

PostGIS Cookbook

Over 80 task-based recipes to store, organize, manipulate,
and analyze spatial data in a PostGIS database

Paolo Corti

Thomas J Kraft

Stephen Vincent Mather

Bborie Park

BIRMINGHAM - MUMBAI

PostGIS Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1200114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-866-6

www.packtpub.com

Cover Image by Charles E. Mather (matherc@yahoo.com)

Credits

Authors
Paolo Corti

Thomas J Kraft

Stephen Vincent Mather

Bborie Park

Reviewers
Jorge Arévalo

Andrea Flesca

Acquisition Editor
Mary Jasmine Nadar

Lead Technical Editor
Azharuddin Shaikh

Technical Editors
Vrinda Nitesh Bhosale

Rahul Nair

Anita Nayak

Humera Shaikh

Copy Editors
Shambhavi Pai

Kirti Pai

Tanvi Gaitonde

Dipti Kapadia

Project Coordinator
Mary Alex

Proofreaders
Lauren Harkins

Stephen Copestake

Indexers
Rekha Nair

Tejal Soni

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Paolo Corti is based in Rome, Italy. He is an environmental engineer with more than
15 years of experience in the GIS sector. After working with proprietary solutions for some
years, he has proudly switched to open-source technologies and Python for almost a decade.

He has been working as a developer and analyst for organizations such as the EU Joint
Research Center, UN World Food Program, and the Italian Government.

Currently, he is working within the GeoNode project, for which he is a core developer, in the
context of emergency preparedness and response.

He is an OSGeo Charter member and writes a blog on open-source GIS at
http://www.paolocorti.net/.

He is the author of the book's chapters 1, 3, 8, and 9.

I would like to thank the PostGIS Steering Committee and everyone else who
makes PostGIS such a beautiful project.

A special thanks must go to the co-authors of this book: they have been
brilliant mates always ready to give me suggestions and help.

A mention is needed here to some geospatial minds that are great source
of inspiration for me: Paul Ramsey, Sandro Santilli, Frank Warmerdam,and
Even Rouault.

Last, but not least, I would like to thank my wife Renata and my family for
their support and patience.

Thomas J Kraft is currently a Planning Technician at Cleveland Metroparks after beginning
as a GIS intern in 2011.

He graduated with Honors from Cleveland State University in 2012, majoring in Environmental
Science with an emphasis on GIS.

When not in front of a computer, he enjoys his weekends landscaping and the outdoors
in general.

I'd like to thank the co-authors of this book, who are some of the most
knowledgeable and motivated professionals in the field. It's truly an honor
to have been involved in this process.

I'd like to give special acknowledgements to Stephen Mather (also a
co-author) for introducing me to the world of open-source GIS and my
girlfriend, Sandy, for keeping me on the straight and narrow.

Stephen Vincent Mather has worked in the geospatial industry for 15 years, having always
had a flair for geospatial analyses in general, especially those at the intersection of Geography
and Ecology. His work in open-source geospatial databases started 5 years ago with PostGIS
and he immediately began using PostGIS as an analytic tool, attempting a range of innovative
and sometimes bleeding-edge techniques (although he admittedly prefers the cutting edge).
His geospatial career has spanned a variety of interesting and novel natural-resource projects,
everything from the movement of ice sheets in Antarctica to hiking viewsheds and mobile trail
applications to help park users find trails, picnic areas, and restrooms.

Stephen is currently the GIS manager for Cleveland Metroparks in Cleveland, Ohio.
He manages a small geospatial shop that specializes in high-end cartography, crating
and generating data, geospatial web development, and analyses for natural-resource
management, largely with open-source software.

Stephen is also a Mennonite technologist, aka a straw-hat hacker, interested in creating fair and
open data and infrastructure for better governance and humanitarian purposes. He is heavily
involved in the Cleveland Civic Hacking movement as he works with the public to help them get
engaged with geospatial data. In his spare time, he builds guitars really, really slowly.

Thanks go out to those who form my geospatial pedigree: Gordon
Longsworth (and his advisor Ian Mcharg), Kevin Czajkowski, Karl Schneider,
and Ken Jezek, as well as to the geospatial minds who inspire me, including
Martin Davis.

A special thanks goes to the blessings that are my two beautiful and
bright children and my wife (who is equally so), all of whom exhibit endless
patience and love. They are three people who both structure my life and fill
its interstitial spaces with the glow of their love.

Bborie Park has been breaking (and subsequently fixing) computers for most of his life. His
primary interests involve developing end-to-end pipelines for spatial datasets. He is an active
contributor to the PostGIS project and is a member of the PostGIS Steering Committee. He
happily resides with his wife Nicole in the San Francisco Bay Area.

I would like to thank my wife Nicole, who patiently tolerated many hours,
days, and weeks of my working when I should have been relaxing. I would
also like to thank the PostGIS community and Steering Committee for
accepting and providing feedback for my contributions to the project.

About the Reviewers

Jorge Arévalo is a computer engineer from Universidad Autónoma de Madrid, UAM.
He started developing web applications with JS, PHP, and Python. In 2010, he began
collaborating with PostGIS and GDAL projects after participating in GSoC 2009, creating
the PostGIS Raster GDAL driver. He currently works as a freelance Web/GIS developer and
collaborates with the geomati.co group in projects, such as gvSIG CE or QGIS. He also
writes a blog about GIS at http://www.libregis.org.

Andrea Flesca is an Italian electronic engineer working in the software world for Selex ES,
a primary Italian electronic systems and software provider. After extensive experience with
software development and over the past several years, he has dealt with GIS systems and
Enterprise Architectures. He's Technical Head for systems integration.

Andrea loves rock music and knows how to prepare a great tiramisu.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Moving Data In and Out of PostGIS	 7

Introduction	 7
Importing nonspatial tabular data (CSV) using PostGIS functions	 7
Importing nonspatial tabular data (CSV) using GDAL	 12
Importing shapefiles with shp2pgsql	 17
Importing and exporting data with the ogr2ogr GDAL command	 21
Handling batch importing and exporting of datasets	 25
Exporting data to the shapefile with the pgsql2shp PostGIS command	 33
Importing OpenStreetMap data with the osm2pgsql command	 34
Importing raster data with the raster2pgsql PostGIS command	 39
Importing multiple rasters at a time	 45
Exporting rasters with the gdal_translate and gdalwarp GDAL commands	 51

Chapter 2: Structures that Work	 55
Introduction	 55
Using geospatial views	 56
Using triggers to populate a geometry column	 58
Structuring spatial data with table inheritance	 62
Extending inheritance – table partitioning	 67
Normalizing imports	 71
Normalizing internal overlays	 76
Using polygon overlays for proportional census estimates	 80

ii

Table of Contents

Chapter 3: Working with Vector Data – The Basics	 85
Introduction	 85
Working with GPS data	 86
Fixing invalid geometries	 92
GIS analysis with spatial joins	 96
Simplifying geometries	 101
Measuring distances	 107
Merging polygons using a common attribute	 110
Computing intersections	 112
Clipping geometries to deploy data	 116
Simplifying geometries with PostGIS topology	 120

Chapter 4: Working with Vector Data – Advanced Recipes	 127
Introduction	 127
Improving proximity filtering with KNN	 128
Improving proximity filtering with KNN – advanced	 132
Rotating geometries	 137
Improving ST_Polygonize	 140
Translating, scaling, and rotating geometries – advanced	 142
Generating detailed building footprints from LiDAR	 148
Using external scripts to embed new 	 152
functionality in order to calculate a Voronoi diagram	 152
Using external scripts to embed other 	 156
libraries in order to calculate a Voronoi 	 156
diagram – advanced	 156

Chapter 5: Working with Raster Data	 173
Introduction	 173
Getting and loading rasters	 174
Working with basic raster information and analysis	 177
Performing simple map-algebra operations	 182
Combining geometries with rasters for analysis	 187
Converting between rasters and geometries	 189
Processing and loading rasters with GDAL VRT	 194
Warping and resampling rasters	 197
Performing advanced map-algebra operations	 200
Executing DEM operations	 206
Sharing and visualizing rasters through SQL	 209

iii

Table of Contents

Chapter 6: Working with pgRouting	 215
Introduction	 215
Startup – Dijkstra routing	 215
Loading data from OpenStreetMap and finding the shortest path using A*	 220
Driving distance/service area calculation	 223
Calculating the driving distance with demographics	 229
Extracting the centerlines of polygons	 232

Chapter 7: Into the Nth Dimension	 241
Introduction	 241
Importing LiDAR data	 242
Performing 3D queries on a LiDAR point cloud	 245
Constructing and serving buildings 2.5 D	 247
Using ST_Extrude to extrude building footprints	 256
Creating arbitrary 3D objects for PostGIS	 257
Exporting models as X3D for the Web	 261
Reconstructing Unmanned Aerial Vehicle (UAV) image footprints
with PostGIS 3D	 265
UAV photogrammetry in PostGIS – point cloud	 272
UAV photogrammetry in PostGIS – orthorectification	 274
UAV photogrammetry in PostGIS – DSM creation	 279

Chapter 8: PostGIS Programming	 281
Introduction	 281
Writing PostGIS vector data with Psycopg	 284
Writing PostGIS vector data with OGR Python bindings	 291
Writing PostGIS functions with PL/Python	 297
Geocoding and reverse-geocoding using the GeoNames datasets	 302
Geocoding using the OSM datasets with trigrams	 306
Geocoding with geopy and PL/Python	 312
Importing netCDF datasets with Python and GDAL	 316

Chapter 9: PostGIS and the Web	 325
Introduction	 325
Creating WMS and WFS services with MapServer	 326
Creating WMS and WFS services with GeoServer	 339
Creating a WMS Time with MapServer	 352
Consuming WMS services with OpenLayers	 359
Consuming WMS services with Leaflet	 365

iv

Table of Contents

Consuming WFS-T services with OpenLayers	 369
Developing web applications with GeoDjango – part 1	 375
Developing web applications with GeoDjango – part 2	 386

Chapter 10: Maintenance, Optimization, and Performance Tuning	 393
Introduction	 393
Organizing the database	 394
Setting up the correct data privilege mechanism	 397
Backing up the database	 403
Using indexes	 405
Clustering for efficiency	 409
Optimizing SQL queries	 410
Migrating a PostGIS database to a different server	 421
Replicating a PostGIS database with streaming replication	 423

Chapter 11: Using Desktop Clients	 429
Introduction	 429
Adding PostGIS layers – QGIS	 430
Using the Database Manager plugin – QGIS	 434
Adding PostGIS layers – OpenJUMP GIS	 443
Running database queries – OpenJUMP GIS	 449
Adding PostGIS layers – gvSIG	 453
Adding PostGIS layers – uDig	 457

Index	 461

Preface
How close is the nearest hospital from my children's school? Where were the property crimes
in my city for the last three months? What is the shortest route from my home to my office?
What route should I prescribe for my company's delivery truck so as to maximize equipment
utilization and minimize fuel consumption? Where should the next fire station should be built
so as to minimize the response time?

People ask these questions and others like them every day all over this planet. Answering
these questions require a mechanism capable of thinking in two or more dimensions.
Historically, a Desktop GIS application was used to formulate an answer for each question.
This method—though completely functional—is incapable of answering many questions
at once. In addition, this method is typically unable to effectively manage and operate
on massive spatial datasets, such as all of the roads of Europe for 2013 in one dataset,
or allow tasks to be automated instead of significant pointing and clicking.

Once scalability, support for large datasets, and a direct input mechanism are required or
desired, most users explore using a spatial database. There are several spatial database
software available, some proprietary and others open source. PostGIS is an open source
spatial database software and is probably the most accessible of all spatial database software.

PostGIS runs as an extension to provide spatial capabilities to PostgreSQL databases. In this
capacity, PostGIS permits the inclusion of spatial data alongside data typically found in a
database. By having all of the data together, questions such as "What is the rank of all of the
police stations after taking into account the distance for each response time?" are possible.
New or enhanced capabilities are possible by building upon the core functions provided by
PostGIS and the inherent extensibility of PostgreSQL.

PostGIS Cookbook uses a problem-solving approach to help you acquire a solid understanding
of PostGIS. Hopefully, this book provides answers to some common spatial questions and
gives you the inspiration and confidence to use and enhance PostGIS in finding solutions to
challenging spatial problems.

Preface

2

What this book covers
Chapter 1, Moving Data In and Out of PostGIS, covers the processes available for importing
and exporting spatial and nonspatial data to and from PostGIS. These processes include the
use of utilities provided by PostGIS and third parties, such as GDAL/OGR.

Chapter 2, Structures that Work, discusses how to organize PostGIS data using mechanisms
available through PostgreSQL. These mechanisms are used to normalize potentially unclean
and unstructured import data.

Chapter 3, Working with Vector Data – The Basics, introduces PostGIS operations commonly
done on vectors, known as geometries and geographies in PostGIS. Operations covered
include the processing of invalid geometries, determining relationships between geometries,
and simplifying complex geometries.

Chapter 4, Working with Vector Data – Advanced Recipes, dives into advanced topics
for analyzing geometries. You will learn how to make use of KNN filters to increase the
performance of proximity queries, create polygons from LiDAR data, and compute Voronoi
cells usable in neighborhood analyses.

Chapter 5, Working with Raster Data, presents a realistic workflow for operating on rasters
in PostGIS. You will learn how to import a raster, modify the raster, conduct analysis on the
raster, and export the raster in standard raster formats.

Chapter 6, Working with pgRouting, introduces the pgRouting extension that brings graph
traversal and analysis capabilities to PostGIS. The recipes in this chapter answer the
real-world questions of conditionally navigating from point A to point B and accurately
modeling complex routes, such as waterways.

Chapter 7, Into the Nth Dimension, covers tools and techniques used to process and analyze
multi-dimensional spatial data in PostGIS, including LiDAR-sourced point cloud. Topics covered
include the loading of point clouds into PostGIS, creating 2.5D and 3D geometries from point
clouds, and the application of several photogrammetry principles.

Chapter 8, PostGIS Programming, shows how to use the Python language to write applications
that operate on and interact with PostGIS. The applications written include methods to read
and write external datasets to and from PostGIS, as well as a basic geocoding engine using
OpenStreetMap datasets.

Chapter 9, PostGIS and the Web, presents the use of OGC and REST web services to deliver
PostGIS data and services to the Web. This chapter discusses providing OGC WFS and
WMS services with MapServer and GeoServer and consuming them from clients such as
OpenLayers and Leaflet. It then shows how to build a web application with GeoDjango.

Chapter 10, Maintenance, Optimization, and Performance Tuning, takes a step back from
PostGIS and focuses on the capabilities of the PostgreSQL database server. By leveraging
the tools provided by PostgreSQL, you can ensure the long-term viability of your spatial and
nonspatial data and maximize the performance of various PostGIS operations.

Preface

3

Chapter 11, Using Desktop Clients, shows how spatial data in PostGIS can be consumed
and manipulated by various open source desktop GIS applications. Several applications are
discussed so as to highlight the different approaches to interact with spatial data and help
you find the right tool for the task.

What you need for this book
Before going further with this book, you will want to install the latest versions of PostgreSQL
and PostGIS (9.3 and 2.1, respectively). You may also want to install pgAdmin (1.18), if
you prefer a graphical SQL tool. For most computing environments (Windows, Linux, OSX),
installers and packages include all of the required dependencies of PostGIS. The minimum
required dependencies for PostGIS are PROJ.4, GEOS, libjson, and GDAL.

A basic understanding of the SQL language is required to understand and adapt the code
found in this book's recipes.

Who this book is for
This book is written for those who are looking for the best method to solve their spatial
problems using PostGIS. These problems can be as simple as finding the nearest restaurant
to a specific location or as complex as finding the shortest and/or most efficient route from
point A to point B.

For those who are just starting out with PostGIS or even spatial datasets, this book is
structured to help readers become comfortable and proficient at running spatial operations in
the database. For experienced users, the book provides opportunities to dive into advanced
topics such as point clouds, raster map-algebra, and PostGIS programming.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "We will import the
firenews.csv file that stores a series of web news collected from various RSS feeds".

A block of code is set as follows:

SELECT ROUND(SUM(chp02.proportional_sum(ST_Transform(a.geom,3734),
b.geom, b.pop))) AS population FROM
 nc_walkzone AS a, census_viewpolygon as b
 WHERE ST_Intersects(ST_Transform(a.geom, 3734), b.geom)
 GROUP BY a.id;

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

SELECT ROUND(SUM(chp02.proportional_sum(ST_Transform(a.geom,3734),
b.geom, b.pop))) AS population FROM
 nc_walkzone AS a, census_viewpolygon as b
 WHERE ST_Intersects(ST_Transform(a.geom, 3734), b.geom)
 GROUP BY a.id;

Any command-line input or output is written as follows:

> raster2pgsql -s 4322 -t 100x100 -F -I -C -Y C:\postgis_cookbook\data\
chap5\PRISM\us_tmin_2012.*.asc chap5.prism | psql -d postgis_cookbook

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com/
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Moving Data In and

Out of PostGIS

In this chapter, we will cover:

ff Importing nonspatial tabular data (CSV) using PostGIS functions
ff Importing nonspatial tabular data (CSV) using GDAL
ff Importing shapefiles with shp2pgsql
ff Importing and exporting data with the ogr2ogr GDAL command
ff Handling batch importing and exporting of datasets
ff Exporting data to the shapefile with the pgsql2shp PostGIS command
ff Importing OpenStreetMap data with the osm2pgsql command
ff Importing raster data with the raster2pgsql PostGIS command
ff Importing multiple rasters at a time
ff Exporting rasters with the gdal_translate and gdalwarp GDAL commands

Introduction
In this chapter, we will show you a set of recipes covering different tools and methodologies to
import and export geographic data from the PostGIS spatial database.

Importing nonspatial tabular data (CSV)
using PostGIS functions

There are a couple of alternative approaches to import a Comma Separated Values (CSV) file,
which stores attributes and geometries in PostGIS. In this recipe, we will use the approach of
importing such a file using the PostgreSQL COPY command and a couple of PostGIS functions.

Moving Data In and Out of PostGIS

8

Getting ready
We will import the firenews.csv file that stores a series of web news collected from the
various RSS feeds related to forest fires in Europe in the context of the European Forest
Fire Information System (EFFIS), available at http://effis.jrc.ec.europa.eu/.

For each news feed, there are attributes like place name, size of the fire in hectares,
URL, and so on. Most importantly, there are the x and y fields that give the position of the
geolocalized news in decimal degrees (in the WGS 84 spatial reference system, SRID = 4326).

How to do it...
The steps you need to follow to complete this recipe are as shown:

1.	 Inspect the structure of the CSV file, firenews.csv, which you can find within
the book dataset (if you are on Windows, open the CSV file with an editor such
as Notepad).

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

$ cd ~/postgis_cookbook/data/chp01/
$ head -n 5 firenews.csv

The output of the preceding command is as shown:
x,y,place,size,update,startdate,enddate,title,url-
8.2499,42.37657,Avión,52,2011/03/07,2011/03/05,2011/03/06,D
os incendios calcinan 74 hectáreas el fin de semana,http://www.
laregion.es/noticia/145578/incendios/calcinan/hectareas/semana/
-8.1013,42.13924,Quintela de Leirado,22,2011/03/07,2011/03/
06,2011/03/06,Dos incendios calcinan 74 hectáreas el fin de
semana,http://www.laregion.es/noticia/145578/incendios/calcinan/
hectareas/semana/
3.48159,43.99156,Arrigas,4,2011/03/06,2011/03/05,2011/03/05,"À
Arrigas, la forêt sous la menace d'un feu",http://www.midilibre.
com/articles/2011/03/06/NIMES-A-Arrigas-la-foret-sous-la-menace-d-
39-un-feu-1557923.php5
6.1672,44.96038,Vénéon,9,2011/03/06,2011/03/06,2011/03/06,Isè
re Spectaculaire incendie dans la vallée du Vénéon,http://www.
ledauphine.com/isere-sud/2011/03/06/isere-spectaculaire-incendie-
dans-la-vallee-du-veneon

http://www.PacktPub.com/
http://www.PacktPub.com/
http://www.PacktPub.com/support

Chapter 1

9

2.	 Connect to PostgreSQL and create the following table:
$ psql -U me -d postgis_cookbook

postgis_cookbook=> CREATE TABLE chp01.firenews

(

 x float8,

 y float8,

 place varchar(100),

 size float8,

 update date,

 startdate date,

 enddate date,

 title varchar(255),

 url varchar(255),

 the_geom geometry(POINT, 4326)

);

We are using the psql client for connecting to PostgreSQL, but you can
use your favorite one, for example, pgAdmin.
Using the psql client, we will not show the host and port options as we
will assume that you are using a local PostgreSQL installation on the
standard port.
If that is not the case, please provide those options!

3.	 Copy the records from the CSV file to the PostgreSQL table using the COPY command
(if you are on Windows, use an input directory such as c:\temp instead of /tmp)
as follows:
postgis_cookbook=> COPY chp01.firenews (x, y, place, size, update,
startdate, enddate, title, url) FROM '/tmp/firenews.csv' WITH CSV
HEADER;

Make sure that the firenews.csv file is in a location accessible
from the PostgreSQL process user. For example, in Linux, copy the file
to the /tmp directory.
If you are on Windows, you most likely will need to set the encoding to
UTF-8 before copying:
postgis_cookbook=# set client_encoding to 'UTF-8';

Moving Data In and Out of PostGIS

10

4.	 Check if all of the records have been imported from the CSV file to the
PostgreSQL table:
postgis_cookbook=> SELECT COUNT(*) FROM chp01.firenews;

The output of the preceding command is as follows:
count

3006
(1 row)

5.	 Check if a record related to this new table is in the PostGIS geometry_columns
metadata view:
postgis_cookbook=# SELECT f_table_name, f_geometry_column, coord_
dimension, srid, type FROM geometry_columns where f_table_name =
'firenews';
 f_table_name | f_geometry_column | coord_dimension | srid | type
--------------+-------------------+-----------------+-------+-----
--
 firenews | the_geom | 2 | 4326 | POINT
(1 row)

Before PostGIS 2.0, you had to create a table containing spatial data in
two distinct steps; in fact, the geometry_columns view was a table
that needed to be manually updated. For that purpose, you had to use
the AddGeometryColumn function to create the column. For example,
for this recipe:
postgis_cookbook=> CREATE TABLE chp01.firenews
(
 x float8,
 y float8,
 place varchar(100),
 size float8,
 update date,
 startdate date,
 enddate date,
 title varchar(255),
 url varchar(255)
)
WITHOUT OIDS;
postgis_cookbook=> SELECT AddGeometryColumn('chp01',
'firenews', 'the_geom', 4326, 'POINT', 2);
chp01.firenews.the_geom SRID:4326 TYPE:POINT DIMS:2

Chapter 1

11

In PostGIS 2.0, you can still use the
AddGeometryColumn function if you wish; however,
you need to set its use_typmod parameter to false.

6.	 Now, import the points in the geometric column using the ST_MakePoint or
ST_PointFromText functions (use one of the following two update commands):
postgis_cookbook=> UPDATE chp01.firenews SET the_geom = ST_
SetSRID(ST_MakePoint(x,y), 4326);

postgis_cookbook=> UPDATE chp01.firenews SET the_geom = ST_
PointFromText('POINT(' || x || ' ' || y || ')', 4326);

7.	 Check how the geometry field has been updated in some records from the table:
postgis_cookbook=# SELECT place, ST_AsText(the_geom) AS wkt_geom
FROM chp01.firenews ORDER BY place LIMIT 5;

The output of the preceding comment is as follows:

place | wkt

--

Abbaslık | POINT(29.95...

Abeledos, Montederramo | POINT(-7.48...

Abreiro | POINT(-7.28...

Abrunheira, Montemor-o-Velho | POINT(-8.72...

Achaia | POINT(21.89...

(5 rows)

8.	 Finally, create a spatial index for the geometric column of the table:

postgis_cookbook=> CREATE INDEX idx_firenews_geom ON chp01.
firenews USING GIST (the_geom);

How it works...
This recipe showed you how to load nonspatial tabular data (in CSV format) in PostGIS using
the COPY PostgreSQL command.

After creating the table and copying the CSV file rows to the PostgreSQL table, you updated
the geometric column using one of the geometry constructor functions that PostGIS provides
(ST_MakePoint and ST_PointFromText for bi-dimensional points).

These geometry constructors (in this case, ST_MakePoint and ST_PointFromText)
must always provide the spatial reference system identifier (SRID) together with the
point coordinates to define the point geometry.

Moving Data In and Out of PostGIS

12

Each geometric field added in any table in the database is tracked with a record in the
geometry_columns PostGIS metadata view. In the previous PostGIS version (< 2.0), the
geometry_fields view was a table and needed to be manually updated, possibly with the
convenient AddGeometryColumn function.

For the same reason, to maintain the updated geometry_columns view, when dropping a
geometry column or removing a spatial table in the previous PostGIS versions, there were the
DropGeometryColumn and DropGeometryTable functions. With PostGIS 2.0, you don't
need to use these functions any more, but you can safely remove the column or the table
with the standard ALTER TABLE DROP COLUMN and DROP TABLE SQL commands.

In the last step of the recipe, you have created a spatial index on the table to improve
performances. Please be aware that as in the case of alphanumerical database fields,
indexes improve performances only when reading data using the SELECT command. In this
case, you are making a number of updates on the table (INSERT, UPDATE, and DELETE);
depending on the scenario, it could be less time consuming to drop and recreate the index
after the updates.

Importing nonspatial tabular data (CSV)
using GDAL

As an alternative approach to the previous recipe, you will import a CSV file to PostGIS using
the ogr2ogr GDAL command and the GDAL OGR virtual format. The Geospatial Abstraction
Library (GDAL), is a translator library for raster geospatial data formats. OGR is the related
library that provides similar capabilities for vector data formats.

This time, as an extra step, you will import only a part of the features in the file and you will
reproject them to a different spatial reference system.

Getting ready
You will import the Global_24h.csv file to the PostGIS database from NASA's
Earth Observing System Data and Information System (EOSDIS).

You can download the file from the EOSDIS website at http://firms.modaps.eosdis.
nasa.gov/active_fire/text/Global_24h.csv, or copy it from the dataset directory
of the book for this chapter.

This file represents the active hotspots detected by the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellites in the world for the last 24 hours. For each row,
there are the coordinates of the hotspot (latitude, longitude) in decimal degrees (in the
WGS 84 spatial reference system, SRID = 4326), and a series of useful fields such as the
acquisition date, acquisition time, and satellite type, just to name a few.

Chapter 1

13

You will import only the active fire data scanned by the satellite type marked as "T" (Terra
MODIS), and you will project it using the Spherical Mercator projection coordinate system
(EPSG:3857, sometimes marked as EPSG:900913, where the number 900913 represents
Google in 1337 speak, as it was first widely used by Google Maps).

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Analyze the structure of the Global_24h.csv CSV file (in Windows, open the CSV
file with an editor such as Notepad).
$ cd ~/postgis_cookbook/data/chp01/

$ head -n 5 Global_24h.csv

latitude,longitude,brightness,scan,track,acq_date,acq_time,satelli
te,confidence,version,bright_t31,frp

-23.386,-46.197,307.5,1.1,1,2012-08-20, 0140,T,54,5.0
,285.7,16.5

-22.952,-47.574,330.1,1.2,1.1,2012-08-20, 0140,T,100,5.0
,285.2,53.9

-23.726,-56.108,333.3,4.7,2,2012-08-20, 0140,T,100,5.0
,283.5,404.1

-23.729,-56.155,311.8,4.7,2,2012-08-20, 0140,T,61,5.0
,272,143.1

2.	 Create a GDAL virtual data source composed of just one layer derived from the
Global_24h.csv file. To do so, create a text file named global_24h.vrt in
the same directory where the CSV file is and edit it as follows:
<OGRVRTDataSource>
 <OGRVRTLayer name="Global_24h">
 <SrcDataSource>Global_24h.csv</SrcDataSource>
 <GeometryType>wkbPoint</GeometryType>
 <LayerSRS>EPSG:4326</LayerSRS>
 <GeometryField encoding="PointFromColumns"
 x="longitude" y="latitude"/>
 </OGRVRTLayer>
</OGRVRTDataSource>

3.	 With the ogrinfo command, check if the virtual layer is correctly recognized by
GDAL. For example, analyze the schema of the layer and the first of its features
(fid=1):
$ ogrinfo global_24h.vrt Global_24h -fid 1
INFO: Open of `global_24h.vrt'using driver `VRT' successful.
Layer name: Global_24h

Moving Data In and Out of PostGIS

14

Geometry: Point
Feature Count: 30326
Extent: (-155.284000, -40.751000) - (177.457000, 70.404000)
Layer SRS WKT:
GEOGCS["WGS 84", DATUM["WGS_1984", ...
latitude: String (0.0)
longitude: String (0.0)
frp: String (0.0)
OGRFeature(Global_24h):1
latitude (String) = -23.386
longitude (String) = -46.197
frp (String) = 16.5
POINT (-46.197 -23.386)

4.	 You can also try to open the virtual layer with a Desktop GIS supporting a GDAL/
OGR virtual driver such as Quantum GIS (QGIS). In the following screenshot, the
Global_24h layer is displayed together with the shapefile of the countries that
you can find in the dataset directory of the book:

Chapter 1

15

5.	 Now, export the virtual layer as a new table in PostGIS using the ogr2ogr GDAL/OGR
command. You need to use the -f option to specify the output format, the -t_srs
option to project the points to the EPSG:3857 spatial reference, the -where option
to load only the records from the MODIS Terra satellite type, and the -lco layer
creation option to provide the schema where you want to store the table:
$ ogr2ogr -f PostgreSQL -t_srs EPSG:3857 PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" -lco SCHEMA=chp01
global_24h.vrt -where "satellite='T'" -lco GEOMETRY_NAME=the_geom

6.	 Check how the ogr2ogr command created the table as shown in the
following command:
$ pg_dump -t chp01.global_24h --schema-only -U me postgis_cookbook

CREATE TABLE global_24h (

 ogc_fid integer NOT NULL,

 the_geom public.geometry(Point,3857),

 latitude character varying,

 longitude character varying,

 brightness character varying,

 scan character varying,

 track character varying,

 acq_date character varying,

 acq_time character varying,

 satellite character varying,

 confidence character varying,

 version character varying,

 bright_t31 character varying,

 frp character varying

);

7.	 Now, check the record that should appear in the geometry_columns
metadata view:
postgis_cookbook=# SELECT f_geometry_column, coord_dimension,
srid, type FROM geometry_columns WHERE f_table_name =
'global_24h';

 f_geometry_column | coord_dimension | srid | type

-------------------+-----------------+--------+-------

 the_geom | 2 | 3857 | POINT

(1 row)

Moving Data In and Out of PostGIS

16

8.	 Check how many records have been imported in the table:
postgis_cookbook=# select count(*) from chp01.global_24h;

count

9190

(1 row)

9.	 Note how the coordinates have been projected from EPSG:4326 to EPSG:3857:

postgis_cookbook=# SELECT ST_AsEWKT(the_geom) FROM chp01.
global_24h LIMIT 1;

st_asewkt

--

SRID=3857;POINT(-5142626.51617686 -2678766.03496892)

(1 row)

How it works...
As mentioned in the GDAL documentation:

"OGR Virtual Format is a driver that transforms features read from other drivers
based on criteria specified in an XML control file."

GDAL supports the reading and writing of nonspatial tabular data stored as a CSV file, but we
need to use a virtual format to derive the geometry of the layers from attribute columns in the
CSV file (the longitude and latitude coordinates for each point). For this purpose, you need
to at least specify in the driver the path to the CSV file (the SrcDataSource element), the
geometry type (the GeometryType element), the spatial reference definition for the layer
(the LayerSRS element), and the way the driver can derive the geometric information
(the GeometryField element).

There are many other options and reasons for using OGR virtual formats; if you are
interested in having a better understanding, please refer to the GDAL documentation
available at http://www.gdal.org/ogr/drv_vrt.html.

After a virtual format is correctly created, the original flat nonspatial dataset is spatially
supported by GDAL and the software based on GDAL. This is the reason why we can
manipulate these files with GDAL commands such as ogrinfo and ogr2ogr, and with
Desktop GIS software such as QGIS.

Once we have verified that GDAL can correctly read the features from the virtual driver, we can
easily import them in PostGIS using the popular ogr2ogr command-line utility. The ogr2ogr
command has a plethora of options, so refer to its documentation at http://www.gdal.
org/ogr2ogr.html for a more in-depth discussion.

Chapter 1

17

In this recipe, you have just seen some of these options, such as:

ff -where option: Used to export just a selection of the original feature class

ff -t_srs option: Used to reproject the data to a different spatial reference system

ff -lco layer creation option: Used to provide the schema where we would want to store
the table (without it, the new spatial table would be created in the public schema)
and the name of the geometry field in the output layer

Importing shapefiles with shp2pgsql
If you need to import a shapefile in PostGIS, you have at least a couple of options such as the
ogr2ogr GDAL command, as you have seen previously, or the shp2pgsql PostGIS command.

In this recipe, you will load a shapefile in the database using the shp2pgsql command,
analyze it with the ogrinfo command, and display it in the QGIS Desktop software.

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Create a shapefile from the virtual driver created in the previous recipe using the
ogr2ogr command (note that in this case, you do not need to specify the -f option,
as the shapefile is the default output format for the ogr2ogr command):
$ ogr2ogr global_24h.shp global_24h.vrt

2.	 Generate the SQL dump file for the shapefile using the shp2pgsql command.
You are going to use the -G option to generate a PostGIS spatial table using
the geography type, and the -I option to generate the spatial index on the
geometric column:
$ shp2pgsql -G -I global_24h.shp chp01.global_24h_geographic >
global_24h.sql

3.	 Analyze the global_24h.sql file (in Windows, use a text editor such as Notepad):
$ head -n 20 global_24h.sql

SET CLIENT_ENCODING TO UTF8;

SET STANDARD_CONFORMING_STRINGS TO ON;

BEGIN;

CREATE TABLE "chp01"."global_24h_geographic" (gid serial PRIMARY
KEY,

Moving Data In and Out of PostGIS

18

"latitude" varchar(80),
"longitude" varchar(80),
"brightness" varchar(80),
...
"frp" varchar(80),
"geog" geography(POINT,4326));
INSERT INTO "chp01"."global_24h_geographic" ("latitude","long
itude","brightness","scan","track","acq_date","acq_time","sat
ellite","confidence","version","bright_t31","frp",geog) VALUES
('-23.386','-46.197','307.5','1.1','1','2012-08-20','0140','T','
54','5.0','285.7','16.5','0101000000F0A7C64B371947C0894160E5D0623
7C0');
...

4.	 Run the global_24h.sql file in PostgreSQL:
$ psql -U me -d postgis_cookbook -f global_24h.sql

If you are on Linux, you may concatenate the commands from the
last two steps in a single line in the following manner:
$ shp2pgsql -G -I global_24h.shp chp01.global_24h_
geographic | psql -U me -d postgis_cookbook

5.	 Check if the metadata record is visible in the geography_columns view (and not in
the geometry_columns view as with the -G option of the shp2pgsql command,
we have opted for a geography type):
postgis_cookbook=# SELECT f_geography_column, coord_dimension,
srid, type FROM geography_columns WHERE f_table_name =
'global_24h_geographic';
 f_geography_column | coord_dimension | srid | type

--------------------+-----------------+-------+-------

 geog | 2 | 4326 | Point

6.	 Analyze the new PostGIS table with ogrinfo (use the -fid option just to display one
record from the table):
$ ogrinfo PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" chp01.global_24h_geographic -fid 1
INFO: Open of `PG:dbname='postgis_cookbook' user='me'
password='mypassword''
using driver `PostgreSQL' successful.
Layer name: chp01.global_24h_geographic
Geometry: Point
Feature Count: 30326
Extent: (-155.284000, -40.751000) - (177.457000, 70.404000)
Layer SRS WKT:

Chapter 1

19

(unknown)
FID Column = gid
Geometry Column = the_geom
latitude: String (80.0)
longitude: String (80.0)
brightness: String (80.0)
...
frp: String (80.0)
OGRFeature(chp01.global_24h_geographic):1
 latitude (String) = -23.386
 longitude (String) = -46.197
 brightness (String) = 307.5
 ...
 frp (String) = 16.5
 POINT (-46.197 -23.386)

7.	 Now open QGIS and try to add the new layer to the map. Navigate to Layer | Add
PostGIS layers and provide the connection information, and then add the layer to
the map as shown in the following screenshot:

Moving Data In and Out of PostGIS

20

How it works...
The PostGIS command, shp2pgsql, allows the user to import a shapefile in the PostGIS
database. Basically, it generates a PostgreSQL dump file that can be used to load data
by running it from within PostgreSQL.

The SQL file will be generally composed of the following sections:

ff The CREATE TABLE section (if the -a option is not selected, in which case, the table
should already exist in the database)

ff The INSERT INTO section (one INSERT statement for each feature to be imported
from the shapefile)

ff The CREATE INDEX section (if the -I option is selected)

Unlike ogr2ogr, there is no way to make spatial or attribute selections
(-spat, -where ogr2ogr options) for features in the shapefile to import.
On the other hand, with the shp2pgsql command, it is possible to import
the m coordinate of the features too (ogr2ogr only supports x, y, and z at
the time of writing).

To have a complete list of the shp2pgsql command options and their meaning, just type the
command name in the shell (or in the command windows, if you are on Windows) and check
the output.

There's more...
If you do not prefer using the command-line utilities, you can still export your shapefiles, even
multiple ones all at once, by using shp2pgsql-gui, which is a GUI software that can also
be used as a plugin in pgAdmin. From its interface, you can select the shapefiles to import
in PostGIS and select all the parameters that the shp2pgsql command allows the user to
specify as shown in the following screenshot:

Chapter 1

21

PostGIS 2.0 onward, shp2pgsql-gui is also a GUI for the pgsql2shp command (there
will be a recipe about it later). It allows the user to select one or more PostGIS tables and
export them to shapefiles. The GUI lets the user specify all the options that can be used in
the pgsql2shp command.

There are other GUI tools to manage data in and out of PostGIS, generally integrated in
the GIS Desktop software. In the last chapter of this book, we will take a look at the most
popular ones.

Importing and exporting data with the
ogr2ogr GDAL command

In this recipe, you will use the popular ogr2ogr GDAL command for importing and exporting
vector data from PostGIS.

Firstly, you will import a shapefile in PostGIS using the most significant options of the
ogr2ogr command. Then, still using ogr2ogr, you will export the results of a spatial
query performed in PostGIS to a couple of GDAL-supported vector formats.

Moving Data In and Out of PostGIS

22

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Unzip the TM_WORLD_BORDERS-0.3.zip archive to your working directory. You can
find this archive in the book's dataset.

2.	 Import the world countries shapefile (TM_WORLD_BORDERS-0.3.shp) in PostGIS
using the ogr2ogr command. Using some of the ogr2ogr options, you will import
only the features from SUBREGION=2 (Africa), and the ISO2 and NAME attributes,
and rename the feature class to africa_countries:
$ ogr2ogr -f PostgreSQL -sql "SELECT ISO2, NAME AS country_name
FROM 'TM_WORLD_BORDERS-0.3' WHERE REGION=2" -nlt MULTIPOLYGON
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
-nln africa_countries -lco SCHEMA=chp01 -lco GEOMETRY_NAME=the_
geom TM_WORLD_BORDERS-0.3.shp

3.	 Check if the shapefile was correctly imported in PostGIS, querying the spatial table in
the database or displaying it in a Desktop GIS.

4.	 Query PostGIS to get a list of the 50 active hotspots with the highest brightness
temperature (the bright_t31 field) from the global_24h table created in the
previous recipe:
postgis_cookbook=# SELECT
ST_AsText(the_geom) AS the_geom, bright_t31
FROM chp01.global_24h
ORDER BY bright_t31 DESC LIMIT 100;

The output of the preceding command is as follows:

 the_geom | bright_t31
--
 POINT(-13361233.2019535 4991419.20457202) | 360.6
 POINT(-13161080.7575072 8624445.64118912) | 359.6
 POINT(-13359897.3680639 4991124.84275376) | 357.4
...
(100 rows)

5.	 You want to figure out in which African countries these hotspots are located. For this
purpose, you can do a spatial join with the africa_countries table produced in
the previous step:
postgis_cookbook=# SELECT
ST_AsText(f.the_geom) AS the_geom, f.bright_t31, ac.iso2,
ac.country_name
FROM chp01.global_24h as f
JOIN chp01.africa_countries as ac
ON ST_Contains(ac.the_geom, ST_Transform(f.the_geom, 4326))
ORDER BY f.bright_t31 DESC
LIMIT 100;

Chapter 1

23

The output of the preceding command is as follows:

 the_geom | bright_t31 | iso2 | country_name

 POINT(229...)| 316.1 | AO | Angola

 POINT(363...)| 315.4 | TZ | United Republic ofTanzania
 POINT(229...)| 315 | AO | Angola

...

(100 rows)

6.	 You will now export the result of this query to a vector format supported by GDAL,
such as GeoJSON, in the WGS 84 spatial reference using ogr2ogr:
$ ogr2ogr -f GeoJSON -t_srs EPSG:4326 warmest_hs.geojson
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
-sql "SELECT f.the_geom as the_geom, f.bright_t31, ac.iso2,
ac.country_name FROM chp01.global_24h as f JOIN chp01.africa_
countries as ac ON ST_Contains(ac.the_geom, ST_Transform(f.the_
geom, 4326)) ORDER BY f.bright_t31 DESC LIMIT 100"

7.	 Open the GeoJSON file and inspect it with your favorite Desktop GIS. The following
screenshot shows you how it looks with QGIS:

Moving Data In and Out of PostGIS

24

8.	 Export the previous query to a CSV file. In this case, you have to indicate how
the geometric information must be stored in the file; this is done using the
-lco GEOMETRY option:

$ ogr2ogr -t_srs EPSG:4326 -f CSV -lco GEOMETRY=AS_XY -lco
SEPARATOR=TAB warmest_hs.csv PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" -sql "SELECT f.the_geom,
f.bright_t31, ac.iso2, ac.country_name FROM chp01.global_24h as
f JOIN chp01.africa_countries as ac ON ST_Contains(ac.the_geom,
ST_Transform(f.the_geom, 4326)) ORDER BY f.bright_t31 DESC LIMIT
100"

How it works...
GDAL is an open source library that comes together with several command-line utilities, which
let the user translate and process raster and vector geo datasets in a plethora of formats. In
the case of vector datasets, there is a GDAL sublibrary for managing vector datasets named
OGR (therefore, when talking about vector datasets in the context of GDAL, we can also use
the expression OGR dataset).

When you are working with an OGR dataset, two of the most popular OGR commands are
ogrinfo, which lists many kinds of information from an OGR dataset, and ogr2ogr, which
converts the OGR dataset from one format to the other.

It is possible to retrieve a list of the supported OGR vector formats using the –formats option
on any OGR commands, for example, with ogr2ogr:

$ ogr2ogr --formats

The output of the preceding command is as follows:

Supported Formats:

 -> "ESRI Shapefile" (read/write)

 -> "MapInfo File" (read/write)

 -> "UK .NTF" (readonly)

 -> "SDTS" (readonly)

 -> "TIGER" (read/write)

 ...

Note that some formats are read-only, while the others are read/write.

PostGIS is one of the supported read/write OGR formats, so it is possible to use the OGR API
or any OGR commands (such as ogrinfo and ogr2ogr) to manipulate its datasets.

Chapter 1

25

The ogr2ogr command has many options and parameters; in this recipe, you have seen
some of the most notable ones such as -f—to define the output format, -t_srs—to
reproject/transform the dataset, and -sql—to define an (eventually spatial) query in
the input OGR dataset.

When using ogrinfo and ogr2ogr together with the desired option and parameters, you
have to define the datasets. When specifying a PostGIS dataset, you need a connection
string that is defined as follows:

PG:"dbname='postgis_cookbook' user='me' password='mypassword'"

See also
You can find more information about the ogrinfo and ogr2ogr commands on the GDAL
website available at http://www.gdal.org.

If you need more information about the PostGIS driver, you should check its related
documentation page available at http://www.gdal.org/ogr/drv_pg.html.

Handling batch importing and exporting of
datasets

In many GIS workflows, there is a typical scenario where subsets of a PostGIS table must be
deployed to external users in a filesystem format (most typically, shapefiles or a spatialite
database). Often, there is also the reverse process, where datasets received from different
users have to be uploaded to the PostGIS database.

In this recipe, we will simulate both of these data flows. You will first create the data flow
for processing the shapefiles out of PostGIS, and then the reverse data flow for uploading
the shapefiles.

You will do it using the power of bash scripting and the ogr2ogr command.

Getting ready
If you didn't follow all the other recipes, be sure to import the hotspots and the countries
dataset in PostGIS. The following is how to do it with ogr2ogr (you should import both the
datasets in their original SRID, 4326, to make spatial operations faster):

1.	 Import in PostGIS the Global_24h.csv file using the global_24.vrt virtual driver
you created in a previous recipe:
$ ogr2ogr -f PostgreSQL PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" -lco SCHEMA=chp01 global_24h.vrt -lco
OVERWRITE=YES -lco GEOMETRY_NAME=the_geom -nln hotspots

Moving Data In and Out of PostGIS

26

2.	 Import the countries shapefile using ogr2ogr:
$ ogr2ogr -f PostgreSQL -sql "SELECT ISO2, NAME AS country_
name FROM 'TM_WORLD_BORDERS-0.3'" -nlt MULTIPOLYGON
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
-nln countries -lco SCHEMA=chp01 -lco OVERWRITE=YES -lco GEOMETRY_
NAME=the_geom TM_WORLD_BORDERS-0.3.shp

In case you already imported the hotspots dataset using the 3857 SRID,
you can use the new PostGIS 2.0 method that allows the user to modify the
geometry type column of an existing spatial table. You can update the SRID
definition for the hotspots table in this way thanks to the support of typmod
on geometry objects:

postgis_cookbook=# ALTER TABLE hotspots
ALTER COLUMN the_geom
SET DATA TYPE geometry(Point, 4326)
USING ST_Transform(the_geom, 4326);

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Check how many hotspots there are for each distinct country by using the
following query:
postgis_cookbook=> SELECT c.country_name, MIN(c.iso2) as iso2,
count(*) as hs_count

FROM chp01.hotspots as hs JOIN chp01.countries as c ON ST_
Contains(c.the_geom, hs.the_geom) GROUP BY c.country_name ORDER BY
c.country_name;

The output of the preceding command is as follows:

country_name | iso2 | hs_count

--

Albania | AL | 66

Algeria | DZ | 361

...

Yemen | YE | 6

Zambia | ZM | 1575

Zimbabwe | ZW | 179

(103 rows)

Chapter 1

27

2.	 Using the same query, generate a CSV file using the PostgreSQL COPY command
or the ogr2ogr command (in the first case, make sure that the Postgre service
user has full write permission to the output directory). If you are following the COPY
approach and using Windows, be sure to replace /tmp/hs_countries.csv with a
different path:
$ ogr2ogr -f CSV hs_countries.csv PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" -lco SCHEMA=chp01 -sql "SELECT
c.country_name, MIN(c.iso2) as iso2, count(*) as hs_count FROM
chp01.hotspots as hs JOIN chp01.countries as c ON ST_Contains(c.
the_geom, hs.the_geom) GROUP BY c.country_name ORDER BY c.country_
name"

postgis_cookbook=> COPY (SELECT c.country_name, MIN(c.iso2) as
iso2, count(*) as hs_count

 FROM chp01.hotspots as hs

 JOIN chp01.countries as c

 ON ST_Contains(c.the_geom, hs.the_geom)

 GROUP BY c.country_name

 ORDER BY c.country_name) TO '/tmp/hs_countries.csv' WITH CSV
HEADER;

3.	 If you are using Windows, go to step 5. With Linux, create a bash script
named export_shapefiles.sh that iterates each record (country) in
the hs_countries.csv file and generates a shapefile with the corresponding
hotspots exported from PostGIS for that country:
#!/bin/bash
while IFS="," read country iso2 hs_count
do
 echo "Generating shapefile $iso2.shp for country $country
 ($iso2) containing $hs_count features."
ogr2ogr out_shapefiles/$iso2.shp
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
-lco SCHEMA=chp01 -sql "SELECT ST_Transform(hs.the_geom, 4326),
hs.acq_date, hs.acq_time, hs.bright_t31 FROM
chp01.hotspots as hs JOIN chp01.countries as c ON
ST_Contains(c.the_geom, ST_Transform(hs.the_geom, 4326)) WHERE
c.iso2 = '$iso2'"
done < hs_countries.csv

Moving Data In and Out of PostGIS

28

4.	 Give execution permissions to the bash file, and then run it after creating an output
directory (out_shapefiles) for the shapefiles that will be generated by the script.
Then, go to step 7:
chmod 775 export_shapefiles.sh

mkdir out_shapefiles

$./export_shapefiles.sh

Generating shapefile AL.shp for country Albania (AL) containing 66
features.

Generating shapefile DZ.shp for country Algeria (DZ) containing
361 features.

...

Generating shapefile ZM.shp for country Zambia (ZM) containing
1575 features.

Generating shapefile ZW.shp for country Zimbabwe (ZW) containing
179 features.

If you get the output as ERROR: function
getsrid(geometry) does not exist LINE 1: SELECT
getsrid("the_geom") FROM (SELECT,..., you will need
to load the legacy support in PostGIS, for example, in a Debian
Linux box:
psql -d postgis_cookbook -f /usr/share/
postgresql/9.1/contrib/postgis-2.1/legacy.sql

5.	 If you are using Windows, create a batch file named export_shapefiles.bat,
that iterates each record (country) in the hs_countries.csv file and generates a
shapefile with the corresponding hotspots exported from PostGIS for that country:
@echo off
for /f "tokens=1-3 delims=, skip=1" %%a in (hs_countries.csv) do (
 echo "Generating shapefile %%b.shp for country %%a (%%b)
containing %%c features"
 ogr2ogr out_shapefiles/%%b.shp PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" -lco SCHEMA=chp01 -sql "SELECT
ST_Transform(hs.the_geom, 4326), hs.acq_date, hs.acq_time,
hs.bright_t31 FROM chp01.hotspots as hs JOIN chp01.countries as c ON
ST_Contains(c.the_geom, ST_Transform(hs.the_geom, 4326)) WHERE
c.iso2 = '%%b'"
)

Chapter 1

29

6.	 Run the batch file after creating an output directory (out_shapefiles) for the
shapefiles that will be generated by the script:
>mkdir out_shapefiles
>export_shapefiles.bat
"Generating shapefile AL.shp for country Albania (AL) containing
66 features"
"Generating shapefile DZ.shp for country Algeria (DZ) containing
361 features"
…
"Generating shapefile ZW.shp for country Zimbabwe (ZW) containing
179 features"

7.	 Try to open a couple of these output shapefiles in your favorite Desktop GIS. The
following screenshot shows you how they look in QGIS:

8.	 Now, you will do the round trip, uploading all of the generated shapefiles to PostGIS.
You will upload all of the features for each shapefile and include the upload datetime
and the original shapefile name. First, create the following PostgreSQL table, where
you will upload the shapefiles:
postgis_cookbook=# CREATE TABLE chp01.hs_uploaded
(
 ogc_fid serial NOT NULL,
 acq_date character varying(80),
 acq_time character varying(80),

Moving Data In and Out of PostGIS

30

 bright_t31 character varying(80),
 iso2 character varying,
 upload_datetime character varying,
 shapefile character varying,
 the_geom geometry(POINT, 4326),
 CONSTRAINT hs_uploaded_pk PRIMARY KEY (ogc_fid)
);

9.	 If you are using Windows, go to step 11. With Linux, create another bash script
named import_shapefiles.sh:
#!/bin/bash
for f in `find out_shapefiles -name *.shp -printf "%f\n"`
do
 echo "Importing shapefile $f to chp01.hs_uploaded PostGIS
 table..." #, ${f%.*}"
 ogr2ogr -append -update -f PostgreSQL
 PG:"dbname='postgis_cookbook' user='me'
 password='mypassword'" out_shapefiles/$f -nln
 chp01.hs_uploaded -sql "SELECT acq_date, acq_time,
 bright_t31, '${f%.*}' AS iso2, '`date`' AS upload_datetime,
 'out_shapefiles/$f' as shapefile FROM ${f%.*}"
done

10.	 Assign the execution permission to the bash script and execute it:
$ chmod 775 import_shapefiles.sh

$./import_shapefiles.sh

Importing shapefile DO.shp to chp01.hs_uploaded PostGIS table...

Importing shapefile ID.shp to chp01.hs_uploaded PostGIS table...

Importing shapefile AR.shp to chp01.hs_uploaded PostGIS table...

...

11.	 If you are using Windows, create a batch script named import_shapefiles.bat:
@echo off
for %%I in (out_shapefiles*.shp)
do (
 echo Importing shapefile %%~nxI to chp01.hs_uploaded
 PostGIS table...
 ogr2ogr -append -update -f PostgreSQL
 PG:"dbname='postgis_cookbook' user='me'
 password='mypassword'" out_shapefiles/%%~nxI -nln
 chp01.hs_uploaded -sql "SELECT acq_date, acq_time,
 bright_t31, '%%~nI' AS iso2, '%date%' AS upload_datetime,
 'out_shapefiles/%%~nxI' as shapefile FROM %%~nI"
)

Chapter 1

31

12.	 Run the batch script:
>import_shapefiles.bat

Importing shapefile AL.shp to chp01.hs_uploaded PostGIS table...

Importing shapefile AO.shp to chp01.hs_uploaded PostGIS table...

Importing shapefile AR.shp to chp01.hs_uploaded PostGIS table...

...

13.	 Check some of the records that have been uploaded to the PostGIS table by
using SQL:
postgis_cookbook=# SELECT upload_datetime, shapefile, ST_
AsText(the_geom) FROM chp01.hs_uploaded WHERE ISO2='AT';

upload_datetime | shapefile | st_astext
-------------------------------+-----------------------+----------

 Sun Aug 26 01:58:44 CEST 2012 | out_shapefiles/AT.shp |
POINT(14.333 48.279)
 Sun Aug 26 01:58:44 CEST 2012 | out_shapefiles/AT.shp |
POINT(14.347 48.277)
 Sun Aug 26 01:58:44 CEST 2012 | out_shapefiles/AT.shp |
POINT(14.327 48.277)
 ...

(8 rows)

14.	 Check the same query with ogrinfo as well:

$ ogrinfo PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" chp01.hs_uploaded -where "iso2='AT'"

INFO: Open of `PG:dbname='postgis_cookbook' user='me'
password='mypassword''
 using driver `PostgreSQL' successful.
Layer name: chp01.hs_uploaded

Geometry: Point

Feature Count: 8

Extent: (-155.284000, -40.751000) - (177.457000, 70.404000)

Layer SRS WKT:

GEOGCS["WGS 84",

 ...

FID Column = ogc_fid

Geometry Column = the_geom

acq_date: String (80.0)

acq_time: String (80.0)

bright_t31: String (80.0)

Moving Data In and Out of PostGIS

32

iso2: String (0.0)

upload_datetime: String (0.0)

shapefile: String (0.0)

OGRFeature(chp01.hs_uploaded):6413
 acq_date (String) = 2012-08-20

 acq_time (String) = 0110

 bright_t31 (String) = 292.7

 iso2 (String) = AT

 upload_datetime (String) = Sun Aug 26 01:58:44 CEST 2012

 shapefile (String) = out_shapefiles/AT.shp

 POINT (14.333 48.279)

...

How it works...
You could implement both the data flows (processing shapefiles out from PostGIS, and then
into it again) thanks to the power of the ogr2ogr GDAL command.

You have been using this command in different forms and with the most important input
parameters in other recipes, so you should now have a good understanding of it.

Here, it is worth mentioning the way OGR lets you export the information related to
the current datetime and the original shapefile name to the PostGIS table. Inside the
import_shapefiles.sh (Linux, OS X) or the import_shapefiles.bat (Windows)
scripts, the core is the line with the ogr2ogr command (here is the Linux version):

 ogr2ogr -append -update -f PostgreSQL PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" out_shapefiles/$f -nln chp01.hs_uploaded
-sql "SELECT acq_date, acq_time, bright_t31, '${f%.*}' AS iso2, '`date`'
AS upload_datetime, 'out_shapefiles/$f' as shapefile FROM ${f%.*}"

Thanks to the -sql option, you can specify the two additional fields—getting their values from
the system date command and the filename that is being iterated from the script.

Chapter 1

33

Exporting data to the shapefile with the
pgsql2shp PostGIS command

In this recipe, you will export a PostGIS table to a shapefile using the pgsql2shp command
that is shipped with any PostGIS distribution.

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 In case you still haven’t done it, export the countries shapefile to PostGIS using the
ogr2ogr or the shp2pgsql commands. The shp2pgsql approach is as shown:
$ shp2pgsql -I -d -s 4326 -W LATIN1 -g the_geom countries.shp
chp01.countries > countries.sql

$ psql -U me -d postgis_cookbook -f countries.sql

2.	 The ogr2ogr approach is as follows:
$ ogr2ogr -f PostgreSQL PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" -lco SCHEMA=chp01 countries.shp -nlt
MULTIPOLYGON -lco OVERWRITE=YES -lco GEOMETRY_NAME=the_geom

3.	 Now, query PostGIS in order to get a list of countries grouped by the subregion
field. For this purpose, you will merge the geometries for features having the same
subregion code using the ST_Union PostGIS geometric processing function:
postgis_cookbook=> SELECT MIN(subregion) AS subregion,
 ST_Union(the_geom) AS the_geom, SUM(pop2005) AS pop2005
 FROM chp01.countries GROUP BY subregion;

4.	 Export the results of this query by using the pgsql2shp PostGIS command:
$ pgsql2shp -f subregions.shp -h localhost -u me -P mypassword
postgis_cookbook "SELECT MIN(subregion) AS subregion, ST_
Union(the_geom) AS the_geom, SUM(pop2005) AS pop2005 FROM chp01.
countries GROUP BY subregion;"

Initializing...

Done (postgis major version: 2).

Output shape: Polygon

Dumping: X [23 rows].

Moving Data In and Out of PostGIS

34

5.	 Open the shapefile and inspect it with your favorite Desktop GIS. This is how it looks
in QGIS after applying a graduated classification symbology style based on the
aggregated population for each subregion.

How it works...
You have exported the results of a spatial query to a shapefile using the pgsql2shp PostGIS
command. The spatial query you have used aggregates fields using the SUM PostgreSQL
function for summing country populations in the same subregion, and the ST_Union
PostGIS function to aggregate the corresponding geometries as a geometric union.

The pgsql2shp command allows you to export PostGIS tables and queries to shapefiles. The
options you need to specify are quite similar to the ones you use to connect to PostgreSQL
with psql. To have a full list of these options, just type pgsql2shp in your command prompt
and read the output.

Importing OpenStreetMap data with the
osm2pgsql command

In this recipe, you will import OpenStreetMap (OSM) data to PostGIS using the
osm2pgsql command.

You will first download a sample dataset from the OSM website, and then you will import it
using the osm2pgsql command.

Chapter 1

35

You will add the imported layers in a GIS Desktop software and generate a view to get
subdatasets, using the hstore PostgreSQL additional module to extract features based
on their tags.

Getting ready
We need the following in place before we can proceed with the steps required for the recipe:

1.	 Install osm2pgsql. If you are using Windows, follow the instructions available at
http://wiki.openstreetmap.org/wiki/Osm2pgsql. If you are on Linux, you
can install it from the preceding website or from packages. For example, for Debian
distributions, use the following:
$ sudo apt-get install osm2pgsql

2.	 For more information about the installation of the osm2pgsql command for the
other Linux distributions, Mac OS X, and MS Windows, please refer to the osm2pgsql
web page available at http://wiki.openstreetmap.org/wiki/Osm2pgsql.

3.	 Although, it's most likely that you will need to compile osm2pgsql yourself as the one
that is installed with your package manager could already be obsolete. In my Linux
Mint 12 box, this was the case (it was osm2pgsql v0.75), so I have installed Version
0.80 following the instructions on the osm2pgsql web page. You can check the
installed version just by typing the following command:
$ osm2pgsql

osm2pgsql SVN version 0.80.0 (32bit id space)

4.	 We will create a different database only for this recipe, as we will use this OSM
database in other chapters. For this purpose, create a new database named
rome and assign privileges to your user:
postgres=# CREATE DATABASE rome OWNER me;

postgres=# \connect rome;

rome=# create extension postgis;

5.	 You will not create a different schema in this new database, though, as the
osm2pgsql command can only import OSM data in the public schema at the
time of writing.

6.	 Be sure that your PostgreSQL installation supports hstore. If not, download and
install it; for example, in Debian-based Linux distributions, you will need to install the
postgresql-contrib-9.1 package. Then, add the hstore support to the rome
database using the CREATE EXTENSION syntax:

$ sudo apt-get update

$ sudo apt-get install postgresql-contrib-9.1

$ psql -U me -d romerome=# CREATE EXTENSION hstore;

Moving Data In and Out of PostGIS

36

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Download a .osm file from the openstreetmap.org website:

1.	 Go to the openstreetmap.org website.

2.	 Select the area of interest for which you want to export data. You should
not select a large area, as the live export from the website is limited to
50,000 nodes.

If you want to export larger areas, you should consider downloading
the whole database, built daily at planet.osm (250 GB
uncompressed and 16 GB compressed). At planet.osm, you
may also download extracts that contain OpenstreetMap Data for
individual continents, countries, and metropolitan areas.

3.	 If you want to get the same dataset used for this recipe, just copy and paste
the following URL in your browser: http://www.openstreetmap.org/ex
port?lat=41.88745&lon=12.4899&zoom=15&layers=M; or, get it from
the book datasets (chp01/map.osm file).

4.	 Click on the Export link.

5.	 Select OpenStreetMap XML Data as the output format.

6.	 Download the map.osm file to your working directory.

2.	 Run osm2pgsql to import the OSM data in the PostGIS database. Use the -hstore
option, as you wish to add tags with an additional hstore (key/value) column in the
PostgreSQL tables:
$ osm2pgsql -d rome -U me --hstore map.osm

osm2pgsql SVN version 0.80.0 (32bit id space)
Using projection SRS 900913 (Spherical Mercator)
Setting up table: planet_osm_point
...
All indexes on planet_osm_polygon created in 1s
Completed planet_osm_polygon
Osm2pgsql took 3s overall

3.	 At this point, you should have the following geometry tables in your database:
rome=# SELECT f_table_name, f_geometry_column, coord_dimension,
srid, type FROM geometry_columns;

Chapter 1

37

The output of the preceding command is as shown below:

 f_table_name | f_geometry_column | coord_dimension | srid
| type

--------------------+-------------------+-----------------+-------
-+------------

 planet_osm_roads | way | 2 | 900913
| LINESTRING

 planet_osm_point | way | 2 | 900913
| POINT

 planet_osm_polygon | way | 2 | 900913
| GEOMETRY

 planet_osm_line | way | 2 | 900913
| LINESTRING

(4 rows)

4.	 Note that the osm2pgsql command imports everything in the public schema. If you
did not deal differently with the command's input parameter, your data is imported in
the Mercator Projection (900913).

Moving Data In and Out of PostGIS

38

5.	 Open the PostGIS tables and inspect them with your favorite Desktop GIS. The
preceding screenshot shows how it looks in QGIS. All the different thematic
features are mixed at this time, so it looks a bit confusing.

6.	 Generate a PostGIS view that extracts all the polygons tagged with trees as land
cover. For this purpose, create the following view:
rome=# CREATE VIEW rome_trees AS
 SELECT way, tags FROM planet_osm_polygon
 WHERE (tags -> 'landcover') = 'trees';

7.	 Open the view with a Desktop GIS that supports PostGIS views, such as QGIS, and
add your rome_trees view. The preceding screenshot shows you how it looks.

How it works...
OpenStreetMap is a popular collaborative project for creating a free map of the world. Every
user participating in the project can edit data; at the same time, it is possible for everyone to
download those datasets in .osm datafiles (an XML format) under the terms of the Open Data
Commons Open Database License (ODbL) at the time of writing.

The osm2pgsql command is a command-line tool that can import .osm datafiles (eventually
zipped) to the PostGIS database. For using the command, it is enough to give the PostgreSQL
connection parameters and the .osm file to import.

Chapter 1

39

It is possible to import only features having certain tags in the spatial database, as defined in
the default.style configuration file. You can decide to comment in or out from this file the
OSM tagged features that you would like to import or not. The command by default exports all
the nodes and ways to linestring, point, and geometry PostGIS geometries.

It is highly recommended to enable the hstore support in the PostgreSQL database and use
the –hstore option of osm2pgsql when importing the data. Having enabled this support,
the OSM tags for each feature will be stored in an hstore PostgreSQL data type, which is
optimized for storing (and retrieving) sets of key/values pairs in a single field. This way it will
be possible to query the database as follows

SELECT way, tags FROM planet_osm_polygon
 WHERE (tags -> 'landcover') = 'trees';

Importing raster data with the raster2pgsql
PostGIS command

PostGIS 2.0 now has full support for raster datasets, and it is possible to import raster
datasets using the raster2pgsql command.

In this recipe, you will import a raster file to PostGIS using the raster2pgsql command.
This command, included in any PostGIS distribution from Version 2.0 onward, is able to
generate an sql dump to be loaded in PostGIS for any GDAL raster-supported format
(in the same fashion that the command shp2pgsql does for shapefiles).

After loading the raster to PostGIS, you will inspect it both with SQL commands (analyzing
the raster metadata information contained in the database), and with the gdalinfo
command-line utility (to understand the way the input raster2pgsql parameters
have been reflected in the PostGIS import process).

You will finally open the raster in a Desktop GIS and try a basic spatial query-mixing vector
and raster tables.

Getting ready
We need the following in place before we can proceed with the steps required for the recipe:

1.	 From the worldclim.org website, download the current raster data (http://
www.worldclim.org/current) for min and max temperatures (only the raster for
max temperatures will be used for this recipe). Alternatively, use the ones provided in
the book datasets (data/chp01). Each of the two archives (data/tmax_10m_bil.
zip and data/tmin_10m_bil.zip) contain 12 rasters in the BIL format, one for
each month. You can look for more information at http://www.worldclim.org/
formats.

Moving Data In and Out of PostGIS

40

2.	 Extract the two archives to a directory named worldclim in your working directory.

3.	 Rename each raster dataset to a name format having two digits for the month, for
example, tmax1.bil and tmax1.hdr will become tmax01.bil and tmax01.hdr.

4.	 If you still haven't loaded the countries shapefile to PostGIS from a previous
recipe, do it using the ogr2ogr or shp2pgsql commands. The following is the
shp2pgsql syntax:

$ shp2pgsql -I -d -s 4326 -W LATIN1 -g the_geom countries.shp
chp01.countries > countries.sql

$ psql -U me -d postgis_cookbook -f countries.sql

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Get information about one of the rasters using the gdalinfo command-line tool
as follows:
$ gdalinfo worldclim/tmax09.bil

Driver: EHdr/ESRI .hdr Labelled

Files: worldclim/tmax9.bil

 worldclim/tmax9.hdr

Size is 2160, 900

Coordinate System is:

GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9108"]],
AUTHORITY["EPSG","4326"]]
Origin = (-180.000000000000057,90.000000000000000)

Pixel Size = (0.166666666666667,-0.166666666666667)

Corner Coordinates:

 Upper Left (-180.0000000, 90.0000000) (180d 0' 0.00"W, 90d
 0' 0.00"N)

 Lower Left (-180.0000000, -60.0000000) (180d 0' 0.00"W, 60d
 0' 0.00"S)

 Upper Right (180.0000000, 90.0000000) (180d 0' 0.00"E, 90d
 0' 0.00"N)

Chapter 1

41

 Lower Right (180.0000000, -60.0000000) (180d 0' 0.00"E, 60d
 0' 0.00"S)

 Center (0.0000000, 15.0000000) (0d 0' 0.00"E, 15d
 0' 0.00"N)

Band 1 Block=2160x1 Type=Int16, ColorInterp=Undefined

Min=-153.000 Max=441.000

NoData Value=-9999

2.	 The gdalinfo command provides a series of useful information about the raster, for
example, the GDAL driver being used to read it, the files composing it (in this case,
two files with a .bil and .hdr extension), the size in pixels (2160 x 900), the spatial
reference (WGS 84), the geographic extents, the origin and the pixel size (needed
to correctly georeference the raster), and for each raster band (just one in the case
of this file), some statistical information like the min and max value (-153.000 and
441.000, corresponding to a temperature of -15.3 °C and 44.1 °C. Values are
expressed as temperature * 10 in °C, according to the documentation available
at worldclim.org).

3.	 Use the raster2pgsql file to generate the .sql dump file and then import the
raster in PostGIS:
$ raster2pgsql -I -C -F -t 100x100 -s 4326 worldclim/tmax01.bil
chp01.tmax01 > tmax01.sql

$ psql -d postgis_cookbook -U me -f tmax01.sql

If you are in Linux, you may pipe the two commands in a unique line:

$ raster2pgsql -I -C -M -F -t 100x100 worldclim/tmax1.bil chp01.
tmax01 | psql -d postgis_cookbook -U me -f tmax01.sql

4.	 Check how the new table has been created in PostGIS:
$ pg_dump -t chp01.tmax01 --schema-only -U me postgis_cookbook

...

CREATE TABLE tmax01 (

 rid integer NOT NULL,

 rast public.raster,

 filename text,

 CONSTRAINT enforce_height_rast CHECK ((public.st_height(rast)
= 100)),

 CONSTRAINT enforce_max_extent_rast CHECK (public.st_
coveredby(public.st_convexhull(rast), '0103...'::public.
geometry)),

 CONSTRAINT enforce_nodata_values_rast CHECK (((public._
raster_constraint_nodata_values(rast))::numeric(16,10)[] =
'{0}'::numeric(16,10)[])),

Moving Data In and Out of PostGIS

42

 CONSTRAINT enforce_num_bands_rast CHECK ((public.st_
numbands(rast) = 1)),

 CONSTRAINT enforce_out_db_rast CHECK ((public._raster_
constraint_out_db(rast) = '{f}'::boolean[])),

 CONSTRAINT enforce_pixel_types_rast CHECK ((public._raster_
constraint_pixel_types(rast) = '{16BUI}'::text[])),

 CONSTRAINT enforce_same_alignment_rast CHECK (public.st_
samealignment(rast, '01000...'::public.raster)),

 CONSTRAINT enforce_scalex_rast CHECK
(((public.st_scalex(rast))::numeric(16,10) =
0.166666666666667::numeric(16,10))),

 CONSTRAINT enforce_scaley_rast CHECK
(((public.st_scaley(rast))::numeric(16,10) =
(-0.166666666666667)::numeric(16,10))),

 CONSTRAINT enforce_srid_rast CHECK ((public.st_srid(rast) =
0)),

 CONSTRAINT enforce_width_rast CHECK ((public.st_width(rast) =
100))

);

5.	 Check if a record for this PostGIS raster appears in the raster_columns metadata
view, and note the main metadata information that has been stored there such as
schema, name, raster column name (default is raster), SRID, scale (for x and y),
block size (for x and y), band numbers (1), band types (16BUI), zero data values
(0), and db storage type (out_db is false, as we have stored the raster bytes in
the database; you could have used the -R option to register the raster as an
out-of-db filesystem):
postgis_cookbook=# SELECT * FROM raster_columns;

6.	 If you have followed this recipe from the beginning, you should now have 198 rows in
the raster table, with each row representing one raster block size (100 x 100 pixels
blocks, as indicated with the -t raster2pgsql option):
postgis_cookbook=# SELECT count(*) FROM chp01.tmax01;

The output of the preceding command is as follows:

 count

 198

(1 row)

Chapter 1

43

7.	 Try to open the raster table with gdalinfo. You should see the same information you
got from gdalinfo when you were analyzing the original BIL file. The only difference
is the block size, as you moved to a smaller one (100x100) from the original
(2160x900). That's why the original file has been split into several datasets (198):
gdalinfo PG":host=localhost port=5432 dbname=postgis_cookbook
user=me password=mypassword schema='chp01' table='tmax01'"

8.	 The gdalinfo command reads the PostGIS raster as being composed of multiple
raster subdatasets (198, one for each row in the table). You still have the possibility
of reading the whole table as a single raster, using the mode=2 option in the PostGIS
raster connection string (mode=1 is the default). Check the difference:
gdalinfo PG":host=localhost port=5432 dbname=postgis_cookbook
user=me password=mypassword schema='chp01' table='tmax01' mode=2"

9.	 You can easily obtain a visual representation of those blocks by converting the extent
of all the 198 rows in the tmax01 table (each representing a raster block) to a
shapefile using ogr2ogr:
$ ogr2ogr temp_grid.shp PG:"host=localhost port=5432
dbname='postgis_cookbook' user='me' password='mypassword'" -sql
"SELECT rid, filename, ST_Envelope(rast) as the_geom FROM chp01.
tmax01"

10.	 Now, try to open the raster table with QGIS (at the time of writing, one of the few
Desktop GIS tools had support for it) together with the blocks shapefile generated
in the previous steps (temp_grid.shp). You should see something like the
following screenshot:

Moving Data In and Out of PostGIS

44

If you are using QGIS, you need the PostGIS raster QGIS plugin to read and write the
PostGIS raster. This plugin makes it possible to add single rows of the tmax01 table
as a single raster or the whole table. Try to add a couple of rows.

11.	 As the last bonus step, you will select the 10 countries with the lowest average max
temperature in January (using the centroid of the polygon representing the country):

SELECT * FROM (

 SELECT c.name, ST_Value(t.rast, ST_Centroid(c.the_geom))/10 as
tmax_jan FROM chp01.tmax01 AS t

 JOIN chp01.countries AS c

 ON ST_Intersects(t.rast, ST_Centroid(c.the_geom))

) AS foo

ORDER BY tmax_jan LIMIT 10;

The output is as follows:

name | tmax_jan

--+----------

Greenland | -29.8

 ...

Korea | -8.5

Democratic People's Republic of Kyrgyzstan | -7.9

Finland | -6.8

(10 rows)

How it works...
The raster2pgsql command is able to load any raster formats supported by GDAL
in PostGIS. You can have a format list supported by your GDAL installation by typing the
following command:

$ gdalinfo –formats

In this recipe, you have been importing one raster file using some of the most common
raster2pgsql options:

$ raster2pgsql -I -C -F -t 100x100 -s 4326 worldclim/tmax01.bil chp01.
tmax01 > tmax01.sql

The -I option creates a GIST spatial index for the raster column. The -C option will create
the standard set of constraints after the rasters have been loaded. The -F option will add
a column with the filename of the raster that has been loaded. This is useful when you
are appending many raster files to the same PostGIS raster table. The -s option sets the
raster's SRID.

Chapter 1

45

If you decide to include the -t option, then you will cut the original raster in tiles, each
inserted as a single row in the raster table. In this case, you decided to cut the raster in
100x100 tiles, resulting in 198 table rows in the raster table.

Another important option is -R, which will register the raster as out-of-db; in such a
case, only the metadata will be inserted in the database, while the raster will be out of
the database.

The raster table contains an identifier for each row, the raster itself (eventually one of its tiles,
if using the -t option), and eventually the original filename, if you used the -F option, as in
this case.

You can analyze the PostGIS raster using SQL commands or the gdalinfo command.
Using SQL, you can query the raster_columns view for getting the most significant
raster metadata (spatial reference, band number, scale, block size, and so on).

With gdalinfo, you can access the same information, using a connection string with the
following syntax:

gdalinfo PG":host=localhost port=5432 dbname=postgis_cookbook user=me
password=mypassword schema='chp01' table='tmax01' mode=2"

The mode parameter is not influential if you loaded the whole raster as a single block (for
example, if you did not specify the -t option). But, as in the use case of this recipe, if you
split it in tiles, gdalinfo will see each tile as a single subdataset with the default behavior
(mode=1). If you want GDAL to consider the raster table as a unique raster dataset, you have
to specify the mode option and explicitly set it to 2.

Importing multiple rasters at a time
This recipe will guide you through the import of multiple rasters at a time.

You will first import some different single band rasters to a unique single band raster table
using the raster2pgsql command.

Then, you will try an alternative approach, merging the original single band rasters in a virtual
raster, having one band for each of the original rasters, and then load the multiband raster to
a raster table. For accomplishing this, you will use the GDAL gdalbuildvrt command and
then load the data to PostGIS with raster2pgsql.

Getting ready
Be sure to have all the original raster datasets you have been using for the previous recipe.

Moving Data In and Out of PostGIS

46

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 Import all the maximum average temperature rasters in a single PostGIS raster table
using raster2pgsql and then psql (eventually, pipe the two commands if you are
in Linux):
$ raster2pgsql -d -I -C -M -F -t 100x100 -s 4326 worldclim/tmax*.
bil chp01.tmax_2012 > tmax_2012.sql

$ psql -d postgis_cookbook -U me -f tmax_2012.sql

2.	 Check how the table was created in PostGIS, querying the raster_columns table.
Here we are querying only some significant fields:
postgis_cookbook=# SELECT r_raster_column, srid,
ROUND(scale_x::numeric, 2) AS scale_x, ROUND(scale_y::numeric,
2) AS scale_y, blocksize_x, blocksize_y, num_bands, pixel_
types, nodata_values, out_db FROM raster_columns where r_table_
schema='chp01' AND r_table_name ='tmax_2012';

 r_raster_column | srid | scale_x | scale_y | blocksize_x |
blocksize_y | num_bands | pixel_types | nodata_values | out_db
-----------------+------+---------+---------+-------------+-------
------+-----------+-------------+---------------+--------
 rast | 4326 | 0.17 | -0.17 | 100 |
100 | 1 | {16BUI} | {0} | {f}

(1 row)

3.	 Check some raster statistics using the ST_MetaData function:
SELECT rid, (foo.md).*

 FROM (SELECT rid, ST_MetaData(rast) As md FROM chp01.
tmax_2012) As foo;

Note that there is a different metadata for each raster record
loaded in the table.

4.	 If you now query the table, you would be able to derive the month for each raster row
only from the original_file column. In the table, you have imported 198 distinct
records (raster) for each of the 12 original files (we divided them into 100x100
blocks, if you remember). Test this with the following query:
postgis_cookbook=# SELECT COUNT(*) AS num_raster, MIN(filename) as
original_file FROM chp01.tmax_2012

GROUP BY filename ORDER BY filename;

 num_raster | original_file

------------+---------------

Chapter 1

47

 198 | tmax01.bil

 198 | tmax02.bil

 198 | tmax03.bil

 198 | tmax04.bil

 198 | tmax05.bil

 198 | tmax06.bil

 198 | tmax07.bil

 198 | tmax08.bil

 198 | tmax09.bil

 198 | tmax10.bil

 198 | tmax11.bil

 198 | tmax12.bil

(12 rows)

5.	 With this approach, using the filename field, you could use the ST_Value PostGIS
raster function to get the average monthly maximum temperature of a certain
geographic zone for the whole year:
SELECT REPLACE(REPLACE(filename, 'tmax', ''), '.bil', '') AS
month,

 (ST_VALUE(rast, ST_SetSRID(ST_Point(12.49, 41.88),
4326))/10) AS tmax

 FROM chp01.tmax_2012

 WHERE rid IN (

 SELECT rid FROM chp01.tmax_2012

 WHERE ST_Intersects(ST_Envelope(rast), ST_
SetSRID(ST_Point(12.49, 41.88), 4326))

)

 ORDER BY month;

 month | tmax

-------+------

 01 | 11.8

 02 | 13.2

 03 | 15.3

 04 | 18.5

 05 | 22.9

 06 | 27

 07 | 30

 08 | 29.8

Moving Data In and Out of PostGIS

48

 09 | 26.4

 10 | 21.7

 11 | 16.6

 12 | 12.9

(12 rows)

6.	 A different approach is to store each month value in a different raster band. The
raster2pgsql command doesn't let you load to different bands in an existing table.
But, you can use GDAL by combining the gdalbuildvrt and the gdal_translate
commands. First, use gdalbuildvrt to create a new virtual raster composed of 12
bands, one for each month:
$ gdalbuildvrt -separate tmax_2012.vrt worldclim/tmax*.bil

7.	 Analyze the tmax_2012.vrt xml file with a text editor. It should have a virtual band
(VRTRasterBand) for each physical raster pointing to it:
<VRTDataset rasterXSize="2160" rasterYSize="900">
 <SRS>GEOGCS...</SRS>
 <GeoTransform> -1.8000000000000006e+02,
 1.6666666666666699e-01, ...</GeoTransform>
 <VRTRasterBand dataType="Int16" band="1">
 <NoDataValue>-9.99900000000000E+03</NoDataValue>
 <ComplexSource>
 <SourceFilename
 relativeToVRT="1">worldclim/tmax01.bil</SourceFilename>
 <SourceBand>1</SourceBand>
 <SourceProperties RasterXSize="2160" RasterYSize="900"
 DataType="Int16" BlockXSize="2160" BlockYSize="1" />
 <SrcRect xOff="0" yOff="0" xSize="2160" ySize="900" />
 <DstRect xOff="0" yOff="0" xSize="2160" ySize="900" />
 <NODATA>-9999</NODATA>
 </ComplexSource>
 </VRTRasterBand>
 <VRTRasterBand dataType="Int16" band="2">
 ...

