
to look at the issues and technology involved in doing this. The first step,
which we address in this chapter, is to understand the issues involved in creating
and coordinating an information network.

Chapter 6 is the first stage in integration of the tools and techniques of
Chapters 1–5 into giant online systems. So far, we have seen Web technologies
for spatial operations, for validating data and for markup of text material
and graphics in standardised and non-proprietary form. Now we look at the
concept of an information network (IN) as a synergistic union of many distinct
web sites. INs require a range of supporting ideas, including:quality control
and criteria for being part of the network, indexing; maintenance, security,
privacy, and scalability.

In subsequent chapters, we shall examine the tools which make INs feasible.
In Chapter 10 we look at the information system of the turn of the millennium:
the distributed data warehouse, and how we exploit an IN to the full. In
Chapter 11 we ask what new technologies and what dangers will accompany
us into the new millennium.

6.1 WHAT IS AN INFORMATION NETWORK?

How do we organise information on a large scale? One approach is to start at
the source and organise publishing sites into an information network. In this
context an information network is a set of sites on the Internet that coordinate
their activities. In particular they operate under some common framework,
especially the indexing of the information that they supply.

For purposes of the present discussion we define an Information Network to
be a group of sites on the Web that collaborate to provide information about a
particular theme, subject or matter of interest. They are organisations for

Online GIS92

coordinating the development of online information. Information networks should
not be confused with the communication networks that connect computers
together. Just as computer networks link together computers, so information
networks link together information, people and activity on particular topics.

In this chapter, we consider a broad range of information networks, which
are often loosely organised and heterogeneous in nature. We consider the more
tightly bound networks involved in distributed data warehouses in Chapter 10.

The Internet creates the potential to develop worldwide information systems.
In a real sense, the World Wide Web itself is a giant information network.
However, it fails to satisfy the second part of the definition above, namely the
need for a focus on a particular theme or topic. As the World Wide Web spread,
the 1990s saw a proliferation of cooperative projects to implement information
networks in a number of fields. Astronomers set up worldwide networks to
link star charts and to communicate about new sightings, biotechnologists set
up networks, such as the European Molecular Biology Laboratory (EMBL), to
provide a seamless umbrella for databases being developed at different sites.

A number of international projects have focussed on putting global resource
and environmental information online. For instance, the International
Organisation for Plant Information (IOPI) began developing a checklist of
the world’s plant species (Burdet 1992). The Species 2000 project has similar
objectives (IUBS 1998). At the same time, the Biodiversity Information Network
(BIN21) set up a network of sites that compiled papers and data on biodiversity
on different continents. There are now many online information networks
that focus on environment and resources.

In 1994, the OECD set up a Megascience Forum to promote large science
projects of major international significance (Hardy 1998). The Human Genome
Project was one such enterprise. Another was the proposal for a Global
Biodiversity Information Facility (GBIF). The aim of GBIF is to establish

“…a common access system, Internet-based, for accessing the world’s
known species through some 180 global species databases…”

Similar initiatives are also under way in primary industry. For instance in
1996 the International Union of Forestry Research Organisations established
an international information network and in 1998 began work to develop a
global forestry information system (IUFRO 1998).

Perhaps the most widely used information networks are those supporting
popular search engines. Many search engines either farm out queries to a number
of supporting databases and pool the results, or else they index source data
from databases that gather primary data about sites within a restricted topic,
network domain or region. The same principle has been applied in environmental
data. For instance, the Australia New Zealand Land Information Council
(ANZLIC) implemented an Australasian Spatial Data Directory (ASDD) to
index environmental databases and data holdings (ANZLIC 2000).

6.2 WHAT CAN INFORMATION NETWORKS DO?

Perhaps the first distributed geographic information system on the Internet
was the World Wide Web Index of Web sites by countries. This service,

Information networks 93

established by CERN as the Web spread, simply sorted the Web sites registered
with CERN by country. As the number of Web sites grew, this system quickly
became unmanageable. In 1993, CERN began to outsource indexes for
particular countries, effectively turning the service into a distributed geographic
information network. The system was ultimately abandoned when control of
the Web was transferred to the World Wide Web Consortium. By that stage, a
combination of commercial competition and sheer growth was creating an
anarchic situation in which it was impossible for any single organisation in
each country to maintain an official register of sites.

Another example of an early information network with a geographic basis
was the Virtual Tourist (Plewe 1997), or VT, described in Chapter 1. As we
saw earlier, the VT consisted of a single world index that pointed to a hierarchy
of national and regional indexes, which in turn pointed to sites providing
primary data. Unlike the sites register, though, the VT’s index supported
geographic searching from its inception.

There are enormous benefits to gain from organising geographic information
networks. As the above examples show, a geographic information network
makes it possible to put together information services that no single
organisation could develop and maintain. Some of these advantages include
the following:

� The whole is greater than the sum of its parts. Combining different
data sets makes it possible to do new things with them that could
not be done individually. One example is the geographic index,
with each data set covering a separate region. Another is the potential
to create overlays of different kinds of data, so making possible
new kinds of analysis and interpretation.

� Data is updated and maintained at the source. The organisations
that gather the primary data can also publish it. This makes it easier
to keep information up to date. It also overcomes many of concerns
about ownership and copyright that have plagued cooperative
ventures in the past.

� Information networks are scalable. That is, more and more
organisations and nodes can be slotted in at different levels without
the system breaking down.

The ultimate geographic information network would be a worldwide system
that provided links between all kinds of geographic data at all scales (see Chapter
11). However such a system is still a long way off. Meanwhile there are enormous
advantages in being able to draw together geographic information over wide
areas. Gathering data has always been the most time consuming and frustrating
task for GIS managers. Information networks have the potential of making
widespread geographic data of many kinds available on demand.

6.3 THE ORGANISATION OF INFORMATION NETWORKS

The earliest networking projects were cooperating sites that simply provided
a common interface to lists of online resources. Another common model is a
virtual library, which consists of a central index to a set of accredited services.

Online GIS94

A more ambitious model is a distributed data warehouse (see Chapter 10).
This system consists of a series of databases at separate sites on the Internet,
with a common search facility.

An information system that is distributed over several sites (nodes) requires
close coordination between the sites involved. The coordinators need to agree
on the following points:

1. logical structure of the on-line information;
2. separation of function between the sites involved;
3. attribute standards for submissions (see next section);
4. protocols for submission of entries, corrections, etc.;
5. quality control criteria and procedures (see next section);
6. protocol for on-line searching of the databases;
7. protocols for “mirroring” the data sets.

For instance, an international database project might consist of agreements
on the above points by a set of participating sites (“nodes”). Contributors
could submit their entries to any node, and each node would either “mirror”
the others or else provide online links to them.

6.4 ISSUES ASSOCIATED WITH INFORMATION NETWORKS

One advantage of information networks is that they can address directly issues
that are crucial in building a reliable information system. The sites in the
network operate under one of the common frameworks described above. To
achieve this they need to address directly issues that are crucial in building a
reliable information system. These issues include:

� standardisation;
� quality assurance;
� publishing model;
� stability of information sources;
� custodianship of data;
� legal liability and other legal matters;
� funding.

6.4.1 The need for standards and metadata

Coordinating and exchanging scientific information are possible only if
different data sets are compatible with one another. To be reusable, data must
conform to standards. The need for widely recognised data standards and
data formats is therefore growing rapidly. Given the increasing importance of
communications, new standards need to be compatible with Internet protocols.

Four main kinds of standards and conventions are used:

(a) Information design standards and information models describe in

conceptual terms the information needs of an enterprise. All data and
information are collected, stored and disseminated in the framework.

Information networks 95

(b) Attribute standards define what information to collect. Some
information (e.g. who, when, where and how) is essential for every
data set; other information (e.g. soil pH) may be desirable but not
essential.

(c) Quality control standards provide indicators of validity, accuracy,
reliability or methodology for data fields and entries.

(d) Interchange formats specify how information should be laid out for
distribution. The markup languages SGML and XML (see Chapter 5)
provide extremely powerful, and flexible standards for formatting
information for processing of all kinds. It is also extremely good for
interchanging database records. The ISO standard ASN.1 tagged field
format also provides a flexible protocol for defining and exchanging
electronic information (Fig. 3). Software libraries now exist that provide
tools to manipulate and reformat files.

6.4.1.1 Metadata

Metadata are data about data. They provide essential background
information about datasets, such as what it is, when and where it was
compiled, who produced it, and how it is structured. Without its
accompanying metadata, a dataset is often useless. Metadata have gained
considerable prominence as indexing tools, especially since the advent of
large-scale repositories on the Internet. Because of the vast range of
information online, the World Wide Web Consortium espoused the principle
that items should be self-documenting. That is, they should contain their own
metadata.

Whatever the material concerned, metadata always need to cover the basic
context from which the information stems. Broadly speaking, metadata need
to address these basic questions:

� HOW was the information obtained and compiled?
� WHY was the information compiled?
� WHEN was the information compiled?
� WHERE does the information refer to?
� WHO collected or compiled it?
� WHAT is the information?

For instance, the Dublin Core (DC), designed originally for online library
functions, specifies a suite of fields that should be used in identifying and
indexing Web documents (Weibel et al. 1998). An important side effect of
XML (Chapter 5) is to make metadata an integral part of the organisation
and formation of documents and data. The Resource Description
Framework (RDF) provides a general approach to describing the nature of
any item of information RDF (Lassila & Swick, 1998).

We will look at metadata standards in more detail in the following chapters,
especially in Chapter 8.

Online GIS96

6.4.2 Quality assurance

Quality is a prime concern when compiling information. Incorrect data can
lead to misleading conclusions. They can also have legal implications. The
aim of quality assurance is to ensure that data are valid, complete, and accurate.

To be useable, data records must be valid, accurate, and up-to-date. They
must also conform to appropriate standards so that it can be merged with
other data. Errors in any field of a data record are potentially serious. Important
aspects of quality include the following:

� Validity and accuracy of observations;
� Accurate recording;
� Conformity to standards.

6.4.2.1 Tests on quality assurance

The most direct method of assuring quality is to trap errors at source. That is,
the workers recording the original data need to be rigorous about the validity
and accuracy of their results. If electronic forms are used (e.g over the World
Wide Web), then two useful measures are available. The first is to eliminate
the possibility of typographical errors and variants by providing selection
lists, wherever possible, as we saw in Chapter 4. For instance, selecting (say)
the name of a genus from a list eliminates miss-spelling (though selection
errors are still possible). For free text, scripts can be used to test for missing
entries and for obvious errors prior to submission. Online forms, for instance,
can use (say) javascript routines to test whether a name entered is a valid
taxonomic family or whether a location falls within the correct range.

Errors in methodology pose the most serious concern. For data from large
institutions, the professional standing of the organisation is often deemed to
guarantee reliability. However, for data obtained from private individuals, some
criteria need to be applied. Publication of results is often taken as a de facto
indicator that all data records are correct. However, this is not always true.

Everyone makes mistakes, so quality testing of data is essential. Although the
methods we saw in Chapter 4 can help to guard against some kinds of errors,
they do not guard against errors of fact. Perhaps the most effective way to test for
errors is to build redundancy tests into data records. Redundancy makes it possible
to check for consistency between related fields. For example, does the location
given for a field site lie within the country indicated? Does a named species exist?
If a database maintains suitable background information, then outlier tests can
reveal suspect records that need to be rechecked. A record that shows (say) a
plant growing at a site with lower rainfall than anywhere else needs to be checked.
Either it contains important information, or it is wrong. Both sorts of checks can
be automated and have been applied to many kinds of environmental data.

In principle, an appropriate indicator of quality could accompany every
data field. For instance, is location given to the nearest minute of Latitude?
Or degree? And how was it derived? By reference to a map? A global
positioning system? Or interpolated much later from a site description? Perhaps
the most important are indicators of what checks have been applied to the
original records to ensure accuracy and validity.

Information networks 97

6.4.2.2 Protocols for quality assurance

Large data repositories adopt a formal quality assurance protocol for receiving,
incorporating and publishing data. Some of these protocols include testing
conformity to required standards, examples of standards, publication of
methodology for standards currently in use, results, and validity checks such
as those described above.

Protocols for information networks are as yet less developed. One possibility
is for a site to become part of an information network, it should receive an
appropriate quality accreditation. For example, in manufacturing industry
and software development, the ISO9000 quality mechanisms are widespread.
To achieve ISO9000 accreditation requires first having adequate mechanisms
in place to ensure quality of output; secondly a formal accreditation body
will investigate (normally on site) the quality processes to ensure they meet
international standards. Accreditation for conformance will often have to be
renewed at regular time intervals.

6.4.3 The publishing model

It is important to realise that making information available online is really a
form of publication. Traditionally the term “publishing” has been closely associated
with books and other printed matter. However, in the modern electronic era,
there are now many other formats besides print for circulating ideas. With the
rise of multimedia, the distinction between print, video, audio etc. are becoming
blurred. Today a more apt definition might be to describe publishing as…

“The act of disseminating intellectual material to its intended
audience”.

Although the medium and the material may differ vastly, essentially the same
common process is always involved in publication (Fig. 6.1). For online
publications this model makes it possible to automate many of the steps
involved. The model encompasses all the stages that occur in traditional
publishing, but in a somewhat more formalised form. We can summarise the
steps as follows:

� Submission—The author submits material to the editor.
� Acquisition—The publisher acquires material. Here we take this to

include permissions. Details of the submission are recorded and an
acknowledgment is sent to the author.

� Quality assurance—The material is checked. Errors are referred
back to the author for correction.

� Production—The material is prepared for publication. This stage
includes copy-editing, design, typesetting, printing and binding.

� Distribution—The publication is shipped to stores etc. for sale. It is
publicised so that people know that it is available.

Note that the above procedure is completely general. It applies to any kind of
information, whether it be data, text, images, video, or sound. Although the

Online GIS98

details of the above process vary enormously from case to case, essentially the
model is always the same. In a traditional magazine or journal, for instance,
authors submit articles to an editor who records them and assesses them for
quality (this may involve outside referees) and then passes them on to a
production unit, which prepares the publication in its final form. An advertising
or marketing unit prepares announcements when the material is ready for
distribution.

This essence of the above process (as captured in Fig. 6.1) applies to
publication of any kind of material, whether in a traditional context, or online.
For instance, adding data to a database involves submission of data records
by the custodian to the manager of the database, who runs quality assurance
tests over it, arranges for it to be entered or marked up and added to the
database. The delivery and announcements stages

The importance of the publication model is that it provides a systematic
framework for automating many editorial and publishing functions. For
instance, almost the entire submission procedure can be automated. When an
author submits an item for publication (using a form upload) an automatic
process can store the files, record the submission, return and acknowledgment
to the author, and notify the editor. It could even carry out elementary quality
checks, such as ensuring that all pertinent information has been provided, or
testing the validity of embedded URLs.

When an author submits data for publication, several tasks must be
performed immediately. Typically, these tasks might include:

� Assign a reference number to the submission.
� Date stamp the submission.
� Create a directory for the new material (a directory is needed because

several files will always be involved).
� Write the loaded file into the directory.
� Create a registration file containing all the details of the submission.
� Add a summary and links to the relevant “incoming” queue and

editorial control files for later processing.
� Send a receipt back to the author.
� Carry out preliminary checks of the information, such as checking

that all fields are completed.
� Notify the editor.

Figure 6.1. Summary of the steps involved in publishing material online. The same general
pattern of steps occurs whatever the publication and whatever the type of material involved.
Many of the steps involved can, and should be automated.

Information networks 99

In general a submission will require several files to be uploaded (e.g. an article
plus the figures). If the submission requires an elaborate directory system to
be created, then the best approach is for authors to bundle the entire directory
system and files into a single archive file (e.g. using the Unix tar facility) and
submit the archive file. If circumstances do not require separate files to be
uploaded as part of the submission, then the above procedure is somewhat
simpler, but most of the above steps still apply. In principle there is no difference
between the mechanism for submitting (say) a conference abstract, an entry
to a database, or an entire book.

Another important consequence of the general publication model is that the
same automatic processes that are needed for online publication will be shared
by many information systems. This makes it possible to encapsulate those steps
as publishing objects, complete with their own. There are now many publishing
systems and packages available to create such objects. Online publishing
languages, such as SLEEP, which was described in Chapter 3, also help to simplify
the building of automated submission and other publishing procedures.

Finally, it should be noted that the above model really applies to publication
of material on a single site. In the context of information networks, it applies
only if the material can be centrally coordinated. In many contexts, a somewhat
different approach—the accreditation model—needs to be applied. We look
at this in more detail in Section 6.5.

6.4.4 Stability

The most frustrating problem, for users and managers alike, is that important
sources of information frequently go “stale”. Existing mechanisms for reporting
URL changes are simply not effective. However, the solution is not to
concentrate information at a single centre. An important principle is that the
site that maintains a piece of information should be the principal source.
Copies of (say) a dataset can become out-of-date very quickly, so it is more
efficient for other sites to make links to the site that maintains a dataset,
rather than take copies of it.

Publication of information online implies a measure of stability. That is,
the information will be available for a long period. It will not suddenly
disappear. Information networks provide frameworks for reducing, if not
eliminating, the problems involved.

Perhaps the most common reason for material disappearing is
reorganisation of a Web site. The material is still there, but it is in a different
location within the site. Most often the problem arises because publishers fail
to consider the logical structure of their site when it is first established. Another
common problem is that Web sites often reflect the internal structure of the
organisation that runs them. Each time the company or government department
is restructured, so too the Web site needs to be changed. Publishers can avoid
these problems by careful planning when the site is established, by orienting
the logical structure towards users rather than owners, and by using logical
names for services instead of using machine names.

A more serious problem than address changes is the actual loss of material.
Information goes offline for many reasons, but especially the closing of a site
or service. Most often material disappears temporarily when a network failure
occurs. Duplication is the best solution.

Online GIS100

One approach is to run a mirror site, that is a copy of all the material and
services on another site. Some popular services have literally hundreds of
mirror sites. A mirror requires that information from the primary site be copied
at regular intervals. This is done most economically through a system of
updates, so that only new material is copied.

Another approach is a data archive. Archives became popular very early in
the history of the Internet, well before the World Wide Web appeared. The
most common examples were anonymous FTP sites that stored public domain
software and shareware. Some government sites have established online
archives for various kinds of data, such as weather records, satellite images or
scientific data. At the time of writing many libraries are beginning to create
online archives for electronic media.

6.4.5 Data custodianship

The word custodian has two meanings: a person who cares for something,
and a person who controls something. The subtle difference between these
two words is important in data management. Here we deal with the two
issues in turn.

Data currency is often a major problem in GIS, as well as in many other
kinds of databases. For instance, city councils need to keep the names of
property owners up to date for purposes of taxation, voting registration and
a host of other services and issues. Likewise, business directories and tourist
databases need to keep contact details up to date or businesses will suffer. The
task of maintaining the currency of data is hard enough for the primary agencies
that compile the information. The problem becomes compounded when a
dataset is passed on to other organisations. This issue is a great concern for
GIS, which are often put together by combining data from many different
primary sources. An important advantage of online GIS is the potential to
access primary data sets directly from the source. This means that the data
updates can be incorporated into a GIS directly at their source, rather than
having to wait until a new version is received and uploaded. The working
versions are also the primary sources.

Attempts to share data have often foundered on the issue of control. Datasets
are often valuable to the organisations that develop them. As a result, agencies
are understandably reluctant to hand over to other organisations datasets
that they rely on for income. Possible remedies have been tried, or
recommended. These include: changing the funding models, promoting and
rewarding cooperation; tying contributions from researchers to grant funding
and publication of results. Creating distributed databases online provides
another potential solution to the problem. Publishing their data online has
allowed many agencies to retain control and management of their data whilst
also making it available externally.

The problem of recouping costs still remains an issue for agencies that
make their data available online, especially if the data needs to be combined
with other data layers, and in automatic fashion. The problem is this. If an
agency sells access to its data online, how does it charge other organisations
that want to incorporate that data into other services. A good example
would be (say) a geographic base layer that could serve as the base map for

Information networks 101

tourist data. At the time of writing this question is still a major issue for
online data. Several approaches have been tried. Traditional models include
syndication, in which an agency allows other organisations to use its data at
some pro rata cost. Another is to pay royalties based on the rate of use of
particular datasets.

The above model supposes that all of the players are aware of the way in
which data is shared, and that systems are put in place to monitor this regular
usage. However, the problem of micro payments becomes far more difficult
in some of the automated scenarios that we shall consider in later chapters.
For instance, as mentioned above the use of common namespaces in XML
raises the possibility of information networks in which different sites are not
even aware of one another. So what happens, for instance, if an automatic
agent grabs data from another site—a one-off transaction—in the course of
addressing a query? In many cases the information access may require data
processing. The same arguments extend to the processing time involved.

One possibility is to pay for data by some measure of the effort required to
retrieve it. This could be the actual volume of data; it could be linked to CPU
cycles to process a query or some other measure of query complexity. One
problem is that most current standards originally appeared before the
importance of electronic commerce became apparent. Hence they do not
include models to accommodate issue such as those raised here. At the time of
writing, there is an urgent need for a model that enables an agent to grab
pieces of data from wherever with minimal cost, or costing of just what it
really uses. This could be very important for widespread applications, such as
GIS access by mobile phones (see Chapter 11).

6.4.6 Legal liability

Legal liability is always a cause for concern in publishing. Perhaps the most
serious concern when publishing data online is the prospect of being held
liable for any damage that may result from use of that data. In some cases, the
fear of litigation has itself been enough to deter organisations from releasing
their data. The biggest problem arises from false, inaccurate or incomplete
data and from misleading interpretations. For instance, suppose that an error
in the recorded values for latitude or longitude implied that an endangered
species lay squarely in the middle of an area planned for commercial
development. This information could be enough to halt the enterprise at a
cost of millions of dollars. The developers might then seek to litigate against
all parties they held responsible, including all the persons or organisations
responsible for providing the false data.

Several steps are essential to reduce the risk of litigation. There is always
an implicit assumption by the public at large that published information is
correct. So publishers not only need to take every step possible to ensure that
information is correct, but also that users are aware of limitations. Some of
these steps might include the following:

� Carry out quality assurance on submitted data (see earlier sections).
� Along with each data set provide a cover sheet that not only provides

the relevant metadata, but also a clear statement that covers data

Online GIS102

quality, limitations, and other caveats on use of the data. This is
important because people tend to ignore limitations (e.g. precision)
and assume that data can be used for any purpose.

� Along with the above caveats, provide a disclaimer that covers
conditions of use and warning against responsibility. The following
simple example shows the sort of detail that should be included.

Users of the data contained herein do so at their own risk. Although
the authors and editors have made every effort to verify the
correctness of the information provided here, neither they nor the
publishers accept responsibility for any errors or inaccuracies that
may occur. Neither do they accept liability for any consequences
that may result from any use that may be made of the information.

6.4.7 Funding

An important factor hindering many networking initiatives is how to pay for
it. The economics of a single site are relatively straightforward. However, if
there are many sites contributing to a particular service, then who pays for
the activity? In our experience, many attempts to set up information networks
fail because they entail a significant cost for the participants, without any
obvious benefit. For this reason many site managers are reluctant to take part
in such initiatives. This problem is particularly acute for non commercial
sites, which rely on limited insititutional funds for their existence. Even when
direct funding has been available to fund a network, the problem is that the
large number of players means that the funding available to each site in the
network is likely to be small.

In most cases the only real payoff for contributing sites is publicity. Being
part of a network increases the number of pathways by which users can find
your Web site (see details under accreditation below). This exposure is useful
if it increases the number of users, and commercial customers.

Another tricky issue arises with commercial networks in which users pay
for the information that they access. How do payments get made and how
does the income get distributed? In many attempts at creating online
information networks that we have seen, the agencies with data are often
reluctant to contribute because they fear that the network will undermine
sales of their data.

If the network is only loosely coordinated, then users might pay for
individual services direct to the host site on a one-to-one basis. Problems arise
where a service provided by a network makes use of elements from a number
of different contributing sites.

For example, suppose that in a commercial geographic service, each map
layer was maintained by a separate site and that a map building program
retrieved data from each of the layers in the course of drawing a map.
Presumably, the front end of the service would be maintained on a single
site, which would also receive the payments from users. The contributing
sites would of course, expect payment for use of their data. The question
then arises as to how to organise this. There are several possible price

Information networks 103

models. For instance, the provider might need to count the number of
accesses to each layer and accumulate a micro-payment each time a
particular data layer is used.

In practice, the sharing of data and information along the lines described
here is a matter of developing a culture in which it becomes common practice.
This will happen only when the technology exists to make it practical, and
pioneer services prove that it is practical.

6.5 INFORMATION NETWORKS IN PRACTICE

6.5.1 The accreditation model

The publishing model presented earlier in this chapter provides a general
approach to handling primary information. However, in many cases,
information networks need to compile secondary information. That is they
simply link to existing information that is originally published on sites
independently of the network organisation.

A particularly effective method of achieving status and visibility on the
Web is the notion of endorsement, or accreditation (Green 1998). In a sense,
any hypertext link on the web is a de facto endorsement. However, this is
only partly true, because many sites maintain lists of “relevant” links without
asserting anything about their quality. Even more so, search engines simply
index sites that contain key words, without assessing quality in any way.
Where accreditation differs is that the indexing site, makes a specific statement
about the quality of the indexed site (Green 1995). More to the point, it
excludes sites that are not considered to be of sufficient quality.

Accreditation works as follows. An organisation that monitors information
quality endorses a service provided by some content provider. In practice this
means providing a some form of badge or label that the endorsed site can place
on its home page. Some organisations have made their reputation solely on the
basis of providing an endorsement process. However, the process is a particularly
effective way for organisations that already possess some form of authority to
enhance and exploit their credibility in the Web environment (Green 1998).

Accreditation is particularly suited to developing networks of geographic
information. Almost any kind of information can be organised geographically.
Businesses are always located somewhere and would benefit from the ability
for users to search for them by city or region, as well as thematically. Likewise,
it is relevant to be able to search governments, schools and most institutions
geographically. This potential richness of information means that any
geographic index needs to be able to link to, and index, information from a
wide range of Web sites. The accreditation model provides a convenient
approach to ensuring quality of the matter that the network indexes. The
exact requirement for accreditation may vary, often it is simply how prominent
the site is. However, for a network that stresses quality of service, some of the
most common requirements are as follows:

� relevance of the resource;
� quality of the information (accuracy, validity etc.);

Online GIS104

� absence of inappropriate material, such as pornography, seditious
or criminal information.

� conformance to any presentation requirements;
� inclusion of essential metadata;
� demonstrated stability of the resource, e.g.

• copies at mirror sites;
• stability of addresses (using aliases);
• notification of changes or closure.

� freedom from concerns over legal liability, copyright etc.

To test of the efficacy of accreditation, we monitored access rates to one of
the services that we manage, the Guide to Australia (Green, 1993a), both
before and after introducing accreditation early in 1999. The results (Fig. 6.2)
clearly show that accreditation can increase the hit rate to a particular service
by an order of magnitude. The reason for this is that creates many new avenues
by which users can navigate to the service concerned.

Accreditation can take several forms, for example:

� a reference to the item in an index;
� a reference to an item as though it were a publication on the local

site; providing a “badge” of approval that the publisher can include
on the site or in the item.

6.5.1.1 Why use accreditation?

There are many advantages in accreditation for the accrediting site and
organisation:

(a) it reinforces recognition of the authority of the accrediting
organisation;

(b) it distributes the effort of developing material amongst other sites;
(c) it encourages other sites to contribute material;
(d) it encourages stability of contributing sites;
(e) it helps to distribute the effort and cost of developing an information

system;
(f) it enables the accrediting site to impose standards and quality control

on material published elsewhere;
(g) it extends the number of links and references to the accrediting site;
(h) it opens the potential for the accrediting site to “set the agenda” in

the area concerned.

6.5.1.2 Advantages for the accredited site

Advantages for the contributor ar-e similar to those for the accrediting organisation:

1. increasing the credibility of the publication;
2. extending the range of links and references to the site;

Information networks 105

3. public recognition;
4. affiliation with an authoritative or high-profile organisation.

There are many low-level forms of endorsement on the Internet already. Some
example:

• The World Wide Web Virtual Library is simply a list of indexes
that are held and managed elsewhere.

• Several sites have attempted to create a reputation for themselves
simply by providing badges or “awards” to other sites. An example
is the award of a badge to (say) “the 100 most popular web sites”.

• Many sites that try to provide services on particular topics provide
pointers to selected services elsewhere. This selection and indexing
is a de facto form of endorsement.

By implication, accreditation implies a stamp of approval. Contributors who
offer items for accreditation need to know what is expected of them. The list
of requirements needs to ensure that the accredited item is suitable. On the
other hand it should not be so prohibitive that it discourages anyone from
making contributions. Some possible criteria include the following.

6.5.2 Examples of geographic information networks

We have already alluded elsewhere to online geographic services that are
effectively information networks of one kind or another. The Internet creates
the potential to develop worldwide biodiversity information systems. As the
World Wide Web spread, the 1990s saw a proliferation of cooperative projects
to compile biodiversity information online.

A useful outcome of networking activity has been to put a lot of
biodiversity information online, such as taxonomic nomenclature and species

Figure 6.2. An example of the increase in Web traffic that results from accreditation of
sources. Daily hits for Guide to Australia from 1 February to 23 April 1999. Accreditation
was introduced on day 29 of the study.

Online GIS106

checklists. One of the first priorities was to develop consistent reference
lists of the world’s species. A number of international projects have focussed
on putting global biodiversity information online. For instance, the
International Organisation for Plant Information (IOPI) began developing
a checklist of the world’s plant species (Burdet 1992). The Species 2000
project has similar objectives (IUBS 1998). At the same time, the Biodiversity
Information Network (BIN21) set up a network of sites that compiled papers
and data on biodiversity on different continents. There are now many online
information networks that focus on environment and resources (Table 6.1).

The greatest challenges in collating biodiversity information have been
human, especially legal and political issues, rather than technical problems.
One outcome of the Convention on Biological Diversity was agreement on
the concept of a Clearinghouse Mechanism (UNEP 1995). This scheme aimed
to help countries develop their biodiversity information capacity. The longer-
term goal was to enhance access to information through the notion of a system
of clearing houses. These sites gather, organise and distribute biodiversity
information. The greater challenge is to merge these clearing houses into a
global network.

In 1994, the OECD set up a Megascience Forum to promote large science
projects of major international significance (Hardy 1998). The Human Genome
Project was one such enterprise. Another was the proposal for a Global
Biodiversity Information Facility (GBIF). The aim of GBIF is to establish

“…a common access system, Internet-based, for accessing the world’s
known species through some 180 global species databases..”

Primary industries have set up similar initiatives. For instance, in 1996 the
International Union of Forestry Research Organisations established an
international information network and in 1998 began work to develop a global
forestry information system (IUFRO 1998).

6.5.3 Further prospects for information networks

In this chapter we have focussed mostly on the practical and human issues
involved in organising information networks. However, there have been many
technical difficulties as well, such as coordinating updates, and developing
and maintaining common indexes. We have glossed over most of these because
the ad hoc approaches implemented in the past are now being superseded by
developments in Web technology.

These new developments are changing the focus of networking activity.
For instance, instead of being effectively top down organisations, planned to
deal with a particular issue, networks can arise in bottom up fashion through
sites adopting common approaches. For instance, the use of XML, with a
common namespace has the effect of immediately creating a de facto
network of sites dealing with a common topic area. This effect has been
foreseen by the W3C, and new standards, such as the Resource Description
Framework (see Chapter 8) are being developed to enhance the ability of
metadata to contribute to the coordination and linking of online information
resources.

Information networks 107

In the following four chapters, we will look at these issues in more detail.
Chapter 7 looks at distributed information objects, and in particular at the
potential for linking online geographic information. Chapter 8 looks more
closely at metadata and some of the new standards that are emerging. Chapter
9 looks in detail at the metadata standards being developed for GIS in various
parts of the world. Finally in Chapter 10, we look at the concept of data
warehouses and their uses.

Table 6.1. Some online biodiversity services and networks.

CHAPTER 7

Distributed objects and Open GIS

7.1 INTRODUCTION

In this chapter we move into the transitional space between online GIS and
spatial metadata. The framework we shall study, part of the OpenGIS standards
from the OpenGIS consortium (OGC 2000a), provides not only a model for
distributed processing of spatial data but also an elegant model for spatial
metadata. So, in many ways this is a pivotal chapter. We have so far in the
book talked about GIS operations and we shall go on to look in detail at the
content of metadata. Here we have the architecture of a global metadata
system for objects and how this would work for GIS. At the time of writing,
GIS metadata is good on content description but weak on techniques for
finding and exploiting it. We will come back to this in the last chapter where
we look at future applications using mobile phones.

At the time of writing, vendors are working frantically to provide Web
access to their GIS products. Mapinfo for example, in its MapXtreme product,
provides many features via a Web interface to a remote Mapinfo server. Yet
this doesn’t really interest us too much here. You will find access to vendor
information from the Web site accompanying this book.

This chapter involves a fair amount of low-level programming, but the
user familiar with C++ or Java should find it digestible. We have two
motivations for taking this close look at a widespread programming
methodology. The first is the straightforward one, that these concepts and
programming tools form a major part of the OpenGIS specification. The second
is that it will enable us to see the complexity of GIS networks. In the (original)
Web we have a simple model where documents sit on a server and are retrieved.
They may contain pointers to other data. But when we want to manipulate,
subset the data on remote servers or ask conditional questions of data on
multiple servers, life gets a whole lot more difficult.

The CORBA specification, which we look at here, is the dominant
multivendor standard for objects (OMG 1997), and is a product of the Object
Management Group, a large international consortium.

7.2 THE STANDARDS ORGANISATIONS

Two groups play a key role in this chapter: the first is the movement behind
the object-oriented technology revolution, the Object Management Group
(OMG); the second is GIS specific, the Open GIS Consortium (OGC).

The OMG is a consortium of computer software vendors and other
interested parties. Some 700 computing organisations got together to form

Online GIS110

the OMG, the Object Management Group from which CORBA, the Common
Object Request Broker Architecture, emerged.

CORBA, which is the principal standard that OMG have created, is a
framework for allowing interactions of objects on different servers across
the Internet. Since the role of the OMG extends far beyond that of GIS, we
shall not discuss it further here, but the interested reader will find plenty of
information linked to the book’s Web site. The OGC is a much more
specific organisation, concerned primarily with GIS. Although not driven
initially by the Web, the rapid growth in the Internet has made it a powerful
player.

There is a huge amount of mapping data around the world. There is also
a non-trivial number of formats, data storage mechanisms, costing protocols
and many kinds of impediments to interoperability. The Web, and
distributed object frameworks, such as CORBA make it realistic to mix and
match data from many sources, at least in theory. The practice is the OGC’s
mission.

Like many organisations drawing partners from industry, government and
universities, OGC has several categories of membership from strategic and
principal members, who have full voting rights on the various boards and
committees, down to associate membership, on a sliding scale of cost. The
OGC is also tightly linked through shared staff and other formal agreements
to the ISO/TC211 standard which we discuss later. The OGC began in North
America, but now has strong links to European initiatives and standards,
with over 100 members from outside the USA. There is a specific channel
through GIPSIE (GIS Interoperability Project Stimulating the Industry in
Europe).

At the top of the OGC is the Management Committee, made up of
representatives of principal and strategic members, which elects a board of
directors. It has two other fundamental committees, the Technical Committee
and Interoperability Committee. Operations of these organisations proceed,
rather like the World Wide Web, through request processes: for proposals
(RFP); for information (RFI); for comment (RFC); and for technology (RFT).

Responses eventually become abstract specifications and subsequently
detailed software engineering implementation specifications. Several
specifications are already at the implementation level, while a strategic plan
documents several more proceeding well beyond the year 2000. Two important
activities are the simple features specification (see Section 7.3.9) and the Web
Mapping Testbed, which is the first major interoperability initiative with over
30 major corporations participating.

7.3 ONLINE OBJECTS AND THEIR METADATA: CORBA

Alongside the developments in metadata for spatial information, another
impressive standardisation operation was occurring in software technology.
Quite often in computing, paradigm shifts occur gradually rather than through
breakthroughs. Although we can trace the invention of the Web to a single
individual, its subsequent growth occurred on many fronts, in many countries
through the actions of many individuals.

Distributed objects and Open GIS 111

Another paradigm shift, not so well known outside computing circles, was
the development of object-oriented technology. We saw briefly in Chapter 1 a
little of objects in actions, but OOT has swept through large-scale programming
like a tornado. It offers increased security, increased code re-use and a whole
suite of new design methodologies which greatly improve software engineering.

Apart from new OO languages such as Java, new software design methods
(Jacobson et al. 1997) and modelling languages such as UML (Booch et al.
1999), another major standardisation took place, the development of a system
for managing objects in different places on computer networks, so-called
distributed objects. In some ways this was a natural outgrowth of the client-
server model software model (Orffali et al. 1997). This is one of the
fundamental models of networked computing, where any number of clients
have access to central resources maintained on a server. The distributed object
model has the server provide objects to clients on demand, a bit of a
simplification, but it will do for our purposes. There is a great deal of
complexity “under the hood” as Orffali et al. (1997) remark.

Recapping the discussion in Chapter 1, an object is basically a heterogeneous
collection of data items (possibly including other objects) and a set of methods
(procedures) which act upon it. The data owned by an object is usually (really
should) be accessible only through its methods. A class is a template from
which to build or instantiate one or more objects.

In the distributed object model, we want a client to be able to operate on
objects on some remote server to add or retrieve information. So we might
want to query a map object for the number of people living in the region
between two rivers in some county. Or we might want to get a list of all the
towns in this area and do the calculation of the total ourselves if this particular
specialised operation was not provided. CORBA is just one of a number of
systems for distributed objects, but it has two important advantages. It is
independent of the programming language used. Also, it is backed by a large
consortium, the OMG.

In the early client-server models, this is fairly straightforward. We know
where the data is (i.e. where the server is and, say, the database on it), and we
know the language we need to extract the information. The new world is
much more powerful: we don’t necessarily know where the servers are, what
languages they support, which the objects they manage or really not very
much more than that they support the CORBA distributed object framework.

We will get onto the definition of CORBA shortly, but let’s think to begin
with, just what we will need.

� We need metadata for an object. We need to describe what it does
and how you access it. We don’t need to know how it does it, and
this hiding of implementation is a key idea in object-oriented
thinking. So we need to be able to describe the object’s interface
but do not need the details of its implementation.

� We need to store this information somewhere (believe it or not in
the Interface Repository (IR), and of course, we will need
mechanisms for finding IRs.

� We need the implementation repository, which stores information
about the implementation of the actual object code itself.

Online GIS112

� As with any global system, there is a risk of name clashes, so we
need some way of assigning globally unique names or addresses to
objects.

� We need a mechanism for finding unknown objects which will serve
some specific purpose without knowing where or what they are in
advance.

� We need a communication protocol, or, maybe something more
elaborate, which will service requests to a server for objects.

As you can imagine we need some indexing and transaction mechanisms on
top of the collection of objects and interfaces the server maintains. CORBA
has about 16 services1, of which we will talk about a couple of the most
relevant in Section 7.3.7.

7.3.1 Interface versus implementation

One of the concepts to increase in importance in the OO revolution has been
the idea of an interface. In the object model, an object owns and controls
data. Other software does not access this data directly. Access is only through
the object methods. Thus we can think the object as having an interface to the
outside world, which is all the world sees.

How the object stores and manages its data is invisible to the outside world.
In fact more than one program can implement the same interface, each doing
it quite differently underneath. For example, we might want to extract the
shortest distance along sealed or A-class roads between two towns. This data
might be stored simply as a table for all towns on the map. Alternatively the
calculation might be done on the fly by using some curve integration algorithm.
We will have no way of knowing.

This idea of an interface is particularly useful when we have old data which
we want to bring into contact with current software, which we refer to as legacy
data and code. Many organisations have lots of old programs which do their job
well enough and which are so important to day-to-day running that nobody
dares to update them or rewrite them. In fact this reliance on and terror of touching
legacy code was the driving force behind the Y2K non-crisis. However, we can
wrap them in a modern interface, which other software can exploit.

We might want to extend their use to other applications, incorporate them
in a data warehouse or simply integrate them with other data systems, say
following a corporate reorganisation or takeover. Since spatial data is so costly
to acquire and maintain, legacy data is a big issue in the spatial world.

Let’s see how this might work with a set of maps. We have a range of maps
say, dividing up the country of Scotland. Each map has spatial boundaries, a
scale and maybe some ownership details. Now each of these characteristics is
shared by all the individual maps each of which adds specific data. We say
that each map inherits the parent properties, and are subclasses of the parent

1 We say “about” somewhat hesitantly since the number of services has changed from version
to version and CORBA version 4.0 is imminent. Implementation of the services has tended
to lag behind everything else.

Distributed objects and Open GIS 113

generic map (c.f. Section 1.2). We might have a specialised map that plots the
distilleries for the malt whisky for which Scotland is uniquely famous. Since
distilleries occur all over Scotland, from the Speyside malts in the East to the
Islay malts of the NorthWest, we can imagine that the maps are owned by
different counties and maintained on different servers. The methods of each
whisky map object could print the map itself, provide information about
history, tours or other interesting facts or stories.

Another map object might provide information about the Scottish Munros2

for trekkers and mountaineers. Auxiliary information might include hazards,
difficulty, date of first conquest and so forth.

In these systems we are describing, it may be that this information has
been collected together from different sources, all united in a common interface.
A new system might want to access both systems to provide trekking/whisky
appreciation holidays3.

To keep an interface as generic as possible we want it to be completely
language independent and, preferably, conforming to an international
standard protected from commercial interests. The CORBA specification gets
close to this.

7.3.2 The CORBA IDL

The first building block of CORBA is the IDL, the Interface Definition Language.
Readers who are keen programmers might recognize the similarity to C++.
Although the latter was neither the first and is not universally considered to be
the best object-oriented language, because it was based on the widespread C, it
rapidly became the most well known. The Java programming language, which
is fast becoming the lingua franca of Internet programming, is now seriously
challenging C++ in domains outside the Internet.

In Table 7.1 we list the IDL for an interface to the Scottish maps discussed
earlier. In Figure 7.1 we show the UML model of these maps.

7.3.2.7 IDL: What happens to it?

The IDL we wrote above is not program code. It can’t be activated and run. It
has two roles:

1. it is run through a pre-compiler to generate code which carries out the

network linking functions;

2. it is stored in a globally visible repository, the Interface Repository, for
dynamic access.

2 Peaks over 3000 feet high.
3 One of the tremendous advances brought about by object technology is this extensibility
and reusability. It’s now so easy to mix and match, as with creating a new holiday programme
such as this. It has been argued that the strides made in IT underpin the substantial and
sustained economic growth in the USA during the nineties.

Online GIS114

1. The module name defines the namespace. So we can now uniquely refer
to topomap as ScottishMaps::topomap

2. Dates are given according to ISO561, requiring a string of 16 characters
according to a specific template of year, month, day and time.

3. We give the map a sheet number and a location area. This section is
really just a super cut-down metadata set for illustrative purposes.

4. The whiskyMap class inherits topomap, since a whisky map is a topomap.
5. The rating of a Munro is a category of difficulty to get to the top. This is

an enumerated type where, as in C or C++, we just list the possible options.
6. A lot of Scottish land has public access but is privately owned. Deer are

kept and shot. It is extremely advisable to check if access to a particular
mountain is safe!

Table 7.1. IDL for Scottish Visitor Maps.

Distributed objects and Open GIS 115

Talking about the pre-compilation stage without detailed code analysis is tricky.
Not everybody finds reading code a lot of fun; code is meant for computers to
read and the best way of understanding a computational framework is to go
right in and experiment with it on an actual machine. We will look a bit later
on at just how we invoke a remote object. In other words, we have a real,
active object on a server, and a virtual or proxy object in the client. The client
behaves just as if it were operating on a local object. The networking is
transparent.

But the client needs information about where to find the remote object; the
piece of code which does this is usually referred to as a stub, but the client
programmer doesn’t pay very much attention to it. This is the first code
fragment from the pre-compiler. The server needs to be able to plug the object
code into the network in some way, for which it needs a skeleton; this is the
other principal code fragment generated by the IDL pre-compiler.

7.3.2.2 Global names

Now each object needs some sort of global name, just as every machine on
the Internet has a unique name. In this case the name is referred to as the
Repository ID and, just like a URL, it is made up of a hierarchy. There are
two forms, IDL and DCE. Each has three levels:

1. the first part of the name is just one of two keywords, IDL or DCE,
the latter standing for Distributed Computing Environment, a
standard of the Open Software Foundation (OSF 2000);

Figure 7.1. A UML Class diagram for Scottish Maps of whisky distilleries. See Table 7.1
for related IDL. Each box (representing a class of objects) provides a class name, a list of
attributes, and some class operations (methods). The lines indicate relationships between
different classes. See Chapter 1 for explanation of UML class diagrams.

Online GIS116

2. the second part really carries all the information—in the IDL case
it is typically a URL; in the DCE case it is a unique code, referred to
as a UUID (Universal Unique Identifier), generated by a combination
of the current date, the network card address of the computer
generating the code, and a counter value, finally converted to an
ascii string;

3. the last part is simply a version number as in, say, 1.2. IDL allows
major (1) and minor (2) versions, whereas DCE does not.

Thus we might have

IDL:clio.mit.csu.edu.au/terry/myobjects: 1.5

or

DCE:S6ss8c8z12p4z5:3

These codes are generated by so called pragma directives to the compiler, e.g.

#pragma version junk 3.0 / / version number for name junk

#pragma prefix “clio.mit.csu.edu.au” / / default prefix

7.3.3 Activating objects

Activating an object is a subtle concept. Processes run on computers; objects
do not, their methods do. Thus by activating an object we essentially mean
instantiating it, allocating memory and other housekeeping chores and, if it’s
a preexisting object, fill in the data. We also need a control model: do the
objects methods run in parallel with everything else, do they sit in lightweight
threads and so on? It is these loading and running issues that are the
responsibility of the object adapter.

The first version of CORBA began with a mechanism referred to as the
Basic Object Adapter. But various technical difficulties, combined with the
rise in Java, led to a new mechanism, the POA, or Portable Object Adapter,
and we will concentrate our interest on just this.

7.3.4 The Portable Object Adapter

The ORB functions as network glue. It connects clients to servers, proxy to
remote objects. For very simple applications we would not have to worry
about anything else. But for large systems, and GIS systems usually involve
large amounts of data, there are further complications. It is not practical to
keep all of the data, all the objects, online all the time. Thus we need

Distributed objects and Open GIS 117

mechanisms of moving data in and out of files or databases in a transparent
fashion. This is where object adapters come in to play.

The first versions of CORBA used a so-called Basic Object Adapter (BOA),
but it soon transpired that it was not a trivial software problem. In fact the
specifications were sufficiently loose, that too much diversity of implementation
and functionality was possible. Ultimately, the BOA was abandoned in favour
of a new mechanism, the Portable Object Adapter (POA).

The process of retrieving a Web page is relatively straightforward: the server
extracts a page from a file or database, and transfers it to the client using the
appropriate (HTTP) protocol. A Web form is a little more complicated: now
one or more additional programs are run to pre-process the data before
returning it to the client. This chaining to other programs and consequent
process creation leaves all sorts of opportunities for hackers to get into a Web
server’s machine and CGI programming (Chapter 3) did create major security
holes in the early days of the Web.

It’s not surprising, therefore, that the process of activating and exploiting
objects is fraught with complications. For this reason the POA is not that
simple despite its innocuous sounding name. Essentially we want to preserve
this look of all-the-time-online to the prospective clients. But different systems
may have different policies for where the objects live and how they are
activated. A simple example of the difficulties might be the difference between
storage in files in a hierarchical directory system and storage in a relational
database. This all has to be transparent to the client.

The full details of the POA take us a little too far from our central theme,
but we will take a conceptual look at two different aspects: first there is the
relationship between processes and objects; secondly the different policies
that an object adapter may use.

7.3.4.1 Object activation

What does it actually mean to activate an object? An object is not a process,
a program, running in a computer. It is an assemblage of data and runnable
code. A server is a process. Object activation refers more to the initialisation
of the object and the registration with the CORBA system. Registration,
essentially, means connecting with the POA. Now there are several ways the
POA can activate objects, and a range of policies which it can use.

The options for activation are:

1. shared server is the most common in which each object method becomes

a separate thread in the server. Suppose we have a map object from which
we can add names of people living in each house shown on the map.
Since people move house from time to time, we need also to be able to
update the resident names. What we don’t want to happen is for somebody
to read data off the map while the names in a family are being changed—
which could potential create an erroneous mix of family members. Thus
we need careful exclusion policies, which are fundamental to database
management. A thread library, such as that provided by Java, includes all
the necessary control mechanisms;

Online GIS118

2. unshared server creates a dedicated server for each object. This is useful
where a dedicated object is needed, such as controlling a device such as a
printer;

3. server-per-method goes to the extreme of allocating a new process for
each method. This less commonly used. The sort of situation that might
occur is to run some sort of house-keeping operation such as compiling
access statistics.

In addition to these process mechanisms, a POA’s objects may be transient, if
they exist only within the server, or permanent, if they continue to exist after
the server process terminates (i.e. they are stored somewhere).

There can be more than one POA but there is one root POA. Additional
ones inherit the root’s generic properties but may add one or more special
policies as discussed in the next section.

7.3.4.2 POA policies

With policies we move deeper into the management of CORBA objects. In
brief outline, here are the policy options:

1. each object has to have an ID. The ID Uniqueness policy determines whether

each object has a unique ID while ID Assignment determines whether or
not the ID is assigned by the server or the user. Why would we need this?
Well, the remote user is not concerned with how objects or stored, whether
they are files, records in databases or generated in some other way. Each
particular mechanism may require different ID mechanisms, perhaps
provided by additional software such as a database platform;

2. lifespan simply determines if objects are transient or permanent;
3. the remaining policies refer to servants. A servant is basically the

implementation of a CORBA object; it requires a locator and an activator,
both sub-classes of a servant manager. Also required are policies on
retention and request processing, which determine whether maps of
servant/Object IDs are kept in an Active Object Map or whether requests
are serviced as they come in.

7.3.4.3 Object activation: recap

So, we’ve had a whistle stop tour through some very complicated software
concepts. To the end user, most of this is transparent. To the server programmer
it can be very important. We have seen that going from metadata to effective
use of the data it describes maybe non-trivial. At the time of writing not many
implementations exist in the spatial information field, but the situation may
change rapidly, perhaps driven by the mobile phone revolution as we discussed
in the last chapter.

These concepts are important in designing server systems which are secure
and can handle large amounts of data in an efficient way. The large datasets
of the GIS user make these issues really important.

Distributed objects and Open GIS 119

7.3.5 Enterprise Java Beans

The language Java has now gone somewhat beyond the original CORBA
specifications in the development of large scale object management in the so-
called Java beans and subsequently enterprise Java beans standards.

There are two huge gains in commercial productivity from object-oriented
software engineering. The first comes about from encapsulation, the safe (and
hopefully easy) reuse of software. The second is just beginning to take off, the
building of large scale components and frameworks. Layer upon layer of
software now provides easy integration of enterprise level software. The
Enterprise Java Beans standard is a prime example. All of the complexities of
server activation, object persistent, transaction control and so on are now
hidden within the EJB framework.

However, all may not be over. Java has made progress like no other language
ever. Yet it is still far from being universal. Java gets its universality by compiling
to byte codes, which are then interpreted by Java Virtual Machines. This latter
stage still tends to produce slow execution. The big changes in successive versions
have made software development more complicated and not so backward
compatible. But, even worse, at the time of writing, lawsuits between Microsoft
and Sun are still in progress. It is possible that Microsoft may opt out of, or be
forced out of, Java, which will create a tsunami in the software world.

7.3.6 CORBA services

The interaction mechanisms are all embedded within the CORBA services. The
OMG has released a series of Requests for Proposal (RFP), beginning in 1993.
For our present purposes, we will need only a small subset. The full collection as
of 1999 can be grouped into several functional areas, albeit with some overlaps.

7.3.6.1 Object naming and location

The naming service gives objects unique names anywhere on the Internet, while
the trading service, facilitates searching for objects out there somewhere. These
are often likened to the White and Yellow Pages of a telephone directory. Two
other services allow dynamic linking and naming of collections: relationship
looks after establishing links between components which know little of each
other; properties allows dynamic association of named values with components.

7.3.6.2 Object storage and access

The persistence service which renders objects available at all times indefinitely
into the future; it’s essentially like a transparent archiving service, usually
hooked to a database, but the intricate details are of no immediate concern.

Objects may be stored in a variety of ways, in relational databases, object
or hybrid databases or as simple flat files. In fact traditional GIS packages
such as ARC Info may utilise different databases such as Oracle or Informix.
The persistence service provides a clean, vendor and platform neutral access

Online GIS120

to objects, so that an object will appear to be online at all times. Other services
are life cycle, for creating, deleting and moving components around on the
ORB; the collection service, for managing collections of objects; and the
externalisation service, for streaming (large) volumes of data in and out of a
component.

7.3.6.3 Object management

Although this scenario of having globally accessible data and applications
which can mix and match at will is very attractive, it brings with it some
important managerial issues: integrity of data and access rights. In any database
system, transaction fidelity is a core requirement and we have similar services
in CORBA: concurrency for providing locks to prevent data corruption by
more than one attempt to access the data at the same time; transaction service
to manage the twophase commit process of concurrent access. Synchronisation
and access control require, in addition, a time service.