8.	 Now, with gdalinfo, analyze this output virtual raster to check if it is effectively
composed of 12 bands:
$ gdalinfo tmax_2012.vrt

The output of the preceding command is as follows:

Driver: VRT/Virtual Raster

Files: tmax_2012.vrt

 worldclim/tmax01.bil

Chapter 1

49

 worldclim/tmax02.bil

 ...

 worldclim/tmax12.bil

Size is 2160, 900

Coordinate System is:

GEOGCS["WGS 84",

 DATUM["WGS_1984",

 ...

Band 1 Block=128x128 Type=Int16, ColorInterp=Undefined

 Min=-478.000 Max=418.000

 NoData Value=-9999

Band 2 Block=128x128 Type=Int16, ColorInterp=Undefined

 Min=-421.000 Max=414.000

 NoData Value=-9999

...

9.	 Import the virtual raster composed of 12 bands, each referring to one of the 12
original rasters, to a PostGIS raster table composed of 12 bands. For this purpose,
you can use the raster2pgsql command:
$ raster2pgsql -d -I -C -M -F -t 100x100 -s 4326 tmax_2012.vrt
chp01.tmax_2012_multi > tmax_2012_multi.sql

$ psql -d postgis_cookbook -U me -f tmax_2012_multi.sql

10.	 Query the raster_columns view to get some indicators for the imported raster.
Note as the num_bands is now 12:
 postgis_cookbook=# SELECT r_raster_column, srid, blocksize_x,
blocksize_y, num_bands, pixel_types from raster_columns where r_
table_schema='chp01' AND r_table_name ='tmax_2012_multi';

 r_raster_column | srid | blocksize_x | blocksize_y | num_bands |
pixel_types

-----------------+------+-------------+-------------+-----------+-
--

 rast | 4326 | 100 | 100 | 12 |
{16BSI,16BSI,16BSI,16BSI,16BSI,16BSI,16BSI,16BSI,16BSI,16BSI,16BSI
,16BSI}

Moving Data In and Out of PostGIS

50

11.	 Now, let's try to produce the same output of the query with the previous approach.
This time, given the table structure, we keep the results in a single row:
 postgis_cookbook=# SELECT

(ST_VALUE(rast, 1, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS jan,

(ST_VALUE(rast, 2, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS feb,

(ST_VALUE(rast, 3, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS mar,

(ST_VALUE(rast, 4, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS apr,

(ST_VALUE(rast, 5, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS may,

(ST_VALUE(rast, 6, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS jun,

(ST_VALUE(rast, 7, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS jul,

(ST_VALUE(rast, 8, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS aug,

(ST_VALUE(rast, 9, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS sep,

(ST_VALUE(rast, 10, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS oct,

(ST_VALUE(rast, 11, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS nov,

(ST_VALUE(rast, 12, ST_SetSRID(ST_Point(12.49, 41.88), 4326))/10)
AS dec

FROM chp01.tmax_2012_multi WHERE rid IN (SELECT rid FROM chp01.
tmax_2012_multi

WHERE ST_Intersects(rast, ST_SetSRID(ST_Point(12.49, 41.88),
4326)));

The output of the preceding command is as follows:

jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov |
dec

----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-

11.8| 13.2| 15.3| 18.5| 22.9| 27 | 30 | 29.8| 26.4| 21.7|
16.6|12.9

(1 row)

Chapter 1

51

How it works...
You can import raster datasets in PostGIS using the raster2pgsql command.

The GDAL PostGIS raster so far does not support writing operations;
therefore, for now, you cannot use GDAL commands such as gdal_
translate and gdalwarp.
This is going to change in the near future, so you may have such an
extra option when you are reading this chapter.

In a scenario where you have multiple rasters representing the same variable at a time, as
in this recipe, it makes sense to store all of the original rasters as a single table in PostGIS.
In this recipe, we have the same variable (average maximum temperature) represented by a
single raster for each month. You have seen that you could proceed in two different ways:

1.	 Append each single raster (representing a different month) to the same PostGIS single
band raster table and derive the information related to the month from the value in the
filename column (added to the table using the -F raster2pgsql option).

2.	 Generate a multiband raster using gdalbuildvrt (one raster with 12 bands,
one for each month), and import it in a single multiband PostGIS table using the
raster2pgsql command.

Exporting rasters with the gdal_translate
and gdalwarp GDAL commands

In this recipe, you will see a couple of main options for exporting PostGIS rasters to different
raster formats. They are both provided as command-line tools, gdal_translate and
gdalwarp, by GDAL.

Getting ready
You need the following in place before you can proceed with the steps required for the recipe:

1.	 You need to have gone through the previous recipe and imported the tmax 2012
datasets (12 .bil files) as a single multiband (12 bands) raster in PostGIS.

2.	 You must have the PostGIS raster format enabled in GDAL. For this purpose,
check the output of the following command:
$ gdalinfo --formats | grep -i postgis

The output of the preceding command is as follows:
 PostGISRaster (rw): PostGIS Raster driver

Moving Data In and Out of PostGIS

52

3.	 You should have already learned how to use the GDAL PostGIS raster driver in
the previous two recipes. You need to use a connection string composed of the
following parameters:
$ gdalinfo PG:"host=localhost port=5432 dbname='postgis_cookbook'
user='me' password='mypassword' schema='chp01'password='mypasswo
rd' schema='chp01' table='tmax_2012_multi' mode='2'"

4.	 Refer to the previous two recipes for more information about the preceding parameters.

How to do it...
The steps you need to follow to complete this recipe are as follows:

1.	 As an initial test, you will export the first six months of the tmax for 2012 (the first six
bands in the tmax_2012_multi PostGIS raster table) using the gdal_translate
command:
$ gdal_translate -b 1 -b 2 -b 3 -b 4 -b 5 -b 6
PG:"host=localhost port=5432 dbname='postgis_cookbook' user='me'
password='mypassword' schema='chp01' table='tmax_2012_multi'
mode='2'" tmax_2012_multi_123456.tif

2.	 As the second test, you will export all of the bands, but only for the geographic area
containing Italy. Use the ST_Extent command for getting the geographic extent of
that zone:
postgis_cookbook=# SELECT ST_Extent(the_geom) FROM chp01.countries
WHERE name = 'Italy';

The output of the preceding command is as follows:

 st_extent

--

 BOX(6.61975999999999 36.649162,18.514999 47.0947189999999)

(1 row)

3.	 Now use the gdal_translate command with the -projwin option for
obtaining the desired purpose:
$ gdal_translate -projwin 6.619 47.095 18.515 36.649
PG:"host=localhost port=5432 dbname='postgis_cookbook' user='me'
password='mypassword' schema='chp01' table='tmax_2012_multi'
mode='2'" tmax_2012_multi.tif

Chapter 1

53

4.	 There is another GDAL command, gdalwarp, that is still a convert utility with
reprojection and advanced warping functionalities. You can use it, for example, to
export a PostGIS raster table, reprojecting it to a different spatial reference system.
This will convert the PostGIS raster table to GeoTiff and reproject it from EPSG:4326
to EPSG:3857:

gdalwarp -t_srs EPSG:3857 PG:"host=localhost port=5432
dbname='postgis_cookbook' user='me' password='mypassword'
schema='chp01' table='tmax_2012_multi' mode='2'" tmax_2012_
multi_3857.tif

How it works...
Both gdal_translate and gdalwarp can transform rasters from the PostGIS raster to all
the GDAL-supported formats. To have a complete list of the supported formats, you can use
the --formats option of one of the GDAL's command line as follows:

$ gdalinfo --formats

For both these GDAL commands, the default output format is GeoTiff; if you need a different
format, you must use the -of option and assign to it one of the outputs produced by the
previous command line.

In this recipe, you have tried some of the most common options for these two commands.
As they are complex tools, you may try some more command options as a bonus step.

See also
To have a better understanding, you should check out the excellent documentation on the
GDAL website:

ff The information about the gdal_translate command is available at
http://www.gdal.org/gdal_translate.html

ff The information about the gdalwarp command is available at
http://www.gdal.org/gdalwarp.html

2
Structures that Work

In this chapter, we will cover:

ff Using geospatial views

ff Using triggers to populate a geometry column

ff Structuring spatial data with table inheritance

ff Extending inheritance – table partitioning

ff Normalizing imports

ff Normalizing internal overlays

ff Using polygon overlays for proportional census estimates

Introduction
This chapter focuses on ways to structure data using the functionality provided by the
combination of PostgreSQL and PostGIS. These will be useful approaches for structuring
and cleaning up imported data, converting tabular data into spatial data "on the fly" as it
is entered, and maintaining relationships between tables and datasets using functionality
endemic to the powerful combination of PostgreSQL and PostGIS. There are three categories
of techniques by which we will leverage these functionalities: automatic population and
modification of data using views and triggers, object orientation using PostgreSQL table
inheritance, and using PostGIS functions (stored procedures) to reconstruct and normalize
problematic data.

Structures that Work

56

Automatic population of data is where this chapter begins. By leveraging PostgreSQL views
and triggers, we can create ad hoc and flexible solutions to create connections between and
within the tables. By extension, and for more formal or structured cases, PostgreSQL provides
table inheritance and table partitioning that allow for explicit hierarchical relationships
between tables. This can be useful in cases where an object inheritance model enforces data
relationships that either represent the data better, thereby resulting in greater efficiencies,
or reduce the administrative overhead of maintaining and accessing the datasets over time.
With PostGIS extending that functionality, the inheritance can apply not just to the commonly
used table attributes, but can also leverage spatial relationships between tables, resulting in
greater query efficiency with very large datasets. Finally, we will explore PostGIS SQL patterns
that provide table normalization of data inputs, so datasets that come from flat filesystems or
are not normalized can be converted to a form we would expect in a database.

Using geospatial views
Views in PostgreSQL allow for ad hoc representation of data and data relationships in
alternate forms. In this recipe, we'll be using views to allow for the automatic creation of
point data based on tabular inputs. We can imagine a case where the input stream of data is
non-spatial, but includes longitude and latitude or some other coordinates. We would like to
automatically show this data as points in space.

Getting ready
We can create a view as a representation of spatial data pretty easily. The syntax for creating
a view is similar to creating a table; for example:

CREATE VIEW viewname AS

 SELECT...

In the preceding command line, our SELECT query manipulates the data for us. Let's start
with a small dataset. In this case, we will start with some random points.

First, we create the table from which the view will be constructed as follows:

–- Drop the table in case it exists
DROP TABLE IF EXISTS chp02.xwhyzed CASCADE;
CREATE TABLE chp02.xwhyzed
-- This table will contain numeric x, y, and z values
(
 x numeric,
 y numeric,
 z numeric
)
WITH (OIDS=FALSE);

Chapter 2

57

ALTER TABLE chp02.xwhyzed OWNER TO postgres;
-- We will be disciplined and ensure we have a primary key
ALTER TABLE chp02.xwhyzed ADD COLUMN gid serial;
ALTER TABLE chp02.xwhyzed ADD PRIMARY KEY (gid);

Now let's populate this with data for testing using the following query:

INSERT INTO chp02.xwhyzed (x, y, z)
 VALUES (random()*5, random()*7, random()*106);
INSERT INTO chp02.xwhyzed (x, y, z)
 VALUES (random()*5, random()*7, random()*106);
INSERT INTO chp02.xwhyzed (x, y, z)
 VALUES (random()*5, random()*7, random()*106);
INSERT INTO chp02.xwhyzed (x, y, z)
 VALUES (random()*5, random()*7, random()*106);

How to do it...
Now to create the view, we will use the following query:

-- Ensure we don't try to duplicate the view
DROP VIEW IF EXISTS chp02.xbecausezed;
-- Retain original attributes, but also create a point
 attribute from x and y
CREATE VIEW chp02.xbecausezed AS
 SELECT x, y, z, ST_MakePoint(x,y)
 FROM chp02.xwhyzed;

How it works...
Our view is really a simple transformation of the existing data using PostGIS's ST_MakePoint
function. The ST_MakePoint function takes the input of two numbers to create a PostGIS
point; in this case, our view simply uses our x and y values to populate the data. Any time
there is an update to the table to add a new record with x and y values, the view will populate
a point, which is really useful for data that is constantly being updated.

There are two disadvantages to this approach. The first is that we have not declared our
spatial reference system in the view, so any software consuming these points will not know
the coordinate system we are using—that is, whether it is a geographic (latitude/longitude)
or a planar coordinate system. We will address this problem shortly. The second problem is
that many software systems accessing these points may not automatically detect and use the
spatial information from the table. This problem is addressed in the Using triggers to populate
a geometry column recipe.

Structures that Work

58

Spatial Reference ID (SRID) allows us to specify the coordinate system for
a given dataset. The numbering system is a simple integer value to specify
a given coordinate system. SRID is derived originally from the European
Petroleum Survey Group (EPSG) and now maintained by the Surveying
& Positioning Committee of the International Association of Oil & Gas
Producers (OGP). Useful tools for SRIDs are Spatial Reference (http://
spatialreference.org) and Prj2EPSG (http://prj2epsg.org/
search).

There's more...
To address the first problem mentioned in the How it works... section, we can simply wrap our
existing ST_MakePoint function in another function specifying the SRID using ST_SetSRID,
as shown in the following query:

-- Ensure we don't try to duplicate the view

DROP VIEW IF EXISTS chp02.xbecausezed;

-- Retain original attributes, but also create a point
 attribute from x and y

CREATE VIEW chp02.xbecausezed AS

 SELECT x, y, z, ST_SetSRID(ST_MakePoint(x,y), 3734) -- Add ST_SetSRID

 FROM chp02.xwhyzed;

See also
ff The Using triggers to populate a geometry column recipe

Using triggers to populate a geometry
column

In this recipe, we imagine that we have ongoing updates to our database, which needs spatial
representation; however, in this case, we want a hard-coded geometry column to be updated
each time an INSERT operation takes place on the database, converting our x and y values to
geometry as they are inserted in the database.

Chapter 2

59

The advantage of this approach is that the geometry is then registered in the geometry_
columns view, and therefore this approach works reliably with more PostGIS client types than
creating a geospatial view. This also provides the advantage of allowing for a spatial index that
can significantly speed up a variety of queries. The disadvantage for users using PostgreSQL
versions lower than Version 9.0 is that, without a WHERE clause within the trigger, every time
an insert takes place, the trigger will be calculated on all points to create geometry. This
method could be very expensive on large datasets. However, for users of PostgreSQL 9.0 and
later, a WHERE clause makes this trigger perform quickly, as we can constrain the trigger to
only those rows that have no geometry yet populated.

Getting ready
We will start by creating another table of random points with x, y, and z values, as shown in
the following query:

DROP TABLE IF EXISTS chp02.xwhyzed1 CASCADE;
CREATE TABLE chp02.xwhyzed1
(
 x numeric,
 y numeric,
 z numeric
)
WITH (OIDS=FALSE);
ALTER TABLE chp02.xwhyzed1 OWNER TO postgres;
ALTER TABLE chp02.xwhyzed1 ADD COLUMN gid serial;
ALTER TABLE chp02.xwhyzed1 ADD PRIMARY KEY (gid);

INSERT INTO chp02.xwhyzed1 (x, y, z)
 VALUES (random()*5, random()*7, random()*106);
INSERT INTO chp02.xwhyzed1 (x, y, z)
 VALUES (random()*5, random()*7, random()*106);
INSERT INTO chp02.xwhyzed1 (x, y, z)
 VALUES (random()*5, random()*7, random()*106);
INSERT INTO chp02.xwhyzed1 (x, y, z)
 VALUES (random()*5, random()*7, random()*106);

How to do it...
Now we need a geometry column to populate. By default, the geometry column will be
populated with null values. We populate a geometry column using the following query:

SELECT AddGeometryColumn ('chp02','xwhyzed1','geom',3734,'POINT',2);

Structures that Work

60

We now have a column called the_geom with an SRID of 3734, that is, a point geometry type
in two dimensions. Since we have x, y, z data, we could, in principle, populate a 3D point table
using a similar approach.

Since all the geometry values are currently null, we will populate them using an UPDATE
statement as follows:

UPDATE chp02.xwhyzed1

 SET geom = ST_SetSRID(ST_MakePoint(x,y), 3734);

The query here is simple when broken down. We update the table xwhyzed1 and set the
the_geom column using ST_MakePoint, construct our point using the x and y columns,
and wrap it in an ST_SetSRID function in order to apply the appropriate spatial reference
information. So far we have just set the table up. Now we need to create a trigger in order to
continue to populate this information once the table is in use. The first part of the trigger is a
newly populated geometry function using the following query:

CREATE OR REPLACE FUNCTION chp02.xyz_pop_geom()
 RETURNS TRIGGER AS $popgeom$

BEGIN
 IF(TG_OP='INSERT') THEN

 UPDATE chp02.xwhyzed1
 SET geom = ST_SetSRID(ST_MakePoint(x,y), 3734)
 WHERE geom IS NULL
 ;

 END IF;
 RETURN NEW;
END;

$popgeom$ LANGUAGE plpgsql;

In essence, we have created a function that does exactly what we did manually: it updates the
table's geometry column with the combination of ST_SetSRID and ST_MakePoint. The one
exception here is that we've added a WHERE clause that allows us to apply this only to rows
that have no geometry populated. This is the performant choice.

Chapter 2

61

There's more...
While we have a function created, we have not yet applied it as a trigger to the table. Let us do
that here as follows:

CREATE TRIGGER popgeom_insert

 AFTER INSERT ON chp02.xwhyzed1

 FOR EACH STATEMENT EXECUTE PROCEDURE chp02.xyz_pop_geom();

Now, any inserts into our table should be populated with new geometry records. Let us do a
test insert using the following query:

INSERT INTO chp02.xwhyzed1 (x, y, z)

 VALUES (random()*5, random()*7, random()*106);

Extending further...
So far we've implemented an insert trigger. What if the value changes for a particular row?
In that case, we will require a separate update trigger. We'll change our original function to
test the UPDATE case, and we'll use WHEN in our trigger to constrain updates to the column
being changed.

Also note that the following function is written with the assumption that the user wants to
always update the changing geometries based on the changing values:

CREATE OR REPLACE FUNCTION chp02.xyz_pop_geom()
 RETURNS TRIGGER AS $popgeom$

BEGIN
 IF(TG_OP='INSERT') THEN

 UPDATE chp02.xwhyzed1
 SET geom = ST_SetSRID(ST_MakePoint(x,y), 3734)
 WHERE geom IS NULL
 ;

 ELSIF(TG_OP='UPDATE') THEN
 UPDATE chp02.xwhyzed1
 SET geom = ST_SetSRID(ST_MakePoint(x,y), 3734)
 ;

 END IF;
 RETURN NEW;
END;

Structures that Work

62

$popgeom$ LANGUAGE plpgsql;

CREATE TRIGGER popgeom_insert
 AFTER INSERT ON chp02.xwhyzed1
 FOR EACH ROW
 EXECUTE PROCEDURE chp02.xyz_pop_geom();

CREATE TRIGGER popgeom_update
 AFTER UPDATE ON chp02.xwhyzed1
 FOR EACH ROW
 WHEN (OLD.X IS DISTINCT FROM NEW.X AND OLD.Y IS DISTINCT FROM
 NEW.Y)
 EXECUTE PROCEDURE chp02.xyz_pop_geom();

See also
ff The Using geospatial views recipe

Structuring spatial data with table
inheritance

An unusual and useful property of PostgreSQL databases is that they allow for object
inheritance models as they apply to tables. This means that we can have parent/child
relationships between tables and leverage that to structure out data in meaningful ways.
In our example, we will apply this to hydrology data. This data can be points, lines, polygons,
or more complex structures, but they have one commonality; they are explicitly linked in a
physical sense and inherently related and are all about water. Water/hydrology is an excellent
natural system to model this way, as our ways of modeling it spatially can be quite mixed
depending on scales, details, the data collection process, and a host of other factors.

Getting ready
The data we will be using is hydrology data that has been modified from engineering "blue
lines" (see the following screenshot), that is, hydrologic data that is very detailed and meant to
be used at scales approaching 1:600. The data in their original application aided in detailed
digital terrain modeling.

Chapter 2

63

While useful in itself, the data was further manipulated, separating the linear features
from area features, with additional polygonization of area features as shown in the
following screenshot:

Structures that Work

64

Finally, the data was classified into basic waterway categories as follows:

In addition, a process was undertaken to generate centerlines for polygon features such as
streams, which are effectively linear features, as follows:

Chapter 2

65

Hence, we have three separate but related datasets:

ff cuyahoga_hydro_polygon

ff cuyahoga_hydro_polyline

ff cuyahoga_river_centerlines

Now, let us look at the structure of the tabular data. The ogrinfo utility can help us with this
as shown in the following command that is run on the command line:

> ogrinfo cuyahoga_hydro_polygon.shp -al -so

INFO: Open of `cuyahoga_hydro_polygon.shp'

 using driver `ESRI Shapefile' successful.

Layer name: cuyahoga_hydro_polygon

Geometry: Polygon

Feature Count: 6237

Extent: (1694482.287974, 552986.308029) - (2947684.750393,
1200045.105669)

Layer SRS WKT:

PROJCS["NAD_1983_StatePlane_Ohio_North_FIPS_3401_Feet",

 GEOGCS["GCS_North_American_1983",

 PARAMETER["Latitude_Of_Origin",39.66666666666666],

 UNIT["Foot_US",0.3048006096012192]]

Name: String (30.0)

AREA: Real (19.11)

PERIMETER: Real (19.11)

hyd_type: String (50.0)

geom_type: String (15.0)

Executing this command on each of the shapefiles, we see the following fields that are
common to all the shapefiles:

ff name

ff hyd_type

ff geom_type

It is by understanding our common fields that we can apply inheritance to completely
structure our data.

Structures that Work

66

How to do it...
Now that we know our common fields, creating an inheritance model is easy. First, we will
create a parent table with the fields common to all the tables, using the following query:

CREATE TABLE chp02.hydrology (
 gid SERIAL PRIMARY KEY,
 "name" text,
 hyd_type text,
 geom_type text,
 the_geom geometry
);

If you are paying attention, you will note that we also added a geometry field as all of our
shapefiles implicitly have this commonality. To establish inheritance for a given table, we need
to declare only the additional fields that the child table contains, using the following query:

CREATE TABLE chp02.hydrology_centerlines (
 "length" numeric
) INHERITS (chp02.hydrology);

CREATE TABLE chp02.hydrology_polygon (
 area numeric,
 perimeter numeric
) INHERITS (chp02.hydrology);

CREATE TABLE chp02.hydrology_linestring (
 sinuosity numeric
) INHERITS (chp02.hydrology_centerlines);

Now we are ready to load our data using the following commands:

ff shp2pgsql -s 3734 -a -i -I -W LATIN1 -g the_geom cuyahoga_
hydro_polygon chp02.hydrology_polygon | psql -U me -d postgis_
cookbook

ff shp2pgsql -s 3734 -a -i -I -W LATIN1 -g the_geom cuyahoga_
hydro_polyline chp02.hydrology_linestring | psql -U me -d
postgis_cookbook

ff shp2pgsql -s 3734 -a -i -I -W LATIN1 -g the_geom cuyahoga_
river_centerlines chp02.hydrology_centerlines | psql -U me -d
postgis_cookbook

If we view our parent table, we will see all the records in all the child tables. A viewing of any of
the child tables will just reveal the specific table of interest.

Chapter 2

67

How it works...
PostgreSQL table inheritance allows us to enforce essentially hierarchical relationships
between tables. In this case, we leverage inheritance to allow for commonality between
related datasets. Now, if we want to query data from these tables, we can query directly
from the parent table as follows, depending on whether we want a mix of geometries or
just a targeted dataset.

SELECT * FROM chp02.hydrology

From any of the child tables, we could use the following query:

SELECT * FROM chp02.hydrology_polygon

See also
It is possible to extend this concept in order to leverage and optimize storage and querying by
using the CHECK constrains in conjunction with inheritance. For more info, see the Extending
inheritance – table partitioning recipe.

Extending inheritance – table partitioning
Table partitioning is an approach specific to PostgreSQL that extends inheritance to model
tables that typically do not vary from each other in the available fields, but where the child
tables represent logical partitioning of the data based on a variety of factors, be it time, value
ranges, classifications, or, in our case, spatial relationships. The advantages of partitioning
include improved query performance due to smaller indexes and targeted scans of data,
bulk loads, and deletes that bypass the costs of maintenance functions like VACUUM. It can
thus be used to put commonly used data on a faster and more expensive storage, and the
remaining data on a slower and cheaper storage. In combination with PostGIS, we get the
novel power of spatial partitioning, which is a really powerful feature for large datasets.

Getting ready
We could use many examples of large datasets that could benefit from partitioning. In our
case, we will use a contour dataset. Contours are useful ways to represent terrain data, as
they are well established in use, and thus commonly interpreted. Contours can also be used
to compress terrain data into linear representations, thus allowing them to be shown in
conjunction with other data easily.

The problem is, the storage of contour data can be quite expensive. Two-foot contours
for a single US county can take 20 to 40 GB, and storing such data for a larger area such
as a region or nation can become quite prohibitive from the standpoint of accessing the
appropriate portion of the dataset in an efficient way.

Structures that Work

68

How to do it...
The first step in this case may be to prepare the data. If we had a monolithic contour table called
cuy_contours_2, we could choose to clip the data to a series of rectangles that would serve
as our table partitions; in this case, chp02.contour_clip, using the following query:

CREATE TABLE chp02.contour_2_cm_only AS
 SELECT contour.elevation, contour.gid, contour.div_10,
 contour.div_20, contour.div_50,
 contour.div_100, cc.id, ST_Intersection(contour.the_geom,
 cc.the_geom) AS the_geom FROM
 chp02.cuy_contours_2 AS contour, chp02.contour_clip as cc
 WHERE ST_Within(contour.the_geom,cc.the_geom
 OR
 ST_Crosses(contour.the_geom,cc.the_geom);

We are performing two tests here in our query. We are using ST_Within, which tests whether
a given contour is entirely within our area of interest. If so, we perform an intersection; the
resultant geometry should just be the geometry of the contour.

The ST_Crosses function checks whether the contour crosses the boundary of the geometry
we are testing. This should capture all the geometries lying partially inside and partially
outside our areas. These are the ones that we will truly intersect to get the resultant shape.

In our case, it is easier and we don't require the previous step. Our contour shapes are already
individual shapefiles clipped to rectangular boundaries, as shown in the following screenshot:

Chapter 2

69

Since the data is already clipped into the chunks needed for our partitions, we can just
continue to create the appropriate partitions.

Much as with inheritance, we start by creating our parent table using the following query:

CREATE TABLE chp02.contours
(
 gid serial NOT NULL,
 elevation integer,
 __gid double precision,
 the_geom geometry(MultiLineStringZM,3734),
 CONSTRAINT contours_pkey PRIMARY KEY (gid)
)
WITH (
 OIDS=FALSE
);

Here again, we maintain our constraints such as PRIMARY KEY and specify the geometry
type (MultiLineStringZM), not because these will propagate to the child tables, but for
any client software accessing the parent table to anticipate such constraints.

Now we may begin to create tables that inherit from our parent table. In the process,
we will create a CHECK constraint specifying the limits of our associated geometry using
the following query:

CREATE TABLE chp02.contour_N2260630

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText('POLYGON((2260000
 630000, 2260000 635000,

 2265000 635000, 2265000 630000, 2260000 630000))',3734)

))) INHERITS (chp02.contours);

We can complete with similar CREATE TABLE queries for our remaining tables, as follows:

CREATE TABLE chp02.contour_N2260635

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText('POLYGON
 ((2260000 635000, 2260000 640000,

 2265000 640000, 2265000 635000, 2260000 635000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2260640

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2260000 640000, 2260000 645000,

 2265000 645000, 2265000 640000, 2260000 640000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2265630

Structures that Work

70

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2265000 630000, 2265000 635000,

 2270000 635000, 2270000 630000, 2265000 630000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2265635

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2265000 635000, 2265000 640000,

 2270000 640000, 2270000 635000, 2265000 635000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2265640

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2265000 640000, 2265000 645000,

 2270000 645000, 2270000 640000, 2265000 640000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2270630

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2270000 630000, 2270000 635000,

 2275000 635000, 2275000 630000, 2270000 630000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2270635

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2270000 635000, 2270000 640000,

 2275000 640000, 2275000 635000, 2270000 635000))', 3734)

))) INHERITS (chp02.contours);

CREATE TABLE chp02.contour_N2270640

 (CHECK (ST_CoveredBy(the_geom,ST_GeomFromText
 ('POLYGON((2270000 640000, 2270000 645000,

 2275000 645000, 2275000 640000, 2270000 640000))', 3734)

))) INHERITS (chp02.contours);

Next we can load our contours into each of our child tables using the following command.
If we wanted to, we could even implement a trigger on the parent table, which would place
each insert into its correct child table, though this might incur performance costs. In loading
our contours, we use the -a flag to specify that we want to append the data.

shp2pgsql -s 3734 -a -i -I -W LATIN1 -g the_geom N2260630 chp02.contour_
N2260630 | psql -U me -d postgis_cookbook

Chapter 2

71

How it works...
The CHECK constraint in combination with inheritance is all it takes to build table partitioning.
In this case, we're using a bounding box as our CHECK constraint and simply inheriting the
columns from the parent table. Now that we have this in place, queries against the parent
table will check our CHECK constraints first before employing a query. This also allows us to
place any of our lesser-used contour tables on cheaper and slower storage, thus allowing
for cost-effective optimizations of large datasets. This structure is also beneficial for rapidly
changing data as updates can be applied to an entire area; the entire table for that area can
be efficiently dropped and repopulated without traversing across the dataset.

Unfortunately, some of the promises of table partitioning, such as being able to bypass spatial
indexes by using ranges, are not yet available.

See also
For more on table inheritance in general, particularly the flexibility associated with the usage
of alternate columns in the child table, see the previous recipe, Structuring spatial data with
table inheritance.

Normalizing imports
Often data used in a spatial database is imported from other sources. As such it may not
be in a form that is useful for our current application. In such a case, it may be useful to
write functions that will aid in transforming the data into a form that is more useful for our
application. This is particularly the case when going from flat file formats, such as shapefiles,
to relational databases such as PostgreSQL.

A shapefile is a de facto as well as formal standard for the storage
of spatial data, and is probably the most common delivery format
for vector spatial data. A shapefile, in spite of its name, is never just
one file, but a collection of files. It consists of at least *.shp (which
contains geometry), *.shx (an index file), and *.dbf (which contains
the tabular information for the shapefile). It is a powerful and useful
format but, as a flat file, it is inherently nonrelational. Each geometry
is associated in a one-to-one relationship with each row in a table.

There are many structures that might serve as a proxy for relational stores in a shapefile.
We will explore one here—a single field with delimited text for multiple relations. This is a
not-too-uncommon hack to encode multiple relationships into a flat file. The other common
approach is to create multiple fields to store what in a relational arrangement would be a
single field.

Structures that Work

72

Getting ready
The dataset we will be working with is a trails dataset that has linear extents for a set of
trails in a park system. The data is the typical data that comes from the GIS world—as a flat
shapefile, there are no explicit relational constructs in the data.

First, we load the data using the following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom trails chp02.trails |
psql -U me -d postgis_cookbook

Looking at the linear data in a Desktop GIS, we see some categories for trail use:

We want to retain this information as well as the name. Unfortunately, the label_name field
is a messy field with a variety of related names concatenated with an ampersand (&), as
shown in the following query:

SELECT DISTINCT label_name FROM chp02.trails

 WHERE label_name LIKE '%&%' LIMIT 10;

Chapter 2

73

It will return the following output:

 label_name

 All Purpose Trail & Buckeye Trail & Sagamore Creek Loop Trail
 Hemlock Loop Trail & Prairie Loop Trail & Wildflower Loop Trail
 NC1 & NC2
 Hinckley Hills Loop Trail & HI3
 All Purpose Trail & North Ravine Loop Trail
 BR3 & BR4 & Buckeye Trail
 Bridle Trail & Hemlock Loop Trail
 Hemlock Trail & NC2
 Hinckley Hills Loop Trail & HI1
 Lake Isaac Trail & Lake to Lake Trail
(10 rows)

This is where the normalization of our table will begin.

How to do it...
The first thing we need to do is find all the fields that don't have ampersands and use those
as our unique list of available trails. In our case, we can do this, as every trail has at least one
segment that is uniquely named and not associated with another trail name. This approach
will not work with all datasets, so be careful in understanding your data before applying this
approach to that data. To select the fields without ampersands, we use the following query:

SELECT DISTINCT label_name, res
 FROM chp02.trails
 WHERE label_name NOT LIKE '%&%';

It will return the following output:

 label_name | res
--+-------------------
South Quarry Loop Trail | Mill Stream Run
 Reservation
Buckeye Trail | Hinckley Reservation
Bridle Connector Trail | Rocky River
 Reservation
West Channel Pond Loop Trail | Rocky River
 Reservation
Green Milkweed Trail | Mill Stream Run
 Reservation
All Purpose Trail | Euclid Creek
 Reservation

Structures that Work

74

Connector Trail | Bradley Woods
 Reservation
North Chagrin Reservation Bridle Trail | North Chagrin
 Reservation
Connector Trail | Garfield Park
 Reservation
BR2 | Brecksville
 Reservation
Connector Trail | Rocky River
 Reservation
Buckeye Trail | South Chagrin
 Reservation

For sanity, we will also sort these entries as follows:

SELECT DISTINCT label_name, res
 FROM chp02.trails
 WHERE label_name NOT LIKE '%&%'
 ORDER BY label_name, res;

Next, we want to search for all the records that match any of these unique trail names. This
will give us the list of records that will serve as relations. The first step in doing this search is
to append the percent (%) signs to our unique list in order to build a string on which we can
search using a LIKE query:

SELECT '%' || label_name || '%' AS label_name, label_name as
 label, res FROM
 (
 SELECT DISTINCT label_name, res
 FROM chp02.trails
 WHERE label_name NOT LIKE '%&%'
 ORDER BY label_name, res
) AS label;

Finally, we'll use this in the context of a WITH block to do the normalization itself. This will
provide us with a table of unique IDs for each segment in our first column, along with the
associated label column. For good measure, we will do this as a CREATE TABLE procedure
as shown in the following query:

CREATE TABLE chp02.trails_names AS
 WITH labellike AS
(
SELECT '%' || label_name || '%' AS label_name, label_name as
 label, res FROM
 (
 SELECT DISTINCT label_name, res
 FROM chp02.trails

Chapter 2

75

 WHERE label_name NOT LIKE '%&%'
 ORDER BY label_name, res
) AS label
)
SELECT t.gid, ll.label, ll.res
 FROM chp02.trails AS t, labellike AS ll
 WHERE t.label_name LIKE ll.label_name
 AND
 t.res = ll.res
 ORDER BY gid;

Now that we have a table of the relations, we need a table of the geometries associated with
gid. This, in comparison, is quite easy, as shown in the following query:

CREATE TABLE chp02.trails_geom AS
 SELECT gid, the_geom
 FROM chp02.trails;

How it works...
In this example, we have generated a unique list of possible records in conjunction with a
search for the associated records, in order to build table relationships. In one table, we have
the geometry and a unique ID of each spatial record; in another table, we have the names
associated with each of those unique IDs. Now we can explicitly leverage those relationships.

First, we need to establish our unique IDs as primary keys with the following query:

ALTER TABLE chp02.trails_geom ADD PRIMARY KEY (gid);

Now we can use that PRIMARY KEY as a FOREIGN KEY in our trails_names table with the
following query:

ALTER TABLE chp02.trails_names ADD FOREIGN KEY (gid) REFERENCES chp02.
trails_geom(gid)

This step isn't strictly necessary, but does enforce referential integrity for queries such as
the following:

SELECT geo.gid, geo.geom, names.label FROM

 chp02.trails_geom AS geo, chp02.trails_names AS names

 WHERE geo.gid = names.gid

Structures that Work

76

There's more...
If we had multiple fields we wanted to normalize, we could write CREATE TABLE queries for
each of them.

It is interesting to note that the approach framed in this recipe is not limited to cases where
we have a delimited field. This approach can provide a relatively generic solution to the
problem of normalizing flat files. For example, if we have a case where we have multiple fields
to represent relational info, such as label1, label2, label3, or similar multiple attribute
names to a single record, we can write a simple query to concatenate them together before
feeding that info into our query.

Normalizing internal overlays
Data from an external source can have not just table structure issues, but also topological
issues endemic to the geospatial data itself. Take, for example, the problem of data with
overlapping polygons. If our dataset has polygons that overlap with internal overlays, queries
for area, perimeter, and other metrics may not produce predictable or consistent results.

There are a few approaches that can solve the problem of polygon datasets with internal
overlays. The general approach presented here was originally proposed by Kevin Neufeld
of Refractions Research.

Over the course of writing our query, we will also produce a solution for converting polygons
to linestrings.

Getting ready
First, we'll load our dataset using the following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom cm_usearea_polygon
chp02.use_area | psql -U me -d postgis_cookbook

How to do it...
Now that the data is loaded into a table in the database, we can leverage PostGIS to flatten
and get the union of the polygons, such that we have a normalized dataset. The first step in
doing so using this approach will be to convert the polygons to linestrings. We can then node
those linestrings and convert them back to polygons, representing the union of all the polygon
inputs. We will perform the following tasks:

1.	 Converting polygons to linestrings.

2.	 Converting linestrings back to polygons.

Chapter 2

77

3.	 Finding center points of resultant polygons.

4.	 Use resultant points to query tabular relationships.

Converting polygons to linestrings
To accomplish this, we'll need to extract just the portions of the polygons we want using
ST_ExteriorRing, convert those parts to points using ST_DumpPoints, and then connect
those points back into lines like a "connect-the-dots" coloring book using ST_MakeLine.

Breaking it down further, ST_ExteriorRing (the_geom) will grab just the outer
boundary of our polygons. But ST_ExteriorRing returns polygons, so we need to take
that output and create a line from it. The easiest way to do this is to convert it to points using
ST_DumpPoints and then connect those points. By default, the Dump function returns an
object called a geometry_dump, which is not just simple geometry but the geometry in
combination with an array of integers. The easiest way to return the geometry alone is to
leverage the object notation to extract just the geometry portion of geometry_dump
as follows:

(ST_DumpPoints(geom)).geom

Piecing the geometry back together with ST_ExteriorRing is done using the
following query:

SELECT (ST_DumpPoints(ST_ExteriorRing(geom))).geom

This should give us a listing of points in order from the exterior rings of all the points from
which we want to construct our lines using ST_MakeLine, as shown in the following query:

 SELECT ST_MakeLine(geom) FROM (
 SELECT (ST_DumpPoints(ST_ExteriorRing(geom))).geom	
) AS linpoints

Since the preceding approach is a process we may want to use in many other places, it might
be prudent to create a function from this using the following query:

CREATE OR REPLACE FUNCTION chp02.polygon_to_line(geometry)
 RETURNS geometry AS
$BODY$

 SELECT ST_MakeLine(geom) FROM (
 SELECT (ST_DumpPoints(ST_ExteriorRing(
 (ST_Dump($1)).geom
))).geom

) AS linpoints
$BODY$
 LANGUAGE sql VOLATILE;
ALTER FUNCTION chp02.polygon_to_line(geometry)
 OWNER TO me;

Structures that Work

78

Now that we have the polygon_to_line function, we still need to force the noding of
overlapping lines in our particular use. The ST_Union function will aid in this as shown
in the following query:

SELECT ST_Union(geom) AS geom FROM (
 SELECT chp02.polygon_to_line(geom) AS geom FROM
 chp02.use_area
) AS unioned
;

Converting linestrings back to polygons
Now we can polygonize this result using ST_Polygonize, as shown in the following query:

SELECT ST_Polygonize(geom) AS geom FROM (
 SELECT ST_Union(geom) AS geom FROM (
 SELECT chp02.polygon_to_line(geom) AS geom FROM
 chp02.use_area
) AS unioned
) as polygonized;

The ST_Polygonize function will create a single multi polygon, so we need to explode this
into multiple single polygon geometries if we are to do anything useful with it. While we are at
it, we might as well do the following within a CREATE TABLE statement:

CREATE TABLE chp02.use_area_alt AS (
 SELECT (ST_Dump(the_geom)).geom AS the_geom FROM (
 SELECT ST_Polygonize(the_geom) AS the_geom FROM (
 SELECT ST_Union(the_geom) AS the_geom FROM (
 SELECT chp02.polygon_to_line(the_geom) AS the_geom FROM
 chp02.use_area
) AS unioned
) as polygonized
) AS exploded
);

We will be performing spatial queries against this geometry, so we should create an index in
order to ensure our query performs well, as shown in the following query:

CREATE INDEX chp02_use_area_alt_the_geom_gist
 ON chp02.use_area_alt
 USING gist(the_geom);

Chapter 2

79

Finding center points of resultant polygons
In order to extract the appropriate table information from the original geometry and apply that
back to our resultant geometries, we will perform a point-in-polygon query. For that, we first
need to calculate centroids on the resultant geometry:

CREATE TABLE chp02.use_area_alt_p AS
 SELECT ST_SetSRID(ST_PointOnSurface(the_geom), 3734) AS
 the_geom FROM
 chp02.use_area_alt;
ALTER TABLE chp02.use_area_alt_p ADD COLUMN gid serial;
ALTER TABLE chp02.use_area_alt_p ADD PRIMARY KEY (gid);

And, as always, create a spatial index using the following query:

CREATE INDEX chp02_use_area_alt_p_the_geom_gist
 ON chp02.use_area_alt_p
 USING gist(the_geom);

Using resultant points to query tabular relationships
The centroids then structure our point-in-polygon (ST_Intersects) relationship between the
original tabular information and resultant polygons, using the following query:

CREATE TABLE chp02.use_area_alt_relation AS
SELECT points.gid, cu.location FROM
 chp02.use_area_alt_p AS points,
 chp02.use_area AS cu
 WHERE ST_Intersects(points.the_geom, cu.the_geom);

How it works...
Our essential approach here is to look at the underlying topology of the geometry and
reconstruct a topology that is nonoverlapping, and then use the centroids of that new
geometry to construct a query that establishes the relationship to the original data.

There's more...
At this stage, we can optionally establish a framework for referential integrity using a foreign
key as follows:

ALTER TABLE chp02.use_area_alt_relation ADD FOREIGN KEY (gid) REFERENCES
chp02.use_area_alt_p (gid);

Structures that Work

80

Using polygon overlays for proportional
census estimates

PostgreSQL functions abound for the aggregation of tabular data, including sum, count, min,
max, and so on. PostGIS as a framework does not explicitly have spatial equivalents of these,
but this does not prevent us from building functions using the aggregates in concert with
PostGIS's spatial functionality.

In this recipe, we will explore spatial summarization with the United States Census data.
US Census data, by nature, is aggregated data. This is done intentionally to protect the privacy
of citizens. But when it comes to doing analyses with this data, the aggregate nature of
the data can become problematic. There are some tricks to disaggregate data. Amongst
the simplest of these is the use of a proportional sum based on area, which we will do in
this exercise.

Getting ready
The problem at hand is that a proposed trail has been drawn in order to provide services for
the public. This example could apply to road construction or even finding sites for commercial
properties for the purpose of provisioning services.

First, perform a quick data load using the following commands:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom census chp02.trail_
census | psql -U me -d postgis_cookbook
shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom trail_alignment_
proposed_buffer chp02.trail_buffer | psql -U me -d postgis_cookbook
shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom trail_alignment_proposed
chp02.trail_alignment_prop | psql -U me -d postgis_cookbook

The preceding commands will produce the following output:

Chapter 2

81

In our case, we want to know the population within 1 mile of the trail, assuming that people
living within 1 mile of the trail are the ones most likely to use it and, thus, most likely to be
served by it.

To find the population near this proposed trail, we overlay census block group population
density information. Illustrated in the next screenshot is a 1 mile buffer around the
proposed trail overlayed on census information:

One of the things we might note about this census data is the wide range of census densities
and census block group size. An approach to calculate the population would be to simply
select all census clocks that intersect our area, as shown in the following screenshot:

Structures that Work

82

This is a simple procedure that gives us an estimate of 130,288 people living within 1 mile of
the trail. But, looking at the shape of the selection, we can see that we are over-estimating the
population by taking the entirety of the block groups in our estimate.

Similarly, if we just used the block groups whose centroids lay within 1 mile of our proposed
trail alignment, we would underestimate the population.

Instead, we will make some useful assumptions. Block groups are designed to be moderately
homogenous within the block group. Assuming that this holds true for our data, we can
assume that, for a given block group, if 50 percent of the block group is within our target area,
we can attribute half of the population of that block group to our estimate. Apply this to all our
block groups, sum them, and we have a refined estimate that is likely to be better than pure
intersects or centroid queries. Thus, we employ a proportional sum.

How to do it...
As the problem of a proportional sum is a generic problem, we will write the underlying
proportioning as a function. A function takes inputs and returns a value. In our case, we want
our proportioning function to take two geometries, that is, the geometry of our buffered trail
and block groups as well as the value we want proportioned, and we want it to return the
proportioned value.

CREATE OR REPLACE FUNCTION chp02.proportional_sum(geometry,
 geometry, numeric)

 RETURNS numeric AS

$BODY$

-- SQL here

$BODY$

 LANGUAGE sql VOLATILE;

Now for the purpose of our calculation, for any given intersection of buffered area and block
group, we want to find the proportion that the intersection is over the overall block group.
Then this value should be multiplied by the value we want to scale.

In SQL, the function looks like the following query:

SELECT $3 * areacalc FROM

 (

 SELECT (ST_Area(ST_Intersection($1, $2)) / ST_Area($2))::
 numeric AS areacalc

) AS areac

;

Chapter 2

83

The preceding query in its full form looks as follows:

CREATE OR REPLACE FUNCTION chp02.proportional_sum(geometry,
 geometry, numeric)

 RETURNS numeric AS

$BODY$

 SELECT $3 * areacalc FROM

 (

 SELECT (ST_Area(ST_Intersection($1,
 $2))/ST_Area($2))::numeric AS areacalc

) AS areac

;

$BODY$

 LANGUAGE sql VOLATILE;

How it works...
Since we have written the query as a function, the query uses the SELECT statement to
loop through all available records and give us a proportioned population. An astute reader
will note that we have not yet done any work on summarization; we have only worked on the
proportionality portion of the problem. We can do the summarization upon calling the function
using PostgreSQL's built-in aggregate functions. What is neat about this approach is that we
need not just apply a sum, but could also calculate other aggregates such as min or max.
In the following example, we will just apply a sum:

SELECT ROUND(SUM(chp02.proportional_sum(a.the_geom, b.the_geom,
 b.pop))) FROM

 chp02.trail_buffer AS a, chp02.trail_census as b

 WHERE ST_Intersects(a.the_geom, b.the_geom)

 GROUP BY a.gid;

The value returned is quite different (population of 96,081), which is more likely to be accurate.

3
Working with Vector

Data – The Basics

In this chapter, we will cover the following recipes:

ff Working with GPS data

ff Fixing invalid geometries

ff GIS analysis with spatial joins

ff Simplifying geometries

ff Measuring distances

ff Merging polygons using a common attribute

ff Computing intersections

ff Clipping geometries to deploy data

ff Simplifying geometries with PostGIS topology

Introduction
In this chapter, you will work with a set of PostGIS functions and vector datasets.
You will first take a look at how to use PostGIS with GPS data—you will import such
datasets using ogr2ogr, and then compose polylines from point geometries using
the ST_MakeLine function.

Then, you will see how PostGIS manages and helps you find and fix invalid geometries
with functions such as ST_MakeValid, ST_IsValid, ST_IsValidReason, and
ST_IsValidDetails.

Working with Vector Data – The Basics

86

We will then learn about one of the most powerful elements of a spatial database—spatial
joins. PostGIS provides you with a rich set of operators, such as ST_Intersects,
ST_Contains, ST_Covers, ST_Crosses, and ST_DWithin, for this purpose.

After that, you will use the ST_Simplify and ST_SimplifyPreverveTopology functions
to simplify (generalize) geometries when you don't need too many details. While this function
works well on linear geometries, topological anomalies may be introduced for polygonal ones.
In such cases, you should consider using an external GIS tool such as GRASS.

You will then have a tour of PostGIS functions to make distance measurements—
ST_Distance, ST_DistanceSphere, ST_DistanceSpheroid are on the way.

One of the recipes explained in this chapter will guide you through the typical GIS workflow
to merge polygons based on a common attribute; you will use the ST_Union function for
this purpose.

You will then learn how to clip geometries using the ST_Intersection function, before deep
diving into the new PostGIS topology support in the last recipe.

Working with GPS data
In this recipe, you will work with GPS data. This kind of data is typically saved in a .gpx file.
You will import a bunch of .gpx files to PostGIS from RunKeeper, a popular social network
for runners.

If you have an account on RunKeeper, you can export your .gpx files and process them by
following the instructions in this recipe. Otherwise, you can use the RunKeeper .gpx files
included in the runkeeper-gpx.zip file, located in the chp03 directory included in the
code bundle available with this book.

You will first create a bash script for importing the .gpx files to a PostGIS table, using
ogr2ogr. After the import is completed, you will try to write a couple of SQL queries and
test some very useful functions, such as ST_MakeLine to generate polylines from point
geometries, ST_Length to compute distance, and ST_Intersects to perform a spatial
join operation.

Getting ready
Extract the data/chp03/runkeeper-gpx.zip file to working/chp03/runkeeper_gpx.
In case you haven't been through Chapter 1, Moving Data In and Out of PostGIS, be sure to
have the countries dataset in the PostGIS database.

Chapter 3

87

How to do it...
First, be sure of the format of the .gpx files that you need to import to PostGIS. Open one
of them and check the file structure—each file must be in the XML format composed of just
one <trk> element that contains just one <trkseg> element that contains many <trkpt>
elements (the points stored from the runner's GPS device). Import these points to a PostGIS
Point table.

1.	 Create a new schema named chp03 to store the data for all of the recipes in this
chapter using the following command:
postgis_cookbook=# create schema chp03;

2.	 Create the chp03.rk_track_points table in PostgreSQL by executing the
following command lines:
postgis_cookbook=# CREATE TABLE chp03.rk_track_points

(

 fid serial NOT NULL,

 the_geom geometry(Point,4326),

 ele double precision,

 "time" timestamp with time zone,

 CONSTRAINT activities_pk PRIMARY KEY (fid)

);

3.	 Create the following script to import all of the .gpx files in the chp03.rk_track_
points table using the GDAL ogr2ogr command.

The following is the Linux version (name it working/chp03/import_gpx.sh):
#!/bin/bash
for f in `find runkeeper_gpx -name *.gpx -printf "%f\n"`
do
 echo "Importing gpx file $f to chp03.rk_track_points PostGIS
table..." #, ${f%.*}"
 ogr2ogr -append -update -f PostgreSQL PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" runkeeper_gpx/$f -nln
chp03.rk_track_points -sql "SELECT ele, time FROM track_points"
done

Working with Vector Data – The Basics

88

The following is the Windows version (name it working/chp03/import_gpx.bat):
@echo off
for %%I in (runkeeper_gpx*.gpx*) do (
 echo Importing gpx file %%~nxI to chp03.rk_track_points
PostGIS table...
 ogr2ogr -append -update -f PostgreSQL PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" runkeeper_gpx/%%~nxI
-nln chp03.rk_track_points -sql "SELECT ele, time FROM track_
points"
)

4.	 In Linux, don't forget to assign execution permission to it before running it. Run the
following script:
$ chmod 775 import_gpx.sh

$./import_gpx.sh

Importing gpx file 2012-02-26-0930.gpx to chp03.rk_track_points
PostGIS table...

Importing gpx file 2012-02-29-1235.gpx to chp03.rk_track_points
PostGIS table...

...

Importing gpx file 2011-04-15-1906.gpx to chp03.rk_track_points
PostGIS table...

In Windows, just double-click on the .bat file or run it from the command prompt
using the following command:
> import_gpx.bat

5.	 Now, create a polyline table containing a single runner's track details, using the
ST_MakeLine function. Assume that on each distinct day the runner had just one
training. In this table, you should include the start and end times of the track details
as follows:
postgis_cookbook=# SELECT

ST_MakeLine(the_geom) AS the_geom,

 run_date::date,

 MIN(run_time) as start_time,

 MAX(run_time) as end_time

 INTO chp03.tracks

 FROM (

Chapter 3

89

 SELECT the_geom,

 "time"::date as run_date,

 "time" as run_time

 FROM chp03.rk_track_points

 ORDER BY run_time

) AS foo GROUP BY run_date;

6.	 Before querying the created tables, don't forget to add spatial indexes to both of the
tables to improve their performance, as follows:
postgis_cookbook=# CREATE INDEX rk_track_points_geom_idx ON chp03.
rk_track_points USING gist(the_geom);

postgis_cookbook=# CREATE INDEX tracks_geom_idx ON chp03.tracks
USING gist(the_geom);

7.	 If you try to open both the spatial tables on a Desktop GIS on any given day, you
should see that the points from the rk_track_points table compose a single
polyline geometry record in the tracks table, as shown in the following screenshot:

8.	 Now, query the tracks table to get a report of the total distance run (in km) by the
runner for each month. For this purpose, use the ST_Length function, as shown in
the following query:
postgis_cookbook=# SELECT

 EXTRACT(year FROM run_date) AS run_year,

 EXTRACT(MONTH FROM run_date) as run_month,

 SUM(ST_Length(geography(the_geom)))/1000 AS distance
FROM chp03.tracks

GROUP BY run_year, run_month;

Working with Vector Data – The Basics

90

 run_year | run_month | distance

------------+-------------+------------------

 2010 | 5 | 67.9277530981487

 ...

 2012 | 7 | 38.8795349962323

 2012 | 8 | 72.0557697278750

(28 rows)

9.	 Using a spatial join between the tracks and countries tables and again using the
ST_Length function as follows, you will get a report of the distance run (in km) by
the runner, per country:

postgis_cookbook=# SELECT

 c.name,

 SUM(ST_Length(geography(t.the_geom)))/1000 AS run_distance

FROM chp03.tracks AS t

JOIN chp01.countries AS c

ON ST_Intersects(t.the_geom, c.the_geom)

GROUP BY c.name

ORDER BY run_distance DESC;

 country_name | run_distance

--------------------+------------------

 Italy | 2628.78393844143

 ...

 Greece | 18.1060004468414

(4 rows)

How it works...
The .gpx files store all of the points' details in the WGS 84 spatial reference system;
therefore, we created the rk_track_points table with SRID (4326).

After creating the rk_track_points table, we imported all of the .gpx files in the
runkeeper_gpx directory using a bash script. The bash script iterates all of the files with the
extension *.gpx in the runkeeper_gpx directory. For each of these files, the script runs the
ogr2ogr command, importing the .gpx files to PostGIS using the GPX GDAL driver (for more
details go to http://www.gdal.org/ogr/drv_gpx.html).

Chapter 3

91

In the GDAL's abstraction, a .gpx file is an OGR data source composed of several layers,
as follows:

$ ogrinfo -so 2012-08-29-1930.gpx

Had to open data source read-only

INFO: Open of '2012-08-29-1930.gpx'

 using driver `GPX' successful.

1: waypoints (Point)

2: routes (Line String)

3: tracks (Multi Line String)

4: route_points (Point)

5: track_points (Point)

In the .gpx files (OGR data sources), you have just the tracks and track_points layers.
As a shortcut, you could have imported just the tracks layer using ogr2ogr, but you
would need to start using some PostGIS functions from the track_points layer in order to
generate the tracks layer itself. This is why in the ogr2ogr section in the bash script, we
import the point geometries from the track_ points layer, plus a couple of useful attributes,
such as elevation and timestamp, to the rk_track_points PostGIS table.

Once the records were imported, we fed a new polylines table named tracks using
a subquery and select all of the point geometries and their dates and times from the
rk_track_points table, grouped by date, and with the geometries aggregated using the
ST_MakeLine function. This function was able to create linestrings from point geometries
(for more details, go to http://www.postgis.org/docs/ST_MakeLine.html).

You should not forget to sort the points in the subquery by datetime; otherwise, you
will obtain an irregular linestring, jumping from one point to the other and not following
the correct order.

After loading the tracks table, we tested the two spatial queries.

At first, you got a month-by-month report of the total distance run by the runner. For this
purpose, you selected all of the track records grouped by date (year and month), with the
total distance obtained by summing up the lengths of the single tracks (obtained with the
ST_Length function). To get the year and the month from the run_date function, you
used the PostgreSQL EXTRACT function; be aware that if you measure the distance using
geometries in the WGS 84 system, you will obtain it in degree units. For this reason, you
have to project the geometries to a planar metric system designed for the specific region
from where the data will be projected.

Working with Vector Data – The Basics

92

For large-scale areas, such as in our case where we have points that span all around
Europe, as shown in the last query results, a good option is to use the geography data
type introduced with PostGIS 1.5. The calculations may be slower, but they are much more
accurate than in other systems. This is the reason why you casted the geometries to the
geography data type before making measures.

The last spatial query used a spatial join with the ST_Intersects function to get the name
of the country where each track was run by the runner (with the assumption that the runner
didn't run cross-border tracks). To get the total distance run per country is just a matter of
aggregating the selection on the country_name field and aggregating the track distances
with the PostgreSQL SUM operator.

Fixing invalid geometries
You will often find invalid geometries in your PostGIS database. These invalid geometries
could compromise the functioning of PostGIS itself and any external tool using it, such as
QGIS and MapServer. PostGIS, being compliant with the OGC Simple Features Specification,
must manage and work with valid geometries.

Luckily, PostGIS 2.0 offers you the ST_MakeValid function that, together with the
ST_IsValid, ST_IsValidReason, and ST_IsValidDetails functions, is the ideal
toolkit for inspecting and fixing geometries within the database. In this recipe, you will
learn how to fix a common case of invalid geometry.

Getting ready
Unzip the data/TM_WORLD_BORDERS-0.3.zip file into your working directory—working/
chp3. Import the shapefile in PostGIS with the shp2pgsql command, as follows:

$ shp2pgsql -s 4326 -g the_geom -W LATIN1 -I TM_WORLD_BORDERS-
0.3.shp chp03.countries > countries.sql

$ psql -U me -d postgis_cookbook -f countries.sql

How to do it...
The steps you need to perform to complete this recipe are as follows:

1.	 First, investigate whether or not any geometry is invalid in the imported table. As you
can see in the following query, using the ST_IsValid and ST_IsValidReason
functions, we find four invalid geometries that are all invalid for the same reason—ring
self-intersection:
postgis_cookbook=# SELECT gid, name, ST_IsValidReason(the_geom)

 FROM chp03.countries

 WHERE ST_IsValid(the_geom)=false;

Chapter 3

93

gid | name | st_isvalidreason

----+--------+--

24 | Canada | Ring Self-intersection[-53.756367 48.5032620000001]

33 | Chile | Ring Self-intersection[-70.917236 -54.708618]

155 | Norway | Ring Self-intersection[5.33694400000002 61.592773]

175 | Russia | Ring Self-intersection[143.661926 49.31221]

(4 rows)

2.	 Now, concentrate on just one of the invalid geometries, for example, in the
multipolygon geometry representing Russia. Create a table containing just the ring
generating the invalidity by selecting the table using the point coordinates given in
the ST_IsValidReason response in the previous step:
postgis_cookbook=# SELECT * INTO chp03.invalid_geometries
 FROM (

 SELECT 'broken'::varchar(10) as status,
 ST_GeometryN(the_geom, generate_series(1, ST_NRings(the_
geom)))::geometry(Polygon,4326) as the_geom
 FROM chp03.countries

 WHERE name = 'Russia') AS foo

 WHERE ST_Intersects(the_geom, ST_SetSRID(ST_
Point(143.661926,49.31221), 4326));

ST_MakeValid requires GEOS 3.3.0 or higher; check whether or not your
system has its support using the PostGIS_full_version function
as follows:

postgis_cookbook=# SELECT PostGIS_full_version();

 postgis_full_version

 POSTGIS="2.0.1 r9979" GEOS="3.3.5-CAPI-1.7.5"
PROJ="Rel. 4.7.1, 23 September 2009" GDAL="GDAL 2.0dev,
released 2011/12/29" LIBXML="2.7.8" TOPOLOGY RASTER

(1 row)

3.	 Now, using the ST_MakeValid function, add a new record in the previously created
table with the valid version of the same geometry:
postgis_cookbook=# INSERT INTO chp03.invalid_geometries
 VALUES ('repaired', (SELECT ST_MakeValid(the_geom)

FROM chp03.invalid_geometries));

Working with Vector Data – The Basics

94

4.	 Open this geometry on your Desktop GIS; the invalid geometry has just one self-
intersecting ring that produces a hole in its internal. While this is accepted in the ESRI
shapefile format specification (that was the original dataset you imported), the OGC
standard does not allow for the self-intersecting ring, so neither does PostGIS.

5.	 Now, in the invalid_geometries table, you have the invalid and valid version
of the polygon. It is easy to figure out that the self-intersection ring was removed by
ST_MakeValid by adding one supplementary ring to the original polygon, which
resulted in a valid geometry, according to the OGC standard:
postgis_cookbook=# SELECT status, ST_NRings(the_geom) FROM chp03.
invalid_geometries;

 status | st_nrings

----------+----------

 broken | 1

 repaired | 2

(2 rows)

6.	 Now that you have identified the problem and its solution, don't forget to fix all of
the other invalid geometries in the countries table by executing the following code:

postgis_cookbook=# UPDATE chp03.countries

 SET the_geom = ST_MakeValid(the_geom)

 WHERE ST_IsValid(the_geom) = false;

Chapter 3

95

A smart way to not have invalid geometries in the database at all is by adding
a CHECK constraint on the table to check for validity. This will increase
the computation time when updating or inserting new geometries, but will
keep your dataset valid. For example, in the countries table, this can be
implemented as follows:
ALTER TABLE chp03.countries
 ADD CONSTRAINT geometry_valid_check
 CHECK (ST_IsValid(the_geom));

Many times in this recipe, though, you will need to remove such a constraint
in order to be able to import records from a different source. After making
validations with the ST_MakeValid function, you can safely add the
constraint again.

How it works...
There are a series of reasons why an invalid geometry could result in your database;
for example, rings composing polygons must be closed and cannot self intersect or
share more than one point with another ring.

After importing the country shapefile using the ST_IsValid and ST_IsValidReason
functions, you will have figured out that four of the imported geometries are invalid all
because their polygons have self-intersecting rings.

At this point, a good way to investigate the invalid multipolygon geometry is by decomposing
the polygon to its component rings and checking out the invalid ones. For this purpose, we
have exported the geometry of the ring causing the invalidity, using the ST_GeometryN
function, which is able to extract the nth ring from the polygon. We coupled this function with
the useful PostgreSQL generate_series function to iterate all of the rings composing the
geometry, selecting the desired one using the ST_Intersects function.

As expected, the reason why this ring generates the invalidity is that it is self-intersecting and
produces a hole in the polygon. While this is adherent with the shapefile specification, it isn't
so with the OGC specification.

By running the ST_MakeValid function, PostGIS has been able to make the geometry valid,
generating a second ring. Remember that the ST_MakeValid function is available only with
the latest PostGIS compiled with the latest GEOS (3.3.0+). If that is not the setup for your
working box and you cannot upgrade (upgrading is always recommended), you can follow
the techniques discussed in a very popular, excellent presentation by Paul Ramsey at
http://blog.opengeo.org/2010/09/08/tips-for-the-postgis-power-user/.

Working with Vector Data – The Basics

96

GIS analysis with spatial joins
Joins for regular SQL tables have the real power in a relational database and spatial joins are
one of the most impressive features of a spatial database engine such as PostGIS.

Basically, it is possible to correlate information from different layers on the basis of the
geometric relation of each feature from the input layers. In this recipe, we will take a tour
of some common use cases of spatial joins.

Getting ready
1.	 First, import some data to be used as a test bed in PostGIS. Download the .kmz file

containing the information about 2012 global earthquakes from the USGS website
at http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
kml/2012_Earthquakes_ALL.kmz. Save it in the working/chp03 directory
(alternatively, you can use the copy of this file included in the code bundle provided
with this book).

2.	 A .kmz file is a collection of .kml files packaged with the ZIP compressor. Therefore,
after unzipping the file (you may need to change the .kmz file extension to .zip), you
may notice that it is composed of just a single .kml file. This file, which is in the GDAL
abstraction, constitutes an OGR KML data source composed of nine different layers
and containing 3D point geometries. Each layer contains earthquake data for each
distinct earthquake magnitude:
$ ogrinfo 2012_Earthquakes_ALL.kml

Had to open data source read-only.

INFO: Open of `2012_Earthquakes_ALL.kml'

 using driver `KML' successful.

1: Magnitude 8 (3D Point)

2: Magnitude 7 (3D Point)

...

8: Magnitude 1 (3D Point)

9: Magnitude None (3D Point)

3.	 Import all of those layers in a PostGIS table named chp03.earthquakes
simultaneously by executing one of the following scripts, using the ogr2ogr command.

The following is the Linux version (name it import_eq.sh):
#!/bin/bash

for ((i = 1; i < 9 ; i++)) ; do

 echo "Importing earthquakes with magnitude $i to chp03.
earthquakes PostGIS table..."

Chapter 3

97

 ogr2ogr -append -f PostgreSQL -nln chp03.earthquakes
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
2012_Earthquakes_ALL.kml -sql "SELECT name, description, CAST($i
AS integer) AS magnitude FROM 'Magnitude $i'"

done

The following is the Windows version (name it import_eq.bat):

@echo off

for /l %%i in (1, 1, 9) do (

 echo "Importing earthquakes with magnitude %%i to chp03.
earthquakes PostGIS table..."

 ogr2ogr -append -f PostgreSQL -nln chp03.earthquakes
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
2012_Earthquakes_ALL.kml -sql "SELECT name, description, CAST(%%i
AS integer) AS magnitude FROM 'Magnitude %%i'"

)

4.	 Execute the following script (for Linux, you need to add execute permissions to it):
$ chmod 775 import_eq.sh

$./import_eq.sh

Importing earthquakes with magnitude 1 to chp03.earthquakes
PostGIS table...

Importing earthquakes with magnitude 2 to chp03.earthquakes
PostGIS table...

...

5.	 To maintain consistency with the book's conventions, rename the geometric column
wkb_geometry (the default geometry output name in ogr2ogr) to the_geom, as
illustrated in the following command:
postgis_cookbook=# ALTER TABLE chp03.earthquakes RENAME wkb_
geometry TO the_geom;

6.	 Download the cities shapefile for USA from the nationalatlas.gov website
at http://dds.cr.usgs.gov/pub/data/nationalatlas/citiesx020_
nt00007.tar.gz (this archive is also included in the code bundle provided with
this book), and import it in PostGIS by executing the following code:
$ ogr2ogr -f PostgreSQL -s_srs EPSG:4269 -t_srs EPSG:4326 -lco
GEOMETRY_NAME=the_geom -nln chp03.cities PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" citiesx020.shp

Working with Vector Data – The Basics

98

7.	 Download the states shapefile for USA from the nationalatlas.gov website
at http://dds.cr.usgs.gov/pub/data/nationalatlas/statesp020_
nt00032.tar.gz (this archive is also included in the code bundle provided
with this book) and import it in PostGIS by executing the following code:

$ ogr2ogr -f PostgreSQL -s_srs EPSG:4269 -t_srs EPSG:4326 -lco
GEOMETRY_NAME=the_geom -nln chp03.states -nlt MULTIPOLYGON
PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
statesp020.shp

How to do it...
In this recipe, you will see for yourself the power of spatial SQL by solving a series of typical
problems using spatial joins.

1.	 First, query PostGIS to get the number of registered earthquakes in 2012 by state:
postgis_cookbook=# SELECT s.state, COUNT(*) AS hq_count

FROM chp03.states AS s

 JOIN chp03.earthquakes AS e

 ON ST_Intersects(s.the_geom, e.the_geom)

 GROUP BY s.state

 ORDER BY hq_count DESC;

 state | hq_count

-------------- --+---------

 Alaska | 569

 California | 467

 Hawaii | 93

...

 South Dakota | 1

(33 rows)

2.	 Now, to make it just a bit more complex, query PostGIS to get the number of
earthquakes, grouped per magnitude, that are no further than 200 km from the cities
in the USA that have more than 1,000,000 inhabitants; execute the following code:
postgis_cookbook=# SELECT c.name, e.magnitude, count(*) as hq_
count FROM chp03.cities AS c

 JOIN chp03.earthquakes AS e

 ON ST_DWithin(geography(c.the_geom), geography(e.the_geom),
200000)

 WHERE c.pop_2000 > 1000000

 GROUP BY c.name, e.magnitude

Chapter 3

99

 ORDER BY c.name, e.magnitude, hq_count;

 name | magnitude | hq_count

----------------+-----------+---------

 Chicago | 2 | 1

 Chicago | 3 | 1

 Dalla | 2 | 12

...

 San Diego | 4 | 20

 San Diego | 5 | 2

(18 rows)

3.	 As a variant of the previous query, executing the following code gives you a complete
list of earthquakes, along with their distance from the city (in meters):
postgis_cookbook=# SELECT c.name, e.magnitude,
 ST_Distance(geography(c.the_geom), geography(e.the_geom)) AS
distance FROM chp03.cities AS c

 JOIN chp03.earthquakes AS e

 ON ST_DWithin(geography(c.the_geom), geography(e.the_geom),
200000)

 WHERE c.pop_2000 > 1000000

 ORDER BY distance;

 name | magnitude | distance

-----------------+-----------+------------------

 Dallas | 2 | 10801.3253855616

 Los Angeles | 3 | 13740.7943591606

 ...

 San Diego | 2 | 199062.753724934

 Los Angeles | 2 | 199390.900371205

(488 rows)

4.	 Now, ask PostGIS for the city count and the total population in each state by
executing the following code:
postgis_cookbook-# SELECT s.state, COUNT(*) AS city_count,
SUM(pop_2000) AS pop_2000 FROM

 chp03.states AS s

 JOIN chp03.cities AS c

 ON ST_Intersects(s.the_geom, c.the_geom)

 WHERE c.pop_2000 > 0 -- NULL values is -9999 on this field!

 GROUP BY s.state

Working with Vector Data – The Basics

100

 ORDER BY pop_2000 DESC;

 state | city_count | pop_2000

----------------------+----------------+---------

 California | 470 | 27380349

 Texas | 1182 | 15738629

 New York | 613 | 12139544

 ...

 Wyoming | 96 | 334624

 Delaware | 56 | 214413

 Vermont | 48 | 154831

(51 rows)

5.	 As a final test, use a spatial join to update an existing table. You need to add the
information in the state_fips field to the earthquake table, from the states
table. First, to host that kind of information, you need to create a column, as shown
in the following command:
postgis_cookbook-# ALTER TABLE chp03.earthquakes ADD COLUMN state_
fips character varying(2);

6.	 Then, you can update the new column using a spatial join, as follows:

postgis_cookbook-# UPDATE chp03.earthquakes AS e

 SET state_fips = s.state_fips

 FROM chp03.states AS s

 WHERE ST_Intersects(s.the_geom, e.the_geom);

How it works...
Spatial joins are one of the key features that unleash the spatial power of PostGIS. For a
regular join, it is possible to relate entities from two distinct tables using a common field. For
a spatial join, it is possible to relate features from two distinct spatial tables using any spatial
relationship function, such as ST_Contains, ST_Covers, ST_Crosses, and ST_DWithin.

In the first query, we used the ST_Intersects function to join the earthquake points to their
respective containing state. We grouped the query by the state column to obtain the number
of earthquakes in the state.

In the second query, we used the ST_DWithin function to relate each city to the earthquake
points within a 200 km distance from it. We filtered out the cities with a population of less
than 1 million inhabitants and grouped them by city name and earthquake magnitude to get
a report of the number of earthquakes per city and magnitude.

Chapter 3

101

The third query is similar to the second one, except it doesn't group per city and magnitude.
The distance is computed using the ST_Distance function. Note that as feature coordinates
are stored in WGS 84, you need to cast the geometric column to a spheroid and use the
spheroid to get the distance in meters. Alternatively, you could project the geometries to a
planar system that is accurate for the area we are studying in this recipe (in this case, the
ESPG:2163, US National Atlas Equal Area would be a good choice) using the ST_Transform
function. However, in the case of large areas like the one we've dealt with in this recipe,
casting to geography is generally the best option, as it gives more accurate results.

The fourth query uses the ST_Intersects function. In this case, we grouped by the state
column and used two aggregation SQL functions (SUM and COUNT) to get the desired results.

Finally, in the last query, you update a spatial table using the results of a spatial join. The
concept behind this is like that of the previous query, except that it is in the context of an
UPDATE SQL command.

Simplifying geometries
There will be many times when you will need to generate a less detailed and lighter version of
a vector dataset, as you may not need too-detailed features for several reasons. Think about
a case where you are going to publish the dataset to a website and performance is a concern,
or maybe you need to deploy the dataset to a colleague who does not need too much detail
because he or she is using it for a large-area map. In all of these cases, GIS tools provide
you the implementation of simplification algorithms that reduce unwanted details from a
given dataset. Basically, these algorithms reduce the vertex numbers comprised in a certain
tolerance, which is expressed in units measuring distance.

For this purpose, PostGIS provides you the ST_Simplify and ST_
SimplifyPreserveTopology functions. In many cases, they are the right solutions for
simplification tasks, but in some cases, especially for polygonal features, they are not the best
option out there and you will need a different GIS tool such as GRASS, or the new PostGIS
topology support.

How to do it...
The steps you need to complete this recipe are as follows:

1.	 Set the PostgreSQL search_path variable so that all of your newly created database
objects will be stored in the chp03 schema, using the following code:
postgis_cookbook=# SET search_path TO chp03,public;

Working with Vector Data – The Basics

102

2.	 Suppose you need a less-detailed version of the states layer for your
mapping website or to deploy to a client; you could consider using the
ST_SimplifyPreserveTopology function, as follows:
postgis_cookbook=# CREATE TABLE states_simplify_topology AS

 SELECT ST_SimplifyPreserveTopology(ST_Transform(
 the_geom, 2163), 500) FROM states;

3.	 The previous command works quickly, using some variant of the Douglas-Peucker
algorithm, and effectively reduces the vertex number. But the resulting polygons, in
some cases, are not adjacent any more. If you zoom in at any polygon border, you
should notice something similar to that which is shown in the following screenshot.
There are holes and overlaps along the shared border between two polygons. This
is because PostGIS is using the OGC Simple Features Specification model, which
doesn't implement topology, so the function just removes the redundant vertex
without taking the adjacent polygons into consideration:

4.	 It looks like the ST_SimplifyPreserveTopology function, while working well
with linear features, produces topological anomalies with polygons. In the event that
you want topological simplification, another approach is to utilize the following code
suggested by Paul Ramsey (http://gis.stackexchange.com/questions/178/
simplifying-adjacent-polygons), and improved in a Webspaces blog post
(http://webspaces.net.nz/page.php?view=polygon-dissolve-and-
generalise):
SET search_path TO chp03, public;

-- first project the spatial table to a planar system (recommended
for simplification operations)

CREATE TABLE states_2163 AS SELECT ST_Transform(the_geom,
2163)::geometry(MultiPolygon, 2163) AS the_geom, state FROM states;

Chapter 3

103

-- now decompose the geometries from multipolygons to polygons
(2895) using the ST_Dump function

CREATE TABLE polygons AS SELECT (ST_Dump(the_geom)).geom AS the_
geom FROM states_2163;

-- now decompose from polygons (2895) to rings (3150) using the
ST_DumpRings function

CREATE TABLE rings AS SELECT (ST_DumpRings(the_geom)).geom AS the_
geom FROM polygons;

-- now decompose from rings (3150) to linestrings (3150) using the
ST_Boundary function

CREATE TABLE ringlines AS SELECT(ST_boundary(the_geom)) AS the_
geom FROM rings;

-- now merge all linestrings (3150) in a single merged linestring
(this way duplicate linestrings at polygon borders disappear)

CREATE TABLE mergedringlines AS SELECT ST_Union(the_geom) AS the_
geom FROM ringlines;

-- finally simplify the linestring with a tolerance of 150 meters

CREATE TABLE simplified_ringlines AS SELECT ST_
SimplifyPreserveTopology(the_geom, 150) AS the_geom FROM
mergedringlines;

-- now compose a polygons collection from the linestring using the
ST_Polygonize function

CREATE TABLE simplified_polycollection AS SELECT ST_
Polygonize(the_geom) AS the_geom FROM simplified_ringlines;

-- here you generate polygons (2895) from the polygons collection
using ST_Dumps

CREATE TABLE simplified_polygons AS SELECT ST_Transform((ST_
Dump(the_geom)).geom, 4326)::geometry(Polygon,4326) AS the_geom
FROM simplified_polycollection;

-- time to create an index, to make next operations faster CREATE
INDEX simplified_polygons_gist ON simplified_polygons USING GIST
(the_geom);

-- now copy the state name attribute from old layer with a spatial
join using the ST_Intersects and ST_PointOnSurface function

CREATE TABLE simplified_polygonsattr AS SELECT new.the_geom,
old.state FROM simplified_polygons new, states old WHERE ST_
Intersects(new.the_geom, old.the_geom) AND ST_Intersects(ST_
PointOnSurface(new.the_geom), old.the_geom);

-- now make the union of all polygons with a common name

CREATE TABLE states_simplified AS SELECT ST_Union(the_geom) AS
the_geom, state FROM simplified_polygonsattr GROUP BY state;

Working with Vector Data – The Basics

104

5.	 This approach seems to work smoothly, but if you try to increment the simplifying
tolerance from 150 to let's say, 500 meters, you will again end up with topological
anomalies (test this yourself). A better approach would be to use the PostGIS
topology (you will do this in a following recipe) or an external GIS tool that is able
to manage topological operations the way GRASS can. For this recipe, you will
use the GRASS approach.

6.	 Install GRASS on your system if you don't already have it. Then, create a directory
to contain the GRASS database (in GRASS jargon, a GISDBASE), as follows:
$ mkdir grass_db

7.	 Now, start GRASS by typing grass in the Linux command prompt or by double-
clicking on the GRASS GUI icon in Windows (Start | All Programs | OSGeo4W |
GRASS GIS 6.4.3 | GRASS 6.4.3 GUI). You will be prompted to select grass_db
as the GIS data directory. Select the one you created in the previous step.

8.	 Using the Location Wizard button, create a location named postgis_cookbook
with the title PostGIS Cookbook (GRASS uses subdirectories named locations,
where all of the data are kept in the same coordinate system, map projection,
and geographical boundaries).

9.	 When creating the new location, select the EPSG with SRID 2163 as the spatial
reference system (you need to select the Select EPSG code of spatial reference
system option under Choose method for creating a new location).