In addition to these technical problems of making sure that as many users
attempt to access and update they do not damage the data, it is necessary to
make sure that these users do have the necessary access rights. The licensing
service handles measurement of usage and charging while the security service
handles the ever present needs of authentication of users, privacy, data security
and so on.

7.3.6.4 Object usage

At long last we get down to actually using these remote objects. We have a
query language, similar to SQL3, in the query service and facilities for triggering
actions based on events, controlled by the event service.

7.3.7 CORBA: The practicalities

It is important to realise that CORBA is a specification, and a complex one
at that. It is not a software package or set of software libraries. In practice,
the various CORBA implementations have all lacked some of the services.
Whether full implementations will materialise, or whether some of the
features will evolve out of the standard is hard to say at this stage. Java has
its own set of CORBA-like and CORBA-derived distributed object
libraries, but has not and probably will not, implement the full
specification.

The Open GIS Consortium has released IDL for a wide range of spatial
information processing tasks, which we consider shortly. Thus the
opportunities are available for a widespread deployment of distributed spatial
objects. But there may be a difficulty yet to be resolved. In most parts of the
world, spatial data costs money, a lot of money. An e-commerce model will
be needed to sell data online. We return to this issue in the last chapter.

Distributed objects and Open GIS 121

7.3.8 The simple features specification

The CORBA IDL bindings fall into two sets: the geometry bindings and the
feature bindings. We shall now look at these in turn.

7.3.8.1 Geometry bindings

Here we have the primitive vector operations you would find in most typical
GIS packages. Most of these are fairly straightforward. So, for example, the
PrimeMeridianInterface defines the prime meridian with respect to the
Greenwich Prime Meridian:

interface PrimeMeridian: SpatialReferenceInfo {

attribute double longtitude;

attribute AngularUnit angular_units;

};

The SpatialReferenceInfo interface is closely linked to the European Petroleum
Survey Group (EPSG) and the Petrochemical Open Software Consortium
(POSC) (EPSG 2000) and provides a set of common attributes:

interface SpatialReferenceInfo {

attribute string name;

attribute string authority;

attribute long code;

attribute string alias;

attribute string abbreviation;

attribute string remarks;

readonldy attribute string well_known_text;

};

The terms name, code, and alias refer to assigned names and codes of
EPSG, while for EPSG assigned data, authority is EPSG. The other items are
selfexplanatory, except for the last attribute which is just a textual
representation of the parameters.

A comprehensive set of interfaces covers, ellipsoids, linear and angular
units, coordinate systems etc.

The SpatialReferenceSystem interface is the parent abstract class for all
spatial reference systems. This parent class gives rise to interfaces such as the
GeographicCoordinateSystem and the GeodeticSpatialReferenceSystem.

7.3.9 Feature model

Features may have both spatial and non-spatial content: e.g. a town has a
name and population (strings) but also coordinates, spatial extent, maps
and other spatial parameters. Features as defined in the IDL interface thus
consist of:

Online GIS122

• a FeatureType
• Properties
• Geometry.

The relevant parts of the IDL (slightly simplified relative to the specification)
are then

interface Feature {

exception PropertyNotSet {} : / / one of a number of

Property error exceptions

exception InvalidProperty {};

exception InvalidParams {string why;};

readonly attribute FeatureType feature_type;

Geometry get_geometry (in string name) raises

(InvalidParams);

boolean property_exists (in string name) raises

(InvalidProperty);

any get_property (in string name) raises (PropertyNotSet);

void set_property (in string name, in any value) raises

(InvalidProperty);

};

Properties are captured by name-value pairs with arbitrary type. The
FeatureType is relegated to a separate interface and along with it a range of
OOT patterns spring up. Factories are used to create Feature instances on the
fly. Features may also be grouped into FeatureCollections. They may have a
specific FeatureContainer associated with them. But they may also simply be
some looser collection connected together by some property such as minimum
population size of towns. Alongside collections come another standard OOT
technique, the iterator pattern, which allows one to step through the elements
of a collection without having to access its internal representation in any way.
A first class reference on OOT patterns, by one of the pioneers, is Gamma
(Gamma et al. 1995).

Feature collections also support a queryable interface, with the name
QueryableFeatureCollection. The implementation details will depend on things
like the nature of the database holding the feature information.

7.3.10 OGC metadata

The abstract specification for metadata in the OGC looks very promising. It
is built from the ground up on an OO model. This brings with it numerous
advantages:

Distributed objects and Open GIS 123

� effective inheritance of parent values;
� minimal redundancy in repetition of information;
� fast and precise searching algorithms are easy to write.

At the top level, every FeatureCollection has a mandatory property, with name
“Metadata” and value the ID of the metadata object. This value may be null,
indicating that no metadata was recorded. Each feature within the collection
may also have a metadata property but it is optional.

The Metadata Entity objects themselves are sub-classes of Metadata Sets.
The Metadata Entities are themselves sub-classed to provide application specific
information, such as the properties of roads.

7.4 THE GEOGRAPHIC MARKUP LANGUAGE

Another important initiative of the OGC is GML, the Geographical Markup
Language. Why have yet another markup language for geographical
information. Having studied XML and related standards in Chapter 5, we
can now see that it will provide:

• implicit metadata by having geographical meaningful tags we can do

some spatial related searches based on text only. It is still difficult, although
a fast moving research frontier, to do image searches based on image
queries. So, for example, it is not easy at present to write search queries,
such as find a fish in the given set of images. Auxiliary text markup is a
way around such problems. As we have seen already, markup carries
implicit metadata.

• a fast way of delivering geographical data to the web browser As we saw
in Chapter 4, there is an emerging standard for vector graphics on the
web. So, we could mark up our map data, say, in SVG directly.
Unfortunately this is not likely to be flexible enough. Browsers vary in
resolution, they may be used by people with sensory disabilities, networks
vary in speed, in fact there are many reasons for tailoring a web page on
delivery. GML is written in XML so we can transform it easily to other
XML schema with the many tools available. In fact transforming to SVG
is likely to be the method of choice for most GML display purposes.

The OGC working draft, a Request for Comment, version 1.0 was released in
December 1999, and is still at a very early stage of development. There are
already a number of constructs under discussion, and it seems likely that the
final recommendation will have a number of changes. Hence, we shall look at
a detailed example, rather than go through the standard, step by step. Anybody
interested in creating GML documents or implementations should check the
web site for the latest developments.

7.4.1 Overview

A full GML specification consists of a feature collection, in which we have
two components:

Online GIS124

1. a spatial reference system, which has its own individual DTD;
2. a collection of features, each having spatial and non-spatial elements.

We will start the discussion by building the geometry elements, then bind
them into features and finally a feature collection. Referring to the map (Figure
7.2), we start with the an elementary construct, the point:

Figure 7.2. The river map defined using GML in the text.

Distributed objects and Open GIS 125

<Geometry name=”location” srsName=”swift1701">

<Point>

<CList>3.2, 1.8 </CList>

</Point>

</Geometry>

The point is itself made up of the fundamental element, the coordinate list or
Clist, in this case having just one tuple. The coordinates are real-word
coordinates, with a reference described in the spatial reference system,
swift1701, about which more later.

We could make this into a feature by wrapping it in a feature element:

<Feature featureType=”telephone” fid=”1" name=”Riverside

Phone”>

<Description> The phone by the river</Description>

<Property name=”number”type=”integer”> 633901013

</Property>

<Geometry name=”location”srsName=”swift1701">

<Point>

<CList>3.2, 1.8 </CList>

</Point>

</Geometry>

</Feature>

The feature has added a description of the feature and one of an arbitrary
number of properties, in this case the number of the phone. The fid is simply
a unique identifier. We remind the reader that this specification is not finalised
and there is argument about the exact nature of the feature construct.
Additionally, there is likely to be a defined thesaurus in ISO TC211 XML
schema, definitions for feature types.

We have one more point element on the map, the flag in the river. Here it is
as a feature:

<Feature featureType=”flag”fid=”2" name=”fIag02">

<Description> Shallow water flag</Description>

<Property name=”flagCode” type=”string”>W</property>

<Geometry name=”location”srsName=”swift1701">

<Point>

<CList>2.5, 2.5</CList>

</Point>

</Geometry>

</Feature>

Moving up now in complexity, we come to the rope bridge, which at the scale
of the map, we just represent as a line. There is no single line construct, just a
string of line segments, as a coordinate list, separated by white space:

Online GIS126

<Feature featureType=”structure” fid=”8"

name= “Gulliver bridge”>

<Description> Rope bridge across the river</Description>

<Geometry name=”centreline” srsName=”swift1701">

<LineString>

<CList>2.1, 2.1 1.9 2.4</CList>

</LineString>

</Geometry>

</Feature>

We keep repeating the srsName; it could in fact be different for each geometry.
When we come to the river, we have each bank encoded as a line string, both
banks together forming a geometry collection. The current specification does
not allow us to put the name and srsName at the collection level, which would
seem a useful thing to do. Furthermore the link between features and the
geometries they contain may be subject to revision:

<Feature featureType=”flag” fid=”3" name=”river Lilli”>

<Description> Delineates the river Lilli</Description>

<Feature featureType=”riverBank” fid=”4"

name=”North Bank”>

<Description> North bank of the river”</Description>

<Geometry name=”boundary” srsName=”swift1701">

<LineString>

<CList>

0.0, 0.2 1.0, 1.7 2.0, 2.4 3.2, 2.8 4.0, 3.0

</CList>

</LineString>

</Geometry>

</Feature>

<Feature featureType=”riverBank” fid=”5"

name=”South Bank”>

<Description> South bank of the river”</Description>

<Geometry name=”boundary” srsName=”swift1701">

<LineString>

<CList>

0.2, 0.0 1.1, 1.3 2.3, 2.2 4.0, 2.7

</CList>

</LineString>

</Geometry>

</Feature>

</Feature>

We now come to the three features of the map, which all occupy areas and we
represent as polygons. A polygon is simply a closed list of points.

<Feature featureType=”carpark” fid=”6" name=”Car Park 1">

<Description>

Distributed objects and Open GIS 127

Car Park 1 of the recreational area

</Description>

<Geometry name=”extent” srsName=”swift1701">

<Polygon>

<CList>0.7, 0.3 2.3, 1.8 2.3, 0.3</CList>

</Polygon>

</Geometry>

</Feature>

The buildings are covered in a similar manner:

<Feature featureType=”building” fid=”7"

name=”Park buildings”>

<Description>

Buildings owned by the Park authority

</Description>

<Feature featureType=”building” fid=”4"

name=”Boat Shed”>

<Description>Boat shed for canoes </Description>

<Geometry name=”extent” srsName=”swift1701">

<Polygon>

<CList>

2.5, 2.0 3.0, 2.0 3.0, 2.2 2.5, 2.2

</CList>

</Polygon>

</Geometry>

</Feature>

<Feature featureType=”building” fid=”4" name=”Kiosk”>

<Description>Refreshment kiosk</Description>

<Geometry name=”extent” srsName=”swift1701">

<Polygon>

<CList>

3.4, 0.7 3.7, 0.7 3.7, 1.2 3.4, 1.2

</CList>

</Polygon>

</Geometry>

</Feature>

</Feature>

We are now half-way towards completing a FeatureCollection. What we have
to do next is to create the Spatial Reference System (SRS). There are three
types of SRS: projected, based on a projection; geographic using angular
coordinates on the earth’s surface; and geocentric using rectangular coordinates
relative to the earth’s centre. Our example will use the projected system, which
has the name, swift 1701, i.e.

<SpatialReferenceSystem srsname=swift1701">

<Projected name=”River Park”>

</Projected>

Online GIS128

Now we have to add information which specifies the linear units and how
these related to positions on the globe. First, the units and the conversion
factor to metres:

<LinearUnit>

<Name>pole</Name>

<ConversionFactor >198/39.37</ConversionFactor>

</LinearUnit>

The relationship to the surface of the earth comes in the geographic tag in
which we specify a datum, spheroid and Prime Meridian.

<Geographic name=”swift1701:geo”>

<Datum>

<DatumName >Swift_Lilliput_Datum_l701</DatumName >

<Spheroid>

<SpheroidName>Swift 1695</SpheroidName>

<InverseFlattening>305.112</InverseFlattening>

<SemiMajorAxis>5944127.1</SemiMajorAxis>

</Spheroid>

</Datum>

<AngularUnit >

<Name>Decimal Degree</Name>

<ConversionFactor>p/180</ConversionFactor>

</AngularUnit>

<PrimeMeridian>

<Name>Lilliput Meridian</Name>

<Meridian>0 0 0</Meridian>

</PrimeMeridian>

< /Geographic

Finally, here is the projection itself:

<Projection>Swift_Conformal_Conic_Projection</Projection>

One more small item is left for the FeatureCollection, its bounding box:

<BoundingBox>

<CList>0.0, 0.0 4.0, 4.0</CList>

</BoundingBox>

Table 7.2 gives the final assembly. The resulting map is shown in Figure 7.2.
Note that this example is based on the OGC DTDs, but as we saw in Chapter
6, the future is more likely to be in XML Schema. It seems verbose! But in fact
ASCII text is often a cheap storage compared to images or proprietary database
formats. Remember also that markup of this kind serves multiple functions: it
is selfdescribing through the tag names adding implicit metadata; it may be
transformed into any manner of presentation formats such as SVG; it may be
searched and indexed by text-based engines.

Distributed objects and Open GIS 129

Table 7.2. A FeatureCollection Example.

Online GIS130

Distributed objects and Open GIS 131

CHAPTER 8

Metadata on the Web

8.1 INTRODUCTION

The World Wide Web has grown at an enormous rate. By the middle of the
year 2000, there were around 50 millions sites worldwide, some 200 million
forecast by the end of 2001. In fact the growth of the Web is strongly analogous
to the growth in connectivity of a random graph. This phenomenon, first
observed by Erdos and Renyi (1960), underlies many properties of complex
interactive systems, as elsewhere demonstrated by David Green (Bossomaier
& Green 2000).

In Figures 8.1, 8.2, you can see the growth in the connectivity (the fraction
of nodes connected together in one big component) as a function of the number
of connections. As you can see at a quite small number of possible connections
a connectivity avalanche occurs. So it is with the Web.

This unprecedented growth has brought various problems along with it:

� it’s getting more and more difficult to find anything; currently the
biggest search engines are each, individually, indexing less than 20%;

� some material may be offensive, yet whole scale censorship is
undesirable;

� the authenticity of material may be questionable;
� it may be hard to decide on the quality or accuracy of web pages;
� personal data may be collected and used in ways not desired by the

user.

Thus there is an urgent need for ways of describing web sites. This in turn
creates an urgent need for metadata.

Figure 8.1. Increasing connectivity shown during the formation of a random graph, as
edges are added to join pairs of vertices. Notice the formation of groups (connected
subgraphs) that grow and join as new edges are added.

Online GIS134

The HyperText Markup Language (HTML) has had, since the early days,
a META tag. This tag is still the only universally recognised source of metadata.
But it has become hopelessly overloaded and several new directions have
emerged:

� the Dublin Core workshops have generated a full set of bibliographic
tags, which assign properties such as author, creation date to web
pages;

� PICS (Platform for Internet Content Selection) arose to label and
rate content in specific ways, primarily for the use of parents and
teachers;

� XML is growing rapidly as a more powerful and extensible
alternative to HTML which is potentially self-describing;

� the World Wide Web Consortium recommmended in February 1999
the Resource Description Framework (RDF) which is a powerful
structure for creating metadata for a wide variety of applications.

Our main concern in this chapter is not specific metadata tag sets, such as
Dublin Core, but the more general issue of metadata paradigms. Hence our
focus will be on RDF. The RDF working party had as part of its brief that it
subsume PICS, so we shall briefly consider PICS first. The XML issue is more
complex. XML is like a protégé who outpaces the skills of his master. Although
it began as a simplified form of SGML (Chapter 5), it is now taking on a
much broader role, and taking on structural characteristics which go beyond
the original DTD concept. XML frequently provides implicit metadata and is
the language of RDF. At the time of writing this overlap is still under discussion.

Figure 8.2. Critical changes in connectivity of a random graph (cf. Fig. 8.1) as the
number of edges increases. (a) The size of the largest group (i.e. connected subgraph).
(b) Standard deviation in the size of the largest group. (c) The number of disjoint groups.
(d) Traversal time for the largest group (after Green 1993b).

Metadata on the Web 135

We introduced XML in Chapter 5, but in Section 8.5 we discuss the issue
of namespaces. This is the mechanism of recording metadata tags for the
many possible applications to which RDF might be applied.

Having cleared the decks of preliminary material, we now look at the
structure of RDF, its data model, its syntax and the schema mechanism through
which data properties receive their definition.

We conclude by considering briefly a couple of core initiatives, still in the
development phase at the time of writing: P3P (Platform for Privacy Preferences
Project) and the ongoing work on digital signatures and authentication.

8.2 THE DUBLIN CORE

The term Dublin Core (DC), perhaps surprisingly, refers not to Dublin in
Ireland but to Dublin, Ohio, which is home of the OCLC, the Online Computer
Library Center and the Dublin Core directorate. The DCMI (Dublin Core
Metadata Initiative) began in 1995 and the first Dublin Core Workshop was
held there, and subsequent workshops have been held around the world
including Warwick in the UK (source of the Warwick Framework for metadata
design principles) and Canberra, Australia. Unlike the rest of this chapter, the
Dublin Core is not about methods and techniques, but is a set of metadata
requirements, derived from a library perspective. It is about semantics, rather
than structure or syntax and aimed at facilitating resource discovery on the
Internet. As such, DCMI has co-evolved with the structure and syntax
mechanisms, XML and RDF.

8.2.1 Specification of the DC Elements

The reader will soon become aware of the huge range of possible sets of
metadata required for different applications, and in this chapter we are
primarily concerned with how we describe metadata elements. But the relative
simplicity of the DC specification means that a simple description mechanism
is adequate. Each element has 10 attributes. The first six of these do not
change for any of the elements in the current version. Table 8.1 lists them;
they contain few surprises.

Table 8.1. Fixed attributes of DC elements.

1 English, according to ISO639.

Online GIS136

Table 8.2 gives the four variable elements, again fairly obvious in intent, to
define the Creator element.

In most cases the name and identifier are the same, but occasionally the
name is a somewhat more extended description than the (unique) identifier.

8.2.1.1 The Dublin Core elements

Having cleared the structural details of the definitions out of the way in the
previous section, we can now look at the 15 DC elements themselves, given in
Table 8.3 in simplified form.

Table 8.2. Variable attributes of Dublin Core elements.

Table 8.3 The Dublin Core Elements

Metadata on the Web 137

Note that some of these descriptors are not complete in themselves but
require other standards or formal identification systems. In the case of URL,
ISBN, these are in widespread use. But for other elements, such as Relation,
there is no obvious standard to use.

We see in the next section, how we can incorporate these elements into an
HTML document. There is no standard for this, but an Internet Society memo
exists (ISOC 2000).

8.2.2 The HTML META Tag

An HTML document consists to two parts: the head and the body. The head
does not contain information for display in the browser (although the title
element often appears on the banner of the frame surrounding the web page).
In principle the browser can just retrieve the head of a page and determine
whether it wants the full page. One immediate use here is to determine if the
page has been updated since the browser last accessed it, although this usage
has tended to be circumvented by other techniques. However, the head can
contain information about what is in the page, the metadata, which can help
determine if the user actually wants to download it.

When the web first started, few people can have realised just how much
and how rapidly it would grow. Thus the provisions for metadata were fairly
limited, in fact, to just one empty tag3 <meta>. Each occurrence of the tag
contains a property/value pair. Fortunately, multiple metadata tags can be
included and it is sometimes used to carry the whole Dublin Core!

The <meta> tag has several attributes:

name: refers to the name of the metadata property, such as the
author of a document;

content: is the information specified in the name attribute, such as
the author’s name, i.e. the value of the property;

http-equiv: this gets a little bit more tricky and relates to the protocol
for retrieving the page; we go into a little bit more detail
below;

scheme: interpreting the value of the property defined in a name/
content pair may require access to external information of
some kind referred to as a scheme;

lang: there are some other, global attributes, which can be
included, which are not particularly important to our needs;
one such is the language of the document.

Here is a straightforward example3:

<META name=”author” content=”T.Bossomaier” lang=”en”>

2 i.e. no end tag.
3 Note that this is an SGML (HTML DTD) construct, where the end tag is omitted. In XML
this would not be permissible and the tag would end with />.

Online GIS138

The attribute http-equiv is an alternative to the name attribute. What it
does is to create a special header in the form of the HTTP protocol used to
fetch pages from web servers, but the details would be a digression.

A frequent use of the <meta> tag is to provide keywords for the page, to
facilitate the task of search engines, in the example below indicating the page
contains map information in two different languages:

<META name=”keywords” content=”maps, spatial, OS, UK”

lang=”en”>

<META name=”keywords” content=”cartes, spatial, franee”

lang=”fr”>

Here’s a more complicated Dublin Core example

<META name=”DC.Creator” content=”Terry Bossomaier”>

<META name=”DC.Creator” content=”David Green”>

<META name=”DC.Title” content=”Spatial Metadata and Onlne

GIS” lang=”en”>

<META name=”DC.Publisher” content=”Taylor and Francis”>

<META name=”DC.Language” content=”en” scheme=”ISO639">

Note that we capitalise the element after the prefix and the elements may
appear in any order. We have not included all the DC elements in this example,
nor do we have to. The prefix DC, of course, refers to Dublin Core. But how
does the Web page make this absolutely clear? It uses the <LINK> element.

<LINK REL=”schema.DC” HREF=”http://purl.org/DC/elements/1.0">

Note that DC is just one of many possible prefixes, which could follow the
schema keyword in the REL attribute.

There is a little complication here with language which might be confusing.
In the example above, we have referred to a scheme, in fact an ISO standard,
which defines the language abbreviation. Now consider the following:

<META name=”DC.Creator” content=”Tomasi di Lampedusa”>

<META name=”DC.Title” content=”I1 Gattopardo” lang=”it”>

<META name=”DC.Title” content=”The Leopard” lang=”en”>

<META name=”DC.Language” content=”it” scheme=”ISO639">

<META name=”DC.Source” content=”ISBN 88–07–80416–6">

<META name=”DC.Type” content=”novel”>

This script describes an online version of a novel by Lampedusa (it is
distinguished from Visconti’s superb film of the book, which could in principle
be embedded within a web page, by the DC.Type value) . The resource itself
is in Italian, as indicated by the DC.Language attribute value. But there are
two titles, one in English, the other in Italian, indicated by lang attributes
within each META element. Finally, this online version was derived from an
original printed novel, which we describe by its ISBN number.

Metadata on the Web 139

Now a couple of issues should become apparent here, which will become
important later. First, this is a flat format, just an unstructured list of property-
value pairs. So, as the metadata gets more extensive and complicated it is a bit
difficult for a human reader to digest. This may not be so much of a problem
for a machine reading the data, but it can be a problem for a human author
creating it.

Secondly, on a web site or some other document collection there is likely to
be a lot of repetition. Take for example the Web site of a computing department
in a university. There are a number of generic properties for a university: it
carries out teaching and research and gives degrees. A university will have
several faculties, arts, science, health and so on. A search engine may wish to
exploit this knowledge in its search, but obviously we don’t want to repeat
the higher level (university, faculty) information at the department level.
Repetition risks errors; it increases download times and increases the workload
for authors. So we need some sort of hierarchy mechanism, where we can
inherit metadata from above. PICS, which we consider shortly in Section 8.4,
makes a start in this direction.

Dublin Core was in many ways a library initiative and is well known
amongst librarians and archivists. But metadata is only of any use if people
use it and if everybody agrees on what the terms mean. We have seen that
Dublin Core has a simple mechanism for standardising the description of its
elements. But it’s very general, as befits a minimalist description. As we want
to provide more complex descriptions, we hit the problem of advertising.
How do we share our metadata. PICS provides a mechanism.

8.2.3 Profiles and schemes

The <HEAD> element may contain a profile attribute, which specifies a set of
definitions or other material relating to the meta tag properties. For example
the profile might specify the Dublin Core. So, what goes into a profile? Apart
from page specific material, it could contain links to other profiles at a more
general level. To make this work efficiently, the browser or search engine
needs to be able to cache profile information to avoid continually downloading
it for each page.

It should perhaps be clear already, that the HTML <meta> tag is being
asked to do a lot of work! Worse still, it has been the subject of abuse: keywords
crammed into the document head of an HTML document, typically in the
meta tag itself, are used to fool search engines into selecting a page, possibly
independent of its actual content. Thus some search engines now ignore the
meta tag completely.

8.3 PICS: PLATFORM FOR INTERNET CONTENT SELECTION

PICS began as the need to protect children from unpleasant material, mainly
pornography, on the Web. Although there are politicians who see censorship
as necessary, many others feel that the Internet should have no restrictions
provided nobody suffers unintentionally. Hence the idea behind PICS was
that sites would either carry label data, or their URLs would be listed in label

Online GIS140

bureaus, which would define their content. Browsers could then be configured
not to accept data with particular labels. An underlying requirement was that
PICS should be easy to use: parents and teachers would be able to use it
effectively to block site access.

Voluntary censorship can be quite successful: as a manager of a
pornographic site, you do not want to be closed down for the interests of the
majority. Being able to restrict your material to your specific clientele is quite
satisfactory. On the other hand, some sites with a strong marketing focus,
might be not so willing to selfregulate. Thus we need an additional mechanism
of third party rating. The academic world, for example, relies very strongly
on peer group refereeing. Respectable journals contain papers which have
been scrutinised by experts in the field before publication goes ahead if at all.
The PICS label bureau model looks after this4.

The W3C web site <http://www.w3c.org/pics> has full lists of
documentation, mailing lists, media commentaries etc. The PICS working
groups have finished. There are three technical recommendations:

� service descriptions, which specify how to describe a rating service’
vocabulary; rating services and systems became a W3C
recommendation on October 31, 1996.

� label format and distribution, which deals with the details of the
labels themselves and how to distribute them to interested parties;
label distribution and syntax also became a recommendation on
October 31, 1995

� PICSRules, which is an interchange format for the filtering rule
sets to facilitate installation or send them to servers; the rules
specification became a W3C recommendation somewhat later on
December 29, 1997.

An additional recommendation is proposed on signed labels. The development
of this recommendation is presumably intwined with the work on digital
signatures themselves5.

Since the PICS format is subsumed by RDF, but it’s interesting to look at
some of the concepts. One of the perennial difficulties of a large self-organising,
system like the web, with no central control, is the need to maintain backwards
compatibility. So, although a new site might use RDF, PICS, as a W3C
recommendation, should still be usable way into the future.

4 There is a still unresolved issue here. If labels are kept on a site or within a page, then the
network impact will be negligible. But if we have bureaus carrying labels for lots of web
pages or sites, then they potentially become network hotspots. Obviously, label bureaus
need to be mirrored, but, as they grow in popularity, ensuring fast access may become very
difficult.
5 Part of the specification includes details of recording faithfully a check on the veracity of
a document. The so-called MD5 message digest serves this purpose. It then has to be signed,
and therein lies an ongoing tale of control, part patent, part government. Garfinkel (1995)
gives a readable account, but see also Section 8.4.4 on XML signatures.

Metadata on the Web 141

8.3.1 PICS rating systems and services

To provide a rating for a site, we need a documented system for the rating
itself and a service which provides the appropriate ratings on demand. The
definition of the labels uses a lisp-like syntax as shown in the example in
Figure 8.3. Note that semi-colons introduce comments and the note numbers
are as follows:

1. defines URLs for the rating system and the rating service;
2. defines the type of paper which may be a tutorial or a paper reporting

new research;
3. although we have specified numerical values for the different paper types,

in this case these numbers are like an enumeration type in languages such
as C; the values have no ordering importance, indicated by the unordered
clause;

4. papers may be invited in which case they may have no referees; some categories,
such as extended reviews, will have fewer referees than new research; hence
the number of referees is specified as a range of from 0 to 3;

5. online journals have facilitated a whole new range of refereeing
mechanisms; in this hypothetical case, readers may query the current status
of a paper, possibly with access to it at pre-publication stages; in this case

Figure 8.3. Simple example of definition of PICS rating service.

Online GIS142

the labels may have a function of excluding particular categories of reader,
perhaps only a select group of people will be able to access the paper
before it reaches published status.

8.3.2 Creating labels

The labels themselves have a similar lisp-like syntax. There is a range of
different options available for describing the labels, which we will not go into
in detail, but in the example (Figure 8.4) they are pretty much self-explanatory.

First we have a date on which the ratings were made. Fred’s paper is a
research paper which will be refereed by three people. It is currently under
revision. This rating expires at the end of the year, which is the timetable over
which Fred is expected to complete the revision.

Jill’s paper is a review, which goes out to one referee. It has already been
published and, as a result, this label has no expiry date set.

We should stress, that as with the other specifications through which we
have taken a whistle-stop tour, we have left a lot of formal detail out. The
interested reader can pursue a number of excellent references on the web site
as well as the specifications themselves.

8.3.3 Label distribution

How are labels distributed? There are two main approaches:

1. embed the labels in the HTTP header stream; this requires a compliant

server;
2. use the META tag; this has the disadvantage of requiring information in

all pages and being applicable only to the HTML pages themselves not to
other formats (images etc.). Some browsers will move up the document
tree looking for generic labels if none are found in a specific page.

 Figure 8.4. Simple PICS labels.

Metadata on the Web 143

An example of the use of the meta tag would be:

<META http-equiv=”PICS-Label” content=’

(PICS-1.1 “http://clio.mit.csu.edu.au/sit-labels”

labels on “1999.09.09T09:09–0000”

until “2000.12.31T23:59:0000”

for “http://clio.mit.csu.edu.au/dangerous/page.html”

ratings (violence 10))’>

The University of Chicago provides a web based PICS Application Incubator
which will guide you through the steps of creating, distributing and using
labels.

8.3.4 Applying PICS rules

Suppose we want to restrict access of our browser to research papers which
have already been accepted or published. Figure 8.5 shows how we do it.

8.4 THE RESOURCE DESCRIPTION FRAMEWORK

RDF has three distinct components. First, we have the RDF data model, which
describes in a graphical notation the relationship between document
components. Secondly we have the serialisation of the model and a specific
grammar. The grammar tokens are just tokens at this stage. Their meaning
and interrelationships are covered by the third component, the RDF schema.
The data model and syntax became a recommendation of the World Wide
Web Consortium (W3C 1999) in February 1999 and the schemas became a
recommendation a month later.

RDF has utilised concepts and developments from several different areas,
as illustrated in Figure 8.6. In general this is helpful but it can cause some
confusion. Extensive use of object-oriented programming makes the structure
easy to understand. But the term object also appears in the description of
statements and the new term schema is used to describe an annotated class
hierarchy. We will try to point out these sources of confusion as we go.

Figure 8.5. Application of PICS Rules.

Online GIS144

One of the key features to the success of object-oriented programming has
been in software reuse. Exactly the same philosophy underlies the object-like
model of RDF—reuse of metadata, particularly via inheritance mechanisms.
So, for example, generic GIS data might be qualified by individual country-
specific sub-classes.

8.4.1 The labelled digraph model

A convenient way of representing the data model is via labelled digraphs.
There are two components:

1. the resource modelled by an ellipse;
2. a property modelled by an arc directed to
3. the property value, which may be a literal, represented by a rectangle,

or a further resource.

The combination of resource, property and value may be thought of as a
statement in which the resource is the subject, the property the predicate and
the value the object. Note that this is one of the areas where confusion of the
use of object may occur.

Consider the statement “Lilliput NMA is the owner of the Property
Boundary Dataset.” This situation is represented graphically in Figure 8.7.

Figure 8.6. Concepts and technologies that play a part in the Resource Description
Framework (RDF).

Metadata on the Web 145

Where the object concerned is a further resource, we can see that the second
resource may be either labelled or unlabelled, as shown in Figure 8.8.

8.4.2 The container model

It is perfectly reasonable to have repeated resources associated with a single
subject. But sometimes we would like the set of resources to have an identity
in its own right. We would then put them into a container class, known as
bag. Thus the staff who designed and do a lot of the teaching in the Bachelor
of Spatial Information Systems course, BSIS, might be referred to as an entity,
with particular meetings etc. Thus we would have on the web site describing
the course:

Figure 8.7. Representing ownership of a resource in the labelled digraph model.

Figure 8.8. Representing joint ownership in the labelled digraph model.

Online GIS146

<rdf:RDF xmlns:sit=”http://clio/sit-ns”>

<<rdf:description about=”/bsis-staff”>

<csu:staff>

<rdf:bag>

<rdf:li resource=”/bsis/Bill”>

<rdf:li resource=”/bsis/Kate”>

<rdf:li resource=”/bsis/Xihua”>

</rdf:bag>

</csu:staff>

</rdf:description>

The syntax here is self-explanatory, the individual bag elements making use
of the HTML list element.

The alt container element expresses an alternative. For example hard
copy maps might be obtainable from several sources:

<rdf:RDF xmlns:lpi=”http://lpi-ns.vir”>

<rdf:description about=”nsw-maps.vir/central-west”>

<nsw:mapHardCopy>

<rdf:alt>

<rdf:li resource=”NSW Government Shopfronts”>

<rdf:li resource=”Land and Property Information”>

</rdf:alt>

</nsw:mapHardCopy>

</rdf:description>

Figure 8.9. An example of the RDF container model for a resource.

Metadata on the Web 147

The syntax here is again self-explanatory. However, the serialisation syntax
in XML does not make clear the notion of a type. Thus in Figure 8.9, the
empty ellipse is a type. It does not have the same power of the type concept in
objectoriented software technology.

The final container model is a sequence, for which the syntax and diagrams
are exactly the same! For example, in NSW, the registering of a car involves
three distinct operations, visiting three different places if one does not trust
the postal service: testing the car at an approved testing station; purchasing
third party insurance, the green slip; taking a test certificate and green slip to
the registration office. With digital signatures, not yet legally binding in NSW,
but acceptably in Lilliput’s Network State, we need only one visit to the garage.

Figure 8.10. An RDF sequence.

Online GIS148

The rest happens over the Web. We select a garage, from which we receive a
test certificate. An MD5 digest is signed by the garage using its private key.
The signed digest is now entered into a second site, which is one of a number
of insurance providers. A second MD5 signed digest is returned and the two6

are now entered into the third and last government web site where the
certification is obtained. Figure 8.10 shows this sequence of events and the
RDF serialisation is:

<rdf:RDF xmlns:lpi=”http://www.lsn.gov.11/ns”>

<<rdf:description about=”lsn-registration.1/central-west”>

<lns:motorRegistration>

<rdf:seq>

<rdf:li>

<rdf:alt>

<rdf:li resource=”http://www.micks-mechanicals.com.11">

<rdf:li resource=”http://www.toms-tuneups.com.11">

</rdf:alt>

</rdf:li>

<rdf:li>

<rdf:alt>www.cheap-greens.com.11">

<rdf:li resource=”gazelle-motorins.com.11">

</rdf:alt>

</rdf:li>

<rdf:li resource=”http://www.motor.lsn.gov.11">

<rdf:seq>

</lsn:motorRegistration>

</rdf:description>

A processing agent (maybe belonging to your financial advisor) could process
this description and carry out all the steps on your behalf. It would have your
own criteria in choosing which of the alternatives, perhaps, say always choosing
the cheapest option, and could follow through this entire sequence
autonomously. Your registration sticker is printed for you at the garage, almost
the instant you enter your digital signature for transactions to proceed.

8.4.3 The formal RDF model

The formal model as described in (Lassila and S wick 1998) has eleven features,
but some of these concern statements about statements, a process referred to
as reification. Ignoring reified statements, which we do not have the space to
discuss, leaves us with:

1. there is a set called resources;
2. there is a set called literals;

6 In principle, we do not actually need the original test certification as this was a prerequisite
for obtaining the insurance.

Metadata on the Web 149

3. there is subset of resources called properties;
4. there is a set called statements; each element (statement) is a triple

{pred,sub,obj}, where pred is a property, sub is a resource and obj
is either a resource or a literal;

5. there is an element of properties known as RDF: type;
6. statements of the form {RDF:type, sub, obj} require that

obj be a member of resources;
7. there are three elements of resources, which are not properties,

known as RDF:bag, RDF:Seq and RDF:Alt;
8. there is a subset of properties called Ord, whose elements are referred

to as RDF:_1, RDF:_2, RDF: 3 …etc.

8.4.4 The XML syntax for the data model

RDF models have to be readable as text, for which we need a so-called
serialisation syntax. This takes two forms: the first or basic syntax is the more
straightforward, comprehensive and verbose; the second is the abbreviated
form which handles a subset of statements in a more concise way. RDF
interpreters should be able to handle arbitrary mixtures of the two.

So, let’s look at a simple example.

<rdf:RDF>

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns”

xmlns:cats=”http://schemas.org/cats”

<rdf Description

about=”http:////www.cats-of-the-world.org/

SuperCats/Garfield.html”>

<cats:Creator>Garfield</cats:Creator>

</rdf:Description>

</rdf:RDF>

First, we specify the location of the RDF namespace. Next we specify a
namespace cats. Now we define the metadata for a page about Garfield. The
description element is the essential element. Garfield created his own page
and is given as the creator. In fact we could have used Dublin Core to define
the page creator too, but the beauty of the namespace framework is that we
can use the term in a different way if we so desire.

8.4.4.1 The abbreviated syntax

There are three strategies for abbreviation:

1. instead of embedded description elements we put all the attributes
into a single description providing there is no name clash;

2. we make embedded descriptions resource attributes;
3. the type property becomes an element name directly.

Online GIS150

8.4.5 Properties of container elements

Sometimes we want to make a statement about all the pages in a container,
not about the container itself. Consider the following set of pages denoting
maps in Lilliput.

<rdf:bag ID=’ ‘ maps ‘ ‘>

<rdf:li resource=”http://landinfo.gov.11/redMountains”>

<rdf:li$ resource=”http://landinfo.gov.11/forestLake”>

</rdf:bag>

<rdf:Description aboutEach=’’#maps”>

<11m:mapMaker>Gulliver</11m:mapMaker>

</rdf:Description>

<rdf:Description about=’’\#maps’’>

<llm:custodian>Lilliputian Mapping Authority</llm:custodian>

</rdf:Description>

The effect here is to define Gulliver as the map maker for each map in the set
using the aboutEach construction, while the custodian of the collection is the
Lilliputian Mapping Authority.

CHAPTER 9

Metadata standards

In previous chapters, we have looked in detail at how we can use metadata to
index online resources, especially spatial information. However, metadata will
have only limited value if everyone uses different terms. To be useful in practice,
standard metadata vocabularies are necessary. In particular, to enable the
mixing of spatial data between sites and applications, requires standards for
spatial metadata. At the time of writing these standards are emerging through
national and international organisations.

In this chapter, we look at some of the existing spatial metadata standards.
As a case study, we will look at the Australasian standards in detail. This will
include a summary of the ANZLIC DTD. We will also look at some activities
spatial metadata standards in other parts of the world, specifically North
America and Europe.

9.1 AUSTRALASIAN STANDARDS

9.1.1 ANZLIC background

ANZLIC is the Australia New Zealand Land Information Council and is a
composite of a number of different groups. It has been working on metadata.
In 1994 it adopted a policy on the transfer of metadata. ANZLIC formed a
working group in April 1995 to develop a metadata framework and began
work on the spatial data infrastructure for Australia. Throughout the process
was a consultative one, leading to shared ownership of the standards. This
contrasts with the position in other countries where standards imposed from
above have not been as well accepted. Metadata can be a lot of work! Going
back over legacy data and tagging it effectively is very time consuming. It is
essential to have a process which is achievable in a realistic time frame.

ANZLIC released its DTD in January 1998 with various updates since
then. We shall cover the DTD (NB: see the acknowledgement at end of this
chapter) at the time of writing as a way of looking at core spatial metadata
concepts.

ANZLIC maintains a comprehensive Web site (http://www.anzlic.org.au/)
where readers can find full details of its standards and activities.

9.1.1.1 Constitution of ANZLIC

ANZLIC is a combined initiative of the Australian and New Zealand governments.
Australia has six states and two territories, each with largely independent
jurisdictions within a federal system. Each state has its own mapping authority

Online GIS152

and Surveyor General. The surveyor generals of each state form the core of the
ANZLIC governing body. At the time of writing there is no fixed structure across
all states and the office of surveyor general may disappear in some places.

9.1.2 The ANZLIC DTD

The top level (zero) element is ANZMETA. Table 9.1 shows elements
immediately below. Some of these themselves have sub-elements to a maximum
depth of 6. Most of the elements occur once only in a particular order. At the
top level, distribution and supplementary information are optional, while the
contact information may be repeated. It is fairly straightforward to mark up
a dataset according to such a DTD. In the ANZLIC case, there is a complication
in that some of the text entries are specified in specific thesauri—a constraint
beyond that describable in SGML. We will first run through the basic DTD
and return to look at the extension hooks which have been provided for local
content and further development.

We shall take an example of real metadata, courtesy of ANZLIC to illustrate
the various elements of the DTD. First we start with the anzmeta root element.
The anzmeta element has 9 children in specified order with two elements
optional and one which may be repeated and are described in Table 9.1.

Table 9.1 Level 1 Elements

9.1.2.1 The citeinfo element

There are three required components to the citeinfo element: the unique
id, uniqueid, the title and the origin, and a title element. Of these,
only the origin element has sub-elements. These sub-elements are:
custodian and jurisdiction. The latter consists of one or more
occurrences of keyword, which are taken from a prescribed keyword set as
discussed in Section 8.4.

<citeinfo>

<title>

Vegetation: Pre-European Settlement (1788)

</title>

<origin>

<custodian>

Metadata standards 153

Australian Surveying and Land Information

Group (AUSLIG)

</custodian>

<jurisdic>

<keyword>Australia</keyword>

</jurisdic>

</origin>

</citeinfo>

This dataset describes a model of vegetation pre-European settlement. Note
that some elements have content which is only other elements, giving us a
cascade of opening and closing tags.

9.1.2.2 The descript element

The descript element is somewhat more complex with several children. It consists
of abstract, theme (one or more occurrences and spdom (optional) elements
in order. Plain text suffices for the abstract. The theme is made up of a series of
one or more keywords, which are intended to help the non-expert. The spatial
domain, spdom , is more complicated. It consists of one or more place elements
or a keyword, followed by the bounding element. There may be a neat way of
describing the place, say a catchment area or some other legally precise mapping
term. In such a case a keyword suffices. In other situations, it is necessary to
spell out in geographical coordinates (longitude and latitude) the vertices of
each polygonal component (the dsgpoly element). Compass coordinates serve
to define bounding (northbc, southbc, eastbc, westbc).

<descript>

<abstract>
Shows a reconstruction of natural vegetation of

Australia as it probably would have been in the
1780s. Areas over 30000 hectares are shown plus

small areas of significant vegetation such as
rainforest. Attribute information includes growth

form of the tallest and lower stratum, foliage
cover of tallest stratum and dominant floristic

type.
</abstract>

<theme>
<keyword>

FLORA Native Mapping
VEGETATION Mapping

</keyword>
</theme>

<spdom>
<place>

<keyword>
Australia

</keyword>
</spdom>

</descript>

Online GIS154

9.1.2.3 Data currency: the timeperd element

Data currency is an essential metadata element. One of the big difficulties of
effective spatial data mining is the accuracy of the data itself. There is nothing
unexpected here, begdate and enddate elements each have date or keyword
sub-elements. Since the concern with metadata has come long after many
datasets were created, sometimes the content of the field may be unknown: so
instead of a date we may simply have the phrase (keyword) not known!

<timeperd>

<begdate>01JAN1780</begdate>

<enddate>Not Known</enddate>

</timeperd>

Dates are given in ISO8601 format at present. Note that there is a move
within the online community against using text for months. Purely numeric
formats are preferred, viz. 2001–04–01.

9.1.2.4 Dataset status: the <status> element

The status element records vital information about the development of the
dataset. Its current status is the top level element with two sub-elements,
progress and update, which are self-explanatory. The sub-element progress
is made up of keywords, which are taken from the default thesaurus (complete,
in progress, planned, not known). The sub-element update has a similar range
of update keywords, most of which are self explanatory, e.g. daily, weekly, etc.

<status>

<progress><keyword>Complete</keyword > </progress>

<update><keyword>Not Known</keyword ></update>

</status>

9.1.2.5 Access: the distinfo element

Three sub-elements describe distinfo: native describes the stored data
format; avlform describes the formats in which the data is available (optional,
since the data may in fact not be readily available); accconst describes any
access constraints. Formats may be nondig or digform.

<distinfo>

<native>

<digform>

<formname>ARC/INFO</formname>

<formname>Vector Data</formname>

<formname>GINA</formname>

</digform>

Metadata standards 155

<nondig>

<formname>Maps</formname>

</nondig>

</native>

<avlform>

<digital>

<formname>Database</formname>

<formname>ARC/INFO</formname>

<formname>Vector Data</formname>

<nondig>

<formname>Maps</formname >

</nondig>

</native>

</avlform>

<accconst>

The data are subject to Commonwealth of Australia Copyright. A licence
agreement is required and a licence fee is also applicable.

</accconst>

</distinfo>

9.1.2.6 Data quality: the dataqual element

Data quality is one element where the results are likely to be less than edifying.
Much legacy data has been lost, or never had suitable quality indicators. The
first sub-element is lineage, describing where the data came from; posacc
and attrac give the positional and attribute accuracy; the final elements
logic and complete give the logical consistency and completeness.

<dataqual>

<lineage>

Captured from mapping material used to produce

AUSLIG’s 1:5 million

scale Australia Natural Vegetation, 1989.

</lineage>

<posacc>Not Documented</posacc>

<attracc>Not Documented</attracc>

<logic>Not Documented</logic>

<complete>Australia</complete>

</dataqual>

Here we start to see some of the difficulties of handling legacy data: a lot
of the characteristics are just not known, were never recorded or have
been lost.

Online GIS156

9.1.2.7 Contact information: the cntinfo element

The element cntinfo is very straightforward with cntorg (contact
organisation), cntpos (contact position), address (mail address(es)), city,
state, country, postal (postcode), cntvoice (telephone), cntfax
(fax) and cntemail.

<cntinfo>

<cntorg>

Australian Surveying and Land Information Group (AUSLIG)

</cntorg>

<cntpos>

Enquiries to Data Sales Staff, Data Sales,

National Data Centre

</cntpos>

<address>

PO Box 2

</address>

<city>BELCONNEN</city>

<state>ACT </state>

<country>Australia</country>

<postal>2616</postal>

<cntvoice>

Australia Fixed Network number

+61 2 6201 4340

Australia Freecall

1800 800 173

</cntvoice>

<cntfax>

Australia Fixed Network number

+61 2 6201 4381

</cntfax>

<cntemail>

datasales@auslig.gov.au

mapsales@auslig.gov.au

</cntemail>

</cntinfo>

9.1.2.8 Metadata: the metainfo element

Now we have the metainfo element, which indicates the date the metadata
itself was created.

9.1.2.9 Additional metadata: the supplinf element

The final element, supplinf, is used to include any supplementary
information that is not included above.

<supplinf>

The Australian Spatial Data Directory (ASDD)

Metadata standards 157

Also, further information about Spatial Metadata is at

ANZLIC http://www.anzlic.org.au/metaelem.htm

———

growth form of tallest and lowest stratum

foliage cover

dominant floristic type

———

1:5 million

———

RESTRICTIONS ON USE

None

———

3 to 4 mb depending on format

———

PRICE and ACCESS

RRP $500

</supplinf>

</anzmeta>

9.1.3 The keyword element

The keyword element occurs within several elements. It has a required attribute
of thesaurus, for which there is a defined list of values. This system works
well in restricting keyword use, but does not do quite the full job. Any keyword
can take any thesaurus, whereas in fact only a limited range of thesauri are
available in each case. The way around this would be a slightly more complex
DTD with several different keyword attributes.

9.1.3.1 Comments

The ANZLIC DTD is easy to understand and covers core data elements well.
The element names are sometimes cryptic, like the computer programs of
yesteryear in which short names were enforced by memory and other
limitations. The SGML concrete reference syntax specifies a maximum of
eight characters for an element name, but this can be overridden easily and is
not necessary in XML. However, with element names largely aligned with US
standards, there is not likely to be any immediate change. The use of thesauri
is very effective, and the metadata processing tools help to check that the
correct data elements are added at each stage.

An alternative to specially developed checking tools would have been a
detailed XML schema1, highlighting an important issue: much of the ground
work on spatial metadata has run alongside the development of new
recommendations in metadata by the W3C. As a consequence, some of the
tools are different or incompatible with emerging web standards, which may
impede the development of online GIS.

1 We illustrated this sort of approach in Chapter 5.

Online GIS158

A related issue is the way metadata documents may be clustered together.
At present there is no specification, leaving the organisation to the structure
of the web site and Spatial Data Directory itself. A more comprehensive object-
oriented model, such as implied within RDF, would have the advantages of:

� easier searching through a hierarchy;
� reduced duplication of data (e.g. where a group of datasets all belong

to the same organisation).

Finally, we have covered above the elements as they pertain to spatial metadata.
The DTD also borrows a range of elements from the HTML DTD for
describing text structure, such as list elements and paragraphs.

9.1.4 Notes on the ANZLIC framework

Analogous to the use of namespaces in XML, ANZLIC provide a series of
thesauri to define terms for the various fields in the metadata DTD. Full details
may be found on their Web site (http://www.anzlic.org.au/).

Marking up documents by hand is time consuming and requires a fair
level of skill. In fact adding metadata is a non-trivial task for any organisation.
ANZLIC, like other organisations, has tools for entering metadata in a
straightforward way. Although the move was made from SGML to XML,
allowing new elements to be added at will, there is no explicit provision for
extensibility.

9.1.5 Minerals data

Here is a full example of data describing mineral resources. Note that a great
deal of information about AUSLIG is repeated.

<anzmeta>

<citeinfo>

<title>

Minerals

</title>

<custodian>

Australian Surveying and Land Information Group

(AUSLIG)

</custodian>

<jurisdic>

Australia

</jurisdic>

</citeinfo>

<descript>

<abstract>

Shows the point location of mineral deposits, mines

and treatment plants in Australia. Attribute

information includes mine name, State, mine size,

minerals and status.

Metadata standards 159

</abstract>

<theme>

<keyword>MINERALS</keyword>

</theme>

<spdom>

<place>

<keyword>Australia</keyword>

</place>

</spdom>

<timeperd>

<begdate>Not Known</begdate>

<enddate>01DEC1990</enddate>

</timeperd>

<status>

<progess>Complete</progress>

<update>Not Known</update>

</status>

<distinfo>

<native>

<digform>

<formname>ARC/INFO</formname>

<formname>GINA</formname>

</digform>

</native>

<avlform>

<digital>

<formname>Database</formname>

<formname>ARC/INFO</formname>

</digital>

</avlform>

<accconst>

The data are subject to Commonwealth of

Australia Copyright. A licence agreement is

required and a licence fee is also applicable.

</accconst>

</distinfo>

<dataqual>

<lineage>

Data for the Minerals database have been gathered

from a variety of sources including:

AUSLIG’s 1:100 000 and 1:250 000 scale

topographic mapping material;

Various larger scale specialist maps and

plans;

Mining companies’ and State authorities’

publications, including annual reports and

maps;

Numerous private industry publications

including journals and newspapers; and

Direct contact with mining companies.

Online GIS160

</lineage>

<posacc>

The horizontal accuracy is fully dependent on the

source material. At worst the calculated value of

the feature location is given to the nearest

minute (approx 1800 metres).

</posacc>

<attracc>

For a given feature code, all attributes listed as

mandatory are populated. Entries in other fields

depend on the information availability. The data

represent the best available at the time of entry.

</attracc>

<logic>

Tests carried out include: check of valid feature

codes; removal of invalid and system feature

codes; check for all point features attached to

the attribute table; tally of all points and

attribute table records; check of layer/network

assignment of all features; and cross check for

invalid feature code to feature type combinations.

</logic>

<complete>

The data were checked through systematic

comparison against relevant source material.

</complete>

</dataqual>

<cntinfo>

<cntorg>

Australian Surveying and Land Information Group

(AUSLIG)

</cntorg>

<cntpos>

Enquiries to Data Sales Staff, Data Sales,

National Data Centre

</cntpos>

<address>

PO Box 2

</address>

<city>BELCONNEN</city>

<state>ACT </state>

<country>Australia</country>

<postal>2616</postal>

<cntvoice>

Australia Fixed Network number

+61 2 6201 4340

Australia Freecall

1800 800 173

</cntvoice>

<cntfax>

Australia Fixed Network number

+61 2 6201 4381

Metadata standards 161

</cntfax>

<cntemail>datasales@auslig.gov.au</cntemail>

</cntinfo>

<metainfo>

<metd><date>25NOV1996</date ></metd>

</metainfo>

<supplinf>

The Australian Spatial Data Directory (ASDD) Also,

further information about Spatial Metadata is at

ANZLIC http://www.anzlic.org.au/metaelem.htm

ATTRIBUTES

mine name

state

mine size

minerals

status

SCALE/RESOLUTION

1:1 000 000

RESTRICTIONS ON USE

None

SIZE OF DATASETS

0.2 to 1.6 mb depending on format

PRICE and ACCESS

RRP $300

</supplinf>

</anzmeta>

9.2 METADATA IN THE USA

9.2.1 Overview

North America has of course played a major international role in developing
mapping data of all sorts. With a major technological lead in satellites,
aeronautics and home of the world’s largest imaging companies such as Kodak,
Xerox, Bausch and Lomb, the world’s computer giants, and many others,
this is hardly surprising. The flip side is the vast amount of legacy data.