10.	 Now start GRASS by clicking on the Start GRASS button. The program's command
line will start:

Chapter 3

105

11.	 Import the states PostGIS spatial table to the GRASS location. To do so, use the
v.in.ogr GRASS command, which will then use the OGR PostgreSQL driver (in fact,
the PostGIS connection string syntax is the same):
GRASS 6.4.1 (postgis_cookbook):~ > v.in.ogr
dsn=PG:"dbname='postgis_cookbook' user='me' password='mypassword'"
layer=chp03.states_2163 out=states

12.	GRASS will import the OGR PostGIS table and simultaneously build the topology
for this layer, which is composed of points, lines, areas, and so on. The v.info
command can be used in combination with the -c option to check the attributes
table and get more information on the imported layer, as follows:
GRASS 6.4.1 (postgis_cookbook):~ > v.info states

 +--+

 | Layer: states |

 | Mapset: PERMANENT |

 | Location: postgis_cookbook |

 | Database: /home/capooti/postgis_cookbook/working/
 chp03/grass_db |

 | Title: |

 | Map scale: 1:1 |

 | Map format: native |

 | Name of creator: capooti |

 | Organization: |

 | Source date: Tue Sep 18 18:18:38 2012 |

 |--- ----------------|

 | Type of Map: vector (level: 2) |

 | |

 | Number of points: 0 Number of areas: 2895 |

 | Number of lines: 0 Number of islands: 2818 |

 | Number of boundaries: 3034 Number of faces: 0 |

 | Number of centroids: 2895 Number of kernels: 0 |

 | Map is 3D:

 | Number of dblinks:

 |

 | Projection: x,y

 | N: 3910267.02926988 S: -2360476.09035623

 | E: 3745267.23502577 W: -5761129.11796747

 |

Working with Vector Data – The Basics

106

 | Digitization threshold: 0

 | Comments:

 |

 +--- --+

13.	 Now, you can simplify the polygon geometries using the v.generalize GRASS
command with a tolerance (threshold) of 500 meters. If you are using the
same dataset used in this recipe, you will end up with 47.191 vertices from the
original 346.914 vertices, composing 1.919 polygons (areas) from the original
2.895 polygons:
GRASS 6.4.1 (postgis_cookbook):~ > v.generalize input=states
output=states_generalized_from_grass method=douglas threshold=500
-c

14.	 Export the results back to PostGIS using the v.out.ogr command (the v.in.ogr
counterpart), as follows:
GRASS 6.4.1 (postgis_cookbook):~ > v.out.ogr input=states_
generalized_from_grass type=area dsn=PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" olayer=chp03.states_simplified_
from_grass format=PostgreSQL

15.	 Now, open a Desktop GIS and check for differences between the geometry
simplification performed by the ST_SimplifyPreserveTopology PostGIS function
and GRASS. There should be no holes or overlaps at shared polygon borders. In the
following screenshot, the original layer boundaries are in red, the boundaries built
by ST_SimplifyPreserveTopology are in blue, and those built by GRASS are
in green:

Chapter 3

107

How it works...
The ST_Simplify PostGIS function is able to simplify and generalize either a (simple or
multi) linear or polygonal geometry using the Douglas-Peucker algorithm (for more details,
go to http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peuc
ker_algorithm). Since it can create invalid geometries in some cases, it is recommended
that you use its evolved version—the ST_SimplifyPreserveTopology function—that will
produce only valid geometries.

While the functions are working well with (multi) linear geometries, in the case of (multi)
polygons, they will most likely create topological anomalies, such as overlaps and holes,
at shared polygon borders.

To get a valid, topologically simplified dataset, there are the following two choices at the time
of this writing:

ff Performing the simplified process on an external GIS tool such as GRASS

ff Using the new PostGIS topological support

While you will see the new PostGIS topological features in a following recipe, in this one,
you have been using GRASS to perform the simplification process.

We opened GRASS, created a GIS data directory and a project location, and then imported
in the GRASS location the polygonal PostGIS table using the v.ogr.in command, based on
GDAL/OGR, as the name suggests.

Until this point, you have been using the GRASS v.generalize command to perform the
simplification of the dataset using a tolerance (threshold) expressed in meters.

After simplifying the dataset, you have imported it back to PostGIS using the v.ogr.out
GRASS command and then opened the derived spatial table in a Desktop GIS to see whether
or not the process was performed in a topologically correct way.

Measuring distances
In this recipe, we will check out the PostGIS functions needed for distance measurements
(ST_Distance and its variants) and find out how considering the earth's curvature makes
a big difference when measuring distances between distant points.

Working with Vector Data – The Basics

108

Getting ready
You should import the shapefile representing the cities from the USA that we generated in
a previous recipe (the PostGIS table named chp03.cities). In case you haven't already
done so, download that shapefile from the nationalatlas.gov website at http://dds.
cr.usgs.gov/pub/data/nationalatlas/citiesx020_nt00007.tar.gz (this archive
is also included in the code bundle available with this book) and import it to PostGIS:

$ ogr2ogr -f PostgreSQL -s_srs EPSG:4269 -t_srs EPSG:4326 -lco GEOMETRY_
NAME=the_geom -nln chp03.cities PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" citiesx020.shp

How to do it...
The steps you need to perform to complete this recipe are as follows:

1.	 First, use the ST_Distance function to calculate the distances between cities in the
USA that have more than 1,000,000 inhabitants using the Spherical Mercator planar
projection coordinate system (EPSG:900913, EPSG:3857, or EPSG:3785; all of these
SRID representations are equivalent). Use the ST_Transform function as follows to
convert the point coordinates from lon lat degrees (as the coordinates are originally in
EPSG:4326) to a planar metric system, if you want the results in meters:
postgis_cookbook=# SELECT c1.name, c2.name,

ST_Distance(ST_Transform(c1.the_geom, 900913),
ST_Transform(c2.the_geom, 900913))/1000 AS distance_900913

FROM chp03.cities AS c1

CROSS JOIN

chp03.cities AS c2

WHERE c1.pop_2000 > 1000000 AND c2.pop_2000 > 1000000 AND c1.name
< c2.name

ORDER BY distance_900913 DESC;

 name | name | distance_900913

--------------+--------------+------------------

 Los Angeles | New York | 5012.39789777705

 New York | San Diego | 4930.76973825481

 Los Angeles | Philadelphia | 4865.7736877805

 ...

 Los Angeles | San Diego | 215.396531218742

 New York | Philadelphia | 170.272806220365

(36 rows)

Chapter 3

109

2.	 Now, write the same query as we did in the previous recipe, but in a more compact
expression and by using PostgreSQL Common Table Expression (CTE):
WITH cities AS (

 SELECT name, the_geom FROM chp03.cities

 WHERE pop_2000 > 1000000)

SELECT c1.name, c2.name,

ST_Distance(ST_Transform(c1.the_geom, 900913), ST_Transform(c2.
the_geom, 900913))/1000 AS distance_900913

FROM cities c1 CROSS JOIN cities c2

where c1.name < c2.name

ORDER BY distance_900913 DESC;

3.	 For large distances such as the ones in this case, it is not correct to use a planar spatial
reference system, but you should make the calculations taking into consideration the
earth's curvature. For example, the previously used Mercator planar system, while it is
very good to use for map outputs, is very bad for measuring distances and areas, as
it assesses directions. For this purpose, it would be better to use a spatial reference
system that is able to measure distance. You can also use the ST_Distance_Sphere
or ST_Distance_Spheroid functions (the first being quicker, but less accurate,
as it performs calculations on a sphere and not a spheroid). An even better option
is converting the geometries to the geography data type, ST_Distance, as it will
automatically make the calculations using the spheroid. Note that this is exactly
equivalent to using ST_DistanceSpheroid. Try to check the difference between
the various approaches, using the same query as before:
WITH cities AS (

 SELECT name, the_geom FROM chp03.cities

 WHERE pop_2000 > 1000000)

SELECT c1.name, c2.name,

ST_Distance(ST_Transform(c1.the_geom, 900913), ST_Transform(c2.
the_geom, 900913))/1000 AS d_900913,

ST_Distance_Sphere(c1.the_geom, c2.the_geom)/1000 AS d_4326_
sphere,

ST_Distance_Spheroid(c1.the_geom, c2.the_geom, 'SPHEROID["G
RS_1980",6378137,298.257222101]')/1000 AS d_4326_spheroid,

ST_Distance(geography(c1.the_geom), geography(c2.the_geom))/1000
AS d_4326_geography

FROM cities c1 CROSS JOIN cities c2

where c1.name < c2.name

ORDER BY d_900913 DESC;

 name | name | d_900913 | d_4326_sphere | d_4326_
spheroid | d_4326_geography

Working with Vector Data – The Basics

110

--------------+--------------+-----------+---------------+--------
---------+------------------

 Los Angeles | New York | 5012.3.. | 3935.7.. |
3944.4.. | 3944.4..

 New York | San Diego | 4930.7.. | 3906.8.. |
3915.0.. | 3915.0..

 ...

 New York | Philadelphia | 170.2.. | 129.6.. |
129.7.. | 129.7..

(36 rows)

4.	 You can easily verify from the output that there is a big difference with using the
planar system (EPSG:900913, as in the d_900913 column) when confronted with
systems that take into consideration the curvature of the earth.

How it works...
If you need to compute the minimum Cartesian distance between two points, you can use
the PostGIS ST_Distance function. This function accepts the two-point geometries as input
parameters, and these geometries must be specified in the same spatial reference system.

If the two input geometries are using different spatial references, you can use the
ST_Transform function on one or both of them to make them consistent with a single
spatial reference system.

To get better results, you should consider the earth's curvature, which is mandatory when
measuring large distances, and use the ST_Distance_Sphere or the ST_Distance_
Spheroid functions. Alternatively, use ST_Distance, but cast the input geometries to the
geography spatial data type, which is optimized for this kind of operation. The geography
type stores the geometries in the WGS 84 lon lat degrees, but it always returns the
measurements in meters.

In this recipe, you have used PostgreSQL CTE, which is a handy way to provide a subquery in
the context of the main query. You can consider a CTE as a temporary table used only within
the scope of the main query.

Merging polygons using a common attribute
There are many cases in GIS workflows where you need to merge a polygonal dataset based
on a common attribute. A typical example is merging the European administrative areas (that
you can see at http://en.wikipedia.org/wiki/Nomenclature_of_Territorial_
Units_for_Statistics), starting from the NUTS level 4 to obtain the subsequent levels
up to the NUTS level 1, using the NUTS code or merging the USA counties layer using the state
code to obtain the states layer.

Chapter 3

111

PostGIS lets you perform this kind of processing operation with the ST_Union function.

Getting ready
Download the USA counties shapefile from the nationalatlas.gov website at
http://dds.cr.usgs.gov/pub/data/nationalatlas/co2000p020_nt00157.tar.
gz (this archive is also included in the code bundle provided with this book) and import it in
PostGIS as follows:

$ ogr2ogr -f PostgreSQL -s_srs EPSG:4269 -t_srs EPSG:4326 -lco GEOMETRY_
NAME=the_geom -nln chp03.counties -nlt MULTIPOLYGON PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" co2000p020.shp

How to do it...
The steps you need to perform to complete this recipe are as follows:

1.	 First, check the imported table by running the following commands:
postgis_cookbook=# SELECT county, fips, state_fips FROM chp03.
counties ORDER BY county;

 county | fips | state_fips

--+----- ---+-----------

 Abbeville County | 45001 | 45

 Acadia Parish | 22001 | 22

 Accomack County | 51001 | 51

 ...

 Zapata County | 48505 | 48

 Zavala County | 48507 | 48

 Ziebach County | 46137 | 46

 (6138 rows)

2.	 Now, perform the merging operation based on the state_fips field, using the
ST_Union PostGIS function:
postgis_cookbook=# CREATE TABLE chp03.states_from_counties AS
SELECT ST_Multi(ST_Union(the_geom)) as the_geom, state_fips FROM
chp03.counties
GROUP BY state_fips;

Working with Vector Data – The Basics

112

3.	 The following screenshot shows how the output PostGIS layer looks in a Desktop
GIS: the aggregate counties have successfully composed their respective state
(thick blue border):

How it works...
You have been using the ST_Union PostGIS function to make a polygon merge on a
common attribute. This function can be used as an aggregate PostgreSQL function (such as
SUM, COUNT, MIN, and MAX) on the layer's geometric field, using the common attribute in the
GROUP BY clause.

Note that ST_Union can also be used as a nonaggregate function to perform the union of
two geometries (which are the two input parameters).

Computing intersections
One typical GIS geoprocessing workflow is to compute intersections generated by intersecting
linear geometries.

PostGIS offers a rich set of functions for solving this particular type of problem and you will
have a look at them in this recipe.

Chapter 3

113

Getting ready
Download the rivers dataset from the following naturalearthdata.com website (or use
the ZIP file included in the code bundle provided with this book):

http://www.naturalearthdata.com/http//www.naturalearthdata.com/
download/10m/physical/10m-rivers-lake-centerlines.zip

Extract the shapefile to your working directory, chp03/working. Import the shapefile in
PostGIS using shp2pgsql as follows:

$ shp2pgsql -I -W LATIN1 -s 4326 -g the_geom ne_10m_rivers_lake_
centerlines.shp chp03.rivers > rivers.sql

$ psql -U me -d postgis_cookbook -f rivers.sql

How to do it...
The steps you need to perform to complete this recipe are as follows:

1.	 First, perform a self-spatial join with your MultiLineString dataset with the
PostGIS ST_Intersects function and find intersections in the join context with the
ST_Intersection PostGIS function. The following is the basic query, resulting in
1448 records being selected:
postgis_cookbook=# SELECT r1.gid AS gid1, r2.gid AS gid2,
 ST_AsText(ST_Intersection(r1.the_geom, r2.the_geom)) AS the_
geom

 FROM chp03.rivers r1

 JOIN chp03.rivers r2

 ON ST_Intersects(r1.the_geom, r2.the_geom)

 WHERE r1.gid != r2.gid;

2.	 You may hastily assume that all of the intersections are single points, but this is
not the case—if you check the geometry type of the geometric intersections using
the ST_GeometryType function, you have three different cases of intersection,
resulting in the following geometries:

�� An ST_POINT geometry for a simple intersection between two
linear geometries.

�� An ST_MultiPoint geometry, if two linear geometries intersect each
other at more points.

�� An ST_GeometryCollection geometry in cases where the two
MultiLineString objects intersect and share part of the line.
In such a case, the geometry collection is composed of ST_Point
and/or ST_Line geometries.

Working with Vector Data – The Basics

114

3.	 You can check the different cases with a query, shown as follows:
postgis_cookbook=# SELECT COUNT(*),

 ST_GeometryType(ST_Intersection(r1.the_geom, r2.the_geom)) AS
geometry_type

 FROM chp03.rivers r1

 JOIN chp03.rivers r2

 ON ST_Intersects(r1.the_geom, r2.the_geom)

 WHERE r1.gid != r2.gid

 GROUP BY geometry_type;

 count | geometry_type

-------+-----------------------

 4 | ST_GeometryCollection

 356 | ST_MultiPoint

 1088 | ST_Point

(3 rows)

4.	 First, try to compute the intersection for just the first two cases (intersections
composed of the ST_Point and ST_MultiPoint geometries). Just generate a
table with the Point and MultiPoint geometries, excluding the records that
have an intersection composed of a geometric collection. By executing the following
commands, 1444 of the 1448 records are imported (the four records with geometry
collections are ignored using the ST_GeometryType function):
postgis_cookbook=# CREATE TABLE chp03.intersections_simple AS

 SELECT r1.gid AS gid1, r2.gid AS gid2,
 ST_Multi(ST_Intersection(r1.the_geom,
 r2.the_geom))::geometry(MultiPoint, 4326) AS the_geom

 FROM chp03.rivers r1

 JOIN chp03.rivers r2

 ON ST_Intersects(r1.the_geom, r2.the_geom)

 WHERE r1.gid != r2.gid

 AND ST_GeometryType(ST_Intersection(r1.the_geom,
 r2.the_geom)) != 'ST_GeometryCollection';

5.	 In case you want to import the points from the geometry collection, too (but
just the points, ignoring the eventual linestrings), one way to go is by using the
ST_CollectionExtract function in the context of a SELECT CASE PostgreSQL
conditional statement; this way you can import all the 1448 intersections, as follows:
postgis_cookbook=# CREATE TABLE chp03.intersections_all AS

 SELECT gid1, gid2, the_geom::geometry(MultiPoint, 4326) FROM (

 SELECT r1.gid AS gid1, r2.gid AS gid2,

Chapter 3

115

 CASE

 WHEN ST_GeometryType(ST_Intersection(r1.the_geom,
 r2.the_geom)) != 'ST_GeometryCollection' THEN

 ST_Multi(ST_Intersection(r1.the_geom,
 r2.the_geom))
 ELSE ST_CollectionExtract(ST_Intersection(r1.the_geom,
 r2.the_geom), 1)

 END AS the_geom

 FROM chp03.rivers r1

 JOIN chp03.rivers r2

 ON ST_Intersects(r1.the_geom, r2.the_geom)

 WHERE r1.gid != r2.gid

) AS only_multipoints_geometries;

6.	 You may see the difference between the two processes, counting the total number of
points in each of the generated tables, as follows:
postgis_cookbook=# SELECT SUM(ST_NPoints(the_geom)) FROM chp03.
intersections_simple; --2268 points per 1444 records

postgis_cookbook=# SELECT SUM(ST_NPoints(the_geom)) FROM chp03.
intersections_all; --2282 points per 1448 records

7.	 In the following screenshot (taken from QGIS), you may notice the generated
intersections with both approaches. In the case of the intersection_all layer,
you will notice that some more intersections have been computed (in red).

Working with Vector Data – The Basics

116

How it works...
We have been using a spatial self join of a linear PostGIS spatial layer to find intersections
generated by the features of that layer.

For generating the spatial self join, we used the ST_Intersects function. This way we found all
of the pair features having at least one intersection in their respective geometries.

In the same self spatial join context, we found out the intersections using the
ST_Intersection function.

The problem is that the computed intersections are not always single points. In fact, two
intersecting lines can produce the origin for a single-point geometry (ST_Point) if the two
lines just intersect once. But, the two intersecting lines can produce the origin for a point
collection (ST_MultiPoint) or even a geometric collection, if the two lines intersect at
more points and/or share common parts.

As our target was to compute all of the point intersections (ST_Point and ST_MultiPoint)
using the ST_GeometryType function, we filtered out the values using a SQL SELECT CASE
construct where the feature had a GeometryCollection geometry, for which we extracted
just the points (and not the eventual linestrings) using the ST_CollectionExtract function
(parameter type = 1) from the composing collections.

We finally compared the two result sets, both with plain SQL and a Desktop GIS: the
intersecting points computed filtering out the geometric collections from the output
geometries and the intersecting points computed from all of the geometries generated
from the intersections, including the GeometryCollection features.

Clipping geometries to deploy data
A common GIS use case is clipping a big dataset into small portions (subsets), with maybe
each representing an area of interest. In this recipe, you will export from a PostGIS layer
representing the rivers in the world one distinct shapefile composed of rivers for each
world's country. For this purpose, you will use the ST_Intersection function.

Getting ready
Be sure that you have imported in PostGIS the same river dataset (a shapefile) that was used
in the previous recipe.

Chapter 3

117

How to do it...
The steps you need to perform to complete this recipe are as follows:

1.	 First, you will create a view to clip the river geometries for each country using
the ST_Intersection and ST_Intersects functions. Name the view
rivers_clipped_by_country:
postgis_cookbook=> CREATE VIEW chp03.rivers_clipped_by_country AS

 SELECT r.name, c.iso2, ST_Intersection(r.the_geom,
 c.the_geom)::geometry(Geometry,4326) AS the_geom
 FROM chp03.countries AS c

 JOIN chp03.rivers AS r

 ON ST_Intersects(r.the_geom, c.the_geom);

2.	 Create a directory named rivers, as follows:
mkdir working/chp03/rivers

3.	 Create the following scripts to export a rivers shapefile for each country.

The following is the Linux version (name it export_rivers.sh):

#!/bin/bash
for f in `ogrinfo PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" -sql "SELECT DISTINCT(iso2) FROM chp03.
countries ORDER BY iso2" | grep iso2 | awk '{print $4}'`
do
 echo "Exporting river shapefile for $f country..."
 ogr2ogr rivers/rivers_$f.shp PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" -sql "SELECT * FROM chp03.rivers_
clipped_by_country WHERE iso2 = '$f'"
done

The following is the Windows version (name it export_rivers.bat):

FOR /F "tokens=*" %%f IN ('ogrinfo PG:"dbname=postgis_cookbook
user=me password=mypassword" -sql "SELECT DISTINCT(iso2) FROM
chp03.countries ORDER BY iso2" ^| grep iso2 ^| awk "{print $4}"')
DO (
 echo "Exporting river shapefile for %%f country..."
 ogr2ogr rivers/rivers_%%f.shp PG:"dbname='postgis_cookbook'
user='me' password='mypassword'" -sql "SELECT * FROM chp03.rivers_
clipped_by_country WHERE iso2 = '%%f'"
)

Working with Vector Data – The Basics

118

For Windows users
The script uses the grep and awk Linux commands, so you will need
to download their Windows versions from http://unxutils.
sourceforge.net/. There's the chance that you already have them
installed in your system if you have installed OSGeo4W—a binary distribution
of a broad set of open-source, geospatial software for Win32 environments.
You can find it at http://trac.osgeo.org/osgeo4w/.

You could eventually skip the creation of the rivers_clipped_by_
country view and perform the query in the ogr2ogr statement in the
script, as shown in the following command (ogr2ogr passes the content of
the -sql option directly to PostGIS):
ogr2ogr rivers/rivers_$f.shp PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" -sql "SELECT
r.name, c.iso2, ST_Intersection(r.the_geom, c.the_geom)
AS the_geom FROM chp03.countries AS c JOIN chp03.rivers
AS r ON ST_Intersects(r.the_geom, c.the_geom) WHERE
c.iso2 = '$f'"

4.	 Now, run the following script (in Linux, you need to assign execute permissions to
the script beforehand):
$ chmod 775 rivers.sh

$./export_rivers.sh

Exporting river shapefile for AD country...

Exporting river shapefile for AE country...

...
Exporting river shapefile for ZM country...

Exporting river shapefile for ZW country...

5.	 Check the output with ogrinfo or a Desktop GIS. The following screenshot shows
how the output looks in QGIS; we have added the original PostGIS chp03.rivers
layer and a couple of the generated shapefiles:

Chapter 3

119

How it works...
You can use the ST_Intersection function to clip one dataset from another. In this
recipe, you first created a view, where you performed a spatial join between a polygonal layer
(countries) and a linear layer (rivers) using the ST_Intersects function. In the context of the
spatial join, you have used the ST_Intersection function to generate a clip of the rivers in
every country.

You have then created a bash script in which you iterated every single country and pulled out
to a shapefile the clipped rivers for that country using ogr2ogr and the previously created
view as the input layer.

For iterating the countries in the script, you have been using ogrinfo with the -sql option,
using a SQL SELECT DISTINCT statement. You have used a combination of the grep and
awk Linux commands, piped together to get every single country code. The grep command
is a utility for searching plain-text datasets for lines matching a regular expression, while awk
is an interpreted programming language designed for text processing and typically used as a
data extraction and reporting tool.

Working with Vector Data – The Basics

120

Simplifying geometries with PostGIS
topology

In a previous recipe, we used the ST_SimplifyPreserveTopology function to try to
generate a simplification of a polygonal PostGIS layer.

Unfortunately, while that function works well for linear layers, it produces topological
anomalies (overlapping and holes) in shared polygon borders. You used an external toolset
(GRASS) to generate a valid topological simplification.

In this recipe, you will use the PostGIS topology support to perform the same task within the
spatial database without needing to export the dataset to a different toolset.

Getting ready
To get started, follow the ensuing steps:

1.	 Be sure that you have the PostGIS topology support enabled in your database
instance. This support is packaged as a separate extension and, if you are using
PostgreSQL 9.1 or newer versions, you can install it using the following SQL CREATE
EXTENSION command:
postgis_cookbook=# CREATE EXTENSION postgis_topology;

2.	 Download the administrative area archive for Hungary from the gadm.org website at
http://gadm.org/country (or use the copy included in the code bundle provided
with this book).

3.	 Extract the HUN_adm1.shp shapefile from the archive to your working directory,
working/chp03.

4.	 Import the shapefile to PostGIS using a tool such as ogr2ogr or shp2pgsql,
as follows:
ogr2ogr -f PostgreSQL -t_srs EPSG:3857 -nlt MULTIPOLYGON -lco
GEOMETRY_NAME=the_geom -nln chp03.hungary PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" HUN_adm1.shp

5.	 After the import process is completed, you can check the count using the
following command; note that this spatial table consists of 20 multipolygons,
each representing one administrative area in Hungary:

 postgis_cookbook=# SELECT COUNT(*) FROM chp03.hungary;
 count

 20
(1 row)

Chapter 3

121

How to do it...
The steps you need to perform to complete this recipe are as follows:

1.	 All functions and tables associated with the topology module are installed in a
schema named topology, so let's add it to the search path to avoid prefixing it
before every topology function or object:
postgis_cookbook=# SET search_path TO chp03, topology, public;

2.	 Now, you will use the CreateTopology function to create a new topology schema
named hu_topo, in which you will import the 20 administrative areas from the
hungary table. In PostGIS topology, all of the topology entities and relations needed
for one topology schema are stored in a single PostgreSQL schema using the
same spatial references system. You will name this schema hu_topo and use
the EPSG:3857 spatial reference (the one used in the original shapefile):
postgis_cookbook=# SELECT CreateTopology('hu_topo', 3857);

3.	 Note how a record has been added to the topology.topology table:
postgis_cookbook=# SELECT * FROM topology.topology;

 id | name | srid | precision | hasz

----+-------------------+------+-----------+------

 1 | hu_regions_topo | 3857 | 0 | f

(1 rows)

4.	 Also note that four tables and one view that are needed for storing and managing
the topology have been generated in the schema named hu_topo, created from
the CreateTopology function:
postgis_cookbook=# \dtv hu_topo.*

 List of relations

 Schema | Name | Type | Owner

---------+-----------+-------+------

 hu_topo | edge | view | me

 hu_topo | edge_data | table | me

 hu_topo | face | table | me

 hu_topo | node | table | me

 hu_topo | relation | table | me

(5 rows)

Working with Vector Data – The Basics

122

5.	 Check the initial information for the created topology using the topologysummary
function, as follows; all of the topologic entities (nodes, edges, faces, and so on) are
still not initialized:
postgis_cookbook=# SELECT topologysummary('hu_topo');
 topologysummary

--

 Topology hu_topo (1), SRID 3857, precision 0 +

 0 nodes, 0 edges, 0 faces, 0 topogeoms in 0 layers+

(1 row)

6.	 Create a new PostGIS table for storing the topological administrative boundaries,
as follows:
postgis_cookbook=# CREATE TABLE chp03.hu_topo_polygons(gid serial
primary key, name_1 varchar(75));

7.	 Add a topological geometry column to this table using the AddTopoGeometryColumn
function:
postgis_cookbook=# SELECT AddTopoGeometryColumn('hu_topo',
'chp03', 'hu_topo_polygons', 'the_geom_topo', 'MULTIPOLYGON') As
layer_id;

8.	 Insert the polygons from the nontopological hungary spatial table to the topological
table, using the toTopoGeom function, as follows:
postgis_cookbook=> INSERT INTO chp03.hu_topo_polygons(name_1, the_
geom_topo)

 SELECT name_1, toTopoGeom(the_geom, 'hu_topo', 1)

 FROM chp03.hungary;

 Query returned successfully: 20 rows affected, 10598 ms
execution time.

9.	 Now, run the following code to check out how the content of the topology schema has
been modified by the toTopoGeom function; you would expect to have 20 faces, one
for each Hungarian administrative area; but instead, there are 97:
postgis_cookbook=# SELECT topologysummary('hu_topo');

 topologysummary

--

 Topology hu_topo (1), SRID 3857, precision 0 +

 209 nodes, 304 edges, 97 faces, 60 topogeoms in 1 layers+

 Layer 1, type Polygonal (3), 60 topogeoms +

 Deploy: chp03.hu_topo_polygons.the_geom_topo +

Chapter 3

123

10.	 The problem is easily identifiable by analyzing the hu_topo.face table or using
a Desktop GIS. If you sort the polygons from this table by area, using the ST_Area
function, you will notice after the details of the first polygon, which has one null
area (used by the topology screenshot in the next step) and 20 large areas (each
representing one administrative area), that there are 77 very small polygons
generated by topological anomalies (polygon overlaps and holes):
postgis_cookbook=# SELECT row_number() OVER (ORDER BY ST_Area(mbr)
DESC) as rownum, ST_Area(mbr)/100000 AS area FROM hu_topo.face
ORDER BY area DESC;
 rownum | area
------------+--------------------
 1 |
 2 | 366365.476705923
 3 | 313236.739489454
...
 21 | 20662.4948917497
 22 | 8.12994437170007
 23 | 6.72174611815608
...
 97 | 0.0164102556404216
 98 | 0.014788623905157
(98 rows)

11.	 You can eventually look at the built topology elements (nodes, edges, faces, and
topogeoms) using a Desktop GIS. The following screenshot shows how they look
in QGIS:

Working with Vector Data – The Basics

124

12.	 Now, you will rebuild the topology using a small tolerance value—1 meter—as an
additional parameter to the CreateTopology function, in order to get rid of the
unnecessary faces (the tolerance will collapse the vertex together, eliminating the
small polygons). First, drop your topology schema with the DropTopology function,
and the topological table with the DROP TABLE command, and rebuild both of them
using a topology tolerance of 1 meter, as follows:
postgis_cookbook=# SELECT DropTopology('hu_topo');

postgis_cookbook=# DROP TABLE chp03.hu_topo_polygons;

postgis_cookbook=# SELECT CreateTopology('hu_topo',
 3857, 1);

postgis_cookbook=# CREATE TABLE chp03.hu_topo_polygons(
 gid serial primary key, name_1 varchar(75));

postgis_cookbook=# SELECT AddTopoGeometryColumn('hu_topo',
 'chp03', 'hu_topo_polygons', 'the_geom_topo',
 'MULTIPOLYGON') As layer_id;

postgis_cookbook=# INSERT INTO chp03.hu_topo_polygons(name_1, the_
geom_topo)

 SELECT name_1, toTopoGeom(the_geom, 'hu_topo', 1)

 FROM chp03.hungary;

13.	 Now, if you check the information related to the topology using the
topologysummary function as follows, you can see that there is one face per
administrative boundary and the previous 77 faces generated by topological
anomalies have been eliminated:
postgis_cookbook=# SELECT topologysummary('hu_topo');

 topologysummary

--

 Topology hu_topo (2), SRID 3857, precision 1 +

 52 nodes, 70 edges, 20 faces, 20 topogeoms in 1 layers+

 Layer 1, type Polygonal (3), 20 topogeoms +

 Deploy: chp03.hu_topo_polygons.the_geom_topo +

(1 row)

14.	 Finally, simplify the polgyons of the topo_polygons table using a tolerance of 500
meters, as follows:
postgis_cookbook=# SELECT ST_ChangeEdgeGeom('hu_topo',
 edge_id, ST_SimplifyPreserveTopology(geom, 500))

 FROM hu_topo.edge;

Chapter 3

125

15.	 Now, it's time to update the original hungary table using a join with the
hu_topo_polygons table by running the following commands:
postgis_cookbook=# UPDATE chp03.hungary hu

 SET the_geom = hut.the_geom_topo

 FROM chp03.hu_topo_polygons hut

 WHERE hu.name_1 = hut.name_1;

16.	 The simplification process should have worked smoothly and produced a valid
topological dataset. The following screenshot shows how this looks:

How it works...
We created a new PostGIS topology schema using the CreateTopology function. This
function creates a new PostgreSQL schema where all of the topological entities are stored.

We can have more topological schemas within the same spatial database, each being
contained in a different PostgreSQL schema. The PostGIS topology.topology table
manages all of the metadata for all of the topological schemas.

Each topological schema is composed of a series of tables and views to manage the
topological entities (such as edge, edge_data, face, node, and topogeoms) and their relations.

Working with Vector Data – The Basics

126

We can have a quick look at the description of a single topological schema using the
topologysummary function, which summarizes the main metadata information—name,
SRID, precision; the number of nodes, edges, faces, topogeoms, and topological layers;
and, for each topological layer, the geometry type and the number of topogeoms.

After creating the topology schema, we created a new PostGIS table and added to
it a topological geometry column (topogeom in PostGIS topology jargon) using the
AddTopoGeometryColumn function.

We then used the ST_ChangeEdgeGeom function to alter the geometries for the topological
edges, using the ST_SimplifyPreserveTopology function with a tolerance of 500
meters, and checked that this function, used in the context of a topological schema,
produces topologically correct results for polygons, too.

4
Working with Vector

Data – Advanced
Recipes

In this chapter, we will cover:

ff Improving proximity filtering with KNN

ff Improving proximity filtering with KNN – advanced

ff Rotating geometries

ff Improving ST_Polygonize

ff Translating, scaling, and rotating geometries – advanced

ff Generating detailed building footprints from LiDAR

ff Using external scripts to embed new functionality in order to calculate a
Voronoi diagram

ff Using external scripts to embed other libraries in order to calculate a Voronoi
diagram – advanced

Introduction
Beyond being a spatial database with the capacity to store and query spatial data, PostGIS
is a very powerful analytical tool. What this means to the user is a tremendous capacity to
expose and encapsulate deep spatial analyses right within a PostgreSQL database.

Working with Vector Data – Advanced Recipes

128

The recipes in this chapter can roughly be divided into three main sections:

ff Highly optimized queries::

�� Improving proximity filtering with KNN

�� Improving proximity filtering with KNN – advanced

ff Using the database to create and modify geometries:

�� Rotating geometries

�� Improving ST_Polygonize

�� Translating, scaling, and rotating geometries – advanced

�� Detailed Building Footprints from LiDAR

ff Using external libraries to aid advanced analyses:

�� Using external scripts to embed new functionality in order to calculate a
Voronoi diagram

�� Using external scripts to embed other libraries in order to calculate a Voronoi
diagram – advanced

Improving proximity filtering with KNN
The basic question that we seek to answer in this recipe is the fundamental distance
question, "Which are the closest (name what you are searching for) to me?", for example,
"Which are the five coffee shops closest to me?" It turns out that while it is a fundamental
question, it's not always easy to answer, though we will make this possible in this recipe. We
will approach this with two approaches. The first way in which we'll approach this is in a simple
heuristic, which will allow us to come to a solution quickly. Then, we'll take advantage of the
deeper PostGIS functionality to make the solution faster and more general with a K-Nearest
Neighbor (KNN) approach.

A concept that we need to understand from the outset is that of a spatial index. A spatial
index, like other database indexes, functions like a book index. It is a special construct to
make looking for things inside our table easier, much in the way a book index helps us find
content in a book faster. In the case of a spatial index, it helps us find faster where things are
in space. Therefore, by using a spatial index in our geographic searches, we can speed up our
searches by many orders of magnitude.

To learn more about spatial indexes, see http://en.wikipedia.org/
wiki/Spatial_index#Spatial_index.

Chapter 4

129

Getting ready
We will start by loading our data. Our data are the address records from Cuyahoga County,
Ohio, USA.

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom CUY_ADDRESS_POINTS
chp04.knn_addresses | psql -U me -d postgis_cookbook

As this dataset may take a while to load, you can alternatively load a subset.

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom CUY_ADDRESS_POINTS_
subset chp04.knn_addresses | psql -U me -d postgis_cookbook

We specified the -I flag in order to request a spatial index be created upon the import of
this data.

Let us start by seeing how many records we are dealing with:

SELECT COUNT(*) FROM chp04.knn_addresses;

--484958

We have, in this address table, almost half a million address records, which is not an
insubstantial number against which to perform a query.

How to do it...
KNN is an approach to searching for an arbitrary number of points closest to a given point.
Without the right tools, this can be a very slow process that requires testing the distance
between the point of interest and all the possible neighbors. The problem with this approach
is that the search becomes exponentially slower as the number of points increases. Let's start
with this naïve approach and then improve upon it.

Suppose we were interested in finding 10 records closest to the geographic location,
-81.738624, 41.396679. The naïve approach would be to transform this value into our local
coordinate system and compare the distance to each point in the database from the search
point, order those values by distance, and limit the search to the first 10 closest records (it is
not recommended that you run the following query—it could run indefinitely)

SELECT ST_Distance(searchpoint.the_geom, addr.the_geom) AS dist, * FROM

 chp04.knn_addresses addr,

 (SELECT ST_Transform(ST_SetSRID(ST_MakePoint(-81.738624, 41.396679),
4326), 3734) AS the_geom) searchpoint

 ORDER BY ST_Distance(searchpoint.the_geom, addr.the_geom)

 LIMIT 10;

Working with Vector Data – Advanced Recipes

130

This is a fine approach for smaller datasets. This is a logical, simple, fast approach for
relatively small numbers of records. This approach scales very poorly, however, getting
exponentially slower with the addition of records, and with 500,000 points, this would
take a very long time.

An alternative is to only compare my point to the ones I know are close by setting a search
distance. So, for example, in the following diagram, we have a star that represents my current
location, and I want to know the 10 closest addresses. The grid in the diagram is a 100 foot
grid, so I can search for the points within 200 feet, then measure the distance to each of
these points, and return the closest 10 points to my search location.

So far, our approach to answering this question is to limit the search using the ST_DWithin
operator to only search for records within a certain distance. ST_DWithin uses our spatial
index, so the initial distance search is fast and the list of returned records should be short
enough to do the same pair-wise distance comparison we did earlier in this section. In our
case here, we could limit the search to within 200 feet as follows.

SELECT ST_Distance(searchpoint.the_geom, addr.the_geom) AS dist, * FROM

 chp04.knn_addresses addr,

 (SELECT ST_Transform(ST_SetSRID(ST_MakePoint(-81.738624, 41.396679),
4326), 3734) AS the_geom) searchpoint

 WHERE ST_DWithin(searchpoint.the_geom, addr.the_geom, 200)

 ORDER BY ST_Distance(searchpoint.the_geom, addr.the_geom)

 LIMIT 10;

Chapter 4

131

This approach performs well so long as our search window, ST_DWithin, is the right size for
the data. The problem with this approach is that, in order to optimize it, we need to know how
to set a search window that is about the right size. Any larger than the right size and the query
will run more slowly than we'd like. Any smaller than the right size and we might not get all the
points back that we need. Inherently, we don't know this ahead of time, so we can only hope
for the best guess.

In this same dataset, if we apply the same query in another location, the output will return no
points because the 10 closest points are further than 200 feet away. We can see this in the
following diagram:

Fortunately, for PostGIS 2.0, we can leverage the distance operators (<-> and <#>) to do
indexed nearest-neighbor searches. This makes for very fast KNN searches that don't require
us to guess ahead of time how far away we need to search. Why are the searches fast? The
spatial index helps, of course, but in the case of the distance operator, we are using the
structure of the index itself, which is hierarchical, to very quickly sort our neighbors.

When used in an ORDER BY clause, the distance operator uses the index:

SELECT ST_Distance(searchpoint.the_geom, addr.the_geom) AS dist, * FROM

 chp04.knn_addresses addr,

 (SELECT ST_Transform(ST_SetSRID(ST_MakePoint(-81.738624, 41.396679),
4326), 3734) AS the_geom) searchpoint

 ORDER BY addr.the_geom <-> searchpoint.the_geom

 LIMIT 10;

Working with Vector Data – Advanced Recipes

132

This approach requires no a priori knowledge of how far the nearest neighbors might be. It
also scales very well, returning thousands of records in not more than the time it takes to
return a few records. It is sometimes slower than using ST_DWithin, depending on how
small our search distance is and how large the dataset we are dealing with. But the tradeoff is
that we don't need to make a guess as to our correct search distance and for large queries, it
can be much faster than the naïve approach.

How it works...
What makes this magic possible is that PostGIS uses an R-Tree index. This means that the
index itself is sorted hierarchically based on spatial information. As demonstrated, we can
leverage the structure of the index in sorting distances from a given arbitrary location and,
thus, use the index to directly return the sorted records. This means that the structure of the
spatial index itself helps us answer such fundamental questions quickly and inexpensively.

More information about KNN and R-tree can be found at http://
workshops.boundlessgeo.com/postgis-intro/knn.html
and https://en.wikipedia.org/wiki/R-tree.

See also
ff The Improving proximity filtering with KNN – advanced recipe

Improving proximity filtering with
KNN – advanced

In the preceding recipe, we wanted to answer the simple question of which are the nearest
10 locations to a given point, a simple question with a surprisingly sophisticated answer.
Now that we have addressed the preceding question, the question is how do we approach
this problem when we want to traverse an entire dataset and test each record for its
nearest neighbors?

Our problem is as follows: for each point in our table, we are interested in the angle to the
nearest object in another table. A case demonstrating this scenario is if we want to represent
address points as building-like squares rotated to align with an adjacent road, similar to
the historic United States Geological Survey (USGS) quadrangle maps, as shown in the
following screenshot:

Chapter 4

133

For larger buildings, USGS Quads show the buildings' footprints but, for residential buildings
below their minimum threshold, the points are just rotated squares—a nice cartographic effect
that could easily be replicated with address points.

Getting ready
As in the previous recipe, we will start off by loading our data. Our data are the address
records from Cuyahoga County, Ohio, USA. If you have not loaded the data yet, run the
following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom CUY_ADDRESS_POINTS
chp04.knn_addresses | psql -U me -d postgis_cookbook

As this dataset may take a while to load, you can alternatively load a subset using the
following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom CUY_ADDRESS_POINTS_
subset chp04.knn_addresses | psql -U me -d postgis_cookbook

Working with Vector Data – Advanced Recipes

134

If you loaded this in the previous recipe, there is no need to reload the data. The address
points will serve as a proxy for our building structures. However, to align our structure to the
nearby streets, we will need a streets layer. We will use Cuyahoga County's street centerline
data for this:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom CUY_STREETS chp04.knn_
streets | psql -U me -d postgis_cookbook

Before we commence, however, we have to consider another aspect of using indexes, which
we need not have considered in our previous KNN recipe. When our KNN approach used only
points, our indexing was exact—the bounding box of a point is effectively a point. As bounding
boxes are what indexes are built around, our indexing estimates of distance perfectly
reflected the actual distances between our points. In the case of nonpoint geometries, as
is our example here, the bounding box is an approximation of the lines to which we will be
comparing our points. Put another way, what this means is that our nearest neighbor may not
be our very nearest neighbor, but is likely our approximately nearest neighbor, or one of our
nearest neighbors.

In practice, we apply a heuristic approach—we simply gather slightly more than the number
of nearest neighbors we are interested in and then sort them based on the actual distance in
order to gather only the number we are interested in. In this way, we only need to sort a small
number of records.

How to do it...
Insofar as KNN is a nuanced approach to these problems, forcing KNN to run on all the
records in a dataset takes what I like to call a venerable and age-old approach. In other
words, it requires a bit of a hack.

More on the general solution to using KNN within a function can be found in
Alexandre Neto's post on the PostGIS users list at the following link:
http://lists.osgeo.org/pipermail/postgis-users/2012-
May/034017.html

In SQL, of course, the typical way to loop is to use a SELECT statement. For our case, we don't
have a function that does KNN looping; we simply have an operator that allows us to efficiently
order our returning records by distance from a given record. The workaround is to write a
temporary function and, thus, be able to use SELECT to loop through the records for us. The
cost is the creation and deletion of the function, plus the work done by the query, and the
combination of costs is well worth the "hackiness" of the approach.

Chapter 4

135

First, consider the following function:

CREATE OR REPLACE FUNCTION chp04.angle_to_street (geometry) RETURNS
double precision AS $$

WITH index_query as

 (SELECT ST_Distance($1,road.the_geom) as dist,

 degrees(ST_Azimuth($1, ST_
ClosestPoint(road.the_geom, $1))) as azimuth

 FROM chp04.knn_streets As road

 ORDER BY $1 <#> road.the_geom limit 5)

SELECT azimuth

 FROM index_query

 ORDER BY dist

LIMIT 1;

$$ LANGUAGE SQL;

Now, we can use this function quite easily:

CREATE TABLE chp04.knn_address_points_rot AS

 SELECT addr.*, chp04.angle_to_street(addr.the_geom)

 FROM

 chp04.knn_addresses addr;

If you have loaded the whole address dataset, this will take a while.

If we choose to, we can optionally drop the function so that extra functions are not left in
our database.

DROP FUNCTION chp04.angle_to_street (geometry);

Working with Vector Data – Advanced Recipes

136

If we render this with rotation in a desktop package such as Quantum GIS (QGIS), we will get a
pleasant effect shown as follows:

How it works...
Our function is simple, KNN magic aside. As an input to the function, we allow geometry as
shown in the following code:

CREATE OR REPLACE FUNCTION chp04.angle_to_street (geometry) RETURNS
double precision AS $$

The preceding function returns a floating-point value.

We then use a WITH statement to create a temporary table that returns the five closest lines
to our point of interest. Remember, as the index uses bounding boxes, we don't really know
which line is the very closest, so we gather a few extra points and then filter them based on
distance. This idea is implemented in the following query:

WITH index_query as

 (SELECT ST_Distance($1,road.geom) as dist,

 degrees(ST_Azimuth($1, ST_
ClosestPoint(road.geom, $1))) as azimuth

 FROM street_centerlines As road

 ORDER BY $1 <#> road.geom LIMIT 5)

Chapter 4

137

Note that we are actually returning two columns. The first column is dist in which we
calculate the distance to the nearest five road lines. Note that this operation is performed
after the ORDER BY and LIMIT functions have been used as filters, so this does not take
much computation. Then, we use ST_Azimuth to calculate the angle from our point to the
closest points (ST_ClosestPoint) on each of our nearest five lines. In summary, what
returns with our temporary index_query table is the distance to the nearest five lines and
the respective rotation angles to the nearest five lines.

If we recall, however, we were not looking for the angle to the nearest five but to the true
nearest road line. For this, we order the results by distance and further use LIMIT 1:

SELECT azimuth

 FROM index_query

 ORDER BY dist

 LIMIT 1;

See also
ff The Improving proximity filtering with KNN recipe

Rotating geometries
Among the many functions that PostGIS provides, geometry manipulation is a very powerful
addition. In this recipe, we will explore a simple example of using the ST_Rotate function
to rotate geometries. We will use a function from the Improving proximity filtering with KNN –
advanced recipe to calculate our rotation values.

Getting ready
ST_Rotate has a few variants: ST_RotateX, ST_RotateY, and ST_RotateZ, with the
ST_Rotate function serving as an alias for ST_RotateZ. Thus, for two-dimensional cases,
ST_Rotate is a typical use case.

In the Improving proximity filtering with KNN – advanced recipe, our function calculated the
angle to the nearest road from a building's centroid or address point. We can symbolize that
building's point according to that rotation factor as a square symbol but, more interestingly, we
can explicitly build the area of that footprint in real space and rotate it to match our calculated
rotation angle.

Working with Vector Data – Advanced Recipes

138

How to do it...
Recall our function from the Improving proximity filtering with KNN – advanced recipe:

CREATE OR REPLACE FUNCTION chp04.angle_to_street (geometry) RETURNS
double precision AS $$

WITH index_query as

 (SELECT ST_Distance($1,road.the_geom) as dist,

 degrees(ST_Azimuth($1, ST_
ClosestPoint(road.the_geom, $1))) as azimuth

 FROM chp04.knn_streets As road

 ORDER BY $1 <#> road.the_geom limit 5)

SELECT azimuth

 FROM index_query

 ORDER BY dist

LIMIT 1;

$$ LANGUAGE SQL;

This function will calculate the geometry's angle to the nearest road line. Now, to construct
geometries using this calculation, run the following function:

CREATE TABLE chp04.tsr_building AS

SELECT ST_Rotate(ST_Envelope(ST_Buffer(the_geom, 20)), radians(90 -
chp04.angle_to_street(addr.the_geom)), addr.the_geom)

 AS the_geom FROM

 chp04.knn_addresses addr

 LIMIT 500

;

How it works...
In the first step, we are taking each of the points and first applying a buffer to them of 20 feet:

ST_Buffer(the_geom, 20)

Chapter 4

139

Then, we calculate the envelope of the buffer, providing us with a square around that
buffered area. This is a quick and easy way to create a square geometry of a specified
size from a point:

ST_Envelope(ST_Buffer(the_geom, 20))

Finally, we use ST_Rotate to rotate the geometry to the appropriate angle. Here is where the
query becomes harder to read. The ST_Rotate function takes three arguments:

ST_Rotate(geometry to rotate, angle, origin around which to rotate)

The geometry we are using is the newly calculated square. The angle is the one we calculate
using our chp04.angle_to_street function. Finally, the origin around which we rotate is
the input point itself, resulting in the following portion of our query:

ST_Rotate(ST_Envelope(ST_Buffer(the_geom, 20)), radians(90 -chp04.angle_
to_street(addr.the_geom)), addr.the_geom);

This gives us some really nice cartography as shown in the following screenshot:

See also
ff The Improving proximity filtering with KNN – advanced recipe

ff The Translating, scaling, and rotating geometries – advanced recipe

Working with Vector Data – Advanced Recipes

140

Improving ST_Polygonize
In this short recipe, we will be using a common coding pattern, in use when geometries are
being constructed with ST_Polygonize, and formalizing it into a function for re-use.

ST_Polygonize is a very useful function. Pass a set of "unioned" lines or an array of lines to
ST_Polygonize, and the function will construct polygons from the input. ST_Polygonize
does so aggressively insofar as it will construct all possible polygons from the inputs. One
frustrating aspect of the function, however, is that it does not return a multipolygon, but
instead returns a GeometryCollections. GeometryCollections can be problematic in
third-party tools for interacting with PostGIS as so many third-party tools don't have
mechanisms in place for recognizing and displaying GeometryCollections.

The pattern we will formalize here is the commonly recommended approach for changing
GeometryCollections into mulipolygons when it is appropriate to do so. This approach will be
useful not only for ST_Polygonize, which we will use in the subsequent recipe, but can
also be adapted for other cases where a function returns GeometryCollections that are, for
all practical purposes, multipolygons. Hence, this is why it merits its own dedicated recipe.

Getting ready
The basic pattern for handling GeometryCollections is to use ST_Dump to convert them
to a dump type, extract the geometry portion of the dump, collect the geometry, and then
convert this collection into a multipolygon. The dump type is a special PostGIS type that is a
combination of the geometries and an index number for the geometries. It's typical to use
ST_Dump to convert from a GeometryCollection to a dump type and then do further
processing on the data from there. Rarely is a dump object used directly, but it is
typically an intermediate type of data.

How to do it...
We expect this function to take a geometry and return a geometry:

CREATE OR REPLACE FUNCTION chp04.polygonize_to_multi (geometry) RETURNS
geometry AS $$

For readability, we will use a WITH statement to construct the series of transformations of
geometry. First, we will polygonize:

 WITH polygonized AS (

 SELECT ST_Polygonize($1) AS the_geom

),

Chapter 4

141

Then, we will dump:

 dumped AS (

 SELECT (ST_Dump(the_geom)).geom AS the_geom FROM

 polygonized

)

Now, we can collect and construct a multipolygon from our result:

 SELECT ST_Multi(ST_Collect(the_geom)) FROM

 dumped

;

Put together into a single function:

CREATE OR REPLACE FUNCTION chp04.polygonize_to_multi (geometry) RETURNS
geometry AS $$

 WITH polygonized AS (

 SELECT ST_Polygonize($1) AS the_geom

),

 dumped AS (

 SELECT (ST_Dump(the_geom)).geom AS the_geom FROM

 polygonized

)

 SELECT ST_Multi(ST_Collect(the_geom)) FROM

 dumped

;

$$ LANGUAGE SQL;

Now, we can polygonize directly from a set of closed lines and skip the typical intermediate
step when we use the ST_Polygonize function of having to handle a GeometryCollection.

See also
ff The Translating, scaling, and rotating geometries – advanced recipe

Working with Vector Data – Advanced Recipes

142

Translating, scaling, and rotating
geometries – advanced

Often, in a spatial database, we are interested in making explicit the representation of
geometries that are implicit in the data. In the example that we will use here, the explicit portion
of the geometry is a single-point coordinate where a field survey plot has taken place. In the
following screenshot, this explicit location is the red dot. The implicit geometry is the actual
extent of the field survey, which includes 10 subplots arranged in a 5 x 2 array and rotated
according to a bearing. These subplots are the purple squares in the following screenshot:

Getting ready
There are a number of ways for us to approach this problem. In the interest of simplicity,
we will first construct our grid and then rotate it in place. Also, we could, in principle, use
an ST_Buffer function in combination with ST_Extent to construct the squares in our
resultant geometry. But, as ST_Extent uses floating-point approximations of the geometry
for efficiency sake, this could result in some mismatches at the edges of our subplots.

The approach we will use for the construction of the subplots is to construct the grid with a
series of ST_MakeLine and use ST_Union to flatten or node the results. This ensures that
we have all of our lines properly intersecting each other. ST_Polygonize will then construct
our multipolygon geometry for us. We will leverage this function through our wrapper from the
Improving ST_Polygonize recipe.

Our plots are 10 units on a side, in a 5 x 2 array. As such, we can imagine a function to which
we pass our plot origin, and the function returns a multipolygon of all the subplot geometries.
One additional element to consider is that the orientation of the layout of our plots is rotated
to a bearing. We expect the function to actually use two inputs, so origin and rotation will be
the variables that we will pass to our function.

Chapter 4

143

How to do it...
We can consider geometry and a float value as the inputs, and we want the function to
return geometry:

CREATE OR REPLACE FUNCTION chp04.create_grid (geometry, float) RETURNS
geometry AS $$

In order to construct the subplots, we will require three lines running parallel to the x axis:

WITH middleline AS (
 SELECT ST_MakeLine(ST_Translate($1, -10, 0), ST_Translate($1,
40.0, 0)) AS the_geom
),
 topline AS (
 SELECT ST_MakeLine(ST_Translate($1, -10, 10.0), ST_Translate($1,
40.0, 10)) AS the_geom
),
 bottomline AS (
 SELECT ST_MakeLine(ST_Translate($1, -10, -10.0), ST_Translate($1,
40.0, -10)) AS the_geom
),

And, we will require six lines running parallel to the y axis:
 oneline AS (
 SELECT ST_MakeLine(ST_Translate($1, -10, 10.0), ST_Translate($1,
-10, -10)) AS the_geom
),
 twoline AS (
 SELECT ST_MakeLine(ST_Translate($1, 0, 10.0), ST_Translate($1, 0,
-10)) AS the_geom
),
 threeline AS (
 SELECT ST_MakeLine(ST_Translate($1, 10, 10.0), ST_Translate($1,
10, -10)) AS the_geom
),
 fourline AS (
 SELECT ST_MakeLine(ST_Translate($1, 20, 10.0), ST_Translate($1,
20, -10)) AS the_geom
),
 fiveline AS (
 SELECT ST_MakeLine(ST_Translate($1, 30, 10.0), ST_Translate($1,
30, -10)) AS the_geom
),
 sixline AS (
 SELECT ST_MakeLine(ST_Translate($1, 40, 10.0), ST_Translate($1,
40, -10)) AS the_geom
),

Working with Vector Data – Advanced Recipes

144

To use these for polygon construction, we will require them to have nodes where they cross
and touch. A UNION ALL function will combine these lines in a single record; ST_Union
will provide the geometric processing necessary to construct the nodes of interest and will
combine our lines into a single entity ready for chp04.polygonize_to_multi:

 combined AS (

 SELECT ST_Union(the_geom) AS the_geom FROM

 (

 SELECT the_geom FROM middleline

 UNION ALL

 SELECT the_geom FROM topline

 UNION ALL

 SELECT the_geom FROM bottomline

 UNION ALL

 SELECT the_geom FROM oneline

 UNION ALL

 SELECT the_geom FROM twoline

 UNION ALL

 SELECT the_geom FROM threeline

 UNION ALL

 SELECT the_geom FROM fourline

 UNION ALL

 SELECT the_geom FROM fiveline

 UNION ALL

 SELECT the_geom FROM sixline

) AS alllines

)

But we have not created polygons yet, just lines. The final step, using our polygonize_to_
multi function finishes the work for us:

 SELECT chp04.polygonize_to_multi(ST_Rotate(the_geom, $2, $1)) AS
the_geom FROM combined

;

Chapter 4

145

The combined query is as follows:

CREATE OR REPLACE FUNCTION chp04.create_grid (geometry, float) RETURNS
geometry AS $$

 WITH middleline AS (

 SELECT ST_MakeLine(ST_Translate($1, -10, 0), ST_Translate($1,
40.0, 0)) AS the_geom

),

 topline AS (

 SELECT ST_MakeLine(ST_Translate($1, -10, 10.0), ST_Translate($1,
40.0, 10)) AS the_geom

),

 bottomline AS (

 SELECT ST_MakeLine(ST_Translate($1, -10, -10.0), ST_Translate($1,
40.0, -10)) AS the_geom

),

 oneline AS (

 SELECT ST_MakeLine(ST_Translate($1, -10, 10.0), ST_Translate($1,
-10, -10)) AS the_geom

),

 twoline AS (

 SELECT ST_MakeLine(ST_Translate($1, 0, 10.0), ST_Translate($1, 0,
-10)) AS the_geom

),

 threeline AS (

 SELECT ST_MakeLine(ST_Translate($1, 10, 10.0), ST_Translate($1,
10, -10)) AS the_geom

),

 fourline AS (

 SELECT ST_MakeLine(ST_Translate($1, 20, 10.0), ST_Translate($1,
20, -10)) AS the_geom

),

 fiveline AS (

 SELECT ST_MakeLine(ST_Translate($1, 30, 10.0), ST_Translate($1,
30, -10)) AS the_geom

),

 sixline AS (

Working with Vector Data – Advanced Recipes

146

 SELECT ST_MakeLine(ST_Translate($1, 40, 10.0), ST_Translate($1,
40, -10)) AS the_geom

),

 combined AS (

 SELECT ST_Union(the_geom) AS the_geom FROM

 (

 SELECT the_geom FROM middleline

 UNION ALL

 SELECT the_geom FROM topline

 UNION ALL

 SELECT the_geom FROM bottomline

 UNION ALL

 SELECT the_geom FROM oneline

 UNION ALL

 SELECT the_geom FROM twoline

 UNION ALL

 SELECT the_geom FROM threeline

 UNION ALL

 SELECT the_geom FROM fourline

 UNION ALL

 SELECT the_geom FROM fiveline

 UNION ALL

 SELECT the_geom FROM sixline

) AS alllines

)

 SELECT chp04.polygonize_to_multi(ST_Rotate(the_geom, $2, $1)) AS
the_geom FROM combined

;

$$ LANGUAGE SQL;

How it works...
This function, shown in the preceding section, essentially draws the geometry from a single
input point and rotation value. It does this using nine instances of ST_MakeLine. Typically,
one might use ST_MakeLine in combination with ST_MakePoint to accomplish this. We
bypass this need, however, by having the function consume a point geometry as an input. We
can, therefore, use ST_Translate to move this point geometry to the endpoints of the lines
of interest in order to construct our lines with ST_MakeLine.

Chapter 4

147

One final step, of course, is to test the use of our new geometry constructing function:

CREATE TABLE chp04.tsr_grid AS

-- embed inside the function

 SELECT chp04.create_grid(ST_SetSRID(ST_MakePoint(0,0), 3734), 0) AS
the_geom

 UNION ALL

 SELECT chp04.create_grid(ST_SetSRID(ST_MakePoint(0,100), 3734),
0.274352 * pi()) AS the_geom

 UNION ALL

 SELECT chp04.create_grid(ST_SetSRID(ST_MakePoint(100,0), 3734),
0.824378 * pi()) AS the_geom

 UNION ALL

 SELECT chp04.create_grid(ST_SetSRID(ST_MakePoint(0,-100), 3734),
0.43587 * pi()) AS the_geom

 UNION ALL

 SELECT chp04.create_grid(ST_SetSRID(ST_MakePoint(-100,0), 3734), 1 *
pi()) AS the_geom

;

Working with Vector Data – Advanced Recipes

148

See also
ff The Improving ST_Polygonize recipe

ff The Improving proximity filtering with KNN – advanced recipe

Detailed building footprints from LiDAR
Frequently, with spatial analyses, we receive data in one form that seems quite promising
but need it in another more extensive form. LiDAR is an excellent solution for such problems.
LiDAR data is laser-scanner either from an airborne platform, such as a fixed-wing plane or
helicopter, or from a ground unit. LiDAR devices typically return a cloud of points referencing
absolute or relative positions in space. As a raw dataset, they are often not as useful as they
are once they have been processed. Many LiDAR datasets are classified into land cover types.
So, a LiDAR dataset, in addition to having data that contains x, y, and z values for all the
points sampled across a space, will often contain LiDAR points that are classified as
ground, vegetation, tall vegetation, buildings, and so on.

As useful as this is, the data is intensive, that is, it has discreet points, rather than extensive,
as polygon representations of such data would be. This recipe was developed as a simple
method to use PostGIS to transform the intensive LiDAR samples of buildings into extensive
building footprints.

Chapter 4

149

Getting ready
The LiDAR dataset we will use is a 2006 collection, which was classified into ground, tall
vegetation (> 20 feet), buildings, and others. One characteristic of the analysis that follows is
that we assume the classification to be correct, and so we are not revisiting the quality of the
classification or attempting to improve it within PostGIS.

A characteristic of the LiDAR dataset is that a sample point exists for relatively flat surfaces
at approximately no fewer than 1 point for every 5 feet. This will inform how we manipulate
the data.

First, let us load our dataset using the following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom lidar_buildings chp04.
lidar_buildings | psql -U me -d postgis_cookbook

How to do it...
The simplest way to convert point data to polygon data would be to buffer the points by their
known separation:

ST_Buffer(the_geom, 5)

We can imagine, however, that such a simplistic approach might look strange:

Working with Vector Data – Advanced Recipes

150

As such, it would be good to perform a union of these geometries in order to dissolve the
internal boundaries.

ST_Union(ST_Buffer(the_geom, 5))

Now, we can see the start of some simple building footprints:

While this is marginally better, the result is quite "lumpy." We will use the ST_Simplify_
PreserveTopology function to simplify the polygons and then grab just the external ring
to remove the internal holes.

CREATE TABLE chp04.lidar_buildings_buffer AS

WITH lidar_query AS

(SELECT ST_ExteriorRing(ST_SimplifyPreserveTopology((ST_Dump(ST_Union(ST_
Buffer(the_geom, 5)))).geom, 10)) AS the_geom FROM

 chp04.lidar_buildings)

SELECT chp04.polygonize_to_multi(the_geom) AS the_geom from lidar_query;

Chapter 4

151

Now, we have simplified versions of our buffered geometries:

There are two things to note here. The larger the building, relative to the density of the
sampling, the better it looks. We might query to eliminate smaller buildings, which are likely
to degenerate when using this approach, depending on the density of our LiDAR data.

If we want to further improve upon this, we can refine our lines and make them orthogonal
(square up) using the in-progress project, pg-orthogonalize, which we might use in lieu
of the simplification step we covered in this section:

https://github.com/smathermather/pg-orthogonalize

How it works...
To put it informally, our buffering technique effectively lumps together or clusters adjacent
samples. This is possible only because we have regularly sampled data. But that is OK. The
density and scan patterns for the LiDAR data are typical of such datasets, so we can expect
this approach to be applicable to other datasets.

The ST_Union function converts these discreet buffered points into a single record with
dissolved internal boundaries. To complete the clustering, we simply need to use ST_Dump
to convert these boundaries back to discreet polygons such that we can utilize individual
building footprints. Finally, we simplify the pattern with ST_SimplifyPreserveTopology
and extract the external ring outside of these polygons, using ST_ExteriorRing, which
removes the holes inside the building footprints. Since ST_ExteriorRing returns a line,
we have to reconstruct our polygon. We use chp04.polygonize_to_multi, a function
we wrote in the Improving ST_Polygonize recipe to handle just such occasions.

Working with Vector Data – Advanced Recipes

152

Using external scripts to embed new
functionality in order to calculate a Voronoi
diagram

PostgreSQL provides a variety of ways to embed functionality that otherwise is not native to
either the database or the database extensions in use.

In our case, for the purposes of this recipe, we are interested in applying a space-filling
technique called a Voronoi diagram. The following screenshot shows a Voronoi diagram
generated from a set of address points. Note how the points from which the diagram was
generated are equidistant to the lines that divide them. Packed soap bubbles viewed from
above form a similar network of shapes.

Voronoi diagrams are a space-filling approach that is useful for a variety of spatial analysis
problems. We can use these to create space-filling polygons around points, the edges of which
are equidistant from all the surrounding points.

More information about Voronoi diagrams can be found at the following link:
http://en.wikipedia.org/wiki/Voronoi_diagram

Unfortunately, there is no native PostGIS function for generating Voronoi diagrams in stock
versions of PostGIS. But, with some creativity, we can still create a Voronoi diagram. We will
do so using a Python function adapted by Darrell Fuhriman and Carson Farmer and written by
Steven Fortune.

Chapter 4

153

Getting ready
The first step in this exercise is to download and load the function by Mr. Fuhriman. The code
can be accessed from the following address:

http://geogeek.garnix.org/2012/04/faster-voronoi-diagrams-in-postgis.
html

The first three lines of code are an example of the use of the function. We can comment these
out before running the SQL against our database.

/*CREATE OR REPLACE FUNCTION voronoi(table_name text) returns SETOF
record as $$

 SELECT * from voronoi($1, 'the_geom') as (id integer,the_geom
geometry);

$$ LANGUAGE SQL;

*/

And simply run this code against the database in question.

Now, we will create a small arbitrary point dataset to feed into our function around which to
calculate the Voronoi diagram.

DROP TABLE IF EXISTS chp04.voronoi_test_points;

CREATE TABLE chp04.voronoi_test_points

(

 x numeric,

 y numeric

)

WITH (OIDS=FALSE);

ALTER TABLE chp04.voronoi_test_points ADD COLUMN gid serial;

ALTER TABLE chp04.voronoi_test_points ADD PRIMARY KEY (gid);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 5, random() * 7);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 2, random() * 8);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 10, random() * 4);

INSERT INTO chp04.voronoi_test_points (x, y)

Working with Vector Data – Advanced Recipes

154

 VALUES (random() * 1, random() * 15);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 4, random() * 9);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 8, random() * 3);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 5, random() * 3);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 20, random() * 0.1);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (random() * 5, random() * 7);

SELECT AddGeometryColumn ('chp04','voronoi_test_points','the_
geom',3734,'POINT',2);

 UPDATE chp04.voronoi_test_points

 SET the_geom = ST_SetSRID(ST_MakePoint(x,y), 3734)

 WHERE the_geom IS NULL

 ;

How to do it...
Preparations in place, now we are ostensibly ready to create the Voronoi diagram:

CREATE TABLE chp04.voronoi_test AS

 SELECT * FROM voronoi('chp04.voronoi_test_points', 'the_geom') AS (id
integer, the_geom geometry);

But, sadly, our input points are a bit degenerate relative to what the function expects—we get
an error:

RROR: error fetching next item from iterator DETAIL: spiexceptions.
InternalError: lwpoly_from_lwlines: shell must have at least 4 points
CONTEXT: Traceback (most recent call last): PL/Python function "voronoi"
********** Error ********** ERROR: error fetching next item from iterator
SQL state: XX000 Detail: spiexceptions.InternalError: lwpoly_from_
lwlines: shell must have at least 4 points Context: Traceback (most
recent call last): PL/Python function "voronoi"

Chapter 4

155

So, we will instead also include the bounding box of our input points.

DROP TABLE IF EXISTS chp04.voronoi_test_points_u CASCADE;

CREATE TABLE chp04.voronoi_test_points_u AS

 WITH bboxpoints AS (

 SELECT (ST_DumpPoints(ST_SetSRID(ST_Extent(the_geom),3734))).geom AS
the_geom

 FROM chp04.voronoi_test_points

 UNION ALL

 SELECT the_geom FROM chp04.voronoi_test_points

)

 SELECT (ST_Dump(ST_Union(the_geom))).geom AS the_geom FROM bboxpoints;

Now execute the calculation of our diagram:

CREATE TABLE chp04.voronoi_test AS

 SELECT * FROM voronoi('chp04.voronoi_test_points_u', 'the_geom') AS (id
integer, the_geom geometry);

But there is a small bug in our code that returns some polygons that are not Voronoi. We'll
patch this by testing to make sure that we have one point per polygon and only return the
polygons with one point.

First, we will create an index for our points and our Voronoi using the following function:

CREATE INDEX chp04_voronoi_test_points_u_the_geom_idx ON chp04.voronoi_
test_points_u USING gist(the_geom);

CREATE INDEX chp04_voronoi_test_the_geom_idx ON chp04.voronoi_test USING
gist(the_geom);

Finally, we can return just the Voronoi polygons that intersect with a single point.

CREATE TABLE chp04.voronoi_test_points_u_clean AS

WITH voronoi AS (

 SELECT COUNT(*), v.the_geom

 FROM chp04.voronoi_test v, chp04.voronoi_test_points_u p

 WHERE ST_Intersects(v.the_geom, p.the_geom)

 GROUP BY v.the_geom

)

SELECT the_geom FROM voronoi WHERE count = 1;

Working with Vector Data – Advanced Recipes

156

And we will get a nice Voronoi diagram as follows:

Now, we have the power of Voronoi diagrams built right into our database.

See also
ff The Using external scripts to embed other libraries in order to calculate a Voronoi

diagram – advanced recipe

Using external scripts to embed other
libraries in order to calculate a Voronoi
diagram – advanced

While the previous recipe works fine for typical cases, faster approaches are available.
Rather than functions built into Python, we can leverage Python libraries that are wrappers
for compiled C++ code, resulting in an order-of-magnitude improvement in speed. The price
we pay is writing a function to embed the faster functionality. This price is a one-time cost of
thought and consideration and well worth the pay off for faster computation that will be,
in some cases, orders-of-magnitude faster than our native Python function.

In addition, the pattern we will be using, that is, passing data from PostGIS to an external
package and returning information from that package, is useful for doing a variety of
processing that is not available in PostGIS or PostgreSQL natively, but may otherwise be
available in an external library or program. In other words, once PostGIS has a native
Voronoi function, we can reuse this pattern to solve other problems with similar libraries.

Chapter 4

157

This recipe is a good example of how functionality can be imported from external libraries
to match the functionality available in PostGIS, even a complicated functionality such as
geometry processing.

Getting ready
The external library we will be using is called pyhull, a Python wrapper to a library called
QHull, which allows us to perform a variety of convex geometry calculations. We will take
advantage of QHull/pyhull to do Voronoi calculations.

Download the appropriate pyhull for your operating system from
http://pypi.python.org/pypi/pyhull/.

On Mac OS X, installation is straightforward. On the command line, navigate to the directory
where the pyhull egg is downloaded and enter the following command:

sudo easy_install pyhull-1.3.5-py2.7-macosx-10.6-intel.egg

For Linux and similar systems, simply install easy_install and use it to add pyhull
directly from the repository:

sudo easy_install pyhull

For Debian-based systems, you may first require to install python-setuptools:

sudo apt-get install python-dev && sudo apt-get install python-setuptools

In order to run pyhull from PostgreSQL, the postgresql daemon will need a write access to
/tmp/empty. Fix it on the command line using:

sudo chmod 777 /tmp/empty

How to do it...
The syntax for pyhull to extract a Voronoi diagram is straightforward. To test this, you can
follow the directions at https://github.com/shyuep/pyhull.

python
from pyhull.voronoi import VoronoiTess
pts = [[-0.5, -0.5], [-0.5, 0.5], [0.5, -0.5], [0.5, 0.5], [0,0]]
v = VoronoiTess(pts)
v.vertices

Working with Vector Data – Advanced Recipes

158

The preceding code returns the following output:

[[-10.101000000000001, -10.101000000000001], [0.0, -0.5], [-0.5, 0.0],
[0.5, 0.0], [0.0, 0.5]]
v.regions
returns:[[2, 0, 1], [4, 0, 2], [3, 0, 1], [4, 0, 3], [4, 2, 1, 3]]

In order to use pyhull, we only need to import the library inside a plpythonu function and
call the functions available to us. This will require that PostgreSQL's PL / Python - Python
Procedural Language be installed. The language also requires addition to our current
database. See http://www.postgresql.org/docs/current/interactive/
plpython.html for more details.

CREATE EXTENSION plpythonu;

CREATE OR REPLACE FUNCTION chp04.voronoi_fast (inputtext text)

 RETURNS text

AS $$

from pyhull.voronoi import VoronoiTess

import ast

inputpoints = ast.literal_eval(inputtext)

dummylist = ast.literal_eval('[999999999]')

v = VoronoiTess(inputpoints)

return v.vertices + dummylist + v.regions

$$ LANGUAGE plpythonu;

This function will take text from a query, use ast.literal_eval to change our text into a
list in preparation for pyhull, and then pass that list to the VoronoiTess function, returning
the vertices-and-regions of our Voronoi calculation. Note the variable dummylist as well. This
is a quick and dirty delimiter that we will use to determine which portion of the returning list
comprises vertices and which comprises regions.

There's more...
Note the format from the preceding section that the VoronoiTess function expects our
Voronoi center points in. We will need to write a function to convert from geometry to a
string in this list format.

Chapter 4

159

In addition, we should understand what VoronoiTess returns for our effort. It does not
directly return what we would consider polygons. We will have to construct our polygons from
what it returns. It returns points as a list that we will treat as a string that is the values for
the points from which we will construct the polygons. It also returns Voronoi regions. These
regions are simply a list of which points make up each region or Voronoi polygon. So, to
assemble polygons, we require some way to compare the list of regions to the list of points
and assemble polygons from the comparison of the two.

This means that what VoronoiTess returns is essentially topological. It will give us the
regions; for example, ID 196 in the following screenshot; plus the IDs for the vertices
associated with the bounds of the regions, in this case numbers 133 through 140; however,
these numbers are not necessarily sequential. If we were to look at region 213, also adjacent
below, its vertices would include vertex 134 and 135 as shared with region 196.

Step zero – preparing the test table
First, let's prepare a test table. If you don't have a test table in place, from the previous
section, let us create it using the following command:

DROP TABLE IF EXISTS chp04.voronoi_test_points;

CREATE TABLE chp04.voronoi_test_points

(

 x numeric,

 y numeric

)

WITH (OIDS=FALSE);

Working with Vector Data – Advanced Recipes

160

ALTER TABLE chp04.voronoi_test_points ADD COLUMN gid serial;

ALTER TABLE chp04.voronoi_test_points ADD PRIMARY KEY (gid);

-- replace this section with generate_series

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (5, 7);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (2, 8);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (10, 4);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (1, 15);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (4, 9);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (8, 3);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (5, 3);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (20, 0)

 ;

SELECT AddGeometryColumn ('chp04','voronoi_test_points','the_
geom',3734,'POINT',2);

 UPDATE chp04.voronoi_test_points

 SET the_geom = ST_SetSRID(ST_MakePoint(x,y), 3734)

 WHERE the_geom IS NULL

 ;

Step one – preparing the input text
Our first step is to prepare the point array to go into our new function. pyhull expects a list
of coordinates, so we will construct text that approximates a Python list, knowing that our
ast.literal_eval code inside the function will handle the conversion to a Python list.

Chapter 4

161

As we want text, we will use the PostGIS function, ST_AsText.

SELECT ST_AsText(the_geom) AS pstring

 FROM (

 SELECT (ST_DumpPoints(the_geom)).geom AS the_geom, gid AS gid FROM
chp04.voronoi_test_points

) AS point_dump;

The preceding function returns the following output:

 pstring

 POINT(5 7)

 POINT(2 8)

 POINT(10 4)

 POINT(1 15)

 POINT(4 9)

 POINT(8 3)

 POINT(5 3)

 POINT(20 0)

(8 rows)

We should review some design considerations in the preceding function. Note the use
of ST_DumpPoints here. You might ask why, if we are feeding in points, we are calling
ST_DumpPoints. This is to generalize the function, so that we can feed in polygons
or lines if we choose to and thus grab all the points from the polygons or lines for a
Voronoi application. This also allows the function to apply to multipoint geometries
without modification.

Also note, this is not yet in the format anticipated by pyhull. We will need to do some
additional text manipulation. Our string, if you recall, should look more like the following:

[[5, 6], [2, 8], [10, 4]... [20,0]]

In the first step, we will replace all spaces in our points with commas:

WITH astext AS (

 SELECT ST_AsText(the_geom) AS pstring

 FROM (

 SELECT (ST_DumpPoints(the_geom)).geom AS the_geom, gid AS gid FROM
chp04.voronoi_test_points

) AS point_dump

),

Working with Vector Data – Advanced Recipes

162

astextcomma AS (

 SELECT replace(pstring, ' ', ',') AS pstring

 FROM astext

)

SELECT * FROM astextcomma

This will result in the following output:

 pstring

 POINT(5,7)

 POINT(2,8)

 POINT(10,4)

 POINT(1,15)

 POINT(4,9)

 POINT(8,3)

 POINT(5,3)

 POINT(20,0)

(8 rows)

Perform a similar set of replacements for the start and end brackets using the following query:

WITH astext AS (

 SELECT ST_AsText(the_geom) AS pstring

 FROM (

 SELECT (ST_DumpPoints(the_geom)).geom AS the_geom, gid AS gid FROM
chp04.voronoi_test_points

) AS point_dump

),

astextcomma AS (

 SELECT replace(pstring, ' ', ',') AS pstring

 FROM astext

),

startingbracket AS (

 SELECT replace(pstring, 'POINT(', '[') AS pstring

 FROM astextcomma

),

endingbracket AS (

Chapter 4

163

 SELECT replace(pstring, ')', ']') AS pstring

 FROM startingbracket

)

SELECT * FROM endingbracket;

You will get the following result:

 pstring

 [5,7]

 [2,8]

 [10,4]

 [1,15]

 [4,9]

 [8,3]

 [5,3]

 [20,0]

(8 rows)

Now, it gets interesting. We want to go from a column of these numbers to a comma-delimited
concatenated list of them. PostgreSQL has a very nice function for just this purpose, STRING_
AGG. It will require an order by number, so we will leverage our unique id and gid values for
this purpose and carry STRING_AGG through as an extra column:

WITH astext AS (

 SELECT ST_AsText(the_geom) AS pstring, gid

 FROM (

 SELECT (ST_DumpPoints(the_geom)).geom AS the_geom, gid AS gid FROM
chp04.voronoi_test_points

) AS point_dump

),

astextcomma AS (

 SELECT replace(pstring, ' ', ',') AS pstring, gid

 FROM astext

),

startingbracket AS (

 SELECT replace(pstring, 'POINT(', '[') AS pstring, gid

 FROM astextcomma

Working with Vector Data – Advanced Recipes

164

),

endingbracket AS (

 SELECT replace(pstring, ')', ']') AS pstring, gid

 FROM startingbracket

),

aggstring AS (

 SELECT STRING_AGG(pstring, ',' ORDER BY gid)

 FROM endingbracket

)

SELECT * FROM aggstring;

You will get the following result:

 string_agg

--

 [5,7],[2,8],[10,4],[1,15],[4,9],[8,3],[5,3],[20,0]

(1 row)

Now, just to wrap this result in brackets use the concatenation operator || in order to append
outside brackets, changing our last WITH statement to the following:

aggstring AS (

 SELECT '[' || STRING_AGG(pstring, ',' ORDER BY gid) || ']' AS
inputtext

 FROM endingbracket

)

SELECT * FROM aggstring;

You will get the following result:

 inputtext

--

 [[5,7],[2,8],[10,4],[1,15],[4,9],[8,3],[5,3],[20,0]]

(1 row)

Step two – returning results
Whew! Now, our input text is properly formatted for our function. Let us try feeding it in and
getting results, changing our final SELECT statement in the preceding code to feed our input
text into our chp04.voronoi_fast function:

SELECT chp04.voronoi_fast(inputtext) FROM aggstring;

Chapter 4

165

The result is as follows:

 [[-10.101000000000001, -10.101000000000001], [24.081081081081081,
24.702702702702709], [18.071428571428569, 19.785714285714281],
[6.5, -28.5], [12.66666666666667, -3.833333333333333], [1.5, 11.5],
[10.928571428571431, 11.214285714285721], [7.7727272727272734,
5.954545454545455], [6.5, 5.0], [2.666666666666667, 5.0], [3.5, 7.5],
999999999, [10, 6, 7, 8, 9], [10, 5, 0, 9], [7, 4, 1, 2, 6], [5, 2, 1,
0], [10, 5, 2, 6], [8, 3, 4, 7], [9, 0, 3, 8], [4, 1, 0, 3]]

(1 row)

The complete code that uses the chp04.voronoi_fast function is as follows:

WITH astext AS (

 SELECT ST_AsText(the_geom) AS pstring, gid

 FROM (

 SELECT (ST_DumpPoints(the_geom)).geom AS the_geom, gid AS gid FROM
chp04.voronoi_test_points

) AS point_dump

),

astextcomma AS (

 SELECT replace(pstring, ' ', ',') AS pstring, gid

 FROM astext

),

startingbracket AS (

 SELECT replace(pstring, 'POINT(', '[') AS pstring, gid

 FROM astextcomma

),

endingbracket AS (

 SELECT replace(pstring, ')', ']') AS pstring, gid

 FROM startingbracket

),

aggstring AS (

 SELECT '[' || STRING_AGG(pstring, ',' ORDER BY gid) || ']' AS
inputtext

 FROM endingbracket

)

SELECT chp04.voronoi_fast(inputtext) FROM aggstring;

Working with Vector Data – Advanced Recipes

166

Step three – bundling as a function
Let's bundle this as a function. To accomplish this, we'll have to return a custom type, which is
a row consisting of our output string, and the integer from our temporary ending bracket table:

CREATE TYPE vor AS (

 geomstring text,

 gid integer

);

This type will be the return type for our new function. Now, let's move on to creating a function
using this new type. This should look very familiar—it's our previous code up to the step where
we run running our STRING_AGG function.

CREATE OR REPLACE FUNCTION chp04.voronoi_prep (geometry, integer) RETURNS
vor AS $$

WITH astext AS (

 SELECT ST_AsText(the_geom) AS pstring, gid

 FROM (

 SELECT (ST_DumpPoints($1)).geom AS the_geom, $2 AS gid

) AS point_dump

),

astextcomma AS (

 SELECT replace(pstring, ' ', ',') AS pstring, gid

 FROM astext

),

startingbracket AS (

 SELECT replace(pstring, 'POINT(', '[') AS pstring, gid

 FROM astextcomma

),

endingbracket AS (

 SELECT replace(pstring, ')', ']') AS pstring, gid

 FROM startingbracket

)

SELECT ROW(pstring, gid)::vor FROM endingbracket;

$$ LANGUAGE SQL;

Chapter 4

167

Now we can use this function to help prepare our data for our fast Voronoi function using the
following query:

WITH stringprep AS (

 SELECT chp04.voronoi_prep(the_geom, gid) FROM chp04.voronoi_test_points

),

aggstring AS (

 SELECT '[' || STRING_AGG((voronoi_prep).geomstring, ',' ORDER BY
(voronoi_prep).gid) || ']' AS inputtext

 FROM stringprep

)

SELECT chp04.voronoi_fast(inputtext) FROM aggstring;

If you check the output, it looks the same as it did before:

 [[-10.101, -10.101], [24.08108108108108, 24.70270270270271],
[18.07142857142857, 19.78571428571428], [6.5, -28.5], [12.66666666666667,
-3.833333333333333], [1.5, 11.5], [10.92857142857143, 11.21428571428572],
[7.772727272727273, 5.954545454545455], [6.5, 5.0], [2.666666666666667,
5.0], [3.5, 7.5], 999999999, [10, 6, 7, 8, 9], [10, 5, 0, 9], [7, 4, 1,
2, 6], [5, 2, 1, 0], [10, 5, 2, 6], [8, 3, 4, 7], [9, 0, 3, 8], [4, 1, 0,
3]]

Step four – translating into geometry
As indicated earlier, what returns from our function is two lists. The first is a list of points
making up the boundaries of the Voronoi diagram, and the second is a list of the points
associated with each of the polygons. We need to formally convert these to polygons. This is
a bit tricky. First, we continue with our query but split the two parts of our returning string into
the points that make up the Voronoi regions and the portion that defines the arrays of points
that make up these regions. If you recall, when we wrote the original Voronoi function, we
slipped a unique delimiter into the text before returning it. As such, we can use this with the
SPLIT_PART function of PostgreSQL to return two different strings by searching for the value
999999999 and using this to split the returned string.

WITH stringprep AS (

 SELECT chp04.voronoi_prep(the_geom, gid) FROM chp04.voronoi_test_points

),

aggstring AS (

 SELECT '[' || STRING_AGG((voronoi_prep).geomstring, ',' ORDER BY
(voronoi_prep).gid) || ']' AS inputtext

 FROM stringprep

),

voronoi_string AS (

Working with Vector Data – Advanced Recipes

168

 SELECT chp04.voronoi_fast(inputtext) AS vstring FROM aggstring

),

vpoints AS (

 SELECT split_part(vstring, ', 999999999,', 1) || ']' AS points

 FROM voronoi_string

),

vids AS (

 SELECT trim(trailing ']' FROM split_part(vstring, ', 999999999,', 2))
|| ']' AS ids

 FROM voronoi_string

),

Now, we need to convert our points into a floating point, ARRAY (regindex), with a new
unique id (gid) generated on-the-fly using ROW_NUMBER() and OVER().

arpt(pts) AS (

 SELECT replace(replace((SELECT points FROM vpoints), ']' ,'}'), '[',
'{')::float8[][]

),

reg AS (

 SELECT ROW_NUMBER() OVER() As gid, ('{' || region[1] || '}')::integer[]
as regindex

 FROM regexp_matches((SELECT ids FROM vids), '\[([0-9,\s]+)\]','g')

 AS region

),

We will seek a normalized list of the relationship between our points and regions using the
following function:

regptloc AS (

 SELECT gid, ROW_NUMBER() OVER(PARTITION BY gid) AS ptloc,
unnest(regindex) As ptindex

 FROM reg)

We require a cross join of the two in order to construct the regions into groups of points
making up each Voronoi region:

vregions AS (

 SELECT ST_Collect(ST_MakePoint(pts[ptindex + 1][1], pts[ptindex + 1]
[2]) ORDER BY ptloc) AS vregions

 FROM regptloc CROSS JOIN arpt

 GROUP BY gid

)

Chapter 4

169

Finally, these groups of points can be constructed into polygons. The easiest way to handle
this is with convex hulls:

SELECT ST_ConvexHull(vregions) AS the_geom FROM vregions

The complete code is as follows:

CREATE OR REPLACE FUNCTION chp04.voronoi_fast (inputtext text)

 RETURNS text

AS $$

from pyhull.voronoi import VoronoiTess

import ast

inputpoints = ast.literal_eval(inputtext)

dummylist = ast.literal_eval('[999999999]')

v = VoronoiTess(inputpoints)

return v.vertices + dummylist + v.regions

$$ LANGUAGE plpythonu;

DROP TABLE IF EXISTS chp04.voronoi_test_points;

CREATE TABLE chp04.voronoi_test_points

(

 x numeric,

 y numeric

)

WITH (OIDS=FALSE);

ALTER TABLE chp04.voronoi_test_points ADD COLUMN gid serial;

ALTER TABLE chp04.voronoi_test_points ADD PRIMARY KEY (gid);

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (5 * random(), 7 * random());

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (2 * random(), 8 * random());

Working with Vector Data – Advanced Recipes

170

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (10 * random(), 4 * random());

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (1 * random(), 15 * random());

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (4 * random(), 9 * random());

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (8 * random(), 3 * random());

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (5 * random(), 3 * random());

INSERT INTO chp04.voronoi_test_points (x, y)

 VALUES (20 * random(), 0.1 * random());

SELECT AddGeometryColumn ('chp04','voronoi_test_points','the_
geom',3734,'POINT',2);

 UPDATE chp04.voronoi_test_points

 SET the_geom = ST_SetSRID(ST_MakePoint(x,y), 3734)

 WHERE the_geom IS NULL

 ;

CREATE TYPE vor AS (

 geomstring text,

 gid integer

);

CREATE OR REPLACE FUNCTION chp04.voronoi_prep (geometry, integer) RETURNS
vor AS $$

WITH astext AS (

 SELECT ST_AsText(the_geom) AS pstring, gid

 FROM (

 SELECT (ST_DumpPoints($1)).geom AS the_geom, $2 AS gid

) AS point_dump

),

astextcomma AS (

 SELECT replace(pstring, ' ', ',') AS pstring, gid

 FROM astext

Chapter 4

171

),

startingbracket AS (

 SELECT replace(pstring, 'POINT(', '[') AS pstring, gid

 FROM astextcomma

),

endingbracket AS (

 SELECT replace(pstring, ')', ']') AS pstring, gid

 FROM startingbracket

)

SELECT ROW(pstring, gid)::vor FROM endingbracket;

$$ LANGUAGE SQL;

DROP TABLE IF EXISTS chp04.voronoi_test;

CREATE TABLE chp04.voronoi_test AS (

WITH stringprep AS (

 SELECT chp04.voronoi_prep(the_geom, gid) FROM chp04.voronoi_test_points

),

aggstring AS (

 SELECT '[' || STRING_AGG((voronoi_prep).geomstring, ',' ORDER BY
(voronoi_prep).gid) || ']' AS inputtext

 FROM stringprep

),

voronoi_string AS (

 SELECT chp04.voronoi_fast(inputtext) AS vstring FROM aggstring

),

vpoints AS (

 SELECT split_part(vstring, ', 999999999,', 1) || ']' AS points

 FROM voronoi_string

),

vids AS (

 SELECT trim(trailing ']' FROM split_part(vstring, ', 999999999,', 2))
|| ']' AS ids

 FROM voronoi_string

),

arpt(pts) AS (

Working with Vector Data – Advanced Recipes

172

 SELECT replace(replace((SELECT points FROM vpoints), ']' ,'}'), '[',
'{')::float8[][]
),
reg AS (
 SELECT ROW_NUMBER() OVER() As gid, ('{' || region[1] || '}')::integer[]
AS regindex
 FROM regexp_matches((SELECT ids FROM vids), '\[([0-9,\s]+)\]','g')
 AS region
),
regptloc AS (
 SELECT gid, ROW_NUMBER() OVER(PARTITION BY gid) AS ptloc,
unnest(regindex) As ptindex
 FROM reg),
vregions AS (
 SELECT ST_Collect(ST_MakePoint(pts[ptindex + 1][1], pts[ptindex + 1]
[2]) ORDER BY ptloc) AS vregions
 FROM regptloc CROSS JOIN arpt
 GROUP BY gid
)
SELECT ST_ConvexHull(vregions) AS the_geom FROM vregions
);

A thanks is deserved by Regina Obe for helping me to write the preceding query. Now we can
process much larger datasets. The following is a Voronoi diagram derived from the address
points from the Improving proximity filtering with KNN – advanced recipe, with the coloration
based on the azimuth to the nearest street, also calculated in that recipe.

5
Working with

Raster Data

In this chapter, we will cover the following:

ff Getting and loading rasters

ff Working with basic raster information and analysis

ff Performing simple map-algebra operations

ff Combining geometries with rasters for analysis

ff Converting between rasters and geometries

ff Processing and loading rasters with GDAL VRT

ff Warping and resampling rasters

ff Performing advanced map-algebra operations

ff Executing DEM operations

ff Sharing and visualizing rasters through SQL

Introduction
In this chapter, the recipes are presented in a step-by-step workflow that you may apply
while working with a raster. This entails loading the raster, getting a basic understanding of
the raster, processing and analyzing it, and delivering it to consumers. We intentionally add
some detours to the workflow to reflect the reality that the raster, in its original form, may
be confusing and not suitable for analysis. At the end of this chapter, you should be able
to take the lessons learned from the recipes and confidently apply them to solve your
raster problems.

Working with Raster Data

174

Before going further, we should describe what a raster is and what a raster is used for. At the
simplest level, a raster is a photo or image with information describing where to place the raster
on the Earth's surface. A photograph typically has three sets of values, one set for each primary
color (red, green, and blue). A raster also has sets of values, often more than those found in a
photograph. Each set of values is known as a band. So, a photograph typically has three bands
while a raster has at least one band. As with digital photographs, rasters come in a variety of
file formats. Common raster formats you may come across include PNG, JPEG, GeoTIFF, HDF5,
and NetCDF. Since rasters can have many bands and even more values, they can be used to
store large quantities of data in an efficient manner. Due to their efficiency, rasters are used for
satellite and aerial sensors and modeled surfaces, such as weather forecasts.

There are a few keywords used in this chapter and in the PostGIS ecosystem that need to
be defined:

ff raster: This is the PostGIS data type for storing raster files in PostgreSQL.

ff tile: This is a small chunk of the original raster file to be stored in one column of a
table's row. Each tile has its own set of spatial information and thus is independent
of all the other tiles in the same column of the same table, even if the other tiles are
from the same original raster file.

ff coverage: This consists of all the tiles of a single raster column from one table.

We make heavy use of GDAL in this chapter. GDAL is generally considered the de facto Swiss
Army Knife for working with rasters. GDAL is not a single application but is a raster-abstraction
library with many useful utilities. Through GDAL, you can get the metadata of a raster, convert
that raster to a different format, and warp that raster among many other capabilities. For
our needs in this chapter, we will use three GDAL utilities: gdalinfo, gdalbuildvrt,
and gdal_translate.

Getting and loading rasters
In this recipe, we load most of the rasters used in this chapter. These rasters are examples of
satellite imagery and model-generated surfaces, two of the most common raster sources.

Getting ready
If you have not done so already, create a directory and copy the chapter's datasets.

> mkdir C:\postgis_cookbook\data\chap05

> cp -r /path/to/book_dataset/chap05 C:\postgis_cookbook\data\chap05

You should also create a new schema for this chapter in the database.

> psql -d postgis_cookbook -c "CREATE SCHEMA chap5"

Chapter 5

175

How to do it...
We will start with the PRISM average monthly minimum-temperature raster dataset for 2012
with coverage for the Continental United States. The raster is provided by the PRISM Climate
Group at Oregon State University, with additional rasters available at http://www.prism.
oregonstate.edu/mtd/.

On the command line, navigate to the PRISM directory as follows:

> cd C:\postgis_cookbook\data\chap05\PRISM

Let us spot-check one of the PRISM rasters with the GDAL utility gdalinfo. It is always a
good practice to inspect at least one raster to get an idea of the metadata and ensure that
the raster does not have any issues. This can be done using the following command:

> gdalinfo us_tmin_2012.01.asc

The gdalinfo output is as follows:

Driver: AAIGrid/Arc/Info ASCII Grid
Files: us_tmin_2012.01.asc
Size is 1405, 621
Coordinate System is `'
Origin = (-125.020833333333329,49.937500000000206)
Pixel Size = (0.041666666666667,-0.041666666666667)
Corner Coordinates:
Upper Left (-125.0208333, 49.9375000)
Lower Left (-125.0208333, 24.0625000)
Upper Right (-66.4791667, 49.9375000)
Lower Right (-66.4791667, 24.0625000)
Center (-95.7500000, 37.0000000)
Band 1 Block=1405x1 Type=Int32, ColorInterp=Undefined NoData
Value=-9999

The gdalinfo output reveals good and bad news. The good news is that the raster has no
issues, as evidenced by the Corner Coordinates, Pixel Size, and Band attributes.
The bad news is that the value for Coordinate System is empty.

To correct the lack of a coordinate system, we need to check the PRISM metadata and see if
we can find any spatial reference information at http://www.prism.oregonstate.edu/
docs/meta/temp_realtime_monthly.htm.

Looking through the metadata, we find spatial information indicating that the PRISM rasters
may be unprojected, but in WGS72. We can double-check this by searching for the details of
WGS72 in the spatial_ref_sys table.

SELECT srid, auth_name, auth_srid, srtext, proj4text FROM
spatial_ref_sys WHERE proj4text LIKE '%WGS72%'

Working with Raster Data

176

Comparing the text of srtext to the PRISM raster's metadata spatial attributes, we find that
the raster is in WGS72 (SRID 4322).

You can load the PRISM rasters into the chap5.prism table with raster2pgsql.

> raster2pgsql -s 4322 -t 100x100 -F -I -C -Y
C:\postgis_cookbook\data\chap5\PRISM\us_tmin_2012.*.asc chap5.prism |
psql -d postgis_cookbook

The raster2pgsql command is called with the following flags:

ff -s: This flag assigns SRID 4322 to the imported rasters.

ff -t: This flag denotes the tile size. It chunks the imported rasters into smaller
and more manageable pieces; each record added to the table will be at most
100 x 100 pixels.

ff -F: This flag adds a column to the table and fills it with the raster's filename.

ff -I: This flag creates a GIST spatial index on the table's raster column.

ff -C: This flag applies the standard set of constraints on the table. The standard set
of constraints includes checks for dimension, scale, skew, upper-left coordinate,
and SRID.

ff -Y: This flag instructs raster2pgsql to use COPY statements instead of INSERT
statements. COPY is typically faster than INSERT.

There is a reason why we passed -F to raster2pgsql. If you look at the filenames of the
PRISM rasters, you'll note the year and month. So, let's convert the value in the filename
column to a date in the table.

ALTER TABLE chap5.prism ADD COLUMN month_year DATE;
UPDATE chap5.prism SET month_year = (

 split_part(split_part(filename, ''.'', 1), ''_'', 3) || ''-'' ||

 split_part(filename, ''.'', 2) || ''-01'')::date;

This is all that needs to be done with the PRISM rasters for now.

Now, let's import an SRTM raster. The SRTM raster is from the Shuttle Radar Topography
Mission (SRTM) that was conducted by NASA Jet Propulsion Laboratory in February, 2000.
This raster and others like it are available at

http://dds.cr.usgs.gov/srtm/version2_1/SRTM1/.

Change the current directory to the SRTM directory.

> cd C:\postgis_cookbook\data\chap05\SRTM

Chapter 5

177

Make sure you spot-check the SRTM raster with gdalinfo to ensure that it is valid and has
a value for Coordinate System. Once checked, import the SRTM raster into the chap5.
srtm table.

> raster2pgsql -s 4326 -t 100x100 -F -I -C -Y
C:\postgis_cookbook\data\chap5\SRTM\N37W123.hgt chap5.srtm | psql -d
postgis_cookbook

We use the same raster2pgsql flags for the SRTM raster as those for the PRISM rasters.

We also need to import a shapefile of San Francisco provided by the City and County of San
Francisco; it is available at:

https://data.sfgov.org/Geography/SF-Shoreline-and-Islands-Zipped-
Shapefile-Format-/feqe-wvxg.

We will use San Francisco's boundaries for many of the follow-up recipes.

> cd C:\postgis_cookbook\data\chap05\SFPoly

> shp2pgsql -s 3310 -I
C:\postgis_cookbook\data\chap5\SFPoly\sfpoly.shp chap5.sfpoly | psql
-d postgis_cookbook

How it works...
In this recipe, we imported the required PRISM and SRTM rasters needed for the rest of the
recipes. We also imported a shapefile containing San Francisco's boundaries to be used in
the various raster analyses. Now, on to the fun!

Working with basic raster information and
analysis

So far, we checked and imported the PRISM and SRTM rasters into the chap5 schema of
the postgis_cookbook database. We will now proceed to work with the rasters within
the database.

Getting ready
In this recipe, we explore functions that provide insight into the raster attributes and
characteristics found in the postgis_cookbook database. In doing so, we can see
whether what is found in the database matches the information provided by gdalinfo.

Working with Raster Data

178

How to do it...
PostGIS includes the raster_columns view to provide a high-level summary of all the
raster columns found in the database. This view is similar to the geometry_columns and
geography_columns views in function and form.

Let's run the following SQL query in the raster_columns view to see what information is
available in the prism table:

SELECT
 r_table_name,
 r_raster_column,
 srid,
 scale_x,
 scale_y,
 blocksize_x,
 blocksize_y,
 same_alignment,
 regular_blocking,
 num_bands,
 pixel_types,
 nodata_values,
 out_db,
 ST_AsText(extent) AS extent
FROM raster_columns WHERE r_table_name = 'prism';

The SQL query returns a record similar the following:

 r_table_name | r_raster_column | srid | scale_x
-----------------+-----------------+------+-------------------
 prism | rast | 4322 | 0.041666666666667

If you look back at the gdalinfo output for one of the PRISM rasters, you'll see that the
values for the scales (the pixel size) match. The flags passed to raster2pgsql, specifying
tile size and SRID, worked.

Let's see what the metadata of a single raster tile looks like. We will use the ST_Metadata()
function.

SELECT rid, (ST_Metadata(rast)).*
FROM prism
WHERE month_year = '2012-06-01'::date
LIMIT 1;

Chapter 5

179

The output will look similar to the following:

 rid | upperleftx | upperlefty | width | height
-----+------------------+------------------+-------+--------
 550 | -87.520833333333 | 45.7708333333335 | 100 | 100

Use ST_BandMetadata() to examine the first and only band of raster tile at the record
ID 550.

SELECT rid, (ST_BandMetadata(rast, 1)).*
FROM prism
WHERE rid = 550;

The results indicate that the band is of pixel type 32BSI and has a NODATA value of -9999.
The NODATA value is the value assigned to an empty pixel.

 rid | pixeltype | nodatavalue | isoutdb | path
-----+-----------+-------------+---------+------
 550 | 32BSI | -9999 | f |

Now, to do something a bit more useful, run some basic statistical functions on this raster tile.

First, let's compute the summary statistics (count, mean, standard deviation, min, and max)
with ST_SummaryStats().

WITH stats AS (SELECT (ST_SummaryStats(rast, 1)).* FROM prism
WHERE rid = 550
)
SELECT count, sum, round(mean::numeric, 2) AS mean,
round(stddev::numeric, 2) AS stddev, min, max
FROM stats;

The output of the preceding code will be as follows:

 count | sum | mean | stddev | min | max
-------+---------+---------+--------+-----+------
 7081 | 8987349 | 1269.22 | 125.87 | 943 | 1798

In the summary statistics, the count indicates that the raster tile is about 30 percent NODATA.
But what is really interesting is that the mean, min, and max values do not make sense for
minimum temperature values. We'll discuss this issue at the end of this recipe.

Let's see how the values of the raster tile are distributed with ST_Histogram().

WITH hist AS (
 SELECT
 (ST_Histogram(rast, 1)).*
 FROM prism
 WHERE rid = 550
)

Working with Raster Data

180

SELECT
 round(min::numeric, 2) AS min,
 round(max::numeric, 2) AS max,
 count,
 round(percent::numeric, 2) AS percent
FROM hist
ORDER BY min;

The output will look as follows:

 min | max | count | percent
---------+---------+-------+---------
 943.00 | 1004.07 | 51 | 0.01
 1004.07 | 1065.14 | 299 | 0.04
 1065.14 | 1126.21 | 884 | 0.12
 1126.21 | 1187.29 | 925 | 0.13
 1187.29 | 1248.36 | 652 | 0.09
 1248.36 | 1309.43 | 997 | 0.14
 1309.43 | 1370.50 | 1785 | 0.25
 1370.50 | 1431.57 | 992 | 0.14
 1431.57 | 1492.64 | 311 | 0.04
 1492.64 | 1553.71 | 130 | 0.02
 1553.71 | 1614.79 | 33 | 0.00
 1614.79 | 1675.86 | 13 | 0.00
 1675.86 | 1736.93 | 6 | 0.00
 1736.93 | 1798.00 | 3 | 0.00

It looks as if about 78 percent of all of the values are at or below 1370.50. Another way to
see how the pixel values are distributed is to use ST_Quantile().

SELECT
 (ST_Quantile(rast, 1)).*
FROM prism
WHERE rid = 550;

The output of the preceding code is as follows:

 quantile | value
----------+-------
 0 | 943
 0.25 | 1156
 0.5 | 1296
 0.75 | 1360
 1 | 1798

Chapter 5

181

The 75th percentile value of 1360 aligns nicely with the histogram result of about 78 percent
of the values that are at or below 1370.50.

Let's see what the top 10 occurring values are in the raster tile with ST_ValueCount().

SELECT
 (ST_ValueCount(rast, 1)).*
FROM prism
WHERE rid = 550
ORDER BY count DESC, value
LIMIT 10;

The output of the code is as follows:

 value | count
-------+-------
 1341 | 41
 1334 | 40
 1348 | 39
 1352 | 38
 1360 | 37
 1331 | 36
 1344 | 36
 1324 | 35
 1343 | 35
 1314 | 34

How it works...
In the first part of this recipe, we looked at the metadata of the prism raster table and
a single raster tile. We focused on that single raster tile to run a variety of statistics. The
statistics provided some idea of what the data looks like.

We mentioned that the pixel values looked wrong when we looked at the output from
ST_SummaryStats(). This same issue continued in the output from subsequent
statistics functions. We need to look at the PRISM raster's metadata available at
http://www.prism.oregonstate.edu/docs/meta/temp_realtime_monthly.htm.

After looking at the metadata, it appears that the PRISM raster values have been scaled by
100 to enable the use of an integer instead of a floating-point pixel type. We also find that the
values are in degree Celsius. In the next recipe, we will recompute all the pixel values to their
true values with a map algebra operation.

Working with Raster Data

182

Performing simple map-algebra operations
In the previous recipe, we saw that the values in the PRISM rasters did not look correct for
temperature values. After looking at the PRISM metadata, we learned that the values were
scaled by 100.

In this recipe, we will process the scaled values to get the true values. Doing this will prevent
future end user confusion, which is always a good thing.

Getting ready
PostGIS provides two types of map-algebra functions, both of which return a new raster with
one band. The type you use depends on the problem being solved and the number of raster
bands involved.

The first map-algebra function (ST_MapAlgebra() or ST_MapAlgebraExpr()) depends
on a valid, user-provided PostgreSQL algebraic expression that is called for every pixel. The
expression can be as simple as an equation or as complex as a logic-heavy SQL expression. If
the map-algebra operation only requires at most two raster bands, and the expression is not
complicated, you should have no problems using the expression-based map-algebra function.

The second map-algebra function (ST_MapAlgebra(), ST_MapAlgebraFct(), or
ST_MapAlgebraFctNgb()) requires the user to provide an appropriate PostgreSQL
function to be called for each pixel. The function being called can be written in any of the
PostgreSQL PL languages (for example, PL/pgSQL, PL/R, PL/Perl) and be as complex as
needed. This type is more challenging to use than the expression map-algebra function
type, but it has the flexibility to work on any number of raster bands.

For this recipe, we use only the expression-based map-algebra function ST_MapAlgebra()
to create a new band with the true temperature values and then append this band to the
processed raster. If you are not using PostGIS 2.1 or a later version, use the equivalent
ST_MapAlgebraExpr() function.

How to do it...
With any operation that is going to take a while and/or modify a stored raster, it is best to test
that operation to ensure there are no mistakes and the output looks correct.

Let's run ST_MapAlgebra() (or ST_MapAlgebraExpr() if you are running PostGIS 2.0) on
one raster tile and compare the summary statistics before and after the map-algebra operation.

WITH stats AS (
 SELECT
 'before' AS state,
 (ST_SummaryStats(rast, 1)).*

Chapter 5

183

 FROM prism
 WHERE rid = 550
 UNION ALL
 SELECT
 'after' AS state, (
 ST_SummaryStats(
 ST_MapAlgebra(rast, 1, '32BF', '
[rast] / 100.', -9999),
 1
)
).*
 FROM prism
 WHERE rid = 550
)
SELECT
 state,
 count,
 round(sum::numeric, 2) AS sum,
 round(mean::numeric, 2) AS mean,
 round(stddev::numeric, 2) AS stddev,
 round(min::numeric, 2) AS min,
 round(max::numeric, 2) AS max
FROM stats
ORDER BY state DESC;

The output looks as follows:

 state | count | sum | mean | stddev | min
--------+-------+------------+---------+--------+--------
 before | 7081 | 8987349.00 | 1269.22 | 125.87 | 943.00
 after | 7081 | 89873.49 | 12.69 | 1.26 | 9.43

In the ST_MapAlgebra() function, we indicate that the output raster's band will have
a pixel type of 32BF and a NODATA value of -9999. We use the expression '[rast] /
100.' to convert each pixel value to its true value. Before ST_MapAlgebra() evaluates
the expression, the pixel value replaces the placeholder '[rast]'. There are several other
placeholders available; these can be found in the ST_MapAlgebra() documentation.

Looking at the summary statistics and comparing the before and after processing, we see that
the map-algebra operation works correctly. So, let's correct the entire table. We will append
the band created from ST_MapAlgebra() to the existing raster.

UPDATE prism SET rast = ST_AddBand(rast, ST_MapAlgebra(rast,
1, '32BF', '[rast] / 100.', -9999), 1);
ERROR: new row for relation "prism" violates check constraint
"enforce_out_db_rast"

Working with Raster Data

184

The SQL query will not work. Why? If you remember, when we loaded the PRISM rasters, we
instructed raster2pgsql to add the standard constraints with the -C flag. It looks as if we
violated at least one of those constraints.

When installed, the standard constraints enforce a set of rules on each value of a raster
column in the table. These rules guarantee that each raster column value has the same
or appropriate attributes. The standard constraints comprise the following rules:

ff Width and height: This rule states that all the rasters must have the same width
and height

ff Scale X and Y: This rule states that all the rasters must have the same scale X and Y

ff SRID: This rule states that all rasters must have the same SRID

ff Same alignment: This rule states that all rasters must be aligned to one another

ff Maximum extent: This rule states that all rasters must be within the table's
maximum extent

ff Number of bands: This rule states that all rasters must have the same number
of bands

ff NODATA values: This rule states that all raster bands at a specific index must have
the same NODATA value

ff Out-db: This rule states that all raster bands at a specific index must be in-db or
out-db, not both

ff Pixel type: This rule states that all raster bands at a specific index must be of the
same pixel type

The error message indicates that we violated the out-db constraint. But we can't accept
the error message as is because we are not doing anything related to out-db. All we are
doing is adding a second band to the raster. Adding the second band violates the out-db
constraint because the constraint is prepared only for one band in the raster, not a raster
with two bands.

We will have to drop the constraints, make our changes, and reapply the constraints.

SELECT DropRasterConstraints('prism', 'rast'::name);
UPDATE prism SET
 rast = ST_AddBand(
 rast,
 ST_MapAlgebra(rast, 1, '32BF', '[rast] / 100.', -9
999),
 1
);
SELECT AddRasterConstraints('prism', 'rast'::name);

Chapter 5

185

The UPDATE will take some time and the output will look as follows:

 droprasterconstraints

 t
UPDATE 1260
 addrasterconstraints

 t

There is not much information provided in the output, so we will inspect the rasters. We will
look at one raster tile.

SELECT
 (ST_Metadata(rast)).numbands
FROM prism
WHERE rid = 550;

The output is as follows:

 numbands

 2

The raster has two bands. The following are the details of these two bands:

SELECT
 1 AS bandnum,
 (ST_BandMetadata(rast, 1)).*
FROM prism
WHERE rid = 550
UNION ALL
SELECT
 2 AS bandnum,
 (ST_BandMetadata(rast, 2)).*
FROM prism
WHERE rid = 550
ORDER BY bandnum;

The output looks as follows:

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 32BSI | -9999 | f |
 2 | 32BF | -9999 | f |

Working with Raster Data

186

The first band is the same as before and the new second band has the correct attributes (the
32BF pixel type and the NODATA value of -9999) that we specified in the call to
ST_MapAlgebra(). The real test though is to look at the summary statistics.

WITH stats AS (
 SELECT
 1 AS bandnum,
 (ST_SummaryStats(rast, 1)).*
 FROM prism
 WHERE rid = 550
 UNION ALL
 SELECT
 2 AS bandnum,
 (ST_SummaryStats(rast, 2)).*
 FROM prism
 WHERE rid = 550
)
SELECT
 bandnum,
 count,
 round(sum::numeric, 2) AS sum,
 round(mean::numeric, 2) AS mean,
 round(stddev::numeric, 2) AS stddev,
 round(min::numeric, 2) AS min,
 round(max::numeric, 2) AS max
FROM stats
ORDER BY bandnum;

The output is as follows:

 bandnum | count | sum | mean | stddev | min
---------+-------+------------+---------+--------+--------
 1 | 7081 | 8987349.00 | 1269.22 | 125.87 | 943.00
 2 | 7081 | 89873.49 | 12.69 | 1.26 | 9.43

The summary statistics show that band 2 is correct (the band 1 value divided by 100.).
The values now make sense for the average monthly minimum temperature.

How it works...
In this recipe, we applied a simple map-algebra operation with ST_MapAlgebra() to correct
the pixel values. In a later recipe, we will present an advanced map-algebra operation to
demonstrate the power of ST_MapAlgebra().

Chapter 5

187

Combining geometries with rasters for
analysis

In the previous two recipes, we ran basic statistics only on one raster tile. Though running
operations on a specific raster is great, it is not very helpful for answering real questions. In
this recipe, we will use geometries to filter, clip, and union raster tiles so that we can answer
questions for a specific area.

Getting ready
We will use the San Francisco boundaries geometry previously imported into the sfpoly
table. If you have not imported the boundaries, refer to the first recipe of this chapter
for instructions.

How to do it...
Since we are to look at rasters in the context of San Francisco, an easy question to ask is:
what was the average temperature for January, 2012 in San Francisco?

SELECT (
 ST_SummaryStats(
 ST_Union(
 ST_Clip(prism.rast, 2,
ST_Transform(sf.geom, 4322), TRUE)
),
 1
)
).mean
FROM prism
JOIN sfpoly sf
 ON ST_Intersects(prism.rast, ST_Transform(sf.geom, 4322))
WHERE prism.month_year = '2012-01-01'::date;

In the preceding SQL query, there are four items to pay attention to, as follows:

ff ST_Transform(): This method converts the geometry's coordinates from one
spatial reference system to another. Transforming a geometry is typically faster than
transforming a raster. Transforming a raster requires resampling the pixel values, a
computationally-intensive process and one that could introduce undesirable results.
If possible, always transform a geometry before transforming a raster.

Working with Raster Data

188

ff ST_Intersects():The ST_Intersects() method found in the JOIN ON
clause tests whether the raster tile and the geometry spatially intersect. It will
use any available spatial indexes. Depending on the installed version of PostGIS,
ST_Intersects() will implicitly convert the input geometry to a raster
(PostGIS 2.0) or the input raster to a geometry (PostGIS 2.1) before
comparing the two inputs.

ff ST_Clip(): This method trims each intersecting raster tile only to the area that
intersects the geometry. It eliminates the pixels that are not spatially part of the
geometry. As with ST_Intersects(), the geometry is implicitly converted to a
raster before clipping.

ff ST_Union(): This method aggregates and merges the clipped raster tiles into one
raster for further processing.

The following output shows the average minimum temperature for San Francisco:

 mean

 7.35125005245209

San Francisco was really cold in January, 2012. So, how does the rest of 2012 look? Is San
Francisco always cold?

SELECT
 prism.month_year, (
 ST_SummaryStats(
 ST_Union(
 ST_Clip(prism.rast, 2,
 ST_Transform(sf.geom, 4322), TRUE)
),
 1
)
).mean
FROM prism
JOIN sfpoly sf
 ON ST_Intersects(prism.rast, ST_Transform(sf.geom, 4322))
GROUP BY prism.month_year
ORDER BY prism.month_year;

The only change from the prior SQL query is the removal of the WHERE clause and the addition
of a GROUP BY clause. Since ST_Union() is an aggregate function, we need to group the
clipped rasters by month_year.

Chapter 5

189

The output is as follows:

 month_year | mean
------------+------------------
 2012-01-01 | 7.35125005245209
 2012-02-01 | 7.96125000715256
 2012-03-01 | 8.04749995470047
 2012-04-01 | 9.4337500333786
 2012-05-01 | 9.71625006198883
 2012-06-01 | 10.6924999952316
 2012-07-01 | 11.5974999666214
 2012-08-01 | 11.71875
 2012-09-01 | 11.1512498855591
 2012-10-01 | 12.5250000953674
 2012-11-01 | 11.0825001001358
 2012-12-01 | 8.63750004768372

Based on the results, the late summer months of 2012 were the warmest, though not by a
huge margin.

How it works...
By using a geometry to filter the rasters in the prism table, only a small set of rasters needed
clipping with the geometry and unioning to compute the mean. This maximized the query
performance and, more importantly, provided the answer to our question.

Converting between rasters and geometries
In the last recipe, we used the geometries to filter and clip rasters only to the areas of interest.
The functions ST_Clip() and ST_Intersects() implicitly converted the geometry before
relating it to the raster.

PostGIS provides several functions for converting rasters to geometries. Depending on the
function, a pixel can be returned as an area or a point.

PostGIS provides one function for converting geometries to rasters.

Getting ready
In this recipe, we will convert rasters to geometries and geometries to rasters. We will use the
ST_DumpAsPolygons() and ST_PixelsAsPolygons() functions to convert rasters to
geometries. We will then convert geometries to rasters using ST_AsRaster().

Working with Raster Data

190

How to do it...
Let's adapt part of the query used in the last recipe to find out the average
minimum temperature in San Francisco. We replace ST_SummaryStats()
with ST_DumpAsPolygons() and then return the geometries as WKT.

WITH geoms AS (
 SELECT
 ST_DumpAsPolygons(
 ST_Union(
 ST_Clip(prism.rast, 2,
 ST_Transform(sf.geom, 4322), TRUE)
),
 1
) AS gv
 FROM prism
 JOIN sfpoly sf
 ON ST_Intersects(prism.rast, ST_Transform(sf.geom,
 4322))
 WHERE prism.month_year = '2012-01-01'::date
)
SELECT
 (gv).val,
 ST_AsText((gv).geom) AS geom
FROM geoms;

The output is as follows:

 val | geom
------------------+--------------------------------
 7.3899998664856 | POLYGON(...)
 7.3600001335144 | POLYGON(...)
...
 7.30000019073486 | POLYGON(...)
(7 rows)

For the sake of brevity, the preceding query results have been trimmed. What is most
important about the results is that there are seven rows.

Now, replace the ST_DumpAsPolygons() function with ST_PixelsAsPolyons().

WITH geoms AS (
 SELECT (
 ST_PixelAsPolygons(
 ST_Union(
 ST_Clip(prism.rast, 2,
 ST_Transform(sf.geom, 4322), TRUE)

Chapter 5

191

),
 1
)
) AS gv
 FROM prism
 JOIN sfpoly sf
 ON ST_Intersects(prism.rast, ST_Transform(sf.geom,
 4322))
 WHERE prism.month_year = '2012-01-01'::date
)
SELECT
 (gv).val,
 ST_AsText((gv).geom) AS geom
FROM geoms;

The output is as follows:

 val | geom
------------------+--------------------------------
 | POLYGON(...)
 7.3899998664856 | POLYGON(...)
 7.3600001335144 | POLYGON(...)
...
 7.30000019073486 | POLYGON(...)
 | POLYGON(...)
(140 rows)

Again, the query results have been trimmed. What is important is the number of rows
returned. ST_PixelsAsPolygons() returns significantly more geometries than
ST_DumpAsPolygons(). This is due to the different mechanism used in each function.

The following image shows the difference between ST_DumpAsPolygons() and
ST_PixelsAsPolygons(). The ST_DumpAsPolygons() function only dumps pixels
with a value and unions these pixels with the same value. The ST_PixelsAsPolygons()
function does not merge pixels and dumps all of them, as shown in the following diagrams:

Working with Raster Data

192

The ST_PixelsAsPolygons() function returns one geometry for each pixel. If there are
100 pixels, there will be 100 geometries. Each geometry of ST_DumpAsPolygons() is the
union of all of the pixels in an area with the same value. If there are 100 pixels, there may be
up to 100 geometries.

There is one other significant difference between ST_PixelAsPolygons() and
ST_DumpAsPolygons(). Unlike ST_DumpAsPolygons(), ST_PixelAsPolygons()
returns a geometry for pixels with the NODATA value and has an "empty" value for the
val column.

Let's convert a geometry to a raster with ST_AsRaster(). We insert ST_AsRaster() to
return a raster with a pixel size of 100 by -100 meters and one that contains four bands of
the pixel type 8BUI. Each of these bands will have a pixel NODATA value of 0 and a specific
pixel value (29, 194, 178, and 255 for each band respectively). The units for pixel size are
determined by the geometry's projection, which is also the projection of the created raster.

SELECT
 ST_AsRaster(
 sf.geom,
 100., -100.,
 ARRAY['8BUI', '8BUI', '8BUI', '8BUI']::text[],
 ARRAY[29, 194, 178, 255]::double precision[],
 ARRAY[0, 0, 0, 0]::double precision[]
)
FROM sfpoly sf;

If we visualize the generated raster of San Francisco's boundaries and overlay the source
geometry, we get the following result, which is a zoomed-in view of the San Francisco
boundary's geometry converted to a raster with ST_AsRaster():

Chapter 5

193

Though it is great that the geometry is now a raster, relating the generated raster to other
rasters requires additional processing. This is because the generated raster and the other
raster will most likely not be aligned. If the two rasters are not aligned, most PostGIS raster
functions do not work. The following screenshot shows two nonaligned rasters (simplified to
pixel grids):

The pixel grids of Raster 1 and Raster 2 are not aligned. If the rasters
are aligned, the edges of one grid's cell will be on top of one of the other
cell's edges.

When a geometry needs to be converted to a raster so as to relate to an existing raster,
use that existing raster as a reference when calling ST_AsRaster().

SELECT
 ST_AsRaster(
 sf.geom, prism.rast,
 ARRAY['8BUI', '8BUI', '8BUI', '8BUI']::text[],
 ARRAY[29, 194, 178, 255]::double precision[],
 ARRAY[0, 0, 0, 0]::double precision[]
)
FROM sfpoly sf
CROSS JOIN prism
WHERE prism.rid = 1;

In the preceding query, we use the raster tile at rid = 1 as our reference raster. The
ST_AsRaster() function uses the reference raster's metadata to create the geometry's
raster. If the geometry and reference raster have different SRIDs, the geometry is transformed
to the same SRID before creating the raster.

Working with Raster Data

194

How it works...
In this recipe, we converted rasters to geometries. We also created new rasters from
geometries. The ability to convert between rasters and geometries allows the use of
functions that would otherwise not be possible.

Processing and loading rasters with GDAL
VRT

Though PostGIS has plenty of functions for working with rasters, it is sometimes more
convenient and more efficient to work on the source rasters before importing them into the
database. One of the times when working with rasters outside the database is more efficient
is when the raster contains subdatasets, typically found in HDF4, HDF5, and NetCDF files.

Getting ready
In this recipe, we will preprocess a MODIS raster with the GDAL VRT format to filter and
rearrange the subdatasets. Internally, a VRT file is comprised of XML tags. This means we can
create a VRT file with any text editor. But, since creating a VRT file manually can be tedious,
we will use the gdalbuildvrt utility.

The MODIS raster we use is provided by NASA and available at

http://e4ftl01.cr.usgs.gov/MOLA/MYD09A1.005/2012.06.09/MYD09A1.
A2012161.h08v05.005.2012170065756.hdf.

You will need GDAL built with HDF4 support to continue with this recipe as MODIS rasters are
usually in the HDF4-EOS format.

The following screenshot shows the MODIS raster used in this recipe and the next two recipes.
In the following image, we see parts of California, Nevada, Arizona, and Baja California:

Chapter 5

195

To allow PostGIS to properly support MODIS rasters, we will also need to add the MODIS
Sinusoidal projection to the spatial_ref_sys table.

How to do it...
On the command line, navigate to the MODIS directory.

> cd C:\postgis_cookbook\data\chap05\MODIS

In the MODIS directory, there should be several files. One of these files has the name
srs.sql and contains the INSERT statement needed for the MODIS Sinusoidal projection.
Run the INSERT statement.

> psql -d postgis_cookbook -f srs.sql

The main file has the extension HDF. Let's check the metadata of that HDF file.

> gdalinfo MYD09A1.A2012161.h08v05.005.2012170065756.hdf

When run, gdalinfo outputs a lot of information. We are looking for the list of subdatasets
found in the Subdatasets section.

Subdatasets:
 SUBDATASET_1_NAME=HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.
005.2012170065756.hdf":MOD_Grid_500m_Surface_Reflectance:sur_refl_b01

 SUBDATASET_1_DESC=[2400x2400] sur_refl_b01
MOD_Grid_500m_Surface_Reflectance (16-bit integer)
 SUBDATASET_2_NAME=HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.
h08v05.005.2012170065756.hdf":MOD_Grid_500m_Surface_Reflectance:sur_
refl_b02
 SUBDATASET_2_DESC=[2400x2400] sur_refl_b02
MOD_Grid_500m_Surface_Reflectance (16-bit integer)
...
 SUBDATASET_12_NAME=HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.
h08v05.005.2012170065756.hdf":MOD_Grid_500m_Surface_Reflectance:sur_
refl_state_500m
 SUBDATASET_12_DESC=[2400x2400] sur_refl_state_500m
MOD_Grid_500m_Surface_Reflectance (16-bit unsigned integer)

Each subdataset is one variable of the MODIS raster. For our purposes, we only need the first
four subdatasets, as follows:

ff subdataset 1: 620 - 670 nm (red)

ff subdataset 2: 841 - 876 nm (near infrared or NIR)

ff subdataset 3: 459 - 479 nm (blue)

ff subdataset 4: 545 - 565 nm (green)

Working with Raster Data

196

Full metadata can be found at the MODIS site for this MODIS product:

https://lpdaac.usgs.gov/products/modis_products_table/myd09a1

The VRT format allows us to select the subdatasets to be included in the VRT raster as well as
change the order of the subdatasets. We want to rearrange the subdatasets so that they are
in the RGB order.

Let's call gdalbuildvrt to create a VRT file for our MODIS raster. Do not run the following!

> gdalbuildvrt -separate modis.vrt
HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b01
HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b04
HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b03
HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b02

We really hope you did not run the preceding code. The command does work but is too long
and cumbersome. It would be better if we can pass a file indicating the subdatasets to include
and their order in the VRT. Thankfully, gdalbuildvrt provides such an option with the
-input_file_list flag.

In the MODIS directory, the modis.txt file can be passed to gdalbuildvrt with the
-input_file_list flag. Each line of the modis.txt file is the name of a subdataset. The
order of the subdatasets in the text file dictates the placement of each subdataset in the VRT.

HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b01

HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b04

HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b03

HDF4_EOS:EOS_GRID:"MYD09A1.A2012161.h08v05.005.2012170065756.hdf":MOD_
Grid_500m_Surface_Reflectance:sur_refl_b02

Now, call gdalbuildvrt with modis.txt in the following manner:

> gdalbuildvrt -separate -input_file_list modis.txt modis.vrt

Feel free to inspect the generated modis.vrt VRT file in your favorite text editor. Since
the contents of the VRT file are just XML tags, it is easy to make additions, changes,
and deletions.

Chapter 5

197

We will do one last thing before importing our processed MODIS raster into PostGIS. We
will convert the VRT file to a GeoTIFF file with the gdal_translate utility because not all
applications have built-in support for HDF4, HDF5, NetCDF, or VRT and the superior portability
of GeoTIFF.

> gdal_translate -of GTiff modis.vrt modis.tif

Finally, import modis.tif with raster2pgsql.

> raster2pgsql -s 96974 -F -I -C -Y modis.tif chap5.modis | psql -d
postgis_cookbook

How it works...
This recipe was all about processing a MODIS raster into a form suitable for use in PostGIS.
We used the gdalbuildvrt utility to create our VRT. As a bonus, we used gdal_translate
to convert between raster formats, in this case from VRT to GeoTIFF.

If you're feeling particularly adventurous, try using gdalbuildvrt to create a VRT of the 12
PRISM rasters with each raster as a separate band.

Warping and resampling rasters
In the previous recipe, we processed a MODIS raster to extract only those subdatasets that
are of interest, in a more suitable order. Once done with the extraction, we imported the
MODIS raster into its own table.

Here, we make use of the warping capabilities provided in PostGIS. This ranges from simply
transforming the MODIS raster to a more suitable projection to creating an overview by
resampling the pixel size.

Getting ready
We will use several PostGIS warping functions, specifically ST_Transform() and
ST_Rescale(). The ST_Transform() function reprojects a raster to a new spatial
reference system (for example, from WGS84 to NAD83). The ST_Rescale() function
shrinks or grows the pixel size of a raster.

How to do it...
The first thing we will do is transform our raster since the MODIS rasters have their own
unique spatial-reference system. We will convert the raster from MODIS Sinusoidal projection
to US National Atlas Equal Area (SRID 2163).

Working with Raster Data

198

Before we transform the raster, we will clip the MODIS raster with our San Francisco boundaries
geometry. By clipping our raster before transformation, the operation takes less time than it
does to transform and then clip the raster.

SELECT ST_Transform(ST_Clip(m.rast, ST_Transform(sf.geom, 96974)),
2163)
FROM modis m
CROSS JOIN sfpoly sf;

The following screenshot shows the clipped MODIS raster with the San Francisco boundaries
on top for comparison:

When we call ST_Transform() on the MODIS raster, we only pass the destination SRID 2163.
We could specify other parameters, such as the resampling algorithm and error tolerance. The
default resampling algorithm and error tolerance are set to NearestNeighbor and 0.125.
Using a different algorithm and/or lowering the error tolerance may improve the quality of the
resampled raster at the cost of more processing time.

Let's transform the MODIS raster again, this time specifying the resampling algorithm and
error tolerance as Cubic and 0.05 respectively. We also indicate that the transformed raster
must be aligned to a reference raster.

SELECT ST_Transform(ST_Clip(m.rast, ST_Transform(sf.geom, 96974)),
prism.rast, 'cubic', 0.05)
FROM modis m
CROSS JOIN prism
CROSS JOIN sfpoly sf
WHERE prism.rid = 1;

Chapter 5

199

Unlike the prior queries where we transform the MODIS raster, let's create an overview. An
overview is a lower resolution version of the source raster. If you are familiar with pyramids,
an overview is level one of a pyramid while the source raster is the base level.

WITH meta AS (
 SELECT
 (ST_Metadata(rast)).*
 FROM modis
)
SELECT
 ST_Rescale(modis.rast, meta.scalex * 4., meta.scaley * 4., '
cubic') AS rast
FROM modis
CROSS JOIN meta;

The overview is 25 percent of the resolution of the original MODIS raster. This means four
times the scale and one-quarter the width and height. To prevent hardcoding the desired scale
X and scale Y, we use the MODIS raster's scale X and scale Y returned by ST_Metadata().
As you can see in the following screenshot, the overview has a coarser resolution.

The MODIS raster before and after rescaling with ST_Rescale()

The rescaled raster is more pixelated due to the reduction of resolution.

Working with Raster Data

200

How it works...
Using some of PostGIS's resampling capabilities, we projected the MODIS raster to a different
spatial reference with ST_Transform() as well as controlled the quality of the projected
raster. We also created an overview with ST_Rescale().

Using these functions and other PostGIS resampling functions, you should be able to
manipulate all the rasters.

Performing advanced map-algebra
operations

In a prior recipe, we used the expression-based map-algebra function ST_MapAlgebra() to
convert the PRISM pixel values to their true values. The expression-based ST_MapAlgebra()
method is easy to use but limited to operating on at most two raster bands. This restricts
the ST_MapAlgebra() function's usefulness for processes that require more than two
input raster bands, such as Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI).

There is a variant of ST_MapAlgebra() designed to support an unlimited number of input
raster bands. Instead of taking an expression, this ST_MapAlgebra() variant requires
a callback function. This callback function is run for each set of input pixel values and
returns either a new pixel value or NULL for the output pixel. Additionally, this variant
of ST_MapAlgebra() permits operations on neighborhoods (sets of pixels around
a center pixel).

PostGIS comes with a set of ready-to-use ST_MapAlgebra() callback functions. All of these
functions are intended for neighborhood calculations, such as computing the average value of
a neighborhood or interpolating empty pixel values.

Getting ready
We will use the MODIS raster to compute the EVI. EVI is a three-band operation consisting of
the red, blue, and near-infrared bands. To do a ST_MapAlgebra() operation on three bands,
PostGIS 2.1 or a higher version is required. If you have PostGIS 2.0, a two-band EVI version is
provided after we discuss the three-band variant.

How to do it...
To use ST_MapAlgebra() on more than two bands, we must use the callback function
variant. This means we need to create a callback function. Callback functions can be written
in any PostgreSQL PL language, such as PL/pgSQL or PL/R. Our callback functions are all
written in PL/pgSQL as this language is always included with a base PostgreSQL installation.

Chapter 5

201

Our callback function uses the following equation to compute the three-band EVI:

EVI G=
(–)NIR RED

(+ – +)NIR C1 RED C2 BLUE L+ +
+

CREATE OR REPLACE FUNCTION chap5.modis_evi(value double precision[][]
[], position int[][], VARIADIC userargs text[])
RETURNS double precision
AS $$
DECLARE
 L double precision;
 C1 double precision;
 C2 double precision;
 G double precision;
 _value double precision[3];
 _n double precision;
 _d double precision;
BEGIN
 -- userargs provides coefficients
 L := userargs[1]::double precision;
 C1 := userargs[2]::double precision;
 C2 := userargs[3]::double precision;
 G := userargs[4]::double precision;
 -- rescale values, optional
 _value[1] := value[1][1][1] * 0.0001;
 _value[2] := value[2][1][1] * 0.0001;
 _value[3] := value[3][1][1] * 0.0001;
 -- value can't be NULL
 IF
 _value[1] IS NULL OR
 _value[2] IS NULL OR
 _value[3] IS NULL
 THEN
 RETURN NULL;
 END IF;
 -- compute numerator and denominator
 _n := (_value[3] - _value[1]);
 _d := (_value[3] + (C1 * _value[1]) - (C2 * _value[2]) + L
);
 -- prevent division by zero
 IF _d::numeric(16, 10) = 0.::numeric(16, 10) THEN
 RETURN NULL;
 END IF;
 RETURN G * (_n / _d);
END;
$$ LANGUAGE plpgsql IMMUTABLE;

Working with Raster Data

202

If you can't create the function, you probably do not have the necessary privileges in
the database.

There are several characteristics required for all of the callback functions. These are
as follows:

ff All ST_MapAlgebra() callback functions must have three input parameters,
namely, double precision[], integer[], and variadic text[]. The
value parameter is a 3D array where the first dimension denotes the raster index,
the second dimension the Y axis, and the third dimension the X axis. The position
parameter is an array of two dimensions with the first dimension indicating the raster
index and the second dimension consisting of the X, Y coordinates of the center pixel.
The last parameter, userargs, is a 1D array of zero or more elements containing
values that a user wants to pass to the callback function. If visualized, the
parameters look like the following:
value = ARRAY[
 1 => [-- raster 1
 [pixval, pixval, pixval], -- row of raster 1
 [pixval, pixval, pixval],
 [pixval, pixval, pixval]
],
 2 => [-- raster 2
 [pixval, pixval, pixval], -- row of raster 2
 [pixval, pixval, pixval],
 [pixval, pixval, pixval]
],
 ...
 N => [-- raster N
 [pixval, pixval, pixval], -- row of raster
 [pixval, pixval, pixval],
 [pixval, pixval, pixval]
]
];
pos := ARRAY[
 0 => [x-coordinate, y-coordinate], -- center pixel o
f output raster
 1 => [x-coordinate, y-coordinate], -- center pixel o
f raster 1
 2 => [x-coordinate, y-coordinate], -- center pixel o
f raster 2
 ...
 N => [x-coordinate, y-coordinate], -- center pixel o
f raster N
];
userargs := ARRAY[

Chapter 5

203

 'arg1',
 'arg2',
 ...
 'argN'
];

ff All ST_MapAlgebra() callback functions must return a double-precision value.

If the callback functions are not correctly structured, the ST_MapAlgebra() function will fail
or behave incorrectly.

In the function body, we convert the user arguments to their correct datatypes, rescale the
pixel values, check that no pixel values are NULL (arithmetic operations with NULL values
always result in NULL), compute the numerator and denominator components of EVI,
check that the denominator is not zero (to prevent division by zero), and then finish the
computation of EVI.

Now we call our callback function modis_evi() with ST_MapAlgebra().

SELECT
 ST_MapAlgebra(
 rast,
 ARRAY[1, 3, 4]::int[], -- only use the red, blue a
nd near infrared bands
 'chap5.modis_evi(double precision[], int[], t
ext[])'::regprocedure, -- signature for callback function
 '32BF', -- output pixel type
 'FIRST',
 NULL,
 0, 0,
 '1.', -- L
 '6.', -- C1
 '7.5', -- C2
 '2.5' -- G
) AS rast
FROM modis m;

In our call to ST_MapAlgebra(), there are three criteria to take note of, as follows:

ff The signature for the modis_evi() callback function. When passing the callback
function to ST_MapAlgebra(), it must be written as a string containing the function
name and the input-parameter types.

ff The last four function parameters ('1.', '6.', '7.5', '2.5') are user-defined
arguments that are passed for processing by the callback function.

ff The order of the band numbers affects the order of the pixel values passed to the
callback function.

Working with Raster Data

204

The following screenshot shows the MODIS raster before and after running the EVI operation.
The EVI raster has a pale white to dark green colormap applied for highlighting areas of
high vegetation.

If you are unable to run the standard EVI operation or want more practice, we will now
compute a two-band EVI. We will use the function ST_MapAlgebraFct().

Please note that ST_MapAlgebraFct() is deprecated in PostGIS 2.1
and may be removed in the future versions.

For the two-band EVI, we will use the following callback function. The two band EVI is
computed with this equation:

EVI2 G=
(-)NIR RED

×
(+ +)NIR C1 RED L×

CREATE OR REPLACE FUNCTION chap5.modis_evi2(value1 double
precision, value2 double precision, pos int[], VARIADIC userargs
text[])
RETURNS double precision
AS $$
DECLARE
 L double precision;
 C double precision;
 G double precision;
 _value1 double precision;
 _value2 double precision;
 _n double precision;
 _d double precision;
BEGIN
 -- userargs provides coefficients
 L := userargs[1]::double precision;

Chapter 5

205

 C := userargs[2]::double precision;
 G := userargs[3]::double precision;
 -- value can't be NULL
 IF
 value1 IS NULL OR
 value2 IS NULL
 THEN
 RETURN NULL;
 END IF;
 _value1 := value1 * 0.0001;
 _value2 := value2 * 0.0001;
 -- compute numerator and denominator
 _n := (_value2 - _value1);
 _d := (L + _value2 + (C * _value1));
 -- prevent division by zero
 IF _d::numeric(16, 10) = 0.::numeric(16, 10) THEN
 RETURN NULL;
 END IF;
 RETURN G * (_n / _d);
END;
$$ LANGUAGE plpgsql IMMUTABLE;

As with ST_MapAlgebra() callback functions, ST_MapAlgebraFct() requires callback
functions to be structured in a specific manner. There is a difference between the callback
function for ST_MapAlgebraFct() and the prior one for ST_MapAlgebra(). This function
has two simple pixel-value parameters instead of an array for all pixel values.

SELECT
 ST_MapAlgebraFct(
 rast, 1, -- red band
 rast, 4, -- NIR band
 'modis_evi2(double precision, double precision, int[],
text[])'::regprocedure, -- signature for callback function
 '32BF', -- output pixel type
 'FIRST',
 '1.', -- L
 '2.4', -- C
 '2.5' -- G
) AS rast
FROM modis m;

Besides the difference in function names, ST_MapAlgebraFct() is called differently from
ST_MapAlgebra(). The same raster is passed to ST_MapAlgebraFct() twice. The other
difference is that there is one less user-defined argument being passed to the callback
function as the two-band EVI has one less coefficient.

Working with Raster Data

206

How it works...
We demonstrated some of the advanced uses of PostGIS's map-algebra functions by
computing the three-band and two-band EVIs from our MODIS raster. This was achieved using
ST_MapAlgebra() and ST_MapAlgebraFct() respectively. With some planning, PostGIS's
map-algebra functions can be applied to other uses, for example, edge detection and contrast
stretching.

For additional practice, write your own callback function to generate an NDVI raster from the
MODIS raster. The equation for NDVI is:

NDVI =
NIR RED-

NIR RED+

Executing DEM operations
PostGIS comes with several functions for use on digital elevation model (DEM) rasters to
solve terrain-related problems. Though these problems have historically been in the hydrology
domain, they can now be found elsewhere, for example, finding the most fuel-efficient route
from point A to point B or determining the best location on a roof for a solar panel. PostGIS
2.0 introduced ST_Slope(), ST_Aspect(), and ST_HillShade() while PostGIS 2.1
added the new functions ST_TRI(), ST_TPI(), and ST_Roughness(), and new variants
of existing elevation functions.

Getting ready
We will use the SRTM raster, loaded as 100 x 100 tiles, in this chapter's first recipe. With it,
we will generate slope and hillshade rasters using San Francisco as our area of interest.

The two queries below use variants of ST_Slope() and ST_HillShade() that are only
available in PostGIS 2.1 or higher versions. The new variants permit the specification of a
custom extent to constrain the processing area of the input raster.

How to do it...
Let's generate a slope raster from a subset of our SRTM raster tiles using ST_Slope().
A slope raster computes the rate of elevation change from one pixel to a neighboring pixel.

WITH r AS (-- union of filtered tiles
 SELECT
 ST_Transform(ST_Union(srtm.rast), 3310) AS rast
 FROM srtm
 JOIN sfpoly sf

Chapter 5

207

 ON ST_DWithin(ST_Transform(srtm.rast::geometry, 3
310), ST_Transform(sf.geom, 3310), 1000)
), cx AS (-- custom extent
 SELECT
 ST_AsRaster(ST_Transform(sf.geom, 3310), r.rast) AS
rast
 FROM sfpoly sf
 CROSS JOIN r
)
SELECT
 ST_Clip(ST_Slope(r.rast, 1, cx.rast), S
T_Transform(sf.geom, 3310)) AS rast
FROM r
CROSS JOIN cx
CROSS JOIN sfpoly sf;

All spatial objects in this query are projected to California Albers (SRID 3310), a projection
with units in meters. This projection eases the use of ST_DWithin() to broaden our area of
interest to include the tiles within 1000 meters of San Francisco's boundaries, which improves
the computed slope values for the pixels at the edges of the San Francisco boundaries.
We also use a rasterized version of our San Francisco boundaries as the custom extent for
restricting the computed area. After running ST_Slope(), we clip the slope raster just to
San Francisco.

We can reuse the ST_Slope() query and substitute ST_HillShade() for ST_Slope() to
create a hillshade raster showing how the sun would illuminate the terrain of the SRTM raster.

WITH r AS (-- union of filtered tiles
 SELECT
 ST_Transform(ST_Union(srtm.rast), 3310) AS rast
 FROM srtm
 JOIN sfpoly sf
 ON ST_DWithin(ST_Transform(srtm.rast::geometry, 3
310), ST_Transform(sf.geom, 3310), 1000)
), cx AS (-- custom extent
 SELECT
 ST_AsRaster(ST_Transform(sf.geom, 3310), r.rast) A
S rast
 FROM sfpoly sf
 CROSS JOIN r
)
SELECT
 ST_Clip(ST_HillShade(r.rast, 1, cx.rast), S
T_Transform(sf.geom, 3310)) AS rast
FROM r
CROSS JOIN cx
CROSS JOIN sfpoly sf;

Working with Raster Data

208

In this case, ST_HillShade() is a drop-in replacement for ST_Slope() because we do
not specify any special input parameters for either function. If we need to specify additional
arguments for ST_Slope() or ST_HillShade(), all changes are confined to just one line.

The following screenshot shows the SRTM raster before and after processing it with
ST_Slope() and ST_HillShade():

As you can see in the screenshot, the slope and hillshade rasters help us better understand
the terrain of San Francisco.

If PostGIS 2.0 is available, we can still use 2.0's ST_Slope() and ST_HillShade() to
create slope and hillshade rasters. But there are several differences you need to be aware
of, as follows:

ff ST_Slope() and ST_Aspect() return a raster with values in radians instead
of degrees

ff Some input parameters of ST_HillShade() are expressed in radians instead
of degrees

ff The computed raster from ST_Slope(), ST_Aspect(), or ST_HillShade()
has an empty 1-pixel border on all four sides

We can adapt our ST_Slope() query from the beginning of this recipe by removing the
creation and application of the custom extent. Since the custom extent constrained the
computation to a specific area, the inability to specify such a constraint means PostGIS
2.0's ST_Slope() will perform slower.

WITH r AS (-- union of filtered tiles
 SELECT

Chapter 5

209

 ST_Transform(ST_Union(srtm.rast), 3310) AS rast
 FROM srtm
 JOIN sfpoly sf
 ON ST_DWithin(ST_Transform(srtm.rast::geometry, 3
310), ST_Transform(sf.geom, 3310), 1000)
)
SELECT
 ST_Clip(ST_Slope(r.rast, 1), ST_Transform(sf.geom, 3310)) A
S rast
FROM r
CROSS JOIN sfpoly sf;

How it works...
The DEM functions in PostGIS allowed us to quickly analyze our SRTM raster. In the basic use
cases, we were able to swap one function for another without any issues.

What is impressive about these DEM functions is that they are all wrappers around
ST_MapAlgebra(). The power of ST_MapAlgebra() is in its adaptability to
different problems.

Sharing and visualizing rasters through SQL
In a previous chapter, we used gdal_translate to export PostGIS rasters to a file. This
provides a method for transferring files from one user to another or from one location to
another. The only problem with this method is that you may not have access to the
gdal_translate utility.

A different but equally functional approach is to use the ST_AsGDALRaster() family of
functions available in PostGIS. In addition to ST_AsGDALRaster(), PostGIS provides
ST_AsTIFF(), ST_AsPNG(), and ST_AsJPEG() to support the most common raster
file formats.

To easily visualize raster files without the need for a GIS application, PostGIS 2.1 and later
versions provide ST_ColorMap(). This function applies a built-in or user-specified color
palette to a raster that, upon exporting with ST_AsGDALRaster(), can be viewed with
any image viewer, such as a web browser.

Getting ready
In this recipe, we will use ST_AsTIFF() and ST_AsPNG() to export rasters to the GeoTIFF
and PNG file formats, respectively. We will also apply ST_ColorMap() so that we can see
them in any image viewer.

Working with Raster Data

210

The queries below can be run in a standard SQL client such as psql or pgAdminIII. However,
we can't use the returned output because the output has escaped, and these clients do not
undo the escaping. Applications with lower level API functions can unescape the query output.
Examples of this would be a PHP script passing a record element to pg_unescape_bytea()
or a Python script using Psycopg2's implicit decoding while fetching a record. A sample PHP
script (save_raster_to_file.php) can be found in this chapter's data directory.

How to do it...
Let us say that a colleague asks for the monthly minimum temperature data for San Francisco
during the summer months as a single raster file. This entails restricting our PRISM rasters to
June, July, and August, clipping each monthly raster to San Francisco's boundaries, creating
one raster with each monthly raster as a band, and then outputting the combined raster to a
portable raster format. We will convert the combined raster to the GeoTIFF format.

WITH months AS (-- extract monthly rasters clipped to San
Francisco
 SELECT
 prism.month_year,
 ST_Union(
 ST_Clip(prism.rast, 2,
 ST_Transform(sf.geom, 4322), TRUE)
) AS rast
 FROM prism
 JOIN sfpoly sf
 ON ST_Intersects(prism.rast, ST_Transform(sf.geom,
 4322))
 WHERE prism.month_year BETWEEN '2012-06-01'::date AND
'2012-08-01'::date
 GROUP BY prism.month_year
 ORDER BY prism.month_year
), summer AS (-- new raster with each monthly raster as a band
 SELECT
 ST_AddBand(NULL::raster, array_agg(rast)) AS rast
 FROM months
)
SELECT -- export as GeoTIFF
 ST_AsTIFF(rast) AS content
FROM summer;

To filter our PRISM rasters, we use ST_Intersects() to keep only those raster tiles that
spatially intersect San Francisco's boundaries. We also remove all rasters whose relevant
month is not June, July, or August. We then use ST_AddBand() to create a new raster
with each summer month's new raster band. Finally, we pass the combined raster to
ST_AsTIFF() to generate a GeoTIFF.

Chapter 5

211

If you output the returned value from ST_AsTIFF() to a file, run gdalinfo on that file. The
gdalinfo output shows that the GeoTIFF file has three bands and the coordinate system of
SRID 4322.

Driver: GTiff/GeoTIFF
Files: surface.tif
Size is 20, 7
Coordinate System is:
GEOGCS["WGS 72",
 DATUM["WGS_1972",
 SPHEROID["WGS 72",6378135,298.2600000000045,
 AUTHORITY["EPSG","7043"]],
 TOWGS84[0,0,4.5,0,0,0.554,0.2263],
 AUTHORITY["EPSG","6322"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4322"]]
Origin = (-123.145833333333314,37.937500000000114)
Pixel Size = (0.041666666666667,-0.041666666666667)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 INTERLEAVE=PIXEL
Corner Coordinates:
Upper Left (-123.1458333, 37.9375000) (123d 8'45.00"W, 3
7d56'15.00"N)
Lower Left (-123.1458333, 37.6458333) (123d 8'45.00"W, 3
7d38'45.00"N)
Upper Right (-122.3125000, 37.9375000) (122d18'45.00"W, 3
7d56'15.00"N)
Lower Right (-122.3125000, 37.6458333) (122d18'45.00"W, 3
7d38'45.00"N)
Center (-122.7291667, 37.7916667) (122d43'45.00"W, 3
7d47'30.00"N)
Band 1 Block=20x7 Type=Float32, ColorInterp=Gray
 NoData Value=-9999
Band 2 Block=20x7 Type=Float32, ColorInterp=Undefined
 NoData Value=-9999
Band 3 Block=20x7 Type=Float32, ColorInterp=Undefined
 NoData Value=-9999

Working with Raster Data

212

The problem with the GeoTIFF raster is that we generally can't view it in a standard image
viewer. If we use ST_AsPNG() or ST_AsJPEG(), the image generated is much more readily
viewable. But PNG and JPEG images are limited by the supported pixel types 8BUI and
16BUI (PNG only). Both formats are also limited to at most three bands (four if there is
an alpha band).

To help get around various file format limitations, we can use ST_MapAlgebra() or
ST_Reclass(), and for this recipe, ST_ColorMap(). The ST_ColorMap() function
converts a raster band of any pixel type to a set of up to four 8BUI bands. This facilitates
creating a grayscale, RGB or RGBA image that is then passed to ST_AsPNG() or
ST_AsJPEG().

Taking our query for computing a slope raster of San Francisco from our SRTM raster in a prior
recipe, we can apply one of the ST_ColorMap() function's built-in colormaps and then pass
the resulting raster to ST_AsPNG() for creating a PNG image.

WITH r AS (
 SELECT
 ST_Transform(ST_Union(srtm.rast), 3310) AS rast
 FROM srtm
 JOIN sfpoly sf
 ON ST_DWithin(ST_Transform(srtm.rast::geometry,
3310), ST_Transform(sf.geom, 3310), 1000)
), cx AS (
 SELECT
 ST_AsRaster(ST_Transform(sf.geom, 3310), r.rast)
AS rast
 FROM sfpoly sf
 CROSS JOIN r
)
SELECT
 ST_AsPNG(
 ST_ColorMap(
 ST_Clip(
 ST_Slope(r.rast, 1, cx.rast),
 ST_Transform(sf.geom, 3310)
),
 'bluered'
)
) AS rast
FROM r
CROSS JOIN cx
CROSS JOIN sfpoly sf;

Chapter 5

213

The "bluered" colormap sets the minimum, median, and maximum pixel values to dark blue,
pale white, and bright red respectively. Pixel values between the minimum, median, and
maximum values are assigned colors that are linearly interpolated from the minimum to
median or median to maximum range. The resulting image readily shows where the steepest
slopes in San Francisco are.

The following is a PNG image generated by applying the "bluered" colormap with
ST_ColorMap() and ST_AsPNG(). The pixels in red represent the steepest slopes.

In our use of ST_AsTIFF() and ST_AsPNG(), we passed the raster to be converted as
the sole argument. Both of these functions have additional parameters to customize the
output TIFF or PNG file. These additional parameters include various compression and data
organization settings.

How it works...
Using ST_AsTIFF() and ST_AsPNG(), we exported rasters from PostGIS to GeoTIFF and
PNG. The ST_ColorMap() function helped generate images that can be opened in any
image viewer. If we needed to export these images to a different format supported by GDAL,
we would use ST_AsGDALRaster().

6
Working with pgRouting

In this chapter, we will cover:

ff Startup – Dijkstra routing

ff Loading data from OpenStreetMap and finding the shortest path using A*

ff Driving distance/service area calculation

ff Calculating demographics using driving distance

ff Extracting the centerlines of polygons

Introduction
So far, we have used PostGIS as a vector and raster tool, using relatively simple relationships
between objects and simple structures. In this chapter, we will review an additional PostGIS-
related extension: pgRouting. pgRouting allows us to interrogate graph structures in order to
answer questions, such as "What is the shortest route from where I am to where I am going?"
This is a domain heavily occupied by the existing web APIs (such as Google, Bing, MapQuest,
and others) and services, but it can be better served by "rolling our own" services for many
use cases. Which cases? It might be a good idea to create our own services in situations
where we are trying to answer questions that aren't answered by the existing services, such
as when the data available to us is better or more applicable, or when we need or want to
avoid the Terms of Service conditions for these APIs.

Startup – Dijkstra routing
pgRouting is a separate extension used in addition to PostGIS. Its download and installation
is vastly simplified by DEB, RPM, and OS X packages and Windows binaries available at
http://pgrouting.org/download.html.

Working with pgRouting

216

Getting ready
pgRouting doesn't deal well with non-default schema, so before we begin, we will set the
schema in our user preferences using the following command:

ALTER ROLE me SET search_path TO chp06,public;

Next, we need to add the pgRouting extension to our database. If PostGIS is not already
installed on the database, we'll need to add that as an extension, as well:

--CREATE EXTENSION postgis;

CREATE EXTENSION pgrouting;

We will start by loading a test dataset. You can get some really basic sample data from
http://docs.pgrouting.org/dev/doc/src/developer/sampledata.html.
This sample data consists of a small grid of streets in which any functions can be run.

Then, run the create table and data insert scripts available at docs.pgrouting.org/2.0/
en/doc/src/developer/sampledata.html.

Now that the data is loaded, let's build topology on the table (if you haven't already done this
during the data-load process):

SELECT pgr_createTopology('edge_table',0.001);

Building a topology creates a new node table, chp06.edge_table_vertices_pgr, which
is available for us to view and will aid us in developing queries.

How to do it...
Now that the data are loaded, we can run a quick test. We'll use a simple algorithm called
Dijkstra to calculate the shortest path from node 5 to node 12.

Dijkstra's algorithm is an effective and simple routing algorithm that runs a
search of all available paths from point A to point B in a network, also known
as the graph structure. It is not the most efficient routing algorithm, but will
always find the best route. For more information on Dijkstra's algorithm, refer
to Wikipedia, which has a good explanation with illustrations, at http://
en.wikipedia.org/wiki/Dijkstra%27s_algorithm. See
especially http://en.wikipedia.org/wiki/File:Dijkstras_
progress_animation.gif.

Chapter 6

217

An important point to note is that the nodes in pgRouting created during the topology creation
process are created non-deterministically for some versions. This has been patched in future
versions; but for some versions of pgRouting, this means that your node numbers will not be
the same as those we use here in the book. View your data in an application to determine
which nodes to use or use a KNN search for the node nearest to a static geographic point.
See Chapter 11, Using Desktop Clients, for more information on viewing PostGIS data, and
Chapter 4, Working with Vector Data – Advanced Recipes, for approaches to finding the
nearest node automatically. Dijkstra is run as in the following code:

SELECT pgr_dijkstra('SELECT id, source, target,

 cost FROM edge_table',

 16,

 9,

 false,

 false);

The preceding query will result in the following:

 pgr_dijkstra

 (0,16,6,1)

 (1,17,7,1)

 (2,5,8,1)

 (3,6,9,1)

 (4,11,15,1)

 (5,9,-1,0)

(6 rows)

For new users, this is a surprising result—we ask for a route, we expect a little more than
some generic tuples in return. What returns includes a list of segments our route traverses.
For Dijkstra and other routing algorithms, this often comes in the following form:

ff seq: This returns the sequence number so that we can maintain the order of
the output

ff id1: This is the node ID

ff id2: This is the edge ID

ff cost: This is the cost for the route traversal (often, the distance)

Working with pgRouting

218

For example, to get the geometry back, we need to rejoin the edge IDs with the original table.
To make this approach work transparently, we will use the WITH common table expression to
create a temporary table to which we will join our geometry:

WITH dijkstra AS (

SELECT pgr_dijkstra('SELECT id, source, target,

 cost, x1, x2, y1, y2 FROM edge_table',

 16,

 9,

 false,

 false)

)

SELECT id, ST_AsText(the_geom)

 FROM edge_table et, dijkstra d

 WHERE et.id = (d.pgr_dijkstra).id2;

The preceding code will give the following output:

 id | st_astext

----+---------------------

 15 | LINESTRING(4 2,4 3)

 6 | LINESTRING(0 2,1 2)

 7 | LINESTRING(1 2,2 2)

 8 | LINESTRING(2 2,3 2)

 9 | LINESTRING(3 2,4 2)

(5 rows)

id | st_astext

----+---------------------

 6 | LINESTRING(0 2,1 2)

 7 | LINESTRING(1 2,2 2)

 8 | LINESTRING(2 2,3 2)

 9 | LINESTRING(3 2,4 2)

 15 | LINESTRING(4 2,4 3)

(5 rows)

Chapter 6

219

Congratulations! You have just completed a route in pgRouting. The following diagram
illustrates the route:

Working with pgRouting

220

Loading data from OpenStreetMap and
finding the shortest path using A*

Test data are great for understanding how algorithms work, but the real data is often more
interesting. A good source for real data worldwide is OpenStreetMap (OSM), a worldwide,
wiki-style geospatial dataset. What is wonderful about using OSM in conjunction with pgRouting
is that it is inherently a topological model, meaning that it follows the same kinds of rules in
its construction that we do in graph traversal within pgRouting. Because of how editing and
community participation works in OSM, it is often an equally good or better data source than
commercial ones and, of course, quite compatible with our open source model.

Another great feature is that there is a free and open source software to ingest OSM data and
import it into a routing database—osm2pgrouting.

Getting ready
It is recommended to either get the downloadable files from http://metro.teczno.com, or
download the example dataset that we have provided, available at http://www.packtpub.
com/support. Either way, you will be using the XML OSM data. You can also get custom
extracts directly from the web interface at http://www.openstreetmap.org/, but this
could significantly limit the area we would be able to extract.

Once we have the data, we need to unzip it using our favorite compression utility. Double-
clicking on the file to unzip it will typically work on Windows and Mac OS machines. Two of the
good utilities for unzipping on Linux are bunzip2 and zip. What will remain is an XML extract
of the data we want for routing. In our use case, we are downloading the data for the Greater
Cleveland area.

Now, we need a utility for placing these data into a routable database. An example of one such
tool is osm2pgrouting, which is often a part of binary installs of pgRouting, but it can also
be downloaded and compiled using the instructions at http://pgrouting.org/docs/
tools/osm2pgrouting.html.

How to do it...
For my configuration, the binary is located at /usr/share/bin/./osm2pgrouting. To run
this binary, type the following command:

osm2pgrouting

Chapter 6

221

When osm2pgrouting is run without anything set, the output shows us the options to use
with osm2pgrouting. Some options are required, others optional:

following params are required:

-file <file> -- name of your osm xml file

-conf <conf> -- name of your configuration xml file

-dbname <dbname> -- name of your database

-user <user> -- name of the user, which have write access to the database

optional:

-host <host> -- host of your postgresql database (default: 127.0.0.1)

-port <port> -- port of your database (default: 5432)

-passwd <passwd> -- password for database access

-prefixtables <prefix> -- add at the beginning of table names

-clean -- drop previously created tables

-skipnodes -- don't import the nodes table

To run the osm2pgrouting command, we have a small number of required parameters.
Double-check the paths pointing to mapconfig.xml and cleveland.osm before running
the following command:

osm2pgrouting -file cleveland.osm -conf /usr/share/osm2pgrouting/
mapconfig.xml -dbname postgis_cookbook -user me -host localhost
prefixtables cleveland_ -clean

Our dataset may be quite large and take some time to process and import. Be patient and the
end of the output should say something like the following:

Create Topology success

#########################

size of streets: 90013

size of splitted ways : 224534

finished

Our new vector table, by default, is named cleveland_ways. If no -prefixtables flag
were used, the table name would just be ways.

How it works...
osm2pgrouting is a powerful tool. In this case, it creates eight tables from our input file. Of
those eight, we'll address the two primary tables: the ways table and the nodes table.

Working with pgRouting

222

Our ways table is a table of the lines representing all of our streets, roads, trails, and so on
that are in OSM. The nodes table contains all of the intersections. This helps us identify the
beginning and end points for routing.

Let's apply an A* (A star) routing approach to this problem.

A* is an extension of Dijkstra's algorithm, which uses a heuristic to speed
up the search for the shortest path, at the cost of occasionally not finding
the optimum route. See http://en.wikipedia.org/wiki/A* and
http://en.wikipedia.org/wiki/File:Astar_progress_
animation.gif for more information.