As we shall see, the metadata movement in the USA has had to deal with
issues of comprehensiveness and variations across the states. The result is a
complex standard which is proving difficult to implement in its entirety. As
we shall see in this chapter, variations exist at Federal and State level. Moreover,
in the attempt to develop a comprehensive federal standard, a complex and
perhaps cumbersome standard has emerged.

The USA has been particularly proactive in getting data users, by making
data accessible at low cost. Thus the potential for widespread online use is
there. But the production of the metadata is slow and hence the ready use of
data online may be impeded. First we look at the government bodies involved

Online GIS162

in data management and some history to metadata development. We then
look at aspects of the US metadata standards.

9.2.2 Government bodies managing spatial

The Federal body charged with metadata definition and implementation is
the Federal Geospatial Data Committee (FGDC, http://www.fgdc.gov). It
received presidential endorsement as Circular A-16 in October 1990. It’s only
ten years old, so it’s easy to see why there should be a huge backlog of data!
The FGDC has twelve major sub-committees and six working groups. At the
end of 1999 it had endorsed 14 standards with a dozen or more close to final
draft.

The next important administrative step came in April 1994, when the
National Geospatial Data Clearing House, NGDC, National Spatial Data
Infrastructure, NSDI, was created by executive order 12906 to oversee the
development of a National Spatial Data Infrastructure, NSDI. The challenge
for these organisations was significant. In May 1994 the NSDI began a
standards project for a standard grid reference system, i.e. there were problems
not only on the formats of spatial data but in the very coordinate systems in
which it was defined. The Universal Grid Reference Systems was released on
May 24, 1999, comparatively recently.

In addition to establishing the NSDI Clearing House, the FGDC was
charged with overseeing the development of standards and with encouraging
standards implementation, including the provision of grants to non-Federal
groups.

Metadata is one of four geospatial standards of the FGDC. Overseeing all
such standards is the Standards Working Group, SWG, with a complex modus
operandi. SWG reviews proposals and checks standards for adherence to
federal policies. It also liases with external organisations such as ANSI
(information technology standards) and the ISO (International Standards
Organisation). The principal metadata standard is the Content Standard for
Digital Geospatial Metadata. It is mandatory for Federal agencies and
recommended for state and local governments. Where federal funds are used
it may also be required.

9.2.3 Overview of CSDGM

At the time of writing, the CSDGM has 11 categories of data containing
several hundred entries. Table 9.2 shows the information categories and the
number of elements in each, totalling 245.

Not all entries are mandatory and there is often considerable overlap
across categories. There are also two user defined items. Creating such
metadata is a skilled job. It requires not only a full understanding of the data
itself, but also a detailed understanding of the content standard itself. It
involves considerable personnel costs in creating and updating the
information.

Metadata standards 163

Table 9.2. Categories of Data for the CSDGM.

9.2.4 Example of New York State metadata

The Adirondacks form a huge park in New York State including the
Adirondack mountains and home of the Lake Placid Winter Olympics.
Although it is a state park it receives federal funds from the Environmental
Protection Agency. As such it is required to use the content standard.

One of the data sets for which metadata has been created is the Watershed
Data Layer. The metadata has 511 elements, some of which are duplicates of
one another, with one entry repeated no fewer than 14 times! The shortest
entries range in size from a single digit to 78 lines of ArcInfo macro language.
Some entries are unintelligible to the layman, being nothing more than strings
of non-intuitive acronyms, such as the entry CLIP QDWSCLN QD
QDWSCLN NET. The cost to create this metadata was $10,000, or about
$20 per entry.

9.2.5 New York State metadata

Complexity and cost have created a movement towards a simplified standard
MetaLite which is essentially the mandatory items of the CSDGM, which began
at State level and is now taken up by local governments. Metalite has just 29
main elements, specifying data by name and place and providing contact details.

In New York State, the GIS Coordinating Committee has a Clearing House
operated by the State Library. It has also a State Data Sharing Cooperative in
which all state agencies must participate. Metalite is used and local governments
are encouraged to participate also. At the time of writing, late 1999, typical
examples of local government involvement included:

� Nassau County is using the full CSDGM as a result of Federal
Agency support. Their GIS budget is $15 million.

� Westchester County may implement MetaLite. Although they have
technical staff they are under-funded for any serious metadata activity.

Online GIS164

� The town of Amherst is ignoring both Federal and State metadata
programmes.

The general pattern seems to be that local government finds CSDGM too
complicated, too costly and has difficulty in seeing its usefulness.

9.2.6 What is the metadata for?

As we have already discussed metadata serves two functions. In the first phase
we simple have the documentation of data. Users will peruse this directly and
make arrangements to access or purchase the data. The data will be delivered
via a physical transport medium such as magnetic tape or compact disc.

In the second phase, data is available online, and now the metadata can
move one step forward to being read by software agents. At this point, it
becomes much more important that the metadata is accurate and reasonably
complete. Whereas a human operator can wade through data specifications
which have all sorts of caveats and comments, this sort of information is not
readily processed online by natural language intelligent agents (cf.
Section 11.2).

The third phase of development, which we expect to grow rapidly in the
next year or so, is that of online spatial queries, where users pay for search
results or analysis rather than the data per se. We return to this exciting prospect
in the last chapter.

9.3 THE SITUATION IN EUROPE

The UK and Europe have had highly sophisticated mapping technologies and
national organisations for a long time. But the European Union would
obviously like integration across all the member countries. With numerous
different languages, however, this is far from easy. At the time of writing there
are many different committees and other bodies, but the many initiatives are
far from complete. In this section we attempt to pick out the most important
activities and the general direction. Readers are advised to check the book’s
website for links back to the original standards to keep pace with developments.

Broadly speaking there are three standards under consideration:

� The US FGDC which we have considered already in this chapter;
� the ISO TC211 international standard, also considered above, and

possibly the most important of the three, which should reach its
final form in late 2000;

� specifically European standards.

The European standards fit into a broader IT initiative, INFO2000, and come
in two different levels, CEN and ENV, representing different levels of
development. CEN, Comité Européan de Normalisation, are essentially the
mature standards. But recognising the incredible speed of technological
progress the need for fast-track standards led to the ENV, Euro-Norm
Voluntaire, specifications.

Metadata standards 165

In parallel to these standard mechanisms, there are various organisations
linking together the National Mapping Agencies (NMAs) of the member
countries. At the top of these is CERCO (Comité Européan des Responsables
de la Cartographie Officielle)2, a group of NMAs represented by the Head of
each and including a 31 member organisations. In 1993, CERCO spun off
the daughter organisation MEGRIN (Multipurpose European Ground Related
Information Network)3 but in January 2001, the two organisations merged
to form Eurographics.

MEGRIN was a non-profit organisation with the status in French law of
a GIE (Group d’Interêt Economique) with a number of key roles, two of
which were:

1. to assist the trade of spatial data across national boundaries and to ensure

adequate metadata (such as the GDDD);
2. to harmonise data across national boundaries (such as SABE).

ACKNOWLEDGEMENTS

The USA section of this chapter was based on a presentation given by Professor
Hugh Calkins of the University of Buffalo at Charles Sturt University in
September 1999 and his help in preparing this chapter is gratefully
acknowledged.

The Metadata examples of ANZLIC standards provided in Section 9.1 is
Copyright © Commonwealth of Australia, AUSLIG, Australia’s national
mapping agency. All rights reserved. Reproduced by permission of the General
Manager, Australian Surveying and Land Information Group, Department of
Industry, Science and Resources, Canberra, ACT. Apart from any use as
permitted under the Copyright Act 1968, no part may be reproduced by any
process without prior written permission from AUSLIG. Requests and queries
concerning reproduction and rights should be addressed to the Manager,
Australian Surveying and Land Information Group, Department of Industry,
Science and Resources, PO Box 2, Belconnen, ACT, 2616, or by email to
copyright@auslig.gov.au

2 http://www.eurographics.org/cerco
3 http://www.eurographics.org/megrin

CHAPTER 10

Data warehouses

10.1 WHAT IS A DATA WAREHOUSE?

William Inmon (1995) introduced the term data warehousing to describe a
database system that was designed and built specifically to support the decision
making process of an organisation. However, data warehousing goes well
beyond the construction of a database. Data warehousing is a process, not a
product. The process includes assembling and managing data from various
sources for the purpose of gaining a single detailed view of part or all of an
organisation.

A data warehouse is an organised collection of databases and processes
for information retrieval, interpretation and display. Inmon (1995) defined a
data warehouse as a managed database in which the data is:

� Subject-oriented

There is a shift from application-oriented data (i.e. data designed to
support processing) to decision-support data (i.e. data designed to aid in
the decision making process). For example, sales data for a given
application contains specific sales, product, and customer information.
In contrast, sales data for decision support contains a historical record of
sales over specific time intervals.

� Integrated
Data from various sources are combined to produce a global, subject
oriented view of the topic of interest (Fig. 10.1).

� Time-variant
Operations data is valid only at the moment of capture. Within seconds
that data may no longer be valid in its description of current operations.

� Non-volatile
New data is always appended to the data base rather than replacing
existing data. The database continually absorbs new data, integrating it
with the previous data (Inmon 1995).

How does a data warehouses differ from a database? Perhaps the most
important criterion is that a data warehouse usually contains several distinct
databases. The warehouse is an umbrella that links together many different
data resources. Now a single database many contain many different tables,
but they are tightly integrated within a single software shell. In contrast, a
data warehouse is usually created by combining different databases that already
exist. These databases may use different software. They may be developed
and maintained by completely separate organisations.

Another important criterion is inherent in the subject-oriented nature of
data warehouses. Whereas a database normally supports only simple queries,

Online GIS168

a data warehouse usually provides various tools to assist in interpreting and
displaying data. This is a consequence of the motivation behind the warehouse.
One only takes the trouble to link different databases, if there is useful
information to be gained in doing so. So it is always a high priority in a data
warehouse to be able to generate the kinds of information for which it was
created. For example, many data warehouses are created as commercial
marketing tools. A corporation may wish to improve its marketing strategy
by analysing sales figures, for instance. So it is imperative to provide tools to
extract and analyse the required data.

The final difference between a database and a data warehouse is the scale
of the system (Table 10.1). The whole notion of data warehousing arises from
the rapidly growing volumes of raw data that are now available in many
spheres of professional activity.

Figure 10.1. The integrated view of geographic data warehouse. Layers from
various sources are combined to produce a global subject oriented view of a
geographic region.

Table 10.1. Differences between databases and data warehouses.

Data warehouses 169

Some definitions

As with any new field of endeavour, data warehousing has developed it own
set of jargon. Below is a collection of terms used in the remainder of this chapter:

� Data Mart or Local Data Warehouse is a database that has the
same characteristics as a data warehouse, but is usually smaller
and is focused on the data for one division or workgroup within an
enterprise.

� Data Transformation. The modification of data as it is moved into
the data warehouse. These modifications can include: data cleansing,
normalisation, transforming data types, encoding values,
summarising data into time periods, and summarising data in other
ways.

� Data Mining. The non-trivial process of extracting previously
unknown information or patterns from large data sets. A typical
application of data mining is to determine what attributes (and
values for these attributes) best describe a geographic region. This
topic is discussed in more detail later.

� Knowledge Discovery in Databases (KDD). A term quite often
interchangeably used with data mining. However, KDD concentrates
on the discovery of useable knowledge (quite often in the form of
rules), where data mining also includes the detection of trends, and
model.

� Z39.50. ANSI/NISO Z39.50 is the American National Standard
Information Retrieval Applications Service Definition Protocol
Specification for Open System Interconnections. Z39.50 defines a
standard way for two computers to communicate for the purpose
of information retrieval. This protocol makes it easier for client
applications to connect/query and retrieve information from large
databases systems (NISO 1999).

10.2 GEOGRAPHIC DATA WAREHOUSES

The idea of a data warehouse will be familiar to anyone who works with geographic
information. Many geographic information systems are essentially data
warehouses. This is because a GIS reduces different data sources to the common
themes of geographic location and spatial attributes. It is common for different
data layers to be derived initially from separate databases. For instance, towns
data could be drawn from a database of municipal information, and be overlaid
on data drawn from databases on environmental features, health or census records.

Conversely, although they may not be developed with GIS specifically in
mind, many data warehouses do have a geographic dimension to them. This
is certainly true of most data warehouses that deal with environment and
natural resources.

The World Data Center for Paleoclimatology, for instance, acts as a repository
for many kinds of environmental data sets that relate to climate change (http:/
/www.ngdc.noaa.gov/paleo/data.html). Data sets such as tree ring records, pollen
profiles and ice cores all refer to particular geographic locations.

Online GIS170

Many organisations are now setting up geographic data warehouses. For
example, the Canadian Government has established a Data Warehouse
Infrastructure Project as a project under its National Forest Information Service.

“The objective of the National Forest Information System is to provide
a national monitoring, integrating and reporting system for Canada’s
forest information and changes over time. The current focus of the
NFIS Data Warehouse is to provide information to meet Kyoto
reporting requirements for forest carbon stocks and criteria and
indicators. Over time, NFIS will improve access to and use of accurate
and timely spatial and non-spatial information on Canada’s forest
resources. Some of the information required about the forest is not
directly observable (critical wildlife habitat, water quality, risks of
disturbance, etc.). The NFIS will integrate the information in the
database above with a national modeling framework.”
Source: http://nfis.cfs.nrcan.gc.ca/warehouse/

10.3 THE STRUCTURE OF A DATA WAREHOUSE

Data warehousing systems are most effective when data can be combined
from many operations system. The nature of the underlying systems, the level
of integration required and the organisation structure should drive the selection
of a data warehouse structure or topology. Here we present three data
warehouse topologies: Enterprise Wide Data Warehouse, Independent Data
Mart, and Dependent Data Mart.

The enterprise data warehouse integrates all the information contained in
department/working group databases into a single global data repository.

The independent data mart structure implements a number of smaller data
warehouses or data marts (Figure 10.2). This structure integrates several
databases to produce an independent data mart. This structure is best where
organisations have a number of departments with different data needs. One
problem with this structure is that there is data replication.

The final structure discussed here is the Dependent Data Mart. Under this
scheme, all the underlying databases/applications feed into an enterprise data
warehouse (Figure 10.2). A subset of the data warehouse is then inserted into
a data mart. This type of structure is appropriate for arrangements where an
organisation has a special working group that is interested only in a particular
aspect of the organisation entire operations.

The structures for data warehouses described here are not exhaustive by
any means. As you could imagine there are many hybrid systems. The overall
arrangement of a data warehouse is very much dependent on the organisation
and operations of its working groups and decision-making process.

With the exception of Figure 3, all of the data warehouse structures use/
rely on data marts. The major question is should data be moved to/from the
data warehouse? The movement of data to and from data warehouses or data
marts is called data migration. There are two main approaches to data
migration.

Data warehouses 171

Figure 10.2. Three common architectures for distributed data warehouses. After
Gardner 1996.

Online GIS172

The first migration method is the big bang approach. Under this raceme all
data is moved in one simultaneous operation. The major benefit of this
approach is its speed of data conversion.

The second data migration method is the iterative approach. Under this
data migration approach data is moved from/to a data mart/warehouse one
system at a time. So warehouses across the organisations are incrementally
updated. This approach has less risk of damage. If something goes wrong,
only a minimal number of warehouses are damaged.

10.3.1 Indexing of data resources

Closely related to the above issue of the structure of a data warehouse is the
question of how the data resources are structured.

Data warehouses operate best where the subject matter can be well defined
and where the operating model can be tightly defined. However, the coupling
of sites can vary enormously. Databases typically consist of three main
components: an interface, data, and tools for search and retrieval. In a
distributed database, information and indexes are shared across computers
on each of the participating sites. In general, indexed data online can be
organised in several ways (Fig. 10.3):

(a) Centralised—the traditional model for database access: the entire database

resides on a single server; other sites point to it. This is the most common
form of network database.

(b) Distributed data, separate indices at each site—The database consists of
several component databases, each maintained at different sites. A
common interface (normally a Web document) provides pointers to the
components, which are queried separately.

(c) Distributed data, multiple queries—many component databases are
queried simultaneously across the network from a single interface. Many
search engines adopt this approach.

(d) Distributed data, single centralised index—The data consists of many
items, which are stored at different sites but accessed via a database of
pointers maintained at a single site.

10.4 ISSUES IN BUILDING DATA WAREHOUSES

So you want to build a data warehouse? Where do you start? and what
resources will you require? This section summarises some of the major issues,
considerations and resources required to develop a data warehouse.

10.4.1 Practical issues

The resources required in developing a data warehouse include the following:

� Cost. In the development of any type of software project, funding is the
biggest issue. Being an enterprise wide information service, the

Data warehouses 173

development of data warehouses can be extremely expensive. The key
questions to ask here include: How much will the construction of the
data warehouse cost? What is the budget for the project? Who will pick
up the difference between the budgeted amount and the actual amount?
Like other IT projects there needs to be contingencies factored in to account
for unforeseen costs (Gardner 1996, Inmon 1996).

� Time. Time is a critical consideration when developing any software
system (Inmon 1996).

� Users. Any information system is designed for users. If the information
system does not deliver the required information to end-users it is
practically useless. The needs of the end-users are the most critical factors
when developing the warehouse. The warehouse in essences is for the
end users not the IT staff! (Hammer et al. 1995)

� People. Apart from the end users, there is a wide array of additional
people that need to have input into the construction of a data warehouse
these people include: Support staff, Database Administrators,
Programmers, Business Analysts, Data Warehouse Architect, Help Desk
staff, Training staff, System Administrators, Data Administrators, Data
engineers, Users, Decision-makers, Middle management, Top management
(Hammer et al. 1995, Inmon 1996).

� Software and tools. Data warehousing systems consist of three main
components: an interface to the data, tools for searching and retrieval of
data (Green 1994). Currently there are literally hundreds of commercial
and public domain software packages, data sets, and data analysis tools.
The key consideration when selecting software is that the underlying
database software is compatible with the selected analysis tools and
other database packages. In addition any software package should be
extendable to meet the analysis and data requirements in the future.
(Worbel et al. 1997).

� Reliability and robustness.

Just like any software project, the construction of a data warehouse goes
through the systems development life cycle (SDLC). The phases that we will
discuss here include analysis, design, acquisition, and conversion.

10.4.2 Analysis

The analysis phase is the most important phase in the construction of data
warehouse. Failure to correctly analyse the requirements of the system will
result in failure. The key issues that need to be addressed are: What data
required by the users? What data is the current system(s) collecting? What
data is missing? What/where are the source of the data? What are the
intended applications of the collected data? What legacy data is stored on
legacy media (Gardner 1996)? Is this legacy data useful? Finally one design
attribute that should be built in from the start is extensibility. The data
warehouse should be extendable in a number of ways. First the warehouse
should be able to cope with new data marts being added. Secondly, it should
be possible to add new tables with little effort. Finally, data should be stored
in a format that allows new analysis tools to be used to extract information.

Online GIS174

This leads to the point that the construction of the data warehouse should
conform to some form of standard.

10.4.3 Design

The design phase transforms the findings from the analysis phase into a
specification that can be implemented. During this phase designers need to
decide on a warehouse structure, warehouse schema, level of normalisation,
the type of interface. Also the designers need to determine what users should
have access to what data, what security measures are to be in-place, and in
what mode (online/batch) the warehouse is to operate.

10.4.4 Infrastructure

Being on an enterprise wide scale, chances are that an organisation will not
have the required hardware and software infrastructure to support a data
warehouse. Hardware requirements include large hard disks, backup and
recovery devices, and redundant hardware if the data is mission critical. Fast
processors and lots of ram to support many concurrent users and processing
of the stored data. Many commercial vendors are producing software products
to support data warehousing operations.

The emergence of new standards and protocols may make it easier to create
distributed data warehouses in the future. For instance, the Data Space Transfer
Protocol (DSTP) aims to make it simpler for different databases and systems to
share data across the Internet. The idea is that people would convert datasets
into a common format, using the Predictive Model Markup Language (PMML).
Just as the Hypertext Markup Language (HTML) allows people to place documents
online in a format that can be universally read and displayed, so the aim of PPML
is to achieve the same for datasets. One of the problems encountered in data
mining and warehousing is that different people often use different formats to
store data.

10.5 ORGANISATION AND OPERATION

How do we organise information on a large scale? In many cases, the sheer scale of
a data warehouse demands that the workload be distributed amongst many different
organisations. As with any computer based information system, the maintenance
of the system is the most expensive activity both in terms of time and cost. This is
especially true when the data changes often or when it needs to be updated regularly.
In other cases, the warehouse needs to integrate different kinds of data (e.g. weather
and plant distributions) that are compiled by separate specialist agencies.

10.5.1 Legacy data

In the early 1970s, virtually all business systems were developed by IBM.
These systems were mainframe based, and were implemented with tools such

Data warehouses 175

as COBOL, CICS, IMS, and DB2. The 1980’s saw mainframes replaced with
minicomputers such as the AS/400 and VAX/VMS systems, which run the
popular time sharing and client/server operating system UNIX.

In the late 1980’s and 1990’s desktop computing technology become mature
and was rapidly adopted by business. This era also saw an increased popularity
in computer networking. Global information networks such as the World
Wide Web are still experiencing the growing popularity.

The problem that organisations have encountered in moving from
mainframe to minicomputer to desktop computing is the need for data
conversion. Many legacy systems still contain valuable information. This need
raises several matters.

� De-normalise data tables. The normalisation of database tables in
common practice. The idea of data normalisation is to conserve
data storage space, ensure data integrity, and reduce the chance of
data anomalies. However, with data heavily normalised, it may be
necessary to de-normalise, to ensure the correct conversion of data
into the warehouse.

� Rules for data integration. Determine rules for matching data from
different sources to allow easy data integration. In some instances
simple key matching is not enough.

� Data cleaning. When converting data from legacy systems it may
be necessary to clean the data. This may include activities such as
converting data uniform format. For example ensuring that all
characters belong to the same character set or carriage returns are
consistent. The cleaning of the data may also include the addition,
removal or reorder attributes within the legacy data set. Other
activities involved in cleaning the data may include: the detection
of errors, identify inconsistencies, updating values, patching missing
data, and finally the removal of unneeded attributes.

Data conversion is an extremely important step in bringing a data warehouse
online. Legacy systems are a valuable source of historic data, however, it may
be quite time consuming to convert the data in these old systems. The benefit of
including the historical data may outweigh costs involved in converting the
legacy data.

10.5.2 Processing objects

One of the most vexing problems with legacy data is to convert it into a form
in which it can be used. This conversion can be done permanently by creating
new files in the format required. However, permanent conversion may be
either impractical or undesirable. For instance, the data may be used in many
different ways that would require only parts of the data, each in different
forms. So it may be more convenient to extract relevant portions each time
they are needed.

Legacy datasets are often stored in idiosyncratic formats and require specific
software to extract data from them. One example is data that was created in
(say) a commercial format associated with a database program that is no

Online GIS176

longer in common use. Another case, common for older datasets, is where
scientists have stored data in a manner of their own devising, but have provided
a program to extract certain elements from the files. If this software is still
available, then the most convenient approach might be to keep using the
software with the dataset. However, if a warehouse contains numerous legacy
datasets, then this approach can become confusing and prone to errors.

To impose order on legacy datasets, they can be treated as objects. That is,
each dataset, the necessary extraction software, and any scripts needed to
automate the extraction are encapsulated as a discrete object (Fig. 10.4). This

Figure 10.3. Some models for the configuration of online information systems. (a) A
traditional centralised database, in which data and index reside at a single site. (b) An
unorganised system in which the user must access different sites manually. (c) A common
interface to a set of cooperating, but separate databases. (d) An integrated model in which
different datasets share a common, centralised index. See text for further explanation.

Data warehouses 177

means that the details of the extraction process are hidden from the rest of the
system. As far as users of the data warehouse are concerned, all that exists in
the system are objects that can be accessed to supply certain information.

Note that this approach is also an effective method for organising data
conversion. Suppose that a processing object (call it SET1) provides methods
for outputting data in an interchange format, and that it also has methods for
inputting data from the same interchange format. Then that interchange format
provides an intermediate stage for converting from SET1 into any other format
(SET2 say) that also has the same conversion methods available. This is what
makes interchange formats so powerful. A good example is image formats.
There are at least 100 different formats in existence; many now rarely used.
To provide direct converters between each pair of formats would require 9900
filter programs. However, by passing them through a single universal
interchange format, the number of required programs drops to 200, one input
and output filter for each format. In practice several interchange formats are
needed to take into account differences in the nature of the data, especially
raster versus vector graphics.

10.6 DATA MINING

Data mining, as the name suggests, is the process of exploring for patterns
and relationships that are buried within data.

Now that you have all the data that you need in a data warehouse what do
you do with it? A common process performed on data warehouses is data
mining. Data mining or knowledge discovery in databases was first suggested
in 1978 at a conference on the analysis of large complex data sets (Fayyad
1996a,b). Although the field of data mining has been around for over two

Figure 10.4. Operation of a warehouse object (enclosed by dashed line) to extract
legacy data.

Online GIS178

decades, it has been only in the last five years that the required data storage
(data warehousing) technologies have emerged.

Data mining is an inter-disciplinary area of research. It draws on
technologies from database technology (data warehousing), machine learning,
pattern recognition, statistics, visualisation, and high-performance computing
(Fig. 10.5). The central goal is to identify information nuggets. These are
patterns and relationships within data that are potentially revealing and useful.

� Machine learning. The area of machine learning focuses on
developing computer systems that can adapt and learn (induce
knowledge) from examples or data (Dietterich 1996). The systems
aim at moving the traditional view of computer programs from:

 program=algorithm+data

to the more elaborate

program=algorithm+data+domain knowledge

The domain knowledge is acquired from prior experiences solving
similar problems (Michalski et al. 1998, Aha 1995).

� Statistics. Many of the machine learning techniques, and other
algorithms, centre on detecting the frequency of certain patterns
and relationships. Non-parametric statistics can be used to perform
hypothesis and exploratory data analysis. A number of references
suggest that data mining is a practical application of statistics (e.g.
Fayyad et al. 1996b, Eklund et al. 1998, Ester et al. 1999, Chawla
et al. 2001).

� Pattern recognition. The pattern detection can take on a number of
forms. Pattern recognition can be determining what things
commonly appear with each other. Similarly it can be the detection
of what attributes are deterministic of other attributes.

� High performance computing. The central idea in data mining is to
sift through large volumes of data to detect patterns. Data
warehousing requires the storage of large volumes of data. This
technology has become available only in the last 3–5 years. Likewise,
data mining requires fast access and lots of internal storage (RAM)
to efficiently process the data in a data warehouse. With the increase
in computer technology in the last couple of years, the technology
has become affordable, most current PC, and low-end workstations
are now powerful enough to perform data mining and data
warehousing functions (Fayyad et al. 1996a,b).