You will recognize the following syntax from Dijkstra. The code is executed as follows:

WITH astar AS (

SELECT pgr_astar('SELECT gid AS id, source, target,

 length AS cost FROM ways',

 89475,

 14584,

 false,

 false)

)

SELECT gid, the_geom

 FROM ways w, astar a

 WHERE w.gid = (a.pgr_astar).id2;WITH astar AS (

SELECT pgr_astar('SELECT gid AS id, source, target,

length AS cost, x1, x2, y1, y2 FROM cleveland_ways',

89475,

14584,

false,

false)

)

SELECT gid, the_geom

FROM cleveland_ways w, astar a

WHERE w.gid = (a.pgr_astar).id2;

Chapter 6

223

The following screenshot shows the results shown on a map (Map tiles by Stamen Design,
under CC BY 3.0, Data by OpenStreetMap, under CC BY SA.):

Driving distance/service area calculation
Driving distance (pgr_drivingDistance) is a query that calculates all nodes within
the specified driving distance of a starting node. This is an optional feature compiled with
pgRouting; so if you compile pgRouting yourself, make sure that you enable it and include the
CGAL library, a required dependency for pgr_drivingDistance.

Working with pgRouting

224

Driving distance is useful when "user sheds" are needed that give realistic driving distance
estimates, for example, for all customers within 5 miles of driving, biking, or walking distance.
These estimates can be contrasted with buffering techniques, which assume no barrier
to travelling and are useful for revealing the underlying structures of our transportation
networks relative to individual locations.

Getting ready
We will load the same dataset that we used in the Startup – Dijkstra routing recipe. Refer to
this recipe to import data.

How to do it...
In the following example, we will look at all users within the distance of 1.5 units from our
starting point, that is, a proposed bike shop at node 7:

SELECT seq, id1 AS node, cost

 FROM pgr_drivingDistance('SELECT id, source,
target, cost FROM edge_table',

 67, 1.5, false, false

);

The preceding command gives the following output:

 seq | node | cost

-----+------+------

 0 | 3 | 1

 1 | 5 | 1

 2 | 6 | 0

 3 | 7 | 1

 4 | 11 | 1

(5 rows)

As usual, we just get a list from the pgr_drivingDistance table that, in this case,
comprises sequence, node, and cost. pPgRouting, like PostGIS, gives us low-level functionality;
we need to reconstruct what geometries we need from that low-level functionality. We can use
that node ID to extract the geometries of all of our nodes, by executing the following script:

WITH DD AS (

SELECT seq, id1 AS node, cost

 FROM pgr_drivingDistance(

 'SELECT id, source, target, cost FROM edge_table',

Chapter 6

225

 6, 1.5, false, false

)

)

SELECT ST_AsText(the_geom)

 FROM vertex_table w, DD d

 WHERE w.id = d.node

 ;

The preceding command gives the following output:

st_astext

 POINT(3 1)

 POINT(0 2)

 POINT(1 2)

 POINT(2 2)

 POINT(3 3)

(5 rows)

But, the output seen is just a cluster of points. Normally, when we think of driving distance, we
visualize a polygon. Fortunately, we have with the pgr_alphaShapefunction the capacity
to create a polygon from a set of points. pgr_alphaShape expects id, x, and y values for
input, so we will first change our preceding query a bit:

WITH DD AS (

SELECT seq, id1 AS node, cost

 FROM pgr_drivingDistance(

 'SELECT id, source, target, cost FROM edge_table',

 6, 1.5, false, false

)

)

SELECT id, x, y

 FROM vertex_table w, DD d

 WHERE w.id = d.node

 ;

Working with pgRouting

226

The output is as follows:

 id | x | y

----+---+---

 3 | 3 | 1

 5 | 0 | 2

 6 | 1 | 2

 7 | 2 | 2

 11 | 3 | 3

(5 rows)

Now, we can wrap the preceding script in the alphashape function:

WITH alphashape AS (

SELECT pgr_alphaShape('

 WITH DD AS (

 SELECT seq, id1 AS node, cost

 FROM pgr_drivingDistance(

 ''SELECT id, source, target, cost FROM edge_table'',

 6, 1.5, false, false

)

),

 dd_points AS(

 SELECT id, x, y

 FROM vertex_table w, DD d

 WHERE w.id = d.node

)

 SELECT * FROM dd_points

 ')

),

First, we will get our cluster of points. As done earlier, we will explicitly convert the text to
geometric points:

alphapoints AS (

 SELECT ST_MakePoint((pgr_alphashape).x, (pgr_alphashape).y) FROM
alphashape

),

Chapter 6

227

Now that we have points, we can create a line by connecting them:

alphaline AS (

 SELECT ST_Makeline(ST_MakePoint) FROM alphapoints

)

SELECT ST_MakePolygon(ST_AddPoint(ST_Makeline, ST_StartPoint(ST_
Makeline))) FROM alphaline;

Finally, we construct the line as a polygon using ST_MakePolygon. This requires adding
the starting point by executing ST_StartPoint in order to properly close the polygon.
The complete code is as follows:

WITH alphashape AS (

SELECT pgr_alphaShape('

 WITH DD AS (

 SELECT seq, id1 AS node, cost

 FROM pgr_drivingDistance(

 ''SELECT id, source, target, cost FROM edge_table'',

 6, 1.5, false, false

)

),

 dd_points AS(

 SELECT id, x, y

 FROM vertex_table w, DD d

 WHERE w.id = d.node

)

 SELECT * FROM dd_points

 ')

),

alphapoints AS (

 SELECT ST_MakePoint((pgr_alphashape).x, (pgr_alphashape).y) FROM
alphashape

),

alphaline AS (

 SELECT ST_Makeline(ST_MakePoint) FROM alphapoints

)

SELECT ST_MakePolygon(ST_AddPoint(ST_Makeline, ST_StartPoint(ST_
Makeline))) FROM alphaline;

Working with pgRouting

228

Our first driving distance value is not too interesting, but it can be with real data as in the
Calculating the driving distance with demographics recipe. See the following screenshot:

See also
ff The Calculating the driving distance with demographics recipe

Chapter 6

229

Calculating demographics using driving
distance

In the Using polygon overlays for proportional census estimates recipe in Chapter 2,
Structures that Work, we employed a simple buffer around a trail alignment in conjunction
with the census data to get estimates of what the demographics were of the people within
walking distance of the trail, estimated as a distance of 1 mile. The problem with this
approach, of course, is that it assumes that it is an "as the crow flies" estimate. In reality,
rivers, large roads, and roadless stretches serve as real barriers to people's movement
through space. Using pgRouting's pgr_drivingDistance function, we can realistically
simulate people's movement on routable networks and get better estimates. For our use case,
we'll keep the simulation a bit simpler than a trail alignment—we'll consider the demographics
of a park facility, say, the Cleveland Metroparks Zoo, and potential bike users within 4 miles of
it, which we estimate as approximately a 15 minute bike ride.

Getting ready
For our analysis, we will use the proportionalsum function from Chapter 2, Structures that
Work; so if you have not added this to your PostGIS tool belt, run the following commands:

CREATE OR REPLACE FUNCTION chp02.proportional_sum(geometry, geometry,
numeric)

 RETURNS numeric AS

$BODY$

 SELECT $3 * areacalc FROM

 (

 SELECT (ST_Area(ST_Intersection($1, $2))/ST_Area($2))::numeric
AS areacalc

) AS areac

;

$BODY$

 LANGUAGE sql VOLATILE;

The proportional_sum function will take into account our input geometry and the count
value of the population and return an estimate of the proportional population.

Now, we need to load our census data and zoo location. Use the following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom census chp06.census |
psql -U me -d postgis_cookbook -h localhost

Working with pgRouting

230

Also, if you have not yet loaded the data mentioned in the Loading data from OpenStreetMap
and finding the shortest path using A* recipe, take the time to do so now.

Once all of the data is entered, we can proceed with the analysis.

How to do it...
The pgr_drivingdistance polygon we created is the first step in the demographic
analysis. Refer to the Driving distance/service area calculation recipe if you need to
familiarize yourself with its use. In this case, we'll consider bicycling distance. Cleveland
Metroparks Zoo is nearest the node, 164495; so we'll use that as the center point for our
pgr_drivingdistance calculation, and 6.437376 kilometers as our distance, as we want
to know the number of zoo visitors within 4 miles of the Cleveland Metroparks Zoo:

CREATE TABLE zoo_bikezone AS (

WITH alphashape AS (

SELECT pgr_alphaShape('

 WITH DD AS (

 SELECT seq, id1 AS node, cost

 FROM pgr_drivingDistance(

 ''SELECT gid AS id, source, target, reverse_cost AS cost FROM
cleveland_ways'',

 165232, 6.437376, false, false

)

),

 dd_points AS(

 SELECT id::int4, ST_X(the_geom)::float8 as x, ST_Y(the_geom)::float8 AS
y

 FROM cleveland_ways_vertices_pgr w, DD d

 WHERE w.id = d.node

)

 SELECT * FROM dd_points

 ')

),

alphapoints AS (

 SELECT ST_MakePoint((pgr_alphashape).x, (pgr_alphashape).y) FROM
alphashape

),

alphaline AS (

 SELECT ST_Makeline(ST_MakePoint) FROM alphapoints

)

SELECT 1 as id, ST_SetSRID(ST_MakePolygon(ST_AddPoint(ST_Makeline, ST_
StartPoint(ST_Makeline))), 4326) AS the_geom FROM alphaline

);

Chapter 6

231

The preceding script gives us a very interesting shape (Map tiles by Stamen Design, under CC
BY 3.0, Data by OpenStreetMap, under CC BY SA). See the following screenshot:

In the previous screenshot, we can see the difference between the bicycling distance across
the real road network, shaded in blue, and the equivalent 4 mile buffer, or "as the crow flies"
distance. Let's apply this to our demographic analysis, using the following script:

SELECT ROUND(SUM(chp02.proportional_sum(ST_Transform(a.geom,3734),
b.geom, b.pop))) AS population FROM
 zoo_bikezone AS a, census as b
 WHERE ST_Intersects(ST_Transform(a.the_geom, 3734), b.the_geom)
 GROUP BY a.id;

Working with pgRouting

232

The output is as follows:

 population

 167714

(1 row)

So, how does the preceding output compare to what we would get if we look at the buffered
distance?

SELECT ROUND(SUM(chp02.proportional_sum(ST_Transform(a.the_geom,3734),
b.the_geom, b.pop))) AS population FROM

 (SELECT 1 AS id, ST_Buffer(ST_Transform(the_geom, 3734), 21120) AS
the_geom FROM cleveland_ways_vertices_pgr WHERE id = 165232) AS a,

 census as b

 WHERE ST_Intersects(ST_Transform(a.the_geom, 3734), b.the_geom)

 GROUP BY a.id;

 population

 2341662

(1 row)

The preceding output shows a difference of more than 60,000 people. In other words,
using a buffer overestimates population by more than 28 percent compared to using pgr_
drivingdistance.

Extracting the centerlines of polygons
In several recipes in Chapter 4, Working with Vector Data – Advanced Recipes, we explored
extracting Voronoi polygons from sets of points. In this recipe, we'll use the Voronoi function
employed in the Using external scripts to embed new functionality in order to calculate a
Voronoi diagram recipe, in Chapter 4, Working with Vector Data – Advanced Recipes, to
serve as the first step in extracting the centerline of a polygon. One could also use the Using
external scripts to embed other libraries in order to calculate a Voronoi diagram – advanced
recipe, in Chapter 4, Working with Vector Data – Advanced Recipes, which would run faster on
large datasets. For this recipe, we will use the simpler but slower approach.

One additional dependency is that we will be using the chp02.polygon_to_
line(geometry) function from the Normalizing internal overlays recipe in Chapter 2,
Structures that Work.

Chapter 6

233

What do we mean by the centerline of a polygon? Imagine a digitized stream between its pair
of banks as shown in the following screenshot:

If we wanted to find the center of this, in order to model water flow, we could extract this using
a skeletonization approach, as shown in the following screenshot:

Working with pgRouting

234

The difficulty with skeletonization approaches, as we'll soon see, is that they are often subject
to noise, which is something that natural features like our stream have plenty of. This means
that typical skeletonization, which could be done simply with a Voronoi approach, is therefore
inherently inadequate for our purposes.

This brings us to the reason why skeletonization is included in this chapter. Routing is a way
for us to simplify skeletons derived from the Voronoi method. It allows us to trace from one
end of a major feature to the other, and skip all of the noise in between.

Getting ready
As we will be using the Voronoi calculations from the Using external scripts to embed new
functionality in order to calculate a Voronoi diagram recipe in Chapter 4, Working with Vector
Data – Advanced Recipes, refer to that recipe to prepare yourself for using the functions in
this recipe.

Once the Voronoi function is in place, we can begin with our problem dataset—a stream—using
the following command:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom ebrr_polygon public.
voronoi_hydro | psql -U me -d postgis_cookbook

The streams we create will look as shown in the following screenshot:

How to do it...
In order to perform basic skeletonization, we'll calculate Voronoi polygons on the nodes that
make up the original stream polygon. The edges of Voronoi polygons, by nature, find the line
that demarcates the midpoint between points. We will leverage this tendency by treating
our lines like points—adding extra vertexes to the lines and then converting the lines to a
point set. This approach, in combination with Voronoi, will provide an initial estimate of the
polygon's centerline.

Chapter 6

235

We will add extra points to our input geometries using the ST_Segmentize function, and
then convert the geometries to points using ST_DumpPoints:

CREATE TABLE voronoi_points AS

 WITH rawpoints AS (

 SELECT (ST_DumpPoints(ST_Segmentize(the_geom, 5))).geom AS the_geom
FROM voronoi_hydro

 UNION ALL

 SELECT (ST_DumpPoints(ST_Extent(the_geom))).geom AS the_geom FROM
voronoi_hydro

)

 SELECT (ST_Dump(ST_Union(the_geom))).geom AS the_geom FROM

 rawpoints;

The following screenshot shows our polygons as a set of points:

The set of points in the preceding screenshot is what we feed into our Voronoi calculation:

CREATE TABLE voronoi AS

 SELECT * FROM voronoi('voronoi_points', 'the_geom') AS (id integer,
the_geom geometry);

Working with pgRouting

236

The following screenshot shows a Voronoi diagram derived from our points:

If you look closely at the preceding screenshot, you will see the basic centerline extant in our
new data. Now, we take step one toward extracting it. We should index our inputs and then
intersect the Voronoi output with the original stream polygon in order to clean the data back
to something reasonable. In the extraction process, we'll also extract the edges from the
polygons and remove the edges along the original polygon in order to remove any excess
lines before our routing step. This is implemented in the following script:

CREATE INDEX chp04_voronoi_geom_gist

 ON public.voronoi

 USING gist(the_geom);

DROP TABLE IF EXISTS voronoi_intersect;

CREATE TABLE voronoi_intersect AS

 WITH vintersect AS (

 SELECT ST_Intersection(ST_SetSRID(ST_MakeValid(a.the_geom), 3734), ST_
MakeValid(b.the_geom)) AS the_geom FROM

 voronoi a, voronoi_hydro b

 WHERE ST_Intersects(ST_SetSRID(a.the_geom, 3734), b.the_geom)

),

 linework AS (

 SELECT chp02.polygon_to_line(the_geom) AS the_geom FROM

 vintersect

Chapter 6

237

),

 polylines AS (

 SELECT ((ST_Dump(ST_Union(lw.the_geom))).
geom)::geometry(linestring, 3734) AS the_geom FROM

 linework AS lw

),

 externalbounds AS (

 SELECT chp02.polygon_to_line(the_geom) AS the_geom FROM

 voronoi_hydro

)

 SELECT (ST_Dump(ST_Union(p.the_geom))).geom FROM

 polylines p, externalbounds b

 WHERE NOT ST_DWithin(p.the_geom, b.the_geom, 5)

 ;

Now, we have a second-level approximation of the skeleton (shown in the following
screenshot). It is messy, but starts to highlight that centerline that we seek:

Working with pgRouting

238

There's more...
Now, we are nearly ready for routing. The centerline calculation we have is a good
approximation of a straight skeleton, but still subject to the noisiness of the natural world.
We'd like to eliminate that noisiness by choosing our features and emphasizing them through
routing. First, we need to prepare the table to allow for routing calculations, as shown in the
following commands:

ALTER TABLE voronoi_intersect ADD COLUMN gid serial;

ALTER TABLE voronoi_intersect ADD PRIMARY KEY (gid);

ALTER TABLE voronoi_intersect ADD COLUMN source integer;

ALTER TABLE voronoi_intersect ADD COLUMN target integer;

Then, to create a routable network from our skeleton, enter the following commands:

SELECT pgr_createTopology('voronoi_intersect', 0.001, 'the_geom', 'gid',
'source', 'target', 'true');

CREATE INDEX source_idx ON voronoi_intersect("source");

CREATE INDEX target_idx ON voronoi_intersect("target");

ALTER TABLE voronoi_intersect ADD COLUMN length double precision;

UPDATE voronoi_intersect SET length = ST_Length(the_geom);

ALTER TABLE voronoi_intersect ADD COLUMN reverse_cost double precision;

UPDATE voronoi_intersect SET reverse_cost = length;

Now, we can route along the primary centerline of our polygon, using the following commands:

CREATE TABLE voronoi_route AS

WITH dijkstra AS (

SELECT pgr_dijkstra('SELECT gid AS id, source, target,

 length AS cost FROM voronoi_intersect',

 10851, 3,

 false,

 false)

)

SELECT gid, the_geom

 FROM voronoi_intersect et, dijkstra d

 WHERE et.gid = (d.pgr_dijkstra).id2;

Chapter 6

239

Finally, we can compare the original polygon with the trace of its centerline:

The preceding figure shows the original geometry of the stream in contrast to our centerline,
or skeleton. It is an excellent output that vastly simplifies our input geometry while retaining
its relevant features.

7
Into the Nth Dimension

In this chapter, we will cover:

ff Importing LiDAR data

ff Performing 3D queries on a LiDAR point cloud

ff Constructing and serving buildings 2.5 D

ff Using ST_Extrude to extrude building footprints

ff Creating arbitrary 3D objects for PostGIS

ff Exporting models as X3D for the Web

ff Reconstructing Unmanned Aerial Vehicle (UAV) image footprints with PostGIS 3D

ff UAV photogrammetry in PostGIS – point cloud

ff UAV photogrammetry in PostGIS – orthorectification

ff UAV photogrammetry in PostGIS – DSM creation

Introduction
In this chapter, we will delve into the 3D capabilities of PostGIS, focusing on three basic
categories: how to get 3D data into PostGIS, 3D analyses within PostGIS, and ways of serving 3D
data out of PostGIS. The chapter will focus on 3D point clouds, including LiDAR point clouds and
point clouds derived from Structure from Motion (SfM) techniques. In addition, we will build a
function that extrudes building footprints to 3D. Finally, we will explore ways of distributing the
3D models through the Web as exported from PostGIS using the X3D standard.

Into the Nth Dimension

242

We will not be addressing the pointcloud extension in this chapter, which enables the use
of larger LiDAR and other point cloud data in PostgreSQL with optional capacity to tie into
PostGIS. For information on pointcloud PostgreSQL/PostGIS development, see Paul Ramsey's
tutorial at http://workshops.boundlessgeo.com/tutorial-lidar/ and other
forthcoming resources at http://boundlessgeo.com.

Download the example datasets we have for your use available at
http://www.packtpub.com/support.

Importing LiDAR data
Light Detection And Ranging (LiDAR) are data collected that measure the 3D location and
other properties of objects in space. LiDAR is similar in many respects to radar in that it uses
electromagnetic waves to measure distance, brightness, and other properties. It is distinct
from radar in that it uses laser and, thus, optical techniques, instead of microwaves
or radio waves. An additional distinction is that LiDAR typically sends out a single focused
pulse at any given time, awaits a return pulse, and records it. Radar, by contrast, will send
out multiple pulses before receiving return pulses and, therefore, requires additional
processing to determine the source of each pulse.

LiDAR data has become quite common in conjunction with both ground and airborne
applications, aiding in ground surveys and enhancing and substantially automating
aspects of photogrammetric engineering. As such, data sources for LiDAR data abound.

LiDAR data is typically distributed in an interchange format called LAS or LASer. The
American Society for Photogrammetry and Remote Sensing (ASPRS) establishes the LAS
standard. LAS is a binary format, so reading it to push into a PostGIS database is non-trivial.
Fortunately, several open-source and partially open-source tools exist to convert and process
LAS files, including LASTools and libLAS.

Getting ready
Our source data will be in the LAS format, which we will convert with either LASTools, available
from Martin Isenburg at http://www.cs.unc.edu/~isenburg/ or utilities built around
libLAS at http://www.liblas.org/. For Windows users, we recommend Martin Isenburg's
tools as they tend to trend toward more advanced functionality but pay close attention to
license terms or use libLAS instead, as the licensing is much more permissive for libLAS.
For Linux/UNIX and Mac users, we recommend libLAS as it is easier to install and maintain.

Chapter 7

243

LAS data can contain a lot of interesting data, not just X, Y, and Z values. It can include the
intensity of the return from the object sensed and the classification of the object (ground vs.
vegetation vs. buildings). When we convert a LAS file to text and then place it in our PostGIS
dataset, we can optionally collect any of this information. In preparation for this, we will create
a table with appropriate rows to collect some of the information from our pending LAS file.

CREATE TABLE chp07.lidar
(
 x numeric,
 y numeric,
 z numeric,
 intensity integer,
 tnumber integer,
 number integer,
 class integer,
 id integer,
 vnum integer
)
WITH (OIDS=FALSE);
ALTER TABLE chp07.lidar OWNER TO me;

Now, we can download our data. We recommend either getting it downloaded from
http://gis5.oit.ohio.gov/geodatadownload/ or downloading the example
dataset we have for your use available at http://www.packtpub.com/support.

How to do it...
We need to convert our LAS file to a format that can be read by PostgreSQL. To this end,
we will use las2txt, either from LAStools or libLAS, to convert our LAS file to text.

las2txt --parse xyzinrcpM -sep komma input output.csv

If we have a large directory of LAS files, we can automate their conversion to text. In BASH on
Linux, Unix, and Mac OS X systems, we can do that with the following:

#!/bin/bash
x=0
total=`ls *.las | wc | awk '{print $1}'`
for f in $(ls *.las); do
 x=`expr $x + 1`
 echo $x of $total started. $f processing.
 las2txt --parse xyzinrcpM -sep komma $f $f.csv
done

Into the Nth Dimension

244

For Windows, we can accomplish this with PowerShell (a special thanks to Leland Barnes for
providing this approach), as follows:

$las = dir *.las
$x = 0

$las |foreach {
 write-host ($x++) "of $($las.count) is started. $($_.Name) is
 processing"
 write-host "las2txt --parse xyzinrcpM -sep komma $($_.name)
 $($_.basename).csv"
}

Additional options for las2txt can be accessed by simply running the previous
command without any options.

Now that the data are in text format, available as Comma Separated Values (CSVs),
loading them into PostgreSQL is easy. From within psql, we can use the \copy command
to accomplish this, as follows:

\copy chp07.lidar from 'N2210595.las.csv' with csv
\copy chp07.lidar from 'N2215595.las.csv' with csv
\copy chp07.lidar from 'N2220595.las.csv' with csv

Now, the data are in our database, but they are only implicitly spatial data. Let's make this
explicit by executing the following commands:

SELECT AddGeometryColumn('chp07','lidar','the_geom',3734,'POINT', 3);
UPDATE chp07.lidar SET the_geom =
 ST_SetSRID(ST_MakePoint(x,y,z),3734);We add a primary key:
ALTER TABLE chp07.lidar ADD COLUMN gid serial;
ALTER TABLE chp07.lidar ADD PRIMARY KEY (gid);

Now, we can view our data as shown in the following image:

Chapter 7

245

See also
ff The Performing 3D queries on a LiDAR point cloud recipe

Performing 3D queries on a LiDAR point
cloud

In the previous recipe, Importing LiDAR data, we brought a LiDAR 3D point cloud into PostGIS,
creating an explicit 3D dataset from the input. With the data in 3D form, we have the ability
to perform spatial queries against it. In this recipe, we will leverage 3D indexes such that our
query works in all the dimensions our data are in.

How to do it...
We will use the LiDAR data imported in the previous recipe as our dataset of choice. We
named that table chp07.lidar. To perform our query, we will require an index created
on the dataset. Spatial indexes, much like ordinary database table indexes, are similar to
book indexes insofar as they help us find what we are looking for faster. Ordinarily, such
an index-creation step would look like the following (which we won't run this time):

CREATE INDEX chp07_lidar_the_geom_idx ON chp07.lidar USING
 gist(the_geom);

A 3D index does not perform as quickly as a 2D index for 2D queries, so a CREATE INDEX
query defaults to creating a 2D index. In our case, we want to force the index to apply to all
three dimensions, so we will explicitly tell PostgreSQL to use the n-dimensional version of
the index, as follows:

CREATE INDEX chp07_lidar_the_geom_3dx ON chp07.lidar USING
 gist(the_geom gist_geometry_ops_nd);

Note that the approach depicted in the previous code would also work if we had a time
dimension or a 3D plus time. Let's load a second 3D dataset and stream centerlines that
we will use in our query, as follows:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -t 3DZ -g the_geom hydro_line
 chp07.hydro | psql -U me -d postgis_cookbook -h localhost

Into the Nth Dimension

246

These data, as shown in the following image, overlay nicely with our LiDAR point cloud:

Now, we can build a simple query to retrieve all the LiDAR points within one foot of our
stream centerline as in the following query:

SELECT l.gid, l.the_geom FROM

 chp07.hydro h, chp07.lidar l

 WHERE ST_3DDWithin(h.the_geom, l.the_geom, 5);

But, this is a little bit of a sloppy approach—we could end up with duplicate LiDAR points, so
we will refine our query with LEFT JOIN and SELECT DISTINCT instead, but continue using
ST_3DWithin as our limiting condition, as follows:

SELECT DISTINCT ON (l.gid) l.gid, l.the_geom

FROM chp07.hydro h

LEFT JOIN chp07.lidar l ON ST_3DDWithin(h.the_geom, l.the_geom, 5);

Chapter 7

247

Now, we can visualize our returned points, as shown in the following image:

Try this query using ST_DWithin instead of ST_3DDWithin. You'll find an interesting
difference in the number of points returned, since ST_DWithin will collect LiDAR points
that may be close to our streamline in the XY plane, but not as close when looking at a
3D distance.

You can imagine ST_3DWithin querying within a tunnel around our line. ST_DWithin, by
contrast, is going to query a vertical wall of LiDAR points, as it is only searching for adjacent
points based on XY distance, ignoring height altogether, and, thus, gathering up all the points
within a narrow wall above and below our stream centerline.

Constructing and serving buildings 2.5 D
In the Detailed building footprints from LiDAR recipe in Chapter 4, Working with Vector
Data – Advanced Recipes, we explored the automatic generation of building footprints using
LiDAR data. What we were attempting to do was create 2D data from 3D data. In this recipe,
we attempt the opposite, in a sense. We start with 2D polygons of building footprints and feed
them into a function that extrudes them as 3D polygons.

Into the Nth Dimension

248

Getting Ready
For use in this project, we will extrude a building footprint of our own making. Let us quickly
create a table with a single building footprint, for testing purposes, as follows:

CREATE TABLE chp07.simple_building AS

 SELECT 1 AS gid, ST_MakePolygon(ST_GeomFromText('LINESTRING(0 0,2
 0,2 1, 1 1, 1 2, 0 2, 0 0)')) AS the_geom;

Let us add a function from the Improving ST_Polygonize recipe in Chapter 4, Working with
Vector Data – Advanced Recipes, that converts geometry collections to multipolygons and
add it to this schema. The converted function is as shown below:

CREATE OR REPLACE FUNCTION chp07.polygonize_to_multi (geometry)

 RETURNS geometry AS $$

 WITH polygonized AS (

 SELECT ST_Polygonize($1) AS the_geom

),

 dumped AS (

 SELECT (ST_Dump(the_geom)).geom AS the_geom FROM

 polygonized

)

 SELECT ST_Multi(ST_Collect(the_geom)) FROM

 dumped

;

$$ LANGUAGE SQL;

It would be beneficial to keep the creation of 3D buildings encapsulated as simply as possible
in a function with the following properties:

CREATE OR REPLACE FUNCTION chp07.threeDbuilding(footprint geometry,
 height numeric)

 RETURNS geometry AS

$BODY$

Our function takes two inputs: the building footprint and a height to extrude to. We can also
imagine a function that takes in a third parameter: the height of the base of the building.

Chapter 7

249

To construct the building walls, we will need to first convert our polygons into linestrings and
then further separate the linestrings into their individual, two-point segments:

WITH simple_lines AS

(

 SELECT 1 AS gid, ST_MakeLine(ST_PointN(the_geom,pointn),
 ST_PointN(the_geom,pointn+1)) AS the_geom

 FROM (SELECT 1 AS gid, chp02.polygon_to_line($1) AS the_geom) AS a

 LEFT JOIN

 (SELECT 1 AS gid, generate_series(1,
 ST_NumPoints(chp02.polygon_to_line($1))-1) AS pointn

) AS b

 ON a.gid = b.gid

),

The preceding code returns each of the two-point segments of our original shape, for example,
for our simple_building:

 st_astext

MULTILINESTRING((2 0,2 1),(1 2,0 2),(2 1,1 1),(0 0,2 0),(1 1,1 2),(0
 2,0 0))

(1 row)

Now that we have a series of individual lines, we can use those to construct the walls of the
building. First, we need to recast our 2D lines as 3D using ST_Force3DZ, as follows:

threeDlines AS

(

 SELECT ST_Force3DZ(the_geom) AS the_geom FROM simple_lines

)

Returning:

MULTILINESTRING Z ((2 0 0,2 1 0),(1 2 0,0 2 0),(2 1 0,1 1 0),(0 0 0,2
 0 0),(1 1 0,1 2 0),(0 2 0,0 0 0))

Into the Nth Dimension

250

The next step is to break each of those lines from the multilinestring into linestrings. For those
paying attention, you'll note that these are effectively lines masquerading as linestrings:

splodedLine AS

(

 SELECT (ST_Dump(the_geom)).geom AS the_geom FROM threeDLines

),

Thus returning:

LINESTRING Z (2 0 0,2 1 0)

LINESTRING Z (1 2 0,0 2 0)

LINESTRING Z (2 1 0,1 1 0)

LINESTRING Z (0 0 0,2 0 0)

LINESTRING Z (1 1 0,1 2 0)

LINESTRING Z (0 2 0,0 0 0)

The next step is to construct a line representing the boundary of the extruded wall, as follows:

threeDline AS

(

 SELECT ST_MakeLine(

 ARRAY[

 ST_StartPoint(the_geom),

 ST_EndPoint(the_geom),

 ST_Translate(ST_EndPoint(the_geom), 0, 0, $2),

 ST_Translate(ST_StartPoint(the_geom), 0, 0, $2),

 ST_StartPoint(the_geom)

]

)

 AS the_geom FROM splodedLine

),

Now, we need to convert each linestring to a polygon.

threeDwall AS

(

 SELECT ST_MakePolygon(the_geom) as the_geom FROM threeDline

),

Chapter 7

251

Finally, put the roof and floor on our building, using the original geometry for the floor (forced
to 3D) and a copy of the original geometry translated to our input height, as follows:

buildingTop AS

(

 SELECT ST_Translate(ST_Force3DZ($1), 0, 0, $2) AS the_geom

),

buildingBottom AS

(

 SELECT ST_Translate(ST_Force3DZ($1), 0, 0, 0) AS the_geom

),

We put the walls, roof, and floor together and, during the process, convert this to a 3D
multipolygon:

wholeBuilding AS

(

 SELECT the_geom FROM buildingBottom

 UNION ALL

 SELECT the_geom FROM threeDwall

 UNION ALL

 SELECT the_geom FROM buildingTop

),

multiBuilding AS

(

 SELECT ST_Multi(ST_Collect(the_geom)) AS the_geom FROM
 wholeBuilding

),

While we could leave our geometry as a multipolygon, we'll do things properly and munge
an informal cast to polyhedralsurface. In our case, we are already effectively formatted as
a polyhedralsurface, so we'll just convert our geometry to text with ST_AsText, replace
the word MULTIPOLYGON with POLYHEDRALSURFACE, and then convert our text back to
geometry with ST_GeomFromText:

textBuilding AS

(

 SELECT ST_AsText(the_geom) textbuilding FROM multiBuilding

),

textBuildSurface AS

(

Into the Nth Dimension

252

 SELECT ST_GeomFromText(replace(textbuilding, 'MULTIPOLYGON',
 'POLYHEDRALSURFACE')) AS the_geom FROM textBuilding

)

SELECT the_geom FROM textBuildSurface;

Finally, the entire function is as follows:

CREATE OR REPLACE FUNCTION chp07.threedbuilding(footprint geometry,
 height numeric)

RETURNS geometry AS

$BODY$

-- make our polygons into lines, and then chop up into individual
 line segments

WITH simple_lines AS

(

 SELECT 1 AS gid, ST_MakeLine(ST_PointN(the_geom,pointn),
 ST_PointN(the_geom,pointn+1)) AS the_geom

 FROM (SELECT 1 AS gid, chp02.polygon_to_line($1) AS the_geom) AS a

 LEFT JOIN

 (SELECT 1 AS gid, generate_series(1,
 ST_NumPoints(chp02.polygon_to_line($1))-1) AS pointn

) AS b

 ON a.gid = b.gid

),

-- convert our lines into 3D lines, which will set our third
 coordinate to 0 by default

threeDlines AS

(

 SELECT ST_Force3DZ(the_geom) AS the_geom FROM simple_lines

),

-- now we need our lines as individual records, so we dump them out using
ST_Dump, and then just grab the geometry portion of the dump

splodedLine AS

(

 SELECT (ST_Dump(the_geom)).geom AS the_geom FROM threeDLines

),

-- Next step is to construct a line representing the boundary of the

 extruded "wall"

Chapter 7

253

threeDline AS

(

 SELECT ST_MakeLine(

 ARRAY[

 ST_StartPoint(the_geom),

 ST_EndPoint(the_geom),

 ST_Translate(ST_EndPoint(the_geom), 0, 0, $2),

 ST_Translate(ST_StartPoint(the_geom), 0, 0, $2),

 ST_StartPoint(the_geom)

]

)

AS the_geom FROM splodedLine

),

-- we convert this line into a polygon

threeDwall AS

(

 SELECT ST_MakePolygon(the_geom) as the_geom FROM threeDline

),

-- add a top to the building

buildingTop AS

(

 SELECT ST_Translate(ST_Force3DZ($1), 0, 0, $2) AS the_geom

),

-- and a floor

buildingBottom AS

(

 SELECT ST_Translate(ST_Force3DZ($1), 0, 0, 0) AS the_geom

),

-- now we put the walls, roof, and floor together

wholeBuilding AS

(

 SELECT the_geom FROM buildingBottom

 UNION ALL

 SELECT the_geom FROM threeDwall

 UNION ALL

Into the Nth Dimension

254

 SELECT the_geom FROM buildingTop

),

-- then convert this collecion to a multipolygon

multiBuilding AS

(

 SELECT ST_Multi(ST_Collect(the_geom)) AS the_geom FROM
 wholeBuilding

),

-- While we could leave this as a multipolygon, we'll do things
 properly and munge an informal cast

-- to polyhedralsurfacem which is more widely recognized as the
 appropriate format for a geometry like

-- this. In our case, we are already formatted as a
 polyhedralsurface, minus the official designation,

-- so we'll just convert to text, replace the word MULTIPOLYGON with
POLYHEDRALSURFACE and then convert

-- back to geometry with ST_GeomFromText

textBuilding AS

(

 SELECT ST_AsText(the_geom) textbuilding FROM multiBuilding

),

textBuildSurface AS

(

 SELECT ST_GeomFromText(replace(textbuilding, 'MULTIPOLYGON',
 'POLYHEDRALSURFACE')) AS the_geom FROM textBuilding

)

SELECT the_geom FROM textBuildSurface

;

$BODY$

 LANGUAGE sql VOLATILE

 COST 100;

ALTER FUNCTION chp07.threedbuilding(geometry, numeric)

 OWNER TO me;

Chapter 7

255

How to do it...
Now that we have a 3D-building extrusion function, we can easily extrude our building
footprint with our nicely encapsulated function, as follows:

CREATE TABLE chp07.threed_building AS

 SELECT chp07.threeDbuilding(the_geom, 10) AS the_geom FROM
 chp07.simple_building;

We can apply this function to a real building footprint dataset, in which case, if we have a
height field, we can extrude according to that:

shp2pgsql -s 3734 -d -i -I -W LATIN1 -g the_geom building_footprints
 chp07.building_footprints | psql -U me -d postgis_cookbook

CREATE TABLE chp07.build_footprints_threed AS

 SELECT gid, height, chp07.threeDbuilding(the_geom, height) AS
 the_geom FROM chp07.building_footprints;

The resultant output gives us a nice, extruded set of building footprints, as shown in the
following image:

The Detailed building footprints from LiDAR recipe in Chapter 4, Working with Vector
Data – Advanced Recipes, explores the extraction of building footprints from LiDAR.
A complete workflow could be envisioned, which extracts building footprints from LiDAR
and then reconstructs polygon geometries using the current recipe, thus converting point
clouds to surfaces, combining the current recipe with the one referenced above.

Into the Nth Dimension

256

Using ST_Extrude to extrude building
footprints

PostGIS 2.1 brought a lot of really cool additional functionality to PostGIS. Operation on
PostGIS raster types are among the more important improvements that come with PostGIS
2.1. A quieter and equally potent game changer was the addition of the SFCGAL library as
an optional extension to PostGIS. According to the website http://sfcgal.org/, SFCGAL
is a C++ wrapper library around CGAL with the aim of supporting ISO 19107:2013 and OGC
Simple Features Access 1.2 for 3D operations.

From a practical standpoint, what does this mean? It means that PostGIS is moving
toward a fully functional 3D environment, with representation of the geometries
themselves and the operations on those 3D geometries. More information is available
at http://postgis.net/docs/reference.html#reference_sfcgal.

This and several other recipes will assume that you have a version of PostGIS installed
with SFCGAL compiled and enabled. To do so enables the following functions:

ff ST_Extrude: It extrudes a surface to a related volume

ff ST_StraightSkeleton: It computes a straight skeleton from a geometry

ff ST_IsPlanar: It checks whether a surface is a planar or not

ff ST_Orientation: It determines the surface orientation

ff ST_ForceLHR: It forces LHR orientation

ff ST_MinkowskiSum: It computes the Minkowski sum

ff ST_Tesselate: It performs surface tesselation

For this recipe, we'll use ST_Extrude in much the same way we used our own custom-built
function in the previous recipe, Constructing and serving buildings 2.5 D. The advantage
to the previous recipe is that we are not required to have the SFCGAL library compiled in
PostGIS. The advantage to this recipe is that we have more control over the extrusion
process, that is, we can extrude in all three dimensions.

ST_Extrude returns a geometry, specifically, a polyhedralsurface. It requires four
parameters—an input geometry and the extrusion amount along the X, Y, and Z axes:

CREATE TABLE chp07.buildings_extruded AS

SELECT gid, ST_Extrude(the_geom, 0,0, height) as the_geom

 FROM chp07.building_footprints

Chapter 7

257

And so, much with the help of the Constructing and serving buildings 2.5 D recipe, we get our
extruded buildings, but with some additional flexibility.

Creating arbitrary 3D objects for PostGIS
3D information need not only come from things such as LiDAR, nor be purely synthesized
from 2D geometries and associated attributes as in the Constructing and serving buildings
2.5 D and Using ST_Extrude to extrude building footprints recipes, but can also be derived
from the principles of computer vision. The process of calculating 3D information
from motion between images is known as Structure from Motion (SfM). As a computer
vision concept, we can leverage SfM to generate 3D information in ways similar to how the
human mind perceives the world in 3D and further store and process that information in a
PostGIS database.

Computer vision is a discipline within computer science focused on the
automated analysis, such as using images to extract information from the
world in a way that can be interpreted by computers in ways similar to human
vision. An excellent summary can be found at http://en.wikipedia.
org/wiki/Computer_vision.

A number of open-source projects have matured to deal with solving SfM problems. Popular
among these are Bundler, which can be found at http://phototour.cs.washington.
edu/bundler/, and PMVS at http://grail.cs.washington.edu/software/pmvs/.
Binaries exist for multiple platforms for these tools, including versions, which can be found at
http://homes.cs.washington.edu/~ccwu/vsfm/ and http://www.lancaster.
ac.uk/staff/jamesm/software/sfm_georef.htm.

The nice thing about such projects is that a simple set of photos can be used to reconstruct
3D scenes.

Into the Nth Dimension

258

For our purposes, we will use a hosted service as a starting place, thus skipping the
installation and configuration steps. For our tests, we will use My3DScanner, which is
available at http://My3Dscanner.com/. My3DScanner is built upon Bundler and
PMVS. Another source for a similar service is http://www.cubify.com/. We will skip
the installation of Bundler and PMVS for two reasons. The first reason is that SfM is beyond
the scope of a PostGIS book to cover in detail, so using a service allows us to abstract
away the complications of this, while focusing on how we can use the data in PostGIS. The
second reason is that depending on the specifics of the implementation of the Bundler/
PMVS solution, the solution may not be without intellectual property limitations in the form
of patents. If you use this combination commercially, make sure you pay attention to the
licensing and intellectual property rights associated with the underlying SIFT algorithm.
Some versions of SIFT are protected in certain locales by software patents.

Getting ready
It is important to understand that SfM techniques, while highly effective, have certain
limitations in the kinds of imagery that can be effectively processed into point clouds. The
techniques are dependent upon finding matches between subsequent images and thus,
can have trouble processing images that are smooth, are missing the camera's embedded
Exchangeable Image File format (EXIF) information, or are from cell phone cameras.

EXIF tags are a metadata format for images. Stored in these tags are often
the camera settings, camera type, lense type, and other information relevant
to SfM extraction.

We will start processing an image series into a point cloud with a photo series that we know
largely works, but as you experiment with SfM, you can feed in your own photo series. Good
tips on how to create a photo series that will result in a 3D model can be found at http://
my3dscanner.com/index.php?option=com_k2&view=item&id=5:general-
scanning-guide&Itemid=59 and http://www.cubify.com/products/capture/
photography_tips.aspx.

How to do it...
Set up an account at my3Dscanner.com, log in to the service, and choose Create New
Project. Give your project a name and upload the images either zipped or in a RAR archive.

Once our image series is loaded, you need to wait anywhere from a few hours to a couple
of days for it to process. If you want your data processed faster, see the preceding binary
installation of SfM software and run it on your own hardware or virtual machine.

My3DScanner will return a point cloud and a triangular mesh representing the data for
download. These can also be viewed in a browser. Download the point cloud and unzip it.

Chapter 7

259

We can view these data in a program such as MeshLab at http://meshlab.
sourceforge.net/. A good tutorial on using MeshLab to view point clouds
can be found at http://my3dscanner.com/index.php?option=com_
k2&view=item&id=61:tutorial-1-understanding-your-3d-model&Itemid=72.
Also, other recommended viewers can be found at http://my3dscanner.com/index.
php?option=com_k2&view=item&id=3:free-point-cloud-viewers&Itemid=73.

The following image shows what our point cloud looks like when viewed in MeshLab:

We will unzip the file with the extension .ply, for example, giraffe.ply. If you open this file
in a text editor, it will look something like the following:

ply
format ascii 1.0
element vertex 153781
property float x
property float y
property float z
property float nx
property float ny
property float nz
property uchar red
property uchar green
property uchar blue
end_header
-1.32668 1.00806 -1.89154 0.261367 -0.869846 0.418395 81 110 63
-1.32696 1.00782 -1.89235 0.0799267 -0.788881 0.609326 81 111 64
-1.32637 1.01745 -1.91275 0.788484 0.435774 0.434043 58 69 51
-1.31129 1.02467 -1.92708 0.522892 -0.825308 0.213189 45 67 42
...

Into the Nth Dimension

260

This is the header portion of our file. It specifies the format, ply, the encoding format
ascii 1.0, the number of vertices, and then the column names for each of the data
returned, x, y, z, nx, ny, nz, red, green, and blue.

For import into PostGIS, we will import all fields, but will focus on x, y, and z for our
point cloud, as well as look to color. For our interests, this file specifies relative x, y, and z
coordinates and the color of each of those points in channels red, green, and blue. These
colors are 24-bit colors—8 bits for each channel—and thus, they can have integer values
between 0 and 255.

For the remainder of the recipe, let us create a table into which we will enter the point cloud
data and get some SfM point cloud data into our database.

CREATE TABLE chp07.point_cloud (

 x double precision,

 y double precision,

 z double precision,

 nx double precision,

 ny double precision,

 nz double precision,

 red integer,

 green integer,

 blue integer

);

In order to load the data into PostGIS, we need to remove the header information. The
simplest way to do that for our example is to trim the first 14 lines of the file. Once this
is done, we can copy the data into our table directly, specifying spaces as our delimiter.
From psql:

\copy chp07.point_cloud from
 '/path/to/data/headerless_giraffe.ply' DELIMITER ' ';

Now, we make the data spatial.

ALTER TABLE chp07.point_cloud ADD COLUMN the_geom GEOMETRY(PointZ,
 0);

UPDATE chp07.point_cloud SET the_geom =
 ST_SetSRID(ST_MakePoint(x,y,z),0);

Chapter 7

261

Exporting models as X3D for the Web
Entering 3D data in a PostGIS database is not nearly as interesting if we have no capacity
for extracting the data back out in some usable form. One way to approach this problem is
to leverage the PostGIS ability to write 3D tables to the X3D format.

X3D is an XML standard for displaying 3D data and works well via the Web. For those familiar
with Virtual Reality Modeling Language (VRML), X3D is the next generation of that.

To view X3D in the browser, a user has the choice of a variety of plugins or they can
leverage JavaScript APIs to enable viewing. We will perform the latter, as it requires no
user configuration to work. We will use X3DOM's framework to accomplish this. X3DOM is
a demonstration of the integration of HTML5 and 3D and uses WebGL (https://www.
khronos.org/webgl/) to allow for the rendering and interaction with 3D content in the
browser. This means that our data will not get displayed in browsers that are not WebGL
compatible. So, we trade off convenience here for some amount of universality available
to us with X3D plugins.

Getting ready
We will be using the point cloud from the previous example to serve in X3D format. PostGIS
documentation on X3D includes an example of using the ST_AsX3D function to output the
formatted X3D code. That is similar to the this:

SELECT '

<X3D xmlns="http://www.web3d.org/specifications/x3d-namespace"
 showStat="false" showLog="false" x="0px" y="0px" width="800px"
 height="600px">

 <Scene>

 <Transform>

 <Shape>' || ST_AsX3D(ST_Union(the_geom)) ||

 '</Shape>

 </Transform>

 </Scene>

</X3D>' As x3dXML

 FROM chp07.point_cloud;

Into the Nth Dimension

262

How to do it...
This example, while complete in serving the pure X3D, needs additional code to allow for
in-browser viewing. We do so by including style sheets and the appropriate X3DOM includes
the headers of an XHTML document:

<link rel="stylesheet" type="text/css"
 href="http://x3dom.org/x3dom/example/x3dom.css" />
<script type="text/javascript"
 src="http://x3dom.org/x3dom/example/x3dom.js"></script>

The full query to generate the XHTML of X3D data is as follows:

SELECT '

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="X-UA-Compatible" content="chrome=1" />

 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"
 />

 <title>Point Cloud in a Browser</title>

 <link rel="stylesheet" type="text/css"
 href="http://x3dom.org/x3dom/example/x3dom.css" />

 <script type="text/javascript"
 src="http://x3dom.org/x3dom/example/x3dom.js"></script>

 </head>

 <body>

 <h1>Point Cloud in the Browser</h1>

 <p>

 Use mouse to rotate, scroll wheel to zoom, and control (or
 command) click to pan.

 </p>

 <X3D xmlns="http://www.web3d.org/specifications/x3d-namespace"
 showStat="false" showLog="false" x="0px" y="0px" width="800px"
 height="600px">

 <Scene>

 <Transform>

 <Shape>' || ST_AsX3D(ST_Union(the_geom)) ||

 '</Shape>

 </Transform>

Chapter 7

263

 </Scene>

 </X3D>

 </body>

</html>' As x3dXHTML

 FROM chp07.point_cloud;

There's more...
One might want to use this X3D conversion as a function, feeding geometry into a function
and getting a page in return. This way, we can reuse the code easily for other tables.
Embodied in a function, X3D conversion is as follows:

CREATE OR REPLACE FUNCTION chp07.AsX3D_XHTML(geometry)

 RETURNS character varying AS

$BODY$

Into the Nth Dimension

264

SELECT '

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="X-UA-Compatible" content="chrome=1" />

 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"
 />

 <title>Point Cloud in a Browser</title>

 <link rel="stylesheet" type="text/css"
 href="http://x3dom.org/x3dom/example/x3dom.css" />

 <script type="text/javascript"
 src="http://x3dom.org/x3dom/example/x3dom.js"></script>

 </head>

 <body>

 <h1>Point Cloud in the Browser</h1>

 <p>

 Use mouse to rotate, scroll wheel to zoom, and control (or
 command) click to pan.

 </p>

 <X3D xmlns="http://www.web3d.org/specifications/x3d-namespace"
 showStat="false" showLog="false" x="0px" y="0px" width="800px"
 height="600px">

 <Scene>

 <Transform>

 <Shape>' || ST_AsX3D($1) ||

 '</Shape>

 </Transform>

 </Scene>

 </X3D>

 </body>

</html>' As x3dXHTML

Chapter 7

265

;

$BODY$

 LANGUAGE sql VOLATILE

 COST 100;

ALTER FUNCTION chp07.AsX3D_XHTML(geometry)

 OWNER TO me;

Usage would require that we pass such a function a geometry that has been unioned.

SELECT chp07.AsX3D_XHTML(ST_UNION(the_geom)) FROM
 chp07.point_cloud;

We can now very simply generate the appropriate XHTML directly from the command line or a
web framework.

Reconstructing Unmanned Aerial Vehicle
(UAV) image footprints with PostGIS 3D

The rapid development of Unmanned Aerial Systems (UAS, also known as Unmanned
Aerial Vehicles, or UAVs) as data collectors is revolutionizing remote data collection in all
sectors. Barriers to wider adoption outside military sectors include regulatory frameworks
preventing their flight in some nations, for example, the United States, and the lack of
open-source implementations of post processing software. In the next four recipes,
we'll attempt preliminary solutions to the latter of these two barriers.

For this recipe, we will be using the metadata from a UAV flight in Seneca County, Ohio,
to map the coverage of the flight. More information about this flight, which was piloted
by the Ohio Department of Transportation, can be found at http://www.13abc.com/
story/22186538/o-dot-using-tiny-technology-on-big-projects.

The basic idea for this recipe is to estimate the field of view of the UAV camera, generate a
3D pyramid that represents that field of view, and use the flight ephemeris (bearing, pitch,
and roll) to estimate ground coverage.

Into the Nth Dimension

266

Getting ready
The metadata or ephemeris we have for the flight includes the bearing, pitch, and roll of the
UAS, in addition to its elevation and location.

To translate these ephemeris into PostGIS terms, we'll assume the following:

ff 90-degrees minus the pitch is equivalent to ST_RotateX

ff The negative roll is equivalent to ST_RotateY

ff 90-degrees minus the bearing is equivalent to ST_RotateZ

In order to perform our analysis, we require functions that are not yet part of the PostGIS
core. These functions can be downloaded from https://github.com/smathermather/
postgis-etc/tree/master/3D.

We will use patched versions of ST_RotateX and ST_RotateY (ST_RotateX.sql and
ST_RotateY.sql), which allow us to rotate geometries around an input point, as well as a
function for calculating our field of view—pyramidMaker.sql. Future versions of PostGIS will
include these versions of ST_RotateX and ST_RotateY built in. We have another function,
ST_RotateXYZ, which is built upon these and will also simplify our code by allowing us to
specify three axes at the same time for rotation.

For the final step, we'll need the capacity to perform volumetric intersection (the 3D equivalent
of intersection). For this, we'll use volumetricIntersection.sql, which allows us to just
return the volumetric portion of the intersection as a Triangular Irregular Network (TIN).

A TIN is a 3D surface model for representing surfaces and volumes as a mesh
of triangles.

Chapter 7

267

We will install the functions as follows:

psql -U me -d postgis_cookbook -f ST_RotateX.sql

psql -U me -d postgis_cookbook -f ST_RotateY.sql

psql -U me -d postgis_cookbook -f ST_RotateXYZ.sql

psql -U me -d postgis_cookbook -f pyramidMaker.sql

psql -U me -d postgis_cookbook -f volumetricIntersection.sql

How to do it...
In order to calculate the viewing footprint, we will calculate a rectangular pyramid descending
from the viewpoint to the ground. This pyramid will need to point to the left and right of nadir
according to the UAS' roll; forward or backward from the craft according to its pitch, and be
oriented relative to the direction of movement of the craft according to its bearing.

The pyramidMaker function will construct our pyramid for us and ST_RotateXYZ will rotate
the pyramid in the direction we need to compensate for roll, pitch, and bearing.

The following image is an example map of such a calculated footprint for a single image.
Note the slight roll to the left for this example, resulting in an asymmetric-looking pyramid,
when viewed from above.

Into the Nth Dimension

268

The total track for the UAS flight overlayed on a contour map is shown below, as well:

We will write a function to calculate our footprint pyramid. Input to the function, we'll need the
position of the UAS as geometry (origin), the pitch, bearing, and roll, as well as the field of view
angle in x and y for the camera. Finally, we'll need the relative height of the craft above ground.

CREATE OR REPLACE FUNCTION chp07.pbr(origin geometry, pitch numeric,
 bearing numeric, roll numeric, anglex numeric, angley numeric,
 height numeric)

 RETURNS geometry AS

$BODY$

Our pyramid function assumes that we know what the base size of our pyramid is. We don't
know this initially, so we'll calculate its size based on the field of view angle of the camera
and the height of the craft:

WITH widthx AS

(

 SELECT height / tan(anglex) AS basex

),

widthy AS

(

 SELECT height / tan(angley) AS basey

),

Chapter 7

269

Now we have enough information to construct our pyramid:

iViewCone AS (

 SELECT pyramidMaker(origin, basex::numeric, basey::numeric, height)
 AS the_geom

 FROM widthx, widthy

),

We will require the following code to rotate our code relative to pitch, roll, and bearing:

iViewRotated AS (

 SELECT ST_RotateXYZ(the_geom, pi() - pitch, 0 - roll, pi() -
 bearing, origin) AS the_geom FROM iViewCone

)

SELECT the_geom FROM iViewRotated;

The whole function is as follows:

CREATE OR REPLACE FUNCTION chp07.pbr(origin geometry, pitch numeric,
 bearing numeric, roll numeric, anglex numeric, angley numeric,
 height numeric)

 RETURNS geometry AS

$BODY$

WITH widthx AS

(

 SELECT height / tan(anglex) AS basex

),

widthy AS

(

 SELECT height / tan(angley) AS basey

),

iViewCone AS (

 SELECT pyramidMaker(origin, basex::numeric, basey::numeric, height)
 AS the_geom

 FROM widthx, widthy

),

iViewRotated AS (

 SELECT ST_RotateXYZ(the_geom, pi() - pitch, 0 - roll, pi() -
 bearing, origin) AS the_geom FROM iViewCone

)

Into the Nth Dimension

270

SELECT the_geom FROM iViewRotated

;

$BODY$

 LANGUAGE sql VOLATILE

 COST 100;

Now, to use our function, let us bring in the UAS positions.

shp2pgsql -s 3734 -W LATIN1 uas_locations_altitude_hpr_3734
 uas_locations | psql -U postgres -d postgis_cookbook

Now, it is possible to calculate an estimated footprint for each UAS position.

CREATE TABLE chp07.viewshed AS

 SELECT 1 AS gid, roll, pitch, heading, fileName,
 chp07.pbr(the_geom, radians(0)::numeric,
 radians(heading)::numeric, radians(roll)::numeric,
 radians(40)::numeric, radians(50)::numeric, ((3.2808399 *
 altitude_a) – 838)::numeric) AS the_geom

 FROM chp07.uas_locations;

Chapter 7

271

With a terrain model, we can go a step deeper in this analysis. Since our UAS footprints are
volumetric, we will first load the terrain model. We will load this from a .backup file.

pg_restore --host localhost --port 5432 --username "me" --dbname
 "postgis_cookbook" --no-password --schema chp07 --verbose

 "lidar_tin.backup"

Next, we will create a smaller version of our viewshed table.

DROP TABLE IF EXISTS chp07.viewshed;

CREATE TABLE chp07.viewshed AS

 SELECT 1 AS gid, roll, pitch, heading, fileName,
 chp07.pbr(the_geom, radians(0)::numeric,
 radians(heading)::numeric, radians(roll)
 ::numeric,radians(40)::numeric, radians(50)::numeric,
 1000::numeric) AS the_geom

 FROM chp07.uas_locations

 WHERE fileName = 'IMG_0512.JPG';

To intersect this with our footprints, our terrain model will need to be a volumetric. We can
make it so using ST_Extrude.

CREATE TABLE chp07.lidar_tin_extruded AS

 SELECT ST_Extrude(the_geom, 0,0,1) AS the_geom FROM

 chp07.lidar_tin;

CREATE INDEX chp07_lidar_tin_extruded_the_geom_3dx ON
 chp07.lidar_tin_extruded USING gist(the_geom gist_geometry_ops_nd);

We complete the operation by calculating the intersection with our footprints.

DROP TABLE IF EXISTS chp07.viewshed_true;

CREATE TABLE chp07.viewshed_true AS

 SELECT ST_3DIntersection(ST_SetSRID(v.the_geom, 3734),
 ST_SetSRID(t.the_geom, 3734))

 FROM chp07.viewshed v, chp07.lidar_tin_extruded t

 WHERE ST_3DIntersects(ST_SetSRID(v.the_geom, 3734),
 ST_SetSRID(t.the_geom, 3734));

Into the Nth Dimension

272

When compared with a naïve un-intersected estimate of a footprint (a newly calculated
footprint in blue and an old one in green), we find a large improvement in the intersection.

UAV photogrammetry in PostGIS – point
cloud

We will use the techniques we've used in a previous recipe, Creating arbitrary 3D objects for
PostGIS, of this chapter, to learn how to create and import a UAV-derived point cloud in PostGIS.

One caveat before we begin is that while we will be working with geospatial data, we will
be doing so in relative space, rather than a known coordinate system. In other words, this
approach will calculate our dataset in an arbitrary coordinate system. ST_Affine could be
used in combination with the field measurements of locations to transform our data into a
known coordinate system, but is beyond the scope of this book.

Getting Ready
Much like with the recipe, Creating arbitrary 3D objects for PostGIS, we will be taking an
image series and converting it into a point cloud. In this case, however, our image series
will be from UAV imagery. Download the image series from http://www.packtpub.com/
support and feed it into http://my3dscanner.com or a local Bundler/PMVS solution,
returning a point cloud, uas_points.ply.

Chapter 7

273

The input to PostGIS is the same as before. Delete the first 14 lines (header) of the ply file
and create a PostGIS table to accept the point cloud.

CREATE TABLE chp07.uas (
 x double precision,
 y double precision,
 z double precision,
 red integer,
 green integer,
 blue integer
);

Depending on what software constructed your point cloud, your specific columns may vary.

How to do it...
Now, we copy data from the point cloud into our table.

\copy chp07.uas from '/path/to/data/headless_uas_points.ply'
 DELIMITER ' ';

We will convert our implicit spatial data to explicit spatial data with the following code:

ALTER TABLE chp07.uas ADD COLUMN the_geom GEOMETRY(PointZ, 0);
UPDATE chp07.uas SET the_geom = ST_SetSRID(ST_MakePoint(x,y,z),0);

These data, as viewed in MeshLab from the ply file, are pretty interesting:

Into the Nth Dimension

274

The original data is color infrared imagery, so vegetation shows up red; and farm fields and
roads as gray. Note the bright colors in the sky—those are camera position points that we'll
need to filter out.

The next step is to generate orthographic imagery from these data.

UAV photogrammetry in PostGIS –
orthorectification

In the previous recipe, we explored the initial steps in photogrammetric processing, with
PostGIS as our storage endpoint for the point cloud derived from aerial imagery. The next step
is to create imagery from this point cloud in the plan view, that is, in 2D map coordinates.

To derive the plan view orthophotography from the point cloud, we need to do several things.
First, we need a method to convert the point cloud to a 2D areal representation. We could
use formal interpolation; but, for the sake of simplicity, we will do this using Voronoi polygons,
a space-filling approach that allows us to convert our points to polygons. Next, we need to
attribute those polygons with the colors derived from the original imagery. Finally, we need to
render those polygons to raster.

This is not a complete orthorectification approach and fails badly where our point cloud is
least dense; but, in the absence of a drape function with a PostGIS raster for draping our
imagery over a digital surface model, this is a good first approximation.

Getting ready
We will use the point cloud from the previous recipe for this exercise. Recall that we have
a point cloud with x, y, and z values, normal values nx, ny, and nz, and 24-bit color values
separated into three integer columns: red, green, and blue.

The processing we will do with this point cloud will be relatively compute-time intensive, so let
us start off with a subset of our data while we work our way through the steps.

CREATE TABLE chp07.uas_subset AS

 SELECT * FROM chp07.uas

 ORDER BY RANDOM()

 LIMIT 5000;

Moving temporarily from more than 240,000 records to 500.

Chapter 7

275

How to do it...
Now that we have our data paired down, we will revisit our short outline of tasks.

1.	 Convert the point cloud to Voronoi polygons.

2.	 Attribute polygons with the color.

3.	 Render polygons to raster.

Converting the point cloud to Voronoi polygons
Converting our points to Voronoi polygons is well covered in Chapter 4, Working with Vector
Data – Advanced Recipes, in the Using external scripts to embed new functionality in order
to calculate a Voronoi diagram recipe. In this recipe, we will use that function as a simple
interpolator for between the points of our point cloud.

Into the Nth Dimension

276

Our code is simple.

DROP TABLE IF EXISTS chp07.uas_voronoi CASCADE;

CREATE TABLE chp07.uas_voronoi AS

 SELECT * FROM voronoi('chp07.uas_subset', 'the_geom') AS (id
 integer, the_geom geometry);

 ALTER TABLE chp07.uas_voronoi ADD COLUMN gid serial NOT NULL
 PRIMARY KEY;

Attributing polygons with the color
Our next step is to attribute our new polygons with the color information associated with the
original points. This can be accomplished with a simple ST_Intersects query, but first
indexes in order to be efficient.

CREATE INDEX uas_the_geom_gist

 ON chp07.uas

 USING gist

 (the_geom);

CREATE INDEX uas_voronoi_the_geom_gist

 ON chp07.uas_voronoi

 USING gist

 (the_geom);

Next, we will perform the join itself. Due to some issues with non-voronoi polygons returning,
we will first count how many points are present in each polygon and only return those
polygons that have a single point.

DROP TABLE IF EXISTS chp07.uas_voronoi_count CASCADE;

CREATE TABLE chp07.uas_voronoi_count AS

 WITH distinction AS (

 SELECT DISTINCT ON (uv.gid) uv.gid, uv.the_geom, COUNT(uas.*)

 FROM chp07.uas_voronoi uv

 LEFT JOIN chp07.uas_subset uas

 ON ST_Intersects(uv.the_geom, uas.the_geom)

 GROUP BY uv.gid, uv.the_geom

)

 SELECT gid, the_geom, count FROM distinction

 WHERE count = 1

 AND

Chapter 7

277

 ST_Covers(ST_Envelope(((SELECT ST_Union(the_geom) FROM
 chp07.uas_subset))), the_geom)

 ;

CREATE INDEX uas_voronoi_count_the_geom_gist

 ON chp07.uas_voronoi_count

 USING gist

 (the_geom);

Now, we can construct our Voronoi polygons with the colors from the point cloud joined to the
polygons themselves.

DROP TABLE IF EXISTS chp07.uas_voronoi_join;

CREATE TABLE chp07.uas_voronoi_join AS

 SELECT uv.gid, uv.the_geom, red, green, blue

 FROM chp07.uas_voronoi_count uv

 LEFT JOIN chp07.uas_subset uas

 ON ST_Intersects(uv.the_geom, uas.the_geom);

Rendering polygons to raster
The final step in our processing chain is to convert our Voronoi polygons to raster.
ST_AsRaster will convert our geometry to raster. To do so, we first need to create
a dummy raster with the size and type of our final raster. ST_AsRaster takes a few
inputs, depending on the use case. In our case:

ST_AsRaster(ST_Union(the_geom), 100, 100, ARRAY['8BUI', '8BUI',
 '8BUI'], ARRAY[0,0,0], ARRAY[0,0,0])

So, for our inputs, we have our geometry, width, height, and three arrays specifying pixel type,
input pixel value, and background pixel value. For our remaining arrays, we populate them
with zeros for background values. But, first, we should modify our function a bit to ensure that
we maintain square pixels in our output raster. To do so, we will calculate the ratio of width
to height in the input geometry envelope. For a 100-pixel image, this would look something
like this:

SELECT round(100 * ((ST_XMax(ST_Collect(the_geom)) -
 ST_XMin(ST_Collect(the_geom))) / (ST_YMax(ST_Collect(the_geom)) -
 ST_YMin(ST_Collect(the_geom)))))::integer;

Into the Nth Dimension

278

Resulting in an on-the-fly raster creation using the following code and we want to write this
to file as an image external to the database, we can. We'll use the write_file script
available at http://postgis.net/docs/manual-2.0/using_raster.xml.html#RT_
PLPython.

WITH tempraster AS (

 SELECT ST_AsRaster(

 ST_Union(the_geom),

 round(500 * ((ST_XMax(ST_Collect(the_geom)) -
 ST_XMin(ST_Collect(the_geom))) / (ST_YMax(ST_Collect(the_geom))
 - ST_YMin(ST_Collect(the_geom)))))::integer,

 500,

 ARRAY['8BUI', '8BUI', '8BUI'],

 ARRAY[0,0,0],

 ARRAY[0,0,0]) AS rast

 FROM

 (SELECT *

 FROM chp07.uas_voronoi_join) AS uv

),

 rasterized AS (

 SELECT ST_Union(ST_AsRaster(

 the_geom,

 rast,

 ARRAY['8BUI', '8BUI', '8BUI'],

 ARRAY[red, green, blue],

 ARRAY[0,0,0]

)

) AS raster

 FROM

 (

 SELECT * FROM

 chp07.uas_voronoi_join

 CROSS JOIN

 tempraster

) AS pcr

)

SELECT write_file(ST_AsPNG(raster), '/tmp/test.png'::text) FROM
 rasterized;

Chapter 7

279

-- write to file in windows -- comment previous line and uncomment
 following line:

-- SELECT write_file(ST_AsPNG(raster), 'c:\temp\test.png'::text) FROM
 rasterized ;

If we choose to and are patient, we may now rerun our code with the entire dataset and get
a first level approximation of an orthophoto. A formal orthophoto is on the left for comparison
and our first level approximation from UAS imagery on the right:

As a proof of concept, this process is promising. With forthcoming functions being added
to PostGIS, especially to the raster functionality, we should be able to refine these results
substantially, for example, by draping the original imagery back to its appropriate location
and rendering it to a high-resolution, photogrammetrically-correct aerial photograph.

UAV photogrammetry in PostGIS – DSM
creation

The photogrammetry example would be incomplete if we did not produce a digital terrain
model from our inputs. A fully rigorous solution where the input point cloud would be classified
into ground points, building points, and vegetation points is not feasible here, but this recipe
will provide the basic framework for accomplishing such a solution.

In this recipe, we will create a 3D TIN, which will represent the surface of the point cloud.

Into the Nth Dimension

280

Getting ready
Before we start, ST_DelaunayTriangles is available only in PostGIS 2.1 using GEOS 3.4.
This is one of the few recipes in this book to require such advanced versions of PostGIS
and GEOS.

How it works...
ST_DelaunayTriangles will calculate a 3D TIN with the correct flag: geometry
ST_DelaunayTriangles (geometry g1, float tolerance, int4 flags).

CREATE TABLE chp07.uas_tin AS

WITH tin AS

(

 SELECT ST_DelaunayTriangles(ST_Union(the_geom), 0.0, 2) AS the_geom
 FROM

 chp07.uas

)

SELECT the_geom FROM tin;

Now, we have a full TIN of a digital surface model at our disposal.

8
PostGIS Programming

In this chapter, we will cover the following topics:

ff Writing PostGIS vector data with Psycopg

ff Writing PostGIS vector data with OGR Python bindings

ff Writing PostGIS functions with PL/Python

ff Geocoding and reverse-geocoding using the GeoNames datasets

ff Geocoding using the OSM datasets with trigrams

ff Geocoding with geopy and PL/Python

ff Importing netCDF datasets with Python and GDAL

Introduction
There are several ways to write PostGIS programs; in this chapter, we will see a few of them.
You will mainly use the Python language throughout this chapter. Python is a fantastic
language with a plethora of GIS and a scientific library that can be combined with PostGIS
to write awesome geospatial applications.

In case you are new to Python, you can quickly get productive with these excellent
web resources:

ff The official Python tutorial at http://docs.python.org/2/tutorial/

ff The popular Dive into Python book at http://www.diveintopython.net/

ff The Learn Python in the hard way class for a task-oriented training at
http://learnpythonthehardway.org/

PostGIS Programming

282

You can combine Python with some excellent and popular libraries such as:

ff Psycopg: This is the most complete and popular Python DB API implementation for
PostgreSQL; see http://initd.org/psycopg/

ff GDAL Python bindings: These are used to unchain the powerful GDAL library in your
Python scripts; see http://www.gdal.org/gdal_tutorial.html

ff urllib2: This is a handy Python standard library to manage HTTP stuff such as
opening URLs

ff simplejson: This is a simple and fast JSON encoder/decoder

The recipes of this chapter will not cover some other useful geospatial Python libraries that
are worthy of being looked at if you are developing a geospatial application. Under these
Python libraries, the following libraries are included:

ff Shapely: This is a Python interface to the GEOS library for the manipulation and
analysis of planar geometric objects: http://toblerity.github.io/shapely/

ff Fiona: This is a very light OGR Python API that can be used as an alternative to the
OGR bindings used in this chapter to manage vector datasets: https://github.
com/Toblerity/Fiona

ff Rasterio: This is the new kid on the block, a pythonic GDAL Python API that can be
used as an alternative to the GDAL bindings used in this chapter in order to manage
raster datasets: https://github.com/sgillies/rasterio

ff pyproj: This is the Python interface to the PROJ.4 library: https://code.google.
com/p/pyproj/

ff Rtree: This is a ctype Python wrapper to the libspatialindex library, providing
several spatial indexing features that can be extremely useful for some kind of
geospatial development: http://toblerity.github.io/rtree/

In the first recipe, you will write a program that uses Python and the psycopg, urllib2, and
simplejson libraries to fetch weather data from the Web and import them into PostGIS.

In the second recipe, we will drive you to use Python and the GDAL OGR Python bindings
library to create a script for geocoding a list of place names using one of the GeoNames
Web services.

You will then write a Python function for PostGIS using the PL/Python language to query
the openweathermap.org Web services, already used in the first recipe, to calculate the
weather for a PostGIS geometry from within a PostgreSQL function.

In the fourth recipe, you will create two PL/pgSQL PostGIS functions that will let you perform
geocoding and reverse geocoding using the GeoNames datasets.

After this, there is a recipe in which you will use the OpenStreetMap street datasets
imported in PostGIS to implement a very basic Python class in order to provide a geocode
implementation to the class's consumer using the PostGIS trigrams support.

Chapter 8

283

The sixth recipe will show you how to create a PL/Python function using the geopy library to
geocode addresses using web geocoding API such as Google Maps, Yahoo! Maps, Geocoder.
us, GeoNames, and other ones.

In the last recipe of this chapter, you will create a Python script to import data from the
netCDF format to PostGIS using the GDAL Python bindings.

Let's see some notes before starting with the recipes in this chapter.

If you are using Linux, follow these steps:

1.	 Create a Python virtualenv (http://www.virtualenv.org/en/latest/)
to set up a Python-isolated environment to be used for all the Python recipes in this
book and activate it. Create it in a central directory, as you will need to use it for most
of the Python recipes of this book.
$ cd ~/virtualenvs

$ virtualenv --no-site-packages postgis-cb-env

$ source postgis-cb-env/bin/activate

2.	 Once activated, you can install the Python libraries you will need for the recipes in
this chapter:
$ pip install simplejson

$ pip install psycopg2

$ pip install numpy

$ pip install gdal

$ pip install geopy

3.	 In case you are new to the virtual environment and you are wondering where the
libraries have been installed, you should find everything in the virtualenv directory
in our development box. You can find the libraries using the following command:

$ ls /home/capooti/virtualenv/postgis-cb-env/lib/python2.7/site-
packages

In case you are wondering what is going on with the previous command lines: then
virtualenv is a tool that will be used to create isolated Python environments, and
you can find more information about this tool at http://www.virtualenv.org,
while pip (http://www.pip-installer.org) is a package-management system
used to install and manage software packages written in Python.

PostGIS Programming

284

If you are using Windows, follow these steps:

1.	 The easiest way to have Python and all the libraries needed for the recipes of this
chapter is to use OSGeo4W, a popular binary distribution of open source geospatial
software for Windows. You can download it from http://trac.osgeo.org/
osgeo4w/.

2.	 On my Windows box, the OSGeo4W shell, at the time of writing this book, comes with
Python 2.7.4, GDAL 1.10.1 Python bindings, simplejson, psycopg2, and numpy. You
will only need to install geopy.

3.	 The easiest way to install geopy and to eventually add more Python libraries to the
OSGeo4W shell is to install setuptools and pip by following the instructions found
at http://www.pip-installer.org/en/latest/installing.html. Open
the OSGeo4W shell and just enter the following commands:

> python ez_setup.py

> python get-pip.py

> pip install geopy

Writing PostGIS vector data with Psycopg
In this recipe, you will use Python combined with Psycopg, the most popular PostgreSQL
database library for Python, in order to write some data to PostGIS using the SQL language.

You will write a procedure to import weather data for the most populated US cities. You will
import such weather data from OpenWeatherData.org, which is a web service that provides
free weather data and forecast API. The procedure you are going to write will iterate each major
USA city and get the actual temperature for it from the closest weather stations using the
OpenWeatherData.org Web service API, getting the output in the JSON format. (In case
you are new to the JSON format, you can find details about it at http://www.json.org/.)

You will also generate a new PostGIS layer with the 10 closest weather stations to each city.

Getting ready
1.	 Create a database schema for the recipes in this chapter using the following command:

postgis_cookbook=# CREATE SCHEMA chp08;

Chapter 8

285

2.	 Download the USA cities' shapefile from the nationalatlas.gov website at
http://dds.cr.usgs.gov/pub/data/nationalatlas/citiesx020_
nt00007.tar.gz (this archive is anyway included in the dataset that is available
with the code bundle), extract it to working/chp08, and import it in PostGIS,
filtering out cities with less than 100,000 inhabitants:
$ ogr2ogr -f PostgreSQL -s_srs EPSG:4269 -t_srs EPSG:4326 -lco
GEOMETRY_NAME=the_geom -nln chp08.cities PG:"dbname='postgis_
cookbook' user='me' password='mypassword'" -where "POP_2000 >
100000" citiesx020.shp

3.	 Add a real field to store the temperature for each city using the following command:
postgis_cookbook=# ALTER TABLE chp08.cities ADD COLUMN temperature
real;

4.	 If you are on Linux, ensure that you follow the initial instructions of this chapter and
create a Python virtual environment in order to create a Python-isolated environment,
to be used for all the Python recipes of this book, and activate it:
$ source postgis-cb-env/bin/activate

5.	 Once activated, if you still haven't done it, you can install the Python psycopg2 and
simplejson packages needed for this recipe:

(postgis-cb-env)$ pip install psycopg2

(postgis-cb-env)$ pip install simplejson

How to do it...
Carry out the following steps:

1.	 Create the following table to host weather station data:
postgis_cookbook=# CREATE TABLE chp08.wstations

postgis_cookbook-# (

postgis_cookbook(# id bigint NOT NULL,

postgis_cookbook(# the_geom geometry(Point,4326),

postgis_cookbook(# name character varying(48),

postgis_cookbook(# temperature real,

postgis_cookbook(# CONSTRAINT wstations_pk PRIMARY KEY (id)

postgis_cookbook(#);

2.	 Check the JSON response for the web service you are going to use. If you want the 10
closest weather stations from a point (the city centroid), the request you need to run
is as follows (test it in a browser):
http://api.openweathermap.org/data/2.1/find/
station?lat=55&lon=37&cnt=10

http://dds.cr.usgs.gov/pub/data/nationalatlas/citiesx020_nt00007.tar.gz
http://dds.cr.usgs.gov/pub/data/nationalatlas/citiesx020_nt00007.tar.gz

PostGIS Programming

286

3.	 You should get the following JSON response (the closest 10 stations and their relative
data are ordered by their distance from the point coordinates that for this case are
lon=37 and lat=55):
{
"calctime": "",
"cnt": 10,
"cod": "200",
"list": [
 {
 "clouds": [
 {
 "condition": "OVC",
 "distance": 610
 }
],
 "coord": {
 "lat": 55.5,
 "lon": 37.5
 },
 "distance": 63.995,
 "dt": 1362061800,
 "id": 7325,
 "main": {
 "pressure": 1001,
 "temp": 275.15
 },
 "name": "UUMO",
 "rang": 50,
 "type": 1,
 "wind": {
 "deg": 280,
 "speed": 4
 }
 },...

4.	 Now, create the Python program that will perform the desired output and name it
get_weather_data.py:
import urllib2
import simplejson as json
import psycopg2

def GetWeatherData(lon, lat):
 """

Chapter 8

287

 Get the 10 closest weather stations data for a given point.
 """
 # uri to access the JSON openweathermap web service
 uri = (
 'http://api.openweathermap.org/data/2.1/find/
station?lat=%s&lon=%s&cnt=10'
 % (lat, lon))
 print 'Fetching weather data: %s' % uri
 try:
 data = urllib2.urlopen(uri)
 js_data = json.load(data)
 return js_data['list']
 except:
 print 'There was an error getting the weather data.'
 return []

def AddWeatherStation(station_id, lon, lat, name, temperature):
 """
 Add a weather station to the database, but only if it does not
already exists.
 """
 curws = conn.cursor()
 curws.execute('SELECT * FROM chp08.wstations WHERE id=%s',
(station_id,))
 count = curws.rowcount
 if count==0: # we need to add the weather station
 curws.execute(
 """INSERT INTO chp08.wstations (id, the_geom, name,
temperature)
 VALUES (%s, ST_GeomFromText('POINT(%s %s)', 4326), %s,
%s)""",
 (station_id, lon, lat, name, temperature)
)
 curws.close()
 print 'Added the %s weather station to the database.' %
name
 return True
 else: # weather station already in database
 print 'The %s weather station is already in the database.'
% name
 return False

program starts here
get a connection to the database

PostGIS Programming

288

conn = psycopg2.connect('dbname=postgis_cookbook user=me
password=mypassword')
we do not need transaction here, so set the connection to
autocommit mode
conn.set_isolation_level(0)

open a cursor to update the table with weather data
cur = conn.cursor()

iterate all of the cities in the cities PostGIS layer, and for
each of them
grap the actual temperature from the closest weather station,
and add the 10
closest stations to the city to the wstation PostGIS layer
cur.execute("""SELECT ogc_fid, name,
 ST_X(the_geom) AS long, ST_Y(the_geom) AS lat FROM chp08.
cities;""")
for record in cur:
 ogc_fid = record[0]
 city_name = record[1]
 lon = record[2]
 lat = record[3]
 stations = GetWeatherData(lon, lat)
 print stations
 for station in stations:
 print station
 station_id = station['id']
 name = station['name']
 # for weather data we need to access the 'main' section in
the json
 # 'main': {'pressure': 990, 'temp': 272.15, 'humidity':
54}
 if 'main' in station:
 if 'temp' in station['main']:
 temperature = station['main']['temp']
 else:
 temperature = -9999 # in some case the temperature is
not available
 # "coord":{"lat":55.8622,"lon":37.395}
 station_lat = station['coord']['lat']
 station_lon = station['coord']['lon']

Chapter 8

289

 # add the weather station to the database
 AddWeatherStation(station_id, station_lon, station_lat,
 name, temperature)
 # first weather station from the json API response is
always the closest
 # to the city, so we are grabbing this temperature and
store in the
 # temperature field in the cities PostGIS layer
 if station_id == stations[0]['id']:
 print 'Setting temperature to %s for city %s' % (
 temperature, city_name)
 cur2 = conn.cursor()
 cur2.execute(
 'UPDATE chp08.cities SET temperature=%s WHERE ogc_
fid=%s',
 (temperature, ogc_fid))
 cur2.close()

close cursor and close connection to database
 cur.close()
 conn.close()

5.	 Run the Python program:
(postgis-cb-env)$ python get_weather_data.py

Added the PAMR weather station to the database.