Techniques used in data mining to extract information include: Artificial Neural
Networks, Genetic Algorithms (Fayyed et al. 1996), Radial Basis Functions,
Curve Fitting, Decision Trees (Quinlan 1993), Rule Induction (Fayyed et al.
1996a, b), and Nearest Neighbours algorithms. Each of these techniques can
be used to extract different forms of information (Kennedy et. al 1998).

Data warehouses 179

10.7 EXAMPLES

10.7.1 The Distributed Archive Archive Center (DAAC)

The Distributed Active Archive Center (DAAC) was established in 1993 and
consists of eight data archiving centers (Alaska SAR Facility (ASF),
CIESINSEDAC, EROS Data Center, NASA/Goddard Space Flight Center, Jet
Propulsion Laboratory (JPL), NASA/Langley Research Center (LARC),
National Snow and Ice Data Center (NSIDC) and Oak Ridge National
Laboratory (ORNL)) and two affiliated data centers (National Oceanic and
Atmospheric Admission Satellite Active Archive (NOAA-SAA) and Global
Hydrology Research Center (GHRC)) (see URL’s [3–12]). The DAAC is part
of the Earth Observing System which is an integral part of NASA’s Earth
Science Enterprise.

Historically, scientists have had difficulty conducting interdisciplinary
research because locating useful data required contacting many different data
centers for data holdings and availability. EOS designed the DAAC to overcome
the problems associated with conducting interdisciplinary earth science
research.

DAAC offers over 950 different data sets and products. Including:
� Satellite imagery;
� Digital aerial Images,
� Airborne sun photometer,
� AVHRR—Advanced Very High Resolution Radiometer,
� Thermal infrared multispectral scans,
� Field sun photometer,

Figure 10.5. Disciplines associated with data mining.

Online GIS180

� Other data sets.

DAAC allows the easy integration of data from different data sets by ensuring
all data/image files are in a common file format, data sets are adequately
documented, and contain sufficient metadata.

The warehouse contains data sets collected from a range of studies.
Examples include OTTER (Oregon Transect Ecosystem Research) and FIFE
(First ISLSCP (International Satellite Land Surface Climatology Project) Field
Experiment). In addition there are periodic data sets collected by regular
surveys.

The DAAC makes large percentage of the data sets available at no cost.
These data sets can be downloaded from the relevant data center via FTP.
Some data sets are available on CDrom and can be obtained at a small fee.

An interesting point that DAAC highlights is that the management of such
a data repository by one organisation is almost impossible. However, by
dividing the work between various organisations and by making the
organisations responsible for the management and administration of the data,
such a project becomes possible.

10.7.2 Wal�Mart

Wal�Mart [WWW 16] is a chain of over 100 retail stores that sell a wide
range of household goods, electrical appliances, toys and other goods. The
Wal�Mart chain also includes, services stations, sports stores and discount
retailers, distributed across the USA.

In the late 1980s and early 1990s, Wal�Mart was having difficulty
managing inventory, coordinating operations between the general office,
distributors and retailers. In addition, Wal�Mart’s current information systems
had a number of limitations. These included:

� Limited data accessibility,
� Three month detail data on-line (limited),
� Detail History on tape for several years (with poor accessibility),
� Hundreds of generalised short term paper reports.

The overall environment was described as “Data Rich but Information Poor”
(Hubber 1997). While Wal?Mart has large volumes of data, the transformation
of data into information was hindered by: (1) the distributed natuer of the
databases, (2) limited time view of the operations of the organisation and (3)
limited access to the data.

The grand challenge to Wal?Mart was to implement a system where all the
data was located in one central repository. The data could be accessed from
any platform; all the data were accessible; the database could support hundreds
of users; data accessibility needed to be on a 24 hours a day, 7 days a week
basis; and users needed to have timely access to the data.

The solution to the problem was to construct a centralized data warehouse,
which had standardized access. The Wal�Mart data warehouse has grown
to be one of the largest data warehouse (Rubber 1997) in the world. At the
end of 1998 the Wal�Mart data warehouse was 10 TB in size, and it was
expanding at a rate of between 200–300 Mb per day. The largest table in the

Data warehouses 181

warehouse contains 20 billion rows and can support 650 concurrent users
(Wiener 1997).

A number of benefits flowed from the data warehouse. These included:

� Better markdown management,
� Improved next session planning,
� Improved stock control,
� Increased leverage during vendor negotiation,
� Improved long-term forecasting and trend analysis.

The use of a data warehouse has allowed Wal�Mart to gain a strategic
advantage over its competitors, and suppliers.

10.7.3 Geographic data warehouses

At the time of writing, many GIS sites would claim that they operate a data
warehouse. However, very few of the geographic data warehouses are truly
distributed. In most cases, the “network” really consists of a single coordinating
site that receives datasets from a network of participating sources. This situation
is partly geographic. In many cases the participants are all agencies that deal
with different kinds of information (e.g. labour, health, environment), but
cover the same region.

The GIS Centre of King County, Washington, USA, is perhaps typical of
this approach. It coordinates a spatial data warehouse that relies on a network
of sites.

“In King County, data and metadata are received from a distributed
network of GIS sites and checked into a common spatial data
warehouse organized by subject areas. Each site has data stewardship
responsibilites to assure that information is comprehensive and trusted
across functional units as an enterprise information base.
“Instead of a project oriented approach that requires spatial
data conflation KCGIS uses framework coverages to assure
that a variety of spatial data will correctly reference or ‘nest’
other spatial data.”
KCGC (2001)

In most cases the King County raw data are sold and distributed as ARC/
INFO coverages or Arc View shapefiles on CDs. The Centre also produces
maps on demand. The online metadata includes feature attribute tables,
coverage descriptions and data overviews, and contraints and disclaimers.

An example of a truly distributed information system is the ANZLIC
Australian Spatial Data Directory (http://www.environment.gov.au/net/
asdd/). The Metadata Working Group of the Australia-New Zealand
Land Information Council has established an online interface that enables
users to query the databases of all its members simultaneously. The
metadata directory itself is spread across 20 or more separate Web sites.
Each query spawns a set of subqueries that are farmed out to each site in
the network. At each site, the query runs on the metadata held by that

Online GIS182

agency. The user can select any desired subset of sites to query. Each site
automatically carries out the query of its local database and returns data
to the interface for browsing by the user. While this process is under way
the interface site displays and updates a summary table of the returns.
When the query is complete, the user can browse the results returned by
each site.

10.8 STANDARDS FOR ONLINE GIS WAREHOUSES

At the time of writing this account, several standards are in the process of
being developed that will substantially simplify the process of creating an
online data warehouse, especially for geographic information. Some of these
standards are ones that we have described in earlier chapters. However, it is
worth touching on them again briefly here.

Some standards are specific to geographic information. Others are generic:
they deal with any kinds of information. Mostly these generic standard derive
from activities of the World Wide Web Consortium, others are specific to
data warehouses, and others to the Open GIS Consortium (see Chapter 7).

10.8.1 The Web Map Server Interface Standard

The specification for the OpenGIS Web Map Server Interface (OGC 2000a),
defines a Web Map Server to be a site that can do three things:

1. Produce a map (as a picture, as a series of graphical elements, or as
a packaged set of geographic feature data),

2. Answer basic queries about the content of the map, and
3. Tell other programs what maps it can produce and which of those

can be queried further.

The importance of this design is that it means that resources from different
servers can be combined without the need for direct coordination between
the two organisations involved. For instance, it makes it possible to extract
(say) a satellite image from one site and overlay it on a map (taken from a
second site) of the region covered by the image.

The WMSI model divides data handling into four distinct stages:

1. Filtering data from a data source using query constraints.
2. Generating the display elements from features in data according to

the required style.
3. Rendering the image.
4. Display the image in a given format.

One advantage of this hierarchy is that it allows some flexibility in the way
data are delivered. For instance, if a client is capable of rendering maps that
are encoded using scalable vector graphics, then the map could be delivered
in that format, whereas a “thin client”, with no rendering capability at all
would need a map that had been converted into (say) a GIF or JPEG image.

Data warehouses 183

10.8.2 Geographic Markup Language (GML)

Another important tool for coordinating the delivery of geographic information
across many different sites is GML (see Chapter 7). The Open GIS Consortium
(OGC 2000b) describe the Geographic Markup Language (GML) in the
following terms:

“The Geography Markup Language (GML) is an XML encoding
for the transport and storage of geographic information, including
both the geometry and properties of geographic features. This
specification defines the mechanisms and syntax that GML uses to
encode geographic information in XML. It is anticipated that GML
will make a significant impact on the ability of organisations to share
geographic information with one another, and to enable linked
geographic datasets.”

The importance of GML is that it provides a standard for using XML to
markup GIS objects.

10.8.3 The Predictive Model Markup Language (PMML)

The Data Mining Group (DMG) describes itself as “a consortium of industry
and academics formed to facilitate the creation of useful standards for the
data mining community”. The group’s online service is currently hosted by
the National Center for Data Mining at The University of Illinois at Chicago.
Perhaps the group’s chief contribution to date has been the development of
the Predictive Model Markup Language (PMML). The Group, which released
PMML 1.1 in August 2000, describes PMML as follows (DMG 2000):

“The Predictive Model Markup Language (PMML) is an XML-based
language which provides a quick and easy way for companies to
define predictive models and share models between compliant
vendors’ applications.

“PMML provides applications with a vendor-independent method
of defining models so that proprietary issues and incompatibilities
are no longer a barrier to the exchange of models between
applications. It allows users to develop models within one vendor’s
application, and use other vendors’ applications to visualise, analyse,
evaluate or otherwise use the models. Previously, this was virtually
impossible, but with PMML, the exchange of models between
compliant applications now will be seamless.”

PMML provides DTDs for marking up many types of models, including
statistics, normalisation, tree classification, polynomial regression, general
regression, association rules, neural network, and centre-based and
distribution-based clustering (DMG 2000). It also includes methods for
specifying data dictionaries and mining schema.

Online GIS184

Here, for instance, is an example of PMML code to define a simple data
dictionary. In this case the data dictionary defines three kinds of variables:

� a categorical variable called landcover, which defines a land
classification and can take three possible values “Forest”,
“Farmland”, or “Grassland”;

� an ordinal variable called roadtype, which assigns ranks to different
kinds of roads; and

� a continuous variable called elevation, which takes numbers as its
values.

<data-dictionary>

<categorical name=”landcover”>

<category value=”Forest” />

<category value=”Farmland” />

<category value=”Grassland” />

<category value=”.” missing=”true” />

</categorical>

<ordinal name=”roadtype”>

<order value=”Freeway” rank=”4" />

<order value=”Highway” rank=”3" />

<order value=”A” rank=”2" />

<order value=”B” rank=”1" />

<order value=” Track“ rank=”0" />

<order value=”.” rank=”N/A” missing=”true” />

</ordinal>

<continuous name=”elevation”>

<compound-predicate bool-op=”or”>

<predicate name=”elevation” op=”le” value=”1" />

<predicate name=”elevation” op=”ge” value=”10" />

</compound-predicate>

</continuous >

</data-dictionary>

The main function of PMML is to define models. As an example, let’s take
the case of defining a decision tree model using PMML. A decision tree consists
of a hierarchy of linked nodes, with a test condition at each node. For instance,
a condition such as “elevation GT 1000” will return TRUE if the local elevation
is greater than 1000 metres, and FALSE if not. These two outcomes (TRUE or
FALSE), thus specify two branches in a tree. We can then attach other test
conditions further down each branch. At the end of each branch is a so-called
leaf node. In the decision tree values are specified at each leaf node.

Decision trees are common in classification problems, such as interpreting
data in a satellite image. In the following simple example of PMML code
(based on details of the language given in DMG 2000), we define a simple
decision tree that is based on the values of two variables: var1 and var2.
Notice the use of XML format.

<?xml version=”1.0" ?>

Data warehouses 185

<pmml version=”1.0">

<data-dictionary>

<continuous name=”var1" />

<continuous name=”var2" />

</data-dictionary>

<tree-model model-id=”classify01">

<node><true/>

<node>

<predicate attribute=”varl” op=”le” value=”0.5" />

<node score=”1">

<predicate attribute=”var2" op=”le” value=”0.5" />

</node>

<node score=”2">

<predicate attribute=”var2" op=”gt” value=”0.5" />

</node>

</node>

<node>

<predicate attribute=”varl” op=”gt” value=”0.5" />

<node score=”3">

<predicate attribute=”var2" op=”le” value=”0.5" />

</node>

<node score=”4">

<predicate attribute=”var2" op=”gt” value=”0.5" />

</node>

</node>

</node>

</tree-model>

</pmml>

10.8.4 Data Space Transfer Protocol (DSTP)

Closely related to PMML is the Data Space Transfer Protocol (DSTP), which
is being developed by the National Center for Data Mining, at the University
of Illinois at Chicago (NCDM 2000). DSTP is a proposed standard that aims
to simplify online data mining activity (NCDM 2000). The goal is to make it
simpler for different databases and systems to share data across the Internet.
As mentioned earlier in this chapter, the idea is that people would convert
datasets into a common format, using the Predictive Model Markup Language
(PMML). Just as the Hypertext Markup Language (HTML) allows people to
place documents online in a format that can be universally read and displayed,
so the aim of PPML is to achieve the same for datasets. One of the problems
encountered in data mining and warehousing is that different people often
use different formats to store data.

“Currently, data storage on all platforms is executed in an ad hoc
fashion. Even as new applications are created, new formats for storing
data associated with those applications are created. This creates an

Online GIS186

enormous challenge to other users and applications that wish to access
this data, but do not wish to be constrained to a specific platform or
application. As HTTP, HTML, web servers and browsers introduced
a way to share documents across different platforms, DSTP, DSML,
and data servers and clients introduce a platform independent way
to share data over a network. DSTP relies only on data storage
concepts (currently columns and rows), and is independent of the
type of data storage used, whether it be files, database, or a distributed
data warehouse structure. DSTP makes it possible in one location to
locate, access, and analyze data from several other locations. DSTP
also reduces the dependency on the data file, because it correlates
data based on common keys in different data sets. DSTP allows the
true conceptualisation of a data space.” (NCDM 2000)

10.9 THE FUTURE OF GEOGRAPHIC DATA WAREHOUSES

Several trends are driving the spread of data warehouses:

� The first trend is the growth of computer storage capacity and

processing speed, which make the data warehouse a practical reality.
� Secondly, the increasing supply of data is now a routine, automated

byproduct of many commercial and professional activities.
� Finally, the growth of the Internet makes it both feasible and

necessary to organise data collection and dissemination on a large
scale.

What might an environmental information warehouse look like to a user in a
few years from now? One vision of the future of the Internet is what we call
the “Knowledge Web”. The present emphasis on sites and home pages will
disappear. Instead the user will simply look for information about a topic and
be guided to that information by an intelligent system that actually teaches
you as you go. This view would also apply to (say) a world environmental
information warehouse. Suppose for example that a student wanted to know
about conservation of plants and animals in the local area. Starting from
some general heading (say plants) the system might guide the student through
relevant topics (e.g. biodiversity, conservation, geographic information) at
each stage providing background information and links to other information.
A geographic query might involve selecting an area on a map and choosing
what to be shown from a range of choices offered.

Suppose alternatively that a public servant wanted to see a report about
(say) natural resources in southwest Tasmania. After selecting the exact area
and topic she might use a report generator to select the kinds of items she
wanted to include. The choices might cover a standard list of resources, time
period, geographic area, type of material (e.g. policy papers, scientific studies,
educational material) and types of items (e.g. maps, tables, graphs, text etc.).
The system would then build a preliminary report with the option of going
back and exploring any aspect in more depth.

Data warehouses 187

Systems such as the above are not far off. Data warehouses (including
distributed data warehouses), and associated technologies such as data mining,
already constitute a new paradigm for the collation, interpretation and
dissemination of information. In some areas of research, such as molecular
biology and astronomy, the growth of large public domain repositories has
revolutionised the way scientists go about their work. In other areas, especially
environmental management, the development of data warehouses is crucial
to the future effectiveness of planning and management.

CHAPTER 11

New technologies for spatial
information

In previous chapters, we have looked at elements of the current technology
for placing geographic information services on the World Wide Web. Many
of these technologies are still in their infancy. At the time of writing, even
XML, and as a result all of the standards that hang off it, has not yet come
into general use. One reason for this is protracted discussions about the nature
of the translation language and processes for linking XML documents to style
sheets (XSL). However, once these issues are resolved, we can expect to see
rapid implementation of GML, SVG, PMML, DSTP, and all the other standards
that we have considered. We anticipate that the implementation of these
standards and protocols will lead not only to an explosion of activity in online
GIS, but also to entirely new kinds of applications. In this chapter we explore
some of the possibilities that we foresee. Some of these are already happening
in prototype or experimental form.

11.1 VISIONS OF A GLOBAL GIS

In an era of increasing globalisation, more and more issues demand that
managers, planners and policymakers in every sphere of activity must put
their decision making into a global context. Business is increasingly
international, not only through multi-national corporations, but also through
electronic commerce, global stock markets and currency exchange.

The same is true in the areas of health, society, environment, and
government. In health, for instance, international travel means that diseases
such as AIDS are no longer regional concerns, but worldwide problems.
Enhanced communications mean that culture and social values are becoming
universal. In this context, it is highly desirable to create an online system that
encompasses geographic information about any issue anywhere.

And the need for on-the-spot, up-to-date information is not confined to
large organisations. To take an example, let’s suppose that a young married
couple living in Edmonton Canada look to investments as a way of boosting
their savings and securing their future. So they look at prospects not only
within Canada, but also around the globe. In the evening they go online and
check out the stock exchanges in Australia, Tokyo and Hong Kong. In the
morning they do the same for London and Bonn. If they find companies they
are interested in, then they naturally want to find out more. So they might be
looking at such widely spread prospects as a tour company based in Dunedin,
New Zealand; a chain of micro-breweries in Portland, Oregon, or a company
building intelligent robots in Edinburgh, Scotland. In each case they would
probably want to access detailed local information, not only about the

Online GIS190

company, but also about the area, local competition, and so forth. In short,
they need to be able to access detailed geographic information from all over
the world.

We could find similar stories for many other areas of activity as well. They
all point to the need for rapid access to geographic information from all over
the world. In the following section we look more closely at one particular
issue, the problem of global environmental management in more detail.

11.1.1 The problem of global environmental management

One of the great challenges facing mankind at the turn of the millennium is
how to manage the world’s environment and its natural resources.

The problem is immense. The planet’s surface area exceeds 509,000,000
square kilometres. Simply monitoring such vast tracts is a huge task. The
total number of species is estimated to be somewhere between 10 million and
100 million. At the current pace it would take at least another 300 years of
taxonomic research simply to document them all. Modern technology can
help with these tasks, but at the same time generates huge volumes of data
that must somehow be stored, collated and interpreted.

The problem is also acute. As human population grows the pressure on
resources grows with it. We have now reached a point where virtually no
place on earth is untouched by human activity, and where it can be questioned
whether the existing resources can sustain such a large mass of people
indefinitely. Slowly we are learning to use resources more carefully.

Given the size and urgency of the problem, piecemeal solutions simply will
not do. We have to plan and act systematically. Governments, industry and
conservation all need sound, comprehensive information from which to plan.
The problem is so huge that nothing less than the coordinated efforts of every
agency in every country will be adequate.

Our ultimate aim should be nothing less than a global information
warehouse documenting the world’s resources. Until recently such a goal was
unattainable. Collating all available information in one place is simply not
possible. However, improvements in communications, and especially the rise
of the Internet as a global communications medium, now make it feasible to
build such a system as a distributed network of information sources.

11.1.2 Prospects and issues

The logical endpoint to putting geographic information online is to create a
comprehensive, global GIS. If information from different sources can be
seamlessly combined into a single resource, then there is nothing in principle
to prevent such a system. Here we briefly consider what such a system might
look like and what would need to be done to put it into practice.

First, it is clear that many relevant services already exist. Most of them
provide raw material that could easily become components of a global GIS.

New technologies for spatial information 191

� Many online services already provide worldwide map coverages (e.g.
Xerox Parc, CSU Mapmaker). Most of these online services are based on
the Digital Chart of the World (DMA 1992, Danko 1992). So it is already
possible to draw maps, down to 1 km resolution or better, for anywhere
in the world. In some cases the basic data are augmented by additional
layers.

� There are also many sites and services that provide detailed maps or
geographic queries for particular countries or regions.

� Other sites provide global coverages or queries for particular themes or
data layers. These cover geographic layers of many different kinds, such
as physical, biological, economic, and political.

� Huge numbers of sites provide detailed online information about particular
geographic objects, such as towns and parks.

The challenge for a global GIS online is to integrate all of these resources into
a single overriding service. This is not a new idea. There are plenty of precedents
to work from. Integrated online services, many of them global, already exist.
They provide striking proof that a comprehensive global GIS is a practical
possibility.

Probably the best examples are services that deal with tourist information.
In almost every case, the service provides systematic indexes that link to large
networks of online sources of geographic information. Many of these
geographic networks are highly specific in nature, such as geographic indexes
of hotels and other accommodation. They are sometimes subsidised by a
particular industry group. However, some networks have taken a broad brush
approach from the start. Prominent examples include the Virtual Tourist, and
the Lonely Planet travel guide (Lonely Planet Publications 2000).

Now it could be argued that there is no need to set out to build a global
GIS from scratch. Such systems already exist. Some of the services we refer to
above are very impressive in the range and depth of information they supply.
However, most of the current examples are responding to a particular
commercial need and opportunity. There are many kinds of studies for which
existing information resources are totally inadequate.

Some concerns are already being covered by international cooperation
between governments. For instance, the Global Biodiversity Information
Facility (see Section 6.1) is a model framed in the context of international
agreements on biodiversity conservation. Again, such networks are responding
to a perceived need, this time environmental, rather than commercial.

The above points raise the question of just why is a global GIS needed? One
answer is that in an era of increasing globalisation, people need to be able to
access and combine many different kinds of detailed information from anywhere
on Earth. Also, another aspect of globalisation is that virtually every activity
impinges on everything else. So the proponents of a commercial venture need to
know (say) about environment, social frameworks, and politics so they can be
prepared for possible impacts and repercussions. Likewise, in (say) conservation,
managers and planners need to be aware of the potential commercial, political
and other consequences of banning development in particular regions.

Online GIS192

Given the above needs, the information coverage of a global GIS needs
to be comprehensive. It also needs to be scalable. That is, users need to be
able to zoom in and obtain regional maps and data coverages at any desired
scale.

So what is involved in creating a truly global GIS? Many of the formal
technical requirements have been outlined in earlier chapters, especially Chapter
6 on networks, and Chapter 10 on distributed data warehouses. From these
and other parts of our account, it will be clear that international agreement
on standards and metadata for online GIS is essential. Clearly the first step,
which is essential to get beyond large scale mapping, is agreement between
national mapping agencies about the online provision of fine scale geographic
data, such as topography and cadastral layers. E-commerce models need to
be developed for the sale of data online.

The actual mechanics of running a global GIS are flexible. We suggest
that an imposed system is not necessarily desirable. To be all inclusive,
such a system would have to impose standards and constraints on all
manner of information. The complexities involved are likely to be so
great that either the system never gets off the ground, or else it would
become so large and unmanageable that to do so would be more trouble
than it is worth. A better approach is to set up a general framework that
helps the main elements of a system to emerge naturally, driven by user
demand. The challenge is to provide a framework that both ensures that
integration happens, and yet prevents the elements from becoming
idiosyncratic.

The development of metadata standards, notably XML, is intended to
encourage integration of this kind. However, there is still plenty of scope for
divergence of standards. For instance, different industries, or professions could
develop incompatible namespaces, data dictionaries and other standards, that
make integration impossible. It is these kinds of issues that governments, not
to mention every organisation involved in the process, need to pay careful
attention to.

However, as we saw in Chapter 7, metadata is set up to describe data
content and accuracy. Although it contains ownership details, there are
inadequate hooks to make truly flexible e-commerce possible. Examples of
additional requirements might include the following:

� purchasing model—an intelligent agent, or a human browser, may wish

to purchase data in large chunks, or merely to answer a single query; it
may pay by credit card, existing account or some other smart cash
mechanism;

� security model—data may be available only to particular clients. For
example, it might be available only to citizens and approved national
allies. To verify that an agent has the required privileges, appropriate
authentication methods would be needed;

� copyright model—related to security, the data might contain watermarks
or other devices that render it impossible to copy and suitable only for
certain uses (i.e. with approved software).

The object-oriented approaches that we have promoted here form a crucial
part of the above process. Though (say) hotel listings and species occurrence

New technologies for spatial information 193

lists are almost like chalk and cheese, they do share important elements in
common. It is important that those elements (e.g. source, custodian, geographic
location) are identified as discrete objects which diverse information resources
can use in a consistent way.

What we are talking about above is the tension that always exists in
information studies between top-down (i.e. imposed from above) and bottom-
up (i.e. emerging from below) approaches to problems. We suggest that the
best way to create a global GIS is through a balanced combination of both
methods. Governments (and other organisations, such as W3C), need to
provide basic topdown guidelines that both permit and encourage individual,
bottom-up initiatives, but at the same time ensure that they conform to certain
basic principles.

Whilst XML and other features of the Web allow these bottom-up activities
to occur, the exact mechanisms require some discussion, which we pick up in
the next section.

11.2 INTELLIGENT SYSTEMS

In this book, we have described the use of metadata to organise online
sources of information. Although we have stressed many of the issues
involved, an important concern remains. That is, how can we use that
information most effectively. Knowledge based and intelligent systems
provide a natural way of working with both metadata and data content.
They also have potentially important applications for geographic
information.

11.2.1 Example—Mapquest

A good example of applying problem-solving intelligence to geographic
problems in an online geographic information service is provided by the
Mapquest route finder (Fig. 11.1). The company Mapquest provides an
impressive free service online that makes use of sophisticated problem-solving
algorithms. Users of the service can obtain detailed instructions for driving
between any two locations in North America. The input form (Fig. 11.1a)
asks for two street locations including the city, state and country. The system
then works out the best route and returns the results to the user. The output
(Fig. 11.1b) includes maps, with the route marked, as well as detailed driving
directions.

11.2.2 Knowledge based systems

Doing is knowing. The essence of knowledge is the ability to do things. If
information is data that has been distilled, so that essential patterns and
relationships are made clear, the knowledge goes one step further. It includes
details of how to use information.

Online GIS194

Figure 11.1. Online route direction finding service from Mapquest. The system gives
detailed instructions for driving between any two locations in North America. (a) The
query interface. (b) The resulting street map with the route drawn in and instructions
provided.

New technologies for spatial information 195

Knowledge is usually expressed in the form of rules. Rules take the general
form P�Q (read “P implies Q” or “If P then Q”), where P and Q are logical
statements. The following simple examples illustrate some of the kinds of
rules that might be used in an intelligent ecotourism information system.

If X is a park and is near a major city then X has ecotourism potential.

If population of X>100,000 and X has an airport then X is a major city.

If the distance between X and Y is less than 200 kilometres then X is
near Y.

The following set of rules show the sort of query that could be run in trying to
locate Web sites that are worth searching for geophysical information.

If site X is relevant to geology then search site X.

If site X is useful and site X is near site Y, then site X is relevant to Y.

If site X is in list of reference sites then site X is useful.

If site X key words contain the word Y then site X is a “Y site”.

Many systems incorporate rules, either explicitly or implicitly. Most electronic
mail programs allow users to filter incoming mail. For instance, they may
place copies of messages in different folders based on words in the subject
line, or on the sender’s address. Databases and spreadsheets can include rules
(like those shown above) that convert data based on values of particular
attributes. For instance, the spreadsheet program Excel allows user to create
look-up tables by which essentially encapsulate a series of rules detailing how
values of one attribute depend on values of another.

11.2.3 Expert systems

Expert systems are computer programs whose main function is to incorporate
and use knowledge about a particular domain. For instance, a geographic
expert system about ecotourism might include rules to identify sites that have
potential for developing visitor programs. A geophysical expert system would
contain rules about sites worthy of exploring for particular kinds of minerals.
An expert system of web sites would contain rules about how to locate sites
that might provide particular kinds of data.

Expert systems often contain hundreds, or even thousands of such rules.
The usual search mechanism is a procedure known as backward chaining.
The system starts from the statement that it needs to satisfy and works
backwards. For any potential solution X it tries to form a chain of clauses
P(X)�Q(X), Q(X)�R(X) etc. in which the precondition Q(X) in one rule is

Online GIS196

the conclusion in the previous rule. This process continues until the program
finds a precondition that it can check directly.

Expert systems are usually produced using a development shell, together
with an appropriate logical language. Common languages include LISP and
Prolog, however, most shells include their own scripting language. A popular
shell and language for developing intelligent systems online is CLIPS
(Giarrantano and Riley 1989). This freeware system includes modules for
incorporating expert systems into Web services.

The following short sample of CLIPS code asks the user to define a search
radius (rule1). It then runs a test to determine whether a point located a
certain distance from the search centre lies within a circle of that radius
(rule2).

(defrule rule1

=>

(printout t “What search radius do you want?” crlf)

(assert (radius=(read))))

(defrule rule4

(radius ?r)

(distance ?d)

(test (< ?r ?d))

=>

(assert (accept_point yes)))

11.2.4 Adaptive agents

In building an expert system, the expert tries to incorporate all the
knowledge that is necessary to solve a particular kind of problem before the
system is used. This may involve a long development procedure. However,
there are many kinds of problems for which complete knowledge is
unobtainable. In such cases, acquiring new rules and data need to be an on-
going activity of the system. For example, in searching for information on the
Web, new sites are always appearing and new data is constantly being added.
So systems must be able to constantly add details of such items to its
information base.

Adaptive agents are software programs that are intended to cope with
this kind of problem. The term agent has many meanings that are relevant
here. One sense covers programs that act on behalf of a user. For example,
most Web search engines use software agents that automatically trawl
through web sites, recording and indexing the contents. Another, related
definition concerns programs that automatically carry out some task or
function. The term adaptive refers to software that changes its behaviour in
response to its “experience”, that is, the problems that it works on. In
general the software agents used by search engines are not adaptive.
Although they accumulate virtual mountains of data, the way they function
is essentially unchanged.

New technologies for spatial information 197

One way for an agent to adapt is by adding to its store of knowledge. That
is, it adds new rules to its behavioural repertoire. This idea is perhaps best
illustrated via an example. Suppose that to carry out a particular kind of Web
search, the user feeds the agent with a set of rules that provide explicit instructions.
Under these conditions, not only could the agent carry out the query, but also
it could add the instructions to its knowledge base. This way, future users would
be able to carry out the same query without needing to instruct the agent how
to go about it. Of course, to ensure that future users know that such a query is
available, it needs to have a name by which it can be invoked.

However, agents can go further in the learning process. Let’s suppose that
we set the agent to work to provide a report about (say) kauri trees in New
Zealand. To carry out the query we give the agent a set of appropriate rules,
and we supply a name, NZKAURI say, for the query. Then this query becomes
a new routine that future users can recall at any time simply by quoting its
name. However, it is limited by its highly specifie restriction to forest trees
and to New Zealand. We can generalise the query by replacing the specific
terms by generic variables. But how do we generalise terms like “forest trees”
and “New Zealand”? Let’s suppose that we express the query using XML.
Then the start of the query might look like this:

<query name=”NZKAURI”>

<tree>kauri</tree>

<country>New Zealand</country>

…rest of definition…

</query>

The way to generalise the query is now obvious. We simply remove the
restrictions and turn the whole thing into a function NZKAURI (topic,
country). This function now has the potential to address questions on a much
broader basis. In principle, it could answer questions about (say) kauri trees
in other countries, other trees in New Zealand, and potentially about any
kind of tree in any country.

Of course, the success of this kind of generalisation depends on exactly
how the query is implemented. For instance, if it uses a number of isolated
resources that refer only to New Zealand kauri trees, then it will fail completely
for any other tree, or for any other country. The generalisation is most likely
to be successful if the entire system confines itself to a fairly narrow domain
and if it works with services that have a widespread coverage.

Generalised pattern matching, as described above, is just one of many ways
in which an online agent can acquire information. Another possibility is
provided by research into natural language processing. A system might take
natural language queries entered by the user and map them into a specific
search dialect.

11.2.5 The ant model of distributed intelligence

One of the strongest insights to flow from research in the new discipline of
artificial life is that order can emerge in a system without any central planning

Online GIS198

or intelligence. In many living systems, order emerges instead through the
interactions of many agents interacting with their environment and with each
other. For instance, in many insect colonies, such as ants and bumblebees, the
individual insects have no overall concept of what their colony should look
like. Instead they behave according to very simple rules. For instance, if you
are an ant and you see a scrap of waste lying around, then you pick it up. If
you are carrying waste and find some waste lying around, then you drop the
scrap that you are carrying. This simple action, repeated thousands of times,
is all it takes to sort the contents of an ant colony into different areas for food,
for eggs, waste, and so on.

Many useful applications flow from the above simple observation. For
instance, Rodney Brooks applied the idea to robotics and created very effective
mechanisms for controlling (say) robot walking, without any central control
at all. Likewise the ant sort algorithm is a method by which computer systems
can create order spontaneously, and without the need to applying specific
sorting algorithms. In the ant sort, the ants either change or move items around,
or if that is not possible, they can make it easier for other ants to find the same
items again by leaving a trail of virtual pheromones.

So how do these ideas apply to online GIS? First, it is important to appreciate
that the ant sort is an ideal method to apply on the Internet. The Web contains
virtual oceans of data items, with more being added all the time. Suppose that
virtual ants are looking for online items on a particular topic, say geographic
data. Then they can “mark their trail” with virtual pheromones. These can
take several forms. For example, one approach is to record a history of sites
that you’ve visited with a score next to each one. Other ants looking at this
list can see which sites have proved most relevant and useful.

There are difficulties with the ant sort model. One is that it applies best to
a non-renewable resource. When real-life ants follow a pheromone trail, they
take food away from the source that the trail leads to. When the source is
exhausted, they stop laying down pheromones, so the trail goes cold. Not so
an online resource. So there is a risk of concentrating huge amounts of activity
on a single web site. One potential solution to this problem is to have the ant
copy the information to a cache, and delete it if it is not accessed within a
particular period.

11.3 MOBILE COMPUTING

Spatial information is an intricate part of our lives. From finding a vegetarian
restaurant within walking distance of a hotel in a strange city to a garage
which can repair a vintage Jaguar, mapping queries have so many, unexplored
applications.

At present geographic information systems are the provinces of a minority,
requiring special skills and software.

In the last year, cut-down GIS (Geographic Information Systems) have
become available on palmtop computers, such as Tadpole, and FieldWorker.
They operate on the model of providing GIS functionality on small data sets
with upload/download options. Meanwhile mobile phones are starting to
invade the Internet. But wireless devices have distinct limitations: they have

New technologies for spatial information 199

small, limited colour screens and very low bandwidth. Thus an alternative is
to think, not in terms of a micro-GIS, but in terms of online spatial queries.

A new approach is needed in which spatial queries are answered with
information packed down by artificial intelligence on the server. Client and
spatial profiling are essential for the best results, raising questions of privacy.
The client, of course, does not wish to buy large digital maps (data sets) for
his simple restaurant query, but wants to pay much less, say the cost of an
information line (1900) phone call.

Handheld devices, such as mobile phones, have very limited facilities for
human-computer interaction: keyboards are virtually non-existent; some sort
of pen system might be available; screens are low resolution, usually
monochrome. Voice recognition has great potential but would have to be inside
the phone itself to allow really effective learning of an individual’s voice. Thus
queries must be brief and highly, but intuitively, codified. In addition the query
needs include information that either identifies the user and device and evokes
an associated profile, or provides a specification as in the emerging web standard
for Composite Capability/Preference Profiles (CC/PP).

Privacy is a crucial issue. The more a data server knows about a client, the
more it can tailor its response. However, the client is thereby giving up personal
or organisational information, perhaps unwittingly. New privacy laws, such
as those which came into force NSW in July 1, 2000, ensure the client has
much greater access and control. A client needs assurance that his personal
information will not be spread around the Internet if he entrusts it to some
agent, for which mechanisms do not yet adequately exist. It is essential that
the client has access and control of the data stored and there are mechanisms
to prevent its unauthorised transfer. The data broker agent model enables
personal information to reside within a trusted agent which can then formula
queries in a sanitised fashion.

Large mapping organisations are under increasing pressure to sell their
data in more ways. Online supply is obviously very promising, however, given
the volume and diversity of data, an effective commercial model is needed
which considers issues of tracking royalties through the flow of ownership,
data watermarking, discounts for customer categories such as government
and issues of resale of data by third parties.

New standards are emerging that will make all of the above possible. In
addition to the OpenGIS specifications, which we described in Chapter 7,
several specifications are under development by the Wireless Applications
Forum. On the Web front there has been significant progress in digital
signatures and security which we discussed briefly in Section 8.3.

11.4 FROM ONLINE GIS TO VIRTUAL WORLDS

Question: What’s better than looking at a map of where you want to go? The
answer is obvious: being there. But if you can’t be there in person, then the
next best thing is to be virtually there.

When an architect wants to show clients what a new development will
look like, the building plans are only part of the story. Any major work includes
artist’s drawings of what the place would look like, and even models that
clients can explore and look at from different angles.

Online GIS200

In recent times, architects have begun making virtual reality models of
the buildings they plan to build. That way, the owners can experience what
the finished product will be like before building even begins. They can also
try out design variations and potential colour schemes. The same kind of
technology has been used to build virtual reconstructions of ancient
buildings.

The idea of virtual space has been applied to GIS too, Dirk Spenneman, a
colleague of ours, built an online virtual field trip around a GIS. The system
allows students to get experience at planning fieldtrips before they undertake
real fieldwork later on. One advantage is that they can learn the consequences
of mistakes (e.g. failing to allow for poor weather) and avoid making them
for real.

These kinds of technology can be extended to add virtual reality capability
to GIS. Good examples of this approach are systems that have been developed
to help people assess environmental impacts of logging and other activities.
The program Smart Forest, for instance, combines a GIS, with forest models
and virtual reality (Orland 1997). It allows users to define various scenarios
and to experience the consequences.

The idea behind the program is to provide a sound basis for assessing the
claims about environmental impact that are made by forestry companies and
other groups. At present, a forestry company may have to make arguments
such as “Well, we have to cut down part of the forest, but it will not spoil the
aesthetics of the area and the patch will recover within twenty years.” Instead
of just saying this, the argument has much more force if people can actually
see what the area will look like. This is exactly what Smartforest is intended
to do (Orland 1997).

The program combines GIS, simple forest models, and virtual reality
graphics. Once a model has been set up, the user can move around in the
environment and look at the view from any place, in any direction, at any
height from ground level to hundreds of metres.

Several other commercial packages of a similar nature are now available,
such as Virtual Forest (Buckley et al. 1998).

Many computer games place the user in a virtual world. In games such as
SimCity and SimEarth, for instance, the user acts as manager for entire cities
or even the entire planet. The games are based around a GIS that allows the
user to select regions and zoom in to the level of individual buildings. In other
games, players can drive through virtual landscapes following road maps (e.g.
GranTourismo) or negotiate their way through entire fictional 3D artificial
worlds (e.g. Tomb Raider).

Having combined GIS and virtual reality, it is just a short step (conceptually
at least!) to do the whole thing online.

Several projects have put this into practice (e.g. Fig. 11.2). Perhaps the best
known is Alpha World (Active Worlds.com 2000). Participants can join a
virtual community inhabited by “avatars”, which are graphical representations
of both themselves and other users. Not only can users move around and
interact in this cyberworld, they can even build themselves virtual homes.
Other online projects of this kind place the avatars in other environments,
such as the surface of Mars. The Virtual Worlds Movement aims to develop
online virtual reality as a means of developing virtual communities and other
activities, such as business meetings.

New technologies for spatial information 201

Figure 11.2 . A virtual reality scene of the Abercrombie caves, New South Wales. The
service, which is maintained by Charles Sturt University, can be accessed at http://
clio.mit.csu.edu.au/

Glossary

Numbers following each definition indicate the chapter and section in which
the relevant discussion is to be found.

Abstract specification Part of the OpenGIS model which is interface and
implementation independent. 7.2

Access log A record kept by a web server of who down loads what. 3.2.3

Active Object Map A table maintained by the basic or portable object adaptors
of objects on the bus or ORB. 7.3

ANZLIC Australia-New Zealand Land Information Council. 9.1

ANZMETA Top-level element in the ANZLIC metadata DTD. 9.1

Attributes Attributes appears in two different contexts: in XML or SGML it
refers to properties of an element given values inside the start tag; in
objectoriented design it refers to a property of an object, often a data
value. 5.2.

Base map A map of a region on which various thematic layers are placed to
create the final map. 1.2.1

Basic Object Adaptor (BOA) The first CORBA object adaptor which is
responsible for activating objects on a server, superseded by the portable
object adaptor (POA). 7.3.5

CEN Comité Européan de Normalisation. 9.3

CERCO Comité Européan des Responsables de la Cartographie Officielle.
9.3

CGI Common Gateway Interface, the link between a Web server and processing
software. 3.3.1

Class A category of objects for data and processing. 1.2.3

Client-server protocol A communications model in which a client computer
requests data from a server computer. 2.2.1

Client-side processing Actions performed on the computer where the Web
browser is running. 4.1

Collection service (CORBA) The service for managing collections of objects.
7.3

Common Object Request Broker Architecture CORBA is a standard of the
Object Management Group for activating and managing objects
distributed over computer networks such as the Internet. 7.3.1

Component A modular software building block comprising a number of
interrelated objects.

Concurrency The simultaneous running of more than one process. 7.3

Online GIS204

Connectionless interaction Client server exchange in which the client does
not form an on-going link to the server. 2.6.3.1

CSDGM Content Standard for Digital Geospatial Metadata. 9.2

Data archive A repository facility for storing data sets. 6.4.4

Data mining Techniques for knowledge discovery in huge datasets. Often
associated with data warehouses. 10.7

Data warehouse An organised collection of databases and processes for
information retrieval, interpretation and display. 6.3

DMG Data Mining Group. 10.9.3

DSTP Data Space Transfer Protocol. A standard for distributing data sets
across the Internet. 10.9.4

DCMI The Dublin Core Metadata Initiative. A metadata initiative arising
out of the Dublin Core workshop providing a series of metadata elements
for authorship and other properties of documents. 8.2

Decision tree A computing model in which test conditions determine the
branching and the leaves (ends of branches) contain definitions for values
of target variables. 10.7

Digital Elevation Model (DEM) A model that specifies elevation for any point
in a landscape. 1.2.1

Distributed data warehouse A data warehouse that is spread across several
sites on the Internet. 6.3

Distributed objects Processing objects that interact across several sites on the
Internet. 1.6

Document root (1) The base directory under which all documents reside on a
Web server. 5.2 (1) The top of the document tree (see below) which in a
DTD corresponds to the outermost (top level) element. 5.2

Document Tree The order and hierarchy of the elements of a document
represented as a tree. 5.2

Document type definition (DTD) A meta-document of SGML that defines the
elements and entities of any document instance and the structure to which
they must conform. A DTD is analogous to a very general sort of template
or a class in object oriented programming. 5.7.1

Dublin Core A standard for defining metadata within HTML documents (see
also DCMI). 8.1

Dynamic access Access that is controlled at run-time. 7.3.2

Element A distinct component (e.g. section) in the structure of an SGML/
XML document. Elements are the primary building block of SGML and
XML documents. An element may contain other elements. 5.2

Enterprise Java Beans (EJB) The Java specification for large-scale distributed
objects or frameworks. EJB has now moved to adopt the CORE A model,
but is specific to the Java language. 7.3.6

Entity A property of an element. 5.2 Also, a syntactic variable that defines
terms within a Document Type Definition. 5.2

Glossary 205

Entities, public Entity sets external to a document, usually in some well-defined
place, used for example for defining special characters. 5.2 ENV Euro-
Norm Voluntaire. a European data standard. 9.3

Error log A record kept by a web server of unsuccessful attempts to access
information. 3.2.3

Event service, CORBA A mechanism that allows components on the bus to
register their interest in specific events. 7.3.7

Extensible Markup Language (XML) A system for marking up documents
and data using tags that indicate structural elements. XML is a
recommendation of the W3C for marking up documents, a later variant
of SGML. 5.1

Externalisation service, CORBA A mechanism for streaming data in and out
of components. 7.3.7

FGDC Federal Geospatial Data Committee (USA). 9.2.2

First order questions Questions about single objects or spatial variables (cf.
second order), e.g. Where are parks located? 1.2.2

Framework A run-time system in which components are embedded.

Geographic Information System (GIS) A computer system for storing,
displaying and interpreting geographic information. 1.1

Geographic Markup Language (GML) A system of XML tags for marking up
geographic information. 10.9.2

GET A method of transferring form data to a server by embedding the data
within a URL (web address). 3.3.1

GIE Group d’Interêt Economique. 9.3

GIS See Geographic Information System.

GHRC Global Hydrology Research Center. 10.8.1

GML See Geographic Markup Language.

Head An element at the start of an HTML document that contains metadata
and other basic information about a document. 8.3

Hypertext Transfer Protocol (HTTP) The client-server protocol used in
transferring data between servers and clients on the World Wide Web.
8.3

Hypermedia Information that combines multimedia with hypertext. 3.1.2

Hypertext Markup Language (HTML) A system of tags (based on an SGML
DTD) used for marking up documents for the World Wide Web. 5.1

IDL Interface Definition Language. The fundamental building block of
CORBA, which defines the interfaces to objects in a language independent
way. 7.3.2

Imagemap An image within an HTML document within which different
locations provide different hyperlinks. 4.2.1

Image input field An element within an HTML form that allows the user to
input coordinates by clicking on an image. 3.3.2

Online GIS206

Implementation repository A database on the ORB which contains information
about object implementations. 7.3

INFO2000 European initiative on information sharing. 9.3

Information Network A set of sites on the Internet that collaborate to provide
information about a particular theme or topic. 6.1

Inheritance Attributes and methods that a specialised class of objects inherit
from a more general class of objects. 1.2.3

Instance A particular object that belongs to a given class. 1.2.3 IR Interface
Repository. 7.3

Interface A specification of the procedure and properties of an object abstracted
away from how the object is implemented. 7.3

Interface Repository (IR) A database on the ORB which contains information
about object interfaces. 7.3.2

Internet A global computer network, linked via the Internet Protocol (IP) and
governed by the Internet Society. 1.3

Java A programming language developed by SUN Corporation to run processes
on a Web client machine. 7.3.6

Javascript A scripting language developed by Netscape to allow processing
within HTML documents. 4.4

JPL Jet Propulsion Laboratory. 10.8.1

Kriging A statistical technique used to interpolate values of spatial variables
between points where observations are available. 1.2.2

Layer A set of geographic information, usually dealing with a single theme,
that can be combined with other layers to form a map. 1.2.1

Legacy In the CORBA context, refers to pre-existing software and data. 7.3

Legacy data Datasets from old or historic sources. 7.3.1; 10.3.1.

Licensing service (CORBA) The service which allows monitoring of an object’s
activities for accounting purposes. 7.3.7

Markup A procedure for indication document structure or format through
the use of textual tags embedded within the document. 5.1

Mark up tags Labels inserted into a document or data set to indicate structure,
formatting or processing. 5.1

MEGRIN Multipurpose European-Ground Related Information Network. 9.3

Metadata Literally, data about data. Information about the provenance and
nature of information resources. 6.4.1; 6.5.2.1

MetaLite A simplified version of the FGDC metadata standard used in parts
of the United States. 9.2.5

Methods The computational procedures (subroutines) used to access and
modify the properties (data) of an object. 1.2.3; 7.3.1

Mirror site A complete copy of an information resources that is held at a
separate Web site. 6.4.4

Namespace A collection of terms and definitions that describe the usage and

Glossary 207

sometime meaning of XML tags (i.e. the semantics of the markup
language). 5.4

Naming service (CORBA) A means for providing names for objects. 7.3.7

NGDCH National Geospatial Data Clearing House (USA). 9.2.2

NCDM National Center for Data Mining. 10.8.3

NCSA National Center for Supercomputer Applications. Their development
of the first multimedia Web browser sparked rapid growth of the World
Wide Web in the early 1990s. 1.3

NOAA-SAA National Oceanic and Atmospheric Administration-Satellite
Active Archive. 10.8.1

NSIDC National Snow and Ice Data Center. 10.8.1

NSDI National Spatial Data Infrastructure. 9.2.2

Nuggets Items of information uncovered by data mining. 10.7

Object Management Group (OMG) A large software and hardware vendor
consortium aiming to provide industry wide standards for object
technology. 7.1

Open Software Foundation (OSF) A vendor consortium developing operating
system and process communication standards. 7.3.2

ORNL Oak Ridge National Laboratory. 10.8.1

OMG Object Management Group. 7.1; 7.3.1

OQL Object Query Language. 5.6

Object-oriented An approach to information processing based on objects and
their relationships. 1.2.3

OCLC Online Computer Library Center. 8.2

Object Query Language (OQL) A proposal for extracting data from objects
in a collection of some kind. 5.6

Object Request Broker (ORB) A fundamental building block of CORBA which
allows objects to interact across a network. 7.3

OSF Open Software Foundation. 7.3.2.2

Overlay The act of laying one thematic layer over another layer or base map.
1.2.2

Path The sequence of directories and processes that need to be invoked to
reach an item of information. 3.3.1

PERL A freeware scripting language that is widely used to implement
processing associated with Web services. 3.2; 3.5

Persistence service (CORBA) A means of making objects appear as if they are
always available online (when in fact they may be transparently archived
to databases or other file systems). 7.3.7

Pixel A point within an array that combines to form an image. 1.2.1

Portable Object Adaptor (POA) The successor to the Basic Object Adaptor.
7.3.4; 7.3.5

Online GIS208

Post method Method of transmitting data from Web forms in which the data are
encapsulated and sent via HTTP as standard input to a Web server. 3.3.1

PMML Predictive Model Markup Language. An XML based language that is
used to describe models. 10.9.3

Pragma A compiler directive. 7.3.2

Quadtree An indexing method that progressively divides a landscape into
quarters, subquarters and so on. 1.2.1

Quality The completeness, correctness and relevance of data. 1.3; 6.5.2

Query service Queries for objects based on SQL and the OMG’s Object Query
Language. 7.3.7

Raster layers Map layers that contain arrays of pixel data (e.g. satellite images).
1.2.1

RDF type Indicates an RDF composite construct such as a collection. 8.5.3

Reference concrete syntax Part of the SGML specification which specifies the
characters and restrictions of markup text, e.g. the use of <> in defining
beginning and end tags. 5.2

Relationship A link between objects. There are three kinds, (a) Common
attributes or methods; (b) GenSpec, in which one object is a special case
of a more general one. (c) Whole-Part, in which one object forms part of
another. 1.2.3.

Repository Id A unique identifier for an object in a repository, valid across
repositories and networks. 7.3.2

Request for Proposal (RFP) (1) An official Internet Society announcement
seeking proposals relating to a particular standard or protocol. ALSO (2)
A tendering process used by organisations such as the Open GIS
Consortium as the first stage in developing a standard. 7.3.7 RDF The
Resource Description Framework. A W3C standard for metadata
describing online resources, such as sites and services. 8.1

Resource Discovery The process of searching for online information and
services 8.2

Scalable Vector Graphics (SVG) An XML based language for defining vector
images. This standard provides images that can be rescaled without
distortion. 4.4.5

Schema An XML document describing the structure and semantics of the
class of XML documents which use it. 8.1

Second order questions Questions about relationships between geographic
variables (e.g. what area of forest lies within parks). 1.2.2

Security service A range of operations for controlling access, authentication
etc. 7.3.7

Semantics The meaning of terms and expressions in a language. 5.1; 8.2

Serialisation syntax The representation of an RDF model in XML. 8.5.4

Servants The user written objects on a server which interact with the server
skeletons. 7.3.5

Glossary 209

Server A program that transmits data in response to requests from clients.
4.3.4

Server-per-method A server activation protocol in which a server process is
started for each activation of an object method. 7.3.5

Shared server A server activation protocol in which many object methods
share a single (multi-threaded) process. 7.3.5

Skeleton An automatically generated code fragment which interfaces the user’s
server-side code (servant) with the ORB. 7.3.2

Spatial Reference System A coordinate system for points on the earth, defining
units, transformations and reference points. 7.3.9

Stability The capacity of online sites and services to keep functioning, and to
remain at the same Web address. 1.3; 6.4.4

Standard Generalised Markup Language (SGML) A general approach to
marking up the structure and format of text according to a document
type definition (DTD). HTML is one example. XML is a simplified variant
of SGML. 5.1

Standardisation The process of making information and services conform to
standards. 1.3

Standards Precise specifications for particular operations or structures. 6.4.1

SVG See Scalable Vector Graphics.