Setting temperature to 268.15 for city Anchorage

Added the PAED weather station to the database.

Added the PANC weather station to the database.

...

The KMFE weather station is already in the database.

Added the KOPM weather station to the database.

The KBKS weather station is already in the database.

PostGIS Programming

290

6.	 Check the output of the Python program you just wrote. Open the two PostGIS layers,
cities and wstations, with your favorite GIS desktop tool and investigate the
results. The following screenshot shows how it looks in QGIS:

How it works...
Psycopg is the most popular PostgreSQL adapter for Python, and it can be used to create
Python scripts that send SQL commands to PostGIS. In this recipe, you created a Python script
that queries weather data from the OpenWeatherData.org web server using the popular
JSON format to get the output data and then used that data to update two PostGIS layers.

For one of the layers, cities, the weather data is used to update the temperature field
using the temperature data of the weather station closest to the city. For this purpose, you
used an UPDATE SQL command. The other layer, wstations, is updated every time a new
weather station is identified from the weather data and inserted in the layer. In this case,
you used an INSERT SQL statement.

This is a quick overview of the script's behavior (you can find more details in the comments
within the Python code): in the beginning, a PostgreSQL connection is created using the
Psycopg connection object. The connection object is created using the main connection
parameters (dbname, user, and password, while default values for server name
and port are not specified, as the default values, localhost and 5432 are used). The
connection behavior is set to auto commit so that any SQL performed by psycopg will
be run immediately and will not be embedded in a transaction.

Chapter 8

291

Using a cursor, you first iterate all of the records in the cities PostGIS layer: for each of the
cities, you need to get the temperature from the OpenWeatherData.org web server. For
this purpose, for each city, you make a call to the GetWeatherData method, passing the
coordinates of the city to it. The method queries the server using the urllib2 library and
parses the JSON response using the simplejson Python library.

You should send the URL request to a try...catch block. This way, if there is any issue with
the web service (internet connection not available, any HTTP status codes different from 200,
or whatever else), the process can safely continue with the data of the next city (iteration).

The JSON response contains, as per the request, the information about the 10 weather
stations closest to the city. You will use the information of the first weather station, the
closest one to the city, to set the temperature field for the city.

You then iterate all of the station JSON objects and by using the AddWeatherStation
method, you create a weather station in the wstation PostGIS layer, but only if a weather
station with the same id does not exist.

Writing PostGIS vector data with OGR
Python bindings

In this recipe, you will use Python and the Python bindings of the GDAL/OGR library to create
a script for geocoding a list of the names of places using one of the GeoNames Web services
(http://www.geonames.org/export/ws-overview.html). You will use the Wikipedia
Full Text Search Web service (http://www.geonames.org/export/wikipedia-
webservice.html#wikipediaSearch), which for a given search string returns the
coordinates of the places matching that search string as the output and some other
useful attributes from Wikipedia, including the Wikipedia page title and url.

The script should first create a PostGIS point layer named wikiplaces in which all of the
locations and their attributes returned by the web service will be stored.

This recipe should give you the basis to use other similar web services, such as Google Maps,
Yahoo! BOSS Geo Services, and so on, to get results in a similar way.

Before you start, please note the terms of use of GeoNames: http://www.geonames.
org/export/. In a few words, on the date of writing, you have 30,000 credits' daily limit per
application (identified by the username parameter); the hourly limit is 2000 credits. A credit
is a web service request hit for most services.

You will generate the PostGIS table containing the geocoded place names using the GDAL/
OGR Python bindings (http://trac.osgeo.org/gdal/wiki/GdalOgrInPython).

PostGIS Programming

292

Getting ready
1.	 To access GeoNames Web services, you need to create a user at

http://www.geonames.org/login. The user being used in this recipe
is postgis; you will need to change it with your username whenever you
query the GeoNames Web services URL.

2.	 If you are using Windows, be sure to have OSGeo4W installed as suggested in the
initial instructions of this chapter.

3.	 If you are using Linux, follow the initial instructions for this chapter and create a
Python virtualenv, in order to keep a Python-isolated environment to be used
for all the Python recipes of this book, and activate it:
$ source postgis-cb-env/bin/activate

4.	 Once activated, if you still haven't done it, you have to install the Python GDAL and
simplejson packages needed for this recipe:

(postgis-cb-env)$ pip install gdal

(postgis-cb-env)$ pip install simplejson

How to do it...
Carry out the following steps:

1.	 First test the web service and its JSON output yourself with the following request
(change the q and username parameters as you wish):
http://api.geonames.org/wikipediaSearchJSON?formatted=true&q=lo
ndon&maxRows=10&username=postgis&style=full

You should get the following JSON output:

{"geonames": [
 {
 "summary": "London Bridge railway station is a central London
railway terminus and London Underground complex in the London
Borough of Southwark, occupying a large area on two levels
immediately south-east of London Bridge and 1.6 miles (2.6 km)
east of Charing Cross (...)",
 "rank": 100,
 "title": "London Bridge station",
 "wikipediaUrl": "en.wikipedia.org/wiki/London_Bridge_station",
 "elevation": 18,
 "countryCode": "GB",
 "lng": -0.0866,
 "feature": "railwaystation",
 "thumbnailImg": "http://www.geonames.org/img/wikipedia/115000/
thumb-114758-100.jpg",

Chapter 8

293

 "lang": "en",
 "lat": 51.5055
 },
 {
 "summary": "London is a city in Southwestern Ontario, Canada,
situated along the Quebec City–Windsor Corridor. The city has
a population of 366,151 according to the 2011 Canadian census.
London is the seat of Middlesex County, at the forks of the non-
navigable Thames River, approximately halfway between (...)",
 "rank": 100,
 "title": "London, Ontario",...

2.	 As you can see from the JSON output for the GeoNames Web service, for a given
query string (a location name), you get a list of Wikipedia pages related to that
location in a JSON format. For each JSON object representing a Wikipedia page, you
can get access to the attributes such as the page title, summary, url, and the
coordinates of the location.

3.	 Now, create a text file named working/chp08/names.txt with the names of
places you would like to geocode from the Wikipedia Full Text Search Web services.
Add some place names, for example (in Windows, use a text editor such as Notepad):
$ vi names.txt

London

Rome

Boston

Chicago

Madrid

Paris

...

4.	 Now create a file named import_places.py under working/chp08/ and add
to it the Python script of this recipe. The following is how the script should look
(you should be able to follow it by reading the in-line comments and the How it
works... section):
import sys
import urllib2
import simplejson as json
from osgeo import ogr, osr

MAXROWS = 10
USERNAME = 'postgis' #enter your username here

def CreatePGLayer():
 """

PostGIS Programming

294

 Create the PostGIS table.
 """
 driver = ogr.GetDriverByName('PostgreSQL')
 srs = osr.SpatialReference()
 srs.ImportFromEPSG(4326)
 pg_ds = ogr.Open(
 "PG:dbname='postgis_cookbook' host='localhost' port='5432'
user='me' password='mypassword'",
 update = 1)
 pg_layer = pg_ds.CreateLayer('wikiplaces', srs = srs, geom_
type=ogr.wkbPoint,
 options = [
 'DIM=3', # we want to store the elevation value in
point z coordinate
 'GEOMETRY_NAME=the_geom',
 'OVERWRITE=YES', # this will drop and recreate the
table every time
 'SCHEMA=chp08',
])
 # add the fields
 fd_title = ogr.FieldDefn('title', ogr.OFTString)
 pg_layer.CreateField(fd_title)
 fd_countrycode = ogr.FieldDefn('countrycode', ogr.OFTString)
 pg_layer.CreateField(fd_countrycode)
 fd_feature = ogr.FieldDefn('feature', ogr.OFTString)
 pg_layer.CreateField(fd_feature)
 fd_thumbnail = ogr.FieldDefn('thumbnail', ogr.OFTString)
 pg_layer.CreateField(fd_thumbnail)
 fd_wikipediaurl = ogr.FieldDefn('wikipediaurl', ogr.OFTString)
 pg_layer.CreateField(fd_wikipediaurl)
 return pg_ds, pg_layer

def AddPlacesToLayer(places):
 """
 Read the places dictionary list and add features in the
PostGIS table for each place.
 """
 # iterate every place dictionary in the list
 for place in places:
 lng = place['lng']
 lat = place['lat']
 z = place['elevation'] if 'elevation' in place else 0
 # we generate a point representation in wkt, and create an
ogr geometry
 point_wkt = 'POINT(%s %s %s)' % (lng, lat, z)
 point = ogr.CreateGeometryFromWkt(point_wkt)
 # we create a LayerDefn for the feature using the one from
the layer
 featureDefn = pg_layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)

Chapter 8

295

 # now time to assign the geometry and all the other
feature's fields,
 # if the keys are contained in the dictionary (not always
the GeoNames
 # Wikipedia Fulltext Search contains all of the
information)
 feature.SetGeometry(point)
 feature.SetField('title',
 place['title'].encode("utf-8") if 'title' in place
else '')
 feature.SetField('countrycode',
 place['countryCode'] if 'countryCode' in place else
'')
 feature.SetField('feature',
 place['feature'] if 'feature' in place else '')
 feature.SetField('thumbnail',
 place['thumbnailImg'] if 'thumbnailImg' in place else
'')
 feature.SetField('wikipediaurl',
 place['wikipediaUrl'] if 'wikipediaUrl' in place else
'')
 # here we create the feature (the INSERT SQL is issued
here)
 pg_layer.CreateFeature(feature)
 print 'Created a places titled %s.' % place['title']

def GetPlaces(placename):
 """
 Get the places list for a given placename.
 """
 # uri to access the JSON GeoNames Wikipedia Fulltext Search
web service
 uri = ('http://api.geonames.org/wikipediaSearchJSON?formatted=
true&q=%s&maxRows=%s&username=%s&style=full'
 % (placename, MAXROWS, USERNAME))
 data = urllib2.urlopen(uri)
 js_data = json.load(data)
 return js_data['geonames']

def GetNamesList(filepath):
 """
 Open a file with a given filepath containing place names and
return a list.
 """
 f = open(filepath)
 return f.read().splitlines()

first we need to create a PostGIS table to contains the places
we must keep the PostGIS OGR dataset and layer global, for the
reasons

PostGIS Programming

296

described here: http://trac.osgeo.org/gdal/wiki/PythonGotchas
from osgeo import gdal
gdal.UseExceptions()
pg_ds, pg_layer = CreatePGLayer()

query geonames for each name and store found places in the table
names = GetNamesList('names.txt')
for name in names:
 AddPlacesToLayer(GetPlaces(name))

5.	 Now, execute the Python script:
(postgis-cb-env)$ python import_places.py
Created a places titled London Bridge station.
Created a places titled London.
Created a places titled London, Ontario.

...

6.	 Test whether the table was correctly created and populated using SQL and eventually
use your favorite Desktop GIS tool to display the layer:

postgis_cookbook=# select ST_AsText(the_geom), title, countrycode,
feature from chp08.wikiplaces;

st_astext | title
| countrycode | feature
---+--------------------
------------------+-------------+----------------
POINT Z (-0.0866 51.5055 18) | London Bridge station | GB |
railwaystation

 POINT Z (-81.2497 42.9837 262) | London, Ontario
| CA | city
 POINT Z (-72.1008333333 41.3555555556 27) | New London,
Connecticut | US | city
 POINT Z (-0.07857 51.504872 2) | London
| GB | city
 ...
 POINT Z (2.33305556 48.90694444 36) | Saint-Ouen, Seine-
Saint-Denis | FR |
 POINT Z (2.343333 48.848611 61) | Sorbonne
| |
 POINT Z (2.30472222222 48.9325 28) | Gennevilliers
| FR | city

(60 rows)

Chapter 8

297

How it works...
This Python script uses the urllib2 (part of the standard Python library) and simplejson
libraries to fetch data from the GeoNames wikipediaSearchJSON web service and the
GDAL/OGR library to store geographic information inside the PostGIS database.

First, you create a PostGIS point table to store the geographic data. This is made using the
GDAL/OGR bindings. You need to instantiate a OGR PostGIS driver (http://www.gdal.
org/ogr/drv_pg.html) from where it is possible to instantiate a dataset to connect to
your postgis_cookbook database using a specified connection string.

The update parameter in the connection string specifies to the GDAL driver that will open the
dataset for updating.

From the PostGIS dataset, we created a PostGIS layer named wikiplaces that will store
points (geom_type=ogr.wkbPoint) using the WGS 84 spatial reference system (srs.
ImportFromEPSG(4326)). When creating the layer, we specified other parameters as well
such as dimension (3, as you want to store the z values), GEOMETRY_NAME (the name of the
geometric field) and schema. After creating the layer, you can use the CreateField layer
method to create all the fields that are needed to store the information. Each field will have
a specific name and datatype (all of them are ogr.OFTString for this case).

After the layer has been created (note that we need to have the pg_ds and pg_layer objects
always in context for the whole script, as noticed at http://trac.osgeo.org/gdal/
wiki/PythonGotchas), you can query the GeoNames Web services for each place name
in the names.txt file using the urllib2 library.

We parsed the JSON response using the simplejson library, then iterated the JSON objects
list, and added a feature to the PostGIS layer for each of the objects in the JSON output. For
each element, we created a feature with a point wkt geometry (using the lng, lat, and
elevation object attributes) using the ogr.CreateGeometryFromWkt method, and
updated the other fields using the other object attributes returned by GeoNames using the
feature setField method (title, countryCode, and so on).

You can get more information on programming with GDAL Python bindings using the following
great resource by Chris Garrard:

http://www.gis.usu.edu/~chrisg/python/2009/

Writing PostGIS functions with PL/Python
In this recipe, you will write a Python function for PostGIS using the PL/Python language. The PL/
Python procedural language allows you to write PostgreSQL functions with the Python language.

You will use Python for querying the openweathermap.org web services, already used in a
previous recipe, to get the weather for a PostGIS geometry from within a PostgreSQL function.

http://www.gdal.org/ogr/drv_pg.html
http://www.gdal.org/ogr/drv_pg.html
http://trac.osgeo.org/gdal/wiki/PythonGotchas
http://trac.osgeo.org/gdal/wiki/PythonGotchas

PostGIS Programming

298

Getting ready
1.	 Verify whether your PostgreSQL server installation has PL/Python support. On

Windows, this should be already included, but this is not the default if you are
using, for example, Ubuntu 12.4 LTS, so you will most likely need to install it:
$ sudo apt-get install postgresql-plpython-9.1

2.	 Install PL/Python on the database (you could consider installing it in your template1
database; in this way, every newly created database will have PL/Python support
by default):

You could alternatively add PL/Python support to your database using
the createlang shell command (this is the only way if you are using a
PostgreSQL Version 9.1 or lower):
$ createlang plpythonu postgis_cookbook

$ psql -U me postgis_cookbook
psql (9.1.6, server 9.1.8)
Type "help" for help.

postgis_cookbook=# CREATE EXTENSION plpythonu;

How to do it...
Carry out the following steps:

1.	 In this recipe, as with a previous one, you will use an openweathermap.org Web
service to get the temperature for a point from the closest weather station. The
request you need to run (test it in a browser) is http://api.openweathermap.
org/data/2.1/find/station?long=100.49&lat=13.74&cnt=1. You should
get the following JSON output (the closest weather station's data from which you will
read the temperature to the point, with the coordinates of the given longitude
and latitude):
{
 message: "",
 cod: "200",
 calctime: "",
 cnt: 1,
 list: [
 {
 id: 9191,
 dt: 1369343192,
 name: "100704-1",
 type: 2,
 coord: {
 lat: 13.7408,

http://api.openweathermap.org/data/2.1/find/station?long=100.49&lat=13.74&cnt=1
http://api.openweathermap.org/data/2.1/find/station?long=100.49&lat=13.74&cnt=1

Chapter 8

299

 lon: 100.5478
 },
 distance: 6.244,
 main: {
 temp: 300.37
 },
 wind: {
 speed: 0,
 deg: 141
 },
 rang: 30,
 rain: {
 1h: 0,
 24h: 3.302,
 today: 0
 }
 }
]
}

2.	 Create the following PostgreSQL function in Python using the PL/Python language:
CREATE OR REPLACE FUNCTION chp08.GetWeather(lon float, lat float)
 RETURNS float
AS $$
 import urllib2
 import simplejson as json
 data = urllib2.urlopen(
 'http://api.openweathermap.org/data/2.1/find/
station?lat=%s&lon=%s&cnt=1'
 % (lat, lon))
 js_data = json.load(data)
 if js_data['cod'] == '200': # only if cod is 200 we got some
effective results
 if int(js_data['cnt'])>0: # check if we have at
least a weather station
 station = js_data['list'][0]
 print 'Data from weather station %s' %
station['name']
 if 'main' in station:
 if 'temp' in station['main']:
 temperature = station['main']['temp']
- 273.15 # we want the temperature in Celsius
 else:
 temperature = None
 else:
 temperature = None
 return temperature
$$ LANGUAGE plpythonu;

PostGIS Programming

300

3.	 Now, test your function; for example, get the temperature from the closest weather
station to Wat Pho Templum in Bangkok:
postgis_cookbook=# SELECT chp08.GetWeather(100.49, 13.74);
 getweather

 27.22

(1 row)

4.	 In case you want to get the temperature for the point features in a PostGIS table,
you can use the coordinates of each feature's geometry:
postgis_cookbook=# SELECT name, temperature, chp08.
GetWeather(ST_X(the_geom), ST_Y(the_geom)) AS temperature2 FROM
chp08.cities LIMIT 5;

 name | temperature | temperature2

-------------+-------------+--------------

 Minneapolis | 275.15 | 15

 Saint Paul | 274.15 | 16

 Buffalo | 274.15 | 19.44

 New York | 280.93 | 19.44

 Jersey City | 282.15 | 21.67

(5 rows)

5.	 Now it would be nice if our function could accept not only the coordinates of a point
but also a true PostGIS geometry as well as an input parameter. For the temperature
of a feature, you could return the temperature of the weather station closest to the
centroid of the feature geometry. You can easily get this behavior using function
overloading. Add a new function, with the same name, supporting a PostGIS geometry
directly as an input parameter. In the body of the function, call the previous function,
passing the coordinates of the centroid of the geometry. Note that in this case you
can write the function without using Python, with the PL/PostgreSQL language:
CREATE OR REPLACE FUNCTION chp08.GetWeather(geom geometry)
 RETURNS float

AS $$

 BEGIN

 RETURN chp08.GetWeather(ST_X(ST_Centroid(geom)),
 ST_Y(ST_Centroid(geom)));

 END;

$$ LANGUAGE plpgsql;

Chapter 8

301

6.	 Now test the function, passing a PostGIS geometry to the function:
postgis_cookbook=# SELECT chp08.GetWeather(ST_
GeomFromText('POINT(-71.064544 42.28787)'));

 getweather

 23.89

(1 row)

7.	 If you use the function on a PostGIS layer, you can pass the feature's geometries to
the function directly, using the overloaded function written in the PL/pgSQL language:

postgis_cookbook=# SELECT name, temperature, chp08.GetWeather(the_
geom) AS temperature2 FROM chp08.cities LIMIT 5;

 name | temperature | temperature2

-------------+-------------+--------------

 Minneapolis | 275.15 | 17.22

 Saint Paul | 274.15 | 16

 Buffalo | 274.15 | 18.89

 New York | 280.93 | 19.44

 Jersey City | 282.15 | 21.67

(5 rows)

How it works...
In this recipe, you wrote a Python function in PostGIS using the PL/Python language. Using
Python inside PostgreSQL and PostGIS functions gives you the great advantage of using any
Python library you wish. Therefore, you will be able to write much more powerful functions
compared to those written using the standard PL/PostgreSQL language.

In fact, in this case, you used the urllib2 and simplejson Python libraries to query a
web service from within a PostgreSQL function—this would be an impossible operation to
do using plain PL/PostgreSQL. You have also seen how to overload functions in order to
provide the function's user with a different way to access the function, using input
parameters in a different way.

PostGIS Programming

302

Geocoding and reverse-geocoding using the
GeoNames datasets

In this recipe, you will write two PL/PostgreSQL PostGIS functions that will let you perform
geocoding and reverse-geocoding using the GeoNames datasets.

GeoNames is a database of the place names of the world, containing over eight million
records that are available for download free of charge. For the purpose of this recipe, you will
download a part of the database, load it in PostGIS, and then use it within two functions to
perform geocoding and reverse-geocoding. Geocoding is the process of finding coordinates
from geographical data such as an address or a place name, while reverse-geocoding is the
process of finding geographical data such as an address or place name from its coordinates.

You are going to write the two functions using PL/pgSQL, which adds on top of the PostgreSQL
SQL commands the ability to tie more commands and queries together, a bunch of control
structures, cursors, error management, and other goodness.

Getting ready
Download a GeoNames dataset. At the time of downloading, you can find some of the
datasets ready to be downloaded from http://download.geonames.org/export/
dump/. You may decide which dataset you want to use; if you want to follow this recipe, it will
be enough to download the Italian dataset, IT.zip file (included in the book's dataset, in the
chp08 directory).

In case you want to download the full GeoNames dataset, you need to download the
allCountries.zip file; it will take a long time as it is about 250 MB.

How to do it...
Carry out the following steps:

1.	 Unzip the IT.zip file to the working/chp08 directory. Two files will be extracted:
the readme.txt file that contains information on the GeoNames database
structure—you can read it to get some more information—and the IT.txt file, which
is a .csv file containing all the GeoNames entities for Italy. As suggested from
the readme.txt file, the content of the CSV file is composed of records with the
following attributes:
geonameid : integer id of record in geonames database
name : name of geographical point (utf8) varchar(200)
asciiname : name of geographical point in plain ascii
characters, varchar(200)
alternatenames : alternatenames, comma separated varchar(5000)

Chapter 8

303

latitude : latitude in decimal degrees (wgs84)
longitude : longitude in decimal degrees (wgs84)
...

2.	 Get an overview of this CSV dataset using ogrinfo:
$ ogrinfo CSV:IT.txt IT -al -so
INFO: Open of `CSV:IT.txt'
 using driver `CSV' successful.

Layer name: IT
Geometry: Point
Feature Count: 8535
Extent: (1.200000, 35.483330) - (20.750000, 47.083330)
Layer SRS WKT:
(unknown)
GEONAMEID: String (0.0)
NAME: String (0.0)
...
GTOPO30: Integer (0.0)
TIMEZONE: String (0.0)
MODDATE: String (0.0)

3.	 You could query the IT.txt file as an OGR entity. For example, analyze one of the
dataset features as shown in the following code:
$ ogrinfo CSV:IT.txt IT -where "NAME = 'San Gimignano'"
INFO: Open of `IT.vrt'
 using driver `VRT' successful.

 Layer name: IT
 Geometry: Point
 Feature Count: 1
 Extent: (11.042720, 43.469240) - (11.042720, 43.469240)
 Layer SRS WKT:
 GEOGCS["WGS 84",
 ...
 GEONAMEID: String (0.0)
 NAME: String (0.0)
 ASCIINAME: String (0.0)
 ...
 MODDATE: String (0.0)
 OGRFeature(IT):7791
 GEONAMEID (String) = 3168320
 NAME (String) = San Gimignano
 ASCIINAME (String) = San Gimignano
 ...
 MODDATE (String) = 2012-02-15
 POINT (11.04272 43.46924)

PostGIS Programming

304

4.	 For your purpose, you just need the name, asciiname, latitude, and
longitude attributes. You will import the file to PostGIS using the CSV OGR driver
(http://www.gdal.org/ogr/drv_csv.html). Use ogr2ogr command to
import this GeoNames dataset in PostGIS:
$ ogr2ogr -f PostgreSQL -s_srs EPSG:4326 -lco GEOMETRY_NAME=the_
geom -nln chp08.geonames PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" CSV:IT.txt -sql "SELECT NAME, ASCIINAME
FROM IT"

5.	 Try to query the new geonames table in PostGIS to see if the process
completed correctly:
postgis_cookbook=# SELECT ST_AsText(the_geom), name FROM chp08.
geonames ORDER BY name LIMIT 5;

 st_astext | name

--------------------------+----------------------
 POINT(6.83333 45.03333) | Abbazia
 POINT(12.76667 42.95) | Abbazia di Sassovivo
 POINT(14.49298 37.02504) | Acate
 POINT(15.10789 37.59765) | Aci Bonaccorsi
 POINT(15.13459 37.55825) | Aci Castello

(5 rows)

6.	 Now, create a PL/PostgreSQL function that will return the five closer place names to
the given point and their coordinates (the reverse-geocoding process):
CREATE OR REPLACE FUNCTION chp08.Get_Closest_PlaceNames(in_geom
geometry, num_results int DEFAULT 5, OUT geom geometry, OUT place_
name character varying)
 RETURNS SETOF RECORD
AS $$
 BEGIN
 RETURN QUERY
 SELECT the_geom as geom, name as place_name
 FROM chp08.geonames
 ORDER BY the_geom <-> ST_Centroid(in_geom) LIMIT num_
results;
 END;

$$ LANGUAGE plpgsql;

7.	 Query the new function. You can specify the number of results you want by passing
the optional num_results input parameter:
postgis_cookbook=# SELECT * FROM chp08.Get_Closest_PlaceNames(ST_
PointFromText('POINT(13.5 42.19)', 4326), 10);

8.	 If you don't specify the num_results optional parameter, it will default to five results:
postgis_cookbook=# SELECT * FROM chp08.Get_Closest_PlaceNames(ST_
PointFromText('POINT(13.5 42.19)', 4326));

Chapter 8

305

9.	 Now create a PL/pgSQL function that will return a list of place names and geometries
containing a text search in their name field (geocoding process):
CREATE OR REPLACE FUNCTION chp08.Find_PlaceNames(search_string
text,
 num_results int DEFAULT 5,
 OUT geom geometry,
 OUT place_name character varying)
 RETURNS SETOF RECORD
AS $$
 BEGIN
 RETURN QUERY
 SELECT the_geom as geom, name as place_name
 FROM chp08.geonames
 WHERE name @@ to_tsquery(search_string)
 LIMIT num_results;
 END;

$$ LANGUAGE plpgsql;

10.	 Query this second function to check if it is working properly:

postgis_cookbook=# SELECT * FROM chp08.Find_PlaceNames('Rocca',
10);

How it works...
In this recipe, you wrote two PostgreSQL functions to perform geocoding and reverse-geocoding.
For both the functions, you defined a set of input and output parameters; after some
PL/PostgreSQL processing, you returned a set of records to the function client, given by
executing a query.

As the input parameters, the Get_Closest_PlaceNames function accepts a PostGIS
geometry and an optional num_results parameter that is set to a default of five in case
the function caller does not provide it. The output of this function is SETOF RECORD, which
is returned after running a query in the function body (defined by the $$ notation). Here, the
query finds the closer places to the centroid of the input geometry. This is done using an
indexed nearest neighbor search (KNN index), a new feature available in PostGIS 2.

The Find_PlaceNames function accepts as the input parameters a search string to look for
and an optional num_results parameter, which in this case also is set to a default of 5 if
not provided by the function caller. The output is a SETOF RECORD, which is returned after
running a query that uses the to_tsquery PostgreSQL text search function. The results of
the query are the places from the database that contain the search_string value in the
name field.

PostGIS Programming

306

Geocoding using the OSM datasets with
trigrams

In this recipe, you will use OpenStreetMap streets' datasets imported in PostGIS to implement
a very basic Python class in order to provide geocoding features to the class consumer. The
geocode engine will be based on the implementation of the PostgreSQL trigrams provided by
the contrib module of PostgreSQL: pg_trgm.

A trigram is a group of three consecutive characters contained in a string; it looks very
effective to measure the similarity of two strings by counting the number of trigrams
they have in common.

This recipe aims to be a very basic sample to implement some kind of geocoding
functionalities (it will just return one or more points from a street name), but it could
be extended to support more advanced features.

Getting ready
1.	 For this recipe, make sure you have the latest GDAL, at least Version 1.10, as you

will use it with ogr2ogr the new OGR OSM driver (http://www.gdal.org/ogr/
drv_osm.html):
$ ogrinfo --version
GDAL 1.10dev, released 2011/12/29

$ ogrinfo --formats | grep -i osm

 -> "OSM" (readonly)

2.	 As you will use PostgreSQL trigrams, install the PostgreSQL contrib package
(that includes pg_trgm). Windows EDB installer should already include this.
In a Ubuntu 12.4 box, the following command will help you to do it:
$ sudo apt-get install postgresql-contrib-9.1

3.	 Make sure to add the pg_trgm extension to the database:
postgis_cookbook=# CREATE EXTENSION pg_trgm;

CREATE EXTENSION

4.	 You will need to download some OSM datasets to use. Download the area of your
city/place or download the lazio.pbf OSM file from http://download.gfoss.
it/osm/osm/regioni/ if you want to go with the recipe and get similar results
(you can find a copy of this file in the data/chp08 book's dataset directory).

5.	 If you are using Windows, be sure to have installed the OSGeo4W suite as suggested
in the initial instructions of this chapter.

Chapter 8

307

6.	 If you are using Linux, follow the initial instructions of this chapter and create a
Python virtual environment in order to keep a Python-isolated environment to be
used for all the Python recipes of this book. Then activate it as follows:
$ source postgis-cb-env/bin/activate

7.	 Once the environment has been activated, if you still haven't done it, you can install
the Python packages needed for this recipe:

(postgis-cb-env)$ pip install gdal

(postgis-cb-env)$ pip install psycopg2

How to do it...
Carry out the following steps:

1.	 First, check out how the OSM .pbf file is built using ogrinfo. PBF is a binary
format intended as an alternative to the OSM XML format, mainly because it is much
smaller. As you must have noticed, it is composed of several layers—you will export
the lines layer to PostGIS as that layer contains the street names that you will use
for the overall geocoding process:
$ ogrinfo lazio.pbf
Had to open data source read-only.
INFO: Open of `lazio.pbf'
 using driver `OSM' successful.
1: points (Point)
2: lines (Line String)
3: multilinestrings (Multi Line String)
4: multipolygons (Multi Polygon)

5: other_relations (Geometry Collection)

2.	 Export the lines' OSM features to a PostGIS table using ogr2ogr (ogr2ogr, as
always, will implicitly create the GiST index that is needed by the pg_trgm module
to run):
$ ogr2ogr -f PostgreSQL -lco GEOMETRY_NAME=the_geom -nln
chp08.osm_roads PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" lazio.pbf lines

3.	 Now try a trigram matching to identify the road names similar to a given search text
string) using a query like the following. Note that the similarity function returns a
value that decreases from 1 to 0 as the similarity of the word decreases (with 1, the
strings are identical; with 0, they are totally different):
postgis_cookbook=# SELECT name, similarity(name, 'via benedetto
croce') AS sml, ST_AsText(ST_Centroid(the_geom)) AS the_geom
 FROM chp08.osm_roads
 WHERE name % 'via benedetto croce'
 ORDER BY sml DESC, name;

PostGIS Programming

308

name | sml | the_geom
-------------------------------+----------+-----------------------

 Via Benedetto Croce | 1 | POINT(13.4323581 41.3558496)
 Via Benedetto Croce | 1 | POINT(12.067122592122
41.9587406015601)
 Via Benedetto Croce | 1 | POINT(14.0540279250186
41.4805402269014)

 ...

4.	 As a variant, you will use the following query for completing the recipe (in this case,
when the weight is 0, the strings are identical):
postgis_cookbook=# SELECT name, name <-> 'via benedetto croce' AS
weight
 FROM chp08.osm_roads
 ORDER BY weight LIMIT 10;
 name | weight
------------------------+----------
 Via Benedetto Croce | 0
 Via Benedetto Croce | 0

 ...
 Via Benedetto XIV | 0.416667
 Via Benedetto XIV | 0.416667

(10 rows)

5.	 We will use the last query as the SQL core of a Python class, which will provide
geocoding features to the consumer, using the layer we just imported in PostGIS
(chp08.osm_roads). First, create a file named osmgeocoder.py and add the
following class to it:
import sys
import psycopg2

class OSMGeocoder(object):
 """
 A class to provide geocoding features using an OSM dataset in
PostGIS.
 """

 def __init__(self, db_connectionstring):
 # initialize db connection parameters
 self.db_connectionstring = db_connectionstring

 def geocode(self, placename):
 """
 Geocode a given place name.
 """

Chapter 8

309

 # here we create the connection object
 conn = psycopg2.connect(self.db_connectionstring)
 cur = conn.cursor()
 # this is the core sql query, using trigrams to detect
streets similiar
 # to a given placename
 sql = """
 SELECT name, name <-> '%s' AS weight,
 ST_AsText(ST_Centroid(the_geom)) as point
 FROM chp08.osm_roads
 ORDER BY weight LIMIT 10;
 """ % placename
 # here we execute the sql and return all of the results
 cur.execute(sql)
 rows = cur.fetchall()
 cur.close()
 conn.close()
 return rows

6.	 Now, add the __main__ check to provide the class user with a method to directly use
the geocoder from the command line:
if __name__ == '__main__':
 # the user must provide at least two parameters, the place
name
 # and the connection string to PostGIS
 if len(sys.argv) < 3 or len(sys.argv) > 3:
 print "usage: <placename> <connection string>"
 raise SystemExit
 placename = sys.argv[1]
 db_connectionstring = sys.argv[2]
 # here we instantiate the geocoder, providing the needed
PostGIS connection
 # parameters
 geocoder = OSMGeocoder(db_connectionstring)
 # here we query the geocode method, for getting the geocoded
points for the
 # given placename
 results = geocoder.geocode(placename)
 print results

7.	 Now you can test the class by calling the script as shown:
(postgis-cb-env)$ python osmgeocoder.py "Via Benedetto Croce"
"dbname=postgis_cookbook user=me password=mypassword"
[('Via Benedetto Croce', 0.0, 'POINT(12.6999095325807
42.058016054317)'),...

PostGIS Programming

310

8.	 So, now that you wrote a class that can be used to geocode street names, let's
suppose that another user wants to use it to geocode a file with a list of street names
in order to import it in a new PostGIS layer. Here is how the user could do this (try this
as well). First, create a streets.txt file with a list of street names, for example:
Via Delle Sette Chiese
Via Benedetto Croce
Lungotevere Degli Inventori
Viale Marco Polo

Via Cavour

9.	 Now create a file named geocode_streets.py, and add this Python code in it
(you are going to use the OSMGeocoder class to geocode the street name list, and
GDAL/OGR to create a new PostGIS layer for storing the geocoded points for the
street names):
from osmgeocoder import OSMGeocoder
from osgeo import ogr, osr

here we read the file
f = open('streets.txt')
streets = f.read().splitlines()
f.close()

here we create the PostGIS layer using gdal/ogr
driver = ogr.GetDriverByName('PostgreSQL')
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)
pg_ds = ogr.Open(
 "PG:dbname='postgis_cookbook' host='localhost' port='5432'
user='me' password='mypassword'", update = 1)
pg_layer = pg_ds.CreateLayer('geocoded_points', srs = srs, geom_
type=ogr.wkbPoint,
 options = [
 'GEOMETRY_NAME=the_geom',
 'OVERWRITE=YES', # this will drop and recreate the table
every time
 'SCHEMA=chp08',
])
here we add the field to the PostGIS layer
fd_name = ogr.FieldDefn('name', ogr.OFTString)
pg_layer.CreateField(fd_name)
print 'Table created.'

now we geocode all of the streets in the file using the
osmgeocoder class

Chapter 8

311

geocoder = OSMGeocoder('dbname=postgis_cookbook user=me
password=mypassword')
for street in streets:
 print street
 geocoded_street = geocoder.geocode(street)[0]
 print geocoded_street
 # format is
 # ('Via delle Sette Chiese', 0.0, 'POINT(12.5002166330412
41.859774874774)')
 point_wkt = geocoded_street[2]
 point = ogr.CreateGeometryFromWkt(point_wkt)
 # we create a LayerDefn for the feature using the one from the
layer
 featureDefn = pg_layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)
 # now we store the feature geometry and the value for the name
field
 feature.SetGeometry(point)
 feature.SetField('name', geocoded_street[0])
 # finally we create the feature (an INSERT command is issued
only here)
 pg_layer.CreateFeature(feature)

10.	 Run the preceding script and then check with your favorite PostgreSQL client or with a
GIS Desktop tool whether the points for the street names were correctly geocoded:

(postgis-cb-env)capooti@ubuntu:~/postgis_cookbook/working/chp08$
python geocode_streets.py
Table created.
Via Delle Sette Chiese
('Via delle Sette Chiese', 0.0, 'POINT(12.5002166330412
41.859774874774)')
...
Via Cavour
('Via Cavour', 0.0, 'POINT(12.7519263341222 41.9631244835521)')

How it works...
For this recipe, you first downloaded and imported an OSM dataset to PostGIS with ogr2ogr
using the GDAL OSM driver.

Then, you created a Python class, OSMGeocoder, to provide a very basic support to the
class consumer for geocoding streets names using the OSM data imported in PostGIS. For
this purpose, you have used the trigrams support included in PostgreSQL with the pg_trgm
contrib module.

PostGIS Programming

312

The class that you have written is mainly composed of two methods: the __init__ method,
where the connection parameters must be passed in order to instantiate an OSMGeocoder
object, and the geocode method. The geocode method accepts an input parameter,
placename, and creates a connection to the PostGIS database using the Psycopg2 library
in order to execute a query to find the streets in the database with a name similar to the
placename parameter.

The class can be consumed both from the command line, using the __name__ == '__
main__' code block, or from an external Python code. You tried both the approaches. In
the latter, you created another Python script, where you imported the OSMGeocoder class
combined with the GDAL/OGR Python bindings to generate a new PostGIS point layer with
features resulting from a list of geocoded street names.

Geocoding with geopy and PL/Python
In this recipe, you will geocode addresses using a web geocoding API such as Google Maps,
Yahoo! Maps, geocoder.us, GeoNames, and so on. Be sure to read the Terms of Services of
these APIs carefully before using them in production.

The geopy Python library (http://code.google.com/p/geopy/) offers a convenient,
uniform access to all of these web services. Therefore, you will use it to create a PL/Python
PostgreSQL function that can be used in your SQL commands to query all of these engines.

Getting ready
1.	 Install geopy globally. (You cannot use a virtual environment in this case, as the user

running the PostgreSQL service needs to access it on its Python path.)

In a Debian/Ubuntu box, it is as easy as typing the following:
$ sudo pip install geopy

In Windows, you can use the following command:

> pip install geopy

2.	 If you still did not use PL/Python, verify whether your PostgreSQL server installation
supports it. The Windows EDB installer should already include this support, but this
is not the default if you are using, for example, Ubuntu 12.4 LTS, so you most likely
need to install it:
$ sudo apt-get install postgresql-plpython-9.1

Chapter 8

313

3.	 Install PL/Python on the database (you could consider installing it in the template1
database; this way, every newly created database will have PL/Python support
by default):

$ psql -U me postgis_cookbook
psql (9.1.6, server 9.1.8)
Type "help" for help.

postgis_cookbook=# CREATE EXTENSION plpythonu;

Alternatively, you could add PL/Python support to your database using
the createlang shell command (this is the only way if you are using
a PostgreSQL Version 9.0 and lower):
$ createlang plpythonu postgis_cookbook

How to do it
Carry out the following steps:

1.	 As the first test, open your favorite SQL client (psql or pgAdmin), and write a very
basic PL/Python function just using the GoogleV3 geocoding API with geopy. The
function will accept the address string as an input parameter and, after importing
geopy, it will instantiate a geopy Google Geocoder, run the geocode process, and
then return the point geometry using the ST_GeomFromText function and the
geopy output:
CREATE OR REPLACE FUNCTION chp08.Geocode(address text)

 RETURNS geometry(Point,4326)

 AS $$

 from geopy import geocoders

 g = geocoders.GoogleV3()

 place, (lat, lng) = g.geocode(address)

 plpy.info('Geocoded %s for the address: %s' % (place,
address))

 plpy.info('Longitude is %s, Latitude is %s.' % (lng, lat))

 plpy.info("SELECT ST_GeomFromText('POINT(%s %s)', 4326)" %
(lng, lat))

 result = plpy.execute("SELECT ST_GeomFromText('POINT(%s
%s)', 4326) AS point_geocoded" % (lng, lat))

 geometry = result[0]["point_geocoded"]

 return geometry

 $$ LANGUAGE plpythonu;

PostGIS Programming

314

2.	 After creating the function, try to test it:
postgis_cookbook=# SELECT chp08.Geocode('Viale Ostiense 36,
Rome');
INFO: Geocoded Via Ostiense, 36, 00154 Rome, Italy for the
address: Viale Ostiense 36, Rome
CONTEXT: PL/Python function "geocode"
INFO: Longitude is 12.480457, Latitude is 41.874345.
CONTEXT: PL/Python function "geocode"
INFO: SELECT ST_GeomFromText('POINT(12.480457 41.874345)', 4326)
CONTEXT: PL/Python function "geocode"
 geocode
--
 0101000020E6100000BF44BC75FEF52840E7357689EAEF4440
(1 row)

3.	 Now, you will make the function a little bit more sophisticated. First, you will add
another input parameter to let the user specify the geoocode API engine (defaulting
to GoogleV3). Then, using the Python try...except block, you will try to set up
some kind of error management in case the geopy Geocoder cannot manage to
return valid results for any reason:
CREATE OR REPLACE FUNCTION chp08.Geocode(address text, api text
DEFAULT 'google')

 RETURNS geometry(Point,4326)

AS $$

 from geopy import geocoders

 plpy.info('Geocoing the given address using the %s api' %
(api))

 if api.lower() == 'geonames':

 g = geocoders.GeoNames()

 elif api.lower() == 'geocoderdotus':

 g = geocoders.GeocoderDotUS()

 else: # if the user give a wrong api name we use google

 g = geocoders.GoogleV3()

 try:

 place, (lat, lng) = g.geocode(address)

 plpy.info('Geocoded %s for the address: %s' % (place,
address))

 plpy.info('Longitude is %s, Latitude is %s.' % (lng, lat))

 result = plpy.execute("SELECT ST_GeomFromText('POINT(%s
%s)', 4326) AS point_geocoded" % (lng, lat))

 geometry = result[0]["point_geocoded"]

Chapter 8

315

 return geometry

 except:

 plpy.warning('There was an error in the geocoding process,
setting geometry to Null.')

 return None

$$ LANGUAGE plpythonu;

4.	 Test the new version of your function without specifying the parameter for the API. In
such a case, it should default to the Google API:
postgis_cookbook=# SELECT chp08.Geocode('161 Court Street,
Brooklyn, NY');
INFO: Geocoing the given address using the google api
CONTEXT: PL/Python function "geocode2"
INFO: Geocoded 161 Court Street, Brooklyn, NY 11201, USA for the
address: 161 Court Street, Brooklyn, NY
CONTEXT: PL/Python function "geocode2"
INFO: Longitude is -73.9924659, Latitude is 40.688665.
CONTEXT: PL/Python function "geocode2"
INFO: SELECT ST_GeomFromText('POINT(-73.9924659 40.688665)', 4326)
CONTEXT: PL/Python function "geocode2"
 geocode2
--
 0101000020E61000004BB9B18F847F52C02E73BA2C26584440
(1 row)

5.	 If you test it by specifying a different API, it should return the result processed for the
given API. For example:
postgis_cookbook=# SELECT chp08.Geocode('161 Court Street,
Brooklyn, NY', 'GeocoderDotUS');

INFO: Geocoing the given address using the GeocoderDotUS api
CONTEXT: PL/Python function "geocode2"

INFO: Geocoded 161 Court St, New York, NY 11201 for the address:
161 Court Street, Brooklyn, NY

CONTEXT: PL/Python function "geocode2"

INFO: Longitude is -73.992809, Latitude is 40.688774.

CONTEXT: PL/Python function "geocode2"

INFO: SELECT ST_GeomFromText('POINT(-73.992809 40.688774)', 4326)
CONTEXT: PL/Python function "geocode2"

 geocode2

--
 0101000020E61000002A8BC22E8A7F52C0E52A16BF29584440

(1 row)

PostGIS Programming

316

6.	 As a bonus step, create a table in PostgreSQL with street addresses, and
generate a new point PostGIS layer storing the geocoded points returned
by the Geocode function.

How it works...
You wrote a PL/Python function to geocode an address. For this purpose, you used the geopy
Python library that let you query several geocoding APIs in the same manner.

Using geopy, you need to instantiate a geocoder object with a given API and query it to get
the results such as a place name and a couple of coordinates. You can use the plpy module
utilities to run a query to the database using the PostGIS ST_GeomFromText function and to
log informative messages and warnings to the user.

In case the geocoding process fails, you return a NULL geometry to the user with a warning
message, using a try..except Python block.

Importing netCDF datasets with Python and
GDAL

In this recipe, you will write a Python script to import data from the netCDF format to PostGIS.

netCDF is an open standard format, widely used for scientific applications, that can contain
multiple raster datasets, each composed of a spectrum of bands. For this purpose, you will
use the GDAL Python bindings and the popular Numpy scientific library.

Getting ready
1.	 If you are using Windows, be sure to install OSGeo4W, as suggested in the initial

instructions of this chapter, that will include Python and GDAL Python bindings with
Numpy support.

For Linux users, if you did not do it, follow the initial instructions of this chapter and
create a Python virtual environment, in order to keep a Python-isolated environment
to be used for all the Python recipes of this book, and activate it:

$ source postgis-cb-env/bin/activate

Chapter 8

317

2.	 For this recipe, you need the GDAL Python bindings and Numpy, the latest being
needed by some GDAL methods (ReadAsArray) for arrays. In the most likely
scenario, you have already installed GDAL in your virtual environment as you have
been using it for other recipes; so be sure to remove it and reinstall it after installing
Numpy. In fact, GDAL needs to be compiled with Numpy support if you want to use its
array's features:
(postgis-cb-env)$ pip uninstall gdal

(postgis-cb-env)$ pip install numpy

(postgis-cb-env)$ pip install gdal

3.	 For the purpose of this recipe, you will use a sample dataset from the NOAA Earth
System Research Laboratory (ESRL). The excellent ESRL web portal offers a plethora
of data in the netCDF format to be freely downloaded. For example, download the
following dataset from the ESRL CPC Soil Moisture data repository (you can find,
as usual, a copy of this dataset in the book's dataset directory for this chapter):

http://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/
cpcsoil/soilw.mon.ltm.v2.nc

How to do it...
Carry out the following steps:

1.	 As the first step, investigate the netCDF format of the dataset you downloaded using
gdalinfo. This kind of dataset is composed of several subdatasets, as you must
have realized looking at the gdalinfo output:
$ gdalinfo NETCDF:"soilw.mon.ltm.v2.nc"

Driver: netCDF/Network Common Data Format

Files: none associated

Size is 512, 512

Coordinate System is `'

Metadata:
 NC_GLOBAL#Conventions=CF-1.0

 NC_GLOBAL#history=Created 2011/08/31 by doMonthLTM

 NC_GLOBAL#institution=NOAA/ESRL PSD

 NC_GLOBAL#not_missing_threshold_percent=minimum 3% values input
to have non-missing output value

 NC_GLOBAL#references=http://www.cpc.ncep.noaa.gov/soilmst/index.
htm

http://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html

 NC_GLOBAL#title=CPC Soil Moisture

http://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/cpcsoil/soilw.mon.ltm.v2.nc
http://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/cpcsoil/soilw.mon.ltm.v2.nc

PostGIS Programming

318

Subdatasets:
 SUBDATASET_1_NAME=NETCDF:"soilw.mon.ltm.v2.nc":climatology_
bounds
 SUBDATASET_1_DESC=[12x2] climatology_bounds (64-bit floating-
point)
 SUBDATASET_2_NAME=NETCDF:"soilw.mon.ltm.v2.nc":soilw
 SUBDATASET_2_DESC=[12x360x720] lwe_thickness_of_soil_moisture_
content (32-bit floating-point)
 SUBDATASET_3_NAME=NETCDF:"soilw.mon.ltm.v2.nc":valid_yr_count
 SUBDATASET_3_DESC=[12x360x720] valid_yr_count (16-bit integer)
Corner Coordinates:
Upper Left (0.0, 0.0)
Lower Left (0.0, 512.0)
Upper Right (512.0, 0.0)
Lower Right (512.0, 512.0)
Center (256.0, 256.0)

2.	 Use gdalinfo to investigate one of the file's subdatasets. The syntax that the
netCDF GDAL driver (http://www.gdal.org/frmt_netcdf.html) uses is
to append a colon followed by the variable name at the end of the filename. For
example, try to figure out how many bands make up the soilw subdataset. This
subdataset, representing the lwe_thickness_of_soil_moisture_content,
is composed of 12 bands. Each band, according to the information derived by its
metadata, represents the CPC Monthly Soil Moisture for a given month. The month
is identified by the NETCDF_DIM_time metadata value, which is the number of
days from the beginning of the year (0 for January, 31 for February, 59 for March,
and so on):
$ gdalinfo NETCDF:"soilw.mon.ltm.v2.nc":soilw
Driver: netCDF/Network Common Data Format
Files: none associated
Size is 512, 512
Coordinate System is `'
Metadata:
 NC_GLOBAL#Conventions=CF-1.0
 ...(other metadata)...
Band 1 Block=720x1 Type=Float32, ColorInterp=Undefined
 NoData Value=-9.96920996838686905e+36
 Metadata:
 actual_range={1.8626451e-06,743.505}
 add_offset=0
 cell_methods=time: mean (monthly from values)
 dataset=CPC Monthly Soil Moisture
 level_desc=Surface
 long_name=Model-Calculated Long Term Monthly Mean Soil
Moisture

Chapter 8

319

 missing_value=-9.96921e+36
 NETCDF_DIM_time=0
 NETCDF_VARNAME=soilw
 parent_stat=Other
 scale_factor=1
 standard_name=lwe_thickness_of_soil_moisture_content
 statistic=Long Term Mean
 units=mm
 valid_range={0,1000}
 var_desc=Soil Moisture
...(other 11 bands)...

3.	 What you are going to do is create a Python script using GDAL and Numpy. You
will read a given netCDF dataset, iterate its subdatasets, and then iterate each
subdataset's bands. For each subdataset, you will create a point PostGIS layer, and
you will add a field for each band in order to store the band values in the layer table.
Then, you will iterate the band's cells; for each cell, you will add a point in the layer
with the corresponding band's values. Therefore, create a netcdf2postgis.py file
and add the following Python code to it:
import sys
from osgeo import gdal, ogr, osr
from osgeo.gdalconst import GA_ReadOnly, GA_Update

def netcdf2postgis(file_nc, pg_connection_string, postgis_table_
prefix):
 # register gdal drivers
 gdal.AllRegister()
 # postgis driver, needed to create the tables
 driver = ogr.GetDriverByName('PostgreSQL')
 srs = osr.SpatialReference()
 # for simplicity we will assume all of the bands in the
datasets are in the
 # same spatial reference, wgs 84
 srs.ImportFromEPSG(4326)

 # first, check if dataset exists
 ds = gdal.Open(file_nc, GA_ReadOnly)
 if ds is None:
 print 'Cannot open ' + file_nc
 sys.exit(1)

 # 1. iterate subdatasets
 for sds in ds.GetSubDatasets():
 dataset_name = sds[0]
 variable = sds[0].split(':')[-1]

PostGIS Programming

320

 print 'Importing from %s the variable %s...' % (dataset_
name, variable)
 # open subdataset and read its properties
 sds = gdal.Open(dataset_name, GA_ReadOnly)
 cols = sds.RasterXSize
 rows = sds.RasterYSize
 bands = sds.RasterCount

 # create a PostGIS table for the subdataset variable
 table_name = '%s_%s' % (postgis_table_prefix, variable)
 pg_ds = ogr.Open(pg_connection_string, GA_Update)
 pg_layer = pg_ds.CreateLayer(table_name, srs = srs, geom_
type=ogr.wkbPoint,
 options = [
 'GEOMETRY_NAME=the_geom',
 'OVERWRITE=YES', # this will drop and recreate the
table every time
 'SCHEMA=chp08',
])
 print 'Table %s created.' % table_name

 # get georeference transformation information
 transform = sds.GetGeoTransform()
 pixelWidth = transform[1]
 pixelHeight = transform[5]
 xOrigin = transform[0] + (pixelWidth/2)
 yOrigin = transform[3] - (pixelWidth/2)

 # 2. iterate subdataset bands and append them to data
 data = []
 for b in range(1, bands+1):
 band = sds.GetRasterBand(b)
 band_data = band.ReadAsArray(0, 0, cols, rows)
 data.append(band_data)
 # here we add the fields to the table, a field for
each band
 # check datatype (Float32, 'Float64', ...)
 datatype = gdal.GetDataTypeName(band.DataType)
 ogr_ft = ogr.OFTString # default for a field is string
 if datatype in ('Float32', 'Float64'):
 ogr_ft = ogr.OFTReal
 elif datatype in ('Int16', 'Int32'):
 ogr_ft = ogr.OFTInteger
 # here we add the field to the PostGIS layer

Chapter 8

321

 fd_band = ogr.FieldDefn('band_%s' % b, ogr_ft)
 pg_layer.CreateField(fd_band)
 print 'Field band_%s created.' % b

 # 3. iterate rows and cols
 for r in range(0, rows):
 y = yOrigin + (r * pixelHeight)
 for c in range(0, cols):
 x = xOrigin + (c * pixelWidth)
 # for each cell, let's add a point feature in the
PostGIS table
 point_wkt = 'POINT(%s %s)' % (x, y)
 point = ogr.CreateGeometryFromWkt(point_wkt)
 featureDefn = pg_layer.GetLayerDefn()
 feature = ogr.Feature(featureDefn)
 # now iterate bands, and add a value for each
table's field
 for b in range(1, bands+1):
 band = sds.GetRasterBand(1)
 datatype = gdal.GetDataTypeName(band.DataType)
 value = data[b-1][r,c]
 print 'Storing a value for variable %s in
point x: %s, y: %s, band: %s, value: %s' % (variable, x, y, b,
value)
 if datatype in ('Float32', 'Float64'):
 value = float(data[b-1][r,c])
 elif datatype in ('Int16', 'Int32'):
 value = int(data[b-1][r,c])
 else:
 value = data[r,c]
 feature.SetField('band_%s' % b, value)
 # set the feature's geometry and finalize its
creation
 feature.SetGeometry(point)
 pg_layer.CreateFeature(feature)

4.	 To run the netcdf2postgis method from the command line, add the entry point
for the script. The code will check whether the script user is correctly using the three
needed parameters—the netCDF file path, the GDAL PostGIS connection string, and a
prefix/suffix to use for table names in PostGIS:
if __name__ == '__main__':
 # the user must provide at least three parameters, the netCDF
file path, the PostGIS GDAL connection string
 # and the prefix suffix to use for PostGIS table names
 if len(sys.argv) < 4 or len(sys.argv) > 4:

PostGIS Programming

322

 print "usage: <netCDF file path> <GDAL PostGIS connection
string><PostGIS table prefix>"
 raise SystemExit
 file_nc = sys.argv[1]
 pg_connection_string = sys.argv[2]
 postgis_table_prefix = sys.argv[3]
 netcdf2postgis(file_nc, pg_connection_string, postgis_table_
prefix)

5.	 Run the script. Be sure to use the correct netCDF file path, GDAL PostGIS connection
string (check the format from http://www.gdal.org/ogr/drv_pg.html), and
a table prefix that has to be appended to the table names for the tables that will be
created in PostGIS:
(postgis-cb-env)$ python netcdf2postgis.py NETCDF:"soilw.mon.ltm.
v2.nc" "PG:dbname='postgis_cookbook' host='localhost' port='5432'
user='me' password='mypassword'" netcdf
Importing from NETCDF:"soilw.mon.ltm.v2.nc":climatology_bounds the
variable climatology_bounds...
...
Importing from NETCDF:"soilw.mon.ltm.v2.nc":soilw the variable
soilw...
Table netcdf_soilw created.
Field band_1 created.
Field band_2 created.
...
Field band_11 created.
Field band_12 created.
Storing a value for variable soilw in point x: 0.25, y: 89.75,
band: 2, value: -9.96921e+36
Storing a value for variable soilw in point x: 0.25, y: 89.75,
band: 3, value: -9.96921e+36
...

6.	 At the end of the process, check the results by opening one of the output PostGIS
tables using your favorite Desktop GIS tool. The following screenshot shows how it
looks in QGIS the soilw layer with the original netCDF dataset behind it:

Chapter 8

323

How it works...
You have used Python with GDAL and Numpy in order to create a command-line utility to
import a netCDF dataset into PostGIS.

A netCDF dataset is composed of multiple subdatasets; each subdataset is composed of
multiple raster bands. Each band is composed of cells. This structure should be clear to you
after investigating a sample netCDF dataset using the gdalinfo GDAL command tool.

There are several approaches to export the cell values to PostGIS. The approach you adopted
here is to generate a PostGIS Point layer for each subdataset, which is composed of one field
for each subdataset band. You then iterated the raster cells and appended a point to the
PostGIS layer with the values read from each cell band.

The way you do this with Python is by using the GDAL Python bindings. For reading, you open
the netCDF dataset and for updating, you open the PostGIS database using the correct GDAL
and OGR drivers. Then you iterate the netCDF subdatasets using the GetSubDatasets
method and create for each subdataset a PostGIS table named as the netCDF subdataset
variable (with the prefix) using the CreateLayer method.

For each subdataset, you iterate its bands using the GetRasterBand method. For reading
each band, you run the ReadAsArray method that uses Numpy to get the band as an array.

PostGIS Programming

324

For each band, you create a field in the PostGIS layer with the correct field data type that will
be able to store the band's values. To choose the correct data type, you investigate the band's
data type using the DataType property.

Finally, you iterate the raster cells, by reading the correct x and y coordinates using the
subdataset transform parameters, available via the GetGeoTransform method. For each
cell, you create a point with the CreateGeometryFromWkt method and then set the fields
values, read from the band array, using the SetField feature method.

Finally, you append the new point to the PostGIS layer using the CreateFeature method.

9
PostGIS and the Web

In this chapter, we will cover the following topics:

ff Creating WMS and WFS services with MapServer

ff Creating WMS and WFS services with GeoServer

ff Creating a WMS Time with MapServer

ff Consuming WMS services with OpenLayers

ff Consuming WMS services with Leaflet

ff Consuming WFS-T services with OpenLayers

ff Developing web applications with GeoDjango – part 1

ff Developing web applications with GeoDjango – part 2

Introduction
In this chapter, we will try to give you an overview of how you can use PostGIS to develop
powerful GIS web applications, using Open Geospatial Consortium (OGC) web standards
such as Web Map Service (WMS) and Web Feature Service (WFS).

In the first two recipes, you will get an overview of two very popular open-source web-mapping
engines—MapServer and GeoServer. In both of these recipes, you will see how to implement
the WMS and WFS services using PostGIS layers.

In the third recipe, you will implement a WMS Time service using MapServer to expose
time-series data.

In the next two recipes, you will learn how to consume these web services to create a web
map viewer with two very popular JavaScript clients. In the fourth recipe, you will use a WMS
service with OpenLayers, while in the fifth recipe, you will do the same thing using Leaflet.

PostGIS and the Web

326

In the sixth recipe, you will explore the power of transactional WFS to create web-mapping
applications that are able to edit data.

Finally, in the last two recipes, you will unleash the power of the popular Django web
framework, which is based on Python, and its nice GeoDjango library, and see how it is
possible to implement a powerful CRUD GIS web application. In the seventh recipe, you will
create the back office for this application using the Django Admin site, and in the last recipe of
the chapter, you will develop a frontend for users to display data from the application in a web
map based on Leaflet.

Creating WMS and WFS services with
MapServer

In this recipe, you will see how to create a Web Map Service (WMS) and Web Feature
Service (WFS) from a PostGIS layer, using the popular MapServer open-source
web-mapping engine.

You will then use the services, testing their exposed requests, using first a browser and then
a desktop tool such as QGIS (you could do this using other software, such as uDig, gvSIG,
and OpenJUMP GIS).

Getting ready
Follow these steps before getting ready:

1.	 Create a schema for this chapter within the postgis_cookbook database using the
following command:
postgis_cookbook=# create schema chp09;

2.	 Be sure to have Apache HTTP installed (MapServer will run on it as a CGI), and
check whether or not it is working by visiting its home page at http://localhost
(typically, an "It works!" message will be displayed if you still have not customized
any features).

3.	 Install MapServer as per its installation guide
(http://mapserver.org/en/installation/).

A handy way to have MapServer up and running in Apache for Windows
is to install the OSGeo4W (http://trac.osgeo.org/osgeo4w/)
or MS4W (http://www.maptools.org/ms4w/) packages.
For Linux, there are packages for almost any kind of distribution.

Chapter 9

327

4.	 Check whether or not MapServer has been installed correctly and has WMS_SERVER
and WFS_SERVER support enabled by running it as a command-line tool with the
-v option.

On Linux, run the $ /usr/lib/cgi-bin/mapserv -v command and check for
the for following output:
MapServer version 6.2.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE
SUPPORTS=CAIRO SUPPORTS=SVG_SYMBOLS SUPPORTS=ICONV
SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS
SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE

On Windows, run the following command:

> c:\ms4w\Apache\cgi-bin\mapserv.exe -v

5.	 Now, check whether MapServer is working from within httpd, using http://
localhost/cgi-bin/mapserv (http://localhost/cgi-bin/mapserv.exe
for Windows). If you get a No query information to decode. QUERY_STRING
is set, but empty response message, MapServer is correctly working as a CGI
script in Apache and is ready to accept http requests.

6.	 Download the world countries shapefile from http://thematicmapping.org/
downloads/TM_WORLD_BORDERS-0.3.zip. A copy of this shapefile is included
in the book dataset. Extract the shapefile to the working/chp09 directory and
import it in PostGIS using the shp2pgsql tool (be sure to specify the spatial
reference system, EPSG:4326, with the -s option), as follows:

$ shp2pgsql -s 4326 -W LATIN1 -g the_geom -I TM_WORLD_BORDERS-
0.3.shp chp09.countries > countries.sql

Shapefile type: Polygon

Postgis type: MULTIPOLYGON[2]

$ psql -U me -d postgis_cookbook -f countries.sql

How to do it...
Carry out the following steps:

1.	 MapServer exposes its map services using mapfile, a text file format, with which it is
possible to define the PostGIS layers on the Web, enable any vector and raster format
supported by GDAL, and specify which services (WMS/WFS/WCS) to expose per layer.
Create a new text file named countries.map and add the following code:
MAP # Start of mapfile
 NAME 'population_per_country_map'

PostGIS and the Web

328

 IMAGETYPE PNG
 EXTENT -180 -90 180 90
 SIZE 800 400
 IMAGECOLOR 255 255 255

 # map projection definition
 PROJECTION
 'init=epsg:4326'
 END

 # web section: here we define the ows services
 WEB
 # WMS and WFS server settings
 METADATA
 'ows_enable_request' '*'
 'ows_title' 'Mapserver sample map'
 'ows_abstract' 'OWS services about
 population per
 country map'
 'wms_onlineresource' 'http://localhost/cgi-
 bin/mapserv?map=/var
 /www/data/
 countries.map&'
 'ows_srs' 'EPSG:4326 EPSG:900913
 EPSG:3857'
 'wms_enable_request' 'GetCapabilities,
 GetMap,
 GetFeatureInfo'
 'wms_feature_info_mime_type' 'text/html'
 END
 END

 # Start of layers definition
 LAYER # Countries polygon layer begins here
 NAME countries
 CONNECTIONTYPE POSTGIS
 CONNECTION 'host=localhost dbname=postgis_cookbook
 user=me
 password=mypassword port=5432'
 DATA 'the_geom from chp09.countries'
 TEMPLATE 'template.html'
 METADATA
 'ows_title' 'countries'
 'ows_abstract' 'OWS service about population per
 country map in 2005'
 'gml_include_items' 'all'
 END
 STATUS ON
 TYPE POLYGON
 # layer projection definition

Chapter 9

329

 PROJECTION
 'init=epsg:4326'
 END

 # we define 3 population classes based on the pop2005
 attribute
 CLASSITEM 'pop2005'
 CLASS # first class
 NAME '0 - 50M inhabitants'
 EXPRESSION (([pop2005] >= 0) AND ([pop2005] <=
 50000000))
 STYLE
 WIDTH 1
 OUTLINECOLOR 0 0 0
 COLOR 254 240 217
 END # end of style
 END # end of first class
 CLASS # second class
 NAME '50M - 200M inhabitants'
 EXPRESSION (([pop2005] > 50000000) AND
 ([pop2005] <= 200000000))
 STYLE
 WIDTH 1
 OUTLINECOLOR 0 0 0
 COLOR 252 141 89
 END # end of style
 END # end of second class
 CLASS # third class
 NAME '> 200M inhabitants'
 EXPRESSION (([pop2005] > 200000000))
 STYLE
 WIDTH 1
 OUTLINECOLOR 0 0 0
 COLOR 179 0 0
 END # end of style
 END # end of third class

 END # Countries polygon layer ends here

END # End of mapfile

2.	 Save the file we just created in a location that is accessible to the Apache user. For
example, in Debian, it is /var/www/data, while in Windows, it can be C:\ms4w\
Apache\htdocs. Be sure that both the file and the directory containing it are
accessible to the Apache user.

PostGIS and the Web

330

3.	 Create a file named template.html in the same location as the map file and enter
the following code in it (this file is used by the GetFeatureInfo WMS request to output
an HTML response to the client):
<!-- MapServer Template -->

 Name: [item name=name]
 ISO2: [item name=iso2]
 ISO3: [item name=iso3]
 Population 2005: [item
 name=pop2005]

4.	 With the mapfile you just created, you exposed the countries PostGIS layer, both
as a WMS and WFS service. Both of these services expose to the user a series of
requests, and you will now test them using a browser. First, without invoking any
services, test whether or not the mapfile is working correctly by typing either of the
following URLs in the browser:

�� http://localhost/cgi-bin/mapserv?map=/var/www/data/
countries.map&layer=countries&mode=map (for Linux)

�� http://localhost/cgi-bin/mapserv.exe?map=C:\ms4w\Apache\
htdocs\countries.map&layer=countries&mode=map (for Windows)

You should see the countries layer rendered with the three symbology classes
defined in the mapfile, as shown in the following screenshot:

Chapter 9

331

As you can see, there is a small difference between the URLs used in Windows
and Linux. We will refer to Linux from now on, but you can easily adapt the URLs
to Windows..

5.	 Now, you will start testing the WMS service; you will try running the
GetCapabilities, GetMap, and GetFeatureInfo requests. To test the
GetCapabilities request, type this URL in the browser: http://localhost/
cgi-bin/mapserv?map=/var/www/data/countries.map&SERVICE=WMS&
VERSION=1.1.1&REQUEST=GetCapabilities. You should receive a long XML
response (shown as follows) from the server, where the more important fragments
are the WMS service definitions in the <Service> section, the requests are enabled
in the <Capability> section, and the layers exposed and their main details (for
example, name, abstract, projection, and extent) are in the <Layer> section of each
of the layers:
<WMT_MS_Capabilities version="1.1.1">
...
<Service>
 <Name>OGC:WMS</Name>
 <Title>Population per country map</Title>
 <Abstract>Map server sample map</Abstract>
 <OnlineResource
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:href="http://localhost/cgi-
 bin/mapserv?map=/var/www/data/countries.map&"/>
 <ContactInformation>
 </ContactInformation>
</Service>
<Capability>
 <Request>
 <GetCapabilities>
 ...
 </GetCapabilities>
 <GetMap>
 <Format>image/png</Format>
 ...
 <Format>image/tiff</Format>
 ...
 </GetMap>
 <GetFeatureInfo>
 <Format>text/plain</Format>
 ...
 </GetFeatureInfo>
 ...
 </Request>
 ...

PostGIS and the Web

332

 <Layer>
 <Name>population_per_country_map</Name>
 <Title>Population per country map</Title>
 <Abstract>OWS service about population per country map
 in 2005</Abstract>
 <SRS>EPSG:4326</SRS>
 <SRS>EPSG:3857</SRS>
 <LatLonBoundingBox minx="-180" miny="-90" maxx="180"
 maxy="90" />
 ...
 </Layer>
 </Layer>
</Capability>
</WMT_MS_Capabilities>

6.	 Now, test the WMS service with its typical GetMap WMS request, used on many
clients to display a map to the user. Type the URL, http://localhost//cgi-bin/
mapserv?map=/var/www/data/countries.map&&SERVICE=WMS&VERSION=
1.3.0&REQUEST=GetMap&BBOX=-26,-111,36,-38&CRS=EPSG:4326&WIDTH
=1000&HEIGHT=800&LAYERS=countries&STYLES=&FORMAT=image/png, in
the browser and check the image that is sent back in response by the MapServer
GetMap request, as shown in the following screenshot:

Chapter 9

333

7.	 Another typical WMS request is GetFeatureInfo, used by the clients to query the
map layer at the given coordinates (points). Type the following URL and you should
see the field values for a given feature as the output (the output is built using the
template.html file):
http://localhost/cgi-bin/mapserv?map=/var/www/data/countries.
map&layer=countries&REQUEST=GetFeatureInfo&SERVICE=WMS&
VERSION=1.1.1&LAYERS=countries&QUERY_LAYERS=countries&S
RS=EPSG:4326&BBOX=-122.545074509804,37.6736653056517,-
122.35457254902,37.8428758708189&X=652&Y=368&WIDTH=1020&HEIGHT=
906&INFO_FORMAT=text/html

8.	 Now you will use QGIS to use the WMS service. Launch QGIS, click on the Add WMS
layer button (alternatively, navigate to Layer | Add WMS Layer or use the QGIS
browser), and create a new WMS connection, as shown in the following screenshot.
Type something like MapServer on localhost in the Name field and http://
localhost/cgi-bin/mapserv?map=/var/www/data/countries.map&SER
VICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities in the URL field, and
click on the OK button:

PostGIS and the Web

334

9.	 Now, click on the Connect button, as shown in the following screenshot; then, select
the countries layer and add it to the QGIS map window using the Add button:

10.	 Now, browse to your WMS countries layer and try to perform some identification
operations. QGIS will raise the needed GetMap and GetFeatureInfo WMS
requests for you behind the scenes to give the following output:

Chapter 9

335

11.	 Having seen how the WMS service works, you will now start using WFS. Like the
WMS, the WFS offers the user a GetCapabilities request, as well, resulting in a
similar output as the GetCapabilities request of WMS. Type the URL, http://
localhost/cgi-bin/mapserv?map=/var/www/data/countries.map&SERV
ICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities, in the browser window
to inspect the XML response.

12.	 The main WFS request is GetFeature. It lets you query the map layer using several
criteria, returning a collection of features in response as GML (Geography Markup
Language) output. Test the request by typing this URL in the browser: http://
localhost/cgi-bin/mapserv?map=/var/www/data/countries.map&SERVI
CE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=countries&MAXF
EATURES=5.

13.	 You should get an XML (GML) response from the browser, as shown in the
following code, with a <wfs:FeatureCollection> element composed of five
<gml:featureMember> elements (as indicated in the MAXFEATURES parameter of
the request), each representing one country. For each feature, the WFS returns the
geometry and all of the field values (this behavior was specified by setting the
gml_include_items variable in the METADATA layer directive in the mapfile).
This is the response you should get:
<gml:featureMember>
 <ms:countries>
 <gml:boundedBy>
 <gml:Box srsName="EPSG:4326">

PostGIS and the Web

336

 <gml:coordinates>-61.891113,16.989719 -
 61.666389,17.724998</gml:coordinates>
 </gml:Box>
 </gml:boundedBy>

 <ms:msGeometry>
 <gml:MultiPolygon srsName="EPSG:4326">
 <gml:polygonMember>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>
 -61.686668,17.024441 ...
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gml:polygonMember>
 ...
 </gml:MultiPolygon>
 </ms:msGeometry>
 <ms:gid>1</ms:gid>
 <ms:fips>AC</ms:fips>
 <ms:iso2>AG</ms:iso2>
 <ms:iso3>ATG</ms:iso3>
 <ms:un>28</ms:un>
 <ms:name>Antigua and Barbuda</ms:name>
 <ms:area>44</ms:area>
 <ms:pop2005>83039</ms:pop2005>
 <ms:region>19</ms:region>
 <ms:subregion>29</ms:subregion>
 <ms:lon>-61.783</ms:lon>
 <ms:lat>17.078</ms:lat>
 </ms:countries>
</gml:featureMember>

14.	 As a result of the WFS GetFeature request executed in the previous step, MapServer
has returned to you only the first five features of the countries layers. Now, use the
GetFeature request for making a query to the layer using a filter and getting back
the corresponding features. By typing the URL, http://localhost/cgi-bin/
mapserv?map=/var/www/data/countries.map&SERVICE=WFS&VERSION=1.
0.0&REQUEST=getfeature&TYPENAME=countries&MAXFEATURES=5&Filter
=<Filter> <PropertyIsEqualTo><PropertyName>name</PropertyName>
<Literal>Italy</Literal></PropertyIsEqualTo></Filter>, you will get
the feature in the database that has the name field set to Italy.

Chapter 9

337

15.	 After testing the WFS requests in a browser, try to open the WFS service in QGIS using
the Add WFS Layer button (alternatively, navigate to Layer | Add WFS Layer or use
the QGIS browser). You should see the same MapServer on Localhost connection you
created a few steps earlier. Click on the Connect button and select the countries layer,
add it to the QGIS project, and browse through it by zooming, panning, and identifying
some features. The biggest difference when compared to WMS is that, with WFS, you
receive the feature geometries from the server and not just an image, so you can even
export the layer to a different format, such as a shapefile or spatialite!

How it works...
In this recipe, you implemented WMS and WFS services for a PostGIS layer using the
MapServer open-source web-mapping engine. WMS and WFS are the two core concepts to
consider when you want to develop a web GIS that is interoperable across many organizations.
Open Geospatial Consortium (OGC) defined these two standards (and many others) to make
web-mapping services exposed in an open, standard way. This way, these services can be
used by different applications—for example, you have seen in this recipe that a GIS Desktop
tool such as QGIS can browse and query those services because it understands these
OGC standards (you can get exactly the same results with other tools, such as gvSIG, uDig,
OpenJUMP, and ArcGIS Desktop, among others). In the same way, JavaScript API libraries,
most notably, OpenLayers and Leaflet (you will be using these in the other recipes in this
chapter), can use these services in a standard way to provide web-mapping features to
web applications.

PostGIS and the Web

338

WMS is a service that is used to generate the maps to be displayed by clients. Those maps
are generated using image formats, such as PNG, JPEG, and many others. Some of the most
typical WMS requests are as follows:

ff GetCapabilities: It offers an overview of the services offered by WMS, particularly
a list of the available layers and some of the details of each layer (layer extent,
coordinate reference systems, URI of the data, and so on).

ff GetMap: It returns a map image representing one or more layers for a specified
extent and spatial reference, in a specified image file format and size.

ff GetFeatureInfo: It is an optional request by WMS that returns, in different formats,
the attribute values for the features of a given point in the map. You have seen how to
customize the response by introducing a template file that must be set in the mapfile.

WFS provides a convenient, standard way to access the features of a vector layer with a web
request. The service response streams to the client the requested features using GML (an
XML markup defined by OGC to define geographical features).

Some of the WFS requests are as follows:

ff GetCapabilities: It gives a description of the services and layers offered by the
WFS service

ff GetFeature: It allows the client to get a set of features of a given layer, corresponding
to a given criteria

These WMS and WFS requests can be consumed by the client using the HTTP protocol. You
have seen how to query and get a response from the client by typing a URL in a browser with
several parameters appended to it. As an example, the following WMS GetMap request will
return a map image of the layers (using the LAYERS parameter) in a specified format (using
the FORMAT parameter), size (using the WIDTH and HEIGHT parameters), extent (using the
BBOX parameter), and spatial reference system (using CRS):

http://localhost/cgi-bin/mapserv?map=/var/www/data/countries.map&&SER
VICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-26,-111,36,-38&CRS=EPSG:4
326&WIDTH=806&HEIGHT=688&LAYERS=countries&STYLES=&FORMAT=image/png.

In MapServer, you can create WMS and WFS services in the mapfile using its directives. The
mapfile is a text file that is composed of several sections and is the heart of MapServer. In
the beginning of the mapfile, it is necessary to define general properties for the map, such
as its title, extent, spatial reference, output-image formats, and dimensions to be returned
to the user.

Then, it is possible to define which OWS (OGC Web Services such as WMS, WFS, and WCS)
requests to expose.

Chapter 9

339

Then, there is the main section of the mapfile, where the layers are defined (every layer is
defined in the LAYER directive). You have seen how to define a PostGIS layer. It is necessary to
define its connection information (database, user, password, and so on), the SQL definition in
the database (it is possible to use just a PostGIS table name, but you could eventually use a
query to define the set of features and attributes defining the layer), the geometric type,
and the projection.

A whole directive (CLASS) is used to define how the layer features will be rendered. You
may use different classes, as you did in this recipe, to render features differently, based on
an attribute defined with the CLASSITEM setting. In this recipe, you defined three different
classes, each representing a population class, using different colors.

See also
You can find more information about using MapServer, using its extensive documentation
at its project home page (http://mapserver.org/it/index.html). You will find the
mapfile documentation at http://www.mapserver.org/mapfile/ very useful to read,
as well.

A good tutorial to understand how to generate mapfiles can be found at
http://mapserver.org/tutorial/example1-1.html.

If you want to gain a better understanding of the WMS and WFS standards,
check their specifications at the OGC website. For the WMS service, go to
http://www.opengeospatial.org/standards/wms, whereas, for WFS,
go to http://www.opengeospatial.org/standards/wfs.

Creating WMS and WFS services with
GeoServer

In the previous recipe, you created Web Map Services (WMS) and Web Feature Services
(WFS) from a PostGIS layer using MapServer. In this recipe, you will do that using another
popular open-source web-mapping engine—GeoServer. You will then use the created services,
as you did with MapServer, testing their exposed requests, first using a browser and then
the QGIS desktop tool (you can do this with other software, as well, such as uDig, gvSIG,
OpenJUMP GIS, and ArcGIS Desktop).

PostGIS and the Web

340

Getting ready
While MapServer is written in the C language and uses Apache as its web server, GeoServer
is written in Java, and you therefore need to install the Java Virtual Machine (JVM) in your
system; it must be used from a servlet container such as Jetty and Tomcat. After installing
the servlet container, you will be able to deploy the GeoServer application to it. For example,
in Tomcat, you can deploy GeoServer by copying the GeoServer WAR (Web archive) file
to Tomcat's webapps directory. For this recipe, we will suppose that you have a working
GeoServer in your system; if this is not the case, follow the detailed GeoServer installation
steps for your OS at the GeoServer website (http://docs.geoserver.org/stable/en/
user/installation/) and then return to this recipe. Follow these steps:

1.	 Download the USA counties shapefile from the nationalatlas.gov website
at http://dds.cr.usgs.gov/pub/data/nationalatlas/countyp020_
nt00009.tar.gz (this archive is included in the book's code bundle). Extract the
archive to working/chp09 and import it to PostGIS using the ogr2ogr command,
as follows:

$ ogr2ogr -f PostgreSQL -a_srs EPSG:4326 -lco GEOMETRY_NAME=the_
geom -nln chp09.counties PG:"dbname='postgis_cookbook' user='me'
password='mypassword'" co2000p020.shp.

How to do it...
Carry out the following steps:

1.	 Open the GeoServer administrative interface, which is typically located at
http://localhost:8080/geoserver, in your favorite, browser and log in using
your credentials—admin as the username and geoserver as the password if you
are just using the GeoServer default installation and have not customized things.

2.	 After successfully logging in, create a workspace by clicking on the Workspace link
under Work (in the left-hand side panel of the GeoServer application's main menu),
and then click on the Add new workspace link. In the text boxes of the form that
appears, specify the following values and then click on the Submit button:

�� Enter postgis_cookbook in the Name field

�� Enter the URL http://www.packtpub.com/postgis-to-store-
organize-manipulate-analyze-spatial-data-cookbook/book
in the Namespace URI field

Chapter 9

341

3.	 Now, to create a PostGIS store, click on the Stores link under Data (in the left-hand
side panel of the GeoServer application's main menu). Now, click on the Add new
store link, and then on the PostGIS link under Vector Data Sources, as shown in the
following screenshot:

4.	 In the New Vector Data Source page, complete the form's fields as follows:

1.	 Select postgis_cookbook from the Workspace drop-down list.

2.	 Enter postgis_cookbook in the Data Source Name field.

3.	 Enter localhost in the host field.

4.	 Enter 5432 in the port field.

5.	 Enter postgis_cookbook in the database field.

6.	 Enter chp09 in the schema field.

7.	 Enter me in the user field.

8.	 Enter mypassword in the passwd field.

PostGIS and the Web

342

The New Vector Data Source page is shown in the following screenshot:

5.	 Now, click on the Save button to successfully create your PostGIS store.

6.	 You are now ready to publish the PostGIS counties layer as WMS and WFS. On the
Layers page, click on the Add a new resource link. Now, select postgis_cookbook
from the Add layer from drop-down list. Click on the Publish link to the right of the
counties layer.

7.	 On the Edit Layer page, shown in the following screenshot, click on the links
Compute from data and Compute from native bounds, and then click on the
Save button:

Chapter 9

343

8.	 Now, you need to define the style used to display the layer to the user. Unlike
MapServer, GeoServer uses the OGC-standard Styled Layer Descriptor (SLD)
notation. Click on the Styles link under Data and then on the Add new style link.
Fill the text fields in the form as follows:

�� Enter Counties classified per size in the Name field

�� Enter postgis_cookbook in the Workspace field

9.	 In the text area for the SLD, add the following XML code, defining the style for the
counties layer; then, click on the Validate button to check whether or not your
SLD definition is correct. Finally, click on the Submit button to save the new style:
<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:NamedLayer>
 <sld:Name>county_classification</sld:Name>
 <sld:UserStyle>
 <sld:Name>county_classification</sld:Name>
 <sld:Title>County area classification</sld:Title>
 <sld:FeatureTypeStyle>
 <sld:Name>name</sld:Name>
 <sld:Rule>

PostGIS and the Web

344

 <sld:Title>Large counties</sld:Title>
 <ogc:Filter>
 <ogc:PropertyIsGreaterThanOrEqualTo>
 <ogc:PropertyName>square_mil</ogc:PropertyName>
 <ogc:Literal>5000</ogc:Literal>
 </ogc:PropertyIsGreaterThanOrEqualTo>
 </ogc:Filter>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter
 name="fill">#FF0000</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke/>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 <sld:Rule>
 <sld:Title>Small counties</sld:Title>
 <ogc:Filter>
 <ogc:PropertyIsLessThan>
 <ogc:PropertyName>square_mil</ogc:PropertyName>
 <ogc:Literal>5000</ogc:Literal>
 </ogc:PropertyIsLessThan>
 </ogc:Filter>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter
 name="fill">#0000FF</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke/>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:NamedLayer>
</sld:StyledLayerDescriptor>

Chapter 9

345

The following screenshot shows how the new style looks on the New style
GeoServer page:

10.	 Now, you need to associate the created style with the counties layer. Go back to the
layer page (Data | Layers), click on the counties layer link, and then, on the Edit
Layer page, click on the Publishing section. Select Counties classified per size in
the Default style drop-down list and then click on the Save button.

11.	 Now that your WMS and WFS services for the PostGIS counties layer are ready, it
is time to start using them! First, test the GetCapabilities WMS request. To do
this, you can click on one of the links on the right-hand side panel on the GeoServer
web application home page. You can click on the link for either WMS Version 1.1.1 or
WMS Version 1.3.0. Click on one of the links or type the GetCapabilities request
directly in the browser as http://localhost:8080/geoserver/ows?service=
wms&version=1.3.0&request=GetCapabilities.

PostGIS and the Web

346

12.	 Now, we will investigate the GetCapabilities response, which is shown as follows.
You will find a lot of information about WMS that is available on your GeoServer
instance, such as the WMS-supported requests, projections, and a lot of other
information about each published layer. In the case of the counties layer, the
following code is an extract from the GetCapabilities document. Note the main
layer information such as the name, title, abstract (you could redefine all of these
using the GeoServer web application), the supported CRS (Coordinate Reference
Systems), the geographic extent, and the associated style:
<Layer queryable="1">
 <Name>postgis_cookbook:counties</Name>
 <Title>counties</Title>
 <Abstract/>
 <KeywordList>
 <Keyword>counties</Keyword>
 <Keyword>features</Keyword>
 </KeywordList>
 <CRS>EPSG:4326</CRS>
 <CRS>CRS:84</CRS>
 <EX_GeographicBoundingBox>
 <westBoundLongitude>-179.133392333984</westBoundLongitude>
 <eastBoundLongitude>-64.566162109375
 </eastBoundLongitude>
 <southBoundLatitude>17.6746921539307
 </southBoundLatitude>
 <northBoundLatitude>71.3980484008789
 </northBoundLatitude>
 </EX_GeographicBoundingBox>
 <BoundingBox CRS="CRS:84" minx="-179.133392333984"
 miny="17.6746921539307" maxx="-64.566162109375"
 maxy="71.3980484008789"/>
 <BoundingBox CRS="EPSG:4326" minx="17.6746921539307"
 miny="-179.133392333984" maxx="71.3980484008789" maxy="-
 64.566162109375"/>
 <Style>
 <Name>Counties classified per size</Name>
 <Title>County area classification</Title>
 <Abstract/>
 <LegendURL width="20" height="20">
 <Format>image/png</Format>
 <OnlineResource
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple" xlink:href=
 "http://localhost:8080/geoserver/
 ows?service=WMS&request=GetLegendGraphic&
 format=image%2Fpng&width=20&height=20&

Chapter 9

347

 layer=counties"/>
 </LegendURL>
 </Style>
</Layer>

13.	 To test the GetMap and GetFeatureInfo WMS requests, the GeoServer web
application offers you a handy way to do so with the Layer Preview page. Navigate to
Data | Layer Preview, and then click on the OpenLayers link next to the counties
layer. The Layer Preview page is based on the OpenLayers JavaScript library and
allows you to experiment with the GetMap and GetFeatureInfo requests.

14.	 Try to navigate the map; at each zoom and pan action, GeoServer will stream out
a new image provided by the response output to a GetMap request. By clicking on
the map, you can perform a GetFeatureInfo request and the user interface will
display the feature's attributes corresponding to the point on the map on which you
clicked. An effective way to check how the requests are sent to GeoServer as you
navigate the map is by using the Firefox Firebug plugin or the Chrome (or Chromium,
if you are using Linux) Developer Tools. With these tools, you will be able to identify
the GetMap and GetFeatureInfo requests that are being sent behind the
scenes from the OpenLayers viewer to GeoServer. One such map is shown in
the following screenshot:

PostGIS and the Web

348

15.	 Now, try a WMS GetMap request by typing the URL,
http://localhost:8080/geoserver/postgis_cookbook/
wms?LAYERS=postgis_cookbook%3Acounties&STYLES=&FORMAT=i
mage%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS
=EPSG%3A4326&BBOX=-200.50286594033,7.6152902245522,-43-
.196688503029,81.457450330258&WIDTH=703&HEIGHT=330, in your browser.

16.	 Try a WMS GetFeatureInfo request, as well, by typing the URL
http://localhost:8080/geoserver/postgis_cookbook/wms?REQ
UEST=GetFeatureInfo&EXCEPTIONS=application%2Fvnd.ogc.se_
xml&BBOX=-126.094303%2C37.16812%2C-116.262667%2C41.783255&
SERVICE=WMS&INFO_FORMAT=text%2Fhtml&QUERY_LAYERS=postgis_
cookbook%3Acounties&FEATURE_COUNT=50&Layers=postgis_cookbook%3A
counties&WIDTH=703&HEIGHT=330&format=image%2Fpng&styles=&srs=EP
SG%3A4326&version=1.1.1&x=330&y=158.

17.	 Now, as you did for the MapService WMS, test the GeoServer WMS in QGIS. Create
a WMS connection named GeoServer on localhost, pointing to the GeoServer
GetCapabilities document (http://localhost:8080/geoserver/ows?ser
vice=wms&version=1.3.0&request=GetCapabilities). Then, connect to the
WMS server (for example, from the QGIS browser), select counties from the Layers
list, and add it to the map, as shown in the following screenshot; then, navigate the
layer and try to identify some of the features:

Chapter 9

349

18.	 Having used the WMS, try to test a couple of WFS requests. A typical WFS
GetCapability request can be executed by typing this URL: http://
localhost:8080/geoserver/wfs?service=wfs&version=1.1.0&request
=GetCapabilities. You could also click on one of the WFS links on the home page
of the GeoServer web interface.

19.	 Investigate the XML GetCapabilities response and try to identify the information
about your layer. You should have a <FeatureType> element, such as the following,
corresponding to the counties layer:
<FeatureType>
 <Name>postgis_cookbook:counties</Name>
 <Title>counties</Title>
 <Abstract/>
 <Keywords>counties, features</Keywords>
 <SRS>EPSG:4326</SRS>
 <LatLongBoundingBox minx="-179.133392333984"
 miny="17.6746921539307" maxx="-64.566162109375"
 maxy="71.3980484008789"/>
</FeatureType>

20.	 As shown in the previous recipe, a typical WFS request is GetFeature,
which will result in a GML response. Try it, for example, by typing the URL,
http://localhost:8080/geoserver/wfs?service=wfs&version=1.0.0
&request=GetFeature&typeName=postgis_cookbook:counties&max
Features=5, in your browser. You will receive a GML output composed of a
<wfs:FeatureCollection> element and a collection of <gml:featureMember>
elements (possibly five elements, as specified in the maxFeatures request's
parameter). You will get an output that is similar to the following code:
<gml:featureMember>
 <postgis_cookbook:counties fid="counties.3962">
 <postgis_cookbook:the_geom>
 <gml:Polygon srsName="http://www.opengis.net/
 gml/srs/epsg.xml#4326">
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates xmlns:gml=
 "http://www.opengis.net/gml"
 decimal="." cs="," ts="">
 -101.62554932,36.50246048 -
 101.0908432,36.50032043 ...
 ...
 ...
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </postgis_cookbook:the_geom>
 <postgis_cookbook:area>0.240</postgis_cookbook:area>

PostGIS and the Web

350

 <postgis_cookbook:perimeter>1.967
 </postgis_cookbook:perimeter>
 <postgis_cookbook:co2000p020>3963.0
 </postgis_cookbook:co2000p020>
 <postgis_cookbook:state>TX</postgis_cookbook:state>
 <postgis_cookbook:county>Hansford
 County</postgis_cookbook:county>
 <postgis_cookbook:fips>48195</postgis_cookbook:fips>
 <postgis_cookbook:state_fips>48
 </postgis_cookbook:state_fips>
 <postgis_cookbook:square_mil>919.801
 </postgis_cookbook:square_mil>
 </postgis_cookbook:counties>
</gml:featureMember>

21.	 Now, as you did with WMS, try the counties WFS in QGIS (or in your favorite Desktop
GIS client). Create a new WFS connection, by using either the QGIS browser or the
Add WFS Layer button, and then clicking on the New Connection button. In the
Create a new WFS connection dialog box, type GeoServer on localhost in the
Name field and add the WFS GetCapabilities URL (http://localhost:8080/
geoserver/wfs?service=wfs&version=1.1.0&request=GetCapabiliti
es) in the URL field.

22.	 Add the WFS counties layer from the previous dialog box and, as a test, select
some of the counties and export them to a new shapefile using the Save As
command from the layer's context menu, as shown in the following screenshot:

Chapter 9

351

How it works...
In the previous recipe, you were introduced to the basic concepts of the OGC WMS and WFS
standards using MapServer. In this recipe, you have done that using another popular open-
source web-mapping engine—GeoServer.

Unlike MapServer, which is written in C and can be used from web servers such as Apache
HTTP (httpd) or Microsoft Internet Information Server (IIS) as a CGI program, GeoServer is
written in Java and needs a servlet container such as Apache Tomcat or Eclipse Jetty to work.

GeoServer not only offers the user a highly scalable and standard web-mapping engine
implementation, but does so with a nice user interface, the Web Administration interface.
Therefore, it is generally easier for a beginner to create WMS and WFS services compared to
MapServer, where it is necessary to master the mapfile syntax.

The GeoServer workflow to create WMS and WFS services for a PostGIS layer is to first create
a PostGIS store, where you need to associate the main PostGIS connection parameters
(server name, schema, user, and so on). After the store is correctly created, you can publish
the layers that are available for that PostGIS store. You have seen in this recipe how easy the
whole process of using the GeoServer Web Administration interface is.

To define the layer style to render features, GeoServer uses the Styled Layer Descriptor (SLD)
schema, an OGC standard based on XML. We have written two distinct rules in this recipe to
render, in a different way, the counties that have an area greater than 5,000 square miles
from the others. For the purpose of rendering the counties in a different way, we have used
two <ogc:Rule> SLD elements in which you have defined an <ogc:Filter> element. For
each of these elements, you have defined the criteria to filter the layer features, using the <og
c:PropertyIsGreaterThanOrEqualTo> and <ogc:PropertyIsLessThan> elements.
A handy way to generate an SLD for a layer is by using Desktop GIS tools that are able to
export an SLD file for a layer (QGIS can do this). After exporting the file, you can upload it to
GeoServer by copying the SLD file content to the Add a new style page.

Having created the WMS and WFS services for the counties layer, you have been testing
them by generating the requests using the handy Layer Preview GeoServer interface (based
on OpenLayers), and then typing the requests directly into a browser. You can modify each
service request's parameters from the Layer Preview interface or just change them in the
URL query string.

In the end, you tested the services using QGIS and have seen how it is possible to export
some of the layer's features using the WFS service.

PostGIS and the Web

352

See also
If you want more information about GeoServer, you can check out its excellent documentation
at http://docs.geoserver.org/, or get the wonderful GeoServer Beginner's Guide
book by Packt Publishing (http://www.packtpub.com/geoserver-share-edit-
geospatial-data-beginners-guide/book).

Creating a WMS Time with MapServer
In this recipe, you will implement a WMS Time service with MapServer. For time-series data,
and whenever you have geographic data that are updated continuously in the Time and you
need to expose them as WMS in a Web GIS, a WMS Time service is the way to go. This is
possible by providing the TIME parameter a time value in the WMS requests, typically in
the GetMap request.

Here, you will implement a WMS Time service for the hotspots, representing possible fire data
acquired by NASA's Earth Observing System Data and Information System (EOSDIS). This
excellent system provides data derived from MODIS images from the last 24 hours, 48 hours,
and 7 days, that can be downloaded in the shapefile, KML, WMS, or text file formats. You will
load a bunch of this data to PostGIS, create a WMS Time service with MapServer, and test the
WMS GetCapabilities and GetMap requests using a common browser.

If you are new to the WMS standard, please checkout the previous
two recipes to get more information.

Getting ready
1.	 First, download one week's worth of active fire data (hotspots) from the EOSDIS

website. For example, download the data from http://firms.modaps.eosdis.
nasa.gov/active_fire/shapes/zips/Global_7d.zip. A copy of this
shapefile is included in the book code bundle. Use that if you want to use the same
SQL and WMS parameters that have been used in the following steps.

2.	 Extract the shapefile from the Global_7d.zip archive to the working/chp09
directory and import this shapefile in PostGIS using the shp2pgsql command,
as follows:
$ shp2pgsql -s 4326 -g the_geom -I Global_7d.shp chp09.hotspots >
hotspots.sql

$ psql -U me -d postgis_cookbook -f hotspots.sql

Chapter 9

353

3.	 When the import is completed, check the point fire data (hotspots) you just imported
in PostGIS. Each hotspot contains a bunch of useful information, most notably, the
geometry and acquisition date and time stored in the acq_date and acq_time
fields. You can easily see that the features loaded from the shapefile span over eight
consecutive days using the following command:

postgis_cookbook=# SELECT acq_date, count(*) AS hotspots_count
FROM chp09.hotspots GROUP BY acq_date ORDER BY acq_date;

The previous command will produce the following output:

 acq_date | hotspots_count

------------+----------------

 2013-05-27 | 5539

 2013-05-28 | 10142

 2013-05-29 | 6688

 2013-05-30 | 7543

 2013-05-31 | 6676

 2013-06-01 | 7978

 2013-06-02 | 9228

 2013-06-03 | 3796

(8 rows)

How to do it...
Carry out the following steps:

1.	 We will first create a WMS for the PostGIS hotspot layer. Create the mapfile named
hotspots.map in a directory accessible to the httpd (or IIS) user, for example,
/var/www/data in Linux, and C:\ms4w\Apache\htdocs in Windows, composed
by the following code:
MAP # Start of mapfile
 NAME 'hotspots_time_series'
 IMAGETYPE PNG
 EXTENT -180 -90 180 90
 SIZE 800 400
 IMAGECOLOR 255 255 255

 # map projection definition
 PROJECTION
 'init=epsg:4326'
 END

PostGIS and the Web

354

 # a symbol for hotspots
 SYMBOL
 NAME "circle"
 TYPE ellipse
 FILLED true
 POINTS
 1 1
 END
 END

 # web section: here we define the ows services
 WEB
 # WMS and WFS server settings
 METADATA
 'wms_name' 'Hotspots'
 'wms_title' 'World hotspots time
 series'
 'wms_abstract' 'Active fire data detected
 by NASA Earth Observing
 System Data and Information
 System (EOSDIS)'
 'wms_onlineresource' 'http://localhost/cgi-bin/
 mapserv?map=/var/www/data/
 hotspots.map&'
 'wms_srs' 'EPSG:4326 EPSG:3857'
 'wms_enable_request' '*'
 'wms_feature_info_mime_type' 'text/html'
 END
 END

 # Start of layers definition
 LAYER # Hotspots point layer begins here
 NAME hotspots
 CONNECTIONTYPE POSTGIS
 CONNECTION 'host=localhost dbname=postgis_cookbook
 user=me
 password=mypassword port=5432'
 DATA 'the_geom from chp09.hotspots'
 TEMPLATE 'template.html'
 METADATA
 'wms_title' 'World hotspots time
 series'
 'gml_include_items' 'all'
 END
 STATUS ON
 TYPE POINT
 CLASS

Chapter 9

355

 SYMBOL 'circle'
 SIZE 4
 COLOR 255 0 0
 END # end of class

 END # hotspots layer ends here

END # End of mapfile

2.	 Check whether or not the WMS GetCapabilities request for this mapfile is
working well by typing either of the following URLs in the browser:

�� http://localhost/cgi-bin/mapserv?map=/var/www/data/
hotspots.map&SERVICE=WMS&VERSION=1.0.0&REQUEST=GetCapabi
lities (in Linux)

�� http://localhost/cgi-bin/mapserv.exe?map=C:\ms4w\Apache\
htdocs\hotspots.map&SERVICE=WMS&VERSION=1.0.0&REQUEST=Ge
tCapabilities (in Windows)

In the following steps, we will be referring to Linux. If you are using Windows, you just need to
replace http://localhost/cgi-bin/mapserv?map=/var/www/data/hotspots.map
with http://localhost/cgi-bin/mapserv.exe?map=C:\ms4w\Apache\htdocs\
hotspots.map in every request.

1.	 Now, query the WMS with a GetMap request. Type the following URL in the browser.
If everything is correct, MapServer should return an image with some hotspots as a
response. The URL is http://localhost/cgi-bin/mapserv?map=/var/www/
data/hotspots.map&&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BB
OX=-25,-100,35,-35&CRS=EPSG:4326&WIDTH=1000&HEIGHT=800&LAYERS=h
otspots&STYLES=&FORMAT=image/png.

2.	 Until now, you have implemented a simple WMS service. Now, to make the TIME
parameter available for WMS Time requests, add the wms_timeextent, wms_
timeitem and wms_timedefault variables in the LAYER METADATA section,
as follows:
METADATA
 'wms_title' 'World hotspots time
 series'
 'gml_include_items' 'all'
 'wms_timeextent' '2000-01-01/2020-12-31' # time extent
 for which the service will give a response
 'wms_timeitem' 'acq_date' # layer field to use to filter
 on the TIME parameter
 'wms_timedefault' '2013-05-30' # default parameter if not
 added to the request
END

PostGIS and the Web

356

3.	 Having added these parameters in the LAYER METADATA mapfile section, the WMS
GetCapabilities response should change. Now, the hotspots layer definition
includes the time dimension, defined by the <Dimension> and <Extent> elements.
You will get a response as follows:
<Layer>
 <Name>hotspots_time_series</Name>
 <Title>World hotspots time series</Title>
 <Abstract>Active fire data detected by NASA Earth
 Observing System Data and Information System
 (EOSDIS)</Abstract>
 <SRS>EPSG:4326 EPSG:3857</SRS>
 <LatLonBoundingBox minx="-180" miny="-90" maxx="180"
 maxy="90" />
 <BoundingBox SRS="EPSG:4326"
 minx="-180" miny="-90" maxx="180" maxy="90" />
 <Layer queryable="1">
 <Name>hotspots</Name>
 <Title>World hotspots time series</Title>
 <Dimension name="time" units="ISO8601"/>
 <Extent name="time" default="2011-10-01"
nearestValue="0">2000-01-01/2020-12-31</Extent>
 </Layer>
</Layer>

4.	 You can finally test the WMS service with time support. You only need to remember
to add the TIME parameter in the GetMap request (otherwise, GetMap will filter out
the data using the default date, which is 2011-10-01, in this example) by using
this URL: http://localhost/cgi-bin/mapserv?map=/var/www/data/
hotspots.map&&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-
25,-100,35,-35&CRS=EPSG:4326&WIDTH=1000&HEIGHT=800&LAYERS=hotsp
ots&STYLES=&FORMAT=image/png&TIME=2013-05-28.

5.	 Play for a while with the TIME parameter in the preceding URL and try to see how
the GetMap image response changes day by day. Remember that for the dataset we
imported, the acq_date range is from 2013-05-27 to 2013-06-03. In case you
didn't use the hostpots shapefile included in the book dataset, the time range will
be different!

Chapter 9

357

2013-05-27

http://localhost/cgi-bin/mapserv?map=/var/www/data/hotspots.map&&SE
RVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-25,-100,35,-35&CRS=EPS
G:4326&WIDTH=1000&HEIGHT=800&LAYERS=hotspots&STYLES=&FORMAT=image/
png&TIME=2013-05-27

2013-05-28

http://localhost/cgi-bin/mapserv?map=/var/www/data/hotspots.map&&SE
RVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-25,-100,35,-35&CRS=EPS
G:4326&WIDTH=1000&HEIGHT=800&LAYERS=hotspots&STYLES=&FORMAT=image/
png&TIME=2013-05-28

PostGIS and the Web

358

2013-05-29

http://localhost/cgi-bin/mapserv?map=/var/www/data/hotspots.map&&SE
RVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=-25,-100,35,-35&CRS=EPS
G:4326&WIDTH=1000&HEIGHT=800&LAYERS=hotspots&STYLES=&FORMAT=image/
png&TIME=2013-05-29

How it works...
In this recipe, you have seen how to create a WMS Time service using the MapServer
open-source web-mapping engine. A WMS Time service is useful for whenever you have
temporal series and geographic data varying in the Time. The WMS Time service allows
the user to filter the requested data by providing a TIME parameter with a time value in
the WMS requests.

For this purpose, you first created a plain WMS; if you are new to the WMS standard,
mapfile and MapServer, you can check out the first recipe in this chapter. You have imported
in PostGIS a points shapefile with one week's worth of hotspots derived from the MODIS
satellite, and created a simple WMS for this layer.

After verifying that this WMS works well by testing the WMS GetCapabilities and
GetMap requests, you have time-enabled the WMS by adding three parameters in the LAYER
METADATA mapfile section: wms_timeextent, wms_timeitem, and wms_timedefault.

The wms_timeextent parameter is the time extent supported by the WMS Time service.
The wms_timeitem parameter defines the PostGIS table field to be used to filter the TIME
parameter (acq_date field in this case). The wms_timedefault parameter specifies
a default time value to be used when the request to the WMS service does not provide
the TIME parameter.

Chapter 9

359

At this point, the WMS is time-enabled; this means that the WMS GetCapabilities
request now includes the time-dimension definition for the PostGIS hotspots layer and, more
importantly, the GetMap WMS request allows the user to add the TIME parameter to query
the layer for a specific date.

Consuming WMS services with OpenLayers
In this recipe, you will use the MapServer and Geoserver WMS you created in the first two
recipes of this chapter using the OpenLayers open-source JavaScript API.

This excellent library help developer to quickly assemble web pages using mapping viewers
and features. In this recipe, you will create an HTML page, add an OpenLayers map in it and
a bunch of controls in that map for navigation, switch the layers, and identify features of the
layers. We will then add to the OpenLayers map the two WMS layers pointing to the PostGIS
tables, implemented with MapServer and GeoServer at the beginning of this chapter.

Getting ready
MapServer uses PROJ.4 (https://trac.osgeo.org/proj/) for projection management.
This library does not exist by default with the Spherical Mercator projection (EPSG:900913)
defined. Such a projection is commonly used by commercial map API providers, such as
GoogleMaps, Yahoo! Maps, and Microsoft Bing, that can provide excellent base layers for
your maps.

1.	 As you will use a couple of Google Maps base layers in the map you are going
to create in this recipe, you need to add the EPSG:900913 support to PROJ.4.
Therefore, add an EPSG:900913 definition line in the PROJ.4 datafile (in Linux,
generally, this is in /usr/share/proj/epsg, and in my Windows OS, it is in
C:\ms4w\proj\nad). Open the PROJ.4 datafile, add the following line, and
then save it:
<900913> +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0
 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m
 +nadgrids=@null +no_defs

2.	 Due to security restrictions in JavaScript, it is not possible to retrieve information from
remote domains using XMLHttpRequest. You will encounter this issue in the recipe
when you send a WMS GetFeatureInfo request to GeoServer that is typically
running on Tomcat at port 8080, which is different from the HTML page running on
Apache or ISS, port 80. Therefore, unless you run your GeoServer instance using
httpd URL rewriting, the solution is to have a proxy script and use it in OpenLayers as
suggested here at http://trac.osgeo.org/openlayers/wiki/FrequentlyA
skedQuestions#ProxyHost.

http://trac.osgeo.org/openlayers/wiki/FrequentlyAskedQuestions#ProxyHost
http://trac.osgeo.org/openlayers/wiki/FrequentlyAskedQuestions#ProxyHost

PostGIS and the Web

360

3.	 Copy the proxy script http://trac.osgeo.org/openlayers/browser/trunk/
openlayers/examples/proxy.cgi?format=txt, which is included in the book
dataset as well) to the web cgi directory of your computer (in Linux, at /usr/lib/
cgi-bin/ and in Windows, at C:\ms4w\Apache\cgi-bin), open the proxy.cgi
file, and add localhost:8080 to the allowedHosts list.

How to do it...
Carry out the following steps:

1.	 Create the openlayers.html file and add the <head> and <body> tags. In the
<head> tag, import the OpenLayers and GoogleMaps Version 3 JavaScript libraries
by executing the following code:
<html>
 <head>
 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js">
 </script>
 <script src="http://maps.google.com/maps/api/
 js?v=3.2&sensor=false"></script>
 </head>
 <body>
 </body>
</html>

2.	 First, add a <div> element in the <body> tag that will contain the OpenLayers map.
The map should be given a width of 700 pixels and a height of 400 pixels, using the
following code:
<div style="width:700px; height:400px" id="map"></div>

3.	 Just after the map is placed in <div>, add a JavaScript script and create an
OpenLayers map object. In the map constructor parameters, you will add an empty
controls array and declare that the map has a Spherical Mercator's projection,
as shown in the following code:
<script defer="defer" type="text/javascript">
 // instantiate the map object
 var map = new OpenLayers.Map("map", {
 controls: [],
 projection: new OpenLayers.Projection("EPSG:900913")
 });
</script>

Chapter 9

361

4.	 Right after the map variable is declared, add some OpenLayers controls to the map.
For the Web GIS viewer you are creating, you will add the Navigation control
(which handles map browsing with mouse events, such as dragging, double-clicking,
and scrolling the wheel), PanZoomBar control (a four-direction navigation using
the arrows present above the zooming vertical slider), the LayerSwitcher control
(which handles the switching on and off of layers added to the map), and the
MousePosition control (which displays the map coordinates as they change
while the user is moving the mouse), using the following code:
// add some controls on the map
map.addControl(new OpenLayers.Control.Navigation());
map.addControl(new OpenLayers.Control.PanZoomBar()),
map.addControl(new OpenLayers.Control.LayerSwitcher(
 {"div":OpenLayers.Util.getElement("layerswitcher")}));
map.addControl(new OpenLayers.Control.MousePosition());

5.	 Now, create two Google base layers: one for Google Hybrid and the other for Google
Terrain Base maps, using the following code:
// set the Google layers
var google_hyb = new OpenLayers.Layer.Google(
 "Google Hybrid",
 {type: google.maps.MapTypeId.HYBRID, numZoomLevels: 20}
);
var google_ter = new OpenLayers.Layer.Google(
 "Google Terrain",
 {type: google.maps.MapTypeId.TERRAIN}
);

6.	 Set two variables for the WMS GeoServer and the MapServer URL that you will use
(they are the URLs of the services you created in the first two recipes of this chapter).

�� For Linux, add the following code:
	 // set the WMS
	 var geoserver_url = "http://localhost:8080/geoserver/wms";
	 var mapserver_url = http://localhost/cgi-
	 bin/mapserv?map=/var/www/data/countries.map&

�� For Windows, add the following code:

	 // set the WMS
	 var geoserver_url = "http://localhost:8080/geoserver/wms";
	 var mapserver_url = "http://localhost/cgi-
	 bin/mapserv.exe?map=C:\\ms4w\\Apache\\
	 htdocs\\countries.map&"

PostGIS and the Web

362

7.	 Now, create a WMS GeoServer layer to display the OpenLayers map of the counties
from the PostGIS layer. You will set some opacity for this layer so that it is possible to
see the other layer (counties) behind it. The isBaseLayer property is set to false,
since you want to have this layer over the Google Maps base layers and not as an
alternative to them (by default, all of the WMS layers in OpenLayers are considered
to be base layers). Create the WMS GeoServer layer using the following code:
// set the GeoServer WMS
var geoserver_wms = new OpenLayers.Layer.WMS("GeoServer WMS",
 geoserver_url,
 {
 layers: "postgis_cookbook:counties",
 transparent: "true",
 format: "image/png",
 },
 {
 isBaseLayer: false,
 opacity: 0.4
 });

8.	 Now, create a WMS MapServer layer to display the countries from the PostGIS layer in
the OpenLayers map, using the following code:
// set the MapServer WMS
var mapserver_wms = new OpenLayers.Layer.WMS("MapServer WMS",
 mapserver_url,
 {
 layers: "countries",
 transparent: "true",
 format: "image/png",
 },
 {
 isBaseLayer: false
 });

9.	 After creating the Google and WMS layers, you need to add all of them to the map,
using the following code:
// add all of the layers to the map
map.addLayers([mapserver_wms, geoserver_wms, google_ter,
 google_hyb]);

Chapter 9

363

10.	 You want to provide the user with the possibility to identify features of the
counties WMS. Add the WMSGetFeatureInfo OpenLayers control (that will send
GetFeatureInfo requests to the WMS behind the scenes) that point to the
counties PostGIS layer served by the GeoServer WMS, using the following code:
var info = new OpenLayers.Control.WMSGetFeatureInfo({
 url: geoserver_url,
 title: 'Identify',
 queryVisible: true,
 eventListeners: {
 getfeatureinfo: function(event) {
 map.addPopup(new OpenLayers.Popup.FramedCloud(
 "WMSIdentify",
 map.getLonLatFromPixel(event.xy),
 null,
 event.text,
 null,
 true
));
 }
 }
});
map.addControl(info);
info.activate();

11.	 Finally, set the center of the map and its initial zoom level, using the following code:

// center map
var cpoint = new OpenLayers.LonLat(-11000000, 4800000);
map.setCenter(cpoint, 3);

Your HTML file should now look like the openlayers.html file contained in data/chp09.
You can finally deploy this file to your web server (Apache httpd or IIS). If you are using Apache
httpd in Linux, you could copy the file to the data directory under /var/www, and if you are
using Windows, you could copy it to the data directory under C:\ms4w\Apache\htdocs
(create the data directory if it does not already exist). Then, access it using the URL
http://localhost/data/openlayers.html.

PostGIS and the Web

364

Now, access the openlayers web page using your favorite browser. Start browsing the map:
zoom, pan, try to switch the base and overlays layers on and off using the layer switcher
control, and try to click on a point to identify one feature from the counties PostGIS layer.
A map is shown in the following screenshot:

How it works..
You have seen how to create a web map viewer with the OpenLayers JavaScript library. This
library lets the developer define the various map components, using JavaScript in an HTML
page. The core object is a map that is composed of controls and layers.

OpenLayers comes with a great number of controls (http://dev.openlayers.org/docs/
files/OpenLayers/Control-js.html), and it is even possible to create custom ones.

Another great OpenLayers feature is the ability to add a good number of geographic data
sources as layers in the map (you added just a couple of its types to the map, such as Google
v3 and WMS), and you could add sources such as WFS, GML, KML, GeoRSS, OpenStreetMap
data, ArcGIS Rest, TMS, WMTS, and WorldWind, just to name a few.

Chapter 9

365

Consuming WMS services with Leaflet
In the previous recipe, you have seen how to create a web page with a map using
the OpenLayers JavaScript API and then added to the map the WMS PostGIS layers
implemented with MapServer and GeoServer in the first two recipes of this chapter.

A new, lighter alternative to the widespread, venerable OpenLayers JavaScript API has emerged
in the last couple of years, named Leaflet. In this recipe, you will see how to use this JavaScript
API to create a map in a web page, add a MapServer WMS layer from PostGIS to this map, and
implement an identify tool sending a GetFeatureInfo request to the MapServer WMS (unlike
OpenLayer, Leaflet does not come with a WMSGetFeatureInfo control).

How to do it...
Carry out the following steps:

1.	 Create a new HTML file and name it leaflet.html. Open it and add the <head>
and <body> tags. In the <head> section, import the Leaflet CSS and JavaScript
libraries and the jQuery JavaScript library (you will use jQuery to send an AJAX
request to the GetFeatureInfo MapServer WMS):
<html>
 <head>
 <title>Leaflet Example</title>
 <link rel="stylesheet" href="http://leafletjs.com/dist/
leaflet.css" />
 <script src="http://leafletjs.com/dist/leaflet.js">
 </script>
 <script src="http://ajax.googleapis.com/ajax/
 libs/jquery/1.9.1/jquery.min.js"></script>
 </head>
 <body>
 </body>
</html>

2.	 Start adding a <div> tag in the <body> element to include the Leaflet map in your
file, as shown in the following code; the map will have a width of 800 pixels and a
height of 500 pixels:
<div id="map" style="width:800px; height:500px"></div>

PostGIS and the Web

366

3.	 Just after the <div> element containing the map, add the following JavaScript code.
Create a Leaflet tileLayer object using the tile.osm.org service based on
OpenStreetMap data:
<script defer="defer" type="text/javascript">
 // osm layer
 var osm = L.tileLayer('http://{s}.tile.osm.org
 /{z}/{x}/{y}.png', {
 maxZoom: 18,
 attribution: "Data by OpenStreetMap"
});
</script>

4.	 Create a second layer that will use the MapServer WMS you created a few recipes
ago in this chapter. You will need to set the ms_url variable differently if you're
using Linux or Windows.

�� For Linux, use the following code:
	 // mapserver layer
	 var ms_url = "http://localhost/cgi-bin/mapserv?
	 map=/var/www/data/countries.map&";
	 var countries = L.tileLayer.wms(ms_url, {
	 layers: 'countries',
	 format: 'image/png',
	 transparent: true,
	 opacity: 0.7
	 });

�� For Windows, use the following code:
	 // mapserver layer
	 var ms_url = "http://localhost
	 /cgi-bin/mapserv.exe?
	 map=C:%5Cms4w%5CApache%5Chtdocs%5Ccountries.map&";
	 var countries = L.tileLayer.wms(ms_url, {
	 layers: 'countries',
	 format: 'image/png',
	 transparent: true,
	 opacity: 0.7
	 });

5.	 Create the Leaflet map and add layers to it, as shown in the following code:
// map creation
var map = new L.Map('map', {
 center: new L.LatLng(15, 0),
 zoom: 2,
 layers: [osm, countries],
 zoomControl: true
});

Chapter 9

367

6.	 Now, associate the mouse-click event with a function that will perform the
GetFeatureInfo WMS request on the countries layer, by executing the
following code:
// getfeatureinfo event
map.addEventListener('click', Identify);

function Identify(e) {
 // set parameters needed for GetFeatureInfo WMS request
 var BBOX = map.getBounds().toBBoxString();
 var WIDTH = map.getSize().x;
 var HEIGHT = map.getSize().y;
 var X = map.layerPointToContainerPoint(e.layerPoint).x;
 var Y = map.layerPointToContainerPoint(e.layerPoint).y;
 // compose the URL for the request
 var URL = ms_url + 'SERVICE=WMS&VERSION=1.1.1&
 REQUEST=GetFeatureInfo&LAYERS=countries&
 QUERY_LAYERS=countries&BBOX='+BBOX+'&FEATURE_COUNT=1&
 HEIGHT='+HEIGHT+'&WIDTH='+WIDTH+'&
 INFO_FORMAT=text%2Fhtml&SRS=EPSG%3A4326&X='+X+'&Y='+Y;
 //send the asynchronous HTTP request using jQuery $.ajax
 $.ajax({
 url: URL,
 dataType: "html",
 type: "GET",
 success: function(data) {
 var popup = new L.Popup({
 maxWidth: 300
 });
 popup.setContent(data);
 popup.setLatLng(e.latlng);
 map.openPopup(popup);
 }
 });
}

7.	 Your HTML file should now look like the leaflet.html file contained in data/
chp09. You can now deploy this file to your web server (that is, Apache httpd or IIS). If
you are using Apache httpd in Linux, you could copy the file to the /var/www/data
directory, and if you are using Windows, you could copy it to C:\ms4w\Apache\
htdocs\data (create the data directory if it is not already existing). Then, access it
with the URL http://localhost/data/leaflet.html.

PostGIS and the Web

368

8.	 Open the web page using your favorite browser and start navigating the map—zoom,
pan, and try to click on a point to identify one feature from the countries PostGIS
layer—as shown in the following screenshot:

How it works...
In this recipe, you have seen how to use the Leaflet JavaScript API library to add a map in
an HTML page. First, you created one layer from an external server to use it as the base
map. Then, you created another layer using the MapServer WMS you implemented in a
previous recipe to expose a PostGIS layer to the Web. You then created a new map object
and added it to these two layers. Finally, using jQuery, you implemented an AJAX call to the
GetFeatureInfo WMS request and displayed the results in a Leaflet Popup object.

Leaflet is a very nice and compact alternative to the OpenLayers library and gives very good
results when your Web GIS service needs to be used from mobile devices such as tablets
and smart phones. Additionally, it has a plethora of plugins and can be easily integrated with
JavaScript libraries such as Raphael and JS3D.

Chapter 9

369

Consuming WFS-T services with OpenLayers
In this recipe, you will create the Transactional Web Feature Service (WFS-T) from a PostGIS
layer with the GeoServer open-source web-mapping engine, and then an OpenLayers basic
application that will be able to use this service.

This way, the user of the application will be able to manage transactions on the remote
PostGIS layer. WFS-T allows the creation, deletion, and updation of features. In this recipe, you
will allow the user only to add features, but this recipe should put you on your way to creating
more composite use cases.

If you are new to GeoServer and OpenLayers, you should first read the Creating WMS and WFS
services with GeoServer and Consuming WMS services with OpenLayers recipes, and then
return to this one.

Getting ready
1.	 Create the proxy script and deploy it to your web server (that is, httpd or IIS),

as indicated in the Getting ready section of the Consuming WMS services with
OpenLayers recipe.

2.	 Create the following PostGIS points layer, named sites:
CREATE TABLE chp09.sites
(
 gid serial NOT NULL,
 the_geom geometry(Point,4326),
 CONSTRAINT sites_pkey PRIMARY KEY (gid)
);
CREATE INDEX sites_the_geom_gist ON chp09.sites
 USING gist (the_geom);

3.	 Now, create a PostGIS layer in GeoServer for the chp09.sites table. For more
information on this, refer to the Creating WMS and WFS services with GeoServer
recipe in this chapter.

PostGIS and the Web

370

How to do it...
Carry out the following steps:

1.	 Create a new file named wfst.html. Open it and add the <head> and <body> tags.
In the <head> tag, import the OpenLayers library:
<html>
 <head>
 <title>Consuming a WFS-T with OpenLayers</title>
 <script
 src="http://openlayers.org/api/OpenLayers.js"></script>
 </head>
 <body>
 </body>
</html>

2.	 Add a <div> tag in the <body> tag to contain the OpenLayers map, as shown in the
following code; the map will have a width of 700 pixels and a height of 400 pixels:
<div style="width:700px; height:400px" id="map"></div>.

3.	 Just after the <div> tag is made to contain the map, add a JavaScript script. Inside
the script, start setting ProxyHost to the web location where you deployed your
proxy script. Then, create a new OpenLayers map, as shown in the following code:
<script type="text/javascript">
 // set the proxy
 OpenLayers.ProxyHost = "/cgi-bin/proxy.cgi?url=";
 // create the map
 var map = new OpenLayers.Map('map');
</script>

4.	 Now, in the script, after creating the map, create an OpenStreetMap layer that you
will use in the map as the base layer, using the following code:
// create an OSM base layer
var osm = new OpenLayers.Layer.OSM();

5.	 Now, create the WFS-T layer's OpenLayers object using the StyleMap object to
render the PostGIS layer features with red points, as shown in the following screenshot:
// create the wfs layer
var saveStrategy = new OpenLayers.Strategy.Save();
var wfs = new OpenLayers.Layer.Vector(
"Sites",
{

Chapter 9

371

 strategies: [new OpenLayers.Strategy.BBOX(),
 saveStrategy],
 projection: new OpenLayers.Projection("EPSG:4326"),
 styleMap: new OpenLayers.StyleMap({
 pointRadius: 7,
 fillColor: "#FF0000"
 }),
 protocol: new OpenLayers.Protocol.WFS({
 version: "1.1.0",
 srsName: "EPSG:4326",
 url: "http://localhost:8080/geoserver/wfs",
 featurePrefix: 'postgis_cookbook',
 featureType: "sites",
 featureNS: "http://www.packtpub.com/postgis-
 cookbook/book",
 geometryName: "the_geom"
 })
});

6.	 Add the WFS layer to the map, center align the map, and set the initial zoom. You
can use the geometry transform method to convert a point from EPSG:4326, in
which the layer is stored, to ESPG:900913, which is used by the viewer, as shown in
the following code:
// add layers to map and center it
map.addLayers([osm, wfs]);
var fromProjection = new
 OpenLayers.Projection("EPSG:4326");
var toProjection = new
 OpenLayers.Projection("EPSG:900913");
var cpoint = new OpenLayers.LonLat(12.5, 41.85).transform(
 fromProjection, toProjection);
map.setCenter(cpoint, 10);

7.	 Now, you will create a panel with a Draw Point tool (to add new features) and a Save
Features tool (to save the features to the underlying WFS-T). We first create the panel,
as shown in the following code:
// create a panel for tools
var panel = new OpenLayers.Control.Panel({
 displayClass: "olControlEditingToolbar"
});

PostGIS and the Web

372

8.	 Now, we will create the Draw Point tool, as shown in the following code:
// create a draw point tool
var draw = new OpenLayers.Control.DrawFeature(
 wfs, OpenLayers.Handler.Point,
 {
 handlerOptions: {freehand: false, multi: false},
 displayClass: "olControlDrawFeaturePoint"
 }
);

9.	 Then, we will create the Save Features tool, using the following code:
// create a save tool
var save = new OpenLayers.Control.Button({
 title: "Save Features",
 trigger: function() {
 saveStrategy.save();
 },
 displayClass: "olControlSaveFeatures"
});

10.	 Finally, add the tools to the panel, including a navigation control, and the panel as a
control to the map, using the following code:
// add tools to panel and add it to map
panel.addControls([
 new OpenLayers.Control.Navigation(),
 save, draw
]);
map.addControl(panel);

11.	 Your HTML file should now look like the wfst.html file contained in the chp09
directory. Deploy this file to your web server (that is, Apache httpd or IIS). If you are
using Apache httpd in Linux, you could copy the file to the data directory under /
var/www, whereas if you are using Windows, you could copy it to the data directory
under C:\ms4w\Apache\htdocs (create the data directory if it is not already
existing). Then, access it using http://localhost/data/wfst.html.

12.	 Open the web page using your favorite browser and start adding some points to the
map. Now, click on the Save button and reload the page; the previously added points
should still be there as they had been stored in the underlying PostGIS table by
WFS-T, as shown in the following screenshot:

Chapter 9

373

How it works...
In this recipe, you first created a point PostGIS table and then published it as WFS-T using
GeoServer. You then created a basic OpenLayers application using the WFS-T layer, allowing
the user to add features to the underlying PostGIS layer.

In OpenLayers, the core object needed to implement such a service is the Vector layer, by
defining a WFS protocol. When defining the WFS protocol, you have to provide the WFS version
to use, the spatial reference system of the dataset, the URI of the service, the name of the
layer (for GeoServer, the name is a combination of the layer workspace, FeaturePrefix,
and the layer name, FeatureType), and the name of the geometry field that will be
modified. You also can pass to the Vector layer constructor a StyleMap value to define the
layer's rendering behavior.

You then tested the application by adding some points to the OpenLayers map and checked
that those points were effectively stored in PostGIS. When adding the points using the WFS-T
layer, with the help of tools such as Firefox Firebug or Chrome (Chromium) Developer Tools,
you could dig in detail to the requests that you are making to the WFS-T and its responses.

PostGIS and the Web

374

For example, when adding a point, you will see that an Insert request is sent to WFS-T. The
following XML is sent to the service (note how the point geometry is inserted in the body of the
<wfs:Insert> element):

<wfs:Transaction xmlns:wfs="http://www.opengis.net/wfs"
 service="WFS" version="1.1.0"
 xsi:schemaLocation="http://www.opengis.net/wfs
 http://schemas.opengis.net/wfs/1.1.0/wfs.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <wfs:Insert>
 <feature:sites xmlns:feature="http://www.packtpub.com/
 postgis-cookbook/book">
 <feature:the_geom>
 <gml:Point xmlns:gml="http://www.opengis.net/gml"
 srsName="EPSG:4326">

 <gml:pos>12.450561523436999 41.94302128455888</gml:pos>

 </gml:Point>

 </feature:the_geom>
 </feature:sites>
 </wfs:Insert>
</wfs:Transaction>

The <wfs:TransactionResponse> response, as shown in the following code, will be sent
from WFS-T if the process has transpired smoothly and the features have been stored (note
that the <wfs:totalInserted> element value in this case is set to 1, as only one feature
was stored):

<?xml version="1.0" encoding="UTF-8"?>
<wfs:TransactionResponse version="1.1.0" ...[CLIP]... >
 <wfs:TransactionSummary>

 <wfs:totalInserted>1</wfs:totalInserted>

 <wfs:totalUpdated>0</wfs:totalUpdated>

 <wfs:totalDeleted>0</wfs:totalDeleted>

 </wfs:TransactionSummary>

 <wfs:TransactionResults/>
 <wfs:InsertResults>
 <wfs:Feature>
 <ogc:FeatureId fid="sites.17"/>
 </wfs:Feature>
 </wfs:InsertResults>
</wfs:TransactionResponse>

Chapter 9

375

Developing web applications with
GeoDjango – part 1

In this recipe and the next, you will use the Django, a Python web framework, to create a web
application to manage wildlife sightings using a PostGIS data store. In this recipe, you will
build the back office of the web application, based on the Django admin site.

Upon accessing the back office, an administrative user will be able to, after authentication,
manage (insert, update, and delete) the main entities (animals and sightings) of the
database. In the next part of the recipe, you will build a front office that displays the
sightings on a map based on the Leaflet JavaScript library.

You can find a copy of the whole project that you are going to build in the code
bundle under chp09/wildlife. Refer to it if a concept is not clear, or if you
want to copy and paste the code as you go through the steps of the recipe,
rather than typing code from scratch.

Getting ready
1.	 If you are new to Django, check out the official Django tutorial at https://docs.

djangoproject.com/en/dev/intro/tutorial01/, and then return to
this recipe.

2.	 Create a Python virtualenv (http://www.virtualenv.org/en/latest/) to
create an isolated Python environment to use with the web application you will
build in this recipe and the next. Then, activate the environment, as follows:

�� Use the following commands in Linux:
	 $ cd ~/virtualenvs/

	 $ virtualenv --no-site-packages chp09-env

	 $ source chp09-env/bin/activate

�� Type the following commands in Windows (for steps to install virtualenv
on Windows, refer to https://zignar.net/2012/06/17/install-
python-on-windows/):

	 cd c:\virtualenvs

	 C:\Python27\Scripts\virtualenv.exe –no-site-packages chp09-
env

	 chp09-env\Scripts\activate

PostGIS and the Web

376

3.	 Once activated, you can install the Python packages that you will use for this recipe
as well as the next, using the pip tool (http://www.pip-installer.org/en/
latest/).

�� In Linux, the command would be as follows:
	 (chp09-env)$ pip install django==1.5.1
	 (chp09-env)$ pip install psycopg2
	 (chp09-env)$ pip install pil

�� In Windows, the command would be as follows:
	 (chp09-env) C:\virtualenvs> pip install django==1.5.1
	 (chp09-env) C:\virtualenvs> pip install psycopg2
	 (chp09-env) C:\virtualenvs> easy_install pil

4.	 If you haven't done it so far, download the world countries shapefile from
http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip.
A copy of this shapefile is included in the code bundle of this book. Extract the
shapefile to the working/chp09 directory.

How to do it...
Carry out the following steps:

1.	 Create a Django project using the django-admin command with the
startproject option. Name the project wildlife. The command for
creating the project will be as follows:
(chp09-env)$ cd ~/postgis_cookbook/working/chp09
(chp09-env)$ django-admin.py startproject wildlife

2.	 Create a Django application using the django-admin command with the startapp
option. Name the application sightings. The command will be as follows:
(chp09-env)$ cd wildlife/
(chp09-env)$ django-admin.py startapp sightings

Now, you should have the following directory structure:

wildlife/
├── manage.py
├── sightings
│ ├── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py
└── wildlife
 ├── __init__.py
 ├── settings.py
 ├── urls.py
 └── wsgi.py

Chapter 9

377

3.	 You will need to edit some of the settings in the settings.py file under chp09/
wildlife/wildlife. First, the DATABASES settings should be as shown in the
following code in order to use the postgis_cookbook PostGIS database for your
application data:
DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'postgis_cookbook',
 'USER': 'me',
 'PASSWORD': 'mypassword',
 'HOST': 'localhost',
 'PORT': '',
 }
}

4.	 Add the two following lines of code at the top of the wildlife/settings.py
file (PROJECT_PATH is the variable in which you will set the project's path in the
settings menu):
import os
PROJECT_PATH = os.path.abspath(os.path.dirname(__file__))

5.	 Make sure that in the settings.py file under chp09/wildlife/wildlife,
MEDIA_ROOT, and MEDIA_URL are correctly set, as shown in the following code
(this is to set the media files' path and URLs for the images that the administrative
user will upload):
MEDIA_ROOT = os.path.join(PROJECT_PATH, "media")
MEDIA_URL = '/media/'

6.	 Make sure that the INSTALLED_APPS setting looks as shown in the following code
in the settings.py file. You will use the Django admin site (django.contrib.admin),
the GeoDjango core library (django.contrib.gis), and the sightings application you are
creating in this recipe and the next. For this purpose, add the last three lines:
INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django.contrib.admin',
 'django.contrib.gis',
 'sightings',
)

PostGIS and the Web

378

7.	 Now, synchronize the database using the Django syncdb management command,
using the following command; when prompted to create a superuser, answer yes
and choose a preferred administrative username and password:
(chp09-env)$ python manage.py syncdb

8.	 Now, you will add the models needed by the application. Edit the models.py file
under chp09/wildlife/sightings and add the following code:
from django.db import models
from django.contrib.gis.db import models as gismodels

class Country(gismodels.Model):
 """
 Model to represent countries.
 """
 isocode = gismodels.CharField(max_length=2)
 name = gismodels.CharField(max_length=255)
 geometry = gismodels.MultiPolygonField(srid=4326)
 objects = gismodels.GeoManager()

 def __unicode__(self):
 return '%s' % (self.name)

class Animal(models.Model):
 """
 Model to represent animals.
 """
 name = models.CharField(max_length=255)
 image = models.ImageField(upload_to='animals.images')

 def __unicode__(self):
 return '%s' % (self.name)

 def image_url(self):
 return u'' %
 (self.image.url,
 self.name)
 image_url.allow_tags = True

 class Meta:
 ordering = ['name']

class Sighting(gismodels.Model):
 """

Chapter 9

379

 Model to represent sightings.
 """
 RATE_CHOICES = (
 (1, '*'),
 (2, '**'),
 (3, '***'),
)
 date = gismodels.DateTimeField()
 description = gismodels.TextField()
 rate = gismodels.IntegerField(choices=RATE_CHOICES)
 animal = gismodels.ForeignKey(Animal)
 geometry = gismodels.PointField(srid=4326)
 objects = gismodels.GeoManager()

 def __unicode__(self):
 return '%s' % (self.date)

 class Meta:
 ordering = ['date']

9.	 Each model will become a table in the database with the corresponding fields
defined using the models and gismodels class. Note that the geometry variable
in the county and sighting models will become the MultiPolygon and Point
PostGIS geometry columns, thanks to the GeoDjango library. Now, we synchronize
the database by executing the following code:
(chp09-env)$ python manage.py syncdb
Creating tables ...
Creating table sightings_animal
Creating table sightings_sighting
Creating table sightings_country

10.	 Now, for each model in models.py, a PostgreSQL table should have been created.
Check whether or not your PostgreSQL database effectively contains the three
tables created in the preceding commands using your favorite client (that is, psql
or pgAdmin), and whether or not the sightings_sighting and sightings_
country tables contain PostGIS geometric fields.

11.	 Create an admin.py file under chp09/wildlife/sightings and add the
following code to it. The classes in this file will define and customize the behavior
of the Django admin site when browsing the application models or tables (fields to
display, fields to be used to filter records, and fields to order records). Create the file
containing the following code:
from django.contrib import admin
from django.contrib.gis.admin import GeoModelAdmin
from models import Country, Animal, Sighting

PostGIS and the Web

380

class SightingAdmin(GeoModelAdmin):
 """
 Web admin behavior for the Sighting model.
 """
 model = Sighting
 list_display = ['date', 'animal', 'rate']
 list_filter = ['date', 'animal', 'rate']
 date_hierarchy = 'date'

class AnimalAdmin(admin.ModelAdmin):
 """
 Web admin behavior for the Animal model.
 """
 model = Animal
 list_display = ['name', 'image_url',]

class CountryAdmin(GeoModelAdmin):
 """
 Web admin behavior for the Country model.
 """
 model = Country
 list_display = ['isocode', 'name']
 ordering = ('name',)

 class Meta:
 verbose_name_plural = 'countries'

admin.site.register(Animal, AnimalAdmin)
admin.site.register(Sighting, SightingAdmin)
admin.site.register(Country, CountryAdmin)

12.	 Any web application needs the definition of URLs where the pages can be accessed.
Therefore, edit your urls.py file under chp09/wildlife/wildlife by adding the
following code:
from django.conf.urls import patterns, include, url
from django.conf import settings

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 url(r'^admin/', include(admin.site.urls)),
)

media files
urlpatterns += patterns('',
 (r'^media/(?P<path>.*)$', 'django.views.static.serve', {
 'document_root': settings.MEDIA_ROOT})
)

Chapter 9

381

13.	 In the urls.py file, you basically defined the location of the back office (which was
built using the Django admin application), and the media (images) files' location
uploaded by the Django administrator when adding new animal entities in the
database. Now, run the Django development server using the following runserver
management command:
(chp09-env)$ python manage.py runserver

14.	 Access the Django admin site at http://localhost:8000/admin/, and log in
with the superuser credentials you furnished in an earlier step in this recipe when
you initially synced the Django database.

15.	 Now, navigate to http://localhost:8000/admin/sightings/animal/ and
add some animals using the Add animal button. For each animal, define a name and
an image that will be used by the frontend that you will build in the next recipe. You
created this page with almost no code, thanks to the Django admin! The following
screenshot shows what the Animals list page will look like after adding some entities:

PostGIS and the Web

382

16.	 Navigate to http://localhost:8000/admin/sightings/sighting/ and
add some sightings using the Add sighting button. For each sighting, define the
Date, Time, the name of the animal that was spotted, the Rate, and the location.
GeoDjango has added the map widget to the Django Admin site for you, based on the
OpenLayers JavaScript library, to add or modify geometric features. The Sightings
page is shown in the following screenshot:

Chapter 9

383

17.	 The Sightings list page, thanks to the Django admin's efficiency, will provide the
administrative user with useful features to sort, filter, and navigate the date hierarchy
of all of the sightings in the system, as shown in the following screenshot:

18.	 Now, you will import the countries shapefile to its model. In the next recipe, you
will use this model to find out the country where each sighting occurred. Before going
ahead in this recipe, investigate the shapefile structure—you will need to import just
the NAME and ISO2 attributes to the model as the name and isocode attributes,
using the following command:
$ ogrinfo TM_WORLD_BORDERS-0.3.shp TM_WORLD_BORDERS-0.3 -al -so

INFO: Open of `TM_WORLD_BORDERS-0.3.shp'

 using driver `ESRI Shapefile' successful.

Layer name: TM_WORLD_BORDERS-0.3

Geometry: Polygon

Feature Count: 246

Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)

PostGIS and the Web

384

Layer SRS WKT:
GEOGCS["GCS_WGS_1984",
 DATUM["WGS_1984",
 SPHEROID["WGS_84",6378137.0,298.257223563]],
 PRIMEM["Greenwich",0.0],
 UNIT["Degree",0.0174532925199433]]
FIPS: String (2.0)
ISO2: String (2.0)
ISO3: String (3.0)
UN: Integer (3.0)
NAME: String (50.0)
AREA: Integer (7.0)
POP2005: Integer (10.0)
REGION: Integer (3.0)
SUBREGION: Integer (3.0)
LON: Real (8.3)
LAT: Real (7.3)

19.	 Add a load_countries.py file under chp09/wildlife/sightings, and
import the shapefile to PostGIS using the LayerMapping GeoDjango utility with
the following code:
"""
Script to load the data for the country model from a shapefile.
"""

from django.contrib.gis.utils import mapping, LayerMapping
from models import Country

country_mapping = {
 'isocode' : 'ISO2',
 'name' : 'NAME',
 'geometry' : 'MULTIPOLYGON',
}

country_shp = '../TM_WORLD_BORDERS-0.3.shp'
country_lm = LayerMapping(Country, country_shp, country_mapping,
 transform=False, encoding='iso-8859-1')
country_lm.save(verbose=True, progress=True)

20.	 Enter the Python Django shell and run the utils.py script. Then, check whether or
not the countries have been correctly inserted in the sightings_country table in
your PostgreSQL database:

(chp09-env)$ python manage.py shell
>>> from sightings import load_countries

Chapter 9

385

Saved: Antigua and Barbuda
Saved: Algeria
Saved: Azerbaijan
...
Saved: Taiwan

Now, you should see the countries in the administrative interface. Try to browse some of the
countries at http://localhost:8000/admin/sightings/country/.

How it works...
In this recipe, you have seen how quick and efficient it is to assemble a back office
application using Django, one of the most popular Python web frameworks; this is thanks
to its object-relational mapper, which automatically created the database tables needed by
your application and an automatic API to manage (insert, update, and delete) and query the
entities without using SQL.

Thanks to the GeoDjango library, two of the application models, County and Sighting, have
been geo-enabled with their introduction in the database tables of geometric PostGIS fields.

You have customized the powerful automatic administrative interface to quickly assemble
the back office pages of your application. Using the Django URL Dispatcher, you have defined
the URL routes for your application in a concise manner.

As you may have noticed, what is extremely nice about the Django abstraction is the
automatic implementation of the data-access layer API using the models. You can now add,
update, delete, and query records using Python code, without having any knowledge of SQL.
Try this yourself using the Django Python shell; you will select an animal from the database,
add a new sighting for that animal, and then finally delete the sighting. You can investigate the
SQL generated by Django behind the scenes at any time, using the django.db.connection
class, with the following command:

(chp09-env-bis)$ python manage.py shell
>>> from django.db import connection
>>> from datetime import datetime
>>> from sightings.models import Sighting, Animal
>>> an_animal = Animal.objects.all()[0]
>>> an_animal
<Animal: Lion>
>>> print connection.queries[-1]['sql']
SELECT "sightings_animal"."id", "sightings_animal"."name",
"sightings_animal"."image" FROM "sightings_animal" ORDER BY
"sightings_animal"."name" ASC LIMIT 1'
>>> my_sight = Sighting(date=datetime.now(), description='What a
lion I have seen!', rate=1, animal=an_animal, geometry='POINT(10
10)')
>>> my_sight.save()

PostGIS and the Web

386

print connection.queries[-1]['sql']
INSERT INTO "sightings_sighting" ("date", "description", "rate",
"animal_id", "geometry") VALUES ('2013-06-12 14:37:36.544268-
05:00', 'What a lion I have seen!', 1, 2, ST_GeomFromEWKB('\x01010
00020e610000000000000000024400000000000002440'::bytea)) RETURNING
"sightings_sighting"."id"
>>> my_sight.delete()
>>> print connection.queries[-1]['sql']
DELETE FROM "sightings_sighting" WHERE "id" IN (5)

Do you like Django as much as we do? In the next recipe, you will create the front end of the
application. You will be able to browse the sightings in a map, implemented with the Leaflet
JavaScript library. So, keep reading!

Developing web applications with
GeoDjango – part 2

In this recipe, you will create the front office for the web application you created using Django,
in the previous recipe.

Using HTML and the Django template language, you will create a web page displaying a
map, implemented with Leaflet, and a list to the user containing all of the sightings available
in the system. The user will be able to navigate the map and identify the sightings to get
more information.

Getting ready
1.	 Make sure you have gone through every single step of the previous recipe, keeping

the back office of the web application working and its database populated with
some entities.

2.	 Activate the virtualenv you created in the Developing web applications with
GeoDjango – part 1 recipe, as follows:

�� Use the following command for Linux:
	 $ cd ~/virtualenvs/

	 $ source chp09-env/bin/activate

�� Use the following command for Windows:

	 cd c:\virtualenvs

	 > chp09-env\Scripts\activate

Chapter 9

387

3.	 Install the libraries that you will use in this recipe; you will need simplejson and
vectorformats Python libraries to produce a GeoJSON (http://www.geojson.
org/) response that will feed the sighting layer in Leaflet.

�� Use the following command for Linux:
	 (chp09-env)$ pip install simplejson

	 (chp09-env)$ pip install vectorformats

�� Use the following command for Windows:

	 (chp09-env) C:\virtualenvs> pip install simplejson

	 (chp09-env) C:\virtualenvs> pip install vectorformats

How to do it...
You will now create the front page of your web application, as follows:

1.	 Go to the directory containing the Django wildlife web application and add the
following lines to the urls.py file under chp09/wildlife/wildlife:
from django.conf.urls import patterns, include, url
from django.conf import settings

from sightings.views import get_geojson, home

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 url(r'^admin/', include(admin.site.urls)),

 (r'^geojson/', get_geojson),
 (r'^$', home),
)

media files
urlpatterns += patterns('',
 (r'^media/(?P<path>.*)$', 'django.views.static.serve', {
 'document_root': settings.MEDIA_ROOT}))

PostGIS and the Web

388

2.	 Open the views.py file under chp09/wildlife/sightings and add the
following code. The home view will return the home page of your application, with the
list of sightings and the Leaflet map. The sighting layer in the map will display the
GeoJSON response given by the get_geojson view:
from django.shortcuts import render_to_response
from django.http import HttpResponse
from vectorformats.Formats import Django, GeoJSON
from models import Sighting

def home(request):
 """
 Display the home page with the list and a map of the
 sightings.
 """
 sightings = Sighting.objects.all()
 return render_to_response("sightings/home.html",
 {'sightings' : sightings})

def get_geojson(request):
 """
 Get geojson (needed by the map) for all of the sightings.
 """
 sightings = Sighting.objects.all()
 djf = Django.Django(geodjango='geometry',
 properties=['animal_name',
 'animal_image_url', 'description', 'rate',
 'date_formatted',
 'country_name'])
 geoj = GeoJSON.GeoJSON()
 s = geoj.encode(djf.decode(sightings))
 return HttpResponse(s)

3.	 Add the following @property definitions to the Sighting class in the models.
py file under chp09/wildlife/sightings. The get_geojson view will need to
use these properties to compose the GeoJSON view needed from the Leaflet map
and the information pop up. Note how in the country_name property, you are using
GeoDjango, which contains a spatial-lookup QuerySet operator to detect the country
where the sighting happened:
@property
def date_formatted(self):
 return self.date.strftime('%m/%d/%Y')

@property
def animal_name(self):

Chapter 9

389

 return self.animal.name

@property
def animal_image_url(self):
 return self.animal.image_url()

@property
def country_name(self):
 country = Country.objects.filter(
 geometry__contains=self.geometry)[0]
 return country.name

4.	 Add a home.html file, containing the following code, under sightings/
templates/sightings. Using the Django template language, you will display the
number of sightings in the system, a list of these sightings with the main information
for each of them, and the Leaflet map. Using the Leaflet JavaScript API, you add a
base OpenStreetMap layer to the map. Then, you make an asynchronous call, using
jQuery, to the get_geojson view (accessed by adding /geojson to the request
URL), that in case of success of the query, will feed a Leaflet GeoJSON layer with
the features from the sighting PostGIS layer and associate with each feature an
informative pop up. This pop up will open any time the user clicks on a point on
the map representing a sighting, displaying the main information for that entity:
<!DOCTYPE html>
<html>
 <head>
 <title>Wildlife's Sightings</title>
 <link rel="stylesheet" href="http://leafletjs.com/dist/
leaflet.css" />
 <script src="http://leafletjs.com/dist/leaflet.js"></script>
 <script src="http://ajax.googleapis.com/ajax/libs/
jquery/1.9.1/jquery.min.js"></script>
 </head>
 <body>

 <h1>Wildlife's Sightings</h1>

 <p>There are {{ sightings.count }} sightings in the
 database.</p>
 <div id="map" style="width:800px; height:500px"></div>

 {% for s in sightings %}
 {{ s.animal }},
 seen in {{ s.country_name }} on {{ s.date }}
 and rated {{ s.rate }}

PostGIS and the Web

390

 {% endfor %}

 <script type="text/javascript">

 // OSM layer
 var osm =
 L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png', {
 maxZoom: 18,
 attribution: "Data by OpenStreetMap"
 });

 // map creation
 var map = new L.Map('map', {
 center: new L.LatLng(15, 0),
 zoom: 2,
 layers: [osm],
 zoomControl: true
 });

 // add GeoJSON layer
 $.ajax({
 type: "GET",
 url: "geojson",
 dataType: 'json',
 success: function (response) {
 geojsonLayer = L.geoJson(response, {
 style: function (feature) {
 return {color: feature.properties.color};
 },
 onEachFeature: function (feature, layer) {
 var html = "" +
 feature.properties.animal_name
 + "
"
 + feature.properties.animal_image_url
 + "
Description: "
 + feature.properties.description
 + "
Rate: "
 + feature.properties.rate
 + "
Date: "
 + feature.properties.date_formatted
 + "
Country: "
 + feature.properties.country_name
 layer.bindPopup(html);

Chapter 9

391

 }
 }).addTo(map);
 }
 });

 </script>

 </body>
</html>

5.	 Now that your front end page is completed, you can finally access it at
http://localhost:8000/. Navigate the map and try to identify some
of the displayed sightings to check whether or not the pop up opens as
shown in the following screenshot:

PostGIS and the Web

392

How it works...
You created an HTML front page for the web application you developed in the previous
recipe. The HTML is dynamically created using the Django Template language
(https://docs.djangoproject.com/en/dev/topics/templates/),
and the map was implemented with the Leaflet JavaScript library.

The Django template language uses the response from the home view to generate a list of all
of the sightings in the system.

The map was created using Leaflet. First, an OpenStreetMap layer was created to be used
as a base map. Then, using jQuery, you fed a GeoJSON layer that displays all of the features
generated by the get_geojson view. You associated a popup with the layer that opens every
time the user clicks on a sighting entity. The popup displays the main information for that
sighting, including a picture of the sighted animal.

10
Maintenance,

Optimization, and
Performance Tuning

In this chapter, we will cover the following recipes:

ff Organizing the database

ff Setting up the correct data privilege mechanism

ff Backing up the database

ff Using indexes

ff Clustering for efficiency

ff Optimizing SQL queries

ff Migrating a PostGIS database to a different server

ff Replicating a PostGIS database with streaming replication

Introduction
Unlike prior chapters, this chapter does not discuss the capabilities or applications of PostGIS.
Instead, this chapter focuses on the techniques for organizing the database, improving query
performance, and ensuring the long-term viability of the spatial data.

Maintenance, Optimization, and Performance Tuning

394

These techniques are frequently ignored or set aside by most PostGIS users until it is too late,
such as data loss due to user action or decreasing performance as the volume of data or
users increases. Such neglect is often due to the amount of time required to learn about each
technique as well as implement it. This chapter attempts to demonstrate each technique in a
distilled manner that minimizes the learning curve and maximizes the benefits.

Organizing the database
One of the most important things to consider when creating and using a database is how to
organize the data. The layout of the database should be decided when you first establish the
database. The layout can be decided or changed at a later date, but this is almost guaranteed
to be a tedious, if not difficult, task. If it is never decided, a database will become disorganized
over time and introduce significant hurdles when upgrading components or running backups.

By default, a new PostgreSQL database has only one schema, that is, public. Most users
place all the data (their own and third-party modules such as PostGIS) in the public schema.
Doing so mixes information of different origins. An easy method to separate the information
is to use schemas. This enables using one schema for our data and a separate schema for
everything else.

Getting ready
In this recipe, we will create a database and install PostGIS in its own schema. We will also
load some geometries and rasters for further use by other recipes in this chapter.

The following are the two methods to create a PostGIS-enabled database:

ff Using the CREATE EXTENSION statement

ff Running the installation SQL scripts with a PostgreSQL client

The CREATE EXTENSION method is available if you are running PostgreSQL 9.1 or a higher
version and is the recommended method for installing PostGIS.

How to do it...
Carry out the following steps to create and organize a database:

1.	 Create a database named chapter10 by executing the following command:
CREATE DATABASE chapter10;

2.	 Create a schema named postgis in the chapter10 database, where we will install
PostGIS; execute the following command:
CREATE SCHEMA postgis;

Chapter 10

395

3.	 Install PostGIS in the postgis schema of the chapter10 database.

1.	 If you are running PostgreSQL 9.1 or a newer version, use the CREATE
EXTENSION statement.

	 CREATE EXTENSION postgis WITH SCHEMA postgis;

The WITH SCHEMA clause of the CREATE EXTENSION statement instructs
PostgreSQL to install PostGIS and its objects in the postgis schema.

2.	 If you are not running PostgreSQL 9.1 or a higher version, run PostGIS's
postgis.sql, spatial_ref_sys.sql, and rtpostgis.sql files.
But, before doing so, make sure you set the search_path field to the
PostGIS schema.

	 > psql -d chapter10

	 chapter10=# SET search_path = postgis;

	 chapter10=# \i /PATHTOFILE/postgis.sql

	 chapter10=# \i /PATHTOFILE/rtpostgis.sql

	 chapter10=# \i /PATHTOFILE/spatial_ref_sys.sql

4.	 Check whether or not the PostGIS installation has succeeded:
> psql -d chapter10

 chapter10=# SET search_path = public, postgis;

SET

 chapter10=# \dn

 List of schemas

 Name | Owner

---------+----------

 postgis | postgres

 public | postgres

(2 rows)

chapter10=# \d

 List of relations

 Schema | Name | Type | Owner

---------+-------------------+-------+----------

 postgis | geography_columns | view | postgres

 postgis | geometry_columns | view | postgres

 postgis | raster_columns | view | postgres

 postgis | raster_overviews | view | postgres

 postgis | spatial_ref_sys | table | postgres

Maintenance, Optimization, and Performance Tuning

396

5.	 The SET statement instructs PostgreSQL to consider the public and postgis
schemas when processing any SQL statements from our client connection.
Without the SET statement, the \d command will not return any relation
from the postgis schema.

6.	 To prevent the need to manually use the SET statement every time a client connects
to the chapter10 database, alter the database by executing the following command:
ALTER DATABASE chapter10 SET search_path = public, postgis;

All future connections and queries of chapter10 will result in PostgreSQL
automatically using both public and postgis schemas.

7.	 Load the PRISM rasters and San Francisco boundaries geometry, which we used in
Chapter 5, Working with Raster Data, by executing the following command:
> raster2pgsql -s 4322 -t 100x100 -I -F -C -Y
 C:\postgis_cookbook\data\chap5\PRISM\us_tmin_2012.01.asc
 prism | psql -d chapter10

8.	 As in Chapter 5, Working with Raster Data, we will postprocess the raster filenames
to a date column by executing the following command:
ALTER TABLE prism ADD COLUMN month_year DATE;
UPDATE prism SET
 month_year = (
 split_part(split_part(filename, '.', 1), '_', 3)
|| '-' ||
 split_part(filename, '.', 2) || '-01'
)::date;

9.	 Then, we load the San Francisco boundaries by executing the following command:
> shp2pgsql -s 3310 -I
 C:\postgis_cookbook\data\chap5\SFPoly\sfpoly.shp sfpoly |
 psql -d chapter10

10.	 Copy this chapter's dataset to its own directory by executing the following commands:
> mkdir C:\postgis_cookbook\data\chap10

> cp -r /path/to/book_dataset/chap10
 C:\postgis_cookbook\data\chap10

Chapter 10

397

11.	 We will use the shapefiles for California schools and police stations, provided by
the USEIT program at the University of Southern California. Import the shapefiles by
executing the following commands; use the spatial index flag -I only for the police
stations shapefile:
> shp2pgsql -s 4269 -I
 C:\postgis_cookbook\data\chap10\CAEmergencyFacilities
 \CA_police.shp capolice | psql -d chapter10

> shp2pgsql -s 4269
 C:\postgis_cookbook\data\chap10\CAEmergencyFacilities
 \CA_schools.shp caschools | psql -d chapter10

Visit the following link to download the shapefiles for California schools and
police stations:
http://scec.usc.edu/internships/useit/content/california-
emergency-facilities-shapefile.

How it works...
In this recipe, we created a new database and installed PostGIS in its own schema. We kept
the PostGIS objects separate from our geometries and rasters by not installing PostGIS in the
public schema. This separation keeps the public schema tidy and reduces the accidental
modification or deletion of the PostGIS objects.

In the following recipes, we will see that our decision to install PostGIS in its own schema
results in fewer problems when maintaining the database.

Setting up the correct data privilege
mechanism

PostgreSQL provides a fine-grained privilege system that dictates who can use a particular
set of data and how that set of data can be accessed by an approved user. Due to its granular
nature, creating an effective set of privileges can be confusing and may result in undesired
behavior. There are different levels of access that can be provided, from controlling who
can connect to the database server itself, to who can query a view, to who can execute a
PostGIS function.

The challenges to establishing a good set of privileges can be minimized by thinking of the
database as an onion. The outermost layer has generic rules and each layer inward applies
rules more specific than the last. An example of this is a company's database server that only
the company's network can access. Only one of the company's divisions can access database
A that contains a schema for each department. Within one schema, all users can run the
SELECT queries against views, but only specific users can add, update, or delete records
from tables.

Maintenance, Optimization, and Performance Tuning

398

In PostgreSQL, users and groups are known as roles. A role can be parent to other roles that
are themselves parents to even more roles. To reduce confusion, we avoid using the term in
this recipe as much as possible.

Getting ready
In this recipe, we focus on establishing the best set of privileges for the postgis schema
created in the previous recipe. With the right selection of privileges, we can control who can
use the contents of and apply operations to a geometry, geography, or raster column.

One idea worth mentioning is that the owner of a database object (such as the database
itself, a schema, or a table) always has full control over that object. Unless someone changes
the owner, the user who created the database object is typically the owner of the object.

How to do it...
In the preceding recipe, we imported several rasters and shapefiles to respective tables.
By default, access to those tables is restricted to only the user who performed the import
operation, also known as the owner. The following steps permit other users to access
those tables:

1.	 By executing the following commands, we will create several groups and
users in order for this recipe to demonstrate and test the privileges set
on the chapter10 database.
CREATE ROLE group1 NOLOGIN;

CREATE ROLE group2 NOLOGIN;

CREATE ROLE user1 LOGIN PASSWORD 'pass1' IN ROLE group1;

CREATE ROLE user2 LOGIN PASSWORD 'pass2' IN ROLE group1;

CREATE ROLE user3 LOGIN PASSWORD 'pass3' IN ROLE group2;

The first two CREATE ROLE statements create the groups, group1 and group2.
The last three CREATE ROLE statements create three users, with the user1 and
user2 users assigned to group1, and the user3 user assigned to group2.

2.	 We want the groups, group1 and group2, to have access to the chapter10
database. We want group1 to be permitted to connect to the database and create
temporary tables, while group2 is granted all database-level privileges, so we use
the GRANT statement as follows:
GRANT CONNECT, TEMP ON DATABASE chapter10 TO GROUP group1;

GRANT ALL ON DATABASE chapter10 TO GROUP group2;

Chapter 10

399

3.	 Let's check whether or not the GRANT statement worked by executing the
following commands:
> psql -d chapter10

chapter10=# \l

 List of databases

 Name | Owner | Encoding | Collation | Ctype |
Access privileges

-----------+----------+----------+------------+------------+------

 chapter10 | postgres | UTF8 | en_US.UTF8 | en_US.UTF8 | =Tc/
postgres +

 | | | | |
postgres=CTc/postgres+

 | | | | |
group1=Tc/postgres +

 | | | | |
group2=CTc/postgres
 postgres | postgres | UTF8 | en_US.UTF8 | en_US.UTF8 |

 template0 | postgres | UTF8 | en_US.UTF8 | en_US.UTF8 | =c/
postgres +

 | | | | |
postgres=CTc/postgres
 template1 | postgres | UTF8 | en_US.UTF8 | en_US.UTF8 | =c/
postgres +

 | | | | |
postgres=CTc/postgres

4.	 As you can see, group1 and group2 are present in the Access privileges
column of the chapter10 database.
group1=Tc/postgres

group2=CTc/postgres

5.	 There is one thing in the privileges of chapter10 that may be of concern to us.
=Tc/postgres

6.	 Unlike the privilege listings for group1 and group2, this listing has no value before
the equal sign (=). This listing is for the special public metagroup, which is built into
PostgreSQL and to which all users and groups automatically belong.

7.	 We don't want everyone to have access to the chapter10 database. So, we need
to use the REVOKE statement to remove privileges from the public metagroup by
executing the following command:
REVOKE ALL ON DATABASE chapter10 FROM public;

Maintenance, Optimization, and Performance Tuning

400

8.	 Let's see what the initial privileges are for the schemas of the chapter10 database
by executing the following command:
chapter10=# \dn+

 List of schemas

 Name | Owner | Access privileges |
Description

--------------------+----------+----------------------+-----------

 postgis | postgres | |

 public | postgres | postgres=UC/postgres+| standard
public schema

 | | =UC/postgres |

9.	 The postgis schema has no privileges listed. This does not mean that no one can
access the postgis schema though. Only the owner of the schema—postgres,
in this case—can access it. We will grant access to the postgis schema to both
group1 and group2 by executing the following command:
GRANT USAGE ON SCHEMA postgis TO group1, group2;

We generally do not want to grant the CREATE privilege in the postgis schema to
any user or group. New objects (such as functions, views, and tables) should not be
added to the postgis schema.

10.	 If we want all users and groups to have access to the postgis schema, we can grant
the USAGE privilege to the public metagroup by executing the following command:
GRANT USAGE ON SCHEMA postgis TO public;

11.	 Before continuing further, we should check that our privileges have been reflected in
the database.
chapter10=# \dn+

 List of schemas

 Name | Owner | Access privileges |
Description

--------------------+----------+----------------------+-----------

 postgis | postgres | postgres=UC/postgres+|

 | | group1=U/postgres +|

 | | group2=U/postgres |

 public | postgres | postgres=UC/postgres+| standard
public schema

 | | =UC/postgres |

Chapter 10

401

Granting the USAGE privilege to a schema does not allow the granted users and
groups to use any objects in the schema. The USAGE privilege only permits viewing
the schema's child objects. Each child object has its own set of privileges, which we
establish in the remaining steps.