SWG Standards Working Group. 9.2.2

Stateless Any process in which no state (i.e. a record of history) is recorded.
2.6.3

Theme A set of geographic information with a common topic, or related
features. 1.1

Thematic layer A map layer with a particular theme (e.g. roads). 1.1

Time service A service that provides time information and synchronisation in
a distributed system. 7.3.7

Trading service The “yellow pages” of a distributed object system, allowing
an object to be located on a network on the basis of its properties and
function. 7.3.7

Transaction service The means of controlling concurrent access to data files.
7.3.7

Unshared server A server policy in which a server is created for each and
every object. 7.3.5

URL Uniform Resource Locator. 3.3.1

VBScript Visual Basic Script, a language for implementing data processing
operations on personal computers. 4.3.6

Vector layer A map component consisting of points, lines and polygons.
1.2.1

Virtual library An information service consisting of hypertext links to online
information on a range of topics. 6.3

Online GIS210

W3C The World Wide Web Consortium, the body which manages standards
for the Web. 1.3

Web Client A computer program that retrieves information from World Wide
Web servers. 3.1

Web server A server that delivers information in response to HTTP requests
across the Internet. 3.1

Whole-part relationship A situation in which one object forms a part of another
object (e.g. town objects form part of a landscape object). 1.2.3

XML See Extensible Markup Language. 5.1

Bibliography

ActiveWorlds.com (2000). Alpha World, http://www.activeworlds.com/

Aha, D. (1995). Machine Learning. Tutorial on Machine Learning. AI and
Statistics Workshop. Ft Lauderdale, Florida.

Alschuler L. (1995). ABCD…SGML. International Thomson Publishing,
Boston

ANZLIC (2000). Australasian Spatial Data Directory. http://
www.environment.gov.au/net/asdd/

ANZLIC Home Page, http://www.anzlic.org.au/

Booch, G., Rumbaugh, J. and Jacobson, I., (1999). The (U)nified (M)odelling
(L)anguage User Guide. Addison-Wesley, Reading, Massachusetts.

Bossomaier, T.R.J. and Green, D.G. (2000). Complex Systems. Cambridge
University Press, Cambridge.

Bossomaier, T.R.J. and Green, D.G. (2001). Spatial Metadata and Online
GIS Website. http://www.csu.csu.edu.au/complexsystems/smdogis/

Brunsdon, C., Fotheringham, A.S. and Charlton, M.E. (1996). Geographically
weighted regression: A method for exploring spatial non-stationarity.
Geographical Analysis 28, 281–298.

Bryan, M. (1988). SGML: An Author’s Guide to the Standard Generalized
Markup Language. Addison-Wesley, Reading, Massachusetts.

Buckley, D.J., Ulbricht, C. and Berry, J. (1998). The Virtual Forest: Advanced
3-D Visualization Techniques for Forest Management and Research . ESRI
User Conference, July 27–31, 1998 San Diego, CA. http://
www.innovativegis.com/products/vforest/

Burdet, H.M. (1992). What is IOPI? Taxon 41, 390–392. http://life.csu.edu.au/
iopi/

Buttenfield, B.P. (1998). Looking Forward: Geographic Information Services
and Libraries in the Future. Cartography and GIS 25(3), 161–171.

Cathro, W. (1997). Metadata: An Overview. Standards Australia Seminar,
August 1997. http://www.nla.gov.au/nla/staffpaper/cathro3.html

Chawla, S., Shekhar, S., Wu, W.L. and Ozesmi, U. (2001). Modeling spatial
dependencies for mining geospatial data: An introduction. In H.J.Miller and

Online GIS212

J.Han (eds) Geographic Data Mining and Knowledge Discovery. London,
Taylor and Francis (in press).

Clark, J. (1999). XML Namespaces, http://www.jclark.com/xml/xmlns.htm

Cliff, A.D. and Haggett, P. (1998). On complex geographical space: Computing
frameworks for spatial diffusion processes. In P.A.Longley, S.M.Brooks, R.
McDonnell and B.MacMillan (eds) Geocomputation: A Primer (Chichester,
U.K., John Wiley and Sons), pp. 231–256.

Danko, D.M. (1992). The Digital Chart of the World Project. Photogrammetric
Engineering & Remote Sensing 58(8), 1125–1128.

DMA (Defense Mapping Agency) (1992). Digital Chart of the World. Defense
Mapping Agency, Fairfax, Virginia. (Set of four CD-ROMs.) http://
edc.usgs.gov/glis/hyper/oldguides/dcw

Dietterich, T.G. (1996). Machine Learning. ACM Computing Surveys. 28(4es),
December.

DMG (2000). PMML 1.0—Predictive Model Markup Language. Data Mining
Group (DMG). http://www.dmg.org/html/pmml_v1_1.html

Drew, P. and Ying, J. (1998). Metadata management for geographic
information discovery and exchange. In Sheth, A. and Klas, W. (eds),
Multimedia Data Management: Using Metadata to Integrate and Apply Digital
Media (McGraw-Hill), pp. 89–121.

Dublin Core. Dublin Core Metadata Initiative (homepage). http://purl.org./
dc/

Eklund, P.W., Kirkby, S.D. and Salim, A. (1998). Data mining and soil salinity
analysis. International Journal of Geographical Information Science 12, 247–
268.

Ensign, C. (1997). SGML: The Billion Dollar Secret. Prentice Hall, New Jersey.

Erdos, P. and Renyl, A. (1960). On the Evolution of Random Graphs, Math.
Inst Hungarian Acad, 5, 17–61 (in Hungarian).

ERIN (1995). Species Mapper, http://www.environment.gov.au/ (now offline).

ERIN (1999). Environment Australia http://www.environment.gov.au/

Ester, M., Kriegel, H-P. and Sander, J. (1999). Knowledge Discovery in Spatial
Databases Invited Paper at 23rd German Conference on Artificial Intelligence
(KI 99). Bonn, Germany, 1999.

Etzioni, O. (1996). The World Wide Web—Quagmire or Gold Mine? The
Communications of the ACM. November (39)11, 65–68.

European Petroleum Survey Group (2000). Petrochemical Open Software
Consortium, http://www.epsg.org/

Bibliography 213

Evans, C., Feather, C.D.W., Presler-Marshall, M., and Resnick, P. (1997).
PICSRules 1.1. W3C. http://www.w3.org/TR/REC-PICSRules

Fayyad, U.M., Piatetsky-Shapiro, G., and Smyth, P. (1996a). The KDD Process
for Extracting Useful knowledge from Volumes of Data. The Communications
of the ACM. November 39(11), 27–31

Fayyad U.M., Piatetsky-Shapiro G., and Smyth P. (1996b). From Data Mining
to Knowledge Discovery: An Overview. In: Advances in Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park, 1996, pp. 1–34.

Ferraiolo, J. (2000). Scalable Vector Graphics (SVG) 1.0 Specification. W3C
Candidate Recommendation. http://www.w3.org/TR/2000/CR-SVG-
20001102/

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software . Addison-Wesley, Reading
Massachusetts.

Gardner, C. (1996). IBM Data Mining Technology. Stamford, IBM
Corporation, Connecticut.

Garfinkel, S., (1995). PGP: Pretty Good Privacy. O’Reilly & Associates,
Sebastopol, CA.

Giarrantano, J. and Riley, G. (1989). Expert Systems: Principles and
Programming, Boston: PWS-KENT Publishing. http://www.ghgcorp.com/clips/
CLIPS.html

Goldfarb, C.F. and Prescod, P. (1998). The XML Handbook. Prentice Hall,
N.J.

Green, D.G. (1993a). The Guide to Australia. Charles Sturt University. http:/
/www.csu.edu.au/australia/

Green, D.G. (1993b). Emergent behaviour in biological systems, In Green,
D.G. and Bossomaier, T.R.J. (eds), Complex Systems—from Biology to
Computation. pp. 24–35, IOS Press, Amsterdam

Green, D.G. (1994). Databasing diversity—a distributed public-domain
approach. Taxon 43, 51–62.

Green, D.G. (1995). From honey pots to a web of SIN—building the world-
wide information system. In Tsang, P., Weckert, J., Harris, J. and Tse, S. (eds),
Proceedings of AUUG’95 and Asia-Pacific World Wide Web ’95 Conference
, Charles Sturt University, Wagga Wagga, pp. 11–18. http://www.csu.edu.au/
special/conference/apwww95/papers95/dgreen/dgreen.html

Green, D.G. and Croft, J.R. (1994). Proposal for Implementing a Biodiversity
Information Network. In Canhos, D.A.L., Canhos, V. and Kirsop, B. (eds),
Linking Mechanisms for Biodiversity Information. Proceedings of the
Workshop for the Biodiversity Information Network, pp. 5–17. Fundacao
Tropical de Pesquisas e Tecnologia “Andre Tosello”, Campinas, Sao Paulo,
Brazil.

Online GIS214

Green, D.G. (1996). A general model for on-line publishing. In: Bossomaier,
T. and Chubb, L. (eds), Proceedings of AUUG’96 and Asia-Pacific World
Wide Web ’96 Conference. Australian Unix Users Group, Sydney, pp. 152–
158.

Green, D.G. and Klomp, N. (1997). Networking Australian biological research.
Australian Biologist 10(2), 117–120.

Green, D.G. Bristow, P., Ash, J., Benton, L., Milliken, P., and Newth, D. (1998).
Network Publishing Languages. In Helen Ashman & Paul Thistlethwaite (eds),
Proceedings of the Seventh International World Wide Web Conference. Elsevier,
Amsterdam, http://life.csu.edu.au/~dgreen/papers/www7.html

Green, D.G. (2000). Coping with complexity—the role of distributed
information in environmental and resource management. In Salminen, H.,
Saarikko, J., and Virtanen, E. (eds), Resource Technology ’98 Nordic—
Proceedings. Finish Forestry Research Institute, Rovaniemi, Finland.

Hammer, J., Garcia-Molia, H., Labio, W., Widom, J. and Zhuge, Y. (1995).
The Stanford Data Warehousing Project. Data Engineering Bulle ting. Special
Issue on Materialized Views and Data Warehousing 18(2), 41–48.

Hardy, G. (1998). The OECD’s Megascience Forum Biodiversity Informatics
Group. http://www.oecd.Org//ehs/icgb/BIODIV8.HTM

Hawkins, H.S., Rimmington, G.M. and Peter, I. (1992). LandcareNET—A
new medium for agricultural communication. Agricultural Science 5(2), 35–
40.

Hubber, H. (1997). A Success Story: Wal-Mart Stores. In Proceedings of the
First State of Florida Data Warehousing Conference. (UNPUBLISHED)

Inmon, W.H. (1995). What is a Data Warehouse? Prism (1)1.

Inmon, W.H. (1996). The Data Warehouse and Data Mining. Communications
of the ACM. November 39(11), 49–50.

ISOC (2000). The Internet Society (ISOC), Home Page, http://www.isoc.org/

IUBS (1998). Species 2000. International Union of Biological Sciences. http:/
/www.sp2000.org/

IUFRO (1998). Global Forest Information Service. International Union of
Forestry Research Organisations. http://iufro.boku.ac.at/

Jacobson, I., Griss, M. and Jonsson, P. (1997). Software Reuse. ACM Press,
New York.

Kennedy, R.L., Lee, Y., van Ray, B., Reed, C.D., and Lippman, R., (1998).
Solving Data Mining Problems Through Pattern Recognition . The Data
Mining Institute and Prentice Hall.

Knuth, D.E., (1984). The TeX Book. Addison-Wesley, Massachusetts.

Bibliography 215

Koperski, K., Han, J. and Adhikary, J. (1999). Mining knowledge in geographic
data. Comms. ACM. http://db.cs.sfu.ca/sections/publication/kdd/kdd.html

Krauskopf, T, Miller, J., Resnick, P. and Treese, W. (1996). PICS Label
Distribution, Label Syntax and Communication Protocols: Version 1.1 , W3C,
http://www.w3.org/TR/REC-PICS-labels

Krol, E. (1992). The Whole Internet User Guide and Catalog. O’Reilly &
Associates, Sebastopol CA.

Lamport, L. (1986). LaTeX: A Document Preparation System. Addison-
Wesley, Massachusetts.

Larman, C. (1998). Applying UML and Patterns. Prentice Hall, New York.

Lassila, O. and Swick, R.R. (1998). Resource Description Framework (RDF)
Model and Syntax. World Wide Web Consortium. (Online) http://www.w3.org/
TR/1998/WD-rdf-syntax-19980216.

Lassila, O. and Swick, R.R. (1999). Resource Description Framework (RDF)
Model and Syntax Specification. W3C. http://www.w3.org/TR/REC-rdf-
syntax.

Lees, E.G. and Ritman, K. (1991). Decision-tree and rule-induction approach
to integration of remotely sensed and GIS data in mapping vegetation in
disturbed or hilly environments. Environmental Management 15, 823–831.

Lonely Planet Publications (2000). Lonely Planet Travel Guides. http://www.
lonelyplanet.com/

Lu, H., Setiono, R., and Liu, H. (1996).Effective data mining using neural
networks. IEEE Transactions on Knowledge and Data Engineering 8(6), 957–
961.

Malhotra, A. and Maloney, M. (1999). XML Schema Requirements. W3C
http://www.w3.org/TR/NOTE-xml-schema-req

MacEachren, A.M., Wachowicz, M., Edsall, R., Haug, D. and Masters, R.
(1999). Constructing knowledge from multivariate spatio-temporal data:
integrating geographical visualization with knowledge discovery in database
methods. Intern. J.Geogr. Information Science 13(4), 311–334.

Malerba, D., Esposito, F. Lanza, A., and Lisi., F.A., (2001). Machine learning
for information extraction from topographic maps. In H.J.Miller and J.Han
(eds), Geographic Data Mining and Knowledge Discovery, (London, Taylor
and Francis) (in press).

Mesrobian, E., Muntz, R., Shek, E., Nittel, S., La Rouche, M., Kriguer, M.,
Mechoso, C., Farrara, J., Stolorz, P. and Nakamura, H. (1996). Mining
geophysical data for knowledge. IEEE Expert 11(5), 34–44.

Michalski, R.S., Bratko, I., and Kubat, M. (1998). Machine Learning and
Data Mining Methods and Applications. John Wiley. New York.

Online GIS216

Miller, J., Resnick, P. and Singer, D. (1996). Rating Services and Rating Systems
(and their Machine Readable Descriptions): Version 1.1, W3C, http://
www.w3.org/TR/REC-PICS-services

Miller, H. and Han, J., (eds) (2001). Geographic Data Mining and Knowledge
Discovery. Taylor and Francis, London.

NCDM (2000). Data Space Transfer Protocol (DSTP). National Center for
Data Mining, University of Illinois at Chicago (UIC). http://www.ncdm.uic.edu/
dstp/

National Center for Supercomputer Applications (NCSA) (1995). NCSA
Imagemap Tutorial, http://hoohoo.ncsa.uiuc.edu/docs/tutorials/
imagemapping.html

NGDC (2000). WebMapper Interface. National Geophysical Data Center,
http://www.ngdc.noaa.gov/paleo/

NISO (1999). The ANSI/NISO Z39.50 Protocol: Information Retrieval in the
Information Infrastructure. National Information Standards Organisation.

OMG (1997). The Object Management Group (OMG) Home Page, http://
www.omg.org/

Online Computer Library Center (OCLC) (1997). Center Home Page. http:/
/www.oclc.org/

OGC (2000a). OpenGIS® Abstract Specification. Open GIS Consortium http:/
/www.opengis.org/

OGC (2000b). Geography Markup Language (GML) v1.0. Open GIS
Consortium http://www.opengis.org/

OSF (2000). Open Source Foundation, Home Page, http://
www.opensource.org/

Openshaw, S., Cross, A. and Charlton, M., (1990). Building a Prototype
Geographical Correlates Machine. Intern. J.Geographical Information
Systems, 4(4), 297–312.

Orffali, R., Harkey, D. and Edwards, J. (1997). Client/Server Survival Guide,
(3rd ed). John Wiley & Sons, New York.

Orland, B. (1997). Forest visual modeling for planners and managers.
Proceedings, ASPRS/ACSM/RT’97, Seattle. American Society for
Photogrammetry and Remote Sensing, Washington vol 4, pp.193–203. http:/
/www.imlab.uiuc.edu/smartforest/

Plewe, B. (1997). GIS Online. Onward Press, Albany New York.

Quinlan R.J. (1993). C4.5 Programming for Machine Learning . Morgan
Kaufmann, New York.

Bibliography 217

Roddick, J.F. and Spiliopoulou, M. (1999). A bibliography of temporal, spatial
and spatio-temporal data mining research . SIGKDD Explorations 1(1), 34–
38. http://www.cis.unisa.edu.au/~cisjfr/STDMPapers/.

Schwartz, R.L. (1993). Learning Perl. O’Reilly & Associates, Sebastopol CA.

Steinke, A., Green, D.G. and Peters, D. (1996). On-line environmental and
geographic information systems. In Saarenma, H. and Kempf, A. (eds), Internet
Applications and Electronic Information Resources in Forestry and
Environmental Sciences. EFI Proceedings No. 10. European Forestry Institute,
Joensuu (Finland), pp. 89–98.

Srinivasan, A. and Richards, J.A. (1993). Analysis of GIS spatial data using
knowledge-based methods. International Journal of Geographical Information
Systems 7, 479–500.

Travis, B.E. (1997). OmniMark at Work. SGML University Press, Denver,
CO. United Nations Environment Programme (UNEP) (1995). Background
Documents on the Clearing-House Mechanism (CHM). Convention on
Biological Diversity. Jakarta Indonesia, http://www.biodiv.org/chm/info/
official.html

US Census Bureau (1994). The TIGER mapping system . http://
tiger.census.gov/

Wall, L. and Schwartz, R.L. (1991). Programming Perl. O’Reilly & Associates,
Sebastopol CA.

Weibel, S., Kunze, J. and Lagoze, C. (1998). Dublin Core Metadata for Simple
Resource Discovery. Dublin Core Workshop Series. (Online) http://
purl.oclc.org/metdata/dublin_core_elements/draft-kunze-dc-02.txt

Wessel, P. and Smith, W.H.F. (1991). Free software helps map and display
data. Eos Trans., American Geophysical Union 72, 441.

Wessel, P. and Smith, W.H.F. (1995). New Version of the Generic Mapping
Tools Released, Eos Trans. American Geophysical Union. http://www.agu.org/
eos_elec/95154e.html

Whalen, D. (1999). The Cookie FAQ. Cookie Central. http://
www.cookiecentral.com/faq/

Wiener J.L. (1997). Data Warehousing: What is it? And Related Stanford DB
Research. Stanford Database Research Laboratory.

Worbel, S., Wettschereck, D., Sommer, E., and Emde, W. (1997). Extensibility
in data mining systems. In Simoudis, E. and Han. J. (eds), The Proceedings of
The 2nd International Conference On Knowledge Discovery and Data Mining.
AAAI.

World Wide Web Consortium (W3C) (1999). The Document Object Model.
World Wide Web Consortium, http://www.w3c.org/rdf

Online GIS218

Xerox PARC (1993). Map Viewer, http://pubweb.parc.xerox.com/map

Zhuge, Y., Garcia-Molina, H., Hammer, J., and Widom, J. (1995). View
Maintenance in a Warehousing Environment In Proceedings of the ACM
SIGMOD

International Conference on Management of Data pp. 316–327. San Jose,
California.

Index

Entries in bold indicate extended passages with multiple references over two
or more pages. In many cases they comprise sections dealing with that topic.

Abstract specification 110
Abstract specification 122
Access log 30
Active Object Map 118
ANZLIC, Australia-New Zealand Land Information Council 76, 79, 84,

92, 151, 157, 158, 182
ANZMETA 79, 84, 152, 158
Attributes 1, 5, 33, 74, 85, 121, 157, 169, 175, 195
Attributes, of objects 1, 5, 33, 74, 79, 85, 135, 149, 157, 169, 175, 178
Australian Spatial Data Directory (ASDD) 161, 182
Authorisation (security feature) 2

Base map 1, 18, 20, 64, 101
Basic Object Adaptor (BOA) 117

CGI 29
Class 2, 5, 30, 49, 69, 88, 143, 184
Client-server protocol 2
Client-side processing 49
Collection service (CORBA) 120
Comité Européan de Normalisation (CEN) 165
Comité Européan des Responsables de la Cartographie Officielle (CERCO)

165
Common Object Request Broker Architecture (CORBA) 21, 109, 110, 113,

116, 117, 118, 119, 120
Component 4, 88, 119, 123, 133, 143, 152, 171, 173, 190
Concurrency 120
Connectionless interaction 26
Cookies 12, 26, 29, 60
CSDGM 162

Data archive 118
Data mining 154, 183
Data warehouse 22, 93, 112, 167
Decision tree 178, 184
Digital Elevation Model (DEM) 2
Digital signatures 135 140, 147, 148
Distributed data warehouse 22, 91, 93, 174, 174, 192
Distributed database 100, 171
Distributed information systems 9, 91, 179
Distributed objects 11, 107
DMG 183
Document root, document tree 74
Document type definition (DID) 92, 95, 96, 99, 104, 105, 108
DSTP 174, 189, 185
Dublin Core 95, 134

Online GIS220

Dynamic access 113

Element 7, 24, 45, 68, 87, 102, 125, 150, 163, 183, 193
Enterprise Java Beans (EJB) 119
Entities, public 7
Entity 6, 76, 123, 145
Error log 30
Euro-Norm Voluntaire (ENV) 165
Event service, CORE A 120
Externalisation service, CORBA 21, 109, 110
Federal Geospatial Data Committee (FGDC) 162
First order questions 2
Framework 11, 77, 79, 91, 94, 98, 106, 109, 115, 119, 134, 143, 149,

151, 158, 170, 181, 191

Gazeteer 3, 54
General-special (Genspec) relationships between object classes 5
Geographic information system (GIS) 1, 13, 27, 49, 71, 100, 109, 144,

158, 181, 189
Geographic Markup Language (GML) 73, 183
GET method 32
Global Hydrology Research Center (GHRC) 179
GML 73, 123, 183
Group d’Interêt Economique (GIE) 165

Hypermedia 2, 16, 44
Hypertext Markup Language (HTML) 26, 72, 174
Hypertext Transfer Protocol (HTTP) 2, 14, 26, 137, 142

Image input field 36
Imagemap 3, 49
Implementation repository 111
INFO2000 165
Information Network 9, 21, 91, 165, 175
Inheritance 78, 144
Instance 2, 10
Interface 13, 49, 53, 93, 111, 121, 172, 182, 194
Interface Definition Language (IDL) 113
Interface Repository (IR) 111
Internet, organization 8, 186

Java 15, 16, 38, 42, 49, 62, 109, 111, 113, 116, 119
Javascript 49, 53, 58, 60, 96
Jet Propulsion Laoratory (JPL) 179

Kriging 3

Layer 1, 4, 18, 23, 59, 60, 100, 102, 163, 168, 169, 191, 192
Legacy data 82, 112, 151, 155, 161, 173, 175, 177
Licensing service (CORBA) 120

Markup 26, 28, 48, 66, 71, 91, 95, 123, 128, 134, 174, 183
Markup tags 71
MEGRIN, Multipurpose European Ground Related Information Network 165
Metadata 23, 72, 76, 79, 84, 94, 101, 104, 107, 109, 110, 122, 128, 133,

149, 151, 154, 156, 161, 180, 182, 192

Index 221

MetaLite 163
Methods 5, 26, 67, 83, 96, 115, 135, 184, 193
Mirror site 122

Namespace 73, 76
Naming service (CORBA) 119
National Geospatial Data Clearing House (NGDC) 162
National Snow and Ice Data Center (NSIDC) 179
National Spatial Data Infrastructure (NSDI) 162
NCDM National Center for Data Mining 185
NCSA, National Center for Supercomputer Applications 8, 51
nearest neighbour analysis 3
NOAA-SAA 179
Nuggets of knowledge 178

Oak Ridge National Laboratory (ORNL) 179
Object Management Group (OMG) 109, 110, 111, 119
Object model of GIS 3
Object Query Language (OQL) 83
Object, class 4
Object, methods 5
Object-oriented models and data 4
Open Software Foudnation (OSF) 116
Organisation, of Internet resources 8, 186
Overlay 1, 91, 93, 182
Overlays 2, 93

Path 5, 29, 32, 61, 66, 86
PERL 31, 38, 61
Persistence service (CORBA) 119
Pixel 2, 20, 66
PMML 174, 183
Portable Object Adaptor (POA) 116
Post method 33
Pragma 116
Protocols 10, 94, 97, 174, 185, 189

Quadtree 2
Quality 5, 8, 38, 94, 98, 101, 103, 170
Quality, of online information 8, 10
Query service (CORBA) 120
Questions—first and second order 2

Raster layer 1, 2
RDF 134, 140, 143, 148
Reference concrete syntax 74, 75
Relationship 6, 143, 177, 193
Repository Id 115
Request for Proposal (RFP) 110, 119

Scalable Vector Graphics (SVG) 15, 42, 48, 48, 49, 62, 66, 123, 128, 189
Schema 135, 138, 143
Second order questions 2
Security 14, 29, 91, 174, 192
Security service (CORBA) 120
Semantics 88, 135

Online GIS222

Serialisation syntax 143, 147
Servants 118
Server 11, 12, 14, 15, 18, 19, 24, 25, 26, 27, 29, 32, 37, 38, 40, 45, 48, 49,

51, 55, 58, 60, 60, 65, 68, 109, 111, 115, 119, 119, 138, 140, 142, 172,
175, 182, 186, 186, 199, 199

Server software 29
Server-side GIS operations 27
Skeleton 115
Spatial Reference System 121, 124, 125, 127
SQL gateway 2
Stability 7, 8, 94, 99, 104
Standard Generalised Markup Language (SGML) 72, 73, 74, 75, 76, 77,

79, 80, 88
Standardisation 6, 8, 94, 104
Standards 15, 21, 26, 66, 71, 73, 87, 88, 91, 94, 101, 104, 109, 119, 123,

136, 151, 157, 162, 174, 182, 189, 192, 199
Standards Working Group (SWG) 162
Stateless interface 26

Thematic layer 103
Theme 91, 153, 199
Time service (CORBA) 120
Trading service (CORBA) 120
Transaction service (CORBA) 120

Universal Modelling Language 5
URL 29, 40, 76, 79, 98, 99, 136, 140
User interface (to GIS) 3

VBScript 61
Vector layer 1
Virtual Tourist 3, 22, 93, 191

W3C, World Wide Web Consortium 9, 48, 66, 83, 106
Web Client 12, 25, 27, 62, 117, 138, 186
Whole-part relationship 7
World Wide Web (WWW) 2

XML 11, 12, 15, 21, 28, 43, 44, 48, 66, 68, 72, 74, 76, 79, 83, 89, 90, 95,

101, 106, 123, 125, 128, 134, 135, 146, 147, 148, 149, 157, 158, 183,
185, 189, 192, 193, 197

	Book Cover
	Title
	Contents
	PREFACE
	ACKNOWLEDGEMENTS
	Perspectives on global data
	GIS and the Internet
	Server-side GIS operations
	Client-side GIS operations
	Introduction to markup
	Information networks
	Distributed objects and OpenGIS
	Metadata on the Web
	Metadata standards
	Data warehouses
	New technologies for spatial information
	GLOSSARY
	BIBLIOGRAPHY
	INDEX