12.	 PostGIS comes with more than 1,000 functions. It would be unreasonable to
individually set privileges for all those functions. Instead, we grant the EXECUTE
privilege to the public metagroup and then grant and/or revoke privileges to
specific functions, such as management functions.

13.	 First, grant the EXECUTE privilege to the public metagroup by executing the
following command:
GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA postgis TO public;

14.	 Now, revoke the EXECUTE privileges of the public metagroup for some functions,
such as postgis_full_version(), by executing the following command:
REVOKE ALL ON FUNCTION postgis_full_version() FROM public;

15.	 The GRANT and REVOKE statements do not differentiate between tables and views.
So, care must be taken to ensure that the applied privileges are appropriate for
the object.

16.	 We will grant the SELECT, REFERENCES, and TRIGGER privileges to the public
metagroup on all postgis tables and views by executing the following command;
none of these privileges give the public metagroup the ability to alter the tables'
or views' contents:
GRANT SELECT, REFERENCES, TRIGGER ON ALL TABLES IN SCHEMA
 postgis TO public;

17.	 We want to allow group1 to be able to insert new records into the spatial_ref_
sys table, so we must execute the following command:
GRANT INSERT ON spatial_ref_sys TO group1;

Groups and users that are not part of group1 (such as group2) can only use the
SELECT statements on spatial_ref_sys. Groups and users that are part of
group1 can now use the INSERT statement to add new spatial reference systems.

18.	 Let's give user2, which is a member of group1, the ability use the UPDATE and
DELETE statements on spatial_ref_sys by executing the following command;
we are not going to give anyone the privilege to use the TRUNCATE statement on
spatial_ref_sys:
GRANT UPDATE, DELETE ON spatial_ref_sys TO user2;

19.	 After establishing the privileges, it is always good practice to check that they actually
work. The best way to do so is by logging into the database as one of of the users.
We will use the user3 user to check by executing the following command:
> psql -d chapter10 -u user3

Maintenance, Optimization, and Performance Tuning

402

20.	 Now, check that we can run a SELECT statement on the spatial_ref_sys table by
executing the following commands:
chapter10=# SELECT count(*) FROM spatial_ref_sys;

count

 3911

(1 row)

21.	 Let's try inserting a new record in spatial_ref_sys by executing the
following commands:
chapter10=# INSERT INTO spatial_ref_sys VALUES (99999, 'test',
 99999, '', '');

ERROR: permission denied for relation spatial_ref_sys

22.	 Excellent! Now update records in spatial_ref_sys by executing the
following commands:
chapter10=# UPDATE spatial_ref_sys SET srtext = 'Lorum ipsum';

ERROR: permission denied for relation spatial_ref_sys

23.	 Run a final check on the postgis_full_version() function by executing the
following commands:

chapter10=# SELECT postgis_full_version();

ERROR: permission denied for function postgis_full_version

How it works...
In this recipe, we granted and revoked privileges based on the group or user, with
security increasing as a group or user descends into the database. This resulted in
group1 and group2 being able to connect to the chapter10 database and use objects
found in the postgis schema. The group1 group could also insert new records into the
spatial_ref_sys table. Only the user2 user was permitted to update or delete the
records of spatial_ref_sys.

The GRANT and REVOKE statements used in this recipe work, but they can be tedious to use
with a command-line utility such as psql. Instead, use a graphical tool, such as pgAdminIII,
that provides a grant wizard. Such tools also make it easier to check the behavior of the
database after granting and revoking privileges.

For additional practice, set up the privileges on the public schema and child objects such
that, although group1 and group2 will be able to run the SELECT queries on the tables, only
group2 will be able to use the INSERT statement on the caschools table. You will want to
make sure that an INSERT statement executed by a user of group2 actually works.

Chapter 10

403

Backing up the database
Having functional backups of your data and work is probably the least appreciated, yet the
most important thing you can do for your productivity (and stress level). You may think that
you don't need to have backups of your PostGIS database because you have the original
data imported to the database. But, do you remember all the work you did to develop the
final product? How about the intermediary products? Even if you remember every step in
the process, how much time will it take to create the intermediary and final products?

If any of these questions gives you pause, you need to create a backup for your data.
Fortunately, PostgreSQL makes the backup process painless or at least less painful
than the alternatives.

Getting ready
In this recipe, we use PostgreSQL's pg_dump utility. The pg_dump utility ensures that the data
being backed up is consistent, even if it is currently in use.

How to do it...
Use the following steps to back up a database.

1.	 Start by backing up the chapter10 database by executing the following command:
> pg_dump -f chapter10.backup -F custom chapter10

We use the -f flag to specify that the backup should be placed in the chapter10.
backup file. We also use the -F flag to set the format of the backup output as
custom by default, the most flexible and compressed of pg_dump's output formats.

2.	 Inspect the backup file by outputting the contents onto a SQL file by executing the
following command:
> pg_restore -f chapter10.sql chapter10.backup

After creating a backup, it is good practice to make sure that the backup is valid.
We do so with the pg_restore PostgreSQL tool. The -f flag instructs pg_restore
to emit the restored output to a file instead of a database. The emitted output
comprises standard SQL statements.

Maintenance, Optimization, and Performance Tuning

404

3.	 Use a text editor to view chapter10.sql. You should see blocks of SQL statements
for creating tables, filling created tables, and setting privileges shown as follows:
SET statement_timeout = 0;
SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;
...
CREATE TABLE capolice (
 gid serial NOT NULL,
 objectid integer,
 policestat character varying(8),
...
REVOKE ALL ON SCHEMA postgis FROM PUBLIC;
REVOKE ALL ON SCHEMA postgis FROM postgres;
GRANT ALL ON SCHEMA postgis TO postgres;
...

4.	 Because we backed up the chapter10 database using the custom format, we
have a fine-grained control over how pg_restore behaves and what it restores.
Let's extract only the public schema using the -n flag as follows:
> pg_restore -f chapter10_public.sql -n public
 chapter10.backup

5.	 If you compare chapter10_public.sql to the chapter10.sql file exported in
the preceding step, you see that the postgis schema is not restored.

How it works...
As you can see, backing up your database is easy in PostgreSQL. Unfortunately, backups
are meaningless if not performed on a regular schedule. If the database is lost or corrupted,
any work done since the last backup is also lost. It is encouraged that backups be done
at intervals that minimize the amount of work lost. The ideal interval will depend on the
frequency of changes done to the database. The pg_dump utility can be scheduled to run at
regular intervals by adding a job to the operating system's task scheduler, with instructions
available in the PostgreSQL wiki at http://wiki.postgresql.org/wiki/Automated_
Backup_on_Windows and http://wiki.postgresql.org/wiki/Automated_
Backup_on_Linux.

The pg_dump utility is not adequate for all situations. If you have a database undergoing
constant changes or one that is larger than a few tens of gigabytes, you will need a
backup mechanism far more robust than that discussed in this recipe. Information
regarding these robust mechanisms can be found in the PostgreSQL documentation
at http://www.postgresql.org/docs/current/static/backup.html.

Chapter 10

405

The following are several third-party backup tools available for establishing robust and
advanced backup schemes:

ff Barman, which is available at http://www.pgbarman.org
ff pg-rman, which is available at http://code.google.com/p/pg-rman

Using indexes
A database index is very much like the index of a book (such as this one). While a book's
index indicates the pages on which a word is present, a database column index indicates the
rows in a table containing a searched value. Just as a book's index does not indicate exactly
where on the page a word is located, the database index may not be able to denote the exact
location of the searched value in a row's column.

PostgreSQL has several types of indexes, such as B-Tree, Hash, GIST, SP-GIST, and GIN.
All these index types are designed to help queries find matching rows faster. What makes the
indexes different is the underlying algorithms. Generally, to keep things simple, almost all
PostgreSQL indexes are of the B-Tree type. PostGIS (spatial) indexes are of the GIST type.

Geometries, geographies, and rasters are all large, complex objects, and relating to or among
these objects takes time. Spatial indexes are added to the PostGIS data types to improve
search performance. The performance improvement comes not from comparing potentially
complex, actual spatial objects, but rather the simple bounding boxes of those objects.

Getting ready
For this recipe, psql will be used as follows to time the queries:

> psql -d chapter10
chapter10=# \timing on

We will use the caschools and sfpoly tables loaded in this chapter's first recipe.

How to do it...
The best way to see how a query can be affected by an index is by running the query before
and after the addition of an index. The following steps will guide you through the process of
optimizing a query with an index:

1.	 Run the following query, which returns the names of all the schools found in
San Francisco:
SELECT
 schoolid
FROM caschools sc
JOIN sfpoly sf
 ON ST_Intersects(sf.geom, ST_Transform(sc.geom, 3310));

Maintenance, Optimization, and Performance Tuning

406

2.	 The results from the query do not matter. We are more interested in the time
it took to run the query. When we run the query three times, it runs with the
following elapsed times; your numbers may be different from these numbers:
Time: 540.228 ms

Time: 585.835 ms

Time: 516.888 ms

3.	 The query ran quickly. But, if the query needs to be run many times (say 1,000 times),
it would take more than 500 seconds to run it those many times. Can the query run
faster? Use EXPLAIN ANALYZE to see how PostgreSQL runs the query, as follows:
EXPLAIN ANALYZE

SELECT

 schoolid

FROM caschools sc

JOIN sfpoly sf

 ON ST_Intersects(sf.geom, ST_Transform(sc.geom, 3310));

4.	 Adding EXPLAIN ANALYZE before the query instructs PostgreSQL to return the
actual plan used to execute the query, as follows:
 QUERY PLAN

--
--

Nested Loop (cost=0.00..4160.93 rows=4 width=9) (actual
 time=99.872..678.103 rows=234 loops=1)

 Join Filter: ((sf.geom && st_transform(sc.geom, 3310)) AND _st_
intersects(sf.geom, st_transform(sc.geom, 3310)))

 Rows Removed by Join Filter: 13254

 -> Seq Scan on sfpoly sf (cost=0.00..1.01 rows=1 width=32)
(actual time=0.016..0.017 rows=1 loops=1)

 -> Seq Scan on caschools sc (cost=0.00..551.88 rows=13488
 width=41) (actual time=0.009..13.671 rows=13488 loops=1)

5.	 What is significant in the preceding QUERY PLAN is Join Filter, which has
consumed most of the execution time. This may be happening because the
caschools table does not have a spatial index on the geom column.

6.	 Add a spatial index to the geom column, as follows:
CREATE INDEX caschools_geom_idx

 ON caschools

 USING gist

 (geom);

Chapter 10

407

7.	 Rerun the query from step 1 three times so as to minimize one-time anomalies.
With a spatial index, the query ran with the following elapsed query times:
Time: 451.231 ms

Time: 490.250 ms

Time: 469.842 ms

The query did not run much faster with the spatial index. What happened? We need
to check the QUERY PLAN.

8.	 See if the QUERY PLAN changed in PostgreSQL using EXPLAIN ANALYZE as follows:
 QUERY PLAN

--
--

Nested Loop (cost=0.00..4160.93 rows=4 width=9) (actual
 time=95.485..588.466 rows=234 loops=1)

 Join Filter: ((sf.geom && st_transform(sc.geom, 3310)) AND
 _st_intersects(sf.geom, st_transform(sc.geom, 3310)))

 Rows Removed by Join Filter: 13254

 -> Seq Scan on sfpoly sf (cost=0.00..1.01 rows=1 width=32)
 (actual time=0.018..0.019 rows=1 loops=1)

 -> Seq Scan on caschools sc (cost=0.00..551.88 rows=13488
 width=41) (actual time=0.008..12.511 rows=13488 loops=1)

The QUERY PLAN table is the same as that in step 4. The query is not using the
spatial index. Why?

If you look at the query, we used ST_Transform() to reproject caschools.geom
to the spatial reference system of sfpoly.geom. The ST_Transform() geometries
used in the ST_Intersects() spatial test were in SRID 3310, but the geometries
used for the caschools_geom_idx index were in SRID 4269. This difference in
spatial reference systems prevented the use of the index in the query.

9.	 We can create a spatial index that uses geometries projected in the desired spatial
reference system. An index that uses a function is known as a functional index. It
can be created as follows:
CREATE INDEX caschools_geom_3310_idx

 ON caschools

 USING gist

 (ST_Transform(geom, 3310));

Maintenance, Optimization, and Performance Tuning

408

10.	 Rerun the query from step 1 three times to get the following output :
Time: 279.548 ms

Time: 263.896 ms

Time: 238.668 ms

That's better! From about 500 ms to 260 ms.

11.	 Check the QUERY PLAN table as follows:
QUERY PLAN

--
--

 Nested Loop (cost=0.00..9.55 rows=4 width=9) (actual
 time=92.553..272.146 rows=234 loops=1)

 -> Seq Scan on sfpoly sf (cost=0.00..1.01 rows=1 width=32)
 (actual time=0.013..0.016 rows=1 loops=1)

 -> Index Scan using caschools_geom_3310_idx on caschools sc
 (cost=0.00..8.53 rows=1 width=41) (actual
 time=91.762..270.965 rows=234 loops=1)

 Index Cond: (sf.geom && st_transform(geom, 3310))
 Filter: _st_intersects(sf.geom, st_transform(geom, 3310))

 Rows Removed by Filter: 34

12.	 The plan shows that the query used the caschools_geom_3310_idx index.
The Index Scan command was significantly faster than the previously used
Join Filter command.

How it works...
Database indexes help us quickly and efficiently find the values we are interested in.
Generally, a query using an index is faster than one that is not, but the performance
improvement may not be to the degree found in this recipe.

Additional information about PostgreSQL and PostGIS indexes can be found at the
following links:

ff http://www.postgresql.org/docs/current/static/indexes.html

ff http://postgis.net/docs/using_postgis_dbmanagement.
html#id607043

We will discuss query plans in greater detail in a later recipe in this chapter. By understanding
query plans, it becomes possible to optimize the performance of deficient queries.

Chapter 10

409

Clustering for efficiency
Most users stop optimizing the performance of a table after adding the appropriate indexes.
This usually happens because the performance becomes "good enough". But what if the
table has millions or billions of records? This amount of information may not fit in the
database server's RAM, thereby forcing hard drive access. Generally, table records are stored
sequentially on the hard drive. But, the data being fetched from the hard drive for a query may
be accessing many different parts of the hard drive. Having to access different parts of a hard
drive is a known performance limitation.

To mitigate hard drive performance issues, a database table can have its records reordered
on the hard drive so that similar record data are stored next to or near each other. The
reordering of a database table is known as clustering and is used with the CLUSTER
statement in PostgreSQL.

Getting ready
We will use the California schools (caschools) and San Francisco boundaries (sfpoly)
tables for this recipe. If neither table is available, refer to the first recipe of this chapter.

The psql utility will be used for this recipe's queries as follows:

> psql -d chapter10

chapter10=# \timing on

How to do it...
Use the following steps to cluster a table:

1.	 Before using the CLUSTER statement, check the time at which the query used in the
previous recipe was executed by executing the following commands:
SELECT

 schoolid

FROM caschools sc

JOIN sfpoly sf

 ON ST_Intersects(sf.geom, ST_Transform(sc.geom, 3310));

2.	 We get the following performance numbers for three query runs:
Time: 274.619 ms

Time: 255.102 ms

Time: 295.135 ms

Maintenance, Optimization, and Performance Tuning

410

3.	 Cluster the caschools table using the caschools_geom_3310_idx index
as follows:
CLUSTER caschools
 USING caschools_geom_3310_idx;

4.	 Rerun the query from the first step three times for the following performance timings:
Time: 242.878 ms
Time: 220.739 ms
Time: 238.378 ms

5.	 The performance improvements were not significant.

How it works...
Using the CLUSTER statement on the caschools table did not result in a significant
performance boost. The lesson here is that there is no guarantee that query performance
will improve on a clustered table. Clustering should be reserved for tables with many large
records and only after adding the appropriate indexes to and optimizing queries for the tables
in question.

Optimizing SQL queries
When a SQL query is received, PostgreSQL runs the query through its planner to decide
the best execution plan. The best execution plan generally results in the fastest query
performance. Though the planner usually makes the correct choices, on occasion,
a specific query will have a suboptimal execution plan.

For these situations, the following are several things that can be done to change the behavior
of the PostgreSQL planner:

ff Add appropriate column indexes to the tables in question

ff Update the statistics of the database tables

ff Rewrite the SQL query by evaluating the query's execution plan and using capabilities
available in your PostgreSQL installation

ff Consider changing or adding to the layout of the database tables

ff Change the query planner's configuration

Adding indexes (item 1) is discussed in a separate recipe found in this chapter. Updating
statistics (item 2) is generally done automatically by PostgreSQL after a certain amount of
table activity. But, the statistics can be manually updated using the ANALYZE statement.
Changing the database layout and the query planner's configuration (items 4 and 5,
respectively) are advanced operations used only when the first three items have already
been attempted and thus, will not be discussed further.

Chapter 10

411

This recipe only discusses item 3, that is, optimizing performance by rewriting SQL queries.

Getting ready
For this recipe, we will find the nearest police station to every school and the distance in
meters between each school in San Francisco and its nearest station, as fast as possible. This
will require us to rewrite our query many times to be more efficient and take advantage of new
PostgreSQL capabilities.

How to do it...
The following steps will guide you through the iterative process required to improve
query performance:

1.	 To find a school's nearest police station and the distance between each school in
San Francisco and its nearest station, we will start by executing the following query:
SELECT

 di.school,

 police_address,

 distance

FROM (-- for each school, get the minimum distance to a
 police station

 SELECT

 gid,

 school,

 min(distance) AS distance
 FROM (-- get distance between every school and every police
 station in San Francisco

 SELECT

 sc.gid,

 sc.name AS school,

 po.address AS police_address,

 ST_Distance(po.geom_3310, sc.geom_3310) AS distance

 FROM (-- get schools in San Francisco

 SELECT

 ca.gid,

 ca.name,

 ST_Transform(ca.geom, 3310) AS geom_3310

 FROM sfpoly sf

Maintenance, Optimization, and Performance Tuning

412

 JOIN caschools ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

) sc

 CROSS JOIN (-- get police stations in San Francisco
 SELECT

 ca.address,

 ST_Transform(ca.geom, 3310) AS geom_3310
 FROM sfpoly sf

 JOIN capolice ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

) po

 ORDER BY 1, 2, 4

) scpo

 GROUP BY 1, 2

 ORDER BY 2

) di
JOIN (-- for each school, collect the police station addresses
ordered by distance

 SELECT

 gid,

 school,

 (array_agg(police_address))[1] AS police_address

 FROM (-- get distance between every school and every police
station in San Francisco

 SELECT

 sc.gid,

 sc.name AS school,

 po.address AS police_address,

 ST_Distance(po.geom_3310, sc.geom_3310) AS distance
 FROM (-- get schools in San Francisco

 SELECT

 ca.gid,

 ca.name,

 ST_Transform(ca.geom, 3310) AS geom_3310
 FROM sfpoly sf

Chapter 10

413

 JOIN caschools ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

) sc

 CROSS JOIN (-- get police stations in San Francisco

 SELECT

 ca.address,

 ST_Transform(ca.geom, 3310) AS geom_3310

 FROM sfpoly sf

 JOIN capolice ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

) po

 ORDER BY 1, 2, 4

) scpo

 GROUP BY 1, 2

 ORDER BY 2

) po

 ON di.gid = po.gid

ORDER BY di.school;

2.	 Generally speaking, this is a crude and simplistic query. The scpo subquery occurs
twice in the query because it needs to compute the shortest distance from a school
to its nearest police station and the name of the police station closest to each school.
If each instance of scpo took 10 seconds to compute, two instances of scpo would
take 20 seconds. This is very detrimental to performance.

3.	 The query output looks as follows:
 school | police_address
| distance

--+-----------------------
------+------------------

 ABRAHAM LINCOLN HIGH | 2345 24th Ave
| 348.311916238521

 ADDA CLEVENGER JUNIOR PREPARAT | 2345 24th Ave
| 1851.38147290568

 AIM HIGH ACADEMY | 3401 17th St
| 976.082872160513

 ...

(234 rows)

Maintenance, Optimization, and Performance Tuning

414

4.	 The query results do provide the addresses of the schools in San Francisco, the
addresses of the closest police station to each of those schools, and the distance
from each school to its closest police station. But, we are also interested in getting
the answer as fast as possible. With timing turned on in psql, we get the following
performance numbers for three runs of the query:
Time: 10873.610 ms

Time: 10560.931 ms

Time: 10754.971 ms

5.	 Just by looking at the query in step 1, we see that there are redundant subqueries.
Let's get rid of those duplicates using Common Table Expressions (CTEs), introduced
in PostgreSQL 8.4. CTEs are used to logically and syntactically separate a block of
SQL from subsequent parts of the query. Since CTEs are logically separated,
they are run at the start of the query execution and their results are cached for
subsequent use.
WITH scpo AS (-- get distance between every school and every
 police station in San Francisco

 SELECT

 sc.gid,

 sc.name AS school,

 po.address AS police_address,

 ST_Distance(po.geom_3310, sc.geom_3310) AS distance
 FROM (-- get schools in San Francisco

 SELECT

 ca.*,

 ST_Transform(ca.geom, 3310) AS geom_3310

 FROM sfpoly sf

 JOIN caschools ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

) sc

 CROSS JOIN (-- get police stations in San Francisco
 SELECT

 ca.*,

 ST_Transform(ca.geom, 3310) AS geom_3310

 FROM sfpoly sf

 JOIN capolice ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

Chapter 10

415

) po

 ORDER BY 1, 2, 4

)

SELECT

 di.school,

 police_address,

 distance

FROM (-- for each school, get the minimum distance to a police
station

 SELECT

 gid,

 school,

 min(distance) AS distance
 FROM scpo

 GROUP BY 1, 2

 ORDER BY 2

) di

JOIN (-- for each school, collect the police station
 addresses ordered by distance

 SELECT

 gid,

 school,

 (array_agg(police_address))[1] AS police_address

 FROM scpo

 GROUP BY 1, 2

 ORDER BY 2

) po

 ON di.gid = po.gid

ORDER BY 1;

6.	 Not only is the query syntactically cleaner, the performance improved as follows:
Time: 4192.614 ms

Time: 4651.967 ms

Time: 4329.707 ms

The execution times went from more than 10 seconds to less than 5 seconds.

Maintenance, Optimization, and Performance Tuning

416

7.	 Though some may stop optimizing this query at this point, we will continue to
improve the query performance. We can use the window functions, which are
another PostgreSQL capability introduced in v8.4. Using the window functions
as follows, we can get rid of the JOIN expression:
WITH scpo AS (-- get distance between every school and every
 police station in San Francisco
 SELECT

 sc.name AS school,

 po.address AS police_address,

 ST_Distance(po.geom_3310, sc.geom_3310) AS distance
 FROM (-- get schools in San Francisco

 SELECT

 ca.name,

 ST_Transform(ca.geom, 3310) AS geom_3310

 FROM sfpoly sf

 JOIN caschools ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))
) sc

 CROSS JOIN (-- get police stations in San Francisco

 SELECT

 ca.address,

 ST_Transform(ca.geom, 3310) AS geom_3310

 FROM sfpoly sf

 JOIN capolice ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

) po

 ORDER BY 1, 3, 2

)

SELECT

 DISTINCT school,

 first_value(police_address) OVER (PARTITION BY school ORDER
 BY distance),

 first_value(distance) OVER (PARTITION BY school ORDER BY
 distance)

FROM scpo

ORDER BY 1;

Chapter 10

417

8.	 We use the first_value() window function to extract the first police_address
and distance values for each school sorted by the distance between the school
and a police station. Though the readability of the SQL improves even more, it does
not look like the query improves with the use of the window functions, as seen in the
following elapsed times:
Time: 4268.268 ms

Time: 4493.860 ms

Time: 4490.656 ms

9.	 We should inspect the execution plan with EXPLAIN ANALYZE VERBOSE to see
what is decreasing the query performance. Due to the verbosity of the output,
we've trimmed it to just the following lines of interest:
 QUERY PLAN

--

--

 Unique (cost=19.43..19.45 rows=1 width=204) (actual
time=4224.661..4230.587 rows=234 loops=1)

 Output: scpo.school, (first_value(scpo.police_address) OVER
(?)), (first_value(scpo.distance) OVER (?)), scpo.distance

 CTE scpo

 -> Sort (cost=19.36..19.37 rows=1 width=104) (actual
time=3977.815..3986.504 rows=7956 loops=1)

 Output: ca.name, ca.address, (st_distance(st_transform(ca.
geom, 3310), st_transform(ca.geom, 3310)))

 Sort Key: ca.name, (st_distance(st_transform(ca.geom,
3310), st_transform(ca.geom, 3310))), ca.address

 Sort Method: external merge Disk: 496kB

 -> Nested Loop (cost=0.01..19.35 rows=1 width=104)
(actual time=174.856..3858.436 rows=7956 loops=1)

 Output: ca.name, ca.address, st_distance(st_
transform(ca.geom, 3310), st_transform(ca.geom, 3310))

 -> Nested Loop (cost=0.00..10.56 rows=1 width=81)
(actual time=90.613..108.940 rows=34 loops=1)

 Output: ca.address, ca.geom, sf.geom

 -> Nested Loop (cost=0.00..9.54 rows=1 width=49)
(actual time=90.576..108.221 rows=34 loops=1)

 Output: ca.address, ca.geom

...

Maintenance, Optimization, and Performance Tuning

418

10.	 In the EXPLAIN ANALYZE VERBOSE output, we want to inspect the values for the
actual time, which provide the actual start and end times for that part of the query. Of
all the actual time ranges, the value actual time, 174.856..3858.436, for the Nested
Loop (highlighted in the preceding output) is the worst. This query step consumes
at least 80 percent of the total execution time, so any work done to improve
performance must be done in this step.

11.	 The columns returned from the slow Nested Loop utility is found in the value for
the output. Of these columns, st_distance() is present only in this step and
not in any inner step. This means we will need to mitigate the number of calls to
ST_Distance().

12.	 At this step, further query improvements are not possible without running PostgreSQL
9.1 or a higher version. PostgreSQL 9.1 introduced indexed nearest-neighbor
searches using the <-> and <#> operators to compare the geometries' convex
hulls and bounding boxes, respectively. For point geometries, both operators result
in the same answer.

13.	 Let's rewrite the query to take advantage of the <-> operator. The following query still
uses the CTEs and window functions:
WITH sc AS (-- get schools in San Francisco

 SELECT

 ca.gid,

 ca.name,

 ca.geom

 FROM sfpoly sf

 JOIN caschools ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

), po AS (-- get police stations in San Francisco

 SELECT

 ca.gid,

 ca.address,

 ca.geom

 FROM sfpoly sf

 JOIN capolice ca

 ON ST_Intersects(sf.geom, ST_Transform(ca.geom, 3310))

)

SELECT

 school,

Chapter 10

419

 police_address,

 ST_Distance(ST_Transform(school_geom, 3310), ST_
Transform(police_geom, 3310)) AS distance

FROM (-- for each school, number and order the police stations by
how close
 each station is to the school

 SELECT

 ROW_NUMBER() OVER (PARTITION BY sc.gid ORDER BY sc.geom <->
po.geom) AS r,

 sc.name AS school,

 sc.geom AS school_geom,

 po.address AS police_address,

 po.geom AS police_geom

 FROM sc

 CROSS JOIN po

) scpo

WHERE r < 2

ORDER BY 1;

14.	 The query has the following performance numbers:

Time: 511.360 ms

Time: 535.226 ms

Time: 517.626 ms

Wow! Using indexed nearest-neighbor searches with the <-> operator, we reduced
our initial query from 10 seconds to almost half a second.

How it works...
In this recipe, we optimized a query that users may commonly encounter while using PostGIS.
We started by taking advantage of the PostgreSQL capabilities to improve the performance
and syntax of our query. Once performance could no longer improve, we ran EXPLAIN
ANALYZE VERBOSE to find out what was consuming most of the query-execution time. We
learned that the ST_Distance() function consumed the most time from the execution
plan. Finally, we used the <-> operator of PostgreSQL 9.1 to dramatically improve the
query-execution time to under a second.

Maintenance, Optimization, and Performance Tuning

420

The output of EXPLAIN ANALYZE VERBOSE used in this recipe is not easy to understand.
For complex queries, it is encouraged that you use the visual output in pgAdminIII (discussed
in a separate chapter's recipe) or the color coding provided by the http://explain.
depesz.com/ web service shown in the following screenshot:

Chapter 10

421

Migrating a PostGIS database to a different
server

At some point, user databases need to be migrated to a different server. This need for server
migration could be due to a new hardware or database-server software upgrade.

The following are the three methods available for migrating a database:

ff Dump and restore the database with pg_dump and pg_restore

ff Perform an in-place upgrade of the database with pg_upgrade

ff Perform streaming replication from one server to another

Getting ready
In this recipe, we will use the dump and restore methods to move user data to a new
database with a new PostGIS installation. Unlike the other methods, this method is the most
foolproof, works in all situations, and stores a backup in case things don't work as expected.

How to do it...
On the command line, perform the following steps:

1.	 Though a backup file was created in this chapter's third recipe, create a new backup
file by executing the following command:
> pg_dump -f chapter10.backup -F custom chapter10

2.	 Create a new database to which the backup file will be restored by executing the
following commands:
> psql -d postgres

postgres=# CREATE DATABASE new10;

3.	 Connect to the new10 database and create a schema for PostGIS as follows:
postgres=# \c new10

new10=# CREATE SCHEMA postgis;

4.	 If your PostgreSQL server supports CREATE EXTENSION, execute the
following command:
new10=# CREATE EXTENSION postgis WITH SCHEMA postgis;

Maintenance, Optimization, and Performance Tuning

422

Otherwise, run the following commands:

new10=# SET search_path = postgis;

new10=# \i /PATHTOFILE/postgis.sql

new10=# \i /PATHTOFILE/rtpostgis.sql

new10=# \i /PATHTOFILE/spatial_ref_sys.sql

5.	 Make sure you set the search_path parameter to include the postgis schema,
as follows:
new10=# ALTER DATABASE new10 SET search_path = public,
 postgis;

6.	 Restore only the public schema from the backup file to the new10 database by
executing the following command:
> pg_restore -d new10 --schema=public chapter10.backup

7.	 The restore method runs, but throws error messages such as the following:
pg_restore: [archiver (db)] Error while PROCESSING TOC:

pg_restore: [archiver (db)] Error from TOC entry 3781; 0
 3496229 TABLE DATA prism postgres

pg_restore: [archiver (db)] COPY failed for table "prism":
 ERROR: function st_bandmetadata(postgis.raster, integer[])
 does not exist

LINE 1: SELECT array_agg(pixeltype)::text[] FROM
 st_bandmetadata($1...

We installed PostGIS in the postgis schema, but the database server can't find the
ST_BandMetadata() function. If a function cannot be found, it is usually an issue
with search_path. We will fix this issue in the next step.

8.	 Check what pg_restore actually does by executing the following command:
pg_restore -f chapter10.sql --schema=public chapter10.backup

9.	 Looking at the COPY statement for the prism table, everything looks fine. But the
search_path parameter preceding the table does not include the postgis
schema as follows:
SET search_path = public, pg_catalog;

10.	 Change the search_path value in chapter10.sql to include the postgis
schema by executing the following command:
SET search_path = public, postgis, pg_catalog;

Chapter 10

423

11.	 Run chapter10.sql with psql, as follows; the original chapter10.backup file
can't be used because the necessary change can't be applied with pg_restore:

> psql -d new10 -f chapter10.sql

How it works...
This procedure is essentially the standard PostgreSQL backup and restore cycle. It may not
be simple, but has the benefit of being accessible in terms of the tools used and the control
available in each step of the process. Though the other migration methods may be convenient,
they typically require faith in an opaque process or the installation of additional software.

Replicating a PostGIS database with
streaming replication

The reality of the world is that, given enough time, everything will break. This includes the
hardware and software of computers running PostgreSQL. To protect data in PostgreSQL from
corruption or loss, backups are taken using tools such as pg_dump. However, restoring a
database backup can take a very long time during which users cannot use the database.

When downtime must be kept to a minimum or is not acceptable, one or more standby
servers are used to compensate for the failed primary PostgreSQL server. The data on the
standby server is kept in sync with the primary PostgreSQL server by streaming data as
frequently as possible.

In addition, you are strongly discouraged from trying to mix different PostgreSQL versions.
Primary and standby servers must run the same PostgreSQL version.

Getting ready
In this recipe, we will use the streaming replication capability introduced in PostgreSQL 9.0.
This recipe will use one server with two parallel PostgreSQL installations instead of the typical
two or more servers, each with one PostgreSQL installation. We will use two new database
clusters in order to keep things simple.

Maintenance, Optimization, and Performance Tuning

424

How to do it...
Use the following steps to replicate a PostGIS database:

1.	 Create directories for the primary and standby database clusters by executing the
following commands:
> mkdir C:\postgis_cookbook\db

> mkdir C:\postgis_cookbook\db\primary

> mkdir C:\postgis_cookbook\db\standby

> mkdir C:\postgis_cookbook\db\primary\archive

> mkdir C:\postgis_cookbook\db\standby\archive

2.	 Initialize the database clusters with initdb as follows:
> cd C:\postgis_cookbook\db

> initdb --encoding=utf8 --locale=en_US.utf8 -D primary

> initdb --encoding=utf8 --locale=en_US.utf8 -D standby

3.	 Edit the pg_hba.conf authentication file of the primary cluster by running the
following command:
> notepad primary\pg_hba.conf

4.	 If you're running PostgreSQL 9.0, add the following text to the end of pg_hba.conf:
local replication postgres trust

host replication postgres 127.0.0.1/32 trust

host replication postgres ::1/128 trust

5.	 For PostgreSQL 9.1 or a higher version, the script in the previous step is already
provided in pg_hba.conf. You just need to remove the comment character (#)
from the beginning of each matching line.

6.	 Edit the primary cluster's postgresql.conf configuration file to set the streaming
replication parameters. Search for each parameter and replace the assigned value to
the following:
port = 5433

wal_level = hot_standby

max_wal_senders = 5

wal_keep_segments = 32

archive_mode = on

archive_command = 'copy "%p"
 "C:\\postgis_cookbook\\db\\primary\\archive\\%f"' # for Windows

Chapter 10

425

7.	 Start PostgreSQL on the primary database cluster by executing the following command:
> pg_ctl start -D primary -l primary\postgres.log

8.	 Create a base backup of the primary database cluster and copy it to the standby
database cluster. Before performing the backup, create an exclusion list file for
xcopy (Windows only) by executing the following command:
> notepad exclude.txt

9.	 Add the following to exclude.txt:
postmaster.pid

pg_xlog

10.	 Run the base backup and copy the directory contents from the primary to the standby
database cluster, as follows:
> psql -p 5433 -d postgres -c "SELECT
 pg_start_backup('base_backup', true)"

> xcopy primary/ standby /e /exclude:exclude.txt

> psql -p 5433 -d postgres -c "SELECT pg_stop_backup()"

11.	 Make the following changes to the standby cluster's postgresql.conf
configuration file:
port = 5434

hot_standby = on

archive_command = 'copy "%p"
 "C:\\postgis_cookbook\\db\\standby\\archive\\%f"' # for
 Windows

12.	 Create the recovery.conf configuration file in the standby cluster directory by
executing the following command:
> notepad standby\recovery.conf

13.	 Enter the following in the recovery.conf configuration file:
standby_mode = 'on'

primary_conninfo = 'port=5433 user=postgres'

restore_command = 'copy
 "C:\\postgis_cookbook\\db\\standby\\archive\\%f" "%p"'

14.	 Start PostgreSQL on the standby database cluster by executing the following command:
> pg_ctl start -D standby -l standby\postgres.log

15.	 Run some simple tests to make sure the replication is working.

Maintenance, Optimization, and Performance Tuning

426

16.	 Create the test database and the test table on the primary database server by
executing the following commands:
> psql -p 5433 -d postgres

postgres=# CREATE DATABASE test;

postgres=# \c test

test=# CREATE TABLE test AS SELECT 1 AS id, 'one'::text AS
 value;

17.	 Connect to the standby database server by executing the following command:
> psql -p 5434 -d postgres

18.	 See if the test database is present by executing the following commands:
postgres=# \l

 List of databases

 Name | Owner | Encoding | Collate | Ctype |
Access privileges

-----------+----------+----------+------------+------------+------

 postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

 template0 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/
postgres +

 | | | | |
postgres=CTc/postgres
 template1 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/
postgres +

 | | | | |
postgres=CTc/postgres

 test | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

19.	 Connect to the test database and get the list of tables by executing the
following commands:
postgres=# \c test

test=# \d

 List of relations

 Schema | Name | Type | Owner

--------+------+-------+----------

 public | test | table | postgres

Chapter 10

427

20.	 Get the records, if any, in the test table by executing the following commands:
test=# SELECT * FROM test;

 id | value

----+-------

 1 | one

Congratulations! The streaming replication works.

How it works...
As demonstrated in this recipe, the basic setup for streaming replication is straightforward.
Changes made to the primary database server are quickly pushed to the standby
database server.

There are third-party applications to help establish, administer, and maintain streaming
replication on production servers. These applications permit complex replication strategies,
including multimaster, multistandby, and proper failover. A few of these applications include
the following:

ff Pgpool-II, which is available at http://www.pgpool.net

ff Bucardo, which is available at http://bucardo.org/wiki/Bucardo

ff Postgres-XC, which is available at
http://postgresxc.wikia.com/wiki/Postgres-XC_Wiki

ff Slony-I, which is available at http://slony.info

11
Using Desktop Clients

In this chapter, we will cover the following topics:

ff Adding PostGIS layers – QGIS

ff Using the Database Manager plugin – QGIS

ff Adding PostGIS layers – OpenJUMP GIS

ff Running database queries – OpenJUMP GIS

ff Adding PostGIS layers – gvSIG

ff Adding PostGIS layers – uDig

Introduction
At a minimum, Desktop GIS programs allow you to visualize data from a PostGIS database.
This relationship gets more interesting with the ability to edit and manipulate data outside
of the database and in a dynamic "play" environment.

Make a change, see a change! For this reason, visualizing the data stored in PostGIS is often
critical for effective spatial database management—or at least as a now-and-again sanity
check. This chapter will demonstrate both dynamic and static relationships between your
database and desktop clients.

Regardless of your experience level or role in the geospatial community, you should find
at least one of the four GIS programs serviceable as a potential intermediate staging
environment between your PostGIS database and end product.

In this chapter, we will connect to PostGIS using the following Desktop GIS programs: QGIS,
OpenJUMP GIS, gvSIG, and uDig.

Using Desktop Clients

430

Once connected to PostGIS, extra emphasis is placed on some of the more sophisticated
functionality offered by QGIS and OpenJUMP GIS using the DB Manager plugin and run
datastore queries, respectively.

Adding PostGIS layers – QGIS
In this recipe, we will establish a connection to our PostGIS database in order to add a table
as a layer in QGIS (formerly known as Quantum GIS). Viewing tables as layers is great for
creating maps or simply working on a copy of the database outside the database.

Please navigate to the following site to install the latest version of QGIS (2.0 as of writing
this book):

http://qgis.org/en/site/

On this page, click on Download Now and you will be able to choose the suitable operating
system and settings. QGIS is available for Android, Linux, Mac OS X, and Windows. You might
also be inclined to click on Discover QGIS to get an overview of some basic information about
the program, along with features, screenshots, and case studies.

Getting ready
To begin, let's download data from the following U.S. Census Bureau's FTP site:

ftp://ftp2.census.gov/geo/tiger/TIGER2012/EDGES/tl_2012_39035_edges.zip

The shapefile consists of roads, streams, and other line features found within Cuyahoga
County, Ohio.

Extract the ZIP file to your working directory and then load it into your
database using shp2pgsql. Be sure to specify the spatial reference system,
EPSG/SRID: 4269. When in doubt about using projections, use the wonderful
service provided by the folks at OpenGeo, located at the following website:
http://prj2epsg.org/search.

How to do it...
Now, it is time to take a look at the data we downloaded using QGIS. We must first create a
connection to the database in order to access the table. Get connected to PostGIS and add
the table as a layer with the following steps:

Chapter 11

431

1.	 Click on the Add PostGIS Layers icon:

2.	 Click on the New button below the empty Connections drop-down menu:

3.	 Create a new PostGIS connection. After the Add PostGIS Table(s) window
opens, create a name for the connection and fill in a few parameters for
your database—Host, Port, Database, Username, and Password:

Using Desktop Clients

432

4.	 Once you have entered all of the pertinent information for your database, click on the
Test Connect button to verify that the connection is successful. If the connection is
not successful, double check for typos and errors. Additionally, make sure you are
attempting to connect to a PostGIS-enabled database.

5.	 If the connection is successful, go ahead and check the Save Username and Save
Password checkboxes. This will prevent us from having to enter our login information
multiple times throughout the exercise.

6.	 Click on OK at the bottom of the menu to apply the connection settings. Now, you
can connect!

Make sure the name of your PostGIS connection appears in the drop-down menu,
and then click on the Connect button. If you choose not to store your username and
password, you will be asked to submit this information every time you try to access
the database.

Once connected, all schemas within the database will be shown and the tables will
be made visible by expanding the target schema.

Export your connection details in an XML file by clicking on the
Save button located below the Connections drop-down menu.
Select your connection and export it to a file. You can then load
the XML content from that file rather than entering all of your
database parameters over again.

7.	 Select the table(s) to be added as a layer by simply clicking on the table name or
anywhere along its row to select. Selection(s) will be highlighted in blue. To deselect
a table, click on it a second time and it will no longer be highlighted. Select the
tl_2012_39035_edges table that was downloaded at the beginning of the
chapter and click on the Add button:

Chapter 11

433

8.	 A subset of the table can also be added as a layer. This is accomplished by
double-clicking below the Primary Key column in the row of the table we will be using.

9.	 The Query Builder window will open, which aids in creating simple SQL WHERE clause
statements. Add the roads by selecting the records where roadflg = Y. This can be
done by typing a query or using the buttons within Query Builder:

10.	 Click on the OK button followed by the Add button. A subset of the table is now
loaded into QGIS as a layer. The layer is strictly a static, temporary copy of your
database. You can make whatever changes you like to the layer and it will not
affect the database table.

The same holds true the other way around. Changes to the table in the database will
have no effect on the layer in QGIS.

If needed, you can save the temporary layer in a variety of formats, such as DXF,
GeoJSON, KML, or SHP. Simply right-click on the layer name in the Layers panel and
click on Save As. This will then create a file, which you can recall at a later time or
share with others.

Using Desktop Clients

434

The following screenshot shows the Cuyahoga County road network:

How it works...
You have added a PostGIS layer into QGIS using the built-in Add PostGIS Table GUI. This was
achieved by creating a new connection and entering your database parameters.

Any number of database connections can be set up simultaneously. If working with multiple
databases is more common for your workflows, saving all of the connections into one XML
file (see the tip in the preceding section) would save much time and energy when returning to
these projects in QGIS.

Using the Database Manager plugin – QGIS
The Database Manager (DB Manager) allows for a more sophisticated relationship with
PostGIS by allowing users to interact with the database in a variety of ways. The plugin mimics
some of the core functionality of pgAdmin with the added benefit of data visualization.

Chapter 11

435

In this recipe, we will use DB Manager to create, modify, and delete items within the
database and then tinker with the SQL window. By the end of this section, you will be
able to do the following:

ff Navigate to the DB Manager menu

ff Create, modify, and delete database schemas and tables

ff Run SQL queries to add new QGIS layers or create new tables in the database

QGIS needs to be installed for this recipe. Please refer to the first recipe in this chapter for
information on where to download the installer.

Getting ready
Let's make sure the plugin is enabled and connected to the database.

1.	 Click on the Plugins menu located on the QGIS menu bar and select Manage and
Install Plugins from the drop-down menu:

2.	 The QGIS Plugin Manager window will open. Search for DB Manager in the list of
plugins and make sure it is checked (enabled):

Using Desktop Clients

436

3.	 Now that DB Manager is enabled, let us open the plugin and check the status of the
database connection. Open DB Manager by navigating to Database | DB Manager
from the QGIS menu bar:

4.	 Expand the PostGIS directory within the Tree window of DB Manager. The PostGIS
connection created in the last recipe will appear. Expand the connection to view your
schema(s) and table(s). You will be asked for a username and password if you opted
not to save your credentials.

A PostGIS connection is not in place if you are unable to expand the PostGIS menu. If you
need to establish a connection, refer to steps 1 to 4 in the Adding PostGIS layers – QGIS
recipe. The connection must be established before using the DB Manager.

How to do it...
Navigate to the DB Manager menu and carry out the following steps:

1.	 Select the tl_2012_39035_edges table in the Tree window.

2.	 Click on the Info tab above the main window to view information about the data,
such as spatial reference, geometry type, field names, field types, and much more,
as shown in the following screenshot:

Chapter 11

437

3.	 Next, click on the Table tab to view the actual data table:

4.	 The final tab, Preview, is for visualizing the data:

Using Desktop Clients

438

To create, modify, and delete database schemas and tables, follow the ensuing steps:

1.	 First, let's create a new schema in the database to store data for this chapter. Select
Schema | Create schema from the menu bar:

2.	 Enter Chp11 as the schema name and then click on OK. The schema has been
created, but will not be visible until you refresh the connection to the database.
Select the database connection in the Tree window once you've clicked on the
Refresh button:

3.	 Your new, empty schema will now be visible in the Tree window. Let's move the
tl_2012_39035_edges table to the Chp11 schema. Simply select the table in
the Tree window and then click on Table in the menu bar. Go to Move to schema |
Chp11, as shown in the following screenshot:

Chapter 11

439

4.	 Next, let's modify the table name to something more generic. How about "lines"? You
can change the table name by clicking on the table in the Tree window. As soon as
the text is highlighted and the cursor flashes, you can delete the existing name and
enter the new name, lines.

Right now, our lines table's data is using degrees as the unit of measurement for its current
projection (EPSG: 4269). Let's add a new geometry column using EPSG: 3734, which is a
State Plane Coordinate system that measures projections in feet. To run SQL queries, follow
the ensuing steps:

1.	 Click on the SQL window button in the DB Manager:

2.	 Copy the following query into the SQL window and then click on Execute:
SELECT AddGeometryColumn('Chp11', 'lines','geom_sp',3734,
'MULTILINESTRING', 2);

UPDATE "Chp11".lines SET geom_sp = ST_Transform(geom,3734);

Using Desktop Clients

440

The query creates a new geometry column named geom_sp, and then updates
the geometry information by transforming the original geometry (geom) from
EPSG 4269 to 3734:

3.	 Refresh the Chp11 schema and you'll notice that the table in the database now has
two geometry columns that are treated independently in the Tree window:

The preceding screenshot shows the created geometry. The following screenshot
shows the original geometry.

4.	 For our next query, let us take a subset of the lines table. Similar to what we did
in the preceding section, we will only look at the data about the roads. However, this
time, we can limit the columns that we want to load with the layer, as well as perform
more complicated spatial queries. We'll apply a buffer of 10 feet using the new
geometry column (geom_sp), by executing the following command:
SELECT gid, ST_Buffer(geom_sp, 10) AS geom, fullname, roadflg FROM
"Chp11".lines WHERE roadflg = 'Y'

Chapter 11

441

Check the Load as new layer checkbox, and then select gid as the unique ID and
geom as the geometry. Create a name for the layer and then click on Load Now!:

The query adds the result in QGIS as a temporary layer.

5.	 Now, let us modify the query to create a table in the database rather than load the
query as a layer, by executing the following command:

CREATE TABLE "Chp11".roads_buffer_sp AS SELECT gid, ST_
Buffer(geom_sp, 10) AS geom, fullname, roadflg FROM "Chp11".lines
WHERE roadflg = 'Y'

Using Desktop Clients

442

The following screenshot shows the Cuyahoga Country Road Network:

How it works...
Connecting to a PostGIS database (see the Adding PostGIS layers – QGIS recipe in this
chapter) allows you to utilize the DB Manager plugin. Once the DB Manager was enabled,
we were able to toggle between the Info, Table, and Preview tabs to efficiently view metadata,
tabular data, and data visualization.

Next, we made changes to the database by adding a new schema and moving an existing
table to the new schema. A query was then run on the table in order to transform the
projection. Note the autocomplete feature in the SQL Window, which makes writing
queries a breeze.

Changes to the database were made visible in the DB Manager by refreshing the database
connection. So, while changes are being made in the database, they can only be seen in
QGIS after clicking on the Refresh button. This is a minor inconvenience in an otherwise
very powerful tool.

Chapter 11

443

Adding PostGIS layers – OpenJUMP GIS
In this section, we will connect to PostGIS with OpenJUMP GIS (OpenJUMP) in order to add
spatial tables as layers. Next, we will edit the temporary layer and update it in a new table in
the database.

The JUMP in OpenJUMP stands for Java Unified Mapping Platform. To learn more about the
program, or if you need to install the latest version, go to:

http://www.openjump.org/.

Click on the Download it here link on the previously mentioned page to view the list of
installers. You can click on the View Details icon next to an installer to make sure you select
the version that suits your operating system. Detailed directions for installing OpenJUMP,
along with other documentation and information, can be found on the OpenJUMP Wiki page
at the following link:

http://sourceforge.net/apps/mediawiki/jump-pilot/index.
php?title=Main_Page.

Getting ready
We will be reusing and building upon data used in the Adding PostGIS layers – QGIS recipe.
If you skipped over this recipe, you will want to do the following:

1.	 Download the following ZIP file from the U.S. Census Bureau's FTP site:
ftp://ftp2.census.gov/geo/tiger/TIGER2012/EDGES/tl_2012_39035_
edges.zip.

The shapefile consists of roads, streams, and other line features found within
Cuyahoga County, Ohio.

2.	 Extract the ZIP file to your working directory and then load it into your database using
shp2pgsql. Be sure to specify the spatial reference system, which is EPSG: 4269,
and name the table lines.

Using Desktop Clients

444

How to do it...
The data-source layer can be added by performing the following steps:

1.	 Click on the Open (folder) icon or go to File | Open.
2.	 Select Data Store Layer from the left-hand-side menu:

3.	 Click on the icon to the right of the Connection dropdown to open the
Connection Manager.

4.	 Click on the Add button. This will prompt a new window in which you must enter your
database parameters:

Chapter 11

445

5.	 Enter a name for the connection and then enter values for the following database
parameters:

�� Server/Host

�� Port

�� Database

�� Username

�� Password

6.	 Then, click on OK:

7.	 We are now connected to the database; you can see a green circle to the left of the
connection name:

The copy of the connection we added here has a typo for contrast (port 54321
instead of 5432). A red x mark next to the connection name means the connection
was not successful. Check for typos and errors if a red x mark is next to your
connection. If the connection is successful, select the connection and click on OK.

Using Desktop Clients

446

8.	 Click the Dataset drop-down menu to select the lines table to add:

If multiple geometry columns exist, you may choose the one you want to use with
the Geometry drop-down menu. Add the data's State Plane Coordinator geometry
(geom_sp), as shown in the Using the Database Manager plugin – QGIS recipe.

Simple SQL WHERE clause statements can be used if only a subset of a table
is needed.

9.	 Click on Finish to load the dataset into the main window:

Chapter 11

447

10.	 Now, let us make a quick edit to the temporary layer and save it back to the database.
Select the Editing Toolbox button:

11.	 The toolbox will be loaded over the main menu. Click on the Select Features Tool
button (to the top-left corner of the screen):

12.	 Select some of the lines, as shown in the following screenshot, that look out of place
on the map. In particular, the lines to the North of the county; these actually jet out
into Lake Erie. You can select multiple lines by clicking-and-dragging a rectangle with
the cursor or holding Shift while clicking on line segments. Hit the Delete key once
you have selected some lines to remove them from the data.

Using Desktop Clients

448

13.	 Save the changes made to the layer and replace the existing table in the database
with the edited copy. Right-click on the layer name on the left panel and then select
Save Dataset As.

14.	 Select your PostGIS connection with the Connection drop-down menu, choose the
appropriate table name, and then make sure that the Create new or replace existing
table option is selected:

15.	 Click on OK; now you have successfully edited a PostGIS table in OpenJUMP.

How it works...
We added a PostGIS layer in OpenJUMP using the Open Data Store Layer menu. This was
achieved after creating a new connection and entering our database parameters.

In the example, census data was added that included the boundary of Cuyahoga County. Part
of the boundary advances into Lake Erie to the International Boundary with Canada. While
technically correct, the water boundary is typically not used for practical mapping purposes.
In this case, it's easy to visualize which data needs to be removed.

OpenJUMP allows us to easily see and delete records that should be deleted from the table.
The selected lines were deleted and the table was saved to the database.

Chapter 11

449

Running database queries – OpenJUMP GIS
Executing ad hoc queries in OpenJUMP is simple and offers a couple of unique features.
Queries can be run on specific data selections, allowing for the manual control of the queried
area without considering the attribution. Similarly, temporary fences (areas) can be drawn on
the fly and the geometry of the surface can be used in queries. In this recipe, we will explore
each of those cases.

Getting ready
Refer to the preceding recipe if you need to install OpenJUMP or require assistance
connecting to a database.

How to do it...
Carry out the following steps to run the data store query:

1.	 Navigate to File | Run Datastore Query:

2.	 Choose the PostGIS connection from the Connection drop-down menu, or use the
Connection Manager utility if you are not linked to the database.

3.	 We'll create and name a polygon layer of the main streams in the region by executing
the following query:
SELECT gid, ST_BUFFER("Chp11".lines.geom_sp, 75) AS the_geom,
fullname FROM "Chp11".lines WHERE fullname <> ''

AND hydroflg = 'Y'

Using Desktop Clients

450

The preceding query is shown in the following screenshot:

The preceding query selects the lines on the map that represent hydrology units such
as "hydroflg" = 'Y' and streams. The selected stream lines (which use the
State Plane geometry) are buffered by 75 feet, which should yield a result like that
shown in the following screenshot:

Chapter 11

451

4.	 The ST_Buffer function uses the units of the data projection for bufferring. So, if
your data still has the original spatial reference, EPSG: 4269, you will be buffering
the lines by 75 degrees, and this will lead to very strange results indeed! Modify the
following SQL query to transform your geometry:
SELECT AddGeometryColumn('Chp11', 'lines','geom_sp',3734,
'MULTILINESTRING', 2);

UPDATE "Chp11".lines SET geom_sp = ST_Transform(geom,3734);

5.	 You'll then want to go back to step 3 in order to create the buffer measured in feet.

6.	 Next, pan and zoom on the map and find two separate polygons that are near
each other.

7.	 Select the Fence icon on the main menu:

8.	 Draw a connection (overlapping a connection is fine) between the two unconnected
polygons using the Fence tool. Click once on the Fence button to create a vertex,
and double-click on it once your polygon is complete.

9.	 Switch over to the Select Features Tool, as shown in the following screenshot, and
select polygons that you drew on either side of the Fence bridge; select multiple
features by holding down the Shift key:

Using Desktop Clients

452

You should now have a fence junction between the selected polygons. You should see
something similar to the following screenshot:

10.	 Navigate to File | Run Datastore Query again.

11.	 This time, we will utilize the buttons to the right-hand side of the window to connect.

Run ST_UNION on the selection and fence together so that the gap is filled. We do
this with a query, as follows:
SELECT ST_UNION(geom1, geom2) AS geom

Use the selection and fence buttons in place of geom1 and geom2 so that your query
looks like that shown in the following screenshot:

12.	 Click on OK and view the query result by turning off the Main Streams and Fence
layers, as shown in the following screenshot:

Chapter 11

453

How it works...
We added a buffered subset of a PostGIS layer in OpenJUMP using the Run Datastore Query
menu. We took lines from a database table and converted them to polygons, to viewing them
in OpenJUMP.

We then manually selected an area of interest that had two representative stream polygons
disjointed from one another. The idea being that the streams would be or are connected in a
natural state.

The Fence tool was used to draw a freehand polygon between the streams. A union query
was then performed to combine the two stream polygons and the fences. Fences allow us to
create temporary tables for use in spatial queries executed against a database table.

Adding PostGIS layers – gvSIG
gvSIG is a GIS package developed for the Generalitat Valenciana (gv) in Spain. SIG is the
Spanish equivalent of GIS. Intended for use all over the world, gvSIG is available in more
than a dozen languages.

Installers, documentation, and more details for gvSIG can be found at the following website:

http://www.gvsig.org/web/

To download gvSIG, click on the latest version (gvSIG 2.0, as of this writing). The all-included
version is recommended on the gvSIG site. Be careful while selecting the .exe or .bin
versions; otherwise, you may download the program in a language that you don't understand.

Using Desktop Clients

454

Getting ready
Before we begin, we have to deal with the incompatibility between PostGIS 2.0 and gvSIG. Older
functions that have been left out of PostGIS 2.0 are needed for this recipe. Luckily, dealing with
incompatibility issues is a quick and easy fix when you perform the following steps:

1.	 Search for legacy.sql in your PostgreSQL directory. It should be at the
following location:

C:\Program Files\PostgreSQL\9.2\share\contrib\postgis-2.0

2.	 Open the file with Notepad select all and copy.

3.	 Load pgAdmin III and open a SQL window.

4.	 Paste the contents from legacy.sql into the SQL window, and click on Run.

A second or so later, you should be all set!

How to do it...
The GeoDB layer can be added by following the ensuing steps:

1.	 Select View as the document type in the Project manager section and then click on
the New button. A blank view (canvas) will open.

2.	 Click on the Add Layer button on the menu bar:

Chapter 11

455

3.	 Next, select the GeoDB tab and click on the button to the right of the Choose
connection drop-down menu.

4.	 Enter the values in Connection parameters and make sure to select
PostgreSQLExplorer as the value for Driver:

5.	 Click on OK. All of your tables should appear in Choose table. One or many tables
can be added at a time. You can also do the following:

�� Choose the columns you want to add in each layer

�� Select the geometry column to be used in the event of multiple geometries
being present

�� Give each layer a unique name

�� Perform SQL WHERE clause queries to load a subset of a dataset

Using Desktop Clients

456

You can see these steps performed in the following screenshot:

6.	 Click on OK when you're ready. The data will load in the new view that was created,
as shown in the following screenshot:

Chapter 11

457

How it works...
PostGIS layers were added to gvSIG using the Add Layer menu. The GeoDB tab allowed us to
set the PostGIS connection. After choosing a table, many options are afforded with gvSIG. The
layer name can be aliased to something more meaningful, and unnecessary columns can be
omitted from the table.

Adding PostGIS layers – uDig
A hallmark of the User-friendly Desktop Internet GIS (uDig) program is that it can be used as
a standalone application or plugin for existing applications. Details on the uDig project, as well
as installers, can be found at the following website:

http://udig.refractions.net/

Click on Downloads on the preceding website to view the list of versions and installers.
As of this writing, 1.4 is the latest stable version. uDig is supported by Windows, Mac OS X,
and Linux.

In this recipe, we will quickly connect to a PostGIS database and then add a layer to uDig.

Using Desktop Clients

458

How to do it...
Carry out the following steps:

1.	 Navigate to Layer | Add from the main menu:

2.	 Select PostGIS as the data source and click on the Next button to continue:

Chapter 11

459

3.	 Fill in your PostGIS connection parameters and then click on the Next button:

4.	 Select the target database in the Database drop-down menu. Click on the List button
to view all of the tables from the database that have valid geometries. Then, check
the checkboxes for one or more tables to add them as layers:

5.	 Click on Finish and your data will be loaded in the Map window.

Using Desktop Clients

460

How it works...
The Add Layer menu in uDig generates a hefty list of possible sources that can be added.
PostGIS was set as the database, and your database parameters were entered. uDig was then
connected to the database. Clicking on List calculates the total number of tables available in
the connected database. Any number of tables can be added at once.

Index
Symbols
2D polygons of building footprints

extruding, as 3D 247-255
3D queries

performing, on LiDAR point cloud 245, 246
3D TIN

creating 279
\d command 396
.gpx file 86
-hstore option 39
-I flag 129
-I option 44
.kmz file 96
-lco layer creation option 17
@property definitions 388
-sql option 32
-t_srs option 17
-where option 17

A
A* 222
AddGeometryColumn function 12
Add PostGIS Layers icon 431
Add sighting button 382
AddWeatherStation method 291
advanced map-algebra operations

performing 200-206
alphashape function 226
ampersand (&) 72
analysis

working with 177-181
arbitrary 3D objects

creating, for PostGIS 257
automatic administrative interface 385

B
Barman

URL 405
basic raster information

working with 177-181
batch dataset export

handling 25-32
batch dataset import

handling 25-32
Bucardo 427

C
clustering 409
Comma Separated Values (CSV) 8
Comma Separated Values (CSVs) 244
common attribute

used, for merging polygons 110-112
Common Table Expression (CTE) 109
Common Table Expressions (CTEs) 414
correct data privilege mechanism

about 397
setting up 398-402
working 402

coverage 174
CreateFeature method 324
CreateGeometryFromWkt method 324
CreateLayer method 323
CRS (Coordinate Reference Systems) 346
CRUD GIS web application 326
Cuyahoga Country Road Network

diagram 442

462

D
data

exporting, to shapefile with pgsql2shp PostGIS
command 33, 34

loading, from OSM 220
database

backing up 403, 404
organizing 394-397

database index
about 405, 406
working 408

Database Manager. See DB Manager plugin
database queries

running 449-453
data deployment

geometries, clipping for 116-119
DataType property 324
DB Manager plugin

using 435-441
working 442

demographics
used, for driving distance calculation

229-232
DEM operations

executing 206-209
Dijkstra

routing 215-219
using 216

distances
measuring 107-110

distance/service area calculation
driving 224-228

django-admin command 376
Django template language

about 386
URL 392

Django URL Dispatcher 385
Django web framework 326
driving distance

calculating, with demographics 229-232

E
Editing Toolbox button 447
Enhanced Vegetation Index (EVI) 200
EOSDIS (Earth Observing System Data and

Information System) 12

error tolerance 198
European Forest Fire Information System

(EFFIS) 8
European Petroleum Survey Group (EPSG) 58
EVI 200
Exchangeable Image File format (EXIF) 258
external scripts

bundling, as function 166, 167
input text, preparing 160-164
results, returning 164
test table, preparing 159
translating, into geometry 167, 168, 172
used, for functionality embedding 152-155
used, for other library embedding 156-159

F
Fence tool 453
Find_PlaceNames function 305
functional index 407

G
GDAL

about 12
used, for netCDF datasets import 316-324
used, for nonspatial tabular data (CSV) import

12-16
gdalbuildvrt command 45
gdalbuildvrt utility 197
gdalinfo command 41
gdalinfo command-line utility 39
GDAL OGR virtual format 12
GDAL Python bindings 282
gdal_translate command

used, for raster exporting 51-53
GDAL utilities

gdalbuildvrt 174
gdalinfo 174
gdal_translate 174

GDAL VRT format 194
gdalwarp GDAL command

used, for raster exporting 51-53
geocode method 312
geocoding

GeoNames datasets, using 302-305
OSM datasets, using with trigrams 306-312
with geopy 312-316

463

GeoDB tab 455
GeoDjang

used, for web applications development
375-392

GeoDjango library 326, 385
geography spatial data type 110
geometries

clipping, for data deployment 116-119
combining, with rasters for analysis 187, 188
rasters, converting to 189-193
rotating 137-146
scaling 142-146
simplifying 101-107
simplifying, with PostGIS topology 120-125
translating 142-146
using 187

geometry column
populating, with triggers 59-61

GeoNames
accessing 292
URL 291

GeoNames datasets
used, for geocoding 302-305
used, for reverse geocoding 302-305

geopy
about 312
used, for geocoding 312-316

GeoServer
about 325
used, for WFS services creating 339-351
used, for WMS creating 339-351

Geospatial Data Abstraction Library. See
GDAL

geospatial views
about 56
using 57, 58

GeoTIFF format 174
Get_Closest_PlaceNames function 305
GetGeoTransform method 324
GetRasterBand method 323
GetSubDatasets method 323
GetWeatherData method 291
GIS analysis

with spatial joins 96-101
GML (Geography Markup Language) 335
GPS data

about 85

working with 86-92
GPX GDAL driver 90
graph structure 216
gvSIG

about 453
downloading 453
PostGIS layers, adding to 453-457

H
HDF5 format 174

I
IIS 351
imports

normalizing 71-75
internal overlays

linestrings, reconverting to polygons 78
normalizing 76, 79
polygons, converting to linestrings 77
resultant polygon center points, searching 79
tabular relationships querying, resultant

points used 79
Internet Information Server. See IIS
intersections

computing 112-116
invalid geometries

about 92
fixing 92-95

isBaseLayer property 362

J
Java Unified Mapping Platform. See JUMP
Java Virtual Machine (JVM) 340
JPEG format 174
JSON format 290
JUMP 443

K
K-Nearest Neighbor. See KNN
KNN

about 128
used, for proximity filtering improvement

128-136

464

L
LAS 242
LASer 242
leaflet

about 325, 365
used, for WMS services consuming 365-368

Leaflet JavaScript library 375
LiDAR

about 148, 242
building footprints 148-151
data, importing 242-244

LiDAR data
importing 242

LiDAR point cloud
3D queries, performing on 245, 246

Light Detection And Ranging. See LiDAR
linestrings

converting, to polygons 78

M
Manage and Install Plugins 435
mapfile 327
MapServer

about 325
used, for WFS services creating 326-339
used, for WMS creating 326-339
used, for WMS Time creating 352-358

models
exporting, as X3D 261-265

Moderate Resolution Imaging
Spectroradiometer (MODIS) 12

multiple rasters
importing, simultaneously 45-51

N
Nested Loop utility 418
netcdf2postgis method 321
netCDF datasets

importing, GDAL used 316-323
importing, Python used 316-324

NetCDF format 174
New Vector Data Source page 342
nonspatial tabular data (CSV)

importing, with GDAL 12-16

importing, with PostGIS functions 8-12
Normalized Difference Vegetation Index

(NDVI) 200

O
ogr2ogr 85
ogr2ogr command 27
ogr2ogr GDAL command

used, for data exporting 21-25
used, for data importing 21-24

OGR dataset 24
ogrinfo command 13
OGR Python bindings

used, for writing PostGIS vector data
291-297

Oil & Gas Producers (OGP) 58
Open Data Commons Open Database License

(ODbL) 38
Open Geospatial Consortium (OGC) 337
OpenJUMP

database queries, running 449
OpenJUMP GIS

used, for PostGIS connecting 443-448
OpenLayers

about 325
used, for WFS-T consuming 369-373
used, for WMS services consuming 359-364

OpenLayers Javascript library 347
OpenStreetMap. See OSM
OpenStreetMap data. See OSM
OpenStreetMap 306
orthorectification

about 274
point cloud, converting to voronoi polygons

275, 276
polygons, attributing with color 276
polygons, rendering to raster 277-279

OSGeo4W 284
osm2pgrouting command 220, 221
osm2pgsql command

used, for OpenStreetMap data import 35-39
OSM

about 220
data, loading from 220
importing, osm2pgsql command used 34-38

465

loading from 220-223
OSM datasets

with trigrams, used for geocoding 306-312
overview 199

P
pgAdminIII 210
pg_dump utility 404
Pgpool-II 427
pgr_alphaShape function 225
pgr_drivingdistance polygon 230
pg-rman 405
pgRouting

about 215
downloading 215

pgsql2shp command 34
pgsql2shp PostGIS command

used, for data exporting to shapefile 33, 34
PL/Python

used, for geocoding 312-316
used, for writing PostGIS functions 297-301

PNG format 174
point-in-polygon query

performing 79
polygon centerlines

extracting 232-239
polygonize_to_multi function 144
polygon overlays

used, for proportional census estimating
80-83

polygons
converting, to linestrings 77, 78
merging, common attribute used 110-112

polygon_to_line function 78
PostGIS

about 206
3D capabilities 241
arbitrary 3D objects, creating for 257-260
layers, adding 430

PostGIS 3D
used, for UAV image footprint reconstruction

265-272
PostGIS database

migrating, to different server 421, 422
replicating, streaming replication used

423-426

postgis_full_version() function 402
PostGIS functions

used, for nonspatial tabular data (CSV) import
8-12

writing, with PL/Python 297-301
PostGIS layers

adding, to gvSIG 453-457
adding, to OpenJUMP GIS 443-448
adding, to QGIS 430-434
adding, to uDig 457-459

PostGIS programs
writing 281, 282
writing, Linux used 283
writing, Windows used 284

PostGIS topology
about 86
geometries, simplifying with 120-125

PostGIS vector data
writing, with OGR Python bindings 291-297
writing, with Psycopg 284-290

PostgreSQL planner
changing, points 410

Postgres-XC 427
proportional_sum function 229
proximity filtering

improving, with KNN 128-136
psql 210
psql utility 409
Psycopg

about 282, 290
used, for writing PostGIS vector data

284-290
pyramidMaker function 267
Python

libraries 282
references 281
used, for netCDF datasets import 316-324

Python libraries
Fiona 282
GDAL Python bindings 282
Psycopg 282
Rasterio 282
Rtree 282
Shapely 282
simplejson 282
urllib2 282

466

Q
QGIS

about 14, 430
PostGIS layers, adding to 430-434

QGIS layers
adding 430-434

Quantum GIS. See QGIS

R
raster2pgsql command 51
raster2pgsql option 44
raster2pgsql PostGIS command

used, for raster data importing 39, 40
raster data

importing, with raster2pgsql PostGIS com-
mand 39-44

Rasterio 282
rasters

about 174
converting, to geometries 189-193
exporting, with gdal_translate command

51, 53
exporting, with gdalwarp GDAL command

51-53
formats 174
loading 174-177
loading, with GDAL VRT 194-196
obtaining 174-176
processing, with GDAL VRT 194
resampling 197-199
sharing, through SQL 209-213
warping 197-199

ReadAsArray method 323
resampling algorithm 198
restore method 422
reverse geocoding

GeoNames datasets, using 302-305
Rtree 282
RunKeeper 86

S
schema 394
search_path method 422
search_path parameter 422
Select Features Tool 451

SetField feature method 324
shapefile

about 71
data exporting, with pgsql2shp PostGIS

command 33, 34
importing, with shp2pgsql 17-21

Shapely 282
shp2pgsql tool

about 327
used, for shapefile import 17-21

shp2pgsql command 20
Shuttle Radar Topography Mission (SRTM)

176
Sightings page 382
simple_building method 249
simplejson 282
simple map-algebra operations

performing 182-186
working 186

simplification algorithms 101
Slony-I 427
spatial index

creating 407
spatial indexes 128
spatial joins, GIS analysis 96-101
Spatial Reference ID (SRID) 58
spatial reference system 110
spatial reference system identifier (SRID) 11
SQL file

CREATE INDEX section 20
CREATE TABLE section 20
INSERT INTO section 20

SQL queries
optimizing 410-419

SQL window button 439
ST_Affine method 272
standard constraints, raster

rules 184
startapp option 376
startproject option 376
ST_AsRaster() function 193
ST_AsRaster method 277
ST_BandMetadata() function 422
ST_Buffer function 142, 451
ST_Clip() method 188
ST_ColorMap() function 212, 213
ST_Contains function 86

467

ST_Covers function 86
ST_Crosses function 68, 86
ST_Distance function 86, 108
ST_Distance() function 419
ST_DistanceSphere function 86
ST_DistanceSpheroid function 86
ST_DumpAsPolygons() function 190
ST_DWithin function 86
ST_DWithin method 247
ST_Extent command 52
ST_Extrude

used, for building footprints extruding 256
ST_Extrude method 256
ST_Intersection function 116
ST_Intersects function 86, 116
ST_Intersects() method 188
ST_IsValidDetails function 85, 92
ST_IsValid function 85, 92
ST_IsValidReason function 85, 92, 93
ST_Length function 86, 89
ST_MakeLine function 85-88
ST_MakePoint function 57
ST_MakeValid function 85, 92
ST_MapAlgebraExpr() function 182
ST_MapAlgebraFct() 205
ST_MapAlgebra() function 183, 203
ST_MapAlgebra() method 200
ST_MetaData function 46
ST_PixelsAsPolygons() function 189, 192
ST_Polygonize function

about 78, 140, 141
improving 140, 141

STRING_AGG function 166
ST_Rotate function 137
ST_RotateXYZ function 266
Structure from Motion (SfM) 241, 257
ST_Segmentize function 235
ST_Simplify function 86
ST_Simplify_PreserveTopology function 150
ST_SimplifyPreserveTopology function 102,

106
ST_SimplifyPreverveTopology function 86
ST_Transform() function 197
ST_Transform() method 187
ST_Union function 86, 111
ST_Union() method 188
Styled Layer Descriptor (SLD) 343, 351

T
table

clustering 409
table inheritance

used, for data structuring 62-67
table partitioning

about 67
building 68-70
CHECK constraint 71

temporary fences 449
Test Connect button 432
tile 174
TIME parameter 356
Transactional Web Feature Service. See

WFS-T
transactional WFS 326
Triangular Irregular Network (TIN) 266
triggers

used, for geometry column populating 58-61

U
UAS 265
UAV-derived point cloud

creating 272
importing 272, 273

UAV image footprints
reconstructing, with PostGIS 3D 265-271

uDig
about 457
PostGIS layers, adding to 457-460

UNION ALL function 144
United States Geological Survey (USGS) 132
Unmanned Aerial Systems. See UAS
Unmanned Aerial Vehicle (UAV) 241, 265
urllib2 282
User-friendly Desktop Internet GIS. See uDig

V
virtualenv 283
Virtual Reality Modeling Language (VRML)

261
Voronoi diagrams

about 152, 236
calculating 153-156

468

diagram 152
VoronoiTess function 158

W
WAR (Web archive) file 340
web applications

developing, with GeoDjango 375-386
Web Feature Service. See WFS
Web Map Service. See WMS
WFS 325
WFS requests

GetCapabilities 338
GetFeature 338
GetFeatureInfo 338
GetMap 338

WFS services
creating, GeoServer used 340-352
creating, MapServer used 326-338

WFS-T
about 369
consuming, with OpenLayers 369-374

WMS
about 325
creating, GeoServer used 339-352
creating, MapServer used 326-339

WMS services
consuming, with leaflet 365-368
consuming, with OpenLayers 359-364

WMS Time
creating, MapServer used 352-358

WMS Time service 325

X
X3D 261

Thank you for buying

PostGIS Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Geospatial
Development - Second
Edition
ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications from
scratch using Python tools for geospatial development

1.	 Build your own complete and sophisticated
mapping applications in Python

2.	 Walks you through the process of building
your own online system for viewing and editing
geospatial data

3.	 Practical, hands-on tutorial that teaches you all
about geospatial development in Python

GeoServer Beginner's Guide
ISBN: 978-1-84951-668-6 Paperback: 350 pages

Share and edit geospatial data with this open source
software server

1.	 Learn free and open source geospatial mapping
without prior GIS experience

2.	 Share real-time maps quickly

3.	 Learn step-by-step with ample amounts of
illustrations and usable code/list

Please check www.PacktPub.com for information on our titles

PostgreSQL Replication
ISBN: 978-1-84951-672-3 Paperback: 250 pages

Understand basic replication concepts and efficiently
replicate PostgreSQL using high-end techniques
to protect your data and run your server without
interruptions

1.	 Explains the new replication features introduced
in PostgreSQL 9

2.	 Contains easy to understand explanations and
lots of screenshots that simplify an advanced
topic like replication

3.	 Teaches PostgreSQL administrators how to
maintain consistency between redundant
resources and to improve reliability, fault-
tolerance, and accessibility

PostgreSQL Server
Programming
ISBN: 978-1-84951-698-3 Paperback: 264 pages

Extend PostgreSQL and integrate the database layer into
your development framework

1.	 Understand the extension framework of
PostgreSQL, and leverage it in ways that you
haven't even invented yet

2.	 Write functions, create your own data types, all in
your favourite programming language

3.	 Step-by-step tutorial with plenty of tips and tricks
to kick-start server programming

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Moving Data In and

Out of PostGIS
	Introduction
	Importing nonspatial tabular data (CSV) using PostGIS functions
	Importing nonspatial tabular data (CSV) using GDAL
	Importing shapefiles with shp2pgsql
	Importing and exporting data with the ogr2ogr GDAL command
	Handling batch importing and exporting of datasets
	Exporting data to the shapefile with the pgsql2shp PostGIS command
	Importing OpenStreetMap data with the osm2pgsql command
	Importing raster data with the raster2pgsql PostGIS command
	Importing multiple rasters at a time
	Exporting rasters with the gdal_translate and gdalwarp GDAL commands

	Chapter 2
: Structures that Work
	Introduction
	Using geospatial views
	Using triggers to populate a geometry column
	Structuring spatial data with table inheritance
	Extending inheritance – table partitioning
	Normalizing imports
	Normalizing internal overlays
	Using polygon overlays for proportional census estimates

	Chapter 3
: Working with Vector Data – The Basics
	Introduction
	Working with GPS data
	Fixing invalid geometries
	GIS analysis with spatial joins
	Simplifying geometries
	Measuring distances
	Merging polygons using a common attribute
	Computing intersections
	Clipping geometries to deploy data
	Simplifying geometries with PostGIS topology

	Chapter 4
: Working with Vector Data – Advanced Recipes
	Introduction
	Improving proximity filtering with KNN
	Improving proximity filtering with
KNN – advanced
	Rotating geometries
	Improving ST_Polygonize
	Translating, scaling, and rotating geometries – advanced
	Detailed building footprints from LiDAR
	Using external scripts to embed new
	functionality in order to calculate a Voronoi diagram
	Using external scripts to embed other
	libraries in order to calculate a Voronoi
	diagram – advanced

	Chapter 5
: Working with
Raster Data
	Introduction
	Getting and loading rasters
	Working with basic raster information and analysis
	Performing simple map-algebra operations
	Combining geometries with rasters for analysis
	Converting between rasters and geometries
	Processing and loading rasters with GDAL VRT
	Warping and resampling rasters
	Performing advanced map-algebra operations
	Executing DEM operations
	Sharing and visualizing rasters through SQL

	Chapter 6
: Working with pgRouting
	Introduction
	Startup – Dijkstra routing
	Loading data from OpenStreetMap and finding the shortest path using A*
	Driving distance/service area calculation
	Calculating the driving distance with demographics
	Extracting the centerlines of polygons

	Chapter 7
: Into the Nth Dimension
	Introduction
	Importing LiDAR Data
	Performing 3D queries on a LiDAR point cloud
	Constructing and serving buildings 2.5 D
	Using ST_Extrude to extrude building footprints
	Creating arbitrary 3D objects for PostGIS
	Exporting models as X3D for the Web
	Reconstructing Unmanned Aerial Vehicle (UAV) image footprints with PostGIS 3D
	UAV photogrammetry in PostGIS – point cloud
	UAV photogrammetry in PostGIS—orthorectification
	UAV photogrammetry in PostGIS—DSM creation

	Chapter 8
: PostGIS Programming
	Introduction
	Writing PostGIS vector data with Psycopg
	Writing PostGIS vector data with OGR Python bindings
	Writing PostGIS functions with PL/Python
	Geocoding and reverse-geocoding using the GeoNames datasets
	Geocoding using the OSM datasets with trigrams
	Geocoding with geopy and PL/Python
	Importing netCDF datasets with Python and GDAL

	Chapter 9
: PostGIS and the Web
	Introduction
	Creating WMS and WFS services with MapServer
	Creating WMS and WFS services with GeoServer
	Creating a WMS Time with MapServer
	Consuming WMS services with OpenLayers
	Consuming WMS services with Leaflet
	Consuming WFS-T services with OpenLayers
	Developing web applications with GeoDjango – part 1
	Developing web applications with GeoDjango – part 2

	Chapter 10
: Maintenance, Optimization, and Performance Tuning
	Introduction
	Organizing the database
	Setting up the correct data privilege mechanism
	Backing up the database
	Using indexes
	Clustering for efficiency
	Optimizing SQL queries
	Migrating a PostGIS database to a different server
	Replicating a PostGIS database with streaming replication

	Chapter 11
: Using Desktop Clients
	Introduction
	Adding PostGIS layers – QGIS
	Using the Database Manager plugin – QGIS
	Adding PostGIS layers – OpenJUMP GIS
	Running database queries – OpenJUMP
	Adding PostGIS layers – gvSIG
	Adding PostGIS layers – uDig

	Index

